Science.gov

Sample records for activated carbon-contact stabilization

  1. Treatment of coke-oven wastewater with the powdered activated carbon-contact stabilization activated sludge process. Final report

    SciTech Connect

    Suidan, M.T.; Deady, M.A.; Gee, C.S.

    1983-11-01

    The objective of the study was to determine optimum parameters for the operation of an innovative process train used in the treatment of coke-over wastewater. The treatment process train consisted of a contact-stabilization activated sludge system with powdered activated carbon (PAC) addition, followed by activated sludge nitrification, followed by denitrification in an anoxic filter. The control and operating parameters evaluated during the study were: (a) the average mixed-liquor PAC concentration maintained in the contact-stabilization system, (b) the solids retention time practiced in the contact-stabilization system, and (c) the hydraulic detention time maintained in the contact aeration tank. Three identical treatement process trains were constructed and employed in this study. The coke-oven wastewater used for this investigation was fed to the treatment units at 30% strength. The first part of the study was devoted to determining the interactions between the mixed liquor PAC concentration and the solids retention time in the contact-stabilization tanks. Results showed that optimum overall system performance is attainable when the highest sludge age (30 day) and highest mixed liquor PAC concentration were practiced. During the second phase of the study, all three systems were operated at a 30 day solids retention time while different detention times of 1, 2/3 and 1/3 day were evaluated in the contact tank. PAC addition rates were maintained at the former levels and, consequently, reduced contact times entailed higher mixed liquor carbon concentrations. Once again, the system receiving the highest PAC addition rate of PAC exhibited the best overall performance. This system exhibited no deterioration in process performance as a result of decreased contact detention time. 72 references, 41 figures, 24 tables.

  2. Active crystals and their stability.

    PubMed

    Menzel, Andreas M; Ohta, Takao; Löwen, Hartmut

    2014-02-01

    A recently introduced active phase field crystal model describes the formation of ordered resting and traveling crystals in systems of self-propelled particles. Increasing the active drive, a resting crystal can be forced to perform collectively ordered migration as a single traveling object. We demonstrate here that these ordered migrating structures are linearly stable. In other words, during migration, the single-crystalline texture together with the globally ordered collective motion is preserved even on large length scales. Furthermore, we consider self-propelled particles on a substrate that are surrounded by a thin fluid film. We find that in this case the resulting hydrodynamic interactions can destabilize the order.

  3. Effect of stabilization on biomass activity.

    PubMed

    Cokgor, Emine Ubay; Okutman Tas, Didem; Zengin, Gulsum Emel; Insel, Guclu

    2012-02-20

    The study aimed to compare aerobic and aerobic/anoxic stabilization processes in terms of organic matter and the biomass removal efficiencies using a municipal sludge sample. The efficiency of stabilization process was assessed monitoring suspended solids (SS), volatile suspended solids (VSS), total and dissolved organic carbon (TOC, DOC), nitrate, nitrite, and phosphate parameters. The oxygen uptake rate (OUR) measurements were conducted to determine active biomass concentration. On the 30th day of the aerobic stabilization, the SS, VSS and TOC removal efficiencies were 22%, 28% and 55%, respectively. Under aerobic/anoxic conditions, removal efficiencies for SS, VSS and TOC were 25%, 27% and 67%. On the 17th day of the stabilization, SS and VSS removal rates were 60 mg SS/L day and 47 mg VSS/L day for aerobic and 102 mg SS/L day and 63 mg VSS/L day for aerobic/anoxic conditions, respectively. These findings reflected the higher stabilization performance of the aerobic/anoxic conditions. Based on respirometric results, the ratios of the active biomass were decreased to 30% and 24% for the 17th and 30th day of the aerobic stabilization, respectively. Such results have significant implications relative to the activity decrease quantification of the biomass as well as its further application potentials after aerobic or aerobic/anoxic sludge stabilization. PMID:21791229

  4. Functional Stability of Plasminogen Activator Inhibitor-1

    PubMed Central

    Kuru, Pinar; Toksoy Oner, Ebru; Agirbasli, Mehmet

    2014-01-01

    Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of plasminogen activators, such as tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), and a major regulator of the fibrinolytic system. PAI-1 plays a pivotal role in acute thrombotic events such as deep vein thrombosis (DVT) and myocardial infarction (MI). The biological effects of PAI-1 extend far beyond thrombosis including its critical role in fibrotic disorders, atherosclerosis, renal and pulmonary fibrosis, type-2 diabetes, and cancer. The conversion of PAI-1 from the active to the latent conformation appears to be unique among serpins in that it occurs spontaneously at a relatively rapid rate. Latency transition is believed to represent a regulatory mechanism, reducing the risk of thrombosis from a prolonged antifibrinolytic action of PAI-1. Thus, relying solely on plasma concentrations of PAI-1 without assessing its function may be misleading in interpreting the role of PAI-1 in many complex diseases. Environmental conditions, interaction with other proteins, mutations, and glycosylation are the main factors that have a significant impact on the stability of the PAI-1 structure. This review provides an overview on the current knowledge on PAI-1 especially importance of PAI-1 level and stability and highlights the potential use of PAI-1 inhibitors for treating cardiovascular disease. PMID:25386620

  5. Stability and variability: indicators for passive stability and active control in a rhythmic task.

    PubMed

    Wei, Kunlin; Dijkstra, Tjeerd M H; Sternad, Dagmar

    2008-06-01

    Using a rhythmic task where human subjects bounced a ball with a handheld racket, fine-grained analyses of stability and variability extricated contributions from open-loop control, noise strength, and active error compensation. Based on stability analyses of a stochastic-deterministic model of the task--a surface contacting the ball by periodic movements--open-loop or dynamic stability was assessed by the acceleration of the racket at contact. Autocovariance analyses of model and data were further used to gauge the contributions of open-loop stability and noise strength. Variability and regression analyses estimated active error compensation. Empirical results demonstrated that experienced actors exploited open-loop stability more than novices, had lower noise strength, and applied more active error compensations. By manipulating the model parameter coefficient of restitution, task stability was varied and showed that actors graded these three components as a function of task stability. It is concluded that actors tune into task stability when stability is high but use more active compensation when stability is reduced. Implications for the neural underpinnings for passive stability and active control are discussed. Further, results showed that stability and variability are not simply the inverse of each other but contain more quantitative information when combined with model analyses.

  6. Thermal Stability of Chelated Indium Activable Tracers

    SciTech Connect

    Chrysikopoulos, Costas; Kruger, Paul

    1986-01-21

    The thermal stability of indium tracer chelated with organic ligands ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) was measured for reservoir temperatures of 150, 200, and 240 C. Measurements of the soluble indium concentration was made as a function of time by neutron activation analysis. From the data, approximate thermal decomposition rates were estimated. At 150 C, both chelated tracers were stable over the experimental period of 20 days. At 200 C, the InEDTA concentration remained constant for 16 days, after which the thermal decomposition occurred at a measured rate constant of k = 0.09 d{sup -1}. The thermal decomposition of InNTA at 200 C showed a first order reaction with a measured rate constant of k = 0.16 d{sup -1}. At 240 C, both indium chelated tracers showed rapid decomposition with rate constants greater than 1.8 d{sup -1}. The data indicate that for geothermal reservoir with temperatures up to about 200 C, indium chelated tracers can be used effectively for transit times of at least 20 days. These experiments were run without reservoir rock media, and do not account for concomitant loss of indium tracer by adsorption processes.

  7. New stability and stabilization criteria for fuzzy neural networks with various activation functions

    NASA Astrophysics Data System (ADS)

    Mathiyalagan, K.; Sakthivel, R.; Anthoni, S. Marshal

    2011-07-01

    In this paper, the stability analysis and control design of Takagi-Sugeno (TS) fuzzy neural networks with various activation functions and continuously distributed time delays are addressed. By implementing the delay-fractioning technique together with the linear matrix inequality (LMI) approach , a new set of sufficient conditions is derived in terms of linear matrix inequalities, which ensure the stability of the considered fuzzy neural networks. Further, based on the above-mentioned techniques, a control law with an appropriate gain control matrix is derived to achieve stabilization of the fuzzy neural networks. In addition, the results are extended to the study of the stability and stabilization results for TS fuzzy uncertain neural networks with parameter uncertainties. The stabilization criteria are obtained in terms LMIs and hence the gain control matrix can be easily determined by the MATLAB LMI control toolbox. Two numerical examples with simulation results are given to illustrate the effectiveness of the obtained result.

  8. Stabilized sulfur binding using activated fillers

    DOEpatents

    Kalb, Paul D.; Vagin, Vyacheslav P.; Vagin, Sergey P.

    2015-07-21

    A method of making a stable, sulfur binding composite comprising impregnating a solid aggregate with an organic modifier comprising unsaturated hydrocarbons with at least one double or triple covalent bond between adjacent carbon atoms to create a modifier-impregnated aggregate; heating and drying the modifier-impregnated aggregate to activate the surface of the modifier-impregnated aggregate for reaction with sulfur.

  9. Enhanced muscle activity during lumbar extension exercise with pelvic stabilization.

    PubMed

    Lee, Ho-Seong

    2015-12-01

    The purpose of this study was to investigate whether pelvic stabilization affects multifidus (MF) and iliocostalis lumborum (IL) muscle activities during dynamic extension exercise. Nine males (age, 25.1±6.3 yr; height, 176.6±2.4 cm; body mass, 74.9±6.7 kg) performed an isometric lumbar extension strength test and dynamic exercise in an upright seated position with or without pelvic stabilization. The electromyography and muscle strength of the MF and IL muscles were measured when the subjects performed the isometric lumbar extension strength test at the trunk angle 110°, 146°, and 182°. In addition, the trunk extensor muscle activities were measured using 50% muscle strength of maximum isometric strength during a dynamic trunk extension exercise. The MF and IL muscle activities were significantly higher at 110°, 146°, and 182° with pelvic stabilization than that without pelvic stabilization during the isometric lumbar extension strength test (P<0.05) and the dynamic exercise (P<0.05). These results suggest that the lumbar extension exercise with pelvic stabilization may be more effective for MF and IL muscle activity compared to that without pelvic stabilization.

  10. Calcium promotes activity and confers heat stability on plant peroxidases

    PubMed Central

    Plieth, Christoph; Vollbehr, Sonja

    2012-01-01

    In this paper we demonstrate how peroxidase (PO) activities and their heat stability correlate with the availability of free Ca2+ ions. Calcium ions work as a molecular switch for PO activity and exert a protective function, rendering POs heat stable. The concentration ranges of these two activities differ markedly. POs are activated by µM Ca2+ concentration ranges, whereas heat stabilization is observed in the nM range. This suggests the existence of different Ca2+ binding sites. The heat stability of POs depends on the source plant species. Terrestrial plants have POs that exhibit higher temperature stability than those POs from limnic and marine plants. Different POs from a single species can differ in terms of heat stability. The abundance of different POs within a plant is dependent on age and developmental stage. The heat stability of a PO does not necessarily correlate with the maximum temperature the source species is usually exposed to in its natural habitat. This raises questions on the role of POs in the heat tolerance of plants. Consequently, detailed investigations are needed to identify and characterize individual POs, with regard to their genetic origin, subcellular expression, tissue abundance, developmental emergence and their functions in innate and acquired heat tolerance. PMID:22580695

  11. Enhanced muscle activity during lumbar extension exercise with pelvic stabilization

    PubMed Central

    Lee, Ho-Seong

    2015-01-01

    The purpose of this study was to investigate whether pelvic stabilization affects multifidus (MF) and iliocostalis lumborum (IL) muscle activities during dynamic extension exercise. Nine males (age, 25.1±6.3 yr; height, 176.6±2.4 cm; body mass, 74.9±6.7 kg) performed an isometric lumbar extension strength test and dynamic exercise in an upright seated position with or without pelvic stabilization. The electromyography and muscle strength of the MF and IL muscles were measured when the subjects performed the isometric lumbar extension strength test at the trunk angle 110°, 146°, and 182°. In addition, the trunk extensor muscle activities were measured using 50% muscle strength of maximum isometric strength during a dynamic trunk extension exercise. The MF and IL muscle activities were significantly higher at 110°, 146°, and 182° with pelvic stabilization than that without pelvic stabilization during the isometric lumbar extension strength test (P<0.05) and the dynamic exercise (P<0.05). These results suggest that the lumbar extension exercise with pelvic stabilization may be more effective for MF and IL muscle activity compared to that without pelvic stabilization. PMID:26730390

  12. Emotional stability, anxiety, and natural killer activity under examination stress.

    PubMed

    Borella, P; Bargellini, A; Rovesti, S; Pinelli, M; Vivoli, R; Solfrini, V; Vivoli, G

    1999-08-01

    This study was performed to evaluate the relation between a stable personality trait, a mood state and immune response to an examination stress. A self-reported measure of emotional stability (BFQ-ES scale) was obtained in a sample (n = 39) randomly selected from 277 cadets; this personality trait was also investigated by completing a neuroticism scale (Eysenck personality inventory) and a trait-anxiety scale (STAI). Natural killer (NK) cell activity was measured at baseline, long before the examination time and the examination day. The state-anxiety scale evaluated the response to the stressful stimulus. Taking subjects all together, the academic task did not result in significant modification over baseline in NK cell activity. Subjects were then divided into three groups based on emotional stability and state-anxiety scores: high emotional stability/low anxiety, medium, and low emotional stability/high anxiety. Examination stress induced significant increases in NK cell activity in the high emotional stability/low anxiety group, no effect in the medium group, and significant decreases in the low emotional stability/high anxiety group. The repeated-measure ANOVA revealed a significant interaction of group x period (baseline vs. examination) for both lytic units and percent cytolysis. The results did not change after introducing coffee and smoking habits as covariates. Our findings suggest that the state-anxiety acts in concert with a stable personality trait to modulate NK response in healthy subjects exposed to a psychological naturalistic stress. The relation between anxiety and poor immune control has been already described, whereas the ability of emotional stability to associate with an immunoenhancement has not yet reported. The peculiarity of our population, a very homogeneous and healthy group for life style and habits, can have highlighted the role of emotional stability, and may account for the difference with other studies.

  13. Activation and stabilization of enzymes in ionic liquids.

    PubMed

    Moniruzzaman, Muhammad; Kamiya, Noriho; Goto, Masahiro

    2010-06-28

    As environmentally benign "green" solvents, room temperature ionic liquids (ILs) have been used as solvents or (co)solvents in biocatalytic reactions and processes for a decade. The technological utility of enzymes can be enhanced greatly by their use in ionic liquids (ILs) rather than in conventional organic solvents or in their natural aqueous reaction media. In fact, the combination of green properties and unique tailor-made physicochemical properties make ILs excellent non-aqueous solvents for enzymatic catalysis with numerous advantages over other solvents, including high conversion rates, high selectivity, better enzyme stability, as well as better recoverability and recyclability. However, in many cases, particularly in hydrophilic ILs, enzymes show relative instability and/or lower activity compared with conventional solvents. To improve the enzyme activity as well as stability in ILs, various attempts have been made by modifying the form of the enzymes. Examples are enzyme immobilization onto support materials via adsorption or multipoint attachment, lyophilization in the presence of stabilizing agents, chemical modification with stabilizing agents, formation of cross-linked enzyme aggregates, pretreatment with polar organic solvents or enzymes combined with suitable surfactants to form microemulsions. The use of these enzyme preparations in ILs can dramatically increase the solvent tolerance, enhance activity as well as stability, and improve enantioselectivity. This perspective highlights a number of pronounced strategies being used successfully for activation and stabilization of enzymes in non-aqueous ILs media. This review is not intended to be comprehensive, but rather to present a general overview of the potential approaches to activate enzymes for diverse enzymatic processes and biotransformations in ILs. PMID:20445940

  14. Active and passive stabilization of body pitch in insect flight

    PubMed Central

    Ristroph, Leif; Ristroph, Gunnar; Morozova, Svetlana; Bergou, Attila J.; Chang, Song; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai

    2013-01-01

    Flying insects have evolved sophisticated sensory–motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilization with high body drag. By glueing magnets to fruit flies and perturbing their flight using magnetic impulses, we show that these insects employ active control that is indeed fast relative to the instability. Moreover, we find that fruit flies with their control sensors disabled can keep upright if high-drag fibres are also attached to their bodies, an observation consistent with our prediction for the passive stability condition. Finally, we extend this framework to unify the control strategies used by hovering animals and also furnish criteria for achieving pitch stability in flapping-wing robots. PMID:23697713

  15. Active and passive stabilization of body pitch in insect flight.

    PubMed

    Ristroph, Leif; Ristroph, Gunnar; Morozova, Svetlana; Bergou, Attila J; Chang, Song; Guckenheimer, John; Wang, Z Jane; Cohen, Itai

    2013-08-01

    Flying insects have evolved sophisticated sensory-motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilization with high body drag. By glueing magnets to fruit flies and perturbing their flight using magnetic impulses, we show that these insects employ active control that is indeed fast relative to the instability. Moreover, we find that fruit flies with their control sensors disabled can keep upright if high-drag fibres are also attached to their bodies, an observation consistent with our prediction for the passive stability condition. Finally, we extend this framework to unify the control strategies used by hovering animals and also furnish criteria for achieving pitch stability in flapping-wing robots.

  16. Active and passive stabilization of body pitch in insect flight.

    PubMed

    Ristroph, Leif; Ristroph, Gunnar; Morozova, Svetlana; Bergou, Attila J; Chang, Song; Guckenheimer, John; Wang, Z Jane; Cohen, Itai

    2013-08-01

    Flying insects have evolved sophisticated sensory-motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilization with high body drag. By glueing magnets to fruit flies and perturbing their flight using magnetic impulses, we show that these insects employ active control that is indeed fast relative to the instability. Moreover, we find that fruit flies with their control sensors disabled can keep upright if high-drag fibres are also attached to their bodies, an observation consistent with our prediction for the passive stability condition. Finally, we extend this framework to unify the control strategies used by hovering animals and also furnish criteria for achieving pitch stability in flapping-wing robots. PMID:23697713

  17. Active stabilization to prevent surge in centrifugal compression systems

    NASA Technical Reports Server (NTRS)

    Epstein, Alan H.; Greitzer, Edward M.; Simon, Jon S.; Valavani, Lena

    1993-01-01

    This report documents an experimental and analytical study of the active stabilization of surge in a centrifugal engine. The aims of the research were to extend the operating range of a compressor as far as possible and to establish the theoretical framework for the active stabilization of surge from both an aerodynamic stability and a control theoretic perspective. In particular, much attention was paid to understanding the physical limitations of active stabilization and how they are influenced by control system design parameters. Previously developed linear models of actively stabilized compressors were extended to include such nonlinear phenomena as bounded actuation, bandwidth limits, and robustness criteria. This model was then used to systematically quantify the influence of sensor-actuator selection on system performance. Five different actuation schemes were considered along with four different sensors. Sensor-actuator choice was shown to have a profound effect on the performance of the stabilized compressor. The optimum choice was not unique, but rather shown to be a strong function of some of the non-dimensional parameters which characterize the compression system dynamics. Specifically, the utility of the concepts were shown to depend on the system compliance to inertia ratio ('B' parameter) and the local slope of the compressor speedline. In general, the most effective arrangements are ones in which the actuator is most closely coupled to the compressor, such as a close-coupled bleed valve inlet jet, rather than elsewhere in the flow train, such as a fuel flow modulator. The analytical model was used to explore the influence of control system bandwidth on control effectiveness. The relevant reference frequency was shown to be the compression system's Helmholtz frequency rather than the surge frequency. The analysis shows that control bandwidths of three to ten times the Helmholtz frequency are required for larger increases in the compressor flow range

  18. Proteolytically stabilizing fibronectin without compromising cell and gelatin binding activity.

    PubMed

    Zhang, Chen; Ramanathan, Anand; Karuri, Nancy Wangechi

    2015-01-01

    Excessive proteolytic degradation of fibronectin (FN) has been implicated in impaired tissue repair in chronic wounds. We previously reported two strategies for stabilizing FN against proteolytic degradation; the first conjugated polyethylene glycol (PEG) through cysteine residues and the second conjugated PEG chains of varying molecular weight on lysine residues. PEGylation of FN via lysine residues resulted in increased resistance to proteolysis with increasing PEG size, but an overall decrease in biological activity, as characterized by cell and gelatin binding. Our latest method to stabilize FN against proteolysis masks functional regions in the protein during lysine PEGylation. FN is PEGylated while it is bound to gelatin Sepharose beads with 2, 5, and 10 kDa PEG precursors. This results in partially PEGylated FN that is more stable than native FN and whose proteolytic stability increases with PEG molecular weight. Unlike completely PEGylated FN, partially PEGylated FN has cell adhesion, gelatin binding, and matrix assembly responses that are comparable to native FN. This is new evidence of how PEGylation variables can be used to stabilize FN while retaining its activity. The conjugates developed herein can be used to dissect molecular mechanisms mediated by FN stability and functionality, and address the problem of FN degradation in chronic wounds.

  19. RNF4-Dependent Oncogene Activation by Protein Stabilization.

    PubMed

    Thomas, Jane J; Abed, Mona; Heuberger, Julian; Novak, Rostislav; Zohar, Yaniv; Beltran Lopez, Angela P; Trausch-Azar, Julie S; Ilagan, Ma Xenia G; Benhamou, David; Dittmar, Gunnar; Kopan, Raphael; Birchmeier, Walter; Schwartz, Alan L; Orian, Amir

    2016-09-20

    Ubiquitylation regulates signaling pathways critical for cancer development and, in many cases, targets proteins for degradation. Here, we report that ubiquitylation by RNF4 stabilizes otherwise short-lived oncogenic transcription factors, including β-catenin, Myc, c-Jun, and the Notch intracellular-domain (N-ICD) protein. RNF4 enhances the transcriptional activity of these factors, as well as Wnt- and Notch-dependent gene expression. While RNF4 is a SUMO-targeted ubiquitin ligase, protein stabilization requires the substrate's phosphorylation, rather than SUMOylation, and binding to RNF4's arginine-rich motif domain. Stabilization also involves generation of unusual polyubiquitin chains and docking of RNF4 to chromatin. Biologically, RNF4 enhances the tumor phenotype and is essential for cancer cell survival. High levels of RNF4 mRNA correlate with poor survival of a subgroup of breast cancer patients, and RNF4 protein levels are elevated in 30% of human colon adenocarcinomas. Thus, RNF4-dependent ubiquitylation translates transient phosphorylation signal(s) into long-term protein stabilization, resulting in enhanced oncoprotein activation. PMID:27653698

  20. Elliptically Bent X-ray Mirrors with Active Temperature Stabilization

    SciTech Connect

    Yuan, Sheng; Church, Matthew; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; McKinney, Wayne R.; Kirschman, Jonathan; Morrison, Greg; Noll, Tino; Warwick, Tony; Padmore, Howard A.

    2010-01-31

    We present details of design of elliptically bent Kirkpatrick-Baez mirrors developed and successfully used at the Advanced Light Source for submicron focusing. A distinctive feature of the mirror design is an active temperature stabilization based on a Peltier element attached directly to the mirror body. The design and materials have been carefully optimized to provide high heat conductance between the mirror body and substrate. We describe the experimental procedures used when assembling and precisely shaping the mirrors, with special attention paid to laboratory testing of the mirror-temperature stabilization. For this purpose, the temperature dependence of the surface slope profile of a specially fabricated test mirror placed inside a temperature-controlled container was measured. We demonstrate that with active mirror-temperature stabilization, a change of the surrounding temperature by more than 3K does not noticeably affect the mirror figure. Without temperature stabilization, the surface slope changes by approximately 1.5 ?mu rad rms (primarily defocus) under the same conditions.

  1. Trading off stability against activity in extremophilic aldolases

    PubMed Central

    Dick, Markus; Weiergräber, Oliver H.; Classen, Thomas; Bisterfeld, Carolin; Bramski, Julia; Gohlke, Holger; Pietruszka, Jörg

    2016-01-01

    Understanding enzyme stability and activity in extremophilic organisms is of great biotechnological interest, but many questions are still unsolved. Using 2-deoxy-D-ribose-5-phosphate aldolase (DERA) as model enzyme, we have evaluated structural and functional characteristics of different orthologs from psychrophilic, mesophilic and hyperthermophilic organisms. We present the first crystal structures of psychrophilic DERAs, revealing a dimeric organization resembling their mesophilic but not their thermophilic counterparts. Conversion into monomeric proteins showed that the native dimer interface contributes to stability only in the hyperthermophilic enzymes. Nevertheless, introduction of a disulfide bridge in the interface of a psychrophilic DERA did confer increased thermostability, suggesting a strategy for rational design of more durable enzyme variants. Constraint network analysis revealed particularly sparse interactions between the substrate pocket and its surrounding α-helices in psychrophilic DERAs, which indicates that a more flexible active center underlies their high turnover numbers. PMID:26783049

  2. Synaptic scaling stabilizes persistent activity driven by asynchronous neurotransmitter release.

    PubMed

    Volman, Vladislav; Gerkin, Richard C

    2011-04-01

    Small networks of cultured hippocampal neurons respond to transient stimulation with rhythmic network activity (reverberation) that persists for several seconds, constituting an in vitro model of synchrony, working memory, and seizure. This mode of activity has been shown theoretically and experimentally to depend on asynchronous neurotransmitter release (an essential feature of the developing hippocampus) and is supported by a variety of developing neuronal networks despite variability in the size of populations (10-200 neurons) and in patterns of synaptic connectivity. It has previously been reported in computational models that "small-world" connection topology is ideal for the propagation of similar modes of network activity, although this has been shown only for neurons utilizing synchronous (phasic) synaptic transmission. We investigated how topological constraints on synaptic connectivity could shape the stability of reverberations in small networks that also use asynchronous synaptic transmission. We found that reverberation duration in such networks was resistant to changes in topology and scaled poorly with network size. However, normalization of synaptic drive, by reducing the variance of synaptic input across neurons, stabilized reverberation in such networks. Our results thus suggest that the stability of both normal and pathological states in developing networks might be shaped by variance-normalizing constraints on synaptic drive. We offer an experimental prediction for the consequences of such regulation on the behavior of small networks.

  3. Activity and Stability of Nanoscale Oxygen Reduction Catalysts

    SciTech Connect

    Shao-Horn, Yang

    2015-07-28

    Design of highly active and stable nanoscale catalysts for electro-oxidation of small organic molecules is of great importance to the development of efficient fuel cells. The amount and instability of Pt-based catalysts in the cathode limits the cost, efficiency and lifetime of proton exchange membrane fuel cells. We developed a microscopic understanding of the factors governing activity and stability in Pt and PtM alloys. Experimental efforts were focused on probing the size and shape dependence of ORR activity of Pt-based nanoparticles supported on carbon nanotubes. A microscopic understanding of the activity was achieved by correlating voltammetry and rotating ring disk electrodes to surface atomic and electronic structures, which were elucidated predominantly by high-resolution transmission electron microscopy (HRTEM), Scanning transmission electron microscopy energy dispersive X-ray Spectroscopy (STEM-EDS) and synchrotron X-ray absorption spectroscopy (XAS).

  4. Weakly sheared active suspensions: hydrodynamics, stability, and rheology.

    PubMed

    Cui, Zhenlu

    2011-03-01

    We present a kinetic model for flowing active suspensions and analyze the behavior of a suspension subjected to a weak steady shear. Asymptotic solutions are sought in Deborah number expansions. At the leading order, we explore the steady states and perform their stability analysis. We predict the rheology of active systems including an activity thickening or thinning behavior of the apparent viscosity and a negative apparent viscosity depending on the particle type, flow alignment, and the anchoring conditions, which can be tested on bacterial suspensions. We find remarkable dualities that show that flow-aligning rodlike contractile (extensile) particles are dynamically and rheologically equivalent to flow-aligning discoid extensile (contractile) particles for both tangential and homeotropic anchoring conditions. Another key prediction of this work is the role of the concentration of active suspensions in controlling the rheological behavior: the apparent viscosity may decrease with the increase of the concentration. PMID:21517529

  5. Weakly sheared active suspensions: Hydrodynamics, stability, and rheology

    NASA Astrophysics Data System (ADS)

    Cui, Zhenlu

    2011-03-01

    We present a kinetic model for flowing active suspensions and analyze the behavior of a suspension subjected to a weak steady shear. Asymptotic solutions are sought in Deborah number expansions. At the leading order, we explore the steady states and perform their stability analysis. We predict the rheology of active systems including an activity thickening or thinning behavior of the apparent viscosity and a negative apparent viscosity depending on the particle type, flow alignment, and the anchoring conditions, which can be tested on bacterial suspensions. We find remarkable dualities that show that flow-aligning rodlike contractile (extensile) particles are dynamically and rheologically equivalent to flow-aligning discoid extensile (contractile) particles for both tangential and homeotropic anchoring conditions. Another key prediction of this work is the role of the concentration of active suspensions in controlling the rheological behavior: The apparent viscosity may decrease with the increase of the concentration.

  6. Dermal nanocrystals from medium soluble actives - physical stability and stability affecting parameters.

    PubMed

    Zhai, Xuezhen; Lademann, Jürgen; Keck, Cornelia M; Müller, Rainer H

    2014-09-01

    Nanocrystals are meanwhile applied to increase the dermal penetration of drugs, but were applied by now only to poorly soluble drugs (e.g. 1-10 μg/ml). As a new concept nanocrystals from medium soluble actives were produced, using caffeine as model compound (solubility 16 mg/ml at 20 °C). Penetration should be increased by (a) further increase in solubility and (b) mainly by increased hair follicle targeting of nanocrystals compared to pure solution. Caffeine nanocrystal production in water lead to pronounced crystal growth. Therefore the stability of nanocrystals in water-ethanol (1:9) and ethanol-propylene glycol (3:7) mixtures with lower dielectric constant D was investigated, using various stabilizers. Both mixtures in combination with Carbopol 981 (non-neutralized) yielded stable nanosuspensions over 2 months at 4 °C and room temperature. Storage at 40 °C lead to crystal growth, attributed to too strong solubility increase, supersaturation and Ostwald ripening effects. Stability of caffeine nanocrystals at lower temperatures could not only be attributed to lower solubility, because the solubilities of caffeine in mixtures and in water are not that much different. Other effects such as quantified by reduced dielectric constant D, and specific interactions between dispersion medium and crystal surface seem to play a role. With the 2 mixtures and Carbopol 981, a basic formulation composition for this type of nanocrystals has been established, to be used in the in vivo proof of principle of the new concept.

  7. Dermal nanocrystals from medium soluble actives - physical stability and stability affecting parameters.

    PubMed

    Zhai, Xuezhen; Lademann, Jürgen; Keck, Cornelia M; Müller, Rainer H

    2014-09-01

    Nanocrystals are meanwhile applied to increase the dermal penetration of drugs, but were applied by now only to poorly soluble drugs (e.g. 1-10 μg/ml). As a new concept nanocrystals from medium soluble actives were produced, using caffeine as model compound (solubility 16 mg/ml at 20 °C). Penetration should be increased by (a) further increase in solubility and (b) mainly by increased hair follicle targeting of nanocrystals compared to pure solution. Caffeine nanocrystal production in water lead to pronounced crystal growth. Therefore the stability of nanocrystals in water-ethanol (1:9) and ethanol-propylene glycol (3:7) mixtures with lower dielectric constant D was investigated, using various stabilizers. Both mixtures in combination with Carbopol 981 (non-neutralized) yielded stable nanosuspensions over 2 months at 4 °C and room temperature. Storage at 40 °C lead to crystal growth, attributed to too strong solubility increase, supersaturation and Ostwald ripening effects. Stability of caffeine nanocrystals at lower temperatures could not only be attributed to lower solubility, because the solubilities of caffeine in mixtures and in water are not that much different. Other effects such as quantified by reduced dielectric constant D, and specific interactions between dispersion medium and crystal surface seem to play a role. With the 2 mixtures and Carbopol 981, a basic formulation composition for this type of nanocrystals has been established, to be used in the in vivo proof of principle of the new concept. PMID:25016978

  8. Freeze-dried vaccine against Rinderpest: stability and activity study.

    PubMed

    Languet, B; Precausta, P; Mackowiak, M; Dubourget, P; Reynaud, G; Duret, C

    1985-01-01

    A freeze-dried vaccine against Rinderpest was prepared from modified virus multiplied in calf kidney cell culture. Characteristics of the vaccine are as follows: high titre after freeze-drying (10(4) CCID50/dose), well-adapted freeze-drying stabilizer which ensures maintenance of the infective titre of the vaccinal virus, even under severe conditions (3.5 days at +45 degrees C), use of an appropriate solvent: magnesium sulphate molar solution or more simply physiological saline (for stability after reconstitution even at high temperatures--up to 4 h at +45 degrees C). The activity of the vaccine, tested in cattle by antibody titration and resistance to specific challenge perfectly satisfies requirements set by the WHO and OIE.

  9. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    PubMed Central

    Anella, Fabrizio; Danelon, Christophe

    2014-01-01

    The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristoleic acid (MA) vesicles at varying concentrations of Mg2+. The ligation rate is significantly lower at low-Mg2+ conditions. However, the loss of activity is overcompensated by the increased stability of RNA leading to a larger amount of intact ligated substrate after long reaction periods. Combining RNA ligation assays with fatty acid vesicles we found that MA vesicles made of 5 mM amphiphile are stable and do not impair ligase ribozyme activity in the presence of approximately 2 mM Mg2+. These results provide a scenario in which catalytic RNA and primordial membrane assembly can coexist in the same environment. PMID:25513761

  10. Loss of Consciousness Is Associated with Stabilization of Cortical Activity

    PubMed Central

    Solovey, Guillermo; Alonso, Leandro M.; Yanagawa, Toru; Fujii, Naotaka; Magnasco, Marcelo O.; Cecchi, Guillermo A.

    2015-01-01

    What aspects of neuronal activity distinguish the conscious from the unconscious brain? This has been a subject of intense interest and debate since the early days of neurophysiology. However, as any practicing anesthesiologist can attest, it is currently not possible to reliably distinguish a conscious state from an unconscious one on the basis of brain activity. Here we approach this problem from the perspective of dynamical systems theory. We argue that the brain, as a dynamical system, is self-regulated at the boundary between stable and unstable regimes, allowing it in particular to maintain high susceptibility to stimuli. To test this hypothesis, we performed stability analysis of high-density electrocorticography recordings covering an entire cerebral hemisphere in monkeys during reversible loss of consciousness. We show that, during loss of consciousness, the number of eigenmodes at the edge of instability decreases smoothly, independently of the type of anesthetic and specific features of brain activity. The eigenmodes drift back toward the unstable line during recovery of consciousness. Furthermore, we show that stability is an emergent phenomenon dependent on the correlations among activity in different cortical regions rather than signals taken in isolation. These findings support the conclusion that dynamics at the edge of instability are essential for maintaining consciousness and provide a novel and principled measure that distinguishes between the conscious and the unconscious brain. SIGNIFICANCE STATEMENT What distinguishes brain activity during consciousness from that observed during unconsciousness? Answering this question has proven difficult because neither consciousness nor lack thereof have universal signatures in terms of most specific features of brain activity. For instance, different anesthetics induce different patterns of brain activity. We demonstrate that loss of consciousness is universally and reliably associated with stabilization

  11. Pharmaceutically active compounds in sludge stabilization treatments: anaerobic and aerobic digestion, wastewater stabilization ponds and composting.

    PubMed

    Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2015-01-15

    Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 μg/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 μg/kg dm (aerobically-digested sludge), 63 μg/kg dm (lagoon sludge), 12 μg/kg dm (composted sludge) and 8 μg/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 μg/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17α-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non

  12. Research on Social Stability Mechanisms Based on Activation Energy and Gradual Activation Reaction Theory

    NASA Astrophysics Data System (ADS)

    Ning, Miao; Gu, Jifa

    This paper draws a comparison between social stability and chemical reaction process, and brings forward the concept of “social temperature” and “activation energy of social agent”. It is considered that social temperature turns out to be the macro symptom of social average energy, and its unceasing up-climbing roots in the energy accumulation of “inferiorization” process of social system; that “activation energy of social agent” stands for the social energy or temperature where individuals or groups reach the limit of their psychological bearing ability. This paper, basing on above concepts, elaborates on and demonstrates the gradual activation reaction mechanisms of social stability by a lot of concrete examples. It is thought that there is a threshold value for social stability, and the society will be unstable if social temperature goes higher than this value; that the larger the social average activation energy is, the higher the temperature threshold value of social stability will be; and considering that different groups have different activation energy, those fragile groups with low activation energy are often the risk source which might pose a threat to social stability.

  13. Attosecond beamline with actively stabilized and spatially separated beam paths.

    PubMed

    Huppert, M; Jordan, I; Wörner, H J

    2015-12-01

    We describe a versatile and compact beamline for attosecond spectroscopy. The setup consists of a high-order harmonic source followed by a delay line that spatially separates and then recombines the extreme-ultraviolet (XUV) and residual infrared (IR) pulses. The beamline introduces a controlled and actively stabilized delay between the XUV and IR pulses on the attosecond time scale. A new active-stabilization scheme combining a helium-neon-laser and a white-light interferometer minimizes fluctuations and allows to control delays accurately (26 as rms during 1.5 h) over long time scales. The high-order-harmonic-generation region is imaged via optical systems, independently for XUV and IR, into an interaction volume to perform pump-probe experiments. As a consequence of the spatial separation, the pulses can be independently manipulated in intensity, polarization, and frequency content. The beamline can be combined with a variety of detectors for measuring attosecond dynamics in gases, liquids, and solids.

  14. Attosecond beamline with actively stabilized and spatially separated beam paths

    NASA Astrophysics Data System (ADS)

    Huppert, M.; Jordan, I.; Wörner, H. J.

    2015-12-01

    We describe a versatile and compact beamline for attosecond spectroscopy. The setup consists of a high-order harmonic source followed by a delay line that spatially separates and then recombines the extreme-ultraviolet (XUV) and residual infrared (IR) pulses. The beamline introduces a controlled and actively stabilized delay between the XUV and IR pulses on the attosecond time scale. A new active-stabilization scheme combining a helium-neon-laser and a white-light interferometer minimizes fluctuations and allows to control delays accurately (26 as rms during 1.5 h) over long time scales. The high-order-harmonic-generation region is imaged via optical systems, independently for XUV and IR, into an interaction volume to perform pump-probe experiments. As a consequence of the spatial separation, the pulses can be independently manipulated in intensity, polarization, and frequency content. The beamline can be combined with a variety of detectors for measuring attosecond dynamics in gases, liquids, and solids.

  15. Attosecond beamline with actively stabilized and spatially separated beam paths.

    PubMed

    Huppert, M; Jordan, I; Wörner, H J

    2015-12-01

    We describe a versatile and compact beamline for attosecond spectroscopy. The setup consists of a high-order harmonic source followed by a delay line that spatially separates and then recombines the extreme-ultraviolet (XUV) and residual infrared (IR) pulses. The beamline introduces a controlled and actively stabilized delay between the XUV and IR pulses on the attosecond time scale. A new active-stabilization scheme combining a helium-neon-laser and a white-light interferometer minimizes fluctuations and allows to control delays accurately (26 as rms during 1.5 h) over long time scales. The high-order-harmonic-generation region is imaged via optical systems, independently for XUV and IR, into an interaction volume to perform pump-probe experiments. As a consequence of the spatial separation, the pulses can be independently manipulated in intensity, polarization, and frequency content. The beamline can be combined with a variety of detectors for measuring attosecond dynamics in gases, liquids, and solids. PMID:26724005

  16. Control of Foxp3 stability through modulation of TET activity

    PubMed Central

    Yue, Xiaojing; Trifari, Sara; Äijö, Tarmo; Tsagaratou, Ageliki; Pastor, William A.; Zepeda-Martínez, Jorge A.; Lio, Chan-Wang J.; Li, Xiang; Huang, Yun; Vijayanand, Pandurangan; Lähdesmäki, Harri

    2016-01-01

    Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine and other oxidized methylcytosines, intermediates in DNA demethylation. In this study, we examine the role of TET proteins in regulating Foxp3, a transcription factor essential for the development and function of regulatory T cells (T reg cells), a distinct lineage of CD4+ T cells that prevent autoimmunity and maintain immune homeostasis. We show that during T reg cell development in the thymus, TET proteins mediate the loss of 5mC in T reg cell–specific hypomethylated regions, including CNS1 and CNS2, intronic cis-regulatory elements in the Foxp3 locus. Similar to CNS2-deficient T reg cells, the stability of Foxp3 expression is markedly compromised in T reg cells from Tet2/Tet3 double-deficient mice. Vitamin C potentiates TET activity and acts through Tet2/Tet3 to increase the stability of Foxp3 expression in TGF-β–induced T reg cells. Our data suggest that targeting TET enzymes with small molecule activators such as vitamin C might increase induced T reg cell efficacy. PMID:26903244

  17. Passive and Active Stabilization of Liquid Bridges in Low Gravity

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.; Thiessen, David B.; Marr-Lyon, Mark J.; Wei, Wei; Niederhaus, Charles E.; Truong, Duc K.

    2001-01-01

    Tests are planned in the low gravity environment of the International Space Station (ISS) of new methods for the suppression of the capillary instability of liquid bridges. Our suppression methods are unusual in that they are not limited to liquid bridges having very special properties and may impact a variety of low-gravity and earth-based technologies. There are two main approaches to be investigated: (1) Passive Acoustic Stabilization (PAS); and (2) Active Electrostatic Stabilization (AES). In PAS, the suppression of the mode growth is accomplished by placing the bridge in an acoustic field having the appropriate properties such that the acoustic radiation pressure automatically pulls outward on the thinnest portion of the bridge. In AES, the bridge deformation is sensed optically and counteracted by actively adjusting the electrostatic Maxwell stresses via two ring electrodes concentric with the slightly conducting bridge to offset the growth of the unstable mode. While the present work emphasizes cylindrical bridges, the methods need not be restricted to that case. The methods to be explored are relevant to the suppression of capillary instabilities in floating zone crystal growth, breakup of liquid jets and columns, bubbles, and annular films as well as the management of coolants or propellants in low-gravity.

  18. Optimal Recursive Digital Filters for Active Bending Stabilization

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2013-01-01

    In the design of flight control systems for large flexible boosters, it is common practice to utilize active feedback control of the first lateral structural bending mode so as to suppress transients and reduce gust loading. Typically, active stabilization or phase stabilization is achieved by carefully shaping the loop transfer function in the frequency domain via the use of compensating filters combined with the frequency response characteristics of the nozzle/actuator system. In this paper we present a new approach for parameterizing and determining optimal low-order recursive linear digital filters so as to satisfy phase shaping constraints for bending and sloshing dynamics while simultaneously maximizing attenuation in other frequency bands of interest, e.g. near higher frequency parasitic structural modes. By parameterizing the filter directly in the z-plane with certain restrictions, the search space of candidate filter designs that satisfy the constraints is restricted to stable, minimum phase recursive low-pass filters with well-conditioned coefficients. Combined with optimal output feedback blending from multiple rate gyros, the present approach enables rapid and robust parametrization of autopilot bending filters to attain flight control performance objectives. Numerical results are presented that illustrate the application of the present technique to the development of rate gyro filters for an exploration-class multi-engined space launch vehicle.

  19. Theory, Investigation and Stability of Cathode Electrocatalytic Activity

    SciTech Connect

    Ding, Dong; Liu, Mingfei; Lai, Samson; Blinn, Kevin; Liu, Meilin

    2012-09-30

    The main objective of this project is to systematically characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF, aiming to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating. The understanding gained will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance. More specifically, the technical objectives include: (1) to characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF; (2) to characterize the microscopic details and stability of the LSCF-catalyst (e.g., LSM) interfaces; (3) to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating; and (4) to demonstrate that the performance and stability of porous LSCF cathodes can be enhanced by the application of a thin-film coating of LSM through a solution infiltration process in small homemade button cells and in commercially available cells of larger dimension. We have successfully developed dense, conformal LSM films with desired structure, composition, morphology, and thickness on the LSCF surfaces by two different infiltration processes: a non-aqueous and a water-based sol-gel process. It is demonstrated that the activity and stability of LSCF cathodes can be improved by the introduction of a thin-film LSM coating through an infiltration process. Surface and interface of the LSM-coated LSCF cathode were systematically characterized using advanced microscopy and spectroscopy techniques. TEM observation suggests that a layer of La and Sr oxide was formed on LSCF surfaces after annealing. With LSM infiltration, in contrast, we no longer observe such La/Sr oxide layer on the LSM-coated LSCF samples after annealing under similar

  20. Extracellular disulfide bridges stabilize TRPC5 dimerization, trafficking, and activity.

    PubMed

    Hong, Chansik; Kwak, Misun; Myeong, Jongyun; Ha, Kotdaji; Wie, Jinhong; Jeon, Ju-Hong; So, Insuk

    2015-04-01

    Crucial cysteine residues can be involved in the modulation of protein activity via the modification of thiol (-SH) groups. Among these reactions, disulfide bonds (S-S) play a key role in the folding, stability, and activity of membrane proteins. However, the regulation of extracellular cysteines in classical transient receptor potential (TRPC) channels remains controversial. Here, we examine the functional importance of the extracellular disulfide bond in TRPC5 in modulating channel gating and trafficking. Specifically, we investigated TRPC5 activity in transiently transfected HEK293 cells with wild-type (WT) or cysteine (C553 and C558) mutants in the pore loop. Using reducing agents, we determined that a disulfide linkage mediates the tetrameric formation of the TRPC5 channel. By measuring the TRPC5 current, we observed that C553S or C558S mutants completely lose channel activity induced by lanthanides or receptor stimulation. Co-expression of TRPC5 (WT) with mutants demonstrated a dominant-negative function in mutants, which inhibited the activity of TRPC5 (WT). We generated TRPC5-TRPC5 dimers and observed reduced activity of WT-mutant (C553S or C558S) dimers compared to WT-WT dimers. When pretreated with reducing agents for 12 h, the TRPC5 current decreased due to a reduction in membrane TRPC5 distribution. In addition, we identified a reduced expression of C553S mutant in plasma membrane. We analyzed a dimeric interaction of wild-type and mutant TRPC5 using co-immunoprecipitation and FRET method, indicating a weak interaction between dimeric partners. These results indicated that the disulfide bond between conserved extracellular cysteines, especially C553, is essential for functional TRPC5 activity by channel multimerization and trafficking.

  1. Antimicrobial activity and stability of weakly acidified chlorous acid water.

    PubMed

    Horiuchi, Isanori; Kawata, Hiroyuki; Nagao, Tamiko; Imaohji, Haruyuki; Murakami, Kazuya; Kino, Yasuhiro; Yamasaki, Hisashi; Koyama, A Hajime; Fujita, Yatsuka; Goda, Hisataka; Kuwahara, Tomomi

    2015-01-01

    The antimicrobial activity of weakly acidified chlorous acid water (WACAW) against Staphylococcus aureus, non-pathogenic Escherichia coli, enterohemorrhagic E. coli (EHEC O157:H7), Candida albicans, and spore-forming Bacillus and Paenibacillus species was evaluated in vitro. The antiviral activity was also examined using feline calicivirus (FCV). Diluted WACAW (>100 ppm) effectively reduced the number of non-spore-forming bacteria (>4 log10 CFU reductions) within 5 min. Treatment with this sanitizer at 400 ppm for 30 min achieved>5 log10 CFU reductions in spore-forming Bacillus and Paenibacillus species while an equivalent concentration of sodium hypochlorite (NaClO) resulted in only a 0.98 and 2.72 log10 CFU reduction, respectively. The effect of this sanitizer against FCV was equivalent to that of NaClO. Immersion in WACAW (400 ppm) achieved >4 and 2.26 log10 CFU reductions in Campylobacter jejuni and EHEC, respectively, on artificially contaminated broiler carcass pieces. Finally, theantimicrobial activity of this sanitizer was shown to be maintained for at least 28 d when in contact with nonwoven fabric (100% cotton). This study showed that pH control of chlorous acid is expected to modify its antimicrobial activity and stability. WACAW is expected to have applications in various settings such as the food processing and healthcare industries. PMID:25817812

  2. Active electrostatic control of liquid bridge dynamics and stability.

    PubMed

    Thiessen, David B; Wei, Wei; Marston, Philip L

    2004-11-01

    Stabilization of cylindrical liquid bridges beyond the Rayleigh-Plateau limit has been demonstrated in both Plateau-tank experiments and in short-duration low gravity on NASA KC-135 aircraft using an active electrostatic control method. The method controls the (2,0) capillary mode using an optical modal-amplitude detector and mode-coupled electrostatic feedback stress. The application of mode-coupled stresses to a liquid bridge is also a very useful way to study mode dynamics. A pure (2,0)-mode oscillation can be excited by periodic forcing and then the forcing can be turned off to allow for a free decay from which the frequency and damping of the mode is measured. This can be done in the presence or absence of feedback control. Mode-coupled feedback stress applied in proportion to modal amplitude with appropriate gain leads to stiffening of the mode allowing for stabilization beyond the Rayleigh-Plateau limit. If the opposite sign of gain is applied the mode frequency is reduced. It has also been demonstrated that, by applying feedback in proportion to the modal velocity, the damping of the mode can be increased or decreased depending on the velocity gain. Thus, both the mode frequency and damping can be independently controlled at the same time and this has been demonstrated in Plateau-tank experiments. The International Space Station (ISS) has its own modes of oscillation, some of which are in a low frequency range comparable to the (2,0)-mode frequency of typical liquid bridges. In the event that a vibration mode of the ISS were close to the frequency of a capillary mode it would be possible, with active electrostatic control, to shift the capillary-mode frequency away from that of the disturbance and simultaneously add artificial damping to further reduce the effect of the g-jitter. In principle, this method could be applied to any fluid configuration with a free surface.

  3. Folding and activity of hybrid sequence, disulfide-stabilized peptides

    SciTech Connect

    Pease, J.H.B.; Storrs, R.W.; Wemmer, D.E. )

    1990-08-01

    Peptides have been synthesized that have hybrid sequences, partially derived from the bee venom peptide apamin and partially from the S peptide of ribonuclease A. The hybrid peptides were demonstrated by NMR spectroscopy to fold, forming the same disulfides and basic three-dimensional structure as native apamin, containing a {beta}-turn and an {alpha}-helix. These hybrids were active in complementing S protein, reactivating nuclease activity. In addition, the hybrid peptide was effective in inducing antibodies that cross-react with the RNase, without conjugation to a carrier protein. The stability of the folded structure of this peptide suggests that it should be possible to elicit antibodies that will react not only with a specific sequence, but also with a specific secondary structure. Hybrid sequence peptides also provide opportunities to study separately nucleation and propagation steps in formation of secondary structure. The authors show that in S peptide the {alpha}-helix does not end abruptly but rather terminates gradually over four or five residues. In general, these hybrid sequence peptides, which fold predictably because of disulfide bond formation, can provide opportunities for examining structure - function relationships for many biologically active sequences.

  4. A single mutation within a Ca(2+) binding loop increases proteolytic activity, thermal stability, and surfactant stability.

    PubMed

    Okuda, Mitsuyoshi; Ozawa, Tadahiro; Tohata, Masatoshi; Sato, Tsuyoshi; Saeki, Katsuhisa; Ozaki, Katsuya

    2013-03-01

    We improved the enzymatic properties of the oxidatively stable alkaline serine protease KP-43 through protein engineering to make it more suitable for use in laundry detergents. To enhance proteolytic activity, the gene encoding KP-43 was mutagenized by error-prone PCR. Screening identified a Tyr195Cys mutant enzyme that exhibited increased specific activity toward casein between pH 7 and 11. At pH 10, the mutant displayed 1.3-fold higher specific activity for casein compared to the wild-type enzyme, but the activity of the mutant was essentially unchanged toward several synthetic peptides. Furthermore, the Tyr195Cys mutation significantly increased thermal stability and surfactant stability of the enzyme under oxidizing conditions. Examination of the crystal structure of KP-43 revealed that Tyr195 is a solvent exposed residue that forms part of a flexible loop that binds a Ca(2+) ion. This residue lies 15-20Å away from the residues comprising the catalytic triad of the enzyme. These results suggest that the substitution at position 195 does not alter the structure of the active center, but instead may affect a substrate-enzyme interaction. We propose that the Tyr195Cys mutation enhances the interaction with Ca(2+) and affects the packing of the Ca(2+) binding loop, consequently increasing protein stability. The simultaneously increased proteolytic activity, thermal stability, and surfactant stability of the Tyr195Cys mutant enzyme make the protein an ideal candidate for laundry detergent application.

  5. Enhanced Raman sensitivity using an actively stabilized external resonator

    NASA Astrophysics Data System (ADS)

    Taylor, David J.; Glugla, Manfred; Penzhorn, Ralf-Dieter

    2001-04-01

    An enhancement up to 250-fold in laser Raman signals for real-time gas analysis has been achieved within an actively stabilized external resonator (ASER), whose length is actively matched to the single-frequency excitation laser using the Pound-Drever technique. With the Raman cell present, enhancements up to 50-fold are achieved, and the resulting detection limit for hydrogen in ambient-pressure gas mixtures is about ten parts-per-million in a 1 min analysis period at unity signal-to-noise ratio. Based upon the recent development of a fiber-pumped Nd:YVO4 laser with single-frequency output exceeding 5 W at 532 nm, this highly sensitive instrument is applied to detection of tritiated gases, wherein the compactness and low heat of this laser head permit placing the entire optical system, including laser head, charge coupled Raman detector, and ASER, within the glove box necessary for secondary containment of tritium, thereby accomplishing a robust, highly sensitive Raman analytical system for hazardous substances.

  6. Synthesis, thermal stability, and photocatalytic activity of nanocrystalline titanium carbide

    SciTech Connect

    Chen, Youjian; Zhang, Hong; Ma, DeKun; Ma, Jianhua; Ye, Hongnan; Qian, Gaojin; Ye, Yi

    2011-11-15

    Highlights: {yields} The synthesized temperature is lower than some conventional methods. {yields} These raw materials are safe; all manipulations are rather safe and convenient. {yields} The product exhibits photocatalytic activity in degradation of Rhodamine-B. -- Abstract: Titanium carbide (TiC) was prepared via one simple route by the reaction of metallic magnesium powders with titanium dioxide (TiO{sub 2}) and potassium acetate (CH{sub 3}COOK) in an autoclave at 600 {sup o}C and 8 h. Phase structure and morphology were characterized by X-ray powder diffraction (XRD) and Scanning electron microscopy (SEM). The results indicated that the product was cubic TiC, which consisted of particles with an average size of about 100 nm in diameter. The product was also studied by the thermogravimetric analysis (TGA) and its photocatalysis. It had good thermal stability and oxidation resistance below 350 {sup o}C in air. In addition, we discovered that the cubic TiC powders exhibited photocatalytic activity in degradation of Rhodamine-B (RhB) under 500 W mercury lamp light irradiation.

  7. Evolution of an Antibiotic Resistance Enzyme Constrained by Stability and Activity Trade-offs

    SciTech Connect

    Wang, Xiaojun; Minasov, George; Shoichet, Brian K.

    2010-03-08

    Pressured by antibiotic use, resistance enzymes have been evolving new activities. Does such evolution have a cost? To investigate this question at the molecular level, clinically isolated mutants of the {beta}-lactamase TEM-1 were studied. When purified, mutant enzymes had increased activity against cephalosporin antibiotics but lost both thermodynamic stability and kinetic activity against their ancestral targets, penicillins. The X-ray crystallographic structures of three mutant enzymes were determined. These structures suggest that activity gain and stability loss is related to an enlarged active site cavity in the mutant enzymes. In several clinically isolated mutant enzymes, a secondary substitution is observed far from the active site (Met182 {yields} Thr). This substitution had little effect on enzyme activity but restored stability lost by substitutions near the active site. This regained stability conferred an advantage in vivo. This pattern of stability loss and restoration may be common in the evolution of new enzyme activity.

  8. Micron: an Actively Stabilized Handheld Tool for Microsurgery

    PubMed Central

    MacLachlan, Robert A.; Becker, Brian C.; Tabarés, Jaime Cuevas; Podnar, Gregg W.; Lobes, Louis A.; Riviere, Cameron N.

    2011-01-01

    We describe the design and performance of a hand-held actively stabilized tool to increase accuracy in micro-surgery or other precision manipulation. It removes involuntary motion such as tremor by actuating the tip to counteract the effect of the undesired handle motion. The key components are a three-degree-of-freedom piezoelectric manipulator that has 400 μm range of motion, 1 N force capability, and bandwidth over 100 Hz, and an optical position measurement subsystem that acquires the tool pose with 4 μm resolution at 2000 samples/s. A control system using these components attenuates hand motion by at least 15 dB (a fivefold reduction). By considering the effect of the frequency response of Micron on the human visual feedback loop, we have developed a filter that reduces unintentional motion, yet preserves intuitive eye-hand coordination. We evaluated the effectiveness of Micron by measuring the accuracy of the human/machine system in three simple manipulation tasks. Handheld testing by three eye surgeons and three non-surgeons showed a reduction in position error of between 32% and 52%, depending on the error metric. PMID:23028266

  9. SUMOylation of Pancreatic Glucokinase Regulates Its Cellular Stability and Activity*

    PubMed Central

    Aukrust, Ingvild; Bjørkhaug, Lise; Negahdar, Maria; Molnes, Janne; Johansson, Bente B.; Müller, Yvonne; Haas, Wilhelm; Gygi, Steven P.; Søvik, Oddmund; Flatmark, Torgeir; Kulkarni, Rohit N.; Njølstad, Pål R.

    2013-01-01

    Glucokinase is the predominant hexokinase expressed in hepatocytes and pancreatic β-cells, with a pivotal role in regulating glucose-stimulated insulin secretion, illustrated by glucokinase gene mutations causing monogenic diabetes and congenital hyperinsulinemic hypoglycemia. A complex tissue-specific network of mechanisms regulates this enzyme, and a major unanswered question in glucokinase biology is how post-translational modifications control the function of the enzyme. Here, we show that the pancreatic isoform of human glucokinase is SUMOylated in vitro, using recombinant enzymes, and in insulin-secreting model cells. Three N-terminal lysines unique for the pancreatic isoform (Lys-12/Lys-13 and/or Lys-15) may represent one SUMOylation site, with an additional site (Lys-346) common for the pancreatic and the liver isoform. SUMO-1 and E2 overexpression stabilized preferentially the wild-type human pancreatic enzyme in MIN6 β-cells, and SUMOylation increased the catalytic activity of recombinant human glucokinase in vitro and also of glucokinase in target cells. Small ubiquitin-like modifier conjugation represents a novel form of post-translational modification of the enzyme, and it may have an important regulatory function in pancreatic β-cells. PMID:23297408

  10. Antioxidant Activities and Oxidative Stabilities of Some Unconventional Oilseeds.

    PubMed

    Uluata, Sibel; Ozdemir, Nurhayat

    2012-04-01

    The oils of some unconventional oilseeds (hemp, radish, terebinth, stinging nettle, laurel) were obtained by a cold-press method in which the total oil content, fatty acids, tocopherol isomers, some metal contents (Ca, Mg, Fe, Cu), antioxidant activity and oxidative stability were determined. The total oil content was determined ranging between 30.68 and 43.12%, and the oil samples had large amounts of unsaturated fatty acids, with oleic acid and linoleic acid. Of all the oils, terebinth seed oil had the highest α-tocopherol content (102.21 ± 1.01 mg/kg oil). Laurel oilseed had the highest antiradical activity in both the DPPH and ABTS assays. The peroxide value of the non-oxidized oils ranged between 0.51 and 3.73 mequiv O(2)/kg oil. The TBARS value of the non-oxidized oils ranged between 0.68 ± 0.02 and 6.43 ± 0.48 mmol MA equiv/g oil. At 110 °C, the Rancimat induction period of the oils ranged between 1.32 and 43.44 h. The infrared spectra of the samples were recorded by FTIR spectroscopy. The absorbance values of the spectrum bands were observed and it was determined that some of the chemical groups of oxidized oils caused changes in absorbance. As a result of the present research, the analyzed oils could be evaluated as an alternative to traditionally consumed vegetable oils or as additives to them.

  11. Activity Level from Birth through First Grade: Stability or Inversion of Intensity?

    ERIC Educational Resources Information Center

    McBride-Chang, Catherine; And Others

    1996-01-01

    Examined two hypotheses regarding activity level: (1) early appearing stability; and (2) inversion of intensity. Measured behavioral intensity or activity level six times between the neonatal period and first grade. Results indicated that parent ratings supported activity level stability. Observations revealed that intense neonatal activity…

  12. Robust stability analysis of delayed Takagi-Sugeno fuzzy Hopfield neural networks with discontinuous activation functions

    PubMed Central

    Huang, Lihong; Zuo, Yi

    2010-01-01

    In this paper, the global robust stability problem of delayed Takagi–Sugeno fuzzy Hopfield neural networks with discontinuous activation functions (TSFHNNs) is considered. Based on Lyapunov stability theory and M-matrices theory, we derive a stability criterion to guarantee the global robust stability of TSFHNNs. Compared with the existing literature, we remove the assumptions on the neuron activations such as Lipschitz conditions, bounded, monotonic increasing property or the assumption that the right-limit value is bigger than the left one at the discontinuous point. Finally, two numerical examples are given to show the effectiveness of the proposed stability results. PMID:22132043

  13. Selective Electrocatalytic Activity of Ligand Stabilized Copper Oxide Nanoparticles

    SciTech Connect

    Kauffman, Douglas R; Ohodnicki, Paul R; Kail, Brian W; Matranga, Christopher

    2011-01-01

    Ligand stabilization can influence the surface chemistry of Cu oxide nanoparticles (NPs) and provide unique product distributions for electrocatalytic methanol (MeOH) oxidation and CO{sub 2} reduction reactions. Oleic acid (OA) stabilized Cu{sub 2}O and CuO NPs promote the MeOH oxidation reaction with 88% and 99.97% selective HCOH formation, respectively. Alternatively, CO{sub 2} is the only reaction product detected for bulk Cu oxides and Cu oxide NPs with no ligands or weakly interacting ligands. We also demonstrate that OA stabilized Cu oxide NPs can reduce CO{sub 2} into CO with a {approx}1.7-fold increase in CO/H{sub 2} production ratios compared to bulk Cu oxides. The OA stabilized Cu oxide NPs also show 7.6 and 9.1-fold increases in CO/H{sub 2} production ratios compared to weakly stabilized and non-stabilized Cu oxide NPs, respectively. Our data illustrates that the presence and type of surface ligand can substantially influence the catalytic product selectivity of Cu oxide NPs.

  14. Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion.

    PubMed

    Zhen, Wenlong; Li, Bo; Lu, Gongxuan; Ma, Jiantai

    2015-01-31

    A novel, highly active catalyst Ni@MOF-5 showed unexpected activity at low temperature for CO2 methanation. The characterization results indicated that Ni was uniformly and highly dispersed over MOF-5. This catalyst showed high stability and almost no deactivation in long term stability tests up to 100 h. PMID:25518948

  15. Active stabilization of a diode laser injection lock

    NASA Astrophysics Data System (ADS)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  16. Active stabilization of a diode laser injection lock.

    PubMed

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  17. Active stabilization of a diode laser injection lock.

    PubMed

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed. PMID:27370428

  18. 3D active stabilization system with sub-micrometer resolution.

    PubMed

    Kursu, Olli; Tuukkanen, Tuomas; Rahkonen, Timo; Vähäsöyrinki, Mikko

    2012-01-01

    Stable positioning between a measurement probe and its target from sub- to few micrometer scales has become a prerequisite in precision metrology and in cellular level measurements from biological tissues. Here we present a 3D stabilization system based on an optoelectronic displacement sensor and custom piezo-actuators driven by a feedback control loop that constantly aims to zero the relative movement between the sensor and the target. We used simulations and prototyping to characterize the developed system. Our results show that 95% attenuation of movement artifacts is achieved at 1 Hz with stabilization performance declining to ca. 70% attenuation at 10 Hz. Stabilization bandwidth is limited by mechanical resonances within the displacement sensor that occur at relatively low frequencies, and are attributable to the sensor's high force sensitivity. We successfully used brain derived micromotion trajectories as a demonstration of complex movement stabilization. The micromotion was reduced to a level of ∼1 µm with nearly 100 fold attenuation at the lower frequencies that are typically associated with physiological processes. These results, and possible improvements of the system, are discussed with a focus on possible ways to increase the sensor's force sensitivity without compromising overall system bandwidth. PMID:22900045

  19. Probing impact of active site residue mutations on stability and activity of Neisseria polysaccharea amylosucrase.

    PubMed

    Daudé, David; Topham, Christopher M; Remaud-Siméon, Magali; André, Isabelle

    2013-12-01

    The amylosucrase from Neisseria polysaccharea is a transglucosidase from the GH13 family of glycoside-hydrolases that naturally catalyzes the synthesis of α-glucans from the widely available donor sucrose. Interestingly, natural molecular evolution has modeled a dense hydrogen bond network at subsite -1 responsible for the specific recognition of sucrose and conversely, it has loosened interactions at the subsite +1 creating a highly promiscuous subsite +1. The residues forming these subsites are considered to be likely involved in the activity as well as the overall stability of the enzyme. To assess their role, a structure-based approach was followed to reshape the subsite -1. A strategy based on stability change predictions, using the FoldX algorithm, was considered to identify the best candidates for site-directed mutagenesis and guide the construction of a small targeted library. A miniaturized purification protocol was developed and both mutant stability and substrate promiscuity were explored. A range of 8 °C between extreme melting temperature values was observed and some variants were able to synthesize series of oligosaccharides with distributions differing from that of the parental enzyme. The crucial role of subsite -1 was thus highlighted and the biocatalysts generated can now be considered as starting points for further engineering purposes.

  20. Effects of pelvic stabilization on lumbar muscle activity during dynamic exercise.

    PubMed

    San Juan, Jun G; Yaggie, James A; Levy, Susan S; Mooney, Vert; Udermann, Brian E; Mayer, John M

    2005-11-01

    Many commonly utilized low-back exercise devices offer mechanisms to stabilize the pelvis and to isolate the lumbar spine, but the value of these mechanisms remains unclear. The purpose of this study was to examine the effect of pelvic stabilization on the activity of the lumbar and hip extensor muscles during dynamic back extension exercise. Fifteen volunteers in good general health performed dynamic extension exercise in a seated upright position on a lumbar extension machine with and without pelvic stabilization. During exercise, surface electromyographic activity of the lumbar multifidus and biceps femoris was recorded. The activity of the multifidus was 51% greater during the stabilized condition, whereas there was no difference in the activity of the biceps femoris between conditions. This study demonstrates that pelvic stabilization enhances lumbar muscle recruitment during dynamic exercise on machines. Exercise specialists can use these data when designing exercise programs to develop low back strength.

  1. Nonsmooth finite-time stabilization of neural networks with discontinuous activations.

    PubMed

    Liu, Xiaoyang; Park, Ju H; Jiang, Nan; Cao, Jinde

    2014-04-01

    This paper is concerned with the finite-time stabilization for a class of neural networks (NNs) with discontinuous activations. The purpose of the addressed problem is to design a discontinuous controller to stabilize the states of such neural networks in finite time. Unlike the previous works, such stabilization objective will be realized for neural networks when the activations and controllers are both discontinuous. Based on the famous finite-time stability theorem of nonlinear systems and nonsmooth analysis in mathematics, sufficient conditions are established to ensure the finite-time stability of the dynamics of NNs. Then, the upper bound of the settling time for stabilization can be estimated in two forms due to two different methods of proof. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design method.

  2. The comparison of abdominal muscle activation on unstable surface according to the different trunk stability exercises

    PubMed Central

    Lee, Jung-seok; Kim, Da-yeon; Kim, Tae-ho

    2016-01-01

    [Purpose] This study aimed to determine the effect of abdominal muscle activities and the activation ratio related to trunk stabilization to compare the effects between the abdominal drawing-in maneuver and lumbar stabilization exercises on an unstable base of support. [Subjects and Methods] Study subjects were 20 male and 10 female adults in their 20s without lumbar pain, who were equally and randomly assigned to either the abdominal drawing-in maneuver group and the lumbar stabilization exercise group. Abdominal muscle activation and ratio was measured using a wireless TeleMyo DTS during right leg raise exercises while sitting on a Swiss ball. [Results] Differences in rectus abdominis, external oblique abdominis, and internal oblique abdominis muscle activation were observed before and after treatment. Significant differences were observed between the groups in the muscle activation of the external oblique abdominis and internal oblique abdominis, and the muscle activation ratio of external oblique abdominis/rectus abdominis and internal oblique abdominis/rectus abdominis. [Conclusion] Consequently trunk stability exercise enhances internal oblique abdominis activity and increases trunk stabilization. In addition, the abdominal drawing-in maneuver facilitates the deep muscle more than LSE in abdominal muscle. Therefore, abdominal drawing-in maneuver is more effective than lumbar stabilization exercises in facilitating trunk stabilization. PMID:27134401

  3. Insights into the interactions between enzyme and co-solvents: stability and activity of stem bromelain.

    PubMed

    Rani, Anjeeta; Venkatesu, Pannuru

    2015-02-01

    In present study, an attempt is made to elucidate the effects of various naturally occurring osmolytes and denaturants on BM at pH 7.0. The effects of the varying concentrations of glycerol, sorbitol, sucrose, trehalose, urea and guanidinium chloride (GdnHCl) on structure, stability and activity of BM are explored by fluorescence spectroscopy, circular dichroism (CD), UV-vis spectroscopy and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Our experimental observations reveal that glycerol and sorbitol are acting as stabilizers at all concentrations while sucrose and trehalose are found to be destabilizers at lower concentrations, however, acted as stabilizers at higher concentrations. On the other hand, urea and GdnHCl are denaturants except at lower concentrations. There is a direct relationship between activity and conformational stability as the activity data are found to be in accordance with conformational stability parameters (ΔGu, Tm, ΔCp) and BM profile on SDS-PAGE.

  4. Activity and stability of catalase in nonionic micellar and reverse micellar systems.

    PubMed

    Gebicka, Lidia; Jurgas-Grudzinska, Monika

    2004-01-01

    Catalase activity and stability in the presence of simple micelles of Brij 35 and entrapped in reverse micelles of Brij 30 have been studied. The enzyme retains full activity in aqueous micellar solution of Brij 35. Catalase exhibits "superactivity" in reverse micelles composed of 0.1 M Brij 30 in dodecane, n-heptane or isooctane, and significantly lowers the activity in decaline. The incorporation of catalase into Brij 30 reverse micelles enhances its stability at 50 degrees C. However, the stability of catalase incubated at 37 degrees C in micellar and reverse micellar solutions is lower than that in homogeneous aqueous solution. PMID:15666551

  5. Stability evaluation and correction of a pulsed neutron generator prompt gamma activation analysis system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Source output stability is important for accurate measurement in prompt gamma neutron activation. This is especially true when measuring low-concentration elements such as in vivo nitrogen (~2.5% of body weight). We evaluated the stability of the compact DT neutron generator within an in vivo nitrog...

  6. Delay-dependent robust stabilization and H∞ control for neural networks with various activation functions

    NASA Astrophysics Data System (ADS)

    Sakthivel, R.; Mathiyalagan, K.; Anthoni, S. Marshal

    2012-04-01

    This paper considers the problem of robust stabilization for a class of uncertain neural networks with various activation functions and mixed time delays. The aim is to derive a H∞ control law to ensure the robust stability of the closed-loop system about its equilibrium with parameter uncertainties. By employing the Lyapunov stability theory and the matrix inequality technique, a new set of sufficient conditions is presented for the existence of the H∞ control problem. The stability criteria are derived in terms of linear matrix inequalities (LMIs) which can be solved easily by the Matlab LMI toolbox. In addition to the requirement of global robust stabilization, for a prescribed H∞ performance level the stabilizing controller gain matrices for all delays to satisfy the upper bound of the time-varying delay are required to be obtained. Numerical examples are presented to illustrate the effectiveness of the proposed method.

  7. Live Soap: Stability, Order, and Fluctuations in Apolar Active Smectics

    NASA Astrophysics Data System (ADS)

    Adhyapak, Tapan Chandra; Ramaswamy, Sriram; Toner, John

    2013-03-01

    We construct a hydrodynamic theory of noisy, apolar active smectics in bulk suspension or on a substrate. Unlike purely orientationally ordered active fluids, active apolar smectics can be dynamically stable in Stokesian bulk suspensions. Smectic order in these systems is quasilong ranged in dimension d=2 and long ranged in d=3. We predict reentrant Kosterlitz-Thouless melting to an active nematic in our simplest model in d=2, a nonzero second-sound speed parallel to the layers in bulk suspensions, and that there are no giant number fluctuations in either case. We also briefly discuss possible instabilities in these systems.

  8. Local dynamic stability of spine muscle activation and stiffness patterns during repetitive lifting.

    PubMed

    Graham, Ryan B; Brown, Stephen H M

    2014-12-01

    To facilitate stable trunk kinematics, humans must generate appropriate motor patterns to effectively control muscle force and stiffness and respond to biomechanical perturbations and/or neuromuscular control errors. Thus, it is important to understand physiological variables such as muscle force and stiffness, and how these relate to the downstream production of stable spine and trunk movements. This study was designed to assess the local dynamic stability of spine muscle activation and rotational stiffness patterns using Lyapunov analyses, and relationships to the local dynamic stability of resulting spine kinematics, during repetitive lifting and lowering at varying combinations of lifting load and rate. With an increase in the load lifted at a constant rate there was a trend for decreased local dynamic stability of spine muscle activations and the muscular contributions to spine rotational stiffness; although the only significant change was for the full state space muscle activation stability (p < 0.05). With an increase in lifting rate with a constant load there was a significant decrease in the local dynamic stability of spine muscle activations and the muscular contributions to spine rotational stiffness (p ≤ 0.001 for all measures). These novel findings suggest that the stability of motor inputs and the muscular contributions to spine rotational stiffness can be altered by external task demands (load and lifting rate), and therefore are important variables to consider when assessing the stability of the resulting kinematics.

  9. Immobilisation of homogeneous olefin polymerisation catalysts. Factors influencing activity and stability.

    PubMed

    Severn, John R; Chadwick, John C

    2013-07-01

    The activity and stability of homogeneous olefin polymerisation catalysts, when immobilised on a support, are dependent on both chemical and physical effects. Chemical factors affecting catalyst activity include the ease of formation of the active species, which is strongly dependent on the transition metal. Catalyst productivity is dependent on the balance between activity and stability. Immobilisation can lead to a lower proportion of active species and therefore lower initial polymerisation activity, but nevertheless give higher polymer yields in cases where increased catalyst stability is obtained. Important physical factors are support porosity and the ability of a support to undergo progressive fragmentation during polymerisation, facilitating monomer diffusion through the growing catalyst/polymer particle. This article illustrates the importance of these factors in olefin polymerisation with both early- and late-transition metal catalysts, with particular reference to the use of silica and magnesium chloride supports as well as to effects of immobilisation on polymer structure and properties. PMID:23467461

  10. Enzyme-polymer composites with high biocatalytic activity and stability

    SciTech Connect

    Kim, Jungbae; Kosto, Timothy J.; Manimala, Joseph C.; Nauman, E B.; Dordick, Jonathan S.

    2004-08-22

    We have applied vacuum-spraying and electrospinning to incorporate an enzyme into a polymer matrix, creating a novel and highly active biocatalytic composite. As a unique technical approach, enzymes were co-dissolved in toluene with polymers, and the solvent was then rapidly removed by injecting the mixture into a vacuum chamber or by electrospinning. Subsequent crosslinking of the enzyme with glutaraldehyde resulted in stable entrapped enzyme within the polymeric matrices. For example, an amorphous composite of alpha-chymotrypsin and polyethylene showed no significant loss of enzymatic activity in aqueous buffer for one month. Nanofibers of alpha-chymotrypsin and polystyrene also showed no decrease in activity for more than two weeks. The normalized activity of amorphous composite in organic solvents was 3-13 times higher than that of native alpha-chymotrypsin. The activity of nanofibers was 5-7 times higher than that of amorphous composite in aqueous buffer solution. The composites of alpha-chymotrypsin and polymers demonstrate the feasibility of obtaining a wide variety of active and stable biocatalytic materials with many combinations of enzymes and polymers.

