Science.gov

Sample records for activated carbon sorbents

  1. Activated-Carbon Sorbent With Integral Heat-Transfer Device

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Yavrouian, Andre

    1996-01-01

    Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.

  2. Pore structure effects on Ca-based sorbent sulfation capacity at medium temperatures: activated carbon as sorbent/catalyst support.

    PubMed

    Tseng, Hui-Hsin; Wey, Ming-Yen; Lin, Chiou-Liang; Chang, Yu-Chen

    2002-11-01

    The reaction between three different Ca-based sorbents and SO2 were studied in a medium temperature range (473-773 K). The largest SO2 capture was found with Ca(OH)2 at 773 K, 126.31 mg SO2 x g Ca(OH)2(-1), and the influence of SO2 concentration on the sorbent utilization was observed. Investigations of the internal porous structure of Ca-based sorbents showed that the initial reaction rate was controlled by the surface area, and once the sulfated products were produced, pore structure dominated. To increase the surface area of Ca-based sorbents available to interact with and retain SO2, one kind of CaO/ activated carbon (AC) sorbent/catalyst was prepared to study the effect of AC on the dispersion of Ca-based materials. The results indicated that the Ca-based material dispersed on high-surface-area AC had more capacities for SO2 than unsupported Ca-based sorbents. The initial reaction rates of the reaction between SO2 and Ca-based sorbents and the prepared CaO/AC sorbents/catalysts were measured. Results showed that the reaction rate apparently increased with the presence of AC. It was concluded that CaO/AC was the active material in the desulfurization reaction. AC acting as the support can play a role to supply O2 to increase the affinity to SO2. Moreover, when AC is acting as a support, the surface oxygen functional group formed on the surface of AC can serve as a new site for SO2 adsorption.

  3. Carbon sorbent based on flax boon

    SciTech Connect

    Abramov, M.V.; Tyulina, R.M.; Yaroslavtsev, V.T.

    1994-11-10

    Flax-fiber production wastes such as boon can be used effectively as the starting material for producing carbon sorbents. Activated carbons are among the most widely used sorbents in industrial wastewater and waste gas treatment. A single-stage process has been developed for producing an efficient, cheap carbon sorbent based on flax boon.

  4. Magnetite impregnation effects on the sorbent properties of activated carbons and biochars.

    PubMed

    Han, Zhantao; Sani, Badruddeen; Mrozik, Wojciech; Obst, Martin; Beckingham, Barbara; Karapanagioti, Hrissi K; Werner, David

    2015-03-01

    This paper discusses the sorbent properties of magnetic activated carbons and biochars produced by wet impregnation with iron oxides. The sorbents had magnetic susceptibilities consistent with theoretical predictions for carbon-magnetite composites. The high BET surface areas of the activated carbons were preserved in the synthesis, and enhanced for one low surface area biochar by dissolving carbonates. Magnetization decreased the point of zero charge. Organic compound sorption correlated strongly with BET surface areas for the pristine and magnetized materials, while metal cation sorption did not show such a correlation. Strong sorption of the hydrophobic organic contaminant phenanthrene to the activated carbon or biochar surfaces was maintained following magnetite impregnation, while phenol sorption was diminished, probably due to enhanced carbon oxidation. Copper, zinc and lead sorption to the activated carbons and biochars was unchanged or slightly enhanced by the magnetization, and iron oxides also contributed to the composite metal sorption capacity. While a magnetic biochar with 219 ± 3.7 m(2)/g surface area nearly reached the very strong organic pollutant binding capacity of the two magnetic activated carbons, a magnetic biochar with 68 ± 2.8 m(2)/g surface area was the best metal sorbent. Magnetic biochars thus hold promise as more sustainable alternatives to coal-derived magnetic activated carbons.

  5. Sorption of uranium from carbonate solutions by thin-layer sorbents based on titanium hydroxoperoxide and activated carbon, and the elution of uranium

    SciTech Connect

    Prishchepo, R.S.; Betenekov, N.D.; Pershko, A.A.; Vasilevskii, V.A.

    1986-05-01

    This paper studies the sorption of uranium from carbonate solutions and the elution of uranium under static conditions, on thin-layer inorganic sorbents obtained by homogeneous precipitation of titanium hydroperoxide on SKT activated carbon. The exchange capacity of the sorbents for uranium has been determined in relation to the quantity of titanium in the film, the sorbent particle size, and the contact time. Conditions have been selected for the elution.

  6. Mechanochemically Activated, Calcium Oxide-Based, Magnesium Oxide-Stabilized Carbon Dioxide Sorbents.

    PubMed

    Kurlov, Alexey; Broda, Marcin; Hosseini, Davood; Mitchell, Sharon J; Pérez-Ramírez, Javier; Müller, Christoph R

    2016-09-01

    Carbon dioxide capture and storage (CCS) is a promising approach to reduce anthropogenic CO2 emissions and mitigate climate change. However, the costs associated with the capture of CO2 using the currently available technology, that is, amine scrubbing, are considered prohibitive. In this context, the so-called calcium looping process, which relies on the reversible carbonation of CaO, is an attractive alternative. The main disadvantage of naturally occurring CaO-based CO2 sorbents, such as limestone, is their rapid deactivation caused by thermal sintering. Here, we report a scalable route based on wet mechanochemical activation to prepare MgO-stabilized, CaO-based CO2 sorbents. We optimized the synthesis conditions through a fundamental understanding of the underlying stabilization mechanism, and the quantity of MgO required to stabilize CaO could be reduced to as little as 15 wt %. This allowed the preparation of CO2 sorbents that exceed the CO2 uptake of the reference limestone by 200 %. PMID:27529608

  7. Mechanochemically Activated, Calcium Oxide-Based, Magnesium Oxide-Stabilized Carbon Dioxide Sorbents.

    PubMed

    Kurlov, Alexey; Broda, Marcin; Hosseini, Davood; Mitchell, Sharon J; Pérez-Ramírez, Javier; Müller, Christoph R

    2016-09-01

    Carbon dioxide capture and storage (CCS) is a promising approach to reduce anthropogenic CO2 emissions and mitigate climate change. However, the costs associated with the capture of CO2 using the currently available technology, that is, amine scrubbing, are considered prohibitive. In this context, the so-called calcium looping process, which relies on the reversible carbonation of CaO, is an attractive alternative. The main disadvantage of naturally occurring CaO-based CO2 sorbents, such as limestone, is their rapid deactivation caused by thermal sintering. Here, we report a scalable route based on wet mechanochemical activation to prepare MgO-stabilized, CaO-based CO2 sorbents. We optimized the synthesis conditions through a fundamental understanding of the underlying stabilization mechanism, and the quantity of MgO required to stabilize CaO could be reduced to as little as 15 wt %. This allowed the preparation of CO2 sorbents that exceed the CO2 uptake of the reference limestone by 200 %.

  8. Carbon dioxide capture process with regenerable sorbents

    DOEpatents

    Pennline, Henry W.; Hoffman, James S.

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  9. High capacity carbon dioxide sorbent

    DOEpatents

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  10. Effect of precursor and preparation method on manganese based activated carbon sorbents for removing H2S from hot coal gas.

    PubMed

    Wang, Jiancheng; Qiu, Biao; Han, Lina; Feng, Gang; Hu, Yongfeng; Chang, Liping; Bao, Weiren

    2012-04-30

    Activated carbon (AC) supported manganese oxide sorbents were prepared by the supercritical water impregnation (SCWI) using two different precursor of Mn(NO(3))(2) (SCW(N)) and Mn(Ac)(2)·4H(2)O (SCW(A)). Their capacities of removing H(2)S from coal gas were evaluated and compared to the sorbents prepared by the pore volume impregnation (PVI) method. The structure and composition of different sorbents were characterized by XRD, SEM, TEM, XPS and XANES techniques. It is found that the precursor of active component plays the crucial role and SCW(N) sorbents show much better sulfidation performance than the SCW(A) sorbents. This is because the Mn(3)O(4) active phase of the SCW(N) sorbents are well dispersed on the AC support, while the Mn(2)SiO(4)-like species in the SCW(A) sorbent can be formed and seriously aggregated. The SCW(N) sorbents with 2.80% and 5.60% manganese are favorable for the sulfidation reaction, since the Mn species are better dispersed on the SCW(N) sorbents than those on the PV(N) sorbents and results in the better sulfidation performance of the SCW(N) sorbents. As the Mn content increases to 11.20%, the metal oxide particles on AC supports aggregate seriously, which leads to poorer sulfidation performance of the SCW(N)11.20% sorbents than that of the PV(N)11.20% sorbents. PMID:22341981

  11. Solid-Phase Extraction of Sulfur Mustard Metabolites Using an Activated Carbon Fiber Sorbent.

    PubMed

    Lee, Jin Young; Lee, Yong Han

    2016-01-01

    A novel solid-phase extraction method using activated carbon fiber (ACF) was developed and validated. ACF has a vast network of pores of varying sizes and microporous structures that result in rapid adsorption and selective extraction of sulfur mustard metabolites according to the pH of eluting solvents. ACF could not only selectively extract thiodiglycol and 1-methylsulfinyl-2-[2-(methylthio)-ethylsulfonyl]ethane eluting a 9:1 ratio of dichloromethane to acetone, and 1,1'-sulfonylbis[2-(methylsulfinyl)ethane] and 1,1'-sulfonylbis- [2-S-(N-acetylcysteinyl)ethane] eluting 3% hydrogen chloride in methanol, but could also eliminate most interference without loss of analytes during the loading and washing steps. A sample preparation method has been optimized for the extraction of sulfur mustard metabolites from human urine using an ACF sorbent. The newly developed extraction method was applied to the trace analysis of metabolites of sulfur mustard in human urine matrices in a confidence-building exercise for the analysis of biomedical samples provided by the Organisation for the Prohibition of Chemical Weapons. PMID:26364317

  12. Synthesis and application of surface-imprinted activated carbon sorbent for solid-phase extraction and determination of copper (II)

    NASA Astrophysics Data System (ADS)

    Li, Zhenhua; Li, Jingwen; Wang, Yanbin; Wei, Yajun

    2014-01-01

    A new Cu(II)-imprinted amino-functionalized activated carbon sorbent was prepared by a surface imprinting technique for selective solid-phase extraction (SPE) of Cu(II) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of Cu(II) were optimized with respect to different experimental parameters using static and dynamic procedures in detail. Compared with non-imprinted sorbent, the ion-imprinted sorbent had higher selectivity and adsorption capacity for Cu(II). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Cu(II) was 26.71 and 6.86 mg g-1, respectively. The relatively selectivity factor values (αr) of Cu(II)/Zn(II), Cu(II)/Ni(II), Cu(II)/Co(II) and Cu(II)/Pb(II) were 166.16, 50.77, 72.26 and 175.77, respectively, which were greater than 1. Complete elution of the adsorbed Cu(II) from Cu(II)-imprinted sorbent was carried out using 2 mL of 0.1 mol L-1 EDTA solution. The relative standard deviation of the method was 2.4% for eleven replicate determinations. The method was validated for the analysis by two certified reference materials (GBW 08301, GBW 08303), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace copper in natural water samples with satisfactory results.

  13. Adsorption of Ammonia on Regenerable Carbon Sorbents

    NASA Technical Reports Server (NTRS)

    Wójtowicz, Marek A.; Cosgrove, Jesph E.; Serio, Michael A..; Wilburn, Monique

    2015-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Data on sorption and desorption of ammonia, which is a major TC of concern, are presented in this paper. The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for ammonia sorption. Ammonia-sorption capacity was related to carbon pore structure characteristics, and the temperature of oxidative carbon-surface treatment was optimized for enhanced ammonia-sorption performance.

  14. Adsorption kinetic and equilibrium study for removal of mercuric chloride by CuCl2-impregnated activated carbon sorbent.

    PubMed

    Li, Xin; Liu, Zhouyang; Lee, Joo-Youp

    2013-05-15

    The intrinsic adsorption kinetics of mercuric chloride (HgCl2) was studied for raw, 4% and 10% CuCl2-impregnated activated carbon (CuCl2-AC) sorbents in a fixed-bed system. An HgCl2 adsorption kinetic model was developed for the AC sorbents by taking into account the adsorption kinetics, equilibrium, and internal and external mass transfer. The adsorption kinetic constants determined from the comparisons between the simulation and experimental results were 0.2, 0.3, and 0.5m(3)/(gs) for DARCO-HG, 4%(wt), and 10%(wt) CuCl2-AC sorbents, respectively, at 140 °C. CuCl2 loading was found to slightly increase the adsorption kinetic constant or at least not to decrease it. The HgCl2 equilibrium adsorption data based on the Langmuir isotherm show that high CuCl2 loading can result in high binding energy of the HgCl2 adsorption onto the carbon surface. The adsorption equilibrium constant was found to increase by ~10 times when CuCl2 loading varied from 0 to 10%(wt), which led to a decrease in the desorption kinetic constant (k2) by ~10 times and subsequently the desorption rate by ~50 times. Intraparticle pore diffusion considered in the model showed good accuracy, allowing for the determination of intrinsic HgCl2 adsorption kinetics.

  15. An X-ray photoelectron spectroscopy study of surface changes on brominated and sulfur-treated activated carbon sorbents during mercury capture: performance of pellet versus fiber sorbents.

    PubMed

    Saha, Arindom; Abram, David N; Kuhl, Kendra P; Paradis, Jennifer; Crawford, Jenni L; Sasmaz, Erdem; Chang, Ramsay; Jaramillo, Thomas F; Wilcox, Jennifer

    2013-12-01

    This work explores surface changes and the Hg capture performance of brominated activated carbon (AC) pellets, sulfur-treated AC pellets, and sulfur-treated AC fibers upon exposure to simulated Powder River Basin-fired flue gas. Hg breakthrough curves yielded specific Hg capture amounts by means of the breakthrough shapes and times for the three samples. The brominated AC pellets showed a sharp breakthrough after 170-180 h and a capacity of 585 μg of Hg/g, the sulfur-treated AC pellets exhibited a gradual breakthrough after 80-90 h and a capacity of 661 μg of Hg/g, and the sulfur-treated AC fibers showed no breakthrough even after 1400 h, exhibiting a capacity of >9700 μg of Hg/g. X-ray photoelectron spectroscopy was used to analyze sorbent surfaces before and after testing to show important changes in quantification and oxidation states of surface Br, N, and S after exposure to the simulated flue gas. For the brominated and sulfur-treated AC pellet samples, the amount of surface-bound Br and reduced sulfur groups decreased upon Hg capture testing, while the level of weaker Hg-binding surface S(VI) and N species (perhaps as NH4(+)) increased significantly. A high initial concentration of strong Hg-binding reduced sulfur groups on the surface of the sulfur-treated AC fiber is likely responsible for this sorbent's minimal accumulation of S(VI) species during exposure to the simulated flue gas and is linked to its superior Hg capture performance compared to that of the brominated and sulfur-treated AC pellet samples.

  16. Study the properties of activated carbon and oxyhydroxide aluminum as sorbents for removal humic substances from natural waters

    NASA Astrophysics Data System (ADS)

    Shiyan, L. N.; Machekhina, K. I.; Gryaznova, E. N.

    2016-02-01

    The present work relates to the problem of high-quality drinking water supply using processes of adsorption on activated carbon and aluminum oxyhydroxide for removal humic- type organic substances. Also the paper reports on sorbtion properties of the activeted carbon Norit SA UF and oxyhydroxide aluminum for removal humic substances. It was found out that the maximum adsorption capacity of activated carbon to organic substances is equal to 0.25 mg/mg and aluminum oxyhydroxide is equal to 0.3 mg/mg. It is shown that the maximum adsorption capacity of activated carbon Norit SA UF to iron (III) ions is equal to 0.0045 mg/mg and to silicon ions is equal to 0.024 mg/mg. Consequently, the aluminum oxyhydroxide has better adsorption characteristics in comparison with the activated carbon for removal of humic substances, iron and silicon ions. It is associated with the fact that activated carbon has a large adsorption surface, and this is due to its porous structure, but not all molecules can enter into these pores. Therefore, the fibrous structure of aluminum oxyhydroxide promotes better sorption capacity. The presented results suggest that activated carbon Norit SA UF and aluminum oxyhydroxide can be used as sorbents for removal humic substances or other organic substances from groundwater and natural waters.

  17. The antimicrobial efficiency of silver activated sorbents

    NASA Astrophysics Data System (ADS)

    Đolić, Maja B.; Rajaković-Ognjanović, Vladana N.; Štrbac, Svetlana B.; Rakočević, Zlatko Lj.; Veljović, Đorđe N.; Dimitrijević, Suzana I.; Rajaković, Ljubinka V.

    2015-12-01

    This study is focused on the surface modifications of the materials that are used for antimicrobial water treatment. Sorbents of different origin were activated by Ag+-ions. The selection of the most appropriate materials and the most effective activation agents was done according to the results of the sorption and desorption kinetic studies. Sorption capacities of selected sorbents: granulated activated carbon (GAC), zeolite (Z), and titanium dioxide (T), activated by Ag+-ions were following: 42.06, 13.51 and 17.53 mg/g, respectively. The antimicrobial activity of Ag/Z, Ag/GAC and Ag/T sorbents were tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and yeast C. albicans. After 15 min of exposure period, the highest cell removal was obtained using Ag/Z against S. aureus and E. coli, 98.8 and 93.5%, respectively. Yeast cell inactivation was unsatisfactory for all three activated sorbents. The antimicrobial pathway of the activated sorbents has been examined by two separate tests - Ag+-ions desorbed from the activated surface to the aqueous phase and microbial cell removal caused by the Ag+-ions from the solid phase (activated surface sites). The results indicated that disinfection process significantly depended on the microbial-activated sites interactions on the modified surface. The chemical state of the activating agent had crucial impact to the inhibition rate. The characterization of the native and modified sorbents was performed by X-ray diffraction technique, X-ray photoelectron spectroscopy and scanning electron microscope. The concentration of adsorbed and released ions was determined by inductively coupled plasma optical emission spectroscopy and mass spectrometry. The antimicrobial efficiency of activated sorbents was related not only to the concentration of the activating agent, but moreover on the surface characteristics of the material, which affects the distribution and the accessibility of the activating agent.

  18. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

    2003-01-01

    The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates or intermediate salts through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that high calcination temperatures decrease the activity of sodium bicarbonate Grade 1 (SBC No.1) during subsequent carbonation cycles, but there is little or no progressive decrease in activity in successive cycles. SBC No.1 appears to be more active than SBC No.3. As expected, the presence of SO{sub 2} in simulated flue gas results in a progressive loss of sorbent capacity with increasing cycles. This is most likely due to an irreversible reaction to produce Na{sub 2}SO{sub 3}. This compound appears to be stable at calcination temperatures as high as 200 C. Tests of 40% supported potassium carbonate sorbent and plain support material suggest that some of the activity observed in tests of the supported sorbent may be due to adsorption by the support material rather than to carbonation of the sorbent.

  19. Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas.

    PubMed

    Li, Dekui; Han, Jieru; Han, Lina; Wang, Jiancheng; Chang, Liping

    2014-07-01

    Higher concentrations of Hg can be emitted from coal pyrolysis or gasification than from coal combustion, especially elemental Hg. Highly efficient Hg removal technology from coal-derived fuel gas is thus of great importance. Based on the very excellent Hg removal ability of Pd and the high adsorption abilities of activated carbon (AC) for H₂S and Hg, a series of Pd/AC sorbents was prepared by using pore volume impregnation, and their performance in capturing Hg and H₂S from coal-derived fuel gas was investigated using a laboratory-scale fixed-bed reactor. The effects of loading amount, reaction temperature and reaction atmosphere on Hg removal from coal-derived fuel gas were studied. The sorbents were characterized by N₂ adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the efficiency of Hg removal increased with the increasing of Pd loading amount, but the effective utilization rate of the active component Pd decreased significantly at the same time. High temperature had a negative influence on the Hg removal. The efficiency of Hg removal in the N₂-H₂S-H₂-CO-Hg atmosphere (simulated coal gas) was higher than that in N₂-H₂S-Hg and N₂-Hg atmospheres, which showed that H₂ and CO, with their reducing capacity, could benefit promote the removal of Hg. The XPS results suggested that there were two different ways of capturing Hg over sorbents in N₂-H₂S-Hg and N₂-Hg atmospheres.

  20. Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas.

    PubMed

    Li, Dekui; Han, Jieru; Han, Lina; Wang, Jiancheng; Chang, Liping

    2014-07-01

    Higher concentrations of Hg can be emitted from coal pyrolysis or gasification than from coal combustion, especially elemental Hg. Highly efficient Hg removal technology from coal-derived fuel gas is thus of great importance. Based on the very excellent Hg removal ability of Pd and the high adsorption abilities of activated carbon (AC) for H₂S and Hg, a series of Pd/AC sorbents was prepared by using pore volume impregnation, and their performance in capturing Hg and H₂S from coal-derived fuel gas was investigated using a laboratory-scale fixed-bed reactor. The effects of loading amount, reaction temperature and reaction atmosphere on Hg removal from coal-derived fuel gas were studied. The sorbents were characterized by N₂ adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the efficiency of Hg removal increased with the increasing of Pd loading amount, but the effective utilization rate of the active component Pd decreased significantly at the same time. High temperature had a negative influence on the Hg removal. The efficiency of Hg removal in the N₂-H₂S-H₂-CO-Hg atmosphere (simulated coal gas) was higher than that in N₂-H₂S-Hg and N₂-Hg atmospheres, which showed that H₂ and CO, with their reducing capacity, could benefit promote the removal of Hg. The XPS results suggested that there were two different ways of capturing Hg over sorbents in N₂-H₂S-Hg and N₂-Hg atmospheres. PMID:25079999

  1. Activated carbons from end-products of tree nut and tree fruit production as sorbents for removing methyl bromide in ventilation effluent from postharvest chamber fumigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    End-products of tree nuts and tree fruits grown in California, USA were evaluated for the ability to remove methyl bromide from the ventilation effluent of postharvest chamber fumigations. Activated carbon sorbents from walnut and almond shells as well as peach and prune pits were prepared using dif...

  2. Encapsulated liquid sorbents for carbon dioxide capture.

    PubMed

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-02-05

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  3. Encapsulated liquid sorbents for carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Vericella, John J.; Baker, Sarah E.; Stolaroff, Joshuah K.; Duoss, Eric B.; Hardin, James O.; Lewicki, James; Glogowski, Elizabeth; Floyd, William C.; Valdez, Carlos A.; Smith, William L.; Satcher, Joe H.; Bourcier, William L.; Spadaccini, Christopher M.; Lewis, Jennifer A.; Aines, Roger D.

    2015-02-01

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  4. Potential hazards of brominated carbon sorbents for mercury emission control.

    PubMed

    Bisson, Teresa M; Xu, Zhenghe

    2015-02-17

    Mercury is a toxic air pollutant, emitted from the combustion of coal. Activated Carbon (AC) or other carbon sorbent (CS) injection into coal combustion flue gases can remove elemental mercury through an adsorption process. Recently, a brominated CS with biomass ash as the carbon source (Br-Ash) was developed as an alternative for costly AC-based sorbent for mercury capture. After mercury capture, these sorbents are disposed in landfill, and the stability of bromine and captured mercury is of paramount importance. The objective of this study is to determine the fate of mercury and bromine from Br-Ash and brominated AC after their service. Mercury and bromine leaching tests were conducted using the standard toxicity characteristic leaching procedure (TCLP). The mercury was found to be stable on both the Br-Ash and commercial brominated AC sorbents, while the bromine leached into the aqueous phase considerably. Mercury pulse injection tests on the sorbent material after leaching indicate that both sorbents retain significant mercury capture capability even after the majority of bromine was removed. Testing of the Br-Ash sorbent over a wider range of pH and liquid:solid ratios resulted in leaching of <5% of mercury adsorbed on the Br-Ash. XPS analysis indicated more organically bound Br and less metal-Br bonds after leaching.

  5. Silver oxide sorbent for carbon dioxide

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.

    1974-01-01

    Material can be regenerated at least 20 times by heating at 250 C. Sorbent is compatible with environment of high humidity; up to 20% by weight of carbon dioxide can be absorbed. Material is prepared from silver carbonate, potassium hydroxide or carbonate, and sodium silicate.

  6. Magnetic graphene oxide-polystyrene and magnetic activated carbon-polystyrene nanocomposites as sorbents for bisphenol A.

    NASA Astrophysics Data System (ADS)

    Rekos, Kyriazis; Kampouraki, Zoi Christina; Samanidou, Victoria; Deliyanni, Eleni

    2016-04-01

    Magnetic graphene oxide-polystyrene and magnetic activated carbon-polystyrene nanocomposites as sorbents for bisphenol A. Kyriazis Rekos1, Zoi Christina Kampouraki1, Victoria Samanidou2, Eleni Deliyanni1 1 Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece 2 Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece The aim of this work was to prepare and characterize novel composites of magnetic activated carbon or magnetic graphene oxide with polystyrene (GO/PSm), through one step simple and effective route. Μagnetite nanoparticles, prepared in the laboratory, were dispersed in the presence of activated carbon (C) or graphene oxide (GO) in a polystyrene (PS) solution in dimethylformamide, at elevated temperature, for the fabrication of the magnetite-Carbon-PS (C-PSm) and magnetite- Graphene Oxide-PS (GO-PSm) hybrid-nanoparticles. For comparison, C-PS and GO-PS composites were also prepared in the same route. The nanocomposites were tested for their sorption ability for an endocrine disruptor, bisphenol A. The effect of solution pH, initial concentration, contact time and temperature were examined. The magnetic graphite oxide-polystyrene presented higher adsorption capacity (100 mg/g) than the non magnetic composites (70 mg/g), as well as than initial graphite oxide (20 mg/g). FTIR, XRD, BET, TGA, VSM and SEM were performed in order to investigate the role of the PS on the better adsorption performance of the mGO-PS nanocomposites. The characterization with these techniques revealed the possible interactions of the surface functional groups of activated carbon and/or graphite oxide with polystyrene that resulted in the better performance of the magnetic nanocomposites for bisphenol A adsorption.

  7. Double-bed-type extraction needle packed with activated-carbon-based sorbents for very volatile organic compounds.

    PubMed

    Ueta, Ikuo; Samsudin, Emi Liana; Mizuguchi, Ayako; Takeuchi, Hayato; Shinki, Takumi; Kawakubo, Susumu; Saito, Yoshihiro

    2014-01-01

    A novel needle-type sample preparation device was developed for the determination of very volatile organic compounds (VVOCs) in gaseous samples by gas chromatography-mass spectrometry (GC-MS). Two types of activated-carbon-based sorbents, Carbopack X and a carbon molecular sieve (CMS), were investigated as the extraction medium. A double-bed-type extraction needle showed successful extraction and desorption performance for all investigated VVOCs, including acetaldehyde, isoprene, pentane, acetone, and ethanol. Sensitive and reliable determination of VVOCs was achieved by systematically optimizing several desorption conditions. In addition, the effects of sample humidity on the extraction and desorption of analytes were investigated with the needle-type extraction devices. Only the CMS packed extraction needle was adversely affected by sample humidity during the desorption process; on the other hand the double-bed-type extraction needle was unaffected by sample humidity. Finally, the developed double-bed-type extraction needle was successfully applied to the analysis of breath VVOCs of healthy subjects. PMID:24176747

  8. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Tyler Moore; Douglas P. Harrison

    2003-08-01

    This report describes research conducted between April 1, 2003 and June 30, 2003 on the use of dry regenerable sorbents for concentration of carbon dioxide from flue gas. Grade 1 sodium bicarbonate performed similarly to grade 5 sodium bicarbonate in fixed bed testing in that activity improved after the first carbonation cycle and did not decline over the course of 5 cycles. Thermogravimetric analysis indicated that sodium bicarbonate sorbents produced by calcination of sodium bicarbonate are superior to either soda ash or calcined trona. Energy requirements for regeneration of carbon dioxide sorbents (either wet or dry) is of primary importance in establishing the economic feasibility of carbon dioxide capture processes. Recent studies of liquid amine sorption processes were reviewed and found to incorporate conflicting assumptions of energy requirements. Dry sodium based processes have the potential to be less energy intensive and thus less expensive than oxygen inhibited amine based systems. For dry supported sorbents, maximizing the active fraction of the sorbent is of primary importance in developing an economically feasible process.

  9. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-11-01

    Laboratory studies were conducted to investigate dry, regenerable, alkali carbonate-based sorbents for the capture of CO{sub 2} from power plant flue gas. Electrobalance, fixed-bed and fluid-bed reactors were used to examine both the CO{sub 2} capture and sorbent regeneration phases of the process. Sodium carbonate-based sorbents (calcined sodium bicarbonate and calcined trona) were the primary focus of the testing. Supported sodium carbonate and potassium carbonate sorbents were also tested. Sodium carbonate reacts with CO{sub 2} and water vapor contained in flue gas at temperatures between 60 and 80 C to form sodium bicarbonate, or an intermediate salt (Wegscheider's salt). Thermal regeneration of this sorbent produces an off-gas containing equal molar quantities of CO{sub 2} and H{sub 2}O. The low temperature range in which the carbonation reaction takes place is suited to treatment of coal-derived flue gases following wet flue gas desulfurization processes, but limits the concentration of water vapor which is an essential reactant in the carbonation reaction. Sorbent regeneration in an atmosphere of CO{sub 2} and water vapor can be carried out at a temperature of 160 C or higher. Pure CO{sub 2} suitable for use or sequestration is available after condensation of the H{sub 2}O. Flue gas contaminants such as SO{sub 2} react irreversibly with the sorbent so that upstream desulfurization will be required when sulfur-containing fossil fuels are used. Approximately 90% CO{sub 2} capture from a simulated flue gas was achieved during the early stages of fixed-bed reactor tests using a nominal carbonation temperature of 60 C. Effectively complete sorbent carbonation is possible when the fixed-bed test is carried out to completion. No decrease in sorbent activity was noted in a 15-cycle test using the above carbonation conditions coupled with regeneration in pure CO{sub 2} at 160 C. Fluidized-bed reactor tests of up to five cycles were conducted. Carbonation of sodium

  10. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson; Santosh Gangwal; Ya Liang; Tyler Moore; Margaret Williams; Douglas P. Harrison

    2004-09-30

    Laboratory studies were conducted to investigate dry, regenerable, alkali carbonate-based sorbents for the capture of CO{sub 2} from power plant flue gas. Electrobalance, fixed-bed and fluid-bed reactors were used to examine both the CO{sub 2} capture and sorbent regeneration phases of the process. Sodium carbonate-based sorbents (calcined sodium bicarbonate and calcined trona) were the primary focus of the testing. Supported sodium carbonate and potassium carbonate sorbents were also tested. Sodium carbonate reacts with CO{sub 2} and water vapor contained in flue gas at temperatures between 60 and 80 C to form sodium bicarbonate, or an intermediate salt (Wegscheider's salt). Thermal regeneration of this sorbent produces an off-gas containing equal molar quantities of CO{sub 2} and H{sub 2}O. The low temperature range in which the carbonation reaction takes place is suited to treatment of coal-derived flue gases following wet flue gas desulfurization processes, but limits the concentration of water vapor which is an essential reactant in the carbonation reaction. Sorbent regeneration in an atmosphere of CO{sub 2} and water vapor can be carried out at a temperature of 160 C or higher. Pure CO{sub 2} suitable for use or sequestration is available after condensation of the H{sub 2}O. Flue gas contaminants such as SO{sub 2} react irreversibly with the sorbent so that upstream desulfurization will be required when sulfur-containing fossil fuels are used. Approximately 90% CO{sub 2} capture from a simulated flue gas was achieved during the early stages of fixed-bed reactor tests using a nominal carbonation temperature of 60 C. Effectively complete sorbent carbonation is possible when the fixed-bed test is carried out to completion. No decrease in sorbent activity was noted in a 15-cycle test using the above carbonation conditions coupled with regeneration in pure CO{sub 2} at 160 C. Fluidized-bed reactor tests of up to five cycles were conducted. Carbonation of sodium

  11. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, or ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, five cycle thermogravimetric tests were conducted at the Louisiana State University (LSU) with sodium bicarbonate Grade 3 (SBC{number_sign}3) which showed that carbonation activity declined slightly over 5 cycles following severe calcination conditions of 200 C in pure CO{sub 2}. Three different sets of calcination conditions were tested. Initial carbonation activity (as measured by extent of reaction in the first 25 minutes) was greatest subsequent to calcination at 120 C in He, slightly less subsequent to calcination in 80% CO{sub 2}/20% H{sub 2}O, and lowest subsequent to calcination in pure CO{sub 2} at 200 C. Differences in the extent of reaction after 150 minutes of carbonation, subsequent to calcination under the same conditions followed the same trend but were less significant. The differences between fractional carbonation under the three calcination conditions declined with increasing cycles. A preliminary fixed bed reactor test was also conducted at LSU. Following calcination, the sorbent removed approximately 19% of the CO{sub 2} in the simulated flue gas. CO{sub 2} evolved during subsequent calcination was consistent with an extent of carbonation of approximately 49%. Following successful testing of SBC{number_sign}3 sorbent at RTI reported in the last quarter, a two cycle fluidized bed reactor test was conducted with trona as the sorbent precursor, which was calcined to sodium carbonate. In the first carbonation cycle, CO

  12. Developing Polycation-Clay Sorbents for Efficient Filtration of Diclofenac: Effect of Dissolved Organic Matter and Comparison to Activated Carbon.

    PubMed

    Kohay, Hagay; Izbitski, Avital; Mishael, Yael G

    2015-08-01

    The presence of nanoconcentrations of persistent pharmaceuticals in treated wastewater effluent and in surface water has been frequently reported. A novel organic-inorganic hybrid sorbent based on adsorbing quarternized poly vinylpyridinium-co-styrene (QPVPcS) to montmorillonite (MMT) was designed for the removal of the anionic micropollutants. QPVPcS-clay composites were characterized by X-ray diffraction, FTIR, thermal gravimetric analysis, Zeta potential and element analysis. Based on these measurements polymer-clay micro- and nanostructures, as a function of polymer loading, were suggested. The affinity of the anionic pharmaceutical, diclofenac (DCF), to the composite was high and did not decrease dramatically with an increase of ionic strength, indicating that the interactions are not only electrostatic. The presence of humic acid (HA) did not hinder DCF removal by the composite; whereas, its filtration by granulated activated carbon (GAC) was compromised in the presence of HA. The kinetics and adsorption at equilibrium of DCF to the composite and to GAC were measured and modeled by the time dependent Langmuir equation. The adsorption of DCF to the composite was significantly faster than to GAC. Accordingly, the filtration of micro- and nanoconcentrations of DCF by composite columns, in the presence of HA, was more efficient than by GAC columns. PMID:26126078

  13. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-04-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates, through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests conducted at LSU indicated that exposure of sorbent to water vapor prior to contact with carbonation gas does not significantly increase the reaction rate. Calcined fine mesh trona has a greater initial carbonation rate than calcined sodium bicarbonate, but appears to be more susceptible to loss of reactivity under severe calcination conditions. The Davison attrition indices for Grade 5 sodium bicarbonate, commercial grade sodium carbonate and extra fine granular potassium carbonate were, as tested, outside of the range suitable for entrained bed reactor testing. Fluidized bed testing at RTI indicated that in the initial stages of reaction potassium carbonate removed 35% of the carbon dioxide in simulated flue gas, and is reactive at higher temperatures than sodium carbonate. Removals declined to 6% when 54% of the capacity of the sorbent was exhausted. Carbonation data from electrobalance testing was correlated using a shrinking core reaction model. The activation energy of the reaction of sodium carbonate with carbon dioxide and water vapor was determined from nonisothermal thermogravimetry.

  14. Cheap carbon sorbents produced from lignite by catalytic pyrolysis

    SciTech Connect

    Kuznetsov, B.N.; Schchipko, M.L.

    1995-12-01

    Some data are presented describing the new technology of carbon sorbent production from powdered lignite in the installation with fluidized bed of catalyst. It was shown the different types of char products with extended pore structure and high sorption ability can be produced from cheap and accessible lignite of Kansk-Achinsk coal pit in pilot installation with fluidized bed of Al-Cu-Cr oxide catalyst or catalytically active slag materials. In comparison with the conventional technologies of pyrolysis the catalytic pyrolysis allows to increase by 3-5 times the process productivity and to decrease significantly the formation of harmful compounds. The latter is accomplished by complete oxidation of gaseous pyrolysis products in the presence of catalysts and by avoiding the formation of pyrolysis tars - the source of cancerogenic compounds. The technology of cheap powdered sorbent production from lignites makes possible to obtain from lignite during the time of pyrolysis only a few seconds char products with porosity up to 0.6 cm{sup 3} /g, and specific surface area more than 400 m{sup 3} /g. Some methods of powdered chars molding into carbon materials with the different shape were proved for producing of firmness sorbents. Cheap carbon sorbents obtained by thermocatalytic pyrolysis can be successfully used in purification of different industrial pollutants as one-time sorbent or as adsorbents of long-term application with periodic regeneration.

  15. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-04-01

    This report describes research conducted between January 1, 2004 and March 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. RTI has produced laboratory scale batches (approximately 300 grams) of supported sorbents (composed of 20 to 40% sodium carbonate) with high surface area and acceptable activity. Initial rates of weight gain of the supported sorbents when exposed to a simulated flue gas exceeded that of 100% calcined sodium bicarbonate. One of these sorbents was tested through six cycles of carbonation/calcination by thermogravimetric analysis and found to have consistent carbonation activity. Kinetic modeling of the regeneration cycle on the basis of diffusion resistance at the particle surface is impractical, because the evolving gases have an identical composition to those assumed for the bulk fluidization gas. A kinetic model of the reaction has been developed on the basis of bulk motion of water and carbon dioxide at the particle surface (as opposed to control by gas diffusion). The model will be used to define the operating conditions in future laboratory- and pilot-scale testing.

  16. Modification of gold nanoparticle loaded on activated carbon with bis(4-methoxysalicylaldehyde)-1,2-phenylenediamine as new sorbent for enrichment of some metal ions.

    PubMed

    Karimipour, Gholamreza; Ghaedi, Mehrorang; Sahraei, Reza; Daneshfar, Ali; Biyareh, Mehdi Nejati

    2012-01-01

    In this study, a new sorbent based on the gold nanoparticle loaded in activated carbon (Au-NP-AC) was synthesized and modified by bis(4-methoxy salicylaldehyde)-1,2-phenylenediamine (BMSAPD). This sorbent, which is abbreviated as Au-NP-AC-BMSAPD, has been applied for the enrichment and preconcentration of trace amounts of Co(2+), Cu(2+), Ni(2+), Fe(2+), Pb(2+), and Zn(2+) ions in real samples. All metal ions under study were retained on the Au-NP-AC-BMSAPD sorbent by complexation of the ions with the BMSAPD ligand, providing an efficient preconcentration fashion. The retained metal ions were then eluted from the sorbent by HNO(3) and detected by flame atomic absorption spectrometry. The analytical parameters including pH, amount of ligand, and the nature of the eluent and solid phase were evaluated to obtain the optimum condition for the preconcentration factor. Following the optimum conditions, a preconcentration factor of 200 was obtained for all the metal ions under study with detection limits of 1.4-2.6 ng mL(-1). The method has been successfully applied for the extraction and determination of the ion content in the same real samples with recoveries in the range of 95-99.6% and a relative standard deviation lower than 4.0%. PMID:21837453

  17. Sorbents for CO2 capture from high carbon fly ashes.

    PubMed

    Maroto-Valer, M Mercedes; Lu, Zhe; Zhang, Yinzhi; Tang, Zhong

    2008-11-01

    Fly ashes with high-unburned-carbon content, referred to as fly ash carbons, are an increasing problem for the utility industry, since they cannot be marketed as a cement extender and, therefore, have to be disposed. Previous work has explored the potential development of amine-enriched fly ash carbons for CO2 capture. However, their performance was lower than that of commercially available sorbents, probably because the samples investigated were not activated prior to impregnation and, therefore, had a very low surface area. Accordingly, the work described here focuses on the development of activated fly ash derived sorbents for CO2 capture. The samples were steam activated at 850 degrees C, resulting in a significant increase of the surface area (1075 m2/g). The activated samples were impregnated with different amine compounds, and the resultant samples were tested for CO2 capture at different temperatures. The CO2 adsorption of the parent and activated samples is typical of a physical adsorption process. The impregnation process results in a decrease of the surface areas, indicating a blocking of the porosity. The highest adsorption capacity at 30 and 70 degrees C for the amine impregnated activated carbons was probably due to a combination of physical adsorption inherent from the parent sample and chemical adsorption of the loaded amine groups. The CO2 adsorption capacities for the activated amine impregnated samples are higher than those previously published for fly ash carbons without activation (68.6 vs. 45 mg CO2/g sorbent).

  18. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P.Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

    2002-10-01

    The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that higher temperature calcination of trona leds to reduced carbonation activity in subsequent cycles, but that calcination in dry carbon dioxide did not result in decreased activity relative to calcination in helium. Following higher temperature calcination, sodium bicarbonate (SBC) No.3 has greater activity than either coarse or fine grades of trona. Fixed bed testing of calcined SBC No.3 at 70 C confirmed that high rates of carbon dioxide absorption are possible and that the resulting product is a mixture of Wegscheider's salt and sodium carbonate. In fluidized bed testing of supported potassium carbonate, very rapid carbonation rates were observed. Activity of the support material complicated the data analysis. A milled, spherical grade of SBC appeared to be similar in attrition and abrasion characteristics to an unmilled, less regularly shaped SBC. The calcination behavior, at 107 C, for the milled and unmilled materials was also similar.

  19. Layered solid sorbents for carbon dioxide capture

    SciTech Connect

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  20. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co

  1. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

    2005-01-01

    This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

  2. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Thomas Nelson; Brian S. Turk; Paul Box; Weijiong Li; Raghubir P. Gupta

    2005-07-01

    This report describes research conducted between April 1, 2005 and June 30, 2005 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas from coal combustion and synthesis gas from coal gasification. Supported sodium carbonate sorbents removed up to 76% of the carbon dioxide from simulated flue gas in a downflow cocurrent flow reactor system, with an approximate 15 second gas-solid contact time. This reaction proceeds at temperatures as low as 25 C. Lithium silicate sorbents remove carbon dioxide from high temperature simulated flue gas and simulated synthesis gas. Both sorbent types can be thermally regenerated and reused. The lithium silicate sorbent was tested in a thermogravimetric analyzer and in a 1-in quartz reactor at atmospheric pressure; tests were also conducted at elevated pressure in a 2-in diameter high temperature high pressure reactor system. The lithium sorbent reacts rapidly with carbon dioxide in flue gas at 350-500 C to absorb about 10% of the sorbent weight, then continues to react at a lower rate. The sorbent can be essentially completely regenerated at temperatures above 600 C and reused. In atmospheric pressure tests with synthesis gas of 10% initial carbon dioxide content, the sorbent removed over 90% of the carbon dioxide. An economic analysis of a downflow absorption process for removal of carbon dioxide from flue gas with a supported sodium carbonate sorbent suggests that a 90% efficient carbon dioxide capture system installed at a 500 MW{sub e} generating plant would have an incremental capital cost of $35 million ($91/kWe, assuming 20 percent for contingencies) and an operating cost of $0.0046/kWh. Assuming capital costs of $1,000/kW for a 500 MWe plant the capital cost of the down flow absorption process represents a less than 10% increase, thus meeting DOE goals as set forth in its Carbon Sequestration Technology Roadmap and Program Plan.

  3. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-10-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport

  4. Activated carbons from potato peels: The role of activation agent and carbonization temperature of biomass on their use as sorbents for bisphenol A uptake from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Arampatzidou, An; Deliyanni, Eleni A.

    2015-04-01

    Activated carbons prepared from potato peels, a solid waste by product, and activated with different activating chemicals, have been studied for the adsorption of an endocrine disruptor (Bisphenol-A) from aqueous solutions. The potato peels biomass was activated with phosphoric acid, KOH and ZnCl2. The different activating chemicals were tested in order the better activation agent to be found. The carbons were carbonized by pyrolysis, in one step procedure, at three different temperatures in order the role of the temperature of carbonization to be pointed out. The porous texture and the surface chemistry of the prepared activated carbons were characterized by Nitrogen adsorption (BET), Scanning Electron Microscope (SEM), thermal analysis (DTA) and Fourier Transform Infrared Spectroscopy (FTIR). Batch experiments were performed to investigate the effect of pH, the adsorbent dose, the initial bisphenol A concentration and temperature. Equilibrium adsorption data were analyzed by Langmuir and Freundlich isotherms. The thermodynamic parameters such as the change of enthalpy (ΔH0), entropy (ΔS0) and Gibb's free energy (ΔG0) of adsorption systems were also evaluated. The adsorption capacity calculated from the Langmuir isotherm was found to be 450 mg g-1 at an initial pH 3 at 25 °C for the phosphoric acid activated carbon, that make the activated carbon a promising adsorbent material.

  5. Sorbent Structural Testing on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Watson, David; Knox, James C.; West, Phillip; Bush, Richard

    2016-01-01

    Long term space missions require carbon dioxide removal systems that can function with minimal downtime required for maintenance, low power consumption and maximum efficiency for CO2 removal. A major component of such a system are the sorbents used for the CO2 and desiccant beds. Sorbents must not only have adequate CO2 and H2O removal properties, but they must have the mechanical strength to prevent structural breakdown due to pressure and temperature changes during operation and regeneration, as well as resistance to breakdown due to moisture in the system from cabin air. As part of the studies used to select future CO2 sorbent materials, mechanical tests are performed on various zeolite sorbents to determine mechanical performance while dry and at various humidified states. Tests include single pellet crush, bulk crush and attrition tests. We have established a protocol for testing sorbents under dry and humid conditions, and previously tested the sorbents used on the International Space Station carbon dioxide removal assembly. This paper reports on the testing of a series of commercial sorbents considered as candidates for use on future exploration missions.

  6. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  7. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Thomas Nelson; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta

    2005-04-01

    This report describes research conducted between January 1, 2005 and March 31, 2005 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Engineered sorbents composed of sodium carbonate on a ceramic support were tested in a laboratory fluidized bed reactor system and found to be capable of essentially complete removal of carbon dioxide at 60 C in a short residence time. Upon breakthrough the sorbents can be thermally regenerated to recover essentially all of the absorbed carbon dioxide. An optimized supported sorbent tested in a pilot-scale entrained bed absorber retained its reactivity in multicycle tests and experienced no attrition. Removal of >90% of carbon dioxide in simulated flue gas was achieved in an entrained bed reactor.

  8. SORPTION OF MERCURY SPECIES BY ACTIVATED CARBONS AND CALCIUM-BASES SORBENTS: EFFECT OF TEMPERATURE, MERCURY CONCENTRATION AND ACID GASES

    EPA Science Inventory

    Bench-scale studies of mercury/sorbent reactions were conducted to understand mechanistic limitations of field-scale attempts to reduce emissions of mercury from combustion processes. The effects of temperature (60 - 140 degrees C), sulfur dioxide (SO2, 1000 ppm ), hydrogen chlor...

  9. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Andreas Weber; Raghubir P. Gupta

    2006-01-01

    This report describes research conducted between October 1, 2005, and December 31, 2005, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from flue gas from coal combustion. A field test was conducted to examine the extent to which RTI's supported sorbent can be regenerated in a heated, hollow screw conveyor. This field test was conducted at the facilities of a screw conveyor manufacturer. The sorbent was essentially completely regenerated during this test, as confirmed by thermal desorption and mass spectroscopy analysis of the regenerated sorbent. Little or no sorbent attrition was observed during 24 passes through the heated screw conveyor system. Three downflow contactor absorption tests were conducted using calcined sodium bicarbonate as the absorbent. Maximum carbon dioxide removals of 57 and 91% from simulated flue gas were observed at near ambient temperatures with water-saturated gas. These tests demonstrated that calcined sodium carbonate is not as effective at removing CO{sub 2} as are supported sorbents containing 10 to 15% sodium carbonate. Delivery of the hollow screw conveyor for the laboratory-scale sorbent regeneration system was delayed; however, construction of other components of this system continued during the quarter.

  10. Use of sorbents of hot-contact coal carbonization in the power industry

    SciTech Connect

    A.I. Blokhin; F.E. Keneman; A.V. Sklyarov; B.S. Fedoseev

    2003-11-15

    The many years of experience in the use of sorbents of hot-contact coal carbonization (HCCC) in the power industry is used for substantiation of their prospects for solving problems of power and materials saving and improving the reliability and safety of operation of power equipment. Results of tests of sorbents in systems of water conditioning of thermal power plants, cleaning of return condensates, mazut- and oil-contaminated process wastewaters, makeup water in heat networks, and biosorption cleaning of sewerage are presented. The sorption methods of cleaning are shown to have many advantages, to save expensive ion-exchange resins and reagents, to decrease the cost of desalinated water, and to prolong the service of power equipment. Comparative data are presented for basic commercial kinds of activated carbon and HCCC (sorbents activated crushed brown-coal coke (ABD)). The technical characteristics of sorbents of hot-contact coal carbonization are shown to be at the level of commercial sorbents or be higher at a much lower cost (by a factor of 2.5 - 3). It is shown that the creation of several HCCC installations with an output of 25 - 30 thousand tons of sorbents a year at coal-fired power plants will solve many water-cleaning problems of the 'EES Rossii' Co. ('The United Power Systems of Russia') and make it a monopolistic producer of activated carbon in the Russian market.

  11. CATALYTIC EFFECTS OF CARBON SORBENTS FOR MERCURY CAPTURE. (R827649C001)

    EPA Science Inventory

    Activated carbon sorbents have the potential to be an effective means of mercury control in combustion systems. Reactions of activated carbons in flow systems with mercury and gas stream components were investigated to determine the types of chemical interactions that occur on...

  12. Effects of HCl and SO{sub 2} concentration on mercury removal by activated carbon sorbents in coal-derived flue gas

    SciTech Connect

    Ryota Ochiai; M. Azhar Uddin; Eiji Sasaoka; Shengji Wu

    2009-09-15

    The effect of the presence of HCl and SO{sub 2} in the simulated coal combustion flue gas on the Hg{sup 0} removal by a commercial activated carbon (coconut shell AC) was investigated in a laboratory-scale fixed-bed reactor in a temperature range of 80-200{sup o}C. The characteristics (thermal stability) of the mercury species formed on the sorbents under various adsorption conditions were investigated by the temperature-programmed decomposition desorption (TPDD) technique. It was found that the presence of HCl and SO{sub 2} in the flue gas affected the mercury removal efficiency of the sorbents as well as the characteristics of the mercury adsorption species. The mercury removal rate of AC increased with the HCl concentration in the flue gas. In the presence of HCl and the absence of SO{sub 2} during Hg{sup 0} adsorption by AC, a single Hg{sup 0} desorption peak at around 300{sup o}C was observed in the TPDD spectra and intensity of this peak increased with the HCl concentration during mercury adsorption. The peak at around 300{sup o}C may be derived from the decomposition and desorption of mercury chloride species. The presence of SO{sub 2} during mercury adsorption had an adverse effect on the mercury removal by AC in the presence of HCl. In the presence of both HCl and SO{sub 2} during Hg{sup 0} adsorption by AC, the major TPDD peak temperatures changed drastically depending upon the concentration of HCl and SO{sub 2} in flue gas during Hg{sup 0} adsorption. 16 refs., 7 figs.

  13. Use of Sorbents of Hot-Contact Coal Carbonization in the Power Industry

    SciTech Connect

    Blokhin, A. I.; Keneman, F. E.; Sklyarov, A. V.; Fedoseev, B. S.

    2003-11-15

    The many years of experience in the use of sorbents of hot-contact coal carbonization in the power industry is used for substantiation of their prospects for solving problems of power and materials saving and improving the reliability and safety of operation of power equipment. Results of tests of sorbents in systems of water conditioning of thermal power plants, cleaning of return condensates, mazut- and oil-contaminated process wastewaters, makeup water in heat networks, and biosorption cleaning of sewerage are presented. The sorption methods of cleaning are shown to have many advantages, to save expensive ion-exchange resins and reagents, to decrease the cost of desalinated water, and to prolong the service of power equipment. Comparative data are presented for basic commercial kinds of activated carbon and HCCC sorbents (ABD). The technical characteristics of sorbents of hot-contact coal carbonization are shown to be at the level of commercial sorbents or be higher at a much lower cost (by a factor of 2.5 - 3). It is shown that the creation of several HCCC installations with an output of 25 - 30 thousand tons of sorbents a year at coal-fired power plants will solve many water-cleaning problems of the 'EES Rossii' Co. ('The United Power Systems of Russia') and make it a monopolistic producer of activated carbon in the Russian market.

  14. Desulfurization of liquid fuels by adsorption on carbon-based sorbents and ultrasound-assisted sorbent regeneration.

    PubMed

    Wang, Yuhe; Yang, Ralph T

    2007-03-27

    Several carbon-based adsorbents, CuCl/AC, PdCl2/AC, and Pd/AC (where AC denotes activated carbon), were studied for desulfurization of a model jet fuel by selective adsorption of thiophenic molecules. Comparisons with gamma-Al2O3 support and desulfurization of a commercial jet fuel were also studied. The results showed that the selective sulfur adsorption capacity of PdCl2 was higher than that of CuCl and Pd(0), in agreement with molecular orbital results. It was also found that the activated carbon is the best support for pi-complexation sorbents to remove sulfur-containing compounds, i.e., benzothiophene and methylbenzothiophene. Among all the adsorbents studied, PdCl2/AC had the highest capacity for desulfurization. A significant synergistic effect was observed between the carbon substrate and the supported pi-complexation sorbent, and this effect was explained by a geometric effect. The saturated sorbent was regenerated by desorption assisted by ultrasound with a solvent of 30 wt % benzene and 70 wt % n-octane. The results showed that the amount of sulfur desorbed was higher with ultrasound, 65 wt % desorption vs 45 wt % without ultrasound in a static system at 50 degrees C.

  15. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-07-01

    Sodium based sorbents including sodium carbonate may be used to capture carbon dioxide from flue gas. A relatively concentrated carbon dioxide stream may be recoverable for sequestration when the sorbent is regenerated. Electrobalance tests indicated that sodium carbonate monohydrate was formed in a mixture of helium and water vapor at temperatures below 65 C. Additional compounds may also form, but this could not be confirmed. In the presence of carbon dioxide and water vapor, both the initial reaction rate of sodium carbonate with carbon dioxide and water and the sorbent capacity decreased with increasing temperature, consistent with the results from the previous quarter. Increasing the carbon dioxide concentration at constant temperature and water vapor concentration produced a measurable increase in rate, as did increasing the water vapor concentration at constant carbon dioxide concentration and temperature. Runs conducted with a flatter TGA pan resulted in a higher initial reaction rate, presumably due to improved gas-solid contact, but after a short time, there was no significant difference in the rates measured with the different pans. Analyses of kinetic data suggest that the surface of the sodium carbonate particles may be much hotter than the bulk gas due to the highly exothermic reaction with carbon dioxide and water, and that the rate of heat removal from the particle may control the reaction rate. A material and energy balance was developed for a cyclic carbonation/calcination process which captures about 26 percent of the carbon dioxide present in flue gas available at 250 C.

  16. Gaseous mercury release during steam curing of aerated concretes that contain fly ash and activated carbon sorbent

    SciTech Connect

    Danold W. Golightly; Chin-Min Cheng; Ping Sun; Linda K. Weavers; Harold W. Walker; Panuwat Taerakul; William E. Wolfe

    2008-09-15

    Gaseous mercury released from aerated concrete during both presteam curing at 25{sup o}C and steam curing at 80{sup o}C was measured in controlled laboratory experiments. Mercury release originated from two major components in the concrete mixture: (1) class F coal fly ash and (2) a mixture of the fly ash and powdered activated carbon onto which elemental mercury was adsorbed. Mercury emitted during each curing cycle was collected on iodated carbon traps in a purge-and-trap arrangement and subsequently measured by cold-vapor atomic fluorescence spectrometry. Through 3 h of presteam curing, the release of mercury from the freshly prepared mixture was less than 0.03 ng/kg of concrete. Releases of total mercury over the 21 h steam curing process ranged from 0.4 to 5.8 ng of mercury/kg of concrete and depended upon mercury concentrations in the concrete. The steam-cured concrete had a higher mercury release rate (ng kg{sup -1} h{sup -1}) compared to air-cured concrete containing fly ash, but the shorter curing interval resulted in less total release of mercury from the steam-cured concrete. The mercury flux from exposed concrete surfaces to mercury-free air ranged from 0.77 to 11.1 ng m{sup -2} h{sup -1}, which was similar to mercury fluxes for natural soils to ambient air of 4.2 ng m{sup -2} h{sup -1} reported by others. Less than 0.022% of the total quantity of mercury present from all mercury sources in the concrete was released during the curing process, and therefore, nearly all of the mercury was retained in the concrete. 31 refs., 4 figs., 2 tabs.

  17. Sorbents for mercury removal from flue gas

    SciTech Connect

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  18. Predicting sorption of organic acids to a wide range of carbonized sorbents

    NASA Astrophysics Data System (ADS)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2016-04-01

    Many contaminants and infochemicals are organic acids that undergo dissociation under environmental conditions. The sorption of dissociated anions to biochar and other carbonized sorbents is typically lower than that of neutral species. It is driven by complex processes that are not yet fully understood. It is known that predictive approaches developed for neutral compounds are unlikely to be suitable for organic acids, due to the effects of dissociation on sorption. Previous studies on the sorption of organic acids to soils have demonstrated that log Dow, which describes the decrease in hydrophobicity of acids upon dissociation, is a useful alternative to log Kow. The aim of the present study was to adapt a log Dow based approach to describe the sorption of organic acids to carbonized sorbents. Batch experiments were performed with a series of 9 sorbents (i.e., carbonized wood shavings, pig manure, and sewage sludge, carbon nanotubes and activated carbon), and four acids commonly used for pesticidal and biocidal purposes (i.e., 2,4-D, MCPA, 2,4-DB, and triclosan). Sorbents were comprehensively characterized, including by N2 and CO2 physisorption, Fourier transform infrared spectroscopy, and elemental analysis. The wide range of sorbents considered allows (i) discussing the mechanisms driving the sorption of neutral and anionic species to biochar, and (ii) their dependency on sorbate and sorbent properties. Results showed that the sorption of the four acids was influenced by factors that are usually not considered for neutral compounds (i.e., pH, ionic strength). Dissociation affected the sorption of the four compounds, and sorption of the anions ranged over five orders of magnitude, thus substantially contributing to sorption in some cases. For prediction purposes, most of the variation in sorption to carbonized sorbents (89%) could be well described with a two-parameter regression equation including log Dow and sorbent specific surface area. The proposed model

  19. Tail-end Hg capture on Au/carbon-monolith regenerable sorbents.

    PubMed

    Izquierdo, M Teresa; Ballestero, Diego; Juan, Roberto; García-Díez, Enrique; Rubio, Begoña; Ruiz, Carmen; Pino, M Rosa

    2011-10-15

    In this work, a regenerable sorbent for Hg retention based on carbon supported Au nanoparticles has been developed and tested. Honeycomb structures were chosen in order to avoid pressure drop and particle entrainment in a fixed bed. Carbon-based supports were selected in order to easily modify the surface chemistry to favour the Au dispersion. Results of Hg retention and regeneration were obtained in a bench scale experimental installation working at high space velocities (for sorbent, 53,000 h(-1); for active phase, 2.6 × 10(8) h(-1)), 120 °C for retention temperature and Hg inlet concentration of 23 ppbv. Gold nanoparticles were shown to be the active phase for mercury capture through an amalgamating mechanism. The mercury captured by the spent sorbent can be easily released to be disposed or reused. Mercury evolution from spent sorbents was followed by TPD experiments showing that the sorbent can be regenerated at temperatures as low as 220 °C.

  20. Desulfurization sorbent development activities at METC

    SciTech Connect

    Siriwardane, R.V.

    1995-06-01

    Development of a suitable regenerable sorbent is a major barrier issue in the hot gas cleanup program for integrated gasification combined-cycle (IGCC) systems. This has been a challenging problem during the last 20 years, since many of the sorbents developed in the program could not retain their reactivity and physical integrity during repeated cycles of sulfidation and regeneration reactions. A series of promising sorbents (METC 2-10), which were capable of sustaining their reactivity and physical integrity during repeated sulfidation/ regeneration cycles, have been developed at the Morgantown Energy Technology Center (METC). These sorbents were tested both in low-pressure (260 KPa/23 psig) and high-pressure (520 KPa/60.7 psig) fixed-bed reactors at 538{degrees}C (1000{degrees}F) with simulated coal gas. High-pressure testing was continued for 20 cycles with steam regeneration. A major research goal during the last year was to lower the cost of materials utilized during the sorbent preparation. The METC 9 sorbent was prepared by substituting low-cost materials for some of the materials in METC 6 sorbent. The sulfur capacity of the two sorbents were similar during the 20-cycle testing. METC 2 sorbent was exposed to coal gas in the Modular Gas Cleanup Rig and it was later tested in the high-pressure fixed-bed reactor. The reactivity of the METC 2 sorbent was unaffected by the exposure to the coal gas. Development of these sorbents will be continued for both fluid-bed and moving-bed applications.

  1. Alkali-Doped Lithium Orthosilicate Sorbents for Carbon Dioxide Capture.

    PubMed

    Yang, Xinwei; Liu, Wenqiang; Sun, Jian; Hu, Yingchao; Wang, Wenyu; Chen, Hongqiang; Zhang, Yang; Li, Xian; Xu, Minghou

    2016-09-01

    New alkali-doped (Na2 CO3 and K2 CO3 ) Li4 SiO4 sorbents with excellent performance at low CO2 concentrations were synthesized. We speculate that alkali doping breaks the orderly arrangement of the Li4 SiO4 crystals, hence increasing its specific surface area and the number of pores. It was shown that 10 wt % Na2 CO3 and 5 wt % K2 CO3 are the optimal additive ratios for doped sorbents to attain the highest conversions. Moreover, under 15 vol % CO2 , the doped sorbents present clearly faster absorption rates and exhibit stable cyclic durability with impressive conversions of about 90 %, at least 20 % higher than that of non-doped Li4 SiO4 . The attained conversions are also 10 % higher than the reported highest conversion of 80 % on doped Li4 SiO4 . The performance of Li4 SiO4 is believed to be enhanced by the eutectic melt, and it is the first time that the existence of eutectic Li/Na or Li/K carbonate on doped sorbents when absorbing CO2 at high temperature is confirmed; this was done using systematical analysis combining differential scanning calorimetry with in situ powder X-ray diffraction. PMID:27531239

  2. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir Gupta; Alejandro Lopez-Ortiz

    2001-01-01

    Four grades of sodium bicarbonate and two grades of trona were characterized in terms of particle size distribution, surface area, pore size distribution, and attrition. Surface area and pore size distribution determinations were conducted after calcination of the materials. The sorbent materials were subjected to thermogravimetric testing to determine comparative rates and extent of calcination (in inert gas) and sorption (in a simulated coal combustion flue gas mixture). Selected materials were exposed to five calcination/sorption cycles and showed no decrease in either sorption capacity or sorption rate. Process simulations were conducted involving different heat recovery schemes. The process is thermodynamically feasible. The sodium-based materials appear to have suitable physical properties for use as regenerable sorbents and, based on thermogravimetric testing, are likely to have sorption and calcination rates that are rapid enough to be of interest in full-scale carbon sequestration processes.

