Science.gov

Sample records for activated carbon-contact stabilization

  1. Treatment of coke-oven wastewater with the powdered activated carbon-contact stabilization activated sludge process. Final report

    SciTech Connect

    Suidan, M.T.; Deady, M.A.; Gee, C.S.

    1983-11-01

    The objective of the study was to determine optimum parameters for the operation of an innovative process train used in the treatment of coke-over wastewater. The treatment process train consisted of a contact-stabilization activated sludge system with powdered activated carbon (PAC) addition, followed by activated sludge nitrification, followed by denitrification in an anoxic filter. The control and operating parameters evaluated during the study were: (a) the average mixed-liquor PAC concentration maintained in the contact-stabilization system, (b) the solids retention time practiced in the contact-stabilization system, and (c) the hydraulic detention time maintained in the contact aeration tank. Three identical treatement process trains were constructed and employed in this study. The coke-oven wastewater used for this investigation was fed to the treatment units at 30% strength. The first part of the study was devoted to determining the interactions between the mixed liquor PAC concentration and the solids retention time in the contact-stabilization tanks. Results showed that optimum overall system performance is attainable when the highest sludge age (30 day) and highest mixed liquor PAC concentration were practiced. During the second phase of the study, all three systems were operated at a 30 day solids retention time while different detention times of 1, 2/3 and 1/3 day were evaluated in the contact tank. PAC addition rates were maintained at the former levels and, consequently, reduced contact times entailed higher mixed liquor carbon concentrations. Once again, the system receiving the highest PAC addition rate of PAC exhibited the best overall performance. This system exhibited no deterioration in process performance as a result of decreased contact detention time. 72 references, 41 figures, 24 tables.

  2. Treatment of coal-conversion wastewater with the powdered activated carbon-contact stabilization activated-sludge process. First semiannual technical progress report, August 1, 1980-January 31, 1981

    SciTech Connect

    Suidan, M.T.; Pirbazari, M.; Gee, C.S.; Deady, M.A.

    1981-01-01

    The treatment of coal conversion wastewaters has traditionally been accomplished through the use of the activated sludge process and its various modifications. General observations have been that phenol was degraded efficiently; however, very poor removal efficiencies of thiocyanate, cyanide, and ammonia were obtained. The addition of powdered activated carbon (PAC) to the activated sludge process has been reported to result in a number of distinct advantages. Generally, however, improving the effluent water quality beyond the capabilities of conventional biological treatment and enhancing the treatability of wastewaters that inhibit or toxify biological treatment systems are the primary objectives of utilizing PAC in secondary biological treatment. The focus of the present research project is to assess the effectiveness of the powdered activated carbon-contact stabilization activated sludge process in the treatment of a coking wastewater. The purpose of the contact tank in such a process will be to provide sufficient time for the adsorbable constituents of the coking wastewater to adsorb onto the PAC. The liquor leaving the contact tank is then clarified with the concentratrated underflow receiving treatment in the stabilization tank. After stabilization the sludge is returned to the contact tank. The clarifier supernatant is then nitrified in an activated sludge-type nitrification process and the nitrified effluent is subsequently denitrified in an anoxic filter.

  3. Thermal Stability of Chelated Indium Activable Tracers

    SciTech Connect

    Chrysikopoulos, Costas; Kruger, Paul

    1986-01-21

    The thermal stability of indium tracer chelated with organic ligands ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) was measured for reservoir temperatures of 150, 200, and 240 C. Measurements of the soluble indium concentration was made as a function of time by neutron activation analysis. From the data, approximate thermal decomposition rates were estimated. At 150 C, both chelated tracers were stable over the experimental period of 20 days. At 200 C, the InEDTA concentration remained constant for 16 days, after which the thermal decomposition occurred at a measured rate constant of k = 0.09 d{sup -1}. The thermal decomposition of InNTA at 200 C showed a first order reaction with a measured rate constant of k = 0.16 d{sup -1}. At 240 C, both indium chelated tracers showed rapid decomposition with rate constants greater than 1.8 d{sup -1}. The data indicate that for geothermal reservoir with temperatures up to about 200 C, indium chelated tracers can be used effectively for transit times of at least 20 days. These experiments were run without reservoir rock media, and do not account for concomitant loss of indium tracer by adsorption processes.

  4. WWOX guards genome stability by activating ATM.

    PubMed

    Hazan, Idit; Abu-Odeh, Mohammad; Hofmann, Thomas G; Aqeilan, Rami I

    2015-01-01

    Common fragile sites (CFSs) tend to break upon replication stress and have been suggested to be "hot spots" for genomic instability. Recent evidence, however, implies that in the wake of DNA damage, WW domain-containing oxidoreductase (WWOX, the gene product of the FRA16D fragile site), associates with ataxia telangiectasia-mutated (ATM) and regulates its activation to maintain genomic integrity.

  5. Stabilized sulfur binding using activated fillers

    DOEpatents

    Kalb, Paul D.; Vagin, Vyacheslav P.; Vagin, Sergey P.

    2015-07-21

    A method of making a stable, sulfur binding composite comprising impregnating a solid aggregate with an organic modifier comprising unsaturated hydrocarbons with at least one double or triple covalent bond between adjacent carbon atoms to create a modifier-impregnated aggregate; heating and drying the modifier-impregnated aggregate to activate the surface of the modifier-impregnated aggregate for reaction with sulfur.

  6. Calcium promotes activity and confers heat stability on plant peroxidases

    PubMed Central

    Plieth, Christoph; Vollbehr, Sonja

    2012-01-01

    In this paper we demonstrate how peroxidase (PO) activities and their heat stability correlate with the availability of free Ca2+ ions. Calcium ions work as a molecular switch for PO activity and exert a protective function, rendering POs heat stable. The concentration ranges of these two activities differ markedly. POs are activated by µM Ca2+ concentration ranges, whereas heat stabilization is observed in the nM range. This suggests the existence of different Ca2+ binding sites. The heat stability of POs depends on the source plant species. Terrestrial plants have POs that exhibit higher temperature stability than those POs from limnic and marine plants. Different POs from a single species can differ in terms of heat stability. The abundance of different POs within a plant is dependent on age and developmental stage. The heat stability of a PO does not necessarily correlate with the maximum temperature the source species is usually exposed to in its natural habitat. This raises questions on the role of POs in the heat tolerance of plants. Consequently, detailed investigations are needed to identify and characterize individual POs, with regard to their genetic origin, subcellular expression, tissue abundance, developmental emergence and their functions in innate and acquired heat tolerance. PMID:22580695

  7. Calcium promotes activity and confers heat stability on plant peroxidases.

    PubMed

    Plieth, Christoph; Vollbehr, Sonja

    2012-06-01

    In this paper we demonstrate how peroxidase (PO) activities and their heat stability correlate with the availability of free Ca(2+) ions. Calcium ions work as a molecular switch for PO activity and exert a protective function, rendering POs heat stable. The concentration ranges of these two activities differ markedly. POs are activated by µM Ca(2+) concentration ranges, whereas heat stabilization is observed in the nM range. This suggests the existence of different Ca(2+) binding sites. The heat stability of POs depends on the source plant species. Terrestrial plants have POs that exhibit higher temperature stability than those POs from limnic and marine plants. Different POs from a single species can differ in terms of heat stability. The abundance of different POs within a plant is dependent on age and developmental stage. The heat stability of a PO does not necessarily correlate with the maximum temperature the source species is usually exposed to in its natural habitat. This raises questions on the role of POs in the heat tolerance of plants. Consequently, detailed investigations are needed to identify and characterize individual POs, with regard to their genetic origin, subcellular expression, tissue abundance, developmental emergence and their functions in innate and acquired heat tolerance.

  8. WWOX guards genome stability by activating ATM

    PubMed Central

    Hazan, Idit; Abu-Odeh, Mohammad; Hofmann, Thomas G; Aqeilan, Rami I

    2015-01-01

    Common fragile sites (CFSs) tend to break upon replication stress and have been suggested to be “hot spots” for genomic instability. Recent evidence, however, implies that in the wake of DNA damage, WW domain-containing oxidoreductase (WWOX, the gene product of the FRA16D fragile site), associates with ataxia telangiectasia-mutated (ATM) and regulates its activation to maintain genomic integrity. PMID:27308504

  9. Emotional stability, anxiety, and natural killer activity under examination stress.

    PubMed

    Borella, P; Bargellini, A; Rovesti, S; Pinelli, M; Vivoli, R; Solfrini, V; Vivoli, G

    1999-08-01

    This study was performed to evaluate the relation between a stable personality trait, a mood state and immune response to an examination stress. A self-reported measure of emotional stability (BFQ-ES scale) was obtained in a sample (n = 39) randomly selected from 277 cadets; this personality trait was also investigated by completing a neuroticism scale (Eysenck personality inventory) and a trait-anxiety scale (STAI). Natural killer (NK) cell activity was measured at baseline, long before the examination time and the examination day. The state-anxiety scale evaluated the response to the stressful stimulus. Taking subjects all together, the academic task did not result in significant modification over baseline in NK cell activity. Subjects were then divided into three groups based on emotional stability and state-anxiety scores: high emotional stability/low anxiety, medium, and low emotional stability/high anxiety. Examination stress induced significant increases in NK cell activity in the high emotional stability/low anxiety group, no effect in the medium group, and significant decreases in the low emotional stability/high anxiety group. The repeated-measure ANOVA revealed a significant interaction of group x period (baseline vs. examination) for both lytic units and percent cytolysis. The results did not change after introducing coffee and smoking habits as covariates. Our findings suggest that the state-anxiety acts in concert with a stable personality trait to modulate NK response in healthy subjects exposed to a psychological naturalistic stress. The relation between anxiety and poor immune control has been already described, whereas the ability of emotional stability to associate with an immunoenhancement has not yet reported. The peculiarity of our population, a very homogeneous and healthy group for life style and habits, can have highlighted the role of emotional stability, and may account for the difference with other studies.

  10. Active and passive stabilization of body pitch in insect flight

    PubMed Central

    Ristroph, Leif; Ristroph, Gunnar; Morozova, Svetlana; Bergou, Attila J.; Chang, Song; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai

    2013-01-01

    Flying insects have evolved sophisticated sensory–motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilization with high body drag. By glueing magnets to fruit flies and perturbing their flight using magnetic impulses, we show that these insects employ active control that is indeed fast relative to the instability. Moreover, we find that fruit flies with their control sensors disabled can keep upright if high-drag fibres are also attached to their bodies, an observation consistent with our prediction for the passive stability condition. Finally, we extend this framework to unify the control strategies used by hovering animals and also furnish criteria for achieving pitch stability in flapping-wing robots. PMID:23697713

  11. Active stabilization to prevent surge in centrifugal compression systems

    NASA Technical Reports Server (NTRS)

    Epstein, Alan H.; Greitzer, Edward M.; Simon, Jon S.; Valavani, Lena

    1993-01-01

    This report documents an experimental and analytical study of the active stabilization of surge in a centrifugal engine. The aims of the research were to extend the operating range of a compressor as far as possible and to establish the theoretical framework for the active stabilization of surge from both an aerodynamic stability and a control theoretic perspective. In particular, much attention was paid to understanding the physical limitations of active stabilization and how they are influenced by control system design parameters. Previously developed linear models of actively stabilized compressors were extended to include such nonlinear phenomena as bounded actuation, bandwidth limits, and robustness criteria. This model was then used to systematically quantify the influence of sensor-actuator selection on system performance. Five different actuation schemes were considered along with four different sensors. Sensor-actuator choice was shown to have a profound effect on the performance of the stabilized compressor. The optimum choice was not unique, but rather shown to be a strong function of some of the non-dimensional parameters which characterize the compression system dynamics. Specifically, the utility of the concepts were shown to depend on the system compliance to inertia ratio ('B' parameter) and the local slope of the compressor speedline. In general, the most effective arrangements are ones in which the actuator is most closely coupled to the compressor, such as a close-coupled bleed valve inlet jet, rather than elsewhere in the flow train, such as a fuel flow modulator. The analytical model was used to explore the influence of control system bandwidth on control effectiveness. The relevant reference frequency was shown to be the compression system's Helmholtz frequency rather than the surge frequency. The analysis shows that control bandwidths of three to ten times the Helmholtz frequency are required for larger increases in the compressor flow range

  12. Proteolytically stabilizing fibronectin without compromising cell and gelatin binding activity.

    PubMed

    Zhang, Chen; Ramanathan, Anand; Karuri, Nancy Wangechi

    2015-01-01

    Excessive proteolytic degradation of fibronectin (FN) has been implicated in impaired tissue repair in chronic wounds. We previously reported two strategies for stabilizing FN against proteolytic degradation; the first conjugated polyethylene glycol (PEG) through cysteine residues and the second conjugated PEG chains of varying molecular weight on lysine residues. PEGylation of FN via lysine residues resulted in increased resistance to proteolysis with increasing PEG size, but an overall decrease in biological activity, as characterized by cell and gelatin binding. Our latest method to stabilize FN against proteolysis masks functional regions in the protein during lysine PEGylation. FN is PEGylated while it is bound to gelatin Sepharose beads with 2, 5, and 10 kDa PEG precursors. This results in partially PEGylated FN that is more stable than native FN and whose proteolytic stability increases with PEG molecular weight. Unlike completely PEGylated FN, partially PEGylated FN has cell adhesion, gelatin binding, and matrix assembly responses that are comparable to native FN. This is new evidence of how PEGylation variables can be used to stabilize FN while retaining its activity. The conjugates developed herein can be used to dissect molecular mechanisms mediated by FN stability and functionality, and address the problem of FN degradation in chronic wounds.

  13. Protein stability and enzyme activity at extreme biological temperatures.

    PubMed

    Feller, Georges

    2010-08-18

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 °C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins.

  14. Elliptically Bent X-ray Mirrors with Active Temperature Stabilization

    SciTech Connect

    Yuan, Sheng; Church, Matthew; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; McKinney, Wayne R.; Kirschman, Jonathan; Morrison, Greg; Noll, Tino; Warwick, Tony; Padmore, Howard A.

    2010-01-31

    We present details of design of elliptically bent Kirkpatrick-Baez mirrors developed and successfully used at the Advanced Light Source for submicron focusing. A distinctive feature of the mirror design is an active temperature stabilization based on a Peltier element attached directly to the mirror body. The design and materials have been carefully optimized to provide high heat conductance between the mirror body and substrate. We describe the experimental procedures used when assembling and precisely shaping the mirrors, with special attention paid to laboratory testing of the mirror-temperature stabilization. For this purpose, the temperature dependence of the surface slope profile of a specially fabricated test mirror placed inside a temperature-controlled container was measured. We demonstrate that with active mirror-temperature stabilization, a change of the surrounding temperature by more than 3K does not noticeably affect the mirror figure. Without temperature stabilization, the surface slope changes by approximately 1.5 ?mu rad rms (primarily defocus) under the same conditions.

  15. Trading off stability against activity in extremophilic aldolases

    PubMed Central

    Dick, Markus; Weiergräber, Oliver H.; Classen, Thomas; Bisterfeld, Carolin; Bramski, Julia; Gohlke, Holger; Pietruszka, Jörg

    2016-01-01

    Understanding enzyme stability and activity in extremophilic organisms is of great biotechnological interest, but many questions are still unsolved. Using 2-deoxy-D-ribose-5-phosphate aldolase (DERA) as model enzyme, we have evaluated structural and functional characteristics of different orthologs from psychrophilic, mesophilic and hyperthermophilic organisms. We present the first crystal structures of psychrophilic DERAs, revealing a dimeric organization resembling their mesophilic but not their thermophilic counterparts. Conversion into monomeric proteins showed that the native dimer interface contributes to stability only in the hyperthermophilic enzymes. Nevertheless, introduction of a disulfide bridge in the interface of a psychrophilic DERA did confer increased thermostability, suggesting a strategy for rational design of more durable enzyme variants. Constraint network analysis revealed particularly sparse interactions between the substrate pocket and its surrounding α-helices in psychrophilic DERAs, which indicates that a more flexible active center underlies their high turnover numbers. PMID:26783049

  16. Defect-Stabilized Phases in Extensile Active Nematics

    NASA Astrophysics Data System (ADS)

    Redner, Gabriel; Decamp, Stephen; Dogic, Zvonimir; Hagan, Michael

    2015-03-01

    Active nematics are liquid crystals which are driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these materials, leading to beautiful and surprising behaviors including the spontaneous generation of topological defect pairs which stream through the system and later annihilate, yielding a complex, seemingly chaotic dynamical steady-state. In this talk, I will describe the emergence of order from this chaos in the form of previously unknown broken-symmetry phases in which the topological defects themselves undergo orientational ordering. We have identified these defect-ordered phases in two realizations of an active nematic: first, a suspension of extensile bundles of microtubules and molecular motor proteins, and second, a computational model of extending hard rods. I will describe the defect-stabilized phases that manifest in these systems, our current understanding of their origins, and discuss whether such phases may be a general feature of extensile active nematics.

  17. Stability analysis for drugs with multiple active ingredients.

    PubMed

    Chow, Shein-Chung; Shao, Jun

    2007-03-30

    For every drug product on the market, the United States Food and Drug Administration (FDA) requires that an expiration dating period (shelf-life) must be indicated on the immediate container label. For determination of the expiration dating period of a drug product, regulatory requirements and statistical methodology are provided in the FDA and ICH Guidelines. However, this guideline is developed for drug products with a single active ingredient. There are many drug products consisting of multiple active ingredients, especially for most traditional Chinese medicine. In this article, we propose a statistical method for determining the shelf-life of a drug product with multiple active ingredients following similar idea as suggested by the FDA and assuming that these active ingredients are linear combinations of some factors. Stability data observed from a traditional Chinese medicine were analysed to illustrate the proposed method.

  18. Activity and Stability of Nanoscale Oxygen Reduction Catalysts

    SciTech Connect

    Shao-Horn, Yang

    2015-07-28

    Design of highly active and stable nanoscale catalysts for electro-oxidation of small organic molecules is of great importance to the development of efficient fuel cells. The amount and instability of Pt-based catalysts in the cathode limits the cost, efficiency and lifetime of proton exchange membrane fuel cells. We developed a microscopic understanding of the factors governing activity and stability in Pt and PtM alloys. Experimental efforts were focused on probing the size and shape dependence of ORR activity of Pt-based nanoparticles supported on carbon nanotubes. A microscopic understanding of the activity was achieved by correlating voltammetry and rotating ring disk electrodes to surface atomic and electronic structures, which were elucidated predominantly by high-resolution transmission electron microscopy (HRTEM), Scanning transmission electron microscopy energy dispersive X-ray Spectroscopy (STEM-EDS) and synchrotron X-ray absorption spectroscopy (XAS).

  19. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Moreno-Álvarez, S. A.; Martínez-Castañón, G. A.; Niño-Martínez, N.; Reyes-Macías, J. F.; Patiño-Marín, N.; Loyola-Rodríguez, J. P.; Ruiz, Facundo

    2010-10-01

    In this work, gold nanoparticles with three different sizes (13.7, 39.4, and 76.7 nm) were prepared using a simple aqueous method with gallic acid as the reducing and stabilizing agent, the different sizes were obtained varying some experimental parameters as the pH of the reaction and the amount of the gallic acid. The prepared nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy. Samples were identified as elemental gold and present spherical morphology, a narrow size distribution and good stabilization according to TEM and DLS results. The antibacterial activity of this gallic acid stabilized gold nanoparticles against S. mutans (the etiologic agent of dental caries) was assessed using a microdilution method obtaining a minimum inhibitory concentration of 12.31, 12.31, and 49.25 μg/mL for 13.7, 39.4, and 76.7 nm gold nanoparticles, respectively. The antibacterial assay showed that gold nanoparticles prepared in this work present a bactericide activity by a synergistic action with gallic acid. The MIC found for this nanoparticles are much lower than those reported for mixtures of gold nanoparticles and antibiotics.

  20. Dermal nanocrystals from medium soluble actives - physical stability and stability affecting parameters.

    PubMed

    Zhai, Xuezhen; Lademann, Jürgen; Keck, Cornelia M; Müller, Rainer H

    2014-09-01

    Nanocrystals are meanwhile applied to increase the dermal penetration of drugs, but were applied by now only to poorly soluble drugs (e.g. 1-10 μg/ml). As a new concept nanocrystals from medium soluble actives were produced, using caffeine as model compound (solubility 16 mg/ml at 20 °C). Penetration should be increased by (a) further increase in solubility and (b) mainly by increased hair follicle targeting of nanocrystals compared to pure solution. Caffeine nanocrystal production in water lead to pronounced crystal growth. Therefore the stability of nanocrystals in water-ethanol (1:9) and ethanol-propylene glycol (3:7) mixtures with lower dielectric constant D was investigated, using various stabilizers. Both mixtures in combination with Carbopol 981 (non-neutralized) yielded stable nanosuspensions over 2 months at 4 °C and room temperature. Storage at 40 °C lead to crystal growth, attributed to too strong solubility increase, supersaturation and Ostwald ripening effects. Stability of caffeine nanocrystals at lower temperatures could not only be attributed to lower solubility, because the solubilities of caffeine in mixtures and in water are not that much different. Other effects such as quantified by reduced dielectric constant D, and specific interactions between dispersion medium and crystal surface seem to play a role. With the 2 mixtures and Carbopol 981, a basic formulation composition for this type of nanocrystals has been established, to be used in the in vivo proof of principle of the new concept.

  1. Active and passive techniques for tiltrotor aeroelastic stability augmentation

    NASA Astrophysics Data System (ADS)

    Hathaway, Eric L.

    Tiltrotors are susceptible to whirl flutter, an aeroelastic instability characterized by a coupling of rotor-generated aerodynamic forces and elastic wing modes in high speed airplane-mode flight. The conventional approach to ensuring adequate whirl flutter stability will not scale easily to larger tiltrotor designs. This study constitutes an investigation of several alternatives for improving tiltrotor aerolastic stability. A whirl flutter stability analysis is developed that does not rely on more complex models to determine the variations in crucial input parameters with flight condition. Variation of blade flap and lag frequency, and pitch-flap, pitch-lag, and flap-lag couplings, are calculated from physical parameters, such as blade structural flap and lag stiffness distribution (inboard or outboard of pitch bearing), collective pitch, and precone. The analysis is used to perform a study of the influence of various design parameters on whirl flutter stability. While previous studies have investigated the individual influence of various design parameters, the present investigation uses formal optimization techniques to determine a unique combination of parameters that maximizes whirl flutter stability. The optimal designs require only modest changes in the key rotor and wing design parameters to significantly increase flutter speed. When constraints on design parameters are relaxed, optimized configurations are obtained that allow large values of kinematic pitch-flap (delta3) coupling without degrading aeroelastic stability. Larger values of delta3 may be desirable for advanced tiltrotor configurations. An investigation of active control of wing flaperons for stability augmentation is also conducted. Both stiff- and soft-inplane tiltrotor configurations are examined. Control systems that increase flutter speed and wing mode sub-critical damping are designed while observing realistic limits on flaperon deflection. The flaperon is shown to be particularly

  2. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    PubMed Central

    Anella, Fabrizio; Danelon, Christophe

    2014-01-01

    The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristoleic acid (MA) vesicles at varying concentrations of Mg2+. The ligation rate is significantly lower at low-Mg2+ conditions. However, the loss of activity is overcompensated by the increased stability of RNA leading to a larger amount of intact ligated substrate after long reaction periods. Combining RNA ligation assays with fatty acid vesicles we found that MA vesicles made of 5 mM amphiphile are stable and do not impair ligase ribozyme activity in the presence of approximately 2 mM Mg2+. These results provide a scenario in which catalytic RNA and primordial membrane assembly can coexist in the same environment. PMID:25513761

  3. Loss of Consciousness Is Associated with Stabilization of Cortical Activity

    PubMed Central

    Solovey, Guillermo; Alonso, Leandro M.; Yanagawa, Toru; Fujii, Naotaka; Magnasco, Marcelo O.; Cecchi, Guillermo A.

    2015-01-01

    What aspects of neuronal activity distinguish the conscious from the unconscious brain? This has been a subject of intense interest and debate since the early days of neurophysiology. However, as any practicing anesthesiologist can attest, it is currently not possible to reliably distinguish a conscious state from an unconscious one on the basis of brain activity. Here we approach this problem from the perspective of dynamical systems theory. We argue that the brain, as a dynamical system, is self-regulated at the boundary between stable and unstable regimes, allowing it in particular to maintain high susceptibility to stimuli. To test this hypothesis, we performed stability analysis of high-density electrocorticography recordings covering an entire cerebral hemisphere in monkeys during reversible loss of consciousness. We show that, during loss of consciousness, the number of eigenmodes at the edge of instability decreases smoothly, independently of the type of anesthetic and specific features of brain activity. The eigenmodes drift back toward the unstable line during recovery of consciousness. Furthermore, we show that stability is an emergent phenomenon dependent on the correlations among activity in different cortical regions rather than signals taken in isolation. These findings support the conclusion that dynamics at the edge of instability are essential for maintaining consciousness and provide a novel and principled measure that distinguishes between the conscious and the unconscious brain. SIGNIFICANCE STATEMENT What distinguishes brain activity during consciousness from that observed during unconsciousness? Answering this question has proven difficult because neither consciousness nor lack thereof have universal signatures in terms of most specific features of brain activity. For instance, different anesthetics induce different patterns of brain activity. We demonstrate that loss of consciousness is universally and reliably associated with stabilization

  4. Pharmaceutically active compounds in sludge stabilization treatments: anaerobic and aerobic digestion, wastewater stabilization ponds and composting.

    PubMed

    Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2015-01-15

    Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 μg/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 μg/kg dm (aerobically-digested sludge), 63 μg/kg dm (lagoon sludge), 12 μg/kg dm (composted sludge) and 8 μg/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 μg/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17α-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non

  5. Environmental stability of actively mode locked fibre lasers

    NASA Astrophysics Data System (ADS)

    Hill, Calum H.; Lee, Stephen T.; Reid, Derryck T.; Baili, Ghaya; Davies, John

    2016-10-01

    Lasers developed for defence related applications typically encounter issues with reliability and meeting desired specification when taken from the lab to the product line. In particular the harsh environmental conditions a laser has to endure can lead to difficulties. This paper examines a specific class of laser, namely actively mode-locked fibre lasers (AMLFLs), and discusses the impact of environmental perturbations. Theoretical and experimental results have assisted in developing techniques to improve the stability of a mode-locked pulse train for continuous operation. Many of the lessons learned in this research are applicable to a much broader category of lasers. The AMLFL consists of a fibre ring cavity containing a semiconductor optical amplifier (SOA), an isolator, an output coupler, a circulator, a bandpass filter and a modulator. The laser produces a train of 6-ps pulses at 800 nm with a repetition rate in the GHz regime and a low-noise profile. This performance is realisable in a laboratory environment. However, even small changes in temperature on the order of 0.1 °C can cause a collapse of mode-locked dynamics such that the required stability cannot be achieved without suitable feedback. Investigations into the root causes of this failure were performed by changing the temperature of components that constitute the laser resonator and observing their properties. Several different feedback mechanisms have been investigated to improve laser stability in an environment with dynamic temperature changes. Active cavity length control will be discussed along with DC bias control of the Mach-Zehnder modulator (MZM).

  6. Passive and Active Stabilization of Liquid Bridges in Low Gravity

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.; Thiessen, David B.; Marr-Lyon, Mark J.; Wei, Wei; Niederhaus, Charles E.; Truong, Duc K.

    2001-01-01

    Tests are planned in the low gravity environment of the International Space Station (ISS) of new methods for the suppression of the capillary instability of liquid bridges. Our suppression methods are unusual in that they are not limited to liquid bridges having very special properties and may impact a variety of low-gravity and earth-based technologies. There are two main approaches to be investigated: (1) Passive Acoustic Stabilization (PAS); and (2) Active Electrostatic Stabilization (AES). In PAS, the suppression of the mode growth is accomplished by placing the bridge in an acoustic field having the appropriate properties such that the acoustic radiation pressure automatically pulls outward on the thinnest portion of the bridge. In AES, the bridge deformation is sensed optically and counteracted by actively adjusting the electrostatic Maxwell stresses via two ring electrodes concentric with the slightly conducting bridge to offset the growth of the unstable mode. While the present work emphasizes cylindrical bridges, the methods need not be restricted to that case. The methods to be explored are relevant to the suppression of capillary instabilities in floating zone crystal growth, breakup of liquid jets and columns, bubbles, and annular films as well as the management of coolants or propellants in low-gravity.

  7. Control of Foxp3 stability through modulation of TET activity

    PubMed Central

    Yue, Xiaojing; Trifari, Sara; Äijö, Tarmo; Tsagaratou, Ageliki; Pastor, William A.; Zepeda-Martínez, Jorge A.; Lio, Chan-Wang J.; Li, Xiang; Huang, Yun; Vijayanand, Pandurangan; Lähdesmäki, Harri

    2016-01-01

    Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine and other oxidized methylcytosines, intermediates in DNA demethylation. In this study, we examine the role of TET proteins in regulating Foxp3, a transcription factor essential for the development and function of regulatory T cells (T reg cells), a distinct lineage of CD4+ T cells that prevent autoimmunity and maintain immune homeostasis. We show that during T reg cell development in the thymus, TET proteins mediate the loss of 5mC in T reg cell–specific hypomethylated regions, including CNS1 and CNS2, intronic cis-regulatory elements in the Foxp3 locus. Similar to CNS2-deficient T reg cells, the stability of Foxp3 expression is markedly compromised in T reg cells from Tet2/Tet3 double-deficient mice. Vitamin C potentiates TET activity and acts through Tet2/Tet3 to increase the stability of Foxp3 expression in TGF-β–induced T reg cells. Our data suggest that targeting TET enzymes with small molecule activators such as vitamin C might increase induced T reg cell efficacy. PMID:26903244

  8. Optimal Recursive Digital Filters for Active Bending Stabilization

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2013-01-01

    In the design of flight control systems for large flexible boosters, it is common practice to utilize active feedback control of the first lateral structural bending mode so as to suppress transients and reduce gust loading. Typically, active stabilization or phase stabilization is achieved by carefully shaping the loop transfer function in the frequency domain via the use of compensating filters combined with the frequency response characteristics of the nozzle/actuator system. In this paper we present a new approach for parameterizing and determining optimal low-order recursive linear digital filters so as to satisfy phase shaping constraints for bending and sloshing dynamics while simultaneously maximizing attenuation in other frequency bands of interest, e.g. near higher frequency parasitic structural modes. By parameterizing the filter directly in the z-plane with certain restrictions, the search space of candidate filter designs that satisfy the constraints is restricted to stable, minimum phase recursive low-pass filters with well-conditioned coefficients. Combined with optimal output feedback blending from multiple rate gyros, the present approach enables rapid and robust parametrization of autopilot bending filters to attain flight control performance objectives. Numerical results are presented that illustrate the application of the present technique to the development of rate gyro filters for an exploration-class multi-engined space launch vehicle.

  9. Enhanced biological activity of carotenoids stabilized by phenyl groups.

    PubMed

    You, Ji Suk; Jeon, Sunhwa; Byun, Youn Jung; Koo, Sangho; Choi, Shin Sik

    2015-06-15

    Carotenoids are lipid soluble food ingredients with multifunction including antioxidant and anticancer activities. However, carotenoids are destructively oxidized upon reaction with radicals resulting in toxic effects on biological systems. Two synthetic carotenoids (BAS and BTS) containing the aromatic phenyl groups with a para-substituent (OMe and Me, respectively) at C-13 and C-13' position were prepared in order to overcome a structural instability of carotenoid. Both BAS and BTS exerted stronger radical scavenging activity than β-carotene in DPPH and ABTS assays. In particular, BTS significantly reduced in vivo ROS (reactive oxygen species) levels and improved body growth and reproduction of Caenorhabditiselegans. BTS has a great potential for the advanced and modified carotenoid material with stability leading to enhanced bioavailability.