  11. The role of hydration in enzyme activity and stability: 2. Alcohol dehydrogenase activity and stability in a continuous gas phase reactor.

    PubMed

    Yang, F; Russell, A J

    1996-03-20

    The degree of enzyme hydration is the one of the most important factors which can affect enzyme activity and stability in water-limited environments. Alcohol dehydrogenase from baker's yeast (YADH) has been used as a model enzyme to study the effects of hydration on activity, stability, and cofactor stability with gas phase substrates. In all cases, the enzyme is essentially inactive until a temperature-independent degree of surface coverage by water molecules has been reached. The critical water content corresponds to 40-50% of a single monolayer. Careful control of the degree of hydration, by adjustments to gas humidity and temperature, enables the enzyme to be stabilized for periods exceeding 1 month, whereas in water the half-life of the enzyme is 30 min. The reaction with gas phase substrates follows a pseudo-first-order mechanism with an activation energy of 7.5 +/- kcal/mol, which is almost half of that in aqueous solution. (c) 1996 John Wiley & Sons, Inc.

  12. Beta activity in the premotor cortex is increased during stabilized as compared to normal walking

    PubMed Central

    Bruijn, Sjoerd M.; Van Dieën, Jaap H.; Daffertshofer, Andreas

    2015-01-01

    Walking on two legs is inherently unstable. Still, we humans perform remarkable well at it, mostly without falling. To gain more understanding of the role of the brain in controlling gait stability we measured brain activity using electro-encephalography (EEG) during stabilized and normal walking. Subjects walked on a treadmill in two conditions, each lasting 10 min; normal, and while being laterally stabilized by elastic cords. Kinematics of trunk and feet, electro-myography (EMG) of neck muscles, as well as 64-channel EEG were recorded. To assess gait stability the local divergence exponent, step width, and trunk range of motion were calculated from the kinematic data. We used independent component (IC) analysis to remove movement, EMG, and eyeblink artifacts from the EEG, after which dynamic imaging of coherent sources beamformers were determined to identify cortical sources that showed a significant difference between conditions. Stabilized walking led to a significant increase in gait stability, i.e., lower local divergence exponents. Beamforming analysis of the beta band activity revealed significant sources in bilateral pre-motor cortices. Projection of sensor data on these sources showed a significant difference only in the left premotor area, with higher beta power during stabilized walking, specifically around push-off, although only significant around contralateral push-off. It appears that even during steady gait the cortex is involved in the control of stability. PMID:26578937

  13. Elaboration, activity and stability of silica-based nitroaromatic sensors.

    PubMed

    Mercier, Dimitri; Pereira, Franck; Méthivier, Christophe; Montméat, Pierre; Hairault, Lionel; Pradier, Claire-Marie

    2013-08-21

    Functionalized silica-based thin films, modified with hydrophobic groups, were synthesized and used as sensors for nitroaromatic compound (NAC) specific detection. Their performance and behavior, in terms of stability, ageing and regeneration, have been fully characterized by combining chemical characterization techniques and electron microscopy. NAC was efficiently and specifically detected using these silica-based sensors, but showed a great degradation in the presence of humidity. Moreover, the sensor sensitivity seriously decreases with storage time. Methyl- and phenyl-functionalization helped to overcome this humidity sensitivity. Surface characterization enabled us to establish a direct correlation between the appearance, and increasing amount, of adsorbed carbonyl-containing species, and sensor efficiency. This contamination, appearing after only one month, was particularly important when sensors were stored in plastic containers. Rinsing with cyclohexane enables us to recover part of the sensor performance but does not yield a complete regeneration of the sensors. This work led us to the definition of optimized elaboration and storage conditions for nitroaromatic sensors. PMID:23812282

  14. Positive regulation of p53 stability and activity by the deubiquitinating enzyme Otubain 1.

    PubMed

    Sun, Xiao-Xin; Challagundla, Kishore B; Dai, Mu-Shui

    2012-02-01

    The ubiquitin (Ub)-proteasome system plays a pivotal role in the regulation of p53 protein stability and activity. p53 is ubiquitinated and destabilized by MDM2 and several other Ub E3s, whereas it is deubiquitinated and stabilized by Ub-specific protease (USP)7 and USP10. Here we show that the ovarian tumour domain-containing Ub aldehyde-binding protein 1 (Otub1) is a novel p53 regulator. Otub1 directly suppresses MDM2-mediated p53 ubiquitination in cells and in vitro. Overexpression of Otub1 drastically stabilizes and activates p53, leading to apoptosis and marked inhibition of cell proliferation in a p53-dependent manner. These effects are independent of its catalytic activity but require residue Asp88. Mutation of Asp88 to Ala (Otub1(D88A)) abolishes activity of Otub1 to suppress p53 ubiquitination. Further, wild-type Otub1 and its catalytic mutant (Otub1(C91S)), but not Otub1(D88A), bind to the MDM2 cognate E2, UbcH5, and suppress its Ub-conjugating activity in vitro. Overexpression of Otub1(D88A) or ablation of endogenous Otub1 by siRNA markedly impaired p53 stabilization and activation in response to DNA damage. Together, these results reveal a novel function for Otub1 in regulating p53 stability and activity.

  15. Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability.

    PubMed

    Bag, Monojit; Renna, Lawrence A; Adhikari, Ramesh Y; Karak, Supravat; Liu, Feng; Lahti, Paul M; Russell, Thomas P; Tuominen, Mark T; Venkataraman, D

    2015-10-14

    Solar cells fabricated using alkyl ammonium metal halides as light absorbers have the right combination of high power conversion efficiency and ease of fabrication to realize inexpensive but efficient thin film solar cells. However, they degrade under prolonged exposure to sunlight. Herein, we show that this degradation is quasi-reversible, and that it can be greatly lessened by simple modifications of the solar cell operating conditions. We studied perovskite devices using electrochemical impedance spectroscopy (EIS) with methylammonium (MA)-, formamidinium (FA)-, and MA(x)FA(1-x) lead triiodide as active layers. From variable temperature EIS studies, we found that the diffusion coefficient using MA ions was greater than when using FA ions. Structural studies using powder X-ray diffraction (PXRD) show that for MAPbI3 a structural change and lattice expansion occurs at device operating temperatures. On the basis of EIS and PXRD studies, we postulate that in MAPbI3 the predominant mechanism of accelerated device degradation under sunlight involves thermally activated fast ion transport coupled with a lattice-expanding phase transition, both of which are facilitated by absorption of the infrared component of the solar spectrum. Using these findings, we show that the devices show greatly improved operation lifetimes and stability under white-light emitting diodes, or under a solar simulator with an infrared cutoff filter or with cooling. PMID:26414066

  16. Ballistic abdominal exercises: muscle activation patterns during three activities along the stability/mobility continuum.

    PubMed

    McGill, Stuart M; Karpowicz, Amy; Fenwick, Chad M J

    2009-05-01

    The purpose of this study was to document the muscle activity and spine motion during several tasks requiring rapid abdominal contraction. Eight healthy men from a university population were instrumented to obtain surface electromyography of selected trunk and hip muscles, together with video analysis to calculate joint moments and electromagnetic lumbar spine position sensor to track spine posture. Exercises included a punch, throw, and a ballistic torso-stiffening maneuver. This study found that no muscle turned on significantly before any other muscle during both the 1-in. punch and ballistic torso-stiffening maneuver. Conversely, there was a significant order or muscle onset during the baseball throw. Muscles reached peak activation significantly before any other muscle during the baseball throw and 1-in. punch, but there were no significant differences for the torso-stiffening maneuver. The exercises quantified in this study demonstrated how muscle contraction dynamics change to meet differing demands for stiffening, for force/moment production, and for rapid movements. Specifically, it seems that there is an order of contraction when movement is the goal but not when just spine stability is required. Thus, a different intensity of abdominal bracing is required to achieve the different objectives of sports tasks and exercises.

  17. Development and flight evaluation of an augmented stability active controls concept with a small tail

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Parasite drag reduction evaluation is composed of wind tunnel tests with a standard L-1011 tail and two reduced area tail configurations. Trim drag reduction is evaluated by rebalancing the airplane for relaxed static stability. This is accomplished by pumping water to tanks in the forward and aft of the airplane to acheive desired center of gravity location. Also, the L-1011 is modified to incorporate term and advanced augmented systems. By using advanced wings and aircraft relaxed static stability significant fuel savings can be realized. An airplane's dynamic stability becomes more sensitive for decreased tail size, relaxed static stability, and advanced wing configurations. Active control pitch augmentation will be used to acheive the required handling qualities. Flight tests will be performed to evaluate the pitch augmentation systems. The effect of elevator downrig on stabilizer/elevator hinge moments will be measured. For control system analysis, the normal acceleration feedback and pitch rate feedback are analyzed.

  18. Enhanced Enzyme Kinetic Stability by Increasing Rigidity within the Active Site*

    PubMed Central

    Xie, Yuan; An, Jiao; Yang, Guangyu; Wu, Geng; Zhang, Yong; Cui, Li; Feng, Yan

    2014-01-01

    Enzyme stability is an important issue for protein engineers. Understanding how rigidity in the active site affects protein kinetic stability will provide new insight into enzyme stabilization. In this study, we demonstrated enhanced kinetic stability of Candida antarctica lipase B (CalB) by mutating the structurally flexible residues within the active site. Six residues within 10 Å of the catalytic Ser105 residue with a high B factor were selected for iterative saturation mutagenesis. After screening 2200 colonies, we obtained the D223G/L278M mutant, which exhibited a 13-fold increase in half-life at 48 °C and a 12 °C higher T5015, the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment. Further characterization showed that global unfolding resistance against both thermal and chemical denaturation also improved. Analysis of the crystal structures of wild-type CalB and the D223G/L278M mutant revealed that the latter formed an extra main chain hydrogen bond network with seven structurally coupled residues within the flexible α10 helix that are primarily involved in forming the active site. Further investigation of the relative B factor profile and molecular dynamics simulation confirmed that the enhanced rigidity decreased fluctuation of the active site residues at high temperature. These results indicate that enhancing the rigidity of the flexible segment within the active site may provide an efficient method for improving enzyme kinetic stability. PMID:24448805

  19. Reciprocal Regulation of ERα and ERβ Stability and Activity by Diptoindonesin G.

    PubMed

    Zhao, Zibo; Wang, Lu; James, Taryn; Jung, Youngeun; Kim, Ikyon; Tan, Renxiang; Hoffmann, F Michael; Xu, Wei

    2015-12-17

    ERβ is regarded as a "tumor suppressor" in breast cancer due to its anti-proliferative effects. However, unlike ERα, ERβ has not been developed as a therapeutic target in breast cancer due to loss of ERβ in aggressive cancers. In a small-molecule library screen for ERβ stabilizers, we identified Diptoindonesin G (Dip G), which significantly increases ERβ protein stability while decreasing ERα protein levels. Dip G enhances the transcription and anti-proliferative activities of ERβ, while attenuating the transcription and proliferative effects of ERα. Further investigation revealed that instead of targeting ER, Dip G targets the CHIP E3 ubiquitin ligase shared by ERα and ERβ. Thus, Dip G is a dual-functional moiety that reciprocally controls ERα and ERβ protein stability and activities via an indirect mechanism. The ERβ stabilization effects of Dip G may enable the development of ERβ-targeted therapies for human breast cancers. PMID:26670079

  20. Enhancing the stability and antibiofilm activity of DspB by immobilization on carboxymethyl chitosan nanoparticles.

    PubMed

    Tan, Yulong; Ma, Su; Liu, Chenguang; Yu, Wengong; Han, Feng

    2015-09-01

    A β-N-acetyl-glucosaminidase (DspB) from Aggregatibacter actinomycetemcomitans CU1000 has been proved to inhibit and detach the biofilms formed by Staphylococcus epidermidis, Staphylococcus aureus and A. actinomycetemcomitans. However, the application of this enzyme is limited by its poor stability. In the present study, a β-N-acetyl-glucosaminidase encoding gene, dspB, was cloned from A. actinomycetemcomitans HK1651 and expressed in Escherichia coli. The recombinant DspB was loaded on hydrogel nanoparticles, which was prepared by using linoleic acid (LA) modified carboxymethyl chitosan (CMCS) after sonication. The nanoparticles were almost saturated by DspB at 0.3 mg/ml, which gave a loading capacity of 76.7%. The immobilization enhanced thermal stability, storage stability and reusability of DspB significantly. Moreover, it also increased antibiofilm activity due to the dual mechanism, including the improvement of the enzyme stability and the antibiofilm activity of CMCS nanoparticles. PMID:26302845

  1. ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity

    SciTech Connect

    Biener, M M; Biener, J; Wichmann, A; Wittstock, A; Baumann, T F; Baeumer, M; Hamza, A V

    2011-03-24

    Nanoporous metals have many technologically promising applications but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only one-nm-thick oxide films can stabilize the nanoscale morphology of np-Au up to 1000 C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO{sub 2} ALD coatings. Our results open the door to high temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  2. ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity.

    PubMed

    Biener, Monika M; Biener, Juergen; Wichmann, Andre; Wittstock, Arne; Baumann, Theodore F; Bäumer, Marcus; Hamza, Alex V

    2011-08-10

    Nanoporous metals have many technologically promising applications, but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only 1 nm thick oxide films can stabilize the nanoscale morphology of np-Au up to 1,000°C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO(2) ALD coatings. Our results open the door to high-temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  3. Formation and decomposition of chemically activated and stabilized hydrazine.

    PubMed

    Asatryan, Rubik; Bozzelli, Joseph W; da Silva, Gabriel; Swinnen, Saartje; Nguyen, Minh Tho

    2010-06-01

    Recombination of two amidogen radicals, NH(2) (X(2)B1), is relevant to hydrazine formation, ammonia oxidation and pyrolysis, nitrogen reduction (fixation), and a variety of other N/H/X combustion, environmental, and interstellar processes. We have performed a comprehensive analysis of the N(2)H(4) potential energy surface, using a variety of theoretical methods, with thermochemical kinetic analysis and master equation simulations used to treat branching to different product sets in the chemically activated NH(2) + NH(2) process. For the first time, iminoammonium ylide (NH(3)NH), the less stable isomer of hydrazine, is involved in the kinetic modeling of N(2)H(4). A new, low-energy pathway is identified for the formation of NH(3) plus triplet NH, via initial production of NH(3)NH followed by singlet-triplet intersystem crossing. This new reaction channel results in the formation of dissociated products at a relatively rapid rate at even moderate temperatures and above. A further novel pathway is described for the decomposition of activated N(2)H(4), which eventually leads to the formation of the simple products N(2) + 2H(2), via H(2) elimination to cis-N(2)H(2). This process, termed as "dihydrogen catalysis", may have significant implications in the formation and decomposition chemistry of hydrazine and ammonia in diverse environments. In this mechanism, stereoselective attack of cis-N(2)H(2) by molecular hydrogen results in decomposition to N(2) with a fairly low barrier. The reverse termolecular reaction leading to the gas-phase formation of cis-N(2)H(2) + H(2) achieves non-heterogeneous catalytic nitrogen fixation with a relatively low activation barrier (77 kcal mol(-1)), much lower than the 125 kcal mol(-1) barrier recently reported for bimolecular addition of H(2) to N(2). This termolecular reaction is an entropically disfavored path, but it does describe a new means of activating the notoriously unreactive N(2). We design heterogeneous analogues of this

  4. Improved granular activated carbon for the stabilization of wastewater PH

    SciTech Connect

    Farmer, R.W.; Dussert, B.W.; Kovacic, S.L.

    1996-12-31

    Laboratory studies have identified the cause of the pH rise, which occurs during water treatment with activated carbon, as an interaction between the naturally occurring anions and protons in the water and the carbon surface. The interaction can be described as an ion exchange type of phenomenon, in which the carbon surface sorbs the anions and corresponding hydronium ions from the water. These studies have shown that the anion sorption and resulting pH increase is independent of the raw material used for the activated carbon production, e.g. bituminous or subbituminous coal, peat, wood or coconut. Also, the pH excursions occur with virgin, reactivated, and acid washed granular carbons. Current pH control technologies focus on adjustment of the wastewater pH prior to discharge or recycle of the initial effluent water until the pH increase abates. However, improved water pH control options have been realized by altering the carbon surface through controlled oxidation rather than the water chemistry or extended preprocessing at the treatment site.

  5. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements.

    PubMed

    Shi, Caijun; Fernández-Jiménez, A

    2006-10-11

    This paper reviews progresses on the use of alkali-activated cements for stabilization/solidification of hazardous and radioactive wastes. Alkali-activated cements consist of an alkaline activator and cementing components, such as blast furnace slag, coal fly ash, phosphorus slag, steel slag, metakaolin, etc., or a combination of two or more of them. Properly designed alkali-activated cements can exhibit both higher early and later strengths than conventional portland cement. The main hydration product of alkali-activated cements is calcium silicate hydrate (CSH) with low Ca/Si ratios or aluminosilicate gel at room temperature; CSH, tobmorite, xonotlite and/or zeolites under hydrothermal condition, no metastable crystalline compounds such as Ca(OH)(2) and calcium sulphoaluminates exist. Alkali-activated cements also exhibit excellent resistance to corrosive environments. The leachability of contaminants from alkali-activated cement stabilized hazardous and radioactive wastes is lower than that from hardened portland cement stabilized wastes. From all these aspects, it is concluded that alkali-activated cements are better matrix for solidification/stabilization of hazardous and radioactive wastes than Portland cement.

  6. The formin mDia2 stabilizes microtubules independently of its actin nucleation activity

    PubMed Central

    Bartolini, Francesca; Moseley, James B.; Schmoranzer, Jan; Cassimeris, Lynne; Goode, Bruce L.; Gundersen, Gregg G.

    2008-01-01

    A critical microtubule (MT) polarization event in cell migration is the Rho/mDia-dependent stabilization of a subset of MTs oriented toward the direction of migration. Although mDia nucleates actin filaments, it is unclear whether this or a separate activity of mDia underlies MT stabilization. We generated two actin mutants (K853A and I704A) in a constitutively active version of mDia2 containing formin homology domains 1 and 2 (FH1FH2) and found that they still induced stable MTs and bound to the MT TIP proteins EB1 and APC, which have also been implicated in MT stabilization. A dimerization-impaired mutant of mDia2 (W630A) also generated stable MTs in cells. We examined whether FH1FH2mDia2 had direct activity on MTs in vitro and found that it bound directly to MTs, stabilized MTs against cold- and dilution-induced disassembly, and reduced the rates of growth and shortening during MT assembly and disassembly, respectively. These results indicate that mDia2 has a novel MT stabilization activity that is separate from its actin nucleation activity. PMID:18458159

  7. Multi-site Phosphorylation Regulates Bim Stability and Apoptotic Activity

    PubMed Central

    Hübner, Anette; Barrett, Tamera; Flavell, Richard A.; Davis, Roger J.

    2008-01-01

    The pro-apoptotic BH3-only protein Bim is established to be an important mediator of signaling pathways that induce cell death. Multi-site phosphorylation of Bim by several members of the MAP kinase group is implicated as a regulatory mechanism that controls the apoptotic activity of Bim. To test the role of Bim phosphorylation in vivo, we constructed mice with a series of mutant alleles that express phosphorylation-defective Bim proteins. We show that mutation of the phosphorylation site Thr-112 causes decreased binding of Bim to the anti-apoptotic protein Bcl2 and can increase cell survival. In contrast, mutation of the phosphorylation sites Ser-55, Ser-65, and Ser-73 can cause increased apoptosis because of reduced proteasomal degradation of Bim. Together, these data indicate that phosphorylation can regulate Bim by multiple mechanisms and that the phosphorylation of Bim on different sites can contribute to the sensitivity of cellular apoptotic responses. PMID:18498746

  8. Chemical modification of L-asparaginase from Cladosporium sp. for improved activity and thermal stability.

    PubMed

    Mohan Kumar, N S; Kishore, Vijay; Manonmani, H K

    2014-01-01

    L-Asparaginase (ASNase), an antileukemia enzyme, is facing problems with antigenicity in the blood. Modification of L-asparaginase from Cladosporium sp. was tried to obtain improved stability and improved functionality. In our experiment, modification of the enzyme was tried with bovine serum albumin, ovalbumin by crosslinking using glutaraldehyde, N-bromosuccinimide, and mono-methoxy polyethylene glycol. Modified enzymes were studied for activity, temperature stability, rate constants (kd), and protection to proteolytic digestion. Modification with ovalbumin resulted in improved enzyme activity that was 10-fold higher compared to native enzyme, while modification with bovine serum albumin through glutaraldehyde cross-linking resulted in high stability of L-asparaginase that was 8.5- and 7.62-fold more compared to native enzyme at 28°C and 37°C by the end of 24 hr. These effects were dependent on the quantity of conjugate formed. Modification also markedly prolonged L-asparaginase half-life and serum stability. N-Bromosuccinimide-modified ASNase presented greater stability with prolonged in vitro half-life of 144 hr to proteolytic digestion relative to unmodified enzyme (93 h). The present work could be seen as producing a modified L-asparaginase with improved activity and stability and can be a potential source for developing therapeutic agents for cancer treatment.

  9. Relationship between protein stability and functional activity in the presence of macromolecular crowding agents alone and in mixture: An insight into stability-activity trade-off.

    PubMed

    Shahid, Sumra; Ahmad, Faizan; Hassan, Md Imtaiyaz; Islam, Asimul

    2015-10-15

    The cellular environment is crowded with different kinds of molecules with varying sizes, shapes and compositions. Most of the experiments studying the nature and behaviour of a protein have been done on the isolated protein in dilute buffer solutions which actually do not imitate the in vivo situation. To understand the consequences of such crowded environment, we investigated the effect of macromolecular crowding on the stability and activity of hen egg white lysozyme. Two crowding agents, dextran 70 and ficoll 70 which have different shapes and composition, have been employed in this study. To mimic the cellular condition from physiological point of view, the effect of mixtures of both the crowding agents has been also studied. The results indicate that owing to volume exclusion, lysozyme is stabilized while its activity decays with the increasing concentration of both the crowders elucidating the hypothesis of stability-activity trade-off. Mixed macromolecular crowding exerts greater effect than the sum of constituent crowding agents (dextran 70 and ficoll 70).

  10. Crystal structure of plasminogen activator inhibitor-1 in an active conformation with normal thermodynamic stability.

    PubMed

    Jensen, Jan K; Thompson, Lawrence C; Bucci, Joel C; Nissen, Poul; Gettins, Peter G W; Peterson, Cynthia B; Andreasen, Peter A; Morth, J Preben

    2011-08-26

    The serpin plasminogen activator inhibitor-1 (PAI-1) is a crucial regulator in fibrinolysis and tissue remodeling. PAI-1 has been associated with several pathological conditions and is a validated prognostic marker in human cancers. However, structural information about the native inhibitory form of PAI-1 has been elusive because of its inherent conformational instability and rapid conversion to a latent, inactive structure. Here we report the crystal structure of PAI-1 W175F at 2.3 Å resolution as the first model of the metastable native molecule. Structural comparison with a quadruple mutant (14-1B) previously used as representative of the active state uncovered key differences. The most striking differences occur near the region that houses three of the four mutations in the 14-1B PAI-1 structure. Prominent changes are localized within a loop connecting β-strand 3A with the F helix, in which a previously observed 3(10)-helix is absent in the new structure. Notably these structural changes are found near the binding site for the cofactor vitronectin. Because vitronectin is the only known physiological regulator of PAI-1 that slows down the latency conversion, the structure of this region is important. Furthermore, the previously identified chloride-binding site close to the F-helix is absent from the present structure and likely to be artifactual, because of its dependence on the 14-1B mutations. Instead we found a different chlorine-binding site that is likely to be present in wild type PAI-1 and that more satisfactorily accounts for the chlorine stabilizing effect on PAI-1.

  11. Crystal Structure of Plasminogen Activator Inhibitor-1 in an Active Conformation with Normal Thermodynamic Stability*

    PubMed Central

    Jensen, Jan K.; Thompson, Lawrence C.; Bucci, Joel C.; Nissen, Poul; Gettins, Peter G. W.; Peterson, Cynthia B.; Andreasen, Peter A.; Morth, J. Preben

    2011-01-01

    The serpin plasminogen activator inhibitor-1 (PAI-1) is a crucial regulator in fibrinolysis and tissue remodeling. PAI-1 has been associated with several pathological conditions and is a validated prognostic marker in human cancers. However, structural information about the native inhibitory form of PAI-1 has been elusive because of its inherent conformational instability and rapid conversion to a latent, inactive structure. Here we report the crystal structure of PAI-1 W175F at 2.3 Å resolution as the first model of the metastable native molecule. Structural comparison with a quadruple mutant (14-1B) previously used as representative of the active state uncovered key differences. The most striking differences occur near the region that houses three of the four mutations in the 14-1B PAI-1 structure. Prominent changes are localized within a loop connecting β-strand 3A with the F helix, in which a previously observed 310-helix is absent in the new structure. Notably these structural changes are found near the binding site for the cofactor vitronectin. Because vitronectin is the only known physiological regulator of PAI-1 that slows down the latency conversion, the structure of this region is important. Furthermore, the previously identified chloride-binding site close to the F-helix is absent from the present structure and likely to be artifactual, because of its dependence on the 14-1B mutations. Instead we found a different chlorine-binding site that is likely to be present in wild type PAI-1 and that more satisfactorily accounts for the chlorine stabilizing effect on PAI-1. PMID:21697084

  12. Determination of Pulmozyme (dornase alpha) stability using a kinetic colorimetric DNase I activity assay.

    PubMed

    Lichtinghagen, Ralf

    2006-07-01

    An enzymatic activity assay was developed for the determination of dornase alpha human recombinant desoxyribonuclease (DNase I) stability. The method was adapted from a colorimetric endpoint enzyme activity assay for DNase I based on the degradation of a DNA/methyl green complex. With the described modifications the kinetic measurement of enzyme activity is feasible on an automated analyzer system within a rather short time. The development of this assay was based on the need for reliable detection of a possible loss of enzyme activity after transferring the commercial therapeutic agent into sealed glass vials required for a placebo-controlled study. The measuring range of this stability test was from 0 to 3000 U/L corresponding to 0-120% of the original enzyme activity; CV values of control solutions inside the measuring range were between 3% and 5%. The enzyme activity decreased less than 15% during the observation period of 180 days. In conclusion the current kinetic assay is a reliable method for a simple time-saving determination of DNase I activity to test Pulmozyme stability as required for quality control. As dornase alpha is used for inhalation, this method also proved its reliability in testing DNase stability during aerosolization with new inhalation devices (e-flow). PMID:16682175

  13. Effect of copper on soil functional stability measured by relative soil stability index (RSSI) based on two enzyme activities.

    PubMed

    Dussault, Marylène; Bécaert, Valérie; François, Matthieu; Sauvé, Sébastien; Deschênes, Louise

    2008-06-01

    Copper can affect essential processes in soils, often for long periods. Enzyme activity is considered a sensitive indicator to evaluate soil health and the potential toxic impact of a soil contaminant. Nevertheless, there is heterogeneity in the responses from enzyme activity assays because of the influence of pH and other physicochemical parameters on both enzyme activity and metal speciation. This leads to complications when comparing soils and limits the validity of the results. To overcome these problems, this paper evaluates resistance and recovery, quantified by using a relative soil stability index (RSSI), of the beta-glucosidase and protease activities towards an additional heat disturbance (17 h at 60 degrees C) in soils where soil organic matter, pH and Cu content were modified in a factorial setup. Chemical analyses (dissolved Cu, pCu(2+), dissolved organic carbon, pH) were performed both before the heat-perturbation and after the enzyme activity monitoring period. Results show that soil pH did not interfere with the RSSI scores of both enzymes. beta-glucosidase RSSI scores were scarcely affected by copper, making it inappropriate for evaluating copper-induced stress to soils. Protease activity shows stimulations of up to 2.5 times the activity of the unperturbed control in uncontaminated samples only. Thus, the protease RSSI score seems a good indicator for soil health relative to copper contamination given that all samples were affected by the presence of copper and high correlations were observed between RSSI scores and the different copper forms.

  14. Lysogen stability is determined by the frequency of activity bursts from the fate-determining gene.

    PubMed

    Zong, Chenghang; So, Lok-hang; Sepúlveda, Leonardo A; Skinner, Samuel O; Golding, Ido

    2010-11-30

    The ability of living cells to maintain an inheritable memory of their gene-expression state is key to cellular differentiation. Bacterial lysogeny serves as a simple paradigm for long-term cellular memory. In this study, we address the following question: in the absence of external perturbation, how long will a cell stay in the lysogenic state before spontaneously switching away from that state? We show by direct measurement that lysogen stability exhibits a simple exponential dependence on the frequency of activity bursts from the fate-determining gene, cI. We quantify these gene-activity bursts using single-molecule-resolution mRNA measurements in individual cells, analyzed using a stochastic mathematical model of the gene-network kinetics. The quantitative relation between stability and gene activity is independent of the fine details of gene regulation, suggesting that a quantitative prediction of cell-state stability may also be possible in more complex systems. PMID:21119634

  15. Design of an activity and stability improved carbonyl reductase from Candida parapsilosis.

    PubMed

    Jakoblinnert, Andre; van den Wittenboer, Anne; Shivange, Amol V; Bocola, Marco; Heffele, Lora; Ansorge-Schumacher, Marion; Schwaneberg, Ulrich

    2013-05-10

    The carbonyl reductase from Candida parapsilosis (CPCR2) is an industrially attractive biocatalyst for producing chiral alcohols from ketones. The homodimeric enzyme has a broad substrate spectrum and an excellent stereoselectivity, but is rapidly inactivated at aqueous-organic interfaces. The latter limits CPCR2's application in biphasic reaction media. Reengineering the protein surface of CPCR2 yielded a variant CPCR2-(A275N, L276Q) with 1.5-fold increased activity, 1.5-fold higher interfacial stability (cyclohexane/buffer system), and increased thermal resistance (ΔT50=+2.7 °C). Site-directed and site-saturation mutagenesis studies discovered that position 275 mainly influences stability and position 276 governs activity. After single site-saturation of position 275, amino acid exchanges to asparagine and threonine were discovered to be stabilizing. Interestingly, both positions are located at the dimer interface and close to the active site and computational analysis identified an inter-subunit hydrogen bond formation at position 275 to be responsible for stabilization. Finally, the variant CPCR2-(A275S, L276Q) was found by simultaneous site-saturation of positions 275 and 276. CPCR2-(A275S, L276Q) has compared to wtCPCR2 a 1.4-fold increased activity, a 1.5-fold higher interfacial stability, and improved thermal resistance (ΔT50=+5.2 °C). PMID:23471075

  16. Effect of ionic liquids on the structure, stability and activity of two related α-amylases.

    PubMed

    Dabirmanesh, Bahareh; Daneshjou, Sara; Sepahi, Abbas Akhavan; Ranjbar, Bijan; Khavari-Nejad, Ramazan Ali; Gill, Pooria; Heydari, Akbar; Khajeh, Khosro

    2011-01-01

    Ionic liquids are recognized as green solvents for carbohydrates dissolution. However, only a limited number of studies have been carried out to investigate their effect on carbohydrate hydrolyzing enzymes. We have investigated the influence of two water miscible ionic liquids on the activity, stability and structure of two related α-amylases from Bacillus amyloliquefaciens and Bacillus lichiniformis. Upon changes in ionic liquids concentrations, both enzymes activity and stability were reduced. Associated thermodynamic and conformational changes were observed using differential scanning calorimetry and fluorescence techniques. Thermal denaturation was accompanied by aggregation in both aqueous buffer and [BMIm][Cl] but [HMIm][Cl] significantly suppressed aggregation.

  17. Balancing Protein Stability and Activity in Cancer: A New Approach for Identifying Driver Mutations Affecting CBL Ubiquitin Ligase Activation.

    PubMed

    Li, Minghui; Kales, Stephen C; Ma, Ke; Shoemaker, Benjamin A; Crespo-Barreto, Juan; Cangelosi, Andrew L; Lipkowitz, Stanley; Panchenko, Anna R

    2016-02-01

    Oncogenic mutations in the monomeric Casitas B-lineage lymphoma (Cbl) gene have been found in many tumors, but their significance remains largely unknown. Several human c-Cbl (CBL) structures have recently been solved, depicting the protein at different stages of its activation cycle and thus providing mechanistic insight underlying how stability-activity tradeoffs in cancer-related proteins-may influence disease onset and progression. In this study, we computationally modeled the effects of missense cancer mutations on structures representing four stages of the CBL activation cycle to identify driver mutations that affect CBL stability, binding, and activity. We found that recurrent, homozygous, and leukemia-specific mutations had greater destabilizing effects on CBL states than random noncancer mutations. We further tested the ability of these computational models, assessing the changes in CBL stability and its binding to ubiquitin-conjugating enzyme E2, by performing blind CBL-mediated EGFR ubiquitination assays in cells. Experimental CBL ubiquitin ligase activity was in agreement with the predicted changes in CBL stability and, to a lesser extent, with CBL-E2 binding affinity. Two thirds of all experimentally tested mutations affected the ubiquitin ligase activity by either destabilizing CBL or disrupting CBL-E2 binding, whereas about one-third of tested mutations were found to be neutral. Collectively, our findings demonstrate that computational methods incorporating multiple protein conformations and stability and binding affinity evaluations can successfully predict the functional consequences of cancer mutations on protein activity, and provide a proof of concept for mutations in CBL. PMID:26676746

  18. Postural stability of older female Scottish country dancers in comparison with physically active controls.

    PubMed

    Dewhurst, Susan; Peacock, Leslie; Bampouras, Theodoros M

    2015-01-01

    Physical activity assists older individuals' functional ability and postural stability. Recently, Scottish country dance (SCD) was reported as being a beneficial form of physical activity for functional ability in older females. This study aims to examine the effect of SCD on postural stability. Scottish country dancers (n = 20) were compared with physically active controls (n = 33) for static postural sway measured on a force platform. The Romberg and Tandem stances were used under 'eyes open' and 'eyes closed' conditions. Ninety-five percent ellipse area and sway velocity were calculated from the center of pressure displacement. Ninety-five percent ellipse area was the same for both groups in all tests. The control group had greater sway velocity for all tests (P < .01) except Tandem eyes closed. SCD participation resulted in similar postural sway as participation in other physical activities, however nondancers may need a greater amount of regulatory activity to maintain balance.

  19. Fe65 does not stabilize AICD during activation of transcription in a luciferase assay

    SciTech Connect

    Huysseune, Sandra; Kienlen-Campard, Pascal; Octave, Jean-Noel . E-mail: octave@nchm.ucl.ac.be

    2007-09-21

    The APP intracellular domain (AICD) could be involved in signaling via interaction with the adaptor protein Fe65, and with the histone acetyl transferase Tip60. However, the real function of AICD and Fe65 in regulation of transcription remains controversial. In this study, the human APPGal4 fusion protein was expressed in CHO cells and the transcriptional activity of AICDGal4 was measured in a luciferase-based reporter assay. AICDGal4 was stabilized by expression of Fe65 and levels of AICDGal4 controlled luciferase activity. On the contrary, when human APP was expressed in CHO cells, coexpression of Fe65 increased luciferase activity without affecting the amount of AICD fragment. AICD produced from APP was protected from degradation by orthophenanthroline, but not by lactacystine, indicating that AICD is not a substrate of the chymotryptic activity of the proteasome. It is concluded that Fe65 can control luciferase activity without stabilizing the labile AICD fragment.

  20. Electromyographic activity of selected trunk muscles during stabilization exercises using a gym ball.

    PubMed

    Mori, A

    2004-01-01

    Trunk stabilization is very important for the injured lower back. The use of a gym ball, the surface of which is labile, is becoming more popular for strengthening the trunk muscles and challenging the motor control system in trunk stabilization exercises. However, little is known about the activity of the trunk muscles during such exercises. The purpose of this study was to compare the electromyographic (EMG) activity of the trunk muscles during seven stabilization exercises using a gym ball. Eleven healthy men (19.9 +/- 1.8 years old) without low back pain volunteered to participate in the study. Bipolar surface electrodes were attached to the right side of the upper and lower rectus abdominis, the obliquus externus abdominis and the upper and lower back extensor muscles. EMG signals were recorded during seven types of stabilization exercises using a gym ball and normalized to maximal voluntary contraction (% MVC). A two-way analysis of variance (ANOVA) was performed on % MVC from each task for each of the five trunk muscle sites (p < 0.05). Push-up exercise, supporting with both hands on the gym ball and toes on the floor in prone position, resulted in the highest activity of all abdominal muscles, and an exercise of the lifting the gym ball up, holding it actively between both legs with both knees flexed in supine position resulted in the lowest. Lifting up of the pelvis in a bridged position exercise, supporting the head with the gym ball and with the feet on the floor in supine position, resulted in higher muscle activity of the back extensor muscles than another exercise. It is very important for physical therapists to make clear the purpose of the trunk stabilization exercises, because different kinds of exercises with the gym ball demand various levels of muscular activity and use of various parts of the trunk muscles.

  1. Improvement of helicopter attitude stability by active control of the conventional swash plate

    NASA Technical Reports Server (NTRS)

    Ham, Norman D.

    1993-01-01

    The Final Report on improvement of helicopter attitude stability by active control of the conventional swash plate covering the period from Nov. 1986 to Dec. 1993 is presented. A paper on the history, principles, and applications of helicopter individual-blade-control is included.

  2. Cellulase variants with improved expression, activity and stability, and use thereof

    DOEpatents

    Aehle, Wolfgang; Bott, Richard R; Bower, Benjamin; Caspi, Jonathan; Estell, David A; Goedegebuur, Frits; Hommes, Ronaldus W.J.; Kaper, Thijs; Kelemen, Bradley; Kralj, Slavko; Van Lieshout, Johan; Nikolaev, Igor; Van Stigt Thans, Sander; Wallace, Louise; Vogtentanz, Gudrun; Sandgren, Mats

    2014-03-25

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having improved expression, activity and/or stability. Also described are nucleic acids encoding the cellulase variants, compositions comprising the cellulase variants, and methods of use thereof.

  3. 17 CFR 242.104 - Stabilizing and other activities in connection with an offering.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Stabilizing and other activities in connection with an offering. 242.104 Section 242.104 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) REGULATIONS M, SHO, ATS, AC, AND NMS AND CUSTOMER...

  4. Hollow mesoporous ceria nanoreactors with enhanced activity and stability for catalytic application.

    PubMed

    Liu, Baocang; Yu, Shengli; Wang, Qin; Hu, Wenting; Jing, Peng; Liu, Yang; Jia, Wenjing; Liu, Yongxin; Liu, Lixia; Zhang, Jun

    2013-05-01

    Novel hollow mesoporous @M/CeO(2) (M = Au, Pd, and Au-Pd) nanospheres are created. The nanospheres can be used as effective nanoreactors with superior catalytic activity and stability for reduction of 4-nitrophenol due to their hollow mesoporous structural features.

  5. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion.

    PubMed

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W; Liu, Yan; Walter, Nils G; Yan, Hao

    2016-02-10

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  6. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    PubMed Central

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  7. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  8. Conformational Stability and Catalytic Activity of PTEN Variants Linked to Cancers and Autism Spectrum Disorders

    PubMed Central

    Johnston, Sean B.; Raines, Ronald T.

    2015-01-01

    Phosphoinositides are membrane components that play critical regulatory roles in mammalian cells. The enzyme PTEN, which catalyzes the dephosphorylation of the phosphoinositide PIP3, is damaged in most sporadic tumors. Mutations in the PTEN gene have also been linked to autism spectrum disorders and other forms of delayed development. Here, human PTEN is shown to be on the cusp of unfolding under physiological conditions. Variants of human PTEN linked to somatic cancers and disorders on the autism spectrum are shown to be impaired in their conformational stability, catalytic activity, or both. Those variants linked only to autism have higher activity than those linked to cancers. PTEN-L, which is a secreted trans-active isoform, has greater conformational stability than does the wild-type enzyme. These data indicate that PTEN is a fragile enzyme cast in a crucial role in cellular metabolism, and suggest that PTEN-L is a repository for a critical catalytic activity. PMID:25647146

  9. Anti-oxidative activity of pectin and its stabilizing effect on retinyl palmitate.

    PubMed

    Ro, Jieun; Kim, Yeongseok; Kim, Hyeongmin; Jang, Soung Baek; Lee, Hyun Joo; Chakma, Suharto; Jeong, Ji Hoon; Lee, Jaehwi

    2013-06-01

    The purpose of this study was to examine the anti-oxidative activity of pectin and other polysaccharides in order to develop a cosmeceutical base having anti-oxidative effects towards retinyl palmitate (RP). The anti-oxidative stabilizing effects of pectin and other polysaccharides on RP were evaluated by DPPH assay and then the stabilizing effect of pectin on RP was examined as a function of time. Among the polysaccharides we examined, pectin exhibited a considerably higher anti-oxidative activity, with an approximately 5-fold greater DPPH radical scavenging effect compared to other polysaccharides. The DPPH radical scavenging effect of pectin increased gradually with increasing concentrations of pectin. At two different RP concentrations, 0.01 and 0.1% in ethanol, addition of pectin improved the stability of RP in a concentration dependent manner. The stabilizing effect of pectin on RP was more effective for the lower concentration of RP (0.01%, v/v). Further, degradation of RP was reduced following the addition of pectin as measured over 8 hours. From the results obtained, it can be suggested that pectin may be a promising ingredient for cosmeceutical bases designed to stabilize RP or other pharmacological agents subject to degradation by oxidation. PMID:23776395

  10. A coexisting fungal-bacterial community stabilizes soil decomposition activity in a microcosm experiment.

    PubMed

    Ushio, Masayuki; Miki, Takeshi; Balser, Teri C

    2013-01-01

    How diversity influences the stability of a community function is a major question in ecology. However, only limited empirical investigations of the diversity-stability relationship in soil microbial communities have been undertaken, despite the fundamental role of microbial communities in driving carbon and nutrient cycling in terrestrial ecosystems. In this study, we conducted a microcosm experiment to investigate the relationship between microbial diversity and stability of soil decomposition activities against changes in decomposition substrate quality by manipulating microbial community using selective biocides. We found that soil respiration rates and degradation enzyme activities by a coexisting fungal and bacterial community (a taxonomically diverse community) are more stable against changes in substrate quality (plant leaf materials) than those of a fungi-dominated or a bacteria-dominated community (less diverse community). Flexible changes in the microbial community composition and/or physiological state in the coexisting community against changes in substrate quality, as inferred by the soil lipid profile, may be the mechanism underlying this positive diversity-stability relationship. Our experiment demonstrated that the previously found positive diversity-stability relationship could also be valid in the soil microbial community. Our results also imply that the functional/taxonomic diversity and community ecology of soil microbes should be incorporated into the context of climate-ecosystem feedbacks. Changes in substrate quality, which could be induced by climate change, have impacts on decomposition process and carbon dioxide emission from soils, but such impacts may be attenuated by the functional diversity of soil microbial communities.

  11. The effect of trunk stabilization exercises with a swiss ball on core muscle activation in the elderly.

    PubMed

    Kim, Seong Gil; Yong, Min Sik; Na, Sang Su

    2014-09-01

    [Purpose] The purpose of this study was to investigate the effects of trunk stabilization exercise on the muscle EMG activations related to core stability. [Subjects and Methods] Fifteen elderly people in a geriatric hospital performed trunk stabilization exercises with a Swiss ball for 20 minutes five times per week for 8 weeks. Trunk muscle activations were measured using electromyography before and after the intervention. [Results] After the intervention, the muscle activations of the rectus abdominis, erector spinae, lateral low-back (quadratus lumborum and external oblique), and gluteus medius muscles increased significantly. [Conclusion] The trunk stabilization exercise with a Swiss ball significantly increased the muscle activities of the elderly.

  12. Actively stabilized silicon microrings with integrated surface-state-absorption photodetectors using a slope-detection method.

    PubMed

    Li, Yu; Poon, Andrew W

    2016-09-19

    We propose and experimentally demonstrate actively stabilized silicon microrings with integrated surface-state-absorption (SSA) photodetectors using a slope-detection method. Our proof-of-concept experiments reveal that the active stabilization using multiple discrete-step slope thresholds can effectively reduce the microring transmitted intensity variations upon various temperature modulation conditions. We demonstrate an actively stabilized microring transmission with intensity modulations within ~2.5 dB upon a 5mHz temperature modulation between 17 °C and 31 °C, which is ~7.5dB improved from without stabilization. The active alignment tolerance between the stabilized microring resonance wavelength and a carrier wavelength is ~0.16 nm over a 14°C temperature modulation. We observe open eye-diagrams at a data transmission rate of up to 30 Gb/s under temperature modulations with actively stabilized silicon microrings. PMID:27661872

  13. Stability and activity of alcohol dehydrogenases in W/O-microemulsions: enantioselective reduction including cofactor regeneration.

    PubMed

    Orlich, B; Berger, H; Lade, M; Schomäcker, R

    2000-12-20

    Microemulsions provide an interesting alternative to classical methods for the conversion of less water-soluble substrates by alcohol dehydrogenase, but until now stability and activity were too low for economically useful processes. The activity and stability of the enzymes are dependent on the microemulsion composition, mostly the water and the surfactant concentration. Therefore, it is necessary to know the exact phase behavior of a given microemulsion reaction system and the corresponding enzyme behavior therein. Because of their economic and ecologic suitability polyethoxylated fatty alcohols were investigated concerning their phase behavior and their compatibility with enzymes in ternary mixtures. The phase behavior of Marlipal O13-60 (C13EO6 in industrial quality)/cyclohexane/water and its effect on the activity and stability of alcohol dehydrogenase from Yeast (YADH) and horse liver (HLADH) and the carbonyl reductase from Candida parapsilosis (CPCR) is presented in this study. Beside the macroscopic phase behavior of the reaction system, the viscosity of the system indicates structural changes of aggregates in the microemulsion. The changes of the enzyme activities with the composition are discussed on the basis of transitions from reverse micelles to swollen reverse micelles and finally, the transition to the phase separation. The formate dehydrogenase from Candida boidinii was used for the NADH-regeneration during reduction reactions. While the formate dehydrogenase did not show any kinetic effect on the microemulsion composition, the other enzymes show significant changes of activity and stability varying the water or surfactant concentration of the microemulsion. Under certain conditions, stability could be maintained with HLADH for several weeks. Successful experiments with semi-batch processes including cofactor regeneration and product separation were performed.

  14. Apoferritin Nanoparticle: A Novel and Biocompatible Carrier for Enzyme Immobilization with Enhanced Activity and Stability

    SciTech Connect

    Zhang, Youyu; Tang, Zhiwen; Wang, Jun; Wu, Hong J.; Lin, Chiann Tso; Lin, Yuehe

    2011-11-01

    Apoferritin is a nanostructured material with a uniform size and spherical structure, and it has excellent bio-compatibility. In this work, we report the use of apoferritin as a novel and biocompatible carrier for stabilizing enzymes and their activities. We used glucose oxidase (GOx) as a model enzyme. GOx was immobilized on the surface of the apoferritin through a green synthetic approach taking advantage of bioaffinity binding between streptavidin and biotin. As a result, a glucose oxidase-biotin/streptavidin/biotin-apoferritin conjugate (Apo-GOx) was prepared using streptavidin as a bridge. The synthesized Apo-GOx was characterized with transmission electron microscopy, ultraviolet, and fluorescence spectroscopy. The activity and stability of GOx on the surface of the apoferritin were studied in different environments, such as temperature, chemicals, and pH, in comparison with the biotinylated GOx (B-GOx). The results showed that the activity of GOx on the apoferritin surface was significantly enhanced. The thermal and chemical stability of the GOx on the apoferritin was also greatly improved compared to free B-GOx in a solution. It was found that the activity of the GOx on the apoferritin only lost 30% in comparison to a 70% loss of free B-GOx after a 2 h incubation at 50oC. There was almost no decrease in activity for the GOx on the apoferritin as compared to an 80% activity decrease for free B-GOx after 30 min incubation in a 5 M urea solution. Glucose detection was used as a model application for the enzyme immobilization method developed in this work. The GOx immobilized apoferritin nanoparticles exhibited high sensitivity for glucose detection with a detection limit of 3 nM glucose. This work offers a novel approach for immobilizing enzymes with enhanced stability and activity, and this method may find a number of applications, such as in enzyme catalysis, DNA assays and immunoassays.

  15. TOPICAL REVIEW: Protein stability and enzyme activity at extreme biological temperatures

    NASA Astrophysics Data System (ADS)

    Feller, Georges

    2010-08-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 °C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins.

  16. Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH.

    PubMed

    Han, Binghong; Risch, Marcel; Lee, Yueh-Lin; Ling, Chen; Jia, Hongfei; Shao-Horn, Yang

    2015-09-21

    Perovskite oxides (ABO3) have been studied extensively to promote the kinetics of the oxygen evolution reaction (OER) in alkaline electrolytes. However, developing highly active catalysts for OER at near-neutral pH is desirable for many photoelectrochemical/electrochemical devices. In this paper, we systematically studied the activity and stability of well-known perovskite oxides for OER at pH 7. Previous activity descriptors established for perovskite oxides at pH 13, such as having an eg occupancy close to unity or having an O p-band center close to Fermi level, were shown to scale with OER activity at pH 7. Stability was a greater challenge at pH 7 than at pH 13, where two different modes of instability were identified from combined transmission electron microscopy and density functional theory analyses. Perovskites with O p-band close to Fermi level showed leaching of A-site atoms and surface amorphization under all overpotentials examined at pH 7, while those with O p-band far from Fermi level were stable under low OER current/potential but became unstable at high current/potential accompanied by leaching of B-site atoms. Therefore, efforts are needed to enhance the activity and stability of perovskites against A-site or B-site loss if used at neutral pH. PMID:26271910

  17. Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH.

    PubMed

    Han, Binghong; Risch, Marcel; Lee, Yueh-Lin; Ling, Chen; Jia, Hongfei; Shao-Horn, Yang

    2015-09-21

    Perovskite oxides (ABO3) have been studied extensively to promote the kinetics of the oxygen evolution reaction (OER) in alkaline electrolytes. However, developing highly active catalysts for OER at near-neutral pH is desirable for many photoelectrochemical/electrochemical devices. In this paper, we systematically studied the activity and stability of well-known perovskite oxides for OER at pH 7. Previous activity descriptors established for perovskite oxides at pH 13, such as having an eg occupancy close to unity or having an O p-band center close to Fermi level, were shown to scale with OER activity at pH 7. Stability was a greater challenge at pH 7 than at pH 13, where two different modes of instability were identified from combined transmission electron microscopy and density functional theory analyses. Perovskites with O p-band close to Fermi level showed leaching of A-site atoms and surface amorphization under all overpotentials examined at pH 7, while those with O p-band far from Fermi level were stable under low OER current/potential but became unstable at high current/potential accompanied by leaching of B-site atoms. Therefore, efforts are needed to enhance the activity and stability of perovskites against A-site or B-site loss if used at neutral pH.

  18. Antioxidant activity and emulsion-stabilizing effect of pectic enzyme treated pectin in soy protein isolate-stabilized oil/water emulsion.

    PubMed

    Huang, Ping-Hsiu; Lu, Hao-Te; Wang, Yuh-Tai; Wu, Ming-Chang

    2011-09-14

    The antioxidant activity of pectic enzyme treated pectin (PET-pectin) prepared from citrus pectin by enzymatic hydrolysis and its potential use as a stabilizer and an antioxidant for soy protein isolate (SPI)-stabilized oil in water (O/W) emulsion were investigated. Trolox equivalent antioxidant capacity (TEAC) was found to be positively associated with molecular weight (M(w)) of PET-pectin and negatively associated with degree of esterification (DE) of PET-pectin. PET-pectin (1 kDa and 11.6% DE) prepared from citrus pectin after 24 h of hydrolysis by commercial pectic enzyme produced by Aspergillus niger expressed higher α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity, TEAC, and reducing power than untreated citrus pectin (353 kDa and 60% DE). The addition of PET-pectin could increase both emulsifying activity (EA) and emulsion stability (ES) of SPI-stabilized O/W emulsion. When the SPI-stabilized lipid droplet was coated with the mixture of PET-pectin and pectin, the EA and ES of the emulsion were improved more than they were when the lipid droplet was coated with either pectin or PET-pectin alone. The amount of secondary oxidation products (thiobarbituric acid reactive substances) produced in the emulsion prepared with the mixture of SPI and PET-pectin was less than the amount produced in the emulsion prepared with either SPI or SPI/pectin. These results suggest that PET-pectin has an emulsion-stabilizing effect and lipid oxidation inhibition ability on SPI-stabilized emulsion. Therefore, PET-pectin can be used as a stabilizer as well as an antioxidant in plant origin in SPI-stabilized O/W emulsion and thus prolong the shelf life of food emulsion. PMID:21806056

  19. Antioxidant activity and emulsion-stabilizing effect of pectic enzyme treated pectin in soy protein isolate-stabilized oil/water emulsion.

    PubMed

    Huang, Ping-Hsiu; Lu, Hao-Te; Wang, Yuh-Tai; Wu, Ming-Chang

    2011-09-14

    The antioxidant activity of pectic enzyme treated pectin (PET-pectin) prepared from citrus pectin by enzymatic hydrolysis and its potential use as a stabilizer and an antioxidant for soy protein isolate (SPI)-stabilized oil in water (O/W) emulsion were investigated. Trolox equivalent antioxidant capacity (TEAC) was found to be positively associated with molecular weight (M(w)) of PET-pectin and negatively associated with degree of esterification (DE) of PET-pectin. PET-pectin (1 kDa and 11.6% DE) prepared from citrus pectin after 24 h of hydrolysis by commercial pectic enzyme produced by Aspergillus niger expressed higher α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity, TEAC, and reducing power than untreated citrus pectin (353 kDa and 60% DE). The addition of PET-pectin could increase both emulsifying activity (EA) and emulsion stability (ES) of SPI-stabilized O/W emulsion. When the SPI-stabilized lipid droplet was coated with the mixture of PET-pectin and pectin, the EA and ES of the emulsion were improved more than they were when the lipid droplet was coated with either pectin or PET-pectin alone. The amount of secondary oxidation products (thiobarbituric acid reactive substances) produced in the emulsion prepared with the mixture of SPI and PET-pectin was less than the amount produced in the emulsion prepared with either SPI or SPI/pectin. These results suggest that PET-pectin has an emulsion-stabilizing effect and lipid oxidation inhibition ability on SPI-stabilized emulsion. Therefore, PET-pectin can be used as a stabilizer as well as an antioxidant in plant origin in SPI-stabilized O/W emulsion and thus prolong the shelf life of food emulsion.

  20. Finite-time robust stabilization of uncertain delayed neural networks with discontinuous activations via delayed feedback control.

    PubMed

    Wang, Leimin; Shen, Yi; Sheng, Yin

    2016-04-01

    This paper is concerned with the finite-time robust stabilization of delayed neural networks (DNNs) in the presence of discontinuous activations and parameter uncertainties. By using the nonsmooth analysis and control theory, a delayed controller is designed to realize the finite-time robust stabilization of DNNs with discontinuous activations and parameter uncertainties, and the upper bound of the settling time functional for stabilization is estimated. Finally, two examples are provided to demonstrate the effectiveness of the theoretical results.

  1. Activations of Deep Lumbar Stabilizing Muscles by Transcutaneous Neuromuscular Electrical Stimulation of Lumbar Paraspinal Regions

    PubMed Central

    Baek, Seung Ok; Ahn, Sang Ho; Jones, Rodney; Cho, Hee Kyung; Jung, Gil Su; Cho, Yun Woo

    2014-01-01

    Objective To investigate changes in lumbar multifidus (LM) and deep lumbar stabilizing abdominal muscles (transverse abdominis [TrA] and obliquus internus [OI]) during transcutaneous neuromuscular electrical stimulation (NMES) of lumbar paraspinal L4-L5 regions using real-time ultrasound imaging (RUSI). Methods Lumbar paraspinal regions of 20 healthy physically active male volunteers were stimulated at 20, 50, and 80 Hz. Ultrasound images of the LM, TrA, OI, and obliquus externus (OE) were captured during stimulation at each frequency. Results The thicknesses of superficial LM and deep LM as measured by RUSI were greater during NMES than at rest for all three frequencies (p<0.05). The thicknesses in TrA, OI, and OE were also significantly greater during NMES of lumbar paraspinal regions than at rest (p<0.05). Conclusion The studied transcutaneous NMES of the lumbar paraspinal region significantly activated deep spinal stabilizing muscle (LM) and the abdominal lumbar stabilizing muscles TrA and OI as evidenced by RUSI. The findings of this study suggested that transcutaneous NMES might be useful for improving spinal stability and strength in patients having difficulty initiating contraction of these muscles. PMID:25229029

  2. Nanocrystalline brookite with enhanced stability and photocatalytic activity: influence of lanthanum(III) doping.

    PubMed

    Perego, Céline; Wang, Yu-Heng; Durupthy, Olivier; Cassaignon, Sophie; Revel, Renaud; Jolivet, Jean-Pierre

    2012-02-01

    Metastable TiO(2) polymorphs are more promising materials than rutile for specific applications such as photocatalysis or catalysis support. This was clearly demonstrated for the anatase phase but still under consideration for brookite, which is difficult to obtain as pure phase. Moreover, the surface doping of anatase with lanthanum ions is known to both increase the thermal stability of the metastable phase and improve its photocatalytic activity. In this study, TiO(2) nanoparticles of almost only the brookite structure were prepared by a simple sol-gel procedure in aqueous solution. The nanoparticles were then doped with lanthanum(III) ions. The thermal stability of the nanoparticles was analyzed by X-ray diffraction and kinetic models were successfully applied to quantify phases evolutions. The presence of surface-sorbed lanthanum(III) ions increased the phase stability of at least 200 °C and this temperature shift was attributed to the selective phase stabilization of metastable TiO(2) polymorphs. Moreover, the combination of the surface doping ions and the thermal treatment induces the vanishing of the secondary anatase phase, and the photocatalytic tests on the doped brookite nanoparticles demonstrated that the doping increased photocatalytic activity and that the extent depended on the duration of the sintering treatment.

  3. Modeling the effect of water activity and storage temperature on chemical stability of coffee brews.

    PubMed

    Manzocco, Lara; Nicoli, Maria Cristina

    2007-08-01

    This work was addressed to study the chemical stability of coffee brew derivatives as a function of water activity (aw) and storage temperature. To this purpose, coffee brew was freeze-dried, equilibrated at increasing aw values, and stored for up to 10 months at different temperatures from -30 to 60 degrees C. The chemical stability of the samples was assessed by measuring H3O+ formation during storage. Independently of storage temperature, the rate of H3O+ formation was considerably low only when aw was reduced below 0.5 (94% w/w). Beyond this critical boundary, the rate increased, reaching a maximum value at ca. 0.8 aw (78% w/w). Further hydration up to the aw of the freshly prepared beverage significantly increased chemical stability. It was suggested that mechanisms other than lactones' hydrolysis, probably related to nonenzymatic browning pathways, could contribute to the observed increase in acidity during coffee staling. The temperature dependence of H3O+ formation was well-described by the Arrhenius equation in the entire aw range considered. However, aw affected the apparent activation energy and frequency factor. These effects were described by simple equations that were used to set up a modified Arrhenius equation. This model was validated by comparing experimental values, not used to generate the model, with those estimated by the model itself. The model allowed efficient prediction of the chemical stability of coffee derivatives on the basis of only the aw value and storage temperature. PMID:17658750

  4. Alkyl Caffeates Improve the Antioxidant Activity, Antitumor Property and Oxidation Stability of Edible Oil

    PubMed Central

    Wang, Jun; Gu, Shuang-Shuang; Pang, Na; Wang, Fang-Qin; Pang, Fei; Cui, Hong-Sheng; Wu, Xiang-Yang; Wu, Fu-An

    2014-01-01

    Caffeic acid (CA) is distributed widely in nature and possesses strong antioxidant activity. However, CA has lower solubility in non-polar media, which limits its application in fat-soluble food. To increase the lipophilicity of natural antioxidant CA, a series of alkyl caffeates were synthesized and their antioxidant and antitumor activities were investigated. The antioxidant parameters, including the induction period, acid value and unsaturated fatty acid content, of the alkyl caffeates in edible oil were firstly investigated. The results indicated that alkyl caffeates had a lower DPPH IC50 (14–23 µM) compared to CA, dibutyl hydroxy toluene (BHT) and Vitamin C (24–51 µM), and significantly inhibited four human cancer cells (SW620, SW480, SGC7901 and HepG2) with inhibition ratio of 71.4–78.0% by a MTT assay. With regard to the induction period and acid value assays, methyl and butyl caffeates had higher abilities than BHT to restrain the oxidation process and improve the stability of edible oil. The addition of ethyl caffeate to oil allowed maintenance of a higher unsaturated fatty acid methyl ester content (68.53%) at high temperatures. Overall, the alkyl caffeats with short chain length (n<5) assessed better oxidative stability than those with long chain length. To date, this is the first report to the correlations among the antioxidant activity, anticancer activity and oxidative stability of alkyl caffeates. PMID:24760050

  5. Evaluation of methane oxidation activity in waste biocover soil during landfill stabilization.

    PubMed

    He, Ruo; Wang, Jing; Xia, Fang-Fang; Mao, Li-Juan; Shen, Dong-Sheng

    2012-10-01

    Biocover soil has been demonstrated to have high CH(4) oxidation capacity and is considered as a good alternative cover material to mitigate CH(4) emission from landfills, yet the response of CH(4) oxidation activity of biocover soils to the variation of CH(4) loading during landfill stabilization is poorly understood. Compared with a landfill cover soil (LCS) collected from Hangzhou Tianziling landfill cell, the development of CH(4) oxidation activity of waste biocover soil (WBS) was investigated using simulated landfill systems in this study. Although a fluctuation of influent CH(4) flux occurred during landfill stabilization, the WBS covers showed a high CH(4) removal efficiency of 94-96% during the entire experiment. In the LCS covers, the CH(4) removal efficiencies varied with the fluctuation of CH(4) influent flux, even negative ones occurred due to the storage of CH(4) in the soil porosities after the high CH(4) influent flux of ~137 gm(-2) d(-1). The lower concentrations of O(2) and CH(4) as well as the higher concentration of CO(2) were observed in the WBS covers than those in the LCS covers. The highest CH(4) oxidation rates of the two types of soil covers both occurred in the bottom layer (20-30 cm). Compared to the LCS, the WBS showed higher CH(4) oxidation activity and methane monooxygenase activity over the course of the experiment. Overall, this study indicated the WBS worked well for the fluctuation of CH(4) influent flux during landfill stabilization.

  6. Alkyl caffeates improve the antioxidant activity, antitumor property and oxidation stability of edible oil.

    PubMed

    Wang, Jun; Gu, Shuang-Shuang; Pang, Na; Wang, Fang-Qin; Pang, Fei; Cui, Hong-Sheng; Wu, Xiang-Yang; Wu, Fu-An

    2014-01-01

    Caffeic acid (CA) is distributed widely in nature and possesses strong antioxidant activity. However, CA has lower solubility in non-polar media, which limits its application in fat-soluble food. To increase the lipophilicity of natural antioxidant CA, a series of alkyl caffeates were synthesized and their antioxidant and antitumor activities were investigated. The antioxidant parameters, including the induction period, acid value and unsaturated fatty acid content, of the alkyl caffeates in edible oil were firstly investigated. The results indicated that alkyl caffeates had a lower DPPH IC₅₀ (14-23 µM) compared to CA, dibutyl hydroxy toluene (BHT) and Vitamin C (24-51 µM), and significantly inhibited four human cancer cells (SW620, SW480, SGC7901 and HepG2) with inhibition ratio of 71.4-78.0% by a MTT assay. With regard to the induction period and acid value assays, methyl and butyl caffeates had higher abilities than BHT to restrain the oxidation process and improve the stability of edible oil. The addition of ethyl caffeate to oil allowed maintenance of a higher unsaturated fatty acid methyl ester content (68.53%) at high temperatures. Overall, the alkyl caffeats with short chain length (n<5) assessed better oxidative stability than those with long chain length. To date, this is the first report to the correlations among the antioxidant activity, anticancer activity and oxidative stability of alkyl caffeates. PMID:24760050

  7. Formation of disulfide bonds in insect prophenoloxidase enhances immunity through improving enzyme activity and stability.

    PubMed

    Lu, Anrui; Peng, Qin; Ling, Erjun

    2014-06-01

    Type 3 copper proteins, including insect prophenoloxidase (PPO), contain two copper atoms in the active site pocket and can oxidize phenols. Insect PPO plays an important role in immunity. Insects and other invertebrates show limited recovery from pathogen invasion and wounds if phenoloxidase (PO) activity is low. In most insect PPOs, two disulfide bonds are present near the C-terminus. However, in Pimpla hypochondriaca (a parasitoid wasp), each PPO contains one disulfide bond. We thus questioned whether the formation of two sulfide bonds in insect PPOs improved protein stability and/or increased insect innate immunity over time. Using Drosophila melanogaster PPO1 as a model, one or two disulfide bonds were deleted to evaluate the importance of disulfide bonds in insect immunity. rPPO1 and mutants lacking disulfide bonds could be expressed and showed PO activity. However, the PO activities of mutants lacking one or two disulfide bonds significantly decreased. Deletion of disulfide bonds also reduced PPO thermostability. Furthermore, antibacterial activities against Escherichia coli and Bacillus subtilis significantly decreased when disulfide bonds were deleted. Therefore, the formation of two disulfide bond(s) in insect PPO enhances antibacterial activity by increasing PO activity and stability.

  8. Liposomal encapsulation of yeast alcohol dehydrogenase with cofactor for stabilization of the enzyme structure and activity.

    PubMed

    Yoshimoto, Makoto; Sato, Mami; Yoshimoto, Noriko; Nakao, Katsumi

    2008-01-01

    Yeast alcohol dehydrogenase (YADH) with its cofactor nicotinamide adenine dinucleotide (NAD+) could be stably encapsulated in liposomes composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine). The YADH- and NAD+-containing liposomes (YADH-NADL) were 100 nm in mean diameter. The liposomal YADH and NAD+ concentrations were 2.3 mg/mL and 3.9 mM, respectively. A synergistic effect of the liposomal encapsulation and the presence of NAD+ was examined on the thermal stability of YADH at 45 and 50 degrees C. The enzyme stability of the YADH-NADL was compared to the stabilities of the liposomal YADH (YADHL) containing 3.3 mg/mL YADH without NAD+ as well as the free YADH with and without NAD+. Free YADH was increasingly deactivated during its incubation at 45 degrees C for 2 h with decrease of the enzyme concentration from 3.3 to 0.01 mg/mL because of the dissociation of tetrameric YADH into its subunits. At that temperature, the coexistence of free NAD+ at 3.9 mM improved the stability of free YADH at 2.3 mg/mL through forming their thermostable complex, although the stabilization effect of NAD+ was lowered at 50 degrees C. The turbidity measurements for the above free YADH solution with and without NAD+ revealed that the change in the enzyme tertiary structure was much more pronounced at 50 degrees C than at 45 degrees C even in the presence of NAD+. This suggests that YADH was readily deactivated in free solution due to a decrease in the inherent affinity of YADH with NAD+. On the other hand, both liposomal enzyme systems, YADH-NADL and YADHL, showed stabilities at both 45 and 50 degrees C much higher than those of the above free enzyme systems, YADH/NAD+ and YADH. These results imply that the liposome membranes stabilized the enzyme tertiary and thus quaternary structures. Furthermore, the enzyme activity of the YADH-NADL showed a stability higher than that of the YADHL with a more remarkable effect of NAD+ at 50 degrees C than at 45 degrees C. This was

  9. Characterization of the activity and stability of amylase from saliva and detergent: laboratory practicals for studying the activity and stability of amylase from saliva and various commercial detergents.

    PubMed

    Valls, Cristina; Rojas, Cristina; Pujadas, Gerard; Garcia-Vallve, Santi; Mulero, Miquel

    2012-07-01

    This article presents two integrated laboratory exercises intended to show students the role of α-amylases (AAMYs) in saliva and detergents. These laboratory practicals are based on the determination of the enzymatic activity of amylase from saliva and different detergents using the Phadebas test (quantitative) and the Lugol test (qualitative) under different conditions (e.g. variations in temperature and alkalinity). This work also proposes the study of enzyme stability in the presence of several surfactants and oxidizing agents using the same technical approach. The proposed laboratory exercises promote the understanding of the physiological function of this enzyme and the biotechnological applications of AAMYs in the detergent industry. The exercises also promote the understanding that the enzymatic stability and performance are dependent on the organism of origin, and if necessary, these properties could be modified by genetic engineering. In addition, this article reinforces the development of laboratory skills, problem-solving capabilities, and the ability to write a laboratory report. The exercises are proposed primarily as an undergraduate project for advanced students in the biochemical and biotechnological sciences. These laboratory practicals are complementary to the previously published BAMBED article (Biochemistry and Molecular Biology Education Vol. 39, No. 4, pp. 280-290, 2011) on detergent proteases.

  10. Why do active and stabilized dunes coexist under the same climatic conditions?

    PubMed

    Yizhaq, Hezi; Ashkenazy, Yosef; Tsoar, Haim

    2007-05-01

    Sand dunes can be active (mobile) or stable, mainly as a function of vegetation cover and wind power. However, there exists as yet unexplained evidence for the coexistence of bare mobile dunes and vegetated stabilized dunes under the same climatic conditions. We propose a model for dune vegetation cover driven by wind power that exhibits bistabilty and hysteresis with respect to the wind power. For intermediate wind power, mobile and stabilized dunes can coexist, whereas for low (or high) wind power they can be fixed (or mobile). Climatic change or human intervention can turn active dunes into stable ones and vice versa; our model predicts that prolonged droughts with stronger winds can result in dune reactivation.

  11. Body stability and muscle and motor cortex activity during walking with wide stance

    PubMed Central

    Farrell, Brad J.; Bulgakova, Margarita A.; Beloozerova, Irina N.; Sirota, Mikhail G.

    2014-01-01

    Biomechanical and neural mechanisms of balance control during walking are still poorly understood. In this study, we examined the body dynamic stability, activity of limb muscles, and activity of motor cortex neurons [primarily pyramidal tract neurons (PTNs)] in the cat during unconstrained walking and walking with a wide base of support (wide-stance walking). By recording three-dimensional full-body kinematics we found for the first time that during unconstrained walking the cat is dynamically unstable in the forward direction during stride phases when only two diagonal limbs support the body. In contrast to standing, an increased lateral between-paw distance during walking dramatically decreased the cat's body dynamic stability in double-support phases and prompted the cat to spend more time in three-legged support phases. Muscles contributing to abduction-adduction actions had higher activity during stance, while flexor muscles had higher activity during swing of wide-stance walking. The overwhelming majority of neurons in layer V of the motor cortex, 82% and 83% in the forelimb and hindlimb representation areas, respectively, were active differently during wide-stance walking compared with unconstrained condition, most often by having a different depth of stride-related frequency modulation along with a different mean discharge rate and/or preferred activity phase. Upon transition from unconstrained to wide-stance walking, proximal limb-related neuronal groups subtly but statistically significantly shifted their activity toward the swing phase, the stride phase where most of body instability occurs during this task. The data suggest that the motor cortex participates in maintenance of body dynamic stability during locomotion. PMID:24790167

  12. Body stability and muscle and motor cortex activity during walking with wide stance.

    PubMed

    Farrell, Brad J; Bulgakova, Margarita A; Beloozerova, Irina N; Sirota, Mikhail G; Prilutsky, Boris I

    2014-08-01

    Biomechanical and neural mechanisms of balance control during walking are still poorly understood. In this study, we examined the body dynamic stability, activity of limb muscles, and activity of motor cortex neurons [primarily pyramidal tract neurons (PTNs)] in the cat during unconstrained walking and walking with a wide base of support (wide-stance walking). By recording three-dimensional full-body kinematics we found for the first time that during unconstrained walking the cat is dynamically unstable in the forward direction during stride phases when only two diagonal limbs support the body. In contrast to standing, an increased lateral between-paw distance during walking dramatically decreased the cat's body dynamic stability in double-support phases and prompted the cat to spend more time in three-legged support phases. Muscles contributing to abduction-adduction actions had higher activity during stance, while flexor muscles had higher activity during swing of wide-stance walking. The overwhelming majority of neurons in layer V of the motor cortex, 82% and 83% in the forelimb and hindlimb representation areas, respectively, were active differently during wide-stance walking compared with unconstrained condition, most often by having a different depth of stride-related frequency modulation along with a different mean discharge rate and/or preferred activity phase. Upon transition from unconstrained to wide-stance walking, proximal limb-related neuronal groups subtly but statistically significantly shifted their activity toward the swing phase, the stride phase where most of body instability occurs during this task. The data suggest that the motor cortex participates in maintenance of body dynamic stability during locomotion.

  13. Cadmium Activates Multiple Signaling Pathways That Coordinately Stimulate Akt Activity to Enhance c-Myc mRNA Stability

    PubMed Central

    Tsai, Jia-Shiuan; Chao, Cheng-Han; Lin, Lih-Yuan

    2016-01-01

    Cadmium is a known environmental carcinogen. Exposure of Cd leads to the activation of several proto-oncogenes in cells. We investigated here the mechanism of c-Myc expression in hepatic cells under Cd treatment. The c-Myc protein and mRNA levels increased in dose- and time-dependent manners in HepG2 cells with Cd treatment. This increase was due to an increase in c-Myc mRNA stability. To explore the mechanism involved in enhancing the mRNA stability, several cellular signaling factors that evoked by Cd treatment were analyzed. PI3K, p38, ERK and JNK were activated by Cd. However, ERK did not participate in the Cd-induced c-Myc expression. Further analysis revealed that mTORC2 was a downstream factor of p38. PI3K, JNK and mTORC2 coordinately activated Akt. Akt was phosphorylated at Thr450 in the untreated cells. Cd treatment led to additional phosphorylation at Thr308 and Ser473. Blocking any of the three signaling factors resulted in the reduction of phosphorylation level at all three Akt sites. The activated Akt phosphorylated Foxo1 and allowed the modified protein to translocate into the cytoplasm. We conclude that Cd-induced accumulation of c-Myc requires the activation of several signaling pathways. The signals act coordinately for Akt activation and drive the Foxo1 from the nucleus to the cytoplasm. Reduction of Foxo1 in the nucleus reduces the transcription of its target genes that may affect c-Myc mRNA stability, resulting in a higher accumulation of the c-Myc proteins. PMID:26751215

  14. Active stabilization of the optical part in fiber optic quantum cryptography

    NASA Astrophysics Data System (ADS)

    Balygin, K. A.; Klimov, A. N.; Kulik, S. P.; Molotkov, S. N.

    2016-03-01

    The method of active stabilization of the polarization and other parameters of the optical part of a two-pass fiber optic quantum cryptography has been proposed and implemented. The method allows the completely automated maintenance of the visibility of interference close to an ideal value ( V ≥ 0.99) and the reduction of the instrumental contribution to the error in primary keys (QBER) to 0.5%.

  15. Rotation in a reversed field pinch with active feedback stabilization of resistive wall modes

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Menmuir, S.; Brunsell, P. R.; Kuldkepp, M.

    2006-09-01

    Active feedback stabilization of multiple resistive wall modes (RWMs) has been successfully proven in the EXTRAP T2R reversed field pinch. One of the features of plasma discharges operated with active feedback stabilization, in addition to the prolongation of the plasma discharge, is the sustainment of the plasma rotation. Sustained rotation is observed both for the internally resonant tearing modes (TMs) and the intrinsic impurity oxygen ions. Good quantitative agreement between the toroidal rotation velocities of both is found: the toroidal rotation is characterized by an acceleration phase followed, after one wall time, by a deceleration phase that is slower than in standard discharges. The TMs and the impurity ions rotate in the same poloidal direction with also similar velocities. Poloidal and toroidal velocities have comparable amplitudes and a simple model of their radial profile reproduces the main features of the helical angular phase velocity. RWMs feedback does not qualitatively change the TMs behaviour and typical phenomena such as the dynamo and the 'slinky' are still observed. The improved sustainment of the plasma and TMs rotation occurs also when feedback only acts on internally non-resonant RWMs. This may be due to an indirect positive effect, through non-linear coupling between TMs and RWMs, of feedback on the TMs or to a reduced plasma-wall interaction affecting the plasma flow rotation. Electromagnetic torque calculations show that with active feedback stabilization the TMs amplitude remains well below the locking threshold condition for a thick shell. Finally, it is suggested that active feedback stabilization of RWMs and current profile control techniques can be employed simultaneously thus improving both the plasma duration and its confinement properties.