  3. Sorbent Structural Impacts Due to Humidity on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Watson, David; Knox, James C.; West, Phillip; Stanley, Christine M.; Bush, Richard

    2015-01-01

    The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The CO2 removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort encompasses structural stability testing of existing and emerging sorbents. Testing will be performed on dry sorbents and sorbents that have been conditioned to three humidity levels. This paper describes the sorbent structural stability screening efforts in support of the LSS Project within the AES Program.

  4. Demonstration of dry carbon-based sorbent injection for mercury control in utility ESPs and baghouses

    SciTech Connect

    Sjostrom, S.; Smith, J.; Hunt, T.; Chang, R.; Brown, T.D.

    1997-12-31

    Domestic coal-fired power plants emit approximately 40 to 80 metric tons of mercury to the atmosphere annually, approximately 30% of all mercury emissions from human activities. However, the mercury concentration in utility flue gas is in the extremely dilute range of 0.1 to 1 part per billion. The EPA is assessing whether such low concentrations of mercury emissions from coal-fired utilities pose any significant health risk and whether mercury regulations would be necessary or appropriate. In anticipation of possible mercury control regulations, DOE has funded Public Service Company of Colorado (PSCo) to evaluate carbon-based sorbents for mercury control at utility coal-fired power plants. Initial investigations of the use of dry carbon-based sorbent injection for mercury control on utility applications have shown that carbon-based sorbents are capable of removing gaseous phase mercury. Because of the difficulty in capturing and measuring mercury, however, it is important to evaluate these technologies extensively on actual utility flue gas. Testing is currently underway on a slipstream of flue gas from PSCo`s Comanche Station in Pueblo, Colorado. The test fixture is a 600 acfm particulate control module that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse. Sorbent is injected into the flue gas slipstream prior to the particulate control module, and is removed by the module. Flue gas temperature and sorbent residence time can be changed to evaluate a range of plant operating conditions. In addition, the effect of fly ash on mercury capture can be evaluated because the flue gas slipstream can be taken from either upstream or downstream of Comanche Station`s full-scale reverse-gas baghouse. This paper describes the results of initial pilot testing in both an electrostatic precipitator and a pulse-jet baghouse.

  5. Investigation and Demonstration of Dry Carbon-Based Sorbent Injection for Mercury Control

    SciTech Connect

    Jim Butz; Terry Hunt

    2005-11-01

    Public Service Company of Colorado and ADA Technologies, Inc. have performed a study of the injection of activated carbon for the removal of vapor-phase mercury from coal-fired flue gas streams. The project was completed under contract to the US Department of Energy's National Energy Technology Laboratory, with contributions from EPRI and Public Service Company. The prime contractor for the project was Public Service Company, with ADA Technologies as the major subcontractor providing technical support to all aspects of the project. The research and development effort was conducted in two phases. In Phase I a pilot facility was fabricated and tests were performed using dry carbon-based sorbent injection for mercury control on a coal-fired flue gas slipstream extracted from an operating power plant. Phase II was designed to move carbon injection technology towards commercial application on coal-fired power plants by addressing key reliability and operability concerns. Phase II field work included further development work with the Phase I pilot and mercury measurements on several of PSCo's coal-fired generating units. In addition, tests were run on collected sorbent plus fly ash to evaluate the impact of the activated carbon sorbent on the disposal of fly ash. An economic analysis was performed where pilot plant test data was used to develop a model to predict estimated costs of mercury removal from plants burning western coals. Testing in the pilot plant was undertaken to quantify the effects of plant configuration, flue gas temperature, and activated carbon injection rate on mercury removal. All three variables were found to significantly impact the mercury removal efficiency in the pilot. The trends were clear: mercury removal rates increased with decreasing flue gas temperature and with increasing carbon injection rates. Mercury removal was much more efficient with reverse-gas and pulse-jet baghouse configurations than with an ESP as the particulate control device

  6. Surface compositions of carbon sorbents exposed to simulated low-rank coal flue gases

    SciTech Connect

    Edwin S. Olson; Charlene R. Crocker; Steven A. Benson; John H. Pavlish; Michael J. Holmes

    2005-06-01

    Bench-scale testing of elemental mercury (Hg{sup 0}) sorption on selected activated carbon sorbents was conducted to develop a better understanding of the interaction among the sorbent, flue gas constituents, and Hg{sup 0}. The results of the fixed-bed testing under simulated lignite combustion flue gas composition for activated carbons showed some initial breakthrough followed by increased mercury (Hg) capture for up to {approximately}4.8 hr. After breakthrough, the Hg in the effluent stream was primarily in an oxidized form ({gt}90%). Aliquots of selected activated carbons were exposed to simulated flue gas containing Hg{sup 0} vapor for varying time intervals to explore surface chemistry changes as the initial breakthrough, Hg capture, and oxidation occurred. The samples were analyzed by X-ray photoelectron spectroscopy to determine changes in the abundance and forms of sulfur, chlorine, oxygen, and nitrogen moieties as a result of interactions of flue gas components on the activated carbon surface during the sorption process. The data are best explained by a competition between the bound hydrogen chloride (HCl) and increasing sulfur (S(VI)) for a basic carbon binding site. Because loss of HCl is also coincident with Hg breakthrough or loss of the divalent Hg ion (Hg{sup 2+}), the competition of Hg{sup 2+} with S(VI) on the basic carbon site is also implied. Thus, the role of the acid gases in Hg capture and release can be explained. 25 refs., 4 figs., 4 tabs.

  7. Surface compositions of carbon sorbents exposed to simulated low-rank coal flue gases.

    PubMed

    Olson, Edwin S; Crocker, Charlene R; Benson, Steven A; Pavlish, John H; Holmes, Michael J

    2005-06-01

    Bench-scale testing of elemental mercury (Hg0) sorption on selected activated carbon sorbents was conducted to develop a better understanding of the interaction among the sorbent, flue gas constituents, and Hg0. The results of the fixed-bed testing under simulated lignite combustion flue gas composition for activated carbons showed some initial breakthrough followed by increased mercury (Hg) capture for up to approximately 4.8 hr. After breakthrough, the Hg in the effluent stream was primarily in an oxidized form (>90%). Aliquots of selected activated carbons were exposed to simulated flue gas containing Hg0 vapor for varying time intervals to explore surface chemistry changes as the initial breakthrough, Hg capture, and oxidation occurred. The samples were analyzed by X-ray photoelectron spectroscopy to determine changes in the abundance and forms of sulfur, chlorine, oxygen, and nitrogen moieties as a result of interactions of flue gas components on the activated carbon surface during the sorption process. The data are best explained by a competition between the bound hydrogen chloride (HCl) and increasing sulfur [S(VI)] for a basic carbon binding site. Because loss of HCl is also coincident with Hg breakthrough or loss of the divalent Hg ion (Hg2+), the competition of Hg2+ with S(VI) on the basic carbon site is also implied. Thus, the role of the acid gases in Hg capture and release can be explained.

  8. Aerogel sorbents

    DOEpatents

    Begag, Redouane; Rhine, Wendell E; Dong, Wenting

    2016-04-05

    The current invention describes methods and compositions of various sorbents based on aerogels of various silanes and their use as sorbent for carbon dioxide. Methods further provide for optimizing the compositions to increase the stability of the sorbents for prolonged use as carbon dioxide capture matrices.

  9. Screening of carbon-based sorbents for the removal of elemental mercury from simulated combustion flue gas

    SciTech Connect

    Young, B.C.; Musich, M.A.

    1995-12-31

    A fixed-bed reactor system with continuous Hg{sup 0} analysis capabilities was used to evaluate commercial carbon sorbents for the removal of elemental mercury from simulated flue gas. The objectives of the program were to compare the sorbent effectiveness under identical test conditions and to identify the effects of various flue gas components on elemental mercury sorption. Sorbents tested included steam-activated lignite, chemically activated hardwood, chemically activated bituminous coal, iodated steam-activated coconut shell, and sulfur-impregnated steam-activated bituminous coal. The iodated carbon was the most effective sorbent, showing over 99% mercury removal according to U.S. Environmental Protection Agency (EPA) Method 101A. Data indicate that adding O{sub 2} at 4 vol% reduced the effectiveness of the steam-activated lignite, chemically activated hardwood, and sulfur- impregnated steam-activated bituminous coal. Adding SO{sub 2} at 500 ppm improved the mercury removal of the sulfur-impregnated carbon. Further, the presence of HCl gas (at 50 ppm) produced an order of magnitude increase in mercury removal with the chemically activated and sulfur-impregnated bituminous coal-based carbons.

  10. Regenerable immobilized aminosilane sorbents for carbon dioxide capture applications

    SciTech Connect

    Gay, McMahan; Choi, Sunho; Jones, Christopher W

    2014-09-16

    A method for the separation of carbon dioxide from ambient air and flue gases is provided wherein a phase separating moiety with a second moiety are simultaneously coupled and bonded onto an inert substrate to create a mixture which is subsequently contacted with flue gases or ambient air. The phase-separating moiety is an amine whereas the second moiety is an aminosilane, or a Group 4 propoxide such as titanium (IV) propoxide (tetrapropyl orthotitanate, C.sub.12H.sub.28O.sub.4Ti). The second moiety makes the phase-separating moiety insoluble in the pores of the inert substrate. The new sorbents have a high carbon dioxide loading capacity and considerable stability over hundreds of cycles. The synthesis method is readily scalable for commercial and industrial production.

  11. Modeling of mercury oxidation and adsorption by cupric chloride-impregnated carbon sorbents

    SciTech Connect

    Lee, S.S.; Lee, J.Y.; Khang, S.J.; Keener, T.C.

    2009-10-15

    Cupric chloride-impregnated activated carbon sorbents (CuCl{sub 2}-ACs) showed good performance in Hg{sup 0} oxidation and adsorption in previously published entrained-flow test results. In addition, our previous studies indicated that Hg{sup 0} is oxidized by CuCl{sub 2}-ACs and the resultant oxidized mercury is readsorbed onto the sorbents. This study conducted mathematical modeling to interpret. these previous results and better understand the Hg{sup 0} oxidation and adsorption mechanism of CuCl{sub 2}-ACs. As a result the mathematical modeling results confirmed that Hg{sup 0} oxidation by CuCl{sub 2}-ACs is determined by the injection level of CuCl{sub 2} impregnated onto the sorbents. An increase in Cu Cl{sub 2} loading in CuCl{sub 2}-ACs was found to increase Hg{sup 0} oxidation but very slightly increased Hg adsorption because an increase in Cu Cl{sub 2} loading decreased the active CuCl{sub 2}-free carbon sites available for the readsorption of resultant oxidized mercury on the surfaces and inside the pores.

  12. A calcium oxide sorbent process for bulk separation of carbon dioxide

    SciTech Connect

    Harrison, D.P.

    1990-09-01

    This research effort is designed to investigate the technical feasibility of a high-temperature, high-pressure process for the bulk separation of CO{sub 2} from coal-derived gases. The two-year contract was awarded in September 1989. This report describes the research effort and results obtained during the first year of the effort. The overall project consists of 6 tasks, four of which were active during year 01. Tasks 1 and 2 were completed during the year while activity in Tasks 3 and 6 will carry over into year 02. Tasks 4 and 5 will be initiated during year 02. Three primary objectives were met in Task 1. A literature search on the calcination-carbonation reactions of CO{sub 2} with calcium-based sorbents was completed. A high temperature, high pressure (HTHP) electrobalance reactor suitable for studying the calcination and carbonation reactions was constructed. This reactor system is now fully operable and we are routinely collecting kinetics data at temperatures in the range of 550-900{degree}C and pressures of 1 to 15 atm. Samples of nine candidate calcium-based sorbents were acquired and tested. These samples were subjected to reaction screening tests as part of Task 2. As a result of these screening tests, chemically pure calcium carbonate, chemically pure calcium acetate, and the commercial dolomite were selected for more detailed kinetic testing. In Task 3, the HTHP electrobalance reactor is being used to study the calcination-carbonation behavior of the three base sorbents as a function of calcination temperature, carbonation temperature, carbonation pressure, and CO{sub 2} concentration.

  13. Magnetic solid-phase extraction using carbon nanotubes as sorbents: a review.

    PubMed

    Herrero-Latorre, C; Barciela-García, J; García-Martín, S; Peña-Crecente, R M; Otárola-Jiménez, J

    2015-09-10

    Magnetic solid-phase extraction (M-SPE) is a procedure based on the use of magnetic sorbents for the separation and preconcentration of different organic and inorganic analytes from large sample volumes. The magnetic sorbent is added to the sample solution and the target analyte is adsorbed onto the surface of the magnetic sorbent particles (M-SPs). Analyte-M-SPs are separated from the sample solution by applying an external magnetic field and, after elution with the appropriate solvent, the recovered analyte is analyzed. This approach has several advantages over traditional solid phase extraction as it avoids time-consuming and tedious on-column SPE procedures and it provides a rapid and simple analyte separation that avoids the need for centrifugation or filtration steps. As a consequence, in the past few years a great deal of research has been focused on M-SPE, including the development of new sorbents and novel automation strategies. In recent years, the use of magnetic carbon nanotubes (M-CNTs) as a sorption substrate in M-SPE has become an active area of research. These materials have exceptional mechanical, electrical, optical and magnetic properties and they also have an extremely large surface area and varied possibilities for functionalization. This review covers the synthesis of M-CNTs and the different approaches for the use of these compounds in M-SPE. The performance, general characteristics and applications of M-SPE based on magnetic carbon nanotubes for organic and inorganic analysis have been evaluated on the basis of more than 110 references. Finally, some important challenges with respect the use of magnetic carbon nanotubes in M-SPE are discussed.

  14. Co-Adsorption of Ammonia and Formaldehyde on Regenerable Carbon Sorbents for the Primary Life Support System (PLSS)

    NASA Technical Reports Server (NTRS)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique S.

    2016-01-01

    Results are presented on the development of a reversible carbon sorbent for trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is deemed non-regenerable, while the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. Data on concurrent sorption and desorption of ammonia and formaldehyde, which are major TCs of concern, are presented in this paper. A carbon sorbent was fabricated by dry impregnation of a reticulated carbon-foam support with polyvinylidene chloride, followed by carbonization and thermal oxidation in air. Sorbent performance was tested for ammonia and formaldehyde sorption and vacuum regeneration, with and without water present in the gas stream. It was found that humidity in the gas phase enhanced ammonia-sorption capacity by a factor larger than two. Co-adsorption of ammonia and formaldehyde in the presence of water resulted in strong formaldehyde sorption (to the point that it was difficult to saturate the sorbent on the time scales used in this study). In the absence of humidity, adsorption of formaldehyde on the carbon surface was found to impair ammonia sorption in subsequent runs; in the presence of water, however, both ammonia and formaldehyde could be efficiently removed from the gas phase by the sorbent. The efficiency of vacuum regeneration could be enhanced by gentle heating to temperatures below 60 deg.

  15. Sorbents for the oxidation and removal of mercury

    DOEpatents

    Olson, Edwin S; Holmes, Michael J; Pavlish, John Henry

    2013-08-20

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  16. Sorbents for the oxidation and removal of mercury

    DOEpatents

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

    2014-09-02

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  17. Sorbents for the oxidation and removal of mercury

    DOEpatents

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John H.

    2012-05-01

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  18. Sorbents for the oxidation and removal of mercury

    DOEpatents

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John H.

    2008-10-14

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  19. Thermal activation of CaO-based sorbent and self-reactivation during CO{sub 2} capture looping cycles

    SciTech Connect

    Vasilije Manovic; Edward J. Anthony

    2008-06-01

    In this study, the thermal activation of different types of CaO-based sorbents was examined. Pretreatments were performed at different temperatures (800-1300{sup o}C) and different durations (6-48 h) using four Canadian limestones. Sieved fractions of the limestones, powders obtained by grinding, and hydroxides produced following multiple carbonation/calcination cycles achieved in a tube furnace were examined. Pretreated samples were evaluated using two types of thermogravimetric reactors/analyzers. The most important result was that thermal pretreatment could improve sorbent performance. In comparison to the original, pretreated sorbents showed better conversions over a longer series of CO{sub 2} cycles. Moreover, in some cases, sorbent activity actually increased with cycle number, and this effect was especially pronounced for powdered samples preheated at 1000{sup o}C. In these experiments, the increase of conversion with cycle number (designated as self-reactivation) after 30 cycles produced samples that were about 50% carbonated for the four sorbents examined here, and there appeared to be the potential for additional increase. These results were explained with the newly proposed pore-skeleton model. This model suggests, in addition to changes in the porous structure of the sorbent, that changes in the pore-skeleton produced during pretreatment strongly influence subsequent carbonation/calcination cycles. 31 refs., 8 figs.

  20. Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles.

    PubMed

    Manovic, Vasilije; Anthony, Edward J

    2008-06-01

    In this study, the thermal activation of different types of CaO-based sorbents was examined. Pretreatments were performed at different temperatures (800--1300 degrees C) and different durations (6--48 h) using four Canadian limestones. Sieved fractions of the limestones, powders obtained by grinding, and hydroxides produced following multiple carbonation/calcination cycles achieved in a tube furnace were examined. Pretreated samples were evaluated using two types of thermogravimetric reactors/ analyzers. The most important result was that thermal pretreatment could improve sorbent performance. In comparison to the original, pretreated sorbents showed better conversions over a longer series of CO2 cycles. Moreover, in some cases, sorbent activity actually increased with cycle number, and this effectwas especially pronounced for powdered samples preheated at 1000 degrees C. In these experiments, the increase of conversion with cycle number (designated as self-reactivation) after 30 cycles produced samples that were approximately 50% carbonated for the four sorbents examined here, and there appeared to be the potential for additional increase. These results were explained with the newly proposed pore--skeleton model. This model suggests, in addition to changes in the porous structure of the sorbent, that changes in the pore--skeleton produced during pretreatment strongly influence subsequent carbonation/ calcination cycles. PMID:18589983

  1. Screening of carbon-based sorbents for the removal of elemental mercury from simulated combustion flue gas

    SciTech Connect

    Young, B.C.; Musich, M.A.

    1995-12-31

    A fixed-bed reactor system with continuous Hg{sup 0} analysis capabilities was used to evaluate commercial carbon sorbents for the removal of elemental mercury from simulated flue gas. The objectives of the program were to compare the sorbent effectiveness under identical test conditions and to identify the effects of various flue gas components on elemental mercury sorption. Sorbents tested included steam-activated lignite, chemical-activated hardwood and bituminous coal, iodated steam-activated coconut shell, and sulfur-impregnated steam-activated bituminous coal. The iodated carbon was the most effective carbon, showing over 99% mercury removal according to EPA Method 101A. Data indicate that O{sub 2} (4 vol%) and SO{sub 2} (500 ppm) improved the mercury removal of the other carbons for tests at 150{degrees}C using 100 {mu}g/m{sup 3} Hg{sup 0}. Further, the presence of HCl (at 50 ppm) produced a magnitude increase in mercury removal for the steam-activated and sulfur-impregnated bituminous coal-based carbons.

  2. Relations between environmental black carbon sorption and geochemical sorbent characteristics.

    PubMed

    Cornelissen, Gerard; Kukulska, Zofia; Kalaitzidis, Stavros; Christanis, Kimon; Gustafsson, Orjan

    2004-07-01

    Pyrogenic carbon particles in sediments (soot and charcoal, collectively termed "black carbon" or BC) appear to be efficient sorbents of many hydrophobic organic compounds, so they may play an important role in the fate and toxicity of these substances. To properly model toxicant sorption behavior, it is important to (i) quantify the magnitude of the role of BC in sorption and (ii) elucidate which geochemical BC characteristics determine the strength of environmental BC sorption. Sorption isotherms of d10-phenanthrene (d10-PHE) were determined over a wide concentration range (0.0003-20 microg/L), for five sediments with widely varying characteristics. From the sorption isotherms, we determined Freundlich coefficients of environmental BC sorption, K(F,BCenv. These varied from 10(4.7) to 10(5.5). From the data, it could be deduced that BC was responsible for 49-85% of the total d10-PHE sorption at a concentration of 1 ng/L. At higher concentrations, the importance of BC for the sorption process diminished to <20% at 1 microg/L and 0-1% at 1 mg/L. There were no significant relationships between BC sorption strength and the tested geochemical BC characteristics [the fraction of small (<38 microm) BC particles, the BC resistance to high-temperature oxidation, the fraction of biomass-derived BC, the native polycyclic aromatic hydrocarbon and total organic carbon contents]. Because of the limited variation in BC sorption strength with widely varying BC characteristics, the presented BC sorption coefficients may putatively be used as generic starting points for environmental modeling purposes. PMID:15296315

  3. Key factor in rice husk Ash/CaO sorbent for high flue gas desulfurization activity.

    PubMed

    Dahlan, Irvan; Lee, Keat Teong; Kamaruddin, Azlina Harun; Mohamed, Abdul Rahman

    2006-10-01

    Siliceous materials such as rice husk ash (RHA) have potential to be utilized as high performance sorbents for the flue gas desulfurization process in small-scale industrial boilers. This study presents findings on identifying the key factorfor high desulfurization activity in sorbents prepared from RHA. Initially, a systematic approach using central composite rotatable design was used to develop a mathematical model that correlates the sorbent preparation variables to the desulfurization activity of the sorbent. The sorbent preparation variables studied are hydration period, x1 (6-16 h), amount of RHA, x2 (5-15 g), amount of CaO, x3 (2-6 g), amount of water, x4 (90-110 mL), and hydration temperature, x5 (150-250 degrees C). The mathematical model developed was subjected to statistical tests and the model is adequate for predicting the SO2 desulfurization activity of the sorbent within the range of the sorbent preparation variables studied. Based on the model, the amount of RHA, amount of CaO, and hydration period used in the preparation step significantly influenced the desulfurization activity of the sorbent. The ratio of RHA and CaO used in the preparation mixture was also a significant factor that influenced the desulfurization activity of the sorbent. A RHA to CaO ratio of 2.5 leads to the formation of specific reactive species in the sorbent that are believed to be the key factor responsible for high desulfurization activity in the sorbent. Other physical properties of the sorbent such as pore size distribution and surface morphology were found to have insignificant influence on the desulfurization activity of the sorbent.

  4. Carbon nanocomposite sorbent and methods of using the same for separation of one or more materials from a gas stream

    DOEpatents

    Olson, Edwin S; Pavlish, John H

    2015-04-21

    The present invention relates to carbon nanocomposite sorbents. The present invention provides carbon nanocomposite sorbents, methods for making the same, and methods for separation of a pollutant from a gas that includes that pollutant. Various embodiments provide a method for reducing the mercury content of a mercury-containing gas.

  5. INVESTIGATION AND DEMONSTRATION OF DRY CARBON-BASED SORBENT INJECTION FOR MERCURY CONTROL

    SciTech Connect

    Terry Hunt; Mark Fox; Lillian Stan; Sheila Haythornthwaite; Justin Smith; Jason Ruhl

    1998-10-01

    This quarterly report describes the activities that have taken place during the first full quarter of the Phase II project ''Investigation and Demonstration of Dry Carbon-Based Sorbent Injection for Mercury Control''. Modifications were completed and sampling began at the 600 acfm pilot-scale particulate control module (PCM) located at the Comanche Station in Pueblo, CO. The PCM was configured as an electrostatic precipitator for these tests. A Perkin-Elmer flue gas mercury analyzer was installed on-site and operated. Initial test results using both manual sampling methodology and the mercury analyzer are presented herein. Preparations were made during this period for full-scale mercury testing of several PSCo units. A site visit was made to Arapahoe and Cherokee Generating Stations to determine sample locations and to develop a test plan.

  6. Amine enriched solid sorbents for carbon dioxide capture

    DOEpatents

    Gray, McMahan L.; Soong, Yee; Champagne, Kenneth J.

    2003-04-15

    A new method for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The new method entails treating a solid substrate with acid or base and simultaneous or subsequent treatment with a substituted amine salt. The method eliminates the need for organic solvents and polymeric materials for the preparation of CO.sub.2 capture systems.

  7. Hybrid multiwalled carbon nanotube--Laponite sorbent for removal of methylene blue from aqueous solutions.

    PubMed

    Loginov, Maksym; Lebovka, Nikolai; Vorobiev, Eugene

    2014-10-01

    The article discusses adsorption of methylene blue dye by novel hybrid sorbent consisting of Laponite and multiwalled carbon nanotubes. The sorbent was obtained by sonication of the aqueous suspensions of nanotubes at different concentrations of Laponite. The methods of the methylene blue adsorption, dead-end membrane filtration and environmental scanning electron microscopy were used for the sorbent characterization. It may be concluded from the results of filtration and adsorption experiments that sonication of mixed aqueous suspensions of Laponite and multiwalled carbon nanotubes leads to the formation of hybrid particles (ML-particles) with a core-shell structure. The size and the shape of hybrid particles were determined by nanotubes, while their adsorption properties were determined by Laponite particles attached to the surface of nanotubes. The Laponite content in hybrid particles was corresponding to the Laponite to nanotubes ratio in the initial suspension X(L)=0-1. Due to the presence of Laponite in the sorbent, its adsorbing capacity was much higher as compared to the adsorbing capacity of pure nanotubes, and it was directly proportional to the Laponite content. This sorbent may be used either as a purifying additive or as a filtering layer if it is deposited on the surface of a supporting membrane. Due to relatively large size of hybrid particles, they can be easily separated from the purified solution by filtration or centrifugation.

  8. Mercury removal sorbents

    DOEpatents

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  9. A calcium oxide sorbent process for bulk separation of carbon dioxide. Annual report, September 1989--August 1990

    SciTech Connect

    Harrison, D.P.

    1990-09-01

    This research effort is designed to investigate the technical feasibility of a high-temperature, high-pressure process for the bulk separation of CO{sub 2} from coal-derived gases. The two-year contract was awarded in September 1989. This report describes the research effort and results obtained during the first year of the effort. The overall project consists of 6 tasks, four of which were active during year 01. Tasks 1 and 2 were completed during the year while activity in Tasks 3 and 6 will carry over into year 02. Tasks 4 and 5 will be initiated during year 02. Three primary objectives were met in Task 1. A literature search on the calcination-carbonation reactions of CO{sub 2} with calcium-based sorbents was completed. A high temperature, high pressure (HTHP) electrobalance reactor suitable for studying the calcination and carbonation reactions was constructed. This reactor system is now fully operable and we are routinely collecting kinetics data at temperatures in the range of 550-900{degree}C and pressures of 1 to 15 atm. Samples of nine candidate calcium-based sorbents were acquired and tested. These samples were subjected to reaction screening tests as part of Task 2. As a result of these screening tests, chemically pure calcium carbonate, chemically pure calcium acetate, and the commercial dolomite were selected for more detailed kinetic testing. In Task 3, the HTHP electrobalance reactor is being used to study the calcination-carbonation behavior of the three base sorbents as a function of calcination temperature, carbonation temperature, carbonation pressure, and CO{sub 2} concentration.

  10. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    SciTech Connect

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  11. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    DOEpatents

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  12. Determination of dry carbon-based sorbent injection for mercury control in utility ESP and baghouses

    SciTech Connect

    Broderick, T.; Haythornthwaite, S.; Bell, W.; Selegue, T.; Perry, M.

    1998-12-31

    Domestic coal-fired power plants emit approximately 40 to 80 metric tons of mercury to the atmosphere annually. The mercury concentration in utility flue gas is in the dilute range of 0.1 to 1 parts per billion. The EPA is assessing whether such low concentrations of mercury emissions from coal-fired utilities pose any significant health risk and whether mercury regulations would be necessary or appropriate. In anticipation of possible mercury control regulations, ADA Technologies (ADA) and TDA Research, Inc (TDA) were funded by the Department of Energy (DOE) to evaluate carbon-based sorbents for mercury control at utility coal-fired power plants. Past investigations of the use of dry carbon-based sorbent injection for mercury control on pilot-scale utility flue gas applications have shown that these sorbents are capable of removing gas-phase mercury. ADA Technologies field-tested the mercury removal capability of several carbon-based sorbents manufactured by TDA. The test facility was a DOE-owned test facility built and operated by ADA at the Public Service Company of Colorado`s Comanche Station in Pueblo, Colorado. The pilot-scale test fixture is a 600-acfm particulate control module that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse. It extracts a slipstream of flue gas from a coal-fired utility boiler. Sorbent is injected into the flue gas slipstream upstream of the particulate control module and is removed by the module. ADA evaluated the mercury capture efficiency of the sorbents over a range of flue gas temperatures and injection rates. In addition, the effect of flyash on mercury capture was also investigated. The test facility is configured to take flue gas from either upstream or downstream of Comanche Station`s full-scale reverse-gas baghouse, allowing tests to be conducted with normal-ash or low-ash flue gas.

  13. Chemical modification of hygroscopic magnesium carbonate into superhydrophobic and oleophilic sorbent suitable for removal of oil spill in water

    NASA Astrophysics Data System (ADS)

    Patowary, Manoj; Ananthakrishnan, Rajakumar; Pathak, Khanindra

    2014-11-01

    The wettability of hygroscopic magnesium carbonate has been modified to develop a superhydrophobic and oleophilic sorbent for oil spill clean-ups via a simple chemical process using palmitic acid. The prepared material was characterized using X-ray diffraction, Fourier transform infra-red spectroscopy, and scanning electron microscopy. Wettability test infers that the sorbent has a static water contact angle of 154 ± 1°, thereby indicating its superhydrophobic character. The sorbent was capable of scavenging oil for about three times its weight, as determined from oil sorption studies, carried out using the sorbent on model oil-water mixture. Interestingly, the chemically modified sorbent has high selectivity, buoyancy, and rate of uptake of oil. Further, the reusability studies confirm the repeatable usage of the sorbent and its efficacy in oil spill remediation.

  14. Synthesis, Optimization, and Performance Demonstration of Electrospun Carbon Nanofiber-Carbon Nanotube Composite Sorbents for Point-of-Use Water Treatment.

    PubMed

    Peter, Katherine T; Vargo, John D; Rupasinghe, Thilini P; De Jesus, Aribet; Tivanski, Alexei V; Sander, Edward A; Myung, Nosang V; Cwiertny, David M

    2016-05-11

    We developed an electrospun carbon nanofiber-carbon nanotube (CNF-CNT) composite with optimal sorption capacity and material strength for point-of-use (POU) water treatment. Synthesis variables including integration of multiwalled carbon nanotubes (CNTs) and macroporosity (via sublimation of phthalic acid), relative humidity (20 and 40%), and stabilization temperature (250 and 280 °C) were used to control nanofiber diameter and surface area (from electron microscopy and BET isotherms, respectively), surface composition (from XPS), and strength (from AFM nanoindentation and tensile strength tests). Composites were then evaluated using kinetic, isotherm, and pH-edge sorption experiments with sulfamethoxazole (log Kow = 0.89) and atrazine (log Kow = 2.61), representative micropollutants chosen for their different polarities. Although CNFs alone were poor sorbents, integration of CNTs and macroporosity achieved uptake comparable to granular activated carbon. Through reactivity comparisons with CNT dispersions, we propose that increasing macroporosity exposes the embedded CNTs, thereby enabling their role as the primary sorbent in nanofiber composites. Because the highest capacity sorbents lacked sufficient strength, our optimal formulation (polyacrylonitrile 8 wt %, CNT 2 wt %, phthalic acid 2.4 wt %; 40% relative humidity; 280 °C stabilization) represents a compromise between strength and performance. This optimized sorbent was tested with a mixture of ten organic micropollutants at environmentally relevant concentrations in a gravity-fed, flow-through filtration system, where removal trends suggest that both hydrophobic and specific binding interactions contribute to micropollutant uptake. Collectively, this work highlights the promise of CNF-CNT filters (e.g., mechanical strength, ability to harness CNT sorption capacity), while also prioritizing areas for future research and development (e.g., improved removal of highly polar micropollutants, sensitivity to

  15. Synthesis, Optimization, and Performance Demonstration of Electrospun Carbon Nanofiber-Carbon Nanotube Composite Sorbents for Point-of-Use Water Treatment.

    PubMed

    Peter, Katherine T; Vargo, John D; Rupasinghe, Thilini P; De Jesus, Aribet; Tivanski, Alexei V; Sander, Edward A; Myung, Nosang V; Cwiertny, David M

    2016-05-11

    We developed an electrospun carbon nanofiber-carbon nanotube (CNF-CNT) composite with optimal sorption capacity and material strength for point-of-use (POU) water treatment. Synthesis variables including integration of multiwalled carbon nanotubes (CNTs) and macroporosity (via sublimation of phthalic acid), relative humidity (20 and 40%), and stabilization temperature (250 and 280 °C) were used to control nanofiber diameter and surface area (from electron microscopy and BET isotherms, respectively), surface composition (from XPS), and strength (from AFM nanoindentation and tensile strength tests). Composites were then evaluated using kinetic, isotherm, and pH-edge sorption experiments with sulfamethoxazole (log Kow = 0.89) and atrazine (log Kow = 2.61), representative micropollutants chosen for their different polarities. Although CNFs alone were poor sorbents, integration of CNTs and macroporosity achieved uptake comparable to granular activated carbon. Through reactivity comparisons with CNT dispersions, we propose that increasing macroporosity exposes the embedded CNTs, thereby enabling their role as the primary sorbent in nanofiber composites. Because the highest capacity sorbents lacked sufficient strength, our optimal formulation (polyacrylonitrile 8 wt %, CNT 2 wt %, phthalic acid 2.4 wt %; 40% relative humidity; 280 °C stabilization) represents a compromise between strength and performance. This optimized sorbent was tested with a mixture of ten organic micropollutants at environmentally relevant concentrations in a gravity-fed, flow-through filtration system, where removal trends suggest that both hydrophobic and specific binding interactions contribute to micropollutant uptake. Collectively, this work highlights the promise of CNF-CNT filters (e.g., mechanical strength, ability to harness CNT sorption capacity), while also prioritizing areas for future research and development (e.g., improved removal of highly polar micropollutants, sensitivity to

  16. Flue-gas carbon capture on carbonaceous sorbents: Toward a low-cost multifunctional Carbon Filter for 'Green' energy producers

    SciTech Connect

    Radosz, M.; Hu, X.D.; Krutkramelis, K.; Shen, Y.Q.

    2008-05-15

    A low-pressure Carbon Filter Process (patent pending) is proposed to capture carbon dioxide (CO{sub 2}) from flue gas. This filter is filled with a low-cost carbonaceous sorbent, such as activated carbon or charcoal, which has a high affinity (and, hence, high capacity) to CO{sub 2} but not to nitrogen (N{sub 2}). This, in turn, leads to a high CO{sub 2}/N{sub 2} selectivity, especially at low pressures. The Carbon Filter Process proposed in this work can recover at least 90% of flue-gas CO{sub 2} of 90%+ purity at a fraction of the cost normally associated with the conventional amine absorption process. The Carbon Filter Process requires neither expensive materials nor flue-gas compression or refrigeration, and it is easy to heat integrate with an existing or grassroots power plant without affecting the cost of the produced electricity too much. An abundant supply of low-cost CO{sub 2} from electricity producers is good news for enhanced oil recovery (EOR) and enhanced coal-bed methane recovery (ECBMR) operators, because it will lead to higher oil and gas recovery rates in an environmentally sensitive manner. A CO{sub 2}-rich mixture that contains some nitrogen is much less expensive to separate from flue-gas than pure CO{sub 2}; therefore, mixed CO{sub 2}/N{sub 2}-EOR and CO{sub 2}/N{sub 2}-ECBMR methods are proposed to maximize the overall carbon capture and utilization efficiency.

  17. Carbon nanotubes as SPE sorbents for the extraction of salicylic acid from river water.

    PubMed

    Caballero-Díaz, Encarnación; Valcárcel, Miguel

    2014-02-01

    This paper deals with the ability of different types of carbon nanotubes to adsorb salicylic acid in river water samples. The use of these nanoparticles as a sorbent in a SPE procedure prior to CE analysis is essential for improving the enrichment factor and the recovery values. Several experimental variables were optimized in order to maximize the extraction efficiency. The proposed analytical method is simple, fast, and entails low solvent consumption. Furthermore, salicylic acid could be extracted from river water providing good recovery values in the range from 76.2 to 102.0% (RSD<8.2%). The combination of the specific chemical properties of analyte and the unique physicochemical features of carbon nanotubes sheds new light on the use of these nanoparticles as excellent sorbent materials of pharmaceutical compounds in environmental matrices.

  18. MERCURIC CHLORIDE CAPTURE BY ALKALINE SORBENTS

    EPA Science Inventory

    The paper gives results of bench-scale mechanistic studies of mercury/sorbent reactions that showed that mercuric chloride (HgC12) is readily adsorbed by alkaline sorbents, which may offers a less expensive alternative to the use of activated carbons. A laboratory-scale, fixed-b...

  19. Solid amine compounds as sorbents for carbon dioxide: A concept

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    Solid amine compounds were examined as possible absorbents for removal of carbon dioxide in life support systems of type which may be employed in high altitude aircraft, spacecraft, or submarines. Many solid amine compounds release absorbed carbon dioxide when heated in vacuum, therefore, when properly packaged spent amine compounds can be readily regenerated and put back into service.

  20. MULTI-PHASE CFD MODELING OF A SOLID SORBENT CARBON CAPTURE SYSTEM

    SciTech Connect

    Ryan, Emily M.; Xu, Wei; DeCroix, David; Saha, Kringan; Huckaby, E. D.; Darteville, Sebastien; Sun, Xin

    2012-05-01

    Post-combustion solid sorbent carbon capture systems are being studied via computational modeling as part of the U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI). The work focuses on computational modeling of device-scale multi-phase computational fluid dynamics (CFD) simulations for given carbon capture reactor configurations to predict flow properties, outlet compositions, temperature and pressure. The detailed outputs of the device-scale models provide valuable insight into the operation of new carbon capture devices and will help in the design and optimization of carbon capture systems. As a first step in this project we have focused on modeling a 1 kWe solid sorbent carbon capture system using the commercial CFD software ANSYS FLUENT®. Using the multi-phase models available in ANSYS FLUENT®, we are investigating the use of Eulerian-Eulerian and Eulerian-Lagrangian methods for modeling a fluidized bed carbon capture design. The applicability of the dense discrete phase method (DDPM) is being considered along with the more traditional Eulerian-Eulerian multi-phase model. In this paper we will discuss the design of the 1 kWe solid sorbent system and the setup of the DDPM and Eulerian-Eulerian models used to simulate the system. The results of the hydrodynamics in the system will be discussed and the predictions of the DDPM and Eulerian-Eulerian simulations will be compared. A discussion of the sensitivity of the model to boundary and initial conditions, computational meshing, granular pressure, and drag sub-models will also be presented.

  1. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-05-01

    Electrobalance studies of calcination and carbonation of sodium bicarbonate materials were conducted at Louisiana State University. Calcination in an inert atmosphere was rapid and complete at 120 C. Carbonation was temperature dependent, and both the initial rate and the extent of reaction were found to decrease as temperature was increased between 60 and 80 C. A fluidization test apparatus was constructed at RTI and two sodium bicarbonate materials were fluidized in dry nitrogen at 22 C. The bed was completely fluidized at between 9 and 11 in. of water pressure drop. Kinetic rate expression derivations and thermodynamic calculations were conducted at RTI. Based on literature data, a simple reaction rate expression, which is zero order in carbon dioxide and water, was found to provide the best fit against reciprocal temperature. Simulations based on process thermodynamics suggested that approximately 26 percent of the carbon dioxide in flue gas could be recovered using waste heat available at 240 C.

  2. High-Performance Sorbents for Carbon Dioxide Capture from Air

    SciTech Connect

    Sholl, David; Jones, Christopher

    2013-03-13

    This project has focused on capture of CO{sub 2} from ambient air (“air capture”). If this process is technically and economically feasible, it could potentially contribute to net reduction of CO{sub 2} emissions in ways that are complementary to better developed techniques for CO{sub 2} from concentrated point sources. We focused on cyclic adsorption processes for CO{sub 2} capture from air in which the entire cycle is performed at moderate temperatures. The project involved both experimental studies of sorbent materials and process level modeling of cyclic air capture processes. In our experimental work, a series of amine-functionalized silica adsorbents were prepared and characterized to determine the impact of molecular architecture on CO{sub 2} capture. Some key findings were: • Amine functionalized silicas can be prepared with high enough CO{sub 2} capacities under ambient conditions to merit consideration for use in air capture processes. • Primary amines are better candidates for CO{sub 2} capture than secondary or tertiary amines, both in terms of amine efficiency for CO{sub 2} adsorption and enhanced water affinity. • Mechanistic understanding of degradation of these materials can enable control of molecular architecture to significantly improve material stability. Our process modeling work provided the first publically available cost and energy estimates for cyclic adsorption processes for air capture of CO{sub 2}. Some key findings were: • Cycles based on diurnal ambient heating and cooling cannot yield useful purities or amounts of captured CO{sub 2}. • Cycles based on steam desorption at 110 oC can yield CO{sub 2} purities of ~88%. • The energy requirements for cycles using steam desorption are dominated by needs for thermal input, which results in lower costs than energy input in the form of electricity. Cyclic processes with operational costs of less than $100 tCO{sub 2}-net were described, and these results point to process and

  3. A calcium oxide sorbent process for bulk separation of carbon dioxide

    SciTech Connect

    Silaban, A.; Narcida, M.; Harrison, D.P.

    1992-02-01

    The expected commercialization of coal gasification technology in the US and world-wide will create a need for advanced gas purification and separation processes capable of operating at higher temperatures and in more hostile environments than is common today. For example, a high-temperature, high-pressure process capable of separating CO{sub 2} from coal-derived gas may find application in purifying synthesis gas for H{sub 2}, NH{sub 3}, or CH{sub 3}OH production. High temperature CO{sub 2} removal has the potential for significantly improving the operating efficiency of integrated gasification-molten carbonate fuel cells for electric power generation. This study proved the technical feasibility of a CO{sub 2}-separation process based upon the regenerable noncatalytic gas-solid reaction between CaO and CO{sub 2} to form CACO{sub 3}. Such a process operating at 650{degree}C and 15 atm with 15% CO{sub 2} in the coal gas has the potential for removing in excess of 99% of the CO{sub 2} fed. Selection of a sorbent precursor which, upon calcination, produces high-porosity CaO is important for achieving rapid and complete reaction. The addition of magnesium to the sorbent appears to improve the multicycle durability at a cost of reduced CO{sub 2} capacity per unit mass of sorbent. Reaction conditions, principally calcination and carbonation temperatures, are important factors in multicycle durability. Reaction pressure and CO{sub 2} concentration are important in so far as the initial rapid reaction rate is concerned, but are relatively unimportant in terms of sorbent capacity and durability. Indirect evidence for the simultaneous occurrence of the shift reaction and CO{sub 2}-removal reaction creates the possibility of a direct one-step process for the production of hydrogen from coal-derived gas.

  4. Multi-phase CFD modeling of solid sorbent carbon capture system

    SciTech Connect

    Ryan, E. M.; DeCroix, D.; Breault, Ronald W.; Xu, W.; Huckaby, E. David

    2013-01-01

    Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian–Eulerian and Eulerian–Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian–Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian–Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian–Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.

  5. Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System

    SciTech Connect

    Ryan, Emily M.; DeCroix, David; Breault, Ronald W.; Xu, Wei; Huckaby, E. D.; Saha, Kringan; Darteville, Sebastien; Sun, Xin

    2013-07-30

    Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.

  6. Highly Cost-Effective Nitrogen-Doped Porous Coconut Shell-Based CO2 Sorbent Synthesized by Combining Ammoxidation with KOH Activation.

    PubMed

    Yang, Mingli; Guo, Liping; Hu, Gengshen; Hu, Xin; Xu, Leqiong; Chen, Jie; Dai, Wei; Fan, Maohong

    2015-06-01

    The objective of this research is to develop a cost-effective carbonaceous CO2 sorbent. Highly nanoporous N-doped carbons were synthesized with coconut shell by combining ammoxidation with KOH activation. The resultant carbons have characteristics of highly developed porosities and large nitrogen loadings. The prepared carbons exhibit high CO2 adsorption capacities of 3.44-4.26 and 4.77-6.52 mmol/g at 25 and 0 °C under atmospheric pressure, respectively. Specifically, the sample NC-650-1 prepared under very mild conditions (650 °C and KOH/precursor ratio of 1) shows the CO2 uptake 4.26 mmol/g at 25 °C, which is among the best of the known nitrogen-doped porous carbons. The high CO2 capture capacity of the sorbent can be attributed to its high microporosity and nitrogen content. In addition, the CO2/N2 selectivity of the sorbent is as high as 29, higher than that of many reported CO2 sorbents. Finally, this N-doped carbon exhibits CO2 heats of adsorption as high as 42 kJ/mol. The multiple advantages of these cost-effective coconut shell-based carbons demonstrate that they are excellent candidates for CO2 capture.

  7. Comparison of uranium removal from groundwater by sorbents

    SciTech Connect

    Sams, B.; Blount, J.

    1997-12-31

    Several sorbents have been tested for the capability of uranium removal from two very chemically different groundwaters. Sorbents evaluated in the study include granular activated carbon, peat moss, ion exchange resin (all commercially available) as well as innovative products not commercially available. Screening experiments on all of the sorbents identified the most promising sorbents, which have been carried forward for isotherm and column studies. For the most promising sorbents, studies showed that uranium could be removed to below analytical detection limits. The effect of competing ions is also discussed.

  8. Development of a sorbent-based technology for control of mercury in flue gas

    SciTech Connect

    Wu, Jiann M.; Huang, Hann S.; Livengood, C.D.

    1996-03-01

    This paper presents results of research being, conducted at Argonne National Laboratory on the capture of elemental mercury in simulated flue gases by using dry sorbents. Experimental results from investigation of various sorbents and chemical additives for mercury control are reported. Of the sorbents investigated thus far, an activited-carbon-based sorbent impregnated with about 15% (by weight) of sulfur compound provided the best results. The key parameters affecting mercury control efficiency in a fixed-bed reactor, such as reactor loading, reactor temperature, sorbent size distribution, etc., were also studied, and the results ire presented. In addition to activated-carbon-based sorbents, a non-carbon-based sorbent that uses an inactive substrate treated with active chemicals is being developed. Preliminary, experimental results for mercury removal by this newly developed sorbent are presented.

  9. Investigation and Demonstration of Dry Carbon-Based Sorbent Injection for Mercury Control

    SciTech Connect

    Jason Ruhl; Justin Smith; Sharon Sjostrom; Sheila Haythorthwaite; Terry Hunt

    1997-08-01

    The U.S. Department of Energy (DOE) issued Public Service Company of Colorado (PSCO) a cost sharing contract to evaluate carbon-based sorbents for mercury control on a 600 acfm laboratory-scale particulate control module (PCM). The PCM can be configured as simulate an electrostatic precipitator, a pulse-jet fabric filter, or a reverse-gas fabric filter and is installed on an operating coal-fired power plant. Three different dry carbon-based sorbents were tested this quarter to determine their mercury removal capability in the different configurations. The project is currently in the seventh quarter of an eight-quarter Phase I project. Testing in all configurations is nearly complete. Original plans included the use of an on-line mercury analyzer to collect test data. However, due to very low baseline mercury concentration, on-line measurement did not provide accurate data. The project used a modified MESA method grab sample technique to determine inlet and outlet mercury concentrations. A major concern during sorbent evaluations was the natural ability of the flyash at the test site to remove mercury. This often made determination of sorbent only mercury removal difficult. The PCM was configured as a reverse-gas baghouse and brought online with "clean" flue gas on March 10* at an A/C of 2.0 ft/min. The dustcake forms the filtering media in a reverse gas baghouse. In the absence of flyash, the bags were precoated with a commercially available alumina silicate material to form an inert dustcake. Some baseline tests were completed with clean gas for comparison to clean gas pulse jet tests. The PCM was reconfigured as a TOXECON unit in April 1997 with testing completed in May 1997. TOXECON, an EPIU patented technology, is a pulse-jet baghouse operating at a high A/C ratio downstream of a primary particulate colIector with sorbent injection upstream of the baghouse for air toxics removal. Mercury removals of O to 97o/0 were obtained depending on test conditions.

  10. Development of Novel Carbon Sorbents for CO{sub 2} Capture

    SciTech Connect

    Krishnan, Gopala; Hornbostel, Marc; Bao, Jianer; Perez, Jordi; Nagar, Anoop; Sanjurjo, Angel

    2013-11-30

    An innovative, low-cost, and low-energy-consuming carbon dioxide (CO{sub 2}) capture technology was developed, based on CO{sub 2}adsorption on a high-capacity and durable carbon sorbent. This report describes the (1) performance of the concept on a bench-scale system; (2) results of parametric tests to determine the optimum operating conditions; (3) results of the testing with a flue gas from coal-fired boilers; and (4) evaluation of the technical and economic viability of the technology. The process uses a falling bed of carbon sorbent microbeads to separate the flue gas into two streams: a CO{sub 2} -lean flue gas stream from which > 90% of the CP{sub 2} is removed and a pure stream of CO{sub 2} that is ready for compression and sequestration. The carbo sorbent microbeads have several unique properties such as high CO{sub 2} capacity, low heat of adsorption and desorption (25 to 28 kJ/mole), mechanically robust, and rapid adsorption and desorption rates. The capture of CO{sub 2} from the flue gas is performed at near ambient temperatures in whic the sorbent microbeads flow down by gravity counter-current with the up-flow of the flue gas. The adsorbed CO{sub 2} is stripped by heating the CO{sub 2}-loaded sorbent to - 100°C, in contact with low-pressure (- 5 psig) steam in a section at the bottom of the adsorber. The regenerated sorben is dehydrated of adsorbed moisture, cooled, and lifted back to the adsorber. The CO{sub 2} from the desorber is essentially pure and can be dehydrated, compressed, and transported to a sequestration site. Bench-scale tests using a simulated flue gas showed that the integrated system can be operated to provide > 90% CO{sub 2} capture from a 15% CO{sub 2} stream in the adsorber and produce > 98% CO{sub 2} at the outlet of the stripper. Long-term tests ( 1,000 cycles) showed that the system can be operated reliably without sorbent agglomeration or attrition. The bench-scale reactor was also operated using a flue gas stream from a coal

  11. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect

    Benson, Steven; Browers, Bruce; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-31

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, a Technical and Economic Feasibility Study was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment developed a process flow diagram, major equipment list, heat balances for the SCPC power plant, capital cost estimate, operating cost estimate, levelized cost of electricity, cost of CO2 capture ($/ton) and three sensitivity cases for the CACHYS™ process.

  12. Desorption characteristics of four polyimide sorbent materials using supercritical carbon dioxide and thermal methods

    SciTech Connect

    Raymer, J.H.; Pellizzari, E.D.; Cooper, S.D.

    1987-09-01

    /sup 14/C-Labeled 1,2,3,4,5,6-hexachlorocyclohexane, hexachlorobiphenyl, anthracene, and parathion were used to study the desorption of four polyimide-based sorbent materials using both supercritical carbon dioxide and thermal methods. Supercritical fluid desorption was found to be superior to thermal desorption. Both types of desorption were more difficult from the polyimides than from Tenax-GC used in previous work. This work helps to define the applicability of supercritical desorption of polyimides. The identities of the compounds desorbed with supercritical CO/sub 2/ were verified by using thin-layer chromatography and mass spectrometry. Results were compared to those from Tenax-GC studies.

  13. Novel sorbents for environmental remediation

    NASA Astrophysics Data System (ADS)

    Manariotis, Ioannis D.; Karapanagioti, Hrissi K.; Werner, David

    2014-05-01

    Nowadays, one of the major environmental problems is the pollution of aquatic systems and soil by persistent pollutants. Persistent pollutants have been found widespread in sediments, surface waters, and drinking water supplies. The removal of pollutants can be accomplished prior to their discharge to receiving bodies or by immobilizing them onto soil. Sorption is the most commonly applied process, and activated carbons have been widely used. Rapid progress in nanotechnology and a new focus on biomass-based instead of non-renewable starting materials have produced a wide range of novel engineered sorbents including biosorbents, biochars, carbon-based nanoparticles, bio-nano hybrid materials, and iron-impregnated activated carbons. Sorbent materials have been used in environmental remediation processes and especially in agricultural soil, sediments and contaminated soil, water treatment, and industrial wastewater treatment. Furthermore, sorbents may enhance the synergistic action of other processes, such as volatilization and biodegradation. Novel sorbents have been employed for the removal or immobilization of persistent pollutants such as and include heavy metals (As, Cr, Cu, Pb, Cd, and Hg), halogenated organic compounds, endocrine disrupting chemicals, metalloids and non-metallic elements, and other organic pollutants. The development and evaluation of novel sorbents requires a multidisciplinary approach encompassing environmental, nanotechnology, physical, analytical, and surface chemistry. The necessary evaluations encompass not only the efficiency of these materials to remove pollutants from surface waters and groundwater, industrial wastewater, polluted soils and sediments, etc., but also the potential side-effects of their environmental applications. The aim of this work is to present the results of the use of biochar and impregnated carbon sorbents for the removal of organic pollutants and metals. Furthermore, the new findings from the forthcoming session

  14. Single-Walled Carbon Nanotubes (SWCNTs), as a Novel Sorbent for Determination of Mercury in Air

    PubMed Central

    Golbabaei, Farideh; Ebrahimi, Ali; Shirkhanloo, Hamid; Koohpaei, Alireza; Faghihi-Zarandi, Ali

    2016-01-01

    Background: Based on the noticeable toxicity and numerous application of mercury in industries, removal of mercury vapor through sorbent is an important environmental challenge. Purpose of the Study: Due to their highly porous and hollow structure, large specific surface area, light mass density and strong interaction, Single-Walled Carbon Nanotubes (SWCNTs) sorbent were selected for this investigation. Methods: In this study, instrumental conditions, method procedure and different effective parameters such as adsorption efficiency, desorption capacity, time, temperature and repeatability as well as retention time of adsorbed mercury were studied and optimized. Also, mercury vapor was determined by cold vapor atomic absorption spectrometry (CV-AAS). Obtained data were analyzed by Independent T- test, Multivariate linear regression and one way–ANOVA finally. Results: For 80 mg nanotubes, working range of SWCNT were achieved 0.02-0.7 μg with linear range (R2=0.994). Our data revealed that maximum absorption capacity was 0.5 μg g-1 as well as limit of detection (LOD) for studied sorbent was 0.006 μg. Also, optimum time and temperature were reported, 10 min and 250 °C respectively. Retention time of mercury on CNTs for three weeks was over 90%. Results of repeated trials indicated that the CNTs had long life, so that after 30 cycles of experiments, efficiency was determined without performance loss. Conclusion: Results showed that carbon nanotubes have high potential for efficient extraction of mercury from air and can be used for occupational and environmental purposes. The study of adsorption properties of CNTs is recommended. PMID:26925918

  15. Study of regenerable CO2 sorbents for extravehicular activity

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.

    1973-01-01

    Studies have shown that frequent extravehicular activities planned for future space missions will require regenerable life support systems. The oxides of magnesium, zinc, and silver were tested for their ability to react with CO2 to form the corresponding carbonates, and subsequent thermal regeneration to the oxides. Catalysts and binders were investigated to enhance CO2 sorption rates and structural integrity. A silver oxide formulation was developed which rapidly absorbs 95% of its theoretical capacity and has shown no degradation through 28 regenerations.

  16. Carbonation and hydration characteristics of dry potassium-based sorbents for CO{sub 2} capture

    SciTech Connect

    Chuanwen Zhao; Xiaoping Chen; Changsui Zhao; Yakun Liu

    2009-03-15

    Thermogravimetric apparatus (TGA) and X-ray diffraction (XRD) have been used to study the characteristics of potassium-based sorbents for CO{sub 2} capture. The carbonation reactivity of K{sub 2}CO{sub 3}.1.5H{sub 2}O and K{sub 2}CO{sub 3} dehydrated from K{sub 2}CO{sub 3}. 1.5H{sub 2}O was weak. However, K{sub 2}CO{sub 3} calcined from KHCO{sub 3} showed excellent carbonation capacity and no deactivation of sorbents during multiple cycles. The XRD results showed that the sample dehydrated from K{sub 2}CO{sub 3}1.5H{sub 2}O was K{sub 2}CO{sub 3} with structure of monoclinic crystal (PCNo.1). The carbonation products of PCNo.1 included K{sub 2}CO{sub 3}.1.5H{sub 2}O and KHCO{sub 3}, and K{sub 2}CO{sub 3}. 1.5H{sub 2}O was the main product. Correspondingly, K{sub 2}CO{sub 3} with structure of hexagonal crystal (PCNo.2) was the product calcined from KHCO{sub 3}, and the main carbonation product of PCNo.2 was KHCO{sub 3}. The byproduct of K{sub 4}H{sub 2}(CO{sub 3})3.1.5H{sub 2}O for PCNo.2 would affect the carbonation processes. Hydration tests confirmed the two hypotheses: the hydration reaction will first occur for K{sub 2}CO{sub 3} with structure of monoclinic crystal, and the carbonation reaction will first occur for K{sub 2}CO{sub 3} with structure of hexagonal crystal. The reaction principles were analyzed by product and the relevant reactions. This investigation can be used as basic data for dry potassium-based sorbents capturing CO{sub 2} from flue gas. 20 refs., 7 figs.

  17. Environmentally Friendly Method: Development and Application to Carbon Aerogel as Sorbent for Solid-Phase Extraction.

    PubMed

    Dong, Sheying; Huang, Guiqi; Su, Meiling; Huang, Tinglin

    2015-10-14

    We developed two simple, fast, and environmentally friendly methods using carbon aerogel (CA) and magnetic CA (mCA) materials as sorbents for micro-solid-phase extraction (μ-SPE) and magnetic solid-phase extraction (MSPE) techniques. The material performances such as adsorption isotherm, adsorption kinetics, and specific surface area were discussed by N2 adsorption-desorption isotherm measurements, ultraviolet and visible (UV-vis) spectrophotometry, scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HR-TEM). The experimental results proved that the heterogeneities of CA and mCA were well modeled with the Freundlich isotherm model, and the sorption process well followed the pseudo-second-order rate equation. Moreover, plant growth regulators (PGRs) such as kinetin (6-KT), 6-benzylaminopurine (6-BA), 2,4-dichlorophenoxyacetic acid (2,4-D), and uniconazole (UN) in a reservoir raw water sample were selected as the evaluation of applicability for the proposed μ-SPE and MSPE techniques using high performance liquid chromatography (HPLC). The experimental conditions of two methods such as the amount of sorbent, extraction time, pH, salt concentration, and desorption conditions were studied. Under the optimized conditions, two extraction methods provided high recoveries (89-103%), low the limits of detection (LODs) (0.01-0.2 μg L(-1)), and satisfactory analytical features in terms of precision (relative standard deviation, RSD, 1.7-5.1%, n=3). This work demonstrates the feasibility and the potential of CA and mCA materials as sorbents for μ-SPE and MSPE techniques. Besides, it also could serve as a basis for future development of other functional CAs in pretreatment technology and make them valuable for analysis of pollutants in environmental applications.

  18. Catalytic regeneration of mercury sorbents.

    PubMed

    Bentley, Mark; Fan, Maohong; Dutcher, Bryce; Tang, Mingchen; Argyle, Morris D; Russell, Armistead G; Zhang, Yulong; Sharma, M P; Swapp, Susan M

    2013-11-15

    Traditionally, mercury sorbents are disposed of in landfills, which may lead to contamination of soil and groundwater. In this work, the regeneration of activated carbon (AC) as a mercury sorbent was investigated. The decomposition of HgCl2 on the surface of pure AC was studied, as well as sorbent which has been treated with FeCl3 or NaCl. In all cases, the sorbent is found to be structurally stable through a single regeneration, which is verified through BET, XRD, and XPS analysis. The desorption of mercury from the sorbent is found to follow Henry's law. Additionally, a kinetic analysis suggests that although the presence of activated carbon lowers the energy requirement for the desorption of mercury, it significantly decreases the rate by decreasing the concentration of the HgCl2. FeCl3 and NaCl both promoted the decomposition of HgCl2, but FeCl3 did so more significantly, increasing the rate constants by a factor of 10 and decreasing the activation energy for the decomposition of HgCl2 by 14% to 40%.

  19. Equilibrium and Absorption Kinetics of Carbon Dioxide by solid Supported Amine Sorbent

    SciTech Connect

    Monazam, Esmail R.; Shadle, Lawrence J.; Siriwardane, Ranjani

    2011-11-01

    The equilibrium and conversion-time data on the absorption of carbon dioxide (CO{sub 2}) with amine-based solid sorbent were analyzed over the range of 303–373 K. Data on CO{sub 2} loading on amine based solid sorbent at these temperatures and CO{sub 2} partial pressure between 10 and 760 mm Hg obtained from volumetric adsorption apparatus were fitted to a simple equilibrium model to generate the different parameters (including equilibrium constant) in the model. Using these constants, a correlation was obtained to define equilibrium constant and maximum CO{sub 2} loading as a function of temperature. In this study, a shrinking core model (SCM) was applied to elucidate the relative importance of pore diffusion and surface chemical reaction in controlling the rate of reaction. Application of SCM to the data suggested a surface reaction-controlled mechanism for the temperature of up to 40°C and pore-diffusion mechanism at higher temperature.

  20. Solid sorbents for removal of carbon dioxide from gas streams at low temperatures

    DOEpatents

    Sirwardane, Ranjani V.

    2005-06-21

    New low-cost CO.sub.2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO.sub.2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35.degree. C.

  1. Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures

    SciTech Connect

    Sirwardane, Ranjani V.

    2005-06-21

    New low-cost CO2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35 degrees C.

  2. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect

    Benson, Steven; Palo, Daniel; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-01

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, an Environmental Health and Safety (EH&S) Assessment was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment addressed air and particulate emissions as well as solid and liquid waste streams. The magnitude of the emissions and waste streams was estimated for evaluation purposes. EH&S characteristics of materials used in the system are also described. This document contains data based on the mass balances from both the 40 kJ/mol CO2 and 80 kJ/mol CO2 desorption energy cases evaluated in the Final Technical and Economic Feasibility study also conducted by Barr Engineering.

  3. Utility flue gas mercury control via sorbent injection

    SciTech Connect

    Chang, R.; Carey, T.; Hargrove, B.

    1996-12-31

    The potential for power plant mercury control under Title III of the 1990 Clean Air Act Amendments generated significant interest in assessing whether cost effective technologies are available for removing the mercury present in fossil-fired power plant flue gas. One promising approach is the direct injection of mercury sorbents such as activated carbon into flue gas. This approach has been shown to be effective for mercury control from municipal waste incinerators. However, tests conducted to date on utility fossil-fired boilers show that it is much more difficult to remove the trace species of mercury present in flue gas. EPRI is conducting research in sorbent mercury control including bench-scale evaluation of mercury sorbent activity and capacity with simulated flue gas, pilot testing under actual flue gas conditions, evaluation of sorbent regeneration and recycle options, and the development of novel sorbents. A theoretical model that predicts maximum mercury removals achievable with sorbent injection under different operating conditions is also being developed. This paper presents initial bench-scale and model results. The results to date show that very fine and large amounts of sorbents are needed for mercury control unless long residence times are available for sorbent-mercury contact. Also, sorbent activity and capacity are highly dependent on flue gas composition, temperature, mercury species, and sorbent properties. 10 refs., 4 figs., 2 tabs.