  10. Theory, Investigation and Stability of Cathode Electrocatalytic Activity

    SciTech Connect

    Ding, Dong; Liu, Mingfei; Lai, Samson; Blinn, Kevin; Liu, Meilin

    2012-09-30

    The main objective of this project is to systematically characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF, aiming to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating. The understanding gained will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance. More specifically, the technical objectives include: (1) to characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF; (2) to characterize the microscopic details and stability of the LSCF-catalyst (e.g., LSM) interfaces; (3) to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating; and (4) to demonstrate that the performance and stability of porous LSCF cathodes can be enhanced by the application of a thin-film coating of LSM through a solution infiltration process in small homemade button cells and in commercially available cells of larger dimension. We have successfully developed dense, conformal LSM films with desired structure, composition, morphology, and thickness on the LSCF surfaces by two different infiltration processes: a non-aqueous and a water-based sol-gel process. It is demonstrated that the activity and stability of LSCF cathodes can be improved by the introduction of a thin-film LSM coating through an infiltration process. Surface and interface of the LSM-coated LSCF cathode were systematically characterized using advanced microscopy and spectroscopy techniques. TEM observation suggests that a layer of La and Sr oxide was formed on LSCF surfaces after annealing. With LSM infiltration, in contrast, we no longer observe such La/Sr oxide layer on the LSM-coated LSCF samples after annealing under similar

  11. Robust stabilization of rotor-active magnetic bearing systems

    NASA Astrophysics Data System (ADS)

    Li, Guoxin

    Active magnetic bearings (AMBs) are emerging as a beneficial technology for high-speed and high-performance suspensions in rotating machinery applications. A fundamental feedback control problem is robust stabilization in the presence of uncertain destabilizing mechanisms in aeroelastic, hydroelastic dynamics, and AMB feedback. As rotating machines are evolving in achieving high speed, high energy density, and high performance, the rotor and the support structure become increasingly flexible, and highly coupled. This makes rotor-AMB system more challenging to stabilize. The primary objective of this research is to develop a systematic control synthesis procedure for achieving highly robust stabilization of rotor-AMB systems. Of special interest is the stabilization of multivariable systems such as the AMB supported flexible rotors and gyroscopic rotors, where the classical control design may encounter difficulties. To this end, we first developed a systematic modeling procedure. This modeling procedure exploited the best advantages of technology developed in rotordynamics and the unique system identification tool provided by the AMBs. A systematic uncertainty model for rotor-AMB systems was developed, eliminating the iterative process of selecting uncertainty structures. The consequences of overestimation or underestimation of uncertainties were made transparent to control engineers. To achieve high robustness, we explored the fundamental performance/robustness limitations due to rotor-AMB system unstable poles. We examined the mixed sensitivity performance that is closely related to the unstructured uncertainty. To enhance transparency of the synthesis, we analyzed multivariable controllers from classical control perspectives. Based on these results, a systematic robust control synthesis procedure was established. For a strong gyroscopic rotor over a wide speed range, we applied the advanced gain-scheduled synthesis, and compared two synthesis frameworks in

  12. Antimicrobial Activity and Stability of Electron Beam Irradiated Dental Irrigants

    PubMed Central

    Geethashri, A; Palaksha, K.J.; Sridhar, K. R.; Sanjeev, Ganesh

    2014-01-01

    Background: The electron beam (e-beam) radiation is considered as an effective means of sterilization of healthcare products as well as to induce the structural changes in the pharmaceutical agents/drug molecules. In addition to structural changes of pharmaceutical it also induces the formation of low molecular weight compounds with altered microbiological, physicochemical and toxicological properties. Among the several known medicaments, sodium hypochlorite (NaOCl) and chlorhexidine digluconate (CHX) are used as irrigants in dentistry to kill the pathogenic microorganisms like Enterococcus faecalis, Staphylococcus aureus, Streptococcus mutans and Candida albicans inhabiting the oral cavity. Objectives: The aim of this study was to evaluate the antimicrobial activity and stability of e-beam irradiated dental irrigants, NaOCl and CHX. Materials and Methods: Two dental irrigants NaOCl (1.25% and 2.5%) and CHX (1% and 2%) were exposed to various doses of e-beam radiation. The antimicrobial activities of e-beam irradiated irrigants were compared with the non-irradiated (control) irrigants against E. faecalis, S. aureus, S. mutans and C. albicans by disc diffusion method. Following the storage, physico-chemical properties of the irrigants were recorded and the cytotoxic effect was evaluated on human gingival fibroblast cells. Result: The irrigants, 1.25% NaOCl and 1% CHX showed significantly increased antimicrobial activity against both E. faecalis, (16+0.0) and S. aureus (25+0.0) after irradiation with 1 kGy e-beam. Whereas, 2.5% NaOCl and 2% CHX showed slightly increased antimicrobial activity only against S. aureus (28+0.0). The significant difference was noticed in the antimicrobial activity and cytotoxicity of irradiated and non-irradiated irrigants following the storage for 180 d at 40C. Conclusion: The e-beam irradiation increased the antimicrobial activity of irrigants without altering the biocompatibility. PMID:25584220

  13. Supplementary active stabilization of nonrigid gravity gradient satellites

    NASA Technical Reports Server (NTRS)

    Keat, J. E.

    1972-01-01

    The use of active control for stability augmentation of passive gravity gradient satellites is investigated. The reaction jet method of control is the main interest. Satellite nonrigidity is emphasized. The reduction in the Hamiltonian H is used as a control criteria. The velocities, relative to local vertical, of the jets along their force axes are shown to be of fundamental significance. A basic control scheme which satisfies the H reduction criteria is developed. Each jet is fired when its velocity becomes appropriately large. The jet is de-energized when velocity reaches zero. Firing constraints to preclude orbit alteration may be needed. Control is continued until H has been minimized. This control policy is investigated using impulse and rectangular pulse models of the jet outputs.

  14. Active control for stabilization of neoclassical tearing modesa)

    NASA Astrophysics Data System (ADS)

    Humphreys, D. A.; Ferron, J. R.; La Haye, R. J.; Luce, T. C.; Petty, C. C.; Prater, R.; Welander, A. S.

    2006-05-01

    This work describes active control algorithms used by DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] to stabilize and maintain suppression of 3/2 or 2/1 neoclassical tearing modes (NTMs) by application of electron cyclotron current drive (ECCD) at the rational q surface. The DIII-D NTM control system can determine the correct q-surface/ECCD alignment and stabilize existing modes within 100-500ms of activation, or prevent mode growth with preemptive application of ECCD, in both cases enabling stable operation at normalized beta values above 3.5. Because NTMs can limit performance or cause plasma-terminating disruptions in tokamaks, their stabilization is essential to the high performance operation of ITER [R. Aymar et al., ITER Joint Central Team, ITER Home Teams, Nucl. Fusion 41, 1301 (2001)]. The DIII-D NTM control system has demonstrated many elements of an eventual ITER solution, including general algorithms for robust detection of q-surface/ECCD alignment and for real-time maintenance of alignment following the disappearance of the mode. This latter capability, unique to DIII-D, is based on real-time reconstruction of q-surface geometry by a Grad-Shafranov solver using external magnetics and internal motional Stark effect measurements. Alignment is achieved by varying either the plasma major radius (and the rational q surface) or the toroidal field (and the deposition location). The requirement to achieve and maintain q-surface/ECCD alignment with accuracy on the order of 1cm is routinely met by the DIII-D Plasma Control System and these algorithms. We discuss the integrated plasma control design process used for developing these and other general control algorithms, which includes physics-based modeling and testing of the algorithm implementation against simulations of actuator and plasma responses. This systematic design/test method and modeling environment enabled successful mode suppression by the NTM control system upon first-time use in an experimental

  15. A single mutation within a Ca(2+) binding loop increases proteolytic activity, thermal stability, and surfactant stability.

    PubMed

    Okuda, Mitsuyoshi; Ozawa, Tadahiro; Tohata, Masatoshi; Sato, Tsuyoshi; Saeki, Katsuhisa; Ozaki, Katsuya

    2013-03-01

    We improved the enzymatic properties of the oxidatively stable alkaline serine protease KP-43 through protein engineering to make it more suitable for use in laundry detergents. To enhance proteolytic activity, the gene encoding KP-43 was mutagenized by error-prone PCR. Screening identified a Tyr195Cys mutant enzyme that exhibited increased specific activity toward casein between pH 7 and 11. At pH 10, the mutant displayed 1.3-fold higher specific activity for casein compared to the wild-type enzyme, but the activity of the mutant was essentially unchanged toward several synthetic peptides. Furthermore, the Tyr195Cys mutation significantly increased thermal stability and surfactant stability of the enzyme under oxidizing conditions. Examination of the crystal structure of KP-43 revealed that Tyr195 is a solvent exposed residue that forms part of a flexible loop that binds a Ca(2+) ion. This residue lies 15-20Å away from the residues comprising the catalytic triad of the enzyme. These results suggest that the substitution at position 195 does not alter the structure of the active center, but instead may affect a substrate-enzyme interaction. We propose that the Tyr195Cys mutation enhances the interaction with Ca(2+) and affects the packing of the Ca(2+) binding loop, consequently increasing protein stability. The simultaneously increased proteolytic activity, thermal stability, and surfactant stability of the Tyr195Cys mutant enzyme make the protein an ideal candidate for laundry detergent application.

  16. Lipophilic pyrazinoic acid amide and ester prodrugs stability, activation and activity against M. tuberculosis.

    PubMed

    Simões, Marta Filipa; Valente, Emília; Gómez, M José Rodríguez; Anes, Elsa; Constantino, Luís

    2009-06-28

    Pyrazinamide (PZA) is active against M. tuberculosis and is a first line agent for the treatment of human tuberculosis. PZA is itself a prodrug that requires activation by a pyrazinamidase to form its active metabolite pyrazinoic acid (POA). Since the specificity of cleavage is dependent on a single bacterial enzyme, resistance to PZA is often found in tuberculosis patients. Esters of POA have been proposed in the past as alternatives to PZA however the most promising compounds were rapidly degraded in the presence of serum. In order to obtain compounds that could survive during the transport phase, we synthesized lipophilic ester and amide POA derivatives, studied their activity against M. tuberculosis, their stability in plasma and rat liver homogenate and also their activation by a mycobacterial homogenate. The new lipophilic ester prodrugs were found to be active in concentrations 10-fold lower than those needed for PZA to kill sensitive M. tuberculosis and also have a suitable stability in the presence of plasma. Amides of POA although more stable in plasma have lower activity. The reason can probably be found in the rate of activation of both types of prodrugs; while esters are easily activated by mycobacterial esterases, amides are resistant to activation and are not transformed into POA at a suitable rate.

  17. Synthesis, thermal stability, and photocatalytic activity of nanocrystalline titanium carbide

    SciTech Connect

    Chen, Youjian; Zhang, Hong; Ma, DeKun; Ma, Jianhua; Ye, Hongnan; Qian, Gaojin; Ye, Yi

    2011-11-15

    Highlights: {yields} The synthesized temperature is lower than some conventional methods. {yields} These raw materials are safe; all manipulations are rather safe and convenient. {yields} The product exhibits photocatalytic activity in degradation of Rhodamine-B. -- Abstract: Titanium carbide (TiC) was prepared via one simple route by the reaction of metallic magnesium powders with titanium dioxide (TiO{sub 2}) and potassium acetate (CH{sub 3}COOK) in an autoclave at 600 {sup o}C and 8 h. Phase structure and morphology were characterized by X-ray powder diffraction (XRD) and Scanning electron microscopy (SEM). The results indicated that the product was cubic TiC, which consisted of particles with an average size of about 100 nm in diameter. The product was also studied by the thermogravimetric analysis (TGA) and its photocatalysis. It had good thermal stability and oxidation resistance below 350 {sup o}C in air. In addition, we discovered that the cubic TiC powders exhibited photocatalytic activity in degradation of Rhodamine-B (RhB) under 500 W mercury lamp light irradiation.

  18. Highly conserved tyrosine stabilizes the active state of rhodopsin.

    PubMed

    Goncalves, Joseph A; South, Kieron; Ahuja, Shivani; Zaitseva, Ekaterina; Opefi, Chikwado A; Eilers, Markus; Vogel, Reiner; Reeves, Philip J; Smith, Steven O

    2010-11-16

    Light-induced isomerization of the 11-cis-retinal chromophore in the visual pigment rhodopsin triggers displacement of the second extracellular loop (EL2) and motion of transmembrane helices H5, H6, and H7 leading to the active intermediate metarhodopsin II (Meta II). We describe solid-state NMR measurements of rhodopsin and Meta II that target the molecular contacts in the region of the ionic lock involving these three helices. We show that a contact between Arg135(3.50) and Met257(6.40) forms in Meta II, consistent with the outward rotation of H6 and breaking of the dark-state Glu134(3.49)-Arg135(3.50)-Glu247(6.30) ionic lock. We also show that Tyr223(5.58) and Tyr306(7.53) form molecular contacts with Met257(6.40). Together these results reveal that the crystal structure of opsin in the region of the ionic lock reflects the active state of the receptor. We further demonstrate that Tyr223(5.58) and Ala132(3.47) in Meta II stabilize helix H5 in an active orientation. Mutation of Tyr223(5.58) to phenylalanine or mutation of Ala132(3.47) to leucine decreases the lifetime of the Meta II intermediate. Furthermore, the Y223F mutation is coupled to structural changes in EL2. In contrast, mutation of Tyr306(7.53) to phenylalanine shows only a moderate influence on the Meta II lifetime and is not coupled to EL2.

  19. Evolution of an Antibiotic Resistance Enzyme Constrained by Stability and Activity Trade-offs

    SciTech Connect

    Wang, Xiaojun; Minasov, George; Shoichet, Brian K.

    2010-03-08

    Pressured by antibiotic use, resistance enzymes have been evolving new activities. Does such evolution have a cost? To investigate this question at the molecular level, clinically isolated mutants of the {beta}-lactamase TEM-1 were studied. When purified, mutant enzymes had increased activity against cephalosporin antibiotics but lost both thermodynamic stability and kinetic activity against their ancestral targets, penicillins. The X-ray crystallographic structures of three mutant enzymes were determined. These structures suggest that activity gain and stability loss is related to an enlarged active site cavity in the mutant enzymes. In several clinically isolated mutant enzymes, a secondary substitution is observed far from the active site (Met182 {yields} Thr). This substitution had little effect on enzyme activity but restored stability lost by substitutions near the active site. This regained stability conferred an advantage in vivo. This pattern of stability loss and restoration may be common in the evolution of new enzyme activity.

  20. Stabilized leachates: ozone-activated carbon treatment and kinetics.

    PubMed

    Rivas, F Javier; Beltrán, Fernando; Gimeno, Olga; Acedo, Benito; Carvalho, Fátima

    2003-12-01

    Ozone has been used as a pre-oxidation step for the treatment of stabilized leachates. Given the refractory nature of this type of effluents, the conversion of some wastewater quality parameters has been moderate after 1 h of ozonation (i.e. 30% chemical oxygen demand (COD) depletion). Ozone uptake was calculated in the interval 1.3-1.5 g of ozone per gram of COD degraded. An optimum dose of ozone has been experienced in terms of biodegradability of the processed effluent (60 min of treatment, 1 x 10(-3) mol L(-1) ozone inlet feeding concentration and 50 L h(-1) gas flow-rate). pH and other typical hydroxyl radical generator systems exerted no influence on the efficiency of the process, suggesting the negligible role played by the indirect route of oxidation (generation of hydroxyl radicals). The ozonated effluent was thereafter treated in a second adsorption stage by using a commercial activated carbon. Removal levels up to 90% of COD in approximately 120 h were experienced for adsorbent dosages of 30 g L(-1). Both steps, the single ozonation and the adsorption stage have been modelled by using different pseudoempirical models.

  1. Micron: an Actively Stabilized Handheld Tool for Microsurgery

    PubMed Central

    MacLachlan, Robert A.; Becker, Brian C.; Tabarés, Jaime Cuevas; Podnar, Gregg W.; Lobes, Louis A.; Riviere, Cameron N.

    2011-01-01

    We describe the design and performance of a hand-held actively stabilized tool to increase accuracy in micro-surgery or other precision manipulation. It removes involuntary motion such as tremor by actuating the tip to counteract the effect of the undesired handle motion. The key components are a three-degree-of-freedom piezoelectric manipulator that has 400 μm range of motion, 1 N force capability, and bandwidth over 100 Hz, and an optical position measurement subsystem that acquires the tool pose with 4 μm resolution at 2000 samples/s. A control system using these components attenuates hand motion by at least 15 dB (a fivefold reduction). By considering the effect of the frequency response of Micron on the human visual feedback loop, we have developed a filter that reduces unintentional motion, yet preserves intuitive eye-hand coordination. We evaluated the effectiveness of Micron by measuring the accuracy of the human/machine system in three simple manipulation tasks. Handheld testing by three eye surgeons and three non-surgeons showed a reduction in position error of between 32% and 52%, depending on the error metric. PMID:23028266

  2. Temperature and Microbial Activity Effects on Soil Carbon Stabilization

    NASA Astrophysics Data System (ADS)

    Fissore, C.; van Diepen, L.; Wixon, D.; Marin-Spiotta, E.; Giardina, C. P.

    2014-12-01

    Uncertainties on the importance of environmental controls on soil C stabilization and turnover limit accurate predictions of the rate and magnitude of the response of soils to climate change. Here we report results from a study of interactions among vegetation and soil microbial communities in North American forests across a highly constrained, 22OC gradient mean annual temperature (MAT) as a proxy for understanding changes with climate. Previous work indicated that turnover and amount of labile SOC responded negatively to MAT, whereas stable SOC was insensitive to temperature variation. Hardwood forests stored a larger amount of stable SOC, but with shorter mean residence times than paired pine forests. Our findings suggest that the interaction between vegetation composition and microbial communities may affect SOC accumulation and stabilization responses to rising temperature. To investigate these relationships, we characterized the microbial communities with Phospholipid Fatty Acid (PLFA) analysis. PLFA analyses indicate complex microbial responses to increased MAT and vegetation composition. Microbial biomass declined with MAT in conifer forests and increased in hardwood forests. Relative abundance of actinomycetes increased with MAT for both forest types, and was correlated with amount and turnover of active SOC. The relative abundance of fungi decreased with increasing MAT, while gram+ bacteria increased, such that fungi:bacteria ratio decreased with MAT, with this trend being more pronounced for hardwood cover type. These results are consistent with a long-term warming experiment in a hardwood forest at the Harvard Forest LTER site, where after 12 years of warming the relative abundance of gram positive bacteria and actinomycetes increased, while fungal biomass decreased. In contrast, relationships between microbial groups and the stable fraction of SOC along the gradient were only observed in conifers. Increases in mean residence time of stable SOC were

  3. Selective Electrocatalytic Activity of Ligand Stabilized Copper Oxide Nanoparticles

    SciTech Connect

    Kauffman, Douglas R; Ohodnicki, Paul R; Kail, Brian W; Matranga, Christopher

    2011-01-01

    Ligand stabilization can influence the surface chemistry of Cu oxide nanoparticles (NPs) and provide unique product distributions for electrocatalytic methanol (MeOH) oxidation and CO{sub 2} reduction reactions. Oleic acid (OA) stabilized Cu{sub 2}O and CuO NPs promote the MeOH oxidation reaction with 88% and 99.97% selective HCOH formation, respectively. Alternatively, CO{sub 2} is the only reaction product detected for bulk Cu oxides and Cu oxide NPs with no ligands or weakly interacting ligands. We also demonstrate that OA stabilized Cu oxide NPs can reduce CO{sub 2} into CO with a {approx}1.7-fold increase in CO/H{sub 2} production ratios compared to bulk Cu oxides. The OA stabilized Cu oxide NPs also show 7.6 and 9.1-fold increases in CO/H{sub 2} production ratios compared to weakly stabilized and non-stabilized Cu oxide NPs, respectively. Our data illustrates that the presence and type of surface ligand can substantially influence the catalytic product selectivity of Cu oxide NPs.

  4. Defying the activity-stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability.

    PubMed

    Siddiqui, Khawar Sohail

    2017-05-01

    The biotechnological applications of enzymes are limited due to the activity-stability trade-off, which implies that an increase in activity is accompanied by a concomitant decrease in protein stability. This premise is based on thermally adapted homologous enzymes where cold-adapted enzymes show high intrinsic activity linked to enhanced thermolability. In contrast, thermophilic enzymes show low activity around ambient temperatures. Nevertheless, genetically and chemically modified enzymes are beginning to show that the activity-stability trade-off can be overcome. In this review, the origin of the activity-stability trade-off, the thermodynamic basis for enhanced activity and stability, and various approaches for escaping the activity-stability trade-off are discussed. The role of entropy in enhancing both the activity and the stability of enzymes is highlighted with a special emphasis placed on the involvement of solvent water molecules. This review is concluded with suggestions for further research, which underscores the implications of these findings in the context of productivity curves, the Daniel-Danson equilibrium model, catalytic antibodies, and life on cold planets.

  5. Active stabilization of a diode laser injection lock.

    PubMed

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  6. Active stabilization of a diode laser injection lock

    NASA Astrophysics Data System (ADS)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  7. Novel active stabilization technology in highly crosslinked UHMWPEs for superior stability

    NASA Astrophysics Data System (ADS)

    Oral, Ebru; Neils, Andrew L.; Wannomae, Keith K.; Muratoglu, Orhun K.

    2014-12-01

    Radiation cross-linked ultrahigh molecular weight polyethylene (UHMWPE) is the bearing of choice in joint arthroplasty. The demands on the longevity of this polymer are likely to increase with the recently advancing deterioration of the performance of alternative metal-on-metal implants. Vitamin E-stabilized, cross-linked UHMWPEs are considered the next generation of improved UHMWPE bearing surfaces for improving the oxidation resistance of the polymer. It was recently discovered that in the absence of radiation-induced free radicals, lipids absorbed into UHMWPE from the synovial fluid can initiate oxidation and result in new free radical-mediated oxidation mechanisms. In the presence of radiation-induced free radicals, it is possible for the polymer to oxidize through both existing free radicals at the time of implantation and through newly formed free radicals in vivo. Thus, we showed that reducing the radiation-induced free radicals in vitamin E-stabilized UHMWPE would increase its oxidative stability and presumably lead to improved longevity. We describe mechanical annealing and warm irradiation of irradiated vitamin E blends as novel methods to eliminate 99% of radiation-induced free radicals without sacrificing crystallinity. These are significant improvements in the processing of highly cross-linked UHMWPE for joint implants with improved longevity.

  8. Nicotinamide mononucleotide adenylyltransferase maintains active zone structure by stabilizing Bruchpilot

    PubMed Central

    Zang, Shaoyun; Ali, Yousuf O; Ruan, Kai; Zhai, R Grace

    2013-01-01

    Active zones are specialized presynaptic structures critical for neurotransmission. We show that a neuronal maintenance factor, nicotinamide mononucleotide adenylyltransferase (NMNAT), is required for maintaining active zone structural integrity in Drosophila by interacting with the active zone protein, Bruchpilot (BRP), and shielding it from activity-induced ubiquitin–proteasome-mediated degradation. NMNAT localizes to the peri-active zone and interacts biochemically with BRP in an activity-dependent manner. Loss of NMNAT results in ubiquitination, mislocalization and aggregation of BRP, and subsequent active zone degeneration. We propose that, as a neuronal maintenance factor, NMNAT specifically maintains active zone structure by direct protein–protein interaction. PMID:23154466

  9. Nonsmooth finite-time stabilization of neural networks with discontinuous activations.

    PubMed

    Liu, Xiaoyang; Park, Ju H; Jiang, Nan; Cao, Jinde

    2014-04-01

    This paper is concerned with the finite-time stabilization for a class of neural networks (NNs) with discontinuous activations. The purpose of the addressed problem is to design a discontinuous controller to stabilize the states of such neural networks in finite time. Unlike the previous works, such stabilization objective will be realized for neural networks when the activations and controllers are both discontinuous. Based on the famous finite-time stability theorem of nonlinear systems and nonsmooth analysis in mathematics, sufficient conditions are established to ensure the finite-time stability of the dynamics of NNs. Then, the upper bound of the settling time for stabilization can be estimated in two forms due to two different methods of proof. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design method.

  10. Iraq Reconstruction: Lessons from Auditing U.S.-funded Stabilization and Reconstruction Activities

    DTIC Science & Technology

    2012-10-01

    Activities October 2012 Audit Lessons Learned_v10.indd 1 10/17/2012 6:27:00 PM Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Iraq Reconstruction: Lessons from Auditing U.S.-funded Stabilization and Reconstruction Activities 5a. CONTRACT NUMBER 5b...Lessons Learned from Auditing Stabilization and Reconstruction Activities in an SRO .................................................. 3 Part III

  11. ABDOMINAL MUSCLE ACTIVATION INCREASES LUMBAR SPINAL STABILITY: ANALYSIS OF CONTRIBUTIONS OF DIFFERENT MUSCLE GROUPS

    PubMed Central

    Stokes, Ian A.F.; Gardner-Morse, Mack G.; Henry, Sharon M.

    2011-01-01

    Background Antagonistic activation of abdominal muscles and raised intra-abdominal pressure are associated with both spinal unloading and spinal stabilization. Rehabilitation regimens have been proposed to improve spinal stability via selective recruitment of certain trunk muscle groups. This biomechanical study used an analytical model to address whether lumbar spinal stability is increased by selective activation of abdominal muscles. Methods The biomechanical model included anatomically realistic three-layers of curved abdominal musculature connected by fascia, rectus abdominis and 77 symmetrical pairs of dorsal muscles. The muscle activations were calculated with the model loaded with either flexion, extension, lateral bending or axial rotation moments up to 60 Nm, along with intra-abdominal pressure up to 5 or 10 kPa (37.5 or 75 mm Hg) and partial bodyweight. After solving for muscle forces, a buckling analysis quantified spinal stability. Subsequently, different patterns of muscle activation were studied by forcing activation of selected abdominal muscles to at least 10% or 20% of maximum. Findings The spinal stability increased by an average factor of 1.8 with doubling of intra-abdominal pressure. Forced activation of obliques or transversus abdominis muscles to at least 10% of maximum increased stability slightly for efforts other than flexion, but forcing at least 20% activation generally did not produce further increase in stability. Forced activation of rectus abdominis did not increase stability. Interpretation Based on predictions from an analytical spinal buckling model, the degree of stability was not substantially influenced by selective forcing of muscle activation. This casts doubt on the supposed mechanism of action of specific abdominal muscle exercise regimens that have been proposed for low back pain rehabilitation. PMID:21571410

  12. Insights into the interactions between enzyme and co-solvents: stability and activity of stem bromelain.

    PubMed

    Rani, Anjeeta; Venkatesu, Pannuru

    2015-02-01

    In present study, an attempt is made to elucidate the effects of various naturally occurring osmolytes and denaturants on BM at pH 7.0. The effects of the varying concentrations of glycerol, sorbitol, sucrose, trehalose, urea and guanidinium chloride (GdnHCl) on structure, stability and activity of BM are explored by fluorescence spectroscopy, circular dichroism (CD), UV-vis spectroscopy and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Our experimental observations reveal that glycerol and sorbitol are acting as stabilizers at all concentrations while sucrose and trehalose are found to be destabilizers at lower concentrations, however, acted as stabilizers at higher concentrations. On the other hand, urea and GdnHCl are denaturants except at lower concentrations. There is a direct relationship between activity and conformational stability as the activity data are found to be in accordance with conformational stability parameters (ΔGu, Tm, ΔCp) and BM profile on SDS-PAGE.

  13. Stability evaluation and correction of a pulsed neutron generator prompt gamma activation analysis system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Source output stability is important for accurate measurement in prompt gamma neutron activation. This is especially true when measuring low-concentration elements such as in vivo nitrogen (~2.5% of body weight). We evaluated the stability of the compact DT neutron generator within an in vivo nitrog...

  14. Balancing the stability and the catalytic specificities of OP hydrolases with enhanced V-agent activities.

    PubMed

    Reeves, T E; Wales, M E; Grimsley, J K; Li, P; Cerasoli, D M; Wild, J R

    2008-06-01

    Rational site-directed mutagenesis and biophysical analyses have been used to explore the thermodynamic stability and catalytic capabilities of organophosphorus hydrolase (OPH) and its genetically modified variants. There are clear trade-offs in the stability of modifications that enhance catalytic activities. For example, the H254R/H257L variant has higher turnover numbers for the chemical warfare agents VX (144 versus 14 s(-1) for the native enzyme (wild type) and VR (Russian VX, 465 versus 12 s(-1) for wild type). These increases are accompanied by a loss in stability in which the total Gibb's free energy for unfolding is 19.6 kcal/mol, which is 5.7 kcal/mol less than that of the wild-type enzyme. X-ray crystallographic studies support biophysical data that suggest amino acid residues near the active site contribute to the chemical and thermal stability through hydrophobic and cation-pi interactions. The cation-pi interactions appear to contribute an additional 7 kcal/mol to the overall global stability of the enzyme. Using rational design, it has been possible to make amino acid changes in this region that restored the stability, yet maintained effective V-agent activities, with turnover numbers of 68 and 36 s(-1) for VX and VR, respectively. This study describes the first rationally designed, stability/activity balance for an OPH enzyme with a legitimate V-agent activity, and its crystal structure.

  15. Exponential stability of delayed and impulsive cellular neural networks with partially Lipschitz continuous activation functions.

    PubMed

    Song, Xueli; Xin, Xing; Huang, Wenpo

    2012-05-01

    The paper discusses exponential stability of distributed delayed and impulsive cellular neural networks with partially Lipschitz continuous activation functions. By relative nonlinear measure method, some novel criteria are obtained for the uniqueness and exponential stability of the equilibrium point. Our method abandons usual assumptions on global Lipschitz continuity, boundedness and monotonicity of activation functions. Our results are generalization and improvement of some existing ones. Finally, two examples and their simulations are presented to illustrate the correctness of our analysis.

  16. Dynamic Stabilization of Simple Fractures With Active Plates Delivers Stronger Healing Than Conventional Compression Plating

    PubMed Central

    Tsai, Stanley; Bliven, Emily K.; von Rechenberg, Brigitte; Kindt, Philipp; Augat, Peter; Henschel, Julia; Fitzpatrick, Daniel C.; Madey, Steven M.

    2017-01-01

    Objectives: Active plates dynamize a fracture by elastic suspension of screw holes within the plate. We hypothesized that dynamic stabilization with active plates delivers stronger healing relative to standard compression plating. Methods: Twelve sheep were randomized to receive either a standard compression plate (CP) or an active plate (ACTIVE) for stabilization of an anatomically reduced tibial osteotomy. In the CP group, absolute stabilization was pursued by interfragmentary compression with 6 cortical screws. In the ACTIVE group, dynamic stabilization after bony apposition was achieved with 6 elastically suspended locking screws. Fracture healing was analyzed weekly on radiographs. After sacrifice 9 weeks postsurgery, the torsional strength of healed tibiae and contralateral tibiae was measured. Finally, computed tomography was used to assess fracture patterns and healing modes. Results: Healing in both groups included periosteal callus formation. ACTIVE specimens had almost 6 times more callus area by week 9 (P < 0.001) than CP specimens. ACTIVE specimens recovered on average 64% of their native strength by week 9, and were over twice as strong as CP specimens, which recovered 24% of their native strength (P = 0.008). Microcomputed tomography demonstrated that compression plating induced a combination of primary bone healing and gap healing. Active plating consistently stimulated biological bone healing by periosteal callus formation. Conclusions: Compared with compression plating, dynamic stabilization of simple fractures with active plates delivers significantly stronger healing. PMID:27861456

  17. Leisure Activities and Change in Cognitive Stability: A Multivariate Approach.

    PubMed

    Mella, Nathalie; Grob, Emmanuelle; Döll, Salomé; Ghisletta, Paolo; de Ribaupierre, Anik

    2017-03-01

    Aging is traditionally associated with cognitive decline, attested by slower reaction times and poorer performance in various cognitive tasks, but also by an increase in intraindividual variability (IIV) in cognitive performance. Results concerning how lifestyle activities protect from cognitive decline are mixed in the literature and all focused on how it affects mean performance. However, IIV has been proven to be an index more sensitive to age differences, and very little is known about the relationships between lifestyle activities and change in IIV in aging. This longitudinal study explores the association between frequency of physical, social, intellectual, artistic, or cultural activities and age-related change in various cognitive abilities, considering both mean performance and IIV. Ninety-six participants, aged 64-93 years, underwent a battery of cognitive tasks at four measurements over a seven-year period, and filled out a lifestyle activity questionnaire. Linear multilevel models were used to analyze the associations between change in cognitive performance and five types of activities. Results showed that the practice of leisure activities was more strongly associated with IIV than with mean performance, both when considering overall level and change in performance. Relationships with IIV were dependent of the cognitive tasks considered and overall results showed protective effects of cultural, physical and intellectual activities on IIV. These results underline the need for considering IIV in the study of age-related cognitive change.

  18. Leisure Activities and Change in Cognitive Stability: A Multivariate Approach

    PubMed Central

    Mella, Nathalie; Grob, Emmanuelle; Döll, Salomé; Ghisletta, Paolo; de Ribaupierre, Anik

    2017-01-01

    Aging is traditionally associated with cognitive decline, attested by slower reaction times and poorer performance in various cognitive tasks, but also by an increase in intraindividual variability (IIV) in cognitive performance. Results concerning how lifestyle activities protect from cognitive decline are mixed in the literature and all focused on how it affects mean performance. However, IIV has been proven to be an index more sensitive to age differences, and very little is known about the relationships between lifestyle activities and change in IIV in aging. This longitudinal study explores the association between frequency of physical, social, intellectual, artistic, or cultural activities and age-related change in various cognitive abilities, considering both mean performance and IIV. Ninety-six participants, aged 64–93 years, underwent a battery of cognitive tasks at four measurements over a seven-year period, and filled out a lifestyle activity questionnaire. Linear multilevel models were used to analyze the associations between change in cognitive performance and five types of activities. Results showed that the practice of leisure activities was more strongly associated with IIV than with mean performance, both when considering overall level and change in performance. Relationships with IIV were dependent of the cognitive tasks considered and overall results showed protective effects of cultural, physical and intellectual activities on IIV. These results underline the need for considering IIV in the study of age-related cognitive change. PMID:28257047

  19. Apparent Tradeoff of Higher Activity in MMP-12 for Enhanced Stability and Flexibility in MMP-3

    PubMed Central

    Liang, Xiangyang; Arunima, A.; Zhao, Yingchu; Bhaskaran, Rajagopalan; Shende, Anuradha; Byrne, Todd S.; Fleeks, Jeremy; Palmier, Mark O.; Van Doren, Steven R.