  16. A dynamic model for generating actuator specifications for small arms barrel active stabilization

    NASA Astrophysics Data System (ADS)

    Pathak, Anupam; Brei, Diann; Luntz, Jonathan; Lavigna, Chris

    2006-03-01

    Due to stresses encountered in combat, it is known that soldier marksmanship noticeably decreases regardless of prior training. Active stabilization systems in small arms have potential to address this problem to increase soldier survivability and mission effectiveness. The key to success is proper actuator design, but this is highly dependent on proper specification which is challenging due to the human/weapon interaction. This paper presents a generic analytical dynamic model which is capable of defining the necessary actuation specifications for a wide range of small arms platforms. The model is unique because it captures the human interface--shoulder and arm--that introduces the jitter disturbance in addition to the geometry, inertial properties and active stabilization stiffness of the small arms platform. Because no data to date is available for actual shooter-induced disturbance in field conditions, a method is given using the model to back-solve from measured shooting range variability data the disturbance amplitude information relative to the input source (arm or shoulder). As examples of the applicability of the model to various small arms systems, two different weapon systems were investigated: the M24 sniper weapon and the M16 assault rifle. In both cases, model based simulations provided valuable insight into impact on the actuation specifications (force, displacement, phase, frequency) due to the interplay of the human-weapon-active stabilization interface including the effect of shooter-disturbance frequency, disturbance location (shoulder vs. arm), and system parameters (stiffness, barrel rotation).

  17. Activity and Stability of Biofilm Uricase of Lactobacillus plantarum for Uric Acid Biosensor

    NASA Astrophysics Data System (ADS)

    Iswantini, Dyah; Rachmatia, Rescy; Diana, Novita Rose; Nurhidayat, Novik; Akhiruddin; Saprudin, Deden

    2016-01-01

    Research of uric acid biosensor used a Lactobacillus plantarum was successfully conducted. Lactobacillus plantarum could produce uricase that could be used as uric acid biosensor. Therefore, lifetime of bacteria were quite short that caused the bacteria could not detect uric acid for a long time. To avoid this problem, development of biofilm for uric acid biosensor is important. Biofilms is a structured community of bacterial cells, stick together and are able to maintain a bacteria in an extreme environments. The purpose of present study was to determine and compare the activity of uricase produced by L. plantarum, deposited whithin biofilm and planktonic bacteria on glassy carbon electrode (GCEb & GCE), also to determine the stability of biofilm. The optimization process was conducted by using temperature, pH, and substrate concentration as the parameters. It showed that the activity of uricase within biofilm was able to increase the oxidation current. GCEb and GCE yielded the oxidation current in the amount of 47.24 μA and 23.04 μA, respectively, under the same condition. Results indicated that the optimum condition for uric acid biosensor using biofilm were pH 10, temperature of 40 oC, and uric acid concentration of 5 mM. The stability of GCEb decreased after 10 hours used, with decreasing percentage over 86.33%. This low stability probably caused by the unprotected active site of the enzyme that the enzyme is easier to experience the denaturation.

  18. Chemical stability of plasmon-active silver tips for tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kalbacova, Jana; Rodriguez, Raul D.; Desale, Vivek; Schneider, Maximilian; Amin, Ihsan; Jordan, Rainer; Zahn, Dietrich R. T.

    2015-01-01

    Silver nanostructures are used in tip- and surface-enhanced Raman spectroscopy due to their high electric field enhancement over almost the entire visible spectral range. However, the low chemical stability of silver, compared to other noble metals, promotes silver sulfide and sulfate formation which decreases its plasmonic activity. This is why silver tips are usually prepared on the same day of the experiments or are disregarded in favour of gold that is chemically more stable. Since silver degradation cannot be avoided, we hypothesized that a protection layer may be able to minimize or control degradation. In this contribution, we report the successful preparation of 4-biphenylthiol and 4'-nitro-4-biphenylthiol self-assembled monolayers on silver tips in order to protect them against tarnishing and to investigate the effect on the life-time of the plasmonic activity. The electrochemically etched wire surface was probed via Raman spectroscopy and scanning electron microscopy. The best long term stability and resistance against corrosion was shown by a monolayer of 4-biphenylthiol formed from dimethylformamide which did not display any degradation of the metallic tip during the observed period. Here, we demonstrate an easy and straightforward approach towards increasing the chemical stability of silver TERS-active probes.

  19. Iridium-Tin oxide solid-solution nanocatalysts with enhanced activity and stability for oxygen evolution

    NASA Astrophysics Data System (ADS)

    Li, Guangfu; Yu, Hongmei; Yang, Donglei; Chi, Jun; Wang, Xunying; Sun, Shucheng; Shao, Zhigang; Yi, Baolian

    2016-09-01

    Addressing major challenges from the material cost, efficiency and stability, it is highly desirable to develop high-performance catalysts for oxygen evolution reaction (OER). Herein we explore a facile surfactant-assisted approach for fabricating Irsbnd Sn (Ir/Sn = 0.6/0.4, by mol.) nano-oxide catalysts with good morphology control. Direct proofs from XRD and X-ray photoelectron spectra indicate hydrophilic triblock polymer (TBP, like Pluronic® F108) surfactant can boost the formation of stable solid-solution structure. With the TBP hydrophilic and block-length increase, the fabricated Irsbnd Sn oxides undergoing the rod-to-sphere transition obtain the relatively lower crystallization, decreased crystallite size, Ir-enriched surface and incremental available active sites, all of which can bolster the OER activity and stability. Meanwhile, it is observed that the coupled Ir oxidative etching takes a crucial role in determining the material structure and performance. Compared with commercial Ir black, half-cell tests confirm F108-assistant catalysts with over 40 wt% Ir loading reduction show 2-fold activity enhancement as well as significant stability improvement. The lowest cell voltage using 0.88 mg cm-2 Ir loading is only 1.621 V at 1000 mA cm-2 and 80 °C with a concomitant energy efficiency of 75.8% which is beyond the DOE 2017 efficiency target of 74%.

  20. Hammerhead ribozyme activity and oligonucleotide duplex stability in mixed solutions of water and organic compounds

    PubMed Central

    Nakano, Shu-ichi; Kitagawa, Yuichi; Miyoshi, Daisuke; Sugimoto, Naoki

    2014-01-01

    Nucleic acids are useful for biomedical targeting and sensing applications in which the molecular environment is different from that of a dilute aqueous solution. In this study, the influence of various types of mixed solutions of water and water-soluble organic compounds on RNA was investigated by measuring the catalytic activity of the hammerhead ribozyme and the thermodynamic stability of an oligonucleotide duplex. The compounds with a net neutral charge, such as poly(ethylene glycol), small primary alcohols, amide compounds, and aprotic solvent molecules, added at high concentrations changed the ribozyme-catalyzed RNA cleavage rate, with the magnitude of the effect dependent on the NaCl concentration. These compounds also changed the thermodynamic stability of RNA base pairs of an oligonucleotide duplex and its dependence on the NaCl concentration. Specific interactions with RNA molecules and reduced water activity could account for the inhibiting effects on the ribozyme catalysis and destabilizing effects on the duplex stability. The salt concentration dependence data correlated with the dielectric constant, but not with water activity, viscosity, and the size of organic compounds. This observation suggests the significance of the dielectric constant effects on the RNA reactions under molecular crowding conditions created by organic compounds. PMID:25161873

  1. Stability and antioxidant activity of gossypol derivative immobilized on N-polyvinylpyrrolidone.

    PubMed

    Ionov, Maksim; Gordiyenko, Nataliya V; Zukowska, Izabela; Tokhtaeva, Elmira; Mareninova, Olga A; Baram, Nina; Ziyaev, Khairulla; Rezhepov, Kuralbay; Zamaraeva, Maria

    2012-12-01

    The objective of this study is analysis of stability and antioxidant and antiradical activities of the gossypol derivative - megosin conjugated with N-polyvinylpyrrolidone (PVP). The results of study have shown the greater stability of megosin+PVP than megosin in aqueous solution of wide range of pH. Here we also demonstrated that megosin+PVP, named rometin, possess high antioxidant activity in the same range as well known antioxidant trolox as determined by its ability to scavenge free ABTS(+) and DPPH radicals in vitro. In addition, megosin+PVP was able to prevent accumulation of products of lipid peroxidation (thiobarbituric acid reactive substances and diene conjugates) and lysophospholipids formation in mitochondria membranes caused by CCl(4)-induced oxidative stress in rat liver in vivo. Furthermore, megosin+PVP rescued mitochondrial functions, such as respiration and oxidative phosphorylation, which declined after CCl(4) administration. Thus we present that the conjugation of megosin to PVP increase its stability and remain antioxidant activity in vivo and in vitro.

  2. Remarkable enhancement of O₂ activation on yttrium-stabilized zirconia surface in a dual catalyst bed.

    PubMed

    Richard, Mélissandre; Can, Fabien; Duprez, Daniel; Gil, Sonia; Giroir-Fendler, Anne; Bion, Nicolas

    2014-10-13

    Yttrium-stabilized zirconia (YSZ) has been extensively studied as an electrolyte material for solid oxide fuel cells (SOFC) but its performance in heterogeneous catalysis is also the object of a growing number of publications. In both applications, oxygen activation on the YSZ surface remains the step that hinders utilization at moderate temperature. It was demonstrated by oxygen isotope exchange that a dual catalyst bed system consisting of two successive LaMnO3 and YSZ beds without intimate contact drastically enhances oxygen activation on the YSZ surface at 698 K. It can be concluded that LaMnO3 activates the triplet ground-state of molecular oxygen into a low-lying singlet state, thereby facilitating the activation of the O2 molecule on the YSZ oxygen vacancy sites. This phenomenon is shown to improve the catalytic activity of the LaMnO3-Pd/YSZ system for the partial oxidation of methane.

  3. Macrolide-Based Microtubule-Stabilizing Agents - Chemistry and Structure-Activity Relationships

    NASA Astrophysics Data System (ADS)

    Pfeiffer, B.; Kuzniewski, C. N.; Wullschleger, C.; Altmann, K.-H.

    This article provides an overview on the chemistry and structure-activity relationships of macrolide-based microtubule-stabilizing agents. The primary focus will be on the total synthesis or examples thereof, but a brief summary of the current state of knowledge on the structure-activity relationships of epothilones, laulimalide, dictyostatin, and peloruside A will also be given. This macrolide class of compounds, over the last decade, has become the subject of growing interest due to their ability to inhibit human cancer cell proliferation through a taxol-like mechanism of action.

  4. Active Climate Stabilization: Practical Physics-Based Approaches to Prevention of Climate Change

    DOE R&D Accomplishments Database

    Teller, E.; Hyde, T.; Wood, L.

    2002-04-18

    We offer a case for active technical management of the radiative forcing of the temperatures of the Earth's fluid envelopes, rather than administrative management of atmospheric greenhouse gas inputs, in order to stabilize both the global- and time-averaged climate and its mesoscale features. We suggest that active management of radiative forcing entails negligible--indeed, likely strongly negative--economic costs and environmental impacts, and thus best complies with the pertinent mandate of the UN Framework Convention on Climate Change. We propose that such approaches be swiftly evaluated in sub-scale in the course of an intensive international program.

  5. Development and flight evaluation of an augmented stability active controls concept: Executive summary

    NASA Technical Reports Server (NTRS)

    Guinn, W. A.

    1982-01-01

    A pitch active control system (PACS) was developed and flight tested on a wide body jet transport (L-1011) with a flying horizontal stabilizer. Two dual channel digital computers and the associated software provide command signals to a dual channel series servo which controls the stabilizer power actuators. Input sensor signals to the computer are pitch rate, column trim position, and dynamic pressure. Control laws are given for the PACS and the system architecture is defined. Discussions are given regarding piloted flight simulation and vehicle system simulation and vehicle system simulation tests that are performed to verify control laws and system operation prior to installation on the aircraft. Modifications to the basic aircraft included installation of the PACS, addition of a c.g. management system to provide a c.g. range from 25 to 39% mac, and downrigging of the geared elevator to provide the required nose down control authority for aft c.g. flight test conditions. Three pilots used the Cooper-Harper Rating Scale to judge flying qualities of the aircraft with PACS on and off. The handling qualities with the c.g. at 39% mac (41% stability margin) and PACS operating were judged to be as good as the handling qualities with the c.g. at 25% mac (+15% stability margin) and PACS off.

  6. Structure-Activity Relationship Analysis of the Thermal Stabilities of Nitroaromatic Compounds Following Different Decomposition Mechanisms.

    PubMed

    Li, Jiazhong; Liu, Huanxiang; Huo, Xing; Gramatica, Paola

    2013-02-01

    The decomposition behavior of energetic materials is very important for the safety problems concerning their production, transportation, use and storage, because molecular decomposition is intimately connected to their explosive properties. Nitroaromatic compounds, particularly nitrobenzene derivatives, are often considered as prototypical energetic molecules, and some of them are commonly used as high explosives. Quantitative structure-activity relationship (QSAR) represents a potential tool for predicting the thermal stability properties of energetic materials. But it is reported that constructing general reliable models to predict their stability and their potential explosive properties is a very difficult task. In this work, we make our efforts to investigate the relationship between the molecular structures and corresponding thermal stabilities of 77 nitrobenzene derivatives with various substituent functional groups (in ortho, meta and/or para positions). The proposed best MLR model, developed by the new software QSARINS, based on Genetic Algorithm for variable selection and with various validation tools, is robust, stable and predictive with R(2) of 0.86, QLOO (2) of 0.79 and CCC of 0.90. The results indicated that, though difficult, it is possible to build predictive, externally validated QSAR models to estimate the thermal stability of nitroaromatic compounds.

  7. Development and flight evaluation of an augmented stability active controls concept with a small horizontal tail

    NASA Technical Reports Server (NTRS)

    Rising, J. J.; Kairys, A. A.; Maass, C. A.; Siegart, C. D.; Rakness, W. L.; Mijares, R. D.; King, R. W.; Peterson, R. S.; Hurley, S. R.; Wickson, D.

    1982-01-01

    A limited authority pitch active control system (PACS) was developed for a wide body jet transport (L-1011) with a flying horizontal stabilizer. Two dual channel digital computers and the associated software provide command signals to a dual channel series servo which controls the stabilizer power actuators. Input sensor signals to the computer are pitch rate, column-trim position, and dynamic pressure. Control laws are given for the PACS and the system architecture is defined. The piloted flight simulation and vehicle system simulation tests performed to verify control laws and system operation prior to installation on the aircraft are discussed. Modifications to the basic aircraft are described. Flying qualities of the aircraft with the PACS on and off were evaluated. Handling qualities for cruise and high speed flight conditions with the c.g. at 39% mac ( + 1% stability margin) and PACS operating were judged to be as good as the handling qualities with the c.g. at 25% (+15% stability margin) and PACS off.

  8. Surface active stabilizer Tyloxapol in colloidal dispersions exerts cytostatic effects and apoptotic dismissal of cells

    SciTech Connect

    Kristl, Julijana; Teskac, Karmen; Milek, Miha; Mlinaric-Rascan, Irena

    2008-10-15

    Solid lipid nanoparticles (SLN) have been praised for their advantageous drug delivery properties such as biocompatibility, controlled release and passive drug targeting. However, the cytotoxicity of SLN and their ingredients, especially over a longer time period, has not been investigated in detail. We examined the critical issues regarding the use of a surface active stabilizer Tyloxapol (Tyl) for the preparation of solid lipid particles (SLP) and their effects on cellular functions and viability. SLP composed of behenate, phospholipids and a stabilizer, Tyloxapol or Lutrol (Lut), were prepared by the lipid melt method, labeled with a fluorescent dye and tested on Jurkat or HEK293 cells. The nano-sized particles were rapidly internalized and exhibited cytoplasmic localization. Incubation of cells with SLP-Tyl resulted in a dose- and time-dependent cytostatic effect, and also caused moderate and delayed cytotoxicity. Tyloxapol solution or SLP-Tyl dispersion caused the detachment of HEK293 cells, a decrease in cell proliferation and alterations in cellular morphology. Cell cycle analysis revealed that, while the unfavourable effects of SLP-Tyl and Tyloxapol solution are similar initially, longer incubation results in partial recovery of cells incubated with the dispersion of SLP-Tyl, whereas the presence of Tyloxapol solution induces apoptotic cell death. These findings indicate that Tyloxapol is an unfavourable stabilizer of SLP used for intracellular delivery and reinforce the role of stabilizers in a design of SLP with minimal cytotoxic properties.

  9. Differential heat stability of amphenicols characterized by structural degradation, mass spectrometry and antimicrobial activity.

    PubMed

    Franje, Catherine A; Chang, Shao-Kuang; Shyu, Ching-Lin; Davis, Jennifer L; Lee, Yan-Wen; Lee, Ren-Jye; Chang, Chao-Chin; Chou, Chi-Chung

    2010-12-01

    Heat stability of amphenicols and the relationship between structural degradation and antimicrobial activity after heating has not been well investigated. Florfenicol (FF), thiamphenicol (TAP), and chloramphenicol (CAP) were heated at 100 degrees C in water, salt water, soybean sauce and chicken meat for up to 2h. Degradation and antimicrobial activity of the compounds was evaluated using capillary electrophoresis (CE) with UV-DAD spectrometry, minimum inhibitory concentration (MIC) assay, and gas chromatography with electron impact ionization mass spectrometry (GC-EI-MS). Heat stability of amphenicols in matrices was ranked as water> or =salt water>soybean sauce>meat, suggesting that heat degradation of amphenicols was accelerated in soybean sauce and was not protected in meat. Heat stability by drug and matrices was ranked as FF>TAP=CAP in water, FF=TAP>CAP in salt water, TAP> or =FF=CAP in soybean sauce, and TAP> or =FF=CAP in meat, indicating differential heat stability of amphenicols among the 3 drugs and in different matrices. In accordance with the less than 20% degradation, the MIC against Escherichia coli and Staphylococcus aureus did not change after 2h heating in water. A 5-min heating of amphenicols in water by microwave oven generated comparable percentage degradation to boiling in water bath for 30 min to 1h. Both CE and GC-MS analysis showed that heating of FF produced TAP but not FF amine as one of its breakdown products. In conclusion, despite close similarity in structure; amphenicols exhibited differential behavior toward heating degradation in solutions and protein matrices. Although higher degradations of amphenicols were observed in soybean sauce and meat, heating treatment may generate product with antimicrobial activity (FF to TAP), therefore, heating of amphenicol residues in food cannot always be assumed safe.

  10. Urease immobilized polymer hydrogel: Long-term stability and enhancement of enzymatic activity.

    PubMed

    Kutcherlapati, S N Raju; Yeole, Niranjan; Jana, Tushar

    2016-02-01

    A method has been developed in which an enzyme namely urease was immobilized inside hydrogel matrix to study the stability and enzymatic activity in room temperature (∼27-30°C). This urease coupled hydrogel (UCG) was obtained by amine-acid coupling reaction and this procedure is such that it ensured the wider opening of mobile flap of enzyme active site. A systematic comparison of urea-urease assay and the detailed kinetic data clearly revealed that the urease shows activity for more than a month when stored at ∼27-30°C in case of UCG whereas it becomes inactive in case of free urease (enzyme in buffer solution). The aqueous microenvironment inside the hydrogel, unusual morphological features and thermal behaviour were believed to be the reasons for unexpected behaviour. UCG displayed enzyme activity at basic pH and up to 60°C. UCG showed significant enhancement in activity against thermal degradation compared to free urease. In summary, this method is a suitable process to stabilize the biomacromolecules in standard room temperature for many practical uses.

  11. Sorption and stability of mercury on activated carbon for emission control.

    PubMed

    Graydon, John W; Zhang, Xinzhi; Kirk, Donald W; Jia, Charles Q

    2009-09-15

    A leading strategy for control of mercury emissions from combustion processes involves removal of elemental mercury from the flue gas by injection of activated carbon sorbent. After particulate capture and disposal in a landfill, it is critical that the captured mercury remains permanently sequestered in the sorbent. The environmental stability of sorbed mercury was determined on two commercial, activated carbons, one impregnated using gaseous sulfur, and on two activated carbons that were impregnated with sulfur by reaction with SO(2). After loading with mercury vapor using a static technique, the stability of the sorbed mercury was characterized by two leaching methods. The standard toxicity characteristic leaching procedure showed leachate concentrations well below the limit of 0.2mg/L for all activated carbons. The nature of the sorbed mercury was further characterized by a sequential extraction scheme that was specifically optimized to distinguish clearly among the highly stable phases of mercury. This analysis revealed that there are two forms in which mercury is sequestered. In the sorbent that was impregnated by gaseous sulfur at a relatively low temperature, the mercury is present predominantly as HgS. In the other three sorbents, including two impregnated using SO(2), the mercury is predominantly present in the elemental form, physisorbed and chemisorbed to thiophene groups on the carbon surface. Both forms of binding are sufficiently stable to provide permanent sequestration of mercury in activated carbon sorbents after disposal.

  12. A small RNA activates CFA synthase by isoform-specific mRNA stabilization

    PubMed Central

    Fröhlich, Kathrin Sophie; Papenfort, Kai; Fekete, Agnes; Vogel, Jörg

    2013-01-01

    Small RNAs use a diversity of well-characterized mechanisms to repress mRNAs, but how they activate gene expression at the mRNA level remains not well understood. The predominant activation mechanism of Hfq-associated small RNAs has been translational control whereby base pairing with the target prevents the formation of an intrinsic inhibitory structure in the mRNA and promotes translation initiation. Here, we report a translation-independent mechanism whereby the small RNA RydC selectively activates the longer of two isoforms of cfa mRNA (encoding cyclopropane fatty acid synthase) in Salmonella enterica. Target activation is achieved through seed pairing of the pseudoknot-exposed, conserved 5′ end of RydC to an upstream region of the cfa mRNA. The seed pairing stabilizes the messenger, likely by interfering directly with RNase E-mediated decay in the 5′ untranslated region. Intriguingly, this mechanism is generic such that the activation is equally achieved by seed pairing of unrelated small RNAs, suggesting that this mechanism may be utilized in the design of RNA-controlled synthetic circuits. Physiologically, RydC is the first small RNA known to regulate membrane stability. PMID:24141880

  13. Urease immobilized polymer hydrogel: Long-term stability and enhancement of enzymatic activity.

    PubMed

    Kutcherlapati, S N Raju; Yeole, Niranjan; Jana, Tushar

    2016-02-01

    A method has been developed in which an enzyme namely urease was immobilized inside hydrogel matrix to study the stability and enzymatic activity in room temperature (∼27-30°C). This urease coupled hydrogel (UCG) was obtained by amine-acid coupling reaction and this procedure is such that it ensured the wider opening of mobile flap of enzyme active site. A systematic comparison of urea-urease assay and the detailed kinetic data clearly revealed that the urease shows activity for more than a month when stored at ∼27-30°C in case of UCG whereas it becomes inactive in case of free urease (enzyme in buffer solution). The aqueous microenvironment inside the hydrogel, unusual morphological features and thermal behaviour were believed to be the reasons for unexpected behaviour. UCG displayed enzyme activity at basic pH and up to 60°C. UCG showed significant enhancement in activity against thermal degradation compared to free urease. In summary, this method is a suitable process to stabilize the biomacromolecules in standard room temperature for many practical uses. PMID:26520823

  14. Activity and stability of the oxygen evolution reaction on electrodeposited Ru and its thermal oxides

    NASA Astrophysics Data System (ADS)

    Kim, Jin Yeong; Choi, Jihui; Kim, Ho Young; Hwang, Eunkyoung; Kim, Hyoung-Juhn; Ahn, Sang Hyun; Kim, Soo-Kil

    2015-12-01

    The activity and stability of Ru metal and its thermal oxide films for the oxygen evolution reaction (OER) were investigated. The metallic Ru films were prepared by electrodeposition on a Ti substrate and then thermally oxidized at various temperatures under atmospheric conditions. During long-term operation of the OER with cyclic voltammetry (CV) in H2SO4 electrolyte, changes in the properties of the Ru and its thermal oxides were monitored in terms of their morphology, crystal structure, and electronic structure. In the initial stages of the OER, all of the Ru thermal oxide films underwent an activation process that was related to the continuous removal of low-activity Ru oxides from the surface. With further cycling, the OER activity decreased. The rate of decrease was different for each Ru film and was related to the annealing temperatures. Monitoring of material properties indicates that the amount of stable anhydrous RuO2 is important for OER stability because it prevents both the severe dissolution of metallic Ru beneath the oxide surface and the formation of a less active hydrous RuO2 at the surface.

  15. Snapshots of enzymatic Baeyer-Villiger catalysis: oxygen activation and intermediate stabilization.

    PubMed

    Orru, Roberto; Dudek, Hanna M; Martinoli, Christian; Torres Pazmiño, Daniel E; Royant, Antoine; Weik, Martin; Fraaije, Marco W; Mattevi, Andrea

    2011-08-19

    Baeyer-Villiger monooxygenases catalyze the oxidation of carbonylic substrates to ester or lactone products using NADPH as electron donor and molecular oxygen as oxidative reactant. Using protein engineering, kinetics, microspectrophotometry, crystallography, and intermediate analogs, we have captured several snapshots along the catalytic cycle which highlight key features in enzyme catalysis. After acting as electron donor, the enzyme-bound NADP(H) forms an H-bond with the flavin cofactor. This interaction is critical for stabilizing the oxygen-activating flavin-peroxide intermediate that results from the reaction of the reduced cofactor with oxygen. An essential active-site arginine acts as anchoring element for proper binding of the ketone substrate. Its positively charged guanidinium group can enhance the propensity of the substrate to undergo a nucleophilic attack by the flavin-peroxide intermediate. Furthermore, the arginine side chain, together with the NADP(+) ribose group, forms the niche that hosts the negatively charged Criegee intermediate that is generated upon reaction of the substrate with the flavin-peroxide. The fascinating ability of Baeyer-Villiger monooxygenases to catalyze a complex multistep catalytic reaction originates from concerted action of this Arg-NADP(H) pair and the flavin subsequently to promote flavin reduction, oxygen activation, tetrahedral intermediate formation, and product synthesis and release. The emerging picture is that these enzymes are mainly oxygen-activating and "Criegee-stabilizing" catalysts that act on any chemically suitable substrate that can diffuse into the active site, emphasizing their potential value as toolboxes for biocatalytic applications.

  16. Estrogenic and antiandrogenic activities of 17 benzophenone derivatives used as UV stabilizers and sunscreens

    SciTech Connect

    Suzuki, Tomoharu; Kitamura, Shigeyuki . E-mail: skitamu@hiroshima-u.ac.jp; Khota, Ryuki; Sugihara, Kazumi; Fujimoto, Nariaki; Ohta, Shigeru

    2005-02-15

    Estrogenic and antiandrogenic activities of benzophenone and 16 of its derivatives, which are used as UV stabilizers, were comparatively examined with hormone-responsive reporter assay in various cell lines. Hydroxylated benzophenones exhibited estrogenic activity in human breast cancer cell line MCF-7, but their activities varied markedly. The highest activity was observed with 2,4,4'-trihydroxybenzophenone (2.4.4'-triOH-BP), followed by 2,3',4,4'-tetrahydroxybenzophenone, 4,4'-dihydroxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 4-hydroxybenzophenone and 2,4-dihydroxybenzophenone. Benzophenone itself showed little activity in the assay. In contrast, benzophenone and some related compounds showed significant inhibitory effects on the androgenic activity of dihydrotestosterone in rat fibroblast cell line NIH3T3. The highest activity was observed with 2,4,4'-triOH-BP, followed by 2,3',4,4'-tetrahydroxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 3-hydroxybenzophenone and 2,2'-dihydroxybenzophenone. However, 2,3,4,4'-tetrahydroxybenzophenone and 2,3,4-trihydroxybenzophenone showed little activity. 2,4-Dihydroxybenzophenone, 2,4,4'-triOH-BP and benzophenone gave positive responses in uterotrophic assay using ovariectomized rats, and 2,4,4'-triOH-BP was positive in the Hershberger assay using castrated rats. These results suggest that a 4-hydroxyl group on the phenyl ring of benzophenone derivatives is essential for high hormonal activities, and the presence of other hydroxyl groups markedly alters these activities.

  17. Noncanonical PAR3 activation by factor Xa identifies a novel pathway for Tie2 activation and stabilization of vascular integrity

    PubMed Central

    Stavenuiter, Fabian

    2014-01-01

    Endothelial barrier protective effects of activated protein C (APC) require the endothelial protein C receptor (EPCR), protease-activated receptor (PAR) 1, and PAR3. In contrast, PAR1 and PAR3 activation by thrombin results in barrier disruption. Noncanonical PAR1 and PAR3 activation by APC vs canonical activation by thrombin provides an explanation for the functional selectivity of these proteases. Here we found that factor Xa (FXa) activated PAR1 at canonical Arg41 similar to thrombin but cleaved PAR3 at noncanonical Arg41 similar to APC. This unique PAR1-PAR3 activation profile permitted the identification of noncanonical PAR3 activation as a novel activation pathway for barrier protective tunica intima endothelial receptor tyrosine kinase 2 (Tie2). APC, FXa, and the noncanonical PAR3 tethered-ligand peptide induced prolonged activation of Tie2, whereas thrombin and the canonical PAR3 tethered-ligand peptide did not. Tie2 activation by FXa required PAR3 and EPCR. FXa and the noncanonical PAR3 tethered-ligand peptide induced Tie2- and PAR3-dependent upregulation of tight-junction-associated protein zona occludens 1 (ZO-1), translocation of ZO-1 to cell-cell borders, and the formation of typical ZO-1 honeycomb patterns that are indicative of tight-junction stabilization. These data provide intriguing novel insights into the diversification of functional selectivity of protease signaling achievable by canonical and noncanonical PAR activation, such as the activation of vascular-protective Tie2 by noncanonical PAR3 activation. PMID:25320242

  18. Heat shock modulates the subcellular localization, stability, and activity of HIPK2.

    PubMed

    Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam

    2016-04-15

    The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress - such as hypoxia, oxidative stress, or UV damage - is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 and the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors. PMID:26972256

  19. Heat shock modulates the subcellular localization, stability, and activity of HIPK2.

    PubMed

    Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam

    2016-04-15

    The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress - such as hypoxia, oxidative stress, or UV damage - is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 and the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors.

  20. [Stability and antioxidant activity of black currant and black aronia berry juices].

    PubMed

    Kasparaviciene, Giedre; Briedis, Vitalis

    2003-01-01

    The berries of black currant and black aronia are rich in polyphenolic compounds and especially in anthocyanins, demonstrating antioxidant activity. The aim of the study was to evaluate the possible effect of thermal technological processes on the quantity of polyphenols and anthocyanins in berry juice concentrates, and on the antioxidant activity. After 8 hour storage of black currant and black aronia berry juice concentrates at 60 degrees C, the amount of polyphenols decreased by 46% and 22%, anthocyanins 31% and 35%, respectively. Antioxidant activity decreased by 26% and 56%, respectively. The results demonstrated insufficient stability of juice concentrates, and impropriety of application of long lasting drying processes in manufacturing of black currant and black aronia berry dry products. Fast and efficient drying methods for liquid products should be applied to preserve qualitative and quantitative composition and their antioxidant activity.

  1. Stability of Recombinant Tissue Plasminogen Activator at −30 °C Over One Year

    PubMed Central

    Alkatheri, Abdulmalik

    2012-01-01

    Recombinant tissue plasminogen activator (rt-PA) is used to restore patency and avoid inadvertent removal of peripheral and central venous catheters. rt-PA was reconstituted (1 mg/mL) then cryopreserved at −30 °C for 1, 2, 3, 6, 8, and 12 months and, then its stability was determined. After cryopreservation for one and two months, rt-PA kept more than 95% of its activity compared to standard samples, while cryopreservation for three months caused 8% loss of activity. However, after cryopreservation for six months or more, rt-PA retained only 87.5% or less activity compared to standard samples. Therefore, it is recommended that reconstituted rt-PA be cryopreserved at −30 °C for a maximum period of three months. PMID:24275785

  2. CS-AMPPred: An Updated SVM Model for Antimicrobial Activity Prediction in Cysteine-Stabilized Peptides

    PubMed Central

    Porto, William F.; Pires, Állan S.; Franco, Octavio L.

    2012-01-01

    The antimicrobial peptides (AMP) have been proposed as an alternative to control resistant pathogens. However, due to multifunctional properties of several AMP classes, until now there has been no way to perform efficient AMP identification, except through in vitro and in vivo tests. Nevertheless, an indication of activity can be provided by prediction methods. In order to contribute to the AMP prediction field, the CS-AMPPred (Cysteine-Stabilized Antimicrobial Peptides Predictor) is presented here, consisting of an updated version of the Support Vector Machine (SVM) model for antimicrobial activity prediction in cysteine-stabilized peptides. The CS-AMPPred is based on five sequence descriptors: indexes of (i) α-helix and (ii) loop formation; and averages of (iii) net charge, (iv) hydrophobicity and (v) flexibility. CS-AMPPred was based on 310 cysteine-stabilized AMPs and 310 sequences extracted from PDB. The polynomial kernel achieves the best accuracy on 5-fold cross validation (85.81%), while the radial and linear kernels achieve 84.19%. Testing in a blind data set, the polynomial and radial kernels achieve an accuracy of 90.00%, while the linear model achieves 89.33%. The three models reach higher accuracies than previously described methods. A standalone version of CS-AMPPred is available for download at and runs on any Linux machine. PMID:23240023

  3. PEGylation of lysine residues improves the proteolytic stability of fibronectin while retaining biological activity.

    PubMed

    Zhang, Chen; Desai, Raj; Perez-Luna, Victor; Karuri, Nancy

    2014-08-01

    Excessive proteolysis of fibronectin (FN) impairs tissue repair in chronic wounds. Since FN is essential in wound healing, our goal is to improve its proteolytic stability and at the same time preserve its biological activity. We have previously shown that reduced FN conjugated with polyethylene glycol (PEG) at cysteine residues is more proteolytically stable than native FN. Cysteine-PEGylated FN supported cell adhesion and migration to the same extent as native FN. However, unlike native FN, cysteine-PEGylated FN was not assembled into an extracellular matrix (ECM) when immobilized. Here, we present an alternative approach in which FN is preferentially PEGylated at lysine residues using different molecular weight PEGs. We show that lysine PEGylation does not perturb FN secondary structure. PEG molecular weight, from 2 to 10 kDa, positively correlates with FN-PEG proteolytic stability. Cell adhesion, cell spreading, and gelatin binding decrease with increasing molecular weight of PEG. The 2-kDa FN-PEG conjugate shows comparable cell adhesion to native FN and binds gelatin. Moreover, immobilized FN-PEG is assembled into ECM fibrils. In summary, lysine PEGylation of FN can be used to stabilize FN against proteolytic degradation with minimal perturbation to FN structure and retained biological activity.

  4. Hydrogen peroxide sensing and cytotoxicity activity of Acacia lignin stabilized silver nanoparticles.

    PubMed

    Aadil, Keshaw Ram; Barapatre, Anand; Meena, Avtar Singh; Jha, Harit

    2016-01-01

    The study is aimed at detection of hydrogen peroxide (H2O2) using Acacia lignin mediated silver nanoparticles (AGNPs). The synthesis of AGNPs was achieved at conditions optimized as, 3 ml of 0.02% lignin and 1mM silver nitrate incubated for 30 min at 80°C and pH 9. Initial screening of AGNPs was performed by measuring the surface plasmon resonance peak at 410-430 nm using UV-vis spectrophotometer. Transmission electron microscopy, atomic force microscopy, X-ray diffraction and particle size analysis confirmed the spherical shaped face centered cubic structure and 10-50 nm size of AGNPs. The infrared spectroscopy study further revealed that the active functional groups present in lignin were responsible for the reduction of silver ions (Ag(+)) to metallic silver (Ag(0)). Lignin stabilized silver nanoparticles showed good sensitivity and a linear response over wide concentrations of H2O2 (10(-1) to 10(-6)M). Further, the in vitrocytotoxicity activity of the lignin mediated AGNPs (5-500 μg/ml) demonstrated toxicity effects in MCF-7 and A375 cell lines. Thus, lignin stabilized silver nanoparticles based optical sensor for H2O2 could be potentially applied in the determination of reactive oxygen species and toxic chemicals which further expands the importance of lignin stabilized silver nanoparticles.

  5. Active and Passive Interferometric Fringe Stabilization for Quantum Communications in Space

    NASA Astrophysics Data System (ADS)

    Chapman, Joseph; Graham, Trent; Kwiat, Paul

    2015-05-01

    In interferometry, the relative phase between the paths is liable to drift over time due to environmental factors, i.e., vibrations in the components and from turbulence and temperature fluctuations in the air. If time-bin encoded photons are received from a moving space platform, e.g., a satellite or the International Space Station, there would be an additional large relative temporal shift because of the movement of the source toward or away from the receiver. This shift would alter the temporal coherence of adjacent timebins-as measured by a suitable temporally-unbalanced interferometer-in addition to the relative phase errors from the environment. To achieve accurate measurements in this situation, the interferometer needs to be stabilized against phase drifts. We have employed an active and passive stabilization scheme for a double unbalanced Mach-Zehnder interferometer configuration; while passive damping reduces most of the phase drift due to vibrations and fluctuations from the air, we designed and implemented an active feedback correction system to stabilize the remaining phase drift and the simulated temporal drift.

  6. Optimizing manufacturing and composition of a TLR4 nanosuspension: physicochemical stability and vaccine adjuvant activity

    PubMed Central

    2013-01-01

    Background Nanosuspensions are an important class of delivery system for vaccine adjuvants and drugs. Previously, we developed a nanosuspension consisting of the synthetic TLR4 ligand glucopyranosyl lipid adjuvant (GLA) and dipalmitoyl phosphatidylcholine (DPPC). This nanosuspension is a clinical vaccine adjuvant known as GLA-AF. We examined the effects of DPPC supplier, buffer composition, and manufacturing process on GLA-AF physicochemical and biological activity characteristics. Results DPPC from different suppliers had minimal influence on physicochemical and biological effects. In general, buffered compositions resulted in less particle size stability compared to unbuffered GLA-AF. Microfluidization resulted in rapid particle size reduction after only a few passes, and 20,000 or 30,000 psi processing pressures were more effective at reducing particle size and recovering the active component than 10,000 psi. Sonicated and microfluidized batches maintained good particle size and chemical stability over 6 months, without significantly altering in vitro or in vivo bioactivity of GLA-AF when combined with a recombinant malaria vaccine antigen. Conclusions Microfluidization, compared to water bath sonication, may be an effective manufacturing process to improve the scalability and reproducibility of GLA-AF as it advances further in the clinical development pathway. Various sources of DPPC are suitable to manufacture GLA-AF, but buffered compositions of GLA-AF do not appear to offer stability advantages over the unbuffered composition. PMID:24359024

  7. Hydrogen peroxide sensing and cytotoxicity activity of Acacia lignin stabilized silver nanoparticles.

    PubMed

    Aadil, Keshaw Ram; Barapatre, Anand; Meena, Avtar Singh; Jha, Harit

    2016-01-01

    The study is aimed at detection of hydrogen peroxide (H2O2) using Acacia lignin mediated silver nanoparticles (AGNPs). The synthesis of AGNPs was achieved at conditions optimized as, 3 ml of 0.02% lignin and 1mM silver nitrate incubated for 30 min at 80°C and pH 9. Initial screening of AGNPs was performed by measuring the surface plasmon resonance peak at 410-430 nm using UV-vis spectrophotometer. Transmission electron microscopy, atomic force microscopy, X-ray diffraction and particle size analysis confirmed the spherical shaped face centered cubic structure and 10-50 nm size of AGNPs. The infrared spectroscopy study further revealed that the active functional groups present in lignin were responsible for the reduction of silver ions (Ag(+)) to metallic silver (Ag(0)). Lignin stabilized silver nanoparticles showed good sensitivity and a linear response over wide concentrations of H2O2 (10(-1) to 10(-6)M). Further, the in vitrocytotoxicity activity of the lignin mediated AGNPs (5-500 μg/ml) demonstrated toxicity effects in MCF-7 and A375 cell lines. Thus, lignin stabilized silver nanoparticles based optical sensor for H2O2 could be potentially applied in the determination of reactive oxygen species and toxic chemicals which further expands the importance of lignin stabilized silver nanoparticles. PMID:26434518

  8. Integrated Stability and Activity Control of the Drosophila Rbf1 Retinoblastoma Protein*

    PubMed Central

    Zhang, Liang; Wei, Yiliang; Pushel, Irina; Heinze, Karolin; Elenbaas, Jared; Henry, R. William; Arnosti, David N.

    2014-01-01

    The retinoblastoma (RB) family transcriptional corepressors regulate diverse cellular events including cell cycle, senescence, and differentiation. The activity and stability of these proteins are mediated by post-translational modifications; however, we lack a general understanding of how distinct modifications coordinately impact both of these properties. Previously, we showed that protein turnover and activity are tightly linked through an evolutionarily conserved C-terminal instability element (IE) in the Drosophila RB-related protein Rbf1; surprisingly, mutant proteins with enhanced stability were less, not more active. To better understand how activity and turnover are controlled in this model RB protein, we assessed the impact of Cyclin-Cdk kinase regulation on Rbf1. An evolutionarily conserved N-terminal threonine residue is required for Cyclin-Cdk response and showed a dominant impact on turnover and activity; however, specific residues in the C-terminal IE differentially impacted Rbf1 activity and turnover, indicating an additional level of regulation. Strikingly, specific IE mutations that impaired turnover but not activity induced dramatic developmental phenotypes in the Drosophila eye. Mutation of the highly conserved Lys-774 residue induced hypermorphic phenotypes that mimicked the loss of phosphorylation control; mutation of the corresponding codon of the human RBL2 gene has been reported in lung tumors. Our data support a model in which closely intermingled residues within the conserved IE govern protein turnover, presumably through interactions with E3 ligases, and protein activity via contacts with E2F transcription partners. Such functional relationships are likely to similarly impact mammalian RB family proteins, with important implications for development and disease. PMID:25049232

  9. Development of new polysilsesquioxane spherical particles as stabilized active ingredients for sunscreens

    NASA Astrophysics Data System (ADS)

    Tolbert, Stephanie Helene

    Healthy skin is a sign of positive self-worth, attractiveness and vitality. Compromises to this are frequently caused by extended periods of recreation in the sun and in turn exposure to the harmful effects of UV radiation. To maintain strength and integrity, protection of the skin is paramount. This can be achieved by implementing skin-care products which contain sunscreen active ingredients that provide UV protection. Unfortunately, photo-degradation, toxicity, and photo-allergies limit the effectiveness of present day sunscreen ingredients. Currently, this is moderated by physically embedding within inert silica particles, but leaching of the active ingredient can occur, thereby negating protective efforts. Alternatively, this research details the preparation and investigation of bridged silsesquioxane analogues of commercial ingredients which can be chemically grafted to the silica matrix. Studies with bridged salicylate particles detail facile preparation, minimized leaching, and enhanced UV stability over physically encapsulated and pendant salicylate counterparts. In terms of UVB protective ability, the highest maintenance of sun protection factor (SPF) after extended UV exposure was achieved with bridged incorporation, and has been attributed to corollary UV stability. Additionally, bridged salicylate particles can be classified as broad-spectrum, and rate from moderate to good in terms of UVA protective ability. Particles incorporated with a bridged curcuminoid silsesquioxane were also prepared and displayed comparable results. As such, an attractive method for sunscreen isolation and stabilization has been developed to eliminate the problems associated with current sunscreens, all while maintaining the established UV absorbance profiles of the parent compound. To appreciate the technology utilized in this research, a thorough understanding of sol-gel science as it pertains to hybrid organic/silica particles, including methods of organic fragment

  10. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review

    PubMed Central

    Ambati, Ranga Rao; Siew Moi, Phang; Ravi, Sarada; Aswathanarayana, Ravishankar Gokare

    2014-01-01

    There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3′-dihydroxy-β, β′-carotene-4,4′-dione) is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications. PMID:24402174

  11. Effects of Inhibiting Acylated Homoserine Lactones (AHLs) on Anammox Activity and Stability of Granules'.

    PubMed

    Zhao, Ran; Zhang, Hanmin; Zou, Xiang; Yang, Fenglin

    2016-07-01

    In this study, the effects of AHL-based QS signals on anammox activity and stability of granules' were investigated. Results clearly showed that the vanillin and porcine kidney acylase I could reduce the AHLs in anammox bacteria. Inactivation of AHLs by vanillin and porcine kidney acylase I depressed the nitrogen removal ability of anammox bacteria. A significant inhibition of specific anammox activity was observed when the concentration of vanillin and porcine kidney acylase I increased to 1 g/L. Anammox activity was depressed on enzyme level. Moreover, degradation of AHLs under vanillin and AHL-acylase exposure could result in anammox granules' disintegration. Further research showed that the contents of protein (PN) and polysaccharides (PS) in extracellular polymeric substances were reduced with AHLs blocked, and it further explained the instability and weakening strength of the anammox granules. The results of our investigation provided new insight into the AHL-based QS-regulated anammox activity, leading a potential way to enhance stability of anammox granules. PMID:27061587

  12. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications--a review.

    PubMed

    Ambati, Ranga Rao; Phang, Siew Moi; Ravi, Sarada; Aswathanarayana, Ravishankar Gokare

    2014-01-01

    There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3'-dihydroxy-β, β'-carotene-4,4'-dione) is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications. PMID:24402174

  13. Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity.

    PubMed

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-11-19

    Recently isolated spore-forming pigmented marine bacteria Bacillus indicus HU36 are sources of oxygenated carotenoids with original structures (about fifteen distinct yellow and orange pigments with acylated d-glucosyl groups). In this study, we evaluated the stability (sensitivity to iron-induced autoxidation) and antioxidant activity (inhibition of iron-induced lipid peroxidation) of combinations of bacterial HU36 carotenoids with the bacterial vitamin menaquinone MQ-7 and with phenolic antioxidants (vitamin E, chlorogenic acid, rutin). Unexpectedly, MQ-7 strongly improves the ability of HU36 carotenoids to inhibit Fe(II)-induced lipid peroxidation, although MQ-7 was not consumed in the medium. We propose that their interaction modifies the carotenoid antioxidant mechanism(s), possibly by allowing carotenoids to scavenge the initiating radicals. For comparison, β-carotene and lycopene in combination were shown to exhibit a slightly higher stability toward iron-induced autoxidation, as well as an additive antioxidant activity as compared to the carotenoids, individually. HU36 carotenoids and phenolic antioxidants displayed synergistic activities in the inhibition of linoleic acid peroxidation induced by heme iron, but not by free iron. Synergism could arise from antioxidants interacting via electron transfer through the porphyrin nucleus of heme iron. Overall, combining antioxidants acting via complementary mechanisms could be the key for optimizing the activity of this bacterial carotenoid cocktail.

  14. Influence of cysteine and methionine availability on protein peroxide scavenging activity and phenolic stability in emulsions.

    PubMed

    Zhou, Lisa; Elias, Ryan J

    2014-03-01

    Plant phenolics are secondary metabolites that have been shown to confer beneficial health effects in humans. However, many of these compounds undergo metal-catalysed oxidation reactions, leading to the generation of hydrogen peroxide (H2O2) and other reactive oxygen species that may negatively impact product stability. In proteins, methionine (Met) and cysteine (Cys) are capable of reacting directly with peroxides. Thus, the dairy proteins, casein (CAS) and β-lactoglobulin (BLG), were examined for their ability to scavenge H2O2 (400μM) and influence (-)-epigallocatechin-3-gallate (EGCG) oxidation (400μM) in Tween- or sodium dodecyl sulphate (SDS)-stabilised hexadecane emulsions. To examine the effect that the accessibility of these amino acids have on their peroxide scavenging activities, proteins were pre-treated with tert-butyl hydroperoxide (TBHP), a bulky peroxide, to oxidise only solvent accessible Met residues or H2O2, the smallest peroxide, to oxidise buried Met residues. In CAS treatments, higher Met content yielded greater peroxide scavenging activity and EGCG stability. CAS treatments also showed significantly higher peroxide scavenging activity compared to the corresponding BLG treatment. However, BLG peroxide scavenging activity was greatly enhanced in SDS-stabilised emulsions due to protein denaturation and subsequent exposure of previously buried Cys residues.

  15. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications--a review.

    PubMed

    Ambati, Ranga Rao; Phang, Siew Moi; Ravi, Sarada; Aswathanarayana, Ravishankar Gokare

    2014-01-07

    There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3'-dihydroxy-β, β'-carotene-4,4'-dione) is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications.

  16. Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity

    PubMed Central

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-01-01

    Recently isolated spore-forming pigmented marine bacteria Bacillus indicus HU36 are sources of oxygenated carotenoids with original structures (about fifteen distinct yellow and orange pigments with acylated d-glucosyl groups). In this study, we evaluated the stability (sensitivity to iron-induced autoxidation) and antioxidant activity (inhibition of iron-induced lipid peroxidation) of combinations of bacterial HU36 carotenoids with the bacterial vitamin menaquinone MQ-7 and with phenolic antioxidants (vitamin E, chlorogenic acid, rutin). Unexpectedly, MQ-7 strongly improves the ability of HU36 carotenoids to inhibit FeII-induced lipid peroxidation, although MQ-7 was not consumed in the medium. We propose that their interaction modifies the carotenoid antioxidant mechanism(s), possibly by allowing carotenoids to scavenge the initiating radicals. For comparison, β-carotene and lycopene in combination were shown to exhibit a slightly higher stability toward iron-induced autoxidation, as well as an additive antioxidant activity as compared to the carotenoids, individually. HU36 carotenoids and phenolic antioxidants displayed synergistic activities in the inhibition of linoleic acid peroxidation induced by heme iron, but not by free iron. Synergism could arise from antioxidants interacting via electron transfer through the porphyrin nucleus of heme iron. Overall, combining antioxidants acting via complementary mechanisms could be the key for optimizing the activity of this bacterial carotenoid cocktail. PMID:26610529

  17. Redesigned and chemically-modified hammerhead ribozymes with improved activity and serum stability

    PubMed Central

    Hendry, Philip; McCall, Maxine J; Stewart, Tom S; Lockett, Trevor J

    2004-01-01

    Background Hammerhead ribozymes are RNA-based molecules which bind and cleave other RNAs specifically. As such they have potential as laboratory reagents, diagnostics and therapeutics. Despite having been extensively studied for 15 years or so, their wide application is hampered by their instability in biological media, and by the poor translation of cleavage studies on short substrates to long RNA molecules. This work describes a systematic study aimed at addressing these two issues. Results A series of hammerhead ribozyme derivatives, varying in their hybridising arm length and size of helix II, were tested in vitro for cleavage of RNA derived from the carbamoyl phosphate synthetase II gene of Plasmodium falciparum. Against a 550-nt transcript the most efficient (t1/2 = 26 seconds) was a miniribozyme with helix II reduced to a single G-C base pair and with twelve nucleotides in each hybridising arm. Miniribozymes of this general design were targeted to three further sites, and they demonstrated exceptional cleavage activity. A series of chemically modified derivatives was prepared and examined for cleavage activity and stability in human serum. One derivative showed a 103-fold increase in serum stability and a doubling in cleavage efficiency compared to the unmodified miniribozyme. A second was almost 104-fold more stable and only 7-fold less active than the unmodified parent. Conclusion Hammerhead ribozyme derivatives in which helix II is reduced to a single G-C base pair cleave long RNA substrates very efficiently in vitro. Using commonly available phosphoramidites and reagents, two patterns of nucleotide substitution in this derivative were identified which conferred both good cleavage activity against long RNA targets and good stability in human serum. PMID:15588292

  18. Wobble Pairs of the HDV Ribozyme Play Specific Roles in Stabilization of Active Site Dynamics

    PubMed Central

    Sripathi, Kamali N.; Banáš, Pavel; Reblova, Kamila; Šponer, Jiři; Otyepka, Michal

    2015-01-01

    The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking these mutations to specific structural effects on catalytic fitness. Here we use molecular dynamics simulations based on an activated structure to probe the active site dynamics as a result of wobble pair mutations. In both wild-type and mutant ribozymes, the in-line fitness of the active site (as a measure of catalytic proficiency) strongly depends on the presence of a C75(N3H3+)N1(O5′) hydrogen bond, which positions C75 as the general acid for the reaction. Our mutational analyses show that each GU wobble supports catalytically fit conformations in distinct ways; the reverse G25U20 wobble promotes high in-line fitness, high occupancy of the C75(N3H3+)G1(O5′) general-acid hydrogen bond and stabilization of the G1U37 wobble, while the G1U37 wobble acts more locally by stabilizing high in-line fitness and the C75(N3H3+)G1(O5′) hydrogen bond. We also find that stable type I A-minor and P1.1 hydrogen bonding above and below the active site, respectively, prevent local structural disorder from spreading and disrupting global conformation. Taken together, our results define specific, often redundant architectural roles for several structural motifs of the HDV ribozyme active site, expanding the known roles of these motifs within all HDV-like ribozymes and other structured RNAs. PMID:25631765

  19. Aspartame-stabilized gold-silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial activity, and long-term stability.

    PubMed

    Fasciani, Chiara; Silvero, M Jazmin; Anghel, Maria Alexandra; Argüello, Gerardo A; Becerra, Maria Cecilia; Scaiano, Juan C

    2014-12-17

    Gold-silver core-shell nanoparticles stabilized with a common sweetener, aspartame (AuNP@Ag@Asm), combine the antimicrobial properties of silver with the photoinduced plasmon-mediated photothermal effects of gold. The particles were tested with several bacterial strains, while biocompatibility was verified with human dermal fibroblasts. PMID:25487127

  20. Aspartame-stabilized gold-silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial activity, and long-term stability.

    PubMed

    Fasciani, Chiara; Silvero, M Jazmin; Anghel, Maria Alexandra; Argüello, Gerardo A; Becerra, Maria Cecilia; Scaiano, Juan C

    2014-12-17

    Gold-silver core-shell nanoparticles stabilized with a common sweetener, aspartame (AuNP@Ag@Asm), combine the antimicrobial properties of silver with the photoinduced plasmon-mediated photothermal effects of gold. The particles were tested with several bacterial strains, while biocompatibility was verified with human dermal fibroblasts.

  1. Design of Surface-Active Artificial Enzyme Particles to Stabilize Pickering Emulsions for High-Performance Biphasic Biocatalysis.

    PubMed

    Chen, Zhaowei; Zhao, Chuanqi; Ju, Enguo; Ji, Haiwei; Ren, Jinsong; Binks, Bernard P; Qu, Xiaogang

    2016-02-24

    Surface-active artificial enzymes (SAEs) are designed and constructed by a general and novel strategy. These SAEs can simultaneously stabilize Pickering emulsions and catalyze biphasic biotransformation with superior enzymatic stability and good re-usability; for example, for the interfacial conversion of hydrophobic p-nitrophenyl butyrate into yellow water-soluble p-nitrophenolate catalyzed by esterase-mimic SAE.

  2. Activity and stability of yeast alcohol dehydrogenase (YADH) entrapped in aerosol OT reverse micelles.

    PubMed

    Sarcar, S; Jain, T K; Maitra, A

    1992-02-20

    The activity and stability of yeast alcohol dehydrogenase (YADH) entrapped in aerosol OT reverse micellar droplets have been investigated spectrophotometrically. Various physical parameters, e.g., water pool size, w(0), pH, and temperature, were optimized for YADH in water/AOT/isooctane reverse micelles. It was found that the enzyme exhibits maximum activity at w(0) = 28 and pH 8.1. It was more active in reverse micelles than in aqueous buffers at a particular temperature and was denatured at about 307 degrees C in both the systems. At a particular temperature YADH entrapped in reverse micelles was less stable than when it was dissolved in aqueous buffer.

  3. Periodic patterning of the Drosophila eye is stabilized by the diffusible activator Scabrous

    PubMed Central

    Gavish, Avishai; Shwartz, Arkadi; Weizman, Abraham; Schejter, Eyal; Shilo, Ben-Zion; Barkai, Naama

    2016-01-01

    Generation of periodic patterns is fundamental to the differentiation of multiple tissues during development. How such patterns form robustly is still unclear. The Drosophila eye comprises ∼750 units, whose crystalline order is set during differentiation of the eye imaginal disc: an activation wave sweeping across the disc is coupled to lateral inhibition, sequentially selecting pro-neural cells. Using mathematical modelling, here we show that this template-based lateral inhibition is highly sensitive to spatial variations in biochemical parameters and cell sizes. We reveal the basis of this sensitivity, and suggest that it can be overcome by assuming a short-range diffusible activator. Clonal experiments identify Scabrous, a previously implicated inhibitor, as the predicted activator. Our results reveal the mechanism by which periodic patterning in the fly eye is stabilized against spatial variations, highlighting how the need to maintain robustness shapes the design of patterning circuits. PMID:26876750

  4. Effect of axial ligands on the molecular configurations, stability, reactivity, and photodynamic activities of silicon phthalocyanines.

    PubMed

    Luan, Liqiang; Ding, Lanlan; Shi, Jiawei; Fang, Wenjuan; Ni, Yuxing; Liu, Wei

    2014-12-01

    To demonstrate the effect of axial ligands on the structure-activity relationship, a series of axially substituted silicon phthalocyanines (SiPcs) have been synthesized with changes to the axial ligands. The reactivity of the axial ligand upon shielding by the phthalocyanine ring current, along with their stability, photophysical, and photodynamic therapy (PDT) activities were compared and evaluated for the first time. As revealed by single-crystal XRD analysis, rotation of the axial -OMe ligands was observed in SiPc 3, which resulted in two molecular configurations coexisting synchronously in both the solid and solution states and causing a split of the phthalocyanine α protons in the (1)H NMR spectra that is significantly different from all SiPcs reported so far. The remarkable photostability, good singlet oxygen quantum yield, and efficient in vitro photodynamic activity synergistically show that compound 3 is one of the most promising photosensitizers for PDT.

  5. Stabilizing a Platinum1 Single-Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity.

    PubMed

    Zhang, Bin; Asakura, Hiroyuki; Zhang, Jia; Zhang, Jiaguang; De, Sudipta; Yan, Ning

    2016-07-11

    In coordination chemistry, catalytically active metal complexes in a zero- or low-valent state often adopt four-coordinate square-planar or tetrahedral geometry. By applying this principle, we have developed a stable Pt1 single-atom catalyst with a high Pt loading (close to 1 wt %) on phosphomolybdic acid(PMA)-modified active carbon. This was achieved by anchoring Pt on the four-fold hollow sites on PMA. Each Pt atom is stabilized by four oxygen atoms in a distorted square-planar geometry, with Pt slightly protruding from the oxygen planar surface. Pt is positively charged, absorbs hydrogen easily, and exhibits excellent performance in the hydrogenation of nitrobenzene and cyclohexanone. It is likely that the system described here can be extended to a number of stable SACs with superior catalytic activities.

  6. Enhanced stability and activity of an antimicrobial peptide in conjugation with silver nanoparticle.

    PubMed

    Pal, Indrani; Brahmkhatri, Varsha P; Bera, Swapna; Bhattacharyya, Dipita; Quirishi, Yasrib; Bhunia, Anirban; Atreya, Hanudatta S

    2016-12-01

    The conjugation of nanoparticles with antimicrobial peptides (AMP) is emerging as a promising route to achieve superior antimicrobial activity. However, the nature of peptide-nanoparticle interactions in these systems remains unclear. This study describes a system consisting of a cysteine containing antimicrobial peptide conjugated with silver nanoparticles, in which the two components exhibit a dynamic interaction resulting in a significantly enhanced stability and biological activity compared to that of the individual components. This was investigated using NMR spectroscopy in conjunction with other biophysical techniques. Using fluorescence assisted cell sorting and membrane mimics we carried out a quantitative comparison of the activity of the AMP-nanoparticle system and the free peptide. Taken together, the study provides new insights into nanoparticle-AMP interactions at a molecular level and brings out the factors that will be useful for consideration while designing new conjugates with enhanced functionality. PMID:27585423

  7. Preparation of biocatalytic nanofibers with high activity and stability via enzyme aggregate coating on polymer nanofibers

    SciTech Connect

    Kim, Byoung Chan; Nair, Sujith; Kim, Jungbae; Kwak, Ja Hun; Grate, Jay W.; Kim, Seong H.; Gu, Man Bock

    2005-04-01

    We have developed a unique approach for the fabrication of enzyme coating on the surface of electrospun polymer nanofibers. This approach employs covalent attachment of seed enzymes onto nanofibers, followed by the glutaraldehyde treatment that crosslinks additional enzymes onto the seed enzyme molecules. These crosslinked enzyme aggregates, covalently attached to the nanofibers via seed enzyme linker, would improve not only the enzyme activity due to increased enzyme loading, but also the enzyme stability. To demonstrate the principle of concept, we fabricated the coating of alpha-chymotrypsin (CT) on the nanofibers electrospun from a mixture of polystyrene and poly(styrene-co-maleic anhydride). The addition of poly(styrene-co-maleic anhydride) makes it much easier to attach the seed enzyme molecules onto electrospun nanofibers without any rigorous functionalization of nanofibers for the attachment of enzymes. The initial activity of final CT coating was 17 and 9 times higher than those of simply-adsorbed CT and covalently-attached CT, respectively. While adsorbed and covalently-attached CT resulted in a serious enzyme leaching during initial incubation in a shaking condition, the CT coating did not show any leaching from the beginning of incubation in the same condition. As a result, the enzyme stability of CT coating was impressively improved with a half-life of 686 days under rigorous shaking while the half-life of covalently-attached CT was only 21 hours. This new approach of enzyme coating with high stability and activity will make a great impact in various applications of enzymes such as bioconversion, bioremediation, and biosensors.

  8. Assays of physical stability and antioxidant activity of a topical formulation added with different plant extracts.

    PubMed

    Di Mambro, Valéria M; Fonseca, Maria J V

    2005-02-23

    In the present investigation the changes on physical stability (pH, viscosity, flow index and tixotropy) of topical formulations were evaluated following inclusion of different plant extracts containing flavonoids. Also, the antioxidant effect of these plant extracts alone and after addition in the formulation was evaluated using chemiluminescence and the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH(.-)) assays, as well as the inhibition of lipid peroxidation. Formulation added with dl-alpha-tocopherol was used to compare the physical stability and antioxidant activity. Formulations with plant extracts showed pseudoplastic behavior with decreasing on viscosity and tixotropy. The Glycyrrhiza glabra (GG) and Ginkgo biloba (GB) extracts alone and the formulations containing these extracts showed great antioxidant and free radical scavenging activities while the other extracts studied (mixture of Glycyrrhiza glabra, Symphytum officinale L and Arctium majus root, Nelumbium speciosum and soybean) showed lower activity. The results suggest that GG and GB extracts may be used in topical formulations in order to protect skin against damage caused by free radical and reactive oxygen species. PMID:15708669

  9. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity.

    PubMed

    Matsubu, John C; Yang, Vanessa N; Christopher, Phillip

    2015-03-01

    CO2 reduction by H2 on heterogeneous catalysts is an important class of reactions that has been studied for decades. However, atomic scale details of structure-function relationships are still poorly understood. Particularly, it has been suggested that metal particle size plays a unique role in controlling the stability of CO2 hydrogenation catalysts and the distribution of active sites, which dictates reactivity and selectivity. These studies often have not considered the possible role of isolated metal active sites in the observed dependences. Here, we utilize probe molecule diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with known site-specific extinction coefficients to quantify the fraction of Rh sites residing as atomically dispersed isolated sites (Rhiso), as well as Rh sites on the surface of Rh nanoparticles (RhNP) for a series of TiO2 supported Rh catalysts. Strong correlations were observed between the catalytic reverse water gas shift turn over frequency (TOF) and the fraction of Rhiso sites and between catalytic methanation TOF and the fraction of RhNP sites. Furthermore, it was observed that reaction condition-induced disintegration of Rh nanoparticles, forming Rhiso active sites, controls the changing reactivity with time on stream. This work demonstrates that isolated atoms and nanoparticles of the same metal on the same support can exhibit uniquely different catalytic selectivity in competing parallel reaction pathways and that disintegration of nanoparticles under reaction conditions can play a significant role in controlling stability.

  10. Study on antibacterial activity of silver nanoparticles synthesized by gamma irradiation method using different stabilizers

    NASA Astrophysics Data System (ADS)

    Van Phu, Dang; Quoc, Le Anh; Duy, Nguyen Ngoc; Lan, Nguyen Thi Kim; Du, Bui Duy; Luan, Le Quang; Hien, Nguyen Quoc

    2014-04-01

    Colloidal solutions of silver nanoparticles (AgNPs) were synthesized by gamma Co-60 irradiation using different stabilizers, namely polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), alginate, and sericin. The particle size measured from TEM images was 4.3, 6.1, 7.6, and 10.2 nm for AgNPs/PVP, AgNPs/PVA, AgNPs/alginate, and AgNPs/sericin, respectively. The influence of different stabilizers on the antibacterial activity of AgNPs was investigated. Results showed that AgNPs/alginate exhibited the highest antibacterial activity against Escherichia coli ( E. coli) among the as-synthesized AgNPs. Handwash solution has been prepared using Na lauryl sulfate as surfactant, hydroxyethyl cellulose as binder, and 15 mg/L of AgNPs/alginate as antimicrobial agent. The obtained results on the antibacterial test of handwash for the dilution to 3 mg AgNPs/L showed that the antibacterial efficiency against E. coli was of 74.6%, 89.8%, and 99.0% for the contacted time of 1, 3, and 5 min, respectively. Thus, due to the biocompatibility of alginate extracted from seaweed and highly antimicrobial activity of AgNPs synthesized by gamma Co-60 irradiation, AgNPs/alginate is promising to use as an antimicrobial agent in biomedicine, cosmetic, and in other fields.

  11. Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Cakić, Milorad; Glišić, Slobodan; Nikolić, Goran; Nikolić, Goran M.; Cakić, Katarina; Cvetinov, Miroslav

    2016-04-01

    Dextran sulphate stabilized silver nanoparticles (AgNPs - DS) were synthesized from aqueous solution of silver nitrate (AgNO3) and dextran sulphate sodium salt (DS). The characterization of AgNPs - DS was performed by ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and antimicrobial activity. The formation of AgNPs - DS was monitored by colour changes of the reaction mixture from yellowish to brown and by measuring the surface plasmon resonance absorption peak in UV-VIS spectra at 420 nm. The SEM analysis was used for size and shape determination of AgNPs - DS. The presence of elemental silver and its crystalline structure in AgNPs - DS were confirmed by EDX and XRD analyses. The possible functional groups of DS responsible for the reduction and stabilization of AgNPs were determinated by FTIR spectroscopy. The AgNPs - DS showed strong antibacterial activity against Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 11778, Bacillus luteus in haus strain, Bacillus subtilis ATTC 6633, Listeria monocytogenes ATCC 15313, Escherichia coli ATTC 25922, Pseudomonas aeruginosa ATTC 27853, Klebsiella pneumoniae ATTC 700603, Proteus vulgaris ATTC 8427, and antifungal activity against Candida albicans ATTC 2091.

  12. Stability and biological activity evaluations of PEGylated human basic fibroblast growth factor

    PubMed Central

    Hadadian, Shahin; Shamassebi, Dariush Norouzian; Mirzahoseini, Hasan; Shokrgozar, Mohamad Ali; Bouzari, Saeid; Sepahi, Mina

    2015-01-01

    Background: Human basic fibroblast growth factor (hBFGF) is a heparin-binding growth factor and stimulates the proliferation of a wide variety of cells and tissues causing survival properties and its stability and biological activity improvements have received much attention. Materials and Methods: In the present work, hBFGF produced by engineered Escherichia coli and purified by cation exchange and heparin affinity chromatography, was PEGylated under appropriate condition employing 10 kD polyethylene glycol. The PEGylated form was separated by size exclusion chromatography. Structural, biological activity, and stability evaluations were performed using Fourier transform infrared (FITR) spectroscopy, 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay and effect denaturing agent, respectively. Results: FITR spectroscopy revealed that both PEGylated and native forms had the same structures. MTT assay showed that PEGyalated form had a 30% reduced biological activity. Fluorescence spectrophotometry indicated that the PEGylated form denatured at higher concentrations of guanidine HCl (1.2 M) compared with native, which denatured at 0.8 M guanidine HCl. Conclusions: PEGylation of hBFGF makes it more stable against denaturing agent but reduces its bioactivity up to 30%. PMID:26605215

  13. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity.

    PubMed

    Matsubu, John C; Yang, Vanessa N; Christopher, Phillip

    2015-03-01

    CO2 reduction by H2 on heterogeneous catalysts is an important class of reactions that has been studied for decades. However, atomic scale details of structure-function relationships are still poorly understood. Particularly, it has been suggested that metal particle size plays a unique role in controlling the stability of CO2 hydrogenation catalysts and the distribution of active sites, which dictates reactivity and selectivity. These studies often have not considered the possible role of isolated metal active sites in the observed dependences. Here, we utilize probe molecule diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with known site-specific extinction coefficients to quantify the fraction of Rh sites residing as atomically dispersed isolated sites (Rhiso), as well as Rh sites on the surface of Rh nanoparticles (RhNP) for a series of TiO2 supported Rh catalysts. Strong correlations were observed between the catalytic reverse water gas shift turn over frequency (TOF) and the fraction of Rhiso sites and between catalytic methanation TOF and the fraction of RhNP sites. Furthermore, it was observed that reaction condition-induced disintegration of Rh nanoparticles, forming Rhiso active sites, controls the changing reactivity with time on stream. This work demonstrates that isolated atoms and nanoparticles of the same metal on the same support can exhibit uniquely different catalytic selectivity in competing parallel reaction pathways and that disintegration of nanoparticles under reaction conditions can play a significant role in controlling stability. PMID:25671686

  14. Transition state stabilization by six arginines clustered in the active site of creatine kinase.

    PubMed

    Jourden, Michael J; Geiss, Paul R; Thomenius, Michael J; Horst, Lindsay A; Barty, Melissa M; Brym, Melissa J; Mulligan, Guy B; Almeida, Ryan M; Kersteen, Betsy A; Myers, Nichole R; Snider, Mark J; Borders, Charles L; Edmiston, Paul L

    2005-08-10

    Six fully conserved arginine residues (R129, R131, R235, R291, R319, and R340) closely grouped in the nucleotide binding site of rabbit muscle creatine kinase (rmCK) were mutated; four to alanine and all six to lysine. Kinetic analyses in the direction of phosphocreatine formation showed that all four alanine mutants led to substantial losses of activity with three (R129A, R131A, and R235A) having no detectable activity. All six lysine mutants retained variable degrees of reduced enzymatic activity. Static quenching of intrinsic tryptophan fluorescence was used to measure the binding constants for MgADP and MgATP. Nucleotide binding was at most only modestly affected by mutation of the arginine residues. Thus, the cluster of arginines seem to be primarily responsible for transition state stabilization which is further supported by the observation that none of the inactive mutants demonstrated the ability to form a transition analogue complex of MgADP.nitrate.creatine as determined by fluorescence quenching assays. As a whole, the results suggest that the most important role these residues play is to properly align the substrates for stabilization of the phosphoryl transfer reaction.

  15. Mechanochemically Activated, Calcium Oxide-Based, Magnesium Oxide-Stabilized Carbon Dioxide Sorbents.

    PubMed

    Kurlov, Alexey; Broda, Marcin; Hosseini, Davood; Mitchell, Sharon J; Pérez-Ramírez, Javier; Müller, Christoph R

    2016-09-01

    Carbon dioxide capture and storage (CCS) is a promising approach to reduce anthropogenic CO2 emissions and mitigate climate change. However, the costs associated with the capture of CO2 using the currently available technology, that is, amine scrubbing, are considered prohibitive. In this context, the so-called calcium looping process, which relies on the reversible carbonation of CaO, is an attractive alternative. The main disadvantage of naturally occurring CaO-based CO2 sorbents, such as limestone, is their rapid deactivation caused by thermal sintering. Here, we report a scalable route based on wet mechanochemical activation to prepare MgO-stabilized, CaO-based CO2 sorbents. We optimized the synthesis conditions through a fundamental understanding of the underlying stabilization mechanism, and the quantity of MgO required to stabilize CaO could be reduced to as little as 15 wt %. This allowed the preparation of CO2 sorbents that exceed the CO2 uptake of the reference limestone by 200 %. PMID:27529608

  16. Improvement of the stability and activity of immobilized glucose oxidase on modified iron oxide magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Abbasi, Mahboube; Amiri, Razieh; Bordbar, Abdol-Kalegh; Ranjbakhsh, Elnaz; Khosropour, Ahmad-Reza

    2016-02-01

    Immobilized proteins and enzymes are widely investigated in the medical field as well as the food and environmental fields. In this study, glucose oxidase (GOX) was covalently immobilized on the surface of modified iron oxide magnetic nanoparticles (MIMNs) to produce a bioconjugate complex. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to the size, shape and structure characterization of the MIMNs. Binding of GOX to these MIMNs was confirmed by using FT-IR spectroscopy. The stability of the immobilized and free enzyme at different temperature and pH values was investigated by measuring the enzymatic activity. These studies reveal that the enzyme's stability is enhanced by immobilization. Further experiments showed that the storage stability of the enzyme is improved upon binding to the MIMNs. The results of kinetic measurements suggest that the effect of the immobilization process on substrate and product diffusion is small. Such bioconjugates can be considered as a catalytic nanodevice for accelerating the glucose oxidation reaction for biotechnological purposes.

  17. Mechanochemically Activated, Calcium Oxide-Based, Magnesium Oxide-Stabilized Carbon Dioxide Sorbents.

    PubMed

    Kurlov, Alexey; Broda, Marcin; Hosseini, Davood; Mitchell, Sharon J; Pérez-Ramírez, Javier; Müller, Christoph R

    2016-09-01

    Carbon dioxide capture and storage (CCS) is a promising approach to reduce anthropogenic CO2 emissions and mitigate climate change. However, the costs associated with the capture of CO2 using the currently available technology, that is, amine scrubbing, are considered prohibitive. In this context, the so-called calcium looping process, which relies on the reversible carbonation of CaO, is an attractive alternative. The main disadvantage of naturally occurring CaO-based CO2 sorbents, such as limestone, is their rapid deactivation caused by thermal sintering. Here, we report a scalable route based on wet mechanochemical activation to prepare MgO-stabilized, CaO-based CO2 sorbents. We optimized the synthesis conditions through a fundamental understanding of the underlying stabilization mechanism, and the quantity of MgO required to stabilize CaO could be reduced to as little as 15 wt %. This allowed the preparation of CO2 sorbents that exceed the CO2 uptake of the reference limestone by 200 %.