  4. Desulfurization sorbent regeneration

    DOEpatents

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  5. Preliminary carbon dioxide capture technical and economic feasibility study evaluation of carbon dioxide capture from existing fired plants by hybrid sorption using solid sorbents

    SciTech Connect

    Benson, Steven; Envergex, Srivats; Browers, Bruce; Thumbi, Charles

    2013-01-01

    Barr Engineering Co. was retained by the Institute for Energy Studies (IES) at University of North Dakota (UND) to conduct a technical and economic feasibility analysis of an innovative hybrid sorbent technology (CACHYS™) for carbon dioxide (CO2) capture and separation from coal combustion–derived flue gas. The project team for this effort consists of the University of North Dakota, Envergex LLC, Barr Engineering Co., and Solex Thermal Science, along with industrial support from Allete, BNI Coal, SaskPower, and the North Dakota Lignite Energy Council. An initial economic and feasibility study of the CACHYS™ concept, including definition of the process, development of process flow diagrams (PFDs), material and energy balances, equipment selection, sizing and costing, and estimation of overall capital and operating costs, is performed by Barr with information provided by UND and Envergex. The technology—Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents Capture (CACHYS™)—is a novel solid sorbent technology based on the following ideas: reduction of energy for sorbent regeneration, utilization of novel process chemistry, contactor conditions that minimize sorbent-CO2 heat of reaction and promote fast CO2 capture, and a low-cost method of heat management. The technology’s other key component is the use of a low-cost sorbent.

  6. Novel modified carbon nanotubes as a selective sorbent for preconcentration and determination of trace copper ions in fruit samples.

    PubMed

    Rezvani, Mehdi; Ebrahimzadeh, Homeira; Aliakbari, Azam; Khalilzadeh, Azita; Kasaeian, Mansoure; Amini, Mostafa M

    2014-09-01

    In this work, multiwalled carbon nanotubes were reacted with N-[3-(triet-hoxysilyl)propyl]isonicotinamide to prepare pyridine-functionalized carbon nanotubes. This novel sorbent was characterized by infrared spectroscopy, thermal and elemental analysis, and scanning electron microscopy. Functionalized carbon nanotubes were applied for the preconcentration and determination of copper ions using flame atomic absorption spectrometry. Various parameters such as sample pH, flow rate, eluent type and concentration, and its volume were optimized. Under optimal experimental conditions, the limit of detection, the relative standard deviation, and the recovery of the method were 0.65 ng/mL, 3.2% and 99.4%, respectively. After validating the method using standard reference materials, the new sorbent was applied for the extraction and determination of trace copper(II) ions in fruit samples.

  7. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    PubMed

    Clack, Herek L

    2012-07-01

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions. PMID:22663136

  8. Regenerable solid imine sorbents

    DOEpatents

    Gray, McMahan; Champagne, Kenneth J.; Fauth, Daniel; Beckman, Eric

    2013-09-10

    Two new classes of amine-based sorbents are disclosed. The first class comprises new polymer-immobilized tertiary amine sorbents; the second class new polymer-bound amine sorbents. Both classes are tailored to facilitate removal of acid anhydrides, especially carbon dioxide (CO.sub.2), from effluent gases. The amines adsorb acid anhydrides in a 1:1 molar ratio. Both classes of amine sorbents adsorb in the temperature range from about 20.degree. C. upwards to 90.degree. C. and can be regenerated by heating upwards to 100.degree. C.

  9. Design and Development of New Carbon-Based Sorbent Systems for an Effective Containment of Hydrogen

    SciTech Connect

    Alan C. Cooper

    2012-05-03

    This is a summary for work performed under cooperative agreement DE FC36 04GO14006 (Design and Development of New Carbon-based Sorbent Systems for an Effective Containment of Hydrogen). The project was directed to discover new solid and liquid materials that use reversible catalytic hydrogenation as the mechanism for hydrogen capture and storage. After a short period of investigation of solid materials, the inherent advantages of storing and transporting hydrogen using liquid-phase materials focused our attention exclusively on organic liquid hydrogen carriers (liquid carriers). While liquid carriers such as decalin and methylcyclohexane were known in the literature, these carriers suffer from practical disadvantages such as the need for very high temperatures to release hydrogen from the carriers and difficult separation of the carriers from the hydrogen. In this project, we were successful in using the prediction of reaction thermodynamics to discover liquid carriers that operate at temperatures up to 150 C lower than the previously known carriers. The means for modifying the thermodynamics of liquid carriers involved the use of certain molecular structures and incorporation of elements other than carbon into the carrier structure. The temperature decrease due to the more favorable reaction thermodynamics results in less energy input to release hydrogen from the carriers. For the first time, the catalytic reaction required to release hydrogen from the carriers could be conducted with the carrier remaining in the liquid phase. This has the beneficial effect of providing a simple means to separate the hydrogen from the carrier.

  10. Performance and Kinetics of a solid Amine Sorbent for Carbon Dioxide Removal

    SciTech Connect

    Monazam, Esmail R.; Shadle, Lawrence J.; Siriwardane, Ranjani

    2011-10-05

    The kinetics of the reaction between CO{sub 2} and amine/bentonite particle were estimated over the range of 303–363 K from adsorption data obtained by TGA. The weight percent of amine, reaction temperature, and particle diameter were considered as experimental variables. The sorbent maximum or equilibrium CO{sub 2} uptake was found to be linearly dependent on temperature; decreasing with increasing temperature when tested in a 100% CO{sub 2} environment. Reactivity data for amine/bentonite particle with CO{sub 2} were presented and discussed. On the basis of the isothermal TGA results, reaction order and the value of activation energy have been obtained. These kinetic parameters are similar to those reported for MEA and DEA in aqueous solutions. The kinetic model was used to predict the fractional conversion at different temperature exhibiting good agreement with experimental data.

  11. Soil washing enhancement with solid sorbents

    SciTech Connect

    El-Shoubary, Y.M.; Woodmansee, D.E.

    1996-12-31

    Soil washing is a dynamic, physical process that remediates contaminated soil through two mechanisms: particle size separation and transfer of the contaminant into the (mostly) liquid stream. The performance of different sorbents and additives to remove motor oil from sea sand was tested. Hydrocyclone, attrition scrubber, and froth flotation equipment were used for the decontamination study. Sorbents and additives were mixed with soils in the attrition scrubber prior to flotation. Sorbents used were granular activated carbon, powder activated carbon, and rubber tires. Chemical additives used were calcium hydroxide, sodium carbonate, Alconox{reg_sign}, Triton{reg_sign} X-100 and Triton{reg_sign} X-114. When a froth flotation run was performed using no additive, washed soils {open_quotes}tails{close_quotes} contained 4000 ppm of total oil and grease (TOG). However, when carbon or rubber (6% by weight) was added to the contaminated soils the washed soils {open_quotes}tails{close_quotes} contained 4000 ppm of total oil and grease (TOG). The addition of sodium carbonate or calcium hydroxide (6% by weight) had same effects as sorbents. In both cases washed soil {open_quotes}tails{close_quotes} contained total oil and grease of less than 1000 ppm. The use of these non-hazardous additives or sorbent can enhance the soil washing process and consequently saves on time (residence time in equipment design) required to achieve the target clean up levels. 18 refs., 12 figs.

  12. A calcium oxide sorbent process for bulk separation of carbon dioxide. Quarterly progress report 19, January--March, 1994

    SciTech Connect

    Harrison, D.P.

    1994-04-01

    This research project is investigating the technical feasibility of a high-temperature, high-pressure (HTHP) process for the bulk separation of CO{sub 2} from coal-derived gas. Indirect evidence which suggested that the water-gas shift reaction occurred simultaneously with CO{sub 2} removal was found. Occurrence of the simultaneous reactions created the possibility of a direct one-step process for the manufacture of hydrogen from coal-gas while at the same time separating a concentrated stream of CO{sub 2}. Previous quarterly reports have described the design, construction, and commissioning of the fixed-bed reactor, development of analytical procedures, and results of a number of tests using dolomite sorbent precursor. During the current quarter, additional tests were carried out to study the effects of calcination gas composition, temperature, and space velocity using the standard dolomite sorbents. Alternate sorbents were tested to provide direct comparison of dolomite and limestone performance. Tests were performed using an empty reactor and reactor packed with commercial shift catalyst to learn more of the characteristics of the shift reaction in the absence of carbonation. Toward the end of the quarter, emphasis changed to sorbent durability and a number of multicycle tests were completed.

  13. New SERS-active alumina-based sorbents containing Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Yurova, Nadezhda S.; Markina, Natalia E.; Galushka, Victor V.; Burashnikova, Marina M.; Zakharevich, Andrey M.; Markin, Alexey V.; Rusanova, Tatiana Y.

    2016-04-01

    New SERS-active materials were obtained by preparation of alumina with embedded silver nanoparticles and their application both as sorbents for pre-concentration and SERS platforms was studied. The influence of ionic strength on Ag NPs size, absorption spectra and SERS signal was investigated. Synthesized materials were examined by Raman spectroscopy, scanning electron microscopy, and UV-visible spectroscopy. The optimal conditions for SERSmeasurements were chosen. Synthesized materials were applied for pre-concentration of model analytes (Rhodamine 6G, folic acid and pyrene) and their SERS detection directly within the sorbent. It was shown that the recovery of analytes could be improved by alumina modification. The combination of surface-enhanced Raman spectroscopy with preconcentration is a promising instrument for analytical applications.

  14. Diatomaceous earth and activated bauxite used as granular sorbents for the removal of sodium chloride vapor from hot flue gas

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.; Johnson, I.

    1980-01-01

    Diatomaceous earth and activated bauxite were tested as granular sorbents for use as filter media in granular-bed filters for the removal of gaseous alkali metal compounds from the hot (800/sup 0/C) flue gas of PFBC. Tests were performed at atmospheric pressure, using NaCl vapor transported in relatively dry simulated flue gas of PFBC. Either a fixed-bed combustor or a high-temperature sorption test rig was used. The effects of sorbent bed temperature, superficial gas velocity, gas hourly space velocity, and NaCl-vapor concentration in flue gas on the sorption behavior of these two sorbents and their ultimate sorption capacities were determined. Both diatomaceous earth and activated bauxite were found to be very effective in removing NaCl vapor from flue gas. Preliminary cost evaluations showed that they are economically attractive as granular sorbents for cleaning alkali vapor from simulated flue gas.

  15. Porous covalent electron-rich organonitridic frameworks as highly selective sorbents for methane and carbon dioxide.

    PubMed

    Mohanty, Paritosh; Kull, Lilian D; Landskron, Kai

    2011-01-01

    Carbon dioxide capture from point sources like coal-fired power plants is considered to be a solution for stabilizing the CO(2) level in the atmosphere to avoid global warming. Methane is an important energy source that is often highly diluted by nitrogen in natural gas. For the separation of CO(2) and CH(4) from N(2) in flue gas and natural gas, respectively, sorbents with high and reversible gas uptake, high gas selectivity, good chemical and thermal stability, and low cost are desired. Here we report the synthesis and CO(2), CH(4), and N(2) adsorption properties of hierarchically porous electron-rich covalent organonitridic frameworks (PECONFs). These were prepared by simple condensation reactions between inexpensive, commercially available nitridic and electron-rich aromatic building units. The PECONF materials exhibit high and reversible CO(2) and CH(4) uptake and exceptional selectivities of these gases over N(2). The materials do not oxidize in air up to temperature of 400 °C. PMID:21772272

  16. Sorbent suspensions vs. sorbent columns for extracorporeal detoxification in hepatic failure.

    PubMed

    Ash, Stephen R; Sullivan, Thomas A; Carr, David J

    2006-04-01

    Hepatic failure is a significant medical problem which has been unsuccessfully treated by hemodialysis. However, similar therapies using recirculated dialysate regenerated by sorbents in place of single-pass dialysate have been beneficial in treating acute-on-chronic liver failure. The advantages of sorbent-based treatments include some selectivity of toxin removal and improved removal of protein-bound toxins. Activated carbon has been extensively used in detoxification systems, but has often had insufficient toxin capacity. Powdered activated carbon, because of its large surface area, can provide greater binding capacity for bilirubin and other toxins than granular carbon commonly used in detoxifying columns. Methods of using powdered carbon in extracorporeal blood treatment devices are reviewed in the present paper, including liver dialysis and a new sorbent suspension reactor (SSR); and the abilities and limitations of the SSR and columns to process protein solutions are discussed. PMID:16684216

  17. Multiresidue analysis of 16 pesticides in jujube using gas chromatography and mass spectrometry with multiwalled carbon nanotubes as a sorbent.

    PubMed

    Zhao, Liuwei; Zhang, Ling; Liu, Fengmao; Xue, Xiaofeng; Pan, Canping

    2014-11-01

    Although jujube is a minor crop and very few pesticides are registered on it, the application of pesticides during the growth stage of jujube is inevitable to control the pests or diseases. This situation has led to pesticide misuse. A modified quick, easy, cheap, effective, rugged, and safe method using a novel sorbent, multiwalled carbon nanotubes, as a dispersive solid-phase extraction sorbent combined with gas chromatography with mass spectrometry, was developed for the determination of 16 pesticides in jujube. Under the optimized conditions, recoveries of 76.7-112.4% were obtained for the target analytes at three spiked concentration levels. The relative standard deviations ranged from 1.2 to 12.3%. Limits of detection and limits of quantification for 16 pesticides ranged from 1 to 10 and 3 to 30 μg/kg, respectively. The residues of chlorpyrifos, hexaconazole, tebuconazole, and cyhalothrin were detected from samples obtained from the market.

  18. A calcium oxide sorbent process for bulk separation of carbon dioxide. Quarterly progress report, October--December 1991

    SciTech Connect

    Silaban, A.; Narcida, M.; Harrison, D.P.

    1992-02-01

    The expected commercialization of coal gasification technology in the US and world-wide will create a need for advanced gas purification and separation processes capable of operating at higher temperatures and in more hostile environments than is common today. For example, a high-temperature, high-pressure process capable of separating CO{sub 2} from coal-derived gas may find application in purifying synthesis gas for H{sub 2}, NH{sub 3}, or CH{sub 3}OH production. High temperature CO{sub 2} removal has the potential for significantly improving the operating efficiency of integrated gasification-molten carbonate fuel cells for electric power generation. This study proved the technical feasibility of a CO{sub 2}-separation process based upon the regenerable noncatalytic gas-solid reaction between CaO and CO{sub 2} to form CACO{sub 3}. Such a process operating at 650{degree}C and 15 atm with 15% CO{sub 2} in the coal gas has the potential for removing in excess of 99% of the CO{sub 2} fed. Selection of a sorbent precursor which, upon calcination, produces high-porosity CaO is important for achieving rapid and complete reaction. The addition of magnesium to the sorbent appears to improve the multicycle durability at a cost of reduced CO{sub 2} capacity per unit mass of sorbent. Reaction conditions, principally calcination and carbonation temperatures, are important factors in multicycle durability. Reaction pressure and CO{sub 2} concentration are important in so far as the initial rapid reaction rate is concerned, but are relatively unimportant in terms of sorbent capacity and durability. Indirect evidence for the simultaneous occurrence of the shift reaction and CO{sub 2}-removal reaction creates the possibility of a direct one-step process for the production of hydrogen from coal-derived gas.

  19. Evaluation of Carbon Dioxide Capture From Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents

    SciTech Connect

    Benson, Steven; Srinivasachar, Srivats; Laudal, Daniel; Browers, Bruce

    2014-12-31

    A novel hybrid solid sorbent technology for CO₂ capture and separation from coal combustion-derived flue gas was evaluated. The technology – Capture of CO₂ by Hybrid Sorption (CACHYS™) – is a solid sorbent technology based on the following ideas: 1) reduction of energy for sorbent regeneration, 2) utilization of novel process chemistry, 3) contactor conditions that minimize sorbent-CO₂ heat of reaction and promote fast CO₂ capture, and 4) low-cost method of heat management. This report provides key information developed during the course of the project that includes sorbent performance, energy for sorbent regeneration, physical properties of the sorbent, the integration of process components, sizing of equipment, and overall capital and operational cost of the integrated CACHYS™ system. Seven sorbent formulations were prepared and evaluated at the lab-scale for energy requirements and CO₂ capture performance. Sorbent heat of regeneration ranged from 30-80 kJ/mol CO₂ and was found to be dependent on process conditions. Two sorbent formulations (designated HCK-4 & HCK-7) were down-selected for additional fixed-bed testing. Additional testing involved subjecting the sorbents to 100 continuous cycles in the fixed-bed reactor to determine performance as a function of time. The working capacity achieved for HCK-4 sorbent ranged from 5.5-8.0 g CO₂/100 g sorbent, while the HCK-7 typically ranged from 8.0-10.0 g CO₂/100 g sorbent. Overall, there was no deterioration in capacity with continuous cycling for either sorbent. The CACHYS™ bench-scale testing system designed and fabricated under this award consists of a dual circulating fluidized-bed adsorber and a moving-bed regenerator. The system takes a flue gas slipstream from the University of North Dakota’s coal-fired steam plant. Prior to being sent to the adsorber, the flue gas is scrubbed to remove SO₂ and particulate. During parametric testing of the adsorber, CO₂ capture achieved using

  20. Study of CO2 sorbents for extravehicular activity

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.

    1973-01-01

    Portable life support equipment was studied for meeting the requirements of extravehicular activities. Previous studies indicate that the most promising method for performing the CO2 removal function removal function were metallic oxides and/or metallic hydroxides. Mgo, Ag2, and Zno metallic oxides and Mg(OH)2 and Zn(OH)2 metallic hydroxides were studied, by measuring sorption and regeneration properties of each material. The hydroxides of Mg and Zn were not regenerable and the zinc oxide compounds showed no stable form. A silver oxide formulation was developed which rapidly absorbs approximately 95% of its 0.19 Kg CO2 Kg oxide and has shown no sorption or structural degeneration through 22 regenerations. It is recommended that the basic formula be further developed and tested in large-scale beds under simulated conditions.

  1. Zirconium-carbon hybrid sorbent for removal of fluoride from water: oxalic acid mediated Zr(IV) assembly and adsorption mechanism

    PubMed Central

    Halla, Velazquez-Jimenez Litza; Hurt Robert, H; Juan, Matos; Rene, Rangel-Mendez Jose

    2014-01-01

    When activated carbon (AC) is modified with zirconium(IV) by impregnation or precipitation, the fluoride adsorption capacity is typically improved. There is significant potential to improve these hybrid sorbent by controlling the impregnation conditions, which determine the assembly and dispersion of the Zr phases on carbon surfaces. Here, commercial activated carbon was modified with Zr(IV) together with oxalic acid (OA) used to maximize the zirconium dispersion and enhance fluoride adsorption. Adsorption experiments were carried out at pH 7 and 25 °C with a fluoride concentration of 40 mg L−1. The OA/Zr ratio was varied to determine the optimal conditions for subsequent fluoride adsorption. The data was analyzed using the Langmuir and Freundlich isotherm models. FTIR, XPS and the surface charge distribution were performed to elucidate the adsorption mechanism. Potentiometric titrations showed that the modified activated carbon (ZrOx-AC) possesses positive charge at pH lower than 7, and FTIR analysis demonstrated that zirconium ions interact mainly with carboxylic groups on the activated carbon surfaces. Moreover, XPS analysis demonstrated that Zr(IV) interacts with oxalate ions, and the fluoride adsorption mechanism is likely to involve –OH− exchange from zirconyl oxalate complexes. PMID:24359079

  2. Zirconium-carbon hybrid sorbent for removal of fluoride from water: oxalic acid mediated Zr(IV) assembly and adsorption mechanism.

    PubMed

    Velazquez-Jimenez, Litza Halla; Hurt, Robert H; Matos, Juan; Rangel-Mendez, Jose Rene

    2014-01-21

    When activated carbon (AC) is modified with zirconium(IV) by impregnation or precipitation, the fluoride adsorption capacity is typically improved. There is significant potential to improve these hybrid sorbents by controlling the impregnation conditions, which determine the assembly and dispersion of the Zr phases on carbon surfaces. Here, commercial activated carbon was modified with Zr(IV) together with oxalic acid (OA) used to maximize the zirconium dispersion and enhance fluoride adsorption. Adsorption experiments were carried out at pH 7 and 25 °C with a fluoride concentration of 40 mg L(-1). The OA/Zr ratio was varied to determine the optimal conditions for subsequent fluoride adsorption. The data was analyzed using the Langmuir and Freundlich isotherm models. FTIR, XPS, and the surface charge distribution were performed to elucidate the adsorption mechanism. Potentiometric titrations showed that the modified activated carbon (ZrOx-AC) possesses positive charge at pH lower than 7, and FTIR analysis demonstrated that zirconium ions interact mainly with carboxylic groups on the activated carbon surfaces. Moreover, XPS analysis demonstrated that Zr(IV) interacts with oxalate ions, and the fluoride adsorption mechanism is likely to involve -OH(-) exchange from zirconyl oxalate complexes.

  3. Operation of a breadboard liquid-sorbent/membrane-contactor system for removing carbon dioxide and water vapor from air

    NASA Technical Reports Server (NTRS)

    Mccray, Scott B.; Ray, Rod; Newbold, David D.; Millard, Douglas L.; Friesen, Dwayne T.; Foerg, Sandra

    1992-01-01

    Processes to remove and recover carbon dioxide (CO2) and water vapor from air are essential for successful long-duration space missions. This paper presents results of a developmental program focused on the use of a liquid-sorbent/membrane-contactor (LSMC) system for removal of CO2 and water vapor from air. In this system, air from the spacecraft cabin atmosphere is circulated through one side of a hollow-fiber membrane contactor. On the other side of the membrane contactor is flowed a liquid sorbent, which absorbs the CO2 and water vapor from the feed air. The liquid sorbent is then heated to desorb the CO2 and water vapor. The CO2 is subsequently removed from the system as a concentrated gas stream, whereas the water vapor is condensed, producing a water stream. A breadboard system based on this technology was designed and constructed. Tests showed that the LSMC breadboard system can produce a CO2 stream and a liquid-water stream. Details are presented on the operation of the system, as well as the effects on performance of variations in feed conditions.

  4. Sorption and stability of mercury on activated carbon for emission control.

    PubMed

    Graydon, John W; Zhang, Xinzhi; Kirk, Donald W; Jia, Charles Q

    2009-09-15

    A leading strategy for control of mercury emissions from combustion processes involves removal of elemental mercury from the flue gas by injection of activated carbon sorbent. After particulate capture and disposal in a landfill, it is critical that the captured mercury remains permanently sequestered in the sorbent. The environmental stability of sorbed mercury was determined on two commercial, activated carbons, one impregnated using gaseous sulfur, and on two activated carbons that were impregnated with sulfur by reaction with SO(2). After loading with mercury vapor using a static technique, the stability of the sorbed mercury was characterized by two leaching methods. The standard toxicity characteristic leaching procedure showed leachate concentrations well below the limit of 0.2mg/L for all activated carbons. The nature of the sorbed mercury was further characterized by a sequential extraction scheme that was specifically optimized to distinguish clearly among the highly stable phases of mercury. This analysis revealed that there are two forms in which mercury is sequestered. In the sorbent that was impregnated by gaseous sulfur at a relatively low temperature, the mercury is present predominantly as HgS. In the other three sorbents, including two impregnated using SO(2), the mercury is predominantly present in the elemental form, physisorbed and chemisorbed to thiophene groups on the carbon surface. Both forms of binding are sufficiently stable to provide permanent sequestration of mercury in activated carbon sorbents after disposal.

  5. Long Duration Sorbent Testbed

    NASA Technical Reports Server (NTRS)

    Howard, David F.; Knox, James C.; Long, David A.; Miller, Lee; Cmaric, Gregory; Thomas, John

    2016-01-01

    The Long Duration Sorbent Testbed (LDST) is a flight experiment demonstration designed to expose current and future candidate carbon dioxide removal system sorbents to an actual crewed space cabin environment to assess and compare sorption working capacity degradation resulting from long term operation. An analysis of sorbent materials returned to Earth after approximately one year of operation in the International Space Station's (ISS) Carbon Dioxide Removal Assembly (CDRA) indicated as much as a 70% loss of working capacity of the silica gel desiccant material at the extreme system inlet location, with a gradient of capacity loss down the bed. The primary science objective is to assess the degradation of potential sorbents for exploration class missions and ISS upgrades when operated in a true crewed space cabin environment. A secondary objective is to compare degradation of flight test to a ground test unit with contaminant dosing to determine applicability of ground testing.

  6. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, July 1, 1996--September 31, 1996

    SciTech Connect

    Hunt, T.; Sjostrom, S.; Smith, J.

    1996-11-06

    The overall objective of this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. This information is important to the utility industry in anticipation of pending regulations. During Phase I, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed, built and integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will be injected into the flue gas stream upstream of the test device to and mercury concentration measurements will be made to determine the mercury removal efficiency for each sorbent. During the Phase II effort, component integration for the most promising dry sorbent technology shall be tested at the 5000 acfm pilot-scale.

  7. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly report, November 1, 1995--December 31, 1995

    SciTech Connect

    Hunt, T.; Sjostrom, S.

    1996-02-05

    The overall objective to this two phase program is to investigate dry carbon-based sorbents for mercury control. During Phase I, a bench-scale field test device that can simulate an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse will be designed and integrated with an existing pilot-scale facility at Public Service Company of Colorado`s (PSCo`s) Comanche station. Various sorbents will then be injected to determine the mercury removal efficiency for each. During Phase II effort, component integration of the most promising technologies shall be tested at the 5000 acfm pilot-scale. The primary task currently underway is the facility design. The design is expected to be finished in January, 1996. The facility, regardless of the particulate control module configuration, will be fitted with supply line injection port, through which mercury sorbents and SO{sub 2} control sorbents can be added to the flue gas stream.

  8. [Comparative study of carbon nanotubes and polymer composites with silver as sorbents of the influenza A and B viruses].

    PubMed

    Ivanova, V T; Ivanova, M V; Sapurina, I Yu; Burtseva, E I; Trushakova, S V; Isaeva, E I; Kirillova, E S; Stepanova, H V; Oscerco, T A; Manykin, A A

    2015-01-01

    The comparative examination of the interaction of the influenza A and B viruses and fragments of DNA with the carbon nanotubes--composites of polyaniline (PANI) nanotubes and granules containing Ag and without Ag was performed. The increased absorption of the allantois viruses and DNA was demonstrated in composites with Ag. The influence of temperature in the range of 4-36 degrees C was not found to be essential. The intensive absorption took place within the first 15 min of the contact with the sorbents. In total, the properties of the composites of PANI nanotubes + Ag 30% are the most promising for the influenza viruses and DNA absorption in water solutions.

  9. Application of NaClO-treated multiwalled carbon nanotubes as solid phase extraction sorbents for preconcentration of trace 2,4-dichlorophenoxyacetic acid in aqueous samples.

    PubMed

    Lu, Ping; Deng, Dayi; Ni, Xiaodan

    2012-09-01

    Multiwalled carbon nanotubes functionalized by oxidation of original multiwalled carbon nanotubes with NaClO were prepared and their application as solid phase extraction sorbent for 2,4-dichlorophenoxyacetic acid (2,4-D) was investigated systemically, and a new method was developed for the determination of trace 2,4-D in water samples based on extraction and preconcentration of 2,4-D with solid phase extraction columns packed with NaClO-treated multiwalled carbon nanotubes prior to its determination by HPLC. The optimum experimental parameters for preconcentration of 2,4-D, including the column activating conditions, the amount of the sorbent, pH of the sample, elution composition, and elution volume, were investigated. The results indicated 2,4-D could be quantitatively retained by 100 mg NaClO-treated multiwalled carbon nanotubes at pH 5, and then eluted completely with 10 mL 3:1 (v/v) methanol-ammonium acetate solution (0.3 mol/L). The detection limit of this method for 2,4-D was 0.15 μg/L, and the relative standard deviation was 2.3% for fortified tap water samples and 2.5% for fortified riverine water sample at the 10 μg/L level. The method was validated using fortified tap water and riverine water samples with known amount of 2,4-D at the 0.4, 10, and 30 μg/L levels, respectively.

  10. Evaluation of Commercial Off-the-Shelf Sorbents and Catalysts for Control of Ammonia and Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Luna, Bernadette; Somi, George; Winchester, J. Parker; Grose, Jeffrey; Mulloth, Lila; Perry, Jay L.

    2013-01-01

    Designers of future space vehicles envision simplifying the Atmosphere Revitalization (AR) system by combining the functions of trace contaminant (TC) control and carbon dioxide removal into one swing-bed system. Flow rates and bed sizes of the TC and CO2 systems have historically been very different. There is uncertainty about the ability of trace contaminant sorbents to adsorb adequately in high-flow or short bed length configurations, and to desorb adequately during short vacuum exposures. There is also concern about ambient ammonia levels in the absence of a condensing heat exchanger. In addition, new materials and formulations have become commercially available, formulations never evaluated by NASA for purposes of trace contaminant control. The optimal air revitalization system for future missions may incorporate a swing-bed system for carbon dioxide (CO2) and partial trace contaminant control, with a reduced-size, low-power, targeted trace contaminant system supplying the remaining contaminant removal capability. This paper describes the results of a comparative experimental investigation into materials for trace contaminant control that might be part of such a system. Ammonia sorbents and low temperature carbon monoxide (CO) oxidation catalysts are the foci. The data will be useful to designers of AR systems for future flexible path missions. This is a continuation of work presented in a prior year, with extended test results.

  11. Evaluation of Commercial Off-the-Shelf Sorbents and Catalysts for Control of Ammonia and Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Luna, Bernadette; Somi, George; Winchester, J. Parker; Grose, Jeffrey; Mulloth, Lila; Perry, Jay L.

    2010-01-01

    Designers of future space vehicles envision simplifying the Atmosphere Revitalization (AR) system by combining the functions of trace contaminant (TC) control and carbon dioxide removal into one swing-bed system. Flow rates and bed sizes of the TC and CO2 systems have historically been very different. There is uncertainty about the ability of trace contaminant sorbents to adsorb adequately in high-flow or short bed length configurations, and to desorb adequately during short vacuum exposures. There is also concern about ambient ammonia levels in the absence of a condensing heat exchanger. In addition, new materials and formulations have become commercially available, formulations never evaluated by NASA for purposes of trace contaminant control. The optimal air revitalization system for future missions may incorporate a swing-bed system for carbon dioxide (CO2) and partial trace contaminant control, with a reduced-size, low-power, targeted trace contaminant system supplying the remaining contaminant removal capability. This paper describes the results of a comparative experimental investigation into materials for trace contaminant control that might be part of such a system. Ammonia sorbents and low temperature carbon monoxide (CO) oxidation catalysts are the foci. The data will be useful to designers of AR systems for future flexible path missions. This is a continuation of work presented in a prior year, with extended test results.

  12. IN-FLIGHT CAPTURE OF ELEMENTAL MERCURY BY A CHLORINE-IMPREGNATED ACTIVATED CARBON

    EPA Science Inventory

    The paper discusses the in-flight capture of elemental mercury (Hgo) by a chlorine (C1)-impregnated activated carbon. Efforts to develop sorbents for the control of Hg emissions have demonstrated that C1-impregnation of virgin activated carbons using dilute solutions of hydrogen ...

  13. Simulation of mercury capture by activated carbon injection in incinerator flue gas. 2. Fabric filter removal.

    PubMed

    Scala, F

    2001-11-01

    Following a companion paper focused on the in-duct mercury capture in incinerator flue gas by powdered activated carbon injection, this paper is concerned with the additional mercury capture on the fabric filter cake, relevant to baghouse equipped facilities. A detailed model is presented for this process, based on material balances on mercury in both gaseous and adsorbed phases along the growing filter cake and inside the activated carbon particles,taking into account mass transfer resistances and adsorption kinetics. Several sorbents of practical interest have been considered, whose parameters have been evaluated from available literature data. The values and range of the operating variables have been chosen in order to simulate typical incinerators operating conditions. Results of simulations indicate that, contrary to the in-duct removal process, high mercury removal efficiencies can be obtained with moderate sorbent consumption, as a consequence of the effective gas/sorbent contacting on the filter. Satisfactory utilization of the sorbents is predicted, especially at long filtration times. The sorbent feed rate can be minimized by using a reactive sorbent and by lowering the filter temperature as much as possible. Minor benefits can be obtained also by decreasing the sorbent particle size and by increasing the cleaning cycle time of the baghouse compartments. Reverse-flow baghouses were more efficient than pulse-jet baghouses, while smoother operation can be obtained by increasing the number of baghouse compartments. Model results are compared with available relevant full scale data. PMID:11718360

  14. Simulation of mercury capture by activated carbon injection in incinerator flue gas. 2. Fabric filter removal.

    PubMed

    Scala, F

    2001-11-01

    Following a companion paper focused on the in-duct mercury capture in incinerator flue gas by powdered activated carbon injection, this paper is concerned with the additional mercury capture on the fabric filter cake, relevant to baghouse equipped facilities. A detailed model is presented for this process, based on material balances on mercury in both gaseous and adsorbed phases along the growing filter cake and inside the activated carbon particles,taking into account mass transfer resistances and adsorption kinetics. Several sorbents of practical interest have been considered, whose parameters have been evaluated from available literature data. The values and range of the operating variables have been chosen in order to simulate typical incinerators operating conditions. Results of simulations indicate that, contrary to the in-duct removal process, high mercury removal efficiencies can be obtained with moderate sorbent consumption, as a consequence of the effective gas/sorbent contacting on the filter. Satisfactory utilization of the sorbents is predicted, especially at long filtration times. The sorbent feed rate can be minimized by using a reactive sorbent and by lowering the filter temperature as much as possible. Minor benefits can be obtained also by decreasing the sorbent particle size and by increasing the cleaning cycle time of the baghouse compartments. Reverse-flow baghouses were more efficient than pulse-jet baghouses, while smoother operation can be obtained by increasing the number of baghouse compartments. Model results are compared with available relevant full scale data.

  15. Experimental study on mercury sorption by activated carbons and calcium hydroxide

    SciTech Connect

    Ghorishi, B.; Gullett, B.K.

    1997-12-01

    Title III of the 1990 Air Act Amendments (CAAA) requires the U.S. Environmental Protection Agency (EPA) to submit a study on 189 hazardous air pollutants (HAPs) from industrial sources. This study will include an emission and risk (to public health) assessment of the HAPs. Among the 189 HAPs, mercury has drawn special attention due to its increased levels in the environment and well-documented food chain transport and bioaccumulation. Mercury, present in hazardous/municipal wastes and in coal, is readily volatilized during combustion and incineration processes. Mercury is the most volatile among various trace metals, and major portions of it can pass through existing particulate control devices. A sorbent that can react with mercury can effectively shift this metal from the vapor phase to the particulate (sorbent) phase, facilitating its removal. Mercury control processes which use adsorption on dry sorbents do not pose the problem of treatment and stabilization of the waste liquid stream and, therefore, seem very attractive for coal combustors and hazardous/municipal waste incinerators. The need to develop mercury control technologies and the attractive features of adsorption processes on dry sorbents led researchers to focus their efforts on the evaluation of the adsorption kinetics and sorbent capacity of many different solid sorbents. Past research has identified two different classes of sorbents to be effective in mercury removal: activated carbons and calcium-based sorbents.

  16. ASSESSMENT OF LOW COST NOVEL SORBENTS FOR COAL-FIRED POWER PLANT MERCURY CONTROL

    SciTech Connect

    Sharon Sjostrom

    2004-03-01

    The injection of sorbents upstream of a particulate control device is one of the most promising methods for controlling mercury emissions from coal-fired utility boilers with electrostatic precipitators and fabric filters. Studies carried out at the bench-, pilot-, and full-scale have shown that a wide variety of factors may influence sorbent mercury removal effectiveness. These factors include mercury species, flue gas composition, process conditions, existing pollution control equipment design, and sorbent characteristics. The objective of the program is to obtain the necessary information to assess the viability of lower cost alternatives to commercially available activated carbon for mercury control in coal-fired utilities. Prior to injection testing, a number of sorbents were tested in a slipstream fixed-bed device both in the laboratory and at two field sites. Based upon the performance of the sorbents in a fixed-bed device and the estimated cost of mercury control using each sorbent, seventeen sorbents were chosen for screening in a slipstream injection system at a site burning a Western bituminous coal/petcoke blend, five were chosen for screening at a site burning a subbituminous Powder River Basin (PRB) coal, and nineteen sorbents were evaluated at a third site burning a PRB coal. Sorbents evaluated during the program were of various materials, including: activated carbons, treated carbons, other non-activated carbons, and non-carbon material. The economics and performance of the novel sorbents evaluated demonstrate that there are alternatives to the commercial standard. Smaller enterprises may have the opportunity to provide lower price mercury sorbents to power generation customers under the right set of circumstances.

  17. Regenerable sorbents for mercury capture in simulated coal combustion flue gas.

    PubMed

    Rodríguez-Pérez, Jorge; López-Antón, M Antonia; Díaz-Somoano, Mercedes; García, Roberto; Martínez-Tarazona, M Rosa

    2013-09-15

    This work demonstrates that regenerable sorbents containing nano-particles of gold dispersed on an activated carbon are efficient and long-life materials for capturing mercury species from coal combustion flue gases. These sorbents can be used in such a way that the high investment entailed in their preparation will be compensated for by the recovery of all valuable materials. The characteristics of the support and dispersion of gold in the carbon surface influence the efficiency and lifetime of the sorbents. The main factor that determines the retention of mercury and the regeneration of the sorbent is the presence of reactive gases that enhance mercury retention capacity. The capture of mercury is a consequence of two mechanisms: (i) the retention of elemental mercury by amalgamation with gold and (ii) the retention of oxidized mercury on the activated carbon support. These sorbents were specifically designed for retaining the mercury remaining in gas phase after the desulfurization units in coal power plants.

  18. Regenerable sorbents for mercury capture in simulated coal combustion flue gas.

    PubMed

    Rodríguez-Pérez, Jorge; López-Antón, M Antonia; Díaz-Somoano, Mercedes; García, Roberto; Martínez-Tarazona, M Rosa

    2013-09-15

    This work demonstrates that regenerable sorbents containing nano-particles of gold dispersed on an activated carbon are efficient and long-life materials for capturing mercury species from coal combustion flue gases. These sorbents can be used in such a way that the high investment entailed in their preparation will be compensated for by the recovery of all valuable materials. The characteristics of the support and dispersion of gold in the carbon surface influence the efficiency and lifetime of the sorbents. The main factor that determines the retention of mercury and the regeneration of the sorbent is the presence of reactive gases that enhance mercury retention capacity. The capture of mercury is a consequence of two mechanisms: (i) the retention of elemental mercury by amalgamation with gold and (ii) the retention of oxidized mercury on the activated carbon support. These sorbents were specifically designed for retaining the mercury remaining in gas phase after the desulfurization units in coal power plants. PMID:23876255

  19. Activated carbon from biomass

    NASA Astrophysics Data System (ADS)

    Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

    2013-06-01

    Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

  20. Multi walled carbon nanotubes as sorbent for removal of crystal violet.

    PubMed

    Kumar, Sandeep; Bhanjana, Gaurav; Dilbaghi, Neeraj; Umar, Ahmad

    2014-09-01

    Carbon nanotubes (CNTs) possess high surface active site to volume ratio as well as controlled pore size distribution that make them high profile material with an exceptional sorption capability and high sorption efficiency compared to conventional adsorbents. In the present paper, multi walled carbon nanotubes were synthesized by chemical vapor deposition (CVD) method and were further used for the removal of dye crystal violet. Microscopic and spectroscopic techniques were used for characterization. The systematic assessments of the pH and effect of adsorbent on different concentrations of dye with respect to contact time were examined. Langmuir and Temkin models were used to describe the isotherm studies. PMID:25924370

  1. Sorbent suppliers

    SciTech Connect

    Vedder, M.

    1994-03-01

    Sorbents are used to absorb or contain spilled and leaking chemicals, oils, lubricants and other process fluids. They are commonly used around the base of machinery in industrial applications, and in remediating oil spills on land and water. Sorbents are made from biodegradable, inorganic or synthetic materials. Organic materials include corn cobs, wood pulp, paper fiber and cotton. Inorganic materials include clay, perlite, expanded silicates and expanded mica. Synthetic sorbents are made from petroleum- or plastic-based materials such as polyurethane, polyethylene or polypropylene. Sorbents are available in a variety of forms, including pads, rolls, booms, pillows and loose particulate.

  2. Using activated attapulgite as sorbent for solid-phase extraction of melamine in milk formula samples.

    PubMed

    Wang, Ting-Ting; Xuan, Rong-Rong; Ma, Jun-Feng; Tan, Yao; Jin, Zhen-Feng; Chen, Yi-Hui; Zhang, Li-Hua; Zhang, Yu-Kui

    2016-09-01

    In this study, a simple solid-phase extraction (SPE) approach by using activated attapulgite as sorbent was successfully developed for the determination of melamine in milk formula samples. Crucial factors impacting the extraction efficiency, including sample solvent, elution solvent, and sample loading volume, were investigated. Under the optimal extraction conditions, the sample loading volume was up to 200 mL and the adsorption capacity of the melamine gave rise to 1154 μg g(-1). Excellent linear calibration curves (r (2)  > 0.999) were achieved, and then the limit of detection (S/N = 3) and the limit of quantification (S/N = 10) were found to be 0.15 and 0.5 ng mL(-1), respectively. The recoveries of the melamine spiked in four milk formula samples at three concentration levels ranged from 83.5 to 111.0 % with relative standard deviations (RSDs) less than 10.2 %. Furthermore, RSDs of batch to batch (n = 4) of the acidified attapulgite used in this developed method were in the range of 2.3∼7.3 %. In comparison to the commercial Oasis MCX, the acidified attapulgite sorbent even outperformed (at least in terms of reproducibility) for melamine analysis in real food samples. Because of its simplicity, the newly developed SPE method based on acidified attapulgite nanoparticles should provide a promising tool for daily monitoring of doped melamine in milk formula or other complex matrices. PMID:27430500

  3. Experiment and modeling of CO{sub 2} capture from flue gases at high temperature in a fluidized bed reactor with Ca-based sorbents

    SciTech Connect

    Fan Fang; Zhen-Shan Li; Ning-Sheng Cai

    2009-01-15

    The cyclic CO{sub 2} capture and CaCO{sub 3} regeneration characteristics in a small fluidized bed reactor were experimentally investigated with limestone and dolomite sorbents. Kinetic rate constants for carbonation and calcination were determined using thermogravimetric analysis (TGA) data. Mathematical models developed to model the Ca-based sorbent multiple cycles of CO{sub 2} capture and calcination in the bubbling fluidized bed reactor agreed with the experimental data. The experimental and simulated results showed that the CO{sub 2} in flue gases could be absorbed efficiently by limestone and dolomite. The time for high-efficiency CO{sub 2} capture decreased with an increasing number of cycles because of the loss of sorbent activity, and the final CO{sub 2} capture efficiency remained nearly constant as the sorbent reached its final residual capture capacity. In a continuous carbonation and calcination system, corresponding to the sorbent activity loss, the carbonation kinetic rates of sorbent undergoing various cycles are different, and the carbonation kinetic rates of sorbent circulating N times in the carbonation/calcination cycles are also different because of the different residence time of sorbent in the carbonator. Therefore, the average carbonation rate was given based on the mass balance and exit age distribution for sorbent in the carbonator. The CO{sub 2} capture characteristics in a continuous carbonation/calcination system were predicted, taking into consideration the mass balance, sorbent circulation rate, sorbent activity loss, and average carbonation kinetic rate, to give useful information for the reactor design and operation of multiple carbonation/calcination reaction cycles. 27 refs., 15 figs., 1 tab.

  4. Long Duration Sorbent Testbed

    NASA Technical Reports Server (NTRS)

    Knox, James; Long, David; Miller, Lee; Thomas, John; Cmarik, Greg; Howard, David

    2016-01-01

    The LDST is a flight experiment demonstration designed to expose current and future candidate carbon dioxide removal system sorbents to an actual crewed space cabin environment to assess and compare sorption working capacity degradation resulting from long term operation. An analysis of sorbent materials returned to earth after approximately one year of operation in the International Space Station's (ISS) Carbon Dioxide Removal Assembly (CDRA) indicated as much as a 70% loss of working capacity of the silica gel desiccant material at the extreme system inlet location, with a gradient of capacity loss down the bed. The primary science objective is to assess the degradation of potential sorbents for exploration class missions and ISS upgrades when operated in a true crewed space cabin environment. A secondary objective is to compare degradation of flight test to a ground test unit with contaminant dosing to determine applicability of ground testing.

  5. Activated carbon material

    DOEpatents

    Evans, A. Gary

    1978-01-01

    Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

  6. Performance of copper chloride-impregnated sorbents on mercury vapor control in an entrained-flow reactor system

    SciTech Connect

    Sang-Sup Lee; Joo-Youp Lee; Tim C. Keener

    2008-11-15

    An entrained-flow system has been designed and constructed to simulate in-flight mercury (Hg) capture by sorbent injection in ducts of coal-fired utility plants. The test conditions of 1.2-sec residence time, 140{degree}C gas temperature, 6.7 m/sec (22 ft/sec) gas velocity, and 0-0.24 g/m{sup 3} (0-15 lbs of sorbent per 1 million actual cubic feet of flue gas sorbent injection rates were chosen to simulate conditions in the ducts. Four kinds of sorbents were used in this study. Darco Hg-LH (lignite-based) served as a benchmark sorbent with which Hg control capability of other sorbents could be compared. Also, Darco-FGD (lignite-based) was used as a representative raw activated carbon sorbent. Two different copper chloride-impregnated sorbents were developed in the laboratory and tested in the entrained-flow system to examine the possibility of using these sorbents at coal-fired power plants. The test results showed that one of the copper chloride sorbents has remarkable elemental mercury (Hg{sup 0}) oxidation capability, and the other sorbent demonstrated a better performance in Hg removal than Darco Hg-LH. 13 refs., 4 figs., 3 tabs.

  7. LOW CONCENTRATION MERCURY SORPTION MECHANISMS AND CONTROL BY CALCIUM-BASED SORBENTS; APPLICATION IN COAL-FIRED PROCESSES

    EPA Science Inventory

    The capture of elemental mercury (Hgo) and mercuric chloride (HgCl2) by three types of calcium (Ca)-based sorbents was examined in this bench-scale study under conditions prevalent in coal fired utilities. Ca-based sorbent performances were compared to that of an activated carbon...

  8. Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution.

    PubMed

    Tan, Guangcai; Sun, Weiling; Xu, Yaru; Wang, Hongyuan; Xu, Nan

    2016-07-01

    Corn straw biochar (BC) was used as a precursor to produce Na2S modified biochar (BS), KOH modified biochar (BK) and activated carbon (AC). Experiments were conducted to compare the sorption capacity of these sorbents for aqueous Hg (II) and atrazine existed alone or as a mixture. In comparison to BC, the sorption capacity of BS, BK and AC for single Hg (II) increased by 76.95%, 32.12% and 41.72%, while that for atrazine increased by 38.66%, 46.39% and 47 times, respectively. When Hg (II) and atrazine coexisted in an aqueous solution, competitive sorption was observed on all these sorbents. Sulfur impregnation was an efficient way to enhance the Hg (II) removal due to the formation of HgS precipitate, and oxygen-containing functional groups on the sorbents also contributed to Hg (II) sorption. Activated carbon was the best sorbent for atrazine removal because of its extremely high specific surface area.

  9. Effects of Natural Organic Matter on PCB-Activated Carbon Sorption Kinetics: Implications for Sediment Capping Applications

    EPA Science Inventory

    In-situ capping of polychlorinated biphenyl (PCB) contaminated sediments with layers of sorbents such as activated carbon has been proposed, but several technical questions remain regarding long-term effectiveness. An activated carbon amended sediment cap was mimicked in laborat...

  10. Optimization of magnetic powdered activated carbon for aqueous Hg(II) removal and magnetic recovery.

    PubMed

    Faulconer, Emily K; von Reitzenstein, Natalia V Hoogesteijn; Mazyck, David W

    2012-01-15

    Activated carbon is known to adsorb aqueous Hg(II). MPAC (magnetic powdered activated carbon) has the potential to remove aqueous Hg to less than 0.2 μg/L while being magnetically recoverable. Magnetic recapture allows simple sorbent separation from the waste stream while an isolated waste potentially allows for mercury recycling. MPAC Hg-removal performance is verified by mercury mass balance, calculated by quantifying adsorbed, volatilized, and residual aqueous mercury. The batch reactor contained a sealed mercury-carbon contact chamber with mixing and constant N(2) (g) headspace flow to an oxidizing trap. Mercury adsorption was performed using spiked ultrapure water (100 μg/L Hg). Mercury concentrations were obtained using EPA method 245.1 and cold vapor atomic absorption spectroscopy. MPAC synthesis was optimized for Hg removal and sorbent recovery according to the variables: C:Fe, thermal oxidation temperature and time. The 3:1 C:Fe preserved most of the original sorbent surface area. As indicated by XRD patterns, thermal oxidation reduced the amorphous characteristic of the iron oxides but did not improve sorbent recovery and damaged porosity at higher oxidation temperatures. Therefore, the optimal synthesis variables, 3:1 C:Fe mass ratio without thermal oxidation, which can achieve 92.5% (± 8.3%) sorbent recovery and 96.3% (± 9%) Hg removal. The mass balance has been closed to within approximately ± 15%. PMID:22104766

  11. Separation and preconcentration of trace amounts of gold(III) ions using modified multiwalled carbon nanotube sorbent prior to flame atomic absorption spectrometry determination.

    PubMed

    Afzali, Daryoush; Ghaseminezhad, Sima; Taher, Mohammad Ali

    2010-01-01

    Multiwalled carbon nanotubes are attractive as sorbents for SPE because they can be used for enrichment of organic compounds and metal ions at trace levels. In this study, multiwalled carbon nanotubes were oxidized with concentrated HNO3, and then the oxidized multiwalled carbon nanotubes were modified with 5-(4'-dimethylamino-benzyliden)-rhodanine. The modified multiwalled carbon nanotubes were used as a solid sorbent for separation and preconcentration of trace amounts of Au(III) ions. The sorption of Au(III) ions was quantitative in the pH range of 2.0-5.0, whereas quantitative desorption occurred instantaneously with 5.0 mL 2.0 M Na2S2O3. The eluted solution was aspirated directly into the flame for atomic absorption spectrometry. The proposed method resulted in an enrichment factor of 94. The RSD of the method was +/- 1.11% (n=10, 2.0 microg/mL) and the LOD was 0.15 ng/mL. The calibration curve for Au(III) was linear between 0.53 ng/mL and 36.0 microg/mL in the initial solution, with an R2 value of 0.9999. The sorbent capacity of the modified multiwalled carbon nanotubes was 7.3 mg Au(III)/g sorbent. The influences of the experimental parameters, including sample pH, sample flow rate, eluent volume and flow rate, sample volume, and interference of some ions on the recoveries of the Au ions, were investigated. The proposed method was applied for preconcentration and determination of Au in different samples.

  12. Post-combustion Carbon Dioxide Capture using Amine Functionalized Solid Sorbents

    NASA Astrophysics Data System (ADS)

    Mittal, Nikhil

    This work is divided into two parts: (1) Synthesis of amine functionalized adsorbents using grafting technique for post-combustion CO2 capture, (2) Performance evaluation of structured bed configuration with straight gas flow channels using amine impregnated adsorbent for post-combustion CO 2 capture. Brief description of each part is given below: (1) N-(3-trimethoxysilylpropyl)diethylenetriamine (DAEAPTS) grafted SBA-15 adsorbents were synthesized for CO2 capture. The adsorption of CO2 on the amine-grafted sorbents was measured by thermogravimetric method over a CO2 partial pressure range of 8--101.3 kPa and a temperature range of 25--105 °C under atmospheric pressure. The optimal amine loaded SBA-15 adsorbent was examined for multi-cycle stability and adsorption/desorption kinetics. (2) The performance of structured bed and packed bed configurations for post-combustion CO2 capture was evaluated using PEI impregnated SBA-15 adsorbent. The effect of adsorption temperature (25-90 °C), adsorption /desorption kinetics and multi-cycle stability was studied in both structured and packed bed configurations.

  13. Engineered sorbent barrier screening studies

    SciTech Connect

    Freeman, H.D.; Buelt, J.L.

    1985-08-01

    The objective of the Engineered Sorbent Barrier Program is to identify new and cost-effective technology for restricting the migration of radionuclides from low-level waste sites. The primary emphasis is to identify and evaluate sorbent materials as engineered barriers that will prevent radionuclide migration and yet allow moisture to pass. Screening studies have been completed to identify sorbent materials for cesium, cobalt, and strontium. The sorbent materials were selected based on criteria developed for this program and the empirical results of screening studies. The results of the study made it apparent that no single sorbent materials is effective for all radionuclides considered. Therefore, four composite sorbent barriers were identified for further evaluation in 0.6-m diameter columns. The large columns more accurately represent field conditions, generate permeability data, and enhance detectability of radionuclides in the leachate passing through the sorbent barriers. The four sorbent barriers include composites of activated charcoal, greensand, A-51 zeolite, and red pottery clay. Future studies will concentrate on completing the effectiveness evaluations with the large columns and identifying a more cost-effective sorbent material for strontium. 6 refs., 4 figs., 4 tabs.

  14. CO{sub 2} absorption using dry potassium-based sorbents with different supports

    SciTech Connect

    Chuanwen Zhao; Xiaoping Chen; Changsui Zhao

    2009-09-15

    The CO{sub 2} capture characteristics of dry potassium-based sorbents were investigated with thermogravimetric analysis (TGA) and a bubbling fluidized-bed reactor. Potassium-based sorbents were prepared by impregnation with potassium carbonate on supports such as coconut activated charcoal (AC1), coal active carbon (AC2), silica gel (SG), and activated alumina (Al{sub 2}O{sub 3}). Sorbents such as K{sub 2}CO{sub 3}/AC1, K{sub 2}CO{sub 3}/AC2, and K{sub 2}CO{sub 3}/Al{sub 2}O{sub 3} showed excellent carbonation capacity; The total conversion rates of those sorbents were 97.2, 95.9, and 95.2%, respectively in the TG test, and 89.2, 87.9, and 87.6%, respectively, in the fluidized-bed test. However, K{sub 2}CO{sub 3}/SG showed poor carbonation capacity, the total conversion rates were only 34.5 and 18.8%, respectively, in TG and fluidized-bed tests. The differences in carbonation capacity of those sorbents were analyzed by studying the microscopic structure and crystal structure of the supports and the sorbents with X-ray diffraction, scanning electron microscopy, and N{sub 2} adsorption tests. 23 refs., 10 figs.

  15. Sorption of metal ions from multicomponent aqueous solutions by activated carbons produced from waste

    SciTech Connect

    Tikhonova, L.P.; Goba, V.E.; Kovtun, M.F.; Tarasenko, Y.A.; Khavryuchenko, V.D.; Lyubchik, S.B.; Boiko, A.N.

    2008-08-15

    Activated carbons produced by thermal treatment of a mixture of sunflower husks, low-grade coal, and refinery waste were studied as adsorbents of transition ion metals from aqueous solutions of various compositions. The optimal conditions and the mechanism of sorption, as well as the structure of the sorbents, were studied.

  16. XAS AND XPS CHARACTERIZATION OF MERCURY BINDING ON BROMINATED ACTIVATED CARBON

    EPA Science Inventory

    Brominated powdered activated carbon sorbents have been shown to e quite effective for mercury capture when injected into the flue gas duct at coal-fired power plants and are especially useful when buring Western low-chlorine subbituminous coals. X-ray absorption spectroscopy (X...

  17. Development of new sorbents to remove mercury and selenium from flue gas. Final report, September 1, 1993--August 31, 1994

    SciTech Connect

    Shiao, S.Y.

    1995-02-01

    Mercury (Hg) and selenium (Se) are two of the volatile trace metals in coal, which are often not captured by conventional gas clean up devices of coal-fired boilers. An alternative is to use sorbents to capture the volatile components of trace metals after coal combustion. In this project sorbent screening tests were performed in which ten sorbents were selected to remove metallic mercury in N{sub 2}. These sorbents included activated carbon, char prepared from Ohio No. 5 coal, molecular sieves, silica gel, aluminum oxide, hydrated lime, Wyoming bentonite, kaolin, and Amberite IR-120 (an ion-exchanger). The sorbents were selected based on published information and B&W`s experience on mercury removal. The promising sorbent was then selected and modified for detailed studies of removal of mercury and selenium compounds. The sorbents were tested in a bench-scale adsorption facility. A known amount of each sorbent was loaded in the column as a packed bed. A carrier gas was bubbled through the mercury and selenium compounds. The vaporized species were carried by the gas and went through the sorbent beds. The amount of mercury and selenium compounds captured by the sorbents was determined by atomic absorption. Results are discussed.

  18. Parametric study on the CO{sub 2} capture capacity of CaO-based sorbents in looping cycles

    SciTech Connect

    Vasilije Manovic; Edward J. Anthony

    2008-05-15

    An experimental parametric study on the CO{sub 2} capture activity of four limestone-derived CaO-based sorbents was performed. Experiments were done in a thermogravimetric analyzer (TGA) at temperatures ranging from 650 to 850{sup o}C. Three particle-size fractions of Kelly Rock limestone and powders obtained by their grinding were also tested, while the influence of carbonation and calcination durations was examined at 750 and 850{sup o}C. The results indicated that increasing the calcination/carbonation temperature had a negative influence on the sorbent activity, while the influence of particle size was small, although larger particles have higher activity. This was unexpected, but it can be explained by the higher content of impurities in the smaller particles. Grinding enhances sorbent activity, and this appears to be more than simply due to increased external surface area of the sorbent particles in the powdered samples. Prolonged carbonation time has a negative effect on the sorbent performance. The formation and decomposition of CaCO{sub 3} as well as its presence on the sorbent surface at higher temperatures appear to be key factors in the loss of surface area (i.e., decrease in sorbent activity). However, it is shown that the prolonged exposure to calcination conditions employed in this work (inert atmosphere) has a slightly beneficial effect on sorbent behavior as a function of the number of calcination/carbonation cycles. Experiments with larger sample masses typically resulted in better conversions. Analysis of scanning electron microscope (SEM) images of spent sorbent particles obtained from different reactor types indicated that thermal stresses are the main cause for sorbent particle fracture and attrition. 36 refs., 10 figs.

  19. ACTIVATION AND REACTIVITY OF NOVEL CALCIUM-BASED SORBENTS FOR DRY SO2 CONTROL IN BOILERS

    EPA Science Inventory

    Chemically modified calcium hydroxide (Ca(OH)2) sorbents developed in the U.S. Environmental Protection Agency's Air and Energy Engineering Research Laboratory (AEERL) for sulfur dioxide (SO2) control in utility boilers were tested in an electrically heated, bench-scale isotherma...

  20. CFD modeling could optimize sorbent injection system efficiency

    SciTech Connect

    Blankinship, S.

    2006-01-15

    Several technologies will probably be needed to remove mercury from coal-plant stack emissions as mandated by new mercury emission control legislation in the USA. One of the most promising mercury removal approaches is the injection of a sorbent, such as powdered activated carbon (PAC), to make it much more controllable. ADA-ES recently simulated field tests of sorbent injection at New England Power Company's Brayton Point Power Plant in Somerset, Mass., where activated carbon sorbent was injected using a set of eight lances upstream of the second of two electrostatic precipitators (ESPs). Consultants from Fluent created a computational model of the ductwork and injection lances. The simulation results showed that the flue gas flow was poorly distributed at the sorbent injection plane, and that a small region of reverse flow occurred, a result of the flow pattern at the exit of the first ESP. The results also illustrated that the flow was predominantly in the lower half of the duct, and affected by some upstream turning vanes. The simulations demonstrated the value of CFD as a diagnostic tool. They were performed in a fraction of the time and cost required for the physical tests yet provided far more diagnostic information, such as the distribution of mercury and sorbent at each point in the computational domain. 1 fig.

  1. Ni-doped graphene/carbon cryogels and their applications as versatile sorbents for water purification.

    PubMed

    Wei, Gao; Miao, Yue-E; Zhang, Chao; Yang, Zhe; Liu, Zhenyan; Tjiu, Weng Weei; Liu, Tianxi

    2013-08-14

    Ni-doped graphene/carbon cryogels (NGCC) have been prepared by adding resorcinol and formaldehyde to suspension of graphene oxide (GO), using Ni(2+) ions as catalysts for the gelation process to substitute the usually used alkaline carbonates. The metal ions of Ni(2+) have elevated the cross-linking between GO and RF skeletons, thus strengthening the whole cryogel. The as-formed three-dimensional (3D) interconnected structures, which can be well-maintained after freeze-drying of the hydrogel precursor and subsequent carbonization under an inert atmosphere, exhibit good mechanical properties. During the carbonization process, Ni(2+) ions are converted into Ni nanoparticles and thus embedded in the interconnected structures. The unique porosity within the interconnected structures endows the cryogels with good capability for the extraction of oils and some organic solvents while the bulk form enables its recycling use. When ground into powders, they can be used as adsorbents for dyestuffs. Therefore, the as-obtained cryogels may find potential applications as versatile candidates for the removal of pollutants from water. PMID:23855959

  2. Introducing surface-modified ordered mesoporous carbon as a promising sorbent for extraction of N-nitrosamines.

    PubMed

    Lashgari, Maryam; Lee, Hian Kee

    2016-11-01

    The extraction and pre-concentration of N-nitrosamines (NAs) before their determination are mainly achieved by carbonaceous sorbents. However, the non-polar or relatively less polar NAs are strongly absorbed on the carbonaceous surface of the sorbent, leading to low extraction recoveries. In the present study, for the first time, CMK-3 and surfacemodified CMK-3 (O-CMK-3) were used to extract NAs from water. The CMK-3 surface was modified by oxidative treatment and different carboxylic groups were attached to create a hydrophilic/hydrophobic balance on the inert surface of the carbonaceous sorbent. The proposed sorbents were compared with 10 different kinds of commercial carbonaceous sorbents for the micro-solid phase extraction of eight NAs possessing a wide range of polarities. The best extraction results for both polar and non-polar NAs were obtained using O-CMK-3. Specifically, significant enhancements in the extraction of the nonpolar NAs were observed. For instance, extraction of up to 27.67 and 2.32 times greater were observed for N-nitrosodiphenylamine, and N-nitrosodimethylamine respectively, when O-CMK-3 was used instead of coconut charcoal sorbent.