    2010-01-01

    Abstract The greater activity of MMP-12 than MMP-3 toward substrates from protein fibrils has been quantified. Why is MMP-12 the more active protease? We looked for behaviors associated with the higher activity of MMP-12 than MMP-3, using nuclear magnetic resonance to monitor backbone dynamics and residue-specific stabilities of their catalytic domain. The proteolytic activities are likely to play important roles in inflammatory diseases of arteries, lungs, joints, and intestines. Nuclear magnetic resonance line broadening indicates that regions surrounding the active sites of both proteases sample conformational substates within milliseconds. The more extensive line broadening in MMP-3 suggests greater sampling of conformational substates, affecting the full length of helix B and β-strand IV forming the active site, and more remote sites. This could suggest more excursions to functionally incompetent substates. MMP-3 also has enhanced subnanosecond fluctuations in helix A, in the β-hairpin of strands IV and V, and before and including helix C. Hydrogen exchange protection in the EX2 regime suggests that MMP-3 possesses 2.8 kcal/mol higher folding stability than MMP-12(E219A). The β-sheet of MMP-3 appears to be stabilized still more. The higher stability of MMP-3 relative to MMP-12 coincides with the former's considerably lower proteolytic activity. This relationship is consistent with the hypothesis that enzymes often trade stability for higher activity. PMID:20655856

  20. Beta activity in the premotor cortex is increased during stabilized as compared to normal walking

    PubMed Central

    Bruijn, Sjoerd M.; Van Dieën, Jaap H.; Daffertshofer, Andreas

    2015-01-01

    Walking on two legs is inherently unstable. Still, we humans perform remarkable well at it, mostly without falling. To gain more understanding of the role of the brain in controlling gait stability we measured brain activity using electro-encephalography (EEG) during stabilized and normal walking. Subjects walked on a treadmill in two conditions, each lasting 10 min; normal, and while being laterally stabilized by elastic cords. Kinematics of trunk and feet, electro-myography (EMG) of neck muscles, as well as 64-channel EEG were recorded. To assess gait stability the local divergence exponent, step width, and trunk range of motion were calculated from the kinematic data. We used independent component (IC) analysis to remove movement, EMG, and eyeblink artifacts from the EEG, after which dynamic imaging of coherent sources beamformers were determined to identify cortical sources that showed a significant difference between conditions. Stabilized walking led to a significant increase in gait stability, i.e., lower local divergence exponents. Beamforming analysis of the beta band activity revealed significant sources in bilateral pre-motor cortices. Projection of sensor data on these sources showed a significant difference only in the left premotor area, with higher beta power during stabilized walking, specifically around push-off, although only significant around contralateral push-off. It appears that even during steady gait the cortex is involved in the control of stability. PMID:26578937

  1. Active focus stabilization for upright selective plane illumination microscopy

    PubMed Central

    Hedde, Per Niklas; Gratton, Enrico

    2015-01-01

    Due to its sectioning capability, large field of view, and minimal light exposure, selective plane illumination microscopy has become the preferred choice for 3D time lapse imaging. Single cells in a dish can be conveniently imaged using an upright/inverted configuration. However, for measurements on long time scales (hours to days), mechanical drift is a problem; especially for studies of mammalian cells that typically require heating to 37°C which causes a thermal gradient across the instrument. Since the light sheet diverges towards the edges of the field of view, such a drift leads to a decrease in axial resolution over time. Or, even worse, the specimen could move out of the imaging volume. Here, we present a simple, cost-effective way to stabilize the axial position using the microscope camera to track the sample position. Thereby, sample loss is prevented and an optimal axial resolution is maintained by keeping the sample at the position where the light sheet is at its thinnest. We demonstrate the virtue of our approach by measurements of the light sheet thickness and 3D time lapse imaging of a cell monolayer at physiological conditions. PMID:26072829

  2. Active focus stabilization for upright selective plane illumination microscopy.

    PubMed

    Hedde, Per Niklas; Gratton, Enrico

    2015-06-01

    Due to its sectioning capability, large field of view, and minimal light exposure, selective plane illumination microscopy has become the preferred choice for 3D time lapse imaging. Single cells in a dish can be conveniently imaged using an upright/inverted configuration. However, for measurements on long time scales (hours to days), mechanical drift is a problem; especially for studies of mammalian cells that typically require heating to 37°C which causes a thermal gradient across the instrument. Since the light sheet diverges towards the edges of the field of view, such a drift leads to a decrease in axial resolution over time. Or, even worse, the specimen could move out of the imaging volume. Here, we present a simple, cost-effective way to stabilize the axial position using the microscope camera to track the sample position. Thereby, sample loss is prevented and an optimal axial resolution is maintained by keeping the sample at the position where the light sheet is at its thinnest. We demonstrate the virtue of our approach by measurements of the light sheet thickness and 3D time lapse imaging of a cell monolayer at physiological conditions.

  3. Active stabilization of thin-wall structures under compressive loading

    NASA Astrophysics Data System (ADS)

    Welham, Jared; Calius, Emilio P.; Chase, J. Geoffrey

    2003-08-01

    The active suppression of elastic buckling instability has the potential to significantly increase the effective strength of thin-wall structures. Despite all the interest in smart structures, the active suppression of buckling has received comparatively little attention. This paper addresses the effects of embedded actuation on the compression buckling strength of laminated composite plates through analysis and simulation. Numerical models are formulated that include the influence of essential features such as sensor uncertainty and noise, actuator saturation and control architecture on the buckling process. Silicon-based strain sensors and diffuse laser distance sensors are both considered for use in the detection of incipient buckling behavior due to their increased sensitivity. Actuation is provided by paired distributions of piezo-electric material incorporated into both sides of the laminate. Optimal controllers are designed to command the structure to deform in ways that interfere with the development of buckling mode shapes. Commercial software packages are used to solve the resulting non-linear equations, and some of the tradeoffs are enumerated. Overall, the results show that active buckling control can considerably enhance resistance to instability under compressive loads. These buckling load predictions demonstrate the viability of optimal control and piezo-electric actuation for implementing active buckling control. Due to the importance of early detection, the relative effectiveness of active buckling control is shown to be strongly dependent on the performance of the sensing scheme, as well as on the characteristics of the structure.

  4. Sequential extraction study of stability of adsorbed mercury in chemically modified activated carbons.

    PubMed

    Tong, Shitang; Fan, Mingxia; Mao, Lei; Jia, Charles Q

    2011-09-01

    Activated carbons chemically modified with sulfur and bromine are known for their greater effectiveness in capturing vapor Hg from coal combustion and other industrial flue gases. The stability of captured Hg in spent activated carbons determines the final fate of Hg and is critical to devising Hg control strategy. However, it remains a subject that is largely unknown, particularly for Br-treated activated carbons. Using a six-step sequential extraction procedure, this work evaluated the leaching potential of Hg captured with four activated carbons, one lignite-derived activated carbon, and three chemically treated with Br(2), KClO(3), and SO(2). The results demonstrated clearly the positive effect of Br- and SO(2)-treatment on the stability of captured Hg. The Hg captured with brominated activated carbon was very stable and likely in the form of mercurous bromide complex. Sulfur added at high temperature with SO(2) was able to stabilize a majority of Hg by forming sulfide and possibly sulfonate chelate. The presence of sulfate however made a small fraction of captured Hg (<10%) labile under mild conditions. Treating activated carbon with KClO(3) lowered the overall stability of captured Hg. A positive dependence of Hg stability on Hg loading temperature was observed for the first time.

  5. Role of disulfide bridges in the activity and stability of a cold-active alpha-amylase.

    PubMed

    Siddiqui, Khawar Sohail; Poljak, Anne; Guilhaus, Michael; Feller, Georges; D'Amico, Salvino; Gerday, Charles; Cavicchioli, Ricardo

    2005-09-01

    The cold-adapted alpha-amylase from Pseudoalteromonas haloplanktis unfolds reversibly and cooperatively according to a two-state mechanism at 30 degrees C and unfolds reversibly and sequentially with two transitions at temperatures below 12 degrees C. To examine the role of the four disulfide bridges in activity and conformational stability of the enzyme, the eight cysteine residues were reduced with beta-mercaptoethanol or chemically modified using iodoacetamide or iodoacetic acid. Matrix-assisted laser desorption-time of flight mass spectrometry analysis confirmed that all of the cysteines were modified. The iodoacetamide-modified enzyme reversibly folded/unfolded and retained approximately one-third of its activity. Removal of all disulfide bonds resulted in stabilization of the least stable region of the enzyme (including the active site), with a concomitant decrease in activity (increase in activation enthalpy). Disulfide bond removal had a greater impact on enzyme activity than on stability (particularly the active-site region). The functional role of the disulfide bridges appears to be to prevent the active site from developing ionic interactions. Overall, the study demonstrated that none of the four disulfide bonds are important in stabilizing the native structure of enzyme, and instead, they appear to promote a localized destabilization to preserve activity.

  6. Development and flight evaluation of an augmented stability active controls concept with a small tail

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Parasite drag reduction evaluation is composed of wind tunnel tests with a standard L-1011 tail and two reduced area tail configurations. Trim drag reduction is evaluated by rebalancing the airplane for relaxed static stability. This is accomplished by pumping water to tanks in the forward and aft of the airplane to acheive desired center of gravity location. Also, the L-1011 is modified to incorporate term and advanced augmented systems. By using advanced wings and aircraft relaxed static stability significant fuel savings can be realized. An airplane's dynamic stability becomes more sensitive for decreased tail size, relaxed static stability, and advanced wing configurations. Active control pitch augmentation will be used to acheive the required handling qualities. Flight tests will be performed to evaluate the pitch augmentation systems. The effect of elevator downrig on stabilizer/elevator hinge moments will be measured. For control system analysis, the normal acceleration feedback and pitch rate feedback are analyzed.

  7. ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity

    SciTech Connect

    Biener, M M; Biener, J; Wichmann, A; Wittstock, A; Baumann, T F; Baeumer, M; Hamza, A V

    2011-03-24

    Nanoporous metals have many technologically promising applications but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only one-nm-thick oxide films can stabilize the nanoscale morphology of np-Au up to 1000 C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO{sub 2} ALD coatings. Our results open the door to high temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  8. Stability and phase transfer of catalytically active platinum nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Sriram, Indira; Curtin, Alexandra E.; Chiaramonti, Ann N.; Cuchiaro, J. Hunter; Weidner, Andrew R.; Tingley, Tegan M.; Greenlee, Lauren F.; Jeerage, Kavita M.

    2015-05-01

    In this work, we present a robust synthesis protocol for platinum nanoparticles that yields a monomodal dispersion of particles that are approximately 100 nm in diameter. We determine that these particles are actually agglomerates of much smaller particles, creating a "raspberry" morphology. We demonstrate that these agglomerates are stable at room temperature for at least 8 weeks by dynamic light scattering. Furthermore, we demonstrate consistent electrocatalytic activity for methanol oxidation. Finally, we quantitatively explore the relationship between dispersion solvent and particle agglomeration; specifically, particles are found to agglomerate abruptly as solvent polarity decreases.

  9. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements.

    PubMed

    Shi, Caijun; Fernández-Jiménez, A

    2006-10-11

    This paper reviews progresses on the use of alkali-activated cements for stabilization/solidification of hazardous and radioactive wastes. Alkali-activated cements consist of an alkaline activator and cementing components, such as blast furnace slag, coal fly ash, phosphorus slag, steel slag, metakaolin, etc., or a combination of two or more of them. Properly designed alkali-activated cements can exhibit both higher early and later strengths than conventional portland cement. The main hydration product of alkali-activated cements is calcium silicate hydrate (CSH) with low Ca/Si ratios or aluminosilicate gel at room temperature; CSH, tobmorite, xonotlite and/or zeolites under hydrothermal condition, no metastable crystalline compounds such as Ca(OH)(2) and calcium sulphoaluminates exist. Alkali-activated cements also exhibit excellent resistance to corrosive environments. The leachability of contaminants from alkali-activated cement stabilized hazardous and radioactive wastes is lower than that from hardened portland cement stabilized wastes. From all these aspects, it is concluded that alkali-activated cements are better matrix for solidification/stabilization of hazardous and radioactive wastes than Portland cement.

  10. Prevalence and Stability of Active Play, Restricted Movement and Television Viewing in Infants

    ERIC Educational Resources Information Center

    Hesketh, Kylie D.; Crawford, David A.; Abbott, Gavin; Campbell, Karen J.; Salmon, Jo

    2015-01-01

    This study describes engagement in and stability of physical activity and sedentary behaviours in early life, and assesses associations with sex, maternal education and developmental stage. Maternal-report data at child age 4, 9 and 20 months were collected from 542 families in the Melbourne Infant Feeding Activity and Nutrition Trial Program.…

  11. Improved granular activated carbon for the stabilization of wastewater PH

    SciTech Connect

    Farmer, R.W.; Dussert, B.W.; Kovacic, S.L.

    1996-12-31

    Laboratory studies have identified the cause of the pH rise, which occurs during water treatment with activated carbon, as an interaction between the naturally occurring anions and protons in the water and the carbon surface. The interaction can be described as an ion exchange type of phenomenon, in which the carbon surface sorbs the anions and corresponding hydronium ions from the water. These studies have shown that the anion sorption and resulting pH increase is independent of the raw material used for the activated carbon production, e.g. bituminous or subbituminous coal, peat, wood or coconut. Also, the pH excursions occur with virgin, reactivated, and acid washed granular carbons. Current pH control technologies focus on adjustment of the wastewater pH prior to discharge or recycle of the initial effluent water until the pH increase abates. However, improved water pH control options have been realized by altering the carbon surface through controlled oxidation rather than the water chemistry or extended preprocessing at the treatment site.

  12. Biopolymer-stabilized Pt nanoparticles colloid: a highly active and recyclable catalyst for biphasic catalysis

    NASA Astrophysics Data System (ADS)

    Wang, Yujia; Shen, Yueyue; Qiu, Yunfei; Zhang, Ting; Liao, Yang; Zhao, Shilin; Ma, Jun; Mao, Hui

    2016-10-01

    Noble metal nanoparticles are promising candidates to replace conventional bulk counterparts owing to their high activity and selectivity. To enable catalyst recovery, noble metal nanoparticles are often supported onto solid matrices to prepare heterogeneous catalyst. Although recycle of noble metal nanoparticles is realized by heterogenization, a loss of activity is usually encountered. In the present investigation, Pt nanoparticles with tunable particle size (1.85-2.80 nm) were facilely prepared by using polyphenols as amphiphilic stabilizers. The as-prepared Pt nanoparticles colloid solution could be used as highly active catalyst in aqueous-organic biphasic catalysis. The phenolic hydroxyls of polyphenols could constrain Pt nanoparticles in aqueous phase, and simultaneously, the aromatic scaffold of polyphenols ensured effective interactions between substrates and Pt nanoparticles. As a consequence, the obtained polyphenols-stabilized Pt nanoparticles exhibited high activity and cycling stability in biphasic hydrogenation of a series of unsaturated compounds. Compared with conventional heterogeneous Pt-C and Pt-Al2O3 catalysts, polyphenols-stabilized Pt nanoparticles showed obvious advantage both in activity and cycling stability.

  13. INSAR Assessment Of Pipelines Stability Using Compact Active Transponders

    NASA Astrophysics Data System (ADS)

    Hole, Jessica K.; Holley, Rachel J.; Giunta, Giuseppe; De Lorenzo, Gianpietro; Thomas, Adam M.

    2012-01-01

    This study examined the use of a network of 7 prototype Compact Active Transponders (CATs) to measure ground and pipeline motion in an area subject to landslides in northern Italy. The results showed that two of the CATs, located at the center of the study area, experienced higher rates of line-of-sight (LOS) motion than the others. The spatial variation in the LOS motion rates could indicate that the central section of the slope moved at a higher rate, most likely in a westward and down-slope direction during the study. In addition to the InSAR measurements, GPS campaigns provided four epochs of motion measurements. Despite technical and environmental challenges, the study demonstrated the potential use of CATs to remotely map and monitor ground and structure motion.

  14. Active stabilization of a fiber-optic two-photon interferometer using continuous optical length control.

    PubMed

    Cho, Seok-Beom; Kim, Heonoh

    2016-05-16

    The practical realization of long-distance entanglement-based quantum communication systems strongly rely on the observation of highly stable quantum interference between correlated single photons. This task must accompany active stabilization of the optical path lengths within the single-photon coherence length. Here, we provide two-step interferometer stabilization methods employing continuous optical length control and experimentally demonstrate two-photon quantum interference using an actively stabilized 6-km-long fiber-optic Hong-Ou-Mandel interferometer. The two-step active control techniques are applied for measuring highly stable two-photon interference fringes by scanning the optical path-length difference. The obtained two-photon interference visibilities with and without accidental subtraction are found to be approximately 90.7% and 65.4%, respectively.

  15. Non-probabilistic stability reliability measure for active vibration control system with interval parameters

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Wang, Xiaojun; Wang, Lei; Fan, Weichao; Qiu, Zhiping

    2017-01-01

    A systematic non-probabilistic reliability analysis procedure for structural vibration active control system with unknown-but-bounded parameters is proposed. The state-space representation of active vibration control system with uncertain parameters is presented. Compared with the robust control theory, which is always over-conservative, the reliability-based analysis method is more suitable to deal with uncertain problem. Stability is the core of the closed-loop feedback control system design, so stability criterion is adopted to act as the limited state function for reliability analysis. The uncertain parameters without enough samples are modeled as interval variables. Interval perturbation method is employed to estimate the interval bounds of eigenvalues, which can be used to characterize the stability of the closed-loop active control system. Formulation of defining the reliability of active control system based on stability is discussed. A novel non-probabilistic reliability measurement index is discussed and used to determine the probability of the stability based on the area ratio. The feasibility and efficiency of the proposed method are demonstrated by two numerical examples.

  16. Active Erk Regulates Microtubule Stability in H-ras-Transformed Cells1

    PubMed Central

    Harrison, Rene E; Turley, Eva A

    2001-01-01

    Abstract Increasing evidence suggests that activated erk regulates cell functions, at least in part, by mechanisms that do not require gene transcription. Here we show that the map kinase, erk, decorates microtubules (MTs) and mitotic spindles in both parental and mutant active rastransfected 10T1/2 fibroblasts and MCF10A breast epithelial cells. Approximately 20% of total cellular erk decorated MTs in both cell lines. A greater proportion of activated erk was associated with MTs in the presence of mutant active H-ras than in parental cells. Activation of erk by the ras pathway coincided with a decrease in the stability of MT, as detected by a stability marker. The MKK1 inhibitor, PD98059 and transfection of a dominant negative MKK1 blocked ras-induced instability of MTs but did not modify the association of erk with MTs or affect MT stability of the parental cells. These results indicate that the subset of active erk kinase that associates with MTs contributes to their instability in the presence of a mutant active ras. The MT-associated subset of active erk likely contributes to the enhanced invasive and proliferative abilities of cells containing mutant active H-ras. PMID:11687949

  17. Effect of ionic liquids on the structure, stability and activity of two related α-amylases.

    PubMed

    Dabirmanesh, Bahareh; Daneshjou, Sara; Sepahi, Abbas Akhavan; Ranjbar, Bijan; Khavari-Nejad, Ramazan Ali; Gill, Pooria; Heydari, Akbar; Khajeh, Khosro

    2011-01-01

    Ionic liquids are recognized as green solvents for carbohydrates dissolution. However, only a limited number of studies have been carried out to investigate their effect on carbohydrate hydrolyzing enzymes. We have investigated the influence of two water miscible ionic liquids on the activity, stability and structure of two related α-amylases from Bacillus amyloliquefaciens and Bacillus lichiniformis. Upon changes in ionic liquids concentrations, both enzymes activity and stability were reduced. Associated thermodynamic and conformational changes were observed using differential scanning calorimetry and fluorescence techniques. Thermal denaturation was accompanied by aggregation in both aqueous buffer and [BMIm][Cl] but [HMIm][Cl] significantly suppressed aggregation.

  18. Balancing protein stability and activity in cancer: a new approach for identifying driver mutations affecting CBL ubiquitin ligase activation

    PubMed Central

    Li, Minghui; Kales, Stephen C.; Ma, Ke; Shoemaker, Benjamin A.; Crespo-Barreto, Juan; Cangelosi, Andrew L.; Lipkowitz, Stanley; Panchenko, Anna R.

    2015-01-01

    Oncogenic mutations in the monomeric Casitas B-lineage lymphoma (Cbl) gene have been found in many tumors, but their significance remains largely unknown. Several human c-Cbl (CBL) structures have recently been solved depicting the protein at different stages of its activation cycle and thus provide mechanistic insight underlying how stability-activity tradeoffs in cancer-related proteins may influence disease onset and progression. In this study, we computationally modeled the effects of missense cancer mutations on structures representing four stages of the CBL activation cycle to identify driver mutations that affect CBL stability, binding, and activity. We found that recurrent, homozygous, and leukemia-specific mutations had greater destabilizing effects on CBL states than did random non-cancer mutations. We further tested the ability of these computational models assessing the changes in CBL stability and its binding to ubiquitin conjugating enzyme E2, by performing blind CBL-mediated EGFR ubiquitination assays in cells. Experimental CBL ubiquitin ligase activity was in agreement with the predicted changes in CBL stability and, to a lesser extent, with CBL-E2 binding affinity. Two-thirds of all experimentally tested mutations affected the ubiquitin ligase activity by either destabilizing CBL or disrupting CBL-E2 binding, whereas about one-third of tested mutations were found to be neutral. Collectively, our findings demonstrate that computational methods incorporating multiple protein conformations and stability and binding affinity evaluations can successfully predict the functional consequences of cancer mutations on protein activity, and provide a proof of concept for mutations in CBL. PMID:26676746

  19. Active Resistive Wall Mode Stabilization in Low Rotation, High Beta NSTX Plasmas

    NASA Astrophysics Data System (ADS)

    Sabbagh, S. A.

    2006-10-01

    An active feedback system to stabilize the resistive wall mode (RWM) in the National Spherical Torus Experiment (NSTX) is used to maintain plasma stability for greater than 90 RWM growth times. These experiments are the first to demonstrate RWM active stabilization in high beta, low aspect ratio tokamak plasmas with toroidal plasma rotation significantly below the critical rotation profile for passive stability and in the range predicted for ITER. Actively stabilized, low rotation plasmas reached normalized beta of 5.6, and the ratio of normalized beta to the toroidal mode number, n = 1 and 2 ideal no-wall stability limits reached 1.2 and 1.15 respectively, determined by DCON stability analysis of the time-evolving reconstructed experimental equilibria. The significant, controlled reduction of the plasma rotation to less than one percent of the Alfven speed was produced by non-resonant magnetic braking by an applied n = 3 field. The observed plasma rotation damping is in quantitative agreement with neoclassical toroidal viscosity theory including trapped particle effects [1]. The active stabilization system employs a mode control algorithm using RWM sensor input analyzed to distinguish the amplitude and phase of the n = 1 mode. During n = 1 stabilization, the n = 2 mode amplitude increases and surpasses the n = 1 amplitude, but the mode remains stable. By varying the system gain, and relative phase between the measured n = 1 RWM phase and the applied control field, both positive and negative feedback were demonstrated. Contrary to past experience in moderate aspect ratio tokamaks with poloidally continuous stabilizing structure, the RWM can become unstable in certain cases by deforming poloidally, an important consideration for feedback system sensor and control coil design in future devices such as ITER and KSTAR. **In collaboration with R.E. Bell, J.E. Menard, D.A. Gates, A.C. Sontag, J.M. Bialek, B.P. LeBlanc, F.M. Levinton, K. Tritz, H. Yuh. [1] W. Zhu, S

  20. Improving crosswind stability of fast rail vehicles using active secondary suspension

    NASA Astrophysics Data System (ADS)

    Thomas, Dirk; Berg, Mats; Persson, Rickard; Stichel, Sebastian

    2014-07-01

    Rail vehicles are today increasingly equipped with active suspension systems for ride comfort purposes. In this paper, it is studied whether these often powerful systems also can be used to improve crosswind stability. A fast rail vehicle equipped with active secondary suspension for ride comfort purposes is exposed to crosswind loads during curve negotiation. For high crosswind loads, the active secondary suspension is used to reduce the impact of crosswind on the vehicle. The control input is taken from the primary vertical suspension deflection. Three different control cases are studied and compared with the only comfort-oriented active secondary suspension and a passive secondary suspension. The application of active secondary suspension resulted in significantly improved crosswind stability.

  1. Fe65 does not stabilize AICD during activation of transcription in a luciferase assay

    SciTech Connect

    Huysseune, Sandra; Kienlen-Campard, Pascal; Octave, Jean-Noel . E-mail: octave@nchm.ucl.ac.be

    2007-09-21

    The APP intracellular domain (AICD) could be involved in signaling via interaction with the adaptor protein Fe65, and with the histone acetyl transferase Tip60. However, the real function of AICD and Fe65 in regulation of transcription remains controversial. In this study, the human APPGal4 fusion protein was expressed in CHO cells and the transcriptional activity of AICDGal4 was measured in a luciferase-based reporter assay. AICDGal4 was stabilized by expression of Fe65 and levels of AICDGal4 controlled luciferase activity. On the contrary, when human APP was expressed in CHO cells, coexpression of Fe65 increased luciferase activity without affecting the amount of AICD fragment. AICD produced from APP was protected from degradation by orthophenanthroline, but not by lactacystine, indicating that AICD is not a substrate of the chymotryptic activity of the proteasome. It is concluded that Fe65 can control luciferase activity without stabilizing the labile AICD fragment.

  2. Stability of silanols and grafted alkylsilane monolayers on plasma-activated mica surfaces.

    PubMed

    Liberelle, Benoît; Banquy, Xavier; Giasson, Suzanne

    2008-04-01

    We investigated the effect of physical and chemical modifications of mica surfaces induced by water vapor-based plasma treatments on the stability of silanols and grafted alkylsilane monolayers. The plasma-activated substrates were characterized using XPS, TOF-SIMS, and contact angle measurements. They revealed a large surface coverage of silanol groups (Si-OH) and a loss of aluminum atoms compared to freshly cleaved mica surfaces. The stability of plasma-induced silanol groups was investigated by contact angle measurements using ethylene glycol as a probe liquid. The Si-OH surface coverage decreased rapidly under vacuum or thermal treatment to give rise to hydrophobic dehydrated surfaces. The stability of end-grafted monofunctionalized n-alkylsilanes was investigated in different solvents and at different pH using water contact angle measurements. The degrafting of alkylsilanes from the activated mica was promoted in acidic aqueous solutions. This detachment was associated with the hydrolysis of covalent bonds between the alkylsilanes and the mica surface. The monolayer stability was enhanced by increasing the length of the alkyl chains that probably act as a hydrophobic protective layer against hydrolysis reactions. Stable alkylsilane monolayers in water with pH greater than 5.5 were obtained on mica surfaces activated at low plasma pressure. We attributed this stability to the loss of surface Al atoms induced by the plasma treatment.

  3. UV and visible light active aqueous titanium dioxide colloids stabilized by surfactants.

    PubMed

    Pacia, Michał; Warszyński, Piotr; Macyk, Wojciech

    2014-09-07

    Attempts to increase the stability of photocatalytically active nanodispersions of titanium dioxide over a wide range of pH (3-10) were undertaken. Polyethylene glycols (PEGs) with different molecular weights and polyoxyethylenesorbitan monooleate (Tween® 80) were tested as stabilizing agents of TiO2 nanoparticles. The results of DLS measurements proved the stabilizing effect of Tween® 80 while the systems involving PEGs, independently of the polymer concentration, showed a tendency to form aggregates in neutral solutions. The colloids stabilized with Tween® 80 were photosensitized with 2,3-naphthalenediol (nd) or 2-hydroxy-3-naphthoic acid (hn) or catechol (cat). The photocatalytic activity of such colloids has been assessed in an azure B degradation reaction using both UV and visible light. The nd@TiO2 + Tween colloid appeared particularly photoactive upon visible light irradiation. Moreover, the comparison of activities of nd@TiO2 + Tween and TiO2 + Tween revealed a significantly better performance of the former nanodispersion, independently of the irradiation conditions (UV or visible light). This effect has been explained by different structures of micelles formed in the case of TiO2 and nd@TiO2 stabilized with Tween® 80.

  4. PASylation technology improves recombinant interferon-β1b solubility, stability, and biological activity.

    PubMed

    Zvonova, Elizaveta A; Ershov, Alexander V; Ershova, Olga A; Sudomoina, Marina A; Degterev, Maksim B; Poroshin, Grigoriy N; Eremeev, Artem V; Karpov, Andrey P; Vishnevsky, Alexander Yu; Goldenkova-Pavlova, Irina V; Petrov, Andrei V; Ruchko, Sergey V; Shuster, Alexander M

    2017-03-01

    Recombinant interferon-β1b (IFN-β1b) is an effective remedy against multiple sclerosis and other diseases. However, use of small polypeptide (molecular weight is around 18.5 kDa) is limited due to poor solubility, stability, and short half-life in systemic circulation. To solve this problem, we constructed two variants of PASylated IFN-β1b, with PAS sequence at C- or N-terminus of IFN-β1b. The PAS-modified proteins demonstrated 4-fold increase in hydrodynamic volume of the molecule combined with 2-fold increase of in vitro biological activity, as well as advanced stability and solubility of the protein in solution as opposed to unmodified IFN-β1b. Our results demonstrate that PASylation has a positive impact on stability, solubility, and functional activity of IFN-β1b and potentially might improve pharmacokinetic properties of the molecule as a therapeutic agent.

  5. Absolute exponential stability of recurrent neural networks with generalized activation function.

    PubMed

    Xu, Jun; Cao, Yong-Yan; Sun, Youxian; Tang, Jinshan

    2008-06-01

    In this paper, the recurrent neural networks (RNNs) with a generalized activation function class is proposed. In this proposed model, every component of the neuron's activation function belongs to a convex hull which is bounded by two odd symmetric piecewise linear functions that are convex or concave over the real space. All of the convex hulls are composed of generalized activation function classes. The novel activation function class is not only with a more flexible and more specific description of the activation functions than other function classes but it also generalizes some traditional activation function classes. The absolute exponential stability (AEST) of the RNN with a generalized activation function class is studied through three steps. The first step is to demonstrate the global exponential stability (GES) of the equilibrium point of original RNN with a generalized activation function being equivalent to that of RNN under all vertex functions of convex hull. The second step transforms the RNN under every vertex activation function into neural networks under an array of saturated linear activation functions. Because the GES of the equilibrium point of three systems are equivalent, the next stability analysis focuses on the GES of the equilibrium point of RNN system under an array of saturated linear activation functions. The last step is to study both the existence of equilibrium point and the GES of the RNN under saturated linear activation functions using the theory of M-matrix. In the end, a two-neuron RNN with a generalized activation function is constructed to show the effectiveness of our results.

  6. Investigation of effects of terpene skin penetration enhancers on stability and biological activity of lysozyme.

    PubMed

    Varman, Rahul M; Singh, Somnath

    2012-12-01

    The transport of proteins through skin can be facilitated potentially by using terpenes as chemical enhancers. However, we do not know about the effects of these enhancers on the stability and biological activity of proteins which is crucial for the development of safe and efficient formulations. Therefore, this project investigated the effects of terpene-based skin penetration enhancers which are reported as nontoxic to the skin (e.g., limonene, p-cymene, geraniol, farnesol, eugenol, menthol, terpineol, carveol, carvone, fenchone, and verbenone), on the conformational stability and biological activity of a model protein lysozyme. Terpene (5% v/v) was added to lysozyme solution and kept for 24 h (the time normally a transdermal patch remains) for investigating conformational stability profiles and biological activity. Fourier transform infrared spectrophotometer was used to analyze different secondary structures, e.g., α-helix, β-sheet, β-turn, and random coil. Conformational changes were also monitored by differential scanning calorimeter by determining midpoint transition temperature (Tm) and calorimetric enthalpy (ΔH). Biological activity of lysozyme was determined by measuring decrease in A (450) when it was added to a suspension of Micrococcus lysodeikticus. The results of this study indicate that terpenes 9, 10, and 11 (carvone, L-fenchone, and L-verbenone) decreased conformational stability and biological activity of lysozyme significantly (p < 0.05) less than other terpenes used in this study. It is concluded that smaller terpenes containing ketones with low lipophilicity (log K (ow) ∼2.00) would be optimal for preserving conformational stability and biological activity of lysozyme in a transdermal formulation containing terpene as permeation enhancer.