  18. Stability Assessment of 10 Active Pharmaceutical Ingredients Compounded in SyrSpend SF.

    PubMed

    Geiger, Christine M; Sorenson, Bridget; Whaley, Paul

    2015-01-01

    The stability of 10 active pharmaceutical ingredients was studied in SyrSpend SF PH4 or SyrSpend SF Alka at room and/or refrigerated temperature (2°C to 8°C). An oral suspension of each active pharmaceutical ingredient was compounded in low actinic plastic bottles at a specific concentration in SyrSpend SF PH4 or SyrSpend SF Alka. Samples were assessed for stability immediately after preparation (day 0) followed by storage at room temperature and/or at refrigerated temperature. At set time points, the samples were removed from storage and assayed using a high-performance liquid chromatographic stability- indicating method. The active pharmaceutical ingredient was considered stable if the suspension retained 90% to 110% of the initial concentration. Furosemide was stable for at least 14 days in SyrSpend SF Alka at refrigerated conditions. Prednisolone sodium phosphate in SyrSpend SF PH4 was stable for at least 30 days at room temperature and refrigerated conditions. Ranitidine hydrochloride suspensions in SyrSpend SF PH4 at room temperature and refrigerated conditions were stable for at least 30 days and 58 days, respectively. Hydrocortisone hemisuccinate and sodium phosphate retained greater than 90% for at least 60 days at both room temperature and refrigerated samples in SyrSpend SF PH4. Amiodarone hydrochloride and nifedipine suspensions at both room temperature and refrigerated conditions retained greater than 90% of the initial concentrations for at least 90 days in SyrSpend SF PH4. Refrigerated samples of simvastatin in SyrSpend SF PH4 were stable for at least 90 days. Spironolactone in SyrSpend SF PH4 at room temperature retained more than 90% of the initial concentration for at least 90 days. Phenobarbital in SyrSpend SF PH4 retained above 90% of initial concentration for at least 154 days at room temperature. This study demonstrated the stability of a wide range of frequently used active pharmaceutical ingredients, tested in SyrSpend SF PH4 and Syr

  19. Flexibility and Stability Trade-Off in Active Site of Cold-Adapted Pseudomonas mandelii Esterase EstK.

    PubMed

    Truongvan, Ngoc; Jang, Sei-Heon; Lee, ChangWoo

    2016-06-28

    Cold-adapted enzymes exhibit enhanced conformational flexibility, especially in their active sites, as compared with their warmer-temperature counterparts. However, the mechanism by which cold-adapted enzymes maintain their active site stability is largely unknown. In this study, we investigated the role of conserved D308-Y309 residues located in the same loop as the catalytic H307 residue in the cold-adapted esterase EstK from Pseudomonas mandelii. Mutation of D308 and/or Y309 to Ala or deletion resulted in increased conformational flexibility. Particularly, the D308A or Y309A mutant showed enhanced substrate affinity and catalytic rate, as compared with wild-type EstK, via enlargement of the active site. However, all mutant EstK enzymes exhibited reduced thermal stability. The effect of mutation was greater for D308 than Y309. These results indicate that D308 is not preferable for substrate selection and catalytic activity, whereas hydrogen bond formation involving D308 is critical for active site stabilization. Taken together, conformation of the EstK active site is constrained via flexibility-stability trade-off for enzyme catalysis and thermal stability. Our study provides further insights into active site stabilization of cold-adapted enzymes. PMID:27259687

  20. Experimental study of the stability and activity of brines on the surface of Mars

    NASA Astrophysics Data System (ADS)

    Altheide, Travis S.

    This work contributes to the understanding of liquid water stability, with an emphasis on the role that dissolved solutes may have had on liquid water formation on Mars, past and present. In chapter 2, the stability of liquid water under martian conditions is explored through experiments on ferric sulfate brines. First, it is demonstrated that such brines can be formed starting from typical martian mineralogy. Ferric sulfates are quite soluble, up to 48 wt%, and can form solutions which remain liquid down to 205 +/-1 K at the eutectic. As a result of low water activities, these solutions exhibit evaporation rates 20 times lower than pure water. The combination of a low eutectic point and low evaporation rates allow subsurface liquids to be stable at high martian latitudes, where the majority of gullies and viscous flow features are located. Thus, the characteristics of ferric sulfate brines were further investigated in chapter 3, where the viscous properties of such solutions were measured, with respect to changing temperature and concentration. Using these results, the viscosity of these solutions on the formation of gullies was considered, where calculated fluid flow velocities were found to be in accordance with some estimates from image analyses of gully formations. In chapter 4, other Mars-relevant brines were studied and characterized under martian surface conditions. Magnesium and ferrous sulfate, and magnesium and ferric chloride brines were found to stabilize water, through lower evaporation rates and freezing point depression, much like the ferric sulfate brines. For these sulfate brines, it was found that the thermodynamic process of phase change, i.e. ice formation and/or salt crystallization, can affect the kinetic process of evaporation, through very low water activities in solution. Furthermore, in chapter 5 these studies were extended to recent results from the Phoenix mission, by examining the stability of perchlorate brines under conditions

  1. Correction: Enhanced photocatalytic activity of a self-stabilized synthetic flavin anchored on a TiO2 surface.

    PubMed

    Pandiri, Manjula; Shaham-Waldmann, Nurit; Hossain, Mohammad S; Foss, Frank W; Rajeshwar, Krishnan; Paz, Yaron

    2016-09-14

    Correction for 'Enhanced photocatalytic activity of a self-stabilized synthetic flavin anchored on a TiO2 surface' by Manjula Pandiri et al., Phys. Chem. Chem. Phys., 2016, 18, 18575-18583. PMID:27509005

  2. A larger critical shoulder angle requires more rotator cuff activity to preserve joint stability.

    PubMed

    Viehöfer, Arnd F; Gerber, Christian; Favre, Philippe; Bachmann, Elias; Snedeker, Jess G

    2016-06-01

    Shoulders with rotator cuff tears (RCT) tears are associated with significantly larger critical shoulder angles (CSA) (RCT CSA = 38.2°) than shoulders without RCT (CSA = 32.9°). We hypothesized that larger CSAs increase the ratio of glenohumeral joint shear to joint compression forces, requiring substantially increased compensatory supraspinatus loads to stabilize the arm in abduction. A previously established three dimensional (3D) finite element (FE) model was used. Two acromion shapes mimicked the mean CSA of 38.2° found in patients with RCT and that of a normal CSA (32.9°). In a first step, the moment arms for each muscle segment were obtained for 21 different thoracohumeral abduction angles to simulate a quasi-static abduction in the scapular plane. In a second step, the muscle forces were calculated by minimizing the range of muscle stresses able to compensate an external joint moment caused by the arm weight. If the joint became unstable, additional force was applied by the rotator cuff muscles to restore joint stability. The model showed a higher joint shear to joint compressive force for the RCT CSA (38.2°) for thoracohumeral abduction angles between 40° and 90° with a peak difference of 23% at 50° of abduction. To achieve stability in this case additional rotator cuff forces exceeding physiological values were required. Our results document that a higher CSA tends to destabilize the glenohumeral joint such that higher than normal supraspinatus forces are required to maintain modeled stability during active abduction. This lends strong support to the concept that a high CSA can induce supraspinatus (SSP) overload. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:961-968, 2016. PMID:26572231

  3. Flash NanoPrecipitation of organic actives via confined micromixing and block copolymer stabilization

    NASA Astrophysics Data System (ADS)

    Johnson, Brian K.

    This dissertation provides a method and the understanding required to produce nanoparticles of organic actives using Flash NanoPrecipitation . The process comprises mixing a solvent phase containing molecularly dissolved amphiphilic block copolymer and an organic active with an anti-solvent. One block of the copolymer precipitates to alter the nucleation and growth of the organic active while the other remains in solution for particle stabilization. A custom built confined impinging jets (CIJ) mixer provides optimum micromixing at the laboratory or full scale within milliseconds. Comparison to other reactor designs is provided. The resulting nanoparticles have functional surfaces tailored to meet the needs of pharmaceutical or specialty chemical formulations. Example beta-carotene nanoparticles with a polyethylene oxide surface are produced at high concentration, high yield, low stabilizer content, and a size suitable for sterile filtration or larger. The technical challenges in nanoparticle production are explained via the characteristic times for mixing, copolymer aggregation, and organic active particle formation. The time for Flash NanoPrecipitation is shown to depend strongly on the time for copolymer aggregation, and control of the organic nucleation versus growth is critical to achieve nanoparticles. Mixing operating lines explain the impact of solubility differences between the colloidal stabilizer and the organic active as function of mixing rate. Techniques to measure the solubility of the copolymer and DeltaG° , DeltaH°, and DeltaS° of micellization are demonstrated. An analytical CIJ mixer is developed by quantifying the characteristic time and physical mechanism of mixing. The methodology described to find an absolute mixing lifetime is also applied to a vortex mixer at a spectrum of flow ratios away from one. Dimensional analysis using the process Damkohler number, defined as the ratio of the mixing to the process time, is applied to precipitation

  4. Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability.

    PubMed

    Altinkaynak, Cevahir; Yilmaz, Ismail; Koksal, Zeynep; Özdemir, Hasan; Ocsoy, Ismail; Özdemir, Nalan

    2016-03-01

    We report a green approach to synthesize lactoperoxidase (LPO) enzyme and metal ions hybrid nanoflowers (HNFs) and investigate mechanism underlying formation and enhanced catalytic activity and stability under different experimental parameters. The HNFs formed of LPO enzyme purified from bovine milk and copper ions (Cu(2+)) were synthesized at two different temperatures (+4 °C and 20 °C) in PBS (pH 7.4). The effects of experimental conditions, pH and storage temperatures, on the activity and stability of LPO-copper phosphate HNFs were evaluated using guaiacol as a substrate in the presence of hydrogen peroxide (H2O2). Optimum pHs were determined as pH 8 and pH 6 for LPO-copper phosphate HNF and free LPO, respectively. LPO-copper phosphate HNF has higher activity than free LPO at each pHs. Activities of LPO-copper phosphate HNF at pH 6 and pH 8 were calculated as 70.48 EU/mg, 107.23 EU/mg, respectively while free LPO shows 45.78 EU/mg and 30.12 EU/mg, respectively. Compared with free LPO, LPO-copper phosphate HNFs exhibited ∼160% and ∼360% increase in activities at pH 6 and pH 8, respectively. Additionally, LPO-copper phosphate HNFs displayed perfect reusability after six cycles. Finally, we demonstrated that LPO-copper phosphate HNFs can be utilized as a nanosensor for detection of dopamine and epinephrine.

  5. Task-specific stability in muscle activation space during unintentional movements.

    PubMed

    Falaki, Ali; Towhidkhah, Farzad; Zhou, Tao; Latash, Mark L

    2014-11-01

    We used robot-generated perturbations applied during position-holding tasks to explore stability of induced unintentional movements in a multidimensional space of muscle activations. Healthy subjects held the handle of a robot against a constant bias force and were instructed not to interfere with hand movements produced by changes in the external force. Transient force changes were applied leading to handle displacement away from the initial position and then back toward the initial position. Intertrial variance in the space of muscle modes (eigenvectors in the muscle activations space) was quantified within two subspaces, corresponding to unchanged handle coordinate and to changes in the handle coordinate. Most variance was confined to the former subspace in each of the three phases of movement, the initial steady state, the intermediate position, and the final steady state. The same result was found when the changes in muscle activation were analyzed between the initial and final steady states. Changes in the dwell time between the perturbation force application and removal led to different final hand locations undershooting the initial position. The magnitude of the undershot scaled with the dwell time, while the structure of variance in the muscle activation space did not depend on the dwell time. We conclude that stability of the hand coordinate is ensured during both intentional and unintentional actions via similar mechanisms. Relative equifinality in the external space after transient perturbations may be associated with varying states in the redundant space of muscle activations. The results fit a hierarchical scheme for the control of voluntary movements with referent configurations and redundant mapping between the levels of the hierarchy. PMID:25092272

  6. TASK-SPECIFIC STABILITY IN MUSCLE ACTIVATION SPACE DURING UNINTENTIONAL MOVEMENTS

    PubMed Central

    Falaki, Ali; Towhidkhah, Farzad; Zhou, Tao; Latash, Mark L.

    2014-01-01

    We used robot-generated perturbations applied during position-holding tasks to explore stability of induced unintentional movements in a multi-dimensional space of muscle activations. Healthy subjects held the handle of a robot against a constant bias force and were instructed not to interfere with hand movements produced by changes in the external force. Transient force changes were applied leading to handle displacement away from the initial position and then back towards the initial position. Inter-trial variance in the space of muscle modes (eigenvectors in the muscle activations space) was quantified within two sub-spaces, corresponding to unchanged handle coordinate and to changes in the handle coordinate. Most variance was confined to the former sub-space in each of the three phases of movement, the initial steady state, the intermediate position, and the final steady state. The same result was found when the changes in muscle activation were analyzed between the initial and final steady states. Changes in the dwell time between the perturbation force application and removal led to different final hand locations undershooting the initial position. The magnitude of the undershot scaled with the dwell time, while the structure of variance in the muscle activation space did not depend on the dwell time. We conclude that stability of the hand coordinate is ensured during both intentional and unintentional actions via similar mechanisms. Relative equifinality in the external space after transient perturbations may be associated with varying states in the redundant space of muscle activations. The results fit a hierarchical scheme for the control of voluntary movements with referent configurations and redundant mapping between the levels of the hierarchy. PMID:25092272

  7. Accelerated Stability Studies on Dried Extracts of Centella asiatica Through Chemical, HPLC, HPTLC, and Biological Activity Analyses.

    PubMed

    Kaur, Ishtdeep; Suthar, Nancy; Kaur, Jasmeen; Bansal, Yogita; Bansal, Gulshan

    2016-10-01

    Regulatory guidelines recommend systematic stability studies on a herbal product to establish its shelf life. In the present study, commercial extracts (Types I and II) and freshly prepared extract (Type III) of Centella asiatica were subjected to accelerated stability testing for 6 months. Control and stability samples were evaluated for organoleptics, pH, moisture, total phenolic content (TPC), asiatic acid, kaempherol, and high-performance thin layer chromatography fingerprints, and for antioxidant and acetylcholinesterase inhibitory activities. Markers and TPC and both the activities of each extract decreased in stability samples with respect to control. These losses were maximum in Type I extract and minimum in Type III extract. Higher stability of Type III extract than others might be attributed to the additional phytoconstituents and/or preservatives in it. Pearson correlation analysis of the results suggested that TPC, asiatic acid, and kaempferol can be taken as chemical markers to assess chemical and therapeutic shelf lives of herbal products containing Centella asiatica.

  8. Improving the activity of Trichoderma reesei cel7B through stabilizing the transition state.

    PubMed

    Wang, Yefei; Song, Xiangfei; Zhang, Shujun; Li, Jingwen; Shu, Zhiyu; He, Chunyan; Huang, Qingshan; Yao, Lishan

    2016-06-01

    Trichoderma reesei (Tr.) cellulases, which convert cellulose to reducing sugars, are a promising catalyst used in the lignocellulosic biofuel production. Improving Tr. cellulases activity, though very difficult, is highly desired due to the recalcitrance of lignocellulose. Meanwhile, it is preferable to enhance the cellulase's promiscuity so that substrates other than cellulose can also be hydrolyzed. In this work, an attempt is made to improve the catalytic activity of a major endogluanase Tr. Cel7B against xylan which crosslinks with cellulose in lignocellulose. By using quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations, the transition state of the xylo-oligosaccharide hydrolysis is identified. Then, mutations are introduced and their effect on the transition state stabilization is ranked based on the free energy calculations. Seven top ranked mutants are evaluated experimentally. Three mutants A208Q, A222D, and G230R show a higher activity than the wild-type Tr. Cel7B in the hydrolysis of xylan (by up to 47%) as well as filter paper (by up to 50%). The combination of the single mutants can further improve the enzyme activity. Our work demonstrates that the free energy method is effective in engineering the Tr. Cel7B activity against xylan and cellulose, and thus may also be useful for improving the activity of other Tr. cellulases. Biotechnol. Bioeng. 2016;113: 1171-1177. © 2015 Wiley Periodicals, Inc. PMID:26616246

  9. Improving the activity of Trichoderma reesei cel7B through stabilizing the transition state.

    PubMed

    Wang, Yefei; Song, Xiangfei; Zhang, Shujun; Li, Jingwen; Shu, Zhiyu; He, Chunyan; Huang, Qingshan; Yao, Lishan

    2016-06-01

    Trichoderma reesei (Tr.) cellulases, which convert cellulose to reducing sugars, are a promising catalyst used in the lignocellulosic biofuel production. Improving Tr. cellulases activity, though very difficult, is highly desired due to the recalcitrance of lignocellulose. Meanwhile, it is preferable to enhance the cellulase's promiscuity so that substrates other than cellulose can also be hydrolyzed. In this work, an attempt is made to improve the catalytic activity of a major endogluanase Tr. Cel7B against xylan which crosslinks with cellulose in lignocellulose. By using quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations, the transition state of the xylo-oligosaccharide hydrolysis is identified. Then, mutations are introduced and their effect on the transition state stabilization is ranked based on the free energy calculations. Seven top ranked mutants are evaluated experimentally. Three mutants A208Q, A222D, and G230R show a higher activity than the wild-type Tr. Cel7B in the hydrolysis of xylan (by up to 47%) as well as filter paper (by up to 50%). The combination of the single mutants can further improve the enzyme activity. Our work demonstrates that the free energy method is effective in engineering the Tr. Cel7B activity against xylan and cellulose, and thus may also be useful for improving the activity of other Tr. cellulases. Biotechnol. Bioeng. 2016;113: 1171-1177. © 2015 Wiley Periodicals, Inc.

  10. The cellular responses and antibacterial activities of silver nanoparticles stabilized by different polymers

    NASA Astrophysics Data System (ADS)

    Lin, Jiang-Jen; Lin, Wen-Chun; Dong, Rui-Xuan; Hsu, Shan-hui

    2012-02-01

    Silver nanoparticles (AgNPs) are known for their excellent antibacterial activities. The possible toxicity, however, is a major concern for their applications. Three types of AgNPs were prepared in this study by chemical processes. Each was stabilized by a polymer surfactant, which was expected to reduce the exposure of cells to AgNPs and therefore their cytotoxicity. The polymer stabilizers included poly(oxyethylene)-segmented imide (POEM), poly(styrene-co-maleic anhydride)-grafting poly(oxyalkylene) (SMA) and poly(vinyl alcohol) (PVA). The cytotoxicity of these chemically produced AgNPs to mouse skin fibroblasts (L929), human hepatocarcinoma cells (HepG2), and mouse monocyte macrophages (J774A1) was compared to that of physically produced AgNPs and gold nanoparticles (AuNPs) as well as the standard reference material RM8011 AuNPs. Results showed that SMA-AgNPs were the least cytotoxic among all materials, but cytotoxicity was still observed at higher silver concentrations (>30 ppm). Macrophages demonstrated the inflammatory response with cell size increase and viability decrease upon exposure to 10 ppm of the chemically produced AgNPs. SMA-AgNPs did not induce hemolysis at a silver concentration below 1.5 ppm. Regarding the antibacterial activity, POEM-AgNPs and SMA-AgNPs at 1 ppm silver content showed 99.9% and 99.3% growth inhibition against E. coli, while PVA-AgNPs at the same silver concentration displayed 79.1% inhibition. Overall, SMA-AgNPs demonstrated better safety in vitro and greater antibacterial effects than POEM-AgNPs and PVA-AgNPs. This study suggested that polymer stabilizers may play an important role in determining the toxicity of AgNPs.

  11. Insulin inhibits inflammation and promotes atherosclerotic plaque stability via PI3K-Akt pathway activation.

    PubMed

    Yan, Hao; Ma, Ying; Li, Yan; Zheng, Xiaohui; Lv, Ping; Zhang, Yuan; Li, Jia; Ma, Meijuan; Zhang, Le; Li, Congye; Zhang, Rongqing; Gao, Feng; Wang, Haichang; Tao, Ling

    2016-02-01

    Toll-like receptor (TLR) 4 induced inflammation was reported to play an important role in atherosclerotic plaque stability. Recent studies indicated that insulin could inhibit inflammation by activating phosphatidylinositol 3-kinase-Akt-dependent (PI3K-Akt) signaling pathway. In the current study, we hypothesized that insulin would inhibit TLR4 induced inflammation via promoting PI3K-Akt activation, thus enhancing the stabilization of atherosclerotic plaques. In order to mimic the process of plaque formation, monocyte-macrophage lineage RAW264.7 were cultured and induced to form foam cells by oxidized LDL (ox-LDL). Oil red O staining results showed that insulin significantly restrained ox-LDL-induced foam cell formation. Analysis of inflammatory reaction during foam cell formation indicated that insulin significantly down-regulated the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-6 levels, inhibited TLR4, myeloid differentiation primary response gene (MyD) 88 and nuclear factor (NF)-κB. Further mechanism analysis showed that pretreating with the PI3K blocker, wortmannin dramatically dampened the insulin-induced up-regulation of pAkt expression. Additionally, blockade of PI3K-Akt signaling also dampened the immunosuppression effect brought by insulin. Following the construction of a rodent atherosclerosis model, pretreatment of insulin resulted in an evident decrease in lipid deposition of the blood vessel wall, serum levels of TNF-α and IL-6, and numbers of infiltrated macrophages and foam cells. Taken together, these results suggested that insulin might inhibit inflammation and promote atherosclerotic plaque stability via the PI3K-Akt pathway by targeting TLR4-MyD88-NF-κB signaling. Our findings may provide a potential target for the prevention of cardiovascular disease. PMID:26681144

  12. Tyrosine hydroxylase activity of immobilized tyrosinase on enzacryl-AA and CPG-AA supports: Stabilization and properties.

    PubMed

    Vilanova, E; Manjon, A; Iborra, J L

    1984-11-01

    Frog epidermis tyrosinase has been immobilized on Enzacryl-AA (a polyacrylamide-based support) and CPG(zirclad)-Arylamine (a controlled pore glass support) in order to stabilize the tyrosine hydroxylase activity of the enzyme; in this way, the immobilized enzyme could be used to synthesize L-dopa from L-tyrosine. The activity immobilization yield Y(IME) (act) (higher than 86%), coupling efficiency (up to 90%), storage stability (no loss in 120 days), and reaction stability (t(1/2) was higher than 20 h in column reactors) were measured for tyrosinase after its immobilization. The results showed a noticeable improvement (in immobilization yield, coupling efficiency, and storage and operational stabilities) over previous reports in which tyrosinase was immobilized for L-dopa production. The activity and stability of immobilized enzyme preparations working in three different reactor types have been compared when used in equivalent conditions with respect to a new proposed parameter of the reactor (R(p)), which allows different reactor configurations to be related to the productivity of the reactor during its useful life time. The characteristic reaction inactivation which soluble tyrosinase shows after a short reaction time has been avoided by immobilization, and the stabilization was enhanced by the presence of ascorbate. However, another inactivation process appeared after a prolonged use of the immobilized enzyme. The effects of reactor type and operating conditions on immobilized enzyme activity and stability are discussed.

  13. Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability

    USGS Publications Warehouse

    Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.

    1993-01-01

    IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.

  14. The effect of net charge on the solubility, activity, and stability of ribonuclease Sa

    PubMed Central

    Shaw, Kevin L.; Grimsley, Gerald R.; Yakovlev, Gennady I.; Makarov, Alexander A.; Pace, C. Nick

    2001-01-01

    The net charge and isoelectric pH (pI) of a protein depend on the content of ionizable groups and their pK values. Ribonuclease Sa (RNase Sa) is an acidic protein with a pI = 3.5 that contains no Lys residues. By replacing Asp and Glu residues on the surface of RNase Sa with Lys residues, we have created a 3K variant (D1K, D17K, E41K) with a pI = 6.4 and a 5K variant (3K + D25K, E74K) with a pI = 10.2. We show that pI values estimated using pK values based on model compound data can be in error by >1 pH unit, and suggest how the estimation can be improved. For RNase Sa and the 3K and 5K variants, the solubility, activity, and stability have been measured as a function of pH. We find that the pH of minimum solubility varies with the pI of the protein, but that the pH of maximum activity and the pH of maximum stability do not. PMID:11369859

  15. Surface-active solid lipid nanoparticles as Pickering stabilizers for oil-in-water emulsions.

    PubMed

    Gupta, Renuka; Rousseau, Dérick

    2012-03-01

    Oil-in-water (O/W) emulsions solely stabilized by surface-active solid lipid nanoparticles (SLNs) were developed. The SLNs were generated by quench-cooling hot O/W nanoemulsions consisting of 7.5% glyceryl stearyl citrate (GSC) dispersed in water. Their initial volume-weighted mean particle diameter (∼152 nm) and zeta potential (ca.-49 mV) remained unchanged for 24 weeks. O/W emulsions (oil phase volume fraction: 0.2) containing 7.5% (w/w) GSC SLNs in the aqueous phase were kinetically-stable for 12 weeks and did not visually phase-separate over 24 weeks. The O/W emulsions generated with solid-state GSC SLNs had a volume-weighted mean oil droplet diameter of ∼459 nm and a zeta potential of ca.-43 mV. Emulsion microstructure evaluated with TEM revealed dispersed oil droplets sparsely covered with adsorbed Pickering-type SLNs as well aggregated SLNs present in the continuous phase. Gradual emulsion destabilization resulted from GSC SLN dissolution during the experimental timeframe. Overall, surface-active SLNs developed via nanoemulsions effectively kinetically stabilized O/W emulsions.

  16. Effect of magnesium cations on the activity and stability of β-galactosidases

    NASA Astrophysics Data System (ADS)

    Atyaksheva, L. F.; Pilipenko, O. S.; Poltorak, O. M.; Chukhrai, E. S.

    2007-07-01

    It was shown that the presence of magnesium cations in the reaction mixture increases, approximately twofold, the activity of bacterial Escherichia coli and yeast Kluyveromyces lactis β-galactosidases but does not affect the activity of bovine liver and fungous Penicillium canescens β-galactosidases. The catalytic constants for E. coli and yeast K. lactis β-galactosidases in the presence of 0.01 M and in the absence of Mg2+ cations were determined (490 and 220 s-1 and 59.8 and 37.4 s-1, respectively). It was shown that the Michaelis constants for these two enzymes are higher in the presence of Mg2+ cations, that the thermal stability of E. coli and K. Lactis β-galactosidases is higher in the presence of 0.01 M Mg2+, and that the effective rate constants of thermal inactivation of the enzymes are two-to eightfold lower, depending on conditions, in the presence of Mg2+ cations. The maximum stabilizing effect of magnesium cations was observed at weak alkaline pH values (7.5-8.5).

  17. Contributors to Enhanced CO2 Electroreduction Activity and Stability in a Nanostructured Au Electrocatalyst.

    PubMed

    Kim, Haeri; Jeon, Hyo Sang; Jee, Michael Shincheon; Nursanto, Eduardus Budi; Singh, Jitendra Pal; Chae, Keunhwa; Hwang, Yun Jeong; Min, Byoung Koun

    2016-08-23

    The formation of a nanostructure is a popular strategy for catalyst applications because it can generate new surfaces that can significantly improve the catalytic activity and durability of the catalysts. However, the increase in the surface area resulting from nanostructuring does not fully explain the substantial improvement in the catalytic properties of the CO2 electroreduction reaction, and the underlying mechanisms have not yet been fully understood. Here, based on a combination of extended X-ray absorption fine structure analysis, X-ray photoelectron spectroscopy, and Kelvin probe force microscopy, we observed a contracted Au-Au bond length and low work function with the nanostructured Au surface that had enhanced catalytic activity for electrochemical CO2 reduction. The results may improve the understanding of the enhanced stability of the nanostructured Au electrode based on the resistance of cation adhesion during the CO2 reduction reaction. PMID:27466025

  18. Harvest date affects aronia juice polyphenols, sugars, and antioxidant activity, but not anthocyanin stability.

    PubMed

    Bolling, Bradley W; Taheri, Rod; Pei, Ruisong; Kranz, Sarah; Yu, Mo; Durocher, Shelley N; Brand, Mark H

    2015-11-15

    The goal of this work was to characterize how the date of harvest of 'Viking' aronia berry impacts juice pigmentation, sugars, and antioxidant activity. Aronia juice anthocyanins doubled at the fifth week of the harvest, and then decreased. Juice hydroxycinnamic acids decreased 33% from the first week, while proanthocyanidins increased 64%. Juice fructose and glucose plateaued at the fourth week, but sorbitol increased 40% to the seventh harvest week. Aronia juice pigment density increased due to anthocyanin concentration, and polyphenol copigmentation did not significantly affect juice pigmentation. Anthocyanin stability at pH 4.5 was similar between weeks. However, addition of quercetin, sorbitol, and chlorogenic acid to aronia anthocyanins inhibited pH-induced loss of color. Sorbitol and citric acid may be partially responsible for weekly variation in antioxidant activity, as addition of these agents inhibited DPPH scavenging 13-30%. Thus, aronia polyphenol and non-polyphenol components contribute to its colorant and antioxidant functionality. PMID:25977015

  19. Harvest date affects aronia juice polyphenols, sugars, and antioxidant activity, but not anthocyanin stability.

    PubMed

    Bolling, Bradley W; Taheri, Rod; Pei, Ruisong; Kranz, Sarah; Yu, Mo; Durocher, Shelley N; Brand, Mark H

    2015-11-15

    The goal of this work was to characterize how the date of harvest of 'Viking' aronia berry impacts juice pigmentation, sugars, and antioxidant activity. Aronia juice anthocyanins doubled at the fifth week of the harvest, and then decreased. Juice hydroxycinnamic acids decreased 33% from the first week, while proanthocyanidins increased 64%. Juice fructose and glucose plateaued at the fourth week, but sorbitol increased 40% to the seventh harvest week. Aronia juice pigment density increased due to anthocyanin concentration, and polyphenol copigmentation did not significantly affect juice pigmentation. Anthocyanin stability at pH 4.5 was similar between weeks. However, addition of quercetin, sorbitol, and chlorogenic acid to aronia anthocyanins inhibited pH-induced loss of color. Sorbitol and citric acid may be partially responsible for weekly variation in antioxidant activity, as addition of these agents inhibited DPPH scavenging 13-30%. Thus, aronia polyphenol and non-polyphenol components contribute to its colorant and antioxidant functionality.

  20. Synthesis of fibrinolytic active silver nanoparticle using wheat bran xylan as a reducing and stabilizing agent.

    PubMed

    Harish, B S; Uppuluri, Kiran Babu; Anbazhagan, Veerappan

    2015-11-01

    A facile synthesis of highly stable silver nanoparticles (AgNPs) was reported using a biopolymer, xylan as both a reducing and stabilizing agent. Xylan was isolated from waste biomass, wheat bran (WB) by alkaline treatment and was characterized by Fehling's test, dinitrosalicylic acid assay, FTIR, (1)H NMR and (13)C NMR. The synthesized nanoparticles were characterized by UV-Vis spectroscopy and transmission electron microscopy. The nanoparticles were polydispersed with the size ranging from 20 to 45 nm. The synthesized WB-xylan AgNPs showed excellent free radical scavenging activity. In addition, WB-xylan AgNPs showed fibrinolytic activity as evidenced by the zone of clearance in fibrin plate assay. The biomedical potential of the WB-xylan AgNPs was demonstrated by dissolution of preformed blood clots. These results suggest that the development of xylan-metal nanoparticle composite would be feasible to treat thrombus related diseases. PMID:26256330

  1. Idaho Chemical Processing Plant low-activity waste grout stabilization development program FY-97 status report

    SciTech Connect

    Herbst, A.K.; Marshall, D.W.; McCray, J.A.

    1998-02-01

    The general purpose of the Grout Development Program is to solidify and stabilize the liquid low-activity wastes (LAW) generated at the Idaho Chemical Processing Plant (ICPP). It is anticipated that LAW will be produced from the following: (1) chemical separation of the tank farm high-activity sodium-bearing waste, (2) retrieval, dissolution, and chemical separation of the aluminum, zirconium, and sodium calcines, (3) facility decontamination processes, and (4) process equipment waste. Grout formulation studies for sodium-bearing LAW, including decontamination and process equipment waste, continued this fiscal year. A second task was to develop a grout formulation to solidify potential process residual heels in the tank farm vessels when the vessels are closed.

  2. Earthworms facilitate the stabilization of pelletized dewatered sludge through shaping microbial biomass and activity and community.

    PubMed

    Fu, Xiaoyong; Cui, Guangyu; Huang, Kui; Chen, Xuemin; Li, Fusheng; Zhang, Xiaoyu; Li, Fei

    2016-03-01

    In this study, the effect of earthworms on microbial features during vermicomposting of pelletized dewatered sludge (PDS) was investigated through comparing two degradation systems with and without earthworm E isenia fetida involvement. After 60 days of experimentation, a relatively stable product with low organic matter and high nitrate and phosphorous was harvested when the earthworms were involved. During the process, earthworms could enhance microbial activity and biomass at the initial stage and thus accelerating the rapid decomposition of PDS. The end products of vermicomposting allowed the lower values of bacterial and eukaryotic densities comparison with those of no earthworm addition. In addition, the presence of earthworms modified the bacterial and fungal diversity, making the disappearances of some pathogens and specific decomposing bacteria of recalcitrant substrates in the vermicomposting process. This study evidences that earthworms can facilitate the stabilization of PDS through modifying microbial activity and number and community during vermicomposting.

  3. A comparative treatment of stabilized landfill leachate: coagulation and activated carbon adsorption vs. electrochemical oxidation.

    PubMed

    Papastavrou, Chrystalla; Mantzavinos, Dionissios; Diamadopoulos, Evan

    2009-12-14

    This work investigated the treatment of a landfill leachate that had previously undergone biological treatment. Two treatment schemes were compared: the first one involved coagulation followed by activated carbon adsorption, whilst the second was electrochemical treatment. Coagulation with alum resulted in a 50% removal of chemical oxygen demand (COD). The optimum aluminium dose was 3 mM Al3+. Activated carbon adsorption of stabilized leachate that had been previously treated by coagulation resulted in an overall 80% removal of COD. However, a significant part of the organic matter (corresponding to 170 mg/L) was non-adsorbable. Electrochemical oxidation over a boron-doped diamond electrode led to about 90% COD removal in 240 min with the resulting stream having a COD content as low as 50 mg/L. An increase in current intensity from 15 A to 21 A had no practical effect on the overall COD removal, which followed first-order kinetics. PMID:20183999

  4. Thermal Stability and Catalytic Activity of Gold Nanoparticles Supported on Silica

    SciTech Connect

    Veith, G.; Lupini, A; Rashkeev, S; Pennycook, S; Mullins, D; Schwartz, V; Bridges, C; Dudney, N

    2009-01-01

    2.5 nm gold nanoparticles were grown on a fumed silica support, using the physical vapor deposition technique of magnetron sputtering, that are thermally stable when annealed in an oxygen containing environment up to at least 500 C. Traditional Au/TiO{sub 2} catalysts rapidly sinter to form large 13.9 nm gold clusters under these annealing conditions. This surprising stability of Au/SiO{sub 2} is attributed to the absence of residual impurities (ensured by the halide-free production method) and a strong bond between gold and defects at the silica surface (about 3 eV per bond) estimated from density functional theory (DFT) calculations. The Au/SiO{sub 2} catalysts are less active for CO oxidation than the prototypical Au/TiO2 catalysts, however they can be regenerated far more easily, allowing the activity of a catalyst to be fully recovered after deactivation.

  5. Enhanced exo-inulinase activity and stability by fusion of an inulin-binding module.

    PubMed

    Zhou, Shun-Hua; Liu, Yuan; Zhao, Yu-Juan; Chi, Zhe; Chi, Zhen-Ming; Liu, Guang-Lei

    2016-09-01

    In this study, an inulin-binding module from Bacillus macerans was successfully fused to an exo-inulinase from Kluyveromyces marxianus, creating a hybrid functional enzyme. The recombinant exo-inulinase (rINU), the hybrid enzyme (rINUIBM), and the recombinant inulin-binding module (rIBM) were, respectively, heterologously expressed and biochemically characterized. It was found that both the inulinase activity and the catalytic efficiency (k cat/K m(app)) of the rINUIBM were considerably higher than those of rINU. Though the rINU and the rINUIBM shared the same optimum pH of 4.5, the optimum temperature of the rINUIBM (60 °C) was 5 °C higher than that of the rINU. Notably, the fused IBM significantly enhanced both the pH stability and the thermostability of the rINUIBM, suggesting that the rINUIBM obtained would have more extensive potential applications. Furthermore, the fusion of the IBM could substantially improve the inulin-binding capability of the rINUIBM, which was consistent with the determination of the K m(app). This meant that the fused IBM could play a critical role in the recognition of polysaccharides and enhanced the hydrolase activity of the associated inulinase by increasing enzyme-substrate proximity. Besides, the extra supplement of the independent non-catalytic rIBM could also improve the inulinase activity of the rINU. However, this improvement was much better in case of the fusion. Consequently, the IBM could be designated as a multifunctional domain that was responsible for the activity enhancement, the stabilization, and the substrate binding of the rINUIBM. All these features obtained in this study make the rINUIBM become an attractive candidate for an efficient inulin hydrolysis. PMID:27164865

  6. Enhanced exo-inulinase activity and stability by fusion of an inulin-binding module.

    PubMed

    Zhou, Shun-Hua; Liu, Yuan; Zhao, Yu-Juan; Chi, Zhe; Chi, Zhen-Ming; Liu, Guang-Lei

    2016-09-01

    In this study, an inulin-binding module from Bacillus macerans was successfully fused to an exo-inulinase from Kluyveromyces marxianus, creating a hybrid functional enzyme. The recombinant exo-inulinase (rINU), the hybrid enzyme (rINUIBM), and the recombinant inulin-binding module (rIBM) were, respectively, heterologously expressed and biochemically characterized. It was found that both the inulinase activity and the catalytic efficiency (k cat/K m(app)) of the rINUIBM were considerably higher than those of rINU. Though the rINU and the rINUIBM shared the same optimum pH of 4.5, the optimum temperature of the rINUIBM (60 °C) was 5 °C higher than that of the rINU. Notably, the fused IBM significantly enhanced both the pH stability and the thermostability of the rINUIBM, suggesting that the rINUIBM obtained would have more extensive potential applications. Furthermore, the fusion of the IBM could substantially improve the inulin-binding capability of the rINUIBM, which was consistent with the determination of the K m(app). This meant that the fused IBM could play a critical role in the recognition of polysaccharides and enhanced the hydrolase activity of the associated inulinase by increasing enzyme-substrate proximity. Besides, the extra supplement of the independent non-catalytic rIBM could also improve the inulinase activity of the rINU. However, this improvement was much better in case of the fusion. Consequently, the IBM could be designated as a multifunctional domain that was responsible for the activity enhancement, the stabilization, and the substrate binding of the rINUIBM. All these features obtained in this study make the rINUIBM become an attractive candidate for an efficient inulin hydrolysis.

  7. The nuclear protein Artemis promotes AMPK activation by stabilizing the LKB1-AMPK complex

    SciTech Connect

    Nakagawa, Koji; Uehata, Yasuko; Natsuizaka, Mitsuteru; Kohara, Toshihisa; Darmanin, Stephanie; Asaka, Masahiro; Takeda, Hiroshi; Kobayashi, Masanobu

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer The nuclear protein Artemis physically interacts with AMPK{alpha}2. Black-Right-Pointing-Pointer Artemis co-localizes with AMPK{alpha}2 in the nucleus. Black-Right-Pointing-Pointer Artemis promotes phosphorylation and activation of AMPK. Black-Right-Pointing-Pointer The interaction between AMPK{alpha}2 and LKB1 is stabilized by Artemis. -- Abstract: AMP-activated protein kinase (AMPK) is a hetero-trimeric Ser/Thr kinase composed of a catalytic {alpha} subunit and regulatory {beta} and {gamma} subunits; it functions as an energy sensor that controls cellular energy homeostasis. In response to an increased cellular AMP/ATP ratio, AMPK is activated by phosphorylation at Thr172 in the {alpha}-subunit by upstream AMPK kinases (AMPKKs), including tumor suppressor liver kinase B1 (LKB1). To elucidate more precise molecular mechanisms of AMPK activation, we performed yeast two-hybrid screening and isolated the complementary DNA (cDNA) encoding the nuclear protein Artemis/DNA cross-link repair 1C (DCLRE1C) as an AMPK{alpha}2-binding protein. Artemis was found to co-immunoprecipitate with AMPK{alpha}2, and the co-localization of Artemis with AMPK{alpha}2 in the nucleus was confirmed by immunofluorescence staining in U2OS cells. Moreover, over-expression of Artemis enhanced the phosphorylation of AMPK{alpha}2 and the AMPK substrate acetyl-CoA carboxylase (ACC). Conversely, RNAi-mediated knockdown of Artemis reduced AMPK and ACC phosphorylation. In addition, Artemis markedly increased the physical association between AMPK{alpha}2 and LKB1. Taken together, these results suggest that Artemis functions as a positive regulator of AMPK signaling by stabilizing the LKB1-AMPK complex.

  8. Variability and Stability in Daily Moderate-to-Vigorous Physical Activity among 10 Year Old Children

    PubMed Central

    Pereira, Sara; Gomes, Thayse Natacha; Borges, Alessandra; Santos, Daniel; Souza, Michele; dos Santos, Fernanda K.; Chaves, Raquel N.; Katzmarzyk, Peter T.; Maia, José A. R.

    2015-01-01

    Day-to-day variability and stability of children’s physical activity levels across days of the week are not well understood. Our aims were to examine the day-to-day variability of moderate-to-vigorous physical activity (MVPA), to determine factors influencing the day-to-day variability of MVPA and to estimate stability of MVPA in children. The sample comprises 686 Portuguese children (10 years of age). MVPA was assessed with an accelerometer, and BMI was computed from measured height and weight. Daily changes in MVPA and their correlates (gender, BMI, and maturity) were modeled with a multilevel approach, and tracking was calculated using Foulkes & Davies γ. A total of 51.3% of boys and 26.2% of girls achieved 60 min/day of MVPA on average. Daily MVPA was lower during the weekend (23.6% of boys and 13.6% of girls comply with the recommended 60 min/day of MVPA) compared to weekdays (60.8% and 35.4%, boys and girls, respectively). Normal weight children were more active than obese children and no effect was found for biological maturation. Tracking is low in both boys (γ = 0.59 ± 0.01) and girls (γ = 0.56 ± 0.01). Children’s MVPA levels during a week are highly unstable. In summary, boys are more active than girls, maturation does not affect their MVPA, and obese children are less likely to meet 60 min/day of MVPA. These results highlight the importance of providing opportunities for increasing children’s daily MVPA on all days of week, especially on the weekend. PMID:26262632

  9. Abrus precatorius Leaves: Antioxidant Activity in Food and Biological Systems, pH, and Temperature Stability

    PubMed Central

    Reddy Palvai, Vanitha; Mahalingu, Sowmya; Urooj, Asna

    2014-01-01

    Natural antioxidants present in foods and other biological materials have attracted considerable interest because of their presumed safety and potential nutritional and therapeutic effects. Antioxidant constituents of plant materials act as radical scavengers and convert the radicals to less reactive species. Abrus precatorius (AP) was analyzed for its proximate and phytochemical composition. The leaves were extracted with methanol (ME) and analyzed for antioxidant activity by radical scavenging method, reducing power, ferric reducing capacity, and in vitro inhibition of Fenton's reagent-induced oxidation in oil emulsion and microsomes. In addition, the effect of temperature (100°C, 15, and 30 min) and pH (4.5, 7, and 9) C on the antioxidant activity of ME was investigated. The leaves were rich in total polyphenols, flavonoids, β-carotene, glutathione, α-tocopherol, and ascorbic acid. The ME exhibited varying degree of antioxidant activity in a dose-dependent manner. The AP exhibited more inhibition of oxidation in microsomes (73%) than compared to oil emulsion (21%). Heat treatment resulted in an increase of radical scavenging activity of extract (28% to 43%). At pH 4.5 the extract exhibited more antioxidant activity and stability compared to pH 7 and 9. Data indicates that potential exists for the utilization of Abrus precatorius as a natural antioxidant. PMID:25383222

  10. Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol

    NASA Astrophysics Data System (ADS)

    Lacatusu, I.; Badea, N.; Stan, R.; Meghea, A.

    2012-11-01

    In this work, new stable and efficiently bio-active lipid nanocarriers (NLCs) with antioxidant properties have been developed for the transport of active ingredients in food. The novel NLCs loaded with β-sitosterol/β-sitosterol and green tea extract (GTE) and prepared by a combination of natural oils (grape seed oil, fish oil and squalene) and biological lipids with food grade surfactants, were physico-chemically examined by DLS, TEM, electrokinetic potential, DSC and HPLC and found to have main diameters less than 200 nm, a spherical morphology, excellent physical stability, an imperfect crystalline lattice and high entrapment efficiency. The novel loaded-NLCs have demonstrated the potential to develop a high blocking action of chain reactions, trapping up to 92% of the free-oxygen radicals, as compared to the native β-sitosterol (AA%=36.5). Another advantage of this study is associated with the quality of bio-active NLCs based on grape seed oil and squalene to manifest a better sitosterol—sustained release behaviour as compared to their related nanoemulsions. By coupling both in vitro results, i.e. the enhanced antioxidant activity and superior release properties, this study emphasizes the sustainability of novel bio-active nanocarriers to gain specific bio-food features for development of functional foods with a high applicability spectrum.

  11. Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol.

    PubMed

    Lacatusu, I; Badea, N; Stan, R; Meghea, A

    2012-11-16

    In this work, new stable and efficiently bio-active lipid nanocarriers (NLCs) with antioxidant properties have been developed for the transport of active ingredients in food. The novel NLCs loaded with β-sitosterol/β-sitosterol and green tea extract (GTE) and prepared by a combination of natural oils (grape seed oil, fish oil and squalene) and biological lipids with food grade surfactants, were physico-chemically examined by DLS, TEM, electrokinetic potential, DSC and HPLC and found to have main diameters less than 200 nm, a spherical morphology, excellent physical stability, an imperfect crystalline lattice and high entrapment efficiency. The novel loaded-NLCs have demonstrated the potential to develop a high blocking action of chain reactions, trapping up to 92% of the free-oxygen radicals, as compared to the native β-sitosterol (AA%=36.5). Another advantage of this study is associated with the quality of bio-active NLCs based on grape seed oil and squalene to manifest a better sitosterol-sustained release behaviour as compared to their related nanoemulsions. By coupling both in vitro results, i.e. the enhanced antioxidant activity and superior release properties, this study emphasizes the sustainability of novel bio-active nanocarriers to gain specific bio-food features for development of functional foods with a high applicability spectrum.

  12. Peroxidase-like activity of gold nanoparticles stabilized by hyperbranched polyglycidol derivatives over a wide pH range.

    PubMed

    Drozd, Marcin; Pietrzak, Mariusz; Parzuchowski, Paweł; Mazurkiewicz-Pawlicka, Marta; Malinowska, Elżbieta

    2015-12-11

    The aim of this work was to carry out comparative studies on the peroxidase-like activity of gold nanoparticles (AuNPs) stabilized with low molecular weight hyperbranched polyglycidol (HBPG-OH) and its derivative modified with maleic acid residues (HBPG-COOH). The influence of the stabilizer to gold precursor ratio on the size and morphology of nanoparticles obtained was checked, and prepared nanoparticles were characterized by means of transmission electron microscopy and UV-Vis spectroscopy. The results indicated the divergent effect of increasing the concentration of stabilizers (HBPG-OH or HBPG-COOH) on the size of the nanostructures obtained. The gold nanoparticles obtained were characterized as having intrinsic peroxidase-like activity and the mechanism of catalysis in acidic and alkaline mediums was consistent with the standard Michaelis-Menten kinetics, revealing a strong affinity of AuNPs with 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 3, 3', 5, 5'-tetramethylbenzidine (TMB), and significantly lower affinity towards phenol. By comparing the kinetic parameters, a negligible effect of polymeric ligand charge on activity against various types of substrates (anionic or cationic) was indicated. The superiority of steric stabilization via the application of tested low-weight hyperbranched polymers over typical stabilizers in preventing salt-induced aggregation and maintaining high catalytic activity in time was proved. The applied hyperbranched stabilizers provide a good tool for manufacturing gold-based nanozymes, which are highly stable and active over a wide pH range.

  13. Peroxidase-like activity of gold nanoparticles stabilized by hyperbranched polyglycidol derivatives over a wide pH range.

    PubMed

    Drozd, Marcin; Pietrzak, Mariusz; Parzuchowski, Paweł; Mazurkiewicz-Pawlicka, Marta; Malinowska, Elżbieta

    2015-12-11

    The aim of this work was to carry out comparative studies on the peroxidase-like activity of gold nanoparticles (AuNPs) stabilized with low molecular weight hyperbranched polyglycidol (HBPG-OH) and its derivative modified with maleic acid residues (HBPG-COOH). The influence of the stabilizer to gold precursor ratio on the size and morphology of nanoparticles obtained was checked, and prepared nanoparticles were characterized by means of transmission electron microscopy and UV-Vis spectroscopy. The results indicated the divergent effect of increasing the concentration of stabilizers (HBPG-OH or HBPG-COOH) on the size of the nanostructures obtained. The gold nanoparticles obtained were characterized as having intrinsic peroxidase-like activity and the mechanism of catalysis in acidic and alkaline mediums was consistent with the standard Michaelis-Menten kinetics, revealing a strong affinity of AuNPs with 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 3, 3', 5, 5'-tetramethylbenzidine (TMB), and significantly lower affinity towards phenol. By comparing the kinetic parameters, a negligible effect of polymeric ligand charge on activity against various types of substrates (anionic or cationic) was indicated. The superiority of steric stabilization via the application of tested low-weight hyperbranched polymers over typical stabilizers in preventing salt-induced aggregation and maintaining high catalytic activity in time was proved. The applied hyperbranched stabilizers provide a good tool for manufacturing gold-based nanozymes, which are highly stable and active over a wide pH range. PMID:26567596

  14. Conserved tyrosine 182 residue in hyperthermophilic esterase EstE1 plays a critical role in stabilizing the active site.

    PubMed

    Truongvan, Ngoc; Chung, Hye-Shin; Jang, Sei-Heon; Lee, ChangWoo

    2016-03-01

    An aromatic amino acid, Tyr or Trp, located in the esterase active site wall, is highly conserved, with hyperthermophilic esterases showing preference for Tyr and lower temperature esterases showing preference for Trp. In this study, we investigated the role of Tyr(182) in the active site wall of hyperthermophilic esterase EstE1. Mutation of Tyr to Phe or Ala had a moderate effect on EstE1 thermal stability. However, a small-to-large mutation such as Tyr to His or Trp had a devastating effect on thermal stability. All mutant EstE1 enzymes showed reduced catalytic rates and enhanced substrate affinities as compared with wild-type EstE1. Hydrogen bond formation involving Tyr(182) was unimportant for maintaining EstE1 thermal stability, as the EstE1 structure is already adapted to high temperatures via increased intramolecular interactions. However, removal of hydrogen bond from Tyr(182) significantly decreased EstE1 catalytic activity, suggesting its role in stabilization of the active site. These results suggest that Tyr is preferred over a similarly sized Phe residue or bulky His or Trp residue in the active site walls of hyperthermophilic esterases for stabilizing the active site and regulating catalytic activity at high temperatures. PMID:26838013

  15. Environmental Factors Modulating the Stability and Enzymatic Activity of the Petrotoga mobilis Esterase (PmEst).

    PubMed

    Lopes, Jose L S; Yoneda, Juliana S; Martins, Julia M; DeMarco, Ricardo; Jameson, David M; Castro, Aline M; Bossolan, Nelma R S; Wallace, B A; Araujo, Ana P U

    2016-01-01

    Enzymes isolated from thermophilic organisms found in oil reservoirs can find applications in many fields, including the oleochemical, pharmaceutical, bioenergy, and food/dairy industries. In this study, in silico identification and recombinant production of an esterase from the extremophile bacteria Petrotoga mobilis (designated PmEst) were performed. Then biochemical, bioinformatics and structural characterizations were undertaken using a combination of synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies to correlate PmEst stability and hydrolytic activity on different substrates. The enzyme presented a high Michaelis-Menten constant (KM 0.16 mM) and optimum activity at ~55°C for p-nitrophenyl butyrate. The secondary structure of PmEst was preserved at acid pH, but not under alkaline conditions. PmEst was unfolded at high concentrations of urea or guanidine through apparently different mechanisms. The esterase activity of PmEst was preserved in the presence of ethanol or propanol and its melting temperature increased ~8°C in the presence of these organic solvents. PmEst is a mesophilic esterase with substrate preference towards short-to medium-length acyl chains. The SRCD data of PmEst is in agreement with the prediction of an α/β protein, which leads us to assume that it displays a typical fold of esterases from this family. The increased enzyme stability in organic solvents may enable novel applications for its use in synthetic biology. Taken together, our results demonstrate features of the PmEst enzyme that indicate it may be suitable for applications in industrial processes, particularly, when the use of polar organic solvents is required. PMID:27351338

  16. Environmental Factors Modulating the Stability and Enzymatic Activity of the Petrotoga mobilis Esterase (PmEst)

    PubMed Central

    Martins, Julia M.; DeMarco, Ricardo; Jameson, David M.; Castro, Aline M.; Bossolan, Nelma R. S.; Wallace, B. A.; Araujo, Ana P. U.

    2016-01-01

    Enzymes isolated from thermophilic organisms found in oil reservoirs can find applications in many fields, including the oleochemical, pharmaceutical, bioenergy, and food/dairy industries. In this study, in silico identification and recombinant production of an esterase from the extremophile bacteria Petrotoga mobilis (designated PmEst) were performed. Then biochemical, bioinformatics and structural characterizations were undertaken using a combination of synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies to correlate PmEst stability and hydrolytic activity on different substrates. The enzyme presented a high Michaelis-Menten constant (KM 0.16 mM) and optimum activity at ~55°C for p-nitrophenyl butyrate. The secondary structure of PmEst was preserved at acid pH, but not under alkaline conditions. PmEst was unfolded at high concentrations of urea or guanidine through apparently different mechanisms. The esterase activity of PmEst was preserved in the presence of ethanol or propanol and its melting temperature increased ~8°C in the presence of these organic solvents. PmEst is a mesophilic esterase with substrate preference towards short-to medium-length acyl chains. The SRCD data of PmEst is in agreement with the prediction of an α/β protein, which leads us to assume that it displays a typical fold of esterases from this family. The increased enzyme stability in organic solvents may enable novel applications for its use in synthetic biology. Taken together, our results demonstrate features of the PmEst enzyme that indicate it may be suitable for applications in industrial processes, particularly, when the use of polar organic solvents is required. PMID:27351338

  17. A binary palladium-bismuth nanocatalyst with high activity and stability for alkaline glucose electrooxidation

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Chuan; Lin, Cheng-Lan; Chen, Lin-Chi

    2015-08-01

    Binary palladium-bismuth nanocatalysts supported on functionalized multi-walled carbon nanotubes (Pd-Bi/C) are synthesized using a one-pot polyol method. The prepared Pd-Bi/C catalysts have a metal particle range from 5.25 to 12.98 nm and are investigated for alkaline electrocatalytic glucose oxidation reaction (GOR). The physical properties of the catalysts are characterized by X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The electrochemical activities are determined by cyclic voltammetry (CV), linear sweep voltammetry (LSV), Tafel analysis and chronoamperomtry (CA) for comparing the electrochemical active surface area (ECSA), GOR onset potential, GOR peak current density, Tafel slope, poisoning rate and cycling stability of the Pd-Bi/C catalysts. It is found that Pd-Bi/C (1:0.14) can significantly enhance the electrocatalytic activity on GOR about 40% times higher than Pd/C and as well as has a 3.7-fold lower poisoning rate. The in-use stability of Pd-Bi/C (1:0.14) is also remarkably improved, according to the results of the 200 cycling CV test. The effects of the operating temperature and the concentration of glucose and NaOH electrolyte on Pd-Bi/C (1:0.14) are further studied in this work. The highest Pd-Bi/C catalyzed GOR current density of 29.5 mA cm-2 is attained in alkaline medium.

  18. Role of GLTSCR2 in the regulation of telomerase activity and chromosome stability.

    PubMed

    Kim, Jee-Youn; An, Yong-Min; Park, Jae-Hoon

    2016-08-01

    Telomerase is essential for regulating telomeres, and its activation is a critical step in cellular immortalization and tumorigenesis. The transcriptional activation of human telomerase reverse transcriptase (hTERT) is critical for telomerase expression. Although several transcriptional activators have been identified, factors responsible for enhancing the hTERT promoter remain to be fully elucidated. In the present study, the role of glioma tumor-suppressor candidate region gene 2 (GLTSCR2) in telomerase regulation was analyzed. A doxycyclin-inducible green fluorescent protein (GFP)-tagged GLTSCR2-expressing adenovirus (Ad‑GLT/GFP) was used for the transduction of SK‑Hep‑1 and T98G cancer cells, and normal human umbilical vein endothelial cells. Changes in telomerase activity using telomere repeat amplification protocol assay were assessed, and the gene expression levels of hTERT were then examined. To investigate chromosome instability and senescence, Giemsa and β-galactosidase staining was performed. The results revealed that overexpression of GLTSCR2 significantly increased telomerase activity in the cancer and normal cell lines. This increase was consistent with increases in the protein and mRNA expression levels of hTERT. In luciferase assays, the hTERT promoter was activated by GLTSCR2. Knockdown of GLTSCR2 led to the downregulation of telomerase activity, abnormal nuclear morphology as a marker of chromosome instability, significant suppression of growth rate, alterations in cellular morphology and, eventually, cellular senescence. Taken together, the results of the present study suggested that GLTSCR2 is crucially involved in the positive regulation of telomerase and chromosome stability. PMID:27357325

  19. Spinal atypical protein kinase C activity is necessary to stabilize inactivity-induced phrenic motor facilitation.

    PubMed

    Strey, Kristi A; Nichols, Nicole L; Baertsch, Nathan A; Broytman, Oleg; Baker-Herman, Tracy L

    2012-11-14

    The neural network controlling breathing must establish rhythmic motor output at a level adequate to sustain life. Reduced respiratory neural activity elicits a novel form of plasticity in circuits driving the diaphragm known as inactivity-induced phrenic motor facilitation (iPMF), a rebound increase in phrenic inspiratory output observed once respiratory neural drive is restored. The mechanisms underlying iPMF are unknown. Here, we demonstrate in anesthetized rats that spinal mechanisms give rise to iPMF and that iPMF consists of at least two mechanistically distinct phases: (1) an early, labile phase that requires atypical PKC (PKCζ and/or PKCι/λ) activity to transition to a (2) late, stable phase. Early (but not late) iPMF is associated with increased interactions between PKCζ/ι and the scaffolding protein ZIP (PKCζ-interacting protein)/p62 in spinal regions associated with the phrenic motor pool. Although PKCζ/ι activity is necessary for iPMF, spinal atypical PKC activity is not necessary for phrenic long-term facilitation (pLTF) following acute intermittent hypoxia, an activity-independent form of spinal respiratory plasticity. Thus, while iPMF and pLTF both manifest as prolonged increases in phrenic burst amplitude, they arise from distinct spinal cellular pathways. Our data are consistent with the hypotheses that (1) local mechanisms sense and respond to reduced respiratory-related activity in the phrenic motor pool and (2) inactivity-induced increases in phrenic inspiratory output require local PKCζ/ι activity to stabilize into a long-lasting iPMF. Although the physiological role of iPMF is unknown, we suspect that iPMF represents a compensatory mechanism, assuring adequate motor output in a physiological system in which prolonged inactivity ends life. PMID:23152633

  20. Effect of changing the nanoscale environment on activity and stability of nitrate reductase.

    PubMed

    Sachdeva, Veena; Hooda, Vinita

    2016-07-01

    Nitrate reductase (NR) is employed for fabrication of nitrate sensing devices in which the enzyme in immobilized form is used to catalyze the conversion of nitrate to nitrite in the presence of a suitable cofactor. So far, instability of immobilized NR due to the use of inappropriate immobilization matrices has limited the practical applications of these devices. Present study is an attempt to improve the kinetic properties and stability of NR using nanoscale iron oxide (nFe3O4) and zinc oxide (nZnO) particles. The desired nanoparticles were synthesized, surface functionalized, characterized and affixed onto the epoxy resin to yield two nanocomposite supports (epoxy/nFe3O4 and epoxy/nZnO) for immobilizing NR. Epoxy/nFe3O4 and epoxy/nZnO support could load as much as 35.8±0.01 and 33.20±0.01μg/cm(2) of NR with retention of about 93.72±0.50 and 84.81±0.80% of its initial activity respectively. Changes in surface morphology and chemical bonding structure of both the nanocomposite supports after addition of NR were confirmed by scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR). Optimum working conditions of pH, temperature and substrate concentration were ascertained for free as well as immobilized NR preparations. Further, storage stability at 4°C and thermal stability between 25-50°C were determined for all the NR preparations. Analytical applications of immobilized NR for determination of soil and water nitrates along with reusability data has been included to make sure the usefulness of the procedure. PMID:27233127

  1. Influence of mechanical activation on the physical stability of salbutamol sulphate.

    PubMed

    Brodka-Pfeiffer, Katharina; Langguth, Peter; Grass, Peter; Häusler, Heribert

    2003-11-01

    In order to obtain the optimal particle size distribution for pharmaceutical powders in dry powder inhalers the particles have to be micronised. In most cases the process of micronisation is connected with a high input of energy which induces disorder and defects on the surface of the drug particles and as a result changes in the crystallinity. Consequently, changes in the physical stability of the powders may occur. To investigate changes on the physical stability of the powder, different analytical methods are used in the present investigation: laser diffraction, Differential Scanning Calorimetry (DSC), isothermal microcalorimetry and DVS-method.Air-jet-milling is one of the most frequently used techniques in the pharmaceutical industry, in order to obtain particles of respirable size. In the treatise described here the influence of the critical parameters of the process, i.e. feed pressure, grind pressure and feed rate is assessed for salbutamol sulphate. The grind pressure is of utmost importance with respect to particle size distribution and the physical powder stability. For salbutamol sulphate, ground with a MC Jetmill 50, a grind pressure of 6 bar has been found optimal. Pressures below 6 bar are not sufficient to produce the required reduction in particle size. The feed pressure and rate have negligible influence on the powder quality. Furthermore, the micronisation process is optimised to achieve respirable particles while minimising the amorphous content. A correlation between mechanical activation and the amount of the amorphous regions is showed clearly.Air-jet-milling has been compared to ball milling in this investigation. In pilot tests ball milling was not suitable to achieve the needed particle size distribution, however, it generates a specific quantity of amorphous material. With the help of specific amorphous regions in the powder, the sensitivity of the used methods for salbutamol sulphate can be examined.

  2. High normalized beta plasmas exceeding the ideal stability limit and projected RWM active stabilization performance using newly installed feedback sensors in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Bialek, J. M.; Yoon, S. W.; Jeon, Y. M.; Bak, J. G.; Ko, W. H.; Hahn, S. H.; Bae, C.; Bae, Y. S.; in, Y. K.; Kim, J.; Lee, S. G.; Kwak, J. G.; Oh, Y. K.; Park, H. K.; Choi, M. J.; Yun, G. S.

    2015-11-01

    H-mode plasma operation of KSTAR has been expanded to significantly surpass the ideal MHD no-wall beta limit by achieving normalized beta up to 4.3 while reducing plasma internal inductance to near 0.7 exceeding the computed n = 1 ideal no-wall limit by a factor of 1.6. These high normalized beta values have been achieved in discharges having BT in the range 0.9-1.1 T after the plasma reached flattop current of 0.35-0.4 MA, with the highest neutral beam heating power of 4 MW. A significant conclusion of the analysis of these plasmas is that low- n global kink/ballooning or RWMs were not detected, and therefore were not the cause of the plasma termination. Advances from the 2015 run campaign aiming to achieve prolonged pulse duration at maximum normalized beta and to subsequently investigate the MHD stability of these plasmas will be reported. As KSTAR H-mode operation can now routinely surpass the ideal no-wall stability limit, n = 1 RWM active control is planned for the device. RWM active feedback using a newly installed set of poloidal magnetic field sensors mounted on the passive stabilizer plates and designed for optimal performance is analyzed using the VALEN-3D code. The advantages of the new sensors over other device sensors for RWM active control are discussed. Supported by U.S. DOE grant DE-FG02-99ER54524.

  3. Immobilization of peroxidase enzyme onto the porous silicon structure for enhancing its activity and stability

    NASA Astrophysics Data System (ADS)

    Sahare, Padmavati; Ayala, Marcela; Vazquez-Duhalt, Rafael; Agrawal, Vivechana

    2014-08-01

    In this work, a commercial peroxidase was immobilized onto porous silicon (PS) support functionalized with 3-aminopropyldiethoxysilane (APDES) and the performance of the obtained catalytic microreactor was studied. The immobilization steps were monitored and the activity of the immobilized enzyme in the PS pores was spectrophotometrically determined. The enzyme immobilization in porous silicon has demonstrated its potential as highly efficient enzymatic reactor. The effect of a polar organic solvent (acetonitrile) and the temperature (up to 50°C) on the activity and stability of the biocatalytic microreactor were studied. After 2-h incubation in organic solvent, the microreactor retained 80% of its initial activity in contrast to the system with free soluble peroxidase that lost 95% of its activity in the same period of time. Peroxidase immobilized into the spaces of the porous silicon support would be perspective for applications in treatments for environmental security such as removal of leached dye in textile industry or in treatment of different industrial effluents. The system can be also applied in the field of biomedicine.

  4. Municipal waste stabilization in a reactor with an integrated active and passive aeration system.

    PubMed

    Kasinski, Slawomir; Slota, Monika; Markowski, Michal; Kaminska, Anna

    2016-04-01

    To test whether an integrated passive and active aeration system could be an effective solution for aerobic decomposition of municipal waste in technical conditions, a full-scale composting reactor was designed. The waste was actively aerated for 5d, passively aerated for 35 d, and then actively aerated for 5d, and the entire composting process was monitored. During the 45-day observation period, changes in the fractional, morphological and physico-chemical characteristics of the waste at the top of the reactor differed from those in the center of the reactor. The fractional and morphological analysis made during the entire process of stabilization, showed the total reduction of organic matter measured of 82 wt% and 86 wt% at the respective depths. The reduction of organic matter calculated using the results of Lost of Ignition (LOI) and Total Organic Carbon (TOC) showed, respectively, 40.51-46.62% organic matter loss at the top and 45.33-53.39% in the center of the reactor. At the end of the process, moisture content, LOI and TOC at the top were 3.29%, 6.10% and 4.13% higher, respectively, than in the center. The results showed that application of passive aeration in larger scale simultaneously allows the thermophilic levels to be maintained during municipal solid waste composting process while not inhibiting microbial activity in the reactor.

  5. A novel prophage lysin Ply5218 with extended lytic activity and stability against Streptococcus suis infection.

    PubMed

    Zhang, Hang; Zhang, Chuanpeng; Wang, Hengan; Yan, Ya Xian; Sun, Jianhe

    2016-09-01

    Streptococcus suis (S. suis) is an emerging zoonotic agent that exhibits high level resistance to classic antibiotics and a heavy burden in the swine industry. Therefore alternative antibacterial agents need to be developed. A novel endolysin derived from the S. suis temperate phage phi5218, termed Ply5218, was identified. The minimum inhibitory concentration (MIC) of Ply5218 was 2.5 μg ml(-1) against S. suis strain HA9801, an activity many times greater than the lysins reported previously (MIC of LY7917 and Ply30 against HA9801 were 80 and 64 μg ml(-1), respectively). Ply5218 at 10 μg ml(-1) in vitro exerted broad antibacterial activities against S. suis strains with OD600 ratios decreased from 1 to <0.2 within 1 h. Moreover, Ply5218 showed favorable thermal stability. It was stable at 50°C >30 min, 4°C >30 days, -80°C >7 months, and >60% of the enzyme activity remained after 5 min pre-incubation at 70°C. In vivo, a 0.2 mg dose of Ply5218 protected 90% (9/10) of mice after infection with S. suis HA9801. Finally, Ply5218 maintained high antibacterial activity in some bio-matrices, such as culture media and milk. The data indicate that Ply5218 has all the characteristics to be an effective therapeutic agent against multiple S. suis infections. PMID:27481700

  6. Immobilization of peroxidase enzyme onto the porous silicon structure for enhancing its activity and stability

    PubMed Central

    2014-01-01

    In this work, a commercial peroxidase was immobilized onto porous silicon (PS) support functionalized with 3-aminopropyldiethoxysilane (APDES) and the performance of the obtained catalytic microreactor was studied. The immobilization steps were monitored and the activity of the immobilized enzyme in the PS pores was spectrophotometrically determined. The enzyme immobilization in porous silicon has demonstrated its potential as highly efficient enzymatic reactor. The effect of a polar organic solvent (acetonitrile) and the temperature (up to 50°C) on the activity and stability of the biocatalytic microreactor were studied. After 2-h incubation in organic solvent, the microreactor retained 80% of its initial activity in contrast to the system with free soluble peroxidase that lost 95% of its activity in the same period of time. Peroxidase immobilized into the spaces of the porous silicon support would be perspective for applications in treatments for environmental security such as removal of leached dye in textile industry or in treatment of different industrial effluents. The system can be also applied in the field of biomedicine. PMID:25221454

  7. Magnitudes of muscle activation of spine stabilizers, gluteals, and hamstrings during supine bridge to neutral position.

    PubMed

    Youdas, James W; Hartman, James P; Murphy, Brooke A; Rundle, Ashley M; Ugorowski, Jenna M; Hollman, John H

    2015-01-01

    The aim of this study was to compare the magnitude of selective core muscle activation during supine bridging to neutral exercises (three on a stable and three on an unstable surface). Surface EMG analysis was performed on the lumbar multifidus, gluteus medius, gluteus maximus, and hamstrings from 13 male and 13 female subjects. Lumbar multifidus recruitment was not influenced by exercise or condition and ranged between 29.2 and 35.9% of maximum voluntary isometric contraction (MVIC). Peak gluteus medius activation (42.0% MVIC) occurred in unstable single-leg bridge. Maximum recruitment of gluteus maximus (32.6% MVIC) appeared during stable single-leg bridge. Peak hamstring activation (59.6% MVIC) occurred during stable double-leg hamstring curl. Regardless of condition, hamstrings demonstrated high (51.9-59.6% MVIC) muscle recruitment during double-leg hamstring curls compared with the single-leg bridge or double-leg bridge. Various supine bridging to neutral exercises activated the hamstrings at levels conducive to strengthening, whereas recruitment of lumbar multifidus, gluteus medius, and gluteus maximus promoted endurance training. Clinically, we were unable to conclude the unstable support surface was preferable to the stable surface for boosting muscle recruitment of spine stabilizers, gluteals, and hamstring muscles during supine bridge to neutral position. PMID:25671354

  8. Effects of scapular stabilization exercise on neck posture and muscle activation in individuals with neck pain and forward head posture.

    PubMed

    Im, Boyoung; Kim, Young; Chung, Yijung; Hwang, Sujin

    2016-03-01

    [Purpose] The purpose of this study was to investigate the effects of scapular stabilization exercise on neck posture, muscle activity, pain, and quality of life in individuals with neck pain and forward head posture. [Subjects and Methods] Fifteen participants were recruited according to the selection criteria and were randomly allocated to the scapular stabilization group (n=8) and the control group (n=7). The scapular stabilization group underwent training for 30 minutes a day, 3 times a week for 4 weeks; the control group performed relaxation exercises for 4 weeks. [Results] After training the scapular stabilization group showed significant improvement on the craniovertebral angle, upper trapezius muscle activity, serratus anterior muscle activity, Neck Disability Index scores, Visual Analog Scale scores, and World Health Organization Quality of Life Assessment-BREF scores compared to those in the control group. [Conclusion] Scapular stabilization exercise can help improve the head posture and pain in the patients with neck pain and forward head posture. Controlling the muscular activities through scapular stabilization exercise also improves the patients' quality of life. PMID:27134391

  9. Effects of scapular stabilization exercise on neck posture and muscle activation in individuals with neck pain and forward head posture

    PubMed Central

    Im, Boyoung; Kim, Young; Chung, Yijung; Hwang, Sujin

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effects of scapular stabilization exercise on neck posture, muscle activity, pain, and quality of life in individuals with neck pain and forward head posture. [Subjects and Methods] Fifteen participants were recruited according to the selection criteria and were randomly allocated to the scapular stabilization group (n=8) and the control group (n=7). The scapular stabilization group underwent training for 30 minutes a day, 3 times a week for 4 weeks; the control group performed relaxation exercises for 4 weeks. [Results] After training the scapular stabilization group showed significant improvement on the craniovertebral angle, upper trapezius muscle activity, serratus anterior muscle activity, Neck Disability Index scores, Visual Analog Scale scores, and World Health Organization Quality of Life Assessment-BREF scores compared to those in the control group. [Conclusion] Scapular stabilization exercise can help improve the head posture and pain in the patients with neck pain and forward head posture. Controlling the muscular activities through scapular stabilization exercise also improves the patients’ quality of life. PMID:27134391

  10. Effect of compatible and noncompatible osmolytes on the enzymatic activity and thermal stability of bovine liver catalase.

    PubMed

    Sepasi Tehrani, H; Moosavi-Movahedi, A A; Ghourchian, H; Ahmad, F; Kiany, A; Atri, M S; Ariaeenejad, Sh; Kavousi, K; Saboury, A A

    2013-12-01

    Catalase is an important antioxidant enzyme that catalyzes the disproportionation of H2O2 into harmless water and molecular oxygen. Due to various applications of the enzyme in different sectors of industry as well as medicine, the enhancement of stability of the enzyme is important. Effect of various classes of compatible as well as noncompatible osmolytes on the enzymatic activity, disaggregation, and thermal stability of bovine liver catalase have been investigated. Compatible osmolytes, proline, xylitol, and valine destabilize the denatured form of the enzyme and, therefore, increase its disaggregation and thermal stability. The increase in the thermal stability is accompanied with a slight increase of activity in comparison to the native enzyme at 25 °C. On the other hand, histidine, a noncompatible osmolyte stabilizes the denatured form of the protein and hence causes an overall decrease in the thermal stability and enzymatic activity of the enzyme. Chemometric results have confirmed the experimental results and have provided insight into the distribution and number of mole fraction components for the intermediates. The increase in melting temperature (Tm) and enzymatic rate could be further amplified by the intrinsic effect of temperature enhancement on the enzymatic activity for the industrial purposes. PMID:23249140

  11. Comparison of deep and superficial abdominal muscle activity between experienced Pilates and resistance exercise instructors and controls during stabilization exercise.

    PubMed

    Moon, Ji-Hyun; Hong, Sang-Min; Kim, Chang-Won; Shin, Yun-A

    2015-06-01

    Pilates and resistance exercises are used for lumbar stabilization training. However, it is unclear which exercise is more effective for lumbar stabilization. In our study, we aimed to compare surface muscle activity and deep muscle thickness during relaxation and spinal stabilization exercise in experienced Pilates and resistance exercise instructors. This study is a retrospective case control study set in the Exercise Prescription Laboratory and Sports Medicine Center. The participants included Pilates instructors (mean years of experience, 3.20±1.76; n=10), resistance exercise instructors (mean years of experience, 2.53±0.63; n=10), and controls (n=10). The participants performed 4 different stabilization exercises: abdominal drawing-in maneuver, bridging, roll-up, and one-leg raise. During the stabilization exercises, surface muscle activity was measured with electromyography, whereas deep muscle thickness was measured by ultrasound imaging. During the 4 stabilization exercises, the thickness of the transverse abdominis (TrA) was significantly greater in the Pilates-trained group than the other 2 other groups. The internal oblique (IO) thickness was significantly greater in the Pilates- and resistance-trained group than the control group, during the 4 exercises. However, the surface muscle activities were similar between the groups. Both Pilates and resistance exercise instructors had greater activation of deep muscles, such as the TrA and IO, than the control subjects. Pilates and resistance exercise are both effective for increasing abdominal deep muscle thickness. PMID:26171383

  12. Test-retest stability of the oral niacin test and electrodermal activity in patients with schizophrenia.

    PubMed

    Nilsson, B M; Hultman, C M; Ekselius, L

    2009-01-01

    In schizophrenia, well-replicated findings support an attenuated niacin skin-flush response. We have previously reported a delayed skin-flush after niacin ingestion and also an association between niacin non-responding and electrodermal non-responding in schizophrenia. The stability of the niacin and electrodermal tests was now studied in a test-retest design. An additional aim was to assess the association previously found. Twenty-three patients with schizophrenia underwent two sessions 3 months apart during which an oral niacin test was conducted and electrodermal activity was measured. Despite similar values for niacin outcome variables at the group level, there was high intraindividual variation. Test-retest stability for the oral niacin test was thus low, although a trend toward correlation for the dichotomous response criterion was found. Most electrodermal measures correlated between baseline and retest. A significant association between the tests was again found; niacin non-responding implied electrodermal non-responding, providing further support for a common underlying aberration in schizophrenia. PMID:19864122

  13. Remote access to an interferometric fringes stabilization active system via RENATA

    NASA Astrophysics Data System (ADS)

    Espitia-Gómez, Javier; Ángel-Toro, Luciano

    2013-11-01

    The Advanced Technology National Network (RENATA, for its acronym in Spanish) is a Colombian, collaborative work tool, linked to other networks worldwide, in which take participation researchers, teachers and students, by sharing laboratory resources located in different universities, institutes and research centers throughout the country. In the Universidad EAFIT (Medellín, Colombia) it has been designed an interferometric fringes stabilization active system, which can be accessed remotely via the RENATA network. A Mach-Zehnder interferometer was implemented, with independent piezoelectric actuators in each arm, with which the lengths of optical path of light that goes over in each of them can be modified. Using these actuators, one can simultaneously perturb the system and compensate the phase differences caused by that perturbation. This allows us to experiment with different disturbs, and analyze the system response to each one of them. This can be made from any location worldwide, and especially from those regions in which optical and optoelectronic components required for the implementation of the interferometer or for the stabilization system are not available. The device can also be used as a platform in order to conduct diverse experiments, involving optical and controlling aspects, constituting with this in a pedagogic tool. For the future, it can be predicted that remote access to available applications would be possible, as well as modifications of the implemented code in labVIEW™, so that researchers and teachers can adapt and improve their functionalities or develop new applications, based on the collaborative work.