  3. Introducing surface-modified ordered mesoporous carbon as a promising sorbent for extraction of N-nitrosamines.

    PubMed

    Lashgari, Maryam; Lee, Hian Kee

    2016-11-01

    The extraction and pre-concentration of N-nitrosamines (NAs) before their determination are mainly achieved by carbonaceous sorbents. However, the non-polar or relatively less polar NAs are strongly absorbed on the carbonaceous surface of the sorbent, leading to low extraction recoveries. In the present study, for the first time, CMK-3 and surfacemodified CMK-3 (O-CMK-3) were used to extract NAs from water. The CMK-3 surface was modified by oxidative treatment and different carboxylic groups were attached to create a hydrophilic/hydrophobic balance on the inert surface of the carbonaceous sorbent. The proposed sorbents were compared with 10 different kinds of commercial carbonaceous sorbents for the micro-solid phase extraction of eight NAs possessing a wide range of polarities. The best extraction results for both polar and non-polar NAs were obtained using O-CMK-3. Specifically, significant enhancements in the extraction of the nonpolar NAs were observed. For instance, extraction of up to 27.67 and 2.32 times greater were observed for N-nitrosodiphenylamine, and N-nitrosodimethylamine respectively, when O-CMK-3 was used instead of coconut charcoal sorbent. PMID:27451033

  4. Sulfur tolerant highly durable CO.sub.2 sorbents

    DOEpatents

    Smirniotis, Panagiotis G.; Lu, Hong

    2012-02-14

    A sorbent for the capture of carbon dioxide from a gas stream is provided, the sorbent containing calcium oxide (CaO) and at least one refractory dopant having a Tammann temperature greater than about 530.degree. C., wherein the refractory dopant enhances resistance to sintering, thereby conserving performance of the sorbent at temperatures of at least about 530.degree. C. Also provided are doped CaO sorbents for the capture of carbon dioxide in the presence of SO.sub.2.

  5. Simultaneous control of Hg0, SO2, and NOx by novel oxidized calcium-based sorbents.

    PubMed

    Ghorishi, S Behrooz; Singer, Carl F; Jozewicz, Wojciech S; Sedman, Charles B; Srivastava, Ravi K

    2002-03-01

    Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents leads to a significant improvement in elemental Hg vapor (Hg0), SO2, and NOx removal from simulated flue gases. In the study presented here, two classes of Ca-based sorbents (hydrated limes and silicate compounds) were investigated. A number of oxidizing additives at different concentrations were used in the Ca-based sorbent production process. The Hg0, SO2, and NOx capture capacities of these oxidant-enriched sorbents were evaluated and compared to those of a commercially available activated carbon in bench-scale, fixed-bed, and fluid-bed systems. Calcium-based sorbents prepared with two oxidants, designated C and M, exhibited Hg0 sorption capacities (approximately 100 microg/g) comparable to that of the activated carbon; they showed far superior SO2 and NOx sorption capacities. Preliminary cost estimates for the process utilizing these novel sorbents indicate potential for substantial lowering of control costs, as compared with other processes currently used or considered for control of Hg0, SO2, and NOx emissions from coal-fired boilers. The implications of these findings toward development of multipollutant control technologies and planned pilot and field evaluations of more promising multipollutant sorbents are summarily discussed.

  6. Sorption of agrochemical model compounds by sorbent materials containing beta-cyclodextrin.

    PubMed

    Wilson, Lee D; Mohamed, Mohamed H; Guo, Rui; Pratt, Dawn Y; Kwon, Jae Hyuck; Mahmud, Sarker T

    2010-04-01

    Polymeric sorbent materials that incorporate beta-cyclodextrin (CD) have been prepared and their sorption behavior toward two model agrochemical contaminant compounds, p-nitrophenol (PNP) and methyl chloride examined. The sorption of PNP was studied in aqueous solution using ultraviolet-visible (UV-Vis) spectroscopy, whereas the sorption of methyl chloride from the gas phase was studied using a Langmuir adsorption method. The sorption results for PNP in solution were compared between granular activated carbon (GAC), modified GAC, CD copolymers, and CD-based mesoporous silica hybrid materials. Nitrogen porosimetry at 77 K was used to estimate the surface area and pore structure properties of the sorbent materials. The sorbents displayed variable surface areas as follows: copolymers (36.2-157 m(2)/g), CD-silica materials (307-906 m(2)/g), surface modified GAC (657 m(2)/g), and granular activated carbon (approximately 10(3) m(2)/g). The sorption capacities for PNP and methyl chloride with the different sorbents are listed in descending order as follows: GAC > copolymers > surface modified GAC > CD-silica hybrid materials. In general, the differences in the sorption properties of the sorbents were related to the following: (i) surface area of the sorbent, (ii) CD content and accessibility, (iii) and the chemical nature of the sorbent material. PMID:20407992

  7. A Magnetic Carbon Sorbent for Radioactive Material from the Fukushima Nuclear Accident

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Daizo; Furukawa, Kazumi; Takasuga, Masaya; Watanabe, Koki

    2014-08-01

    Here we present the first report of a carbon-γ-Fe2O3 nanoparticle composite of mesoporous carbon, bearing COOH- and phenolic OH- functional groups on its surface, a remarkable and magnetically separable adsorbent, for the radioactive material emitted by the Fukushima Daiichi nuclear power plant accident. Contaminated water and soil at a level of 1,739 Bq kg-1 (134Cs and 137Cs at 509 Bq kg-1 and 1,230 Bq kg-1, respectively) and 114,000 Bq kg-1 (134Cs and 137Cs at 38,700 Bq kg-1 and 75,300 Bq kg-1, respectively) were decontaminated by 99% and 90% respectively with just one treatment carried out in Nihonmatsu city in Fukushima. Since this material is remarkably high performance, magnetically separable, and a readily applicable technology, it would reduce the environmental impact of the Fukushima accident if it were used.

  8. Mercury sorption mechanisms and control by calcium-based sorbents. Report for September 1994--April 1996

    SciTech Connect

    Krishnan, S.V.; Bakhteyar, H.; Sedman, C.B.

    1996-01-01

    The paper reports results of experiments to study elemental mercury (Hg) and mercuric chloride (HgCl[sub 2]) capture by several calcium-based sorbents and their performance compared with an activated carbon used in earlier bench- and pilot-scale tests. Elemental Hg and HgCl[sub 2] concentrations were roughly 2--3 ppb in a simulated flue gas. Among the calcium-based sorbents evaluated in the study are reagent grade hydrated lime, a mixture of fly ash and hydrated lime (Advacate), and a modified Advacate. Capture of elemental Hg and HgCl[sub 2] by these sorbents was studied at 100 C.

  9. XAS and XPS Characterization of Mercury Binding on Brominated Activated Carbon

    SciTech Connect

    Hutson,N.; Attwood, B.; Scheckel, K.

    2007-01-01

    Brominated powdered activated carbon sorbents have been shown to be quite effective for mercury capture when injected into the flue gas duct at coal-fired power plants and are especially useful when burning Western low-chlorine subbituminous coals. X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) have been used to determine information about the speciation and binding of mercury on two commercially available brominated activated carbons. The results are compared with similar analysis of a conventional (non-halogenated) and chlorinated activated carbon. Both the XAS and XPS results indicate that the mercury, though introduced as elemental vapor, is consistently bound on the carbon in the oxidized form. The conventional and chlorinated activated carbons appeared to contain mercury bound to chlorinated sites and possibly to sulfate species that have been incorporated onto the carbon from adsorbed SO{sub 2}. The mercury-containing brominated sorbents appear to contain mercury bound primarily at bromination sites. The mechanism of capture for the sorbents likely consists of surface-enhanced oxidation of the elemental mercury vapor via interaction with surface-bound halide species with subsequent binding by surface halide or sulfate species.

  10. XAS and XPS characterization of mercury binding on brominated activated carbon

    SciTech Connect

    Nick D. Hutson; Brian C. Attwood; Kirk G. Scheckel

    2007-03-01

    Brominated powdered activated carbon sorbents have been shown to be quite effective for mercury capture when injected into the flue gas duct at coal-fired power plants and are especially useful when burning Western low-chlorine subbituminous coals. X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) have been used to determine information about the speciation and binding of mercury on two commercially available brominated activated carbons. The results are compared with similar analysis of a conventional (non-halogenated) and chlorinated activated carbon. Both the XAS and XPS results indicate that the mercury, though introduced as elemental vapor, is consistently bound on the carbon in the oxidized form. The conventional and chlorinated activated carbons appeared to contain mercury bound to chlorinated sites and possibly to sulfate species that have been incorporated onto the carbon from adsorbed SO{sub 2}. The mercury-containing brominated sorbents appear to contain mercury bound primarily at bromination sites. The mechanism of capture for the sorbents likely consists of surface-enhanced oxidation of the elemental mercury vapor via interaction with surface-bound halide species with subsequent binding by surface halide or sulfate species. 22 refs., 3 figs., 2 tabs.

  11. Evaluation of activated carbon for control of mercury from coal-fired boilers

    SciTech Connect

    Miller, S.; Laudal, D.; Dunham, G.

    1995-11-01

    The ability to remove mercury from power plant flue gas may become important because of the Clean Air Act amendments` requirement that the U.S. Environmental Protection Agency (EPA) assess the health risks associated with these emissions. One approach for mercury removal, which may be relatively simple to retrofit, is the injection of sorbents, such as activated carbon, upstream of existing particulate control devices. Activated carbon has been reported to capture mercury when injected into flue gas upstream of a spray dryer baghouse system applied to waste incinerators or coal-fired boilers. However, the mercury capture ability of activated carbon injected upstream of an electrostatic precipitator (ESP) or baghouse operated at temperatures between 200{degrees} and 400{degrees}F is not well known. A study sponsored by the U.S. Department of Energy and the Electric power Research Institute is being conducted at the University of North Dakota Energy & Environmental Research Center (EERC) to evaluate whether mercury control with sorbents can be a cost-effective approach for large power plants. Initial results from the study were reported last year. This paper presents some of the recent project results. Variables of interest include coal type, sorbent type, sorbent addition rate, collection media, and temperature.

  12. Determining activated carbon performance

    SciTech Connect

    Naylor, W.F.; Rester, D.O.

    1995-07-01

    This article discusses the key elements involved in evaluating a system`s performance. Empty bed contact time (EBCT) is a term used to describe the length of time a liquid stream being treated is in contact with a granular activated carbon bed. The EBCT is the time required for a fluid to pass through the volume equivalent of the media bed, without the media being present. In a bed of granular activated carbon, the void volume or space between particles is usually about 45 percent. Therefore, the EBCT is about twice the true or actual time of contact between the fluid being treated and the GAC particles. The EBCT plays an important role in determining the effectiveness and longevity of granular activated carbon (GAC) used to treat liquids in a fixed-bed adsorber. Factors that influence and are influenced by EBCT, and their relationship to GAC performance in a treatment scheme include: adsorption, mass transfer zone, impurity concentration, adsorption affinity, flow rate and system design considerations.

  13. Tunable polymeric sorbent materials for fractionation of model naphthenates.

    PubMed

    Mohamed, Mohamed H; Wilson, Lee D; Headley, John V

    2013-04-01

    The sorption properties are reported for several examples of single-component carboxylic acids representing naphthenic acids (NAs) with β-cyclodextrin (β-CD) based polyurethane sorbents. Seven single-component examples of NAs were chosen with variable z values, carbon number, and chemical structure as follows: 2-hexyldecanoic acid (z = 0 and C = 16; S1), n-caprylic acid (z = 0 and C = 8; S2), trans-4-pentylcyclohexanecarboxylic acid (z = -2 and C = 12; S3), 4-methylcyclohexanecarboxylic acid (z = -2 and C = 8; S4), dicyclohexylacetic acid (z = -4; C = 14; S5), 4-pentylbicyclo[2.2.2]octane-1-carboxylic acid (z = -4; C = 14; S6), and lithocholic acid (z = -6; C = 24; S7). The copolymer sorbents were synthesized at three relative β-CD:diisocyanate mole ratios (i.e., 1:1, 1:2, and 1:3) using 4,4'-dicyclohexylmethane diisocyanate (CDI) and 4,4'-diphenylmethane diisocyanate (MDI). The sorption properties of the copolymer sorbents were characterized using equilibrium sorption isotherms in aqueous solution at pH 9.00 with electrospray ionization mass spectrometry. The equilibrium fraction of the unbound carboxylate anions was monitored in the aqueous phase. The sorption properties of the copolymer sorbents (i.e., Qm) were obtained from the Sips isotherm model. The Qm values generally decrease as the number of accessible β-CD inclusion sites in the copolymer framework decreases. The chemical structure of the adsorbates played an important role in their relative uptake, as evidenced by the adsorbate lipophilic surface area (LSA) and the involvement of hydrophobic effects. The copolymers exhibit molecular selective sorption of the single-component carboxylates in mixtures which suggests their application as sorbents for fractionation of mixtures of NAs. By comparison, granular activated carbon (GAC) and chitosan sorbents did not exhibit any significant molecular selective sorption relative to the copolymer materials; however, evidence of variable sorption capacity was

  14. A Magnetic Carbon Sorbent for Radioactive Material from the Fukushima Nuclear Accident

    PubMed Central

    Yamaguchi, Daizo; Furukawa, Kazumi; Takasuga, Masaya; Watanabe, Koki

    2014-01-01

    Here we present the first report of a carbon-γ-Fe2O3 nanoparticle composite of mesoporous carbon, bearing COOH- and phenolic OH- functional groups on its surface, a remarkable and magnetically separable adsorbent, for the radioactive material emitted by the Fukushima Daiichi nuclear power plant accident. Contaminated water and soil at a level of 1,739 Bq kg−1 (134Cs and 137Cs at 509 Bq kg−1 and 1,230 Bq kg−1, respectively) and 114,000 Bq kg−1 (134Cs and 137Cs at 38,700 Bq kg−1 and 75,300 Bq kg−1, respectively) were decontaminated by 99% and 90% respectively with just one treatment carried out in Nihonmatsu city in Fukushima. Since this material is remarkably high performance, magnetically separable, and a readily applicable technology, it would reduce the environmental impact of the Fukushima accident if it were used. PMID:25116650

  15. A magnetic carbon sorbent for radioactive material from the Fukushima nuclear accident.

    PubMed

    Yamaguchi, Daizo; Furukawa, Kazumi; Takasuga, Masaya; Watanabe, Koki

    2014-01-01

    Here we present the first report of a carbon-γ-Fe₂O₃ nanoparticle composite of mesoporous carbon, bearing COOH- and phenolic OH- functional groups on its surface, a remarkable and magnetically separable adsorbent, for the radioactive material emitted by the Fukushima Daiichi nuclear power plant accident. Contaminated water and soil at a level of 1,739 Bq kg(-1) ((134)Cs and (137)Cs at 509 Bq kg(-1) and 1,230 Bq kg(-1), respectively) and 114,000 Bq kg(-1) ((134)Cs and (137)Cs at 38,700 Bq kg(-1) and 75,300 Bq kg(-1), respectively) were decontaminated by 99% and 90% respectively with just one treatment carried out in Nihonmatsu city in Fukushima. Since this material is remarkably high performance, magnetically separable, and a readily applicable technology, it would reduce the environmental impact of the Fukushima accident if it were used. PMID:25116650

  16. Investigation on durability and reactivity of promising metal oxide sorbents during sulfidation and regeneration. Quarterly report, April--June 1995

    SciTech Connect

    Kwon, K.C.

    1995-07-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Removal reaction of H{sub 2}S from coal gas mixtures with ZT-4 or other promising sorbents of fine solid particles, and regeneration reaction of sulfur-loaded sorbents will be carried on in a batch reactor or a continuous differential reactor. The objectives of this research project are to find intrinsic initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of concentrations of coal gas components such as hydrogen, carbon monoxide, carbon dioxide, oxygen, nitrogen and moisture on equilibrium reaction rate constants of the reaction system at various reaction temperatures and pressures, to identify regeneration kinetics of sulfur-loaded metal oxide sorbents, and to formulate promising metal oxide sorbents for the removal of sulfur from coal gas mixtures. Promising durable metal oxide sorbents of high-sulfur-absorbing capacity will be formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures, or impregnating active metal oxide sorbents on supporting metal oxide matrixes. The Research Triangle Institute, a sub-contractor of this research project, will also prepare promising metal oxide sorbents for this research project, plan experiments on removal of sulfur compounds from coal gases with metal oxide sorbents as well as regeneration of sulfur-loaded metal oxide sorbents, and review experimental results.

  17. New sulfonate composite functionalized with multiwalled carbon nanotubes with cryogel solid-phase extraction sorbent for the determination of β-agonists in animal feeds.

    PubMed

    Noosang, Supattri; Bunkoed, Opas; Thavarungkul, Panote; Kanatharana, Proespichaya

    2015-06-01

    A new mixed-mode cation-exchange sulfonate composite functionalized with multiwalled carbon nanotubes with polyvinyl alcohol cryogel was fabricated and used for the first time as a solid-phase extraction sorbent for the determination of β-agonists in animal feeds. Feed samples were extracted with 0.20 M phosphoric acid and methanol (1:4, v/v) using ultrasonication, cleaned-up using the developed sorbent to which the β-agonists bound then finally eluted with 5.0% ammonia in methanol and analyzed by high-performance liquid chromatography. Various parameters that affected the extraction efficiency were optimized. Under the optimal conditions, the developed sorbent strongly interacted with β-agonists by cationic exchange and hydrophobic and hydrophilic interactions, that provided a high extraction efficiency in the range of 92.8 ± 3.7-104.4 ± 2.3% over a range of 0.04-2.0 mg/kg for salbutamol and ractopamine, and 0.40-8.0 mg/kg for clenbuterol. The relative standard deviations were less than 6.0%. The developed method was successfully applied for the determination of β-agonists in various types of animal feed and effectively reduced any matrix interference.

  18. Trace-chitosan-wrapped multi-walled carbon nanotubes as a new sorbent in dispersive micro solid-phase extraction to determine phenolic compounds.

    PubMed

    Cao, Wan; Hu, Shuai-Shuai; Ye, Li-Hong; Cao, Jun; Xu, Jing-Jing; Pang, Xiao-Qing

    2015-04-17

    This report describes the use of trace-chitosan-wrapped multi-walled carbon nanotubes (CS-MWCNTs) as a sorbent material in dispersive micro solid-phase extraction (DMSPE), which was combined with ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry to analyze phenolic compounds in chrysanthemum tea and a chrysanthemum beverage. In this study, for the first time, CS-MWCNTs were used as a sorbent for this microextraction mode. Moreover, the proposed method exhibits the advantages of simplicity, rapidity, small sample amount and ease of operation. Furthermore, all of the important parameters that affect the extraction efficiency, such as the sorbent, pH, extraction time and type of elution solvent, were investigated and optimized in the DMSPE. Under the optimized extraction condition, the limit of detection, which was calculated based on a signal-to-noise ratio of 3, was 0.22-16.19ngmL(-1). Satisfactory recovery values of 89-106% were obtained for the tested samples. The results show that the developed method was successfully applied to determine the content of chlorogenic acid and flavonoids in complex chrysanthemum samples.

  19. Engineered Structured Sorbents for the Adsorption of Carbon Dioxide and Water Vapor from Manned Spacecraft Atmospheres: Applications and Modeling 2007/2008

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Howard, David F.; Perry, Jay L.

    2007-01-01

    In NASA s Vision for Space Exploration, humans will once again travel beyond the confines of earth s gravity, this time to remain there for extended periods. These forays will place unprecedented demands on launch systems. They must not only blast out of earth s gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a larger crew over much longer periods. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. This paper describes efforts to improve on typical packed beds of sorbent pellets by making use of structured sorbents and alternate bed configurations to improve system efficiency and reliability. The development efforts described offer a complimentary approach combining testing of subscale systems and multiphysics computer simulations to characterize the regenerative heating substrates and evaluation of engineered structured sorbent geometries. Mass transfer, heat transfer, and fluid dynamics are included in the transient simulations.

  20. Assessing sorbent injection mercury control effectiveness in flue gas streams

    USGS Publications Warehouse

    Carey, T.R.; Richardson, C.F.; Chang, R.; Meserole, F.B.; Rostam-Abadi, M.; Chen, S.

    2000-01-01

    One promising approach for removing mercury from coal-fired, utility flue gas involves the direct injection of mercury sorbents. Although this method has been effective at removing mercury in municipal waste incinerators, tests conducted to date on utility coal-fired boilers show that mercury removal is much more difficult in utility flue gas. EPRI is conducting research to investigate mercury removal using sorbents in this application. Bench-scale, pilot-scale, and field tests have been conducted to determine the ability of different sorbents to remove mercury in simulated and actual flue gas streams. This paper focuses on recent bench-scale and field test results evaluating the adsorption characteristics of activated carbon and fly ash and the use of these results to develop a predictive mercury removal model. Field tests with activated carbon show that adsorption characteristics measured in the lab agree reasonably well with characteristics measured in the field. However, more laboratory and field data will be needed to identify other gas phase components which may impact performance. This will allow laboratory tests to better simulate field conditions and provide improved estimates of sorbent performance for specific sites. In addition to activated carbon results, bench-scale and modeling results using fly ash are presented which suggest that certain fly ashes are capable of adsorbing mercury.

  1. Observation of the wrapping mechanism in amine carbon dioxide molecular interactions on heterogeneous sorbents.

    PubMed

    Thirion, D; Rozyyev, V; Park, J; Byun, J; Jung, Y; Atilhan, M; Yavuz, C T

    2016-06-01

    Liquid, solvated amine based carbon capture is the core of all commercial or planned CO2 capture operations. Despite the intense research, few have looked systematically into the nature of amine molecules and their CO2 interaction. Here, we report a systematic introduction of linear ethylene amines on the walls of highly porous Davankov type network structures through simple bromination intermediates. Surprisingly, isosteric heats of CO2 adsorption show a clear linear trend with the increase in the length of the tethered amine pendant groups, leading to a concerted cooperative binding with additional H-bonding contributions from the unassociated secondary amines. CO2 uptake capacities multiply with the nitrogen content, up to an unprecedented four to eight times of the starting porous network under flue gas conditions. The reported procedure can be generalized to all porous media with the robust hydrocarbon framework in order to convert them into effective CO2 capture adsorbents. PMID:27174155

  2. Desulfurization behavior of iron-based sorbent with MgO and TiO{sub 2} additive in hot coal gas

    SciTech Connect

    Weiren Bao; Zong-you Zhang; Xiu-rong Ren; Fan Li; Li-ping Chang

    2009-07-15

    The sulfidation behaviors of iron-based sorbent with MgO and MgO-TiO{sub 2} are studied under different isothermal conditions from 623 to 873 K in a fixed bed reactor. The results of sorbents sulfidation experiments indicate that the sorbents with MgO and TiO{sub 2} additives are more attractive than those without additives for desulfurization of hot coal gas. The sulfur capacity (16.17, 18.45, and 19.68 g S/100 g sorbent) of M1F, M3F, and M5F sorbent containing 1, 3, and 5% MgO, respectively, is obviously bigger than that (15.02 g S/100 g sorbent) of M0F without additive. The feasible sulfidation temperature range for M3F sorbent is 773-873 K. The M3F sorbent is optimally regenerated at the temperature of 873 K, under the gas containing 2% oxygen, 15% steam and N{sub 2}, in the space velocity of 2500 h{sup -1}. The sorbent regenerated is also well performed in the second sulfidation (the effective sulfur capacities of 17.98 g S/100 g sorbents and the efficiency of removal sulfur of 99%). The capacity to remove sulfur decreases with steam content increasing in feeding gas from 0 to 10%, but it can restrain the formation of carbon and iron carbide. The addition of TiO{sub 2} in sorbent can shift the optimal sulfidation temperature lower. The iron-based sorbent with 3% MgO and 10% TiO{sub 2} (MFT) is active to the deep removal of H{sub 2}S and COS, especially in the temperature range of 673-723 K. The sulfur removal capacity of MFT sorbent is 21.60 g S/100 g sorbent. 16 refs., 12 figs., 8 tabs.

  3. Utilization and Conversion of Sewage Sludge as Metal Sorbent

    NASA Astrophysics Data System (ADS)

    Gong, Xu Dong; Li, Loretta Y.

    2013-04-01

    Most biosolids are disposed on land. With improvements in wastewater treatment processes and upgrading of treatment plants across Canada, biosolids generation will increase dramatically. These biosolids will need to be dealt with because they contain various contaminants, including heavy metals and several classes of emerging contaminants. A number of researchers have recently focused on preparation of sewage sludge-based adsorbents by carbonation, physical activation and chemical activation for decontamination of air and wastewater. These previous studies have indicated that sludge-based activated carbon can have good adsorption performance for organic substances in dye wastewater. The overall results suggest that activated carbon from sewage sludge can produce a useful adsorbent, while also reducing the amount of sewage sludge to be disposed. However, sludge-derived activated carbon has not been extensively studied, especially for adsorption of heavy metal ions in wastewater and for its capacity to remove emerging contaminants, such as poly-fluorinated compounds (PFCs). Previous research has indicated that commercial activated carbons adsorb organic compounds more efficiently than heavy metal ions. 45 Activated carbon can be modified to enhance its adsorption capacity for special heavy metal ions,46 e.g. by addition of inorganic and organic reagents. The modifications which are successful for commercial activated carbon should also be effective for sludge-derived activated carbon, but this needs to be confirmed. Our research focuses on (a) investigation of techniques for converting sewage sludge (SS) to activated carbon (AC) as sorbents; (b) exploration of possible modification of the activated carbon (MAC) to improve its sorption capacity; (c) examination of the chemical stability of the activated carbon and the leachability of contaminants from activated carbon,; (d) comparison of adsorptivity with that of other sorbents. Based on XRD and FT-IR, we successfully

  4. Kinetics of Mn-based sorbents for hot coal gas desulfurization. Quarterly progress report, July 15, 1995--September 15, 1995

    SciTech Connect

    Hepworth, M.T.

    1995-09-15

    The Morgantown Energy Technology Center (METC) of the U.S. Department of Energy (DOE) is actively pursuing the development of reliable and cost-effective processes to clean coal gasifier gases for application to integrated gasification combined cycle (IGCC) and molten carbonate fuel cell (MCFC) power plants. A large portion of gas cleanup research has been directed towards hot gas desulfurization using Zn-based sorbents. However, zinc titinate sorbents undergo reduction to the metal at temperatures approaching 700{degrees}C. In addition, sulfate formation during regeneration leads to spalling of reactive 293 surfaces. Due to zinc-based sorbent performance, METC has shown interest in formulating and testing manganese-based sorbents. Westmoreland and Harrison evaluated numerous candidate sulfur sorbents and identified Mn as a good candidate. Later, Turkdogan and Olsson tested manganese-based sorbents which demonstrated superior desulfurization capacity under high temperatures, and reducing conditions. Recently, Ben-Slimane and Hepworth conducted several studies on formulating Mn-sorbents and desulfurizing a simulated fuel gas. Although thermodynamics predicts higher over-pressures with Mn verses Zn, under certain operating conditions Mn-based sorbents may obtain < 20 ppmv. In addition, the manganese-sulfur-oxygen (Mn-S-O) system does not reduce to the metal under even highly reducing gases at high temperatures (550-900{degrees}C). Currently, many proposed IGCC processes include a water quench prior to desulfurization. This is for two reasons; limitations in the process hardware (1000{degrees}C), and excessive Zn-based sorbent loss (about 700{degrees}C). With manganese the water quench is obviated due to sorbent loss, as Mn-based sorbents have been shown to retain reactivity under cycling testing at 900{degrees}C. This reduces system hardware, and increases thermal efficiency while decreasing the equilibrium H{sub 2}S over-pressure obtainable with a manganese sorbent.

  5. Factors affecting mercury control in utility flue gas using sorbent injection

    SciTech Connect

    Carey, T.R.; Hargrove, O.W. Jr.; Richardson, C.F.; Chang, R.; Meserole, F.B.

    1997-12-31

    Mercury continues to be considered for possible regulation in the electric power industry under Title 3 of the Clean Air Act Amendments of 1990. This possibility has generated interest in assessing whether cost-effective technologies exist for removing mercury from fossil-fired flue gas. One promising approach involves the direct injection of mercury sorbents, such as activated carbon, into the flue gas. Although this method has been effective at removing mercury in municipal waste incinerators, tests conducted to date on utility fossil-fired boilers show that mercury removal is much more difficult in utility flue gas. EPRI is conducting research to investigate mercury removal using sorbents. Bench-scale and pilot-scale tests have been conducted to determine the ability of different sorbents to remove mercury in simulated and actual flue gas streams. Bench-scale tests have investigated the effect of various sorbent and flue gas parameters on sorbent performance. These data are being used to develop a theoretical model for predicting mercury removal by sorbents at different conditions. The possibility of regenerating and recycling sorbents is also being evaluated. This paper describes the results of parametric bench-scale and pilot-scale tests investigating the removal of mercuric chloride and elemental mercury by activated carbon. Results obtained to date indicate that the adsorption capacity of a given sorbent is dependent on many factors, including the type of mercury being adsorbed, flue gas composition, and adsorption temperature. These data provide insight into potential mercury adsorption mechanisms and suggest that the removal of mercury involves both physical and chemical mechanisms. Understanding these effects is important since the performance of a given sorbent could vary significantly from site-to-site depending on coal- or gas-matrix composition.

  6. Destruction of problematic airborne contaminants by hydrogen reduction using a Catalytically Active, Regenerable Sorbent (CARS)

    NASA Technical Reports Server (NTRS)

    Thompson, John O.; Akse, James R.

    1993-01-01

    Thermally regenerable sorbent beds were demonstrated to be a highly efficient means for removal of toxic airborne trace organic contaminants aboard spacecraft. The utilization of the intrinsic weight savings available through this technology was not realized since many of the contaminants desorbed during thermal regeneration are poisons to the catalytic oxidizer or form highly toxic oxidation by-products in the Trace Contaminant Control System (TCCS). Included in this class of compounds are nitrogen, sulfur, silicon, and halogen containing organics. The catalytic reduction of these problematic contaminants using hydrogen at low temperatures (200-300 C) offers an attractive route for their destruction since the by-products of such reactions, hydrocarbons and inorganic gases, are easily removed by existing technology. In addition, the catalytic oxidizer can be operated more efficiently due to the absence of potential poisons, and any posttreatment beds can be reduced in size. The incorporation of the catalyst within the sorbent bed further improves the system's efficiency. The demonstration of this technology provides the basis for an efficient regenerable TCCS for future NASA missions and can be used in more conventional settings to efficiently remove environmental pollutants.

  7. Dewatering Peat With Activated Carbon

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1984-01-01

    Proposed process produces enough gas and carbon to sustain itself. In proposed process peat slurry is dewatered to approximately 40 percent moisture content by mixing slurry with activated carbon and filtering with solid/liquid separation techniques.

  8. Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature Range During Coal Combustion

    SciTech Connect

    Panagiotis G. Smirniotis

    2007-06-30

    In chapter 1, the studies focused on the development of novel sorbents for reducing the carbon dioxide emissions at high temperatures. Our studies focused on cesium doped CaO sorbents with respect to other major flue gas compounds in a wide temperature range. The thermo-gravimetric analysis of sorbents with loadings of CaO doped on 20 wt% cesium demonstrated high CO{sub 2} sorption uptakes (up to 66 wt% CO{sub 2}/sorbent). It is remarkable to note that zero adsorption affinity for N{sub 2}, O{sub 2}, H{sub 2}O and NO at temperatures as high as 600 C was observed. For water vapor and nitrogen oxide we observed a positive effect for CO{sub 2} adsorption. In the presence of steam, the CO{sub 2} adsorption increased to the highest adsorption capacity of 77 wt% CO{sub 2}/sorbent. In the presence of nitrogen oxide, the final CO{sub 2} uptake remained same, but the rate of adsorption was higher at the initial stages (10%) than the case where no nitrogen oxide was fed. In chapter 2, Ca(NO{sub 3}){sub 2} {center_dot} 4H{sub 2}O, CaO, Ca(OH){sub 2}, CaCO{sub 3}, and Ca(CH{sub 3}COO){sub 2} {center_dot} H{sub 2}O were used as precursors for synthesis of CaO sorbents on this work. The sorbents prepared from calcium acetate (CaAc{sub 2}-CaO) resulted in the best uptake characteristics for CO{sub 2}. It possessed higher BET surface area and higher pore volume than the other sorbents. According to SEM images, this sorbent shows 'fluffy' structure, which probably contributes to its high surface area and pore volume. When temperatures were between 550 and 800 C, this sorbent could be carbonated almost completely. Moreover, the carbonation progressed dominantly at the initial short period. Under numerous adsorption-desorption cycles, the CaAc{sub 2}-CaO demonstrated the best reversibility, even under the existence of 10 vol % water vapor. In a 27 cyclic running, the sorbent sustained fairly high carbonation conversion of 62%. Pore size distributions indicate that their pore volume

  9. Method of removing hydrogen sulfide from gases utilizing a zinc oxide sorbent and regenerating the sorbent

    DOEpatents

    Jalan, Vinod M.; Frost, David G.

    1984-01-01

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500.degree. C. to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent.

  10. Cost and performance of activated carbon injection for mercury control

    SciTech Connect

    2006-08-15

    Activated carbon injection (ACI) is one technology being developed to absorb mercury from mercury emitted from coal-fired power plants. In 2003/04, the USDOE and NETL selected 14 projects to test and evaluate mercury control technologies. While field testing is still ongoing, DOE/NETL recently completed an economic analysis of mercury control for six test sites spanning three ACI variations - conventional powdered activated carbon (PAC), brominated PAC and conventional PAC combined with a sorbent enhancement additive (SEA) applied to the coal. To evaluate the progress of the field testing program and discern the performance of ACI, a data adjustment methodology was developed to account for baseline methane capture. This data were used to perform economic analyses to achieve low, mid and high levels of mercury control. The costs are given in the article. Full details are available on the DOE/NETL website, www.netl.doe.gov. 2 figs., 1 photo.

  11. Characterization of active sites, determination of mechanisms of H(2)S, COS and CS(2) sorption and regeneration of ZnO low-temperature sorbents: past, current and perspectives.

    PubMed

    Samokhvalov, Alexander; Tatarchuk, Bruce J

    2011-02-28

    The intellectually and technically challenging pursuit of the emerging global environmentally "green" and energy-efficient infrastructure of the 21st century requires the development of a worldwide network of low- to medium-power fuel cell (FC) based portable electric power-generating devices and high-power biomass/clean coal "electric+chemical plants" with zero carbon footprint utilizing integrated coal gasification combined cycle with geologic carbon sequestration (IGCC-GCS) under energy-efficient low-temperature conditions. These emerging technologies require the deep and ultradeep desulfurization of gaseous feeds, since sulfur compounds, especially hydrogen sulfide H(2)S are highly corrosive and poisonous to both technological processes and the environment. Therefore, it is of crucial importance for both academic and industrial research communities to have a solid understanding of the atomic-level structures of active sites and molecular-level mechanisms of surface chemical reactions of the novel deep and ultradeep desulfurization materials, especially desulfurization sorbents. This review critically analyzes the recent literature (last ∼20 years) on the experimental determination of molecular and atomic-level nature of adsorption sites, effects of desulfurization promoters, mechanisms of chemical reactions of H(2)S, COS and CS(2) and physical processes during and upon regeneration of "spent" low-temperature H(2)S sorbents based on ZnO that were developed for desulfurization of fuel reformates, syngas and similar streams. Recent trends in research on the ultradeep H(2)S sorbents are discussed with an impetus on real-time in situ and Operando techniques of instrumental chemical analysis, and the challenges of direct determination of the structure of active sites and of the experimental mechanistic studies in general are described.

  12. A novel needle trap device with single wall carbon nanotubes sol-gel sorbent packed for sampling and analysis of volatile organohalogen compounds in air.

    PubMed

    Heidari, Mahmoud; Bahrami, Abdolrahman; Ghiasvand, Ali Reza; Shahna, Farshid Ghorbani; Soltanian, Ali Reza

    2012-11-15

    This paper describes a new approach that combines needle trap devices (NTDs) with a newly synthesized silanated nano material as sorbent for sampling and analysis of HVOCs in air. The sol-gel technique was used for preparation of the single wall carbon nanotube (SWCNT)/silica composite as sorbent, packed inside a 21-gauge NTD. Application of this method as an exhaustive sampler device was investigated under different laboratory conditions in this study. Predetermined concentrations of each analyte were prepared in a home-made standard chamber, and the effects of experimental parameters, such as temperature, humidity, sampling air flow rate, breakthrough volume and storage time on NTD, and the sorbent performance were investigated. The proposed NTD was used in two different modes and two different injection methods, and an NTD with a side hole, a narrow neck glass liner and syringe pump assisted injection of carrier gas were applied. The NTD packed with SWCNTs/silica composite was compared to the NTD packed with PDMS and also SPME with CAR/PDMS. For four compounds, LOD was 0.001-0.01 ng mL(-1), LOQ was 0.007-0.03 ng mL(-1), and the relative standard division for repeatability of method was 2.5-6.7%. The results show that the incorporation of NTD and SWCNTs/silica composite is a reliable and effective approach for the sampling and analysis of HVOCs in air. Coupling this system to GC-MS make it more sensitive and powerful technique. PMID:23158328

  13. ADVANCED SORBENT DEVELOPMENT PROGRAM

    SciTech Connect

    Unknown

    1998-06-16

    The overall objective of this program was to develop regenerable sorbents for use in the temperature range of 343 to 538 C (650 to 1000 F) to remove hydrogen sulfide (H{sub 2}S) from coal-derived fuel gases in a fluidized-bed reactor. The goal was to develop sorbents that are capable of reducing the H{sub 2}S level in the fuel gas to less than 20 ppmv in the specified temperature range and pressures in the range of 1 to 20 atmospheres, with chemical characteristics that permit cyclic regeneration over many cycles without a drastic loss of activity, as well as physical characteristics that are compatible with the fluidized bed application.

  14. SO2 retention by reactivated CaO-based sorbent from multiple CO2 capture cycles.

    PubMed

    Manovic, Vasilije; Anthony, Edward J

    2007-06-15

    This paper examines the reactivation of spent sorbent, produced from multiple CO2 capture cycles, for use in SO2 capture. CaO-based sorbent samples were obtained from Kelly Rock limestone using three particle size ranges, each containing different impurities levels. Using a thermogravimetric analyzer (TGA), the sulfation behavior of partially sulfated and unsulfated samples obtained after multiple calcination-carbonation cycles in a tube furnace (TF), following steam reactivation in a pressurized reactor, is examined. In addition, samples calcined/sintered under different conditions after hydration are also examined. The results show that suitably treated spent sorbent has better sulfation characteristics than that of the original sorbent. Thus for example, after 2 h sulfation, > 80% of the CaO was sulfated. In addition, the sorbent showed significant activity even after 4 h when > 95% CaO was sulfated. The results were confirmed by X-ray diffraction (XRD) analysis, which showed that, by the end of the sulfation process, samples contained CaSO4 with only traces of unreacted CaO. The superior behavior of spent reactivated sorbent appears to be due to swelling of the sorbent particles during steam hydration. This enables the development of a more suitable pore surface area and pore volume distribution for sulfation, and this has been confirmed by N2 adsorption-desorption isotherms and the Barrett-Joyner-Halenda (BJH) method. The surface area morphology of sorbent after reactivation was examined by scanning electron microscopy (SEM). Ca(OH)2 crystals were seen, which displayed their regular shape, and their elemental composition was confirmed by energy-dispersive X-ray (EDX) analysis. The improved characteristics of spent reactivated sorbent in comparison to the original and to the sorbent calcined under different conditions and hydrated indicate the beneficial effect of CO2 cycles on sorbent reactivation and subsequent sulfation. These results allow us to propose a

  15. Arsenate sorption by hydrous ferric oxide incorporated onto granular activated carbon with phenol formaldehyde resins coating.

    PubMed

    Zhuang, J M; Hobenshield, E; Walsh, T

    2008-04-01

    A simple and effective method was developed using phenol formaldehyde (PF) resins to immobilize hydrous ferric oxide (HFO) onto granular activated carbon (GAC). The resulting sorbent possesses advantages for both the ferric oxide and the GAC, such as a great As-affinity of ferric oxide, large surface area of GAC, and enhanced physical strength. The studies showed that within one hour this sorbent was able to remove 85% of As(V) from water containing an initial As(V) concentration of 1.74 mg l(-1). The As(V) adsorption onto the sorbent was found to follow a pseudo-second order kinetics model. The adsorption isotherms were interpreted in terms of the Langmuir and Freundlich models. The equilibrium data fitted very well to both models. Column tests showed that this sorbent was able to achieve residual concentrations of As(V) in a range of 0.1-2.0 microg l(-1) while continuously treating about 180 bed volume (BV, 130 ml-BV) of arsenate water with an initial As(V) concentration of 1886 microg l(-1) at a filtration rate of 13.5 ml min(-1), i.e., an empty bed contact time (EBCT) of 9.6 min and a gram sorbent contact time (GSCT) of 0.15 min. After passing 635 BV of arsenate water, the exhausted sorbent was then tested by the Toxicity Characteristic Leaching Procedure (TCLP, US EPA Method 1311) test, and classified as non-hazardous for disposal. Hence, this HFO-PF-coated GAC has the capability to remove As(V) from industrial wastewater containing As(V) levels of about 2 mg l(-1). PMID:18619145

  16. Mercury Removal with Activated Carbon in Coal-Fired Power Plants

    NASA Astrophysics Data System (ADS)

    Rapperport, J.; Sasmaz, E.; Wilcox, J.

    2010-12-01

    Coal is both the most abundant and the dirtiest combustible energy source on earth. In the United States, about half of the country’s electricity comes from coal combustion and the industry is rapidly expanding all over the world. Among many of coal’s flaws, its combustion annually produces roughly 50 tones in the U.S. and 5000 tons worldwide of mercury, a carcinogen and highly toxic pollutant. Certain sorbents and processes are used to try to limit the amount of mercury that reaches the atmosphere, a key aspect of reducing the energy source’s harmful environmental impact. This experiment’s goal is to discover what process occurs on a sorbent surface during mercury’s capture while also determining sorbent effectiveness. Bench-scale experiments are difficult to carry out since the focus of the experiment is to simulate mercury capture in a power plant flue gas stream, where mercury is in its elemental form. The process involves injecting air, elemental mercury and other components to simulate a coal exhaust environment, and then running the stream through a packed-bed reactor with an in-tact sorbent. While carrying out the reactor tests, the gas-phase is monitored for changes in mercury oxidation and following these gas-phase studies, the mercury-laden sorbent is analyzed using x-ray photoelectron spectroscopy. Conclusions that can be drawn thus far are that brominated activated carbon shows very high mercury capture and that mercury is found in its oxidized form on the surface of the sorbent. The speciation, or conclusions drawn on the process and bonding sites on the surface, cannot be determined at this point simply using the current spectroscopic analysis.

  17. Solid phase extraction-capillary electrophoresis determination of sulphonamide residues in milk samples by use of C18-carbon nanotubes as hybrid sorbent materials.

    PubMed

    Polo-Luque, M L; Simonet, B M; Valcárcel, M

    2013-07-01

    The exceptional sorption capabilities of carbon nanotubes were used to preconcentrate trace sulphonamides from milk samples. To this end, single walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) dispersed in the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate were retained on a C18 stationary phase to obtain a hybrid material in a simple manner. In this approach ionic liquids are an excellent alternative to improve the dispersion of CNTs, without chemical modification or the use of solid substances or organic solvents. MWNTs provided better results than SWNTs. Carbon nanotubes retained in the C18 sorbent matrix were found to confer aromatic character, increasing its preconcentration capacity as a result. The conventional C18 stationary phase played a two-fold role: as a support to retain carbon nanotubes in the cartridge and as a medium to prevent their aggregation. The modified MWNT/C18 and SWNT/C18 materials were used to preconcentrate residual sulphonamides (SAs) in milk samples for their determination at concentrations as low as 0.03-0.069 mg L(-1) by capillary electrophoresis. Analyte recoveries from spiked samples ranged from 103.2 to 98.8% and precision, as RSD, from 8.2 to 5.4%.

  18. Metal Ion Removal from Wastewaters by Sorption on Activated Carbon, Cement Kiln Dust, and Sawdust.

    PubMed

    Shaheen, Sabry M; Eissa, Fawzy I; Ghanem, Khaled M; El-Din, Hala M Gamal; Al Anany, Fathia S

    2015-06-01

    This study assessed the efficiency of activated carbon, cement kiln dust (CKD), and sawdust for the removal of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) from aqueous solutions under mono-metal and competitive sorption systems and the removal of Cd, Cu, and Zn from different industrial wastewaters. Batch equilibrium experiments were conducted in a mono-metal and competitive sorption system. The efficiency of the sorbents in the removal of Cd, Cu, and Zn from industrial wastewaters was also investigated. Cement kiln dust expressed the highest affinity for the metals followed by activated carbon and sawdust. Competition among the metals changed their distribution coefficient (Kd) with the sorbents. Sorption of Pb and Cu was higher than Cd and Zn. The average metal removal from the wastewaters varied from 74, 61, and 60% for Cd, Cu, and Zn, respectively, to nearly 100%. The efficiencies of CKD and activated carbon in removing metals were higher than sawdust, suggesting their potential as low-cost sorbents for the removal of toxic metals from wastewaters.

  19. Metal Ion Removal from Wastewaters by Sorption on Activated Carbon, Cement Kiln Dust, and Sawdust.

    PubMed

    Shaheen, Sabry M; Eissa, Fawzy I; Ghanem, Khaled M; El-Din, Hala M Gamal; Al Anany, Fathia S

    2015-06-01

    This study assessed the efficiency of activated carbon, cement kiln dust (CKD), and sawdust for the removal of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) from aqueous solutions under mono-metal and competitive sorption systems and the removal of Cd, Cu, and Zn from different industrial wastewaters. Batch equilibrium experiments were conducted in a mono-metal and competitive sorption system. The efficiency of the sorbents in the removal of Cd, Cu, and Zn from industrial wastewaters was also investigated. Cement kiln dust expressed the highest affinity for the metals followed by activated carbon and sawdust. Competition among the metals changed their distribution coefficient (Kd) with the sorbents. Sorption of Pb and Cu was higher than Cd and Zn. The average metal removal from the wastewaters varied from 74, 61, and 60% for Cd, Cu, and Zn, respectively, to nearly 100%. The efficiencies of CKD and activated carbon in removing metals were higher than sawdust, suggesting their potential as low-cost sorbents for the removal of toxic metals from wastewaters. PMID:26459819

  20. CO(2) adsorption on supported molecular amidine systems on activated carbon.

    PubMed

    Alesi, W Richard; Gray, McMahan; Kitchin, John R

    2010-08-23

    The CO(2) capture capacities for typical flue gas capture and regeneration conditions of two tertiary amidine N-methyltetrahydropyrimidine (MTHP) derivatives supported on activated carbon were determined through temperature-controlled packed-bed reactor experiments. Adsorption-desorption experiments were conducted at initial adsorption temperatures ranging from 29 degrees C to 50 degrees C with temperature-programmed regeneration under an inert purge stream. In addition to the capture capacity of each amine, the efficiencies at which the amidines interact with CO(2) were determined. Capture capacities were obtained for 1,5-diazo-bicyclo[4.3.0]non-5-ene (DBN) and 1,8-diazobicyclo[5.4.0]-undec-7-ene (DBU) supported on activated carbon at a loading of approximately 2.7 mol amidine per kg of sorbent. Moisture was found to be essential for CO(2) capture on the amidines, but parasitic moisture sorption on the activated carbon ultimately limited the capture capacities. DBN was shown to have a higher capture capacity of 0.8 mol CO(2) per kg of sorbent and an efficiency of 0.30 mol CO(2) per mol of amidine at an adsorption temperature of 29 degrees C compared to DBU. The results of these experiments were then used in conjunction with a single-site adsorption model to derive the Gibbs free energy for the capture reaction, which can provide information about the suitability of the sorbent under different operating conditions. PMID:20730982

  1. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    DOEpatents

    Jha, Mahesh C.; Blandon, Antonio E.; Hepworth, Malcolm T.

    1988-01-01

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  2. Microlith-based Structured Sorbent for Carbon Dioxide, Humidity, and Trace Contaminant Control in Manned Space Habitats

    NASA Technical Reports Server (NTRS)

    Junaedi, Christian; Roychoudhury, SUbir; Howard, David F.; Perry, Jay L.; Knox, James C.

    2011-01-01

    To support continued manned space exploration, the development of atmosphere revitalization systems that are lightweight, compact, durable, and power efficient is a key challenge. The systems should be adaptable for use in a variety of habitats and should offer operational functionality to either expel removed constituents or capture them for closedloop recovery. As mission durations increase and exploration goals reach beyond low earth orbit, the need for regenerable adsorption processes for continuous removal of CO2 and trace contaminants from cabin air becomes critical. Precision Combustion, Inc. (PCI) and NASA Marshall (MSFC) have been developing an Engineered Structured Sorbents (ESS) approach based on PCI s patented Microlith technology to meet the requirements of future, extended human spaceflight explorations. This technology offers the inherent performance and safety attributes of zeolite and other sorbents with greater structural integrity, regenerability, and process control, thereby providing potential durability and efficiency improvements over current state-of-the-art systems. The major advantages of the ESS explored in this study are realized through the use of metal substrates to provide structural integrity (i.e., less partition of sorbents) and enhanced thermal control during the sorption process. The Microlith technology also offers a unique internal resistive heating capability that shows potential for short regeneration time and reduced power requirement compared to conventional systems. This paper presents the design, development, and performance results of the integrated adsorber modules for removing CO2, water vapor, and trace chemical contaminants. A related effort that utilizes the adsorber modules for sorption of toxic industrial chemicals is also discussed. Finally, the development of a 4-person two-leg ESS system for continuous CO2 removal is also presented.

  3. Separating proteins with activated carbon.

    PubMed

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon. PMID:24898563

  4. High Temperature Sorbents for Oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor)

    1996-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C is introduced. The sorbent comprises a porous alumina silicate support such as zeolite containing from 1 to 10 percent by weight of ion exchanged transition metal such as copper or cobalt ions and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum. The activation temperature, oxygen sorption and reducibility are all improved by the presence of the platinum activator.

  5. Collection of fission and activation product elements from fresh and ocean waters: a comparison of traditional and novel sorbents

    SciTech Connect

    Johnson, Bryce E.; Santschi, Peter H.; Addleman, Raymond S.; Douglas, Matthew; Davidson, Joseph D.; Fryxell, Glen E.; Schwantes, Jon M.

    2010-04-01

    Monitoring natural waters for the inadvertent release of radioactive fission products produced as a result of nuclear power generation downstream from these facilities is essential for maintaining water quality. To this end, we evaluated sorbents for simultaneous in-situ large volume extraction of radionuclides with both soft (e.g., Ag) and hard metal (e.g., Co, Zr, Nb, Ba, and Cs) or anionic (e.g., Ru, Te, Sb) character. In this study, we evaluated a number of conventional and novel nanoporous sorbents in both fresh and salt waters. In most cases, the nanoporous sorbents demonstrated enhanced retention of analytes. Salinity had significant effects upon sorbent performance and was most significant for hard cations, specifically Cs and Ba. The presence of natural organic matter had little effect on the ability of chemisorbents to extract target elements.

  6. Selective removal of copper (II) from natural waters by nanoporous sorbents functionalized with chelating diamines

    SciTech Connect

    Chouyyok, Wilaiwan; Shin, Yongsoon; Davidson, Joseph D.; Samuels, William D.; LaFemina, Nikki H.; Rutledge, Ryan D.; Fryxell, Glen E.; Sangvanich, Thanapon; Yantasee, Wassana

    2010-04-13

    The essential trace metal copper has been identified as a pollutant of concern by the Environmental Protection Agency (EPA) because of its widespread occurrence in the environment, often being found in concentrations capable of causing problems in organisms in that ecosystem. In this work, three different nanoporous sorbents containing chelating diamine functionalities were evaluated for Cu2+ adsorption in natural waters; these sorbents are ethylenediamine functionalized self-assembled monolayers on mesoporous supports (EDA-SAMMS®, SAMMS is a registered trademark of Steward Advanced Materials), ethylenediamine functionalized activated carbon (AC-CH2-EDA), and 1,10-Phenanthroline functionalized mesoporous carbon (Phen-FMC). The pH dependence of Cu2+ sorption and the Cu2+ sorption capacities of sorbents were determined. The Cu2+ adsorption rates and metal ion selectivity of these sorbents were compared to those of commercial sorbents (Chelex-100 ion exchange resin and Darco KB-B activated carbon). All three chelating diamine sorbents showed the excellent Cu2+ removal (~ 95-99%) from river water and sea water over the pH range of 6.0-8.0. Even under acidic conditions (e.g. pH of 3), AC-CH2-EDA and Phen-FMC were able to remove approximately ~49-58% of Cu2+ in sea water. EDA-SAMMS and AC-CH2-EDA demonstrated rapid Cu2+ sorption kinetics (reaching equilibrium within 5 min) and large adsorption capacities (26 and 17 mg Cu/g sorbent, respectively) in sea water. They also showed good selectivity for Cu2+ over other metal ions (e.g. Ca2+, Fe2+, Ni2+, and Zn2+) in sea water.

  7. Investigation on durability and reactivity of promising metal oxide sorbents during sulfidation and regeneration. Quarterly report, October--December 1994

    SciTech Connect

    Kwon, K.C.

    1995-01-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Some metal oxide sorbents exhibited the quite favorable performance in terms of attrition resistance and sulfur capacity. Removal reaction of H{sub 2}S from coal gas mixtures with ZT-4 or other promising sorbents of fine solid particles, and regeneration reaction of sulfur-loaded sorbents will be carried on in a batch reactor or a continuous differential reactor. The objectives of this research project are to find intrinsic initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of concentrations of coal gas components such as hydrogen, carbon monoxide, carbon dioxide, oxygen, nitrogen and moisture on equilibrium reaction rate constants of the reaction system at various reaction temperatures and pressures, to identify regeneration kinetics of sulfur-loaded metal oxide sorbents, and to formulate promising metal oxide sorbent for the removal of sulfur from coal gas mixtures. Promising durable metal oxide sorbents of high-sulfur-absorbing capacity will be formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures, or impregnating active metal oxide sorbents on supporting metal oxide matrixes.

  8. Highly efficient copper(II) ion sorbents obtained by calcium carbonate mineralization on functionalized cross-linked copolymers.

    PubMed

    Mihai, Marcela; Bunia, Ion; Doroftei, Florica; Varganici, Cristian-Dragos; Simionescu, Bogdan C

    2015-03-23

    A new type of Cu(II) ion sorbents is presented. These are obtained by CaCO3 mineralization from supersaturated solutions on gel-like cross-linked polymeric beads as insoluble templates. A divinylbenzene-ethylacrylate-acrylonitrile cross-linked copolymer functionalized with weakly acidic, basic, or amphoteric functional groups has been used, as well as different initial inorganic concentrations and addition procedures for CaCO3 crystal growth. The morphology of the new composites was investigated by SEM and compared to that of the unmodified beads, and the polymorph content was established by X-ray diffraction. The beads, before and after CaCO3 mineralization, were tested as sorbents for Cu(II) ions. The newly formed patterns on the bead surface after Cu(II) sorption were observed by SEM, and the elemental distribution on the composites and the chemical structure of crystals after interaction with Cu(II) were investigated by EDAX elemental mapping and by FTIR-ATR spectroscopy, respectively. The sorption capacity increased significantly after CaCO3 crystals growth on the weak anionic bead surface (up to 1041.5 mg Cu(II) /g sample) compared to that of unmodified beads (491.5 mg Cu(II) /g sample). PMID:25675892

  9. Sol-gel derived sorbents

    DOEpatents

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  10. Lime-based sorbents for high-temperature CO2 capture--a review of sorbent modification methods.

    PubMed

    Manovic, Vasilije; Anthony, Edward J

    2010-08-01

    This paper presents a review of the research on CO(2) capture by lime-based looping cycles undertaken at CanmetENERGY's (Ottawa, Canada) research laboratories. This is a new and very promising technology that may help in mitigation of global warming and climate change caused primarily by the use of fossil fuels. The intensity of the anticipated changes urgently requires solutions such as more cost-effective technologies for CO(2) capture. This new technology is based on the use of lime-based sorbents in a dual fluidized bed combustion (FBC) reactor which contains a carbonator-a unit for CO(2) capture, and a calciner-a unit for CaO regeneration. However, even though natural materials are cheap and abundant and very good candidates as solid CO(2) carriers, their performance in a practical system still shows significant limitations. These limitations include rapid loss of activity during the capture cycles, which is a result of sintering, attrition, and consequent elutriation from FBC reactors. Therefore, research on sorbent performance is critical and this paper reviews some of the promising ways to overcome these shortcomings. It is shown that reactivation by steam/water, thermal pre-treatment, and doping simultaneously with sorbent reforming and pelletization are promising potential solutions to reduce the loss of activity of these sorbents over multiple cycles of use.

  11. Sorption of methylxanthines by different sorbents

    NASA Astrophysics Data System (ADS)

    Dmitrienko, S. G.; Andreeva, E. Yu.; Tolmacheva, V. V.; Terent'eva, E. A.

    2013-05-01

    Sorption of caffeine, theophylline, theobromine, diprophylline, and pentoxyphylline on different sorbents (supercross-linked polystyrene, surface-modified copolymer of styrene and divinylbenzene Strata-X, and carbon nanomaterials Taunit and Diasorb-100-C16T) was studied in a static mode in an effort to find new sorbents suitable for sorption isolation and concentration of methylxanthines. The peculiarities of sorption of methylxanthines were explained in relation to the solution acidity, the nature of the sorbates and their concentration, the nature of the solvent, and the structural characteristics of the sorbents.

  12. Biological activation of carbon filters.

    PubMed

    Seredyńska-Sobecka, Bozena; Tomaszewska, Maria; Janus, Magdalena; Morawski, Antoni W

    2006-01-01

    To prepare biological activated carbon (BAC), raw surface water was circulated through granular activated carbon (GAC) beds. Biological activity of carbon filters was initiated after about 6 months of filter operation and was confirmed by two methods: measurement of the amount of biomass attached to the carbon and by the fluorescein diacetate (FDA) test. The effect of carbon pre-washing on WG-12 carbon properties was also studied. For this purpose, the nitrogen adsorption isotherms at 77K and Fourier transform-infrared (FT-IR) spectra analyses were performed. Moreover, iodine number, decolorizing power and adsorption properties of carbon in relation to phenol were studied. Analysis of the results revealed that after WG-12 carbon pre-washing its BET surface increased a little, the pH value of the carbon water extract decreased from 11.0 to 9.4, decolorizing power remained at the same level, and the iodine number and phenol adsorption rate increased. In preliminary studies of the ozonation-biofiltration process, a model phenol solution with concentration of approximately 10mg/l was applied. During the ozonation process a dose of 1.64 mg O(3)/mg TOC (total organic carbon) was employed and the contact time was 5 min. Four empty bed contact times (EBCTs) in the range of 2.4-24.0 min were used in the biofiltration experiment. The effectiveness of purification was measured by the following parameters: chemical oxygen demand (COD(Mn)), TOC, phenol concentration and UV(254)-absorbance. The parameters were found to decrease with EBCT. PMID:16376966

  13. Fluidized-bed sorbents

    SciTech Connect

    Gangwal, S.K.; Gupta, R.P.

    1994-10-01

    The objectives of this project are to identify and demonstrate methods for enhancing long-term chemical reactivity and attrition resistance of zinc oxide-based mixed metal-oxide sorbents for desulfurization of hot coal-derived gases in a high-temperature, high-pressure (HTHP) fluidized-bed reactor. In this program, regenerable ZnO-based mixed metal-oxide sorbents are being developed and tested. These include zinc ferrite, zinc titanate, and Z-SORB sorbents. The Z-SORB sorbent is a proprietary sorbent developed by Phillips Petroleum Company (PPCo).

  14. Activated carbon to the rescue

    SciTech Connect

    Sen, S.

    1996-03-01

    This article describes the response to pipeline spill of ethylene dichloride (EDC) on the property of an oil company. Activated carbon cleanup proceedure was used. During delivery, changeout, transport, storage, thermal reactivation, and return delivery to the site, the carbon never came into direct contact with operating personnel or the atmosphere. More than 10,000 tones of dredge soil and 50 million gallons of surface water were processed during the emergency response.

  15. Tunable polymeric sorbent materials for fractionation of model naphthenates.

    PubMed

    Mohamed, Mohamed H; Wilson, Lee D; Headley, John V

    2013-04-01

    The sorption properties are reported for several examples of single-component carboxylic acids representing naphthenic acids (NAs) with β-cyclodextrin (β-CD) based polyurethane sorbents. Seven single-component examples of NAs were chosen with variable z values, carbon number, and chemical structure as follows: 2-hexyldecanoic acid (z = 0 and C = 16; S1), n-caprylic acid (z = 0 and C = 8; S2), trans-4-pentylcyclohexanecarboxylic acid (z = -2 and C = 12; S3), 4-methylcyclohexanecarboxylic acid (z = -2 and C = 8; S4), dicyclohexylacetic acid (z = -4; C = 14; S5), 4-pentylbicyclo[2.2.2]octane-1-carboxylic acid (z = -4; C = 14; S6), and lithocholic acid (z = -6; C = 24; S7). The copolymer sorbents were synthesized at three relative β-CD:diisocyanate mole ratios (i.e., 1:1, 1:2, and 1:3) using 4,4'-dicyclohexylmethane diisocyanate (CDI) and 4,4'-diphenylmethane diisocyanate (MDI). The sorption properties of the copolymer sorbents were characterized using equilibrium sorption isotherms in aqueous solution at pH 9.00 with electrospray ionization mass spectrometry. The equilibrium fraction of the unbound carboxylate anions was monitored in the aqueous phase. The sorption properties of the copolymer sorbents (i.e., Qm) were obtained from the Sips isotherm model. The Qm values generally decrease as the number of accessible β-CD inclusion sites in the copolymer framework decreases. The chemical structure of the adsorbates played an important role in their relative uptake, as evidenced by the adsorbate lipophilic surface area (LSA) and the involvement of hydrophobic effects. The copolymers exhibit molecular selective sorption of the single-component carboxylates in mixtures which suggests their application as sorbents for fractionation of mixtures of NAs. By comparison, granular activated carbon (GAC) and chitosan sorbents did not exhibit any significant molecular selective sorption relative to the copolymer materials; however, evidence of variable sorption capacity was

  16. Comparison of Impurities in Charcoal Sorbents Found by Neutron Activation Analysis

    SciTech Connect

    Doll, Charles G.; Finn, Erin C.; Cantaloub, Michael G.; Greenwood, Lawrence R.; Kephart, Jeremy; Kephart, Rosara F.

    2013-01-01

    Abstract: Neutron activation of gas samples in a reactor often requires a medium to retain sufficient amounts of the gas for analysis. Charcoal is commonly used to adsorb gas and hold it for activation; however, the amount of activated sodium in the charcoal after irradiation swamps most signals of interest. Neutron activation analysis (NAA) was performed on several commonly available charcoal samples in an effort to determine the activation background. The results for several elements, including the dominant sodium element, are reported. It was found that ECN charcoal had the lowest elemental background, containing sodium at 2.65 ± 0.05 ppm, as well as trace levels of copper and tungsten.

  17. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    PubMed

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive.