  7. The effect of some osmolytes on the activity and stability of mushroom tyrosinase.

    PubMed

    Gheibi, N; Saboury, A A; Haghbeen, K; Moosavi-Movahedi, A A

    2006-09-01

    The thermodynamical stability and remained activity of mushroom tyrosinase (MT) from Agaricus bisporus in 10 mM phosphate buffer, pH 6.8, stored at two temperatures of 4 and 40 degrees C were investigated in the presence of three different amino acids (His, Phe and Asp) and also trehalose as osmolytes, for comparing with the results obtained in the absence of any additive. Kinetics of inactivation obey the first order law. Inactivation rate constant (kinact) value is the best parameter describing effect of osmolytes on kinetic stability of the enzyme. Trehalose and His have the smallest value of kinact (0.7x10(-4) s-1) in comparison with their absence (2.5x10(-4) s-1). Moreover, to obtain effect of these four osmolytes on thermodynamical stability of the enzyme, protein denaturation by dodecyl trimethylammonium bromide (DTAB) and thermal scanning was investigated. Sigmoidal denaturation curves were analysed according to the two states model of Pace theory to find the Gibbs free energy change of denaturation process in aqueous solution at room temperature, as a very good thermodynamic criterion indicating stability of the protein. Although His, Phe and Asp induced constriction of MT tertiary structure, its secondary structure had not any change and the result was a chemical and thermal stabilization of MT. The enzyme shows a proper coincidence of thermodynamic and structural changes with the presence of trehalose. Thus, among the four osmolytes, trehalose is an exceptional protein stabilizer.

  8. Effect of active arm swing to local dynamic stability during walking.

    PubMed

    Wu, Yu; Li, Yue; Liu, An-Min; Xiao, Fei; Wang, Yin-Zhi; Hu, Fei; Chen, Jin-Ling; Dai, Ke-Rong; Gu, Dong-Yun

    2016-02-01

    Arm swing is an essential component in regulating dynamic stability of the whole body during walking, while the contribution of active arm swing to local dynamic stability of different motion segments remains unclear. This study investigated the effects of arm swing under natural arm swing condition and active arm swing condition on local dynamic stability and gait variability of the trunk segments (C7 and T10 joint) and lower extremity joints (hip, knee and ankle joint). The local divergence exponents (λs) and mean standard deviation over strides (MeanSD) of 24 young healthy adults were calculated while they were walking on treadmill with two arm swing conditions at their preferred walking speed (PWS). We found that in medial-lateral direction, both λs and MeanSD values of the trunk segments (C7 and T10 joint) in active arm swing condition were significantly lower than those in natural arm swing condition (p<0.05), while no significant difference of λs or MeanSD in lower extremity joints (hip, knee and ankle joint) was found between two arm swing conditions (p>0.05, respectively). In anterior-posterior and vertical direction, neither λs nor MeanSD values of all body segments showed significant difference between two arm swing conditions (p>0.05, respectively). These findings indicate that active arm swing may help to improve the local dynamic stability of the trunk segments in medial-lateral direction.

  9. Cellulase variants with improved expression, activity and stability, and use thereof

    SciTech Connect

    Aehle, Wolfgang; Bott, Richard R; Bower, Benjamin; Caspi, Jonathan; Estell, David A; Goedegebuur, Frits; Hommes, Ronaldus W.J.; Kaper, Thijs; Kelemen, Bradley; Kralj, Slavko; Van Lieshout, Johan; Nikolaev, Igor; Van Stigt Thans, Sander; Wallace, Louise; Vogtentanz, Gudrun; Sandgren, Mats

    2014-03-25

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having improved expression, activity and/or stability. Also described are nucleic acids encoding the cellulase variants, compositions comprising the cellulase variants, and methods of use thereof.

  10. 17 CFR 242.104 - Stabilizing and other activities in connection with an offering.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Stabilizing and other activities in connection with an offering. 242.104 Section 242.104 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) REGULATIONS M, SHO, ATS, AC, AND NMS AND CUSTOMER...

  11. 17 CFR 242.104 - Stabilizing and other activities in connection with an offering.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Stabilizing and other activities in connection with an offering. 242.104 Section 242.104 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) REGULATIONS M, SHO, ATS, AC, AND NMS AND CUSTOMER...

  12. Improvement of helicopter attitude stability by active control of the conventional swash plate

    NASA Technical Reports Server (NTRS)

    Ham, Norman D.

    1993-01-01

    The Final Report on improvement of helicopter attitude stability by active control of the conventional swash plate covering the period from Nov. 1986 to Dec. 1993 is presented. A paper on the history, principles, and applications of helicopter individual-blade-control is included.

  13. Cellulase variants with improved expression, activity and stability, and use thereof

    SciTech Connect

    Aehle, Wolfgang; Bott, Richard R.; Bower, Benjamin S.; Caspi, Jonathan; Goedegebuur, Frits; Hommes, Ronaldus Wilhelmus Joannes; Kaper, Thijs; Kelemen, Bradley R.; Kralj, Slavko; Van Lieshout, Johannes Franciscus Thomas; Nikolaev, Igor; Wallace, Louise; Van Stigt Thans, Sander; Vogtentanz, Gudrun; Sandgren, Mats

    2016-12-20

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having improved expression, activity and/or stability. Also described are nucleic acids encoding the cellulase variants, compositions comprising the cellulase variants, and methods of use thereof.

  14. The study of the antimicrobial activity of colloidal solutions of silver nanoparticles prepared using food stabilizers.

    PubMed

    Balandin, G V; Suvorov, O A; Shaburova, L N; Podkopaev, D O; Frolova, Yu V; Ermolaeva, G A

    2015-06-01

    The bactericidal effect of colloidal solutions of silver nanoparticles based on food stabilizers, gum arabic and chitosan, against bacterial cultures of microorganisms in food production is described. The antibacterial activity of nanotechnology products containing different amounts of stabilizing additives when applied to solid pH-neutral substrates is studied. For its evaluation a method making it possible to take into account the capability of nanoparticles to diffuse in solid media was applied. Minimal inhibitory concentrations of nanoparticles used against Erwinia herbicola, Pseudomonas fluorescens, Bacillus subtilis, Sarcina flava were found. A suggestion was made concerning the influence of the spatial structure of bacteria on the antibacterial activity of colloidal solutions of silver nanoparticles. The data concerning the antibacterial activity and minimal inhibiting concentrations of nanoparticles may be used for development of products suppressing activity of microorganisms hazardous for food production.

  15. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion.

    PubMed

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W; Liu, Yan; Walter, Nils G; Yan, Hao

    2016-02-10

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  16. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    PubMed Central

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  17. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  18. Calculations of axisymmetric stability of tokamak plasmas with active and passive feedback

    SciTech Connect

    Ward, D.J.; Jardin, S.C.; Cheng, C.Z.

    1991-07-01

    A new linear MHD stability code, NOVA-W, has been developed in order to study feedback stabilization of the axisymmetric mode in deformable tokamak plasmas. The NOVA-W code is a modification of the non-variational MHD stability code NOVA that includes the effects of resistive passive conductors and active feedback circuits. The vacuum calculation has been reformulated in terms of the perturbed poloidal flux to allow the inclusion of perturbed toroidal currents outside the plasma. The boundary condition at the plasma-vacuum interface relates the instability displacement to the perturbed poloidal flux. This allows a solution of the linear MHD stability equations with the feedback effects included. The passive stability predictions of the code have been tested both against a simplified analytic model and against a different numerical calculation for a realistic tokamak configuration. The comparisons demonstrate the accuracy of the NOVA-W results. Active feedback calculations are performed for the CIT tokamak design demonstrating the effect of varying the position of the flux loops that provide the measurements of vertical displacement. The results compare well with those computed earlier using a less efficient nonlinear code. 37 refs., 13 figs.

  19. Active stabilization of a Michelson interferometer at an arbitrary phase with subnanometer resolution

    NASA Astrophysics Data System (ADS)

    Grassani, Davide; Galli, Matteo; Bajoni, Daniele

    2014-04-01

    We report on the active stabilization of a Michelson interferometer at an arbitrary phase angle with a precision better than one degree at $\\lambda = 632.8$ nm, which corresponds to an optical path difference between the two arms of less than 1 nm. The stabilization method is ditherless and the error signal is computed from the spatial shift of the interference pattern of a reference laser, measured in real-time with a CCD array detector. We discuss the usefulness of this method for nanopositioning, optical interferometry and quantum optical experiments.

  20. Active stabilization of a Michelson interferometer at an arbitrary phase with subnanometer resolution.

    PubMed

    Grassani, Davide; Galli, Matteo; Bajoni, Daniele

    2014-04-15

    We report on the active stabilization of a Michelson interferometer at an arbitrary phase angle with a precision better than 1° at λ=632.8  nm, which corresponds to a precision in the optical path difference between the two arms of less than 1 nm. The stabilization method is ditherless, and the error signal is computed from the spatial shift of the interference pattern of a reference laser, measured in real-time with a CCD array detector. We discuss the usefulness of this method for nanopositioning, optical interferometry, and quantum optical experiments.

  1. Apoferritin Nanoparticle: A Novel and Biocompatible Carrier for Enzyme Immobilization with Enhanced Activity and Stability

    SciTech Connect

    Zhang, Youyu; Tang, Zhiwen; Wang, Jun; Wu, Hong J.; Lin, Chiann Tso; Lin, Yuehe

    2011-11-01

    Apoferritin is a nanostructured material with a uniform size and spherical structure, and it has excellent bio-compatibility. In this work, we report the use of apoferritin as a novel and biocompatible carrier for stabilizing enzymes and their activities. We used glucose oxidase (GOx) as a model enzyme. GOx was immobilized on the surface of the apoferritin through a green synthetic approach taking advantage of bioaffinity binding between streptavidin and biotin. As a result, a glucose oxidase-biotin/streptavidin/biotin-apoferritin conjugate (Apo-GOx) was prepared using streptavidin as a bridge. The synthesized Apo-GOx was characterized with transmission electron microscopy, ultraviolet, and fluorescence spectroscopy. The activity and stability of GOx on the surface of the apoferritin were studied in different environments, such as temperature, chemicals, and pH, in comparison with the biotinylated GOx (B-GOx). The results showed that the activity of GOx on the apoferritin surface was significantly enhanced. The thermal and chemical stability of the GOx on the apoferritin was also greatly improved compared to free B-GOx in a solution. It was found that the activity of the GOx on the apoferritin only lost 30% in comparison to a 70% loss of free B-GOx after a 2 h incubation at 50oC. There was almost no decrease in activity for the GOx on the apoferritin as compared to an 80% activity decrease for free B-GOx after 30 min incubation in a 5 M urea solution. Glucose detection was used as a model application for the enzyme immobilization method developed in this work. The GOx immobilized apoferritin nanoparticles exhibited high sensitivity for glucose detection with a detection limit of 3 nM glucose. This work offers a novel approach for immobilizing enzymes with enhanced stability and activity, and this method may find a number of applications, such as in enzyme catalysis, DNA assays and immunoassays.

  2. Comparative Solid-State Stability of Perindopril Active Substance vs. Pharmaceutical Formulation

    PubMed Central

    Buda, Valentina; Andor, Minodora; Ledeti, Adriana; Ledeti, Ionut; Vlase, Gabriela; Vlase, Titus; Cristescu, Carmen; Voicu, Mirela; Suciu, Liana; Tomescu, Mirela Cleopatra

    2017-01-01

    This paper presents the results obtained after studying the thermal stability and decomposition kinetics of perindopril erbumine as a pure active pharmaceutical ingredient as well as a solid pharmaceutical formulation containing the same active pharmaceutical ingredient (API). Since no data were found in the literature regarding the spectroscopic description, thermal behavior, or decomposition kinetics of perindopril, our goal was the evaluation of the compatibility of this antihypertensive agent with the excipients in the tablet under ambient conditions and to study the effect of thermal treatment on the stability of perindopril erbumine. ATR-FTIR (Attenuated Total Reflectance Fourier Transform Infrared) spectroscopy, thermal analysis (thermogravimetric mass curve (TG—thermogravimetry), derivative thermogravimetric mass curve (DTG), and heat flow (HF)) and model-free kinetics were chosen as investigational tools. Since thermal behavior is a simplistic approach in evaluating the thermal stability of pharmaceuticals, in-depth kinetic studies were carried out by classical kinetic methods (Kissinger and ASTM E698) and later with the isoconversional methods of Friedman, Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa. It was shown that the main thermal degradation step of perindopril erbumine is characterized by activation energy between 59 and 69 kJ/mol (depending on the method used), while for the tablet, the values were around 170 kJ/mol. The used excipients (anhydrous colloidal silica, microcrystalline cellulose, lactose, and magnesium stearate) should be used in newly-developed generic solid pharmaceutical formulations, since they contribute to an increased thermal stability of perindopril erbumine. PMID:28098840

  3. TOPICAL REVIEW: Protein stability and enzyme activity at extreme biological temperatures

    NASA Astrophysics Data System (ADS)

    Feller, Georges

    2010-08-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 °C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins.

  4. The maltose ABC transporter: action of membrane lipids on the transporter stability, coupling and ATPase activity.

    PubMed

    Bao, Huan; Dalal, Kush; Wang, Victor; Rouiller, Isabelle; Duong, Franck

    2013-08-01

    The coupling between ATP hydrolysis and substrate transport remains a key question in the understanding of ABC-mediated transport. We show using the MalFGK2 complex reconstituted into nanodiscs, that membrane lipids participate directly to the coupling reaction by stabilizing the transporter in a low energy conformation. When surrounded by short acyl chain phospholipids, the transporter is unstable and hydrolyzes large amounts of ATP without inducing maltose. The presence of long acyl chain phospholipids stabilizes the conformational dynamics of the transporter, reduces its ATPase activity and restores dependence on maltose. Membrane lipids therefore play an essential allosteric function, they restrict the transporter ATPase activity to increase coupling to the substrate. In support to the notion, we show that increasing the conformational dynamics of MalFGK2 with mutations in MalF increases the transporter ATPase activity but decreases the maltose transport efficiency.

  5. Design, in vitro stability, and ocular hypotensive activity of t-butalone chemical delivery systems.

    PubMed

    Reddy, I K; Vaithiyalingam, S R; Khan, M A; Bodor, N S

    2001-08-01

    The objective of this work was to synthesize two bioreversible diacyl derivatives of t-butalone (chemical delivery systems), determine their chemical and in vitro stability, and investigate their potential use as topical antiglaucoma agents. The stability of these compounds was determined in isotonic phosphate buffers (pH range 5-8) and in selected biological media, including human whole blood, rabbit and rat blood, and the anterior segment tissues of rabbit. The ocular hypotensive activity of these compounds in unrestrained, normotensive albino rabbits was determined with a pneumatonometer. The two compounds were stable at lower pH. The stability decreased as the pH increased, suggesting their lability to base-catalyzed hydrolysis. These compounds exhibited significant differences in the hydrolytic rates in the whole blood among species examined (rat > rabbit > human). The observed rates of disappearance in different ocular tissues were indicative of relative enzyme activity in these media (iris-ciliary body > cornea > aqueous humor). The two compounds exhibited a significant ocular hypotensive activity (P < 0.01) at 2% dose level. The peak activity was found between 2 and 4 h, and the activity was maintained for 4.5 to 7 h. The dipivalyl derivative of t-butalone exhibited more pronounced decrease in intraocular pressure than that of diisovaleryl derivative. The present study suggests the possible use of diacyl derivatives of t-butalone as ocular hypotensive agents.

  6. Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH.

    PubMed

    Han, Binghong; Risch, Marcel; Lee, Yueh-Lin; Ling, Chen; Jia, Hongfei; Shao-Horn, Yang

    2015-09-21

    Perovskite oxides (ABO3) have been studied extensively to promote the kinetics of the oxygen evolution reaction (OER) in alkaline electrolytes. However, developing highly active catalysts for OER at near-neutral pH is desirable for many photoelectrochemical/electrochemical devices. In this paper, we systematically studied the activity and stability of well-known perovskite oxides for OER at pH 7. Previous activity descriptors established for perovskite oxides at pH 13, such as having an eg occupancy close to unity or having an O p-band center close to Fermi level, were shown to scale with OER activity at pH 7. Stability was a greater challenge at pH 7 than at pH 13, where two different modes of instability were identified from combined transmission electron microscopy and density functional theory analyses. Perovskites with O p-band close to Fermi level showed leaching of A-site atoms and surface amorphization under all overpotentials examined at pH 7, while those with O p-band far from Fermi level were stable under low OER current/potential but became unstable at high current/potential accompanied by leaching of B-site atoms. Therefore, efforts are needed to enhance the activity and stability of perovskites against A-site or B-site loss if used at neutral pH.

  7. Human gaze stabilization during natural activities: translation, rotation, magnification, and target distance effects.

    PubMed

    Crane, B T; Demer, J L

    1997-10-01

    Stability of images on the retina was determined in 14 normal humans in response to rotational and translational perturbations during self-generated pitch and yaw, standing, walking, and running on a treadmill. The effects on image stability of target distance, vision, and spectacle magnification were examined. During locomotion the horizontal and vertical velocity of images on the retina was <4 degrees /s for a visible target located beyond 4 m. Image velocity significantly increased to >4 degrees /s during self-generated motion. For all conditions of standing and locomotion, angular vestibulo-ocular reflex (AVOR) gain was less than unity and varied significantly by activity, by target distance, and among subjects. There was no significant correlation(P > 0.05) between AVOR gain and image stability during standing and walking despite significant variation among subjects. This lack of correlation is likely due to translation of the orbit. The degree of orbital translation and rotation varied significantly with activity and viewing condition in a manner suggesting an active role in gaze stabilization. Orbital translation was consistently antiphase with rotation at predominant frequencies <4 Hz. When orbital translation was neglected in computing gaze, computed image velocities increased. The compensatory effect of orbital translation allows gaze stabilization despite subunity AVOR gain during natural activities. Orbital translation decreased during close target viewing, whereas orbital rotation decreased while wearing telescopic spectacles. As the earth fixed target was moved closer, image velocity on the retina significantly increased (P < 0.05) for all activities except standing. Latency of the AVOR increased slightly with decreasing target distance but remained <10 ms for even the closest target. This latency was similar in darkness or light, indicating that the visual pursuit tracking is probably not important in gaze stabilization. Trials with a distant target

  8. Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu.

    PubMed

    Tran, Thuy T; Mamo, Gashaw; Búxo, Laura; Le, Nhi N; Gaber, Yasser; Mattiasson, Bo; Hatti-Kaul, Rajni

    2011-07-10

    Site-directed mutagenesis of a thermostable alkaline phytase from Bacillus sp. MD2 was performed with an aim to increase its specific activity and activity and stability in an acidic environment. The mutation sites are distributed on the catalytic surface of the enzyme (P257R, E180N, E229V and S283R) and in the active site (K77R, K179R and E227S). Selection of the residues was based on the idea that acid active phytases are more positively charged around their catalytic surfaces. Thus, a decrease in the content of negatively charged residues or an increase in the positive charges in the catalytic region of an alkaline phytase was assumed to influence the enzyme activity and stability at low pH. Moreover, widening of the substrate-binding pocket is expected to improve the hydrolysis of substrates that are not efficiently hydrolysed by wild type alkaline phytase. Analysis of the phytase variants revealed that E229V and S283R mutants increased the specific activity by about 19% and 13%, respectively. Mutation of the active site residues K77R and K179R led to severe reduction in the specific activity of the enzyme. Analysis of the phytase mutant-phytate complexes revealed increase in hydrogen bonding between the enzyme and the substrate, which might retard the release of the product, resulting in decreased activity. On the other hand, the double mutant (K77R-K179R) phytase showed higher stability at low pH (pH 2.6-3.0). The E227S variant was optimally active at pH 5.5 (in contrast to the wild type enzyme that had an optimum pH of 6) and it exhibited higher stability in acidic condition. This mutant phytase, displayed over 80% of its initial activity after 3h incubation at pH 2.6 while the wild type phytase retained only about 40% of its original activity. Moreover, the relative activity of this mutant phytase on calcium phytate, sodium pyrophosphate and p-nitro phenyl phosphate was higher than that of the wild type phytase.

  9. Effect of ordered mesoporous carbon contact layer on the sensing performance of sputtered RuO2 thin film pH sensor.

    PubMed

    Lonsdale, W; Maurya, D K; Wajrak, M; Alameh, K

    2017-03-01

    The effect of contact layer on the pH sensing performance of a sputtered RuO2 thin film pH sensor is investigated. The response of pH sensors employing RuO2 thin film electrodes on screen-printed Pt, carbon and ordered mesoporous carbon (OMC) contact layers are measured over a pH range from 4 to 10. Working electrodes with OMC contact layer are found to have Nernstian pH sensitivity (-58.4mV/pH), low short-term drift rate (5.0mV/h), low hysteresis values (1.13mV) and fast reaction times (30s), after only 1h of conditioning. A pH sensor constructed with OMC carbon contact layer displays improved sensing performance compared to Pt and carbon-based counterparts, making this electrode more attractive for applications requiring highly-accurate pH sensing with reduced conditioning time.

  10. Finite-time robust stabilization of uncertain delayed neural networks with discontinuous activations via delayed feedback control.

    PubMed

    Wang, Leimin; Shen, Yi; Sheng, Yin

    2016-04-01

    This paper is concerned with the finite-time robust stabilization of delayed neural networks (DNNs) in the presence of discontinuous activations and parameter uncertainties. By using the nonsmooth analysis and control theory, a delayed controller is designed to realize the finite-time robust stabilization of DNNs with discontinuous activations and parameter uncertainties, and the upper bound of the settling time functional for stabilization is estimated. Finally, two examples are provided to demonstrate the effectiveness of the theoretical results.

  11. Investigations of stabilizing additives. I. A model system for studying radical scavenging activity in solution. [Gamma radiation

    SciTech Connect

    Dunn, T.S.; Williams, E.E.; Williams, J.L.

    1982-06-01

    In the current study an electron spin resonance model was developed to compare the thermal stability and radical scavenging activity of stabilizers in solution. High-resolution spectra and the influence of molecular structure on radical stability provided a basis for the interpretation of spin concentration data in the model system. A correlation was established between the radical scavenging activity measured in the model system and actual behavior in irradiated polypropylene formulations measured by radiation-induced degradation of mechanical properties.

  12. Phosphorylation of Serine422 increases the stability and transactivation activities of human Osterix.

    PubMed

    Xu, Yuexin; Yao, Bing; Shi, Kaikai; Lu, Jianlei; Jin, Yucui; Qi, Bing; Li, Hongwei; Pan, Shiyang; Chen, Li; Ma, Changyan

    2015-03-24

    Osterix (Osx) is an essential regulator for osteoblast differentiation and bone formation. Although phosphorylation has been reported to be involved in the regulation of Osx activity, the precise underlying mechanisms remain to be elucidated. Here we identified S422 as a novel phosphorylation site of Osx and demonstrated that GSK-3β interacted and co-localized with Osx. GSK-3β increased the stability and transactivation activity of Osx through phosphorylation of the newly identified site. These findings expanded our understanding of the mechanisms of posttranslational regulation of Osx and the role of GSK-3β in the control of Osx transactivation activity.

  13. CFTR: the nucleotide binding folds regulate the accessibility and stability of the activated state

    PubMed Central

    1996-01-01

    The functional roles of the two nucleotide binding folds, NBF1 and NBF2, in the activation of the cystic fibrosis transmembrane conductance regulator (CFTR) were investigated by measuring the rates of activation and deactivation of CFTR Cl- conductance in Xenopus oocytes. Activation of wild-type CFTR in response to application of forskolin and 3-isobutyl-1-methylxanthine (IBMX) was described by a single exponential. Deactivation after washout of the cocktail consisted of two phases: an initial slow phase, described by a latency, and an exponential decline. Rate analysis of CFTR variants bearing analogous mutations in NBF1 and NBF2 permitted us to characterize amino acid substitutions according to their effects on the accessibility and stability of the active state. Access to the active state was very sensitive to substitutions for the invariant glycine (G551) in NBF1, where mutations to alanine (A), serine (S), or aspartic acid (D) reduced the apparent on rate by more than tenfold. The analogous substitutions in NBF2 (G1349) also reduced the on rate, by twofold to 10-fold, but substantially destabilized the active state as well, as judged by increased deactivation rates. In the putative ATP-binding pocket of either NBF, substitution of alanine, glutamine (Q), or arginine (R) for the invariant lysine (K464 or K1250) reduced the on rate similarly, by two- to fourfold. In contrast, these analogous substitutions produced opposite effects on the deactivation rate. NBF1 mutations destabilized the active state, whereas the analogous substitutions in NBF2 stabilized the active state such that activation was prolonged compared with that seen with wild-type CFTR. Substitution of asparagine (N) for a highly conserved aspartic acid (D572) in the ATP-binding pocket of NBF1 dramatically slowed the on rate and destabilized the active state. In contrast, the analogous substitution in NBF2 (D1370N) did not appreciably affect the on rate and markedly stabilized the active state

  14. Nanocrystalline brookite with enhanced stability and photocatalytic activity: influence of lanthanum(III) doping.

    PubMed

    Perego, Céline; Wang, Yu-Heng; Durupthy, Olivier; Cassaignon, Sophie; Revel, Renaud; Jolivet, Jean-Pierre

    2012-02-01

    Metastable TiO(2) polymorphs are more promising materials than rutile for specific applications such as photocatalysis or catalysis support. This was clearly demonstrated for the anatase phase but still under consideration for brookite, which is difficult to obtain as pure phase. Moreover, the surface doping of anatase with lanthanum ions is known to both increase the thermal stability of the metastable phase and improve its photocatalytic activity. In this study, TiO(2) nanoparticles of almost only the brookite structure were prepared by a simple sol-gel procedure in aqueous solution. The nanoparticles were then doped with lanthanum(III) ions. The thermal stability of the nanoparticles was analyzed by X-ray diffraction and kinetic models were successfully applied to quantify phases evolutions. The presence of surface-sorbed lanthanum(III) ions increased the phase stability of at least 200 °C and this temperature shift was attributed to the selective phase stabilization of metastable TiO(2) polymorphs. Moreover, the combination of the surface doping ions and the thermal treatment induces the vanishing of the secondary anatase phase, and the photocatalytic tests on the doped brookite nanoparticles demonstrated that the doping increased photocatalytic activity and that the extent depended on the duration of the sintering treatment.

  15. Modeling the effect of water activity and storage temperature on chemical stability of coffee brews.

    PubMed

    Manzocco, Lara; Nicoli, Maria Cristina

    2007-08-08

    This work was addressed to study the chemical stability of coffee brew derivatives as a function of water activity (aw) and storage temperature. To this purpose, coffee brew was freeze-dried, equilibrated at increasing aw values, and stored for up to 10 months at different temperatures from -30 to 60 degrees C. The chemical stability of the samples was assessed by measuring H3O+ formation during storage. Independently of storage temperature, the rate of H3O+ formation was considerably low only when aw was reduced below 0.5 (94% w/w). Beyond this critical boundary, the rate increased, reaching a maximum value at ca. 0.8 aw (78% w/w). Further hydration up to the aw of the freshly prepared beverage significantly increased chemical stability. It was suggested that mechanisms other than lactones' hydrolysis, probably related to nonenzymatic browning pathways, could contribute to the observed increase in acidity during coffee staling. The temperature dependence of H3O+ formation was well-described by the Arrhenius equation in the entire aw range considered. However, aw affected the apparent activation energy and frequency factor. These effects were described by simple equations that were used to set up a modified Arrhenius equation. This model was validated by comparing experimental values, not used to generate the model, with those estimated by the model itself. The model allowed efficient prediction of the chemical stability of coffee derivatives on the basis of only the aw value and storage temperature.

  16. Characterization of the activity and stability of amylase from saliva and detergent: laboratory practicals for studying the activity and stability of amylase from saliva and various commercial detergents.

    PubMed

    Valls, Cristina; Rojas, Cristina; Pujadas, Gerard; Garcia-Vallve, Santi; Mulero, Miquel

    2012-07-01

    This article presents two integrated laboratory exercises intended to show students the role of α-amylases (AAMYs) in saliva and detergents. These laboratory practicals are based on the determination of the enzymatic activity of amylase from saliva and different detergents using the Phadebas test (quantitative) and the Lugol test (qualitative) under different conditions (e.g. variations in temperature and alkalinity). This work also proposes the study of enzyme stability in the presence of several surfactants and oxidizing agents using the same technical approach. The proposed laboratory exercises promote the understanding of the physiological function of this enzyme and the biotechnological applications of AAMYs in the detergent industry. The exercises also promote the understanding that the enzymatic stability and performance are dependent on the organism of origin, and if necessary, these properties could be modified by genetic engineering. In addition, this article reinforces the development of laboratory skills, problem-solving capabilities, and the ability to write a laboratory report. The exercises are proposed primarily as an undergraduate project for advanced students in the biochemical and biotechnological sciences. These laboratory practicals are complementary to the previously published BAMBED article (Biochemistry and Molecular Biology Education Vol. 39, No. 4, pp. 280-290, 2011) on detergent proteases.

  17. Effect of ionic liquid on activity, stability, and structure of enzymes: a review.

    PubMed

    Naushad, Mu; Alothman, Zied Abdullah; Khan, Abbul Bashar; Ali, Maroof

    2012-11-01

    Ionic liquids have shown their potential as a solvent media for many enzymatic reactions as well as protein preservation, because of their unusual characteristics. It is also observed that change in cation or anion alters the physiochemical properties of the ionic liquids, which in turn influence the enzymatic reactions by altering the structure, activity, enatioselectivity, and stability of the enzymes. Thus, it is utmost need of the researchers to have full understanding of these influences created by ionic liquids before choosing or developing an ionic liquid to serve as solvent media for enzymatic reaction or protein preservation. So, in the present review, we try to shed light on effects of ionic liquids chemistry on structure, stability, and activity of enzymes, which will be helpful for the researchers in various biocatalytic applications.

  18. Why do active and stabilized dunes coexist under the same climatic conditions?

    PubMed

    Yizhaq, Hezi; Ashkenazy, Yosef; Tsoar, Haim

    2007-05-04

    Sand dunes can be active (mobile) or stable, mainly as a function of vegetation cover and wind power. However, there exists as yet unexplained evidence for the coexistence of bare mobile dunes and vegetated stabilized dunes under the same climatic conditions. We propose a model for dune vegetation cover driven by wind power that exhibits bistabilty and hysteresis with respect to the wind power. For intermediate wind power, mobile and stabilized dunes can coexist, whereas for low (or high) wind power they can be fixed (or mobile). Climatic change or human intervention can turn active dunes into stable ones and vice versa; our model predicts that prolonged droughts with stronger winds can result in dune reactivation.

  19. Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays.

    PubMed

    Cao, Jinde; Wang, Jun

    2004-04-01

    This paper investigates the absolute exponential stability of a general class of delayed neural networks, which require the activation functions to be partially Lipschitz continuous and monotone nondecreasing only, but not necessarily differentiable or bounded. Three new sufficient conditions are derived to ascertain whether or not the equilibrium points of the delayed neural networks with additively diagonally stable interconnection matrices are absolutely exponentially stable by using delay Halanay-type inequality and Lyapunov function. The stability criteria are also suitable for delayed optimization neural networks and delayed cellular neural networks whose activation functions are often nondifferentiable or unbounded. The results herein answer a question: if a neural network without any delay is absolutely exponentially stable, then under what additional conditions, the neural networks with delay is also absolutely exponentially stable.

  20. Body stability and muscle and motor cortex activity during walking with wide stance

    PubMed Central

    Farrell, Brad J.; Bulgakova, Margarita A.; Beloozerova, Irina N.; Sirota, Mikhail G.

    2014-01-01

    Biomechanical and neural mechanisms of balance control during walking are still poorly understood. In this study, we examined the body dynamic stability, activity of limb muscles, and activity of motor cortex neurons [primarily pyramidal tract neurons (PTNs)] in the cat during unconstrained walking and walking with a wide base of support (wide-stance walking). By recording three-dimensional full-body kinematics we found for the first time that during unconstrained walking the cat is dynamically unstable in the forward direction during stride phases when only two diagonal limbs support the body. In contrast to standing, an increased lateral between-paw distance during walking dramatically decreased the cat's body dynamic stability in double-support phases and prompted the cat to spend more time in three-legged support phases. Muscles contributing to abduction-adduction actions had higher activity during stance, while flexor muscles had higher activity during swing of wide-stance walking. The overwhelming majority of neurons in layer V of the motor cortex, 82% and 83% in the forelimb and hindlimb representation areas, respectively, were active differently during wide-stance walking compared with unconstrained condition, most often by having a different depth of stride-related frequency modulation along with a different mean discharge rate and/or preferred activity phase. Upon transition from unconstrained to wide-stance walking, proximal limb-related neuronal groups subtly but statistically significantly shifted their activity toward the swing phase, the stride phase where most of body instability occurs during this task. The data suggest that the motor cortex participates in maintenance of body dynamic stability during locomotion. PMID:24790167

  1. Alkylidene Oxapenem β-Lactamase Inhibitors Revisited: Potent Broad Spectrum Activity but New Stability Challenges

    PubMed Central

    2014-01-01

    We present a comprehensive study of C6-alkylidene containing oxapenems. We show that this class of β-lactamase inhibitors possesses an unprecedented spectrum with activity against class A, C, and D enzymes. Surprisingly, this class of compounds displayed significant photolytic instability in addition to the known hydrolytic instability. Quantum mechanical calculations were used to develop models to predict the stability of new analogues. PMID:25147614

  2. Alkylidene Oxapenem β-Lactamase Inhibitors Revisited: Potent Broad Spectrum Activity but New Stability Challenges.

    PubMed

    Miller, Matthew D; Kale, Manoj; Reddy, Kishore; Tentarelli, Sharon; Zambrowski, Mark; Zhang, Minli; Palmer, Tiffany; Breen, John; Lahiri, Sushmita; Shirude, Pravin S; Verheijen, Jeroen C

    2014-08-14

    We present a comprehensive study of C6-alkylidene containing oxapenems. We show that this class of β-lactamase inhibitors possesses an unprecedented spectrum with activity against class A, C, and D enzymes. Surprisingly, this class of compounds displayed significant photolytic instability in addition to the known hydrolytic instability. Quantum mechanical calculations were used to develop models to predict the stability of new analogues.