  14. A Parametric Study on Using Active Debris Removal to Stabilize the Future LEO Debris Environment

    NASA Technical Reports Server (NTRS)

    Liou, J.C.

    2010-01-01

    Recent analyses of the instability of the orbital debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have reignited the interest in using active debris removal (ADR) to remediate the environment. There are; however, monumental technical, resources, operational, legal, and political challenges in making economically viable ADR a reality. Before a consensus on the need for ADR can be reached, a careful analysis of the effectiveness of ADR must be conducted. The goal is to demonstrate the feasibility of using ADR to preserve the future environment and to guide its implementation to maximize the benefit-cost ratio. This paper describes a comprehensive sensitivity study on using ADR to stabilize the future LEO debris environment. The NASA long-term, orbital debris evolutionary model, LEGEND, is used to quantify the effects of many key parameters. These parameters include (1) the starting epoch of ADR implementation, (2) various target selection criteria, (3) the benefits of collision avoidance maneuvers, (4) the consequence of targeting specific inclination or altitude regimes, (5) the consequence of targeting specific classes of vehicles, and (6) the timescale of removal. Additional analyses on the importance of postmission disposal and how future launches might affect the requirements to stabilize the environment are also included.

  15. Photoactivated rose bengal functionalized chitosan nanoparticles produce antibacterial/biofilm activity and stabilize dentin-collagen

    PubMed Central

    Shrestha, Annie; Hamblin, Michael R.; Kishen, Anil

    2014-01-01

    Treatment of infected teeth presents two major challenges: persistence of the bacterial-biofilm within root canals after treatment and compromised structural integrity of the dentin hard-tissue. In this study bioactive polymeric chitosan nanoparticles functionalized with rose-bengal, CSRBnp was developed to produce antibiofilm effects as well as stabilize structural-integrity by photocrosslinking dentin-collagen. CSRBnp was less toxic to fibroblasts and had significant antibacterial activity even in the presence of bovine serum albumin. CSRBnp exerted antibacterial mechanism by adhering to bacterial cell surface, permeabilizing the membrane and lysing the cells subsequent to photodynamic treatment. Photoactivated CSRBnp resulted in reduced viability of Enterococcus faecalis biofilms and disruption of biofilm structure. Incorporation of CSRBnp and photocrosslinking significantly improved resistance to degradation and mechanical strength of dentin-collagen (p<0.05). The functionalized chitosan nanoparticles provided a single-step treatment of infected root dentin by combining the properties of chitosan and that of photosensitizer to eliminate bacterial-biofilms and stabilize dentin-matrix. PMID:24200522

  16. Consequences of New Approach to Chemical Stability Tests to Active Pharmaceutical Ingredients

    PubMed Central

    Jamrógiewicz, Marzena

    2016-01-01

    There is a great need of broaden look on stability tests of active pharmaceutical ingredients (APIs) in comparison with current requirements contained in pharmacopeia. By usage of many modern analytical methods the conception of monitoring the changes of APIs during initial stage of their exposure to harmful factors has been developed. New knowledge must be acquired in terms of identification of each degradation products, especially volatile ones. Further research as toxicology prediction during in silico studies of determined and identified degradation products is necessary. In silico methods are known as computational toxicology or computer-assisted technologies which are used for predicting toxicology of pharmaceutical substances such as impurities or degradation products. This is a specialized software and databases intended to calculate probability of genotoxicity or mutagenicity of these substances through a chemical structure-based screening process and algorithm specific to a given software program. Applying of new analytical approach is proposed as the usage of PAT tools, XRD, HS-SPME GC-MS/MS, LC-MS/MS for stability testing. Described improvements should be taken into account in case of each drug existing already in the market as well as being implemented as new one. PMID:26955356

  17. Stabilization by multipoint covalent attachment of a biocatalyst with polygalacturonase activity used for juice clarification.

    PubMed

    Ramírez Tapias, Yuly A; Rivero, Cintia W; Gallego, Fernando López; Guisán, José M; Trelles, Jorge A

    2016-10-01

    Derivatized-agarose supports are suitable for enzyme immobilization by different methods, taking advantage of different physical, chemical and biological conditions of the protein and the support. In this study, agarose particles were modified with MANAE, PEI and glyoxyl groups and evaluated to stabilize polygalacturonase from Streptomyces halstedii ATCC 10897. A new immobilized biocatalyst was developed using glyoxyl-agarose as support; it exhibited high performance in degrading polygalacturonic acid and releasing oligogalacturonides. Maximal enzyme activity was detected at 5h of reaction using 0.05g/mL of immobilized biocatalyst, which released 3mg/mL of reducing sugars and allowed the highest product yield conversion and increased stability. These results are very favorable for pectin degradation with reusability up to 18 successive reactions (90h) and application in juice clarification. Plum (4.7°Bx) and grape (10.6°Bx) juices were successfully clarified, increasing reducing sugars content and markedly decreasing turbidity and viscosity. PMID:27132847

  18. Mesoporous CLEAs-silica composite microparticles with high activity and enhanced stability

    PubMed Central

    Cui, Jiandong; Jia, Shiru; Liang, Longhao; Zhao, Yamin; Feng, Yuxiao

    2015-01-01

    A novel enzyme immobilization approach was used to generate mesoporous enzymes-silica composite microparticles by co-entrapping gelatinized starch and cross-linked phenylalanine ammonia lyase (PAL) aggregates (CLEAs) containing gelatinized starch into biomemitic silica and subsequently removing the starch by α-amylase treatment. During the preparation process, the gelatinzed starch served as a pore-forming agent to create pores in CLEAs and biomimetic silica. The resulting mesoporous CLEAs-silica composite microparticles exhibited higher activity and stability than native PAL, conventional CLEAs, and PAL encapsulated in biomimetic silica. Furthermore, the mesoporous CLEAs-silica composite microparticles displayed good reusability due to its suitable size and mechanical properties, and had excellent stability for storage. The superior catalytic performances were attributed to the combinational unique structure from the intra-cross-linking among enzyme aggregates and hard mesoporous silica shell, which not only decreased the enzyme-support negative interaction and mass-transfer limitations, but also improved the mechanical properties and monodispersity. This approach will be highly beneficial for preparing various bioactive mesoporous composites with excellent catalytic performance. PMID:26374188

  19. Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Pourahmad, A.; Mehdipour Moghaddam, M. J.; Sadeghi, A.

    2015-02-01

    Silver carbonate and silver nanoparticles (NPs) over of stabilizer montmorillonite (MMT) have been synthesized in aqueous and polyol solvent, respectively. Dispersions of silver nanoparticles have been prepared by the reduction of silver nitrate over of MMT in presence and absence of Na2CO3 compound in ethylene glycol. It was observed that montmorillonite was capable of stabilizing formed Ag nanoparticles through the reduction of Ag+ ions in ethylene glycol. Na2CO3 was used as carbonate source in synthesis of Ag2CO3 NPs in water solvent and also for controlling of Ag nanoparticles size in ethylene glycol medium. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The TEM images showed that Ag NPs size in presence Na2CO3 salts was smaller than without that. The results indicated intercalation of Ag and Ag2CO3 nanoparticles into the montmorillonite clay layers. The diffuse reflectance spectra exhibited a strong surface plasmon resonance (SPR) adsorption peak in the visible region, resulting from Ag nanoparticles. The antibacterial testing results showed that the Ag2CO3-MMT nanocomposite exhibited an antibacterial activity higher than Ag-MMT sample against Escherichia coli.

  20. Immobilization of penicillin G acylase in epoxy-activated magnetic cellulose microspheres for improvement of biocatalytic stability and activities.

    PubMed

    Luo, Xiaogang; Zhang, Lina

    2010-11-01

    We prepared magnetic cellulose porous microspheres (MCM) with mean diameter of ∼200 μm by employing the sol-gel transition (SGT) method from a mixture of magnemite ferrofluid and cellulose dissolved in 7 wt % NaOH/12% urea aqueous solvent precooled to -12 °C. Subsequently, the cellulose microspheres were activated with epoxy chloropropane to enhance loading efficiency of biomacromolecules. Their morphology, structure, and properties were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and vibrating-sample magnetometer. The results indicated that the spherical magnetic γ-Fe2O3 nanoparticles with mean size of 10 nm were uniformly dispersed and embedded in the cellulose substrate of MCM, and the structure and nature of γ-Fe2O3 were conserved perfectly. Penicillin G acylase (PGA) as a biocatalyst was immobilized successfully in the porous microspheres, as a result of the existence of the cavity and affinity forces in the activated cellulose matrix. The immobilized PGA exhibited highly effective catalytic activity, thermal stability, and enhanced tolerance to pH variations. Furthermore, the cellulose microspheres loaded with the enzymes could be removed and recovered easily by introducing a magnetic field, leading to an acceptable reusability. Therefore, we have provided a simple and biocompatible support for the enzyme immobilization, which will be promising for the applications in the biomaterial fields. PMID:20919701

  1. Correlations in background activity control persistent state stability and allow execution of working memory tasks

    PubMed Central

    Dipoppa, Mario; Gutkin, Boris S.

    2013-01-01

    Working memory (WM) requires selective information gating, active information maintenance, and rapid active updating. Hence performing a WM task needs rapid and controlled transitions between neural persistent activity and the resting state. We propose that changes in correlations in neural activity provides a mechanism for the required WM operations. As a proof of principle, we implement sustained activity and WM in recurrently coupled spiking networks with neurons receiving excitatory random background activity where background correlations are induced by a common noise source. We first characterize how the level of background correlations controls the stability of the persistent state. With sufficiently high correlations, the sustained state becomes practically unstable, so it cannot be initiated by a transient stimulus. We exploit this in WM models implementing the delay match to sample task by modulating flexibly in time the correlation level at different phases of the task. The modulation sets the network in different working regimes: more prompt to gate in a signal or clear the memory. We examine how the correlations affect the ability of the network to perform the task when distractors are present. We show that in a winner-take-all version of the model, where two populations cross-inhibit, correlations make the distractor blocking robust. In a version of the mode where no cross inhibition is present, we show that appropriate modulation of correlation levels is sufficient to also block the distractor access while leaving the relevant memory trace in tact. The findings presented in this manuscript can form the basis for a new paradigm about how correlations are flexibly controlled by the cortical circuits to execute WM operations. PMID:24155714

  2. Lipase in aqueous-polar organic solvents: Activity, structure, and stability

    PubMed Central

    Kamal, Md Zahid; Yedavalli, Poornima; Deshmukh, Mandar V; Rao, Nalam Madhusudhana

    2013-01-01

    Studying alterations in biophysical and biochemical behavior of enzymes in the presence of organic solvents and the underlying cause(s) has important implications in biotechnology. We investigated the effects of aqueous solutions of polar organic solvents on ester hydrolytic activity, structure and stability of a lipase. Relative activity of the lipase monotonically decreased with increasing concentration of acetone, acetonitrile, and DMF but increased at lower concentrations (upto ∼20% v/v) of dimethylsulfoxide, isopropanol, and methanol. None of the organic solvents caused any appreciable structural change as evident from circular dichorism and NMR studies, thus do not support any significant role of enzyme denaturation in activity change. Change in 2D [15N, 1H]-HSQC chemical shifts suggested that all the organic solvents preferentially localize to a hydrophobic patch in the active-site vicinity and no chemical shift perturbation was observed for residues present in protein's core. This suggests that activity alteration might be directly linked to change in active site environment only. All organic solvents decreased the apparent binding of substrate to the enzyme (increased Km); however significantly enhanced the kcat. Melting temperature (Tm) of lipase, measured by circular dichroism and differential scanning calorimetry, altered in all solvents, albeit to a variable extent. Interestingly, although the effect of all organic solvents on various properties on lipase is qualitatively similar, our study suggest that magnitudes of effects do not appear to follow bulk solvent properties like polarity and the solvent effects are apparently dictated by specific and local interactions of solvent molecule(s) with the protein. PMID:23625694

  3. APPL1 regulates basal NF-κB activity by stabilizing NIK

    PubMed Central

    Hupalowska, Anna; Pyrzynska, Beata; Miaczynska, Marta

    2012-01-01

    Summary APPL1 is a multifunctional adaptor protein that binds membrane receptors, signaling proteins and nuclear factors, thereby acting in endosomal trafficking and in different signaling pathways. Here, we uncover a novel role of APPL1 as a positive regulator of transcriptional activity of NF-κB under basal but not TNFα-stimulated conditions. APPL1 was found to directly interact with TRAF2, an adaptor protein known to activate canonical NF-κB signaling. APPL1 synergized with TRAF2 to induce NF-κB activation, and both proteins were necessary for this process and function upstream of the IKK complex. Although TRAF2 was not detectable on APPL endosomes, endosomal recruitment of APPL1 was required for its function in the NF-κB pathway. Importantly, in the canonical pathway, APPL1 appeared to regulate the proper spatial distribution of the p65 subunit of NF-κB in the absence of cytokine stimulation, since its overexpression enhanced and its depletion reduced the nuclear accumulation of p65. By analyzing the patterns of gene transcription upon APPL1 overproduction or depletion we found altered expression of NF-κB target genes that encode cytokines. At the molecular level, overexpressed APPL1 markedly increased the level of NIK, the key component of the noncanonical NF-κB pathway, by reducing its association with the degradative complex containing TRAF2, TRAF3 and cIAP1. In turn, high levels of NIK triggered nuclear translocation of p65. Collectively, we propose that APPL1 regulates basal NF-κB activity by modulating the stability of NIK, which affects the activation of p65. This places APPL1 as a novel link between the canonical and noncanonical machineries of NF-κB activation. PMID:22685329

  4. Stability, redox parameters and electrocatalytic activity of a cytochrome domain from a new subfamily.

    PubMed

    Molinas, María F; Benavides, Leandro; Castro, María A; Murgida, Daniel H

    2015-10-01

    We report a spectroscopic, electrochemical and spectroelectrochemical characterization of the soluble cytochrome c domain (Cyt-D) from the Rhodothermus marinus caa3 terminal oxygen reductase and its putative electron donor, a high potential [4Fe-4S] protein (HiPIP). Cyt-D exhibits superior stability, particularly at the level of the heme pocket, compared to archetypical cytochromes in terms of thermal and chemical denaturation, alkaline transition and oxidative bleaching of the heme, which is further increased upon adsorption on biomimetic electrodes. Therefore, this protein is proposed as a suitable building block for electrochemical biosensing. As a proof of concept, we show that the immobilized Cyt-D exhibits good electrocatalytic activity towards H2O2 reduction. Relevant thermodynamic and kinetic electron transfer parameters for Cyt-D and HiPIP are also reported, including reorganization energies of 0.33 eV and 0.42 eV, respectively.

  5. The antioxidant activity and thermal stability of lemon verbena (Aloysia triphylla) infusion.

    PubMed

    Abderrahim, Fatima; Estrella, Seyer; Susín, Cristina; Arribas, Silvia M; González, M Carmen; Condezo-Hoyos, Luis

    2011-05-01

    Because of its good sensorial attributes, lemon verbena is used as a primary ingredient in infusions and nonalcoholic drinks. The present study was designed to assess the antioxidant activity (AA) of lemon verbena infusion (LVI) as well as the thermal stability of its AA and the content of polyphenolic compounds. The values reflecting the AA of LVI, including AA index, fast scavenging rate against 2,2-diphenyl-1-picrylhydrazyl, Trolox equivalent antioxidant capacity, and hydroxyl radical scavenging, are higher than those of many herbal infusions and antioxidant drinks estimated from reported data. In addition, the slope lag time and specific oxyradical antioxidant capacity values of LVI are comparable to those of a commercial antioxidant drink based on green tea. Hence, LVI is a source of bifunctional antioxidants, and thus in vivo studies of the antioxidant capacity of LVI would be useful to evaluate its potential as an ingredient in antioxidant drinks.

  6. The antioxidant activity and thermal stability of lemon verbena (Aloysia triphylla) infusion.

    PubMed

    Abderrahim, Fatima; Estrella, Seyer; Susín, Cristina; Arribas, Silvia M; González, M Carmen; Condezo-Hoyos, Luis

    2011-05-01

    Because of its good sensorial attributes, lemon verbena is used as a primary ingredient in infusions and nonalcoholic drinks. The present study was designed to assess the antioxidant activity (AA) of lemon verbena infusion (LVI) as well as the thermal stability of its AA and the content of polyphenolic compounds. The values reflecting the AA of LVI, including AA index, fast scavenging rate against 2,2-diphenyl-1-picrylhydrazyl, Trolox equivalent antioxidant capacity, and hydroxyl radical scavenging, are higher than those of many herbal infusions and antioxidant drinks estimated from reported data. In addition, the slope lag time and specific oxyradical antioxidant capacity values of LVI are comparable to those of a commercial antioxidant drink based on green tea. Hence, LVI is a source of bifunctional antioxidants, and thus in vivo studies of the antioxidant capacity of LVI would be useful to evaluate its potential as an ingredient in antioxidant drinks. PMID:21434775

  7. Roles of bovine serum albumin and copper in the assay and stability of ammonia monooxygenase activity in vitro.

    PubMed Central

    Juliette, L Y; Hyman, M R; Arp, D J

    1995-01-01

    We investigated the effects of bovine serum albumin (BSA) on both the assay and the stability of ammonia-oxidizing activity in cell extracts of Nitrosomonas europaea. Ammonia-dependent O2 uptake activity of freshly prepared extracts did not require BSA. However, a dependence on BSA developed in extracts within a short time. The role of BSA in the assay of ammonia-oxidizing activity apparently is to absorb endogenous free fatty acids which are present in the extracts, because (i) only proteins which bind fatty acids, e.g., BSA or beta-lactoglobulin, supported ammonia-oxidizing activity; (ii) exogenous palmitoleic acid completely inhibited ammonia-dependent O2 uptake activity; (iii) the inhibition caused by palmitoleic acid was reversed only by proteins which bind fatty acids; and (iv) the concentration of endogenous free palmitoleic acid increased during aging of cell extracts. Additionally, the presence of BSA (10 mg/ml) or CuCl2 (500 microM) stabilized ammonia-dependent O2 uptake activity for 2 to 3 days at 4 degrees C. The stabilizing effect of BSA or CuCl2 was apparently due to an inhibition of lipolysis, because both additives inhibited the increase in concentrations of free palmitoleic acid in aging extracts. Other additives which are known to modify lipase activity were also found to stabilize ammonia-oxidizing activity. These additives included HgCl2, lecithin, and phenylmethylsulfonyl fluoride. PMID:7665467

  8. Characterization of permeability, stability and anti-HIV-1 activity of decitabine and gemcitabine divalerate prodrugs

    PubMed Central

    Clouser, Christine L; Bonnac, Laurent; Mansky, Louis M; Patterson, Steven E

    2015-01-01

    Background Over 25 drugs have been approved for the treatment of HIV-1 replication. All but one of these drugs is delivered as an oral medication. Previous studies have demonstrated that two drugs, decitabine and gemcitabine, have potent anti-HIV-1 activities and can work together in synergy to reduce HIV-1 infectivity via lethal mutagenesis. For their current indications, decitabine and gemcitabine are delivered intravenously. Methods As an initial step towards the clinical translation of these drugs for the treatment of HIV-1 infection, we synthesized decitabine and gemcitabine prodrugs in order to increase drug permeability, which has generally been shown to correlate with increased bioavailability in vivo. In the present study we investigated the permeability, stability and anti-HIV-1 activity of decitabine and gemcitabine prodrugs and selected the divalerate esters of each as candidates for further investigation. Results Our results provide the first demonstration of divalerate prodrugs of decitabine and gemcitabine that are readily permeable, stable and possess anti-HIV-1 activity. Conclusions These observations predict improved oral availability of decitabine and gemcitabine, and warrant further study of their ability to reduce HIV-1 infectivity in vivo. PMID:23994876

  9. Activity-stability relationships revisited in blue oxidases catalyzing electron transfer at extreme temperatures.

    PubMed

    Roulling, Frédéric; Godin, Amandine; Cipolla, Alexandre; Collins, Tony; Miyazaki, Kentaro; Feller, Georges

    2016-09-01

    Cuproxidases are a subset of the blue multicopper oxidases that catalyze the oxidation of toxic Cu(I) ions into less harmful Cu(II) in the bacterial periplasm. Cuproxidases from psychrophilic, mesophilic, and thermophilic bacteria display the canonical features of temperature adaptation, such as increases in structural stability and apparent optimal temperature for activity with environmental temperature as well as increases in the binding affinity for catalytic and substrate copper ions. In contrast, the oxidative activities at 25 °C for both the psychrophilic and thermophilic enzymes are similar, suggesting that the nearly temperature-independent electron transfer rate does not require peculiar adjustments. Furthermore, the structural flexibilities of both the psychrophilic and thermophilic enzymes are also similar, indicating that the firm and precise bindings of the four catalytic copper ions are essential for the oxidase function. These results show that the requirements for enzymatic electron transfer, in the absence of the selective pressure of temperature on electron transfer rates, produce a specific adaptive pattern, which is distinct from that observed in enzymes possessing a well-defined active site and relying on conformational changes such as for the induced fit mechanism. PMID:27315165

  10. Calcium Regulates the Activity and Structural Stability of Tpr, a Bacterial Calpain-like Peptidase*

    PubMed Central

    Staniec, Dominika; Ksiazek, Miroslaw; Thøgersen, Ida B.; Enghild, Jan J.; Sroka, Aneta; Bryzek, Danuta; Bogyo, Matthew; Abrahamson, Magnus; Potempa, Jan

    2015-01-01

    Porphyromonas gingivalis is a peptide-fermenting asaccharolytic periodontal pathogen. Its genome contains several genes encoding cysteine peptidases other than gingipains. One of these genes (PG1055) encodes a protein called Tpr (thiol protease) that has sequence similarity to cysteine peptidases of the papain and calpain families. In this study we biochemically characterize Tpr. We found that the 55-kDa Tpr inactive zymogen proteolytically processes itself into active forms of 48, 37, and 33 kDa via sequential truncations at the N terminus. These processed molecular forms of Tpr are associated with the bacterial outer membrane where they are likely responsible for the generation of metabolic peptides required for survival of the pathogen. Both autoprocessing and activity were dependent on calcium concentrations >1 mm, consistent with the protein's activity within the intestinal and inflammatory milieus. Calcium also stabilized the Tpr structure and rendered the protein fully resistant to proteolytic degradation by gingipains. Together, our findings suggest that Tpr is an example of a bacterial calpain, a calcium-responsive peptidase that may generate substrates required for the peptide-fermenting metabolism of P. gingivalis. Aside from nutrient generation, Tpr may also be involved in evasion of host immune response through degradation of the antimicrobial peptide LL-37 and complement proteins C3, C4, and C5. Taken together, these results indicate that Tpr likely represents an important pathogenesis factor for P. gingivalis. PMID:26385924

  11. Calcium Regulates the Activity and Structural Stability of Tpr, a Bacterial Calpain-like Peptidase.

    PubMed

    Staniec, Dominika; Ksiazek, Miroslaw; Thøgersen, Ida B; Enghild, Jan J; Sroka, Aneta; Bryzek, Danuta; Bogyo, Matthew; Abrahamson, Magnus; Potempa, Jan

    2015-11-01

    Porphyromonas gingivalis is a peptide-fermenting asaccharolytic periodontal pathogen. Its genome contains several genes encoding cysteine peptidases other than gingipains. One of these genes (PG1055) encodes a protein called Tpr (thiol protease) that has sequence similarity to cysteine peptidases of the papain and calpain families. In this study we biochemically characterize Tpr. We found that the 55-kDa Tpr inactive zymogen proteolytically processes itself into active forms of 48, 37, and 33 kDa via sequential truncations at the N terminus. These processed molecular forms of Tpr are associated with the bacterial outer membrane where they are likely responsible for the generation of metabolic peptides required for survival of the pathogen. Both autoprocessing and activity were dependent on calcium concentrations >1 mm, consistent with the protein's activity within the intestinal and inflammatory milieus. Calcium also stabilized the Tpr structure and rendered the protein fully resistant to proteolytic degradation by gingipains. Together, our findings suggest that Tpr is an example of a bacterial calpain, a calcium-responsive peptidase that may generate substrates required for the peptide-fermenting metabolism of P. gingivalis. Aside from nutrient generation, Tpr may also be involved in evasion of host immune response through degradation of the antimicrobial peptide LL-37 and complement proteins C3, C4, and C5. Taken together, these results indicate that Tpr likely represents an important pathogenesis factor for P. gingivalis.

  12. Synthesis, characterization and antimicrobial activity of carboxymethyl dextrane stabilized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Glišić, Slobodan; Cakić, Milorad; Nikolić, Goran; Danilović, Bojana

    2015-03-01

    Silver nanoparticles (AgNPs-CMD) were synthesized from aqueous solution of silver nitrate (AgNO3) and carboxymethyl dextrane (CMD) in mole ratio 1:1 and 1:2. The characterization of AgNPs-CMD was performed by ultraviolet-visible (UV-VIS) spectroscopy, gel permeation chromatography (GPC), scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and antimicrobial activity. The formation of AgNPs-CMD was screened by color changes of the reaction mixture to yellow, by measuring the surface plasmon resonance absorption peak in UV-VIS region at 420 nm. The GPC chromatography measurement confirmed the formation of AgNPs-CMD. The SEM microscopy was used for size and shape of AgNPs-CMD nanoparticles determination. The presence of elemental silver and crystalline structure of AgNPs-CMD were confirmed by XRD analyses. The possible functional group of CMD responsible for the reduction and stabilization of AgNPs were determinated by FT-IR spectroscopy. The AgNPs-CMD showed strong antibacterial activity against Bacillus lutea, Bacillus aureus, Bacillus cereus, Enterococus fecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae and antifungal activity against Aspergillus spp., Penicillum spp., and Candida albicans.

  13. Immobilization and stabilization of a cyclodextrin glycosyltransferase by covalent attachment on highly activated glyoxyl-agarose supports.

    PubMed

    Ferrarotti, Susana Alicia; Bolivar, Juan M; Mateo, Cesar; Wilson, Lorena; Guisan, Jose M; Fernandez-Lafuente, Roberto

    2006-01-01

    Covalent immobilization of cyclodextrin glycosyltransferase on glyoxyl-agarose beads promotes a very high stabilization of the enzyme against any distorting agent (temperature, pH, organic solvents). For example, the optimized immobilized preparation preserves 90% of initial activity when incubated for 22 h in 30% ethanol at pH 7 and 40 degrees C. Other immobilized preparations (obtained via other immobilization protocols) exhibit less than 10% of activity after incubation under similar conditions. Optimized glyoxyl-agarose immobilized preparation expressed a high percentage of catalytic activity (70%). Immobilization using any technique prevents enzyme inactivation by air bubbles during strong stirring of the enzyme. Stabilization of the enzyme immobilized on glyoxyl-agarose is higher when using the highest activation degree (75 micromol of glyoxyl per milliliter of support) as well as when performing long enzyme-support incubation times (4 h) at room temperature. Multipoint covalent immobilization seems to be responsible for this very high stabilization associated to the immobilization process on highly activated glyoxyl-agarose. The stabilization of the enzyme against the inactivation by ethanol seems to be interesting to improve cyclodextrin production: ethanol strongly inhibits the enzymatic degradation of cyclodextrin while hardly affecting the cyclodextrin production rate of the immobilized-stabilized preparation.

  14. Improvement of the stability and activity of the BPO-A1 haloperoxidase from Streptomyces aureofaciens by directed evolution.

    PubMed

    Yamada, Ryosuke; Higo, Tatsutoshi; Yoshikawa, Chisa; China, Hideyasu; Ogino, Hiroyasu

    2014-12-20

    Haloperoxidases are oxygenases that catalyze the halogenation of a range of organic compounds without the need for additional high-cost cofactors. Thus, haloperoxidases with high activity and stability are desired for industrial application. In this study, a directed evolution approach was adopted to improve the thermostability of the homodimeric BPO-A1 haloperoxidase from Streptomyces aureofaciens. Among 1000 mutant BPO-A1 haloperoxidases, 2 mutants HT177 and HT507, having higher thermostabilities than the wild-type BPO-A1 haloperoxidase, were obtained by directed evolution. The residual activities of mutants HT177 and HT507 were 2.3- and 5.1-fold higher than that of wild-type BPO-A1, respectively, after incubation at 80 °C for 1 h. In addition, mutant HT177 showed higher stability in organic solvents, such as methanol, ethanol, dimethyl sulfoxide, and N,N-dimethylformamide, than the wild-type BPO-A1 haloperoxidase. Furthermore, mutant HT507 showed higher specific activity. Based on the evaluation of single-amino-acid-substituted mutants, stabilization of the α-helix conformation, substitution of amino acid residues located at the surface of the protein molecule, and enhancement of the interaction between subunits may account for the improvement in thermostability, organic solvent stability, and specific activity. Consequently, the thermostability, organic solvent stability, and specific activity of S. aureofaciens BPO-A1 haloperoxidase were successfully improved by a directed evolution approach.

  15. Stability and activity of an Enterobacter aerogenes-specific bacteriophage under simulated gastro-intestinal conditions.

    PubMed

    Verthé, K; Possemiers, S; Boon, N; Vaneechoutte, M; Verstraete, W

    2004-09-01

    A bacteriophage, designated UZ1 and showing lytic activity against a clinically important strain (BE1) of Enterobacter aerogenes was isolated from hospital sewage. The stability and lytic activity against this strain under simulated gastro-intestinal conditions was evaluated. After addition of bacteriophage UZ1 to a liquid feed at gastric pH 2, the phage was immediately inactivated and could not be recovered. However, by use of an antacid to neutralize stomach acidity, no significant changes in phage titer were observed after 2 h incubation at 37 degrees C. After supplementing pancreatic juice and further incubation for 4 h, the phage titer remained stable. The persistence of UZ1 in a mixed microbial ecosystem that was representative for the large intestine was monitored using an in vitro simulation of the human intestinal microbial ecosystem. A pulse administration of bacteriophage UZ1 at a concentration of 10(5) plaque-forming units (PFU)/ml to reactor 3 (which simulates the ascending colon) showed that, in the absence of the host, bacteriophage UZ1 persisted for 13 days in the simulated colon, while the theoretical washout was calculated at 16 days. To assess its lytic activity in an intestinal microbial ecosystem, a green fluorescent protein (gfp)-labeled E. aerogenes BE1 strain was constructed and gfp-specific primers were designed in order to quantify the host strain using real-time PCR. It was observed that bacteriophage UZ1 was able to replicate and showed lytic activity against E. aerogenes BE1/ gfp in an intestinal microbial ecosystem. Indeed, after 17 h a 2 log unit reduction of E. aerogenes BE1/ gfp was measured as compared with the assay without bacteriophage UZ1, while the phage titer increased by 2 log units at an initial multiplicity of infection of 0.07 PFU/colony-forming unit. This is the first report of an in vitro model to study bacteriophage activity in the complex intestinal microbial community.

  16. Wave-Activity Conservation Laws and Stability Theorems for Semi-Geostrophic Dynamics.

    NASA Astrophysics Data System (ADS)

    Kushner, Paul Joel

    Our understanding of the role that large-scale eddies play in the atmospheric general circulation is largely based on theoretical results developed using quasi-geostrophic (QG) dynamics. This dissertation represents part of an overall effort to extend these important results to more accurate dynamical models than the seriously limited QG model. In this dissertation, a body of QG theory, concerning the evolution of disturbances to prescribed basic states, is systematically generalized to the semi-geostrophic (SG) model. This body of theory consists of wave-activity conservation laws, linear and nonlinear stability theorems for parallel and non-parallel basic states, and wave-zonal-mean-flow interaction theory. The generalization exploits the two key features of Hamiltonian structure and balanced dynamics that SG and QG dynamics share. The abovementioned theory arises from the conservation of finite-amplitude pseudomomentum and pseudoenergy wave -activity invariants. In an introductory review, these invariants are derived for QG dynamics and shown to yield the body of QG theory, including an apparently novel finite -amplitude generalization of the QG wave-zonal-mean-flow interaction theory. The same procedure is then carried out first for f-plane Boussinesq and then for beta-plane compressible SG dynamics. The body of SG theory is analogous to the QG one and reduces to it in the small-Rossby-number limit. Two important differences between SG and QG dynamics complicate the generalization but yield novel insights and results. First, the transformation to isentropic and geostrophic coordinates in the SG model simplifies the dynamics to a 'potential-vorticity-invertible' form free of explicit ageostrophic advection terms but introduces complex boundary variability in the transformed space. Boundary contributions are here incorporated explicitly into the wave-activity and stability results, yielding novel lateral -boundary stabilty criteria. Second, the SG invertibility

  17. Studies on chalcone derivatives: Complex formation, thermal behavior, stability constant and antioxidant activity

    NASA Astrophysics Data System (ADS)

    El-Sayed, Yusif S.; Gaber, M.

    2015-02-01

    The chalcone 3-[4‧-dimethylaminophenyl]-1-(2-pyridyl) prop-2-en-1-one (DMAPP) and 3-(4‧-diethylaminophenyl)-1-(2-pyridinyl) prop-2-en-1-one abbreviated as DEAPP have been synthesized and characterized with IR, 1H NMR, 13C NMR spectroscopic techniques as described previously (El-Daly et al., 2008; Gaber et al., 2009; El-Sayed, 2013). By using UV visible spectroscopy method the mole fraction ratio for copper with DMAPP and DEAPP complexes were determined and it was found to be 1:1. The stability constants of this complex have been determined by Job's method. The stability constant (Kf) of copper with DMAPP and DEAPP complexes in universal buffer pH = 3.2 was determined to be 9.9 × 104 and 5.2 × 104 respectively. The effect of Cu(II) ion on the emission spectrum of the free chalcone is also assigned. Adherence to Beer's law and Ringbom optimum concentration ranges are determined. The thermal decomposition of the metal complexes is studied by TGA technique. The kinetic parameters like activation energy, pre-exponential factor and entropy of activation are estimated. The structure of complexes was energetically optimized through molecular mechanics applying MM+ force field coupled with molecular dynamics simulation. The bond lengths and bond angles have been calculated to confirm the geometry of the ligands and their Cu(II) complexes. The mode of interaction of the chalcone to copper nanoparticles was studied. The apparent association constants of the colloidal copper nanoparticles:chalcone complexes in solution were evaluated using the spectral method and compared with the formation constant of the Cu(II) chalcone complexes. Antioxidant activity of these chalcones was evaluated by using 1,1‧-diphenyl-2-picrylhydrazyl (DPPHrad) radicals scavenging method, which showed that the antioxidant activity of DMAPP has higher value than the DEAPP. Semi-empirical study results showed that DMAPP have higher dipole moment than DEAPP [1].

  18. Silver Nanoparticles Modified by Gelatin with Extraordinary pH Stability and Long-Term Antibacterial Activity

    PubMed Central

    Sivera, Martin; Kvitek, Libor; Soukupova, Jana; Panacek, Ales; Prucek, Robert; Vecerova, Renata; Zboril, Radek

    2014-01-01

    The potential for application of any nanoparticles, including silver nanoparticles (AgNPs), is strongly dependent on their stability against aggregation. Therefore, improvement of this parameter is a key task, especially in the case of AgNPs, because a correlation between size and biological activity has been demonstrated. In the present work, a natural stabilizer, gelatin, was investigated for the stabilization of AgNPs in an aqueous dispersion. The particles were prepared via a modified Tollens process, and the gelatin modifier was added prior to the reducing agent. The stability against aggregation of the AgNPs prepared by this method was more than one order of magnitude higher (on the basis of the critical coagulation concentration (CCC)) than that of AgNPs prepared via a similar method but without the assistance of gelatin. Their high stability against aggregation was confirmed over wide pH range (from 2 to 13) in which the particles did not exhibit rapid aggregation; such stability has not been previously reported for AgNPs. Additionally, gelatin not only fulfills the role of a unique stabilizer but also positively influences the modified Tollens process used to prepare the AgNPs. The diameter of the gelatin-modified AgNPs was substantially smaller in comparison to those prepared without gelatin. The polydispersity of the dispersion significantly narrowed. Moreover, the gelatin-stabilized AgNPs exhibited long-term stability against aggregation and maintained high antibacterial activity when stored for several months under ambient conditions. PMID:25098570

  19. Low-magnesium, trans-cleavage activity by type III, tertiary stabilized hammerhead ribozymes with stem 1 discontinuities

    PubMed Central

    Burke, Donald H; Greathouse, S Travis

    2005-01-01

    Background Low concentrations of free magnesium in the intracellular environment can present critical limitations for hammerhead ribozymes, especially for those that are designed for intermolecular (trans) cleavage of a host or pathogen RNA. Tertiary stabilizing motifs (TSM's) from natural and artificial ribozymes with a "type I" topology have been exploited to stabilize trans-cleaving hammerheads. Ribozymes with "type II" or "type III" topologies might seem incompatible with conversion to trans-cleavage designs, because opening the loop at the end of stem 1 or stem 2 to accommodate substrate binding is expected to disrupt the TSM and eliminate tertiary stabilization. Results Stem 1, together with single-stranded segments capping or internal to this stem, contains both the substrate-binding and tertiary stabilization functions. This stem was made discontinuous within the sTRSV hammerhead ribozyme, thereby separating the two functions into discrete structural segments. The resulting ribozyme, designated "RzC," cleaved its 13 nucleotide target substrate at MgCl2 concentrations as low as 0.2 mM at 25°C and 0.5 mM at 37°C. Under multiple-turnover conditions, nearly thirty turnovers were observed at the highest substrate:RzC ribozyme ratios. Similar stabilization was observed for several derivatives of RzC. Catalytic activity was diminished or eliminated at sub-millimolar MgCl2 concentrations for ribozymes with weakened or deleted tertiary interactions. Eadie-Hofstee analysis revealed that the stabilized and non-stabilized ribozymes bind their substrates with equivalent affinities, suggesting that differences in observed activity are not the result of diminished binding. Some of the stabilized and non-stabilized ribozymes appear to fold into a heterogeneous collection of conformers, only a subset of which are catalytically active. Conclusion Hammerhead ribozymes with the "type III" topology can be converted to a tertiary, trans-cleavage design. Separating the

  20. The Amino Acid Specificity for Activation of Phenylalanine Hydroxylase Matches the Specificity for Stabilization of Regulatory Domain Dimers

    PubMed Central

    2016-01-01

    Liver phenylalanine hydroxylase is allosterically activated by phenylalanine. The structural changes that accompany activation have not been identified, but recent studies of the effects of phenylalanine on the isolated regulatory domain of the enzyme support a model in which phenylalanine binding promotes regulatory domain dimerization. Such a model predicts that compounds that stabilize the regulatory domain dimer will also activate the enzyme. Nuclear magnetic resonance spectroscopy and analytical ultracentrifugation were used to determine the ability of different amino acids and phenylalanine analogues to stabilize the regulatory domain dimer. The abilities of these compounds to activate the enzyme were analyzed by measuring their effects on the fluorescence change that accompanies activation and on the activity directly. At concentrations of 10–50 mM, d-phenylalanine, l-methionine, l-norleucine, and (S)-2-amino-3-phenyl-1-propanol were able to activate the enzyme to the same extent as 1 mM l-phenylalanine. Lower levels of activation were seen with l-4-aminophenylalanine, l-leucine, l-isoleucine, and 3-phenylpropionate. The ability of these compounds to stabilize the regulatory domain dimer agreed with their ability to activate the enzyme. These results support a model in which allosteric activation of phenylalanine hydroxylase is linked to dimerization of regulatory domains. PMID:26252467

  1. The Amino Acid Specificity for Activation of Phenylalanine Hydroxylase Matches the Specificity for Stabilization of Regulatory Domain Dimers.

    PubMed

    Zhang, Shengnan; Hinck, Andrew P; Fitzpatrick, Paul F

    2015-08-25

    Liver phenylalanine hydroxylase is allosterically activated by phenylalanine. The structural changes that accompany activation have not been identified, but recent studies of the effects of phenylalanine on the isolated regulatory domain of the enzyme support a model in which phenylalanine binding promotes regulatory domain dimerization. Such a model predicts that compounds that stabilize the regulatory domain dimer will also activate the enzyme. Nuclear magnetic resonance spectroscopy and analytical ultracentrifugation were used to determine the ability of different amino acids and phenylalanine analogues to stabilize the regulatory domain dimer. The abilities of these compounds to activate the enzyme were analyzed by measuring their effects on the fluorescence change that accompanies activation and on the activity directly. At concentrations of 10-50 mM, d-phenylalanine, l-methionine, l-norleucine, and (S)-2-amino-3-phenyl-1-propanol were able to activate the enzyme to the same extent as 1 mM l-phenylalanine. Lower levels of activation were seen with l-4-aminophenylalanine, l-leucine, l-isoleucine, and 3-phenylpropionate. The ability of these compounds to stabilize the regulatory domain dimer agreed with their ability to activate the enzyme. These results support a model in which allosteric activation of phenylalanine hydroxylase is linked to dimerization of regulatory domains.

  2. Assessment of two immobilized lipases activity and stability to low temperatures in organic solvents under ultrasound-assisted irradiation.

    PubMed

    Batistella, Luciane; Ustra, Mara K; Richetti, Aline; Pergher, Sibele B C; Treichel, Helen; Oliveira, J V; Lerin, Lindomar; de Oliveira, Débora

    2012-03-01

    Both stability and catalytic activity of two commercial immobilized lipases were investigated in the presence of different organic solvents in ultrasound-assisted system. In a general way, for Novozym 435, the use of ethanol as solvent led to a loss of activity of 35% after 10 h of contact. The use of iso-octane conducted to a gradual increase in lipase activity in relation to the contact time, reaching a maximum value of relative activity of 126%. For Lipozyme RM IM, after 5 h of exposure, the enzyme presented no residual activity when ethanol was used as solvent. The solvents tert-butanol and iso-octane showed an enhancement of about 20 and 17% in the enzyme activity in 6 h of exposure, respectively. Novozym 435 and Lipozyme IM presented high stability to storage after treatment under ultrasound-assisted system using n-hexane and tert-butanol as solvents.

  3. Assessment of two immobilized lipases activity and stability to low temperatures in organic solvents under ultrasound-assisted irradiation.

    PubMed

    Batistella, Luciane; Ustra, Mara K; Richetti, Aline; Pergher, Sibele B C; Treichel, Helen; Oliveira, J V; Lerin, Lindomar; de Oliveira, Débora

    2012-03-01

    Both stability and catalytic activity of two commercial immobilized lipases were investigated in the presence of different organic solvents in ultrasound-assisted system. In a general way, for Novozym 435, the use of ethanol as solvent led to a loss of activity of 35% after 10 h of contact. The use of iso-octane conducted to a gradual increase in lipase activity in relation to the contact time, reaching a maximum value of relative activity of 126%. For Lipozyme RM IM, after 5 h of exposure, the enzyme presented no residual activity when ethanol was used as solvent. The solvents tert-butanol and iso-octane showed an enhancement of about 20 and 17% in the enzyme activity in 6 h of exposure, respectively. Novozym 435 and Lipozyme IM presented high stability to storage after treatment under ultrasound-assisted system using n-hexane and tert-butanol as solvents. PMID:21779888

  4. Long-term stability of dentoalveolar and skeletal changes after activator-headgear treatment.

    PubMed

    Lerstøl, Magnhild; Torget, Oystein; Vandevska-Radunovic, Vaska

    2010-02-01

    The aim of this study was to analyze the long-term stability of combined activator-headgear treatment on skeletal and dental structures in Class II patients. The material comprised 26 subjects, 10 girls and 16 boys. All had a molar Class II relationship, overjet > or =6 mm, and overbite > or =5 mm. They were treated in one practice with combined activator and headgear appliances. Lateral cephalometric radiographs and dental study casts were taken before treatment (T0, mean age 11.9 years), at the end of activator-headgear treatment (T1, mean age 15.9 years), and 12-15 years out of retention (T2, mean age 28.6 years). Nineteen cephalometric and nine dental cast variables were evaluated using a paired sample t-test between T0-T1, T1-T2, and T0-T2. At T1, the majority of the cephalometric measurements showed statistically significant changes. ANB was significantly reduced by 2.3 degrees due to a significant increase in SNB, but only small changes were observed in SNA. The interincisal angle increased as a result of significant retroclination of both maxillary and mandibular incisors. All patients achieved a Class I molar relationship and a significant reduction in overjet and overbite. At T2, the results showed only slight relapse from T1. However, the relapse did not compromise the significant improvement in almost all the cephalometric and dental variables. Combined activator-headgear treatment improved the skeletal and dental conditions and the results remained stable in the long term.

  5. Activation and stabilization of the hydroperoxide lyase enzymatic extract from mint leaves (Mentha spicata) using selected chemical additives.

    PubMed

    Akacha, Najla B; Karboune, Salwa; Gargouri, Mohamed; Kermasha, Selim

    2010-03-01

    The effects of selected lyoprotecting excipients and chemical additives on the specific activity and the thermal stability of the hydroperoxide lyase (HPL) enzymatic extract from mint leaves were investigated. The addition of KCl (5%, w/w) and dextran (2.5%, w/w) to the enzymatic extract, prior to lyophilization, increased the HPL specific activity by 2.0- and 1.2-fold, respectively, compared to the control lyophilized extract. From half-life time (t (1/2)), it can be seen that KCl has enhanced the HPL stability by 1.3- to 2.3-fold, during long-period storage at -20 degrees Celsius and 4 degrees Celsius. Among the selected additives used throughout this study, glycine appeared to be the most effective one. In addition to the activation effect conferred by glycine, it also enhanced the HPL thermal stability. In contrast, polyhydroxyl-containing additives were not effective for stabilizing the HPL enzymatic extract. On the other hand, there was no signification increase in HPL activity and its thermal stability with the presence of Triton X-100. The results also showed that in the presence of glycine (10%), the catalytic efficiency of HPL was increased by 2.45-fold than that without additive.

  6. Activity and stability of a complex bacterial soil community under simulated Martian conditions

    NASA Astrophysics Data System (ADS)

    Hansen, Aviaja Anna; Merrison, Jonathan; Nørnberg, Per; Aagaard Lomstein, Bente; Finster, Kai

    2005-04-01

    A simulation experiment with a complex bacterial soil community in a Mars simulation chamber was performed to determine the effect of Martian conditions on community activity, stability and survival. At three different depths in the soil core short-term effects of Martian conditions with and without ultraviolet (UV) exposure corresponding to 8 Martian Sol were compared. Community metabolic activities and functional diversity, measured as glucose respiration and versatility in substrate utilization, respectively, decreased after UV exposure, whereas they remained unaffected by Martian conditions without UV exposure. In contrast, the numbers of culturable bacteria and the genetic diversity were unaffected by the simulated Martian conditions both with and without UV exposure. The genetic diversity of the soil community and of the colonies grown on agar plates were evaluated by denaturant gradient gel electrophoresis (DGGE) on DNA extracts. Desiccation of the soil prior to experimentation affected the functional diversity by decreasing the versatility in substrate utilization. The natural dominance of endospores and Gram-positive bacteria in the investigated Mars-analogue soil may explain the limited effect of the Mars incubations on the survival and community structure. Our results suggest that UV radiation and desiccation are major selecting factors on bacterial functional diversity in terrestrial bacterial communities incubated under simulated Martian conditions. Furthermore, these results suggest that forward contamination of Mars is a matter of great concern in future space missions.

  7. Microparticles Containing Curcumin Solid Dispersion: Stability, Bioavailability and Anti-Inflammatory Activity.

    PubMed

    Teixeira, C C C; Mendonça, L M; Bergamaschi, M M; Queiroz, R H C; Souza, G E P; Antunes, L M G; Freitas, L A P

    2016-04-01

    This work aimed at improving the solubility of curcumin by the preparation of spray-dried ternary solid dispersions containing Gelucire®50/13-Aerosil® and quantifying the resulting in vivo oral bioavailability and anti-inflammatory activity. The solid dispersion containing 40% of curcumin was characterised by calorimetry, infrared spectroscopy and X-ray powder diffraction. The solubility and dissolution rate of curcumin in aqueous HCl or phosphate buffer improved up to 3600- and 7.3-fold, respectively. Accelerated stability test demonstrated that the solid dispersion was stable for 9 months. The pharmacokinetic study showed a 5.5-fold increase in curcumin in rat blood plasma when compared to unprocessed curcumin. The solid dispersion also provided enhanced anti-inflammatory activity in rat paw oedema. Finally, the solid dispersion proposed here is a promising way to enhance curcumin bioavailability at an industrial pharmaceutical perspective, since its preparation applies the spray drying, which is an easy to scale up technique. The findings herein stimulate further in vivo evaluations and clinical tests as a cancer and Alzheimer chemoprevention agent. PMID:26040724

  8. Design and biological evaluation of synthetic retinoids: probing length vs. stability vs. activity.

    PubMed

    Clemens, Graeme; Flower, Kevin R; Gardner, Peter; Henderson, Andrew P; Knowles, Jonathan P; Marder, Todd B; Whiting, Andrew; Przyborski, Stefan

    2013-12-01

    All trans-retinoic acid (ATRA) is widely used to direct the differentiation of cultured stem cells. When exposed to the pluripotent human embryonal carcinoma (EC) stem cell line, TERA2.cl.SP12, ATRA induces ectoderm differentiation and the formation of neuronal cell types. We report in this study that novel polyene chain length analogues of ATRA require a specific chain length to elicit a biological responses of the EC cells TERA2.cl.SP12, with synthetic retinoid AH61 being particularly active, and indeed more so than ATRA. The impacts of both the synthetic retinoid AH61 and natural ATRA on the TERA2.cl.SP12 cells were directly compared using both RT-PCR and Fourier Transform Infrared Micro-Spectroscopy (FT-IRMS) coupled with multivariate analysis. Analytical results produced from this study also confirmed that the synthetic retinoid AH61 had biological activity comparable or greater than that of ATRA. In addition to this, AH61 has the added advantage of greater compound stability than ATRA, therefore, avoiding issues of oxidation or decomposition during use with embryonic stem cells. PMID:24108350

  9. The use of active controls to augment rotor/fuselage stability

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Warmbrodt, W.

    1985-01-01

    The use of active blade pitch control to increase helicopter rotor/body damping is studied. Control is introduced through a conventional nonrotating swashplate. State variable feedback of rotor and body states is used. Feedback parameters include cyclic rotor flap and lead-lag states, and body pitch and roll rotations. The use of position, rate, and acceleration feedback is studied for the various state variables. In particular, the influence of the closed loop feedback gain and phase on system stability is investigated. For the rotor/body configuration analyzed, rotor cyclic inplane motion and body roll-rate and roll-acceleration feedback can considerably augment system damping levels and eliminate ground resonance instabilities. Scheduling of the feedback state, phase, and gain with rotor rotation speed can be used to maximize the damping augmentation. This increase in lead-lag damping can be accomplished without altering any of the system modal frequencies. Investigating various rotor design parameters (effective hinge offset, blade precone, blade flap stiffness) indicates that active control for augmenting rotor/body damping will be particularly powerful for hingeless and bearingless rotor hubs.

  10. Retaining Oxidative Stability of Emulsified Foods by Novel Nonmigratory Polyphenol Coated Active Packaging.

    PubMed

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2016-07-13

    Oxidation causes lipid rancidity, discoloration, and nutrient degradation that decrease shelf life of packaged foods. Synthetic additives are effective oxidation inhibitors, but are undesirable to consumers who prefer "clean" label products. The aim of this study was to improve oxidative stability of emulsified foods by a novel nonmigratory polyphenol coated active packaging. Polyphenol coatings were applied to chitosan functionalized polypropylene (PP) by laccase assisted polymerization of catechol and catechin. Polyphenol coated PP exhibited both metal chelating (39.3 ± 2.5 nmol Fe(3+) cm(-2), pH 4.0) and radical scavenging (up to 52.9 ± 1.8 nmol Trolox eq cm(-2)) capacity, resulting in dual antioxidant functionality to inhibit lipid oxidation and lycopene degradation in emulsions. Nonmigratory polyphenol coated PP inhibited ferric iron promoted degradation better than soluble chelators, potentially by partitioning iron from the emulsion droplet interface. This work demonstrates that polyphenol coatings can be designed for advanced material chemistry solutions in active food packaging. PMID:27310107

  11. Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature

    SciTech Connect

    Rashad, A.M.; Bai, Y.; Basheer, P.A.M.; Collier, N.C.; Milestone, N.B.

    2012-02-15

    The chemical and mechanical stability of slag activated with two different concentrations of sodium sulfate (Na{sub 2}SO{sub 4}) after exposure to elevated temperatures ranging from 200 to 800 Degree-Sign C with an increment of 200 Degree-Sign C has been examined. Compressive strengths and pH of the hardened pastes before and after the exposure were determined. The various decomposition phases formed were identified using X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The results indicated that Na{sub 2}SO{sub 4} activated slag has a better resistance to the degradation caused by exposure to elevated temperature up to 600 Degree-Sign C than Portland cement system as its relative strengths are superior. The finer slag and higher Na{sub 2}SO{sub 4} concentration gave better temperature resistance. Whilst the pH of the hardened pastes decreased with an increase in temperature, it still maintained a sufficiently high pH for the protection of reinforcing bar against corrosion.

  12. Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion.

    PubMed

    Correa-Betanzo, J; Allen-Vercoe, E; McDonald, J; Schroeter, K; Corredig, M; Paliyath, G

    2014-12-15

    Wild blueberries are rich in polyphenols and have several potential health benefits. Understanding the factors that affect the bioaccessibility and bioavailability of polyphenols is important for evaluating their biological significance and efficacy as functional food ingredients. Since the bioavailability of polyphenols such as anthocyanins is generally low, it has been proposed that metabolites resulting during colonic fermentation may be the components that exert health benefits. In this study, an in vitro gastrointestinal model comprising sequential chemostat fermentation steps that simulate digestive conditions in the stomach, small intestine and colon was used to investigate the breakdown of blueberry polyphenols. The catabolic products were isolated and biological effects tested using a normal human colonic epithelial cell line (CRL 1790) and a human colorectal cancer cell line (HT 29). The results showed a high stability of total polyphenols and anthocyanins during simulated gastric digestion step with approximately 93% and 99% of recovery, respectively. Intestinal digestion decreased polyphenol- and anthocyanin- contents by 49% and 15%, respectively, by comparison to the non-digested samples. During chemostat fermentation that simulates colonic digestion, the complex polyphenol mixture was degraded to a limited number of phenolic compounds such as syringic, cinnamic, caffeic, and protocatechuic acids. Only acetylated anthocyanins were detected in low amounts after chemostat fermentation. The catabolites showed lowered antioxidant activity and cell growth inhibition potential. Results suggest that colonic fermentation may alter the biological activity of blueberry polyphenols.

  13. S-nitrosation of conserved cysteines modulates activity and stability of S-nitrosoglutathione reductase (GSNOR)

    PubMed Central

    Guerra, Damian; Ballard, Keith; Truebridge, Ian; Vierling, Elizabeth

    2016-01-01

    The free radical nitric oxide (NO•) regulates diverse physiological processes from vasodilation in humans to gas exchange in plants. S-nitrosoglutathione (GSNO) is considered a principal nitroso reservoir due to its chemical stability. GSNO accumulation is attenuated by GSNO reductase (GSNOR), a cysteine-rich cytosolic enzyme. Regulation of protein nitrosation is not well understood since NO•-dependent events proceed without discernible changes in GSNOR expression. Because GSNORs contain evolutionarily-conserved cysteines that could serve as nitrosation sites, we examined the effects of treating plant (Arabidopsis thaliana), mammalian (human), and yeast (Saccharomyces cerevisiae) GSNORs with nitrosating agents in vitro. Enzyme activity was sensitive to nitroso donors, while the reducing agent dithiothreitol (DTT) restored activity, suggesting catalytic impairment was due to S-nitrosation. Protein nitrosation was confirmed by mass spectrometry, by which mono-, di-, and tri-nitrosation were observed, and these signals were sensitive to DTT. GSNOR mutants in specific non-zinc coordinating cysteines were less sensitive to catalytic inhibition by nitroso donors and exhibited reduced nitrosation signals by mass spectrometry. Nitrosation also coincided with decreased tryptophan fluorescence, increased thermal aggregation propensity, and increased polydispersity—properties reflected by differential solvent accessibility of amino acids important for dimerization and the shape of the substrate and coenzyme binding pockets as assessed by hydrogen-deuterium exchange mass spectrometry. Collectively, these data suggest a mechanism for NO• signal transduction in which GSNOR nitrosation and inhibition transiently permit GSNO accumulation. PMID:27064847

  14. Enzyme catalysis in an aqueous/organic segment flow microreactor: ways to stabilize enzyme activity.

    PubMed

    Karande, Rohan; Schmid, Andreas; Buehler, Katja

    2010-06-01

    Multiphase flow microreactors benefit from rapid mixing and high mass transfer rates, yet their application in enzymatic catalysis is limited due to the fast inactivation of enzymes used as biocatalysts. Enzyme inactivation during segment flow is due to the large interfacial area between aqueous and organic phases. The Peclet number of the system points to strong convective forces within the segments, and this results in rapid deactivation of the enzyme depending on segment length and flow rate. Addition of surfactant to the aqueous phase or enzyme immobilization prevents the biocatalyst from direct contact with the interface and thus stabilizes the enzyme activity. Almost 100% enzyme activity can be recovered compared to 45% without any enzyme or medium modification. Drop tensiometry measurements point to a mixed enzyme-surfactant interfacial adsorption, and above a certain concentration, the surfactant forms a protective layer between the interface and the biocatalyst in the aqueous compartments. Theoretical models were used to compare adsorption kinetics of the protein to the interface in the segment flow microreactor and in the drop tensiometry measurements. This study is the basis for the development of segment flow microreactors as a tool to perform productive enzymatic catalysis. PMID:20201570

  15. Microparticles Containing Curcumin Solid Dispersion: Stability, Bioavailability and Anti-Inflammatory Activity.

    PubMed

    Teixeira, C C C; Mendonça, L M; Bergamaschi, M M; Queiroz, R H C; Souza, G E P; Antunes, L M G; Freitas, L A P

    2016-04-01

    This work aimed at improving the solubility of curcumin by the preparation of spray-dried ternary solid dispersions containing Gelucire®50/13-Aerosil® and quantifying the resulting in vivo oral bioavailability and anti-inflammatory activity. The solid dispersion containing 40% of curcumin was characterised by calorimetry, infrared spectroscopy and X-ray powder diffraction. The solubility and dissolution rate of curcumin in aqueous HCl or phosphate buffer improved up to 3600- and 7.3-fold, respectively. Accelerated stability test demonstrated that the solid dispersion was stable for 9 months. The pharmacokinetic study showed a 5.5-fold increase in curcumin in rat blood plasma when compared to unprocessed curcumin. The solid dispersion also provided enhanced anti-inflammatory activity in rat paw oedema. Finally, the solid dispersion proposed here is a promising way to enhance curcumin bioavailability at an industrial pharmaceutical perspective, since its preparation applies the spray drying, which is an easy to scale up technique. The findings herein stimulate further in vivo evaluations and clinical tests as a cancer and Alzheimer chemoprevention agent.

  16. Carbohydrate-functionalized nanovaccines preserve HIV-1 antigen stability and activate antigen presenting cells

    PubMed Central

    Vela Ramirez, J.E.; Roychoudhury, R.; Habte, H.H.; Cho, M. W.; Pohl, N. L. B.; Narasimhan, B.

    2015-01-01

    The functionalization of polymeric nanoparticles with ligands that target specific receptors on immune cells offers the opportunity to tailor adjuvant properties by conferring pathogen mimicking attributes to the particles. Polyanhydride nanoparticles are promising vaccine adjuvants with desirable characteristics such as immunomodulation, sustained antigen release, activation of antigen presenting cells, and stabilization of protein antigens. These capabilities can be exploited to design nanovaccines against viral pathogens, such as HIV-1, due to the important role of dendritic cells and macrophages in viral spread. In this work, an optimized process was developed for carbohydrate functionalization of HIV-1 antigen-loaded polyanhydride nanoparticles. The carbohydrate-functionalized nanoparticles preserved antigenic properties upon release and also enabled sustained antigen release kinetics. Particle internalization was observed to be chemistry-dependent with positively charged nanoparticles being taken up more efficiently by dendritic cells. Up-regulation of the activation makers CD40 and CD206 was demonstrated with carboxymethyl-α-d-mannopyranosyl-(1,2)-d-mannopyranoside functionalized nanoparticles. The secretion of the cytokines IL-6 and TNF-α was shown to be chemistry-dependent upon stimulation with carbohydrate-functionalized nanoparticles. These results offer important new insights upon the interactions between carbohydrate-functionalized nanoparticles and antigen presenting cells and provide foundational information for the rational design of targeted nanovaccines against HIV-1. PMID:25068589

  17. Carbohydrate-functionalized nanovaccines preserve HIV-1 antigen stability and activate antigen presenting cells.

    PubMed

    Vela Ramirez, J E; Roychoudhury, R; Habte, H H; Cho, M W; Pohl, N L B; Narasimhan, B

    2014-01-01

    The functionalization of polymeric nanoparticles with ligands that target specific receptors on immune cells offers the opportunity to tailor adjuvant properties by conferring pathogen mimicking attributes to the particles. Polyanhydride nanoparticles are promising vaccine adjuvants with desirable characteristics such as immunomodulation, sustained antigen release, activation of antigen presenting cells (APCs), and stabilization of protein antigens. These capabilities can be exploited to design nanovaccines against viral pathogens, such as HIV-1, due to the important role of dendritic cells (DCs) and macrophages in viral spread. In this work, an optimized process was developed for carbohydrate functionalization of HIV-1 antigen-loaded polyanhydride nanoparticles. The carbohydrate-functionalized nanoparticles preserved antigenic properties upon release and also enabled sustained antigen release kinetics. Particle internalization was observed to be chemistry-dependent with positively charged nanoparticles being taken up more efficiently by DCs. Up-regulation of the activation makers CD40 and CD206 was demonstrated with carboxymethyl-α-d-mannopyranosyl-(1,2)-d-mannopyranoside functionalized nanoparticles. The secretion of the cytokines IL-6 and TNF-α was shown to be chemistry-dependent upon stimulation with carbohydrate-functionalized nanoparticles. These results offer important new insights upon the interactions between carbohydrate-functionalized nanoparticles and APCs and provide foundational information for the rational design of targeted nanovaccines against HIV-1. PMID:25068589

  18. Iron Opacity Bump Changes the Stability and Structure of Accretion Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Fei; Davis, Shane W.; Stone, James M.

    2016-08-01

    Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be larger than the electron scattering opacity due to the large number of bound–bound transitions in iron. We study the effects of this iron opacity “bump” on the thermal stability and vertical structure of radiation-pressure-dominated accretion disks, utilizing three-dimensional radiation magnetohydrodynamic (MHD) simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a 5 × 108 solar mass black hole with ˜3% of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than 10 thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free–free opacity are included as in the standard thin disk model, the disk collapses on the thermal timescale. The difference is caused by a combination of (1) an anti-correlation between the total optical depth and the midplane pressure, and (2) enhanced vertical advective energy transport. These results suggest that the iron opacity bump may have a strong impact on the stability and structure of active galactic nucleus (AGN) accretion disks, and may contribute to a dependence of AGN properties on metallicity. Since this opacity is relevant primarily in UV emitting regions of the flow, it may help to explain discrepancies between observation and theory that are unique to AGNs.

  19. Pegylation of fibronectin and its functional domains: Effect on stability and biological activity

    NASA Astrophysics Data System (ADS)

    Zhang, Chen

    Delayed wound healing in many chronic wounds has been linked to the lack of extracellular matrix (ECM) support and the degradation of fibronectin (FN) by an abnormally high protease level. The ECM provides physical and chemical cues that direct tissue growth and development while FN is a key ECM protein that attracts and binds different molecules and cells. The goal of my study is creating an ECM analogue based on a composite of polyethylene glycol (PEG) hydrogels and FN binding domains and stabilizing FN against proteolytic degradation by conjugating it to PEG. The work presented here shows a two-prong approach by which the problem of ECM degradation and deficiency chronic wound healing can be addressed. The first approach for addressing ECM deficiency is through a scaffold design methodology. The novelty of the scaffold approach is that it uses the cell-binding domains of FN instead of the often-used RGD peptide. I demonstrate that a PEG hydrogel with the cell-binding domain produces a more robust biological response in cells than a PEG hydrogel with the RGD peptide. I also demonstrate that varying different functional domains of FN can be used to controllably stimulate multiple biological responses. The second approach demonstrates a method by which FN, a key ECM protein, is stabilized against proteolytic degradation without perturbing its activity. These studies of creating PEG-FN conjugates are the first of their kind. Collectively, the data that I present in this thesis will lead to novel therapeutic methods for treating chronic wounds.

  20. Iron Opacity Bump Changes the Stability and Structure of Accretion Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Fei; Davis, Shane W.; Stone, James M.

    2016-08-01

    Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be larger than the electron scattering opacity due to the large number of bound-bound transitions in iron. We study the effects of this iron opacity “bump” on the thermal stability and vertical structure of radiation-pressure-dominated accretion disks, utilizing three-dimensional radiation magnetohydrodynamic (MHD) simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a 5 × 108 solar mass black hole with ˜3% of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than 10 thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free-free opacity are included as in the standard thin disk model, the disk collapses on the thermal timescale. The difference is caused by a combination of (1) an anti-correlation between the total optical depth and the midplane pressure, and (2) enhanced vertical advective energy transport. These results suggest that the iron opacity bump may have a strong impact on the stability and structure of active galactic nucleus (AGN) accretion disks, and may contribute to a dependence of AGN properties on metallicity. Since this opacity is relevant primarily in UV emitting regions of the flow, it may help to explain discrepancies between observation and theory that are unique to AGNs.

  1. Enhancing stability and oxidation activity of cytochrome C by immobilization in the nanochannels of mesoporous aluminosilicates.

    PubMed

    Lee, Chia-Hung; Lang, Jun; Yen, Chun-Wan; Shih, Pei-Chun; Lin, Tien-Sung; Mou, Chung-Yuan

    2005-06-30

    Hydrothermally stable and structrurally ordered mesoporous and microporous aluminosilicates with different pore sizes have been synthesized to immobilize cytochrome c (cyt c): MAS-9 (pore size 90 A), MCM-48-S (27 A), MCM-41-S (25 A), and Y zeolites (7.4 A). The amount of cyt c adsorption could be increased by the introduction of aluminum into the framework of pure silica materials. Among these mesoprous silicas (MPS), MAS-9 showed the highest loading capacity due to its large pore size. However, cyt c immobilized in MAS-9 could undergo facile unfolding during hydrothermal treatments. MCM-41-S and MCM-48-S have the pore sizes that match well the size of cyt c (25 x 25 x 37 A). Hence the adsorbed cyt c in these two medium pore size MPS have the highest hydrothermal stability and overall catalytic activity. On the other hand, the pore size of NaY zeolite is so small that cyt c is mostly adsorbed only on the outer surface and loses its enzymatic activity rapidly. The improved stability and high catalytic activity of cyt c immobilized in MPS are attributed to the electrostatic attraction between the pore surface and cyt c and the confinement provided by nanochannels. We further observed that cyt c immobilized in MPS exists in both high and low spin states, as inferred from the ESR and UV-vis studies. This is different from the native cyt c, which shows primarily the low spin state. The high spin state arises from the replacement of Met-80 ligands of heme Fe (III) by water or silanol group on silica surface, which could open up the heme groove for easy access of oxidants and substrates to iron center and facilitate the catalytic activity. In the catalytic study, MAS-9-cyt c showed the highest specific activity toward the oxidation of polycyclic aromatic hydrocarbons (PAHs), which arises from the fast mass transfer rate of reaction substrate due to its large pore size. For pinacyanol (a hydrophilic substrate), MCM-41-S-cyt c and MCM-48-S-cyt c showed higher specific

  2. Effects of Metal Ions on Stability and Activity of Hyperthermophilic Pyrolysin and Further Stabilization of This Enzyme by Modification of a Ca2+-Binding Site

    PubMed Central

    Zeng, Jing; Gao, Xiaowei; Dai, Zheng; Tang, Bing

    2014-01-01

    Pyrolysin is an extracellular subtilase produced by the marine hyperthermophilic archaeon Pyrococcus furiosus. This enzyme functions at high temperatures in seawater, but little is known about the effects of metal ions on the properties of pyrolysin. Here, we report that the supplementation of Na+, Ca2+, or Mg2+ salts at concentrations similar to those in seawater destabilizes recombinant pyrolysin but leads to an increase in enzyme activity. The destabilizing effect of metal ions on pyrolysin appears to be related to the disturbance of surface electrostatic interactions of the enzyme. In addition, mutational analysis of two predicted high-affinity Ca2+-binding sites (Ca1 and Ca2) revealed that the binding of Ca2+ is important for the stabilization of this enzyme. Interestingly, Asn substitutions at residues Asp818 and Asp820 of the Ca2 site, which is located in the C-terminal extension of pyrolysin, resulted in improvements in both enzyme thermostability and activity without affecting Ca2+-binding affinity. These effects were most likely due to the elimination of unfavorable electrostatic repulsion at the Ca2 site. Together, these results suggest that metal ions play important roles in modulating the stability and activity of pyrolysin. PMID:24561589

  3. Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions.

    PubMed

    Feng, Zhenxing; Hong, Wesley T; Fong, Dillon D; Lee, Yueh-Lin; Yacoby, Yizhak; Morgan, Dane; Shao-Horn, Yang

    2016-05-17

    the physical origin of segregation is discussed in comparison with (La1-ySry)2CoO4±δ/La1-xSrxCo0.2Fe0.8O3-δ. Sr enrichment in many electrocatalysts, such as La1-xSrxMO3-δ (M = Cr, Co, Mn, or Co and Fe) and Sm1-xSrxCoO3, has been probed using alternative techniques, including low energy ion scattering, secondary ion mass spectrometry, and X-ray fluorescence-based methods for depth-dependent, element-specific analysis. We highlight a strong connection between cation segregation and electrocatalytic properties, because cation segregation enhances oxygen transport and surface oxygen exchange kinetics. On the other hand, the formation of cation-enriched secondary phases can lead to the blocking of active sites, inhibiting oxygen exchange. With help from density functional theory, the links between cation migration, catalyst stability, and catalytic activity are provided, and the oxygen p-band center relative to the Fermi level can be identified as an activity descriptor. Based on these findings, we discuss strategies to increase a catalyst's activity while maintaining stability to design efficient, cost-effective electrocatalysts. PMID:27149528

  4. Peroxidase-like activity of gold nanoparticles stabilized by hyperbranched polyglycidol derivatives over a wide pH range

    NASA Astrophysics Data System (ADS)

    Drozd, Marcin; Pietrzak, Mariusz; Parzuchowski, Paweł; Mazurkiewicz-Pawlicka, Marta; Malinowska, Elżbieta

    2015-12-01

    The aim of this work was to carry out comparative studies on the peroxidase-like activity of gold nanoparticles (AuNPs) stabilized with low molecular weight hyperbranched polyglycidol (HBPG-OH) and its derivative modified with maleic acid residues (HBPG-COOH). The influence of the stabilizer to gold precursor ratio on the size and morphology of nanoparticles obtained was checked, and prepared nanoparticles were characterized by means of transmission electron microscopy and UV-Vis spectroscopy. The results indicated the divergent effect of increasing the concentration of stabilizers (HBPG-OH or HBPG-COOH) on the size of the nanostructures obtained. The gold nanoparticles obtained were characterized as having intrinsic peroxidase-like activity and the mechanism of catalysis in acidic and alkaline mediums was consistent with the standard Michaelis-Menten kinetics, revealing a strong affinity of AuNPs with 2, 2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 3, 3‧, 5, 5‧-tetramethylbenzidine (TMB), and significantly lower affinity towards phenol. By comparing the kinetic parameters, a negligible effect of polymeric ligand charge on activity against various types of substrates (anionic or cationic) was indicated. The superiority of steric stabilization via the application of tested low-weight hyperbranched polymers over typical stabilizers in preventing salt-induced aggregation and maintaining high catalytic activity in time was proved. The applied hyperbranched stabilizers provide a good tool for manufacturing gold-based nanozymes, which are highly stable and active over a wide pH range.

  5. Helix A Stabilization Precedes Amino-terminal Lobe Activation upon Calcium Binding to Calmodulin

    SciTech Connect

    Chen, Baowei; Lowry, David; Mayer, M. Uljana; Squier, Thomas C.

    2008-08-09

    The structural coupling between opposing domains of CaM was investigated using the conformationally sensitive biarsenical probe 4,5-bis(1,3,2-dithioarsolan-2-yl)-resorufin (ReAsH), which upon binding to an engineered tetracysteine binding motif near the end of helix A (Thr-5 to Phe-19) becomes highly fluorescent. Changes in conformation and dynamics are reflective of the native CaM structure, as there is no change in the 1H-15N HSQC NMR spectrum in comparison to wild-type CaM. We find evidence of a conformational intermediate associated with CaM activation, where calcium occupancy of sites in the amino-terminal and carboxyl-terminal lobes of CaM differentially affect the fluorescence intensity of bound ReAsH. Insight into the structure of the conformational intermediate is possible from a consideration of calcium-dependent changes in rates of ReAsH binding and helix A mobility, which respectively distinguish secondary structural changes associated with helix A stabilization from the tertiary structural reorganization of the amino-terminal lobe of CaM necessary for high-affinity binding to target proteins. Helix A stabilization is associated with calcium occupancy of sites in the carboxyl-terminal lobe (Kd = 0.36 ± 0.04 μM), which results in a reduction in the rate of ReAsH binding from 4900 M-1 sec-1 to 370 M-1 sec-1. In comparison, tertiary structural changes involving helix A and other structural elements in the amino-terminal lobe requires calcium-occupancy of amino-terminal sites (Kd = 18 ± 3 μM). Observed secondary and tertiary structural changes involving helix A in response to the sequential calcium occupancy of carboxyl- and amino-terminal lobe calcium binding sites suggest an important involvement of helix A in mediating the structural coupling between the opposing domains of CaM. These results are discussed in terms of a model in which carboxyl-terminal lobe calcium activation induces

  6. Activation and thermal stability of ultra-shallow B{sup +}-implants in Ge

    SciTech Connect

    Yates, B. R.; Darby, B. L.; Jones, K. S.; Petersen, D. H.; Hansen, O.; Lin, R.; Nielsen, P. F.; Doyle, B. L.; Kontos, A.