  18. Metalloradical-catalyzed aliphatic carbon-carbon activation of cyclooctane.

    PubMed

    Chan, Yun Wai; Chan, Kin Shing

    2010-05-26

    The aliphatic carbon-carbon activation of c-octane was achieved via the addition of Rh(ttp)H to give Rh(ttp)(n-octyl) in good yield under mild reaction conditions. The aliphatic carbon-carbon activation was Rh(II)(ttp)-catalyzed and was very sensitive to porphyrin sterics.

  19. Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution.

    PubMed

    Tan, Guangcai; Sun, Weiling; Xu, Yaru; Wang, Hongyuan; Xu, Nan

    2016-07-01

    Corn straw biochar (BC) was used as a precursor to produce Na2S modified biochar (BS), KOH modified biochar (BK) and activated carbon (AC). Experiments were conducted to compare the sorption capacity of these sorbents for aqueous Hg (II) and atrazine existed alone or as a mixture. In comparison to BC, the sorption capacity of BS, BK and AC for single Hg (II) increased by 76.95%, 32.12% and 41.72%, while that for atrazine increased by 38.66%, 46.39% and 47 times, respectively. When Hg (II) and atrazine coexisted in an aqueous solution, competitive sorption was observed on all these sorbents. Sulfur impregnation was an efficient way to enhance the Hg (II) removal due to the formation of HgS precipitate, and oxygen-containing functional groups on the sorbents also contributed to Hg (II) sorption. Activated carbon was the best sorbent for atrazine removal because of its extremely high specific surface area. PMID:27061260

  20. Production of activated carbons from waste tyres for low temperature NOx control.

    PubMed

    Al-Rahbi, Amal S; Williams, Paul T

    2016-03-01

    Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons.

  1. Observations of limited secondary effects to benthic invertebrates and macrophytes with activated carbon amendment in river sediments.

    PubMed

    Beckingham, Barbara; Buys, David; Vandewalker, Heather; Ghosh, Upal

    2013-07-01

    Amendment of activated carbon to sediments has been shown to effectively reduce the bioavailability of hydrophobic organic contaminants, but concerns have been raised about the potential toxicological impacts of administering a strong sorbent into sediments. The present study provides a summary of several investigations carried out as part of a pilot-scale study in a river to understand the secondary effects of activated carbon added to reduce the bioavailability of sediment-associated polychlorinated biphenyls. While some previous laboratory amendment studies have found reduced lipid content in freshwater worms exposed to activated carbon-treated sediments, the authors did not observe an impact with fine-granular activated carbon-amended sediments aged in the field. Benthic community studies did not find differences between control and activated carbon-treated field sites over 3 yr of postapplication monitoring. Laboratory studies with submerged aquatic plants indicated reduced growth in sediments amended with ≥5% activated carbon, which was attributed to volume dilution of nutritional sediment or bulk density changes and was also observed when the sediment was amended with biochar and inert perlite. Since in situ sorbent amendment is likely to be implemented in depositional sediment environments, potential negative impacts will likely be short-term if the treated site is slowly covered with new sediment over time. Overall suitability of activated carbon amendment for a site will depend on balancing ecosystem and human health benefits from contaminant bioavailability reduction with any potential negative impacts expected under field conditions. PMID:23554105

  2. Observations of limited secondary effects to benthic invertebrates and macrophytes with activated carbon amendment in river sediments.

    PubMed

    Beckingham, Barbara; Buys, David; Vandewalker, Heather; Ghosh, Upal

    2013-07-01

    Amendment of activated carbon to sediments has been shown to effectively reduce the bioavailability of hydrophobic organic contaminants, but concerns have been raised about the potential toxicological impacts of administering a strong sorbent into sediments. The present study provides a summary of several investigations carried out as part of a pilot-scale study in a river to understand the secondary effects of activated carbon added to reduce the bioavailability of sediment-associated polychlorinated biphenyls. While some previous laboratory amendment studies have found reduced lipid content in freshwater worms exposed to activated carbon-treated sediments, the authors did not observe an impact with fine-granular activated carbon-amended sediments aged in the field. Benthic community studies did not find differences between control and activated carbon-treated field sites over 3 yr of postapplication monitoring. Laboratory studies with submerged aquatic plants indicated reduced growth in sediments amended with ≥5% activated carbon, which was attributed to volume dilution of nutritional sediment or bulk density changes and was also observed when the sediment was amended with biochar and inert perlite. Since in situ sorbent amendment is likely to be implemented in depositional sediment environments, potential negative impacts will likely be short-term if the treated site is slowly covered with new sediment over time. Overall suitability of activated carbon amendment for a site will depend on balancing ecosystem and human health benefits from contaminant bioavailability reduction with any potential negative impacts expected under field conditions.

  3. Development of a Rapid Cycling CO2 and H2O Removal Sorbent

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Cates, Matthew; Bernal, Casey; Dubovik, Margarita; Paul, Heather L.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) planned future missions set stringent demands on the design of the Portable Life Support System (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility on the types of missions. Use of regenerable systems that reduce weight and volume of the Extravehicular Mobility Unit (EMU) is of critical importance to NASA, both for low orbit operations and for long duration manned missions. The carbon dioxide and humidity control unit in the existing PLSS design is relatively large, since it has to remove and store eight hours worth of carbon dioxide (CO2). If the sorbent regeneration can be carried out during the Extravehicular Activity (EVA) with a relatively high regeneration frequency, the size of the sorbent canister and weight can be significantly reduced. TDA Research, Inc. is developing compact, regenerable sorbent materials to control CO2 and humidity in the space suit ventilation loop. The sorbent can be regenerated using space vacuum during the EVA, eliminating all CO2 and humidity duration-limiting elements in the life support system. The material also has applications in other areas of space exploration including long duration exploration missions requiring regenerable technologies and possibly the Crew Exploration Vehicle (CEV) spacecraft. This paper summarizes the results of the sorbent development, testing, and evaluation efforts to date.

  4. Development of a Steel-Slag-Based, Iron-Functionalized Sorbent for an Autothermal Carbon Dioxide Capture Process.

    PubMed

    Tian, Sicong; Jiang, Jianguo; Hosseini, Davood; Kierzkowska, Agnieszka M; Imtiaz, Qasim; Broda, Marcin; Müller, Christoph R

    2015-11-01

    We propose a new class of autothermal CO2 -capture process that relies on the integration of chemical looping combustion (CLC) into calcium looping (CaL). In the new process, the heat released during the oxidation of a reduced metallic oxide is utilized to drive the endothermic calcination of CaCO3 (the regeneration step in CaL). Such a process is potentially very attractive (both economically and technically) as it can be applied to a variety of oxygen carriers and CaO is not in direct contact with coal (and the impurities associated with it) in the calciner (regeneration step). To demonstrate the practical feasibility of the process, we developed a low-cost, steel-slag-based, Fe-functionalized CO2 sorbent. Using this material, we confirm experimentally the feasibility to heat-integrate CaCO3 calcination with a Fe(II)/Fe(III) redox cycle (with regards to the heat of reaction and kinetics). The autothermal calcination of CaCO3 could be achieved for a material that contained a Ca/Fe ratio of 5:4. The uniform distribution of Ca and Fe in a solid matrix provides excellent heat transfer characteristics. The cyclic CO2 uptake and redox stability of the material is good, but there is room for further improvement.

  5. Development of a Steel-Slag-Based, Iron-Functionalized Sorbent for an Autothermal Carbon Dioxide Capture Process.

    PubMed

    Tian, Sicong; Jiang, Jianguo; Hosseini, Davood; Kierzkowska, Agnieszka M; Imtiaz, Qasim; Broda, Marcin; Müller, Christoph R

    2015-11-01

    We propose a new class of autothermal CO2 -capture process that relies on the integration of chemical looping combustion (CLC) into calcium looping (CaL). In the new process, the heat released during the oxidation of a reduced metallic oxide is utilized to drive the endothermic calcination of CaCO3 (the regeneration step in CaL). Such a process is potentially very attractive (both economically and technically) as it can be applied to a variety of oxygen carriers and CaO is not in direct contact with coal (and the impurities associated with it) in the calciner (regeneration step). To demonstrate the practical feasibility of the process, we developed a low-cost, steel-slag-based, Fe-functionalized CO2 sorbent. Using this material, we confirm experimentally the feasibility to heat-integrate CaCO3 calcination with a Fe(II)/Fe(III) redox cycle (with regards to the heat of reaction and kinetics). The autothermal calcination of CaCO3 could be achieved for a material that contained a Ca/Fe ratio of 5:4. The uniform distribution of Ca and Fe in a solid matrix provides excellent heat transfer characteristics. The cyclic CO2 uptake and redox stability of the material is good, but there is room for further improvement. PMID:26616682

  6. High temperature hydrogen sulfide adsorption on activated carbon - I. Effects of gas composition and metal addition

    USGS Publications Warehouse

    Cal, M.P.; Strickler, B.W.; Lizzio, A.A.

    2000-01-01

    Various types of activated carbon sorbents were evaluated for their ability to remove H2S from a simulated coal gas stream at a temperature of 550 ??C. The ability of activated carbon to remove H2S at elevated temperature was examined as a function of carbon surface chemistry (oxidation, thermal desorption, and metal addition), and gas composition. A sorbent prepared by steam activation, HNO3 oxidation and impregnated with Zn, and tested in a gas stream containing 0.5% H2S, 50% CO2 and 49.5% N2, had the greatest H2S adsorption capacity. Addition of H2, CO, and H2O to the inlet gas stream reduced H2S breakthrough time and H2S adsorption capacity. A Zn impregnated activated carbon, when tested using a simulated coal gas containing 0.5% H2S, 49.5% N2, 13% H2, 8.5% H2O, 21% CO, and 7.5% CO2, had a breakthrough time of 75 min, which was less than 25 percent of the length of breakthrough for screening experiments performed with a simplified gas mixture of 0.5% H2S, 50% CO2, and 49.5% N2.

  7. Barrier properties of poly(vinyl alcohol) membranes containing carbon nanotubes or activated carbon.

    PubMed

    Surdo, Erin M; Khan, Iftheker A; Choudhury, Atif A; Saleh, Navid B; Arnold, William A

    2011-04-15

    Carbon nanotube addition has been shown to improve the mechanical properties of some polymers. Because of their unique adsorptive properties, carbon nanotubes may also improve the barrier performance of polymers used in contaminant containment. This study compares the barrier performance of poly(vinyl alcohol) (PVA) membranes containing single-walled carbon nanotubes (SWCNTs) to that for PVA containing powdered activated carbon (PAC). Raw and surface-functionalized versions of each sorbent were tested for their abilities to adsorb 1,2,4-trichlorobenzene and Cu(2+), representing the important hydrophobic organic and heavy metal contaminant classes, as they diffused across the PVA. In both cases, PAC (for 1,2,4-trichlorobenzene) and functionalized PAC (for Cu(2+)) outperformed SWCNTs on a per mass basis by trapping more of the contaminants within the barrier membrane. Kinetics of sorption are important in evaluating barrier properties, and poor performance of SWCNT-containing membranes as 1,2,4-TCB barriers is attributed to kinetic limitations. PMID:21349636

  8. Adsorption of hydrogen sulfide onto activated carbon fibers: effect of pore structure and surface chemistry.

    PubMed

    Feng, Wenguo; Kwon, Seokjoon; Borguet, Eric; Vidic, Radisav

    2005-12-15

    To understand the nature of H2S adsorption onto carbon surfaces under dry and anoxic conditions, the effects of carbon pore structure and surface chemistry were studied using activated carbon fibers (ACFs) with different pore structures and surface areas. Surface pretreatments, including oxidation and heattreatment, were conducted before adsorption/desorption tests in a fixed-bed reactor. Raw ACFs with higher surface area showed greater adsorption and retention of sulfur, and heat treatment further enhanced adsorption and retention of sulfur. The retained amount of hydrogen sulfide correlated well with the amount of basic functional groups on the carbon surface, while the desorbed amount reflected the effect of pore structure. Temperature-programmed desorption (TPD) and thermal gravimetric analysis (TGA) showed that the retained sulfurous compounds were strongly bonded to the carbon surface. In addition, surface chemistry of the sorbent might determine the predominant form of adsorbate on the surface. PMID:16475362

  9. Adsorption of hydrogen sulfide onto activated carbon fibers: effect of pore structure and surface chemistry.

    PubMed

    Feng, Wenguo; Kwon, Seokjoon; Borguet, Eric; Vidic, Radisav

    2005-12-15

    To understand the nature of H2S adsorption onto carbon surfaces under dry and anoxic conditions, the effects of carbon pore structure and surface chemistry were studied using activated carbon fibers (ACFs) with different pore structures and surface areas. Surface pretreatments, including oxidation and heattreatment, were conducted before adsorption/desorption tests in a fixed-bed reactor. Raw ACFs with higher surface area showed greater adsorption and retention of sulfur, and heat treatment further enhanced adsorption and retention of sulfur. The retained amount of hydrogen sulfide correlated well with the amount of basic functional groups on the carbon surface, while the desorbed amount reflected the effect of pore structure. Temperature-programmed desorption (TPD) and thermal gravimetric analysis (TGA) showed that the retained sulfurous compounds were strongly bonded to the carbon surface. In addition, surface chemistry of the sorbent might determine the predominant form of adsorbate on the surface.

  10. Mercury capture from flue gas using palladium nanoparticle-decorated substrates as injected sorbent

    SciTech Connect

    Quentin J. Lineberry; Yan Cao; Yi Lin; Sayata Ghose; John W. Connell; Wei-Ping Pan

    2009-03-15

    Although the Clean Air Mercury Rule (CAMR) was recently vacated by the District of Columbia Court of Appeals, efficient mercury (Hg) capture is still an important topic for the coal-fired power plant industry. Several states have Hg emission regulations that are even more stringent than CAMR guidelines. All coals contain Hg, which is released during combustion. Significant research efforts have been made to capture this toxic element before it is released to the atmosphere where it can stay suspended and travel for great distances. A variety of approaches have been examined, among which the injection of sorbent materials such as powdered activated carbon (PAC) is the current method of choice. The work presented here examined the mercury capture capability of various carbon substrates decorated with metal nanoparticles when injected as sorbents. Sorbent injections were carried out in a Hg in air mixture for laboratory-scale screening and in a real flue gas at a coal-fired power plant. It was found that palladium-decorated carbon substrates showed excellent mercury capture capabilities, with total efficiencies greater than 90% in laboratory-scale tests. In the real flue gas, the total efficiency was on the order of 60%, comparable to the benchmark commercial sorbent Darco Hg-LH, a brominated PAC, although the tested adsorbents had much lower surface areas. The results of this study are presented herein. Novel mercury capture from a coal-fired flue gas was achieved using carbon substrates decorated with palladium nanoparticles. 15 refs., 7 figs., 3 tabs.

  11. Adsorption and destruction of PCDD/Fs using surface-functionalized activated carbons.

    PubMed

    Atkinson, J D; Hung, P C; Zhang, Z; Chang, M B; Yan, Z; Rood, M J

    2015-01-01

    Activated carbon adsorbs polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) from gas streams but can simultaneously generate PCDD/Fs via de novo synthesis, increasing an already serious disposal problem for the spent sorbent. To increase activated carbon's PCDD/F sorption capacity and lifetime while reducing the impact of hazardous waste, it is beneficial to develop carbon-based sorbents that simultaneously destroy PCDD/Fs while adsorbing the toxic chemicals from gas streams. In this work, hydrogen-treated and surface-functionalized (i.e., oxygen, bromine, nitrogen, and sulfur) activated carbons are tested in a bench-scale reactor as adsorbents for PCDD/Fs. All tested carbons adsorb PCDD/F efficiently, with international toxic equivalent removal efficiencies exceeding 99% and mass removal efficiencies exceeding 98% for all but one tested material. Hydrogen-treated materials caused negligible destruction and possible generation of PCDD/Fs, with total mass balances between 100% and 107%. All tested surface-functionalized carbons, regardless of functionality, destroyed PCDD/Fs, with total mass balances between 73% and 96%. Free radicals on the carbon surface provided by different functional groups may contribute to PCDD/F destruction, as has been hypothesized in the literature. Surface-functionalized materials preferentially destroyed higher-order (more chlorine) congeners, supporting a dechlorination mechanism as opposed to oxidation. Carbons impregnated with sulfur are particularly effective at destroying PCDD/Fs, with destruction efficiency improving with increasing sulfur content to as high as 27%. This is relevant because sulfur-treated carbons are used for mercury adsorption, increasing the possibility of multi-pollutant control.

  12. Multiwalled carbon nanotubes as a sorbent material for the solid phase extraction of lead from urine and subsequent determination by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Peña Crecente, Rosa M.; Lovera, Carlha Gutiérrez; García, Julia Barciela; Méndez, Jennifer Álvarez; Martín, Sagrario García; Latorre, Carlos Herrero

    2014-11-01

    The determination of lead in urine is a way of monitoring the chemical exposure to this metal. In the present paper, a new method for the Pb determination by electrothermal atomic absorption spectrometry (ETAAS) in urine at low levels has been developed. Lead was separated from the undesirable urine matrix by means of a solid phase extraction (SPE) procedure. Oxidized multiwalled carbon nanotubes have been used as a sorbent material. Lead from urine was retained at pH 4.0 and was quantitatively eluted using a 0.7 M nitric acid solution and was subsequently measured by ETAAS. The effects of parameters that influence the adsorption-elution process (such as pH, eluent volume and concentration, sampling and elution flow rates) and the atomic spectrometry conditions have been studied by means of different factorial design strategies. Under the optimized conditions, the detection and quantification limits obtained were 0.08 and 0.26 μg Pb L- 1, respectively. The results demonstrate the absence of a urine matrix effect and this is the consequence of the SPE process carried out. Therefore, the developed method is useful for the analysis of Pb at low levels in real samples without the influence of other urine components. The proposed method was applied to the determination of lead in urine samples of unexposed healthy people and satisfactory results were obtained (in the range 3.64-22.9 μg Pb L- 1).

  13. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Baltich, L.K.

    1987-02-23

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  14. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  15. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Baltich, L.K.; Berggren, M.H.

    1987-05-18

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  16. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Silaban, A.; Harrison, D.P. . Dept. of Chemical Engineering)

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  17. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1988-11-14

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  18. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Baltich, L.K.; Berggren, M.H.

    1987-08-28

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  19. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1988-08-19

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  20. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1989-03-06

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  1. [New sorbents for industrial gas marks with a visual reading of their depletion].

    PubMed

    Zhecheva, D; Ivanov, M; Mikhaĭlov, G; Enev, S; Trifonova, I

    1979-01-01

    The current status of problems, referrable to the use of industrial gas masks, is reviewed, with special reference to the type of sorbent to be used, the pathways of gas mask modernization in respect of the sorbents used, and the modern trends in adsorption cartridge manufacturing; decrease of weight, alleviated construction, adjustment to serve definite toxico-chemical agent, use of ion-exchange resins and hemosorbents. Aspects are discussed for producing sorbents, permitting visual registration of filter mass exhaustion, i.e. sorbents wtih alternating color in the process of sorption, with the purpose of increasing gas mask security and efficiency. The physico-chemical parameters of reference hemosorbent samples with alternating color in the process of sorption were compared with those of widely used sorbents - active carbon (specially processed and crude) and ion-exchange resins: relative dynamics, aktivity protection time, weight, mass activity, etc. Inferences are drawn from which one may see, that these new hemosorbents are highly perspektive, and their industrial acceptance is justifiable.

  2. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions.

    PubMed

    Baccar, R; Bouzid, J; Feki, M; Montiel, A

    2009-03-15

    The present work explored the use of Tunisian olive-waste cakes, a by-product of the manufacture process of olive oil in mills, as a potential feedstock for the preparation of activated carbon. Chemical activation of this precursor, using phosphoric acid as dehydrating agent, was adopted. To optimize the preparation method, the effect of the main process parameters (such as acid concentration, impregnation ratio, temperature of pyrolysis step) on the performances of the obtained activated carbons (expressed in terms of iodine and methylene blue numbers and specific surface area) was studied. The optimal activated carbon was fully characterized considering its adsorption properties as well as its chemical structure and morphology. To enhance the adsorption capacity of this carbon for heavy metals, a modification of the chemical characteristics of the sorbent surface was performed, using KMnO(4) as oxidant. The efficiency of this treatment was evaluated considering the adsorption of Cu(2+) ions as a model for metallic species. Column adsorption tests showed the high capacity of the activated carbon to reduce KMnO(4) into insoluble manganese (IV) oxide (MnO(2)) which impregnated the sorbent surface. The results indicated also that copper uptake capacity was enhanced by a factor of up to 3 for the permanganate-treated activated carbon.

  3. Demonstration of Mercury Sorbents to Meet DOE Customer Needs

    SciTech Connect

    Klasson, K.T.

    2000-05-08

    possible wall effects in the small-scale studies. Based on a theoretical derivation of relationships, supported by the field data, it was concluded that wall effects played a very minor role in the experiments. The most important factor that governed the performance of the sorbents at high flow rates was the diffusion of mercury inside the sorbent. It was found that the values for the effective diffusivities were quite high, possibly due to blockage of macropores by the particulates. Estimation of construction costs for treatment system indicated that the specialized sorbents would have to operate at flow rates 3 to 6 times higher than that of a comparable granular activated carbon (GAC) system in order to have the same construction cost. The sorptive capacity of the specialized sorbents would need to be substantially higher than that of the GAC.

  4. Removal of dissolved textile dyes from wastewater by a compost sorbent

    USGS Publications Warehouse

    Tsui, L.S.; Roy, W.R.; Cole, M.A.

    2003-01-01

    The objective of this study was to evaluate the potential for treating dye-contaminated waste streams by sorption using compost as a low-cost sorbent. A mature, thermophilic compost sample was used to sorb CI Acid Black 24, CI Acid Orange 74, CI Basic Blue 9, CI Basic Green 4, CI Direct Blue 71, CI Direct Orange 39, CI Reactive Orange 16 and CI Reactive Red 2 from solution using a batch-sorption method. With the exception of the two reactive dyes, the sorption kinetics were favourable for a continuous-flow treatment process with the compost-dye mixtures reaching a steady state within 3-5 h. Based on limited comparisons, the affinity of the compost for each dye appeared to be competitive with other non-activated carbon sorbents. The results suggest that additional research on using compost as a sorbent for dye-contaminated solutions is warranted.

  5. ASSESSMENT OF LOW COST NOVEL SORBENTS FOR COAL-FIRED POWER PLANT MERCURY CONTROL

    SciTech Connect

    Trevor Ley

    2003-07-01

    This is a Technical Report under a program funded by the Department of Energy's National Energy Technology Laboratory (NETL) to obtain the necessary information to assess the viability of lower cost alternatives to commercially available activated carbon for mercury control in coal-fired utilities. During this reporting period, ongoing tests and analysis on samples from Powerton and Valley to yield waste characterization results for the COHPAC long-term tests were conducted. A draft final report for the sorbent evaluations at Powerton was submitted. Sorbent evaluations at Valley Power Plant were completed on April 24, 2003. Data analysis and reporting for the Valley evaluations are continuing. A statement of work for sorbent evaluations at We Energies' Pleasant Prairie Power Plant was submitted and approved. Work will begin late August 2003. A no cost time extension was granted by DOE/NETL.

  6. ASSESSMENT OF LOW COST NOVEL SORBENTS FOR COAL-FIRED POWER PLANT MERCURY CONTROL

    SciTech Connect

    Sharon Sjostrom

    2002-02-22

    This is a Technical Report under a program funded by the Department of Energy's National Energy Technology Laboratory (NETL) to obtain the necessary information to assess the viability of lower cost alternatives to commercially available activated carbon for mercury control in coal-fired utilities. During this reporting period, several sorbent samples have been tested by URS in their laboratory fixed-bed system. The sorbents were evaluated under conditions simulating flue gas from power plants burning Powder River Basin (PRB) and low sulfur eastern bituminous coals. The equilibrium adsorption capacities of the sorbents for both elemental and oxidized mercury are presented. A team meeting discussing the overall program and meetings with Midwest Generation and Wisconsin Electric Power Company (WEPCO) concerning field testing occurred during this reporting period.

  7. Photoconductivity of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  8. Decontamination formulation with sorbent additive

    DOEpatents

    Tucker; Mark D. , Comstock; Robert H.

    2007-10-16

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  9. Application of poly 1,8-diaminonaphthalene/multiwalled carbon nanotubes-COOH hybrid material as an efficient sorbent for trace determination of cadmium and lead ions in water samples.

    PubMed

    Nabid, Mohammad Reza; Sedghi, Roya; Behbahani, Mohammad; Arvan, Behnoush; Heravi, Majid M; Oskooie, Hossein Abdi

    2014-07-01

    Poly 1,8-diaminonaphthalene/multiwalled carbon nanotubes-COOH hybrid material as an effective sorbents in solid phase extraction has been developed for the separation and preconcentration of Cd(II) and Pb(II) at trace levels in environmental water samples. The results indicate that the novel nanocomposite show a high affinity for these heavy metals due to the presence of several good extractive sites, which are introduced to the synthesized nanocomposite The maximum adsorption capacity of the synthesized sorbent for cadmium and lead ions was found to be 101.2 and 175.2 mg g(-1) , respectively. The detection limits of this method were 0.09 and 0.7 ng ml(-1) for Cd(II) and Pb(II), respectively.

  10. Effect of the decationization of brown coal from the Kansk-Achinsk Basin on the physicochemical properties of the resulting sorbents

    SciTech Connect

    P.N. Kuznetsov; L.I. Kuznetsova; E.A. Kutikhina

    2008-06-15

    Data are presented on the effect of the decationization of brown coal from the Kansk-Achinsk Basin with a dilute solution of hydrochloric acid on the structural characteristics of the resulting sorbents and the sorption capacities for iodine and phenol. It was found that the partial removal of metal cations (among which calcium was predominant) resulted in the formation of carbonization products with low reactivity upon steam activation. As compared with sorbents prepared from the parent coal under the same conditions, the sorbents from the decationized coal exhibited lower pore volumes, specific surface areas, and sorption capacities. To prepare efficient low-ash sorbents from decationized coal, a longer activation treatment is required.

  11. Engineered Structured Sorbents for the Adsorption of Carbon Dioxide and Water Vapor from Manned Spacecraft Atmospheres: Applications and Testing 2008/2009

    NASA Technical Reports Server (NTRS)

    Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian

    2009-01-01

    This paper describes efforts to improve on typical packed beds of sorbent pellets by making use of structured sorbents and alternate bed configurations to improve system efficiency and reliability. The benefits of the alternate configurations include increased structural stability gained by eliminating clay bound zeolite pellets that tend to fluidize and erode, and better thermal control during sorption to increase process efficiency. Test results that demonstrate such improvements are described and presented.

  12. Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents

    DOEpatents

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-01-01

    A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known "pressure swing adsorption" technique utilizing the same sorption material.

  13. Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents

    DOEpatents

    Judkins, R.R.; Burchell, T.D.

    1999-07-20

    A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known pressure swing adsorption'' technique utilizing the same sorption material. 1 fig.

  14. Chemisorption of phosphate ions and destruction of organomineral sorbents in acid soils

    NASA Astrophysics Data System (ADS)

    Kudeyarova, A. Yu.

    2010-06-01

    The chemisorption mechanisms of phosphate anions by iron (aluminum) containing sorbents in a soil under high phosphate loads were studied. The role of the metal-phosphate anions in the destruction of the sorbents was discussed. It was shown that the chemisorption of phosphate anions and the destruction of phosphated organomineral sorbents are interrelated processes. A significant part of the chemisorbed phosphates in association with sorbent metals and carbon passes into the liquid phase of soil systems.

  15. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect

    Sharon Sjostrom

    2005-12-30

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

  16. Selection of best impregnated palm shell activated carbon (PSAC) for simultaneous removal of SO2 and NOx.

    PubMed

    Sumathi, S; Bhatia, S; Lee, K T; Mohamed, A R

    2010-04-15

    This work examines the impregnated carbon-based sorbents for simultaneous removal of SO(2) and NOx from simulated flue gas. The carbon-based sorbents were prepared using palm shell activated carbon (PSAC) impregnated with several metal oxides (Ni, V, Fe and Ce). The removal of SO(2) and NOx from the simulated flue gas was investigated in a fixed-bed reactor. The results showed that PSAC impregnated with CeO(2) (PSAC-Ce) reported the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO(2) and NOx. PSAC-Ce showed the longest breakthrough time of 165 and 115 min for SO(2) and NOx, respectively. The properties of the pure and impregnated PSAC were analyzed by BET, FTIR and XRF. The physical-chemical features of the PSAC-Ce sorbent indicated a catalytic activity in both the sorption of SO(2) and NOx. The formation of both sulfate (SO(4)(2-)) and nitrate (NO(3-)) species on spent PSAC-Ce further prove the catalytic role played by CeO(2).

  17. Magnetic sorbents added to soil slurries lower Cr aqueous concentration

    NASA Astrophysics Data System (ADS)

    Aravantinos, Konstantinos; Isari, Ekavi; Karapanagioti, Hrissi K.; Manariotis, Ioannis D.; Werner, David

    2016-04-01

    Activated carbon (AC) acts as a strong binding agent that lowers the pollutant concentration and, thus its toxicity. Another promising sorbent material in environmental applications is biochar (BC) which is obtained from the incomplete combustion of carbon-rich biomass under oxygen-limited conditions. Both of these materials could be used as soil or sediment amendments that would lower the toxicity in the aqueous phase. A draw back of this technique is that although the pollutant will remain non- bioavailable for many years being sorbed into these sorbents, it actually stays into the system. The objective of this study was (a) to synthesize a magnetic powdered activated carbon (AC/Fe) and magnetic powdered biochar (BC/Fe) produced from a commercial AC sample and BC, respectively and (b) to evaluate the potential use of AC/Fe and BC/Fe to lower Cr concentration that desorb from two soils in their soil slurries. The two soil samples originate from the vicinity of a local metal shop. The BC was produced from olive pomace. The surface area, the pore volume, and the average pore size of each sorbent were determined using gas (N2) adsorption-desorption cycles and the Brunauer, Emmett, and Teller (BET) equation. Isotherms with 30 adsorption and 20 desorption points were conducted at liquid nitrogen temperature (77K). Open surface area and micropore volume were determined using t-plot method and Harkins & Jura equation. For both AC/Fe, surface area measurements resulted in 66% those of corresponding AC. For BC/Fe, the surface area was 82% that of BC. Our previous studies have shown that both AC/Fe and BC/Fe are effective sorbents for mercury in aqueous solutions but with lower sorption capacity compared to the initial materials (50-75% lower). Batch experiments with all sorbent samples and each soil were conducted at room temperature (25oC) in order to compare the sorption properties of the materials. The soil slurries demonstrated low Cr concentrations (10.9 and 14.6

  18. Carbon microbelt aerogel prepared by waste paper: an efficient and recyclable sorbent for oils and organic solvents.

    PubMed

    Bi, Hengchang; Huang, Xiao; Wu, Xing; Cao, Xiehong; Tan, Chaoliang; Yin, Zongyou; Lu, Xuehong; Sun, Litao; Zhang, Hua

    2014-09-10

    A carbon microbelt (CMB) aerogel with good selective sorption can be produced in large scale by using waste paper as a precursor. The CMB aerogel shows highly efficient sorption of organic liquids (pump oil: up to 188 times its own weight; chloroform: up to 151 times its own weight). Moreover, the CMB aerogel can be regenerated many times without decrease of sorption capacity by distillation, or squeezing depending on the type of pollutants.

  19. High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon.

    PubMed

    Luo, Xiaogang; Zhang, Lina

    2009-11-15

    Maghemite (gamma-Fe(2)O(3)) nanoparticles were created with a submerged circulation impinging stream reactor (SCISR) from FeCl(3) x 6H(2)O and FeCl(2).4H(2)O by using precipitation followed by oxidation. Subsequently, by blending cellulose with the Fe(2)O(3) nanoparticles and activated carbon (AC) in 7 wt% NaOH/12 wt% urea aqueous solution pre-cooled to -12 degrees C, millimeter-scale magnetic cellulose beads, coded as MCB-AC, was fabricated via an optimal dropping technology. The cellulose beads containning Fe(2)O(3) nanoparticles exhibited sensitive magnetic response, and their recovery could facilitate by applying a magnetic field. The adsorption and desorption of the organic dyes on MCB-AC were investigated to evaluate the removal of dyes (methyl orange and methylene blue) with different charges from aqueous solution. Their adsorption kinetics experiments were carried out and the data were well fitted by a pseudo-second-order equation. The results revealed that the MCB-AC sorbent could efficiently adsorb the organic dyes from wastewater, and the used sorbents could be recovered completely. Therefore, we developed a highly efficient sorbent, which were prepared by using simple and "green" process, for the applications on the removal of hazardous materials.

  20. Replacement of charcoal sorbent in the VOST

    SciTech Connect

    Johnson, L.D.; Fuerst, R.G.; Foster, A.L.; Bursey, J.T.

    1993-01-01

    EPA Method 0030, the Volatile Organic Sampling Train (VOST), for sampling volatile organics from stationary sources, specifies the use of petroleum-base charcoal in the second sorbent tube. Charcoal has proven to be a marginal performer as a sampling sorbent, partly due to inconsistency in analyte recovery. In addition, commercial availability of petroleum charcoal for VOST tubes has been variable. Lack of data on comparability and variability of charcoals for VOST application has created uncertainty when other charcoals are substituted. Five potential sorbent replacements for charcoal in Method 0030 were evaluated along with a reference charcoal. Two of the sorbents tested, Ambersorb XE-340 and Tenax GR, did not perform well enough to qualify as replacements. Three candidates, Anasorb 747, Carbosieve S-III and Kureha Beaded Activated Charcoal, performed adequately, and produced statistically equivalent results. Anasorb 747 appears to be an acceptable replacement for petroleum charcoal, based on a combination of performance, availability, and cost.

  1. Activated, coal-based carbon foam

    DOEpatents

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  2. Activated, coal-based carbon foam

    SciTech Connect

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2009-06-09

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  3. Kinetics of Mn-based sorbents for hot coal gas desulfurization. Quarterly progress report, September 15, 1995--December 15, 1995

    SciTech Connect

    Hepworth, M.T.; Berns, J.

    1995-12-15

    The Morgantown Energy Technology Center (METC) of the U.S. Department of Energy (DOE) is actively pursuing the development of reliable and cost-effective processes to clean coal gasifier gases for application to integrated gasification combined cycle (IGCC) and molten carbonate fuel cell (MCFC) power plants. A large portion of gas cleanup research has been directed towards hot gas desulfurization using Zn-based sorbents. However, zinc titanate sorbents undergo reduction to the metal at temperatures approaching 700{degrees}C and lose reactivity because of volatilization. In addition, sulfate formation during regeneration leads to spalling of reactive surfaces. Because of these problems with zinc-based sorbents, METC has shown interest in formulating and testing manganese-based sorbents. Currently, many proposed IGCC processes include a water quench prior to desulfurization. This quench is required for two reasons; limitations in the process hardware (1000{degrees}C), and excessive Zn-based sorbent loss (about 700{degrees}C). With manganese, the water quench is not necessary to avoid sorbent loss, since Mn-based sorbents have been shown to retain reactivity under cyclic testing at 900{degrees}C. This advantage of manganese over zinc has potential to increase thermal efficiency as the trade-off of increasing the equilibrium H{sub 2}S over-pressure obtainable with a manganese sorbent. In the work which is reported here, lower loading temperatures (as low as 400{degrees}C) are studied. Also formulations containing titania rather then alumina are studied to attempt to improve performance.

  4. Carbon coated titanium dioxide nanotubes: synthesis, characterization and potential application as sorbents in dispersive micro solid phase extraction.

    PubMed

    García-Valverde, M T; Lucena, R; Galán-Cano, F; Cárdenas, S; Valcárcel, M

    2014-05-23

    In this article, carbon coated titanium dioxide nanotubes (c-TNTs) have been synthesized. The synthesis of the bare TNTs (b-TNTs) using anatase as precursor and their coating with a caramel layer have been performed by simple and cheap hydrothermal processes. The final conversion of the caramel layer in a carbon coating has been accomplished by a thermal treatment (600°C) in an inert (Ar) atmosphere. The c-TNTs have been characterized by different techniques including transmission microscopy, infrared spectroscopy, X-ray powder diffraction, thermogravimetry and Brunauer, Emmett and Teller (BET) adsorption isotherms. The extraction performance of the c-TNTs under a microextraction format has been evaluated and compared with that provided by b-TNTs and multiwalled carbon nanotubes (MWCNTs) using naproxen and ketoprofen as model analytes. c-TNTs provided better results than the other nanoparticles, especially at low acidic pH values. In addition, c-TNTs presented a better dispersibility than MWCNTs, which is very interesting for their use in dispersive micro-solid phase extraction. Finally, a microextraction format, adapted to low sample volumes, has been proposed and applied for the determination of naproxen and ketoprofen in saliva and urine samples by liquid chromatography with UV detection. The results indicate that this approach is promising for the analysis of biological samples. In fact, the recoveries were in the range between 96% and 119% while the precision, expressed as relative standard deviation, was better than 8.5% and 26.3% for urine and saliva, respectively. The detection limits were in the range 34.1-40.8μg/L for saliva samples and 81.1-110μg/L for urine samples.

  5. Effect of cetyl trimethyl ammonium bromide concentration on structure, morphology and carbon dioxide adsorption capacity of calcium hydroxide based sorbents

    NASA Astrophysics Data System (ADS)

    Hlaing, Nwe Ni; Vignesh, K.; Sreekantan, Srimala; Pung, Swee-Yong; Hinode, Hirofumi; Kurniawan, Winarto; Othman, Radzali; Thant, Aye Aye; Mohamed, Abdul Rahman; Salim, Chris

    2016-02-01

    Calcium hydroxide (Ca(OH)2) has been proposed as an important material for industrial, architectural, and environmental applications. In this study, calcium acetate was used as a precursor and cetyl trimethyl ammonium bromide (CTAB) was used as a surfactant to synthesize Ca(OH)2 based adsorbents for carbon dioxide (CO2) capture. The effect of CTAB concentration (0.2-0.8 M) on the structure, morphology and CO2 adsorption performance of Ca(OH)2 was studied in detail. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), BET surfaced area and thermogravimetry-differential thermal analysis (TG-DTA) techniques. The phase purity, crystallite size, Brunauer-Emmett-Teller (BET) surface area and CO2 adsorption performance of Ca(OH)2 precursor adsorbents were significantly increased when the concentration of CTAB was increased. XRD results showed that pure Ca(OH)2 phase was obtained at the CTAB concentration of 0.8 M. TGA results exhibited that 0.8 M of CTAB-assisted Ca(OH)2 precursor adsorbent possessed a residual carbonation conversion of ∼56% after 10 cycles.

  6. Sorptive uptake of selenium with magnetite and its supported materials onto activated carbon.

    PubMed

    Kwon, Jae H; Wilson, Lee D; Sammynaiken, R

    2015-11-01

    Kinetic and equilibrium uptake studies of selenite in aqueous solution with synthetic magnetite (Mag-P), commercial magnetite (Mag-C), goethite, activated carbon (AC), and a composite material containing 19% magnetite supported on activated carbon (CM-19) were investigated. Kinetic uptake studies used a one-pot setup at pH 5.26 at variable temperature. Sampling of unbound selenite in-situ was achieved with analytical detection by atomic absorbance. The sorptive uptake at equilibrium and kinetic conditions are listed in descending order: goethite>Mag-P>Mag-C>CM-19. Kinetic uptake parameters reveal that Mag-P showed apparent negative values for the activation energy (E(a)) and the enthalpy of activation (ΔH(‡)), in agreement with a multi-step process for the kinetic uptake of selenite. By contrast, Mag-C, CM-19, and goethite showed positive values for E(a) and ΔH(‡). The uptake properties of the various sorbent materials with selenite are in accordance with the formation of inner- and out-sphere complexes. Leaching of iron from the composite material (CM-19) was attenuated due to the stabilizing effect of the magnetite within the pore sites and the surface of AC. Supported iron oxide nanomaterial composites represent a unique sorbent material with tunable uptake properties toward inorganic selenite in aqueous solution.

  7. Mycoextraction by Clitocybe maxima combined with metal immobilization by biochar and activated carbon in an aged soil.

    PubMed

    Wu, Bin; Cheng, Guanglei; Jiao, Kai; Shi, Wenjin; Wang, Can; Xu, Heng

    2016-08-15

    To develop an eco-friendly and efficient route to remediate soil highly polluted with heavy metals, the idea of mycoextraction combined with metal immobilization by carbonaceous sorbents (biochar and activated carbon) was investigated in this study. Results showed that the application of carbonaceous amendments decreased acid soluble Cd and Cu by 5.13-14.06% and 26.86-49.58%, respectively, whereas the reducible and oxidizable fractions increased significantly as the amount of carbonaceous amendments added increased. The biological activities (microbial biomass, soil enzyme activities) for treatments with carbonaceous sorbents were higher than those of samples without carbonaceous amendments. Clitocybe maxima (C. maxima) simultaneously increased soil enzyme activities and the total number of microbes. Biochar and activated carbon both showed a positive effect on C. maxima growth and metal accumulation. The mycoextraction efficiency of Cd and Cu in treatments with carbonaceous amendments enhanced by 25.64-153.85% and 15.18-107.22%, respectively, in response to that in non-treated soil, which showed positive correlation to the augment of biochar and activated carbon in soil. Therefore, this work suggested the effectiveness of mycoextraction by C. maxima combined the application of biochar and activated carbon in immobilising heavy metal in contaminated soil.

  8. Complete reaction mechanisms of mercury oxidation on halogenated activated carbon.

    PubMed

    Rungnim, Chompoonut; Promarak, Vinich; Hannongbua, Supa; Kungwan, Nawee; Namuangruk, Supawadee

    2016-06-01

    The reaction mechanisms of mercury (Hg) adsorption and oxidation on halogenated activated carbon (AC) have been completely studied for the first time using density functional theory (DFT) method. Two different halogenated AC models, namely X-AC and X-AC-X (X=Cl, Br, I), were adopted. The results revealed that HgX is found to be stable-state on the AC edge since its further desorption from the AC as HgX, or further oxidation to HgX2, are energetically unfavorable. Remarkably, the halide type does not significantly affect the Hg adsorption energy but it strongly affects the activation energy barrier of HgX formation, which obviously increases in the order HgIBr-AC>Cl-AC. Thus, the study of the complete reaction mechanism is essential because the adsorption energy can not be used as a guideline for the rational material design in the halide impregnated AC systems. The activation energy is an important descriptor for the predictions of sorbent reactivity to the Hg oxidation process. PMID:26943019

  9. Regenerable Sorbent for CO2 Removal

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Jayaraman, Ambal

    2013-01-01

    A durable, high-capacity regenerable sorbent can remove CO2 from the breathing loop under a Martian atmosphere. The system design allows near-ambient temperature operation, needs only a small temperature swing, and sorbent regeneration takes place at or above 8 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the breathing loop. The physical adsorbent can be used in a metabolic, heat-driven TSA system to remove CO2 from the breathing loop of the astronaut and reject it to the Martian atmosphere. Two (or more) alternating sorbent beds continuously scrub and reject CO2 from the spacesuit ventilation loop. The sorbent beds are cycled, alternately absorbing CO2 from the vent loop and rejecting the adsorbed material into the environment at a high CO2 partial pressure (above 8 torr). The system does not need to run the adsorber at cryogenic temperatures, and uses a much smaller temperature swing. The sorbent removes CO2 via a weak chemical interaction. The interaction is strong enough to enable CO2 adsorption even at 3 to 7.6 torr. However, because the interaction between the surface adsorption sites and the CO2 is relatively weak, the heat input needed to regenerate the sorbent is much lower than that for chemical absorbents. The sorbent developed in this project could potentially find use in a large commercial market in the removal of CO2 emissions from coal-fired power plants, if regulations are put in place to curb carbon emissions from power plants.

  10. Sorption of mercury onto waste material derived low-cost activated carbon

    NASA Astrophysics Data System (ADS)

    Bhakta, Jatindra N.; Rana, Sukanta; Lahiri, Susmita; Munekage, Yukihiro

    2014-11-01

    The present study was performed to develop the low-cost activated carbon (AC) from some waste materials as potential mercury (Hg) sorbent to remove high amount of Hg from aqueous phase. The ACs were prepared from banana peel, orange peel, cotton fiber and paper wastes by pyrolysis and characterized by analyzing physico-chemical properties and Hg sorption capacity. The Brunauer Emmett and Teller surface areas (cotton 138 m2/g; paper 119 m2/g), micropore surface areas (cotton 65 m2/g; paper 54 m2/g) and major constituent carbon contents (cotton 95.04 %; paper 94.4 %) were higher in ACs of cotton fiber and paper wastes than the rest two ACs. The Hg sorption capacities and removal percentages were greater in cotton and paper wastes-derived ACs compared to those of the banana and orange peels. The results revealed that elevated Hg removal ability of cotton and paper wastes-derived ACs is largely regulated by their surface area, porosity and carbon content properties. Therefore, ACs of cotton and paper wastes were identified as potential sorbent among four developed ACs to remove high amount of Hg from aqueous phase. Furthermore, easily accessible precursor material, simple preparation process, favorable physico-chemical properties and high Hg sorption capacity indicated that cotton and paper wastes-derived ACs could be used as potential and low-cost sorbents of Hg for applying in practical field to control the severe effect of Hg contamination in the aquatic environment to avoid its human and environmental health risks.

  11. A novel sorbent for transport reactors and fluidized bed reactors

    SciTech Connect

    Copeland, R.; Cesario, M.; Gershanovich, Y.; Sibold, J.; Windecker, B.

    1998-12-31

    Coal Fired Gasifier Combined Cycles (GCC) have both high efficiency and very low emissions. GCCs critically need a method of removing the H{sub 2}S produced from the sulfur in the coal from the hot gases. There has been extensive research on hot gas cleanup systems, focused on the use of a zinc oxide based sorbent (e.g., zinc titanate). TDA Research, Inc. (TDA) is developing a novel sorbent with improved attrition resistance for transport reactors and fluidized bed reactors. The authors are testing sorbents at conditions simulating the operating conditions of the Pinon Pine clean coal technology plant. TDA sulfided several different formulations at 538 C and found several that have high sulfur capacity when tested in a fluidized bed reactor. TDA initiated sorbent regeneration at 538 C. The sorbents retained chemical activity with multiple cycles. Additional tests will be conducted to evaluate the best sorbent formulation.

  12. Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture

    SciTech Connect

    Richardson, Carl; Steen, William; Triana, Eugenio; Machalek, Thomas; Davila, Jenny; Schmit, Claire; Wang, Andrew; Temple, Brian; Lu, Yongqi; Lu, Hong; Zhang, Luzheng; Ruhter, David; Rostam-Abadi, Massoud; Sayyah, Maryam; Ito, Brandon; Suslick, Kenneth

    2013-09-30

    This document summarizes the work performed on Cooperative Agreement DE-FE0000465, “Evaluation of Dry Sorbent Technology for Pre-Combustion CO{sub 2} Capture,” during the period of performance of January 1, 2010 through September 30, 2013. This project involves the development of a novel technology that combines a dry sorbent-based carbon capture process with the water-gas-shift reaction for separating CO{sub 2} from syngas. The project objectives were to model, develop, synthesize and screen sorbents for CO{sub 2} capture from gasified coal streams. The project was funded by the DOE National Energy Technology Laboratory with URS as the prime contractor. Illinois Clean Coal Institute and The University of Illinois Urbana-Champaign were project co-funders. The objectives of this project were to identify and evaluate sorbent materials and concepts that were suitable for capturing carbon dioxide (CO{sub 2}) from warm/hot water-gas-shift (WGS) systems under conditions that minimize energy penalties and provide continuous gas flow to advanced synthesis gas combustion and processing systems. Objectives included identifying and evaluating sorbents that efficiently capture CO{sub 2} from a gas stream containing CO{sub 2}, carbon monoxide (CO), and hydrogen (H{sub 2}) at temperatures as high as 650 °C and pressures of 400-600 psi. After capturing the CO{sub 2}, the sorbents would ideally be regenerated using steam, or other condensable purge vapors. Results from the adsorption and regeneration testing were used to determine an optimal design scheme for a sorbent enhanced water gas shift (SEWGS) process and evaluate the technical and economic viability of the dry sorbent approach for CO{sub 2} capture. Project work included computational modeling, which was performed to identify key sorbent properties for the SEWGS process. Thermodynamic modeling was used to identify optimal physical properties for sorbents and helped down-select from the universe of possible sorbent

  13. Polypyrrole-grafted peanut shell biological carbon as a potential sorbent for fluoride removal: Sorption capability and mechanism.

    PubMed

    Li, Chunlu; Chen, Nan; Zhao, Yanan; Li, Rui; Feng, Chuanping

    2016-11-01

    In this study, an effective defluoridation adsorbent was developed by depositing polypyrrole (PPy) on granular peanut shell biological carbon (BC) via in situ chemical oxidative polymerization. The variables of defluoridation process (i.e., adsorbent dosage, fluoride solution pH, and anionic interference) were tested. The mechanism was determined by isotherm and kinetic studies, Brunauer-Emmett-Teller (BET) method, scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy and automatic titration. The PPy-grafted BC (PPy/BC) composite performed commendably from pH 2.0 to 10.0, and exhibited high selectivity for fluoride in the presence of several co-existing anions. The experimental data were described well by a Langmuir isotherm curve, and the maximum adsorption capacity was 17.15 mg g(-1). Kinetic studies illustrated the adsorption process was accomplished via surface adsorption as well as by intraparticle diffusion. In addition, mesoporous diffusion was the rate-controlling step in intraparticle diffusion process. BET and SEM analysis revealed the sponge-like polymer adhered to the BC and plugged the pores. XPS, FTIR, and SEM confirmed that fluoride removal was accomplished via the replacement of doped ionizable chloride ions (Cl(-)) coupled with positively charged nitrogen (N(+)), computation of XPS data enabled the formulation of a three-layer-deep hypothesis for PPy. PMID:27521642

  14. A critical evaluation of magnetic activated carbon's potential for the remediation of sediment impacted by polycyclic aromatic hydrocarbons.

    PubMed

    Han, Zhantao; Sani, Badruddeen; Akkanen, Jarkko; Abel, Sebastian; Nybom, Inna; Karapanagioti, Hrissi K; Werner, David

    2015-04-01

    Addition of activated carbon (AC) or biochar (BC) to sediment to reduce the chemical and biological availability of organic contaminants is a promising in-situ remediation technology. But concerns about leaving the adsorbed pollutants in place motivate research into sorbent recovery methods. This study explores the use of magnetic sorbents. A coal-based magnetic activated carbon (MAC) was identified as the strongest of four AC and BC derived magnetic sorbents for polycyclic aromatic hydrocarbons (PAHs) remediation. An 8.1% MAC amendment (w/w, equal to 5% AC content) was found to be as effective as 5% (w/w) pristine AC in reducing aqueous PAHs within three months by 98%. MAC recovery from sediment after three months was 77%, and incomplete MAC recovery had both, positive and negative effects. A slight rebound of aqueous PAH concentrations was observed following the MAC recovery, but aqueous PAH concentrations then dropped again after six months, likely due to the presence of the 23% unrecovered MAC. On the other hand, the 77% recovery of the 8.1% MAC dose was insufficient to reduce ecotoxic effects of fine grained AC or MAC amendment on the egestion rate, growth and reproduction of the AC sensitive species Lumbriculus variegatus.

  15. Preconcentration of phenols by fibrous sorbents

    SciTech Connect

    Andreeva, I.Yu.; Kuvaldina, L.L.

    1995-01-01

    Phenols are among the most toxic contaminants of natural and waste waters. There are standard procedures for determining them in low concentrations. However, the samples cannot be preserved at phenol concentrations of 50 {mu}g/L or lower, and the determination of phenols must be performed no later than 2 h after sampling. This is not always possible. Because of this, the preconcentration of phenols at the site of sampling, followed by analysis of the concentrate in a stationary chemical laboratory after a time, is of interest. The technique of phenol preconcentration with active carbon, recommended in the standard procedure, is unsuitable for these purposes because the adsorption and desorption of phenols are too prolonged. At the same time, a fibrous carbon sorbent provides for a high rate of adsorption and desorption of some organic substances (humic acids, fulvic acids, and surfactants) it can be easily regenerated and repeatedly used. In this work, the authors investigated the possibility of using two fibers-namely, a carbon fiber and a polyethylene-polyamine-modified polyacrylonitrile-based fiber (PAN-PEA) containing amino groups with different numbers of substituents-for the preconcentration of phenols.

  16. High temperature sorbents for oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor)

    1994-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C comprising a porous alumina silicate support, such as zeolite, containing from 1 to 10 percent by weight of ion exchanged transition metal, such as copper or cobalt ions, and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum is described. The activation temperature, oxygen sorption, and reducibility are all improved by the presence of the platinum activator.

  17. Adsorption of herbicides using activated carbons

    SciTech Connect

    Derbyshire, F.; Jagtoyan, M.; Lafferty, C.; Kimber, G.

    1996-10-01

    This work describes development of a series of novel activated carbon materials and their testing for possible water treatment applications by studying the adsorption of sodium pentachlorphenolate, PCP (a common herbicide/wood preservative). Although the application of activated carbons is an established technology for the treatment of public water supplies, there is a growing need for materials with higher selectivity and adsorptive capacities as well as high abrasion resistance. The materials that will be discussed include extruded wood-derived carbons with novel pore size distributions and high hardness, as well as activated carbon fiber composites. Comparisons will be made with commercial granular water treatment carbons.

  18. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1987-10-27

    AMAX Research Development Center (AMAX R D) has been investigating methods for improving the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hog coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. The reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point in a bench-scale fixed-bed reactor. The durability may be defined as the ability of the sorbent to maintain its reactivity and other important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and regeneration. Two base case sorbents, spherical pellets and cylindrical extrudes used in related METC sponsored projects, are being used to provide a basis for the comparison of physical characteristics and chemical reactivity.

  19. Application of sulfur impregnated activated carbons for the control of mercury emissions

    SciTech Connect

    Vidic, R.D.; Liu, W.; Brown, T.D.

    1998-12-31

    The dynamics of granular activated carbon (GAC) adsorbers for the uptake of vapor-phase mercury was evaluated as a function of temperature, influent mercury concentration, and empty bed contact time. Sulfur-impregnated carbons exhibited enhanced mercury removal efficiency over virgin carbon due to formation of mercuric sulfide on the carbon surface. The effect of the sulfur impregnation method on mercury removal efficiency was examined through experiments conducted on commercially available sulfur-impregnated carbon (HGR) and carbon impregnated with sulfur in the laboratory (BPL-S). Although HGR and BPL-S possess similar sulfur contents, BPL-S is impregnated at a higher temperature which promotes a more uniform distribution of sulfur in the GAC pore structure. At low influent mercury concentrations and low temperatures, HGR and BPL-S performed similarly in the removal of mercury vapor. However, as the temperature was increased above the melting point of sulfur, the performance of HGR deteriorated significantly, while the performance of BPL-S slightly improved. For both HGR and BPL-S, the observed dynamic mercury adsorptive capacities were far below the capacities predicted by the stoichiometry of mercuric sulfide formation. In HGR carbon the sulfur is very accessible, but agglomeration which occurs at high temperatures causes the sulfur to become relatively unreactive. In BPL-S carbon, on the other hand, the sulfur remains in a highly reactive form, but its location deep in the internal pores makes it relatively inaccessible and susceptible to blockage by HgS formation. Impregnation temperature and the initial sulfur to carbon ratio (SCR) during the impregnation are the two key control parameters for the preparation of these new (BPL-S) sorbents. Higher impregnation temperatures can significantly enhance mercury removal capacity for adsorbents derived either from virgin or re-generated activated carbons. Large fraction of active sulfur atoms that are created at

  20. SORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBONS

    EPA Science Inventory

    The mechanisms and rate of elemental mercury (HgO) capture by activated carbons have been studied using a bench-scale apparatus. Three types of activated carbons, two of which are thermally activated (PC-100 and FGD) and one with elemental sulfur (S) impregnated in it (HGR), were...

  1. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect

    Sharon Sjostrom

    2004-10-29

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The overall objective of the test program described in this quarterly report is to evaluate the capabilities of activated carbon injection at four plants with configurations that together represent 78% of the existing coal-fired generation plants. This technology was successfully evaluated in NETL's Phase I tests at scales up to 150 MW, on plants burning subbituminous and bituminous coals and with ESPs and fabric filters. The tests also identified issues that still need to be addressed, such as evaluating performance on other configurations, optimizing sorbent usage (costs), and gathering longer-term operating data to address concerns about the impact of activated carbon on plant equipment and operations. The four sites identified for testing are Sunflower Electric's Holcomb Station, AmerenUE's Meramec Station, AEP's Conesville Station, and a site burning a blend of bituminous and subbituminous coals with a cold-side ESP. This is the fourth quarterly report for this project. Long-term testing was completed at Holcomb during this reporting period and baseline testing at Meramec was begun. Preliminary results from long-term testing at Holcomb are included in this report. Planning information for the other three sites is also included. In general, quarterly reports will be used

  2. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect

    Sharon Sjostrom

    2005-02-02

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The overall objective of the test program described in this quarterly report is to evaluate the capabilities of activated carbon injection at five plants with configurations that together represent 78% of the existing coal-fired generation plants. This technology was successfully evaluated in NETL's Phase I tests at scales up to 150 MW, on plants burning subbituminous and bituminous coals and with ESPs and fabric filters. The tests also identified issues that still need to be addressed, such as evaluating performance on other configurations, optimizing sorbent usage (costs), and gathering longer-term operating data to address concerns about the impact of activated carbon on plant equipment and operations. The four sites identified for testing are Sunflower Electric's Holcomb Station, AmerenUE's Meramec Station, AEP's Conesville Station, and Detroit Edison's Monroe Power Plant. In addition to tests identified for the four main sites, parametric testing at Missouri Basin Power Project's Laramie River Station Unit 3 has been scheduled and made possible through additional costshare participation targeted by team members specifically for tests at Holcomb or a similar plant. This is the fifth quarterly report for this project. Long-term testing was completed at Meramec during this

  3. Adsorption of perfluoroalkyl acids by carbonaceous adsorbents: Effect of carbon surface chemistry.

    PubMed

    Zhi, Yue; Liu, Jinxia

    2015-07-01

    Adsorption by carbonaceous sorbents is among the most feasible processes to remove perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) from drinking and ground waters. However, carbon surface chemistry, which has long been recognized essential for dictating performance of such sorbents, has never been considered for PFOS and PFOA adsorption. Thus, the role of surface chemistry was systematically investigated using sorbents with a wide range in precursor material, pore structure, and surface chemistry. Sorbent surface chemistry overwhelmed physical properties in controlling the extent of uptake. The adsorption affinity was positively correlated carbon surface basicity, suggesting that high acid neutralizing or anion exchange capacity was critical for substantial uptake of PFOS and PFOA. Carbon polarity or hydrophobicity had insignificant impact on the extent of adsorption. Synthetic polymer-based Ambersorb and activated carbon fibers were more effective than activated carbon made of natural materials in removing PFOS and PFOA from aqueous solutions.

  4. Biochar: a green sorbent to sequester acidic organic contaminants

    NASA Astrophysics Data System (ADS)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2015-04-01

    Biochar is a carbon rich product of biomass pyrolysis that exhibits a high sorption potential towards a wide variety of inorganic and organic contaminants. Because it is a valuable soil additive and a potential carbon sink that can be produced from renewable resources, biochar has gained growing attention for the development of more sustainable remediation strategies. A lot of research efforts have been dedicated to the sorption of hydrophobic contaminants and metals to biochar. Conversely, the understanding of the sorption of acidic organic contaminants remains limited, and questions remain on the influence of biochar characteristics (e.g. ash content) on the sorption behaviour of acidic organic contaminants. To address this knowledge gap, sorption batch experiments were conducted with a series of structurally similar acidic organic contaminants covering a range of dissociation constant (2,4-D, MCPA, 2,4-DB and triclosan). The sorbents selected for experimentation included a series of 10 biochars covering a range of characteristics, multiwalled carbon nanotubes as model for pure carbonaceous phases, and an activated carbon as benchmark. Overall, sorption coefficient [L/kg] covered six orders of magnitude and generally followed the order 2,4-D < MCPA < 2,4-DB < triclosan. Combining comprehensive characterization of the sorbents with the sorption dataset allowed the discussion of sorption mechanisms and driving factors of sorption. Statistical analysis suggests that (i) partitioning was the main driver for sorption to sorbents with small specific surface area (< 25 m²/g), whereas (ii) specific mechanisms dominated sorption to sorbents with larger specific surface area. Results showed that factors usually not considered for the sorption of neutral contaminants play an important role for the sorption of organic acids. The pH dependent lipophilicity ratio (i.e. D instead of Kow), ash content and ionic strength are key factors influencing the sorption of acidic organic

  5. Studies of the regeneration of activated bauxite used as granular sorbent for the control of alkali vapors from hot flue gas of coal combustion

    SciTech Connect

    Lee, S H.D.; Smith, S D; Swift, W M; Johnson, I

    1981-05-01

    Regeneration of activated bauxite was studied by water-leaching and thermal swing (high-temperature desorption) methods. Granular activated bauxite has been identified to be very effective when used as a filter medium (i.e., sorbent) in granular-bed filters to remove gaseous alkali metal compounds from simulated hot flue gas of PFBC. Activated bauxite that had captured alkali chloride vapors was demonstrated to be easily and effectively regenerated for reuse by a simple water-leaching method. Data were obtained on (1) the leaching rate of the adsorbed NaCl, (2) effects on the leaching rate of adsorbed NaCl loading, leaching temperature, and the amount of water, and (3) water retention in activated bauxite after leaching. Observed physical changes and particle attrition of activated bauxite as a result of regeneration are discussed. The sorption mechanisms of activated bauxite toward alkali chloride vapors are interpreted on the basis of (1) the chemical compositions of the leachates from alkali chloride-sorbed activated bauxite and (2) the desorption of adsorbed NaCl vapor from activated bauxite at high temperature.

  6. [Study on influence between activated carbon property and immobilized biological activated carbon purification effect].

    PubMed

    Wang, Guang-zhi; Li, Wei-guang; He, Wen-jie; Han, Hong-da; Ding, Chi; Ma, Xiao-na; Qu, Yan-ming

    2006-10-01

    By means of immobilizing five kinds of activated carbon, we studied the influence between the chief activated carbon property items and immobilized bioactivated carbon (IBAC) purification effect with the correlation analysis. The result shows that the activated carbon property items which the correlation coefficient is up 0.7 include molasses, abrasion number, hardness, tannin, uniform coefficient, mean particle diameter and effective particle diameter; the activated carbon property items which the correlation coefficient is up 0.5 include pH, iodine, butane and tetrachloride. In succession, the partial correlation analysis shows that activated carbon property items mostly influencing on IBAC purification effect include molasses, hardness, abrasion number, uniform coefficient, mean particle diameter and effective particle diameter. The causation of these property items bringing influence on IBAC purification is that the activated carbon holes distribution (representative activated carbon property item is molasses) provides inhabitable location and adjust food for the dominance bacteria; the mechanical resist-crash property of activated carbon (representative activated carbon property items: abrasion number and hardness) have influence on the stability of biofilm; and the particle diameter size and distribution of activated carbon (representative activated carbon property items: uniform coefficient, mean particle diameter and effective particle diameter) can directly affect the force of water in IBAC filter bed, which brings influence on the dominance bacteria immobilizing on activated carbon.