  3. Rotation in a reversed field pinch with active feedback stabilization of resistive wall modes

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Menmuir, S.; Brunsell, P. R.; Kuldkepp, M.

    2006-09-01

    Active feedback stabilization of multiple resistive wall modes (RWMs) has been successfully proven in the EXTRAP T2R reversed field pinch. One of the features of plasma discharges operated with active feedback stabilization, in addition to the prolongation of the plasma discharge, is the sustainment of the plasma rotation. Sustained rotation is observed both for the internally resonant tearing modes (TMs) and the intrinsic impurity oxygen ions. Good quantitative agreement between the toroidal rotation velocities of both is found: the toroidal rotation is characterized by an acceleration phase followed, after one wall time, by a deceleration phase that is slower than in standard discharges. The TMs and the impurity ions rotate in the same poloidal direction with also similar velocities. Poloidal and toroidal velocities have comparable amplitudes and a simple model of their radial profile reproduces the main features of the helical angular phase velocity. RWMs feedback does not qualitatively change the TMs behaviour and typical phenomena such as the dynamo and the 'slinky' are still observed. The improved sustainment of the plasma and TMs rotation occurs also when feedback only acts on internally non-resonant RWMs. This may be due to an indirect positive effect, through non-linear coupling between TMs and RWMs, of feedback on the TMs or to a reduced plasma-wall interaction affecting the plasma flow rotation. Electromagnetic torque calculations show that with active feedback stabilization the TMs amplitude remains well below the locking threshold condition for a thick shell. Finally, it is suggested that active feedback stabilization of RWMs and current profile control techniques can be employed simultaneously thus improving both the plasma duration and its confinement properties.

  4. Global asymptotical stability of continuous-time delayed neural networks without global Lipschitz activation functions

    NASA Astrophysics Data System (ADS)

    Tan, Yong; Tan, Mingjia

    2009-11-01

    This paper investigates the global asymptotic stability of equilibrium for a class of continuous-time neural networks with delays. Based on suitable Lyapunov functionals and the homeomorphism theory, some sufficient conditions for the existence and uniqueness of the equilibrium point are derived. These results extend the previously works without assuming boundedness and Lipschitz conditions of the activation functions and any symmetry of interconnections. A numerical example is also given to show the improvements of the paper.

  5. Encapsulation of Sesbania grandiflora extract in polymeric micelles to enhance its solubility, stability, and antibacterial activity.

    PubMed

    Anantaworasakul, Pimporn; Okonogi, Siriporn

    2017-02-01

    Clinical applications of Sesbania grandiflora bark extract (SGE) are limited because of its poor water solubility and stability. SGE was loaded in micelles of Pluronics. In vitro and in vivo antibacterial and toxicity tests were investigated using broth dilution and silkworm model. Aqueous solubility of SGE was improved by these micelles. Activity and toxicity of SGE loaded micelles were dependent on type and concentration of Pluronics. The micelles composed of 1:3 SGE to Pluronic F68 (SGE-PF68-13) showed small size (24.95 ± 0.34 nm), narrow PdI (<0.2), high entrapment efficiency (99.63 ± 0.19%) and negative zeta potential (-41.53 ± 0.15 mV). Stability of SGE in SGE-PF68-13 was 10 times higher than the unentrapped SGE. SGE-PF68-13 showed a dose dependent activity and significantly higher therapeutic effect than the unentrapped SGE. It is concluded that encapsulation of SGE in Pluronic micelles can enhance SGE solubility, stability, and antibacterial activity. SGE-PF68-13 is suitable for further study in mammalian animals.

  6. Activity and Stability of Biofilm Uricase of Lactobacillus plantarum for Uric Acid Biosensor

    NASA Astrophysics Data System (ADS)

    Iswantini, Dyah; Rachmatia, Rescy; Diana, Novita Rose; Nurhidayat, Novik; Akhiruddin; Saprudin, Deden

    2016-01-01

    Research of uric acid biosensor used a Lactobacillus plantarum was successfully conducted. Lactobacillus plantarum could produce uricase that could be used as uric acid biosensor. Therefore, lifetime of bacteria were quite short that caused the bacteria could not detect uric acid for a long time. To avoid this problem, development of biofilm for uric acid biosensor is important. Biofilms is a structured community of bacterial cells, stick together and are able to maintain a bacteria in an extreme environments. The purpose of present study was to determine and compare the activity of uricase produced by L. plantarum, deposited whithin biofilm and planktonic bacteria on glassy carbon electrode (GCEb & GCE), also to determine the stability of biofilm. The optimization process was conducted by using temperature, pH, and substrate concentration as the parameters. It showed that the activity of uricase within biofilm was able to increase the oxidation current. GCEb and GCE yielded the oxidation current in the amount of 47.24 μA and 23.04 μA, respectively, under the same condition. Results indicated that the optimum condition for uric acid biosensor using biofilm were pH 10, temperature of 40 oC, and uric acid concentration of 5 mM. The stability of GCEb decreased after 10 hours used, with decreasing percentage over 86.33%. This low stability probably caused by the unprotected active site of the enzyme that the enzyme is easier to experience the denaturation.

  7. Iridium-Tin oxide solid-solution nanocatalysts with enhanced activity and stability for oxygen evolution

    NASA Astrophysics Data System (ADS)

    Li, Guangfu; Yu, Hongmei; Yang, Donglei; Chi, Jun; Wang, Xunying; Sun, Shucheng; Shao, Zhigang; Yi, Baolian

    2016-09-01

    Addressing major challenges from the material cost, efficiency and stability, it is highly desirable to develop high-performance catalysts for oxygen evolution reaction (OER). Herein we explore a facile surfactant-assisted approach for fabricating Irsbnd Sn (Ir/Sn = 0.6/0.4, by mol.) nano-oxide catalysts with good morphology control. Direct proofs from XRD and X-ray photoelectron spectra indicate hydrophilic triblock polymer (TBP, like Pluronic® F108) surfactant can boost the formation of stable solid-solution structure. With the TBP hydrophilic and block-length increase, the fabricated Irsbnd Sn oxides undergoing the rod-to-sphere transition obtain the relatively lower crystallization, decreased crystallite size, Ir-enriched surface and incremental available active sites, all of which can bolster the OER activity and stability. Meanwhile, it is observed that the coupled Ir oxidative etching takes a crucial role in determining the material structure and performance. Compared with commercial Ir black, half-cell tests confirm F108-assistant catalysts with over 40 wt% Ir loading reduction show 2-fold activity enhancement as well as significant stability improvement. The lowest cell voltage using 0.88 mg cm-2 Ir loading is only 1.621 V at 1000 mA cm-2 and 80 °C with a concomitant energy efficiency of 75.8% which is beyond the DOE 2017 efficiency target of 74%.

  8. Hammerhead ribozyme activity and oligonucleotide duplex stability in mixed solutions of water and organic compounds

    PubMed Central

    Nakano, Shu-ichi; Kitagawa, Yuichi; Miyoshi, Daisuke; Sugimoto, Naoki

    2014-01-01

    Nucleic acids are useful for biomedical targeting and sensing applications in which the molecular environment is different from that of a dilute aqueous solution. In this study, the influence of various types of mixed solutions of water and water-soluble organic compounds on RNA was investigated by measuring the catalytic activity of the hammerhead ribozyme and the thermodynamic stability of an oligonucleotide duplex. The compounds with a net neutral charge, such as poly(ethylene glycol), small primary alcohols, amide compounds, and aprotic solvent molecules, added at high concentrations changed the ribozyme-catalyzed RNA cleavage rate, with the magnitude of the effect dependent on the NaCl concentration. These compounds also changed the thermodynamic stability of RNA base pairs of an oligonucleotide duplex and its dependence on the NaCl concentration. Specific interactions with RNA molecules and reduced water activity could account for the inhibiting effects on the ribozyme catalysis and destabilizing effects on the duplex stability. The salt concentration dependence data correlated with the dielectric constant, but not with water activity, viscosity, and the size of organic compounds. This observation suggests the significance of the dielectric constant effects on the RNA reactions under molecular crowding conditions created by organic compounds. PMID:25161873

  9. A dynamic model for generating actuator specifications for small arms barrel active stabilization

    NASA Astrophysics Data System (ADS)

    Pathak, Anupam; Brei, Diann; Luntz, Jonathan; Lavigna, Chris

    2006-03-01

    Due to stresses encountered in combat, it is known that soldier marksmanship noticeably decreases regardless of prior training. Active stabilization systems in small arms have potential to address this problem to increase soldier survivability and mission effectiveness. The key to success is proper actuator design, but this is highly dependent on proper specification which is challenging due to the human/weapon interaction. This paper presents a generic analytical dynamic model which is capable of defining the necessary actuation specifications for a wide range of small arms platforms. The model is unique because it captures the human interface--shoulder and arm--that introduces the jitter disturbance in addition to the geometry, inertial properties and active stabilization stiffness of the small arms platform. Because no data to date is available for actual shooter-induced disturbance in field conditions, a method is given using the model to back-solve from measured shooting range variability data the disturbance amplitude information relative to the input source (arm or shoulder). As examples of the applicability of the model to various small arms systems, two different weapon systems were investigated: the M24 sniper weapon and the M16 assault rifle. In both cases, model based simulations provided valuable insight into impact on the actuation specifications (force, displacement, phase, frequency) due to the interplay of the human-weapon-active stabilization interface including the effect of shooter-disturbance frequency, disturbance location (shoulder vs. arm), and system parameters (stiffness, barrel rotation).

  10. Improvement of stability and enzymatic activity by site-directed mutagenesis of E. coli asparaginase II.

    PubMed

    Verma, Shikha; Mehta, Ranjit Kumar; Maiti, Prasanta; Röhm, Klaus-Heinrich; Sonawane, Avinash

    2014-07-01

    Bacterial asparaginases (EC 3.5.1.1) have attracted considerable attention because enzymes of this group are used in the therapy of certain forms of leukemia. Class II asparaginase from Escherichia coli (EcA), a homotetramer with a mass of 138 kDa, is especially effective in cancer therapy. However, the therapeutic potential of EcA is impaired by the limited stability of the enzyme in vivo and by the induction of antibodies in the patients. In an attempt to modify the properties of EcA, several variants with amino acid replacements at subunit interfaces were constructed and characterized. Chemical and thermal denaturation analysis monitored by activity, fluorescence, circular dichroism, and differential scanning calorimetry showed that certain variants with exchanges that weaken dimer-dimer interactions exhibited complex denaturation profiles with active dimeric and/or inactive monomeric intermediates appearing at low denaturant concentrations. By contrast, other EcA variants showed considerably enhanced activity and stability as compared to the wild-type enzyme. Thus, even small changes at a subunit interface may markedly affect EcA stability without impairing its catalytic properties. Variants of this type may have a potential for use in the asparaginase therapy of leukemia.

  11. Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation

    NASA Astrophysics Data System (ADS)

    Hou, Xuben; Rooklin, David; Fang, Hao; Zhang, Yingkai

    2016-11-01

    Resveratrol is a natural compound found in red wine that has been suggested to exert its potential health benefit through the activation of SIRT1, a crucial member of the mammalian NAD+-dependent deacetylases. SIRT1 has emerged as an attractive therapeutic target for many aging related diseases, however, how its activity can only be activated toward some specific substrates by resveratrol has been poorly understood. Herein, by employing extensive molecular dynamics simulations as well as fragment-centric topographical mapping of binding interfaces, we have clarified current controversies in the literature and elucidated that resveratrol plays an important activation role by stabilizing SIRT1/peptide interactions in a substrate-specific manner. This new mechanism highlights the importance of the N-terminal domain in substrate recognition, explains the activity restoration role of resveratrol toward some “loose-binding” substrates of SIRT1, and has significant implications for the rational design of new substrate-specific SIRT1 modulators.

  12. Comparison of antioxidant activity of compounds isolated from guava leaves and a stability study of the most active compound.

    PubMed

    Nantitanon, W; Okonogi, S

    2012-02-01

    In the present study, quercetin (QT), morin (MR), and quercetin-3-O-glucopyranoside (QG) isolated from guava leaves were comparatively tested for antioxidant activity using DPPH, ABTS, and FRAP methods. QT was the most active among them. The free radical scavenging activity of QT was approximately four times higher than MR and two times higher than QG. The reducing power of QT was eight times higher than MR and two times higher than QG. A mixture of QT with MR or QG showed interesting combination effect. The synergistic antioxidant activity was obtained when QT was mixed with MR whereas the antagonistic effect was found when mixed with QG. The stability study of QT in liquid preparations indicated that the decomposition reaction rate of QT could be explained by a kinetic model assuming a first-order chemical reaction. The aqueous solution of QT was rapidly decomposed with t1/2 of approximately five days whereas QT entrapped in chitosan nanoparticles was five times longer. It was concluded that QT was the most active antioxidant from guava leaves. Entrapment of QT in chitosan nanoparticles could significantly enhance its stability.

  13. Surface active stabilizer Tyloxapol in colloidal dispersions exerts cytostatic effects and apoptotic dismissal of cells

    SciTech Connect

    Kristl, Julijana; Teskac, Karmen; Milek, Miha; Mlinaric-Rascan, Irena

    2008-10-15

    Solid lipid nanoparticles (SLN) have been praised for their advantageous drug delivery properties such as biocompatibility, controlled release and passive drug targeting. However, the cytotoxicity of SLN and their ingredients, especially over a longer time period, has not been investigated in detail. We examined the critical issues regarding the use of a surface active stabilizer Tyloxapol (Tyl) for the preparation of solid lipid particles (SLP) and their effects on cellular functions and viability. SLP composed of behenate, phospholipids and a stabilizer, Tyloxapol or Lutrol (Lut), were prepared by the lipid melt method, labeled with a fluorescent dye and tested on Jurkat or HEK293 cells. The nano-sized particles were rapidly internalized and exhibited cytoplasmic localization. Incubation of cells with SLP-Tyl resulted in a dose- and time-dependent cytostatic effect, and also caused moderate and delayed cytotoxicity. Tyloxapol solution or SLP-Tyl dispersion caused the detachment of HEK293 cells, a decrease in cell proliferation and alterations in cellular morphology. Cell cycle analysis revealed that, while the unfavourable effects of SLP-Tyl and Tyloxapol solution are similar initially, longer incubation results in partial recovery of cells incubated with the dispersion of SLP-Tyl, whereas the presence of Tyloxapol solution induces apoptotic cell death. These findings indicate that Tyloxapol is an unfavourable stabilizer of SLP used for intracellular delivery and reinforce the role of stabilizers in a design of SLP with minimal cytotoxic properties.

  14. Development and flight evaluation of an augmented stability active controls concept: Executive summary

    NASA Technical Reports Server (NTRS)

    Guinn, W. A.

    1982-01-01

    A pitch active control system (PACS) was developed and flight tested on a wide body jet transport (L-1011) with a flying horizontal stabilizer. Two dual channel digital computers and the associated software provide command signals to a dual channel series servo which controls the stabilizer power actuators. Input sensor signals to the computer are pitch rate, column trim position, and dynamic pressure. Control laws are given for the PACS and the system architecture is defined. Discussions are given regarding piloted flight simulation and vehicle system simulation and vehicle system simulation tests that are performed to verify control laws and system operation prior to installation on the aircraft. Modifications to the basic aircraft included installation of the PACS, addition of a c.g. management system to provide a c.g. range from 25 to 39% mac, and downrigging of the geared elevator to provide the required nose down control authority for aft c.g. flight test conditions. Three pilots used the Cooper-Harper Rating Scale to judge flying qualities of the aircraft with PACS on and off. The handling qualities with the c.g. at 39% mac (41% stability margin) and PACS operating were judged to be as good as the handling qualities with the c.g. at 25% mac (+15% stability margin) and PACS off.

  15. Structure-Activity Relationship Analysis of the Thermal Stabilities of Nitroaromatic Compounds Following Different Decomposition Mechanisms.

    PubMed

    Li, Jiazhong; Liu, Huanxiang; Huo, Xing; Gramatica, Paola

    2013-02-01

    The decomposition behavior of energetic materials is very important for the safety problems concerning their production, transportation, use and storage, because molecular decomposition is intimately connected to their explosive properties. Nitroaromatic compounds, particularly nitrobenzene derivatives, are often considered as prototypical energetic molecules, and some of them are commonly used as high explosives. Quantitative structure-activity relationship (QSAR) represents a potential tool for predicting the thermal stability properties of energetic materials. But it is reported that constructing general reliable models to predict their stability and their potential explosive properties is a very difficult task. In this work, we make our efforts to investigate the relationship between the molecular structures and corresponding thermal stabilities of 77 nitrobenzene derivatives with various substituent functional groups (in ortho, meta and/or para positions). The proposed best MLR model, developed by the new software QSARINS, based on Genetic Algorithm for variable selection and with various validation tools, is robust, stable and predictive with R(2) of 0.86, QLOO (2) of 0.79 and CCC of 0.90. The results indicated that, though difficult, it is possible to build predictive, externally validated QSAR models to estimate the thermal stability of nitroaromatic compounds.

  16. Development and flight evaluation of an augmented stability active controls concept with a small horizontal tail

    NASA Technical Reports Server (NTRS)

    Rising, J. J.; Kairys, A. A.; Maass, C. A.; Siegart, C. D.; Rakness, W. L.; Mijares, R. D.; King, R. W.; Peterson, R. S.; Hurley, S. R.; Wickson, D.

    1982-01-01

    A limited authority pitch active control system (PACS) was developed for a wide body jet transport (L-1011) with a flying horizontal stabilizer. Two dual channel digital computers and the associated software provide command signals to a dual channel series servo which controls the stabilizer power actuators. Input sensor signals to the computer are pitch rate, column-trim position, and dynamic pressure. Control laws are given for the PACS and the system architecture is defined. The piloted flight simulation and vehicle system simulation tests performed to verify control laws and system operation prior to installation on the aircraft are discussed. Modifications to the basic aircraft are described. Flying qualities of the aircraft with the PACS on and off were evaluated. Handling qualities for cruise and high speed flight conditions with the c.g. at 39% mac ( + 1% stability margin) and PACS operating were judged to be as good as the handling qualities with the c.g. at 25% (+15% stability margin) and PACS off.

  17. Active Climate Stabilization: Practical Physics-Based Approaches to Prevention of Climate Change

    DOE R&D Accomplishments Database

    Teller, E.; Hyde, T.; Wood, L.

    2002-04-18

    We offer a case for active technical management of the radiative forcing of the temperatures of the Earth's fluid envelopes, rather than administrative management of atmospheric greenhouse gas inputs, in order to stabilize both the global- and time-averaged climate and its mesoscale features. We suggest that active management of radiative forcing entails negligible--indeed, likely strongly negative--economic costs and environmental impacts, and thus best complies with the pertinent mandate of the UN Framework Convention on Climate Change. We propose that such approaches be swiftly evaluated in sub-scale in the course of an intensive international program.

  18. High-Q nested resonator in an actively stabilized optomechanical cavity

    NASA Astrophysics Data System (ADS)

    Buters, F. M.; Heeck, K.; Eerkens, H. J.; Weaver, M. J.; Luna, F.; de Man, S.; Bouwmeester, D.

    2017-03-01

    Experiments involving micro- and nanomechanical resonators need to be carefully designed to reduce mechanical environmental noise. A small scale on-chip approach is to add a resonator to the system as a mechanical low-pass filter. However, the inherent low frequency of the low-pass filter causes the system to be easily excited mechanically. We solve this problem by applying active feedback to the resonator, thereby minimizing the motion with respect to the front mirror of an optomechanical cavity. Not only does this method actively stabilize the cavity length but it also retains the on-chip vibration isolation.

  19. Effect of the physicochemical properties of binary ionic liquids on lipase activity and stability.

    PubMed

    Yao, Peipei; Yu, Xinxin; Huang, Xirong

    2015-01-01

    In the present study, the lipase-catalyzed hydrolysis of p-nitrophenyl butyrate is used as a model reaction to determine the activity and stability of Candida rugosa lipase in binary ionic liquids (ILs). The binary ILs consist of hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6) and a small amount of hydrophilic 1-butyl-3-methylimidazolium nitrate ([Bmim]NO3) or 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([Bmim]CF3SO3) or 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4). The activity and the stability of lipase are first correlated with the physicochemical properties of the binary ILs. In the three binary IL systems, both the hydrophilicity and the polarity of the systems increase with the increase of the content of hydrophilic ILs (HILs). At a fixed concentration of HIL, they vary in a descending order of [Bmim]PF6/[Bmim]NO3>[Bmim]PF6/[Bmim]CF3SO3>[Bmim]PF6/[Bmim]BF4. This order is in contrast with the order of the lipase conformation stability, i.e., the higher the polarity of ILs, the more unstable the lipase conformation. However, both the activity and the stability of lipase depend on the type and the content of the HIL in binary ILs, showing a complex dependency. Analysis shows that the catalytic performance of lipase in the binary ILs is affected not only by the direct influence of the ILs on lipase conformation, but also through their indirect influence on the physicochemical properties of water. The present study helps to explore binary IL mixtures suitable for lipase-based biocatalysis.

  20. Snapshots of enzymatic Baeyer-Villiger catalysis: oxygen activation and intermediate stabilization.

    PubMed

    Orru, Roberto; Dudek, Hanna M; Martinoli, Christian; Torres Pazmiño, Daniel E; Royant, Antoine; Weik, Martin; Fraaije, Marco W; Mattevi, Andrea

    2011-08-19

    Baeyer-Villiger monooxygenases catalyze the oxidation of carbonylic substrates to ester or lactone products using NADPH as electron donor and molecular oxygen as oxidative reactant. Using protein engineering, kinetics, microspectrophotometry, crystallography, and intermediate analogs, we have captured several snapshots along the catalytic cycle which highlight key features in enzyme catalysis. After acting as electron donor, the enzyme-bound NADP(H) forms an H-bond with the flavin cofactor. This interaction is critical for stabilizing the oxygen-activating flavin-peroxide intermediate that results from the reaction of the reduced cofactor with oxygen. An essential active-site arginine acts as anchoring element for proper binding of the ketone substrate. Its positively charged guanidinium group can enhance the propensity of the substrate to undergo a nucleophilic attack by the flavin-peroxide intermediate. Furthermore, the arginine side chain, together with the NADP(+) ribose group, forms the niche that hosts the negatively charged Criegee intermediate that is generated upon reaction of the substrate with the flavin-peroxide. The fascinating ability of Baeyer-Villiger monooxygenases to catalyze a complex multistep catalytic reaction originates from concerted action of this Arg-NADP(H) pair and the flavin subsequently to promote flavin reduction, oxygen activation, tetrahedral intermediate formation, and product synthesis and release. The emerging picture is that these enzymes are mainly oxygen-activating and "Criegee-stabilizing" catalysts that act on any chemically suitable substrate that can diffuse into the active site, emphasizing their potential value as toolboxes for biocatalytic applications.

  1. Effects of polyethylene glycol on bovine intestine alkaline phosphatase activity and stability.

    PubMed

    Sekiguchi, Satoshi; Yasukawa, Kiyoshi; Inouye, Kuniyo

    2011-01-01

    In this study, we evaluated the effects of polyethylene glycol (PEG) on bovine intestine alkaline phosphatase (BIALP) activity and stability. In the hydrolysis of p-nitrophenylphosphate (pNPP) at pH 9.8 at 20 °C, the k(cat)/K(m) values of BIALP plus 5-15% w/v free PEG with molecular masses of 1, 2, 6, and 20 kDa (PEG1000, PEG2000, PEG6000, and PEG20000 respectively) were 120-140%, 180-300%, 130-170%, and 110-140% respectively of that of BIALP without free PEG (1.8 µM(-1) s(-1)), indicating that activation by PEG2000 was the highest. Unmodified BIALP plus 5% PEG2000 and BIALP pegylated with 2,4-bis(O-methoxypolyethylene glycol)-6-chloro-s-triazine exhibited 1.3-fold higher activity on average than that of BIALP without free PEG under various conditions, including pH 7.0-10.0 and 20-65 °C. The temperatures reducing initial activity by 50% in 30-min incubation of unmodified BIALP plus 5% PEG2000 and pegylated BIALP were 51 and 47 °C respectively, similar to that of BIALP without free PEG (49 °C). These results indicate that the addition of PEG2000 and pegylation increase BIALP activity without affecting its stability, suggesting that they can be used in enzyme immunoassay with BIALP to increase sensitivity and rapidity.

  2. Urease immobilized polymer hydrogel: Long-term stability and enhancement of enzymatic activity.

    PubMed

    Kutcherlapati, S N Raju; Yeole, Niranjan; Jana, Tushar

    2016-02-01

    A method has been developed in which an enzyme namely urease was immobilized inside hydrogel matrix to study the stability and enzymatic activity in room temperature (∼27-30°C). This urease coupled hydrogel (UCG) was obtained by amine-acid coupling reaction and this procedure is such that it ensured the wider opening of mobile flap of enzyme active site. A systematic comparison of urea-urease assay and the detailed kinetic data clearly revealed that the urease shows activity for more than a month when stored at ∼27-30°C in case of UCG whereas it becomes inactive in case of free urease (enzyme in buffer solution). The aqueous microenvironment inside the hydrogel, unusual morphological features and thermal behaviour were believed to be the reasons for unexpected behaviour. UCG displayed enzyme activity at basic pH and up to 60°C. UCG showed significant enhancement in activity against thermal degradation compared to free urease. In summary, this method is a suitable process to stabilize the biomacromolecules in standard room temperature for many practical uses.

  3. Heat shock modulates the subcellular localization, stability, and activity of HIPK2.

    PubMed

    Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam

    2016-04-15

    The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress - such as hypoxia, oxidative stress, or UV damage - is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 and the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors.

  4. Hydrogen peroxide sensing and cytotoxicity activity of Acacia lignin stabilized silver nanoparticles.

    PubMed

    Aadil, Keshaw Ram; Barapatre, Anand; Meena, Avtar Singh; Jha, Harit

    2016-01-01

    The study is aimed at detection of hydrogen peroxide (H2O2) using Acacia lignin mediated silver nanoparticles (AGNPs). The synthesis of AGNPs was achieved at conditions optimized as, 3 ml of 0.02% lignin and 1mM silver nitrate incubated for 30 min at 80°C and pH 9. Initial screening of AGNPs was performed by measuring the surface plasmon resonance peak at 410-430 nm using UV-vis spectrophotometer. Transmission electron microscopy, atomic force microscopy, X-ray diffraction and particle size analysis confirmed the spherical shaped face centered cubic structure and 10-50 nm size of AGNPs. The infrared spectroscopy study further revealed that the active functional groups present in lignin were responsible for the reduction of silver ions (Ag(+)) to metallic silver (Ag(0)). Lignin stabilized silver nanoparticles showed good sensitivity and a linear response over wide concentrations of H2O2 (10(-1) to 10(-6)M). Further, the in vitrocytotoxicity activity of the lignin mediated AGNPs (5-500 μg/ml) demonstrated toxicity effects in MCF-7 and A375 cell lines. Thus, lignin stabilized silver nanoparticles based optical sensor for H2O2 could be potentially applied in the determination of reactive oxygen species and toxic chemicals which further expands the importance of lignin stabilized silver nanoparticles.

  5. Actively mode-locked diode laser with a mode spacing stability of ∼6 × 10{sup -14}

    SciTech Connect

    Zakharyash, V F; Kashirsky, A V; Klementyev, V M

    2015-10-31

    We have studied mode spacing stability in an actively mode-locked external-cavity semiconductor laser. It has been shown that, in the case of mode spacing pulling to the frequency of a highly stable external microwave signal produced by a hydrogen standard (stability of 4 × 10{sup -14} over an averaging period τ = 10 s), this configuration ensures a mode spacing stability of 5.92 × 10{sup -14} (τ = 10 s). (control of radiation parameters)

  6. Enhancing stability and photocatalytic activity of ZnO nanoparticles by surface modification of graphene oxide.

    PubMed

    Wang, Yinjie; Liu, Jincheng; Liu, Lei; Sun, Darren D

    2012-05-01

    This work reports a simple method for the preparation of high-quality GO-ZnO nanocomposite materials. Transmission electron microscopy (TEM) revealed that the ZnO nanoparticles are uniformly distributed on the GO sheets and the diameter of the ZnO nanoparticles falls in 5-8 nm. Further experimental results imply that involving GO sheets into the system could remarkably prevent the aggregation of ZnO nanoparticles compared to pure ZnO. The photocatalytic activity and stability of the prepared GO-ZnO composite for the degradation of Acid Orange 7 (AO 7) under UV light irradiation is significantly enhanced in comparison to the as-synthesized pristine ZnO nanoparticles. Considering the high photocatalytic acitivity and relative stability, this high-quality GO-ZnO nanocomposite is beneficial for the applications in environmental engineering and other fields.

  7. Binding, stability, and antioxidant activity of quercetin with soy protein isolate particles.

    PubMed

    Wang, Yufang; Wang, Xiaoyong

    2015-12-01

    This work is to study the potential of particles fabricated from soy protein isolate (SPI) as a protective carrier for quercetin. When the concentration of SPI particles increases from 0 to 0.35 g/L, quercetin gives a gradually increased fluorescence intensity and fluorescence anisotropy. The addition of quercetin can highly quench the intrinsic fluorescence of SPI particles. These results are explained in terms of the binding of quercetin to the hydrophobic pockets of SPI particles mainly through the hydrophobic force together with the hydrogen bonding. The small difference in the binding constants at 25 and 40 °C suggests the structural stability of SPI particles. The relative changes in values of Gibbs energy, enthalpy, and entropy indicate that the binding of quercetin with SPI particles is spontaneous and hydrophobic interaction is the major force. Furthermore, SPI particles are superior to native SPI for improving the stability and radical scavenging activity of quercetin.

  8. Investigation of activity and stability of papain by adsorption on multi-wall carbon nanotubes.

    PubMed

    Homaei, Ahmad; Samari, Fayezeh

    2017-02-14

    Papain was non-covalently immobilized on multi-walled carbon nanotubes (MWCNTs). Its stabilities and catalytic activity for casein degradation were comprehensively investigated. Compared to free papain, the nano-enzyme exhibited significantly improved thermal, pH and recycling stability. Comparisons of the kinetic parameters between free papain and the heterogeneous enzyme revealed that the Km value of the immobilized papain experienced a slight increase, which suggested that the MWCNTs did not significantly hinder papain's access to substrate or release of product. This feature is beneficial to the industrial applications because of its potential to be easily separated from the end product at the end of the reaction, reuse for multiple times and allow the development of multiple enzyme reaction system.

  9. Frequency domain stability analysis of nonlinear active disturbance rejection control system.

    PubMed

    Li, Jie; Qi, Xiaohui; Xia, Yuanqing; Pu, Fan; Chang, Kai

    2015-05-01

    This paper applies three methods (i.e., root locus analysis, describing function method and extended circle criterion) to approach the frequency domain stability analysis of the fast tool servo system using nonlinear active disturbance rejection control (ADRC) algorithm. Root locus qualitative analysis shows that limit cycle is generated because the gain of the nonlinear function used in ADRC varies with its input. The parameters in the nonlinear function are adjustable to suppress limit cycle. In the process of root locus analysis, the nonlinear function is transformed based on the concept of equivalent gain. Then, frequency domain description of the nonlinear function via describing function is presented and limit cycle quantitative analysis including estimating prediction error is presented, which virtually and theoretically demonstrates that the describing function method cannot guarantee enough precision in this case. Furthermore, absolute stability analysis based on extended circle criterion is investigated as a complement.

  10. Development of new polysilsesquioxane spherical particles as stabilized active ingredients for sunscreens

    NASA Astrophysics Data System (ADS)

    Tolbert, Stephanie Helene

    Healthy skin is a sign of positive self-worth, attractiveness and vitality. Compromises to this are frequently caused by extended periods of recreation in the sun and in turn exposure to the harmful effects of UV radiation. To maintain strength and integrity, protection of the skin is paramount. This can be achieved by implementing skin-care products which contain sunscreen active ingredients that provide UV protection. Unfortunately, photo-degradation, toxicity, and photo-allergies limit the effectiveness of present day sunscreen ingredients. Currently, this is moderated by physically embedding within inert silica particles, but leaching of the active ingredient can occur, thereby negating protective efforts. Alternatively, this research details the preparation and investigation of bridged silsesquioxane analogues of commercial ingredients which can be chemically grafted to the silica matrix. Studies with bridged salicylate particles detail facile preparation, minimized leaching, and enhanced UV stability over physically encapsulated and pendant salicylate counterparts. In terms of UVB protective ability, the highest maintenance of sun protection factor (SPF) after extended UV exposure was achieved with bridged incorporation, and has been attributed to corollary UV stability. Additionally, bridged salicylate particles can be classified as broad-spectrum, and rate from moderate to good in terms of UVA protective ability. Particles incorporated with a bridged curcuminoid silsesquioxane were also prepared and displayed comparable results. As such, an attractive method for sunscreen isolation and stabilization has been developed to eliminate the problems associated with current sunscreens, all while maintaining the established UV absorbance profiles of the parent compound. To appreciate the technology utilized in this research, a thorough understanding of sol-gel science as it pertains to hybrid organic/silica particles, including methods of organic fragment

  11. Influence of cysteine and methionine availability on protein peroxide scavenging activity and phenolic stability in emulsions.