    2012-12-15

    The activation and thermal stability of ultra-shallow B{sup +} implants in crystalline (c-Ge) and preamorphized Ge (PA-Ge) following rapid thermal annealing was investigated using micro Hall effect and ion beam analysis techniques. The residual implanted dose of ultra-shallow B{sup +} implants in Ge was characterized using elastic recoil detection and was determined to correlate well with simulations with a dose loss of 23.2%, 21.4%, and 17.6% due to ion backscattering for 2, 4, and 6 keV implants in Ge, respectively. The electrical activation of ultra-shallow B{sup +} implants at 2, 4, and 6 keV to fluences ranging from 5.0 Multiplication-Sign 10{sup 13} to 5.0 Multiplication-Sign 10{sup 15} cm{sup -2} was studied using micro Hall effect measurements after annealing at 400-600 Degree-Sign C for 60 s. For both c-Ge and PA-Ge, a large fraction of the implanted dose is rendered inactive due to the formation of a presumable B-Ge cluster. The B lattice location in samples annealed at 400 Degree-Sign C for 60 s was characterized by channeling analysis with a 650 keV H{sup +} beam by utilizing the {sup 11}B(p, {alpha})2{alpha} nuclear reaction and confirmed the large fraction of off-lattice B for both c-Ge and PA-Ge. Within the investigated annealing range, no significant change in activation was observed. An increase in the fraction of activated dopant was observed with increasing energy which suggests that the surface proximity and the local point defect environment has a strong impact on B activation in Ge. The results suggest the presence of an inactive B-Ge cluster for ultra-shallow implants in both c-Ge and PA-Ge that remains stable upon annealing for temperatures up to 600 Degree-Sign C.

  7. Activity, stability and folding analysis of the chitinase from Entamoeba histolytica.

    PubMed

    Muñoz, Patricia L A; Minchaca, Alexis Z; Mares, Rosa E; Ramos, Marco A

    2016-02-01

    Human amebiasis, caused by the parasitic protozoan Entamoeba histolytica, remains as a significant public health issue in developing countries. The life cycle of the parasite compromises two main stages, trophozoite and cyst, linked by two major events: encystation and excystation. Interestingly, the cyst stage has a chitin wall that helps the parasite to withstand harsh environmental conditions. Since the amebic chitinase, EhCHT1, has been recognized as a key player in both encystation and excystation, it is plausible to consider that specific inhibition could arrest the life cycle of the parasite and, thus, stop the infection. However, to selectively target EhCHT1 it is important to recognize its unique biochemical features to have the ability to control its cellular function. Hence, to gain further insights into the structure-function relationship, we conducted an experimental approach to examine the effects of pH, temperature, and denaturant concentration on the enzymatic activity and protein stability. Additionally, dependence on in vivo oxidative folding was further studied using a bacterial model. Our results attest the potential of EhCHT1 as a target for the design and development of new or improved anti-amebic therapeutics. Likewise, the potential of the oxidoreductase EhPDI, involved in oxidative folding of amebic proteins, was also confirmed.

  8. The stability and catalytic activity of W13@Pt42 core-shell structure

    PubMed Central

    Huo, Jin-Rong; Wang, Xiao-Xu; Li, Lu; Cheng, Hai-Xia; Su, Yan-Jing; Qian, Ping

    2016-01-01

    This paper reports a study of the electronic properties, structural stability and catalytic activity of the W13@Pt42 core-shell structure using the First-principles calculations. The degree of corrosion of W13@Pt42 core-shell structure is simulated in acid solutions and through molecular absorption. The absorption energy of OH for this structure is lower than that for Pt55, which inhibits the poison effect of O containing intermediate. Furthermore we present the optimal path of oxygen reduction reaction catalyzed by W13@Pt42. Corresponding to the process of O molecular decomposition, the rate-limiting step of oxygen reduction reaction catalyzed by W13@Pt42 is 0.386 eV, which is lower than that for Pt55 of 0.5 eV. In addition by alloying with W, the core-shell structure reduces the consumption of Pt and enhances the catalytic efficiency, so W13@Pt42 has a promising perspective of industrial application. PMID:27759038

  9. Nucleophosmin modulates stability, activity, and nucleolar accumulation of base excision repair proteins

    PubMed Central

    Poletto, Mattia; Lirussi, Lisa; Wilson, David M.; Tell, Gianluca

    2014-01-01

    Nucleophosmin (NPM1) is a multifunctional protein that controls cell growth and genome stability via a mechanism that involves nucleolar–cytoplasmic shuttling. It is clear that NPM1 also contributes to the DNA damage response, yet its exact function is poorly understood. We recently linked NPM1 expression to the functional activation of the major abasic endonuclease in mammalian base excision repair (BER), apurinic/apyrimidinic endonuclease 1 (APE1). Here we unveil a novel role for NPM1 as a modulator of the whole BER pathway by 1) controlling BER protein levels, 2) regulating total BER capacity, and 3) modulating the nucleolar localization of several BER enzymes. We find that cell treatment with the genotoxin cisplatin leads to concurrent relocalization of NPM1 and BER components from nucleoli to the nucleoplasm, and cellular experiments targeting APE1 suggest a role for the redistribution of nucleolar BER factors in determining cisplatin toxicity. Finally, based on the use of APE1 as a representative protein of the BER pathway, our data suggest a function for BER proteins in the regulation of ribogenesis. PMID:24648491

  10. Activity, stability and folding analysis of the chitinase from Entamoeba histolytica.

    PubMed

    Muñoz, Patricia L A; Minchaca, Alexis Z; Mares, Rosa E; Ramos, Marco A

    2016-02-01

    Human amebiasis, caused by the parasitic protozoan Entamoeba histolytica, remains as a significant public health issue in developing countries. The life cycle of the parasite compromises two main stages, trophozoite and cyst, linked by two major events: encystation and excystation. Interestingly, the cyst stage has a chitin wall that helps the parasite to withstand harsh environmental conditions. Since the amebic chitinase, EhCHT1, has been recognized as a key player in both encystation and excystation, it is plausible to consider that specific inhibition could arrest the life cycle of the parasite and, thus, stop the infection. However, to selectively target EhCHT1 it is important to recognize its unique biochemical features to have the ability to control its cellular function. Hence, to gain further insights into the structure-function relationship, we conducted an experimental approach to examine the effects of pH, temperature, and denaturant concentration on the enzymatic activity and protein stability. Additionally, dependence on in vivo oxidative folding was further studied using a bacterial model. Our results attest the potential of EhCHT1 as a target for the design and development of new or improved anti-amebic therapeutics. Likewise, the potential of the oxidoreductase EhPDI, involved in oxidative folding of amebic proteins, was also confirmed. PMID:26526675

  11. Highly active nanoscale Ni - Yttria stabilized zirconia anodes for micro-solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Buyukaksoy, Aligul; Birss, Viola I.

    2016-03-01

    The optimum operating temperature of micro solid oxide fuel cells (μ-SOFCs) is < 600 °C, which normally results in an undesirably high internal resistance. While the resistance of the electrolyte (most commonly yttria stabilized zirconia, YSZ) can be lowered significantly simply by decreasing its thickness, minimization of the electrode resistance (thus maintaining rapid reaction kinetics) is not as straightforward. In this work, an ethylene glycol based polymeric precursor solution, which promotes the intimate mixing of the Ni, Y and Zr components prior to their crystallization as oxides, was spin-coated onto a YSZ disc, generating a nanocomposite NiO-YSZ thin film. The in-situ reduction of NiO phase within the dense NiO-YSZ film to Ni, in combination with the nanoscale size of the Ni and YSZ particles (ca. 25 nm), resulted in a nanoporous, Ni-YSZ anode morphology (thickness < 1 μm) with a homogeneous distribution of Ni and YSZ and a very high triple phase boundary length. Very small electrode polarization resistances of 0.65 Ω cm2 per electrode were obtained at 550 °C in humidified H2, the lowest values yet reported for SOFCs at this temperature. These highly active anodes are therefore very promising for use in next generation μ-SOFCs.

  12. Noise-enhanced stability and double stochastic resonance of active Brownian motion

    NASA Astrophysics Data System (ADS)

    Zeng, Chunhua; Zhang, Chun; Zeng, Jiakui; Liu, Ruifen; Wang, Hua

    2015-08-01

    In this paper, we study the transient and resonant properties of active Brownian particles (ABPs) in the Rayleigh-Helmholtz (RH) and Schweitzer-Ebeling-Tilch (SET) models, which is driven by the simultaneous action of multiplicative and additive noise and periodic forcing. It is shown that the cross-correlation between two noises (λ) can break the symmetry of the potential to generate motion of the ABPs. In case of no correlation between two noises, the mean first passage time (MFPT) is a monotonic decrease depending on the multiplicative noise, however in case of correlation between two noises, the MFPT exhibits a maximum, depending on the multiplicative noise for both models, this maximum for MFPT identifies the noise-enhanced stability (NES) effect of the ABPs. By comparing with case of no correlation (λ =0.0 ), we find two maxima in the signal-to-noise ratio (SNR) depending on the cross-correlation intensity, i.e. the double stochastic resonance is shown in both models. For the RH model, the SNR exhibits two maxima depending on the multiplicative noise for small cross-correlation intensity, while in the SET model, it exhibits only a maximum depending on the multiplicative noise. Whether λ =0.0 or not, the MFPT is a monotonic decrease, and the SNR exhibits a maximum, depending on the additive noise in both models.

  13. Structure-function relationships governing activity and stability of a DNA alkylation damage repair thermostable protein

    PubMed Central

    Perugino, Giuseppe; Miggiano, Riccardo; Serpe, Mario; Vettone, Antonella; Valenti, Anna; Lahiri, Samarpita; Rossi, Franca; Rossi, Mosè; Rizzi, Menico; Ciaramella, Maria

    2015-01-01

    Alkylated DNA-protein alkyltransferases repair alkylated DNA bases, which are among the most common DNA lesions, and are evolutionary conserved, from prokaryotes to higher eukaryotes. The human ortholog, hAGT, is involved in resistance to alkylating chemotherapy drugs. We report here on the alkylated DNA-protein alkyltransferase, SsOGT, from an archaeal species living at high temperature, a condition that enhances the harmful effect of DNA alkylation. The exceptionally high stability of SsOGT gave us the unique opportunity to perform structural and biochemical analysis of a protein of this class in its post-reaction form. This analysis, along with those performed on SsOGT in its ligand-free and DNA-bound forms, provides insights in the structure-function relationships of the protein before, during and after DNA repair, suggesting a molecular basis for DNA recognition, catalytic activity and protein post-reaction fate, and giving hints on the mechanism of alkylation-induced inactivation of this class of proteins. PMID:26227971

  14. Stability of the strengthening nanoprecipitates in reduced activation ferritic steels under Fe2+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Tan, L.; Katoh, Y.; Snead, L. L.

    2014-02-01

    The stability of MX-type precipitates is critical to retain mechanical properties of both reduced activation ferritic-martensitic (RAFM) and conventional FM steels at elevated temperatures. Radiation resistance of TaC, TaN, and VN nanoprecipitates irradiated up to ∼49 dpa at 500 °C using Fe2+ is investigated in this work. Transmission electron microscopy (TEM) utilized in standard and scanning mode (STEM) reveals the non-stoichiometric nature of the nanoprecipitates. Irradiation did not alter their crystalline nature. The radiation resistance of these precipitates, in an order of reduced resistance, is TaC, VN, and TaN. Particle dissolution, growth, and reprecipitation were the modes of irradiation-induced instability. Irradiation also facilitated formation of Fe2W type Laves phase limited to the VN and TaN bearing alloys. This result suggests that nitrogen level should be controlled to a minimal level in alloys to gain greater radiation resistance of the MX-type precipitates at similar temperatures as well as postpone the formation and subsequent coarsening of Laves phase.

  15. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity.

    PubMed

    Li, Chia-Wei; Lim, Seung-Oe; Xia, Weiya; Lee, Heng-Huan; Chan, Li-Chuan; Kuo, Chu-Wei; Khoo, Kay-Hooi; Chang, Shih-Shin; Cha, Jong-Ho; Kim, Taewan; Hsu, Jennifer L; Wu, Yun; Hsu, Jung-Mao; Yamaguchi, Hirohito; Ding, Qingqing; Wang, Yan; Yao, Jun; Lee, Cheng-Chung; Wu, Hsing-Ju; Sahin, Aysegul A; Allison, James P; Yu, Dihua; Hortobagyi, Gabriel N; Hung, Mien-Chie

    2016-01-01

    Extracellular interaction between programmed death ligand-1 (PD-L1) and programmed cell death protein-1 (PD-1) leads to tumour-associated immune escape. Here we show that the immunosuppression activity of PD-L1 is stringently modulated by ubiquitination and N-glycosylation. We show that glycogen synthase kinase 3β (GSK3β) interacts with PD-L1 and induces phosphorylation-dependent proteasome degradation of PD-L1 by β-TrCP. In-depth analysis of PD-L1 N192, N200 and N219 glycosylation suggests that glycosylation antagonizes GSK3β binding. In this regard, only non-glycosylated PD-L1 forms a complex with GSK3β and β-TrCP. We also demonstrate that epidermal growth factor (EGF) stabilizes PD-L1 via GSK3β inactivation in basal-like breast cancer. Inhibition of EGF signalling by gefitinib destabilizes PD-L1, enhances antitumour T-cell immunity and therapeutic efficacy of PD-1 blockade in syngeneic mouse models. Together, our results link ubiquitination and glycosylation pathways to the stringent regulation of PD-L1, which could lead to potential therapeutic strategies to enhance cancer immune therapy efficacy. PMID:27572267

  16. Coke induced stabilization of catalytic activity of silylated ZSM-5 zeolite

    SciTech Connect

    Bhat, Y.S.; Das, J.; Halgeri, A.B.

    1995-08-01

    One of the ways to synthesize dialkylbenzenes is to alkylate monoalkylbenzene with an alkylating agent such as alcohol or olefin over a Friedel-Crafts or zeolite catalyst. The latter is gaining importance as it is an environmentally friendly system. Dialkylbenzenes like paraxylene, para-ethyltoluene, and para-diethylbenzene are sources for various monomers. Several techniques have been reported in the literature to modify the zeolite characteristics in such a way that the dialkylbenzenes formed during monoalkylbenzene alkylation contain more para isomer. Among these techniques, the chemical vapor deposition of silica (CVD) is drawing the attention of researchers. The silylation results in fine control of pore opening size with the silica deposited on the external surface. The internal structure remains unaffected; only the pore entrance is narrowed. It was observed that the silylated zeolite used for synthesizing para-dialkylbenzene by monoalkylbenzene alkylation deactivates with increased time on stream. This paper deals with the coke-induced stabilization of catalytic activity of ZSM-5 zeolite during alkylation of ethylbenzene with ethanol.

  17. Evaluation of the stability and antimicrobial activity of an ethanolic extract of Libidibia ferrea

    PubMed Central

    de Oliveira Marreiro, Raquel; Bandeira, Maria Fulgência Costa Lima; de Souza, Tatiane Pereira; de Almeida, Mailza Costa; Bendaham, Katiana; Venâncio, Gisely Naura; Rodrigues, Isis Costa; Coelho, Cristiane Nagai; Milério, Patrícia Sâmea Lêdo Lima; de Oliveira, Glauber Palma; de Oliveira Conde, Nikeila Chacon

    2014-01-01

    Biofilm is a dense, whitish, noncalcified aggregate of bacteria, with desquamated epithelial cells and food debris creating conditions for an imbalance of resident oral microflora and favoring the destruction of hard and soft tissues by development of caries and gingivitis. The aim of this study was to obtain and characterize an extract of Libidibia ferrea, ex Caesalpinia ferrea L. and to evaluate its feasibility for formulation as a mouthwash, according to current legislation. For this purpose, pH, sedimentation, density, and stability were evaluated, along with microbiological testing of the extract. The microbiological test was used to verify the presence of Staphylococcus aureus, Pseudomonas aeruginosa, fungi, yeasts, coliforms, and minimum inhibitory concentrations of Streptococcus mutans and Streptococcus oralis strains. Characterization, microbiological evaluation, and minimum inhibitory concentration results were tabulated and described using descriptive statistics. The L. ferrea extract showed stable characteristics, product quality, and antibacterial activity against the microorganisms tested irrespective of experimental time intervals. According to these results, it can be concluded that formulation of a mouthwash containing L. ferrea extract to control biofilm is feasible, but further studies are needed. PMID:24501546

  18. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity

    PubMed Central

    Li, Chia-Wei; Lim, Seung-Oe; Xia, Weiya; Lee, Heng-Huan; Chan, Li-Chuan; Kuo, Chu-Wei; Khoo, Kay-Hooi; Chang, Shih-Shin; Cha, Jong-Ho; Kim, Taewan; Hsu, Jennifer L.; Wu, Yun; Hsu, Jung-Mao; Yamaguchi, Hirohito; Ding, Qingqing; Wang, Yan; Yao, Jun; Lee, Cheng-Chung; Wu, Hsing-Ju; Sahin, Aysegul A.; Allison, James P.; Yu, Dihua; Hortobagyi, Gabriel N.; Hung, Mien-Chie

    2016-01-01

    Extracellular interaction between programmed death ligand-1 (PD-L1) and programmed cell death protein-1 (PD-1) leads to tumour-associated immune escape. Here we show that the immunosuppression activity of PD-L1 is stringently modulated by ubiquitination and N-glycosylation. We show that glycogen synthase kinase 3β (GSK3β) interacts with PD-L1 and induces phosphorylation-dependent proteasome degradation of PD-L1 by β-TrCP. In-depth analysis of PD-L1 N192, N200 and N219 glycosylation suggests that glycosylation antagonizes GSK3β binding. In this regard, only non-glycosylated PD-L1 forms a complex with GSK3β and β-TrCP. We also demonstrate that epidermal growth factor (EGF) stabilizes PD-L1 via GSK3β inactivation in basal-like breast cancer. Inhibition of EGF signalling by gefitinib destabilizes PD-L1, enhances antitumour T-cell immunity and therapeutic efficacy of PD-1 blockade in syngeneic mouse models. Together, our results link ubiquitination and glycosylation pathways to the stringent regulation of PD-L1, which could lead to potential therapeutic strategies to enhance cancer immune therapy efficacy. PMID:27572267

  19. Nitric oxide stress and activation of AMP-activated protein kinase impair β-cell sarcoendoplasmic reticulum calcium ATPase 2b activity and protein stability

    PubMed Central

    Tong, X; Kono, T; Evans-Molina, C

    2015-01-01

    The sarcoendoplasmic reticulum Ca2+ ATPase 2b (SERCA2b) pump maintains a steep Ca2+ concentration gradient between the cytosol and ER lumen in the pancreatic β-cell, and the integrity of this gradient has a central role in regulated insulin production and secretion, maintenance of ER function and β-cell survival. We have previously demonstrated loss of β-cell SERCA2b expression under diabetic conditions. To define the mechanisms underlying this, INS-1 cells and rat islets were treated with the proinflammatory cytokine interleukin-1β (IL-1β) combined with or without cycloheximide or actinomycin D. IL-1β treatment led to increased inducible nitric oxide synthase (iNOS) gene and protein expression, which occurred concurrently with the activation of AMP-activated protein kinase (AMPK). IL-1β led to decreased SERCA2b mRNA and protein expression, whereas time-course experiments revealed a reduction in protein half-life with no change in mRNA stability. Moreover, SERCA2b protein but not mRNA levels were rescued by treatment with the NOS inhibitor l-NMMA (NG-monomethyl l-arginine), whereas the NO donor SNAP (S-nitroso-N-acetyl-d,l-penicillamine) and the AMPK activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) recapitulated the effects of IL-1β on SERCA2b protein stability. Similarly, IL-1β-induced reductions in SERCA2b expression were rescued by pharmacological inhibition of AMPK with compound C or by transduction of a dominant-negative form of AMPK, whereas β-cell death was prevented in parallel. Finally, to determine a functional relationship between NO and AMPK signaling and SERCA2b activity, fura-2/AM (fura-2-acetoxymethylester) Ca2+ imaging experiments were performed in INS-1 cells. Consistent with observed changes in SERCA2b expression, IL-1β, SNAP and AICAR increased cytosolic Ca2+ and decreased ER Ca2+ levels, suggesting congruent modulation of SERCA activity under these conditions. In aggregate, these results show that SERCA2b protein

  20. Green Synthesis of AgNPs Stabilized with biowaste and their antimicrobial activities

    PubMed Central

    Jasuja, Nakuleshwar Dut; Gupta, Deepak Kumar; Reza, Mohtashim; Joshi, Suresh C.

    2014-01-01

    In the present study, rapid reduction and stabilization of Ag+ ions with different NaOH molar concentration (0.5 mM, 1.0 mM and 1.5 mM) has been carried out in the aqueous solution of silver nitrate by the bio waste peel extract of P.granatum. Generally, chemical methods used for the synthesis of AgNPs are quite toxic, flammable and have adverse effect in medical application but green synthesis is a better option due to eco-friendliness, non-toxicity and safe for human. Stable AgNPs were synthesized by treating 90 mL aqueous solution of 2 mM AgNO3 with the 5 mL plant peels extract (0.4% w/v) at different NaOH concentration (5 mL). The synthesized AgNPs were characterized by UV-Vis spectroscopy, TEM and SEM. Further, antimicrobial activities of AgNPs were performed on Gram positive i.e. Staphylococcus aureus, Bacillus subtilius and Gram negative i.e. E. coli, Pseudomonas aeruginosa bacteria. The AgNPs synthesized at 1.5 mM NaOH concentration had shown maximum zone of inhibition (ZOI) i.e. 49 ± 0.64 in E. coli, whereas Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilius had shown 40 ± 0.29 mm, 28 ± 0.13 and 42 ± 0.49 mm ZOI respectively. The MIC value of 30 μg/mL observed for E. coli Whereas, Staphylococcus aureus, Bacillus subtilius and Pseudomonas aeruginosa had shown 45 μg/mL, 38 μg/mL, 35 μg/mL respectively. The study revealed that AgNPs had shown significant antimicrobial activity as compared to Streptomycin. PMID:25763037

  1. Bioengineered Human Arginase I with Enhanced Activity and Stability Controls Hepatocellular and Pancreatic Carcinoma Xenografts1

    PubMed Central

    Glazer, Evan S; Stone, Everett M; Zhu, Cihui; Massey, Katherine L; Hamir, Amir N; Curley, Steven A

    2011-01-01

    Hepatocellular carcinoma (HCC) and pancreatic carcinoma (PC) cells often have inherent urea cycle defects rendering them auxotrophic for the amino acid l-arginine (l-arg). Most HCC and PC require extracellular sources of l-arg and undergo cell cycle arrest and apoptosis when l-arg is restricted. Systemic, enzyme-mediated depletion of l-arg has been investigated in mouse models and human trials. Non-human enzymes elicit neutralizing antibodies, whereas human arginases display poor pharmacological properties in serum. Co2+ substitution of the Mn2+ metal cofactor in human arginase I (Co-hArgI) was shown to confer more than 10-fold higher catalytic activity (kcat/Km) and 5-fold greater stability. We hypothesized that the Co-hArgI enzyme would decrease tumor burden by systemic elimination of l-arg in a murine model. Co-hArgI was conjugated to 5-kDa PEG (Co-hArgI-PEG) to enhance circulation persistence. It was used as monotherapy for HCC and PC in vitro and in vivo murine xenografts. The mechanism of cell death was also investigated. Weekly treatment of 8 mg/kg Co-hArgI-PEG effectively controlled human HepG2 (HCC) and Panc-1 (PC) tumor xenografts (P = .001 and P = .03, respectively). Both cell lines underwent apoptosis in vitro with significant increased expression of activated caspase-3 (P < .001). Furthermore, there was evidence of autophagy in vitro and in vivo. We have demonstrated that Co-hArgI-PEG is effective at controlling two types of l-arg-dependent carcinomas. Being a nonessential amino acid, arginine deprivation therapy through Co-hArgI-PEG holds promise as a new therapy in the treatment of HCC and PC. PMID:21633669

  2. Ultrasound-assisted butyl acetate synthesis catalyzed by Novozym 435: enhanced activity and operational stability.

    PubMed

    Martins, Andréa B; Schein, Mirela F; Friedrich, John L R; Fernandez-Lafuente, Roberto; Ayub, Marco A Z; Rodrigues, Rafael C

    2013-09-01

    The influence of low-frequency ultrasound (40 kHz) in the esterification reaction between acetic acid and butanol for flavor ester synthesis catalyzed by the commercial immobilized lipase B from Candida antarctica (Novozym 435) was evaluated. A central composite design and the response surface methodology were used to analyze the effects of the reaction parameters (temperature, substrate molar ratio, enzyme content and added water) and their response (yields of conversion in 2.5 h of reaction). The reaction was carried out using n-hexane as solvent. The optimal conditions for ultrasound-assisted butyl acetate synthesis were found to be: temperature of 46 °C; substrate molar ratio of 3.6:1 butanol:acetic acid; enzyme content of 7%; added water of 0.25%, conditions that are slightly different from those found using mechanical mixing. Over 94% of conversion was obtained in 2.5h under these conditions. The optimal acid concentration for the reaction was determined to be 2.0 M, compared to 0.3 M without ultrasound treatment. Enzyme productivity was significantly improved to around 7.5-fold for each batch when comparing ultrasound and standard mechanical agitation. The biocatalyst could be directly reused for 14 reactions cycles keeping around 70% of its original activity, while activity was virtually zeroed in the third cycle using the standard mixing system. Thus, compared to the traditional mechanical agitation, ultrasound technology not only improves the process productivity, but also enhances enzyme recycling and stability in the presence of acetic acid, being a powerful tool to improve biocatalyst performance in this type of reaction. PMID:23453821

  3. Green Synthesis of AgNPs Stabilized with biowaste and their antimicrobial activities.

    PubMed

    Jasuja, Nakuleshwar Dut; Gupta, Deepak Kumar; Reza, Mohtashim; Joshi, Suresh C

    2014-01-01

    In the present study, rapid reduction and stabilization of Ag+ ions with different NaOH molar concentration (0.5 mM, 1.0 mM and 1.5 mM) has been carried out in the aqueous solution of silver nitrate by the bio waste peel extract of P.granatum. Generally, chemical methods used for the synthesis of AgNPs are quite toxic, flammable and have adverse effect in medical application but green synthesis is a better option due to eco-friendliness, non-toxicity and safe for human. Stable AgNPs were synthesized by treating 90 mL aqueous solution of 2 mM AgNO₃ with the 5 mL plant peels extract (0.4% w/v) at different NaOH concentration (5 mL). The synthesized AgNPs were characterized by UV-Vis spectroscopy, TEM and SEM. Further, antimicrobial activities of AgNPs were performed on Gram positive i.e. Staphylococcus aureus, Bacillus subtilius and Gram negative i.e. E. coli, Pseudomonas aeruginosa bacteria. The AgNPs synthesized at 1.5 mM NaOH concentration had shown maximum zone of inhibition (ZOI) i.e. 49 ± 0.64 in E. coli, whereas Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilius had shown 40 ± 0.29 mm, 28 ± 0.13 and 42 ± 0.49 mm ZOI respectively. The MIC value of 30 μg/mL observed for E. coli Whereas, Staphylococcus aureus, Bacillus subtilius and Pseudomonas aeruginosa had shown 45 μg/mL, 38 μg/mL, 35 μg/mL respectively. The study revealed that AgNPs had shown significant antimicrobial activity as compared to Streptomycin.

  4. Antibacterial Properties and Mechanism of Activity of a Novel Silver-Stabilized Hydrogen Peroxide

    PubMed Central

    Martin, Nancy L.; Bass, Paul; Liss, Steven N.

    2015-01-01

    Huwa-San peroxide (hydrogen peroxide; HSP) is a NSF Standard 60 (maximum 8mg/L-1) new generation peroxide stabilized with ionic silver suitable for continuous disinfection of potable water. Experiments were undertaken to examine the mechanism of HSP against planktonic and biofilm cultures of indicator bacterial strains. Contact/kill time (CT) relationships that achieve effective control were explored to determine the potential utility in primary disinfection. Inhibitory assays were conducted using both nutrient rich media and a medium based on synthetic wastewater. Assays were compared for exposures to three disinfectants (HSP, laboratory grade hydrogen peroxide (HP) and sodium hypochlorite) at concentrations of 20 ppm (therefore at 2.5 and 5 times the NSF limit for HP and sodium hypochlorite, respectively) and at pH 7.0 and 8.5 in dechlorinated tap water. HSP was found to be more or equally effective as hypochlorite or HP. Results from CT assays comparing HSP and HP at different bacterial concentrations with neutralization of residual peroxide with catalase suggested that at a high bacterial concentration HSP, but not HP, was protected from catalase degradation possibly through sequestration by bacterial cells. Consistent with this hypothesis, at a low bacterial cell density residual HSP was more effectively neutralized as less HSP was associated with bacteria and therefore accessible to catalase. Silver in HSP may facilitate this association through electrostatic interactions at the cell surface. This was supported by experiments where the addition of mono (K+) and divalent (Ca+2) cations (0.005-0.05M) reduced the killing efficacy of HSP but not HP. Experiments designed to distinguish any inhibitory effect of silver from that of peroxide in HSP were carried out by monitoring the metabolic activity of established P. aeruginosa PAO1 biofilms. Concentrations of 70-500 ppm HSP had a pronounced effect on metabolic activity while the equivalent concentrations of ionic

  5. Antibacterial Properties and Mechanism of Activity of a Novel Silver-Stabilized Hydrogen Peroxide.

    PubMed

    Martin, Nancy L; Bass, Paul; Liss, Steven N

    2015-01-01

    Huwa-San peroxide (hydrogen peroxide; HSP) is a NSF Standard 60 (maximum 8 mg/L(-1)) new generation peroxide stabilized with ionic silver suitable for continuous disinfection of potable water. Experiments were undertaken to examine the mechanism of HSP against planktonic and biofilm cultures of indicator bacterial strains. Contact/kill time (CT) relationships that achieve effective control were explored to determine the potential utility in primary disinfection. Inhibitory assays were conducted using both nutrient rich media and a medium based on synthetic wastewater. Assays were compared for exposures to three disinfectants (HSP, laboratory grade hydrogen peroxide (HP) and sodium hypochlorite) at concentrations of 20 ppm (therefore at 2.5 and 5 times the NSF limit for HP and sodium hypochlorite, respectively) and at pH 7.0 and 8.5 in dechlorinated tap water. HSP was found to be more or equally effective as hypochlorite or HP. Results from CT assays comparing HSP and HP at different bacterial concentrations with neutralization of residual peroxide with catalase suggested that at a high bacterial concentration HSP, but not HP, was protected from catalase degradation possibly through sequestration by bacterial cells. Consistent with this hypothesis, at a low bacterial cell density residual HSP was more effectively neutralized as less HSP was associated with bacteria and therefore accessible to catalase. Silver in HSP may facilitate this association through electrostatic interactions at the cell surface. This was supported by experiments where the addition of mono (K(+)) and divalent (Ca(+2)) cations (0.005-0.05M) reduced the killing efficacy of HSP but not HP. Experiments designed to distinguish any inhibitory effect of silver from that of peroxide in HSP were carried out by monitoring the metabolic activity of established P. aeruginosa PAO1 biofilms. Concentrations of 70-500 ppm HSP had a pronounced effect on metabolic activity while the equivalent concentrations of

  6. Antibacterial Properties and Mechanism of Activity of a Novel Silver-Stabilized Hydrogen Peroxide.

    PubMed

    Martin, Nancy L; Bass, Paul; Liss, Steven N

    2015-01-01

    Huwa-San peroxide (hydrogen peroxide; HSP) is a NSF Standard 60 (maximum 8 mg/L(-1)) new generation peroxide stabilized with ionic silver suitable for continuous disinfection of potable water. Experiments were undertaken to examine the mechanism of HSP against planktonic and biofilm cultures of indicator bacterial strains. Contact/kill time (CT) relationships that achieve effective control were explored to determine the potential utility in primary disinfection. Inhibitory assays were conducted using both nutrient rich media and a medium based on synthetic wastewater. Assays were compared for exposures to three disinfectants (HSP, laboratory grade hydrogen peroxide (HP) and sodium hypochlorite) at concentrations of 20 ppm (therefore at 2.5 and 5 times the NSF limit for HP and sodium hypochlorite, respectively) and at pH 7.0 and 8.5 in dechlorinated tap water. HSP was found to be more or equally effective as hypochlorite or HP. Results from CT assays comparing HSP and HP at different bacterial concentrations with neutralization of residual peroxide with catalase suggested that at a high bacterial concentration HSP, but not HP, was protected from catalase degradation possibly through sequestration by bacterial cells. Consistent with this hypothesis, at a low bacterial cell density residual HSP was more effectively neutralized as less HSP was associated with bacteria and therefore accessible to catalase. Silver in HSP may facilitate this association through electrostatic interactions at the cell surface. This was supported by experiments where the addition of mono (K(+)) and divalent (Ca(+2)) cations (0.005-0.05M) reduced the killing efficacy of HSP but not HP. Experiments designed to distinguish any inhibitory effect of silver from that of peroxide in HSP were carried out by monitoring the metabolic activity of established P. aeruginosa PAO1 biofilms. Concentrations of 70-500 ppm HSP had a pronounced effect on metabolic activity while the equivalent concentrations of

  7. PPAR-γ agonist stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination

    SciTech Connect

    Sun, Yan; Zheng, Bin; Zhang, Xin-hua; He, Ming; Guo, Zong-wei; Wen, Jin-kun

    2014-01-10

    Highlights: •PPAR-γ increases KLF4 protein level but does not influence KLF4 gene transcription. •The increase of KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. •Pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination. -- Abstract: Peroxisome proliferator activated receptor γ (PPAR-γ) plays important roles in cell cycle regulation, differentiation and apoptosis. Krüppel-like factor 4 (KLF4) modulates vascular smooth muscle cell (VSMC) phenotype. Both KLF4 and PPAR-γ are involved in VSMC proliferation and differentiation. However, the actual relationship between KLF4 and PPAR-γ in VSMCs is not clear. In this study, we found that PPAR-γ agonist pioglitazone increases KLF4 protein levels but does not influence KLF4 gene transcription. PPAR-γ overexpression increases, while PPAR-γ knockdown reduces KLF4 expression, suggesting that the increase in KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. Further study showed that pioglitazone enhances KLF4 protein stability through reducing KLF4 ubiquitination. Furthermore, we demonstrated that stabilization of KLF4 by pioglitazone was related to the activation of Akt signaling pathway. Taken together, we revealed that PPAR-γ agonist pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination, providing further insights into PPAR-γ and KLF4 in regulating each other’s expression in VSMCs.

  8. Toward assessing the effects of bank stabilization activities on wildlife communities of the upper Yellowstone River, U.S.A

    USGS Publications Warehouse

    Skagen, Susan K.; Muths, Erin; Adams, Rod D.

    2001-01-01

    Four amphibian species, three reptile species, and one mammal species are highly vulnerable to bank stabilization activities. Tiger salamanders, boreal toads, western chorus frogs, spotted frogs, rubber boas, racers, western garter snakes, and water shrews are expected to respond primarily to alterations in stream and bank morphology and the loss of still water for amphibian breeding.

  9. The effect of co-stabilizer muscle activation on knee joint position sense: a single group pre-post test

    PubMed Central

    Nam, Yeongyo; Lee, Ho Jun; Choi, Myongryol; Chung, Sangmi; Park, Junhyung; Yu, Jaeho

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effect of co-stabilizer muscle activation on knee joint position sense. [Subjects and Methods] This study was a pre-post, single-blinded randomly controlled trial (angle sequence randomly selected) design. Seven healthy adults with no orthopaedic or neurological problems participated in this study. Knee joint position sense was measured by a target matching test at target angles of 30°, 45° and 80° of knee flexion a using digital inclinometer under two conditions: erect sitting, which is known to highly activate co-stabilizer muscle and slump sitting, which is known to little activate the co-stabilizer muscle. [Results] A significant difference in joint position matching error at the knee flexion angle of 45° was founded between two conditions erect sitting: (3.83 ± 1.47) and slump sitting: (1.00 ± 0.63). There were no significant differences in joint position matching error at the other target angles. [Conclusion] Knee joint position sense at 45° is likely to be affected by activation of co-stabilizer muscle, and this value is suitable for facilitation of joint position sense with skilled movement. PMID:27512279

  10. Glycosylated a-lactalbumin-based nanocomplex for curcumin: physicochemical stability and DPPH-scavenging activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low stability at high salt concentrations, iso-electric point, and high temperature restricted the application of proteins as stabilizers in nutraceutical encapsulation. Protein-polysaccharide conjugates made with Maillard reaction may be better alternatives. In this study, the characteristics of cu...

  11. Macrocyclic Pyridyl Polyoxazoles: Structure-Activity Studies of the Aminoalkyl Side-Chain on G-Quadruplex Stabilization and Cytotoxic Activity

    PubMed Central

    Blankson, Gifty; Rzuczek, Suzanne G.; Bishop, Cody; Pilch, Daniel S.; Liu, Angela; Liu, Leroy; LaVoie, Edmond J.; Rice, Joseph E.

    2014-01-01

    Pyridyl polyoxazoles are 24-membered macrocyclic lactams comprised of a pyridine, four oxazoles and a phenyl ring. A derivative having a 2-(dimethylamino)ethyl chain attached to the 5-position of the phenyl ring was recently identified as a selective G-quadruplex stabilizer with excellent cytotoxic activity, and good in vivo anticancer activity against a human breast cancer xenograft in mice. Here we detail the synthesis of eight new dimethylamino-substituted pyridyl polyoxazoles in which the point of attachment to the macrocycle, as well as the distance between the amine and the macrocycle are varied. Each compound was evaluated for selective G-quadruplex stabilization and cytotoxic activity. The more active analogs have the amine either directly attached to, or separated from the phenyl ring by two methylene groups. There is a correlation between those macrocycles that are effective ligands for the stabilization of G-quadruplex DNA (ΔTtran 15.5–24.6 °C) and cytotoxicity as observed in the human tumor cell lines, RPMI 8402 (IC50 0.06–0.50 µM) and KB3-1 (IC50 0.03–0.07 µM). These are highly selective G-quadruplex stabilizers, which should prove especially useful for evaluating both in vitro and in vivo mechanism(s) of biological activity associated with G-quaqdruplex ligands. PMID:24077174

  12. Stability, antimicrobial activity, and effect of nisin on the physico-chemical properties of fruit juices.

    PubMed

    de Oliveira Junior, Adelson Alves; de Araújo Couto, Hyrla Grazielle Silva; Barbosa, Ana Andréa Teixeira; Carnelossi, Marcelo Augusto Guitierrez; de Moura, Tatiana Rodrigues

    2015-10-15

    Heat processing is the most commonly used hurdle for inactivating microorganisms in fruit juices. However, this preservation method could interfere with the organoleptic characteristics of the product. Alternative methods have been proposed and bacteriocins such as nisin are potential candidates. However, the approval of bacteriocins as food additives is limited, especially in foods from vegetal origin. We aimed to verify the stability, the effect on physico-chemical properties, and the antimicrobial activity of nisin in different fruit juices. Nisin remained stable in fruit juices (cashew, soursop, peach, mango, passion fruit, orange, guava, and cupuassu) for at least 30 days at room or refrigerated temperature and did not cause any significant alterations in the physico-chemical characteristics of the juices. Besides, nisin favored the preservation of vitamin C content in juices. The antimicrobial activity of nisin was tested against Alicyclobacillus acidoterrestris, Bacillus cereus, Staphylococcus aureus and Listeria monocytogenes in cashew, soursop, peach, and mango juices. Nisin caused a 4-log reduction in viable cells of A. acidoterrestris in soursop, peach, and mango juices after 8h of incubation, and no viable cells were detected in cashew juices. After 24h of incubation in the presence of nisin, no viable cells were detected, independently of the juices. To S. aureus, at 24h of incubation in the presence of nisin, viable cells were only detected in mango juices, representing a 4-log decrease as compared with the control treatment. The number of viable cells of B. cereus at 24h of incubation in the presence of nisin represented at least a 4-log decrease compared to the control treatment. When the antimicrobial activity of nisin was tested against L. monocytogenes in cashew and soursop juices, no reduction in the viable cell number was observed compared to the control treatment after 24h of incubation. Viable cells were four and six times less than in the

  13. Stability, antimicrobial activity, and effect of nisin on the physico-chemical properties of fruit juices.

    PubMed

    de Oliveira Junior, Adelson Alves; de Araújo Couto, Hyrla Grazielle Silva; Barbosa, Ana Andréa Teixeira; Carnelossi, Marcelo Augusto Guitierrez; de Moura, Tatiana Rodrigues

    2015-10-15

    Heat processing is the most commonly used hurdle for inactivating microorganisms in fruit juices. However, this preservation method could interfere with the organoleptic characteristics of the product. Alternative methods have been proposed and bacteriocins such as nisin are potential candidates. However, the approval of bacteriocins as food additives is limited, especially in foods from vegetal origin. We aimed to verify the stability, the effect on physico-chemical properties, and the antimicrobial activity of nisin in different fruit juices. Nisin remained stable in fruit juices (cashew, soursop, peach, mango, passion fruit, orange, guava, and cupuassu) for at least 30 days at room or refrigerated temperature and did not cause any significant alterations in the physico-chemical characteristics of the juices. Besides, nisin favored the preservation of vitamin C content in juices. The antimicrobial activity of nisin was tested against Alicyclobacillus acidoterrestris, Bacillus cereus, Staphylococcus aureus and Listeria monocytogenes in cashew, soursop, peach, and mango juices. Nisin caused a 4-log reduction in viable cells of A. acidoterrestris in soursop, peach, and mango juices after 8h of incubation, and no viable cells were detected in cashew juices. After 24h of incubation in the presence of nisin, no viable cells were detected, independently of the juices. To S. aureus, at 24h of incubation in the presence of nisin, viable cells were only detected in mango juices, representing a 4-log decrease as compared with the control treatment. The number of viable cells of B. cereus at 24h of incubation in the presence of nisin represented at least a 4-log decrease compared to the control treatment. When the antimicrobial activity of nisin was tested against L. monocytogenes in cashew and soursop juices, no reduction in the viable cell number was observed compared to the control treatment after 24h of incubation. Viable cells were four and six times less than in the

  14. Feedback stabilization of axisymmetric modes in the TCV tokamak using active coils inside and outside the vacuum vessel

    NASA Astrophysics Data System (ADS)

    Hofmann, F.; Dutch, M. J.; Favre, A.; Martin, Y.; Moret, J.-M.; Ward, D. J.

    1998-03-01

    A new vertical position control system, including an internal active coil, has become operational on TCV. The new system has made it possible to stabilize plasmas with open loop growth rates up to 4400 s-1, currents up to 1.0 MA and elongations up to 2.58. The closed loop stability of the new system has been analysed with a numerical model in which the plasma is assumed to be undeformable, and the power supply outputs are delayed with respect to their inputs. Model predictions agree with the main experimental results.

  15. Low back skin sensitivity has minimal impact on active lumbar spine proprioception and stability in healthy adults.

    PubMed

    Beaudette, Shawn M; Larson, Katelyn J; Larson, Dennis J; Brown, Stephen H M

    2016-08-01

    The purpose of the current work was to (1) determine whether low back cutaneous sensitivity could be reduced through the use of a topical lidocaine-prilocaine anesthetic (EMLA(®)) to mirror reductions reported in chronic lower back pain (CLBP) patients, as well as to (2) identify whether reductions in cutaneous sensitivity resulted in decreased lumbar spine proprioception, neuromuscular control and dynamic stability. Twenty-eight healthy participants were divided equally into matched EMLA and PLACEBO treatment groups. Groups completed cutaneous minimum monofilament and two-point discrimination (TPD) threshold tests, as well as tests of sagittal and axial lumbar spine active repositioning error, seated balance and repeated lifting dynamic stability. These tests were administered both before and after the application of an EMLA or PLACEBO treatment. Results show that low back minimum monofilament and TPD thresholds were significantly increased within the EMLA group. Skin sensitivity remained unchanged in the PLACEBO group. In the EMLA group, decreases in low back cutaneous sensitivity had minimal effect on low back proprioception (active sagittal and axial repositioning) and dynamic stability (seated balance and repeated lifting). These findings demonstrate that treating the skin of the low back with an EMLA anesthetic can effectively decrease the cutaneous sensitivity of low back region. Further, these decreases in peripheral cutaneous sensitivity are similar in magnitude to those reported in CLBP patients. Within this healthy population, decreased cutaneous sensitivity of the low back region has minimal influence on active lumbar spine proprioception, neuromuscular control and dynamic stability.

  16. Phenolic profile and antioxidant activity of extracts prepared from fermented heat-stabilized defatted rice bran.

    PubMed

    Webber, Daniel M; Hettiarachchy, Navam S; Li, Ruiqi; Horax, Ronny; Theivendran, Sivarooban

    2014-11-01

    Heat-stabilized, defatted rice bran (HDRB) serves as a potential source of phenolic compounds which have numerous purported health benefits. An estimated 70% of phenolics present in rice bran are esterified to the arabinoxylan residues of the cell walls. Release of such compounds could provide a value-added application for HDRB. The objective of this study was to extract and quantify phenolics from HDRB using fermentation technology. Out of 8 organisms selected for rice bran fermentation, Bacillus subtilis subspecies subtilis had the maximum phenolic release of 26.8 mg ferulic acid equivalents (FAE) per gram HDRB. Response surface methodology was used to further optimize the release of rice bran phenolics. An optimum of 28.6 mg FAE/g rice bran was predicted at 168 h, 0.01% inoculation level, and 100 mg HDRB/mL. Fermentation of HDRB for 96 h with B. subtilis subspecies subtilis resulted in a significant increase in phenolic yield, phenolic concentration, and radical scavenging capacity. Fermented rice bran had 4.86 mg gentistic acid, 1.38 mg caffeic acid, 6.03 mg syringic acid, 19.02 mg (-)-epicatechin, 4.08 mg p-courmaric acid, 4.64 mg ferulic acid, 10.04 mg sinapic acid, and 17.59 mg benzoic acid per 100 g fermented extract compared to 0.65 mg p-courmaric acid and 0.36 mg ferulic acid per 100 g nonfermented extract. The high phenolic content and antioxidant activity of fermented HDRB extract indicates that rice bran fermentation under optimized condition is a potential means of meeting the demand for an effective and affordable antioxidant.

  17. Success rate, costs and long-term stability of treatment with activator/headgear combinations.

    PubMed

    Hedlund, Camilla; Feldmann, Ingalill

    2016-01-01

    The aims of this study were to evaluate treatment outcome with activator-headgear combinations carried out by general dental practitioners, overall costs, long-term stability and patients' satisfaction with treatment outcome. Patients who were recommended to start treatment in 2006 were included in this study (n = 97). Inclusion criteria were: Class II Division 1 with at least half a cusp width distal molar relationship, overjet ≥ 6 mm and presence of dental records. Data were collected, pre-treatment, post-treatment and 3 years after treatment for those with favorable outcome. Patients at follow-up completed a questionnaire about satisfaction with treatment outcome, perceived pain and discomfort during treatment, and subjective need for additional treatment. Eighty-five patients were analyzed, 52 boys and 33 girls (mean age 11.2 years SD 1.39). Thirty-five patients had successful treatment outcome, 15 partially successful and 35 had an unsuccessful outcome. Total costs for all 85 patients amounted to SEK 1 405 000 including both direct and indirect costs. Thirty-eight patients participated in the 3-year follow-up. Treatment outcomes were then categorized as successful in 28 patients, partially successful in 9 patients and 1 patient was judged as unsuccessful. Median values on VAS (0-100) for overall satisfaction with treatment and treatment outcome were high, 78 and 84 respectively. Median value for perceived pain and discomfort during treatment was 42. Just over half of the patients had a favorable treatment outcome. Patients with favorable outcome were stable over time and satisfied with treatment. PMID:27464383

  18. Stability of cytokines, chemokines and soluble activation markers in unprocessed blood stored under different conditions

    PubMed Central

    Aziz, Najib; Detels, Roger; Quint, Joshua J.; Li, Qian; Gjertson, David; Butch, Anthony W.

    2016-01-01

    Background Biomarkers such as cytokines, chemokines, and soluble activation markers can be unstable when processing of blood is delayed. The stability of various biomarkers in serum and plasma was investigated when unprocessed blood samples were stored for up to 24 h at room and refrigerator temperature. Methods Blood was collected from 16 healthy volunteers. Unprocessed serum, EDTA and heparinized blood was stored at room (20–25 °C) and refrigerator temperature (4–8 °C) for 0.5, 2, 4, 6, 8, and 24 h after collection before centrifugation and separation of serum and plasma. Samples were batch tested for various biomarkers using commercially available immunoassays. Statistically significant changes were determined using the generalized estimating equation. Results IFN-γ, sIL-2Rα, sTNF-RII and β2-microglobulin were stable in unprocessed serum, EDTA and heparinized blood samples stored at either room or refrigerator temperature for up to 24 h. IL-6, TNF-α, MIP-1β and RANTES were unstable in heparinized blood at room temperature; TNF-α, and MIP-1β were unstable in unprocessed serum at room temperature; IL-12 was unstable in unprocessed serum at refrigerator temperature; and neopterin was unstable in unprocessed EDTA blood at room temperature. IL-1ra was stable only in unprocessed serum at room temperature. Conclusion All the biomarkers studied, with the exception of IL-1ra, were stable in unprocessed EDTA blood stored at refrigerator temperature for 24 h. This indicates that blood for these biomarkers should be collected in EDTA and if delays in processing are anticipated the unseparated blood should be stored at refrigerator temperature until processing. PMID:27208752

  19. Tumor suppressor protein DAB2IP participates in chromosomal stability maintenance through activating spindle assembly checkpoint and stabilizing kinetochore-microtubule attachments

    PubMed Central

    Yu, Lan; Shang, Zeng-Fu; Abdisalaam, Salim; Lee, Kyung-Jong; Gupta, Arun; Hsieh, Jer-Tsong; Asaithamby, Aroumougame; Chen, Benjamin P.C.; Saha, Debabrata

    2016-01-01

    Defects in kinetochore-microtubule (KT-MT) attachment and the spindle assembly checkpoint (SAC) during cell division are strongly associated with chromosomal instability (CIN). CIN has been linked to carcinogenesis, metastasis, poor prognosis and resistance to cancer therapy. We previously reported that the DAB2IP is a tumor suppressor, and that loss of DAB2IP is often detected in advanced prostate cancer (PCa) and is indicative of poor prognosis. Here, we report that the loss of DAB2IP results in impaired KT-MT attachment, compromised SAC and aberrant chromosomal segregation. We discovered that DAB2IP directly interacts with Plk1 and its loss inhibits Plk1 kinase activity, thereby impairing Plk1-mediated BubR1 phosphorylation. Loss of DAB2IP decreases the localization of BubR1 at the kinetochore during mitosis progression. In addition, the reconstitution of DAB2IP enhances the sensitivity of PCa cells to microtubule stabilizing drugs (paclitaxel, docetaxel) and Plk1 inhibitor (BI2536). Our findings demonstrate a novel function of DAB2IP in the maintenance of KT-MT structure and SAC regulation during mitosis which is essential for chromosomal stability. PMID:27568005

  20. Recent progress with microtubule stabilizers: new compounds, binding modes and cellular activities

    PubMed Central

    Rohena, Cristina C.

    2014-01-01

    Nature has yielded numerous classes of chemically distinct microtubule stabilizers. Several of these, including paclitaxel (Taxol) and docetaxel (Taxotere), are important drugs used in the treatment of cancer. New microtubule stabilizers and novel formulations of these agents continue to provide advances in cancer therapy. In this review we cover recent progress from late 2008 to August 2013 in the chemistry and biology of these diverse microtubule stabilizers focusing on the wide range of organisms that produce these compounds, their mechanisms of inhibiting microtubule-dependent processes, mechanisms of drug resistance, and their interactions with tubulin including their distinct binding sites and modes. A new potential role for microtubule stabilizers in neurodegenerative diseases is reviewed. PMID:24481420

  1. Cooperative hydration effect causes thermal unfolding of proteins and water activity plays a key role in protein stability in solutions.

    PubMed

    Miyawaki, Osato; Dozen, Michiko; Hirota, Kaede

    2016-08-01

    The protein unfolding process observed in a narrow temperature range was clearly explained by evaluating the small difference in the enthalpy of hydrogen-bonding between amino acid residues and the hydration of amino acid residue separately. In aqueous solutions, the effect of cosolute on the protein stability is primarily dependent on water activity, aw, the role of which has been long neglected in the literature. The effect of aw on protein stability works as a power law so that a small change in aw is amplified substantially through the cooperative hydration effect. In the present approach, the role of hydrophobic interaction stands behind. This affects protein stability indirectly through the change in solution structure caused by the existence of cosolute.

  2. Cooperative hydration effect causes thermal unfolding of proteins and water activity plays a key role in protein stability in solutions.

    PubMed

    Miyawaki, Osato; Dozen, Michiko; Hirota, Kaede

    2016-08-01

    The protein unfolding process observed in a narrow temperature range was clearly explained by evaluating the small difference in the enthalpy of hydrogen-bonding between amino acid residues and the hydration of amino acid residue separately. In aqueous solutions, the effect of cosolute on the protein stability is primarily dependent on water activity, aw, the role of which has been long neglected in the literature. The effect of aw on protein stability works as a power law so that a small change in aw is amplified substantially through the cooperative hydration effect. In the present approach, the role of hydrophobic interaction stands behind. This affects protein stability indirectly through the change in solution structure caused by the existence of cosolute. PMID:26896315

  3. Frequency stabilization of the zero-phonon line of a quantum dot via phonon-assisted active feedback

    SciTech Connect

    Hansom, Jack; Schulte, Carsten H. H.; Matthiesen, Clemens; Stanley, Megan J.; Atatüre, Mete

    2014-10-27

    We report on the feedback stabilization of the zero-phonon emission frequency of a single InAs quantum dot. The spectral separation of the phonon-assisted component of the resonance fluorescence provides a probe of the detuning between the zero-phonon transition and the resonant driving laser. Using this probe in combination with active feedback, we stabilize the zero-phonon transition frequency against environmental fluctuations. This protocol reduces the zero-phonon fluorescence intensity noise by a factor of 22 by correcting for environmental noise with a bandwidth of 191 Hz, limited by the experimental collection efficiency. The associated sub-Hz fluctuations in the zero-phonon central frequency are reduced by a factor of 7. This technique provides a means of stabilizing the quantum dot emission frequency without requiring access to the zero-phonon emission.

  4. Electromyographic activity of trunk and hip muscles during stabilization exercises in four-point kneeling in healthy volunteers

    PubMed Central

    Vleeming, Andry; Bouche, Katie G.; Mahieu, Nele N.; Vanderstraeten, Guy G.; Danneels, Lieven A.

    2006-01-01

    Stabilization exercises are intended to optimize function of the muscles that are believed to govern trunk stability. Debate exists whether certain muscles are more important than others in optimally performing these exercises. Thirty healthy volunteers were asked to perform three frequently prescribed stabilization exercises in four-point kneeling. The electromyographic activity of different trunk and hip muscles was evaluated. Average amplitudes obtained during the exercises were normalized to the amplitude in maximal voluntary contraction (% MVIC). During all three exercises, the highest relative muscle activity levels (> 20% MVIC) were consistently found in the ipsilateral lumbar multifidus and gluteus maximus. During both the single leg extension (exercise 1) and the leg and arm extension exercise (exercise 2) the contralateral internal oblique and ipsilateral external oblique reached high levels (> 20%MVIC). During exercise 2 there were also high relative activity levels of the ipsilateral lumbar part and the contralateral thoracic part of the iliocostalis lumborum and the contralateral lumbar multifidus. During the leg and arm extension exercise with contralateral hip flexion (exercise 3) there were high relative muscle activity levels of all back muscles, except for the latissimus dorsi muscle. The lowest relative muscle activity levels (< 10% MVIC) were found in the rectus abdominis and the ipsilateral internal oblique during all exercises, and in the contralateral gluteus maximus during exercises 1 and 2. The results of this study show that in exercises in four-point kneeling performed by healthy subjects, hip and trunk muscles seem to work together in a harmonious way. This shows that when relative activity of muscles is measured, both “global and local” muscles function together in order to stabilize the spine. PMID:16896840

  5. MT-Stabilizer, Dictyostatin, Exhibits Prolonged Brain Retention and Activity: Potential Therapeutic Implications.

    PubMed

    Brunden, Kurt R; Gardner, Nicola M; James, Michael J; Yao, Yuemang; Trojanowski, John Q; Lee, Virginia M-Y; Paterson, Ian; Ballatore, Carlo; Smith, Amos B

    2013-09-12

    Inclusions comprising the microtubule (MT)-stabilizing protein, tau, are found within neurons in the brains of patients with Alzheimer's disease and related neurodegenerative disorders that are broadly referred to as tauopathies. The sequestration of tau into inclusions is believed to cause a loss of tau function, such that MT structure and function are compromised, leading to neuronal damage. Recent data reveal that the brain-penetrant MT-stabilizing agent, epothilone D (EpoD), improves cognitive function and decreases both neuron loss and tau pathology in transgenic mouse models of tauopathy. There is thus a need to identify additional MT-stabilizing compounds with blood-brain barrier (BBB) permeability and slow brain clearance, as observed with EpoD. We report here that the MT-stabilizing natural product, dictyostatin, crosses the BBB in mice and has extended brain retention. Moreover, a single administration of dictyostatin to mice causes prolonged stabilization of MTs in the brain. In contrast, the structurally related MT-stabilizer, discodermolide, shows significantly less brain exposure. Thus, dictyostatin merits further investigation as a potential tauopathy therapeutic.

  6. MT-Stabilizer, Dictyostatin, Exhibits Prolonged Brain Retention and Activity: Potential Therapeutic Implications

    PubMed Central

    2013-01-01

    Inclusions comprising the microtubule (MT)-stabilizing protein, tau, are found within neurons in the brains of patients with Alzheimer’s disease and related neurodegenerative disorders that are broadly referred to as tauopathies. The sequestration of tau into inclusions is believed to cause a loss of tau function, such that MT structure and function are compromised, leading to neuronal damage. Recent data reveal that the brain-penetrant MT-stabilizing agent, epothilone D (EpoD), improves cognitive function and decreases both neuron loss and tau pathology in transgenic mouse models of tauopathy. There is thus a need to identify additional MT-stabilizing compounds with blood–brain barrier (BBB) permeability and slow brain clearance, as observed with EpoD. We report here that the MT-stabilizing natural product, dictyostatin, crosses the BBB in mice and has extended brain retention. Moreover, a single administration of dictyostatin to mice causes prolonged stabilization of MTs in the brain. In contrast, the structurally related MT-stabilizer, discodermolide, shows significantly less brain exposure. Thus, dictyostatin merits further investigation as a potential tauopathy therapeutic. PMID:24900764

  7. Taccalonolide binding to tubulin imparts microtubule stability and potent in vivo activity

    PubMed Central

    Risinger, AL; Li, J; Bennett, MJ; Rohena, CC; Peng, J; Schriemer, DC; Mooberry, SL

    2013-01-01

    The taccalonolides are highly acetylated steroids that stabilize cellular microtubules and overcome multiple mechanisms of taxane resistance. Recently, two potent taccalonolides, AF and AJ, were identified that bind tubulin directly and enhance microtubule polymerization. Extensive studies were conducted to characterize these new taccalonolides. AF and AJ caused aberrant mitotic spindles and bundling of interphase microtubules that differed from the effects of either paclitaxel or laulimalide. AJ also distinctly affected microtubule polymerization in that it enhanced the rate and extent of polymerization in the absence of any noticeable effect on microtubule nucleation. Additionally, the resulting microtubules were found to be profoundly cold stable. These data, along with studies showing synergistic antiproliferative effects between AJ and either paclitaxel or laulimalide, suggest a distinct binding site. Direct binding studies demonstrated that AJ could not be displaced from microtubules by paclitaxel, laulimalide or denaturing conditions, suggesting irreversible binding of AJ to microtubules. Mass spectrometry confirmed a covalent interaction of AJ with a peptide of β-tubulin containing the cyclostreptin binding sites. Importantly, AJ imparts strong inter-protofilament stability in a manner different from other microtubule stabilizers that covalently bind tubulin, consistent with the distinct effects of the taccalonolides as compared to other stabilizers. AF was found to be a potent and effective antitumor agent that caused tumor regression in the MDA-MB-231 breast cancer xenograft model. The antitumor efficacy of some taccalonolides, which stabilize microtubules in a manner different from other microtubule stabilizers, provides the impetus to explore the therapeutic potential of this site. PMID:24048820

  8. Antibacterial activity and increased freeze-drying stability of sialyllactose-reduced silver nanoparticles using sucrose and trehalose.

    PubMed

    Noh, Hwa Jung; Im, A-Rang; Kim, Hyun-Seok; Sohng, Jae Kyung; Kim, Chong-Kook; Kim, Yeong Shik; Cho, Seonho; Park, Youmie

    2012-05-01

    The resistance to current antibiotics results in the emergence of health-threatening bacteria. Silver nanoparticles are known to exhibit broad-spectrum antibacterial activities without the development of resistance. Herein, we developed a green synthetic method for the preparation of silver nanoparticles with sialyllactose instead of toxic chemicals as a reducing agent, which would improve its therapeutic applicability and increase its biocompatibility. Oven incubation, autoclaving and microwave irradiation methods were applied to prepare the silver nanoparticles. High resolution-transmission electron microscopy and atomic force microscopy images revealed mostly spherical and amorphous silver nanoparticles with an average diameter of 23.64 nm. Fourier Transform-infrared spectra suggest that the N-H amide of sialyllactose might be involved in the binding of silver nanoparticles. Based on thermogravimetric analyses, 2,3-sialyllactose-reduced silver nanoparticles are composed of 54.3 wt% organic components and 45.7 wt% metallic silver. Enhanced antibacterial activities of silver nanoparticles (approximately 8-fold) were observed against Pseudomonas aeruginosa, Escherichia coli and Salmonella typhimurium (minimum inhibitory concentration 16 microg/mL). Next, we employed the use of carbohydrate stabilizers to increase the stability of silver nanoparticles during a freeze-drying process. It was found that sucrose and trehalose were the most effective stabilizers. In addition, silver nanoparticles possessed excellent salt stability as well as on-the-shelf stability in the presence of these stabilizers. Derivatives of sialic acid are known to be anti-influenza agents; therefore, the newly prepared silver nanoparticles may serve as useful antibacterial and antiviral agents to cope with both pathogenic bacteria and viruses in the near future. PMID:22852321

  9. Antibacterial activity and increased freeze-drying stability of sialyllactose-reduced silver nanoparticles using sucrose and trehalose.

    PubMed

    Noh, Hwa Jung; Im, A-Rang; Kim, Hyun-Seok; Sohng, Jae Kyung; Kim, Chong-Kook; Kim, Yeong Shik; Cho, Seonho; Park, Youmie

    2012-05-01

    The resistance to current antibiotics results in the emergence of health-threatening bacteria. Silver nanoparticles are known to exhibit broad-spectrum antibacterial activities without the development of resistance. Herein, we developed a green synthetic method for the preparation of silver nanoparticles with sialyllactose instead of toxic chemicals as a reducing agent, which would improve its therapeutic applicability and increase its biocompatibility. Oven incubation, autoclaving and microwave irradiation methods were applied to prepare the silver nanoparticles. High resolution-transmission electron microscopy and atomic force microscopy images revealed mostly spherical and amorphous silver nanoparticles with an average diameter of 23.64 nm. Fourier Transform-infrared spectra suggest that the N-H amide of sialyllactose might be involved in the binding of silver nanoparticles. Based on thermogravimetric analyses, 2,3-sialyllactose-reduced silver nanoparticles are composed of 54.3 wt% organic components and 45.7 wt% metallic silver. Enhanced antibacterial activities of silver nanoparticles (approximately 8-fold) were observed against Pseudomonas aeruginosa, Escherichia coli and Salmonella typhimurium (minimum inhibitory concentration 16 microg/mL). Next, we employed the use of carbohydrate stabilizers to increase the stability of silver nanoparticles during a freeze-drying process. It was found that sucrose and trehalose were the most effective stabilizers. In addition, silver nanoparticles possessed excellent salt stability as well as on-the-shelf stability in the presence of these stabilizers. Derivatives of sialic acid are known to be anti-influenza agents; therefore, the newly prepared silver nanoparticles may serve as useful antibacterial and antiviral agents to cope with both pathogenic bacteria and viruses in the near future.

  10. Hot melt extrusion for amorphous solid dispersions: temperature and moisture activated drug-polymer interactions for enhanced stability.

    PubMed

    Sarode, Ashish L; Sandhu, Harpreet; Shah, Navnit; Malick, Waseem; Zia, Hossein

    2013-10-01

    Hot melt extrudates (HMEs) of indomethacin (IND) with Eudragit EPO and Kollidon VA 64 and those of itraconazole (ITZ) with HPMCAS-LF and Kollidon VA 64 were manufactured using a Leistritz twin screw extruder. The milled HMEs were stored at controlled temperature and humidity conditions. The samples were collected after specified time periods for 3 months. The stability of amorphous HMEs was assessed using moisture analysis, thermal evaluation, powder X-ray diffraction, FTIR, HPLC, and dissolution study. In general, the moisture content increased with time, temperature, and humidity levels. Amorphous ITZ was physically unstable at very high temperature and humidity levels, and its recrystallization was detected in the HMEs manufactured using Kollidon VA 64. Although physical stability of IND was better sustained by both Eudragit EPO and Kollidon VA 64, chemical degradation of the drug was identified in the stability samples of HMEs with Eudragit EPO stored at 50 °C. The dissolution rates and the supersaturation levels were significantly decreased for the stability samples in which crystallization was detected. Interestingly, the supersaturation was improved for the stability samples of IND:Eudragit EPO and ITZ:HPMCAS-LF, in which no physical or chemical instability was observed. This enhancement in supersaturation was attributed to the temperature and moisture activated electrostatic interactions between the drugs and their counterionic polymers. PMID:23961978

  11. Characterization of the Activity and Stability of Amylase from Saliva and Detergent: Laboratory Practicals for Studying the Activity and Stability of Amylase from Saliva and Various Commercial Detergents

    ERIC Educational Resources Information Center

    Valls, Cristina; Rojas, Cristina; Pujadas, Gerard; Garcia-Vallve, Santi; Mulero, Miquel

    2012-01-01

    This article presents two integrated laboratory exercises intended to show students the role of [alpha]-amylases (AAMYs) in saliva and detergents. These laboratory practicals are based on the determination of the enzymatic activity of amylase from saliva and different detergents using the Phadebas test (quantitative) and the Lugol test…

  12. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice.

    PubMed

    Liu, Susan B; Ikenaga, Naoki; Peng, Zhen-Wei; Sverdlov, Deanna Y; Greenstein, Andrew; Smith, Victoria; Schuppan, Detlef; Popov, Yury

    2016-04-01

    Collagen stabilization through irreversible cross-linking is thought to promote hepatic fibrosis progression and limit its reversibility. However, the mechanism of this process remains poorly defined. We studied the functional contribution of lysyl oxidase (LOX) to collagen stabilization and hepatic fibrosis progression/reversalin vivousing chronic administration of irreversible LOX inhibitor β-aminopropionitrile (BAPN, or vehicle as control) in C57Bl/6J mice with carbon tetrachloride (CCl4)-induced fibrosis. Fibrotic matrix stability was directly assessed using a stepwise collagen extraction assay and fibrotic septae morphometry. Liver cells and fibrosis were studied by histologic, biochemical methods and quantitative real-time reverse-transcription PCR. During fibrosis progression, BAPN administration suppressed accumulation of cross-linked collagens, and fibrotic septae showed widening and collagen fibrils splitting, reminiscent of remodeling signs observed during fibrosis reversal. LOX inhibition attenuated hepatic stellate cell activation markers and promoted F4/80-positive scar-associated macrophage infiltration without an increase in liver injury. In reversal experiments, BAPN-treated fibrotic mice demonstrated accelerated fibrosis reversal after CCl4withdrawal. Our findings demonstrate for the first time that LOX contributes significantly to collagen stabilization in liver fibrosis, promotes fibrogenic activation of attenuated hepatic stellate cells, and limits fibrosis reversal. Our data support the concept of pharmacologic targeting of LOX pathway to inhibit liver fibrosis and promote its resolution.-Liu, S. B., Ikenaga, N., Peng, Z.-W., Sverdlov, D. Y., Greenstein, A., Smith, V., Schuppan, D., Popov, Y. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice.

  13. Stability and prediction of physical activity in 5-, 10-, and 28-year follow-up studies among industrial employees.

    PubMed

    Kirjonen, J; Telama, R; Luukkonen, R; Kääriä, S; Kaila-Kangas, L; Leino-Arjas, P

    2006-06-01

    The aim of the study was to examine the stability of voluntary and household physical activity (PA) and to compare it with that of the use of the most common stimulants. The prospective cohort study comprised of follow-ups at 5, 10, and 28 years at baseline in 1973 in four plants of an industrial corporation in Finland. A systematic, non-proportional sample (n=902, age range 18-64 years) stratified for age, gender, and occupational status was drawn from the employees. Scores of PA were based on a questionnaire and interviews. Logistic regression models with proportional odds assumptions were counted. The 5-year stability (Spearman's rho) of PA time was 0.44 (PA intensity 0.44), the respective 10-year coefficient was 0.26 (0.32), and that in the 28-year follow-up was 0.18 (0.20). The stability of PA decreased rapidly from 1973 to 1983 and more slowly thereafter. Changes along the follow-up reflect a polarization of the distributions of PA within the sample. Age and an initially low level of activity were the strongest predictors of inactivity. The stability coefficient of smoking and alcohol consumption was twice as high as that of PA. Stimulant use was a greater factor in the individual's lifestyle than PA. PMID:16643199

  14. Activity and stability studies of verbascoside, a novel antioxidant, in dermo-cosmetic and pharmaceutical topical formulations.

    PubMed

    Vertuani, Silvia; Beghelli, Erika; Scalambra, Emanuela; Malisardi, Gemma; Copetti, Stefano; Dal Toso, Roberto; Baldisserotto, Anna; Manfredini, Stefano

    2011-08-18

    We here report the results of our investigations carried out on verbascoside, a phenylpropanoid glycoside known for its antioxidant, anti-inflammatory and photoprotective actions. Verbascoside was obtained from Buddleia davidii meristematic cells, obtained in turn using a sustainable biotechnology platform which employs an in vitro plant cell culture technology. Verbascoside was first investigated to assess the behaviour of the active ingredient in solution or in finished preparations, in view of its potential topical use, especially in skin protection. Stability studies were performed by HPLC, and a PCL assay was adopted to determine the radical scavenging activity toward superoxide anion. The high hydrophilic character of verbascoside, suggested in a somewhat limited range of possible applications, leading us to explore its derivatization to obtain the semi-synthetic derivative VPP, an acyl derivative of verbascoside, with an improved range of applications due to its lower hydrophilic profile. Alone, VPP revealed increased antioxidant activity, both as an active ingredient and in dermocosmetic preparations. Stability studies showed a greater stability of VPP in lipophilic vehicles, whereas the parent verbascoside proved more stable in an O/W emulsions. Verbascoside was also stable in suppositories, an interesting pharmaceutical form for possible applications in treatment of inflammation of the intestinal mucosa.

  15. The effects of R683S (G) genetic mutations on the JAK2 activity, structure and stability.

    PubMed

    Li, Feng; Guo, Hua-Yan; Wang, Man; Geng, Hong-Li; Bian, Mei-Ru; Cao, Jiang; Chen, Chong; Zeng, Ling-Yu; Wang, Xiao-Yun; Wu, Qing-Yun

    2013-09-01

    Janus kinase 2 (JAK2) is an important mediator of cytokine receptor signaling and plays key roles in the hematopoietic and immune response. The acquired JAK2 R683S (G) mutations are presumed to be a biomarker for B-cell acute lymphoblastic leukemia (B-ALL). However, how these mutations leading to the B-ALL is still unclear. The crystal structure of JAK2 JH2 domain suggests that the residue R683 locating in the linker between the N and C lobes of JH2 domain is important for keeping the compact structure, activity and structural stability of this domain. Mutations R683S, R683G and R683E significantly increase JAK2 activity and decrease its structural stability. While the R683K and R683H mutations almost have no effects on the JAK2 activity and structural stability. Furthermore, the spectroscopic experiments imply that mutations R683S, R683G and R683E impair the structure of JAK2 JH2 domain, and lead JAK2 to partially unfolded state. It may be this partially unfolded state that caused JAK2 R683S (G) constitutive activation. This study provides clues in understanding the mechanism of JAK2 R683S (G) mutations caused B-ALL.

  16. Transgelin-2 in B-Cells Controls T-Cell Activation by Stabilizing T Cell - B Cell Conjugates

    PubMed Central

    Chae, Myoung-Won; Kim, Hye-Ran; Kim, Chang-Hyun; Jun, Chang-Duk; Park, Zee-Yong

    2016-01-01

    The immunological synapse (IS), a dynamic and organized junction between T-cells and antigen presenting cells (APCs), is critical for initiating adaptive immunity. The actin cytoskeleton plays a major role in T-cell reorganization during IS formation, and we previously reported that transgelin-2, an actin-binding protein expressed in T-cells, stabilizes cortical F-actin, promoting T-cell activation in response to antigen stimulation. Transgelin-2 is also highly expressed in B-cells, although no specific function has been reported. In this study, we found that deficiency in transgelin-2 (TAGLN2-/-) in B-cells had little effect on B-cell development and activation, as measured by the expression of CD69, MHC class II molecules, and CD80/86. Nevertheless, in B-cells, transgelin-2 accumulated in the IS during the interaction with T-cells. These results led us to hypothesize that transgelin-2 may also be involved in IS stability in B-cells, thereby influencing T-cell function. Notably, we found that transgelin-2 deficiency in B-cells reduced T-cell activation, as determined by the release of IL-2 and interferon-γ and the expression of CD69. Furthermore, the reduced T-cell activation was correlated with reduced B-cell–T-cell conjugate formation. Collectively, these results suggest that actin stability in B-cells during IS formation is critical for the initiation of adaptive T-cell immunity. PMID:27232882

  17. Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts.

    PubMed

    Lu, Yizhong; Jiang, Yuanyuan; Gao, Xiaohui; Wang, Xiaodan; Chen, Wei

    2014-08-20

    The design and synthesis of highly active oxygen reduction reaction (ORR) catalysts with strong durability at low cost is extremely desirable but still remains a significant challenge. Here we develop an efficient strategy that utilizes organopalladium(I) complexes containing palladium-palladium bonds as precursors for the synthesis of strongly coupled Pd tetrahedron-tungsten oxide nanosheet hybrids (Pd/W18O49) to improve the electrocatalytic activity and stability of Pd nanocrystals. The hybrid materials are synthesized by direct nucleation, growth, and anchoring of Pd tetrahedral nanocrystals on the in situ-synthesized W18O49 nanosheets. Compared to supportless Pd nanocrystals and W18O49, their hybrids exhibited not only surprisingly high activity but also superior stability to Pt for the ORR in alkaline solutions. X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and electrochemical analyses indicated that the enhanced electrocatalytic activity and durability are associated with the increased number and improved catalytic activity of active sites, which is induced by the strong interaction between the Pd tetrahedrons and W18O49 nanosheet supports. The present study provides a novel strategy for synthesizing hybrid catalysts with strong chemical attachment and electrical coupling between nanocatalysts and supports. The strategy is expected to open up exciting opportunities for developing a novel class of metal-support hybrid nanoelectrocatalysts with improved ORR activity and durability for both fuel cells and metal-air batteries. PMID:25054583

  18. Stability of higher-order Bragg interactions in active periodic media

    NASA Technical Reports Server (NTRS)

    Jaggard, D. L.

    1977-01-01

    The stability of waves in unbounded, longitudinally periodic media is studied for index and gain coupling. Time-independent periodic media are found to support both stable and absolutely unstable waves. The wave characteristics depend upon average gain or loss, coupling type, and Bragg order. The extended coupled waves equations provide explicit values of threshold, frequency, and temporal growth rate for instabilities at all Bragg resonances through the dispersion relation. Applications to multiharmonic periodicities and complex couplings are briefly discussed with particular note taken of possible reductions of the stability thresholds and removal of threshold degeneracies. Comparisons are made to the longitudinally bounded case of distributed feedback lasers.

  19. Active feedback stabilization of multimode flute instability in a mirror trap

    NASA Astrophysics Data System (ADS)

    Be'ery, I.; Seemann, O.; Fisher, A.