  7. Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant

    SciTech Connect

    Yan Liu; David J.A. Kelly; Hongqun Yang; Christopher C.H. Lin; Steve M. Kuznicki; Zhenghe Xu

    2008-08-15

    A natural chabazite-based silver nanocomposite (AgMC) was synthesized to capture mercury from flue gases of coal-fired power plants. Silver nanoparticles were engineered on zeolite through ion-exchange of sodium ions with silver ions, followed by thermal annealing. Mercury sorption test using AgMC was performed at various temperatures by exposing it to either pulse injection of mercury or continuous mercury flow. A complete capture of mercury by AgMC was achieved up to a capture temperature of 250{sup o}C. Nano silver particles were shown to be the main active component for mercury capture by amalgamation mechanism. Compared with activated carbon-based sorbents, the sorbent prepared in this study showed a much higher mercury capture capacity and upper temperature limit for mercury capture. More importantly, the mercury captured by the spent AgMC could be easily released for safe disposal and the sorbent regenerated by simple heating at 400{sup o}C. Mercury capture tests performed in real flue gas environment showed a much higher level of mercury capture by AgMC than by other potential mercury sorbents tested. In our mercury capture tests, the AgMC exposed to real flue gases showed an increased mercury capture efficiency than the fresh AgMC. 38 refs., 6 figs.

  8. Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant.

    PubMed

    Liu, Yan; Kelly, David J A; Yang, Hongqun; Lin, Christopher C H; Kuznicki, Steve M; Xu, Zhenghe

    2008-08-15

    A natural chabazite-based silver nanocomposite (AgMC) was synthesized to capture mercury from flue gases of coal-fired power plants. Silver nanoparticles were engineered on zeolite through ion-exchange of sodium ions with silver ions, followed by thermal annealing. Mercury sorption test using AgMC was performed at various temperatures by exposing it to either pulse injection of mercury or continuous mercury flow. A complete capture of mercury by AgMC was achieved up to a capture temperature of 250 degrees C. Nano silver particles were shown to be the main active component for mercury capture by amalgamation mechanism. Compared with activated carbon-based sorbents, the sorbent prepared in this study showed a much higher mercury capture capacity and upper temperature limit for mercury capture. More importantly, the mercury captured by the spent AgMC could be easily released for safe disposal and the sorbent regenerated by simple heating at 400 degrees C. Mercury capture tests performed in real flue gas environment showed a much higher level of mercury capture by AgMC than by other potential mercury sorbents tested. In our mercury capture tests, the AgMC exposed to real flue gases showed an increased mercury capture efficiency than the fresh AgMC.

  9. Functionalized sorbent for chemical separations and sequential forming process

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.

    2012-03-20

    A highly functionalized sorbent and sequential process for making are disclosed. The sorbent includes organic short-length amino silanes and organic oligomeric polyfunctional amino silanes that are dispersed within pores of a porous support that form a 3-dimensional structure containing highly functionalized active binding sites for sorption of analytes.

  10. Studies of in-situ calcium based sorbents in advanced pressurized coal conversion systems. Final report, June 1991--October 1994

    SciTech Connect

    Katta, S.; Shires, P.J.; Campbell, W.M.; Henningsen, G.

    1994-10-01

    The overall objective of this project was to obtain experimental data on the reactions of calcium-based sorbents in both air-blown coal gasification systems and second generation fluid bed coal combustion systems (partial gasification) as well as stabilization of the spent sorbent produced. The project consisted of six tasks: Tasks 1 and 2 dealt mostly with project-related activities and preparation of test equipment, Task 3 -- study on sulfidation of calcium-based sorbents, Task 4 -- kinetic studies on calcium-catalyzed carbon gasification reactions, and Task 5 -- oxidation of CaS present in LASHs and DASHs (mixtures of coal ash and limestone or dolomite respectively) to CaSO{sub 4} and absorption of SO{sub 2} on various solids, and Task 6 -- economic evaluation of the most promising CaS oxidation method developed under this program. Experimental studies were conducted primarily to address Task 5 issues, and are discussed in this report.

  11. Biological responses to activated carbon amendments in sediment remediation.

    PubMed

    Janssen, Elisabeth M-L; Beckingham, Barbara A

    2013-07-16

    Sorbent amendment with activated carbon (AC) is a novel in situ management strategy for addressing human and ecological health risks posed by hydrophobic organic chemicals (HOCs) in sediments and soils. A large body of literature shows that AC amendments can reduce bioavailability of sediment-associated HOCs by more than 60-90%. Empirically derived biodynamic models can predict bioaccumulation in benthic invertebrates within a factor of 2, allowing for future scenarios under AC amendment to be estimated. Higher AC dose and smaller AC particle size further reduce bioaccumulation of HOCs but may induce stress in some organisms. Adverse ecotoxicity response to AC exposure was observed in one-fifth of 82 tests, including changes in growth, lipid content, behavior, and survival. Negative effects on individual species and benthic communities appear to depend on the characteristics of the sedimentary environment and the AC amendment strategy (e.g., dose and particle size). More research is needed to evaluate reproductive end points, bacterial communities, and plants, and to link species- and community-level responses to amendment. In general, the ability of AC to effectively limit the mobility of HOCs in aquatic environments may outshine potential negative secondary effects, and these outcomes must be held in comparison to traditional remediation approaches.

  12. Fly ash properties and mercury sorbent affect mercury release from curing concrete

    SciTech Connect

    Danold W. Golightly; Chin-Min Cheng; Linda K. Weavers; Harold W. Walker; William E. Wolfe

    2009-04-15

    The release of mercury from concrete containing fly ashes from various generator boilers and powdered activated carbon sorbent used to capture mercury was measured in laboratory experiments. Release of gaseous mercury from these concretes was less than 0.31% of the total quantity of mercury present. The observed gaseous emissions of mercury during the curing process demonstrated a dependency on the organic carbon content of the fly ash, with mercury release decreasing with increasing carbon content. Further, lower gaseous emissions of mercury were observed for concretes incorporating ash containing activated carbon sorbent than would be expected based on the observed association with organic carbon, suggesting that the powdered activated carbon more tightly binds the mercury as compared to unburned carbon in the ash. Following the initial 28-day curing interval, mercury release diminished with time. In separate leaching experiments, average mercury concentrations leached from fly ash concretes were less than 4.1 ng/L after 18 h and 7 days, demonstrating that less than 0.02% of the mercury was released during leaching. 25 refs., 4 figs., 5 tabs.

  13. Preparation of activated carbon by chemical activation under vacuum.

    PubMed

    Juan, Yang; Ke-Qiang, Qiu

    2009-05-01

    Activated carbons especially used for gaseous adsorption were prepared from Chinesefir sawdust by zinc chloride activation under vacuum condition. The micropore structure, adsorption properties, and surface morphology of activated carbons obtained under atmosphere and vacuum were investigated. The prepared activated carbons were characterized by SEM, FTIR, and nitrogen adsorption. It was found that the structure of the starting material is kept after activation. The activated carbon prepared under vacuum exhibited higher values of the BET surface area (up to 1079 m2 g(-1)) and total pore volume (up to 0.5665 cm3 g(-1)) than those of the activated carbon obtained under atmosphere. This was attributed to the effect of vacuum condition that reduces oxygen in the system and limits the secondary reaction of the organic vapor. The prepared activated carbon has well-developed microstructure and high microporosity. According to the data obtained, Chinese fir sawdust is a suitable precursor for activated carbon preparation. The obtained activated carbon could be used as a low-cost adsorbent with favorable surface properties. Compared with the traditional chemical activation, vacuum condition demands less energy consumption, simultaneity, and biomass-oil is collected in the procedure more conveniently. FTIR analysis showed that heat treatment would result in the aromatization of the carbon structure. PMID:19534162

  14. Zinc titanate sorbents

    DOEpatents

    Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.

    1998-01-01

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750.degree. C. to about 950.degree. C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 .mu., and about 1 part titanium dioxide having a median particle size of less than about 1 .mu.. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  15. Zinc titanate sorbents

    DOEpatents

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1998-02-03

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750 to about 950 C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 microns, and about 1 part titanium dioxide having a median particle size of less than about 1 micron. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  16. Space-filling polyhedral sorbents

    DOEpatents

    Haaland, Peter

    2016-06-21

    Solid sorbents, systems, and methods for pumping, storage, and purification of gases are disclosed. They derive from the dynamics of porous and free convection for specific gas/sorbent combinations and use space filling polyhedral microliths with facial aplanarities to produce sorbent arrays with interpenetrating interstitial manifolds of voids.

  17. Sorption of boron trifluoride by activated carbons

    SciTech Connect

    Polevoi, A.S.; Petrenko, A.E.

    1988-01-10

    The sorption of born trifluoride on AG-3, SKT, SKT-3, SKT-7, SKT-4A, SKT-6A, and SKT-2B carbons was investigated. The sorption isotherms for both vapors and gas were determined volumetrically. The coefficients of two equations described the sorption of BF/sub 3/ in the sorption of BF/sub 3/ on active carbons. Heats of sorption of BF/sub 3/ on the activated carbons are shown and the sorption isotherms and temperature dependences of the equilibrium pressure of BF/sub 3/ for activated carbons were presented. The values of the heats of sorption indicated the weak character of the reaction of BF/sub 3/ with the surface of the carbons. The equations can be used for calculating the phase equilibrium of BF/sub 3/ on carbons in a wider range of temperatures and pressures.

  18. Effectiveness of activated carbon and biochar in reducing the availability of polychlorinated dibenzo-p-dioxins/dibenzofurans in soils.

    PubMed

    Chai, Yunzhou; Currie, Rebecca J; Davis, John W; Wilken, Michael; Martin, Greg D; Fishman, Vyacheslav N; Ghosh, Upal

    2012-01-17

    Five activated carbons (ACs) and two biochars were tested as amendments to reduce the availability of aged polychlorinated dibenzo-p-dioxin/dibenzofurans (PCDD/Fs) in two soils. All sorbents (ACs and biochars) tested substantially reduced the availability of PCDD/Fs measured by polyoxymethylene (POM) passive uptake and earthworm (E. fetida) biouptake. Seven sorbents amended at a level of 0.2 × soil total organic carbon (0.2X) reduced the passive uptake (physicochemical availability) of total PCDD/Fs in POM by 40% to 92% (or toxic equivalent by 48% to 99%). Sorbents with finer particle sizes or more macropores showed higher reduction efficiencies. The powdered regenerated AC and powdered coconut AC demonstrated to be the most effective and the two biochars also performed reasonably well especially in the powdered form. The passive uptake of PCDD/F in POM increased approximately 4 to 5 fold as the contact time between POM and soil slurry increased from 24 to 120 d while the efficacy of ACs in reducing the physicochemical availability remained unchanged. The reduction efficiencies measured by POM passive uptake for the regenerated AC were comparable to those measured by earthworm biouptake (bioavailability) at both dose levels of 0.2X and 0.5X. The biota-soil accumulation factor (BSAF) values for unamended soil ranged from 0.1 for tetra-CDD/F to 0.02 for octa-CDD/F. At both dose levels, the regenerated AC reduced the BSAFs to below 0.03 with the exception of two hexa-CDD/Fs. The reduction efficiencies measured by earthworm for coconut AC and corn stover biochar were generally less than those measured by POM probably due to larger particle sizes of these sorbents that could not be ingested by the worms. PMID:22136630

  19. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    SciTech Connect

    Abdullah, N.; Muhammad, I. S.; Hamid, S. B. Abd.; Rinaldi, A.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300 deg. C for an hour in each step. The catalytic growth of nanocarbon in C{sub 2}H{sub 4}/H{sub 2} was carried out at temperature of 550 deg. C for 2 hrs with different rotating angle in the fluidization system. SEM and N{sub 2} isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  20. ASSESSMENT OF LOW COST NOVEL SORBENTS FOR COAL-FIRED POWER PLANT MERCURY CONTROL

    SciTech Connect

    Trevor Ley

    2004-01-01

    This is a Technical Report under a program funded by the Department of Energy's National Energy Technology Laboratory (NETL) to obtain the necessary information to assess the viability of lower cost alternatives to commercially available activated carbon for mercury control in coal-fired utilities. Novel sorbent evaluations at We Energies' Pleasant Prairie Power Plant (P4) Unit 1 (no SCR in place) have been completed. Nineteen sorbents were evaluated for mercury control. A batch injection rate of 1 lb/Mmacf for 1 hour was conducted for screening purposes at a temperature of 300 F. Four sorbents were further evaluated at three injection rates and two temperatures. The multi-pollutant control test system (PoCT) was installed on P4's Unit 2 (with an SCR) and sorbent evaluations are continuing. Evaluations will continue through the end of January 2004. Tests and analysis on samples from Powerton and Valley to yield waste characterization results for the COHPAC long-term tests are continuing. A no-cost time extension for work to be completed by March 31, 2004 was granted by DOE/NETL.

  1. Making Activated Carbon by Wet Pressurized Pyrolysis

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Pisharody, Suresh; Wignarajah, K.; Moran, Mark

    2006-01-01

    A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams. Activated carbon is highly porous and has a large surface area. The surface area depends strongly on the raw material and the production process. Coconut shells and bituminous coal are the primary raw materials that, until now, were converted into activated carbon of commercially acceptable quality by use of traditional production processes that involve activation by use of steam or carbon dioxide. In the wet pressurized pyrolysis process, the plant material is subjected to high pressure and temperature in an aqueous medium in the absence of oxygen for a specified amount of time to break carbon-oxygen bonds in the organic material and modify the structure of the material to obtain large surface area. Plant materials that have been used in demonstrations of the process include inedible parts of wheat, rice, potato, soybean, and tomato plants. The raw plant material is ground and mixed with a specified proportion of water. The mixture is placed in a stirred autoclave, wherein it is pyrolized at a temperature between 450 and 590 F (approximately between 230 and 310 C) and a pressure between 1 and 1.4 kpsi (approximately between 7 and 10 MPa) for a time between 5 minutes and 1 hour. The solid fraction remaining after wet carbonization is dried, then activated at a temperature of 500 F (260 C) in nitrogen gas. The activated carbon thus produced is comparable to commercial activated carbon. It can be used to adsorb oxides of sulfur, oxides of nitrogen, and trace amounts of hydrocarbons, any or all of which can be present in flue gas. Alternatively, the dried solid fraction can be used, even without the activation treatment, to absorb

  2. The ADESORB Process for Economical Production of Sorbents for Mercury Removal from Coal Fired Power Plants

    SciTech Connect

    Robin Stewart

    2008-03-12

    The DOE's National Energy Technology Laboratory (NETL) currently manages the largest research program in the country for controlling coal-based mercury emissions. NETL has shown through various field test programs that the determination of cost-effective mercury control strategies is complex and highly coal- and plant-specific. However, one particular technology has the potential for widespread application: the injection of activated carbon upstream of either an electrostatic precipitator (ESP) or a fabric filter baghouse. This technology has potential application to the control of mercury emissions on all coal-fired power plants, even those with wet and dry scrubbers. This is a low capital cost technology in which the largest cost element is the cost of sorbents. Therefore, the obvious solutions for reducing the costs of mercury control must focus on either reducing the amount of sorbent needed or decreasing the cost of sorbent production. NETL has researched the economics and performance of novel sorbents and determined that there are alternatives to the commercial standard (NORIT DARCO{reg_sign} Hg) and that this is an area where significant technical improvements can still be made. In addition, a key barrier to the application of sorbent injection technology to the power industry is the availability of activated carbon production. Currently, about 450 million pounds ($250 million per year) of activated carbon is produced and used in the U.S. each year - primarily for purification of drinking water, food, and beverages. If activated carbon technology were to be applied to all 1,100 power plants, EPA and DOE estimate that it would require an additional $1-$2 billion per year, which would require increasing current capacity by a factor of two to eight. A new facility to produce activated carbon would cost approximately $250 million, would increase current U.S. production by nearly 25%, and could take four to five years to build. This means that there could be

  3. Regenerable sorbent technique for capturing CO.sub.2 using immobilized amine sorbents

    DOEpatents

    Pennline, Henry W; Hoffman, James S; Gray, McMahan L; Fauth, Daniel J; Resnik, Kevin P

    2013-08-06

    The disclosure provides a CO.sub.2 absorption method using an amine-based solid sorbent for the removal of carbon dioxide from a gas stream. The method disclosed mitigates the impact of water loading on regeneration by utilizing a conditioner following the steam regeneration process, providing for a water loading on the amine-based solid sorbent following CO.sub.2 absorption substantially equivalent to the moisture loading of the regeneration process. This assists in optimizing the CO.sub.2 removal capacity of the amine-based solid sorbent for a given absorption and regeneration reactor size. Management of the water loading in this manner allows regeneration reactor operation with significant mitigation of energy losses incurred by the necessary desorption of adsorbed water.

  4. Inorganic ion sorbent method

    DOEpatents

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.

    2007-07-17

    A process and medium for decontamination of water containing anionic species including arsenic and chromium, wherein compounds comprising divalent and trivalent metal oxides and sulfides are used to form surface complexes with contaminants under pH conditions within the range of potable water. In one embodiment natural and synthetic spinels and spinel-like materials are used as the sorbent substance.

  5. Inorganic ion sorbents

    DOEpatents

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.

    2006-10-17

    A process and medium for decontamination of water containing anionic species including arsenic and chromium, wherein compounds comprising divalent and trivalent metal oxides and sulfides are used to form surface complexes with contaminants under pH conditions within the range of potable water. In one embodiment natural and synthetic spinels and spinel-like materials are used as the sorbent substance.

  6. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect

    Sharon Sjostrom

    2006-04-30

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at DTE Energy's Monroe Power Plant, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program was to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000/lb mercury removed. The results from Monroe indicate that using DARCO{reg_sign} Hg would result in higher mercury removal (80%) at a sorbent cost of $18,000/lb mercury, or 70% lower than the benchmark. These results demonstrate that the goals established by DOE/NETL were exceeded during this test program. The increase in mercury removal over baseline conditions is defined for this program as a comparison in the outlet emissions measured using the Ontario Hydro method during the baseline and long-term test periods

  7. Solid-phase extraction of galloyl- and caffeoylquinic acids from natural sources (Galphimia glauca and Arnicae flos) using pure zirconium silicate and bismuth citrate powders as sorbents inside micro spin columns.

    PubMed

    Hussain, Shah; Schönbichler, Stefan A; Güzel, Yüksel; Sonderegger, Harald; Abel, Gudrun; Rainer, Matthias; Huck, Christian W; Bonn, Günther K

    2013-10-01

    Galloyl- and caffeoylquinic acids are among the most important pharmacological active groups of natural compounds. This study describes a pre-step in isolation of some selected representatives of these groups from biological samples. A selective solid-phase extraction (SPE) method for these compounds may help assign classes and isomer designations within complex mixtures. Pure zirconium silicate and bismuth citrate powders (325 mesh) were employed as two new sorbents for optimized SPE of phenolic acids. These sorbents possess electrostatic interaction sites which accounts for additional interactions for carbon acid moieties as compared to hydrophilic and hydrophobic sorbents alone. Based on this principle, a selective SPE method for 1,3,4,5-tetragalloylquinic acid (an anti-HIV and anti-asthamatic agent) as a starting compound was developed and then deployed upon other phenolic acids with success. The recoveries and selectivities of both sorbents were compared to most commonly applied and commercially available sorbents by using high performance liquid chromatography. The nature of interaction between the carrier sorbent and the acidic target molecules was investigated by studying hydrophilic (silica), hydrophobic (C18), mixed-mode (ionic and hydrophobic: Oasis(®) MAX) and predominantly electrostatic (zirconium silicate) materials. The newly developed zirconium silicate and bismuth citrate stationary phases revealed promising results for the selective extraction of galloyl- and caffeoylquinic acids from natural sources. It was observed that zirconium silicate exhibited maximum recovery and selectivity for tetragalloylquinic acid (84%), chlorogenic acid (82%) and dicaffeoylquinic acid (94%) among all the tested sorbents.

  8. Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas

    SciTech Connect

    Carl Richardson; Katherine Dombrowski; Douglas Orr

    2006-12-31

    the performance of low-cost activated carbon sorbents for removing mercury. In addition, the effects of the dual flue gas conditioning system on mercury removal performance were evaluated as part of short-term parametric tests on Unit 2. Based on the parametric test results, a single sorbent (e.g., RWE Super HOK) was selected for a 30-day continuous injection test on Unit 1 to observe long-term performance of the sorbent as well as its effects on ESP and FGD system operations as well as combustion byproduct properties. A series of parametric tests were also performed on Shawville Unit 3 over a three-week period in which several activated carbon sorbents were injected into the flue gas duct just upstream of either of the two Unit 3 ESP units. Three different sorbents were evaluated in the parametric test program for the combined ESP 1/ESP 2 system in which sorbents were injected upstream of ESP 1: RWE Super HOK, Norit's DARCO Hg, and a 62:38 wt% hydrated lime/DARCO Hg premixed reagent. Five different sorbents were evaluated for the ESP 2 system in which activated carbons were injected upstream of ESP 2: RWE Super HOK and coarse-ground HOK, Norit's DARCO Hg and DARCO Hg-LH, and DARCO Hg with lime injection upstream of ESP 1. The hydrated lime tests were conducted to reduce SO3 levels in an attempt to enhance the mercury removal performance of the activated carbon sorbents. The Plant Yates and Shawville studies provided data required for assessing carbon performance and long-term operational impacts for flue gas mercury control across small-sized ESPs, as well as for estimating the costs of full-scale sorbent injection processes.

  9. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Volume 2, Single particle kinetic studies of sulfidation and regeneration reactions of candidate zinc ferrite sorbents

    SciTech Connect

    Silaban, A.; Harrison, D.P.

    1989-05-02

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  10. The transport properties of activated carbon fibers

    SciTech Connect

    di Vittorio, S.L. . Dept. of Materials Science and Engineering); Dresselhaus, M.S. . Dept. of Electrical Engineering and Computer Science Massachusetts Inst. of Tech., Cambridge, MA . Dept. of Physics); Endo, M. . Dept. of Electrical Engineering); Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons. 19 refs., 4 figs.

  11. The Transport Properties of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  12. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    SciTech Connect

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  13. Regenerable Fe-Mn-ZnO/SiO2 sorbents for room temperature removal of H2S from fuel reformates: performance, active sites, Operando studies.

    PubMed

    Dhage, Priyanka; Samokhvalov, Alexander; Repala, Divya; Duin, Evert C; Tatarchuk, Bruce J

    2011-02-14

    Fe- and Mn-promoted H(2)S sorbents Fe(x)-Mn(y)-Zn(1-x-y)O/SiO(2) (x, y = 0, 0.025) for desulfurization of model fuel reformates at room temperature were prepared, tested and characterized. Sulfur uptake capacity at 25 °C significantly exceeds that of both commercial unsupported ZnO sorbents and un-promoted supported ZnO/SiO(2) sorbents. Sulfur capacity and breakthrough characteristics remain satisfactory after multiple (∼10) cycles of adsorption/regeneration, with regeneration performed by a simple and robust heating in air. XRD shows that both "calcined" and "spent" sorbents contain nano-dispersed ZnO, and XPS confirms conversion of ZnO to ZnS. "Calcined" sorbent contains Fe(3+) and Mn(3+) that are reduced to Mn(2+) upon reaction with H(2)S, but not with H(2). Operando ESR is used for the first time to study dynamics of reduction of Mn(3+) promoter sites simultaneously with measuring sulfidation dynamics of the Fe(x)-Mn(y)-Zn(1-x-y)O/SiO(2) sorbent. Fe cations are believed to occupy the surface of supported ZnO nanocrystallites, while Mn cations are distributed within ZnO.

  14. Characterization of mercury binding onto a novel brominated biomass ash sorbent by X-ray absorption spectroscopy.

    PubMed

    Bisson, Teresa M; MacLean, Lachlan C W; Hu, Yongfeng; Xu, Zhenghe

    2012-11-01

    Recent laboratory and field-scale experiments demonstrated the potential for brominated industrial solid waste from biomass combustion (Br-Ash) to be an efficient, cost-effective alternative to activated carbon for capturing mercury from coal-fired power plants. To develop this attractive alternative technology to a commercially sustainable level, a better understanding of mercury capture mechanisms by Br-Ash is required. For this purpose, X-ray absorption fine-structure (XAFS) spectra of Br-Ash were collected at the Hg L(III)-edge, Br K-edge and S K-edge, and analyzed to determine the local bonding environment of mercury atoms. The coordination environment of Hg was compared with that on a commercial brominated activated carbon. Our results indicate that the mercury was captured by chemisorption on both the commercial and biomass ash sorbents; however, the mercury binding environment was different for each sorbent. Mercury was found to bind to the reduced sulfur by the commercial brominated activated carbon, in contrast to mercury binding with carbon and bromine on the brominated biomass ash. Based on the results obtained, a mechanism of Hg capture involving oxidation of elemental Hg followed by binding of the oxidized mercury on the surface of the sorbent near Br was proposed for the brominated biomass ash.

  15. LONG-TERM DEMONSTRATION OF SORBENT ENHANCEMENT ADDITIVE TECHNOLOGY FOR MERCURY CONTROL

    SciTech Connect

    Jason D. Laumb; Dennis L. Laudal; Grant E. Dunham; John P. Kay; Christopher L. Martin; Jeffrey S. Thompson; Nicholas B. Lentz; Alexander Azenkeng; Kevin C. Galbreath; Lucinda L. Hamre

    2011-05-27

    Long-term demonstration tests of advanced sorbent enhancement additive (SEA) technologies have been completed at five coal-fired power plants. The targeted removal rate was 90% from baseline conditions at all five stations. The plants included Hawthorn Unit 5, Mill Creek Unit 4, San Miguel Unit 1, Centralia Unit 2, and Hoot Lake Unit 2. The materials tested included powdered activated carbon, treated carbon, scrubber additives, and SEAs. In only one case (San Miguel) was >90% removal not attainable. The reemission of mercury from the scrubber at this facility prevented >90% capture.

  16. ANASORB{reg_sign} 747 - A universal sorbent for air sampling?

    SciTech Connect

    Harper, M.

    1997-12-31

    A sorbent to be used for air sampling must meet certain performance criteria including sample background, capacity, stability, and recovery. Anasorb{sup R} 747 is a proprietary 20/40 mesh beaded active carbon prepared from raw materials with a very low ash content in a process which creates a regular pore structure. The background is very low for both inorganic and organic species, and the surface is more inert and less hydrophilic than coconut charcoal, while capacity is similar. The low catalytic activity of the surface means samples of many reactive compounds remain stable for longer periods. The sorbent is compatible with most solvent systems in use (e.g. carbon disulfide, methylene chloride, methanol, dimethyformamide). Anasorb 747 can be coated with chemicals for efficient adsorption of inorganic gases, which can be analyzed at very low levels because of low background interference. A large number of validated sampling methods use Anasorb 747, including methods from OSHA and NIOSH, corporate industrial hygiene laboratories, various branches of the EPA, and international agencies. These methods refer to around fifty different gases and vapors. Although this sorbent is not compatible with some compounds (e.g. low molecular weight aldehydes) it is quite close to being of universal application.

  17. Effect of biochar or activated carbon amendment on the volatilisation and biodegradation of organic soil pollutants

    NASA Astrophysics Data System (ADS)

    Werner, David; Meynet, Paola; Bushnaf, Khaled

    2013-04-01

    Biochar or activated carbon added to contaminated soil may temporarily reduce the volatilisation of organic pollutants by enhanced sorption. The long-term effect of sorbent amendments on the fate of volatile petroleum hydrocarbon mixtures (VPHs) will depend on the responses of the soil bacterial community members, especially those which may utilize VPHs as carbon substrates. We investigated the volatilisation and biodegradation of VPHs emanating from NAPL sources and migrating through one meter long columns containing unsaturated sandy soil with and without 2% biochar or activated carbon amendment. After 420 days, VPH volatilisation from AC amended soil was less than 10 percent of the cumulative VPH volatilisation flux from unamended soil. The cumulative CO2 volatilisation flux increased more slowly in AC amended soil, but was comparable to the untreated soil after 420 days. This indicated that the pollution attenuation over a 1 meter distance was improved by the AC amendment. Biochar was a weaker VPH sorbent than AC and had a lesser effect on the cumulative VPH and CO2 fluxes. We also investgated the predominant bacterial community responses in sandy soil to biochar and/or VPH addition with a factorially designed batch study, and by analyzing preserved soil samples. Biochar addition alone had only weak effects on soil bacterial communities, while VPH addition was a strong community structure shaping factor. The bacterial community effects of biochar-enhanced VPH sorption were moderated by the limited biomass carrying capacity of the sandy soil investigated which contained only low amounts of inorganic nitrogen. Several Pseudomonas spp., including Pseudomonas putida strains, became dominant in VPH polluted soil with and without biochar. The ability of these versatile VPH degraders to effectively regulate their metabolic pathways according to substrate availabilities may additionally have moderated bacterial community structure responses to the presence of biochar

  18. Adsorption of herbicides using activated carbons

    SciTech Connect

    Derbyshire, F.; Jagtoyen, M.; Lafferty, C.; Kimber, G.

    1996-12-31

    This paper describes the results of research in which novel activated carbons have been examined for their efficacy in water treatment and, specifically, for the adsorption of a common herbicide and wood preservative, sodium pentachlorophenolate. To place this work in context, the introduction will discuss first some of the considerations of using activated carbons for water treatment, and then certain aspects of the authors research that has led to this particular topic.

  19. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Berggren, M.H.; Jha, M.C.

    1989-10-01

    AMAX Research Development Center (AMAX R D) investigated methods for enhancing the reactivity and durability of zinc ferrite desulfurization sorbents. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For this program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation. Two base case sorbents, a spherical pellet and a cylindrical extrude used in related METC-sponsored projects, were used to provide a basis for the aimed enhancement in durability and reactivity. Sorbent performance was judged on the basis of physical properties, single particle kinetic studies based on thermogravimetric (TGA) techniques, and multicycle bench-scale testing of sorbents. A sorbent grading system was utilized to quantify the characteristics of the new sorbents prepared during the program. Significant enhancements in both reactivity and durability were achieved for the spherical pellet shape over the base case formulation. Overall improvements to reactivity and durability were also made to the cylindrical extrude shape. The primary variables which were investigated during the program included iron oxide type, zinc oxide:iron oxide ratio, inorganic binder concentration, organic binder concentration, and induration conditions. The effects of some variables were small or inconclusive. Based on TGA studies and bench-scale tests, induration conditions were found to be very significant.

  20. Feasibility of CO₂/SO₂ uptake enhancement of calcined limestone modified with rice husk ash during pressurized carbonation.

    PubMed

    Chen, Huichao; Zhao, Changsui; Ren, Qiangqiang

    2012-01-01

    The calcination/carbonation cycle using calcium-based sorbents appears to be a viable method for carbon dioxide (CO₂) capture from combustion gases. Recent attempts to improve the CO₂/SO₂ uptake of a calcium-based sorbent modified by using rice husk ash (RHA) in the hydration process have succeeded in enhancing its effectiveness. The optimal mole ratio of RHA to calcined limestone (M(Si/Ca)) was adjusted to 0.2. The cyclic CO₂ capture characteristics and the SO₂ uptake activity of the modified sorbent were evaluated in a calcination/pressurized carbonation reactor system. Scanning electron microscope (SEM) images and X-ray diffraction (XRD) spectrum of the sorbent were also taken to supplement the study. The results showed that the carbonation conversion was greatly increased for the sorbent with M(Si/Ca) ratio of 0.2. For this sorbent formulation the optimal operating conditions were 700-750 °C and 0.5-0.7 MPa. CO₂ absorption was not proportional to CO₂ concentration in the carbonation atmosphere, but was directly related to reaction time. The CO₂ uptake decreased in the presence of SO₂. SO₂ uptake increased, and the total calcium utilization was maintained over multiple cycles. Analysis has shown that the silicate component is evenly or well distributed, and this serves as a framework to prevent sintering, thus preserving the available microstructure for reaction. The sorbent also displayed high activity to SO₂ absorption and could be used to capture CO₂ and SO₂ simultaneously.

  1. JV Task 119 - Effects of Aging on Treated Activated Carbons

    SciTech Connect

    Edwin Olson; Lucinda Hamre; John Pavlish; Blaise Mibeck

    2009-03-25

    For both the United States and Canada, testing has been under way for electric utilities to find viable and economical mercury control strategies to meet pending future mercury emission limits. The technology that holds the most promise for mercury control in low-chlorine lignite to meet the needs of the Clean Air Act in the United States and the Canada-Wide Standards in Canada is injection of treated activated carbon (AC) into the flue gas stream. Most of the treated carbons are reported to be halogenated, often with bromine. Under a previous multiyear project headed by the Energy & Environmental Research Center (EERC), testing was performed on a slipstream unit using actual lignite-derived flue gas to evaluate various sorbent technologies for their effectiveness, performance, and cost. Testing under this project showed that halogenated ACs performed very well, with mercury capture rates often {ge} 90%. However, differences were noted between treated ACs with respect to reactivity and capacity, possibly as a result of storage conditions. Under certain conditions (primarily storage in ambient air), notable performance degradation had occurred in mercury capture efficiency. Therefore, a small exploratory task within this project evaluated possible differences resulting from storage conditions and subsequent effects of aging that might somehow alter their chemical or physical properties. In order to further investigate this potential degradation of treated (halogenated) ACs, the EERC, together with DOE's National Energy Technology Laboratory, the North Dakota Industrial Commission (NDIC), the Electric Power Research Institute (EPRI), SaskPower, and Otter Tail Power Company, assessed the aging effects of brominated ACs for the effect that different storage durations, temperatures, and humidity conditions have on the mercury sorption capacity of treated ACs. No aging effects on initial capture activity were observed for any carbons or conditions in the investigation

  2. Modified clay sorbents

    DOEpatents

    Fogler, H. Scott; Srinivasan, Keeran R.

    1990-01-01

    A novel modified clay sorbent and method of treating industrial effluents to remove trace pollutants, such as dioxins, biphenyls, and polyaromatics such as benzo(a)pyrene and pentachlorophenol. The novel clay sorbent has a composite structure in which the interlayer space of an expandable clay, such as smectite, is filled with polyvalent or multivalent inorganic cations which forces weaker surfactant cations to locate on the surface of the clay in such an orientation that the resulting composite is hydrophilic in nature. A specific example is cetylpyridinium-hydroxy aluminum-montmorillonite. In certain embodiments, a non-expanding clay, such as kaolinite, is used and surfactant cations are necessarily located on an external surface of the clay. A specific example is cetylpyridinium-kaolinite.

  3. Comparative performance of cement kiln dust and activated carbon in removal of cadmium from aqueous solutions.

    PubMed

    El-Refaey, Ahmed A

    2016-01-01

    This study compared the performance of cement kiln dust (CKD) as industrial byproduct and commercially activated carbon (AC) as adsorbent derived from agricultural waste for the removal of cadmium (Cd(2+)) from aqueous solutions. CKD and AC were characterized by Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) and surface areas demonstrate the differences of physicochemical properties. Batch equilibrium experiments were conducted for various intervals extended to 96 h at 20, 25 and 30°C to investigate the efficiency of the sorbents in the removal of Cd(2+). CKD expressed high affinity for removal of Cd(2+) and was not affected by temperature, while AC was significantly affected, which reflects dissimilarity in the retention mechanisms defendant in CKD and those pursued by AC. The results were explained by changes of FTIR and SEM images before and after sorption experiments. The suggestion is that electrostatic ion exchange and complex reactions are the main mechanisms for Cd(2+) removal. The kinetic data were evaluated by fractional power, Elovich, pseudo-first order and pseudo-second-order kinetic models. The pseudo-second-order kinetic model was found to correlate with the experimental data well. These results revealed that CKD can be used as a cost-effective and efficient sorbent for Cd(2+) removal in comparison with AC.

  4. Comparative performance of cement kiln dust and activated carbon in removal of cadmium from aqueous solutions.

    PubMed

    El-Refaey, Ahmed A

    2016-01-01

    This study compared the performance of cement kiln dust (CKD) as industrial byproduct and commercially activated carbon (AC) as adsorbent derived from agricultural waste for the removal of cadmium (Cd(2+)) from aqueous solutions. CKD and AC were characterized by Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) and surface areas demonstrate the differences of physicochemical properties. Batch equilibrium experiments were conducted for various intervals extended to 96 h at 20, 25 and 30°C to investigate the efficiency of the sorbents in the removal of Cd(2+). CKD expressed high affinity for removal of Cd(2+) and was not affected by temperature, while AC was significantly affected, which reflects dissimilarity in the retention mechanisms defendant in CKD and those pursued by AC. The results were explained by changes of FTIR and SEM images before and after sorption experiments. The suggestion is that electrostatic ion exchange and complex reactions are the main mechanisms for Cd(2+) removal. The kinetic data were evaluated by fractional power, Elovich, pseudo-first order and pseudo-second-order kinetic models. The pseudo-second-order kinetic model was found to correlate with the experimental data well. These results revealed that CKD can be used as a cost-effective and efficient sorbent for Cd(2+) removal in comparison with AC. PMID:27054742

  5. Thermal removal of mercury in spent powdered activated carbon from TOXECON process

    SciTech Connect

    Okwadha, G.D.O.; Li, J.; Ramme, B.; Kollakowsky, D.; Michaud, D.

    2009-10-15

    This research developed and demonstrated a technology to liberate Hg adsorbed onto powdered activated carbon (PAC) by the TOXECON process using pilot-scale high temperature air slide (HTAS) and bench-scale thermogravimetric analyzer (TGA). The HTAS removed 65, 83, and 92% of Hg captured with PAC when ran at 900{sup o}F, 1,000{sup o}F, and 1,200 {sup o}F, respectively, while the TGA removed 46 and 100% of Hg at 800 {sup o}F and 900{sup o}F, respectively. However, addition of CuO-Fe{sub 2}O{sub 3} mixture and CuCl catalysts enhanced Hg removal and PAC regeneration at lower temperatures. CuO-Fe{sub 2}O{sub 3} mixture performed better than CuCl in PAC regeneration. Scanning electron microscopy images and energy dispersive X-ray analysis show no change in PAC particle aggregation or chemical composition. Thermally treated sorbents had higher surface area and pore volume than the untreated samples indicating regeneration. The optimum temperature for PAC regeneration in the HTAS was 1,000{sup o}F. At this temperature, the regenerated sorbent had sufficient adsorption capacity similar to its virgin counterpart at 33.9% loss on ignition. Consequently, the regenerated PAC may be recycled back into the system by blending it with virgin PAC.

  6. Desorption kinetics of benzene in a sandy soil in the presence of powdered activated carbon.

    PubMed

    Choi, J-W; Kim, S-B; Kim, D-J

    2007-02-01

    Desorption kinetics of benzene was investigated with a modified biphasic desorption model in a sandy soil with five different powdered activated carbon (PAC) contents (0, 1, 2, 5, 10% w/w) as sorbents. Sorption experiments followed by series dilution desorption were conducted for each sorbent. Desorption of benzene was successively performed at two stages using deionized water and hexane. Modeling was performed on both desorption isotherm and desorption rate for water-induced desorption to elucidate the presence of sorption-desorption hysteresis and biphasic desorption and if present to quantify the desorption-resistant fraction (q (irr)) and labile fraction (F) of desorption site responsible for rapid process. Desorption isotherms revealed that sorption-desorption exhibited a severe hysteresis with a significant fraction of benzene being irreversibly adsorbed onto both pure sand and PAC, and that desorption-resistant fraction (q (irr)) increased with PAC content. Desorption kinetic modeling showed that desorption of benzene was biphasic with much higher (4-40 times) rate constant for rapid process (k (1)) than that for slow process (k (2)), and that the difference in the rate constant increased with PAC content. The labile fraction (F) of desorption site showed a decreasing tendency with PAC. The experimental results would provide valuable information on remediation methods for soils and groundwater contaminated with BTEX.

  7. Organic solvent regeneration of granular activated carbon

    NASA Astrophysics Data System (ADS)

    Cross, W. H.; Suidan, M. T.; Roller, M. A.; Kim, B. R.; Gould, J. P.

    1982-09-01

    The use of activated carbon for the treatment of industrial waste-streams was shown to be an effective treatment. The high costs associated with the replacement or thermal regeneration of the carbon have prohibited the economic feasibility of this process. The in situ solvent regeneration of activated carbon by means of organic solvent extraction was suggested as an economically alternative to thermal regeneration. The important aspects of the solvent regeneration process include: the physical and chemical characteristics of the adsorbent, the pore size distribution and energy of adsorption associated with the activated carbon; the degree of solubility of the adsorbate in the organic solvent; the miscibility of the organic solvent in water; and the temperature at which the generation is performed.

  8. Adsorption of methyl mercaptan on activated carbons.

    PubMed

    Bashkova, Svetlana; Bagreev, Andrey; Bandosz, Teresa J

    2002-06-15

    Activated carbons of different origins were studied as methyl mercaptan adsorbents in wet, dry, and oxidizing conditions. The materials were characterized using adsorption of nitrogen, Boehm titration, and thermal analysis. Investigation was focused on the feasibility of the removal of methyl mercaptan on activated carbons and on the role of surface chemistry and porosity in the adsorption/oxidation processes. The results showed relatively high capacities of carbons for removal of CH3SH. The amount adsorbed depends on the surface features. Methyl mercaptan, in general, is oxidized to disulfides, which, depending on the chemistry of the carbon surface, can be converted to sulfonic acid due to the presence of water and active radicals.

  9. Antimicrobial Activity of Carbon-Based Nanoparticles

    PubMed Central

    Maleki Dizaj, Solmaz; Mennati, Afsaneh; Jafari, Samira; Khezri, Khadejeh; Adibkia, Khosro

    2015-01-01

    Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs) (especially single-walled carbon nanotubes (SWCNTs)) and graphene oxide (GO) nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery. PMID:25789215

  10. Microwave-assisted regeneration of activated carbon.

    PubMed

    Foo, K Y; Hameed, B H

    2012-09-01

    Microwave heating was used in the regeneration of methylene blue-loaded activated carbons produced from fibers (PFAC), empty fruit bunches (EFBAC) and shell (PSAC) of oil palm. The dye-loaded carbons were treated in a modified conventional microwave oven operated at 2450 MHz and irradiation time of 2, 3 and 5 min. The virgin properties of the origin and regenerated activated carbons were characterized by pore structural analysis and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement and determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue (MB). Microwave irradiation preserved the pore structure, original active sites and adsorption capacity of the regenerated activated carbons. The carbon yield and the monolayer adsorption capacities for MB were maintained at 68.35-82.84% and 154.65-195.22 mg/g, even after five adsorption-regeneration cycles. The findings revealed the potential of microwave heating for regeneration of spent activated carbons.

  11. Activated coconut shell charcoal carbon using chemical-physical activation

    NASA Astrophysics Data System (ADS)

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  12. Activated carbon based technology for the control of mercury emission from coal-fired power plants

    SciTech Connect

    Liu, W.; Vidic, R.D.; Kuemmel, R.; Fahlenkamp, H.

    1999-07-01

    The dynamics of sulfur-impregnated granular activated carbon (GAC) adsorbers for the uptake of vapor-phase mercury was evaluated as a function of key operating conditions. The effect of the sulfur impregnation method on mercury removal efficiency was examined through experiments conducted on commercially available sulfur-impregnated carbon (HGR) and carbon impregnated with sulfur in their laboratory (BPL-S). Although HGR and BPL-S possess similar sulfur contents, BLP-S is impregnated at a higher temperature which promotes a more uniform distribution of sulfur in the GAC pore structure. At low temperatures, HGR and BPL-S performed similarly in the removal of mercury vapor. However, as the temperature was increased above the melting point of sulfur, the performance of HGT deteriorated significantly, while the performance of BPL-S slightly improved. Temperature and the initial sulfur to carbon ratio (SCR) during production of BPL-S were the two control parameters for the impregnation procedure. The results showed that carbons impregnated with sulfur at higher temperatures exhibited higher efficiency for mercury removal and that the impregnation temperature is the most important factor influencing the efficiency of these sorbents for mercury uptake.

  13. Loading Capacities for Uranium, Plutonium and Neptunium in High Caustic Nuclear Waste Storage Tanks Containing Selected Sorbents

    SciTech Connect

    OJI, LAWRENCE

    2004-11-16

    In this study the loading capacities of selected actinides onto some of the most common sorbent materials which are present in caustic nuclear waste storage tanks have been determined. Some of these transition metal oxides and activated carbons easily absorb or precipitate plutonium, neptunium and even uranium, which if care is not taken may lead to unwanted accumulation of some of these fissile materials in nuclear waste tanks during waste processing. Based on a caustic synthetic salt solution simulant bearing plutonium, uranium and neptunium and ''real'' nuclear waste supernate solution, the loading capacities of these actinides onto iron oxide (hematite), activated carbon and anhydrous sodium phosphate have been determined. The loading capacities for plutonium onto granular activated carbon and iron oxide (hematite) in a caustic synthetic salt solution were, respectively, 3.4 0.22 plus or minus and 5.5 plus or minus 0.38 microgram per gram of sorbent. The loading capacity for plutonium onto a typical nuclear waste storage tank sludge solids was 2.01 microgram per gram of sludge solids. The loading capacities for neptunium onto granular activated carbon and iron oxide (hematite) in a caustic synthetic salt solution were, respectively, 7.9 plus or minus 0.52 and greater than 10 microgram per gram of sorbent. The loading capacity for neptunium onto a typical nuclear waste storage tank sludge solids was 4.48 microgram per gram of sludge solids. A typical nuclear waste storage tank solid material did not show any significant affinity for uranium. Sodium phosphate showed significant affinity for both neptunium and uranium, with loading capacities of 6.8 and 184.6 plus or minus 18.5 microgram per gram of sorbent, respectively.

  14. Developing a Small-scale De-fluoridation Filter for use in Rural Northern Ghana with Activated Alumina as the Sorbent

    NASA Astrophysics Data System (ADS)

    Craig, L.; Stillings, L. L.; Decker, D.; Thomas, J.

    2013-12-01

    In northern Ghana, groundwater is the main source of household water and is generally considered a safe and economical source of drinking water. However in some areas it contains fluoride (F-) concentrations above the 1.5 ppm limit recommended by the World Health Organization, putting the users at risk of fluorosis. The study area in the Upper East Region of northern Ghana has pockets of groundwater F- up to 4.6 ppm and, as a result, also has a high percentage of residents with dental fluorosis. They have no alternative water source and, because of the poverty and limited access to technology, the affected community lacks the capacity to set up advanced treatment systems. One proposed solution is to attach F- adsorption filters to the wells, since adsorption is considered a simple and cost effective approach for treating high F- drinking water. This study evaluates activated alumina as a sorbent for use in de-fluoridation filters in the study area. We evaluated the long-term adsorption capacity of activated alumina, as well as potential changes in F- adsorption rate and capacity with grain size. We measured differences in positive surface charge (as C m-2) via slow acid titration, as well as F- loading with varied prior hydration time. Experimental results from this research show no notable change in F- adsorption or positive surface charge when the activated alumina surface was pre-equilibrated in distilled water from 24 hours up to 30 weeks before the experiment. The results of F- loading show a maximum of ~3.4 mg F- sorbed per gm activated alumina (at initial pH ~6.9, initial F- 1 to 60 ppm, and 20 hr reaction time). The pH dependent surface charge shows a maximum of ~0.14 C m-2 at pH of ~4.4 and zero surface charge at pH ~8.5. F- loading experiments were conducted with grain size ranges 0.125 to 0.250 mm and 0.5 to 1.0 mm to evaluate changes in F- adsorption rate (initial pH ~6.9, initial F- 10 ppm) and F- loading (initial pH ~6.9, initial F- 1 to 60 ppm, 20 hr

  15. Performance Evaluation of Engineered Structured Sorbents for Atmosphere Revitalization Systems On Board Crewed Space Vehicles and Habitats

    NASA Technical Reports Server (NTRS)

    Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian; Roychoudhury, Subir

    2011-01-01

    Engineered structured (ES) sorbents are being developed to meet the technical challenges of future crewed space exploration missions. ES sorbents offer the inherent performance and safety attributes of zeolite and other physical adsorbents but with greater structural integrity and process control to improve durability and efficiency over packed beds. ES sorbent techniques that are explored include thermally linked and pressure-swing adsorption beds for water-save dehumidification and sorbent-coated metal meshes for residual drying, trace contaminant control, and carbon dioxide control. Results from sub-scale performance evaluations of a thermally linked pressure-swing adsorbent bed and an integrated sub-scale ES sorbent system are discussed.

  16. Adsorption behavior of alpha -cypermethrin on cork and activated carbon.

    PubMed

    Domingues, Valentina F; Priolo, Giuseppe; Alves, Arminda C; Cabral, Miguel F; Delerue-Matos, Cristina

    2007-08-01

    Studies were undertaken to determine the adsorption behavior of alpha -cypermethrin [R)-alpha -cyano-3-phenoxybenzyl(1S)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate, and (S)-alpha-cyano-3-phenoxybenzyl (1R)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate] in solutions on granules of cork and activated carbon (GAC). The adsorption studies were carried out using a batch equilibrium technique. A gas chromatograph with an electron capture detector (GC-ECD) was used to analyze alpha -cypermethrin after solid phase extraction with C18 disks. Physical properties including real density, pore volume, surface area and pore diameter of cork were evaluated by mercury porosimetry. Characterization of cork particles showed variations thereby indicating the highly heterogeneous structure of the material. The average surface area of cork particles was lower than that of GAC. Kinetics adsorption studies allowed the determination of the equilibrium time - 24 hours for both cork (1-2 mm and 3-4 mm) and GAC. For the studied alpha -cypermethrin concentration range, GAC revealed to be a better sorbent. However, adsorption parameters for equilibrium concentrations, obtained through the Langmuir and Freundlich models, showed that granulated cork 1-2 mm have the maximum amount of adsorbed alpha-cypermethrin (q(m)) (303 microg/g); followed by GAC (186 microg/g) and cork 3-4 mm (136 microg/g). The standard deviation (SD) values, demonstrate that Freundlich model better describes the alpha -cypermethrin adsorption phenomena on GAC, while alpha -cypermethrin adsorption on cork (1-2 mm and 3-4 mm) is better described by the Langmuir. In view of the adsorption results obtained in this study it appears that granulated cork may be a better and a cheaper alternative to GAC for removing alpha -cypermethrin from water.

  17. Development of activated carbon derived from banana peel for CO{sub 2} removal

    SciTech Connect

    Borhan, Azry; Thangamuthu, Subhashini; Ramdan, Amira Nurain; Taha, Mohd Faisal

    2015-08-28

    This research work highlights on the constraints involved in the preparation of the banana peel bio-sorbent, such as impregnation ratio, activation temperature and period of activation for reducing carbon dioxide (CO{sub 2}) in the atmosphere. Micromeritics ASAP 2020 and Field Emission Scanning Electron Microscope (FESEM) were used in identifying the best sample preparation method with the largest surface area which directly contributes to the effectiveness of adsorbent in removing CO{sub 2}. Sample A10 was identified to yield activated carbon with the largest surface area (260.3841 m{sup 2}/g), total pore volume (0.01638 cm{sup 3}/g) and pore diameter (0.2508 nm). Through nitrogen adsorption-desorption isotherm analysis, the existence of sub-micropores was proven when a combination of Type-I and Type-II isotherms were exhibited by the activated carbon produced. The results from the final adsorption test found that the material synthesized from the above mentioned parameter is capable of removing up to 1.65% wt of CO{sub 2} through adsorption at 25°C, suggesting that it can be effectively used as an adsorption material.

  18. Sorption of lanthanum and erbium from aqueous solution by activated carbon prepared from rice husk.

    PubMed

    Awwad, N S; Gad, H M H; Ahmad, M I; Aly, H F

    2010-12-01

    A biomass agricultural waste material, rice husk (RH) was used for preparation of activated carbon by chemical activation using phosphoric acid. The effect of various factors, e.g. time, pH, initial concentration and temperature of carbon on the adsorption capacity of lanthanum and erbium was quantitatively determined. It was found that the monolayer capacity is 175.4 mg g(-1) for La(III) and 250 mg g(-1) for Er(III). The calculated activation energy of La(III) adsorption on the activated carbon derived from rice husk was equal to 5.84 kJ/mol while it was 3.6 kJ/mol for Er(III), which confirm that the reaction is mainly particle-diffusion-controlled. The kinetics of sorption was described by a model of a pseudo-second-order. External diffusion and intra-particular diffusion were examined. The experimental data show that the external diffusion and intra-particular diffusion are significant in the determination of the sorption rate. Therefore, the developed sorbent is considered as a better replacement technology for removal of La(III) and Er(III) ions from aqueous solution due to its low-cost and good efficiency, fast kinetics, as well as easy to handle and thus no or small amount of secondary sludge is obtained in this application.

  19. Development of activated carbon derived from banana peel for CO2 removal

    NASA Astrophysics Data System (ADS)

    Borhan, Azry; Thangamuthu, Subhashini; Taha, Mohd Faisal; Ramdan, Amira Nurain

    2015-08-01

    This research work highlights on the constraints involved in the preparation of the banana peel bio-sorbent, such as impregnation ratio, activation temperature and period of activation for reducing carbon dioxide (CO2) in the atmosphere. Micromeritics ASAP 2020 and Field Emission Scanning Electron Microscope (FESEM) were used in identifying the best sample preparation method with the largest surface area which directly contributes to the effectiveness of adsorbent in removing CO2. Sample A10 was identified to yield activated carbon with the largest surface area (260.3841 m2/g), total pore volume (0.01638 cm3/g) and pore diameter (0.2508 nm). Through nitrogen adsorption-desorption isotherm analysis, the existence of sub-micropores was proven when a combination of Type-I and Type-II isotherms were exhibited by the activated carbon produced. The results from the final adsorption test found that the material synthesized from the above mentioned parameter is capable of removing up to 1.65% wt of CO2 through adsorption at 25°C, suggesting that it can be effectively used as an adsorption material.

  20. Developing a Small-Scale De-Fluoridation Filter for Use in Rural Northern Ghana with Activated Alumina As the Sorbent

    NASA Astrophysics Data System (ADS)

    Craig, L.; Stillings, L. L.

    2014-12-01

    In northern Ghana, groundwater is the main source of household water and is generally considered safe to drink. However in some areas it contains fluoride (F-) concentrations above the 1.5 ppm limit recommended by the World Health Organization, putting the users at risk of fluorosis. The study area in the Upper East Region of Ghana has pockets of groundwater F- up to 4.6 ppm and, as a result, also has a high percentage of residents with dental fluorosis. They have no alternative water source and, because of poverty and limited access to technology, lack the capacity to set up advanced treatment systems. One proposed solution is to attach F- adsorption filters to the wells, since adsorption is considered a simple and cost effective approach for treating high F-drinking water. This study evaluates activated alumina as a sorbent for use in de-fluoridation filters in the study area. We evaluated the long-term adsorption capacity of activated alumina, and changes in F- adsorption rate and capacity with grain size. We measured differences in positive surface charge (C m-2) via slow acid titration, as well as F- loading with varied prior hydration time. Results from this research show no notable change in F- adsorption or positive surface charge when the activated alumina surface was pre-equilibrated in distilled water from 24 hours to 30 weeks. The results of F- loading show a maximum of ~3.4 mg F- sorbed per gm activated alumina (initial pH ~6.9, initial F- 1 to 60 ppm, 20 hr reaction time). The pH dependent surface charge is ~0.14 C m-2 at pH of ~4.4 and is zero at pH ~8.6. F- loading experiments were conducted with grain size 0.125 to 0.250 mm and 0.5 to 1.0 mm to evaluate changes in F- adsorption rate (initial pH ~6.9, initial F- 10 ppm) and F- loading (initial pH ~6.9, initial F- 1 to 60 ppm, 20 hr reaction time). The F- loading did not change with grain size. However time to equilibrium increased dramatically with a decrease in grain size - after one hour of

  1. Process for preparing zinc oxide-based sorbents

    DOEpatents

    Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasad

    2011-06-07

    The disclosure relates to zinc oxide-based sorbents, and processes for preparing and using them. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  2. Study on the stability of sorbents removing H{sub 2}S from hot coal gas

    SciTech Connect

    Li-Ping Chang; Zong-You Zhang; Xiu-Rong Ren; Fan Li; Ke-Chang Xie

    2009-01-15

    Mixed metal oxide containing iron with the high-sulfur capacity and reactivity is considered as one of the most favorable sorbents for desulfurization in hot gas. The stability and life of iron-based sorbents are the main challenges for the hot gas cleanup techniques. Not only the effect of gas atmosphere but also the effect of ZnO and MgO on the stability of iron-based sorbent was studied in this work. The mechanism and factors influencing sorbent stability are discussed. The results showed that the coexistence of CO and H{sub 2} result in the instability of the zinc-iron-based sorbents. The reaction of carbon deposit is the crucial step affecting the stability of sorbent for hot gas desulfurization. ZnO in the sorbent is adverse to the physical stability of the iron-based sorbents. MgO in the sorbent hardly affects the physical stability of the iron-based sorbents but improves the capacity of removing the hydrogen sulfide from hot coal gas at 773 K. 12 refs., 8 figs., 5 tabs.

  3. Thermodynamic and kinetic behaviors of trinitrotoluene adsorption on powdered activated carbons

    SciTech Connect

    Lee, J.W.; Hwang, K.J.; Shim, W.G.; Moon, I.S.

    2006-07-01

    Regulations on the removal of trinitrotoluene (TNT) from wastewater have become increasingly more stringent, demanding faster, less expensive, and more efficient treatment. This study focuses on the adsorption equilibrium and kinetics of TNT on powered activated carbons (PAC). Three types of PACs (i.e., wood based, coal based, and coconut-shell based) were studied as functions of temperature and pH. Thermodynamic properties including Gibbs free energy, enthalpy, and entropy, were evaluated by applying the Van't Hoff equation. In addition, the adsorption energy distribution functions which describe heterogeneous characteristics of porous solid sorbents were calculated by using the generalized nonlinear regularization method. Adsorption kinetic studies were carried out in batch adsorber under important conditions such as PAC types, temperature, pH, and concentration. We found that fast and efficient removal of TNT dissolved in water can be successfully achieved by PAC adsorption.

  4. Sorbent preparation/modification/additives. Final report, September 1, 1992--November 30, 1993

    SciTech Connect

    Prudich, M.E.; Venkataramakrishnan, R.

    1994-02-01

    Sorbent preparation techniques used today have generally been adapted from techniques traditionally used by the lime industry. Traditional dry hydration and slaking processes have been optimized to produce materials intended for use in the building industry. These preparation techniques should be examined with an eye to optimization of properties important to the SO{sub 2} capture process. The study of calcium-based sorbents for sulfur dioxide capture is complicated by two factors: (1) little is known about the chemical mechanisms by which the standard sorbent preparation and enhancement techniques work, and (2) a sorbent preparation technique that produces a calcium-based sorbent that enjoys enhanced calcium utilization in one regime of operation [flame zone (>2400 F), in-furnace (1600--2400 F), economizer (800--1100 F), after air preheater (<350 F)] may not produce a sorbent that enjoys enhanced calcium utilization in the other reaction zones. Again, an in-depth understanding of the mechanism of sorbent enhancement is necessary if a systematic approach to sorbent development is to be used. As a long-term goal, an experimental program is being carried out for the purpose of (1) defining the effects of slaking conditions on the properties of calcium-based sorbents, (2) determining how the parent limestone properties of calcium-based sorbents, and (3) elucidating the mechanism(s) relating to the activity of various dry sorbent additives. An appendix contains a one-dimensional duct injection model with modifications to handle the sodium additives.

  5. Hot gas desulfurization with sorbents containing mixed metal oxides

    SciTech Connect

    Akyurtlu, J.F.; Akyurtlu, A.

    1992-12-31

    Advanced power generation systems such as the integrated gasification combined cycle power generators and the molten carbonate fuel cells have stringent fuel gas desulfurization requirements and process economics dictates that this desulfurization be performed near the temperature of the gasification off-gas. The most advanced hot gas desulfurization technology today is based on the zinc ferrite sorbent which has several shortcomings such as zinc loss by evaporation, and incomplete regeneration due to sulfate formation. The objective of this study is to develop an improved sorbent which can reduce H{sub 2}S levels to 1 ppmv or less, which can stabilize zinc, and produce economically recoverable amounts of elemental sulfur during regeneration. For this purpose, the desulfurization performance.of sorbents prepared by the addition of various amounts of V{sub 2}0{sub 5} to the zinc ferrite sorbent is investigated. Preliminary experiments show that the sorbent containing about 4.8 mass % vanadium shows a superior desulfurization performance compared to zinc ferrite. Addition of vanadium suppresses residual sulfate formation and possibly zinc evaporation. significant quantities of elemental sulfur were observed after the regeneration of vanadium containing sorbents.

  6. A novel activated carbon for supercapacitors

    SciTech Connect

    Shen, Haijie; Liu, Enhui; Xiang, Xiaoxia; Huang, Zhengzheng; Tian, Yingying; Wu, Yuhu; Wu, Zhilian; Xie, Hui

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer A novel activated carbon was prepared from phenol-melamine-formaldehyde resin. Black-Right-Pointing-Pointer The carbon has large surface area with microporous, and high heteroatom content. Black-Right-Pointing-Pointer Heteroatom-containing functional groups can improve the pseudo-capacitance. Black-Right-Pointing-Pointer Physical and chemical properties lead to the good electrochemical properties. -- Abstract: A novel activated carbon has been prepared by simple carbonization and activation of phenol-melamine-formaldehyde resin which is synthesized by the condensation polymerization method. The morphology, thermal stability, surface area, elemental composition and surface chemical composition of samples have been investigated by scanning electron microscope, thermogravimetry and differential thermal analysis, Brunauer-Emmett-Teller measurement, elemental analysis and X-ray photoelectron spectroscopy, respectively. Electrochemical properties have been studied by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6 mol L{sup -1} potassium hydroxide. The activated carbon shows good capacitive behavior and the specific capacitance is up to 210 F g{sup -1}, which indicates that it may be a promising candidate for supercapacitors.

  7. Sulfation of calcium based sorbents in a combustion environment

    SciTech Connect

    Newton, G.H.