    PubMed

    Zhou, Lisa; Elias, Ryan J

    2014-03-01

    Plant phenolics are secondary metabolites that have been shown to confer beneficial health effects in humans. However, many of these compounds undergo metal-catalysed oxidation reactions, leading to the generation of hydrogen peroxide (H2O2) and other reactive oxygen species that may negatively impact product stability. In proteins, methionine (Met) and cysteine (Cys) are capable of reacting directly with peroxides. Thus, the dairy proteins, casein (CAS) and β-lactoglobulin (BLG), were examined for their ability to scavenge H2O2 (400μM) and influence (-)-epigallocatechin-3-gallate (EGCG) oxidation (400μM) in Tween- or sodium dodecyl sulphate (SDS)-stabilised hexadecane emulsions. To examine the effect that the accessibility of these amino acids have on their peroxide scavenging activities, proteins were pre-treated with tert-butyl hydroperoxide (TBHP), a bulky peroxide, to oxidise only solvent accessible Met residues or H2O2, the smallest peroxide, to oxidise buried Met residues. In CAS treatments, higher Met content yielded greater peroxide scavenging activity and EGCG stability. CAS treatments also showed significantly higher peroxide scavenging activity compared to the corresponding BLG treatment. However, BLG peroxide scavenging activity was greatly enhanced in SDS-stabilised emulsions due to protein denaturation and subsequent exposure of previously buried Cys residues.

  12. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review

    PubMed Central

    Ambati, Ranga Rao; Siew Moi, Phang; Ravi, Sarada; Aswathanarayana, Ravishankar Gokare

    2014-01-01

    There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3′-dihydroxy-β, β′-carotene-4,4′-dione) is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications. PMID:24402174

  13. Phosphate-Activated Cyclin-Dependent Kinase Stabilizes G1 Cyclin To Trigger Cell Cycle Entry

    PubMed Central

    Menoyo, S.; Ricco, N.; Bru, S.; Hernández-Ortega, S.; Escoté, X.; Aldea, M.

    2013-01-01

    G1 cyclins, in association with a cyclin-dependent kinase (CDK), are universal activators of the transcriptional G1-S machinery during entry into the cell cycle. Regulation of cyclin degradation is crucial for coordinating progression through the cell cycle, but the mechanisms that modulate cyclin stability to control cell cycle entry are still unknown. Here, we show that a lack of phosphate downregulates Cln3 cyclin and leads to G1 arrest in Saccharomyces cerevisiae. The stability of Cln3 protein is diminished in strains with low activity of Pho85, a phosphate-sensing CDK. Cln3 is an in vitro substrate of Pho85, and both proteins interact in vivo. More interestingly, cells that carry a CLN3 allele encoding aspartic acid substitutions at the sites of Pho85 phosphorylation maintain high levels of Cln3 independently of Pho85 activity. Moreover, these cells do not properly arrest in G1 in the absence of phosphate and they die prematurely. Finally, the activity of Pho85 is essential for accumulating Cln3 and for reentering the cell cycle after phosphate refeeding. Taken together, our data indicate that Cln3 is a molecular target of the Pho85 kinase that is required to modulate cell cycle entry in response to environmental changes in nutrient availability. PMID:23339867

  14. Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity.

    PubMed

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-11-19

    Recently isolated spore-forming pigmented marine bacteria Bacillus indicus HU36 are sources of oxygenated carotenoids with original structures (about fifteen distinct yellow and orange pigments with acylated d-glucosyl groups). In this study, we evaluated the stability (sensitivity to iron-induced autoxidation) and antioxidant activity (inhibition of iron-induced lipid peroxidation) of combinations of bacterial HU36 carotenoids with the bacterial vitamin menaquinone MQ-7 and with phenolic antioxidants (vitamin E, chlorogenic acid, rutin). Unexpectedly, MQ-7 strongly improves the ability of HU36 carotenoids to inhibit Fe(II)-induced lipid peroxidation, although MQ-7 was not consumed in the medium. We propose that their interaction modifies the carotenoid antioxidant mechanism(s), possibly by allowing carotenoids to scavenge the initiating radicals. For comparison, β-carotene and lycopene in combination were shown to exhibit a slightly higher stability toward iron-induced autoxidation, as well as an additive antioxidant activity as compared to the carotenoids, individually. HU36 carotenoids and phenolic antioxidants displayed synergistic activities in the inhibition of linoleic acid peroxidation induced by heme iron, but not by free iron. Synergism could arise from antioxidants interacting via electron transfer through the porphyrin nucleus of heme iron. Overall, combining antioxidants acting via complementary mechanisms could be the key for optimizing the activity of this bacterial carotenoid cocktail.

  15. Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity

    PubMed Central

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-01-01

    Recently isolated spore-forming pigmented marine bacteria Bacillus indicus HU36 are sources of oxygenated carotenoids with original structures (about fifteen distinct yellow and orange pigments with acylated d-glucosyl groups). In this study, we evaluated the stability (sensitivity to iron-induced autoxidation) and antioxidant activity (inhibition of iron-induced lipid peroxidation) of combinations of bacterial HU36 carotenoids with the bacterial vitamin menaquinone MQ-7 and with phenolic antioxidants (vitamin E, chlorogenic acid, rutin). Unexpectedly, MQ-7 strongly improves the ability of HU36 carotenoids to inhibit FeII-induced lipid peroxidation, although MQ-7 was not consumed in the medium. We propose that their interaction modifies the carotenoid antioxidant mechanism(s), possibly by allowing carotenoids to scavenge the initiating radicals. For comparison, β-carotene and lycopene in combination were shown to exhibit a slightly higher stability toward iron-induced autoxidation, as well as an additive antioxidant activity as compared to the carotenoids, individually. HU36 carotenoids and phenolic antioxidants displayed synergistic activities in the inhibition of linoleic acid peroxidation induced by heme iron, but not by free iron. Synergism could arise from antioxidants interacting via electron transfer through the porphyrin nucleus of heme iron. Overall, combining antioxidants acting via complementary mechanisms could be the key for optimizing the activity of this bacterial carotenoid cocktail. PMID:26610529

  16. Improvement of Stability and Antioxidant Activities by Using Phycocyanin - Chitosan Encapsulation Technique

    NASA Astrophysics Data System (ADS)

    Suzery, Meiny; Hadiyanto; Majid, Dian; Setyawan, Deny; Sutanto, Heri

    2017-02-01

    Encapsulation is a coating process to improve the stability of bioactive compounds. Phycocyanin with high antioxidant activity has been encapsulated with chitosan in microcapsules form. In this study aims to determine the best conditions in the encapsulation process using the extrusion method, characterization of the physicochemical properties of the microcapsules, antioxidant activity test using DPPH, in vitro release performance and evaluate the storage stability against temperature. The results of the encapsulation process is obtained: Na-TPP is better than Na-citrate as crosslinker and chitosan content 3% as a coating with ratio of chitosan to phycocyanin ratio 1: 1. Test of antioxidant activity also showed encapsulation with chitosan content 3% has the highest antioxidant activity. Morphological analysis microcapsules were found to have compact spherical shape with diameter range 900-1000 µm. In vitro release testing showed a quick release in an acidic environment (SGF) for 2 hours and slowly release under alkaline conditions (SIF) for 8 hours under mechanical stirring at 37°C. Phycocyanin much more stable against temperature during storage in microcapsules.

  17. Psychological traits and platelet monoamine oxidase activity in eating disorder patients: their relationship and stability.

    PubMed

    Podar, Iris; Jaanisk, Maiken; Allik, Jüri; Harro, Jaanus

    2007-01-30

    Self-reported behavior and attitudes towards eating [Eating Disorder Inventory-2; Garner DM (1991). Eating Disorder Inventory-2: Professional Manual. Odessa, Fl.: Psychological Assessment Resources; Estonian version Podar I, Hannus A, Allik J (1999). Personality and Affectivity Characteristics Associated With Eating Disorders: a Comparison of Eating Disordered, Weight-Preoccupied, and Normal Samples. J Pers Assess; 73(1), 133-147] and the activity of platelet monoamine oxidase (MAO) was studied in 11 patients with anorexia nervosa (AN), 43 patients with bulimia nervosa (BN) and a healthy control group (n=138). Nineteen patients filled in the EDI-2 questionnaire and donated blood samples three times with three month intervals in order to determine platelet MAO activity. Eating disordered (ED) patients scored higher on all EDI-2 subscales and had lower MAO activity compared to the control group. They also scored higher than the control group on the Neuroticism domain but lower on the Extraversion, Openness, and Conscientiousness domains of the NEO-PI-R questionnaire. The average stability of MAO on different occasions (r=.56) was slightly smaller than the stability of the EDI-2 scores (r=.70). The lack of correlations between personality dispositions and MAO activity indicates that they have independent influence on eating disorders. A possible relationship between neurochemical mechanisms and psychological symptoms of eating disordered behavior is discussed.

  18. Activity-Dependent Palmitoylation Controls SynDIG1 Stability, Localization, and Function

    PubMed Central

    Kaur, Inderpreet; Yarov-Yarovoy, Vladimir; Kirk, Lyndsey M.; Plambeck, Kristopher E.; Barragan, Eden V.; Ontiveros, Eric S.

    2016-01-01

    Synapses are specialized contacts between neurons. Synapse differentiation-induced gene I (SynDIG1) plays a critical role during synapse development to regulate AMPA receptor (AMPAR) and PSD-95 content at excitatory synapses. Palmitoylation regulates the localization and function of many synaptic proteins, including AMPARs and PSD-95. Here we show that SynDIG1 is palmitoylated, and investigate the effects of palmitoylation on SynDIG1 stability and localization. Structural modeling of SynDIG1 suggests that the membrane-associated region forms a three-helical bundle with two cysteine residues located at positions 191 and 192 in the juxta-transmembrane region exposed to the cytoplasm. Site-directed mutagenesis reveals that C191 and C192 are palmitoylated in heterologous cells and positively regulates dendritic targeting in neurons. Like PSD-95, activity blockade in a rat hippocampal slice culture increases SynDIG1 palmitoylation, which is consistent with our prior demonstration that SynDIG1 localization at synapses increases upon activity blockade. These data demonstrate that palmitoylation of SynDIG1 is regulated by neuronal activity, and plays a critical role in regulating its stability and subcellular localization, and thereby its function. SIGNIFICANCE STATEMENT Palmitoylation is a reversible post-translation modification that has recently been recognized as playing a critical role in the localization and function of many synaptic proteins. Here we show that activity-dependent palmitoylation of the atypical AMPA receptor auxiliary transmembrane protein SynDIG1 regulates its stability and localization at synapses to regulate function and synaptic strength. PMID:27445135

  19. Role of electronic perturbation in stability and activity of Pt-based alloy nanocatalysts for oxygen reduction.

    PubMed

    Hwang, Seung Jun; Kim, Soo-Kil; Lee, June-Gunn; Lee, Seung-Cheol; Jang, Jong Hyun; Kim, Pil; Lim, Tae-Hoon; Sung, Yung-Eun; Yoo, Sung Jong

    2012-12-05

    The design of electrocatalysts for polymer electrolyte membrane fuel cells must satsify two equally important fundamental principles: optimization of electrocatalytic activity and long-term stability in acid media (pH <1) at high potential (0.8 V). We report here a solution-based approach to the preparation of Pt-based alloy with early transition metals and realistic parameters for the stability and activity of Pt(3)M (M = Y, Zr, Ti, Ni, and Co) nanocatalysts for oxygen reduction reaction (ORR). The enhanced stability and activity of Pt-based alloy nanocatalysts in ORR and the relationship between electronic structure modification and stability were studied by experiment and DFT calculations. Stability correlates with the d-band fillings and the heat of alloy formation of Pt(3)M alloys, which in turn depends on the degree of the electronic perturbation due to alloying. This concept provides realistic parameters for rational catalyst design in Pt-based alloy systems.

  20. Wobble Pairs of the HDV Ribozyme Play Specific Roles in Stabilization of Active Site Dynamics

    PubMed Central

    Sripathi, Kamali N.; Banáš, Pavel; Reblova, Kamila; Šponer, Jiři; Otyepka, Michal

    2015-01-01

    The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking these mutations to specific structural effects on catalytic fitness. Here we use molecular dynamics simulations based on an activated structure to probe the active site dynamics as a result of wobble pair mutations. In both wild-type and mutant ribozymes, the in-line fitness of the active site (as a measure of catalytic proficiency) strongly depends on the presence of a C75(N3H3+)N1(O5′) hydrogen bond, which positions C75 as the general acid for the reaction. Our mutational analyses show that each GU wobble supports catalytically fit conformations in distinct ways; the reverse G25U20 wobble promotes high in-line fitness, high occupancy of the C75(N3H3+)G1(O5′) general-acid hydrogen bond and stabilization of the G1U37 wobble, while the G1U37 wobble acts more locally by stabilizing high in-line fitness and the C75(N3H3+)G1(O5′) hydrogen bond. We also find that stable type I A-minor and P1.1 hydrogen bonding above and below the active site, respectively, prevent local structural disorder from spreading and disrupting global conformation. Taken together, our results define specific, often redundant architectural roles for several structural motifs of the HDV ribozyme active site, expanding the known roles of these motifs within all HDV-like ribozymes and other structured RNAs. PMID:25631765

  1. Thermostable alkaline phytase from Bacillus sp. MD2: effect of divalent metals on activity and stability.

    PubMed

    Tran, Thuy Thi; Hashim, Suhaila Omar; Gaber, Yasser; Mamo, Gashaw; Mattiasson, Bo; Hatti-Kaul, Rajni

    2011-07-01

    Phytate, the major source of phosphorus in seeds, exists as a complex with different metal ions. Alkaline phytases are known to dephosphorylate phytate complexed with calcium ions in contrast to acid phytases that act only on phytic acid. A recombinant alkaline phytase from Bacillus sp. MD2 has been purified and characterized with respect to the effect of divalent metal ions on the enzyme activity and stability. The presence of Ca(2+) on both the enzyme and the substrate is required for optimal activity and stability. Replacing Ca(2+) with Ba(2+), Mn(2+), Mg(2+) and Sr(2+) in the phytase resulted in the expression of >90% of the maximal activity with calcium-phytate as the substrate, while Fe(2+) and Zn(2+) rendered the enzyme inactive. On the other hand, the calcium loaded phytase showed significant activity (60%) with sodium phytate and lower activity (17-20%) with phytate complexed with only Mg(2+), Sn(2+) and Sr(2+), respectively. On replacing Ca(2+) on both the enzyme and the substrate with other metal ions, about 20% of the maximal phytase activity was obtained only with Mg(2+) and Sr(2+), respectively. Only Ca(2+) resulted in a marked increase in the melting temperature (T(m)) of the enzyme by 12-21°C, while Ba(2+), Mn(2+), Sr(2+) or Cu(2+) resulted in a modest (2-3.5°C) increase in T(m). In the presence of 1-5mM Ca(2+), the optimum temperature of the phytase activity was increased from 40°C to 70°C, while optimum pH of the enzyme shifted by 0.4-1 pH unit towards the acidic region.

  2. Aspartame-stabilized gold-silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial activity, and long-term stability.

    PubMed

    Fasciani, Chiara; Silvero, M Jazmin; Anghel, Maria Alexandra; Argüello, Gerardo A; Becerra, Maria Cecilia; Scaiano, Juan C

    2014-12-17

    Gold-silver core-shell nanoparticles stabilized with a common sweetener, aspartame (AuNP@Ag@Asm), combine the antimicrobial properties of silver with the photoinduced plasmon-mediated photothermal effects of gold. The particles were tested with several bacterial strains, while biocompatibility was verified with human dermal fibroblasts.

  3. Effect of axial ligands on the molecular configurations, stability, reactivity, and photodynamic activities of silicon phthalocyanines.

    PubMed

    Luan, Liqiang; Ding, Lanlan; Shi, Jiawei; Fang, Wenjuan; Ni, Yuxing; Liu, Wei

    2014-12-01

    To demonstrate the effect of axial ligands on the structure-activity relationship, a series of axially substituted silicon phthalocyanines (SiPcs) have been synthesized with changes to the axial ligands. The reactivity of the axial ligand upon shielding by the phthalocyanine ring current, along with their stability, photophysical, and photodynamic therapy (PDT) activities were compared and evaluated for the first time. As revealed by single-crystal XRD analysis, rotation of the axial -OMe ligands was observed in SiPc 3, which resulted in two molecular configurations coexisting synchronously in both the solid and solution states and causing a split of the phthalocyanine α protons in the (1)H NMR spectra that is significantly different from all SiPcs reported so far. The remarkable photostability, good singlet oxygen quantum yield, and efficient in vitro photodynamic activity synergistically show that compound 3 is one of the most promising photosensitizers for PDT.

  4. Periodic patterning of the Drosophila eye is stabilized by the diffusible activator Scabrous

    PubMed Central

    Gavish, Avishai; Shwartz, Arkadi; Weizman, Abraham; Schejter, Eyal; Shilo, Ben-Zion; Barkai, Naama

    2016-01-01

    Generation of periodic patterns is fundamental to the differentiation of multiple tissues during development. How such patterns form robustly is still unclear. The Drosophila eye comprises ∼750 units, whose crystalline order is set during differentiation of the eye imaginal disc: an activation wave sweeping across the disc is coupled to lateral inhibition, sequentially selecting pro-neural cells. Using mathematical modelling, here we show that this template-based lateral inhibition is highly sensitive to spatial variations in biochemical parameters and cell sizes. We reveal the basis of this sensitivity, and suggest that it can be overcome by assuming a short-range diffusible activator. Clonal experiments identify Scabrous, a previously implicated inhibitor, as the predicted activator. Our results reveal the mechanism by which periodic patterning in the fly eye is stabilized against spatial variations, highlighting how the need to maintain robustness shapes the design of patterning circuits. PMID:26876750

  5. Nanoscale Properties and Stability Simulations of Alkali Activated Cement Phases from First Principle Calculations

    NASA Astrophysics Data System (ADS)

    Ozcelik, Ongun; White, Claire

    Using first principle density functional calculations, we present the nanoscale properties of interactions, local bonds, charge distributions, mechanical properties and strength of alkali activated cement phases which are the most promising alternative to the ordinary Portland cement with a much lower cost to the environment. We present results on the stability and long term durability of various alkali activated cement structures, effects of external alkali agents on their properties and ways of utilizing them for further applications. We compare the calculated properties of alkali activated cement with those of ordinary Portland cement and contribute to the formation of long term durability data of these phases. Comparison with X-ray and neutron scattering experiment results are also provided via pair distribution functions extracted from simulation results.

  6. Effect of base modifications on structure, thermodynamic stability, and gene silencing activity of short interfering RNA

    PubMed Central

    Sipa, Katarzyna; Sochacka, Elzbieta; Kazmierczak-Baranska, Julia; Maszewska, Maria; Janicka, Magdalena; Nowak, Genowefa; Nawrot, Barbara

    2007-01-01

    A series of nucleobase-modified siRNA duplexes containing “rare” nucleosides, 2-thiouridine (s2U), pseudouridine (Ψ), and dihydrouridine (D), were evaluated for their thermodynamic stability and gene silencing activity. The duplexes with modified units at terminal positions exhibited similar stability as the nonmodified reference. Introduction of the s2U or Ψ units into the central part of the antisense strand resulted in duplexes with higher melting temperatures (Tm). In contrary, D unit similarly like wobble base pair led to the less stable duplexes (ΔTm 3.9 and 6.6°C, respectively). Gene-silencing activity of siRNA duplexes directed toward enhanced green fluorescent protein or beta-site APP cleaving enzyme was tested in a dual fluorescence assay. The duplexes with s2U and Ψ units at their 3′-ends and with a D unit at their 5′-ends (with respect to the guide strands) were the most potent gene expression inhibitors. Duplexes with s2U and Ψ units at their 5′-ends were by 50% less active than the nonmodified counterpart. Those containing a D unit or wobble base pair in the central domain had the lowest Tm, disturbed the A-type helical structure, and had more than three times lower activity than their nonmodified congener. Activity of siRNA containing the wobble base pair could be rescued by placing the thio-nucleoside at the position 3′-adjacent to the mutation site. Thermally stable siRNA molecules containing several s2U units in the antisense strand were biologically as potent as their native counterparts. The present results provide a new chemical tool for modulation of siRNA gene-silencing activity. PMID:17585051

  7. Triarylphosphine-stabilized platinum nanoparticles in three-dimensional nanostructured films as active electrocatalysts.

    PubMed

    Kostelansky, Cynthia N; Pietron, Jeremy J; Chen, Mu-San; Dressick, Walter J; Swider-Lyons, Karen E; Ramaker, David E; Stroud, Rhonda M; Klug, Christopher A; Zelakiewicz, Brian S; Schull, Terence L

    2006-11-02

    Ligand-stabilized platinum nanoparticles (Pt NPs) can be used to build well-defined three-dimensional (3-D) nanostructured electrodes for better control of the catalyst architecture in proton exchange membrane fuel cells (PEMFCs). Platinum NPs of 1.7 +/- 0.5 nm diameter stabilized by the water-soluble phosphine ligand, tris(4-phosphonatophenyl)phosphine (TPPTP, P(4-C6H4PO3H2)3), were prepared by ethylene glycol reduction of chloroplatinic acid and subsequent treatment of the isolated nanoparticles with TPPTP. The isolated TPPTP-stabilized Pt NPs were characterized by multinuclear magnetic resonance spectroscopy (31P and 195Pt NMR), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS). The negatively charged TPPTP-Pt NPs were electrostatically deposited onto a glassy carbon electrode (GCE) modified with protonated 4-aminophenyl functional groups (APh). Multilayers were assembled via electrostatic layer-by-layer deposition with cationic poly(allylamine HCl) (PAH). These multilayer films are active for the key hydrogen fuel cell reactions, hydrogen oxidation (anode) and oxygen reduction (cathode). Using a rotating disk electrode configuration, fully mass-transport limited kinetics for hydrogen oxidation was obtained after 3 layers of TPPTP-Pt NPs with a total Pt loading of 4.2 microg/cm2. Complete reduction of oxygen by four electrons was achieved with 4 layers of TPPTP-Pt NPs and a total Pt loading of 5.6 microg/cm2. A maximum current density for oxygen reduction was reached with these films after 5 layers resulting in a mass-specific activity, i(m), of 0.11 A/mg(Pt) at 0.9 V. These films feature a high electrocatalytic activity and can be used to create systematic changes in the catalyst chemistry and architecture to provide insight for building better electrocatalysts.

  8. Dietary fiber stabilizes blood glucose and insulin levels and reduces physical activity in sows (Sus scrofa).

    PubMed

    de Leeuw, John A; Jongbloed, Age W; Verstegen, Martin W A

    2004-06-01

    The aim of this study was to test whether a diet with a high level of fermentable dietary fiber can stabilize interprandial blood glucose and insulin levels, prevent declines below basal levels, and reduce physical activity in limited-fed breeding sows. Stable levels of glucose and insulin may prevent interprandial feelings of hunger and, consequently, increased activity. Catheterized sows (n = 10) were fed twice daily (0700 and 1900 h) 900 g of a diet with either a low (L-sows) or a high level of fermentable dietary fiber (H-sows; sugarbeet pulp). Blood samples, taken between feeding times, were analyzed for glucose and insulin levels (basal and area under the curve) and stability of levels (variance and sum of absolute differences between levels in consecutive samples). The main focus was on samples taken after the postprandial peak. Behavior was videotaped for analysis of postures and posture changes. Basal glucose and insulin levels did not differ between treatments. H-sows had more stable levels than L-sows. Interprandial levels of H-sows were higher than or equal to basal levels. L-sows showed a decline in glucose below basal levels at 1400 h (P < 0.05). Before 1400 h, no difference in the frequency of posture changes was observed between treatments. After 1400 h, the frequency of posture changes increased more in L-sows than in H-sows. We concluded that sugarbeet pulp as a source of fermentable dietary fiber stabilizes glucose and insulin levels and reduces physical activity in limited-fed sows several hours after feeding. This may indicate a prolonged feeling of satiety.

  9. Study on antibacterial activity of silver nanoparticles synthesized by gamma irradiation method using different stabilizers

    NASA Astrophysics Data System (ADS)

    Van Phu, Dang; Quoc, Le Anh; Duy, Nguyen Ngoc; Lan, Nguyen Thi Kim; Du, Bui Duy; Luan, Le Quang; Hien, Nguyen Quoc

    2014-04-01

    Colloidal solutions of silver nanoparticles (AgNPs) were synthesized by gamma Co-60 irradiation using different stabilizers, namely polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), alginate, and sericin. The particle size measured from TEM images was 4.3, 6.1, 7.6, and 10.2 nm for AgNPs/PVP, AgNPs/PVA, AgNPs/alginate, and AgNPs/sericin, respectively. The influence of different stabilizers on the antibacterial activity of AgNPs was investigated. Results showed that AgNPs/alginate exhibited the highest antibacterial activity against Escherichia coli ( E. coli) among the as-synthesized AgNPs. Handwash solution has been prepared using Na lauryl sulfate as surfactant, hydroxyethyl cellulose as binder, and 15 mg/L of AgNPs/alginate as antimicrobial agent. The obtained results on the antibacterial test of handwash for the dilution to 3 mg AgNPs/L showed that the antibacterial efficiency against E. coli was of 74.6%, 89.8%, and 99.0% for the contacted time of 1, 3, and 5 min, respectively. Thus, due to the biocompatibility of alginate extracted from seaweed and highly antimicrobial activity of AgNPs synthesized by gamma Co-60 irradiation, AgNPs/alginate is promising to use as an antimicrobial agent in biomedicine, cosmetic, and in other fields.

  10. Stability and biological activity evaluations of PEGylated human basic fibroblast growth factor

    PubMed Central

    Hadadian, Shahin; Shamassebi, Dariush Norouzian; Mirzahoseini, Hasan; Shokrgozar, Mohamad Ali; Bouzari, Saeid; Sepahi, Mina

    2015-01-01

    Background: Human basic fibroblast growth factor (hBFGF) is a heparin-binding growth factor and stimulates the proliferation of a wide variety of cells and tissues causing survival properties and its stability and biological activity improvements have received much attention. Materials and Methods: In the present work, hBFGF produced by engineered Escherichia coli and purified by cation exchange and heparin affinity chromatography, was PEGylated under appropriate condition employing 10 kD polyethylene glycol. The PEGylated form was separated by size exclusion chromatography. Structural, biological activity, and stability evaluations were performed using Fourier transform infrared (FITR) spectroscopy, 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay and effect denaturing agent, respectively. Results: FITR spectroscopy revealed that both PEGylated and native forms had the same structures. MTT assay showed that PEGyalated form had a 30% reduced biological activity. Fluorescence spectrophotometry indicated that the PEGylated form denatured at higher concentrations of guanidine HCl (1.2 M) compared with native, which denatured at 0.8 M guanidine HCl. Conclusions: PEGylation of hBFGF makes it more stable against denaturing agent but reduces its bioactivity up to 30%. PMID:26605215

  11. Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Cakić, Milorad; Glišić, Slobodan; Nikolić, Goran; Nikolić, Goran M.; Cakić, Katarina; Cvetinov, Miroslav

    2016-04-01

    Dextran sulphate stabilized silver nanoparticles (AgNPs - DS) were synthesized from aqueous solution of silver nitrate (AgNO3) and dextran sulphate sodium salt (DS). The characterization of AgNPs - DS was performed by ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and antimicrobial activity. The formation of AgNPs - DS was monitored by colour changes of the reaction mixture from yellowish to brown and by measuring the surface plasmon resonance absorption peak in UV-VIS spectra at 420 nm. The SEM analysis was used for size and shape determination of AgNPs - DS. The presence of elemental silver and its crystalline structure in AgNPs - DS were confirmed by EDX and XRD analyses. The possible functional groups of DS responsible for the reduction and stabilization of AgNPs were determinated by FTIR spectroscopy. The AgNPs - DS showed strong antibacterial activity against Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 11778, Bacillus luteus in haus strain, Bacillus subtilis ATTC 6633, Listeria monocytogenes ATCC 15313, Escherichia coli ATTC 25922, Pseudomonas aeruginosa ATTC 27853, Klebsiella pneumoniae ATTC 700603, Proteus vulgaris ATTC 8427, and antifungal activity against Candida albicans ATTC 2091.

  12. Identification of mild cognitive impairment in ACTIVE: algorithmic classification and stability.

    PubMed

    Cook, Sarah E; Marsiske, Michael; Thomas, Kelsey R; Unverzagt, Frederick W; Wadley, Virginia G; Langbaum, Jessica B S; Crowe, Michael

    2013-01-01

    Rates of mild cognitive impairment (MCI) have varied substantially, depending on the criteria used and the samples surveyed. The present investigation used a psychometric algorithm for identifying MCI and its stability to determine if low cognitive functioning was related to poorer longitudinal outcomes. The Advanced Cognitive Training of Independent and Vital Elders (ACTIVE) study is a multi-site longitudinal investigation of long-term effects of cognitive training with older adults. ACTIVE exclusion criteria eliminated participants at highest risk for dementia (i.e., Mini-Mental State Examination < 23). Using composite normative for sample- and training-corrected psychometric data, 8.07% of the sample had amnestic impairment, while 25.09% had a non-amnestic impairment at baseline. Poorer baseline functional scores were observed in those with impairment at the first visit, including a higher rate of attrition, depressive symptoms, and self-reported physical functioning. Participants were then classified based upon the stability of their classification. Those who were stably impaired over the 5-year interval had the worst functional outcomes (e.g., Instrumental Activities of Daily Living performance), and inconsistency in classification over time also appeared to be associated increased risk. These findings suggest that there is prognostic value in assessing and tracking cognition to assist in identifying the critical baseline features associated with poorer outcomes.

  13. Stabilization of activated fragments by shell-wise construction of an embedding environment.

    PubMed

    Krausbeck, Florian; Sobez, Jan-Grimo; Reiher, Markus

    2017-02-25

    An activated fragment which is structurally unstable when considered isolated can be stabilized through binding to a suitable molecular environment; for instance, to a transition-metal fragment. The metal fragment may be designed in a shell-wise build-up of a surrounding molecular environment. However, adding more and more atoms in a consecutive fashion soon leads to a combinatorial explosion of structures, which is unfeasible to handle without automation. Here, we present a fully automated and parallelized framework that constructs such an embedding environment atom-wise. Molecular realizations of such an environment are constructed based on simple heuristic rules intended to screen a sufficiently large portion of the possible compound space and are then subsequently optimized by electronic structure methods. (Constrained-optimized) structures are then evaluated with respect to a scoring function, for which we choose here the concept of gradient-driven molecule construction. This concept searches for structure modifications that reduce the forces on all atoms. We develop and analyze our approach at the example of CO2 activation by reproducing a known compound and mapping out possible alternative structures and their effect on the stabilization of a (bent) CO2 ligand. For all generated structures, the nuclear gradient on the activated fragment and its coordination energy are evaluated to steer the design process. © 2017 Wiley Periodicals, Inc.

  14. On the stability of adaptation process in active noise control systems.

    PubMed

    Ardekani, Iman Tabatabaei; Abdulla, Waleed H

    2011-01-01

    The stability analysis of the adaptation process, performed by the filtered-x least mean square algorithm on weights of active noise controllers, has not been fully investigated. The main contribution of this paper is conducting a theoretical stability analysis for this process without utilizing commonly used simplifying assumptions regarding the secondary electro-acoustic channel. The core of this analysis is based on the root locus theory. The general rules for constructing the root locus plot of the adaptation process are derived by obtaining root locus parameters, including start points, end points, asymptote lines, and breakaway points. The conducted analysis leads to the derivation of a general upper-bound for the adaptation step-size beyond which the mean weight vector of the active noise controller becomes unstable. Also, this analysis yields the optimum step-size for which the adaptive active noise controller has its fastest dynamic performance. The proposed upper-bound and optimum values apply to general secondary electro-acoustic channels, unlike the commonly used ones which apply to only pure delay channels. The results are found to agree very well with those obtained from numerical analyses and computer simulation experiments.

  15. Coordinated repression and activation of two transcriptional programs stabilizes cell fate during myogenesis

    PubMed Central

    Ciglar, Lucia; Girardot, Charles; Wilczyński, Bartek; Braun, Martina; Furlong, Eileen E. M.

    2014-01-01

    Molecular models of cell fate specification typically focus on the activation of specific lineage programs. However, the concurrent repression of unwanted transcriptional networks is also essential to stabilize certain cellular identities, as shown in a number of diverse systems and phyla. Here, we demonstrate that this dual requirement also holds true in the context of Drosophila myogenesis. By integrating genetics and genomics, we identified a new role for the pleiotropic transcriptional repressor Tramtrack69 in myoblast specification. Drosophila muscles are formed through the fusion of two discrete cell types: founder cells (FCs) and fusion-competent myoblasts (FCMs). When tramtrack69 is removed, FCMs appear to adopt an alternative muscle FC-like fate. Conversely, ectopic expression of this repressor phenocopies muscle defects seen in loss-of-function lame duck mutants, a transcription factor specific to FCMs. This occurs through Tramtrack69-mediated repression in FCMs, whereas Lame duck activates a largely distinct transcriptional program in the same cells. Lineage-specific factors are therefore not sufficient to maintain FCM identity. Instead, their identity appears more plastic, requiring the combination of instructive repressive and activating programs to stabilize cell fate. PMID:24961800

  16. Candida rugosa lipase immobilization on hydrophilic charged gold nanoparticles as promising biocatalysts: Activity and stability investigations.