    2014-07-01

    The flute instability in a table-top mirror machine has been stabilized by a feedback system consisting of optical sensors, a digital signal processor and charge-injecting electrodes. The use of multiple sensors and actuators enable the feedback to simultaneously stabilize two modes of the fast-growing, slowly rotating flute instability. Step function response and magnetohydrodynamic spectroscopy indicate a smooth frequency response and an inherent delayed response of the plasma drift due to the sheath resistivity. The measured feedback power is very small relative to the heating power of the plasma.

  20. Role of Cysteine Residues in the Structure, Stability, and Alkane Producing Activity of Cyanobacterial Aldehyde Deformylating Oxygenase

    PubMed Central

    Hayashi, Yuuki; Yasugi, Fumitaka; Arai, Munehito

    2015-01-01

    Aldehyde deformylating oxygenase (AD) is a key enzyme for alkane biosynthesis in cyanobacteria, and it can be used as a catalyst for alkane production in vitro and in vivo. However, three free Cys residues in AD may impair its catalytic activity by undesired disulfide bond formation and oxidation. To develop Cys-deficient mutants of AD, we examined the roles of the Cys residues in the structure, stability, and alkane producing activity of AD from Nostoc punctiforme PCC 73102 by systematic Cys-to-Ala/Ser mutagenesis. The C71A/S mutations reduced the hydrocarbon producing activity of AD and facilitated the formation of a dimer, indicating that the conserved Cys71, which is located in close proximity to the substrate-binding site, plays crucial roles in maintaining the activity, structure, and stability of AD. On the other hand, mutations at Cys107 and Cys117 did not affect the hydrocarbon producing activity of AD. Therefore, we propose that the C107A/C117A double mutant is preferable to wild type AD for alkane production and that the double mutant may be used as a pseudo-wild type protein for further improvement of the alkane producing activity of AD. PMID:25837679

  1. Role of cysteine residues in the structure, stability, and alkane producing activity of cyanobacterial aldehyde deformylating oxygenase.

    PubMed

    Hayashi, Yuuki; Yasugi, Fumitaka; Arai, Munehito

    2015-01-01

    Aldehyde deformylating oxygenase (AD) is a key enzyme for alkane biosynthesis in cyanobacteria, and it can be used as a catalyst for alkane production in vitro and in vivo. However, three free Cys residues in AD may impair its catalytic activity by undesired disulfide bond formation and oxidation. To develop Cys-deficient mutants of AD, we examined the roles of the Cys residues in the structure, stability, and alkane producing activity of AD from Nostoc punctiforme PCC 73102 by systematic Cys-to-Ala/Ser mutagenesis. The C71A/S mutations reduced the hydrocarbon producing activity of AD and facilitated the formation of a dimer, indicating that the conserved Cys71, which is located in close proximity to the substrate-binding site, plays crucial roles in maintaining the activity, structure, and stability of AD. On the other hand, mutations at Cys107 and Cys117 did not affect the hydrocarbon producing activity of AD. Therefore, we propose that the C107A/C117A double mutant is preferable to wild type AD for alkane production and that the double mutant may be used as a pseudo-wild type protein for further improvement of the alkane producing activity of AD.

  2. Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector.

    PubMed

    Li, Yu; Poon, Andrew W

    2015-01-12

    We propose and demonstrate active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption (DSA)-based photodetector (PD) for optical interconnects. We integrate an electro-optic (EO) tuner and a thermo-optic (TO) tuner on the microring, which are both feedback-controlled following a photocurrent threshold-detection method. Our BF(2)-ion-implanted DSA-based PIN PD exhibits a cavity-enhanced sub-bandgap responsivity at 1550 nm of 3.3 mA/W upon -2 V, which is 550-fold higher than that exhibited by an unimplanted PIN diode integrated on the same microring. Our experiment reveals active stabilization of the resonance wavelength within a tolerance of 0.07 nm upon a step increment of the stage temperature by 7 °C. Upon temperature modulations between 23 °C and 32 °C and between 18 °C and 23 °C, the actively stabilized resonance exhibits a transmission power fluctuation within 2 dB. We observe open eye diagrams at a data transmission rate of up to 30 Gb/s under the temperature modulations. PMID:25835682

  3. An aeroelastician's perspective of wind tunnel and flight experiences with active control of structural response and stability

    NASA Technical Reports Server (NTRS)

    Hanson, P. W.

    1984-01-01

    Active controls technology is assessed based on a review of most of the wind-tunnel and flight tests and actual applications of active control concepts since the late sixties. The distinction is made between so-called ""rigid-body'' active control functions and those that involve significant modification of structural elastic response or stability. Both areas are reviewed although the focus is on the latter area. The basic goals and major results of the various studies or applications are summarized, and the anticipated use of active controls on current and near-future research and demonstration aircraft is discussed. Some of the ""holes'' remaining in the feasbility/benefits demonstration of active controls technology are examined.

  4. Site-directed mutagenesis of tobacco anionic peroxidase: Effect of additional aromatic amino acids on stability and activity.

    PubMed

    Poloznikov, A A; Zakharova, G S; Chubar, T A; Hushpulian, D M; Tishkov, V I; Gazaryan, I G

    2015-08-01

    Tobacco anionic peroxidase (TOP) is known to effectively catalyze luminol oxidation without enhancers, in contrast to horseradish peroxidase (HRP). To pursue structure-activity relationship studies for TOP, two amino acids have been chosen for mutation, namely Thr151, close to the heme plane, and Phe140 at the entrance to the active site pocket. Three mutant forms TOP F140Y, T151W and F140Y/T151W have been expressed in Escherichia coli, and reactivated to yield active enzymes. Single-point mutations introducing additional aromatic amino acid residues at the surface of TOP exhibit a significant effect on the enzyme catalytic activity and stability as judged by the results of steady-state and transient kinetics studies. TOP T151W is up to 4-fold more active towards a number of aromatic substrates including luminol, whereas TOP F140Y is 2-fold more stable against thermal inactivation and 8-fold more stable in the reaction course. These steady-state observations have been rationalized with the help of transient kinetic studies on the enzyme reaction with hydrogen peroxide in a single turnover regime. The stopped-flow data reveal (a) an increased stability of F140Y Compound I towards hydrogen peroxide, and thus, a higher operational stability as compared to the wild-type enzyme, and (b) a lesser leakage of oxidative equivalents from TOP T151W Compound I resulting in the increased catalytic activity. The results obtained show that TOP unique properties can be further improved for practical applications by site-directed mutagenesis.

  5. Probing the Role of N-Linked Glycans in the Stability and Activity of Fungal Cellobiohydrolases by Mutational Analysis

    SciTech Connect

    Adney, W. S.; Jeoh, T.; Beckham, G. T.; Chou,Y. C.; Baker, J. O.; Michener, W.; Brunecky, R.; Himmel, M. E.

    2009-01-01

    The filamentous fungi Trichoderma reesei and Penicillium funiculosum produce highly effective enzyme mixtures that degrade the cellulose and hemicellulose components of plant cell walls. Many fungal species produce a glycoside hydrolase family 7 (Cel7A) cellobiohydrolase, a class of enzymes that catalytically process from the reducing end of cellulose. A direct amino acid comparison of these two enzymes shows that they not only have high amino acid homology, but also contain analogous N-linked glycosylation sites on the catalytic domain. We have previously shown (Jeoh et al. in Biotechnol Biofuels, 1:10, 2008) that expression of T. reesei cellobiohydrolase I in a commonly used industrial expression host, Aspergillus niger var. awamori, results in an increase in the amount of N-linked glycosylation of the enzyme, which negatively affects crystalline cellulose degradation activity as well as thermal stability. This complementary study examines the significance of individual N-linked glycans on the surface of the catalytic domain of Cel7A cellobiohydrolases from T. reesei and P. funiculosum by genetically adding or removing N-linked glycosylation motifs using site directed mutagenesis. Modified enzymes, expressed in A. niger var. awamori, were tested for activity and thermal stability. It was concluded that N-linked glycans in peptide loops that form part of the active site tunnel have the greatest impact on both thermal stability and enzymatic activity on crystalline cellulose for both the T. reesei and P. funiculosum Cel7A enzymes. Specifically, for the Cel7A T. reesei enzyme expressed in A. niger var. awamori, removal of the N384 glycosylation site yields a mutant with 70% greater activity after 120 h compared to the heterologously expressed wild type T. reesei enzyme. In addition, similar activity improvements were found to be associated with the addition of a new glycosylation motif at N194 in P. funiculosum. This mutant also exhibits 70% greater activity after

  6. Antioxidant activity of raspberry (Rubus fruticosus) leaves extract and its effect on oxidative stability of sunflower oil.

    PubMed

    Asnaashari, Maryam; Tajik, Raheleh; Khodaparast, Mohammad Hossein Haddad

    2015-08-01

    Efficacy of R. fruticosus leaves extract in stabilizing sunflower oil during accelerated storage has been studied. Extracts of R. fruticosus were prepared in different solvents which methanolic extract yield with 15.43 % was higher than water and acetone ones (11.87 and 6.62 %, respectively). Methanolic extract was chosen to evaluate its thermal stability at 70 °C in sunflower oil, due to the highest yield, antioxidant and antiradical potential and also high content of phenolic compounds campared to other solvents. So, different concentrations of methanolic extract (200, 400, 600, 800 and 1,000 ppm) were added to sunflower oil. BHA and BHT at 200 ppm served as standards besides the control. Peroxide value (PV) and thiobarbituric acid (TBA) were taken as parameters for evaluation of effectiveness of R. fruticosus leaves extract in stabilization of sunflower oil. Moreover, antioxidant activity index (AAI) of the extract at 120 °C at rancimat were conducted. Results from different parameters were in agreement with each other, suggesting the highest efficiency of 1,000 ppm of the extract followed by BHT, BHA and other concentrations of the extract. Results reveal the R. fruticosus leaves extract to be a potent antioxidant for stabilization of sunflower oil.

  7. Identification and Structural Analysis of Amino Acid Substitutions that Increase the Stability and Activity of Aspergillus niger Glucose Oxidase

    PubMed Central

    Marín-Navarro, Julia; Roupain, Nicole; Talens-Perales, David; Polaina, Julio

    2015-01-01

    Glucose oxidase is one of the most conspicuous commercial enzymes due to its many different applications in diverse industries such as food, chemical, energy and textile. Among these applications, the most remarkable is the manufacture of glucose biosensors and in particular sensor strips used to measure glucose levels in serum. The generation of ameliorated versions of glucose oxidase is therefore a significant biotechnological objective. We have used a strategy that combined random and rational approaches to isolate uncharacterized mutations of Aspergillus niger glucose oxidase with improved properties. As a result, we have identified two changes that increase significantly the enzyme's thermal stability. One (T554M) generates a sulfur-pi interaction and the other (Q90R/Y509E) introduces a new salt bridge near the interphase of the dimeric protein structure. An additional double substitution (Q124R/L569E) has no significant effect on stability but causes a twofold increase of the enzyme's specific activity. Our results disclose structural motifs of the protein which are critical for its stability. The combination of mutations in the Q90R/Y509E/T554M triple mutant yielded a version of A. niger glucose oxidase with higher stability than those previously described. PMID:26642312

  8. Photocatalytic activity and stability of TiO{sub 2} and WO{sub 3} thin films

    SciTech Connect

    Carcel, Radu Adrian; Andronic, Luminita Duta, Anca

    2012-08-15

    Photocatalysis represents a viable option for complete degrading the dye molecules resulted in the textile industry, up to products that do not represent environmental threats. The photocatalytic degradation of methyl orange has been investigated using TiO{sub 2}, WO{sub 3} and mixed thin films. The photodegradation efficiency is examined in correlation with the experimental parameters (irradiation time, H{sub 2}O{sub 2} addition and stability), along with the morphology and crystallinity data. The H{sub 2}O{sub 2} addition increases the photodegradation efficiency by providing additional hydroxyl groups and further reducing the recombination of the electron-hole pairs by reacting with the electrons at the catalyst interface. To test the stability of the photocatalytic films in long time running processes, batch series of experiments were conducted using contact periods up to 9 days. The results show that the thin films maintained their photocatalytic properties confirming their stability and viability for up-scaling. Highlights: Black-Right-Pointing-Pointer TiO{sub 2}, WO{sub 3} and mixed thin films Black-Right-Pointing-Pointer We tested the photocatalytic activity and photocatalyst stability over a period up to 9 days of continuous irradiation. Black-Right-Pointing-Pointer The influence of medium pH and oxidizing agent (H{sub 2}O{sub 2}) was analyzed.

  9. Influence of Reactive Oxygen Species on the Enzyme Stability and Activity in the Presence of Ionic Liquids

    PubMed Central

    Attri, Pankaj; Choi, Eun Ha

    2013-01-01

    In this paper, we have examined the effect of ammonium and imidazolium based ionic liquids (ILs) on the stability and activity of proteolytic enzyme α-chymotrypsin (CT) in the presence of cold atmospheric pressure plasma jet (APPJ). The present work aims to illustrate the state of art implementing the combined action of ILs and APPJ on the enzyme stability and activity. Our circular dichroism (CD), fluorescence and enzyme activity results of CT have revealed that buffer and all studied ILs {triethylammonium hydrogen sulphate (TEAS) from ammonium family and 1-butyl-3-methyl imidazolium chloride ([Bmim][Cl]), 1-methylimidazolium chloride ([Mim][Cl]) from imidazolium family} are notable to act as protective agents against the deleterious action of the APPJ, except triethylammonium dihydrogen phosphate (TEAP) ammonium IL. However, TEAP attenuates strongly the deleterious action of reactive oxygen species (ROS) created by APPJ on native structure of CT. Further, TEAP is able to retain the enzymatic activity after APPJ exposure which is absent in all the other systems.This study provides the first combined effect of APPJ and ILs on biomolecules that may generate many theoretical and experimental opportunities. Through this methodology, we can utilise both enzyme and plasma simultaneously without affecting the enzyme structure and activity on the material surface; which can prove to be applicable in various fields. PMID:24066167

  10. The effects of horse riding simulation exercise on muscle activation and limits of stability in the elderly.

    PubMed

    Kim, Seong-Gil; Lee, Jung-Ho

    2015-01-01

    This study aimed to investigate the effect of horse riding simulation (HRS) on balance and trunk muscle activation as well as to provide evidence of the therapeutic benefits of the exercise. Thirty elderly subjects were recruited from a medical care hospital and randomly divided into an experimental and a control group. The experimental group performed the HRS exercise for 20 min, 5 times a week, for 8 weeks, and conventional therapy was also provided as usual. The muscle activation and limits of stability (LOS) were measured. The LOS significantly increased in the HRS group (p<0.05) but not in the control group (p>0.05). The activation of all muscles significantly increased in the HRS group. However, in the control group, the muscle activations of the lateral low-back (external oblique and quadratus lumborum) and gluteus medius (GM) significantly decreased, and there was no significant difference in other muscles. After the intervention, the LOS and all muscle activations significantly increased in the HRS group compared with the control group. The results suggest that the HRS exercise is effective for reducing the overall risk of falling in the elderly. Thus, it is believed that horse riding exercise would help to increase dynamic stability and to prevent elderly people from falling.

  11. Tuning the morphology, stability and photocatalytic activity of TiO{sub 2} nanocrystal colloids by tungsten doping

    SciTech Connect

    Xu, Haiping; Liao, Jianhua; Yuan, Shuai; Zhao, Yin; Zhang, Meihong; Wang, Zhuyi; Shi, Liyi

    2014-03-01

    Graphical abstract: - Highlights: • W{sup 6+}-doped TiO{sub 2} nanocrystal colloids were prepared by hydrothermal methods. • The properties of TiO{sub 2} nanocrystal colloids can be tuned by tungsten doping. • W{sup 6+}-doped TiO{sub 2} nanocrystal colloids show higher stability and dispersity. • W{sup 6+}-doped TiO{sub 2} nanocrystal colloids show higher photocatalytic activity. - Abstract: The effects of tungsten doping on the morphology, stability and photocatalytic activity of TiO{sub 2} nanocrystal colloids were investigated. The nanostructure, chemical state of Ti, W, O, and the properties of tungsten doped TiO{sub 2} samples were investigated carefully by TEM, XRD, XPS, UV–vis, PL and photocatalytic degradation experiments. And the structure–activity relationship was discussed according to the analysis and measurement results. The analysis results reveal that the morphology, zeta potential and photocatalytic activity of TiO{sub 2} nanocrystals can be easily tuned by changing the tungsten doping concentration. The tungsten doped TiO{sub 2} colloid combines the characters of high dispersity and high photocatalytic activity.

  12. The effects of horse riding simulation exercise on muscle activation and limits of stability in the elderly.

    PubMed

    Kim, Seong-Gil; Lee, Jung-Ho

    2015-01-01

    This study aimed to investigate the effect of horse riding simulation (HRS) on balance and trunk muscle activation as well as to provide evidence of the therapeutic benefits of the exercise. Thirty elderly subjects were recruited from a medical care hospital and randomly divided into an experimental and a control group. The experimental group performed the HRS exercise for 20 min, 5 times a week, for 8 weeks, and conventional therapy was also provided as usual. The muscle activation and limits of stability (LOS) were measured. The LOS significantly increased in the HRS group (p<0.05) but not in the control group (p>0.05). The activation of all muscles significantly increased in the HRS group. However, in the control group, the muscle activations of the lateral low-back (external oblique and quadratus lumborum) and gluteus medius (GM) significantly decreased, and there was no significant difference in other muscles. After the intervention, the LOS and all muscle activations significantly increased in the HRS group compared with the control group. The results suggest that the HRS exercise is effective for reducing the overall risk of falling in the elderly. Thus, it is believed that horse riding exercise would help to increase dynamic stability and to prevent elderly people from falling. PMID:25465508

  13. Enhanced Stability of Blood Matrices Using a Dried Sample Spot Assay to Measure Human Butyrylcholinesterase Activity and Nerve Agent Adducts

    PubMed Central

    Perez, Jonas W.; Pantazides, Brooke G.; Watson, Caroline M.; Thomas, Jerry D.; Blake, Thomas A.; Johnson, Rudolph C.

    2015-01-01

    Dried matrix spots are safer to handle and easier to store than wet blood products, but factors such as intra-spot variability and unknown sample volumes have limited their appeal as a sampling format for quantitative analyses. In this work, we introduce a dried spot activity assay for quantifying butyrylcholinesterase (BChE) specific activity which is BChE activity normalized to the total protein content in a sample spot. The method was demonstrated with blood, serum, and plasma spotted on specimen collection devices (cards) which were extracted to measure total protein and BChE activity using a modified Ellman assay. Activity recovered from dried spots was ∼80% of the initial spotted activity for blood and >90% for plasma and serum. Measuring total protein in the sample and calculating specific activity substantially improved quantification and reduced intra-spot variability. Analyte stability of nerve agent adducts was also evaluated, and the results obtained via BChE-specific activity measurements were confirmed by quantification of BChE adducts using a previously established LC-MS/MS method. The spotted samples were up to 10-times more resistant to degradation compared to unspotted control samples when measuring BChE inhibition by the nerve agents sarin and VX. Using this method, both BChE activity and adducts can be accurately measured from a dried sample spot. This use of a dried sample spot with normalization to total protein is robust, demonstrates decreased intra-spot variability without the need to control for initial sample volume, and enhances analyte stability. PMID:25955132

  14. Copper(II) Ions Increase Plasminogen Activator Inhibitor Type 1 Dynamics in Key Structural Regions That Govern Stability.

    PubMed

    Bucci, Joel C; Trelle, Morten Beck; McClintock, Carlee S; Qureshi, Tihami; Jørgensen, Thomas J D; Peterson, Cynthia B

    2016-08-01

    Plasminogen activator inhibitor type 1 (PAI-1) regulates the fibrinolysis pathway by inhibiting the protease activity of plasminogen activators. PAI-1 works in concert with vitronectin (VN), an extracellular protein that aids in localization of active PAI-1 to tissues. The Peterson laboratory demonstrated that Cu(II) and other transition metals modulate the stability of PAI-1, exhibiting effects that are dependent on the presence or absence of the somatomedin B (SMB) domain of VN. The study presented here dissects the changes in molecular dynamics underlying the destabilizing effects of Cu(II) on PAI-1. We utilize backbone amide hydrogen/deuterium exchange monitored by mass spectrometry to assess PAI-1 dynamics in the presence and absence of Cu(II) ions with and without the SMB domain of VN. We show that Cu(II) produces an increase in dynamics in regions important for the function and overall stability of PAI-1, while the SMB domain elicits virtually the opposite effect. A mutant form of PAI-1 lacking two N-terminal histidine residues at positions 2 and 3 exhibits similar increases in dynamics upon Cu(II) binding compared to that of active wild-type PAI-1, indicating that the observed structural effects are not a result of coordination of Cu(II) to these histidine residues. Finally, addition of Cu(II) results in an acceleration of the local unfolding kinetics of PAI-1 presumed to be on pathway to the latency conversion. The effect of ligands on the dynamics of PAI-1 adds another intriguing dimension to the mechanisms for regulation of PAI-1 stability and function. PMID:27416303

  15. Copper(II) Ions Increase Plasminogen Activator Inhibitor Type 1 Dynamics in Key Structural Regions That Govern Stability.

    PubMed

    Bucci, Joel C; Trelle, Morten Beck; McClintock, Carlee S; Qureshi, Tihami; Jørgensen, Thomas J D; Peterson, Cynthia B

    2016-08-01

    Plasminogen activator inhibitor type 1 (PAI-1) regulates the fibrinolysis pathway by inhibiting the protease activity of plasminogen activators. PAI-1 works in concert with vitronectin (VN), an extracellular protein that aids in localization of active PAI-1 to tissues. The Peterson laboratory demonstrated that Cu(II) and other transition metals modulate the stability of PAI-1, exhibiting effects that are dependent on the presence or absence of the somatomedin B (SMB) domain of VN. The study presented here dissects the changes in molecular dynamics underlying the destabilizing effects of Cu(II) on PAI-1. We utilize backbone amide hydrogen/deuterium exchange monitored by mass spectrometry to assess PAI-1 dynamics in the presence and absence of Cu(II) ions with and without the SMB domain of VN. We show that Cu(II) produces an increase in dynamics in regions important for the function and overall stability of PAI-1, while the SMB domain elicits virtually the opposite effect. A mutant form of PAI-1 lacking two N-terminal histidine residues at positions 2 and 3 exhibits similar increases in dynamics upon Cu(II) binding compared to that of active wild-type PAI-1, indicating that the observed structural effects are not a result of coordination of Cu(II) to these histidine residues. Finally, addition of Cu(II) results in an acceleration of the local unfolding kinetics of PAI-1 presumed to be on pathway to the latency conversion. The effect of ligands on the dynamics of PAI-1 adds another intriguing dimension to the mechanisms for regulation of PAI-1 stability and function.

  16. Tau phosphorylation at Alzheimer's disease-related Ser356 contributes to tau stabilization when PAR-1/MARK activity is elevated.

    PubMed

    Ando, Kanae; Oka, Mikiko; Ohtake, Yosuke; Hayashishita, Motoki; Shimizu, Sawako; Hisanaga, Shin-Ichi; Iijima, Koichi M

    2016-09-16

    Abnormal phosphorylation of the microtubule-associated protein tau is observed in many neurodegenerative diseases, including Alzheimer's disease (AD). AD-related phosphorylation of two tau residues, Ser262 and Ser356, by PAR-1/MARK stabilizes tau in the initial phase of mismetabolism, leading to subsequent phosphorylation events, accumulation, and toxicity. However, the relative contribution of phosphorylation at each of these sites to tau stabilization has not yet been elucidated. In a Drosophila model of human tau toxicity, we found that tau was phosphorylated at Ser262, but not at Ser356, and that blocking Ser262 phosphorylation decreased total tau levels. By contrast, when PAR-1 was co-overexpressed with tau, tau was hyperphosphorylated at both Ser262 and Ser356. Under these conditions, the protein levels of tau were significantly elevated, and prevention of tau phosphorylation at both residues was necessary to completely suppress this elevation. These results suggest that tau phosphorylation at Ser262 plays the predominant role in tau stabilization when PAR-1/MARK activity is normal, whereas Ser356 phosphorylation begins to contribute to this process when PAR-1/MARK activity is abnormally elevated, as in diseased brains.

  17. Tau phosphorylation at Alzheimer's disease-related Ser356 contributes to tau stabilization when PAR-1/MARK activity is elevated.

    PubMed

    Ando, Kanae; Oka, Mikiko; Ohtake, Yosuke; Hayashishita, Motoki; Shimizu, Sawako; Hisanaga, Shin-Ichi; Iijima, Koichi M

    2016-09-16

    Abnormal phosphorylation of the microtubule-associated protein tau is observed in many neurodegenerative diseases, including Alzheimer's disease (AD). AD-related phosphorylation of two tau residues, Ser262 and Ser356, by PAR-1/MARK stabilizes tau in the initial phase of mismetabolism, leading to subsequent phosphorylation events, accumulation, and toxicity. However, the relative contribution of phosphorylation at each of these sites to tau stabilization has not yet been elucidated. In a Drosophila model of human tau toxicity, we found that tau was phosphorylated at Ser262, but not at Ser356, and that blocking Ser262 phosphorylation decreased total tau levels. By contrast, when PAR-1 was co-overexpressed with tau, tau was hyperphosphorylated at both Ser262 and Ser356. Under these conditions, the protein levels of tau were significantly elevated, and prevention of tau phosphorylation at both residues was necessary to completely suppress this elevation. These results suggest that tau phosphorylation at Ser262 plays the predominant role in tau stabilization when PAR-1/MARK activity is normal, whereas Ser356 phosphorylation begins to contribute to this process when PAR-1/MARK activity is abnormally elevated, as in diseased brains. PMID:27520376

  18. The effect of time delay on control stability of an electromagnetic active tuned mass damper for vibration control

    NASA Astrophysics Data System (ADS)

    Hassan, A.; Torres-Perez, A.; Kaczmarczyk, S.; Picton, P.

    2016-05-01

    The aim of this paper is to investigate the effect of time delays on the stability of a zero-placement position and velocity feedback law for a vibratory system comprising harmonic excitation equipped with an electromagnetic active tuned mass damper (ATMD). The purpose of the active control is broadening the vibration attenuation envelope of a primary mass to a higher frequency region identified as from 50±0.5Hz with a passive tuned mass damper (TMD) to a wider range of 50±5Hz with an ATMD. Stability conditions of the closed-loop system are determined by studying the position of the system closed-loop poles after the introduction of time delays for different excitation frequencies. A computer simulation of the model predicted that the proposed control system is subject to instability after a critical time delay margin dependent upon the frequency of excitation and the finding were experimentally validated. Three solutions are derived and experimentally tested for minimising the effect of time delays on the stability of the control system. The first solution is associated with the introduction of more damping in the absorber system. The second incorporates using a time-delayed ATMD by tuning its original natural resonant frequency to beyond the nominal operational frequency range of the composite system. The third involves an online gain tuning of filter coefficients in a dual arrangement of low-pass and high-pass filters to eliminate the effect time delays by manipulating the signal phase shifts.

  19. Chemical stability and antimicrobial activity of plasma sprayed bioactive Ca2ZnSi2O7 coating.

    PubMed

    Li, Kai; Yu, Jiangming; Xie, Youtao; Huang, Liping; Ye, Xiaojian; Zheng, Xuebin

    2011-12-01

    Calcium silicate ceramic coatings have received considerable attention in recent years due to their excellent bioactivity and bonding strength. However, their high dissolution rates limit their practical applications. In this study, zinc incorporated calcium silicate based ceramic Ca(2)ZnSi(2)O(7) coating was prepared on Ti-6Al-4V substrate via plasma spraying technology aiming to achieve higher chemical stability and additional antibacterial activity. Chemical stability of the coating was assessed by monitoring mass loss and ion release of the coating after immersion in the Tris-HCl buffer solution and examining pH value variation of the solution. Results showed that the chemical stability of zinc incorporated coating was improved significantly. Antimicrobial activity of the Ca(2)ZnSi(2)O(7) coating was evaluated, and it was found that the coating exhibited 93% antibacterial ratio against Staphylococcus aureus. In addition, in vitro bioactivity and cytocompatibility were confirmed for the Ca(2)ZnSi(2)O(7) coating by simulated body fluid test, MC3T3-E1 cells adhesion investigation and cytotoxicity assay.

  20. Epsin is required for Dishevelled stability and Wnt signaling activation in colon cancer development

    PubMed Central

    Chang, Baojun; Tessneer, Kandice L.; McManus, John; Liu, Xiaolei; Hahn, Scott; Pasula, Satish; Wu, Hao; Song, Hoogeun; Chen, Yiyuan; Cai, Xiaofeng; Dong, Yunzhou; Brophy, Megan L.; Rahman, Ruby; Ma, Jian-Xing; Xia, Lijun; Chen, Hong

    2015-01-01

    Uncontrolled canonical Wnt signaling supports colon epithelial tumor expansion and malignant transformation. Understanding the regulatory mechanisms involved is crucial for elucidating the pathogenesis of and will provide new therapeutic targets for colon cancer. Epsins are ubiquitin-binding adaptor proteins upregulated in several human cancers; however, epsins’ involvement in colon cancer is unknown. Here we show that loss of intestinal epithelial epsins protects against colon cancer by significantly reducing the stability of the crucial Wnt signaling effector, dishevelled (Dvl2), and impairing Wnt signaling. Consistently, epsins and Dvl2 are correspondingly upregulated in colon cancer. Mechanistically, epsin binds Dvl2 via its epsin N-terminal homology domain and ubiquitin-interacting motifs and prohibits Dvl2 polyubiquitination and degradation. Our findings reveal an unconventional role for epsins in stabilizing Dvl2 and potentiating Wnt signaling in colon cancer cells to ensure robust colon cancer progression. Epsins’ pro-carcinogenic role suggests they are potential therapeutic targets to combat colon cancer. PMID:25871009

  1. Potent and selective activation of abscisic acid receptors in vivo by mutational stabilization of their agonist-bound conformation

    PubMed Central

    Mosquna, Assaf; Peterson, Francis C.; Park, Sang-Youl; Lozano-Juste, Jorge; Volkman, Brian F.; Cutler, Sean R.

    2011-01-01

    Pyrabactin resistance (PYR) 1 and its relatives belong to a family of soluble abscisic acid (ABA) receptors that inhibit type 2C protein phosphatases (PP2C) when in their agonist-stabilized conformation. Given their switch-like properties, we envisioned that mutations that stabilize their agonist-bound conformation could be used to activate signaling in vivo. To identify such mutations, we subjected PYR1 to site-saturation mutagenesis at 39 highly conserved residues that participate in ABA or PP2C contacts. All 741 possible single amino acid substitutions at these sites were tested to identify variants that increase basal PYR1-PP2C interactions, which uncovered activating mutations in 10 residues that preferentially cluster in PYR1's gate loop and C-terminal helix. The mutations cause measurable but incomplete receptor activation in vitro; however, specific triple and quadruple mutant combinations were constructed that promote an agonist-bound conformation, as measured by heteronuclear single quantum coherence NMR, and lead to full receptor activation. Moreover, these mutations retain functionality when introduced into divergent family members, and can therefore be used to dissect individual receptor function in vivo, which has been problematic because of redundancy and family size. Expression of activated PYL2 in Arabidopsis seeds activates ABA signaling by a number of measures: modulation of ABA-regulated gene expression, induction of hyperdormancy, and suppression of ABA deficiency phenotypes in the aba2-1 mutant. Our results set the stage for systematic gain-of-function studies of PYR1 and related ABA receptors and reveal that, despite the large number of receptors, activation of a single receptor is sufficient to activate signaling in planta. PMID:22139369

  2. Impact of cysteine variants on the structure, activity, and stability of recombinant human α-galactosidase A.

    PubMed

    Qiu, Huawei; Honey, Denise M; Kingsbury, Jonathan S; Park, Anna; Boudanova, Ekaterina; Wei, Ronnie R; Pan, Clark Q; Edmunds, Tim

    2015-09-01

    Recombinant human α-galactosidase A (rhαGal) is a homodimeric glycoprotein deficient in Fabry disease, a lysosomal storage disorder. In this study, each cysteine residue in rhαGal was replaced with serine to understand the role each cysteine plays in the enzyme structure, function, and stability. Conditioned media from transfected HEK293 cells were assayed for rhαGal expression and enzymatic activity. Activity was only detected in the wild type control and in mutants substituting the free cysteine residues (C90S, C174S, and the C90S/C174S). Cysteine-to-serine substitutions at the other sites lead to the loss of expression and/or activity, consistent with their involvement in the disulfide bonds found in the crystal structure. Purification and further characterization confirmed that the C90S, C174S, and the C90S/C174S mutants are enzymatically active, structurally intact and thermodynamically stable as measured by circular dichroism and thermal denaturation. The purified inactive C142S mutant appeared to have lost part of its alpha-helix secondary structure and had a lower apparent melting temperature. Saturation mutagenesis study on Cys90 and Cys174 resulted in partial loss of activity for Cys174 mutants but multiple mutants at Cys90 with up to 87% higher enzymatic activity (C90T) compared to wild type, suggesting that the two free cysteines play differential roles and that the activity of the enzyme can be modulated by side chain interactions of the free Cys residues. These results enhanced our understanding of rhαGal structure and function, particularly the critical roles that cysteines play in structure, stability, and enzymatic activity.

  3. Nematic and blue phase liquid crystals for temperature stabilization and active optical tuning of silicon photonic devices (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ptasinski, Joanna N.; Khoo, Iam Choon; Fainman, Yeshaiahu

    2015-10-01

    We describe the underlying theories and experimental demonstrations of passive temperature stabilization of silicon photonic devices clad in nematic liquid crystal mixtures, and active optical tuning of silicon photonic resonant structures combined with dye-doped nematic and blue phase liquid crystals. We show how modifications to the resonator device geometry allow for not only enhanced tuning of the resonator response, but also aid in achieving complete athermal operations of silicon photonic circuits. [Ref.: I.C. Khoo, "DC-field-assisted grating formation and nonlinear diffractions in methyl-red dye-doped blue phase liquid crystals," Opt. Lett. 40, 60-63 (2015); J. Ptasinski, I.C. Khoo, and Y. Fainman, "Enhanced optical tuning of modified-geometry resonators clad in blue phase liquid crystals," Opt. Lett. 39, 5435-5438 (2014); J. Ptasinski, I.C. Khoo, and Y. Fainman, "Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals," Materials 7(3), 2229-2241 (2014)].

  4. High stability of the hinge region in the membrane-active peptide helix of zervamicin: paramagnetic relaxation enhancement studies.

    PubMed

    Shenkarev, Zakhar O; Paramonov, Alexander S; Balashova, Tamara A; Yakimenko, Zoya A; Baru, Michael B; Mustaeva, Leila G; Raap, Jan; Ovchinnikova, Tatyana V; Arseniev, Alexander S

    2004-12-17

    Zervamicin IIB is a 16 amino acid peptaibol that forms voltage dependent ion channels with multilevel conductance states in planar lipid bilayers and vesicular systems. Stability of the hinge region and intermolecular interactions were investigated in the N- and C-terminally spin-labelled peptide analogues. Intermolecular and intramolecular paramagnetic enhancement indicates that zervamicin behaves as a rigid helical rod in methanol solution. There are no high amplitude hinge-bending motions, and the peptaibol is monomeric up to concentration 1.5 mM. Stability of the hinge region illustrates the helix stabilising propensity of the Pro residue in membrane mimic environments and implies absence of significant conformational rearrangement due to voltage peptaibol activation.

  5. The stability and activity of human neuroserpin are modulated by a salt bridge that stabilises the reactive centre loop.

    PubMed

    Noto, Rosina; Randazzo, Loredana; Raccosta, Samuele; Caccia, Sonia; Moriconi, Claudia; Miranda, Elena; Martorana, Vincenzo; Manno, Mauro

    2015-01-01

    Neuroserpin (NS) is an inhibitory protein belonging to the serpin family and involved in several pathologies, including the dementia Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB), a genetic neurodegenerative disease caused by accumulation of NS polymers. Our Molecular Dynamics simulations revealed the formation of a persistent salt bridge between Glu289 on strand s2C and Arg362 on the Reactive Centre Loop (RCL), a region important for the inhibitory activity of NS. Here, we validated this structural feature by simulating the Glu289Ala mutant, where the salt bridge is not present. Further, MD predictions were tested in vitro by purifying recombinant Glu289Ala NS from E. coli. The thermal and chemical stability along with the polymerisation propensity of both Wild Type and Glu289Ala NS were characterised by circular dichroism, emission spectroscopy and non-denaturant gel electrophoresis, respectively. The activity of both variants against the main target protease, tissue-type plasminogen activator (tPA), was assessed by SDS-PAGE and chromogenic kinetic assay. Our results showed that deletion of the salt bridge leads to a moderate but clear reduction of the overall protein stability and activity. PMID:26329378

  6. Modelling thermal stability and activity of free and immobilized enzymes as a novel tool for enzyme reactor design.

    PubMed

    Santos, A M P; Oliveira, M G; Maugeri, F

    2007-11-01

    In this work, a novel method is proposed to establish the most suitable operational temperature for an enzyme reactor. The method was based on mathematical modelling of the thermal stability and activity of the enzyme and was developed using thermodynamic concepts and experimental data from free and immobilized inulinases (2,1-beta-D fructan frutanohydrolase, EC 3.2.1.7) from Kluyveromyces marxianus, which were used as examples. The model was, therefore, designed to predict the enzyme activity with respect to the temperature and time course of the enzymatic process, as well as its half-life, in a broad temperature range. The knowledge and information provided by the model could be used to design the operational temperature conditions, leading to higher enzyme activities, while preserving acceptable stability levels, which represent the link between higher productivity and lower process costs. For the inulinase used in this study, the optimum temperature conditions leading to higher enzyme activities were shown to be 63 degrees C and 57.5 degrees C for the free and immobilized inulinases, respectively. However, according to the novel method of approach used here, the more appropriate operating temperatures would be 52 degrees C for free and 42 degrees C for immobilized inulinases, showing that the working temperature is not necessarily the same as the maximum reaction rate temperature, but preferably a lower temperature where the enzyme is much more stable.

  7. Residues in the alternative reading frame tumor suppressor that influence its stability and p53-independent activities

    SciTech Connect

    Tommaso, Anne di; Hagen, Jussara; Tompkins, Van; Muniz, Viviane; Dudakovic, Amel; Kitzis, Alain; Ladeveze, Veronique; Quelle, Dawn E.

    2009-04-15

    The Alternative Reading Frame (ARF) protein suppresses tumorigenesis through p53-dependent and p53-independent pathways. Most of ARF's anti-proliferative activity is conferred by sequences in its first exon. Previous work showed specific amino acid changes occurred in that region during primate evolution, so we programmed those changes into human p14ARF to assay their functional impact. Two human p14ARF residues (Ala{sup 14} and Thr{sup 31}) were found to destabilize the protein while two others (Val{sup 24} and Ala{sup 41}) promoted more efficient p53 stabilization and activation. Despite those effects, all modified p14ARF forms displayed robust p53-dependent anti-proliferative activity demonstrating there are no significant biological differences in p53-mediated growth suppression associated with simian versus human p14ARF residues. In contrast, p53-independent p14ARF function was considerably altered by several residue changes. Val{sup 24} was required for p53-independent growth suppression whereas multiple residues (Val{sup 24}, Thr{sup 31}, Ala{sup 41} and His{sup 60}) enabled p14ARF to block or reverse the inherent chromosomal instability of p53-null MEFs. Together, these data pinpoint specific residues outside of established p14ARF functional domains that influence its expression and signaling activities. Most intriguingly, this work reveals a novel and direct role for p14ARF in the p53-independent maintenance of genomic stability.

  8. Capsaicin mediates cell cycle arrest and apoptosis in human colon cancer cells via stabilizing and activating p53.

    PubMed

    Jin, Junzhe; Lin, Guofu; Huang, Hong; Xu, Dong; Yu, Hao; Ma, Xu; Zhu, Lisi; Ma, Dongyan; Jiang, Honglei

    2014-01-01

    Capsaicin is the major pungent ingredient in red peppers which is world widely consumed. Except its potent pain relieving efficacy as reported, capsaicin also exerted its antitumor activity in several tumor models. Here, we reported that capsaicin had a profound anti-proliferative effect on human colon cancer cells via inducing cell cycle G0/G1 phase arrest and apoptosis, which was associated with an increase of p21, Bax and cleaved PARP. The underlying mechanism of capsaicin's antitumor potency was mainly attributed to the stabilization and activation of p53. Capsaicin substantially prolonged the half-life of p53 and significantly elevated the transcriptional activity of p53. Through suppressing the interaction between p53 and MDM2, MDM2-mediated p53 ubiquitination was remarkably decreased after capsaicin treatment, which resulted in the stabilization and accumulation of p53. The results of p53-shRNA experiment further demonstrated that p53 knockdown severely impaired the sensitivity of tested cells to capsaicin, G0/G1 phase arrest and the apoptosis induced by capsaicin in p53-knockdown cells was also dramatically decreased, implicating the important role of p53 played in capsaicin's antitumor activity. In summary, our data suggested that capsaicin, or a related analogue, may have a role in the management of human colon cancer.

  9. Aldehyde dehydrogenase 1A1 stabilizes transcription factor Gli2 and enhances the activity of Hedgehog signaling in hepatocellular cancer.

    PubMed

    Yan, Zhengwei; Xu, Liyao; Zhang, Junyan; Lu, Quqin; Luo, Shiwen; Xu, Linlin

    2016-03-18

    The Gli transcription factors are primary transcriptional regulators that mediate the activation of Hedgehog (Hh) signaling. Recent studies have revealed that Gli proteins are also regulated transcriptionally and post-translationally through noncanonical mechanisms, independent of Hh signaling. However, the precise mechanisms involved in the regulation of Gli proteins remain unclear. Using a differential mass-spectrometry approach, we found that aldehyde dehydrogenase 1A1 (ALDH1A1) is associated with transcription factor Gli2. Overexpression of ALDH1A1 increased Gli2 protein levels; in contrast, ALDH1A1 depletion facilitated Gli2 degradation. In addition, Gli2 mRNA expression was not affected by ectopic expression of ALDH1A1, indicating the role of ALDH1A1 in the stabilization of Gli2. Further investigation showed that ALDH1A1 prolonged the stability of Gli2 protein in a catalytic-independent manner. Finally, we showed that overexpression of ALDH1A1 activated the Hh signaling pathway and promoted cell growth, migration and invasion in hepatocellular cancer cells. Together, these results illustrate regulatory roles of ALDH1A1 in the activation of the Hh signaling pathway and highlight a novel mechanism for the aberrant activation of the Hh signaling pathway in hepatocellular cancer cells. PMID:26896768

  10. The stability and activity of human neuroserpin are modulated by a salt bridge that stabilises the reactive centre loop.

    PubMed

    Noto, Rosina; Randazzo, Loredana; Raccosta, Samuele; Caccia, Sonia; Moriconi, Claudia; Miranda, Elena; Martorana, Vincenzo; Manno, Mauro

    2015-01-01

    Neuroserpin (NS) is an inhibitory protein belonging to the serpin family and involved in several pathologies, including the dementia Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB), a genetic neurodegenerative disease caused by accumulation of NS polymers. Our Molecular Dynamics simulations revealed the formation of a persistent salt bridge between Glu289 on strand s2C and Arg362 on the Reactive Centre Loop (RCL), a region important for the inhibitory activity of NS. Here, we validated this structural feature by simulating the Glu289Ala mutant, where the salt bridge is not present. Further, MD predictions were tested in vitro by purifying recombinant Glu289Ala NS from E. coli. The thermal and chemical stability along with the polymerisation propensity of both Wild Type and Glu289Ala NS were characterised by circular dichroism, emission spectroscopy and non-denaturant gel electrophoresis, respectively. The activity of both variants against the main target protease, tissue-type plasminogen activator (tPA), was assessed by SDS-PAGE and chromogenic kinetic assay. Our results showed that deletion of the salt bridge leads to a moderate but clear reduction of the overall protein stability and activity.

  11. Effects of dietary sodium selenite and selenium yeast on antioxidant enzyme activities and oxidative stability of chicken breast meat.

    PubMed

    Ahmad, Hussain; Tian, Jinke; Wang, Jianjun; Khan, Muhammad Ammar; Wang, Yuanxiao; Zhang, Lili; Wang, Tian

    2012-07-25

    The effects of sodium selenite (SS) and selenium yeast (SY) alone and in combination (MS) on the selenium (Se) content, antioxidant enzyme activities (AEA), total antioxidant capacity (TAC), and oxidative stability of chicken breast meat were investigated. The results showed that the highest (p < 0.05) glutathione peroxidase (GSH-Px) activity was found in the SS-supplemented chicken breast meat; however, SY and MS treatments significantly increased (p < 0.05) the Se content and the activities of catalase (CAT), total superoxide dismutase (T-SOD), and TAC, but decreased (p < 0.05) the malondialdehyde (MDA) content at 42 days of age. Twelve days of storage at 4 °C decreased (p < 0.05) the activity of the GSH-Px, but CAT, T-SOD, and TAC remained stable. SY decreased the lipid oxidation more effectively in chicken breast meat. It was concluded that SY and MS are more effective than SS in increasing the AEA, TAC, and oxidative stability of chicken breast meat. PMID:22732007

  12. Comparison antioxidant activity of Tarom Mahali rice bran extracted from different extraction methods and its effect on canola oil stabilization.

    PubMed

    Farahmandfar, Reza; Asnaashari, Maryam; Sayyad, Ruhollah

    2015-10-01

    In this study, Tarom Mahali rice bran extracts by ultrasound assisted and traditional solvent (ethanol and ethanol: water (50:50)) extraction method were compared. The total phenolic and tocopherol content and antioxidant activity of the extracts was determined and compared with TBHQ by DPPH assay and β-carotene bleaching method. The results show that the extract from ethanol: water (50:50) ultrasonic treatment with high amount of phenols (919.66 mg gallic acid/g extract, tocopherols (438.4 μg α-tocopherol/ mL extract) indicated the highest antioxidant activity (80.36 % radical scavenging and 62.69 % β-carotene-linoleic bleaching) and thermal stability (4.95 h) at 120 °C in canola oil. Being high in antioxidant and antiradical potential and high content of phenolic and tocopherol compounds of ethanol: water (50:50) ultrasonic extract caused to evaluate its thermal stability at 180 °C in canola oil during frying process. So, different concentrations of Tarom Mahali rice bran extract (100, 800, and 1200 ppm) were added to canola oil. TBHQ at 100 ppm served as standard besides the control. Free fatty acids (FFAs), Peroxide value (PV), carbonyl value (CV), total polar compounds (TPC) and oxidative stability index (OSI) were taken as parameters for evaluation of effectiveness of Tarom Mahali rice bran extract in stabilization of canola oil. Results from different parameters were in agreement with each other, suggesting that 800 ppm of the extract could act better than 100 ppm TBHQ in inhibition of lipid oxidation in canola oil during frying process and can be used as predominant alternative of synthetic antioxidants. PMID:26396383

  13. Metals content of Glossoscolex paulistus extracellular hemoglobin: Its peroxidase activity and the importance of these ions in the protein stability.

    PubMed

    Caruso, Celia S; Biazin, Ezer; Carvalho, Francisco A O; Tabak, Marcel; Bachega, José F R

    2016-08-01

    In this work we investigate the presence of divalent cations bound to the Glossoscolex paulistus (HbGp) hemoglobin and their effect over the protein stability and the peroxidase (POD) activity. Atomic absorption studies show that the HbGp iron content is consistent with the presence of 144 ions per protein. Moreover, using iron as a reference, the content of calcium was estimated as 30±4 ions per protein, independently of the EDTA pre-treatment or not prior to the acidic treatment performed in the protein digestion. The zinc content was 14±2 ions in the absence of EDTA pre-treatment, and 3±1 ions per protein in the presence of EDTA pre-treatment, implying the presence of one zinc ion per protomer (1/12 of the whole molecule). Finally, the copper concentration is negligible. Different from the vertebrate hemoglobins, where the effectors are usually organic anions, the hexagonal bilayer hemoglobins have as effectors inorganic cations that increase the oxygen affinity and stabilize the structure. Previous studies have suggested that the presence of divalent cations, such as copper and zinc, is related to the different types of antioxidant enzymatic activities as the superoxide dismutase (SOD) activity shown by giant hemoglobin from Lumbricus terrestris (HbLt). Recently, studies on HbGp crystal structure have confirmed the presence of Zn(2+) and Ca(2+) binding sites. The Ca(2+) sites are similar as observed in the HbLt crystal structure. Otherwise, the Zn(2+) sites have no relation with those observed in Cu/Zn SODs. Our peroxidase assays with guaiacol confirm the POD activity and the effect of the zinc ions for HbGp. Our present results on HbGp metal content and their stability effects is the first step to understand the role of these cations in HbGp function in the future. PMID:27221949

  14. Combined physical and chemical immobilization of glucose oxidase in alginate microspheres improves stability of encapsulation and activity.

    PubMed

    Zhu, Huiguang; Srivastava, Rohit; Brown, J Quincy; McShane, Michael J

    2005-01-01

    Chemical sensors utilizing immobilized enzymes and proteins are important for monitoring chemical processes and biological systems. In this study, calcium-cross-linked alginate hydrogel microspheres were fabricated as enzyme carriers by an emulsification technique. Glucose oxidase (GOx) was encapsulated in alginate microspheres using three different methods: physical entrapment (emulsion), chemical conjugation (conjugation), and a combination of physical entrapment and chemical conjugation (emulsion-conjugation). Nano-organized coatings were applied on alginate/GOx microspheres using the layer-by-layer self-assembly technique in order to stabilize the hydrogel/enzyme system under biological environment. The encapsulation of GOx and formation of nanofilm coating on alginate microspheres were verified with FTIR spectral analysis, zeta-potential analysis, and confocal laser scanning microscopy. To compare both the immobilization properties of enzyme encapsulation techniques and the influence of nanofilms with uncoated microspheres, the relationship between enzyme loading, release, and effective GOx activity (enzyme activity per unit protein loading) were studied over a period of four weeks. The results produced four key findings: (1) the emulsion-conjugation technique improved the stability of GOx in alginate microspheres compared to the emulsion technique, reducing the GOx leaching from microsphere from 50% to 17%; (2) the polyelectrolyte nanofilm coatings increased the GOx stability over time, but also reduced the effective GOx activity; (3) the effective GOx activity for the emulsion-conjugation technique (about 3.5 x 10(-)(5) AU microg(-)(1) s(-)(1)) was higher than that for other methods, and did not change significantly over four weeks; and (4) the GOx concentration, when compared after one week for microspheres with three bilayers of poly(allylamine hydrochloride)/sodium poly(styrene sulfonate) ({PAH/PSS}) coating, was highest for the emulsion

  15. Activation Layer Stabilization of High Polarization Photocathodes in Sub-Optimal RF Gun Environments

    SciTech Connect

    Mulhollan, Gregory; /SLAC /Saxed Surface Science, Austin, TX

    2010-08-25

    We have developed an activation procedure by which the reactivity to CO{sub 2}, a principal cause of yield decay for GaAs photocathodes, is greatly reduced. The use of a second alkali in the activation process is responsible for the increased immunity of the activated surface. The best immunity was obtained by using a combination of Cs and Li without any loss in near bandgap yield. Optimally activated photocathodes have nearly equal quantities of both alkalis.

  16. Long-Term Stability of Motor Cortical Activity: Implications for Brain Machine Interfaces and Optimal Feedback Control

    PubMed Central

    Flint, Robert D.; Scheid, Michael R.; Wright, Zachary A.; Solla, Sara A.

    2016-01-01

    The human motor system is capable of remarkably precise control of movements—consider the skill of professional baseball pitchers or surgeons. This precise control relies upon stable representations of movements in the brain. Here, we investigated the stability of cortical activity at multiple spatial and temporal scales by recording local field potentials (LFPs) and action potentials (multiunit spikes, MSPs) while two monkeys controlled a cursor either with their hand or directly from the brain using a brain–machine interface. LFPs and some MSPs were remarkably stable over time periods ranging from 3 d to over 3 years; overall, LFPs were significantly more stable than spikes. We then assessed whether the stability of all neural activity, or just a subset of activity, was necessary to achieve stable behavior. We showed that projections of neural activity into the subspace relevant to the task (the “task-relevant space”) were significantly more stable than were projections into the task-irrelevant (or “task-null”) space. This provides cortical evidence in support of the minimum intervention principle, which proposes that optimal feedback control (OFC) allows the brain to tightly control only activity in the task-relevant space while allowing activity in the task-irrelevant space to vary substantially from trial to trial. We found that the brain appears capable of maintaining stable movement representations for extremely long periods of time, particularly so for neural activity in the task-relevant space, which agrees with OFC predictions. SIGNIFICANCE STATEMENT It is unknown whether cortical signals are stable for more than a few weeks. Here, we demonstrate that motor cortical signals can exhibit high stability over several years. This result is particularly important to brain–machine interfaces because it could enable stable performance with infrequent recalibration. Although we can maintain movement accuracy over time, movement components that are

  17. A3 domain region 1803-1818 contributes to the stability of activated factor VIII and includes a binding site for activated factor IX.

    PubMed

    Bloem, Esther; Meems, Henriet; van den Biggelaar, Maartje; Mertens, Koen; Meijer, Alexander B

    2013-09-01

    A recent chemical footprinting study in our laboratory suggested that region 1803-1818 might contribute to A2 domain retention in activated factor VIII (FVIIIa). This site has also been implicated to interact with activated factor IX (FIXa). Asn-1810 further comprises an N-linked glycan, which seems incompatible with a role of the amino acids 1803-1818 for FIXa or A2 domain binding. In the present study, FVIIIa stability and FIXa binding were evaluated in a FVIII-N1810C variant, and two FVIII variants in which residues 1803-1810 and 1811-1818 are replaced by the corresponding residues of factor V (FV). Enzyme kinetic studies showed that only FVIII/FV 1811-1818 has a decreased apparent binding affinity for FIXa. Flow cytometry analysis indicated that fluorescent FIXa exhibits impaired complex formation with only FVIII/FV 1811-1818 on lipospheres. Site-directed mutagenesis revealed that Phe-1816 contributes to the interaction with FIXa. To evaluate FVIIIa stability, the FVIII/FV chimeras were activated by thrombin, and the decline in cofactor function was followed over time. FVIII/FV 1803-1810 and FVIII/FV 1811-1818 but not FVIII-N1810C showed a decreased FVIIIa half-life. However, when the FVIII variants were activated in presence of FIXa, only FVIII/FV 1811-1818 demonstrated an enhanced decline in cofactor function. Surface plasmon resonance analysis revealed that the FVIII variants K1813A/K1818A, E1811A, and F1816A exhibit enhanced dissociation after activation. The results together demonstrate that the glycan at 1810 is not involved in FVIII cofactor function, and that Phe-1816 of region 1811-1818 contributes to FIXa binding. Both regions 1803-1810 and 1811-1818 contribute to FVIIIa stability.

  18. A3 domain region 1803-1818 contributes to the stability of activated factor VIII and includes a binding site for activated factor IX.

    PubMed

    Bloem, Esther; Meems, Henriet; van den Biggelaar, Maartje; Mertens, Koen; Meijer, Alexander B

    2013-09-01

    A recent chemical footprinting study in our laboratory suggested that region 1803-1818 might contribute to A2 domain retention in activated factor VIII (FVIIIa). This site has also been implicated to interact with activated factor IX (FIXa). Asn-1810 further comprises an N-linked glycan, which seems incompatible with a role of the amino acids 1803-1818 for FIXa or A2 domain binding. In the present study, FVIIIa stability and FIXa binding were evaluated in a FVIII-N1810C variant, and two FVIII variants in which residues 1803-1810 and 1811-1818 are replaced by the corresponding residues of factor V (FV). Enzyme kinetic studies showed that only FVIII/FV 1811-1818 has a decreased apparent binding affinity for FIXa. Flow cytometry analysis indicated that fluorescent FIXa exhibits impaired complex formation with only FVIII/FV 1811-1818 on lipospheres. Site-directed mutagenesis revealed that Phe-1816 contributes to the interaction with FIXa. To evaluate FVIIIa stability, the FVIII/FV chimeras were activated by thrombin, and the decline in cofactor function was followed over time. FVIII/FV 1803-1810 and FVIII/FV 1811-1818 but not FVIII-N1810C showed a decreased FVIIIa half-life. However, when the FVIII variants were activated in presence of FIXa, only FVIII/FV 1811-1818 demonstrated an enhanced decline in cofactor function. Surface plasmon resonance analysis revealed that the FVIII variants K1813A/K1818A, E1811A, and F1816A exhibit enhanced dissociation after activation. The results together demonstrate that the glycan at 1810 is not involved in FVIII cofactor function, and that Phe-1816 of region 1811-1818 contributes to FIXa binding. Both regions 1803-1810 and 1811-1818 contribute to FVIIIa stability. PMID:23884417

  19. A3 Domain Region 1803–1818 Contributes to the Stability of Activated Factor VIII and Includes a Binding Site for Activated Factor IX

    PubMed Central

    Bloem, Esther; Meems, Henriet; van den Biggelaar, Maartje; Mertens, Koen; Meijer, Alexander B.

    2013-01-01

    A recent chemical footprinting study in our laboratory suggested that region 1803–1818 might contribute to A2 domain retention in activated factor VIII (FVIIIa). This site has also been implicated to interact with activated factor IX (FIXa). Asn-1810 further comprises an N-linked glycan, which seems incompatible with a role of the amino acids 1803–1818 for FIXa or A2 domain binding. In the present study, FVIIIa stability and FIXa binding were evaluated in a FVIII-N1810C variant, and two FVIII variants in which residues 1803–1810 and 1811–1818 are replaced by the corresponding residues of factor V (FV). Enzyme kinetic studies showed that only FVIII/FV 1811–1818 has a decreased apparent binding affinity for FIXa. Flow cytometry analysis indicated that fluorescent FIXa exhibits impaired complex formation with only FVIII/FV 1811–1818 on lipospheres. Site-directed mutagenesis revealed that Phe-1816 contributes to the interaction with FIXa. To evaluate FVIIIa stability, the FVIII/FV chimeras were activated by thrombin, and the decline in cofactor function was followed over time. FVIII/FV 1803–1810 and FVIII/FV 1811–1818 but not FVIII-N1810C showed a decreased FVIIIa half-life. However, when the FVIII variants were activated in presence of FIXa, only FVIII/FV 1811–1818 demonstrated an enhanced decline in cofactor function. Surface plasmon resonance analysis revealed that the FVIII variants K1813A/K1818A, E1811A, and F1816A exhibit enhanced dissociation after activation. The results together demonstrate that the glycan at 1810 is not involved in FVIII cofactor function, and that Phe-1816 of region 1811–1818 contributes to FIXa binding. Both regions 1803–1810 and 1811–1818 contribute to FVIIIa stability. PMID:23884417

  20. [Study of Lavoisier morphine chlorhydrate stability in different active perfusion systems after reconstitution in different solvents].

    PubMed

    Truelle-Hugon, B; Tourrette, G; Couineaux, B; Gache-Charrette, C

    1997-01-01

    The stability of morphine chlorhydrate injectable solutions with no preservative used for drug delivery system (PCA) was investigated. Many concentrations of morphine chlorhydrate were prepared using different solvents and in several containers: PCA cartridges and plastic syringes stored at 37 degrees C. Assays of drug substance and of degradation products were determined at different time within 14 days. In such conditions, morphine chlorhydrate solutions were stable: degradation products were quantitated less than the usual normal i.e. 2% of the theoric concentration of the drug.

  1. Slope Stability: Factor of Safety along the Seismically Active Continental Slope Offshore Sumatra

    NASA Astrophysics Data System (ADS)

    Patton, J. R.; Goldfinger, C.; Djadjadihardja, Y.; None, U.

    2013-12-01

    Recent papers have documented the probability that turbidites deposited along and downslope of subduction zone accretionary prisms are likely the result of strong ground shaking from great earthquakes. Given the damaging nature of these earthquakes, along with the casualties from the associated tsunamis, the spatial and temporal patterns of these earthquakes can only be evaluated with paleoseismologic coring and seismic reflection methods. We evaluate slope stability for seafloor topography along the Sunda subduction offshore Sumatra, Indonesia. We use sediment material properties, from local (Sumatra) and analogous sites, to constrain our estimates of static slope stability Factor of Safety (FOS) analyses. We then use ground motion prediction equations (GMPE's) to estimate ground motion intensity (Arias Intensity, AI) and acceleration (Peak Ground Acceleration, PGA), as possibly generated by fault rupture, to constrain seismic loads for pseudostatic slope stability FOS analyses. The ground motions taper rapidly with distance from the fault plane, consistent with ground motion - fault distance relations measured during the 2011 Tohoku-Oki subduction zone earthquake. Our FOS analyses include a Morgenstern method of slices probabilistic analysis for 2-D profiles along with Critical Acceleration (Ac) and Newmark Displacement (Dn) analysis of multibeam bathymetry of the seafloor. In addition, we also use estimates of ground motion modeled with a 2004 Sumatra-Andaman subduction zone (SASZ) earthquake fault slip model, to also compare with our static FOS analyses of seafloor topography. All slope and trench sites are statically stable (FOS < 1) and sensitive to ground motions generated by earthquakes of magnitude greater than 7. We conclude that for earthquakes of magnitude 6 to 9, PGA of 0.4-0.6 to 1.4-2.5 g would be expected, respectively, from existing GMPE's. However, saturation of accelerations in the accretionary wedge may limit actual accelerations to less than 1

  2. [The epidemiological situation in the Republic of Abkhazia in 2013-2014 and Rospotrebnadzor participation in activities for its stabilization].

    PubMed

    Bragina, I V; Ezhlova, E B; Demina, Yu V; Kulichenko, A N; Maletskaya, O V; Taran, T V; Belyaeva, A I; Pakskina, N D; Skudareva, O N; Agapitov, D S; Mezentsev, V M; Semenko, O V; Grizhebovsky, G M; Klindukhov, V P; Oroby, V G

    2015-01-01

    Official statistics of Republican SES on infectious diseases are used. The characteristics of the current epidemiological situation in the Republic of Abkhazia is given. The analysis of infectious dis- eases from 2012 to 2014 is presented. It was found that the most widespread infectious diseases are acute respiratory viral and acute intestinal infection. During the analyzed period in the country outbreaks of dysentery, whooping cough and measles were reported. Epidemic threat is the presence of active natu- ral foci of infectious diseases and permanently disadvantaged anthrax points on the territory ofAbkhazia. Activities carried out by the Ministry of Health of the Republic of Abkhazia with the help and active participation of Rospotrebnadzor contributed stabilization the epidemiological situation.

  3. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres

    PubMed Central

    Ibrahim, Abdelnasser Salah Shebl; Al-Salamah, Ali A.; El-Toni, Ahmed M.; Almaary, Khalid S.; El-Tayeb, Mohamed A.; Elbadawi, Yahya B.; Antranikian, Garabed

    2016-01-01

    The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS–NH2 nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 μg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher Vmax, kcat and kcat/Km, than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media. PMID:26840303

  4. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres.

    PubMed

    Ibrahim, Abdelnasser Salah Shebl; Al-Salamah, Ali A; El-Toni, Ahmed M; Almaary, Khalid S; El-Tayeb, Mohamed A; Elbadawi, Yahya B; Antranikian, Garabed

    2016-01-29

    The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS-NH₂ nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 μg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher V(max), k(cat) and k(cat)/K(m), than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media.

  5. Effects of water activity and aqueous solvent ordering on thermal stability of lysozyme, alpha-chymotrypsinogen A, and alcohol dehydrogenase.

    PubMed

    Matsue, S; Fujii, T; Miyawaki, O

    2001-06-12

    Effects of water activity (aW) and solvent ordering were separately analyzed on the thermal unfolding of lysozyme and alpha-chymotrypsinogen A, and also on the thermal deactivation of yeast alcohol dehydrogenase (YADH) in aqueous solutions with various additives. With the coexistence of additives, water activity was the determinant of the extent of the change in the thermal stability of proteins while solvent ordering was the determinant of the direction of the change. The parameter alpha, determined from the activity coefficient of water, representing the deviation of aW from that of the ideal solution, was useful as a quantitative index of the solvent ordering showing good correlations with the unfolding temperature and enthalpy of lysozyme and alpha-chymotrypsinogen A and also with the thermal deactivation rate constant of YADH at a constant aW. Solvent ordering seemed to affect the thermal stability of proteins mainly through its effect on the intramolecular hydrophobic interaction among amino acid residues in a protein molecule but the contribution of the electrostatic interaction including hydrogen bonding through the change in permittivity of solution was also suggested.

  6. Effects of Abdominal Hollowing During Stair Climbing on the Activations of Local Trunk Stabilizing Muscles: A Cross-Sectional Study

    PubMed Central

    Lee, Ah Young; Kim, Eun Hyuk; Cho, Yun Woo; Kwon, Sun Oh; Son, Su Min

    2013-01-01

    Objective To examine using surface electromyography whether stair climbing with abdominal hollowing (AH) is better at facilitating local trunk muscle activity than stair climbing without AH. Methods Twenty healthy men with no history of low back pain participated in the study. Surface electrodes were attached to the multifidus (MF), lumbar erector spinae, thoracic erector spinae, transverse abdominus - internal oblique abdominals (TrA-IO), external oblique abdominals (EO), and the rectus abdominis. Amplitudes of electromyographic signals were measured during stair climbing. Study participants performed maximal voluntary contractions (MVC) for each muscle in various positions to normalize the surface electromyography data. Results AH during stair climbing resulted in significant increases in normalized MVCs in both MFs and TrA-IOs (p<0.05). Local trunk muscle/global trunk muscle ratios were higher during stair climbing with AH as compared with stair climbing without AH. Especially, right TrA-IO/EO and left TrA-IO/EO were significantly increased (p<0.05). Conclusion Stair climbing with AH activates local trunk stabilizing muscles better than stair climbing without AH. The findings suggest that AH during stair climbing contributes to trunk muscle activation and trunk stabilization. PMID:24466515

  7. Enzymatic Synthesis of l-Ascorbyl Fatty Acid Esters Under Ultrasonic Irradiation and Comparison of Their Antioxidant Activity and Stability.

    PubMed

    Jiang, Chen; Lu, Yuyun; Li, Zhuo; Li, Cunzhi; Yan, Rian

    2016-06-01

    A series of novel l-ascorbyl fatty acid esters were synthesized by catalization of Novozym(®) 435 under ultrasonic irradiation and characterized by infrared spectroscopy, electrospray ionization mass spectra, and nuclear magnetic resonance. Their properties especially antioxidant activity and stability were investigated. The results showed that the reducing power, the scavenging activity of hydroxyl radical and 2,2-diphenyl-1-picrylhydrazyl radical were decreased with the increase of the number of carbon atoms in fatty acid. The hydroxyl radical scavenging activity and reducing power of l-ascorbyl saturated fatty acid esters were better than that of tert-butylhydroquinone. The induction period in lipid oxidation of l-ascorbyl saturated fatty acid esters and tert-butylhydroquinone were longer than that of l-ascorbyl unsaturated fatty acid esters and l-ascorbic acid both in soybean oil and lard. Besides, the l-ascorbyl fatty acid esters showed different stabilities in different conditions by comparing with l-ascorbic acid, and the l-ascorbyl saturated fatty acid esters were more stable than l-ascorbyl unsaturated fatty acid esters in ethanol solution. PMID:27100741

  8. Epsin is required for Dishevelled stability and Wnt signalling activation in colon cancer development.

    PubMed

    Chang, Baojun; Tessneer, Kandice L; McManus, John; Liu, Xiaolei; Hahn, Scott; Pasula, Satish; Wu, Hao; Song, Hoogeun; Chen, Yiyuan; Cai, Xiaofeng; Dong, Yunzhou; Brophy, Megan L; Rahman, Ruby; Ma, Jian-Xing; Xia, Lijun; Chen, Hong

    2015-03-16

    Uncontrolled canonical Wnt signalling supports colon epithelial tumour expansion and malignant transformation. Understanding the regulatory mechanisms involved is crucial for elucidating the pathogenesis of and will provide new therapeutic targets for colon cancer. Epsins are ubiquitin-binding adaptor proteins upregulated in several human cancers; however, the involvement of epsins in colon cancer is unknown. Here we show that loss of intestinal epithelial epsins protects against colon cancer by significantly reducing the stability of the crucial Wnt signalling effector, dishevelled (Dvl2), and impairing Wnt signalling. Consistently, epsins and Dvl2 are correspondingly upregulated in colon cancer. Mechanistically, epsin binds Dvl2 via its epsin N-terminal homology domain and ubiquitin-interacting motifs and prohibits Dvl2 polyubiquitination and degradation. Our findings reveal an unconventional role for epsins in stabilizing Dvl2 and potentiating Wnt signalling in colon cancer cells to ensure robust colon cancer progression. The pro-carcinogenic role of Epsins suggests that they are potential therapeutic targets to combat colon cancer.

  9. Hybrid nanomaterial for stabilizing the antibiofilm activity of Eugenia carryophyllata essential oil.

    PubMed

    Grumezescu, Alexandru Mihai; Chifiriuc, Mariana Carmen; Saviuc, Crina; Grumezescu, Valentina; Hristu, Radu; Mihaiescu, Dan Eduard; Stanciu, George A; Andronescu, Ecaterina

    2012-12-01

    The aim of the present study was to demonstrate that Fe(3)O(4)/oleic acid core/shell nanostructures could be used as systems for stabilizing the Eugenia carryophyllata essential oil (EO) on catheter surface pellicles, in order to improve their resistance to fungal colonization. EO microwave assisted extraction was performed in a Neo-Clevenger (related) device and its chemical composition was settled by GC-MS analysis. Fe(3)O(4)/oleic acid-core/shell nanoparticles (NP) were obtained by a precipitation method under microwave condition. High resolution transmission electron microscopy (HR-TEM) was used as a primary characterization method. The NPs were processed to achieve a core/shell/EO coated-shell nanosystem further used for coating the inner surface of central venous catheter samples. The tested fungal strains have been recently isolated from different clinical specimens. The biofilm architecture was assessed by confocal laser scanning microscopy (CLSM). Our results claim the usage of hybrid nanomaterial (core/shell/coated-shell) for the stabilization of E. carryophyllata EO, which prevented or inhibited the fungal biofilm development on the functionalized catheter, highlighting the opportunity of using these nanosystems to obtain improved, anti-biofilm coatings for biomedical applications. PMID:22949098

  10. [Poly (allylamine)-stabilized colloidal copper nanoparticles: synthesis and their SERS activities].

    PubMed

    Wang, Yan-Fei; Xiao, Zhan-Min; Zhang, Chun-Guang

    2012-06-01

    Poly(allylamine)-stabilized spherical and rod-shaped copper nanoparticles were synthesized by a simple chemical reaction. The synthesis was performed by the reduction of copper (II) salt with hydrazine in aqueous solution under atmospheric air in the presence of poly(allylamine) (PAAm) capping agent. Besides providing long-term stability to the nanoparticles by preventing particle agglomeration, polymer capping agents such as PAAm make the particles dispersible in aqueous solution. Noteworthy advantages of the synthetic method include its production of water dispersible nanoparticles at room temperature without inert atmosphere, making the synthesis more environmentally friendly. The resulting copper nanoparticles were investigated by UV-Vis spectroscopy and transmission electron microscopy. The authors found that several factors, including the amount of NaOH solution, concentration of PAAm, and reaction time, affect the composition, size, morphology, and degree of agglomeration of the resulting copper nanoparticles. The amount of NaOH in the reaction is crucial for the synthesis to result in either pure copper or copper oxide-containing copper nanoparticles as well as to produce the highest possible yield of copper nanoparticles. In addition, the reaction time and concentration of PAAm play key roles in controlling the size and shape of the nanoparticles, respectively. The resulting colloidal copper nanoparticles exhibit large surface-enhanced Raman spectroscopy (SERS) signals. PMID:22870639

  11. Improving the activity and stability of actinidin by immobilization on gold nanorods.

    PubMed

    Homaei, Ahmad; Etemadipour, Rasoul

    2015-01-01

    Immobilization of actinidin was carried out by ionic exchange and hydrophobic interactions on gold nanorods synthesized via sequential seed-mediated growth method. The optimum temperature of actinidin increased from 40 to 60 °C and its optimum pH was shifted from 7 to 8.5 upon immobilization. The kinetic parameters, K(m) and k(cat), were found to be 12.5 μM and 29.2 s(-1) for free and 15.92 μM and 20.74 s(-1) for immobilized actinidin, respectively. Immobilization process caused significant enhancement of shelf-life stability and resistance against the inhibitory effects of various bivalent metal ions with respect to actinidin. Enzymes show higher functionality than the free form when incubated for long time (1h) at 80 °C and at extreme pH values (3 and 12). The reasons of this enhanced stability of immobilized actinidin are discussed. PMID:25450831

  12. Enhanced photocatalytic activity of a self-stabilized synthetic flavin anchored on a TiO2 surface.

    PubMed

    Pandiri, Manjula; Hossain, Mohammad S; Foss, Frank W; Rajeshwar, Krishnan; Paz, Yaron

    2016-07-21

    Synthetic flavin molecules were anchored on Degussa P25 titanium dioxide (TiO2). The effect of their presence on the photocatalytic (PC) activity of TiO2 was studied. Under UV light, an increase in the degradation rate of ethanol was observed. This increase was accompanied by stabilization of the anchored flavin against self-degradation. The unprecedented stabilization effect was found also in the absence of a reducing agent such as ethanol. In contrast, under the less energetic visible light, fast degradation of the anchored flavin was observed. These rather surprising observations were attributed to the propensity for charge transport from excited flavin molecules to the semiconductor and to the role that such charge transfer may play in stabilizing the overall assembly. Anchored flavins excited by UV light to their S2, S3 electronic states were able to transfer the excited electrons to the TiO2 phase whereas anchored flavin molecules that were excited by visible light to the S1 state were less likely to transfer the photo-excited electrons and therefore were destabilized. These findings may be relevant not only to anchored flavins in general but to other functionalized photocatalysts, and may open up new vistas in the implementation of sensitizers in PC systems. PMID:27346787

  13. Integrated chassis control of active front steering and yaw stability control based on improved inverse nyquist array method.

    PubMed

    Zhu, Bing; Chen, Yizhou; Zhao, Jian

    2014-01-01

    An integrated chassis control (ICC) system with active front steering (AFS) and yaw stability control (YSC) is introduced in this paper. The proposed ICC algorithm uses the improved Inverse Nyquist Array (INA) method based on a 2-degree-of-freedom (DOF) planar vehicle reference model to decouple the plant dynamics under different frequency bands, and the change of velocity and cornering stiffness were considered to calculate the analytical solution in the precompensator design so that the INA based algorithm runs well and fast on the nonlinear vehicle system. The stability of the system is guaranteed by dynamic compensator together with a proposed PI feedback controller. After the response analysis of the system on frequency domain and time domain, simulations under step steering maneuver were carried out using a 2-DOF vehicle model and a 14-DOF vehicle model by Matlab/Simulink. The results show that the system is decoupled and the vehicle handling and stability performance are significantly improved by the proposed method.

  14. Chemical modification of turnip peroxidase with methoxypolyethylene glycol enhances activity and stability for phenol removal using the immobilized enzyme.