    1987-01-01

    The capture of SO/sub 2/ by dry, calcium-based sorbents was examined in a three part research effort: (1) an experimental evaluation of sorbent materials under isothermal reaction conditions; (2) characterization of sulfation fundamentals through sulfation rate measurements with sized, precalcined sorbents and the development of a distributed pore sulfation model; and (3) experimental definition of reaction temperature effects and computer modeling of the simultaneous sintering and sulfation processes. The experimental sorbent evaluation examined calcitic and dolomitic carbonates and hydrates. High temperature, isothermal SO/sub 2/ capture data were obtained as a function of Ca/S molar ratio, temperature, and SO/sub 2/ concentration for each sorbent. SO/sub 2/ capture was found to be approximately linearly dependent on Ca/S ratio, relatively insensitive to SO/sub 2/ concentration above 2000 ppM, and a strong function of sorbent type. Time resolved sulfation data of sized, precalcined sorbents indicated that sulfation is initially rapid, but beyond approximately 300 ms the sulfation rate decreases dramatically. A distributed pore model, which viewed CaO particles as composed of nonintersecting, cylindrical pores with diameters determined from nitrogen porosimetry, particle boundary layer, pore, and CaSO/sub 4/ product layer diffusions in addition to the heterogeneous chemical reaction was developed. Temperature dependent sulfation data for precalcined sorbents suggest two types of sintering influence particle porosity: sintering associated with the combustion process and sintering promoted by the presence of sulfate ions in the particle crystal structure. Inclusion of both sintering mechanisms in the distributed pore model allowed predictions of the highest temperature experimental data from a variety of precalcines.

  8. Activated carbon monoliths for methane storage

    NASA Astrophysics Data System (ADS)

    Chada, Nagaraju; Romanos, Jimmy; Hilton, Ramsey; Suppes, Galen; Burress, Jacob; Pfeifer, Peter

    2012-02-01

    The use of adsorbent storage media for natural gas (methane) vehicles allows for the use of non-cylindrical tanks due to the decreased pressure at which the natural gas is stored. The use of carbon powder as a storage material allows for a high mass of methane stored for mass of sample, but at the cost of the tank volume. Densified carbon monoliths, however, allow for the mass of methane for volume of tank to be optimized. In this work, different activated carbon monoliths have been produced using a polymeric binder, with various synthesis parameters. The methane storage was studied using a home-built, dosing-type instrument. A monolith with optimal parameters has been fabricated. The gravimetric excess adsorption for the optimized monolith was found to be 161 g methane for kg carbon.

  9. Removal of arsenic from water by supported nano zero-valent iron on activated carbon.

    PubMed

    Zhu, Huijie; Jia, Yongfeng; Wu, Xing; Wang, He

    2009-12-30

    Nano-sized zero-valent iron is an effective adsorbent for arsenic removal from drinking water. However, its application may be limited in public water system and small scale water treatment system due to its tiny particle size. In the present work, nanoscale zero-valent iron was supported onto activated carbon (NZVI/AC) by impregnating carbon with ferrous sulfate followed by chemical reduction with NaBH(4). Approximate 8.2 wt% of iron was loaded onto carbon and SEM analysis showed that the iron particles in the pores of carbon were needle-shaped with the size of 30-500 x 1000-2000 nm. Kinetics study revealed that adsorption of arsenite and arsenate by NZVI/AC was fast in the first 12h and the equilibrium was achieved in approximately 72 h. The adsorption capacity of the synthesized sorbent for arsenite and arsenate at pH 6.5 calculated from Langmuir adsorption isotherms in batch experiments was 18.2 and 12.0mg/g, respectively. Phosphate and silicate markedly decreased the removal of both arsenite and arsenate, while the effect of other anions and humic acid was insignificant. Common metal cations (Ca(2+), Mg(2+)) enhanced arsenate adsorption but ferrous iron (Fe(2+)) was found to suppress arsenite adsorption. NZVI/AC can be effectively regenerated by elution with 0.1M NaOH.

  10. Development of a Rapid Cycling CO(sub 2) and H(sub 2)O Removal Sorbent

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Alptekin, Goekhan; Cates, Matthew; Bernal, Casey; Dubovik, Margarita; Gershanovich, Yevgenia

    2007-01-01

    The National Aeronautics and Space Administration (NASA) planned future missions set stringent demands on the design of the Portable Life Support System (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility on the types of missions. Use of regenerable systems that reduce weight and volume of the Extravehicular Mobility Unit (EMU) is of critical importance to NASA, both for low orbit operations and for long duration manned missions. The carbon dioxide and humidity control unit in the existing PLSS design is relatively large, since it has to remove and store 8 hours worth of CO2. If the sorbent regeneration can be carried out during the extravehicular activity (EVA) with a relatively high regeneration frequency, the size of the sorbent canister and weight can be significantly reduced. The progress of regenerable CO2 and humidity control is leading us towards the use of a rapid cycling amine system. TDA Research, Inc. is developing compact, regenerable sorbent materials to control CO2 and humidity in the space suit ventilation loop. The sorbent can be regenerated using space vacuum during the EVA, eliminating all carbon dioxide and humidity duration-limiting elements in the life support system. The material also has applications in other areas of space exploration such as the Orion spacecraft and other longer duration exploration missions requiring regenerable technologies. This paper summarizes the results of the sorbent development, testing, and evaluation efforts to date. The results of a preliminary system analysis are also included, showing the size and volume reductions for PLSS provided by the new system.

  11. Sorbent development for transport reactor applications

    SciTech Connect

    Gupta, R.P.; Turk, B.S.; Vierheilig, A.A.; Cicero, D.C.

    1998-12-31

    Advanced power generation systems employing gasification of carbonaceous fuels offer increased efficiency and reduced emissions over pulverized coal-fired boiler systems currently in service. Integrated gasification combined cycle (IGCC) is the leading gasification-based system which is being advanced worldwide to produce electricity from carbonaceous fuels. This technology has the potential to reduce sulfur and nitrogen emissions the precursors of acid-rain and could lead to significant reductions in carbon dioxide emissions, which, it is believed, are major contributors to global warming. Successful commercialization of the IGCC technology requires economic competitiveness with other power generation systems. This economic competitiveness has propelled research and development of gas desulfurization systems. A number of mixed metal oxide sorbents have been investigated for removal of reduced sulfur species (H{sub 2}S, COS, CS{sub 2}, etc.) at high-temperature, high-pressure (HTHP) conditions, the best candidates have been the ZnO-based sorbents because of their ability to reduce the fuel gas sulfur level to a few parts per million by volume (ppmv). The work described in this paper deals with the development of zinc titanate sorbents for transport reactor applications.

  12. Sorption of DOM and hydrophobic organic compounds onto sewage-based activated carbon.

    PubMed

    Björklund, Karin; Li, Loretta Y

    2016-01-01

    Treatment of stormwater via sorption has the potential to remove both colloidal and dissolved pollutants. Previous research shows that activated carbon produced from sewage sludge is very efficient in sorbing hydrophobic organic compounds (HOCs), frequently detected in stormwater. The aim of this research was to determine whether the presence of dissolved organic matter (DOM) has a negative effect on the adsorption of HOCs onto sludge-based activated carbon (SBAC) in batch adsorption tests. Batch adsorption tests were used to investigate the influence of two types of DOM - soil organic matter and humic acid (HA) technical standard - on the sorption of HOCs onto SBAC, and whether preloading adsorbent and adsorbates with DOM affects HOC sorption. The results indicate that soil DOM and HAs do not have a significant negative effect on the adsorption of HOCs under tested experimental conditions, except for a highly hydrophobic compound. In addition, preloading SBAC or HOCs with DOM did not lead to lower adsorption of HOCs. Batch adsorption tests appear to be inefficient for investigating DOM effects on HOC adsorption, as saturating the carbon is difficult because of high SBAC adsorption capacity and low HOC solubility, so that limited competition occurs on the sorbent. PMID:27533860

  13. Preparation of activated carbons with mesopores by use of organometallics

    SciTech Connect

    Yamada, Yoshio; Yoshizawa, Noriko; Furuta, Takeshi

    1996-12-31

    Activated carbons are commercially produced by steam or CO{sub 2} activation of coal, coconut shell and so on. In general the carbons obtained give pores with a broad range of distribution. The objective of this study was to prepare activated carbons from coal by use of various organometallic compounds. The carbons were evaluated for pore size by nitrogen adsorption experiments.

  14. USING POWDERED ACTIVATED CARBON: A CRITICAL REVIEW

    EPA Science Inventory

    Because the performance of powdered activated carbon (PAC) for uses other than taste and odor control is poorly documented, the purpose of this article is to critically review uses that have been reported (i.e., pesticides and herbicides, synthetic organic chemicals, and trihalom...

  15. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    EPA Science Inventory

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  16. Sulfation of CaO particles in a carbonation/calcination loop to capture CO{sub 2}

    SciTech Connect

    Grasa, G.S.; Alonso, M.; Abanades, J.C.

    2008-03-15

    CaO is being proposed as a regenerable sorbent of CO{sub 2} via a carbonation/calcination loop. It is well known that natural sorbents lose their capacity to capture CO{sub 2} with the number of cycles due to textural degradation. In coal combustion systems, reaction with the SO{sub 2} present in flue gases also causes sorbent deactivation. This work investigates the effect of partial sorbent sulfation on the amount of CaO used in systems where both carbonation and sulfation reactions are competing. We have found that SO{sub 2} reacts with the deactivated CaO resulting from repetitive calcination/carbonation reactions. Therefore, the deactivation of CaO as a result of the presence of SO{sub 2} is lower than one would expect if one assumes that SO{sub 2} reacts only with active CaO. This work shows that changes in the texture of the sorbent due to repetitive carbonation/calcination cycles tend to increase the sulfation capacity of the sorbents tested. This suggests that the purge of deactivated CaO obtained from a CO{sub 2} capture loop could be a more effective sorbent of SO{sub 2} than fresh CaO.

  17. Novel Sorbent to Clean Up Biogas for CHPs

    SciTech Connect

    Alptekin, Gökhan O.; Jayataman, Ambalavanan; Schaefer, Matthew; Ware, Michael; Hunt, Jennifer; Dobek, Frank

    2015-05-30

    In this project, TDA Research Inc. (TDA) has developed low-cost (on a per unit volume of gas processed basis), high-capacity expendable sorbents that can remove both the H2S and organic sulfur species in biogas to the ppb levels. The proposed sorbents will operate downstream of a bulk desulfurization system as a polishing bed to provide an essentially sulfur-free gas to a fuel cell (or any other application that needs a completely sulfur-free feed). Our sorbents use a highly dispersed mixed metal oxides active phase with desired modifiers prepared over on a mesoporous support. The support structure allows the large organic sulfur compounds (such as the diethyl sulfide and dipropyl sulfide phases with a large kinetic diameter) to enter the sorbent pores so that they can be adsorbed and removed from the gas stream.

  18. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  19. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    1999-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  20. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    2001-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  1. Preparation of a new adsorbent from activated carbon and carbon nanofiber (AC/CNF) for manufacturing organic-vacbpour respirator cartridge.

    PubMed

    Jahangiri, Mehdi; Adl, Javad; Shahtaheri, Seyyed Jamaleddin; Rashidi, Alimorad; Ghorbanali, Amir; Kakooe, Hossein; Forushani, Abbas Rahimi; Ganjali, Mohammad Reza

    2013-01-26

    In this study a composite of activated carbon and carbon nanofiber (AC/CNF) was prepared to improve the performance of activated carbon (AC) for adsorption of volatile organic compounds (VOCs) and its utilization for respirator cartridges. Activated carbon was impregnated with a nickel nitrate catalyst precursor and carbon nanofibers (CNF) were deposited directly on the AC surface using catalytic chemical vapor deposition. Deposited CNFs on catalyst particles in AC micropores, were activated by CO2 to recover the surface area and micropores. Surface and textural characterizations of the prepared composites were investigated using Brunauer, Emmett and Teller's (BET) technique and electron microscopy respectively. Prepared composite adsorbent was tested for benzene, toluene and xylene (BTX) adsorption and then employed in an organic respirator cartridge in granular form. Adsorption studies were conducted by passing air samples through the adsorbents in a glass column at an adjustable flow rate. Finally, any adsorbed species not retained by the adsorbents in the column were trapped in a charcoal sorbent tube and analyzed by gas chromatography. CNFs with a very thin diameter of about 10-20 nm were formed uniformly on the AC/CNF. The breakthrough time for cartridges prepared with CO2 activated AC/CNF was 117 minutes which are significantly longer than for those cartridges prepared with walnut shell- based activated carbon with the same weight of adsorbents. This study showed that a granular form CO2 activated AC/CNF composite could be a very effective alternate adsorbent for respirator cartridges due to its larger adsorption capacities and lower weight.

  2. Preparation of a new adsorbent from activated carbon and carbon nanofiber (AC/CNF) for manufacturing organic-vacbpour respirator cartridge

    PubMed Central

    2013-01-01

    In this study a composite of activated carbon and carbon nanofiber (AC/CNF) was prepared to improve the performance of activated carbon (AC) for adsorption of volatile organic compounds (VOCs) and its utilization for respirator cartridges. Activated carbon was impregnated with a nickel nitrate catalyst precursor and carbon nanofibers (CNF) were deposited directly on the AC surface using catalytic chemical vapor deposition. Deposited CNFs on catalyst particles in AC micropores, were activated by CO2 to recover the surface area and micropores. Surface and textural characterizations of the prepared composites were investigated using Brunauer, Emmett and Teller’s (BET) technique and electron microscopy respectively. Prepared composite adsorbent was tested for benzene, toluene and xylene (BTX) adsorption and then employed in an organic respirator cartridge in granular form. Adsorption studies were conducted by passing air samples through the adsorbents in a glass column at an adjustable flow rate. Finally, any adsorbed species not retained by the adsorbents in the column were trapped in a charcoal sorbent tube and analyzed by gas chromatography. CNFs with a very thin diameter of about 10-20 nm were formed uniformly on the AC/CNF. The breakthrough time for cartridges prepared with CO2 activated AC/CNF was 117 minutes which are significantly longer than for those cartridges prepared with walnut shell- based activated carbon with the same weight of adsorbents. This study showed that a granular form CO2 activated AC/CNF composite could be a very effective alternate adsorbent for respirator cartridges due to its larger adsorption capacities and lower weight. PMID:23369424

  3. Study of the adsorption of Cd and Zn onto an activated carbon: Influence of pH, cation concentration, and adsorbent concentration

    SciTech Connect

    Seco, A.; Marzal, P.; Gabaldon, C.; Ferrer, J.

    1999-06-01

    The single adsorption of Cd and Zn from aqueous solutions has been investigated on Scharlau Ca 346 granular activated carbon in a wide range of experimental conditions: pH, metal concentration, and carbon concentration. The results showed the efficiency of the activated carbon as sorbent for both metals. Metal removals increase on raising the pH and carbon concentration, and decrease on raising the initial metal concentration. The adsorption processes have been modeled using the surface complex formation (SCF) Triple Layer Model (TLM). The adsorbent TLM parameters were determined. Modeling has been performed assuming a single surface bidentate species or an overall surface species with fractional stoichiometry. The bidentate stoichiometry successfully predicted cadmium and zinc removals in all the experimental conditions. The Freundlich isotherm has been also checked.

  4. Anionic sorbents for arsenic and technetium species.

    SciTech Connect

    Lucero, Daniel A.; Moore, Robert Charles; Bontchev, Ranko Panayotov; Hasan, Ahmed Ali Mohamed; Zhao, Hongting; Salas, Fred Manuel; Holt, Kathleen Caroline

    2003-09-01

    Two sorbents, zirconium coated zeolite and magnesium hydroxide, were tested for their effectiveness in removing arsenic from Albuquerque municipal water. Results for the zirconium coated zeolite indicate that phosphate present in the water interfered with the sorption of arsenic. Additionally, there was a large quantity of iron and copper present in the water, corrosion products from the piping system, which may have interfered with the uptake of arsenic by the sorbent. Magnesium hydroxide has also been proven to be a strong sorbent for arsenic as well as other metals. Carbonate, present in water, has been shown to interfere with the sorption of arsenic by reacting with the magnesium hydroxide to form magnesium carbonate. The reaction mechanism was investigated by FT-IR and shows that hydrogen bonding between an oxygen on the arsenic species and a hydrogen on the Mg(OH)2 is most likely the mechanism of sorption. This was also confirmed by RAMAN spectroscopy and XRD. Technetium exists in multiple oxidation states (IV and VII) and is easily oxidized from the relatively insoluble Tc(IV) form to the highly water soluble and mobile Tc(VII) form. The two oxidation states exhibit different sorption characteristics. Tc(VII) does not sorb to most materials whereas Tc(IV) will strongly sorb to many materials. Therefore, it was determined that it is necessary to first reduce the Tc (using SnCl2) before sorption to stabilize Tc in the environment. Additionally, the effect of carbonate and phosphate on the sorption of technetium by hydroxyapatite was studied and indicated that both have a significant effect on reducing Tc sorption.

  5. Sorption of priority pollutants to biochars and activated carbons for application to soil and sediment remediation

    NASA Astrophysics Data System (ADS)

    Beckingham, B.; Gomez-Eyles, J. L.; Kwon, S.; Riedel, G.; Gilmour, C.; Ghosh, U.

    2012-04-01

    The effectiveness of different biochars in comparison to 2 commercially available activated carbons (ACs) to sorb polychlorinated biphenyls (PCBs) and mercury (Hg) was assessed, with the aim of identifying promising materials for application to soil and sediment remediation and elucidating material properties that may enhance pollutant binding potential. Biochars studied were produced from pine dust, peanut hull, barley straw, and acai pit in addition to steam-activated biochars made from poultry litter (chicken and turkey). Aqueous concentrations of PCBs were measured using a polyoxymethylene passive sampling technique allowing a very low environmentally-relevant concentration range to be examined. Mercury pH-edge isotherms were conducted at relatively high concentrations in a wide pH range (pH 3-11). Sorption of Hg at low concentrations was also performed with ACs and two other biochars made from a marsh reed and a hard wood. Organic contaminant isotherms were analyzed by the Freundlich model, and Freundlich sorption coefficients (KFr) were normalized to a single concentration to allow comparison among materials (i.e. Kd). Values of Kd were related to the sorbent surface area, with sorption being greater for ACs than activated biochars, followed by unactivated biochars. ACs also had higher carbon content (80-90%) than biochars (22 - 77%). This sorption trend would thus be expected for adsorption of hydrophobic compounds to black carbon surfaces. In contrast, at high concentration all biochars removed more Hg from solution than ACs. Steam-activated poultry litter biochars showed the best performance, with consistent removal of >99.7% Hg over the entire pH range. The relatively high sulfur and phosphate content of these materials likely contribute to this enhanced Hg sorption. Also, owing to their lower pyrolysis temperatures relative to ACs, biochars are reported to have a greater surface group functionality which can enhance cation sorption. The importance of

  6. Engineered sorbent barriers for low-level waste disposal.

    SciTech Connect

    Freeman, H.D.; Mitchell, S.J.; Buelt, J.L.

    1986-12-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is investigating sorbent materials to prevent the migration of soluble radio nuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Laboratory studies identifield promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent and was adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and local soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow-land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 7 refs., 14 figs., 12 tabs.

  7. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.

    PubMed

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents

  8. Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization.

    PubMed

    Zhang, Jie; You, Changfu; Zhao, Suwei; Chen, Changhe; Qi, Haiying

    2008-03-01

    Semidry flue gas desulfurization with a rapidly hydrated sorbent was studied in a pilot-scale circulating fluidized bed (CFB) experimental facility. The desulfurization efficiency was measured for various operating parameters, including the sorbent recirculation rate and the water spray method. The experimental results show that the desulfurization efficiencies of the rapidly hydrated sorbent were 1.5-3.0 times higher than a commonly used industrial sorbent for calcium to sulfur molar ratios from 1.2 to 3.0, mainly due to the higher specific surface area and pore volume. The Ca(OH)2 content in the cyclone separator ash was about 2.9% for the rapidly hydrated sorbent and was about 0.1% for the commonly used industrial sorbent, due to the different adhesion between the fine Ca(OH)2 particles and the fly ash particles, and the low cyclone separation efficiency for the fine Ca(OH)2 particles that fell off the sorbent particles. Therefore the actual recirculation rates of the active sorbent with Ca(OH)2 particles were higher for the rapidly hydrated sorbent, which also contributed to the higher desulfurization efficiency. The high fly ash content in the rapidly hydrated sorbent resulted in good operating stability. The desulfurization efficiency with upstream water spray was 10-15% higher than that with downstream water spray.

  9. Supercapacitor Electrodes from Activated Carbon Monoliths and Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Dolah, B. N. M.; Othman, M. A. R.; Deraman, M.; Basri, N. H.; Farma, R.; Talib, I. A.; Ishak, M. M.

    2013-04-01

    Binderless monoliths of supercapacitor electrodes were prepared by the carbonization (N2) and activation (CO2) of green monoliths (GMs). GMs were made from mixtures of self-adhesive carbon grains (SACG) of fibers from oil palm empty fruit bunches and a combination of 5 & 6% KOH and 0, 5 & 6% carbon nanotubes (CNTs) by weight. The electrodes from GMs containing CNTs were found to have lower specific BET surface area (SBET). The electrochemical behavior of the supercapacitor fabricated using the prepared electrodes were investigated by electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD). In general an addition of CNTs into the GMs reduces the equivalent series resistance (ESR) value of the cells. A cell fabricated using electrodes from GM with 5% CNT and 5% KOH was found to have the largest reduction of ESR value than that from the others GMs containing CNT. The cell has steeper Warburg's slope than that from its respective non-CNT GM, which reflect the smaller resistance for electrolyte ions to move into pores of electrodes despite these electrodes having largest reduction in specific BET surface area. The cell also has the smallest reduction of specific capacitance (Csp) and maintains the specific power range despite a reduction in the specific energy range due to the CNT addition.

  10. Novacon process: An alternative to limestone sorbents. Presentation to the Council of Industrial Boiler Owners, fluid bed XI. Held in Burke, Virginia, on November 14, 1995

    SciTech Connect

    Baer, S.H.; Luftglass, B.K.

    1995-12-31

    This paper presents the results of recent tests of a new type of sorbent useful for emissions control. The sorbent, referred to as thermally active marble (TAM), comprises a class of naturally-occurring metamorphic calcium carbonates. TAMs break down upon heating in combustors more evenly and with higher reactivity than limestone, resulting in better calcium utilization rates. Use of TAMS may also reduce NOx and CO emissions, excess air consumption and unburned carbon, and also improve combustion efficiency. In a full-scale (90 MW) demonstration comparing TAM to limestone, the Ca/S improved from 2.6 to 1.5 or better. Unburned carbon in fly ash decreased significantly and NOx levels were also reduced.

  11. Process analysis of CO{sub 2} capture from flue gas using carbonation/calcination cycles

    SciTech Connect

    Li, Z.S.; Cai, N.S.; Croiset, E.

    2008-07-15

    Process analysis of CO{sub 2} capture from flue gas using Ca-based carbonation/calcination cycles is presented here. A carbonation/calcination system is composed essentially of two reactors (an absorber and a regenerator) with Ca-based sorbent circulating between the two reactors (assumed here as fluidized beds). CO{sub 2} is, therefore, transferred from the absorber to the regenerator. Because of the endothermicity of the calcination reaction, a certain amount of coal is burned with pure oxygen in the regenerator. Detailed mass balance, heat balance and cost of electricity and CO{sub 2} mitigation for the carbonation/calcination cycles with three Ca-based sorbents in dual fluidized beds were calculated and analyzed to study the effect of the Ca-based sorbent activity decay on CO{sub 2} capture from flue gas. The three sorbents considered were: limestone, dolomite and CaO/Ca{sub 12}Al{sub 14}O{sub 33} (75/25 wt %) sorbent. All results, including the amount of coal and oxygen required, are presented with respect to the difference in calcium oxide conversion between the absorber and the regenerator, which is an important design parameter. Finally, costs of electricity and CO{sub 2} mitigation costs using carbonation/calcination cycles for the three sorbents were estimated. The results indicate that the economics of the carbonation/calcination process compare favorably with competing technologies for capturing CO{sub 2}.

  12. Sulfidation of a Novel Iron Sorbent Supported on Lignite Chars during Hot Coal Gas Desulfurization

    NASA Astrophysics Data System (ADS)

    Yin, Fengkui; Yu, Jianglong; Gupta, Sushil; Wang, Shaoyan; Wang, Dongmei; Yang, Li; Tahmasebi, Arash

    The sulfidation behavior of novel iron oxide sorbents supported using activated-chars during desulfurization of hot coal gases has been studied. The sulfidation of the char-supported sorbents was investigated using a fixed-bed quartz reactor in the temperature range of 673K to 873K. The product gases were analyzed using a GC equipped with a TCD and a FPD detector. The sorbent samples before and after sulfidation were examined using SEM and XRD.

  13. Carbon nanomaterials: Biologically active fullerene derivatives.

    PubMed

    Bogdanović, Gordana; Djordjević, Aleksandar

    2016-01-01

    Since their discovery, fullerenes, carbon nanotubes, and graphene attract significant attention of researches in various scientific fields including biomedicine. Nano-scale size and a possibility for diverse surface modifications allow carbon nanoallotropes to become an indispensable nanostructured material in nanotechnologies, including nanomedicine. Manipulation of surface chemistry has created diverse populations of water-soluble derivatives of fullerenes, which exhibit different behaviors. Both non-derivatized and derivatized fullerenes show various biological activities. Cellular processes that underline their toxicity are oxidative, genotoxic, and cytotoxic responses.The antioxidant/cytoprotective properties of fullerenes and derivatives have been considered in the prevention of organ oxidative damage and treatment. The same unique physiochemical properties of nanomaterials may also be associated with potential health hazards. Non-biodegradability and toxicity of carbon nanoparticles still remain a great concern in the area of biomedical application. In this review, we report on basic physical and chemical properties of carbon nano-clusters--fullerenes, nanotubes, and grapheme--their specificities, activities, and potential application in biological systems. Special emphasis is given to our most important results obtained in vitro and in vivo using polyhydroxylated fullerene derivative C₆₀(OH)₂₄.

  14. Carbon nanomaterials: Biologically active fullerene derivatives.

    PubMed

    Bogdanović, Gordana; Djordjević, Aleksandar

    2016-01-01

    Since their discovery, fullerenes, carbon nanotubes, and graphene attract significant attention of researches in various scientific fields including biomedicine. Nano-scale size and a possibility for diverse surface modifications allow carbon nanoallotropes to become an indispensable nanostructured material in nanotechnologies, including nanomedicine. Manipulation of surface chemistry has created diverse populations of water-soluble derivatives of fullerenes, which exhibit different behaviors. Both non-derivatized and derivatized fullerenes show various biological activities. Cellular processes that underline their toxicity are oxidative, genotoxic, and cytotoxic responses.The antioxidant/cytoprotective properties of fullerenes and derivatives have been considered in the prevention of organ oxidative damage and treatment. The same unique physiochemical properties of nanomaterials may also be associated with potential health hazards. Non-biodegradability and toxicity of carbon nanoparticles still remain a great concern in the area of biomedical application. In this review, we report on basic physical and chemical properties of carbon nano-clusters--fullerenes, nanotubes, and grapheme--their specificities, activities, and potential application in biological systems. Special emphasis is given to our most important results obtained in vitro and in vivo using polyhydroxylated fullerene derivative C₆₀(OH)₂₄. PMID:27483572

  15. Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station

    SciTech Connect

    John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

    2009-01-07

    The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the

  16. Development of Highly Durable and Reactive Regenerable Magnesium-Based Sorbents for CO2 Separation in Coal Gasification Process

    SciTech Connect

    Javad Abbasian; Armin Hassanzadeh Khayyat; Rachid B. Slimane

    2005-06-01

    The specific objective of this project was to develop physically durable and chemically regenerable MgO-based sorbents that can remove carbon dioxide from raw coal gas at operating condition prevailing in IGCC processes. A total of sixty two (62) different sorbents were prepared in this project. The sorbents were prepared either by various sol-gel techniques (22 formulations) or modification of dolomite (40 formulations). The sorbents were prepared in the form of pellets and in granular forms. The solgel based sorbents had very high physical strength, relatively high surface area, and very low average pore diameter. The magnesium content of the sorbents was estimated to be 4-6 % w/w. To improve the reactivity of the sorbents toward CO{sub 2}, The sorbents were impregnated with potassium salts. The potassium content of the sorbents was about 5%. The dolomite-based sorbents were prepared by calcination of dolomite at various temperature and calcination environment (CO{sub 2} partial pressure and moisture). Potassium carbonate was added to the half-calcined dolomite through wet impregnation method. The estimated potassium content of the impregnated sorbents was in the range of 1-6% w/w. In general, the modified dolomite sorbents have significantly higher magnesium content, larger pore diameter and lower surface area, resulting in significantly higher reactivity compared to the sol-gel sorbents. The reactivities of a number of sorbents toward CO{sub 2} were determined in a Thermogravimetric Analyzer (TGA) unit. The results indicated that at the low CO{sub 2} partial pressures (i.e., 1 atm), the reactivities of the sorbents toward CO{sub 2} are very low. At elevated pressures (i.e., CO{sub 2} partial pressure of 10 bar) the maximum conversion of MgO obtained with the sol-gel based sorbents was about 5%, which corresponds to a maximum CO{sub 2} absorption capacity of less than 1%. The overall capacity of modified dolomite sorbents were at least one order of magnitude

  17. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates

    NASA Astrophysics Data System (ADS)

    Lu, Beihu; Xiao, Zuoan; Zhu, Hua; Xiao, Wei; Wu, Wenlong; Wang, Dihua

    2015-12-01

    Simple, affordable and green methods to improve capacitive properties of commercial activated carbon (AC) are intriguing since ACs possess a predominant role in the commercial supercapacitor market. Herein, we report a green reactivation of commercial ACs by soaking ACs in molten Na2CO3-K2CO3 (equal in mass ratios) at 850 °C combining the merits of both physical and chemical activation strategies. The mechanism of molten carbonate treatment and structure-capacitive activity correlations of the ACs are rationalized. Characterizations show that the molten carbonate treatment increases the electrical conductivity of AC without compromising its porosity and wettability of electrolytes. Electrochemical tests show the treated AC exhibited higher specific capacitance, enhanced high-rate capability and excellent cycle performance, promising its practical application in supercapacitors. The present study confirms that the molten carbonate reactivation is a green and effective method to enhance capacitive properties of ACs.

  18. Kinetics of adsorption with granular, powdered, and fibrous activated carbon

    SciTech Connect

    Shmidt, J.L.; Pimenov, A.V.; Lieberman, A.I.; Cheh, H.Y.

    1997-08-01

    The properties of three different types of activated carbon, fibrous, powdered, and granular, were investigated theoretically and experimentally. The adsorption rate of the activated carbon fiber was found to be two orders of magnitude higher than that of the granular activated carbon, and one order of magnitude higher than that of the powdered activated carbon. Diffusion coefficients of methylene blue in the fibrous, powdered, and granular activated carbons were determined experimentally. A new method for estimating the meso- and macropore surface areas in these carbons was proposed.

  19. High capacity immobilized amine sorbents

    DOEpatents

    Gray, McMahan L.; Champagne, Kenneth J.; Soong, Yee; Filburn, Thomas

    2007-10-30

    A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

  20. Multi-walled carbon nanotubes as solid-phase extraction sorbents for simultaneous determination of type A trichothecenes in maize, wheat and rice by ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Dong, Maofeng; Si, Wenshuai; Jiang, Keqiu; Nie, Dongxia; Wu, Yongjiang; Zhao, Zhihui; De Saeger, Sarah; Han, Zheng

    2015-12-01

    A solid-phase extraction (SPE) procedure using multi-walled carbon nanotubes (MWCNTs) as sorbents coupled with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for simultaneous determination of four type A trichothecenes in maize, wheat and rice for the first time. Several key parameters including the composition of sample loading solutions, washing and elution solvents were thoroughly investigated to achieve optimal SPE recoveries and efficiency. Performance of the MWCNTs materials was significantly affected by pH, and after optimization, n-hexane and 5% methanol aqueous solution as the washing solutions and methanol containing 1% formic acid as the elution solvent presented an excellent purification efficiency for the four targets in the different matrices. The method was validated by determining the linearity (R(2)≥0.992), recovery (73.4-113.7%), precision (1.2-17.1%) and sensitivity (limit of quantification in the range of 0.02-0.10μg/kg), and was further applied for simultaneous determination of type A trichothecenes in 30 samples. Although low contamination levels of type A trichothecenes in wheat, maize and rice were observed revealing mitigated risks to consumers in Shanghai, China, the developed method has proven to be a valuable tool for type A trichothecenes monitoring in complex crop matrices.

  1. Aqueous mercury adsorption by activated carbons.

    PubMed

    Hadi, Pejman; To, Ming-Ho; Hui, Chi-Wai; Lin, Carol Sze Ki; McKay, Gordon

    2015-04-15

    Due to serious public health threats resulting from mercury pollution and its rapid distribution in our food chain through the contamination of water bodies, stringent regulations have been enacted on mercury-laden wastewater discharge. Activated carbons have been widely used in the removal of mercuric ions from aqueous effluents. The surface and textural characteristics of activated carbons are the two decisive factors in their efficiency in mercury removal from wastewater. Herein, the structural properties and binding affinity of mercuric ions from effluents have been presented. Also, specific attention has been directed to the effect of sulfur-containing functional moieties on enhancing the mercury adsorption. It has been demonstrated that surface area, pore size, pore size distribution and surface functional groups should collectively be taken into consideration in designing the optimal mercury removal process. Moreover, the mercury adsorption mechanism has been addressed using equilibrium adsorption isotherm, thermodynamic and kinetic studies. Further recommendations have been proposed with the aim of increasing the mercury removal efficiency using carbon activation processes with lower energy input, while achieving similar or even higher efficiencies.

  2. Biochar from Coffee Residues: A New Promising Sorbent

    NASA Astrophysics Data System (ADS)

    Fotopoulou, Kalliopi; Karapanagioti, Hrissi; Manariotis, Ioannis

    2014-05-01

    Biochar is a carbon-rich material produced by heating biomass in an oxygen-limited environment. Biochar is mainly used as an additive to soils to sequester carbon and improve soil fertility as well as a sorbent for environmental remediation processes. Surface properties such as point of zero charge, surface area and pore volume, surface topography, surface functional groups and acid-base behavior are important factors, which affect sorption efficiency. Understanding the surface alteration of biochars increases our understanding of the pollutant-sorbent interaction. The objective of the present study was to characterize the surface properties of biochar produced, and to investigate the effect of thermal treatment conditions on key characteristics that affect sorptive properties. The espresso coffee residue was obtained after the coffee was brewed through espresso machines in coffee shops. The coffee residue was dried and kept in an oven at 50oC until its pyrolysis at 850oC. Pyrolysis with different coffee mass and containers were tested in order to find optimum biochar characteristics. Detailed characterization techniques were carried out to determine the properties of the produced biochar. The surface area, the pore volume, and the average pore size of the biochars were determined using gas (N2) adsorption-desorption cycles using the Brunauer, Emmett, and Teller (BET) equation. Open surface area and micropore volume were determined using the t-plot method and the Harkins & Jura equation. Total organic carbon was also determined because it is an important factor that affects sorption. The results were compared with the corresponding properties of activated carbons. The biochar produced exhibited a wide range of surface area from 21 to 770 m2/g and open surface area from 21 to 65 m2/g. It is obvious that the surface area results from the formation of pores. Actually it was calculated that up to 90% of the porosity is due to the micropores. More specifically the

  3. Influence of temperature and regeneration cycles on Hg capture and efficiency by structured Au/C regenerable sorbents.

    PubMed

    Ballestero, D; Gómez-Giménez, C; García-Díez, E; Juan, R; Rubio, B; Izquierdo, M T

    2013-09-15

    The objective of this work is to evaluate a novel regenerable sorbent for mercury capture based on gold nanoparticles supported on a honeycomb structured carbon monolith. A new methodology for gold nanoparticles deposition onto carbon monolith support has been developed to obtain an Au sorbent based on the direct reduction of a gold salt onto the carbon material. For comparison purposes, colloidal gold method was also used to obtain Au/C sorbents. Both types of sorbents were characterized by different techniques in order to obtain the bulk gold content, the particle size distribution and the chemical states of gold after deposition. The mercury capture capacity and mercury capture efficiency of sorbents were tested in a bench scale facility at different experimental conditions. The regenerability of the sorbents was tested along several cycles of Hg capture-regeneration. High retention efficiencies are found for both types of sorbents comparing their gold content. Moreover, the high retention efficiency is maintained along several cycles of Hg capture-regeneration. The study of the fresh sorbent, the sorbent after Hg exposition and after regeneration by XPS and XRD gives insight to explain those results.

  4. Activation Effect of Fullerene C60 on the Carbon Dioxide Absorption Performance of Amine-Rich Polypropylenimine Dendrimers.

    PubMed

    Andreoli, Enrico; Barron, Andrew R

    2015-08-24

    Converting amine-rich compounds into highly effective carbon dioxide (CO2 ) sorbents requires a better understanding and control of their properties. The reaction of fullerene C60 with polyethyleneimine converts the polymer into a high-performance CO2 sorbent. In this study, experimental evidence is reported for the activation effect of C60 on the amine moieties of the polymer. To do so, polypropylenimine (PPI) dendrimers that allowed for a systematic comparison of molecular composition and CO2 absorption were used. The addition of C60 to PPI to form PPI-C60 results in a reduction of the energy barrier of CO2 absorption, but also in a parallel decrease in the frequency of successful collisions between CO2 and PPI-C60 due to a possible disruption of the hydrogen-bonding network of amino groups and bound water in PPI. This finding supports the existence of a non-affinity "repulsive" effect between hydrophobic C60 and hydrophilic amines that forces them to be actively exposed to CO2. PMID:26223905

  5. Activation Effect of Fullerene C60 on the Carbon Dioxide Absorption Performance of Amine-Rich Polypropylenimine Dendrimers.

    PubMed

    Andreoli, Enrico; Barron, Andrew R

    2015-08-24

    Converting amine-rich compounds into highly effective carbon dioxide (CO2 ) sorbents requires a better understanding and control of their properties. The reaction of fullerene C60 with polyethyleneimine converts the polymer into a high-performance CO2 sorbent. In this study, experimental evidence is reported for the activation effect of C60 on the amine moieties of the polymer. To do so, polypropylenimine (PPI) dendrimers that allowed for a systematic comparison of molecular composition and CO2 absorption were used. The addition of C60 to PPI to form PPI-C60 results in a reduction of the energy barrier of CO2 absorption, but also in a parallel decrease in the frequency of successful collisions between CO2 and PPI-C60 due to a possible disruption of the hydrogen-bonding network of amino groups and bound water in PPI. This finding supports the existence of a non-affinity "repulsive" effect between hydrophobic C60 and hydrophilic amines that forces them to be actively exposed to CO2.

  6. Spray water reactivation/pelletization of spent CaO-based sorbent from calcium looping cycles.

    PubMed

    Manovic, Vasilije; Wu, Yinghai; He, Ian; Anthony, Edward J

    2012-11-20

    This paper presents a novel method for reactivation of spent CaO-based sorbents from calcium looping (CaL) cycles for CO(2) capture. A spent Cadomin limestone-derived sorbent sample from a pilot-scale fluidized bed (FBC) CaL reactor is used for reactivation. The calcined sorbent is sprayed by water in a pelletization vessel. This reactivation method produces pellets ready to be used in FBC reactors. Moreover, this procedure enables the addition of calcium aluminate cement to further enhance sorbent strength. The characterization of reactivated material by nitrogen physisorption (BET, BJH) and scanning electron microscopy (SEM) confirmed the enhanced morphology of sorbent particles for reaction with CO(2). This improved CO(2) carrying capacity was demonstrated in calcination/carbonation tests performed in a thermogravimetric analyzer (TGA). Finally, the resulting pellets displayed a high resistance to attrition during fluidization in a bubbling bed.

  7. Less-costly activated carbon for sewage treatment

    NASA Technical Reports Server (NTRS)

    Ingham, J. D.; Kalvinskas, J. J.; Mueller, W. A.

    1977-01-01

    Lignite-aided sewage treatment is based on absorption of dissolved pollutants by activated carbon. Settling sludge is removed and dried into cakes that are pyrolyzed with lignites to yield activated carbon. Lignite is less expensive than activated carbon previously used to supplement pyrolysis yield.

  8. Hierarchically structured activated carbon for ultracapacitors

    PubMed Central

    Kim, Mok-Hwa; Kim, Kwang-Bum; Park, Sun-Min; Roh, Kwang Chul

    2016-01-01

    To resolve the pore-associated bottleneck problem observed in the electrode materials used for ultracapacitors, which inhibits the transport of the electrolyte ions, we designed hierarchically structured activated carbon (HAC) by synthesizing a mesoporous silica template/carbon composite and chemically activating it to simultaneously remove the silica template and increase the pore volume. The resulting HAC had a well-designed, unique porous structure, which allowed for large interfaces for efficient electric double-layer formation. Given the unique characteristics of the HAC, we believe that the developed synthesis strategy provides important insights into the design and fabrication of hierarchical carbon nanostructures. The HAC, which had a specific surface area of 1,957 m2 g−1, exhibited an extremely high specific capacitance of 157 F g−1 (95 F cc−1), as well as a high rate capability. This indicated that it had superior energy storage capability and was thus suitable for use in advanced ultracapacitors. PMID:26878820

  9. A sensitive microextraction by packed sorbent-based methodology combined with ultra-high pressure liquid chromatography as a powerful technique for analysis of biologically active flavonols in wines.

    PubMed

    Silva, Catarina L; Gonçalves, João L; Câmara, José S

    2012-08-20

    A new approach based on microextraction by packed sorbent (MEPS) and reversed-phase high-throughput ultra high pressure liquid chromatography (UHPLC) method that uses a gradient elution and diode array detection to quantitate three biologically active flavonols in wines, myricetin, quercetin, and kaempferol, is described. In addition to performing routine experiments to establish the validity of the assay to internationally accepted criteria (selectivity, linearity, sensitivity, precision, accuracy), experiments are included to assess the effect of the important experimental parameters such as the type of sorbent material (C2, C8, C18, SIL, and C8/SCX), number of extraction cycles (extract-discard), elution volume, sample volume, and ethanol content, on the MEPS performance. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (250μL) in five extraction cycle and in a short time period (about 5min for the entire sample preparation step). Under optimized conditions, excellent linearity (R(values)(2)>0.9963), limits of detection of 0.006μgmL(-1) (quercetin) to 0.013μgmL(-1) (myricetin) and precision within 0.5-3.1% were observed for the target flavonols. The average recoveries of myricetin, quercetin and kaempferol for real samples were 83.0-97.7% with relative standard deviation (RSD, %) lower than 1.6%. The results obtained showed that the most abundant flavonol in the analyzed samples was myricetin (5.8±3.7μgmL(-1)). Quercetin (0.97±0.41μgmL(-1)) and kaempferol (0.66±0.24μgmL(-1)) were found in a lower concentration. The optimized MEPS(C8) method was compared with a reverse-phase solid-phase extraction (SPE) procedure using as sorbent a macroporous copolymer made from a balanced ratio of two monomers, the lipophilic divinylbenzene and the hydrophilic N-vinylpyrrolidone (Oasis HLB) were used as reference. MEPS(C8) approach offers an attractive alternative for analysis of flavonols in wines, providing a number of

  10. Evaluation of a new carbon/zirconia-based sorbent for cleanup of food extracts in multiclass analysis of pesticides and environmental contaminants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel carbon/zirconia based material, SupelTM QuE Verde (Verde), was evaluated in a filter-vial dispersive solid phase extraction (d-SPE) cleanup of QuEChERS extracts of pork, salmon, kale, and avocado for residual analysis of pesticides and environmental contaminants. Low pressure (LP) GC-MS/MS w...

  11. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Quarterly technical progress report No. 1, October--December 1986

    SciTech Connect

    Jha, M.C.; Baltich, L.K.

    1987-02-23

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  12. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Quarterly technical progress report 2, January--March 1987

    SciTech Connect

    Jha, M.C.; Baltich, L.K.; Berggren, M.H.

    1987-05-18

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  13. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Volume 1, Bench-scale testing and analysis

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  14. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Quarterly technical progress report No. 3, April--June 1987

    SciTech Connect

    Jha, M.C.; Baltich, L.K.; Berggren, M.H.

    1987-08-28

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  15. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Quarterly technical progress report 8, July--September 1988

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1988-11-14

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  16. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Quarterly technical progress report 7, April--June 1988

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1988-08-19

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  17. Vibration damping with active carbon fiber structures

    NASA Astrophysics Data System (ADS)

    Neugebauer, Reimund; Kunze, Holger; Riedel, Mathias; Roscher, Hans-Jürgen

    2007-04-01

    This paper presents a mechatronic strategy for active reduction of vibrations on machine tool struts or car shafts. The active structure is built from a carbon fiber composite with embedded piezofiber actuators that are composed of piezopatches based on the Macro Fiber Composite (MFC) technology, licensed by NASA and produced by Smart Material GmbH in Dresden, Germany. The structure of these actuators allows separate or selectively combined bending and torsion, meaning that both bending and torsion vibrations can be actively absorbed. Initial simulation work was done with a finite element model (ANSYS). This paper describes how state space models are generated out of a structure based on the finite element model and how controller codes are integrated into finite element models for transient analysis and the model-based control design. Finally, it showcases initial experimental findings and provides an outlook for damping multi-mode resonances with a parallel combination of resonant controllers.

  18. Photothermal desorption of single-walled carbon nanotubes and coconut shell-activated carbons using a continuous light source for application in air sampling.

    PubMed

    Floyd, Evan L; Sapag, Karim; Oh, Jonghwa; Lungu, Claudiu T

    2014-08-01

    Many techniques exist to measure airborne volatile organic compounds (VOCs), each with differing advantages; sorbent sampling is compact, versatile, has good sample stability, and is the preferred technique for collecting VOCs for hygienists. Development of a desorption technique that allows multiple analyses per sample (similar to chemical desorption) with enhanced sensitivity (similar to thermal desorption) would be helpful to field hygienists. In this study, activated carbon (AC) and single-walled carbon nanotubes (SWNT) were preloaded with toluene vapor and partially desorbed with light using a common 12-V DC, 50-W incandescent/halogen lamp. A series of experimental chamber configurations were explored starting with a 500-ml chamber under static conditions, then with low ventilation and high ventilation, finally a 75-ml high ventilation chamber was evaluated. When preloaded with toluene and irradiated at the highest lamp setting for 4min, AC desorbed 13.9, 18.5, 23.8, and 45.9% of the loaded VOC mass, in each chamber configuration, respectively; SWNT desorbed 25.2, 24.3, 37.4, and 70.5% of the loaded VOC mass, respectively. SWNT desorption was significantly greater than AC in all test conditions (P = 0.02-<0.0001) demonstrating a substantial difference in sorbent performance. When loaded with 0.435mg toluene and desorbed at the highest lamp setting for 4min in the final chamber design, the mean desorption for AC was 45.8% (39.7, 52.0) and SWNT was 72.6% (68.8, 76.4) (mean represented in terms of 95% confidence interval). All desorption measurements were obtained using a field grade photoionization detector; this demonstrates the potential of using this technique to perform infield prescreening of VOC samples for immediate exposure feedback and in the analytical lab to introduce sample to a gas chromatograph for detailed analysis of the sample.

  19. Photothermal Desorption of Single-Walled Carbon Nanotubes and Coconut Shell-Activated Carbons Using a Continuous Light Source for Application in Air Sampling

    PubMed Central

    Floyd, Evan L.; Sapag, Karim; Oh, Jonghwa; Lungu, Claudiu T.

    2014-01-01

    Many techniques exist to measure airborne volatile organic compounds (VOCs), each with differing advantages; sorbent sampling is compact, versatile, has good sample stability, and is the preferred technique for collecting VOCs for hygienists. Development of a desorption technique that allows multiple analyses per sample (similar to chemical desorption) with enhanced sensitivity (similar to thermal desorption) would be helpful to field hygienists. In this study, activated carbon (AC) and single-walled carbon nanotubes (SWNT) were preloaded with toluene vapor and partially desorbed with light using a common 12-V DC, 50-W incandescent/halogen lamp. A series of experimental chamber configurations were explored starting with a 500-ml chamber under static conditions, then with low ventilation and high ventilation, finally a 75-ml high ventilation chamber was evaluated. When preloaded with toluene and irradiated at the highest lamp setting for 4min, AC desorbed 13.9, 18.5, 23.8, and 45.9% of the loaded VOC mass, in each chamber configuration, respectively; SWNT desorbed 25.2, 24.3, 37.4, and 70.5% of the loaded VOC mass, respectively. SWNT desorption was significantly greater than AC in all test conditions (P = 0.02–<0.0001) demonstrating a substantial difference in sorbent performance. When loaded with 0.435mg toluene and desorbed at the highest lamp setting for 4min in the final chamber design, the mean desorption for AC was 45.8% (39.7, 52.0) and SWNT was 72.6% (68.8, 76.4) (mean represented in terms of 95% confidence interval). All desorption measurements were obtained using a field grade photoionization detector; this demonstrates the potential of using this technique to perform infield prescreening of VOC samples for immediate exposure feedback and in the analytical lab to introduce sample to a gas chromatograph for detailed analysis of the sample. PMID:25016598

  20. Charcoal and activated carbon at elevated pressure

    SciTech Connect

    Antal, M.J. Jr.; Dai, Xiangfeng; Norberg, N.

    1995-12-01

    High quality charcoal has been produced with very high yields of 50% to 60% from macadamia nut and kukui nut shells and of 44% to 47% from Eucalyptus and Leucaena wood in a bench scale unit at elevated pressure on a 2 to 3 hour cycle, compared to commercial practice of 25% to 30% yield on a 7 to 12 day operating cycle. Neither air pollution nor tar is produced by the process. The effects of feedstock pretreatments with metal additives on charcoal yield are evaluated in this paper. Also, the influences of steam and air partial pressure and total pressure on yields of activated carbon from high yield charcoal are presented.

  1. Adsorbed natural gas storage with activated carbon

    SciTech Connect

    Sun, Jian; Brady, T.A.; Rood, M.J.

    1996-12-31

    Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

  2. Selective solid-phase extraction using oxidized activated carbon modified with triethylenetetramine for preconcentration of metal ions

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Chang, Xijun; Li, Zhenhua; He, Qun

    2010-02-01

    A new selective solid-phase extractant using activated carbon as matrix which was purified, oxidized and modified by triethylenetetramine (AC-TETA) was prepared and characterized by FT-IR spectroscopy. At pH 4, quantitative extraction of trace Cr(III), Fe(III) and Pb(II) was obtained and determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Complete elution of the adsorbed metal ions from the sorbent surface was carried out using 0.5 mol L -1 HCl. The maximum static adsorption capacity of sorbent for Cr(III), Fe(III) and Pb(II) was 34.6, 36.5 and 51.9 mg g -1, respectively. The time of quantitative adsorption was less than 2 min. The detection limits of the method was found to be 0.71, 0.35 and 0.45 ng mL -1 for Cr(III), Fe(III) and Pb(II), and the relative standard deviation (RSD) was 3.7%, 2.2% and 2.5%, respectively. Moreover, the method was free from interference with common coexiting ions. The method was also successfully applied to the preconcentration of trace Cr(III), Fe(III) and Pb(II) in synthetic samples and a real sample with satisfactory results.

  3. ROLE OF POROSITY LOSS IN LIMITING SO2 CAPTURE BY CALCIUM BASED SORBENTS

    EPA Science Inventory

    The extent of high temperature (900-1,300°C), short time (<1 s) SO2 capture was found to be limited by temperature-dependent losses in the porosity of calcium based sorbents. At 970°C these porosity losses were caused by CO2-activated sintering. Sulfation of the sorbents either p...

  4. PREPARATION AND EVALUATION OF MODIFIED LIME AND SILICA-LIME SORBENTS FOR MERCURY VAPOR EMISSIONS CONTROL

    EPA Science Inventory

    The paper discusses current efforts to improve the uptake of mercury species by increasing active sites and adding oxidative species to the sorbent. (NOTE: Previous work showed that mercury chloride vapor is readily absorbed by calcium-based sorbents as an acid gas in environmen...

  5. Impact of oxy-fuel combustion gases on mercury retention in activated carbons from a macroalgae waste: effect of water.

    PubMed

    Lopez-Anton, M A; Ferrera-Lorenzo, N; Fuente, E; Díaz-Somoano, M; Suarez-Ruíz, I; Martínez-Tarazona, M R; Ruiz, B

    2015-04-01

    The aim of this study is to understand the different sorption behaviors of mercury species on activated carbons in the oxy-fuel combustion of coal and the effect of high quantities of water vapor on the retention process. The work evaluates the interactions between the mercury species and a series of activated carbons prepared from a macroalgae waste (algae meal) from the agar-agar industry in oxy-combustion atmospheres, focussing on the role that the high concentration of water in the flue gases plays in mercury retention. Two novel aspects are considered in this work (i) the impact of oxy-combustion gases on the retention of mercury by activated carbons and (ii) the performance of activated carbons prepared from biomass algae wastes for this application. The results obtained at laboratory scale indicate that the effect of the chemical and textural characteristics of the activated carbons on mercury capture is not as important as that of reactive gases, such as the SOx and water vapor present in the flue gas. Mercury retention was found to be much lower in the oxy-combustion atmosphere than in the O2+N2 (12.6% O2) atmosphere. However, the oxidation of elemental mercury (Hg0) to form oxidized mercury (Hg2+) amounted to 60%, resulting in an enhancement of mercury retention in the flue gas desulfurization units and a reduction in the amalgamation of Hg0 in the CO2 compression unit. This result is of considerable importance for the development of technologies based on activated carbon sorbents for mercury control in oxy-combustion processes.

  6. Impact of oxy-fuel combustion gases on mercury retention in activated carbons from a macroalgae waste: effect of water.

    PubMed

    Lopez-Anton, M A; Ferrera-Lorenzo, N; Fuente, E; Díaz-Somoano, M; Suarez-Ruíz, I; Martínez-Tarazona, M R; Ruiz, B

    2015-04-01

    The aim of this study is to understand the different sorption behaviors of mercury species on activated carbons in the oxy-fuel combustion of coal and the effect of high quantities of water vapor on the retention process. The work evaluates the interactions between the mercury species and a series of activated carbons prepared from a macroalgae waste (algae meal) from the agar-agar industry in oxy-combustion atmospheres, focussing on the role that the high concentration of water in the flue gases plays in mercury retention. Two novel aspects are considered in this work (i) the impact of oxy-combustion gases on the retention of mercury by activated carbons and (ii) the performance of activated carbons prepared from biomass algae wastes for this application. The results obtained at laboratory scale indicate that the effect of the chemical and textural characteristics of the activated carbons on mercury capture is not as important as that of reactive gases, such as the SOx and water vapor present in the flue gas. Mercury retention was found to be much lower in the oxy-combustion atmosphere than in the O2+N2 (12.6% O2) atmosphere. However, the oxidation of elemental mercury (Hg0) to form oxidized mercury (Hg2+) amounted to 60%, resulting in an enhancement of mercury retention in the flue gas desulfurization units and a reduction in the amalgamation of Hg0 in the CO2 compression unit. This result is of considerable importance for the development of technologies based on activated carbon sorbents for mercury control in oxy-combustion processes. PMID:25585865

  7. Production of activated carbon from TCR char

    NASA Astrophysics Data System (ADS)

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  8. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2000-12-01

    A test program is being sponsored by the US Department of Energy (DOE), EPRI, FirstEnergy, and TVA to investigate furnace injection of alkaline sorbents as a means of reducing sulfuric acid concentrations in the flue gas from coal-fired boilers. This test program is being conducted at the FirstEnergy Bruce Mansfield Plant (BMP), although later testing will be conducted at a TVA plant. A sorbent injection test was conducted the week of April 18, 2000. The test was the first of several short-term (one- to two-week duration) tests to investigate the effectiveness of various alkaline sorbents for sulfuric acid control and the effects of these sorbents on boiler equipment performance. This first short-term test investigated the effect of injecting dry dolomite powder (CaCO{sub 3} {center_dot} MgCO{sub 3}), a mineral similar to limestone, into the furnace of Unit 2. During the test program, various analytical techniques were used to assess the effects of sorbent injection. These primarily included sampling with the controlled condensation system (CCS) for determining flue gas SO{sub 3} content and an acid dew-point (ADP) meter for determining the sulfuric acid dew point (and, indirectly, the concentration of sulfuric acid) of the flue gas. EPA Reference Method 26a was used for determining hydrochloric acid (HCl) and hydrofluoric acid (HF), as well and chlorine (Cl{sub 2}) and fluorine (F{sub 2}) concentrations in the flue gas. Fly ash resistivity was measured using a Southern Research Institute (SRI) point-to-plane resistivity probe, and unburned carbon in fly ash was determined by loss on ignition (LOI). Coal samples were also collected and analyzed for a variety of parameters. Finally, visual observations were made of boiler furnace and convective pass surfaces prior to and during sorbent injection.

  9. VALUE-ADDED SORBENT DEVELOPMENT

    SciTech Connect

    Grant E. Dunham; Edwin S. Olson; Stanley J. Miller

    2000-07-01

    On a worldwide basis, the projected increase in coal usage over the next two decades in China, India, and Indonesia will dwarf the current U.S. coal consumption of 1 billion tons/year. Therefore, in the United States, coal will be the dominant source of mercury emissions, and worldwide, coal may be the cause of significantly increased mercury emissions unless an effective control strategy is implemented. However, there is much uncertainty over the most technically sound and cost-effective approach for reducing mercury emissions from coal-fired boilers. Several approaches are suggested for mercury control from coal-fired boilers, including enhancing the ability of wet scrubbers to retain mercury. However, many coal-fired boilers are not equipped with wet scrubbers. On the other hand, since almost all coal-fired boilers are equipped with either an electrostatic precipitator (ESP) or a baghouse, sorbent injection upstream of either an ESP or baghouse appears attractive, because it has the potential to control both Hg{sup 0} and Hg{sup 2+}, would appear to be easy to retrofit, and would be applicable to both industrial and utility boilers. Since mercury in the gas stream from coal combustion is present in only trace quantities, only very small amounts of sorbent may be necessary. If we assume a mercury concentration of 10 {micro}g/m{sup 3} and a sorbent-to-mercury mass ratio of 1000:1, the required sorbent loading is 10 mg/m{sup 3}, which is only 0.1% to 0.2% of a typical dust loading of 5-10 g/m{sup 3} (2.2-4.4 grains/scf). This amount of additional sorbent material in the ash would appear to be negligible and would not be expected to have an impact on control device performance or ash utilization. Accomplishing effective mercury control with sorbent injection upstream of a particulate control device requires several critical steps: (1) Dispersion of the small sorbent particles and mixing with the flue gas must be adequate to ensure that all of the gas is effectively

  10. Sorbent characterization for FBC application

    SciTech Connect

    Pisupati, S.V.; Scaroni, A.W.

    1994-12-31

    Fluidized-bed boilers operating at both atmospheric and elevated pressures have received considerable attention from utilities and independent power producers because of their ability to remove SO{sub 2} from the flue gas during combustion and to minimize NO{sub x} production. The technology has advanced rapidly in the 1980s because of its adaptability to a range of fuel types, boiler capacities, and operating conditions without seriously compromising efficiency or performance. A sorbent, typically limestone or dolostone, is used in the fluidized-bed boiler to capture the combustion-generated SO{sub 2}. Many CFBC boiler operators are now realizing that optimizing sorbent usage is important for economical and environmentally acceptable operation of their plants. It is reported (mostly based on studies using a few sorbents) that particle size, porosity and pore size distribution, extent of sulfation, combustor temperature, pressure and CaCO{sub 3} content affect extent of sulfation.

  11. Production of activated carbon from biodiesel solid residues: An alternative for hazardous metal sorption from aqueous solution.

    PubMed

    Ribeiro, Rita F L; Soares, Vitor C; Costa, Letícia M; Nascentes, Clésia C

    2015-10-01

    In this study, the potential for the sorption of Pb(2+) and Cd(2+) from aqueous solutions using HNO3-treated activated carbon (TAC) obtained from radish press cake (Raphanus sativus L.), a solid residue from biodiesel production, was investigated. Activated carbon (AC) was obtained by physical activation with CO2(g). Chemical modification with HNO3 was employed to increase the sorption capability of the AC. The sorption of Pb(2+) and Cd(2+) was studied in monometallic systems in equilibrium with different metal-ion concentrations (10-400 mg L(-1)). The experimental sorption equilibrium data were fit to the Langmuir and Freundlich isotherm models. The maximum sorption capacity (qmax) obtained for AC from the Langmuir isotherm was 45.5 mg g(-1) for Cd(2+) and 250 mg g(-1) for Pb(2+). Moreover, TAC presented qmax of 166.7 mg g(-1) (1.48 mmol g(-1)) for Cd(2+) and 500.0 mg g(-1) (2.41 mmol g(-1)) for Pb(2+)showing the effect of chemical modification. Sorption-desorption studies showed that the interaction between metals and TAC is reversible and this sorbent can be reused for several consecutive cycles. Furthermore, the sorption of Cd(2+) and Pb(2+) by TAC was not affected by the presence of competing ions. The experimental data obtained in this study indicated that this solid residue is viable for the production of sorbents that remove metals, such as cadmium and lead, from wastewaters and thereby contribute to the sustainable development of the production of biodiesel.

  12. Laboratory scale studies of Pd/{gamma}-Al{sub 2}O{sub 3} sorbents for the removal of trace contaminants from coal-derived fuel gas at elevated temperatures

    SciTech Connect

    Rupp, Erik C.; Granite, Evan J.; Stanko, Dennis C.

    2013-01-01

    The Integrated Gasification Combined Cycle (IGCC) is a promising technology for the use of coal in a clean and efficient manner. In order to maintain the overall efficiency of the IGCC process, it is necessary to clean the fuel gas of contaminants (sulfur, trace compounds) at warm (150–540 °C) to hot (>540 °C) temperatures. Current technologies for trace contaminant (such as mercury) removal, primarily activated carbon based sorbents, begin to lose effectiveness above 100 °C, creating the need to develop sorbents effective at elevated temperatures. As trace elements are of particular environmental concern, previous work by this group has focused on the development of a Pd/γ-Al{sub 2}O{sub 3} sorbent for Hg removal. This paper extends the research to Se (as hydrogen selenide, H{sub 2}Se), As (as arsine, AsH{sub 3}), and P (as phosphine, PH{sub 3}) which thermodynamic studies indicate are present as gaseous species under gasification conditions. Experiments performed under ambient conditions in He on 20 wt.% Pd/γ-Al{sub 2}O{sub 3} indicate the sorbent can remove the target contaminants. Further work is performed using a 5 wt.% Pd/γ-Al{sub 2}O{sub 3} sorbent in a simulated fuel gas (H{sub 2}, CO, CO{sub 2}, N{sub 2} and H{sub 2}S) in both single and multiple contaminant atmospheres to gauge sorbent performance characteristics. The impact of H{sub 2}O, Hg and temperature on sorbent performance is explored.

  13. Reduction of bromate by granular activated carbon

    SciTech Connect

    Kirisits, M.J.; Snoeyink, V.L.; Kruithof, J.C.

    1998-07-01

    Ozonation of waters containing bromide can lead to the formation of bromate, a probable human carcinogen. Since bromate will be regulated at 10 {micro}g/L by the Stage 1 Disinfectants/Disinfection By-Products Rule, there is considerable interest in finding a suitable method of bromate reduction. Granular activated carbon (GAC) can be used to chemically reduce bromate to bromide, but interference from organic matter and anions present in natural water render this process inefficient. In an effort to improve bromate reduction by GAC, several modifications were made to the GAC filtration process. The use of a biologically active carbon (BAC) filter ahead of a fresh GAC filter with and without preozonation, to remove the biodegradable organic matter, did not substantially improve the bromate removal of the GAC filter. The use of the BAC filter for biological bromate reduction proved to be the most encouraging experiment. By lowering the dissolved oxygen in the influent to the BAC from 8.0 mg/L to 2.0 mg/L, the percent bromate removal increased from 42% to 61%.