    PubMed

    Venditti, Iole; Palocci, Cleofe; Chronopoulou, Laura; Fratoddi, Ilaria; Fontana, Laura; Diociaiuti, Marco; Russo, Maria Vittoria

    2015-07-01

    In this work, a simple and versatile methodology to obtain two different bioconjugated systems has been developed by the immobilization of Candida rugosa lipase (CRL) on hydrophilic gold nanoparticles functionalized with 2-diethylaminoethanethiol hydrochloride (DEA) or with sodium 3-mercapto-1-propanesulfonate (3MPS), namely Au-DEA@CRL and Au-3MPS@CRL. Both spectroscopic and morphological properties of metal nanoparticles have been deeply investigated. The enzyme loading and lipolytic activity of AuNPs@CRL bioconjugates have been studied with respect to different surface functionalization and compared with the free enzyme. Some physical and chemical parameters had a strong effect on enzyme activity and stability, that were improved in the case of the Au-DEA@CRL bioconjugate, which showed a remarkable biocatalytic performance (95% of residual lipolytic activity compared with free CRL) and stability in experimental conditions concerning pH (range 5-8) and temperature (range 20-60°C), as often required for the industrial scale up of catalytic systems.

  17. Chemical stability of a cold-active cellulase with high tolerance toward surfactants and chaotropic agent.

    PubMed

    Souza, Thaís V; Araujo, Juscemácia N; da Silva, Viviam M; Liberato, Marcelo V; Pimentel, Agnes C; Alvarez, Thabata M; Squina, Fabio M; Garcia, Wanius

    2016-03-01

    CelE1 is a cold-active endo-acting glucanase with high activity at a broad temperature range and under alkaline conditions. Here, we examined the effects of pH on the secondary and tertiary structures, net charge, and activity of CelE1. Although variation in pH showed a small effect in the enzyme structure, the activity was highly influenced at acidic conditions, while reached the optimum activity at pH 8. Furthermore, to estimate whether CelE1 could be used as detergent additives, CelE1 activity was evaluated in the presence of surfactants. Ionic and nonionic surfactants were not able to reduce CelE1 activity significantly. Therefore, CelE1 was found to be promising candidate for use as detergent additives. Finally, we reported a thermodynamic analysis based on the structural stability and the chemical unfolding/refolding process of CelE1. The results indicated that the chemical unfolding proceeds as a reversible two-state process. These data can be useful for biotechnological applications.

  18. PKCθ-Mediated PDK1 Phosphorylation Enhances T Cell Activation by Increasing PDK1 Stability

    PubMed Central

    Kang, Jung-Ah; Choi, Hyunwoo; Yang, Taewoo; Cho, Steve K.; Park, Zee-Yong; Park, Sung-Gyoo

    2017-01-01

    PDK1 is essential for T cell receptor (TCR)-mediated activation of NF-κB, and PDK1-induced phosphorylation of PKCθ is important for TCR-induced NF-κB activation. However, inverse regulation of PDK1 by PKCθ during T cell activation has not been investigated. In this study, we found that PKCθ is involved in human PDK1 phosphorylation and that its kinase activity is crucial for human PDK1 phosphorylation. Mass spectrometry analysis of wild-type PKCθ or of kinase-inactive form of PKCθ revealed that PKCθ induced phosphorylation of human PDK1 at Ser-64. This PKCθ-induced PDK1 phosphorylation positively regulated T cell activation and TCR-induced NF-κB activation. Moreover, phosphorylation of human PDK1 at Ser-64 increased the stability of human PDK1 protein. These results suggest that Ser-64 is an important phosphorylation site that is part of a positive feedback loop for human PDK1-PKCθ-mediated T cell activation. PMID:28152304

  19. Effect of gold nanoparticle conjugation on the activity and stability of functional proteins.

    PubMed

    Bailes, Julian; Gazi, Sara; Ivanova, Rositsa; Soloviev, Mikhail

    2012-01-01

    Immobilization of functional proteins such as enzymes on solid surfaces produces a variety of effects ranging from the reversal and strong inhibition to the enhancement of protein stability and function. Such effects are protein-dependent and are affected by the physical and chemical properties of the surfaces. Functional consequences of protein immobilization on the surface of gold nanoparticles (AuNPs) are protein-dependent and require thorough investigation using suitable functional tests. However, traditional approaches to making control samples, i.e., immobilized protein vs. protein in solution in absence of any nanoparticles do not provide sufficiently identical reaction conditions and complicate interpretation of the results. This report provides advice and methods for preparing AuNP-conjugated preparations generally suitable for studying the effects of immobilization on the activity and stability of different functional proteins. We use bovine catalase to illustrate our approach, but the methods are easily adaptable to any other enzyme or protein. The AuNP-immobilized enzyme showed increased stability at elevated temperatures compared to the same enzyme in solution.

  20. Improvement of the stability and activity of immobilized glucose oxidase on modified iron oxide magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Abbasi, Mahboube; Amiri, Razieh; Bordbar, Abdol-Kalegh; Ranjbakhsh, Elnaz; Khosropour, Ahmad-Reza

    2016-02-01

    Immobilized proteins and enzymes are widely investigated in the medical field as well as the food and environmental fields. In this study, glucose oxidase (GOX) was covalently immobilized on the surface of modified iron oxide magnetic nanoparticles (MIMNs) to produce a bioconjugate complex. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to the size, shape and structure characterization of the MIMNs. Binding of GOX to these MIMNs was confirmed by using FT-IR spectroscopy. The stability of the immobilized and free enzyme at different temperature and pH values was investigated by measuring the enzymatic activity. These studies reveal that the enzyme's stability is enhanced by immobilization. Further experiments showed that the storage stability of the enzyme is improved upon binding to the MIMNs. The results of kinetic measurements suggest that the effect of the immobilization process on substrate and product diffusion is small. Such bioconjugates can be considered as a catalytic nanodevice for accelerating the glucose oxidation reaction for biotechnological purposes.

  1. Antimicrobial activity and stability of protonectin with D-amino acid substitutions.

    PubMed

    Qiu, Shuai; Zhu, Ranran; Zhao, Yanyan; An, Xiaoping; Jia, Fengjing; Peng, Jinxiu; Ma, Zelin; Zhu, Yuanyuan; Wang, Jiayi; Su, Jinhuan; Wang, Qingjun; Wang, Hailin; Li, Yuan; Wang, Kairong; Yan, Wenjin; Wang, Rui

    2017-03-16

    The misuse and overuse of antibiotics result in the emergence of resistant bacteria and fungi, which make an urgent need of the new antimicrobial agents. Nowadays, antimicrobial peptides have attracted great attention of researchers. However, the low physiological stability in biological system limits the application of naturally occurring antimicrobial peptides as novel therapeutics. In the present study, we synthesized derivatives of protonectin by substituting all the amino acid residues or the cationic lysine residue with the corresponding D-amino acids. Both the D-enantiomer of protonectin (D-prt) and D-Lys-protonectin (D-Lys-prt) exhibited strong antimicrobial activity against bacteria and fungi. Moreover, D-prt showed strong stability against trypsin, chymotrypsin and the human serum, while D-Lys-prt only showed strong stability against trypsin. Circular dichroism analysis revealed that D-Lys-prt still kept typical α-helical structure in the membrane mimicking environment, while D-prt showed left hand α-helical structure. In addition, propidium iodide uptake assay and bacteria and fungi killing experiments indicated that all D-amino acid substitution or partially D-amino acid substitution analogs could disrupt the integrity of membrane and lead the cell death. In summary, these findings suggested that D-prt and D-Lys-prt might be promising candidate antibiotic agents for therapeutic application against resistant bacteria and fungi infection. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  2. Protein Stabilization and Enzyme Activation in Ionic Liquids: Specific Ion Effects

    PubMed Central

    Zhao, Hua

    2015-01-01

    There are still debates on whether the hydration of ions perturbs the water structure, and what is the degree of such disturbance; therefore, the origin of Hofmeister effect on protein stabilization continues being questioned. For this reason, it is suggested to use the ‘specific ion effect’ instead of other misleading terms such as Hofmeister effect, Hofmeister series, lyotropic effect, and lyotropic series. In this review, we firstly discuss the controversial aspect of inorganic ion effects on water structures, and several possible contributors to the specific ion effect of protein stability. Due to recent overwhelming attraction of ionic liquids (ILs) as benign solvents in many enzymatic reactions, we further evaluate the structural properties and molecular-level interactions in neat ILs and their aqueous solutions. Next, we systematically compare the specific ion effects of ILs on enzyme stability and activity, and conclude that (a) the specificity of many enzymatic systems in diluted aqueous IL solutions is roughly in line with the traditional Hofmeister series albeit some exceptions; (b) however, the specificity follows a different track in concentrated or neat ILs because other factors (such as hydrogen-bond basicity, nucelophilicity, and hydrophobicity, etc) are playing leading roles. In addition, we demonstrate some examples of biocatalytic reactions in IL systems that are guided by the empirical specificity rule. PMID:26949281

  3. Enhanced Activity and Stability of Pt catalysts on Functionalized Graphene Sheets for Electrocatalytic Oxygen Reduction

    SciTech Connect

    Kou, Rong; Shao, Yuyan; Wang, Donghai; Engelhard, Mark H.; Kwak, Ja Hun; Wang, Jun; Viswanathan, Vilayanur V.; Wang, Chong M.; Lin, Yuehe; Wang, Yong; Aksay, Ilhan A.; Liu, Jun

    2009-04-30

    Electrocatalysis of oxygen reduction using Pt nanoparticles supported on functionalized graphene sheets (FGSs) was studied. FGSs were prepared by thermal expansion of graphite oxide. Pt nanoparticles with average diameter of 2 nm were uniformly loaded on FGSs by impregnation methods. Pt-FGS showed a higher electrochemical surface area and oxygen reduction activity with improved stability as compared with commercial catalyst. Transmission electron microscopy, X-ray photoelectron spectroscopy, and electrochemical characterization suggest that the improved performance of Pt-FGS can be attributed to smaller particle size and less aggregation of Pt nanoparticles on the functionalized graphene sheets.

  4. The aeroelastic stability improvements of soft-inplane tiltrotors by active and passive approaches

    NASA Astrophysics Data System (ADS)

    Paik, Jinho

    Soft-inplane tiltrotors in cruise mode have exhibited unacceptably low subcritical damping in the wing vertical bending mode as well as reduced critical whirl-flutter speed. However, soft-inplane rotor system is highly advantageous over stiff-inplane rotor system in terms of inplane dynamic hub loads which results in weight/performance penalties. Therefore, ensuring adequate aeroelastic stability characteristics is a prerequisite for soft-inplane rotor system to be used in future advanced tiltrotors. This dissertation constitutes fundamental studies of soft-inplane tiltrotors and appropriate methods to alleviate whirl-flutter instability. This study consists of four major investigations. The first investigation includes validation efforts of present analytical model against the recently available data for the Bell generic semi-span model in airplane mode and the SASIP model in hover mode. The second investigation addresses the approaches which have been employed to establish a physical understanding of the very low sub-critical damping phenomenon, which is consistently exhibited by soft-inplane tiltrotor configurations. Through analyses and comparison studies mainly between the Bell generic soft- and stiff-inplane semi-span models, the physics behind this phenomenon is emphasized. In the third investigation, parametric studies and design optimization of the rotor/wing design variables are performed in order to passively improve the whirl stability boundaries. For the last investigation, the effectiveness of active control through wing-flaperon and swashplate control inputs is examined in terms of stability improvement of soft-inplane tiltrotors. Scheduled gain and constant gain controllers are first compared for each actuation scheme and then output feedback controllers based on easily measurable wing states are compared with full-state feedback controllers. The baseline soft-inplane configurations used in passive and active studies are the full-scale Boeing Model

  5. Experimental study of the stability and activity of brines on the surface of Mars

    NASA Astrophysics Data System (ADS)

    Altheide, Travis S.

    This work contributes to the understanding of liquid water stability, with an emphasis on the role that dissolved solutes may have had on liquid water formation on Mars, past and present. In chapter 2, the stability of liquid water under martian conditions is explored through experiments on ferric sulfate brines. First, it is demonstrated that such brines can be formed starting from typical martian mineralogy. Ferric sulfates are quite soluble, up to 48 wt%, and can form solutions which remain liquid down to 205 +/-1 K at the eutectic. As a result of low water activities, these solutions exhibit evaporation rates 20 times lower than pure water. The combination of a low eutectic point and low evaporation rates allow subsurface liquids to be stable at high martian latitudes, where the majority of gullies and viscous flow features are located. Thus, the characteristics of ferric sulfate brines were further investigated in chapter 3, where the viscous properties of such solutions were measured, with respect to changing temperature and concentration. Using these results, the viscosity of these solutions on the formation of gullies was considered, where calculated fluid flow velocities were found to be in accordance with some estimates from image analyses of gully formations. In chapter 4, other Mars-relevant brines were studied and characterized under martian surface conditions. Magnesium and ferrous sulfate, and magnesium and ferric chloride brines were found to stabilize water, through lower evaporation rates and freezing point depression, much like the ferric sulfate brines. For these sulfate brines, it was found that the thermodynamic process of phase change, i.e. ice formation and/or salt crystallization, can affect the kinetic process of evaporation, through very low water activities in solution. Furthermore, in chapter 5 these studies were extended to recent results from the Phoenix mission, by examining the stability of perchlorate brines under conditions

  6. Flatness-based control in successive loops for stabilization of heart's electrical activity

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Melkikh, Alexey

    2016-12-01

    The article proposes a new flatness-based control method implemented in successive loops which allows for stabilization of the heart's electrical activity. Heart's pacemaking function is modeled as a set of coupled oscillators which potentially can exhibit chaotic behavior. It is shown that this model satisfies differential flatness properties. Next, the control and stabilization of this model is performed with the use of flatness-based control implemented in cascading loops. By applying a per-row decomposition of the state-space model of the coupled oscillators a set of nonlinear differential equations is obtained. Differential flatness properties are shown to hold for the subsystems associated with the each one of the aforementioned differential equations and next a local flatness-based controller is designed for each subsystem. For the i-th subsystem, state variable xi is chosen to be the flat output and state variable xi+1 is taken to be a virtual control input. Then the value of the virtual control input which eliminates the output tracking error for the i-th subsystem becomes reference setpoint for the i + 1-th subsystem. In this manner the control of the entire state-space model is performed by successive flatness-based control loops. By arriving at the n-th row of the state-space model one computes the control input that can be actually exerted on the aforementioned biosystem. This real control input of the coupled oscillators' system, contains recursively all virtual control inputs associated with the previous n - 1 rows of the state-space model. This control approach achieves asymptotically the elimination of the chaotic oscillation effects and the stabilization of the heart's pulsation rhythm. The stability of the proposed control scheme is proven with the use of Lyapunov analysis.

  7. Flash NanoPrecipitation of organic actives via confined micromixing and block copolymer stabilization

    NASA Astrophysics Data System (ADS)

    Johnson, Brian K.

    This dissertation provides a method and the understanding required to produce nanoparticles of organic actives using Flash NanoPrecipitation . The process comprises mixing a solvent phase containing molecularly dissolved amphiphilic block copolymer and an organic active with an anti-solvent. One block of the copolymer precipitates to alter the nucleation and growth of the organic active while the other remains in solution for particle stabilization. A custom built confined impinging jets (CIJ) mixer provides optimum micromixing at the laboratory or full scale within milliseconds. Comparison to other reactor designs is provided. The resulting nanoparticles have functional surfaces tailored to meet the needs of pharmaceutical or specialty chemical formulations. Example beta-carotene nanoparticles with a polyethylene oxide surface are produced at high concentration, high yield, low stabilizer content, and a size suitable for sterile filtration or larger. The technical challenges in nanoparticle production are explained via the characteristic times for mixing, copolymer aggregation, and organic active particle formation. The time for Flash NanoPrecipitation is shown to depend strongly on the time for copolymer aggregation, and control of the organic nucleation versus growth is critical to achieve nanoparticles. Mixing operating lines explain the impact of solubility differences between the colloidal stabilizer and the organic active as function of mixing rate. Techniques to measure the solubility of the copolymer and DeltaG° , DeltaH°, and DeltaS° of micellization are demonstrated. An analytical CIJ mixer is developed by quantifying the characteristic time and physical mechanism of mixing. The methodology described to find an absolute mixing lifetime is also applied to a vortex mixer at a spectrum of flow ratios away from one. Dimensional analysis using the process Damkohler number, defined as the ratio of the mixing to the process time, is applied to precipitation

  8. Accelerated Stability Studies on Dried Extracts of Centella asiatica Through Chemical, HPLC, HPTLC, and Biological Activity Analyses.

    PubMed

    Kaur, Ishtdeep; Suthar, Nancy; Kaur, Jasmeen; Bansal, Yogita; Bansal, Gulshan

    2016-10-01

    Regulatory guidelines recommend systematic stability studies on a herbal product to establish its shelf life. In the present study, commercial extracts (Types I and II) and freshly prepared extract (Type III) of Centella asiatica were subjected to accelerated stability testing for 6 months. Control and stability samples were evaluated for organoleptics, pH, moisture, total phenolic content (TPC), asiatic acid, kaempherol, and high-performance thin layer chromatography fingerprints, and for antioxidant and acetylcholinesterase inhibitory activities. Markers and TPC and both the activities of each extract decreased in stability samples with respect to control. These losses were maximum in Type I extract and minimum in Type III extract. Higher stability of Type III extract than others might be attributed to the additional phytoconstituents and/or preservatives in it. Pearson correlation analysis of the results suggested that TPC, asiatic acid, and kaempferol can be taken as chemical markers to assess chemical and therapeutic shelf lives of herbal products containing Centella asiatica.

  9. Task-specific stability in muscle activation space during unintentional movements.

    PubMed

    Falaki, Ali; Towhidkhah, Farzad; Zhou, Tao; Latash, Mark L

    2014-11-01

    We used robot-generated perturbations applied during position-holding tasks to explore stability of induced unintentional movements in a multidimensional space of muscle activations. Healthy subjects held the handle of a robot against a constant bias force and were instructed not to interfere with hand movements produced by changes in the external force. Transient force changes were applied leading to handle displacement away from the initial position and then back toward the initial position. Intertrial variance in the space of muscle modes (eigenvectors in the muscle activations space) was quantified within two subspaces, corresponding to unchanged handle coordinate and to changes in the handle coordinate. Most variance was confined to the former subspace in each of the three phases of movement, the initial steady state, the intermediate position, and the final steady state. The same result was found when the changes in muscle activation were analyzed between the initial and final steady states. Changes in the dwell time between the perturbation force application and removal led to different final hand locations undershooting the initial position. The magnitude of the undershot scaled with the dwell time, while the structure of variance in the muscle activation space did not depend on the dwell time. We conclude that stability of the hand coordinate is ensured during both intentional and unintentional actions via similar mechanisms. Relative equifinality in the external space after transient perturbations may be associated with varying states in the redundant space of muscle activations. The results fit a hierarchical scheme for the control of voluntary movements with referent configurations and redundant mapping between the levels of the hierarchy.

  10. Activation and Stabilization of Olive Recombinant 13-Hydroperoxide Lyase Using Selected Additives.

    PubMed

    Jacopini, Sabrina; Vincenti, Sophie; Mariani, Magali; Brunini-Bronzini de Caraffa, Virginie; Gambotti, Claude; Desjobert, Jean-Marie; Muselli, Alain; Costa, Jean; Tomi, Félix; Berti, Liliane; Maury, Jacques

    2016-12-24

    The stabilization of olive recombinant hydroperoxide lyases (rHPLs) was investigated using selected chemical additives. Two rHPLs were studied: HPL full-length and HPL with its chloroplast transit peptide deleted (matured HPL). Both olive rHPLs are relatively stable at 4 °C, and enzyme activity can be preserved (about 100% of the rHPL activities are maintained) during 5 weeks of storage at -20 or at -80 °C in the presence of glycerol (10%, v/v). Among the additives used in this study, glycine (2.5% w/v), NaCl (0.5 M), and Na2SO4 (0.25 M) provided the highest activation of HPL full-length activity, while the best matured HPL activity was obtained with Na2SO4 (0.25 M) and NaCl (1 M). Although the inactivation rate constants (k) showed that these additives inactivate both rHPLs, their use is still relevant as they strongly increase HPL activity. Results of C6-aldehyde production assays also showed that glycine, NaCl, and Na2SO4 are appropriate additives and that NaCl appears to be the best additive, at least for hexanal production.

  11. Improving the activity of Trichoderma reesei cel7B through stabilizing the transition state.

    PubMed

    Wang, Yefei; Song, Xiangfei; Zhang, Shujun; Li, Jingwen; Shu, Zhiyu; He, Chunyan; Huang, Qingshan; Yao, Lishan

    2016-06-01

    Trichoderma reesei (Tr.) cellulases, which convert cellulose to reducing sugars, are a promising catalyst used in the lignocellulosic biofuel production. Improving Tr. cellulases activity, though very difficult, is highly desired due to the recalcitrance of lignocellulose. Meanwhile, it is preferable to enhance the cellulase's promiscuity so that substrates other than cellulose can also be hydrolyzed. In this work, an attempt is made to improve the catalytic activity of a major endogluanase Tr. Cel7B against xylan which crosslinks with cellulose in lignocellulose. By using quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations, the transition state of the xylo-oligosaccharide hydrolysis is identified. Then, mutations are introduced and their effect on the transition state stabilization is ranked based on the free energy calculations. Seven top ranked mutants are evaluated experimentally. Three mutants A208Q, A222D, and G230R show a higher activity than the wild-type Tr. Cel7B in the hydrolysis of xylan (by up to 47%) as well as filter paper (by up to 50%). The combination of the single mutants can further improve the enzyme activity. Our work demonstrates that the free energy method is effective in engineering the Tr. Cel7B activity against xylan and cellulose, and thus may also be useful for improving the activity of other Tr. cellulases. Biotechnol. Bioeng. 2016;113: 1171-1177. © 2015 Wiley Periodicals, Inc.

  12. A carbamate-based approach to primaquine prodrugs: antimalarial activity, chemical stability and enzymatic activation.

    PubMed

    Mata, Graça; do Rosário, Virgílio E; Iley, Jim; Constantino, Luís; Moreira, Rui

    2012-01-15

    O-Alkyl and O-aryl carbamate derivatives of the antimalarial drug primaquine were synthesised as potential prodrugs that prevent oxidative deamination to the inactive metabolite carboxyprimaquine. Both O-alkyl and O-aryl carbamates undergo hydrolysis in alkaline and pH 7.4 phosphate buffers to the parent drug, with O-aryl carbamates being ca. 10(6)-10(10) more reactive than their O-alkyl counterparts. In human plasma O-alkyl carbamates were stable, whereas in contrast their O-aryl counterparts rapidly released the corresponding phenol product, with primaquine being released only slowly over longer incubation periods. Activation of the O-aryl carbamates in human plasma appears to be catalysed by butyrylcholinesterase (BuChE), which leads to carbamoylation of the catalytic serine of the enzyme followed by subsequent slow enzyme reactivation and release of parent drug. Most of the O-aryl and O-alkyl carbamates are activated in rat liver homogenates with half-lives ranging from 9 to 15 h, while the 4-nitrophenyl carbamate was hydrolysed too rapidly to determine an accurate rate constant. Antimalarial activity was studied using a model consisting of Plasmodium berghei, Balb C mice and Anopheles stephensi mosquitoes. When compared to controls, ethyl and n-hexyl carbamates were able to significantly reduce the percentage of infected mosquitos as well as the mean number of oocysts per infected mosquito, thus indicating that O-alkyl carbamates of primaquine have the potential to be developed as transmission-blocking antimalarial agents.

  13. Stability and activity of molybdenum carbide catalysts for the oxidative reforming of methane

    NASA Astrophysics Data System (ADS)

    Lamont, David Charles

    Molybdenum carbide catalysts have been studied for oxidative reforming, in particular, the effect on reforming activity of the method by which they were synthesized, their stability under conditions of varying mass transfer, and the measurement of their inherent reaction kinetics. These catalysts show promise as possible alternatives to both conventional supported nickel catalysts, as well as to the rare and expensive noble metal catalysts. Samples of Mo 2C were synthesized in house and compared to a commercial sample of Mo2C for the CO2 (dry) reforming of methane. It was found that high surface areas, previously thought to be important for activity, were not a property of the Mo2C, but instead were attributable to large amounts of excess carbon. This carbon had a detrimental effect on catalyst stability under dry reforming conditions, because it enhanced deposition of refractory carbon via methane cracking. The commercial sample of Mo 2C, while of low surface area and containing no excess carbon, behaved more stably over time. In another investigation, Mo2C was studied for its stability under varying mass transfer conditions, because of evidence showing that the Mo2C can undergo redox chemistry at reforming conditions. Under dry reforming conditions, it was found that some feed mixtures are net oxidizing, but that oxidation in the presence of such feed mixtures could be prevented by operating under mass transfer limited conditions, which resulted in sufficiently high partial pressures of CO and H2 in the catalyst boundary layer. Similar stability was achieved by co-feeding CO to the catalyst bed, which allowed for stable operation under conditions that were not mass transfer limited. Using this approach, measurements of the intrinsic reaction kinetics of Mo2C for dry reforming were successfully achieved. These results pointed to a strong dependence of dry reforming rate on both CH4 and CO2 partial pressures, as well as evidence for a reaction mechanism unique from

  14. Thermodynamic stability of a cold-active alpha-amylase from the Antarctic bacterium Alteromonas haloplanctis.

    PubMed

    Feller, G; d'Amico, D; Gerday, C

    1999-04-06

    The thermal stability of the cold-active alpha-amylase (AHA) secreted by the Antarctic bacterium Alteromonas haloplanctis has been investigated by intrinsic fluorescence, circular dichroism, and differential scanning calorimetry. It was found that this heat-labile enzyme is the largest known multidomain protein exhibiting a reversible two-state unfolding, as demonstrated by the recovery of DeltaHcal values after consecutive calorimetric transitions, a DeltaHcal/DeltaHeff ratio close to unity, and the independence of unfolding thermodynamic parameters of scan rates. By contrast, the mesophilic alpha-amylases investigated here (from porcine pancreas, human salivary glands, yellow meal beetle, Bacillus amyloliquefaciens, and Bacillus licheniformis) unfold irreversibly according to a non-two-state mechanism. Unlike mesophilic alpha-amylases, the melting point of AHA is independent of calcium and chloride binding while the allosteric and structural functions of these ions are conserved. The thermostability of AHA at optimal conditions is characterized by a Tm of 43.7 degrees C, a DeltaHcal of 238 kcal mol-1, and a DeltaCp of 8.47 kcal mol-1 K-1. These values were used to calculate the Gibbs free energy of unfolding over a wide range of temperatures. This stability curve shows that (a) the specific DeltaGmax of AHA [22 cal (mol of residue)-1] is 4 times lower than that of mesophilic alpha-amylases, (b) group hydration plays a crucial role in the enzyme flexibility at low temperatures, (c) the temperature of cold unfolding closely corresponds to the lower limit of bacterial growth, and (d) the recombinant heat-labile enzyme can be expressed in mesophilic hosts at moderate temperatures. It is also argued that the cold-active alpha-amylase has evolved toward the lowest possible conformational stability of its native state.

  15. The cellular responses and antibacterial activities of silver nanoparticles stabilized by different polymers

    NASA Astrophysics Data System (ADS)

    Lin, Jiang-Jen; Lin, Wen-Chun; Dong, Rui-Xuan; Hsu, Shan-hui

    2012-02-01

    Silver nanoparticles (AgNPs) are known for their excellent antibacterial activities. The possible toxicity, however, is a major concern for their applications. Three types of AgNPs were prepared in this study by chemical processes. Each was stabilized by a polymer surfactant, which was expected to reduce the exposure of cells to AgNPs and therefore their cytotoxicity. The polymer stabilizers included poly(oxyethylene)-segmented imide (POEM), poly(styrene-co-maleic anhydride)-grafting poly(oxyalkylene) (SMA) and poly(vinyl alcohol) (PVA). The cytotoxicity of these chemically produced AgNPs to mouse skin fibroblasts (L929), human hepatocarcinoma cells (HepG2), and mouse monocyte macrophages (J774A1) was compared to that of physically produced AgNPs and gold nanoparticles (AuNPs) as well as the standard reference material RM8011 AuNPs. Results showed that SMA-AgNPs were the least cytotoxic among all materials, but cytotoxicity was still observed at higher silver concentrations (>30 ppm). Macrophages demonstrated the inflammatory response with cell size increase and viability decrease upon exposure to 10 ppm of the chemically produced AgNPs. SMA-AgNPs did not induce hemolysis at a silver concentration below 1.5 ppm. Regarding the antibacterial activity, POEM-AgNPs and SMA-AgNPs at 1 ppm silver content showed 99.9% and 99.3% growth inhibition against E. coli, while PVA-AgNPs at the same silver concentration displayed 79.1% inhibition. Overall, SMA-AgNPs demonstrated better safety in vitro and greater antibacterial effects than POEM-AgNPs and PVA-AgNPs. This study suggested that polymer stabilizers may play an important role in determining the toxicity of AgNPs.

  16. Aeromechanical stability augmentation using semi-active friction-based lead-lag damper

    NASA Astrophysics Data System (ADS)

    Agarwal, Sandeep

    2005-11-01

    ground resonance problem. In view of the inherent nonlinearity in the system due to friction phenomena, multiblade transformation from rotating frame to nonrotating frame is not useful. Stability analysis of the system is performed in the rotating frame to gain an understanding of the dynamic characteristics of rotor system with attached semi-active friction based lag dampers. This investigation is extended to the ground resonance stability analysis of a comprehensive UH-60 model within the framework of finite element based multibody dynamics formulations. Simulations are conducted to study the performance of several integrated lag dampers ranging from passive to semi-active ones with varying levels of selectivity. Stability analysis is performed for a nominal range of rotor speeds using Prony's method.

  17. Effect of magnesium cations on the activity and stability of β-galactosidases

    NASA Astrophysics Data System (ADS)

    Atyaksheva, L. F.; Pilipenko, O. S.; Poltorak, O. M.; Chukhrai, E. S.

    2007-07-01

    It was shown that the presence of magnesium cations in the reaction mixture increases, approximately twofold, the activity of bacterial Escherichia coli and yeast Kluyveromyces lactis β-galactosidases but does not affect the activity of bovine liver and fungous Penicillium canescens β-galactosidases. The catalytic constants for E. coli and yeast K. lactis β-galactosidases in the presence of 0.01 M and in the absence of Mg2+ cations were determined (490 and 220 s-1 and 59.8 and 37.4 s-1, respectively). It was shown that the Michaelis constants for these two enzymes are higher in the presence of Mg2+ cations, that the thermal stability of E. coli and K. Lactis β-galactosidases is higher in the presence of 0.01 M Mg2+, and that the effective rate constants of thermal inactivation of the enzymes are two-to eightfold lower, depending on conditions, in the presence of Mg2+ cations. The maximum stabilizing effect of magnesium cations was observed at weak alkaline pH values (7.5-8.5).

  18. Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability

    USGS Publications Warehouse

    Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.

    1993-01-01

    IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.

  19. Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Gao, Xu; Lin, Meng-Fang; Mao, Bao-Hua; Shimizu, Maki; Mitoma, Nobuhiko; Kizu, Takio; Ou-Yang, Wei; Nabatame, Toshihide; Liu, Zhi; Tsukagoshi, Kazuhito; Wang, Sui-Dong

    2017-01-01

    Decreasing the active layer thickness has been recently reported as an alternative way to achieve fully depleted oxide thin-film transistors for the realization of low-voltage operations. However, the correlation between the active layer thickness and device resistivity to environmental changes is still unclear, which is important for the optimized design of oxide thin-film transistors. In this work, the ambient gas stability of IGZO thin-film transistors is found to be strongly correlated to the IGZO thickness. The TFT with the thinnest IGZO layer shows the highest intrinsic electron mobility in a vacuum, which is greatly reduced after exposure to O2/air. The device with a thick IGZO layer shows similar electron mobility in O2/air, whereas the mobility variation measured in the vacuum is absent. The thickness dependent ambient gas stability is attributed to a high-mobility region in the IGZO surface vicinity with less sputtering-induced damage, which will become electron depleted in O2/air due to the electron transfer to adsorbed gas molecules. The O2 adsorption and deduced IGZO surface band bending is demonstrated by the ambient-pressure x-ray photoemission spectroscopy results.