    PubMed

    Quintanilla-Guerrero, F; Duarte-Vázquez, M A; Tinoco, R; Gómez-Suárez, M; García-Almendárez, B E; Vazquez-Duhalt, R; Regalado, C

    2008-09-10

    Peroxidase from turnip roots (TP) was isolated followed by modification with methoxypolyethylene glycol (MPEG). The catalytic activity of the modified TP (MTP) on ABTS increased 2.5 times after 80 min of reaction. MTP showed a KM similar value to that of TP, but a significantly greater kcat for ABTS oxidation, in aqueous buffer. Chemical modification produced an enhanced stability in organic solvents and increased thermal stability of about 4 times that of TP, in aqueous buffer at 70 degrees C. Circular dichroism showed that MPEG modification decreased TP alpha-helical structure from 26 to 16% and increased beta-turns from 26 to 34%, resulting in an enhanced conformational stability. The temperature at the midpoint of thermal denaturation (melting temperature) increased from 57 to 63 degrees C after modification. MTP was immobilized in alginate beads (IMTP) and tested for oxidative polymerization of concentrated phenolic synthetic solutions, achieving 17 effective contact cycles removing >65% phenols. IMTP may be useful for the development of an enzymatic process for wastewater effluent treatment. PMID:18698787

  15. Enhanced photocatalytic activity of a self-stabilized synthetic flavin anchored on a TiO2 surface.

    PubMed

    Pandiri, Manjula; Hossain, Mohammad S; Foss, Frank W; Rajeshwar, Krishnan; Paz, Yaron

    2016-07-21

    Synthetic flavin molecules were anchored on Degussa P25 titanium dioxide (TiO2). The effect of their presence on the photocatalytic (PC) activity of TiO2 was studied. Under UV light, an increase in the degradation rate of ethanol was observed. This increase was accompanied by stabilization of the anchored flavin against self-degradation. The unprecedented stabilization effect was found also in the absence of a reducing agent such as ethanol. In contrast, under the less energetic visible light, fast degradation of the anchored flavin was observed. These rather surprising observations were attributed to the propensity for charge transport from excited flavin molecules to the semiconductor and to the role that such charge transfer may play in stabilizing the overall assembly. Anchored flavins excited by UV light to their S2, S3 electronic states were able to transfer the excited electrons to the TiO2 phase whereas anchored flavin molecules that were excited by visible light to the S1 state were less likely to transfer the photo-excited electrons and therefore were destabilized. These findings may be relevant not only to anchored flavins in general but to other functionalized photocatalysts, and may open up new vistas in the implementation of sensitizers in PC systems.

  16. Integrated Chassis Control of Active Front Steering and Yaw Stability Control Based on Improved Inverse Nyquist Array Method

    PubMed Central

    2014-01-01

    An integrated chassis control (ICC) system with active front steering (AFS) and yaw stability control (YSC) is introduced in this paper. The proposed ICC algorithm uses the improved Inverse Nyquist Array (INA) method based on a 2-degree-of-freedom (DOF) planar vehicle reference model to decouple the plant dynamics under different frequency bands, and the change of velocity and cornering stiffness were considered to calculate the analytical solution in the precompensator design so that the INA based algorithm runs well and fast on the nonlinear vehicle system. The stability of the system is guaranteed by dynamic compensator together with a proposed PI feedback controller. After the response analysis of the system on frequency domain and time domain, simulations under step steering maneuver were carried out using a 2-DOF vehicle model and a 14-DOF vehicle model by Matlab/Simulink. The results show that the system is decoupled and the vehicle handling and stability performance are significantly improved by the proposed method. PMID:24782676

  17. Surfactant-stabilized small hydrogel particles in oil: hosts for remarkable activation of enzymes in organic solvents.

    PubMed

    Das, Dibyendu; Roy, Sangita; Debnath, Sisir; Das, Prasanta Kumar

    2010-04-26

    Hydrogels of amino acid based cationic surfactant having C(16) tails were used to immobilize heme proteins and enzyme. These hydrogel-entrapped proteins/enzyme showed remarkable activation when dispersed in organic solvent. The activation effect (ratio of the activity of the hydrogel-entrapped enzyme in organic solvent to the activity of the native enzyme in water) of cytochrome c increased up to 350-fold with varying protein and gelator concentration. Hydrogel-entrapped hemoglobin and horseradish peroxidase (HRP) also showed markedly improved activity in organic solvent. Alteration in the structure of the gelator and its supramolecular arrangement showed that the protein immobilized within amphiphilic networks with larger interstitial space exhibited higher activation. This striking activation of hydrogel-entrapped proteins stems from the following effects: 1) the hydrophilic domain of the amphiphilic networks facilitates accessibility of the enzyme to the water-soluble substrate. 2) the surfactant, as an integral part of the amphiphilic network, assists in the formation of a distinct interface through which reactants and products are easily transferred between hydrophilic and hydrophobic domains. 3) Surfactant gelators help in the dispersion and stabilization of gel matrix into small particles in organic solvent, which enhances the overall surface area and results in improved mass transfer. The activation was dramatically improved up to 675-fold in the presence of nongelating anionic surfactants that helped in disintegration of the gel into further smaller-sized particles. Interestingly, hydrogel-immobilized HRP exhibited about 2000-fold higher activity in comparison to the activity of the suspended enzyme in toluene. Structural changes of the entrapped enzyme and the morphology of the matrix were investigated to understand the mechanism of this activation.

  18. Concurrent Intervention With Exercises and Stabilized Tumor Necrosis Factor Inhibitor Therapy Reduced the Disease Activity in Patients With Ankylosing Spondylitis

    PubMed Central

    Liang, Hui; Li, Wen-Rong; Zhang, Hua; Tian, Xu; Wei, Wei; Wang, Chun-Mei

    2015-01-01

    Abstract Since the use of tumor necrosis factor (TNF) inhibitor therapy is becoming wider, the effects of concurrent intervention with exercises and stabilized TNF inhibitors therapy in patients with ankylosing spondylitis (AS) are different. The study aimed to objectively evaluate whether concurrent intervention with exercises and stabilized TNF inhibitors can reduce the disease activity in patients with AS. A search from PubMed, Web of Science, EMBASE, and the Cochrane Library was electronically performed to collect studies which compared concurrent intervention with exercise and TNF inhibitor to conventional approach in terms of disease activity in patients with AS published from their inception to June 2015. Studies that measured the Bath Ankylosing Spondylitis Functional Index (BASFI), the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), the Bath Ankylosing Spondylitis Metrology Index (BASMI), and chest expansion as outcomes were included. Two independent investigators screened the identified articles, extracted the data, and assessed the methodological quality of the included studies. Quantitative analysis was performed with Review Manager (RevMan) software (version 5.3.0). A total of 5 studies comprising 221 participants were included in the study. Meta-analyses showed that concurrent intervention with exercises and stabilized TNF inhibitors therapy significantly reduced the BASMI scores (MD, −0.99; 95% CI, −1.61 to −0.38) and BASDAI scores (MD, −0.58; 95% CI, −1.10 to −0.06), but the BASFI scores (MD, −0.31; 95% CI, −0.76 to 0.15) was not reduced, and chest expansion (MD, 0.80; 95% CI, −0.18 to 1.78) was not increased. Concurrent intervention with exercises and stabilized TNF inhibitors therapy can reduce the disease activity in patients with AS. More randomized controlled trials (RCTs) with high-quality, large-scale, and appropriate follow-up are warranted to further establish the benefit of concurrent intervention with

  19. The Contribution of the Activation Entropy to the Gas-Phase Stability of Modified Nucleic Acid Duplexes

    NASA Astrophysics Data System (ADS)

    Hari, Yvonne; Dugovič, Branislav; Istrate, Alena; Fignolé, Annabel; Leumann, Christian J.; Schürch, Stefan

    2016-07-01

    Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes.

  20. Homologous Alkalophilic and Acidophilic L-Arabinose isomerases reveal region-specific contributions to the pH dependence of activity and stability.

    PubMed

    Lee, Sang-Jae; Lee, Sang Jun; Lee, Yong-Jik; Kim, Seong-Bo; Kim, Sung-Kun; Lee, Dong-Woo

    2012-12-01

    To study the pH dependence of l-arabinose isomerase (AI) activity and stability, we compared homologous AIs with their chimeras. This study demonstrated that an ionizable amino acid near the catalytic site determines the optimal pH (pH(opt)) for activity, whereas the N-terminal surface R residues play an important role in determining the pH(opt) for stability.

  1. Activation Layer Stabilization of High Polarization Photocathodes in Sub-Optimal RF Gun Environments

    SciTech Connect

    Gregory A. Mulhollan

    2010-11-16

    Specific activation recipes for bulk, 100 nm thick MBE grown and high polarization III-V photocathode material have been developed which mitigate the effects of exposure to background gasses. Lifetime data using four representative gasses were acquired for bulk GaAs, 100 nm unstrained GaAs and strained superlattice GaAs/GaAsP, all activated both with Cs and then Cs and Li (bi-alkali). Each photoemitter showed marked resilience improvement when activated using the bi-alkali recipe compared to the standard single alkali recipe. A dual alkali activation system at SLAC was constructed, baked and commissioned with the purpose of performing spin-polarization measurements on electrons emitted from the bi-alkali activated surfaces. An end station at SSRL was configured with the required sources for energy resolved photoemission measurements on the bi-alkali activated and CO2 dosed surfaces. The bi-alkali recipes were successfully implemented at SLAC/SSRL. Measurements at SLAC of the photoelectron spin-polarization from the modified activation surface showed no sign of a change in value compared to the standard activated material, i.e., no ill effects. Analysis of photoemission data indicates that the addition of Li to the activation layer results in a multi-layer structure. The presence of Li in the activation layer also acts as an inhibitor to CO2 absorption, hence better lifetimes in worse vacuum were achieved. The bi-alkali activation has been tested on O2 activated GaAs for comparison with NF3 activated surfaces. Comparable resilience to CO2 exposure was achieved for the O2 activated surface. An RF PECVD amorphous silicon growth system was modified to allow high temperature heat cleaning of GaAs substrates prior to film deposition. Growth versus thickness data were collected. Very thin amorphous silicon germanium layers were optimized to exhibit good behavior as an electron emitter. Growth of the amorphous silicon germanium films on the above substrates was fine tuned

  2. Density Functional Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires

    SciTech Connect

    Matanovic, Ivana; Kent, Paul; Garzon, Fernando; Henson, Neil J.

    2013-03-14

    We used density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5–1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, non-hollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity toward the oxygen reduction reaction of platinum nanowires was assessed by studying the change in the chemisorption energies of oxygen, hydroxyl, and hydroperoxyl groups, induced by converting the nanotube models to nanowires. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Single-wall nanotubes and platinum nanowires with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.

  3. Theoretical Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires

    SciTech Connect

    Matanovic, Ivana; Kent, Paul; Garzon, Fernando; Henson, Neil J.

    2012-10-10

    We use density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5- 1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, nonhollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity towards the oxygen reduction reaction of platinum nanowires was addressed by studying the change in the chemisorption energies of oxygen and hydroxyl groups, induced by inserting the inner chain of platinum atoms into the hollow nanotubes. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Nanotubes with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.

  4. Evaluation of Stability and Biological Activity of Solid Nanodispersion of Lambda-Cyhalothrin

    PubMed Central

    Cui, Bo; Feng, Lei; Pan, Zhenzhong; Yu, Manli; Zeng, Zhanghua; Sun, Changjiao; Zhao, Xiang; Wang, Yan; Cui, Haixin

    2015-01-01

    Pesticides are essential agrochemicals used to protect plants from diseases, pests and weeds. However, the formulation defects of conventional pesticides cause food toxicity and ecological environmental problems. In this study, a novel, efficient and environmentally friendly formulation of lambda-cyhalothrin, a solid nanodispersion, was successfully developed based on melt-emulsification and high-speed shearing methods. The solid nanodispersion presented excellent advantages over conventional pesticide formulations in such formulation functions as dispersibility, stability and bioavailability. The formulation is free of organic solvents, and the use of surfactant is reduced. Therefore, the application of the solid nanodispersion in crop production will improve efficacy and reduce the occurrence of both pesticide residues in food and environmental pollution from pesticides. PMID:26281043

  5. Stabilization of active matter by flow-vortex lattices and defect ordering

    PubMed Central

    Doostmohammadi, Amin; Adamer, Michael F.; Thampi, Sumesh P.; Yeomans, Julia M.

    2016-01-01

    Active systems, from bacterial suspensions to cellular monolayers, are continuously driven out of equilibrium by local injection of energy from their constituent elements and exhibit turbulent-like and chaotic patterns. Here we demonstrate both theoretically and through numerical simulations, that the crossover between wet active systems, whose behaviour is dominated by hydrodynamics, and dry active matter where any flow is screened, can be achieved by using friction as a control parameter. Moreover, we discover unexpected vortex ordering at this wet–dry crossover. We show that the self organization of vortices into lattices is accompanied by the spatial ordering of topological defects leading to active crystal-like structures. The emergence of vortex lattices, which leads to the positional ordering of topological defects, suggests potential applications in the design and control of active materials. PMID:26837846

  6. Stabilization of active matter by flow-vortex lattices and defect ordering

    NASA Astrophysics Data System (ADS)

    Doostmohammadi, Amin; Adamer, Michael F.; Thampi, Sumesh P.; Yeomans, Julia M.

    2016-02-01

    Active systems, from bacterial suspensions to cellular monolayers, are continuously driven out of equilibrium by local injection of energy from their constituent elements and exhibit turbulent-like and chaotic patterns. Here we demonstrate both theoretically and through numerical simulations, that the crossover between wet active systems, whose behaviour is dominated by hydrodynamics, and dry active matter where any flow is screened, can be achieved by using friction as a control parameter. Moreover, we discover unexpected vortex ordering at this wet-dry crossover. We show that the self organization of vortices into lattices is accompanied by the spatial ordering of topological defects leading to active crystal-like structures. The emergence of vortex lattices, which leads to the positional ordering of topological defects, suggests potential applications in the design and control of active materials.

  7. Stabilization of active matter by flow-vortex lattices and defect ordering.

    PubMed

    Doostmohammadi, Amin; Adamer, Michael F; Thampi, Sumesh P; Yeomans, Julia M

    2016-01-01

    Active systems, from bacterial suspensions to cellular monolayers, are continuously driven out of equilibrium by local injection of energy from their constituent elements and exhibit turbulent-like and chaotic patterns. Here we demonstrate both theoretically and through numerical simulations, that the crossover between wet active systems, whose behaviour is dominated by hydrodynamics, and dry active matter where any flow is screened, can be achieved by using friction as a control parameter. Moreover, we discover unexpected vortex ordering at this wet-dry crossover. We show that the self organization of vortices into lattices is accompanied by the spatial ordering of topological defects leading to active crystal-like structures. The emergence of vortex lattices, which leads to the positional ordering of topological defects, suggests potential applications in the design and control of active materials. PMID:26837846

  8. Evaluation of antioxidant activity of green tea extract and its effect on the biscuits lipid fraction oxidative stability.

    PubMed

    Mildner-Szkudlarz, S; Zawirska-Wojtasiak, R; Obuchowski, W; Gośliński, M

    2009-10-01

    This article investigates the effect of green tea extract (GTE) on biscuits lipid fraction oxidative stability. The antioxidant activity of GTE was compared with commonly used synthetic antioxidant butylated hydroxyanisole (BHA). Biscuits were prepared in 3 variations. Control samples were prepared without addition of antioxidants. The other variations were prepared by adding BHA (0.02%) and GTE at 3 different levels: 0.02%, 0.1%, and 1%. Biscuits were subjected to sensory studies and instrumental and chemical analysis. Phenolic compounds of GTE characterized powerful antioxidant activities evaluated using free radical, 2,2-diphenyl-1-picrylhydrazyl method, compared with gallic acid and significantly better than BHA. Antioxidants added to the samples clearly slowed down the process of oxidation of fatty acids, inhibiting the monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) decomposition. Addition of GTE at the level of 1% gave an excellent antioxidant effect on the biscuits lipid stability, inhibiting hydroperoxides formation by about 47% to 73% compared with BHA, which showed about 16% to 60% inhibition. However, GTE did not improve significantly lipid stability, measured by anisidine value (p-AV), and inhibited formation of secondary oxidation products only by 3.5%. After accelerated storage time, insensitivity of oxidized-like flavor was about 2 times higher for control samples compared to samples with addition of antioxidants. Moreover, after storage biscuits treated with natural antioxidant received a higher panel score of overall acceptance compared to samples with BHA. Using volatile compound formation as a marker of lipid oxidation, both GTE and BHA were effective inhibitors of the decomposition of hydroperoxides.

  9. Preformulation studies of novel 5'-O-carbonates of lamivudine with biological activity: solubility and stability assays.

    PubMed

    Gualdesi, María S; Ravetti, Soledad; Raviolo, Mónica A; Briñón, Margarita C

    2014-09-01

    As a part of preformulation studies, the aim of this work was to examine the solubility and stability of a series of 5'-O-carbonates of lamivudine with proven antihuman immunodeficiency virus activity. Solubility studies were carried out using pure solvents (water, ethanol and polyethylene glycol 400 [PEG 400]), as well as cosolvents in binary mixture systems (water-ethanol and water-PEG 400). These ionizable compounds showed that their aqueous solubility is decreasing as the carbon length of the substituent moiety increases, but being enhanced as the pH was reduced from 7.4 to 1.2. Thus, 3TC-Metha an active compound of the series, with an intrinsic solubility at 25 °C of 17 mg/mL, was about 70 times more soluble than 3TC-Octa (0.24 mg/mL), and at pHs of 1.2, 5.8 and 7.4 had intrinsic solubilities of 36.48, 19.20 and 15.40 mg/mL, respectively. In addition, the solubility was enhanced significantly by using ethanol and PEG 400 as cosolvents. A stability study was conducted in buffer solutions at pH 1.2, 5.8, 7.4 and 13.0 and in human plasma at 37 °C. Stability-indicating high-performance liquid chromatography procedure was found to be selective, sensitive and accurate for these compounds and good recovery, linearity and precision were also observed.

  10. A Heparin-Mimicking Block Copolymer Both Stabilizes and Increases the Activity of Fibroblast Growth Factor 2 (FGF2)

    PubMed Central

    2016-01-01

    Fibroblast growth factor 2 (FGF2) is a protein involved in cellular functions in applications such as wound healing and tissue regeneration. Stabilization of this protein is important for its use as a therapeutic since the native protein is unstable during storage and delivery. Additionally, the ability to increase the activity of FGF2 is important for its application, particularly in chronic wound healing and the treatment of various ischemic conditions. Here we report a heparin mimicking block copolymer, poly(styrenesulfonate-co-poly(ethylene glycol) methyl ether methacrylate)-b-vinyl sulfonate) (p(SS-co-PEGMA)-b-VS, that contains a segment that enhances the stability of FGF2 and one that binds to the FGF2 receptor. The FGF2 conjugate retained activity after exposure to refrigeration (4 °C) and room temperature (23 °C) for 7 days, while unmodified FGF2 was inactive after these standard storage conditions. A cell study performed with a cell line lacking native heparan sulfate proteoglycans indicated that the conjugated block copolymer facilitated binding of FGF2 to its receptor similar to the addition of heparin to FGF2. A receptor-based enzyme-linked immunosorbant assay (ELISA) confirmed the results. The conjugate also increased the migration of endothelial cells by 80% compared to FGF2 alone. Additionally, the FGF2-p(SS-co-PEGMA)-b-VS stimulated endothelial cell sprouting 250% better than FGF2 at low concentration. These data verify that this rationally designed protein-block copolymer conjugate enhances receptor binding, cellular processes such as migration and tube-like formation, and stability, and suggest that it may be useful for applications in biomaterials, tissue regeneration, and wound healing. PMID:27580376

  11. Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II.

    PubMed

    Deupi, Xavier; Edwards, Patricia; Singhal, Ankita; Nickle, Benjamin; Oprian, Daniel; Schertler, Gebhard; Standfuss, Jörg

    2012-01-01

    G protein-coupled receptors (GPCR) are seven transmembrane helix proteins that couple binding of extracellular ligands to conformational changes and activation of intracellular G proteins, GPCR kinases, and arrestins. Constitutively active mutants are ubiquitously found among GPCRs and increase the inherent basal activity of the receptor, which often correlates with a pathological outcome. Here, we have used the M257Y(6.40) constitutively active mutant of the photoreceptor rhodopsin in combination with the specific binding of a C-terminal fragment from the G protein alpha subunit (GαCT) to trap a light activated state for crystallization. The structure of the M257Y/GαCT complex contains the agonist all-trans-retinal covalently bound to the native binding pocket and resembles the G protein binding metarhodopsin-II conformation obtained by the natural activation mechanism; i.e., illumination of the prebound chromophore 11-cis-retinal. The structure further suggests a molecular basis for the constitutive activity of 6.40 substitutions and the strong effect of the introduced tyrosine based on specific interactions with Y223(5.58) in helix 5, Y306(7.53) of the NPxxY motif and R135(3.50) of the E(D)RY motif, highly conserved residues of the G protein binding site.

  12. In vitro antibacterial activity and beta-lactamase stability of a new carbapenem, BO-2727.

    PubMed Central

    Inoue, K; Hamana, Y; Mitsuhashi, S

    1995-01-01

    The in vitro activity of BO-2727, a new carbapenem, was compared with those of meropenem, biapenem, imipenem, and ceftazidime. BO-2727 was four- or eightfold more active than the other carbapenems against methicillin-resistant staphylococci and Pseudomonas aeruginosa strains, including imipenem- and ceftazidime-resistant bacteria. BO-2727 was quite stable to penicillinases, cephalosporinases, and oxyiminocephalosporinases, but not to metallo-beta-lactamase. Time-kill studies against Staphylococcus aureus Smith, Escherichia coli ML4707, and P. aeruginosa GN11189 showed that BO-2727 has potent bactericidal activity at concentrations greater than the MIC. PMID:8619591

  13. Ionic Polymer-Coated Laccase with High Activity and Enhanced Stability: Application in the Decolourisation of Water Containing AO7

    PubMed Central

    Zhang, Xiaolin; Hua, Ming; Lv, Lu; Pan, Bingcai

    2015-01-01

    Eliminating dyes in environmental water purification remains a formidable challenge. Laccase is a unique, environmentally friendly and efficient biocatalyst that can degrade pollutants. However, the use of laccase for the degradation of pollutants is considerably limited by its susceptibility to environmental changes and its poor reusability. We fabricated a novel biocatalyst (LacPG) by coating polyethylenimine onto the native laccase (Lac) followed by crosslinking with glutaraldehyde. The stability of the resulting LacPG was highly enhanced against pH variations, thermal treatments and provided better long-term storage with a negligible loss in enzymatic activity. Compared to Lac, LacPG exhibited significantly higher decolourisation efficiency in the degradation of a representative azo dye, acid orange 7 (AO7), which resulted from the electrostatic attraction between the coating and AO7. LacPG was separated from the AO7 solution using an ultrafiltration unit. The increased size and modified surface chemistry of LacPG facilitated ultrafiltration and reduced membrane fouling. LacPG exhibited enhanced stability, high catalytic activity and favourable properties for membrane separation; therefore, LacPG could be continuously reused in an enzymatic membrane reactor with a high efficiency for decolourising water containing AO7. The developed strategy appears to be promising for enhancing the applicability of laccase in practical water treatment. PMID:25652843

  14. GTP-binding of ARL-3 is activated by ARL-13 as a GEF and stabilized by UNC-119

    PubMed Central

    Zhang, Qing; Li, Yan; Zhang, Yuxia; Torres, Vicente E.; Harris, Peter C.; Ling, Kun; Hu, Jinghua

    2016-01-01

    Primary cilia are sensory organelles indispensable for organogenesis and tissue pattern formation. Ciliopathy small GTPase ARLs are proposed as prominent ciliary switches, which when disrupted result in dysfunctional cilia, yet how ARLs are activated remain elusive. Here, we discover a novel small GTPase functional module, which contains ARL-3, ARL-13, and UNC-119, localizes near the poorly understood inversin (InV)-like compartment in C. elegans. ARL-13 acts synergistically with UNC-119, but antagonistically with ARL-3, in regulating ciliogenesis. We demonstrate that ARL-3 is a unique small GTPase with unusual high intrinsic GDP release but low intrinsic GTP binding rate. Importantly, ARL-13 acts as a nucleotide exchange factor (GEF) of ARL-3, while UNC-119 can stabilize the GTP binding of ARL-3. We further show that excess inactivated ARL-3 compromises ciliogenesis. The findings reveal a novel mechanism that one ciliopathy GTPase ARL-13, as a GEF, coordinates with UNC-119, which may act as a GTP-binding stabilizing factor, to properly activate another GTPase ARL-3 in cilia, a regulatory process indispensable for ciliogenesis. PMID:27102355

  15. Ionic Polymer-Coated Laccase with High Activity and Enhanced Stability: Application in the Decolourisation of Water Containing AO7

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolin; Hua, Ming; Lv, Lu; Pan, Bingcai

    2015-02-01

    Eliminating dyes in environmental water purification remains a formidable challenge. Laccase is a unique, environmentally friendly and efficient biocatalyst that can degrade pollutants. However, the use of laccase for the degradation of pollutants is considerably limited by its susceptibility to environmental changes and its poor reusability. We fabricated a novel biocatalyst (LacPG) by coating polyethylenimine onto the native laccase (Lac) followed by crosslinking with glutaraldehyde. The stability of the resulting LacPG was highly enhanced against pH variations, thermal treatments and provided better long-term storage with a negligible loss in enzymatic activity. Compared to Lac, LacPG exhibited significantly higher decolourisation efficiency in the degradation of a representative azo dye, acid orange 7 (AO7), which resulted from the electrostatic attraction between the coating and AO7. LacPG was separated from the AO7 solution using an ultrafiltration unit. The increased size and modified surface chemistry of LacPG facilitated ultrafiltration and reduced membrane fouling. LacPG exhibited enhanced stability, high catalytic activity and favourable properties for membrane separation; therefore, LacPG could be continuously reused in an enzymatic membrane reactor with a high efficiency for decolourising water containing AO7. The developed strategy appears to be promising for enhancing the applicability of laccase in practical water treatment.

  16. Handling qualities of a wide-body transport airplane utilizing Pitch Active Control Systems (PACS) for relaxed static stability application

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Person, Lee H., Jr.; Brown, Philip W.; Becker, Lawrence E.; Hunt, George E.; Rising, J. J.; Davis, W. J.; Willey, C. S.; Weaver, W. A.; Cokeley, R.

    1985-01-01

    Piloted simulation studies have been conducted to evaluate the effectiveness of two pitch active control systems (PACS) on the flying qualities of a wide-body transport airplane when operating at negative static margins. These two pitch active control systems consisted of a simple 'near-term' PACS and a more complex 'advanced' PACS. Eight different flight conditions, representing the entire flight envelope, were evaluated with emphasis on the cruise flight conditions. These studies were made utilizing the Langley Visual/Motion Simulator (VMS) which has six degrees of freedom. The simulation tests indicated that (1) the flying qualities of the baseline aircraft (PACS off) for the cruise and other high-speed flight conditions were unacceptable at center-of-gravity positions aft of the neutral static stability point; (2) within the linear static stability flight envelope, the near-term PACS provided acceptable flying qualities for static stabilty margins to -3 percent; and (3) with the advanced PACS operative, the flying qualities were demonstrated to be good (satisfactory to very acceptable) for static stabilty margins to -20 percent.

  17. Ionic polymer-coated laccase with high activity and enhanced stability: application in the decolourisation of water containing AO7.

    PubMed

    Zhang, Xiaolin; Hua, Ming; Lv, Lu; Pan, Bingcai

    2015-01-01

    Eliminating dyes in environmental water purification remains a formidable challenge. Laccase is a unique, environmentally friendly and efficient biocatalyst that can degrade pollutants. However, the use of laccase for the degradation of pollutants is considerably limited by its susceptibility to environmental changes and its poor reusability. We fabricated a novel biocatalyst (LacPG) by coating polyethylenimine onto the native laccase (Lac) followed by crosslinking with glutaraldehyde. The stability of the resulting LacPG was highly enhanced against pH variations, thermal treatments and provided better long-term storage with a negligible loss in enzymatic activity. Compared to Lac, LacPG exhibited significantly higher decolourisation efficiency in the degradation of a representative azo dye, acid orange 7 (AO7), which resulted from the electrostatic attraction between the coating and AO7. LacPG was separated from the AO7 solution using an ultrafiltration unit. The increased size and modified surface chemistry of LacPG facilitated ultrafiltration and reduced membrane fouling. LacPG exhibited enhanced stability, high catalytic activity and favourable properties for membrane separation; therefore, LacPG could be continuously reused in an enzymatic membrane reactor with a high efficiency for decolourising water containing AO7. The developed strategy appears to be promising for enhancing the applicability of laccase in practical water treatment.

  18. The forkhead transcription factor Foxl2 is sumoylated in both human and mouse: sumoylation affects its stability, localization, and activity.

    PubMed

    Marongiu, Mara; Deiana, Manila; Meloni, Alessandra; Marcia, Loredana; Puddu, Alessandro; Cao, Antonio; Schlessinger, David; Crisponi, Laura

    2010-01-01

    The FOXL2 forkhead transcription factor is expressed in ovarian granulosa cells, and mutated FOXL2 causes the blepharophimosis, ptosis and epicanthus inversus syndrome (BPES) and predisposes to premature ovarian failure. Inactivation of Foxl2 in mice demonstrated its indispensability for female gonadal sex determination and ovary development and revealed its antagonism of Sox9, the effector of male testis development. To help to define the regulatory activities of FOXL2, we looked for interacting proteins. Based on yeast two-hybrid screening, we found that FOXL2 interacts with PIAS1 and UBC9, both parts of the sumoylation machinery. We showed that human FOXL2 is sumoylated in transfected cell lines, and that endogenous mouse Foxl2 is comparably sumoylated. This modification changes its cellular localization, stability and transcriptional activity. It is intriguing that similar sumoylation and regulatory consequences have also been reported for SOX9, the male counterpart of FOXL2 in somatic gonadal tissues. PMID:20209145

  19. Titanium oxynitride interlayer to influence oxygen reduction reaction activity and corrosion stability of Pt and Pt-Ni alloy.

    PubMed

    Tan, XueHai; Wang, Liya; Zahiri, Beniamin; Kohandehghan, Alireza; Karpuzov, Dimitre; Lotfabad, Elmira Memarzadeh; Li, Zhi; Eikerling, Michael H; Mitlin, David

    2015-01-01

    A key advancement target for oxygen reduction reaction catalysts is to simultaneously improve both the electrochemical activity and durability. To this end, the efficacy of a new highly conductive support that comprises of a 0.5 nm titanium oxynitride film coated by atomic layer deposition onto an array of carbon nanotubes has been investigated. Support effects for pure platinum and for a platinum (50 at %)/nickel alloy have been considered. Oxynitride induces a downshift in the d-band center for pure platinum and fundamentally changes the platinum particle size and spatial distribution. This results in major enhancements in activity and corrosion stability relative to an identically synthesized catalyst without the interlayer. Conversely, oxynitride has a minimal effect on the electronic structure and microstructure, and therefore, on the catalytic performance of platinum-nickel. Calculations based on density functional theory add insight with regard to compositional segregation that occurs at the alloy catalyst-support interface.

  20. Adenylylation of Tyr77 stabilizes Rab1b GTPase in an active state: A molecular dynamics simulation analysis

    PubMed Central

    Luitz, Manuel P.; Bomblies, Rainer; Ramcke, Evelyn; Itzen, Aymelt; Zacharias, Martin

    2016-01-01

    The pathogenic pathway of Legionella pneumophila exploits the intercellular vesicle transport system via the posttranslational attachment of adenosine monophosphate (AMP) to the Tyr77 sidechain of human Ras like GTPase Rab1b. The modification, termed adenylylation, is performed by the bacterial enzyme DrrA/SidM, however the effect on conformational properties of the molecular switch mechanism of Rab1b remained unresolved. In this study we find that the adenylylation of Tyr77 stabilizes the active Rab1b state by locking the switch in the active signaling conformation independent of bound GTP or GDP and that electrostatic interactions due to the additional negative charge in the switch region make significant contributions. The stacking interaction between adenine and Phe45 however, seems to have only minor influence on this stabilisation. The results may also have implications for the mechanistic understanding of conformational switching in other signaling proteins. PMID:26818796

  1. USP35 activated by miR let-7a inhibits cell proliferation and NF-κB activation through stabilization of ABIN-2

    PubMed Central

    Liu, Chunyan; Wang, Lina; Chen, Weiwen; Zhao, Shihu; Yin, Chunli; Lin, Yani; Jiang, Anli; Zhang, Pengju

    2015-01-01

    Ubiquitin specific protease 35 (USP35) is a member of deubiquitylases (DUBs). It remains largely unknown about the biological role and the regulation mechanism of USP35. Here, we first identified miR let-7a as a positive regulator of USP35 expression and showed that USP35 expression positively correlates with miR let-7a expression in different cancer cell lines and tissues. Then, we showed that USP35 expression was decreased dramatically in the tumor tissues compared with the adjacent non-cancerous tissues. USP35 overexpression inhibited cell proliferation in vitro and inhibited xenograft tumor growth in vivo. Furthermore, we revealed that USP35 acts as a functional DUB and stabilizes TNFAIP3 interacting protein 2 (ABIN-2) by promoting its deubiquitination. Functionally, both ABIN-2 and USP35 could inhibit TNFα-induced NF-κB activation and overexpression of ABIN-2 alleviated USP35-loss induced activation of NF-κB. Collectively, our data indicated that miR let-7a-regulated USP35 can inhibit NF-κB activation by deubiquitination and stabilization of ABIN-2 protein and eventually inhibit cell proliferation. Overall, our study provides a novel rationale of targeting miR let-7a-USP35-ABIN-2 pathway for the therapy of cancer patients. PMID:26348204

  2. EPAC1 activation by cAMP stabilizes CFTR at the membrane by promoting its interaction with NHERF1.

    PubMed

    Lobo, Miguel J; Amaral, Margarida D; Zaccolo, Manuela; Farinha, Carlos M

    2016-07-01

    Cyclic AMP (cAMP) activates protein kinase A (PKA) but also the guanine nucleotide exchange factor 'exchange protein directly activated by cAMP' (EPAC1; also known as RAPGEF3). Although phosphorylation by PKA is known to regulate CFTR channel gating - the protein defective in cystic fibrosis - the contribution of EPAC1 to CFTR regulation remains largely undefined. Here, we demonstrate that in human airway epithelial cells, cAMP signaling through EPAC1 promotes CFTR stabilization at the plasma membrane by attenuating its endocytosis, independently of PKA activation. EPAC1 and CFTR colocalize and interact through protein adaptor NHERF1 (also known as SLC9A3R1). This interaction is promoted by EPAC1 activation, triggering its translocation to the plasma membrane and binding to NHERF1. Our findings identify a new CFTR-interacting protein and demonstrate that cAMP activates CFTR through two different but complementary pathways - the well-known PKA-dependent channel gating pathway and a new mechanism regulating endocytosis that involves EPAC1. The latter might constitute a novel therapeutic target for treatment of cystic fibrosis. PMID:27206858

  3. EPAC1 activation by cAMP stabilizes CFTR at the membrane by promoting its interaction with NHERF1.

    PubMed

    Lobo, Miguel J; Amaral, Margarida D; Zaccolo, Manuela; Farinha, Carlos M

    2016-07-01

    Cyclic AMP (cAMP) activates protein kinase A (PKA) but also the guanine nucleotide exchange factor 'exchange protein directly activated by cAMP' (EPAC1; also known as RAPGEF3). Although phosphorylation by PKA is known to regulate CFTR channel gating - the protein defective in cystic fibrosis - the contribution of EPAC1 to CFTR regulation remains largely undefined. Here, we demonstrate that in human airway epithelial cells, cAMP signaling through EPAC1 promotes CFTR stabilization at the plasma membrane by attenuating its endocytosis, independently of PKA activation. EPAC1 and CFTR colocalize and interact through protein adaptor NHERF1 (also known as SLC9A3R1). This interaction is promoted by EPAC1 activation, triggering its translocation to the plasma membrane and binding to NHERF1. Our findings identify a new CFTR-interacting protein and demonstrate that cAMP activates CFTR through two different but complementary pathways - the well-known PKA-dependent channel gating pathway and a new mechanism regulating endocytosis that involves EPAC1. The latter might constitute a novel therapeutic target for treatment of cystic fibrosis.

  4. Enhancement and stabilization of desulfurization activity of Rhodococcus erythropolis KA2-5-1 by feeding ethanol and sulfur components.

    PubMed

    Yoshikawa, Osamu; Ishii, Yoshitaka; Koizumi, Ken-Ichi; Ohshiro, Takashi; Izumi, Yoshikazu; Maruhashi, Kenji

    2002-01-01

    We developed a fed-batch culture system fed with ethanol and restricted amounts of sulfur compounds to enhance and stabilize the desulfurizing activity in bacterial cells. In this system using dibenzothiophene (DBT) as the sole sulfur source, a desulfurizing bacterium Rhodococcus erythropolis KA2-5-1 cultivated with small amounts of sulfur showed stable desulfurizing activity and a low rate of growth. However, the cells cultured with excess amounts of sulfur showed unstable activity and a high growth rate. DBT had disadvantages as a sulfur source for cultivation because it is immiscible with water and toxic to cells. We then investigated water-soluble sulfur compounds for use as the sole sulfur source for the cultivation of R. erythropolis KA2-5-1 with desulfurizing activity, and found 2-aminoethanesulfonic acid to be the most effective. When 2-aminoethanesulfonic acid was used instead of DBT as the sole sulfur source in the fed-batch fermentation system, R. erythropolis KA2-5-1 showed the highest desulfurizing activity, 111 mmol of 2-HBP/kg-cells/h, a high growth rate (mu = 0.37/h) and a final cell concentration of 20.0 g-dry cells/l during 89 h of cultivation. The production levels of the desulfurizing enzymes in the bacterial cells cultivated with DBT or 2-aminoethanesulfonic acid were evaluated by immunoblot analysis with specific antisera, indicating that the same quantity of desulfurizing enzymes was expressed in both cases.

  5. Electromyographic activity of knee stabilizer muscles during six different balance board stimuli after anterior cruciate ligament surgery.

    PubMed

    Pereira, H M; Nowotny, A H; Santos, A B A N; Cardoso, J R

    2009-01-01

    The purpose of this study was to compare the electrical activity of the knee stabilizers, in patients with ACL (anterior cruciate ligament) reconstructed and uninjured individuals during different balance board stimuli. Eleven post-surgery individuals and eleven uninjured controls participated in the study. The muscular activity of the vastus medialis obliquus, vastus lateralis, semitendinosus, biceps femoris and gastrocnemius medial were analyzed by surface electromyography during the execution of six different balance board activities. All electromyographic data were reported as percentage of RMS mean values obtained in maximal voluntary isometric contractions (MVIC) for each muscle. When comparing the individuals with ACL reconstructed and uninjured controls, minor electromyographic activity was observed (MVIC %) for all the muscles in the surgery group (P < 0.05), however, when comparing each exercise between the groups, a statistically significant difference for vastus lateralis was demonstrated in the floor exercise (P = 0.02) and for gastrocnemius on the round board (P = 0.04). Individuals ACL reconstructed presented a decrease in muscular activity during different balance board stimuli, which suggests that compensatory alterations after ACL may still exist even after a surgery to repair an ACL rupture.

  6. Covalent attachment of cholesterol oxidase and horseradish peroxidase on perlite through silanization: activity, stability and co-immobilization.

    PubMed

    Torabi, Seyed-Fakhreddin; Khajeh, Khosro; Ghasempur, Salehe; Ghaemi, Nasser; Siadat, Seyed-Omid Ranaei

    2007-08-31

    In the present work, co-immobilization of cholesterol oxidase (COD) and horseradish peroxidase (POD) on perlite surface was attempted. The surface of perlite were activated by 3-aminopropyltriethoxysilane and covalently bonded with COD and POD via glutaraldehyde. Enzymes activities have been assayed by spectrophotometric technique. The stabilities of immobilized COD and POD to pH were higher than those of soluble enzymes and immobilization shifted optimum pH of enzymes to the lower pH. Heat inactivation studies showed improved thermostability of the immobilized COD for more than two times, but immobilized POD was less thermostable than soluble POD. Also activity recovery of immobilized COD was about 50% since for immobilized POD was 11%. The K(m) of immobilized enzymes was found slightly lower than that of soluble enzymes. Immobilized COD showed inhibition in its activity at high cholesterol concentration which was not reported for soluble COD before. Co-immobilized enzymes retained 65% of its initial activity after 20 consecutive reactor batch cycles.

  7. Flow Dynamics and Stability of the NE Greenland Ice Stream from Active Seismics and Radar

    NASA Astrophysics Data System (ADS)

    Riverman, K. L.; Alley, R. B.; Anandakrishnan, S.; Christianson, K. A.; Peters, L. E.; Muto, A.

    2015-12-01

    We find that dilatant till facilitates rapid ice flow in central Greenland, and regions of dryer till limit the expansion of ice flow. The Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland, draining 8.4% of the ice sheet's area. Fast ice flow initiates near the ice sheet summit in a region of high geothermal heat flow and extends some 700km downstream to three outlet glaciers along the NE Coast. The flow pattern and stability mechanism of this ice stream are unique to others in Greenland and Antarctica, and merit further study to ascertain the sensitivity of this ice stream to future climate change. In this study, we present the results of the first-ever ground-based geophysical survey of the initiation zone of NEGIS. Based on radar and preliminary seismic data, Christianson et al. (2014, EPSL) propose a flow mechanism for the ice stream based on topographically driven hydropotential lows which generate 'sticky' regions of the bed under the ice stream margins. We further test this hypothesis using a 40km reflection seismic survey across both ice stream margins. We find that regions of 'sticky' bed as observed by the radar survey are coincident with regions of the bed with seismic returns indicating drier subglacial sediments. These findings are further supported by five amplitude-verses-offset seismic surveys indicating dilatant till within the ice stream and consolidated sediments within its margins.

  8. Stability, bioavailability, and ulcerative activity of diclofenac sodium-mastic controlled release tablets.

    PubMed

    Nouh, A T; Abd El-Gawad, A H; Guda, T K

    2010-04-01

    Controlled release tablets containing 50 mg diclofenac sodium (DS) and 40% mastic with other natural additives were prepared. Drug release was examined and stability was studied using non-isothermal and isothermal thermogravimetric analysis (TGA). The bioavailability of two controlled release tablet formulations was studied and compared to that of commercial tablets, and rabbit stomachs were also histologically examined 24 h after administration of the various tablets. Additives of pectin and sodium alginate indicated the controlled release profile of the drug. Non-isothermal TG revealed two stages of thermal decomposition for all formulations. Isothermal TG revealed that degradation of the drug in the tablet formulations follows first-order kinetics. The obtained degradation rate constants at various temperatures were plotted according to the Arrhenius equation. The degradation rate constant at 25°C was determined and used in estimation of shelf life. The obtained shelf lives of all formulations ranged from 3.38-4.92 years. In comparative studies with commercial tablets, the bioavailability of the drug from the two formulated tablets had no statistically significant difference in terms of the AUC and produced prolonged blood levels of DS with a delayed peak. The two controlled release tablet formulations resulted in no histological alterations in the stomach in terms of mucous surface cells and glands; in comparison, commercial tablets resulted in a disrupted mucous layer, necrotic ulcerations, hemorrhaging, and inflammatory cell infiltration along the base of the gastric glands.

  9. Stability of active mantle upwelling revealed by net characteristics of plate tectonics.

    PubMed

    Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H

    2013-06-27

    Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time. PMID:23803848

  10. Stability of antimicrobial activity of peracetic acid solutions used in the final disinfection process.

    PubMed

    Costa, Solange Alves da Silva; Paula, Olívia Ferreira Pereira de; Silva, Célia Regina Gonçalves E; Leão, Mariella Vieira Pereira; Santos, Silvana Soléo Ferreira dos

    2015-01-01

    The instruments and materials used in health establishments are frequently exposed to microorganism contamination, and chemical products are used before sterilization to reduce occupational infection. We evaluated the antimicrobial effectiveness, physical stability, and corrosiveness of two commercial formulations of peracetic acid on experimentally contaminated specimens. Stainless steel specimens were contaminated with Staphylococcus aureus, Escherichia coli, Candida albicans, blood, and saliva and then immersed in a ready peracetic acid solution: 2% Sekusept Aktiv (SA) or 0.25% Proxitane Alpha (PA), for different times. Then, washes of these instruments were plated in culture medium and colony-forming units counted. This procedure was repeated six times per day over 24 non-consecutive days. The corrosion capacity was assessed with the mass loss test, and the concentration of peracetic acid and pH of the solutions were measured with indicator tapes. Both SA and PA significantly eliminated microorganisms; however, the SA solution was stable for only 4 days, whereas PA remained stable throughout the experiment. The concentration of peracetic acid in the SA solutions decreased over time until the chemical was undetectable, although the pH remained at 5. The PA solution had a concentration of 500-400 mg/L and a pH of 2-3. Neither formulation induced corrosion and both reduced the number of microorganisms (p = 0.0001). However, the differences observed in the performance of each product highlight the necessity of establishing a protocol for optimizing the use of each one.

  11. Stability of active mantle upwelling revealed by net characteristics of plate tectonics.

    PubMed

    Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H

    2013-06-27

    Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time.

  12. Stability of antimicrobial activity of peracetic acid solutions used in the final disinfection process.

    PubMed

    Costa, Solange Alves da Silva; Paula, Olívia Ferreira Pereira de; Silva, Célia Regina Gonçalves E; Leão, Mariella Vieira Pereira; Santos, Silvana Soléo Ferreira dos

    2015-01-01

    The instruments and materials used in health establishments are frequently exposed to microorganism contamination, and chemical products are used before sterilization to reduce occupational infection. We evaluated the antimicrobial effectiveness, physical stability, and corrosiveness of two commercial formulations of peracetic acid on experimentally contaminated specimens. Stainless steel specimens were contaminated with Staphylococcus aureus, Escherichia coli, Candida albicans, blood, and saliva and then immersed in a ready peracetic acid solution: 2% Sekusept Aktiv (SA) or 0.25% Proxitane Alpha (PA), for different times. Then, washes of these instruments were plated in culture medium and colony-forming units counted. This procedure was repeated six times per day over 24 non-consecutive days. The corrosion capacity was assessed with the mass loss test, and the concentration of peracetic acid and pH of the solutions were measured with indicator tapes. Both SA and PA significantly eliminated microorganisms; however, the SA solution was stable for only 4 days, whereas PA remained stable throughout the experiment. The concentration of peracetic acid in the SA solutions decreased over time until the chemical was undetectable, although the pH remained at 5. The PA solution had a concentration of 500-400 mg/L and a pH of 2-3. Neither formulation induced corrosion and both reduced the number of microorganisms (p = 0.0001). However, the differences observed in the performance of each product highlight the necessity of establishing a protocol for optimizing the use of each one. PMID:25715037

  13. Preparation and ozone-surface modification of activated carbon. Thermal stability of oxygen surface groups

    NASA Astrophysics Data System (ADS)

    Jaramillo, J.; Álvarez, P. M.; Gómez-Serrano, V.

    2010-06-01

    The control of the surface chemistry of activated carbon by ozone and heat treatment is investigated. Using cherry stones, activated carbons were prepared by carbonization at 900 °C and activation in CO 2 or steam at 850 °C. The obtained products were ozone-treated at room temperature. After their thermogravimetric analysis, the samples were heat-treated to 300, 500, 700 or 900 °C. The textural characterization was carried out by N 2 adsorption at 77 K, mercury porosimetry, and density measurements. The surface analysis was performed by the Bohem method and pH of the point of zero charge (pH pzc). It has been found that the treatment of activated carbon with ozone combined with heat treatment enables one to control the acidic-basic character and strength of the carbon surface. Whereas the treatment with ozone yields acidic carbons, carbon dioxide and steam activations of the carbonized product and the heat treatment of the ozone-treated products result in basic carbons; the strength of a base which increases with the increasing heat treatment temperature. pH pzc ranges between 3.6 and 10.3.

  14. Pressure-Enhanced Activity and Stability of a Hyperthermophilic Protease from a Deep-Sea Methanogen

    PubMed Central

    Michels, P. C.; Clark, D. S.

    1997-01-01

    We describe the properties of a hyperthermophilic, barophilic protease from Methanococcus jannaschii, an extremely thermophilic deep-sea methanogen. This enzyme is the first protease to be isolated from an organism adapted to a high-pressure-high-temperature environment. The partially purified enzyme has a molecular mass of 29 kDa and a narrow substrate specificity with strong preference for leucine at the P1 site of polypeptide substrates. Enzyme activity increased up to 116(deg)C and was measured up to 130(deg)C, one of the highest temperatures reported for the function of any enzyme. In addition, enzyme activity and thermostability increased with pressure: raising the pressure to 500 atm increased the reaction rate at 125(deg)C 3.4-fold and the thermostability 2.7-fold. Spin labeling of the active-site serine revealed that the active-site geometry of the M. jannaschii protease is not grossly different from that of several mesophilic proteases; however, the active-site structure may be relatively rigid at moderate temperatures. The barophilic and thermophilic behavior of the enzyme is consistent with the barophilic growth of M. jannaschii observed previously (J. F. Miller et al., Appl. Environ. Microbiol. 54:3039-3042, 1988). PMID:16535711

  15. Effects of Drying Temperature on Antioxidant Activities of Tomato Powder and Storage Stability of Pork Patties

    PubMed Central

    2016-01-01

    This study was performed to evaluate the antioxidant activity of oven-dried tomato powder (OTP) as affected by drying temperature and the effect of OTP on the product quality of pork patties. Three OTP products were obtained by drying of fresh tomato at 60, 80 and 100℃ oven until constant weight was obtained. Total phenolic content of three kinds of OTPs ranged from 1.95 to 5.94 g/100 g. The highest amount of total phenolic compound was observed in OTP dried at 100℃. Antioxidant activity of three kinds of OTPs was measured by 1,1-diphenyl-2-pycrylhydrazyl (DPPH)-radical scavenging activity, iron chelating ability, reducing power and measurement of lipid peroxide in linoleic acid emulsion system. In all parameters, OTP at 100℃ showed the higher antioxidant activity than other temperatures (p<0.05). Based on the model study, the physicochemical properties, and antioxidant and antimicrobial activities of pork patties containing 1% OTP were measured. Redness of pork patties were increased with the addition of OTPs (p<0.05). Thiobarbituric acid reactive substances (TBARS) values of raw pork patties containing OTPs were lower than those of control (CTL) until 7 d of storage, regardless of drying temperatures (p<0.05). Peroxide values of pork patties made with OTP (1%) were lower than those of CTL until the end of storage time (p<0.05). However, no antimicrobial activities were observed among the treatments (p>0.05). Therefore, OTPs could be used as a natural antioxidant in meat products. PMID:27499664

  16. Effects of Drying Temperature on Antioxidant Activities of Tomato Powder and Storage Stability of Pork Patties.

    PubMed

    Kim, Hyeong Sang; Chin, Koo Bok

    2016-01-01

    This study was performed to evaluate the antioxidant activity of oven-dried tomato powder (OTP) as affected by drying temperature and the effect of OTP on the product quality of pork patties. Three OTP products were obtained by drying of fresh tomato at 60, 80 and 100℃ oven until constant weight was obtained. Total phenolic content of three kinds of OTPs ranged from 1.95 to 5.94 g/100 g. The highest amount of total phenolic compound was observed in OTP dried at 100℃. Antioxidant activity of three kinds of OTPs was measured by 1,1-diphenyl-2-pycrylhydrazyl (DPPH)-radical scavenging activity, iron chelating ability, reducing power and measurement of lipid peroxide in linoleic acid emulsion system. In all parameters, OTP at 100℃ showed the higher antioxidant activity than other temperatures (p<0.05). Based on the model study, the physicochemical properties, and antioxidant and antimicrobial activities of pork patties containing 1% OTP were measured. Redness of pork patties were increased with the addition of OTPs (p<0.05). Thiobarbituric acid reactive substances (TBARS) values of raw pork patties containing OTPs were lower than those of control (CTL) until 7 d of storage, regardless of drying temperatures (p<0.05). Peroxide values of pork patties made with OTP (1%) were lower than those of CTL until the end of storage time (p<0.05). However, no antimicrobial activities were observed among the treatments (p>0.05). Therefore, OTPs could be used as a natural antioxidant in meat products. PMID:27499664

  17. T396I Mutation of Mouse Sufu Reduces the Stability and Activity of Gli3 Repressor

    PubMed Central

    Makino, Shigeru; Zhulyn, Olena; Mo, Rong; Puviindran, Vijitha; Zhang, Xiaoyun; Murata, Takuya; Fukumura, Ryutaro; Ishitsuka, Yuichi; Kotaki, Hayato; Matsumaru, Daisuke; Ishii, Shunsuke; Hui, Chi-Chung; Gondo, Yoichi

    2015-01-01

    Hedgehog signaling is primarily transduced by two transcription factors: Gli2, which mainly acts as a full-length activator, and Gli3, which tends to be proteolytically processed from a full-length form (Gli3FL) to an N-terminal repressor (Gli3REP). Recent studies using a Sufu knockout mouse have indicated that Sufu is involved in regulating Gli2 and Gli3 activator and repressor activity at multiple steps of the signaling cascade; however, the mechanism of specific Gli2 and Gli3 regulation remains to be elucidated. In this study, we established an allelic series of ENU-induced mouse strains. Analysis of one of the missense alleles, SufuT396I, showed that Thr396 residue of Sufu played a key role in regulation of Gli3 activity. SufuT396I/T396I embryos exhibited severe polydactyly, which is indicative of compromised Gli3 activity. Concomitantly, significant quantitative reductions of unprocessed Gli3 (Gli3FL) and processed Gli3 (Gli3REP) were observed in vivo as well as in vitro. Genetic experiments showed that patterning defects in the limb buds of SufuT396I/T396I were rescued by a constitutive Gli3REP allele (Gli3∆699), strongly suggesting that SufuT396I reduced the truncated Gli3 repressor. In contrast, SufuT396I qualitatively exhibited no mutational effects on Gli2 regulation. Taken together, the results of this study show that the Thr396 residue of Sufu is specifically required for regulation of Gli3 but not Gli2. This implies a novel Sufu-mediated mechanism in which Gli2 activator and Gli3 repressor are differentially regulated. PMID:25760946

  18. Metal-Induced Stabilization and Activation of Plasmid Replication Initiator RepB

    PubMed Central

    Ruiz-Masó, José A.; Bordanaba-Ruiseco, Lorena; Sanz, Marta; Menéndez, Margarita; del Solar, Gloria

    2016-01-01

    Initiation of plasmid rolling circle replication (RCR) is catalyzed by a plasmid-encoded Rep protein that performs a Tyr- and metal-dependent site-specific cleavage of one DNA strand within the double-strand origin (dso) of replication. The crystal structure of RepB, the initiator protein of the streptococcal plasmid pMV158, constitutes the first example of a Rep protein structure from RCR plasmids. It forms a toroidal homohexameric ring where each RepB protomer consists of two domains: the C-terminal domain involved in oligomerization and the N-terminal domain containing the DNA-binding and endonuclease activities. Binding of Mn2+ to the active site is essential for the catalytic activity of RepB. In this work, we have studied the effects of metal binding on the structure and thermostability of full-length hexameric RepB and each of its separate domains by using different biophysical approaches. The analysis of the temperature-induced changes in RepB shows that the first thermal transition, which occurs at a range of temperatures physiologically relevant for the pMV158 pneumococcal host, represents an irreversible conformational change that affects the secondary and tertiary structure of the protein, which becomes prone to self-associate. This transition, which is also shown to result in loss of DNA binding capacity and catalytic activity of RepB, is confined to its N-terminal domain. Mn2+ protects the protein from undergoing this detrimental conformational change and the observed protection correlates well with the high-affinity binding of the cation to the active site, as substituting one of the metal-ligands at this site impairs both the protein affinity for Mn2+and the Mn2+-driven thermostabilization effect. The level of catalytic activity of the protein, especially in the case of full-length RepB, cannot be explained based only on the high-affinity binding of Mn2+ at the active site and suggests the existence of additional, lower-affinity metal binding site

  19. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles.

    PubMed

    Singh, Ragini; Singh, Sanjay

    2015-08-01

    Cerium oxide nanoparticles (CeNPs) have been recently shown to scavenge reactive oxygen and nitrogen species (ROS and RNS) in different experimental model systems. CeNPs (3+) and CeNPs (4+) have been shown to exhibit superoxide dismutase (SOD) and catalase mimetic activity, respectively. Due to their nanoscale dimension, CeNPs are expected to interact with the components of biologically relevant buffers and medium, which could alter their catalytic properties. We have demonstrated earlier that CeNPs (3+) interact with phosphate and lose the SOD activity. However, very little is known about the interaction of CeNPs (4+) with the phosphate and other anions, predominantly present in biological buffers and their effects on the catalase mimetic-activity of these nanoparticles. In this study, we report that catalase mimetic-activity of CeNPs (4+) is resistant to the phosphate anions, pH changes and composition of cell culture media. Given the abundance of phosphate anions in the biological system, it is likely that internalized CeNPs would be influenced by cytoplasmic and nucleoplasmic concentration of phosphate.

  20. Antibacterial activities of a new stabilized thienamycin, N-formimidoyl thienamycin, in comparison with other antibiotics.

    PubMed Central

    Kesado, T; Hashizume, T; Asahi, Y

    1980-01-01

    The in vitro activity of a new crystalline derivative of thienamycin, N-formimidoyl thienamycin (MK0787), was tested against 46 laboratory reference strains and 2,158 clinical isolates of gram-positive and -negative bacteria, including anaerobes, and compared with cefoxitin, cefaxolin, carbenicillin, and amikacin. MK0787 was significantly more active than the reference antibiotics against most bacteria tests. MK0787 was 16- to 500-fold more active than the other antibiotics against Staphylococcus aureus, Streptococcus pneumoniae, and group A and group B streptococci, inhibiting most isolates at concentrations less than 0.031 micrograms/ml. The inhibition concentration against over 90% of 156 strains of Streptococcus faecalis was 1 micrograms/ml. MK0787 had slightly less activity than carbenicillin against Haemophilus influenzae. The minimal inhibitory concentrations of MK0787 against strains of Enterobacter spp., Citrobacter spp., Serratia marcescems. Pseudomonas aeruginosa, and Clostridium difficile that are resistant to currently available antibiotics were less than or equal to 4 micrograms/ml. The only species found resistant to MK0787 was Pseudomonas maltophilia, which was equally nonsusceptible to the other reference antibiotics. PMID:6931548

  1. Sol immobilization technique: a delicate balance between activity, selectivity and stability for gold catalyst

    SciTech Connect

    Villa, Alberto; Wang, Di; Veith, Gabriel M; Prati, Laura

    2013-01-01

    Sol immobilization is a widely used method to prepare gold catalysts. The presence of the protective layer can have a significant influence on catalyst properties by mediating metal-support and reactantmetal interactions. This paper details the effect of a polyvinyl alcohol (PVA) protecting groups on the activity of a supported gold catalysts as well as its selectivity towards glycerol oxidation.

  2. Balance between DBT/CKIε kinase and protein phosphatase activities regulate phosphorylation and stability of Drosophila CLOCK protein

    PubMed Central

    Kim, Eun Young; Edery, Isaac

    2006-01-01

    The first circadian-relevant kinase to be identified was DOUBLE-TIME (DBT) in Drosophila, a homolog of vertebrate CKIε, which regulates the progressive phosphorylation and stability of PERIOD (PER) proteins in animals. A negative feedback loop wherein PER directly inhibits the transcriptional activity of the CLOCK-CYCLE (CLK-CYC) heterodimer is central to the generation of molecular rhythms and normal progression of the clock in Drosophila. We show that DBT activity is required for the phase-specific hyperphosphorylation of CLK in vivo, an event that correlates with times of maximal repression in per RNA levels. The ability of DBT to hyperphosphorylate CLK, enhance its degradation, and evoke modest inhibition of CLK-dependent transactivation from circadian promoter elements was directly shown in cultured Drosophila cells. Intriguingly, DBT seems to function in close partnership with the PER-relevant protein phosphatase 2A, resulting in dynamic equilibrium between hypo- and hyperphosphorylated isoforms of CLK. This balancing mechanism might act to stabilize the limiting levels of CLK against stochastic fluctuations minimizing the propagation of “molecular noise” in the feedback circuitry. Also, the subcellular localization of CLK was altered from predominately nuclear to strong cytoplasmic staining in the presence of PER. These results suggest that, in contrast to mammalian clocks, circadian transcriptional inhibition in Drosophila involves displacement of the positive factors from chromatin. These results also demonstrate that DBT can target both negative and positive factors in circadian feedback loops and support a conserved role for dynamic regulation of reversible phosphorylation in directly modulating the activities of circadian transcription factors. PMID:16603629

  3. MDC-Analyzer-facilitated combinatorial strategy for improving the activity and stability of halohydrin dehalogenase from Agrobacterium radiobacter AD1.

    PubMed

    Wang, Xiong; Lin, Hao; Zheng, Yu; Feng, Juan; Yang, Zujun; Tang, Lixia

    2015-07-20

    Halohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC) displays a broad substrate range with high regio- and enantioselectivity of both ring-closure and ring-opening reactions, making the enzyme a useful catalyst for the production of optically pure epoxides and β-substituted alcohols. In this study, we report a novel method using an MDC-Analyzer-facilitated combinatorial strategy to improve the activity and stability of HheC by simultaneously randomizing multiple contiguous residues. Six contiguous active-site residues, which are the hotspots for improving the activity of HheC, were simultaneously selected and randomized using the MDC-Analyzer-facilitated combinatorial strategy, resulting in a high-quality mutagenesis library. After screening a total of 1152 clones, three positive mutants were obtained, which exhibited approximately 3.5-5.9-fold higher kcat values than the wild-type HheC toward 1,3-dichloro-2-propanol (1,3-DCP). However, the inactivation half-life of the best mutant (DG9) at 55 °C decreased 9-fold compared with that of the wild-type HheC. To improve the stability of mutant DG9, seven contiguous potential surface amino acids were revealed by using the B-FITTER tool. Two charged amino acids, Glu and Lys, which are more abundant in thermophilic proteins than in their mesophilic counterparts, were selected to substitute those seven amino acids and were combined together via an MDC-Analyzer-facilitated combinatorial strategy. Two mutants displaying 1.6- and 2.3-fold higher half-life τ1/2 (55 °C) values than their DG9 template were obtained after screening only 384 clones. The results indicated that an MDC-Analyzer-facilitated combinatorial strategy represents an efficient tool for the directed evolution of functional enzymes with multiple contiguous targeting sites.

  4. Regulation of HTLV-1 tax stability, cellular trafficking and NF-κB activation by the ubiquitin-proteasome pathway.

    PubMed

    Lavorgna, Alfonso; Harhaj, Edward William

    2014-10-23

    Human T-cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that infects CD4+ T cells and causes adult T-cell leukemia/lymphoma (ATLL) in 3%-5% of infected individuals after a long latent period. HTLV-1 Tax is a trans-activating protein that regulates viral gene expression and also modulates cellular signaling pathways to enhance T-cell proliferation and cell survival. The Tax oncoprotein promotes T-cell transformation, in part via constitutive activation of the NF-κB transcription factor; however, the underlying mechanisms remain unknown. Ubiquitination is a type of post-translational modification that occurs in a three-step enzymatic cascade mediated by E1, E2 and E3 enzymes and regulates protein stability as well as signal transduction, protein trafficking and the DNA damage response. Emerging studies indicate that Tax hijacks the ubiquitin machinery to activate ubiquitin-dependent kinases and downstream NF-κB signaling. Tax interacts with the E2 conjugating enzyme Ubc13 and is conjugated on C-terminal lysine residues with lysine 63-linked polyubiquitin chains. Tax K63-linked polyubiquitination may serve as a platform for signaling complexes since this modification is critical for interactions with NEMO and IKK. In addition to NF-κB signaling, mono- and polyubiquitination of Tax also regulate its subcellular trafficking and stability. Here, we review recent advances in the diverse roles of ubiquitin in Tax function and how Tax usurps the ubiquitin-proteasome pathway to promote oncogenesis.

  5. Fluoride enhances transfection activity of carbonate apatite by increasing cytoplasmic stability of plasmid DNA

    SciTech Connect

    Chowdhury, E.H.

    2011-06-17

    Highlights: {yields} Cytoplasmic stability of plasmid DNA is enhanced by fluoride incorporation into carbonate apatite carrier. {yields} Fluoridated carbonate apatite promotes a robust increase in transgene expression. {yields} Controlled dissolution of fluoridated carbonate apatite in endosomal acidic environment might buffer the endosomes and prevent degradation of the released DNA. -- Abstract: Intracellular delivery of a functional gene or a nucleic acid sequence to specifically knockdown a harmful gene is a potential approach to precisely treat a critical human disease. The intensive efforts in the last few decades led to the development of a number of viral and non-viral synthetic vectors. However, an ideal delivery tool in terms of the safety and efficacy has yet to be established. Recently, we have developed pH-sensing inorganic nanocrystals of carbonate apatite for efficient and cell-targeted delivery of gene and gene-silencing RNA. Here we show that addition of very low level of fluoride to the particle-forming medium facilitates a robust increase in transgene expression following post-incubation of the particles with HeLa cells. Confocal microscopic observation and Southern blotting prove the cytoplasmic existence of plasmid DNA delivered by likely formed fluoridated carbonate apatite particles while degradation of plasmid DNA presumably by cytoplasmic nucleases was noticed following delivery with apatite particles alone. The beneficial role of fluoride in enhancing carbonate apatite-mediated gene expression might be due to the buffering potential of generated fluoridated apatite in endosomal acidic environment, thereby increasing the half-life of delivered plasmid DNA.

  6. Phosphorus removal mechanisms in active slag filters treating waste stabilization pond effluent.

    PubMed

    Pratt, Chris; Shilton, Andy; Pratt, Steven; Haverkamp, Richard G; Bolan, Nanthi S

    2007-05-01

    Phosphorus (P) removal mechanisms from waste stabilization pond effluent by a melter slag filter were investigated. The studied filter had treated pond effluent for a decade, but lost its P removal efficiency after 5 years. The P distribution in the slag was examined by scanning electron microscopy (SEM), electron dispersive spectrometry (EDS), X-ray fluorescence (XRF), X-ray diffraction (XRD), and chemical fractionation. The results showed the slag to be covered by a film comprising metal oxides/oxyhydroxides, organic resin, and Fe-phosphate precipitates. The slag porous matrix beneath this film hosted lower P concentrations and consisted of metal oxides/oxyhydroxides and calcmagnesium silicates. The study revealed the following mechanisms for P removal from effluent by the melter slag: (1) P adsorption onto metal oxides/oxyhydroxides which are ubiquitous throughout the porous slag matrix and its surface film; (2) P precipitation, mainly as Fe-phosphates (determined by SEM/EDS) on the surface film, derived from the release of metal ions into the solution phase; and (3) P sequestration by an amorphous organic resin that comprises a substantial proportion of the surface film, which was deduced by SEM/EDS and XRF. Results of chemical extractions performed on the slag demonstrated that 1 M HCl, which has been used to determine Ca-associated P in previous studies, is an unreliable Ca-P marker. By contrast, the citrate-dithionite reagent was shown to be a good indicator of Fe/Al-associated P and revealed that adsorption onto metal oxides/oxyhydroxides, in the porous matrix as well as its surface film, is the most significant P removal mechanism achieved by the slag filter.

  7. Poly(2-hydroxyethyl methacrylate) for enzyme immobilization: impact on activity and stability of horseradish peroxidase.

    PubMed

    Lane, Sarah M; Kuang, Zhifeng; Yom, Jeannie; Arifuzzaman, Shafi; Genzer, Jan; Farmer, Barry; Naik, Rajesh; Vaia, Richard A

    2011-05-01

    On the basis of their versatile structure and chemistry as well as tunable mechanical properties, polymer brushes are well-suited as supports for enzyme immobilization. However, a robust surface design is hindered by an inadequate understanding of the impact on activity from the coupling motif and enzyme distribution within the brush. Herein, horseradish peroxidase C (HRP C, 44 kDa), chosen as a model enzyme, was immobilized covalently through its lysine residues on a N-hydroxysuccinimidyl carbonate-activated poly(2-hydroxyethyl methacrylate) (PHEMA) brush grafted chemically onto a flat impenetrable surface. Up to a monolayer coverage of HRP C is achieved, where most of the HRP C resides at or near the brush-air interface. Molecular modeling shows that lysines 232 and 241 are the most probable binding sites, leading to an orientation of the immobilized HRP C that does not block the active pocket of the enzyme. Michaelis-Menten kinetics of the immobilized HRP C indicated little change in the K(m) (Michaelis constant) but a large decrease in the V(max) (maximum substrate conversion rate) and a correspondingly large decrease in the k(cat) (overall catalytic rate). This indicates a loss in the percentage of active enzymes. Given the relatively ideal geometry of the HRPC-PHEMA brush, the loss of activity is most likely due to structural changes in the enzyme arising from either secondary constraints imposed by the connectivity of the N-hydroxysuccinimidyl carbonate linking moiety or nonspecific interactions between HRP C and DSC-PHEMA. Therefore, a general enzyme-brush coupling motif must optimize reactive group density to balance binding with neutrality of surroundings. PMID:21438540

  8. Increases in Calmodulin Abundance and Stabilization of Activated iNOS Mediate Bacterial Killing in RAW 264.7 Macrophages

    SciTech Connect

    Smallwood, Heather S.; Shi, Liang; Squier, Thomas C.

    2006-08-01

    The rapid activation of macrophages in response to bacterial antigens is central to the innate immune system that permits the recognition and killing of pathogens to limit infection. To understand regulatory mechanisms underlying macrophage activation, we have investigated changes in the abundance of calmodulin (CaM) and iNOS in response to the bacterial cell wall component lipopolysaccharide (LPS) using RAW 264.7 macrophages. Critical to these measurements was the ability to differentiate free iNOS from the CaM-bound (active) form of iNOS associated with nitric oxide generation. We observe a rapid two-fold increase in CaM abundance during the first 30 minutes that is blocked by inhibition of NF?B nuclear translocation or protein synthesis. A similar two-fold increase in the abundance of the complex between CaM and iNOS is observed with the same time dependence. In contrast, there are no detectable increases in the CaM-free (i.e., inactive) form of iNOS within the first hour; it remains at a very low abundance during the initial phase of macrophage activation. Increasing cellular CaM levels in stably transfected cells results in a corresponding increase in the abundance of the CaM/iNOS complex that promotes effective bacterial killing following challenge by Salmonella typhimurium. Thus, LPS-dependent increases in CaM abundance function in the stabilization and activation of iNOS on the rapid time-scale associated with macrophage activation and bacterial killing. These results explain how CaM and iNOS coordinately function to form a stable complex that is part of a rapid host-response that functions within the first 30 minutes following bacterial infection to up-regulate the innate immune system involving macrophage activation.

  9. Adsorption between TC-stabilized AuNPs and the phosphate group: application of the PTP1B activity assay.

    PubMed

    Lv, Jun; Wang, Xiaonan; Zhang, Yuanyuan; Li, Defeng; Zhang, Juan; Sun, Lizhou

    2015-12-01

    Based on the adsorption between tetracycline (TC) and phosphate groups, a general colorimetric method is explored in this work by using TC-stabilized gold nanoparticles (TC/AuNPs) and 4-aminophenyl phosphate-functionalized Fe3O4 magnetic nanoparticles (APP/MNPs). Taking protein tyrosine phosphatase 1B (PTP1B) as an example, 4-aminophenyl phosphate (APP) can be hydrolyzed into 4-aminophenol (AP) by PTP1B, resulting in the disappearance of the phosphate group on the outer layer of MNPs and the loss of corresponding adsorptive ability. Upon addition of TC/AuNP solution, TC/AuNPs will remain in the supernatant solution after magnetic separation and a high absorbance value can be observed. So PTP1B activity is related to the concentrations of TC/AuNPs in the supernatant solution. In this work, the enzyme activity can be determined at levels as low as 0.0885 U mL(-1) and over a linear detection range as wide as 0.1 U mL(-1) to 0.9 U mL(-1). Moreover, using the proposed method, the inhibition effect of betulinic acid (BA) and sodium orthovanadate (Na3VO4) on PTP1B activity can be tested with IC50 values of 30 μM and 4 μM, respectively. Therefore, a universal platform for the accurate colorimetric analysis of kinase and phosphatase activities can be established through the adsorption between TC and phosphate groups.

  10. Ferulic acid-coupled chitosan: thermal stability and utilization as an antioxidant for biodegradable active packaging film.

    PubMed

    Woranuch, Sarekha; Yoksan, Rangrong; Akashi, Mitsuru

    2015-01-22

    The aim of the present research was to study the thermal stability of ferulic acid after coupling onto chitosan, and the possibility of using ferulic acid-coupled chitosan (FA-CTS) as an antioxidant for biodegradable active packaging film. FA-CTS was incorporated into biodegradable film via a two-step process, i.e. compounding extrusion at temperatures up to 150°C followed by blown film extrusion at temperatures up to 175°C. Although incorporation of FA-CTS with a content of 0.02-0.16% (w/w) caused decreased water vapor barrier property and reduced extensibility, the biodegradable films possessed improved oxygen barrier property and antioxidant activity. Radical scavenging activity and reducing power of film containing FA-CTS were higher than those of film containing naked ferulic acid, by about 254% and 94%, respectively. Tensile strength and rigidity of the films were not significantly affected by the addition of FA-CTS with a content of 0.02-0.08% (w/w). The above results suggested that FA-CTS could potentially be used as an antioxidant for active packaging film.

  11. Novel human D-amino acid oxidase inhibitors stabilize an active-site lid-open conformation

    PubMed Central

    Terry-Lorenzo, Ryan T.; Chun, Lawrence E.; Brown, Scott P.; Heffernan, Michele L. R.; Fang, Q. Kevin; Orsini, Michael A.; Pollegioni, Loredano; Hardy, Larry W.; Spear, Kerry L.; Large, Thomas H.

    2014-01-01

    The NMDAR (N-methyl-D-aspartate receptor) is a central regulator of synaptic plasticity and learning and memory. hDAAO (human D-amino acid oxidase) indirectly reduces NMDAR activity by degrading the NMDAR co-agonist D-serine. Since NMDAR hypofunction is thought to be a foundational defect in schizophrenia, hDAAO inhibitors have potential as treatments for schizophrenia and other nervous system disorders. Here, we sought to identify novel chemicals that inhibit hDAAO activity. We used computational tools to design a focused, purchasable library of compounds. After screening this library for hDAAO inhibition, we identified the structurally novel compound, ‘compound 2’ [3-(7-hydroxy-2-oxo-4-phenyl-2H-chromen-6-yl)propanoic acid], which displayed low nM hDAAO inhibitory potency (Ki=7 nM). Although the library was expected to enrich for compounds that were competitive for both D-serine and FAD, compound 2 actually was FAD uncompetitive, much like canonical hDAAO inhibitors such as benzoic acid. Compound 2 and an analog were independently co-crystalized with hDAAO. These compounds stabilized a novel conformation of hDAAO in which the active-site lid was in an open position. These results confirm previous hypotheses regarding active-site lid flexibility of mammalian D-amino acid oxidases and could assist in the design of the next generation of hDAAO inhibitors. PMID:25001371

  12. Synthesis of PtCu nanowires in nonaqueous solvent with enhanced activity and stability for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Chen, Bing; Cheng, Daojian; Zhu, Jiqin

    2014-12-01

    Pt-based core-shell electrocatalysts with one-dimensional (1D) nanostructure show a great opportunity to improve the catalytic activity and durability of pure Pt catalyst for oxygen reduction reaction (ORR). Here, we synthesize Cu@CuPt core@shell nanowires (NWs) with 1D nanostructure by using Cu NWs as templates in organic solvent medium. The ORR mass activity and specific activity of PtCu NWs are 0.216 A mgpt-1 and 0.404 mA cm-2 at 0.9 V, respectively, which are 3.1 and 3.7 times larger than that of the commercial Pt/C catalyst (0.07 A mgpt-1 and 0.110 mA cm-2, respectively). Theoretical studies suggest that the electronic effect of the Cu substrate on the Pt monolayer could be the main reason for the higher activity of PtCu NWs than that of the commercial Pt/C catalyst. In addition, the PtCu NWs show much better durability than the commercial Pt/C catalyst after stability test. It is expected that the as-synthesized PtCu NWs in organic solvent medium could be excellent candidates as high performance catalysts for ORR.

  13. Structural basis for regulation of stability and activity in glyceraldehyde-3-phosphate dehydrogenases. Differential scanning calorimetry and molecular dynamics.

    PubMed

    Makshakova, Olga N; Semenyuk, Pavel I; Kuravsky, Mikhail L; Ermakova, Elena A; Zuev, Yuriy F; Muronetz, Vladimir I

    2015-05-01

    Tissue specific isoforms of human glyceraldehyde-3-phosphate dehydrogenase, somatic (GAPD) and sperm-specific (GAPDS), have been reported to display different levels of both stability and catalytic activity. Here we apply MD simulation