  14. Impacts of Activated Carbon Amendment on Hg Methylation, Demethylation and Microbial Activity in Marsh Soils

    NASA Astrophysics Data System (ADS)

    Gilmour, C. C.; Ghosh, U.; Santillan, E. F. U.; Soren, A.; Bell, J. T.; Butera, D.; McBurney, A. W.; Brown, S.; Henry, E.; Vlassopoulos, D.

    2015-12-01

    In-situ sorbent amendments are a low-impact approach for remediation of contaminants in sediments, particular in habitats like wetlands that provide important ecosystem services. Laboratory microcosm trials (Gilmour et al. 2013) and early field trials show that activated carbon (AC) can effectively increase partitioning of both inorganic Hg and methylmercury to the solid phase. Sediment-water partitioning can serve as a proxy for Hg and MeHg bioavailability in soils. One consideration in using AC in remediation is its potential impact on organisms. For mercury, a critical consideration is the potential impact on net MeHg accumulation and bioavailability. In this study, we specifically evaluated the impact of AC on rates of methylmercury production and degradation, and on overall microbial activity, in 4 different Hg-contaminated salt marsh soils. The study was done over 28 days in anaerobic, sulfate-reducing slurries. A double label of enriched mercury isotopes (Me199Hg and inorganic 201Hg) was used to separately follow de novo Me201Hg production and Me199Hg degradation. AC amendments decreased both methylation and demethylation rate constants relative to un-amended controls, but the impact on demethylation was stronger. The addition of 5% (dry weight) regenerated AC to soil slurries drove demethylation rate constants to nearly zero; i.e. MeHg sorption to AC almost totally blocked its degradation. The net impact was increased solid phase MeHg concentrations in some of the soil slurries with the highest methylation rate constants. However, the net impact of AC amendments was to increase MeHg (and inorganic Hg) partitioning to the soil phase and decrease concentrations in the aqueous phase. AC significantly decreased aqueous phase inorganic Hg and MeHg concentrations after 28 days. Overall, the efficacy of AC in reducing aqueous MeHg was highest in the soils with the highest MeHg concentrations. The AC addition did not significantly impact microbial activity, as

  15. REPEATED REDUCTIVE AND OXIDATIVE TREATMENTS ON GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Fenton oxidation and Fenton oxidation preceded by reduction solutions were applied to granular activated carbon (GAC) to chemically regenerate the adsorbent. No adsorbate was present on the GAC so physicochemical effects from chemically aggressive regeneration of the carbon coul...

  16. Improved Regenerative Sorbent-Compressor Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1992-01-01

    Conceptual regenerative sorbent-compressor refrigerator attains regeneration efficiency and, therefore, overall power efficiency and performance greater than conventional refrigerators. Includes two fluid loops. In one, CH2FCF3 (R134a) ciculates by physical adsorption and desorption in four activated-charcoal sorption compressors. In other, liquid or gas coolant circulated by pump. Wave of regenerative heating and cooling propagates cyclically like peristatic wave among sorption compressors and associated heat exchangers. Powered by electricity, oil, gas, solar heat, or waste heat. Used as air conditioners, refrigerators, and heat pumps in industrial, home, and automotive applications.

  17. Performance of a novel synthetic Ca-based solid sorbent suitable for desulfurizing flue gases in a fluidized bed

    SciTech Connect

    Pacciani, R.; Muller, C.R.; Davidson, J.F.; Dennis, J.S.; Hayhurst, A.N.

    2009-08-05

    The extent and mechanism of sulfation and carbonation of limestone, dolomite, and chalk, were compared with a novel, synthetic sorbent (85 wt % CaO and 15 wt % Ca{sub 12}A{sub l14}O{sub 33}), by means of experiments undertaken in a small, electrically heated fluidized bed. The sorbent particles were used either (I) untreated, sieved to two particle sizes and reacted with two different concentrations of SO{sub 2}, or (ii) after being cycled 20 times between carbonation, in 15 vol % CO{sub 2} in N2, and calcination, in pure N2, at 750 degrees C. The uptake of untreated limestone and dolomite was generally low (<0.2 g(SO{sub 2})/g(sorbent)), confirming previous results, However, the untreated chalk and the synthetic sorbent were found to be substantially more reactive with SO{sub 2}, and their final uptake was significantly higher (>0.5 g(SO{sub 2})/g(sorbent)) and essentially independent of the particle size. Here, comparisons are made on the basis of the sorbents in the calcined state. The capacities for the uptake of SO{sub 2}, on a basis of unit mass of calcined sorbent, were comparable for the chalk and the synthetic sorbent. However, previous work has demonstrated the ability of the synthetic sorbent to retain its capacity for CO{sub 2} over many cycles of carbonation and calcination: much more so than natural sorbents such as chalk and limestone. Accordingly, the advantage of the synthetic sorbent is that it could be used to remove CO{sub 2} from flue gases and, at the end of its life, to remove SO{sub 2} on a once-through basis.

  18. Novel sorbents for removal of gadolinium-based contrast agents in sorbent dialysis and hemoperfusion: preventive approaches to nephrogenic systemic fibrosis

    SciTech Connect

    Yantasee, Wassana; Fryxell, Glen E.; Porter, George A.; Pattamakomsan, Kanda; Sukwarotwat, Vichaya; Chouyyok, Wilaiwan; Koonsiripaiboon, View; Xu, Jide; Raymond, Kenneth N.

    2010-02-01

    Gd based contrast agents in many forms of organocomplex have recently been linked to a debilitating and a potentially fatal skin disease called Nephrogenic Systemic Fibrosis (NSF) in patients with renal failures. Free Gd released from the complexes by transmetallation is believed to be the most important trigger for NSF. Removal of Gd complex from the patients immediately after the contrast study would prevent the dissociation of Gd and should eliminate NSF as a complication. Although removal of Gd based contrast agents may be accomplished with conventional hemodialysis, it requires three hemodialysis sessions at 3 hours each to remove 98% of the contrast agents. In this work, mesoporous silica material that are functionalized with 1-hydroxy-2-pyridinone (1,2-HOPO-SAMMS®) has been evaluated for effective removal of both free and chelated Gd (Magnevist, a brand of gadopentetate dimeglumine) from the dialysate and sodium chloride solution. The material has high affinity, rapid removal rate, and large sorption capacity for both free and chelated Gd, the properties that are far superior to those of activated carbon and zirconium phosphate currently used in the state-of-the-art sorbent dialysis systems. 99% of both free and chelated Gd would be removed in a single pass thru the sorbent bed of 1,2-HOPO-SAMMS®. The sorbent provides an effective and predicable strategy for removing Gd from patients with impaired renal function, thus it would allow for the continued use of contrast MRI while removing the risk of NSF and would represent a safe alternative to traditional contrast studies in the patient population.

  19. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  20. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    NASA Astrophysics Data System (ADS)

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  1. Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization

    SciTech Connect

    Jie Zhang; Changfu You; Suwei Zhao; Changhe Chen; Haiying Qi

    2008-03-01

    The semidry flue gas desulfurization (FGD) process has many advantages over the wet FGD process for moving sulfur dioxide emissions from pulverized coal-fired power plants. Semidry FGD with a rapidly hydrated sorbent was studied in a pilot-scale circulating fluidized bed (CFB) experimental facility. The sorbent was made from lumps of lime and coal fly ash. The desulfurization efficiency was measured for various operating parameters, including the sorbent recirculation rate and the water spray method. The experimental results show that the desulfurization efficiencies of the rapidly hydrated sorbent were 1.5-3.0 times higher than a commonly used industrial sorbent for calcium to sulfur molar ratios from 1.2 to 3.0, mainly due to the higher specific surface area and pore volume. The Ca(OH){sub 2} content in the cyclone separator ash was about 2.9% for the rapidly hydrated sorbent and was about 0.1% for the commonly used industrial sorbent, due to the different adhesion between the fine Ca(OH){sub 2} particles and the fly ash particles, and the low cyclone separation efficiency for the fine Ca(OH){sub 2} particles that fell off the sorbent particles. Therefore the actual recirculation rates of the active sorbent with Ca(OH){sub 2} particles were higher for the rapidly hydrated sorbent, which also contributed to the higher desulfurization efficiency. The high fly ash content in the rapidly hydrated sorbent resulted in good operating stability. The desulfurization efficiency with upstream water spray was 10-15% higher than that with downstream water spray. 20 refs., 7 figs., 1 tab.

  2. Metal-carbon nanocomposites based on activated IR pyrolized polyacrylonitrile

    NASA Astrophysics Data System (ADS)

    Efimov, Mikhail N.; Zhilyaeva, Natalya A.; Vasilyev, Andrey A.; Muratov, Dmitriy G.; Zemtsov, Lev M.; Karpacheva, Galina P.

    2016-05-01

    In this paper we report about new approach to preparation of metal-carbon nanocomposites based on activated carbon. Polyacrylonitrile is suggested as a precursor for Co, Pd and Ru nanoparticles carbon support which is prepared under IR pyrolysis conditions of a precursor. The first part of the paper is devoted to study activated carbon structural characteristics dependence on activation conditions. In the second part the effect of type of metal introduced in precursor on metal-carbon nanocomposite structural characteristics is shown. Prepared AC and nanocomposite samples are characterized by BET, TEM, SEM and X-ray diffraction.

  3. Activated Carbon Composites for Air Separation

    SciTech Connect

    Baker, Frederick S; Contescu, Cristian I; Tsouris, Costas; Burchell, Timothy D

    2011-09-01

    Coal-derived synthesis gas is a potential major source of hydrogen for fuel cells. Oxygen-blown coal gasification is an efficient approach to achieving the goal of producing hydrogen from coal, but a cost-effective means of enriching O2 concentration in air is required. A key objective of this project is to assess the utility of a system that exploits porous carbon materials and electrical swing adsorption to produce an O2-enriched air stream for coal gasification. As a complement to O2 and N2 adsorption measurements, CO2 was used as a more sensitive probe molecule for the characterization of molecular sieving effects. To further enhance the potential of activated carbon composite materials for air separation, work was implemented on incorporating a novel twist into the system; namely the addition of a magnetic field to influence O2 adsorption, which is accompanied by a transition between the paramagnetic and diamagnetic states. The preliminary findings in this respect are discussed.

  4. Glutathione analogue sorbents selectively bind glutathione S-transferase isoenzymes.

    PubMed

    Castro, V M; Kelley, M K; Engqvist-Goldstein, A; Kauvar, L M

    1993-06-01

    Novel affinity sorbents for glutathione S-transferases (GSTs) were created by binding glutathione (GSH) analogues to Sepharose 6B. The GSH molecule was modified at the glycine moiety and at the group attached to the sulphur of cysteine. When tested by affinity chromatography in a flow-through microplate format, several of these sorbents selectively bound GST isoenzymes. gamma E-C(Hx)-phi G (glutathione with a hexyl moiety bound to cysteine and phenylglycine substituted for glycine) specifically bound rat GST 7-7, the Pi-class isoenzyme, from liver, kidney and small intestine. gamma E-C(Bz)-beta A (benzyl bound to cysteine and beta-alanine substituted for glycine) was highly selective for rat subunits 3 and 4, which are Mu-class isoenzymes. By allowing purification of the isoenzymes under mild conditions that preserve activity, the novel sorbents should be useful in characterizing the biological roles of GSTs in both normal animal and cancer tissues.

  5. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    NASA Astrophysics Data System (ADS)

    Byamba-Ochir, Narandalai; Shim, Wang Geun; Balathanigaimani, M. S.; Moon, Hee

    2016-08-01

    Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816-2063 m2/g and of 0.55-1.61 cm3/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  6. Regenerative Cu/La zeolite supported desulfurizing sorbents

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor); Sharma, Pramod K. (Inventor)

    1991-01-01

    Efficient, regenerable sorbents for removal of H2S from fluid hydrocarbons such as diesel fuel at moderate condition comprise a porous, high surface area aluminosilicate support, suitably a synthetic zeolite, and most preferably a zeolite having a free lattice opening of at least 6 Angstroms containing from 0.1 to 0.5 moles of copper ions, lanthanum ions or their mixtures. The sorbent removes sulfur from the hydrocarbon fuel in high efficiency and can be repetitively regenerated without loss of activity.

  7. PROCEEDINGS: MULTIPOLLUTANT SORBENT REACTIVITY WORKSHOP

    EPA Science Inventory

    The report is a compilation of technical papers and visual aids presented by representatives of industry, academia, and government agencies at a workshop on multipollutant sorbent reactivity that was held at EPA's Environmental Research Center in Research Triangle Park, NC, on Ju...

  8. Characterization of Activated Carbons from Oil-Palm Shell by CO2 Activation with No Holding Carbonization Temperature

    PubMed Central

    Herawan, S. G.; Hadi, M. S.; Ayob, Md. R.; Putra, A.

    2013-01-01

    Activated carbons can be produced from different precursors, including coals of different ranks, and lignocellulosic materials, by physical or chemical activation processes. The objective of this paper is to characterize oil-palm shells, as a biomass byproduct from palm-oil mills which were converted into activated carbons by nitrogen pyrolysis followed by CO2 activation. The effects of no holding peak pyrolysis temperature on the physical characteristics of the activated carbons are studied. The BET surface area of the activated carbon is investigated using N2 adsorption at 77 K with selected temperatures of 500, 600, and 700°C. These pyrolysis conditions for preparing the activated carbons are found to yield higher BET surface area at a pyrolysis temperature of 700°C compared to selected commercial activated carbon. The activated carbons thus result in well-developed porosities and predominantly microporosities. By using this activation method, significant improvement can be obtained in the surface characteristics of the activated carbons. Thus this study shows that the preparation time can be shortened while better results of activated carbon can be produced. PMID:23737721

  9. Deep Bed Iodine Sorbent Testing FY 2011 Report

    SciTech Connect

    Nick Soelberg; Tony Watson

    2011-08-01

    Nuclear fission results in the production of fission products (FPs) and activation products that increasingly interfere with the fission process as their concentrations increase. Some of these fission and activation products tend to evolve in gaseous species during used nuclear fuel reprocessing. Analyses have shown that I129, due to its radioactivity, high potential mobility in the environment, and high longevity (half life of 15.7 million years), can require control efficiencies of up to 1,000x or higher to meet regulatory emission limits. Deep-bed iodine sorption testing has been done to evaluate the performance of solid sorbents for capturing iodine in off-gas streams from nuclear fuel reprocessing plants. The objectives of the FY 2011 deep bed iodine sorbent testing are: (1) Evaluate sorbents for iodine capture under various conditions of gas compositions and operating temperature (determine sorption efficiencies, capacities, and mass transfer zone depths); and (2) Generate data for dynamic iodine sorption modeling. Three tests performed this fiscal year on silver zeolite light phase (AgZ-LP) sorbent are reported here. Additional tests are still in progress and can be reported in a revision of this report or a future report. Testing was somewhat delayed and limited this year due to initial activities to address some questions of prior testing, and due to a period of maintenance for the on-line GC. Each test consisted of (a) flowing a synthetic blend of gases designed to be similar to an aqueous dissolver off-gas stream over the sorbent contained in three separate bed segments in series, (b) measuring each bed inlet and outlet gas concentrations of iodine and methyl iodide (the two surrogates of iodine gas species considered most representative of iodine species expected in dissolver off-gas), (c) operating for a long enough time to achieve breakthrough of the iodine species from at least one (preferably the first two) bed segments, and (d) post-test purging

  10. Oxidized single-walled carbon nanohorns as sorbent for porous hollow fiber direct immersion solid-phase microextraction for the determination of triazines in waters.

    PubMed

    Jiménez-Soto, Juan Manuel; Cárdenas, Soledad; Valcárcel, Miguel

    2013-03-01

    This paper evaluates the potential of oxidized single-walled carbon nanohorns (o-SWNHs) immobilized on the pores of a hollow fiber (HF) for the direct immersion solid-phase microextraction of triazines from waters. The fabrication of the device requires the oxidation of the nanoparticles by means of microwave irradiation in order to obtain a homogeneous dispersion in methanol. Then, a porous hollow fiber is immersed in the methanolic dispersion of the o-SWNHs under ultrasound stirring. This procedure permits the immobilization of the o-SWNHs in the pores of the hollow fiber. For the extraction, a stainless steel wire was introduced inside the fiber to allow the vertical immersion of the o-SWNHs-HF in the aqueous standard/water sample. The triazines were preconcentrated on the immobilized o-SWNHs and further eluted using 150 μL of methanol. The solvent was evaporated and the residue reconstituted in 10 μL of methanol for sensitivity enhancement. Gas chromatography-mass spectrometry was selected as instrumental technique. The limits of detection were between 0.05 and 0.1 μg L(-1) with an excellent precision (expressed as relative standard deviation) between runs (below 10.2 %) and between fibers (below 12.8 %). Finally, the method was applied to the determination of the triazines in fortified waters, an average recovery value of 90 % being obtained. PMID:23371529

  11. Application of modified multiwalled carbon nanotubes as a sorbent for simultaneous separation and preconcentration trace amounts of Au(III) and Mn(II).

    PubMed

    Shamspur, Tayebeh; Mostafavi, Ali

    2009-09-15

    A solid phase extraction procedure is proposed for simultaneous separation and preconcentration trace amounts of Au(III) and Mn(II) in an aqueous medium by using a column of multiwalled carbon nanotubes modified with the analytical reagent N,N'-bis(2-hydroxybenzylidene)-2,2'(aminophenylthio)ethane. An implementation, it was found that the sorption is quantitative in the pH range 5.0-7.5, whereas quantitative desorption occurs instantaneously with 4.0 mL of 0.1 mol L(-1) Na(2)S(2)O(3.) Selected elements were also determined by flame atomic absorption spectrometry. Linearity was maintained between 0.2 ng mL(-1) to 25 microg mL(-1) for gold and 0.08 ng mL(-1) to 5 microg mL(-1) for manganese in the original solution. Various parameters such as the effect of pH, flow rate, type and amount of eluent, breakthrough volume and interference of a large number of anions and cations on the recovery of the selected ions was studied. Under optimum conditions, the detection limits (3s, n=10) for analytes were 0.03 ng mL(-1) (gold) and 0.01 ng mL(-1) (manganese). The method was successfully applied for separation and determination of gold and manganese ions in water and standard samples. PMID:19346070

  12. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect

    Hepworth, M.T.; Ben-Slimane, R.

    1994-12-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This annual topical report documents progress in pelletizing and testing via thermo-gravimetric analysis of individual pellet formulations of manganese ore/alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite.

  13. Optimizing the specific surface area of fly ash-based sorbents for flue gas desulfurization.

    PubMed

    Lee, K T; Bhatia, S; Mohamed, A R; Chu, K H

    2006-01-01

    High performance sorbents for flue gas desulfurization can be synthesized by hydration of coal fly ash, calcium sulfate, and calcium oxide. In general, higher desulfurization activity correlates with higher sorbent surface area. Consequently, a major aim in sorbent synthesis is to maximize the sorbent surface area by optimizing the hydration conditions. This work presents an integrated modeling and optimization approach to sorbent synthesis based on statistical experimental design and two artificial intelligence techniques: neural network and genetic algorithm. In the first step of the approach, the main and interactive effects of three hydration variables on sorbent surface area were evaluated using a full factorial design. The hydration variables of interest to this study were hydration time, amount of coal fly ash, and amount of calcium sulfate and the levels investigated were 4-32 h, 5-15 g, and 0-12 g, respectively. In the second step, a neural network was used to model the relationship between the three hydration variables and the sorbent surface area. A genetic algorithm was used in the last step to optimize the input space of the resulting neural network model. According to this integrated modeling and optimization approach, an optimum sorbent surface area of 62.2m(2)g(-1) could be obtained by mixing 13.1g of coal fly ash and 5.5 g of calcium sulfate in a hydration process containing 100ml of water and 5 g of calcium oxide for a fixed hydration time of 10 h.

  14. Surface functionalized nanostructured ceramic sorbents for the effective collection and recovery of uranium from seawater.

    PubMed

    Chouyyok, Wilaiwan; Pittman, Jonathan W; Warner, Marvin G; Nell, Kara M; Clubb, Donald C; Gill, Gary A; Addleman, R Shane

    2016-07-28

    The ability to collect uranium from seawater offers the potential for a nearly limitless fuel supply for nuclear energy. We evaluated the use of functionalized nanostructured sorbents for the collection and recovery of uranium from seawater. Extraction of trace minerals from seawater and brines is challenging due to the high ionic strength of seawater, low mineral concentrations, and fouling of surfaces over time. We demonstrate that rationally assembled sorbent materials that integrate high affinity surface chemistry and high surface area nanostructures into an application relevant micro/macro structure enables collection performance that far exceeds typical sorbent materials. High surface area nanostructured silica with surface chemistries composed of phosphonic acid, phosphonates, 3,4 hydroxypyridinone, and EDTA showed superior performance for uranium collection. A few phosphorous-based commercial resins, specifically Diphonix and Ln Resin, also performed well. We demonstrate an effective and environmentally benign method of stripping the uranium from the high affinity sorbents using inexpensive nontoxic carbonate solutions. The cyclic use of preferred sorbents and acidic reconditioning of materials was shown to improve performance. Composite thin films composed of the nanostructured sorbents and a porous polymer binder are shown to have excellent kinetics and good capacity while providing an effective processing configuration for trace mineral recovery from solutions. Initial work using the composite thin films shows significant improvements in processing capacity over the previously reported sorbent materials. PMID:27184739

  15. Record Methane Storage in Monolithic and Powdered Activated Carbons

    NASA Astrophysics Data System (ADS)

    Soo, Yuchoong; Nordwald, E.; Hester, B.; Romanos, J.; Isaacson, B.; Stalla, D.; Moore, D.; Kraus, M.; Burress, J.; Dohnke, E.; Pfeifer, P.

    2010-03-01

    The Alliance for Collaborative Research in Alternative Fuel Technology (ALL-CRAFT) has developed activated carbons from corn cob as adsorbent materials for methane gas storage by physisorption at low pressures. KOH activated carbons were compressed into carbon monolith using chemical binders. High pressure methane isotherms up to 250 bar at room temperature on monolithic and powdered activated carbons were measured gravimetrically and volumetrically. Record methane storage capacities of 250 g CH4/kg carbon and 130 g CH4/liter carbon at 35 bar and 293 K have been achieved. BET surface area, porosity, and pore size distributions were measured from sub-critical nitrogen isotherms. Pore entrances were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A prototype adsorbed natural gas (ANG) tank, loaded with carbon monoliths, was tested in Kansas City.

  16. Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment

    SciTech Connect

    Li, Haitao; He, Xiaodie; Liu, Yang; Yu, Hang; Kang, Zhenhui; Lee, Shuit-Tong

    2011-01-15

    Water-soluble fluorescent carbon nanoparticles were synthesized directly from active carbon by a one-step hydrogen peroxide-assisted ultrasonic treatment. The carbon nanoparticles were characterized by transmission electron microscopy, optical fluorescent microscopy, fluorescent spectroscopy, Fourier transform infrared spectroscopy and ultraviolet-visible spectrophotometer. The results showed that the surface of carbon nanoparticles was rich of hydroxyl groups resulting in high hydrophilicity. The carbon nanoparticles could emit bright and colorful photoluminescence covering the entire visible-to-near infrared spectral range. Furthermore, these carbon nanoparticles also had excellent up-conversion fluorescent properties.

  17. Investigation on durability and reactivity of promising metal oxide sorbents during sulifidation and regeneration: Technical progress report for July 1--September 30, 1996

    SciTech Connect

    Kwon, K.C.

    1996-11-01

    The main objectives of this research project during this quarter are to formulate metal oxide sorbents using various ingredients as well as formulation conditions, and test reactivity of formulated metal oxide sorbents with hydrogen sulfide for 120 seconds at 550{degrees}C, and develop a formula of a sorbent suitable for the removal of hydrogen sulfide from hot coal gases. Metal oxide sorbents were formulated with zinc oxide as an active sorbent ingredient, and titanium oxide as a supporting metal oxide. Various additives such as Al, Ce, Zr, Cu, Co, Ni, Mn, Cr and Ca were utilized to enhance sulfur-removal capacity of formulated metal oxide sorbents. The additives Cu and Co appear to enhance reactivity of sorbents in the reaction with wet hot hydrogen sulfide at 550{degrees}C. Durability of formulated sorbents appears to improve with kaolin binder in comparison with bentonite binder. Durability of formulated sorbents appears to improve with increased calcination durations. Reactivity of sorbents formulated with Co additive appears to decrease with increased calcination durations at the calcination temperature of 860{degrees}C. Reactivity of sorbents formulated with Cu additive appears to increase with calcination durations. Reactivity of sorbents formulated without additive appears to be independent of calcination durations.

  18. [Effects of different fertilizer application on soil active organic carbon].

    PubMed

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  19. [Effects of different fertilizer application on soil active organic carbon].

    PubMed

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  20. The chemical precipitation of nickel on ion exchangers and active carbons

    NASA Astrophysics Data System (ADS)

    Khorol'Skaya, S. V.; Zolotukhina, E. V.; Polyanskii, L. N.; Peshkov, S. V.; Kravchenko, T. A.; Krysanov, V. A.

    2010-12-01

    The chemical precipitation of nickel in the form of poorly soluble precipitates in ion exchanger matrices and on active carbons from solutions of nickel chloride and chemical nickel plating electrolytes was studied. The sorption of nickel ions from a solution of nickel chloride occurs most effectively on Purolite D24002 macroporous chelate forming ion exchanger, KU-23-15/100 sulfo cation exchanger, and KU-2-8 gel sulfo cation exchanger. Nickel enters sulfo cation exchangers in the form of counterions, and is adsorbed on Purolite D24002 largely because of complex formation. The subsequent precipitation of nickel in the solid state in matrix pores liberates ionogenic centers, which allows repeated sorption cycles to be performed. After three chemical precipitation cycles under static conditions, the amount of nickel is higher by 170-250% than the ion exchange capacity of the sorbents. The electrolyte of chemical nickel plating contains nickel predominantly in the form of negatively charged and neutral complexes with glycine, which cannot form bonds with the matrices under study. It is therefore reasonable to perform sorption at decreased solution pH values.

  1. JPL Activated Carbon Treatment System (ACTS) for sewage

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An Activated Carbon Treatment System (ACTS) was developed for sewage treatment and is being applied to a one-million gallon per day sewage treatment pilot plant in Orange County California. Activities reported include pyrolysis and activation of carbon-sewage sludge, and activated carbon treatment of sewage to meet ocean discharge standards. The ACTS Sewage treatment operations include carbon-sewage treatment, primary and secondary clarifiers, gravity (multi-media) filter, filter press dewatering, flash drying of carbon-sewage filter cake, and sludge pyrolysis and activation. Tests were conducted on a laboratory scale, 10,000 gallon per day demonstration plant and pilot test equipment. Preliminary economic studies are favorable to the ACTS process relative to activated sludge treatment for a 175,000,000 gallon per day sewage treatment plant.

  2. FIELD TEST PROGRAM FOR EVALUATION OF SORBENT INJECTION FOR MERCURY CONTROL

    SciTech Connect

    Sharon Sjostrom

    2004-02-12

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The overall objective of this test program described in this quarterly report is to evaluate the capabilities of activated carbon injection at four plants with configurations that together represent 78% of the existing coal-fired generation plants. This technology was successfully evaluated in NETL's Phase I tests at scales up to 150 MW, on plants burning subbituminous and bituminous coals and with ESPs and fabric filters. The tests also identified issues that still need to be addressed, such as evaluating performance on other configurations, optimizing sorbent usage (costs), and gathering longer term operating data to address concerns about the impact of activated carbon on plant equipment and operations. The four sites identified for testing are Sunflower Electric's Holcomb Station, AmerenUE's Meramec Station, AEP's Conesville Station, and Ontario Power Generation's Nanticoke Station. This is the first quarterly report for this project. This report includes an overview of the plans for the project. Field testing is scheduled to begin next quarter. In general, quarterly reports will be used to provide project overviews, project status, and technology transfer information. Topical reports will be prepared to present detailed technical information.

  3. Activated Carbon Modified with Copper for Adsorption of Propanethiol

    PubMed Central

    Moreno-Piraján, Juan Carlos; Tirano, Joaquín; Salamanca, Brisa; Giraldo, Liliana

    2010-01-01

    Activated carbons were characterized texturally and chemically before and after treatment, using surface area determination in the BET model, Boehm titration, TPR, DRX and immersion calorimetry. The adsorption capacity and the kinetics of sulphur compound removal were determined by gas chromatography. It was established that the propanethiol retention capacity is dependent on the number of oxygenated groups generated on the activated carbon surface and that activated carbon modified with CuO at 0.25 M shows the highest retention of propanethiol. Additionally is proposed a mechanism of decomposition of propenothiol with carbon-copper system. PMID:20479992

  4. Preparation of nitrogen-enriched activated carbons from brown coal

    SciTech Connect

    Robert Pietrzak; Helena Wachowska; Piotr Nowicki

    2006-05-15

    Nitrogen-enriched activated carbons were prepared from a Polish brown coal. Nitrogen was introduced from urea at 350{sup o}C in an oxidizing atmosphere both to carbonizates obtained at 500-700{sup o}C and to activated carbons prepared from them. The activation was performed at 800{sup o}C with KOH in argon. It has been observed that the carbonization temperature determines the amount of nitrogen that is incorporated (DC5U, 8.4 wt % N{sup daf}; DC6U, 6.3 wt % N{sup daf}; and DC7U, 5.4 wt % N{sup daf}). X-ray photoelectron spectroscopy (XPS) measurements have shown that nitrogen introduced both at the stage of carbonizates and at the stage of activated carbons occurs mainly as -6, -5, and imine, amine and amide groups. On the other hand, the activation of carbons enriched with nitrogen results in the formation of pyridonic nitrogen and N-Q. The introduction of nitrogen at the activated carbon stage leads to a slight decrease in surface area. It has been proven that the most effective way of preparing microporous activated carbons enriched with nitrogen to a considerable extent and having high surface area ({approximately} 3000 m{sup 2}/g) is the following: carbonization - activation - reaction with urea. 40 refs., 1 fig., 6 tabs.

  5. Acoustical Evaluation of Carbonized and Activated Cotton Nonwovens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The process of manufacturing a carbonized and activated nonwoven made by cotton fiber was investigated in this paper. The study was focused on the acoustic application and nonwoven composites with cotton nonwoven as a base layer and glass fiber nonwoven, cotton nonwoven, and carbonized and activated...

  6. A Magnesium-Activated Carbon Hybrid Capacitor

    SciTech Connect

    Yoo, HD; Shterenberg, I; Gofer, Y; Doe, RE; Fischer, CC; Ceder, G; Aurbach, D

    2013-12-11

    Prototype cells of hybrid capacitor were developed, comprising activated carbon (AC) cloth and magnesium (Mg) foil as the positive and negative electrodes, respectively. The electrolyte solution included ether solvent (TBF) and a magnesium organo-halo-aluminate complex 0.25 M Mg2Cl3+-Ph2AlCl2-. In this solution Mg can be deposited/dissolved reversibly for thousands of cycles with high reversibility (100% cycling efficiency). The main barrier for integrating porous AC electrodes with this electrolyte solution was the saturation of the pores with the large ions in the AC prior to reaching the potential limit. This is due to the existence of bulky Mg and Al based ionic complexes consisting Cl, alkyl or aryl (R), and THF ligands. This problem was resolved by adding 0.5 M of lithium chloride (LiCl), thus introducing smaller ionic species to the solution. This Mg hybrid capacitor system demonstrated a stable cycle performance for many thousands of cycles with a specific capacitance of 90 Fg(-1) for the AC positive electrodes along a potential range of 2.4 V. (C) 2014 The Electrochemical Society. All rights reserved.

  7. Environmental carbon dioxide control

    NASA Technical Reports Server (NTRS)

    Onischak, M.; Baker, B.; Gidaspow, D.

    1974-01-01

    A study of environmental carbon dioxide control for NASA EVA missions found solid potassium carbonate to be an effective regenerable absorbent in maintaining low carbon dioxide levels. The supported sorbent was capable of repeated regeneration below 150 C without appreciable degradation. Optimum structures in the form of thin pliable sheets of carbonate, inert support and binder were developed. Interpretation of a new solid-gas pore closing model helped predict the optimum sorbent and analysis of individual sorbent sheet performance in a thin rectangular channel sorber can predict packed bed performance.

  8. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  9. Ozone Removal by Filters Containing Activated Carbon: A Pilot Study

    SciTech Connect

    Fisk, William; Spears, Mike; Sullivan, Douglas; Mendell, Mark

    2009-09-01

    This study evaluated the ozone removal performance of moderate-cost particle filters containing activated carbon when installed in a commercial building heating, ventilating, and air conditioning (HVAC) system. Filters containing 300 g of activated carbon per 0.09 m2 of filter face area were installed in two 'experimental' filter banks within an office building located in Sacramento, CA. The ozone removal performance of the filters was assessed through periodic measurements of ozone concentrations in the air upstream and downstream of the filters. Ozone concentrations were also measured upstream and downstream of a 'reference' filter bank containing filters without any activated carbon. The filter banks with prefilters containing activated carbon were removing 60percent to 70percent of the ozone 67 and 81 days after filter installation. In contrast, there was negligible ozone removal by the reference filter bank without activated carbon.

  10. Photopatternable sorbent and functionalized films

    DOEpatents

    Grate, Jay W.; Nelson, David A.

    2006-01-31

    A composition containing a polymer, a crosslinker and a photo-activatable catalyst is placed on a substrate. The composition is exposed to a predetermined pattern of light, leaving an unexposed region. The light causes the polymer to become crosslinked by hydrosilylation. A solvent is used to remove the unexposed composition from the substrate, leaving the exposed pattern to become a sorbent polymer film that will absorb a predetermined chemical species when exposed to such chemical species.

  11. Advanced low-temperature sorbents

    SciTech Connect

    Ayala, R.E.; Venkataramani, V.S.; Abbasian, J.; Hill, A.H.

    1995-12-01

    A number of promising technologies are currently being optimized for coal-based power generation, including the Integrated-Gasification Combined Cycle (IGCC) system. If IGCC is to be used successfully for power generation, an economic and efficient way must be found to remove the contaminants, particularly sulfur species, found in coal gas. Except for the hot gas desulfurization system, all major components of IGCC are commercially available or have been shown to meet system requirements. Over the last two decades, the U.S. Department of Energy/Morgantown Energy Technology Center (DOE/METC) has sponsored development of various configurations of high-temperature desulfurization systems including fixed-bed, moving-bed, transport-bed, and fluidized-bed systems. Because of their mode of operation and requirements for sorbent manufacturing, the fixed-bed systems can generally use the same materials as moving-bed configurations, i.e., pelletized or extruded sorbents, while fluidized-bed (circulating or bubbling configurations) and transport reactor configurations use materials generally described as agglomerated or granulated.The objective of this program is to remove hydrogen sulfides from coal gas using sorbent materials.

  12. Mercury Control with Calcium-Based Sorbents and Oxidizing Agents

    SciTech Connect

    Thomas K. Gale

    2005-07-01

    This Final Report contains the test descriptions, results, analysis, correlations, theoretical descriptions, and model derivations produced from many different investigations performed on a project funded by the U.S. Department of Energy, to investigate calcium-based sorbents and injection of oxidizing agents for the removal of mercury. Among the technologies were (a) calcium-based sorbents in general, (b) oxidant-additive sorbents developed originally at the EPA, and (c) optimized calcium/carbon synergism for mercury-removal enhancement. In addition, (d) sodium-tetrasulfide injection was found to effectively capture both forms of mercury across baghouses and ESPs, and has since been demonstrated at a slipstream treating PRB coal. It has been shown that sodium-tetrasulfide had little impact on the foam index of PRB flyash, which may indicate that sodium-tetrasulfide injection could be used at power plants without affecting flyash sales. Another technology, (e) coal blending, was shown to be an effective means of increasing mercury removal, by optimizing the concentration of calcium and carbon in the flyash. In addition to the investigation and validation of multiple mercury-control technologies (a through e above), important fundamental mechanism governing mercury kinetics in flue gas were elucidated. For example, it was shown, for the range of chlorine and unburned-carbon (UBC) concentrations in coal-fired utilities, that chlorine has much less effect on mercury oxidation and removal than UBC in the flyash. Unburned carbon enhances mercury oxidation in the flue gas by reacting with HCl to form chlorinated-carbon sites, which then react with elemental mercury to form mercuric chloride, which subsequently desorbs back into the flue gas. Calcium was found to enhance mercury removal by stabilizing the oxidized mercury formed on carbon surfaces. Finally, a model was developed to describe these mercury adsorption, desorption, oxidation, and removal mechanisms, including

  13. Fractal analysis of granular activated carbons using isotherm data

    SciTech Connect

    Khalili, N.R.; Pan, M.; Sandi, G.

    1997-08-01

    Utilization of adsorption on solid surfaces was exercised for the first time in 1785. Practical application of unactivated carbon filters, and powdered carbon were first demonstrated in the American water treatment plant, and a municipal treatment plant in New Jersey, in 1883 and 1930, respectively. The use of activated carbon became widespread in the next few decades. At present, adsorption on carbons has a wide spread application in water treatment and removal of taste, odor, removal of synthetic organic chemicals, color-forming organics, and desinfection by-products and their naturally occurring precursors. This paper presents an analysis of the surface fractal dimension and adsorption capacity of a group of carbons.

  14. Selecting activated carbon for water and wastewater treatability studies

    SciTech Connect

    Zhang, W.; Chang, Q.G.; Liu, W.D.; Li, B.J.; Jiang, W.X.; Fu, L.J.; Ying, W.C.

    2007-10-15

    A series of follow-up investigations were performed to produce data for improving the four-indicator carbon selection method that we developed to identify high-potential activated carbons effective for removing specific organic water pollutants. The carbon's pore structure and surface chemistry are dependent on the raw material and the activation process. Coconut carbons have relatively more small pores than large pores; coal and apricot nutshell/walnut shell fruit carbons have the desirable pore structures for removing adsorbates of all sizes. Chemical activation, excessive activation, and/or thermal reactivation enlarge small pores, resulting in reduced phenol number and higher tannic acid number. Activated carbon's phenol, iodine, methylene blue, and tannic acid numbers are convenient indicators of its surface area and pore volume of pore diameters < 10, 10-15, 15-28, and > 28 angstrom, respectively. The phenol number of a carbon is also a good indicator of its surface acidity of oxygen-containing organic functional groups that affect the adsorptive capacity for aromatic and other small polar organics. The tannic acid number is an indicator of carbon's capacity for large, high-molecular-weight natural organic precursors of disinfection by-products in water treatment. The experimental results for removing nitrobenzene, methyl-tert-butyl ether, 4,4-bisphenol, humic acid, and the organic constituents of a biologically treated coking-plant effluent have demonstrated the effectiveness of this capacity-indicator-based method of carbon selection.

  15. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Quarterly technical progress report 4, July--September 1987

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1987-10-27

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for improving the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hog coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. The reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point in a bench-scale fixed-bed reactor. The durability may be defined as the ability of the sorbent to maintain its reactivity and other important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and regeneration. Two base case sorbents, spherical pellets and cylindrical extrudes used in related METC sponsored projects, are being used to provide a basis for the comparison of physical characteristics and chemical reactivity.

  16. Equilibria and dynamics of liquid-phase trinitrotoluene adsorption on granular activated carbon: effect of temperature and pH.

    PubMed

    Lee, Jae-Wook; Yang, Tae-Hoon; Shim, Wang-Geun; Kwon, Tae-Ouk; Moon, Il-Shik

    2007-03-01

    Environmental regulations for removal of trinitrotoluene (TNT) from wastewater have steadily become more stringent. This study focuses on the adsorption equilibrium, kinetics, and column dynamics of TNT on heterogeneous activated carbon. Adsorption equilibrium data obtained in terms of temperature (298.15, 313.15 and 323.15K) and pH (3, 8 and 10) were correlated by the Langmuir equation. In addition, the adsorption energy distribution functions which describe heterogeneous characteristics of porous solid sorbents were calculated by using the generalized nonlinear regularization method. Adsorption breakthrough curves were studied in activated column under various operating conditions such as temperature, pH, concentration, flow rate, and column length. We found that the effect of pH on adsorption breakthrough curves was considerably higher than other operating conditions. An adsorption model was formulated by employing the surface diffusion model inside the activated carbon particles. The model equation that was solved numerically by an orthogonal collocation method successfully simulated the adsorption breakthrough curves.

  17. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl 2 activation

    NASA Astrophysics Data System (ADS)

    Uçar, Suat; Erdem, Murat; Tay, Turgay; Karagöz, Selhan

    2009-08-01

    In this study, pomegranate seeds, a by-product of fruit juice industry, were used as precursor for the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonization temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons was studied. When using the 2.0 impregnation ratio at the carbonization temperature of 600 °C, the specific surface area of the resultant carbon is as high as 978.8 m 2 g -1. The results showed that the surface area and total pore volume of the activated carbons at the lowest impregnation ratio and the carbonization temperature were achieved as high as 709.4 m 2 g -1 and 0.329 cm 3 g -1. The surface area was strongly influenced by the impregnation ratio of activation reagent and the subsequent carbonization temperature.

  18. In Situ Sediment Treatment Using Activated Carbon: A Demonstrated Sediment Cleanup Technology

    PubMed Central

    Patmont, Clayton R; Ghosh, Upal; LaRosa, Paul; Menzie, Charles A; Luthy, Richard G; Greenberg, Marc S; Cornelissen, Gerard; Eek, Espen; Collins, John; Hull, John; Hjartland, Tore; Glaza, Edward; Bleiler, John; Quadrini, James

    2015-01-01

    This paper reviews general approaches for applying activated carbon (AC) amendments as an in situ sediment treatment remedy. In situ sediment treatment involves targeted placement of amendments using installation options that fall into two general approaches: 1) directly applying a thin layer of amendments (which potentially incorporates weighting or binding materials) to surface sediment, with or without initial mixing; and 2) incorporating amendments into a premixed, blended cover material of clean sand or sediment, which is also applied to the sediment surface. Over the past decade, pilot- or full-scale field sediment treatment projects using AC—globally recognized as one of the most effective sorbents for organic contaminants—were completed or were underway at more than 25 field sites in the United States, Norway, and the Netherlands. Collectively, these field projects (along with numerous laboratory experiments) have demonstrated the efficacy of AC for in situ treatment in a range of contaminated sediment conditions. Results from experimental studies and field applications indicate that in situ sequestration and immobilization treatment of hydrophobic organic compounds using either installation approach can reduce porewater concentrations and biouptake significantly, often becoming more effective over time due to progressive mass transfer. Certain conditions, such as use in unstable sediment environments, should be taken into account to maximize AC effectiveness over long time periods. In situ treatment is generally less disruptive and less expensive than traditional sediment cleanup technologies such as dredging or isolation capping. Proper site-specific balancing of the potential benefits, risks, ecological effects, and costs of in situ treatment technologies (in this case, AC) relative to other sediment cleanup technologies is important to successful full-scale field application. Extensive experimental studies and field trials have shown that when

  19. Lime-Based Sorbents for High-Temperature CO2 Capture—A Review of Sorbent Modification Methods

    PubMed Central

    Manovic, Vasilije; Anthony, Edward J.

    2010-01-01

    This paper presents a review of the research on CO2 capture by lime-based looping cycles undertaken at CanmetENERGY’s (Ottawa, Canada) research laboratories. This is a new and very promising technology that may help in mitigation of global warming and climate change caused primarily by the use of fossil fuels. The intensity of the anticipated changes urgently requires solutions such as more cost-effective technologies for CO2 capture. This new technology is based on the use of lime-based sorbents in a dual fluidized bed combustion (FBC) reactor which contains a carbonator—a unit for CO2 capture, and a calciner—a unit for CaO regeneration. However, even though natural materials are cheap and abundant and very good candidates as solid CO2 carriers, their performance in a practical system still shows significant limitations. These limitations include rapid loss of activity during the capture cycles, which is a result of sintering, attrition, and consequent elutriation from FBC reactors. Therefore, research on sorbent performance is critical and this paper reviews some of the promising ways to overcome these shortcomings. It is shown that reactivation by steam/water, thermal pre-treatment, and doping simultaneously with sorbent reforming and pelletization are promising potential solutions to reduce the loss of activity of these sorbents over multiple cycles of use. PMID:20948952

  20. Grain-based activated carbons for natural gas storage.

    PubMed

    Zhang, Tengyan; Walawender, Walter P; Fan, L T

    2010-03-01

    Natural gas has emerged as a potential alternative to gasoline due to the increase in global energy demand and environmental concerns. An investigation was undertaken to explore the technical feasibility of implementing the adsorbed natural gas (ANG) storage in the fuel tanks of motor vehicles with activated carbons from biomass, e.g., sorghum and wheat. The grain-based activated carbons were prepared by chemical activation; the experimental parameters were varied to identify the optimum conditions. The porosity of the resultant activated carbons was evaluated through nitrogen adsorption; and the storage capacity, through methane adsorption. A comparative study was also carried out with commercial activated carbons from charcoal. The highest storage factor attained was 89 for compacted grain-based activated carbons from grain sorghum with a bulk density of 0.65 g/cm(3), and the highest storage factor attained is 106 for compacted commercial activated carbons (Calgon) with a bulk density of 0.70 g/cm(3). The storage factor was found to increase approximately linearly with increasing bulk density and to be independent of the extent of compaction. This implies that the grain-based activated carbons are the ideal candidates for the ANG storage.

  1. Impact of sulfur oxides on mercury capture by activated carbon.

    PubMed

    Presto, Albert A; Granite, Evan J

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACl, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  2. Impact of Sulfur Oxides on Mercury Capture by Activated Carbon

    SciTech Connect

    Presto, A.A.; Granite, E.J.

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACI, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  3. SO{sub 2} Retention by CaO-Based Sorbent Spent in CO{sub 2} Looping Cycles

    SciTech Connect

    Manovic, V.; Anthony, E.J.; Loncarevic, D.

    2009-07-15

    CaO-based looping cycles are promising processes for CO{sub 2} Capture from both syngas and flue gas. The technology is based on cyclical carbonation of CaO and regeneration of CaCO{sub 3} in a dual fluidized-bed reactor to produce a pure CO{sub 2} stream suitable for sequestration. Use of spent sorbent from CO{sub 2} looping cycles for SO{sub 2} capture is investigated. Three limestones were investigated: Kelly Rock (Canada), La Blanca (Spain), and Katowice (Poland, Upper Silesia). Carbonation/calcination cycles were performed in a tube furnace with both the original limestones and samples thermally pretreated for different times (i.e., sintered). The spent sorbent samples were sulfated in a thermogravimetric analyzer (TGA). The changes in the resulting sorbent pore structure were then investigated using mercury porosimetry. It has been shown that the sulfation rates of both thermally pretreated and spent sorbent samples are lower in comparison with those of the original samples. However, final conversions of both spent and pretreated sorbents after longer sulfation time were comparable or higher than those observed for the original sorbents under comparable conditions. Maximum sulfation levels strongly depend on sorbent porosity and pore surface area. The results showed that spent sorbent samples from CO{sub 2} looping cycles can be used as sorbents for SO{sub 2} retention in cases where significant porosity loss does not occur during CO{sub 2} reaction cycles. In the case of spent Kelly Rock and Katowice samples, sorbent particles are practically uniformly sulfated, achieving final conversions that are determined by the total pore volume available for the bulky CaSO{sub 4} product.

  4. CCN activation of pure and coated carbon black particles.

    PubMed

    Dusek, U; Reischl, G P; Hitzenberger, R

    2006-02-15

    The CCN (cloud condensation nucleus) activation of pure and coated carbon black particles was investigated using the University of Vienna cloud condensation nuclei counter (Giebl, H.; Berner, A.; Reischl, G.; Puxbaum, H.; Kasper-Giebl, A.; Hitzenberger, R. J. Aerosol Sci. 2002, 33, 1623-1634). The particles were produced by nebulizing an aqueous suspension of carbon black in a Collison atomizer. The activation of pure carbon black particles was found to require higher supersaturations than predicted by calculations representing the particles as insoluble, wettable spheres with mobility equivalent diameter. To test whether this effect is an artifact due to heating of the light-absorbing carbon black particles in the laser beam, experiments at different laser powers were conducted. No systematic dependence of the activation of pure carbon black particles on laser power was observed. The observations could be modeled using spherical particles and an effective contact angle of 4-6 degrees of water at their surface. The addition of a small amount of NaCl to the carbon black particles (by adding 5% by mass NaCl to the carbon black suspension) greatly enhanced their CCN efficiency. The measured CCN efficiencies were consistent with Kohler theory for particles consisting of insoluble and hygroscopic material. However, coating the carbon black particles with hexadecanol (a typical film-forming compound with one hydrophobic and one hydrophilic end) efficiently suppressed the CCN activation of the carbon black particles.

  5. CO{sub 2} capture from flue gases using three Ca-based sorbents in a fluidized bed reactor

    SciTech Connect

    Li, Z.S.; Fang, F.; Cai, N.S.

    2009-06-15

    Abstract: Experiments of CO{sub 2} capture and sorbent regeneration characteristics of limestone, dolomite, and CaO/Ca{sub 1}2Al{sub 14}O{sub 3}3 at high temperature were investigated in a thermogravimetric analyzer (TGA) and a fluidized bed reactor. The effect of reactivity decay of limestone, dolomite, and CaO/Ca{sub 12}Al{sub 14}O{sub 3}3 sorbents on CO{sub 2} capture and sorbent regeneration processes was studied. The experimental results indicated that the operation time of high efficient CO{sub 2} capture stage declined continuously with increasing of the cyclic number due to the loss of the sorbent activity, and the final CO{sub 2} capture efficiency would remain nearly constant, due to the sorbent already reaching the final residual capture capacity. After the CO{sub 2} capture step, the Ca-based sorbents need to be regenerated to be used for a subsequent cycle, and the multiple calcination processes of Ca-based sorbent under different calcination conditions are studied and discussed. Reactivity loss of limestone, dolomite and CaO/Ca{sub 12}Al{sub 14}O{sub 3}3 sorbents from a fluidized bed reactor at both mild and severe calcination conditions was compared with the TGA data. At mild calcination conditions, TGA results of sorbent reactivity loss were similar to the experimental results of fluidized bed reactor for three sorbents at 850 degrees C calcination temperature, and this indicated that TGA experimental results can be used as a reference to predict sorbent reactivity loss behavior in fluidized bed reactor. At severe calcination condition, sorbent reactivity loss behavior for limestone and dolomite from TGA compare well with the result from a fluidized bed reactor.

  6. Tailor-Made Core-Shell CaO/TiO2-Al2O3 Architecture as a High-Capacity and Long-Life CO2 Sorbent.

    PubMed

    Peng, Weiwei; Xu, Zuwei; Luo, Cong; Zhao, Haibo

    2015-07-01

    CaO-based sorbents are widely used for CO2 capture, steam methane reforming, and gasification enhancement, but the sorbents suffer from rapid deactivation during successive carbonation/calcination cycles. This research proposes a novel self-assembly template synthesis (SATS) method to prepare a hierarchical structure CaO-based sorbent, Ca-rich, Al2O3-supported, and TiO2-stabilized in a core-shell microarchitecture (CaO/TiO2-Al2O3). The cyclic CO2 capture performance of CaO/TiO2-Al2O3 is compared with those of pure CaO and CaO/Al2O3. CaO/TiO2-Al2O3 sorbent achieved superior and durable CO2 capture capacity of 0.52 g CO2/g sorbent after 20 cycles under the mild calcination condition and retained a high-capacity and long-life performance of 0.44 g CO2/g sorbent after 104 cycles under the severe calcination condition, much higher than those of CaO and CaO/Al2O3. The microstructure characterization of CaO/TiO2-Al2O3 confirmed that the core-shell structure of composite support effectively inhibited the reaction between active component (CaO particles) and main support (Al2O3 particles) by TiO2 addition, which contributed to its properties of high reactivity, thermal stability, mechanical strength, and resistance to agglomeration and sintering.

  7. Tailor-Made Core-Shell CaO/TiO2-Al2O3 Architecture as a High-Capacity and Long-Life CO2 Sorbent.

    PubMed

    Peng, Weiwei; Xu, Zuwei; Luo, Cong; Zhao, Haibo

    2015-07-01

    CaO-based sorbents are widely used for CO2 capture, steam methane reforming, and gasification enhancement, but the sorbents suffer from rapid deactivation during successive carbonation/calcination cycles. This research proposes a novel self-assembly template synthesis (SATS) method to prepare a hierarchical structure CaO-based sorbent, Ca-rich, Al2O3-supported, and TiO2-stabilized in a core-shell microarchitecture (CaO/TiO2-Al2O3). The cyclic CO2 capture performance of CaO/TiO2-Al2O3 is compared with those of pure CaO and CaO/Al2O3. CaO/TiO2-Al2O3 sorbent achieved superior and durable CO2 capture capacity of 0.52 g CO2/g sorbent after 20 cycles under the mild calcination condition and retained a high-capacity and long-life performance of 0.44 g CO2/g sorbent after 104 cycles under the severe calcination condition, much higher than those of CaO and CaO/Al2O3. The microstructure characterization of CaO/TiO2-Al2O3 confirmed that the core-shell structure of composite support effectively inhibited the reaction between active component (CaO particles) and main support (Al2O3 particles) by TiO2 addition, which contributed to its properties of high reactivity, thermal stability, mechanical strength, and resistance to agglomeration and sintering. PMID:26047026

  8. 4-MCHM sorption to and desorption from granular activated carbon and raw coal.

    PubMed

    Jeter, T Scott; Sarver, Emily A; McNair, Harold M; Rezaee, Mohammad

    2016-08-01

    4-Methylcyclohexanemethanol (4-MCHM) is a saturated higher alicyclic primary alcohol that is used in the froth flotation process for cleaning coal. In early 2014, a large spill of crude chemical (containing primarily 4-MCHM) to the Elk River near Charleston, WV contaminated the local water supply. Carbon filters at the affected water treatment facility quickly became saturated, and the contaminated water was distributed to nearby homes and businesses. Sorption of 4-MCHM to granular activated carbon (GAC) was studied in the laboratory using head space (HS) analysis via gas chromatography with a flame ionization detector (GC-FID). Sorption to raw coal was also investigated, since this material may be of interest as a sorbent in the case of an on-site spill. As expected, sorption to both materials increased with decreased particle size and with increased exposure time; although exposure time proved to be much more important in the case of GAC than for coal. Under similar conditions, GAC sorbed more 4-MCHM than raw coal (e.g., 84.9 vs. 63.1 mg/g, respectively, for 20 × 30 mesh particles exposed to 860 mg/L 4-MCHM solution for 24 h). Desorption from both materials was additionally evaluated. Interestingly, desorption of 4-MCHM on a mass per mass basis was also higher for GAC than for raw coal. Overall, results indicated that GAC readily sorbs 4-MCHM but can also readily release a portion of the chemical, whereas coal sorbs somewhat less 4-MCHM but holds it tightly. PMID:27219291

  9. Bench-scale studies of in-duct mercury capture using cupric chloride-impregnated carbons

    SciTech Connect

    Sang-Sup Lee; Joo-Youp Lee; Tim C. Keener

    2009-04-15

    A brominated activated carbon (Darco Hg-LH) and cupric chloride-impregnated activated carbon (CuCl{sub 2}-ACs) sorbent have been tested in a bench-scale entrained-flow reactor system which was developed for simulating in-flight mercury capture in ducts upstream of particulate matter control devices. The bench-scale experimental system has been operated with the conditions of a residence time of 0.75 s and a gas temperature of 140{sup o}C to simulate typical conditions in the duct of coal-fired exhaust gas. In addition, sorbent deposition on walls which can occur in a laboratory-scale system more than in a full-scale system was significantly reduced so that additional mercury capture by the deposited sorbent was minimized. In the entrained-flow system, CuCl{sub 2}-ACs demonstrated similar performance in Hg adsorption and better performance in Hg{sup 0} oxidation than Darco Hg-LH. In addition, the carbon content of those sorbents was found to determine their Hg adsorption capability in the entrained-flow system. The bench-scale entrained-flow system was able to demonstrate the important Hg adsorption and oxidation characteristics of the tested sorbents. 18 refs., 9 figs., 1 tab.

  10. Synthesis of nanostructured hybrid sorbent materials using organosilane self-assembly on mesoporous ceramic oxides

    SciTech Connect

    Fryxell, Glen E.

    2007-01-30

    The single most important factor in determining quality of life in human society is the availability of pure, clean drinking water. Wars have been fought, and will continue to be fought, over access and control of clean water. Drinking water has two major classes of contamination, biological contamination and chemical contamination. Bacterial contamination can be dealt with by a number of well-established technologies (e.g. chlorination, ozone, UV, etc.), but chemical contamination is a somewhat more challenging target. Common organic contaminants, such as pesticides, agricultural chemicals, industrial solvents, and fuels can be removed by treatment with UV/ozone, activated carbon or plasma technologies. Toxic heavy metals like mercury, lead and cadmium can be partially addressed by using traditional sorbent materials like alumina, but these materials bind metal ions non-specifically and can easily be saturated with harmless, ubiquitous species like calcium, magnesium and zinc (which are actually nutrients, and don’t need to be removed). Another weakness of these traditional sorbent materials is that metal ion sorption to a ceramic oxide surface is a reversible process, meaning they can easily desorb back into the drinking water supply.

  11. Metal-Organic Frameworks: Literature Survey and Recommendation of Potential Sorbent Materials

    SciTech Connect

    Baumann, T F

    2010-04-29

    Metal-organic frameworks (MOFs) are a special type of porous material with a number of unique properties, including exceptionally high surface areas, large internal pore volumes (void space) and tunable pore sizes. These materials are prepared through the assembly of molecular building blocks into ordered three-dimensional structures. The bulk properties of the MOF are determined by the nature of the building blocks and, as such, these materials can be designed with special characteristics that cannot be realized in other sorbent materials, like activated carbons. For example, MOFs can be constructed with binding sites or pockets that can exhibit selectivity for specific analytes. Alternatively, the framework can be engineered to undergo reversible dimensional changes (or 'breathing') upon interaction with an analyte, effectively trapping the molecule of interest in the lattice structure. In this report, we have surveyed the 4000 different MOF structures reported in the open literature and provided recommendations for specific MOF materials that should be investigated as sorbents for this project.

  12. Lithium chloride - Expanded graphite composite sorbent for solar powered ice maker

    SciTech Connect

    Kiplagat, J.K.; Wang, R.Z.; Li, T.X.; Oliveira, R.G.

    2010-09-15

    Consolidated composite material made from expanded graphite (EG) powder impregnated with LiCl salt is proposed for use in solar powered adsorption ice makers. Laboratory experiments were done to test the adsorption and desorption performance of the sorbent under different temperature conditions suitable for solar energy utilization. More than 75% of the reaction between LiCl and ammonia was completed after 30 min of synthesis at evaporation temperatures of -10 and -5 C and adsorption temperature between 25 and 35 C. Under the same period, it was possible to obtain 80% conversion in the desorption phase, when the generation temperatures ranged between 75 and 80 C, and the condensation temperature varied from 25 to 35 C. The highest average specific cooling power during the synthesis phase was 117 W per kg of the block. The calculated theoretical coefficient of performance (COP) under different cycle conditions was nearly constant at 0.47. Moreover, the new composite sorbent showed higher Specific Cooling Capacity (SCC), compared to activated carbon (AC)/methanol pair. Experiments done with blocks with different proportion of EG, showed that the proportion of EG influence the cooling capacity per unit mass of salt and had almost no influence on the cooling capacity per unit mass of the block. Moreover, the reaction enthalpy ({delta}H) and entropy ({delta}S) were calculated from experimental data obtained experimentally, and confirmed previous reported values. (author)

  13. Soil Inorganic Carbon in Deserts: Active Carbon Sink or Inert Reservoir?

    NASA Astrophysics Data System (ADS)

    Monger, H. C.; Cole, D. R.

    2011-12-01

    Soil inorganic carbon is the third largest C pool in the active global carbon cycle, containing at least 800 petagrams of carbon. Although carbonate dissolution-precipitation reactions have been understood for over a century, the role of soil inorganic carbon in carbon sequestration, and in particular pedogenic carbonate, is a deceptively complex process because it involves interdependent connections among climate, plants, microorganisms, silicate minerals, soil moisture, pH, and Ca supply via rain, dust, or in situ weathering. An understanding of soil inorganic carbon as a sink or reservoir also requires examination of the system at local to continental scales and at seasonal to millennial time scales. In desert soils studied in North America, carbon isotope ratios and radiocarbon dates were measured in combination with electron microscopy, lab and field experiments with biological calcite formation, and field measurements of carbon dioxide emissions. These investigations reveal that soil inorganic carbon is both an active sink and a inert reservoir depending on the spatial and temporal scale and source of calcium.

  14. Zinc-oxide-based sorbents and processes for preparing and using same

    DOEpatents

    Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasael

    2010-03-23

    Zinc oxide-based sorbents, and processes for preparing and using them are provided. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  15. Zinc oxide-based sorbents and processes for preparing and using same

    DOEpatents

    Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasad

    2005-10-04

    Zinc oxide-based sorbents, and processes for preparing and using them are provided, wherein the sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents contain an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2 O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, containing a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  16. Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin

    NASA Astrophysics Data System (ADS)

    Tsubouchi, Naoto; Nishio, Megumi; Mochizuki, Yuuki

    2016-05-01

    The present work focuses on the role of nitrogen in the development of pores in activated carbon produced from lignin by K2CO3 activation, employing a fixed bed reactor under a high-purity He stream at temperatures of 500-900 °C. The specific surface area and pore volume obtained by activation of lignin alone are 230 m2/g and 0.13 cm3/g at 800 °C, and 540 m2/g and 0.31 cm3/g at 900 °C, respectively. Activation of a mixture of lignin and urea provides a significant increase in the surface area and volume, respectively reaching 3300-3400 m2/g and 2.0-2.3 cm3/g after holding at 800-900 °C for 1 h. Heating a lignin/urea/K2CO3 mixture leads to a significant decrease in the yield of released N-containing gases compared to the results for urea alone and a lignin/urea mixture, and most of the nitrogen in the urea is retained in the solid phase. X-ray photoelectron spectroscopy and X-ray diffraction analyses clearly show that part of the remaining nitrogen is present in heterocyclic structures (for example, pyridinic and pyrrolic nitrogen), and the rest is contained as KOCN at ≤600 °C and as KCN at ≥700 °C, such that the latter two compounds can be almost completely removed by water washing. The fate of nitrogen during heating of lignin/urea/K2CO3 and role of nitrogen in pore development in activated carbon are discussed on the basis of the results mentioned above.

  17. Performance of Amine-Multilayered Solid Sorbents for CO{sub 2} Removal: Effect of Fabrication Variables

    SciTech Connect

    Jiang, Bingbing; Kish, Vincent; Li, Bingyun;