  20. The effect of net charge on the solubility, activity, and stability of ribonuclease Sa

    PubMed Central

    Shaw, Kevin L.; Grimsley, Gerald R.; Yakovlev, Gennady I.; Makarov, Alexander A.; Pace, C. Nick

    2001-01-01

    The net charge and isoelectric pH (pI) of a protein depend on the content of ionizable groups and their pK values. Ribonuclease Sa (RNase Sa) is an acidic protein with a pI = 3.5 that contains no Lys residues. By replacing Asp and Glu residues on the surface of RNase Sa with Lys residues, we have created a 3K variant (D1K, D17K, E41K) with a pI = 6.4 and a 5K variant (3K + D25K, E74K) with a pI = 10.2. We show that pI values estimated using pK values based on model compound data can be in error by >1 pH unit, and suggest how the estimation can be improved. For RNase Sa and the 3K and 5K variants, the solubility, activity, and stability have been measured as a function of pH. We find that the pH of minimum solubility varies with the pI of the protein, but that the pH of maximum activity and the pH of maximum stability do not. PMID:11369859

  1. Porous Dendritic Platinum Nanotubes with Extremely High Activity and Stability for Oxygen Reduction Reaction

    PubMed Central

    Zhang, Gaixia; Sun, Shuhui; Cai, Mei; Zhang, Yong; Li, Ruying; Sun, Xueliang

    2013-01-01

    Controlling the morphology of Pt nanostructures can provide opportunities to greatly increase their activity and stability. Porous dendritic Pt nanotubes were successfully synthesized by a facile, cost-effective aqueous solution method at room temperature in large scale. These unique structures are porous, hollow, hierarchical, and single crystalline, which not only gives them a large surface area with high catalyst utilization, but also improves mass transport and gas diffusion. These novel Pt structures exhibited significantly improved catalytic activity (4.4 fold) for oxygen reduction reaction (ORR) and greatly enhanced durability (6.1 fold) over that of the state-of-the-art commercial Pt/C catalyst. This work provides a promising approach to the design of highly efficient next-generation electrocatalysts. PMID:23524665

  2. Harvest date affects aronia juice polyphenols, sugars, and antioxidant activity, but not anthocyanin stability.

    PubMed

    Bolling, Bradley W; Taheri, Rod; Pei, Ruisong; Kranz, Sarah; Yu, Mo; Durocher, Shelley N; Brand, Mark H

    2015-11-15

    The goal of this work was to characterize how the date of harvest of 'Viking' aronia berry impacts juice pigmentation, sugars, and antioxidant activity. Aronia juice anthocyanins doubled at the fifth week of the harvest, and then decreased. Juice hydroxycinnamic acids decreased 33% from the first week, while proanthocyanidins increased 64%. Juice fructose and glucose plateaued at the fourth week, but sorbitol increased 40% to the seventh harvest week. Aronia juice pigment density increased due to anthocyanin concentration, and polyphenol copigmentation did not significantly affect juice pigmentation. Anthocyanin stability at pH 4.5 was similar between weeks. However, addition of quercetin, sorbitol, and chlorogenic acid to aronia anthocyanins inhibited pH-induced loss of color. Sorbitol and citric acid may be partially responsible for weekly variation in antioxidant activity, as addition of these agents inhibited DPPH scavenging 13-30%. Thus, aronia polyphenol and non-polyphenol components contribute to its colorant and antioxidant functionality.

  3. Composite block copolymer stabilized nanoparticles: simultaneous encapsulation of organic actives and inorganic nanostructures.

    PubMed

    Gindy, Marian E; Panagiotopoulos, Athanassios Z; Prud'homme, Robert K

    2008-01-01

    We describe the preparation and characterization of hybrid block copolymer nanoparticles (NPs) for use as multimodal carriers for drugs and imaging agents. Stable, water-soluble, biocompatible poly(ethylene glycol)-block-poly(epsilon-caprolactone) NPs simultaneously co-encapsulating hydrophobic organic actives (beta-carotene) and inorganic imaging nanostructures (Au) are prepared using the flash nanoprecipitation process in a multi-inlet vortex mixer. These composite nanoparticles (CNPs) are produced with tunable sizes between 75 nm and 275 nm, narrow particle size distributions, high encapsulation efficiencies, specified component compositions, and long-term stability. The process is tunable and flexible because it relies on the control of mixing and aggregation timescales. It is anticipated that the technique can be applied to a variety of hydrophobic active compounds, fluorescent dyes, and inorganic nanostructures, yielding CNPs for combined therapy and multimodal imaging applications.

  4. Earthworms facilitate the stabilization of pelletized dewatered sludge through shaping microbial biomass and activity and community.

    PubMed

    Fu, Xiaoyong; Cui, Guangyu; Huang, Kui; Chen, Xuemin; Li, Fusheng; Zhang, Xiaoyu; Li, Fei

    2016-03-01

    In this study, the effect of earthworms on microbial features during vermicomposting of pelletized dewatered sludge (PDS) was investigated through comparing two degradation systems with and without earthworm E isenia fetida involvement. After 60 days of experimentation, a relatively stable product with low organic matter and high nitrate and phosphorous was harvested when the earthworms were involved. During the process, earthworms could enhance microbial activity and biomass at the initial stage and thus accelerating the rapid decomposition of PDS. The end products of vermicomposting allowed the lower values of bacterial and eukaryotic densities comparison with those of no earthworm addition. In addition, the presence of earthworms modified the bacterial and fungal diversity, making the disappearances of some pathogens and specific decomposing bacteria of recalcitrant substrates in the vermicomposting process. This study evidences that earthworms can facilitate the stabilization of PDS through modifying microbial activity and number and community during vermicomposting.

  5. Idaho Chemical Processing Plant low-activity waste grout stabilization development program FY-97 status report

    SciTech Connect

    Herbst, A.K.; Marshall, D.W.; McCray, J.A.

    1998-02-01

    The general purpose of the Grout Development Program is to solidify and stabilize the liquid low-activity wastes (LAW) generated at the Idaho Chemical Processing Plant (ICPP). It is anticipated that LAW will be produced from the following: (1) chemical separation of the tank farm high-activity sodium-bearing waste, (2) retrieval, dissolution, and chemical separation of the aluminum, zirconium, and sodium calcines, (3) facility decontamination processes, and (4) process equipment waste. Grout formulation studies for sodium-bearing LAW, including decontamination and process equipment waste, continued this fiscal year. A second task was to develop a grout formulation to solidify potential process residual heels in the tank farm vessels when the vessels are closed.

  6. Relative stability of selenites and selenates in feed premixes as a function of water activity.

    PubMed

    Eisenberg, Sylvan

    2007-01-01

    Sodium selenite is more hygroscopic than sodium selenate. It is, therefore, more likely to dissolve when dispersed in feeds of relatively high water activity. When dissolved, it may form selenious acid and disperse as a vapor. This is easily demonstrated by mounting a filter paper wetted with a reagent such as ascorbic acid over the subject feed, but not in contact with it. The paper turns brown as elemental selenium is formed from reduction of the vapor. Analysis of the paper ensures that the brown is indeed selenium. Though premixes are generally low enough in moisture content to ensure stability of the selenites, this is not true of many feeds. The water activities of a number of feeds, feed premixes, and feed ingredients have been determined instrumentally and compared to those of saturated solutions of sodium selenite and sodium selenate. There is no question that the selenite often dissolves with the potential to react and, in so doing, loses its nutritional function.

  7. Enhanced exo-inulinase activity and stability by fusion of an inulin-binding module.

    PubMed

    Zhou, Shun-Hua; Liu, Yuan; Zhao, Yu-Juan; Chi, Zhe; Chi, Zhen-Ming; Liu, Guang-Lei

    2016-09-01

    In this study, an inulin-binding module from Bacillus macerans was successfully fused to an exo-inulinase from Kluyveromyces marxianus, creating a hybrid functional enzyme. The recombinant exo-inulinase (rINU), the hybrid enzyme (rINUIBM), and the recombinant inulin-binding module (rIBM) were, respectively, heterologously expressed and biochemically characterized. It was found that both the inulinase activity and the catalytic efficiency (k cat/K m(app)) of the rINUIBM were considerably higher than those of rINU. Though the rINU and the rINUIBM shared the same optimum pH of 4.5, the optimum temperature of the rINUIBM (60 °C) was 5 °C higher than that of the rINU. Notably, the fused IBM significantly enhanced both the pH stability and the thermostability of the rINUIBM, suggesting that the rINUIBM obtained would have more extensive potential applications. Furthermore, the fusion of the IBM could substantially improve the inulin-binding capability of the rINUIBM, which was consistent with the determination of the K m(app). This meant that the fused IBM could play a critical role in the recognition of polysaccharides and enhanced the hydrolase activity of the associated inulinase by increasing enzyme-substrate proximity. Besides, the extra supplement of the independent non-catalytic rIBM could also improve the inulinase activity of the rINU. However, this improvement was much better in case of the fusion. Consequently, the IBM could be designated as a multifunctional domain that was responsible for the activity enhancement, the stabilization, and the substrate binding of the rINUIBM. All these features obtained in this study make the rINUIBM become an attractive candidate for an efficient inulin hydrolysis.

  8. Variability and Stability in Daily Moderate-to-Vigorous Physical Activity among 10 Year Old Children

    PubMed Central

    Pereira, Sara; Gomes, Thayse Natacha; Borges, Alessandra; Santos, Daniel; Souza, Michele; dos Santos, Fernanda K.; Chaves, Raquel N.; Katzmarzyk, Peter T.; Maia, José A. R.

    2015-01-01

    Day-to-day variability and stability of children’s physical activity levels across days of the week are not well understood. Our aims were to examine the day-to-day variability of moderate-to-vigorous physical activity (MVPA), to determine factors influencing the day-to-day variability of MVPA and to estimate stability of MVPA in children. The sample comprises 686 Portuguese children (10 years of age). MVPA was assessed with an accelerometer, and BMI was computed from measured height and weight. Daily changes in MVPA and their correlates (gender, BMI, and maturity) were modeled with a multilevel approach, and tracking was calculated using Foulkes & Davies γ. A total of 51.3% of boys and 26.2% of girls achieved 60 min/day of MVPA on average. Daily MVPA was lower during the weekend (23.6% of boys and 13.6% of girls comply with the recommended 60 min/day of MVPA) compared to weekdays (60.8% and 35.4%, boys and girls, respectively). Normal weight children were more active than obese children and no effect was found for biological maturation. Tracking is low in both boys (γ = 0.59 ± 0.01) and girls (γ = 0.56 ± 0.01). Children’s MVPA levels during a week are highly unstable. In summary, boys are more active than girls, maturation does not affect their MVPA, and obese children are less likely to meet 60 min/day of MVPA. These results highlight the importance of providing opportunities for increasing children’s daily MVPA on all days of week, especially on the weekend. PMID:26262632

  9. The nuclear protein Artemis promotes AMPK activation by stabilizing the LKB1-AMPK complex

    SciTech Connect

    Nakagawa, Koji; Uehata, Yasuko; Natsuizaka, Mitsuteru; Kohara, Toshihisa; Darmanin, Stephanie; Asaka, Masahiro; Takeda, Hiroshi; Kobayashi, Masanobu

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer The nuclear protein Artemis physically interacts with AMPK{alpha}2. Black-Right-Pointing-Pointer Artemis co-localizes with AMPK{alpha}2 in the nucleus. Black-Right-Pointing-Pointer Artemis promotes phosphorylation and activation of AMPK. Black-Right-Pointing-Pointer The interaction between AMPK{alpha}2 and LKB1 is stabilized by Artemis. -- Abstract: AMP-activated protein kinase (AMPK) is a hetero-trimeric Ser/Thr kinase composed of a catalytic {alpha} subunit and regulatory {beta} and {gamma} subunits; it functions as an energy sensor that controls cellular energy homeostasis. In response to an increased cellular AMP/ATP ratio, AMPK is activated by phosphorylation at Thr172 in the {alpha}-subunit by upstream AMPK kinases (AMPKKs), including tumor suppressor liver kinase B1 (LKB1). To elucidate more precise molecular mechanisms of AMPK activation, we performed yeast two-hybrid screening and isolated the complementary DNA (cDNA) encoding the nuclear protein Artemis/DNA cross-link repair 1C (DCLRE1C) as an AMPK{alpha}2-binding protein. Artemis was found to co-immunoprecipitate with AMPK{alpha}2, and the co-localization of Artemis with AMPK{alpha}2 in the nucleus was confirmed by immunofluorescence staining in U2OS cells. Moreover, over-expression of Artemis enhanced the phosphorylation of AMPK{alpha}2 and the AMPK substrate acetyl-CoA carboxylase (ACC). Conversely, RNAi-mediated knockdown of Artemis reduced AMPK and ACC phosphorylation. In addition, Artemis markedly increased the physical association between AMPK{alpha}2 and LKB1. Taken together, these results suggest that Artemis functions as a positive regulator of AMPK signaling by stabilizing the LKB1-AMPK complex.

  10. Effect of membranes with various hydrophobic/hydrophilic properties on lipase immobilized activity and stability.

    PubMed

    Chen, Guan-Jie; Kuo, Chia-Hung; Chen, Chih-I; Yu, Chung-Cheng; Shieh, Chwen-Jen; Liu, Yung-Chuan

    2012-02-01

    In this study, three membranes: regenerated cellulose (RC), glass fiber (GF) and polyvinylidene fluoride (PVDF), were grafted with 1,4-diaminobutane (DA) and activated with glutaraldehyde (GA) for lipase covalent immobilization. The efficiencies of lipases immobilized on these membranes with different hydrophobic/hydrophilic properties were compared. The lipase immobilized on hydrophobic PVDF-DA-GA membrane exhibited more than an 11-fold increase in activity compared to its immobilization on a hydrophilic RC-DA-GA membrane. The relationship between surface hydrophobicity and immobilized efficiencies was investigated using hydrophobic/hydrophilic GF membranes which were prepared by grafting a different ratio of n-butylamine/1,4-diaminobutane (BA/DA). The immobilized lipase activity on the GF membrane increased with the increased BA/DA ratio. This means that lipase activity was exhibited more on the hydrophobic surface. Moreover, the modified PVDF-DA membrane was grafted with GA, epichlorohydrin (EPI) and cyanuric chloride (CC), respectively. The lipase immobilized on the PVDF-DA-EPI membrane displayed the highest specific activity compared to other membranes. This immobilized lipase exhibited more significant stability on pH, thermal, reuse, and storage than did the free enzyme. The results exhibited that the EPI modified PVDF is a promising support for lipase immobilization.

  11. Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol

    NASA Astrophysics Data System (ADS)

    Lacatusu, I.; Badea, N.; Stan, R.; Meghea, A.

    2012-11-01

    In this work, new stable and efficiently bio-active lipid nanocarriers (NLCs) with antioxidant properties have been developed for the transport of active ingredients in food. The novel NLCs loaded with β-sitosterol/β-sitosterol and green tea extract (GTE) and prepared by a combination of natural oils (grape seed oil, fish oil and squalene) and biological lipids with food grade surfactants, were physico-chemically examined by DLS, TEM, electrokinetic potential, DSC and HPLC and found to have main diameters less than 200 nm, a spherical morphology, excellent physical stability, an imperfect crystalline lattice and high entrapment efficiency. The novel loaded-NLCs have demonstrated the potential to develop a high blocking action of chain reactions, trapping up to 92% of the free-oxygen radicals, as compared to the native β-sitosterol (AA%=36.5). Another advantage of this study is associated with the quality of bio-active NLCs based on grape seed oil and squalene to manifest a better sitosterol—sustained release behaviour as compared to their related nanoemulsions. By coupling both in vitro results, i.e. the enhanced antioxidant activity and superior release properties, this study emphasizes the sustainability of novel bio-active nanocarriers to gain specific bio-food features for development of functional foods with a high applicability spectrum.

  12. Erythromelalgia mutation Q875E Stabilizes the activated state of sodium channel Nav1.7.

    PubMed

    Stadler, Theresa; O'Reilly, Andrias O; Lampert, Angelika

    2015-03-06

    The human voltage-gated sodium channel Nav1.7 plays a crucial role in transmission of noxious stimuli. The inherited pain disorder erythromelalgia (IEM) has been linked to Nav1.7 gain-of-function mutations. Here we show that the IEM-associated Q875E mutation located on the pore module of Nav1.7 produces a large hyperpolarizing shift (-18 mV) in the voltage dependence of activation. Three-dimensional homology modeling indicates that the side chains of Gln-875 and the gating charge Arg-214 of the domain I voltage sensor are spatially close in the activated conformation of the channel. We verified this proximity by using an engineered disulfide bridge approach. The Q875E mutation introduces a negative charge that may modify the local electrical field experienced by the voltage sensor and, upon activation, interact directly via a salt bridge with the Arg-214 gating charge residue. Together these processes could promote transition to, and stabilization of, the domain I voltage sensor in the activated conformation and thus produce the observed gain of function. In support of this hypothesis, an increase in the extracellular concentration of Ca(2+) or Mg(2+) reverted the voltage dependence of activation of the IEM mutant to near WT values, suggesting a cation-mediated electrostatic screening of the proposed interaction between Q875E and Arg-214.

  13. Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation

    PubMed Central

    Hou, Xuben; Rooklin, David; Fang, Hao; Zhang, Yingkai

    2016-01-01

    Resveratrol is a natural compound found in red wine that has been suggested to exert its potential health benefit through the activation of SIRT1, a crucial member of the mammalian NAD+-dependent deacetylases. SIRT1 has emerged as an attractive therapeutic target for many aging related diseases, however, how its activity can only be activated toward some specific substrates by resveratrol has been poorly understood. Herein, by employing extensive molecular dynamics simulations as well as fragment-centric topographical mapping of binding interfaces, we have clarified current controversies in the literature and elucidated that resveratrol plays an important activation role by stabilizing SIRT1/peptide interactions in a substrate-specific manner. This new mechanism highlights the importance of the N-terminal domain in substrate recognition, explains the activity restoration role of resveratrol toward some “loose-binding” substrates of SIRT1, and has significant implications for the rational design of new substrate-specific SIRT1 modulators. PMID:27901083

  14. Targeting VE-PTP activates TIE2 and stabilizes the ocular vasculature

    PubMed Central

    Shen, Jikui; Frye, Maike; Lee, Bonnie L.; Reinardy, Jessica L.; McClung, Joseph M.; Ding, Kun; Kojima, Masashi; Xia, Huiming; Seidel, Christopher; Silva, Raquel Lima e; Dong, Aling; Hackett, Sean F.; Wang, Jiangxia; Howard, Brian W.; Vestweber, Dietmar; Kontos, Christopher D.; Peters, Kevin G.; Campochiaro, Peter A.

    2014-01-01

    Retinal and choroidal neovascularization (NV) and vascular leakage contribute to visual impairment in several common ocular diseases. The angiopoietin/TIE2 (ANG/TIE2) pathway maintains vascular integrity, and negative regulators of this pathway are potential therapeutic targets for these diseases. Here, we demonstrated that vascular endothelial-protein tyrosine phosphatase (VE-PTP), which negatively regulates TIE2 activation, is upregulated in hypoxic vascular endothelial cells, particularly in retinal NV. Intraocular injection of an anti–VE-PTP antibody previously shown to activate TIE2 suppressed ocular NV. Furthermore, a small-molecule inhibitor of VE-PTP catalytic activity (AKB-9778) activated TIE2, enhanced ANG1-induced TIE2 activation, and stimulated phosphorylation of signaling molecules in the TIE2 pathway, including AKT, eNOS, and ERK. In mouse models of neovascular age-related macular degeneration, AKB-9778 induced phosphorylation of TIE2 and strongly suppressed NV. Ischemia-induced retinal NV, which is relevant to diabetic retinopathy, was accentuated by the induction of ANG2 but inhibited by AKB-9778, even in the presence of high levels of ANG2. AKB-9778 also blocked VEGF-induced leakage from dermal and retinal vessels and prevented exudative retinal detachments in double-transgenic mice with high expression of VEGF in photoreceptors. These data support targeting VE-PTP to stabilize retinal and choroidal blood vessels and suggest that this strategy has potential for patients with a wide variety of retinal and choroidal vascular diseases PMID:25180601

  15. Activation and stabilization of penicillin V acylase from streptomyces lavendulae in the presence of glycerol and glycols.

    PubMed

    Arroyo, M; Torres-Guzmán, R; de La Mata, I; Castillón, M P; Acebal, C

    2000-01-01

    Penicillin V acylase (EC 3.5.1.11) from Streptomyces lavendulae showed both enhanced activity and stability in mixed water/glycerol and water/glycols solvents. The catalytic activity was increased up to a critical concentration of these cosolvents, but further addition of the latter led to a gradual protein deactivation. The highest stabilizing effect was achieved in the presence of glycerol. Thermal stability was increased proportionally to the concentration of glycerol and glycols in the reaction mixture only if the amount added is below the threshold concentration. Reaction conditions that allow simultaneously enhanced activity and stability in the hydrolysis of penicillin V catalyzed by penicillin V acylase from S. lavendulae could be established.

  16. The effects of core stability strength exercise on muscle activity and trunk impairment scale in stroke patients.

    PubMed

    Yu, Seong-Hun; Park, Seong-Doo

    2013-01-01

    The purpose of this study was to examine the effects of core stability-enhancing exercises on the lower trunk and muscle activity of stroke patients. The control group (n = 10) underwent standard exercise therapy, while the experiment group (n =10) underwent both the core stability-enhancing exercise and standard exercise therapy simultaneously. The standard exercise therapy applied to the two groups included weight bearing and weight shifts and joint movements to improve flexibility and the range of motion. The core stability-enhancing exercise was performed 5 times a week for 30 min over a period of 4 weeks in the room where the patients were treated. For all 20 subject, the items measured before the exercise were measured after the therapeutic intervention, and changes in muscle activity of the lower trunk were evaluated. The activity and stability of the core muscles were measured using surface electromyography and the trunk impairment scale (TIS). The mean TIS score and muscle activity of the lower trunk increased in the experiment group significantly after performing the core stability-enhancing exercise (P<0.05). The results of this study show that the core stability-enhancing exercise is effective in improving muscle activity of the lower trunk, which is affected by hemiplegia.

  17. A binary palladium-bismuth nanocatalyst with high activity and stability for alkaline glucose electrooxidation

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Chuan; Lin, Cheng-Lan; Chen, Lin-Chi

    2015-08-01

    Binary palladium-bismuth nanocatalysts supported on functionalized multi-walled carbon nanotubes (Pd-Bi/C) are synthesized using a one-pot polyol method. The prepared Pd-Bi/C catalysts have a metal particle range from 5.25 to 12.98 nm and are investigated for alkaline electrocatalytic glucose oxidation reaction (GOR). The physical properties of the catalysts are characterized by X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The electrochemical activities are determined by cyclic voltammetry (CV), linear sweep voltammetry (LSV), Tafel analysis and chronoamperomtry (CA) for comparing the electrochemical active surface area (ECSA), GOR onset potential, GOR peak current density, Tafel slope, poisoning rate and cycling stability of the Pd-Bi/C catalysts. It is found that Pd-Bi/C (1:0.14) can significantly enhance the electrocatalytic activity on GOR about 40% times higher than Pd/C and as well as has a 3.7-fold lower poisoning rate. The in-use stability of Pd-Bi/C (1:0.14) is also remarkably improved, according to the results of the 200 cycling CV test. The effects of the operating temperature and the concentration of glucose and NaOH electrolyte on Pd-Bi/C (1:0.14) are further studied in this work. The highest Pd-Bi/C catalyzed GOR current density of 29.5 mA cm-2 is attained in alkaline medium.

  18. Environmental Factors Modulating the Stability and Enzymatic Activity of the Petrotoga mobilis Esterase (PmEst)

    PubMed Central

    Martins, Julia M.; DeMarco, Ricardo; Jameson, David M.; Castro, Aline M.; Bossolan, Nelma R. S.; Wallace, B. A.; Araujo, Ana P. U.

    2016-01-01

    Enzymes isolated from thermophilic organisms found in oil reservoirs can find applications in many fields, including the oleochemical, pharmaceutical, bioenergy, and food/dairy industries. In this study, in silico identification and recombinant production of an esterase from the extremophile bacteria Petrotoga mobilis (designated PmEst) were performed. Then biochemical, bioinformatics and structural characterizations were undertaken using a combination of synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies to correlate PmEst stability and hydrolytic activity on different substrates. The enzyme presented a high Michaelis-Menten constant (KM 0.16 mM) and optimum activity at ~55°C for p-nitrophenyl butyrate. The secondary structure of PmEst was preserved at acid pH, but not under alkaline conditions. PmEst was unfolded at high concentrations of urea or guanidine through apparently different mechanisms. The esterase activity of PmEst was preserved in the presence of ethanol or propanol and its melting temperature increased ~8°C in the presence of these organic solvents. PmEst is a mesophilic esterase with substrate preference towards short-to medium-length acyl chains. The SRCD data of PmEst is in agreement with the prediction of an α/β protein, which leads us to assume that it displays a typical fold of esterases from this family. The increased enzyme stability in organic solvents may enable novel applications for its use in synthetic biology. Taken together, our results demonstrate features of the PmEst enzyme that indicate it may be suitable for applications in industrial processes, particularly, when the use of polar organic solvents is required. PMID:27351338

  19. Environmental Factors Modulating the Stability and Enzymatic Activity of the Petrotoga mobilis Esterase (PmEst).

    PubMed

    Lopes, Jose L S; Yoneda, Juliana S; Martins, Julia M; DeMarco, Ricardo; Jameson, David M; Castro, Aline M; Bossolan, Nelma R S; Wallace, B A; Araujo, Ana P U

    2016-01-01

    Enzymes isolated from thermophilic organisms found in oil reservoirs can find applications in many fields, including the oleochemical, pharmaceutical, bioenergy, and food/dairy industries. In this study, in silico identification and recombinant production of an esterase from the extremophile bacteria Petrotoga mobilis (designated PmEst) were performed. Then biochemical, bioinformatics and structural characterizations were undertaken using a combination of synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies to correlate PmEst stability and hydrolytic activity on different substrates. The enzyme presented a high Michaelis-Menten constant (KM 0.16 mM) and optimum activity at ~55°C for p-nitrophenyl butyrate. The secondary structure of PmEst was preserved at acid pH, but not under alkaline conditions. PmEst was unfolded at high concentrations of urea or guanidine through apparently different mechanisms. The esterase activity of PmEst was preserved in the presence of ethanol or propanol and its melting temperature increased ~8°C in the presence of these organic solvents. PmEst is a mesophilic esterase with substrate preference towards short-to medium-length acyl chains. The SRCD data of PmEst is in agreement with the prediction of an α/β protein, which leads us to assume that it displays a typical fold of esterases from this family. The increased enzyme stability in organic solvents may enable novel applications for its use in synthetic biology. Taken together, our results demonstrate features of the PmEst enzyme that indicate it may be suitable for applications in industrial processes, particularly, when the use of polar organic solvents is required.

  20. Characterization and solvent engineering of wheat β-amylase for enhancing its activity and stability.

    PubMed

    Daba, Tadessa; Kojima, Kenji; Inouye, Kuniyo

    2012-10-10

    The kinetic and thermodynamic parameters of wheat β-amylase (WBA) were characterized and various additives were evaluated for enhancing its activity and thermostability. WBA activity was examined by neocuproine method using soluble starch as substrate. The Michaelis constant (K(m)) and molecular activity (k(cat)) were determined to be 1.0±0.1% (w/v) and 94±3s(-1), respectively, at pH 5.4 and at 25°C. The optimum reaction temperature (T(opt)) for WBA activity was 55°C and the temperature (T(50)) at which it loses half of the activity after 30-min incubation was 50±1°C. Modifications of the solvent with 182mM glycine and 0.18% (w/v) gelatin have increased the T(50) by 5°C. Glycerol, ethylene glycol, dimethylformamide (DMF) and dimethyl sulfoxide have also slightly enhanced the thermostability plausibly through weakening the water structure and decreasing the water shell around the WBA protein. Ethanol and DMF activated WBA by up to 24% at 25°C probably by inducing favorable conformation for the active site or changing the substrate structure by weakening the hydrogen bonding. Its half-life in the inactivation at 55°C was improved from 23 to 48min by 182mM glycine. The thermodynamic parameters indicate that WBA is thermo-labile and sufficient stabilization was achieved through solvent modification with additives and that the heat inactivation of WBA is entropic-driven. It is suggested that WBA could be applied more widely in starch-saccharification industries with employing suitable additives.

  1. Influence of mechanical activation on the physical stability of salbutamol sulphate.

    PubMed

    Brodka-Pfeiffer, Katharina; Langguth, Peter; Grass, Peter; Häusler, Heribert

    2003-11-01

    In order to obtain the optimal particle size distribution for pharmaceutical powders in dry powder inhalers the particles have to be micronised. In most cases the process of micronisation is connected with a high input of energy which induces disorder and defects on the surface of the drug particles and as a result changes in the crystallinity. Consequently, changes in the physical stability of the powders may occur. To investigate changes on the physical stability of the powder, different analytical methods are used in the present investigation: laser diffraction, Differential Scanning Calorimetry (DSC), isothermal microcalorimetry and DVS-method.Air-jet-milling is one of the most frequently used techniques in the pharmaceutical industry, in order to obtain particles of respirable size. In the treatise described here the influence of the critical parameters of the process, i.e. feed pressure, grind pressure and feed rate is assessed for salbutamol sulphate. The grind pressure is of utmost importance with respect to particle size distribution and the physical powder stability. For salbutamol sulphate, ground with a MC Jetmill 50, a grind pressure of 6 bar has been found optimal. Pressures below 6 bar are not sufficient to produce the required reduction in particle size. The feed pressure and rate have negligible influence on the powder quality. Furthermore, the micronisation process is optimised to achieve respirable particles while minimising the amorphous content. A correlation between mechanical activation and the amount of the amorphous regions is showed clearly.Air-jet-milling has been compared to ball milling in this investigation. In pilot tests ball milling was not suitable to achieve the needed particle size distribution, however, it generates a specific quantity of amorphous material. With the help of specific amorphous regions in the powder, the sensitivity of the used methods for salbutamol sulphate can be examined.

  2. Preparation, stability and antimicrobial activity of cationic cross-linked starch-iodine complexes.

    PubMed

    Klimaviciute, Rima; Bendoraitiene, Joana; Rutkaite, Ramune; Siugzdaite, Jurate; Zemaitaitis, Algirdas

    2012-12-01

    Cationic cross-linked starch (CCS)-iodine complexes containing different amounts of quaternary ammonium groups (different degrees of substitution (DS)) and iodine have been obtained by iodine adsorption on CCS from aqueous iodine potassium iodide solution. Equilibrium adsorption studies showed that with an increase of DS the amount of iodine adsorbed on CCS and the affinity of iodine to CCS increased linearly. The influences of the DS of CCS and the amount of adsorbed iodine on the stability of CCS-iodine complexes in a solution of 0.02M sodium acetate and reactivity toward l-tyrosine have been investigated. At the same DS, the stability of CCS-iodine complexes decreased with an increase of the amount of adsorbed iodine. With increasing the DS, the stability of CCS-iodine complexes increased. The iodine consumption in the reaction with l-tyrosine increased significantly with an increase of the amount of adsorbed iodine. The influence of DS on iodine consumption was lower and depended on the amount of adsorbed iodine. The antibacterial activity of CCS-iodine complexes against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli was determined by the broth-dilution and spread-plate methods. The obtained results have demonstrated that an appropriate selection of the CCS-iodine complex composition (the DS of CCS and the amount of adsorbed iodine) could ensure good antimicrobial properties by keeping a low concentration of free iodine in the system. The main advantage of using CCS-iodine complexes as antimicrobial agents is the biodegradability of the polymeric matrix.

  3. High normalized beta plasmas exceeding the ideal stability limit and projected RWM active stabilization performance using newly installed feedback sensors in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Bialek, J. M.; Yoon, S. W.; Jeon, Y. M.; Bak, J. G.; Ko, W. H.; Hahn, S. H.; Bae, C.; Bae, Y. S.; in, Y. K.; Kim, J.; Lee, S. G.; Kwak, J. G.; Oh, Y. K.; Park, H. K.; Choi, M. J.; Yun, G. S.

    2015-11-01

    H-mode plasma operation of KSTAR has been expanded to significantly surpass the ideal MHD no-wall beta limit by achieving normalized beta up to 4.3 while reducing plasma internal inductance to near 0.7 exceeding the computed n = 1 ideal no-wall limit by a factor of 1.6. These high normalized beta values have been achieved in discharges having BT in the range 0.9-1.1 T after the plasma reached flattop current of 0.35-0.4 MA, with the highest neutral beam heating power of 4 MW. A significant conclusion of the analysis of these plasmas is that low- n global kink/ballooning or RWMs were not detected, and therefore were not the cause of the plasma termination. Advances from the 2015 run campaign aiming to achieve prolonged pulse duration at maximum normalized beta and to subsequently investigate the MHD stability of these plasmas will be reported. As KSTAR H-mode operation can now routinely surpass the ideal no-wall stability limit, n = 1 RWM active control is planned for the device. RWM active feedback using a newly installed set of poloidal magnetic field sensors mounted on the passive stabilizer plates and designed for optimal performance is analyzed using the VALEN-3D code. The advantages of the new sensors over other device sensors for RWM active control are discussed. Supported by U.S. DOE grant DE-FG02-99ER54524.

  4. Immobilization of peroxidase enzyme onto the porous silicon structure for enhancing its activity and stability

    PubMed Central

    2014-01-01

    In this work, a commercial peroxidase was immobilized onto porous silicon (PS) support functionalized with 3-aminopropyldiethoxysilane (APDES) and the performance of the obtained catalytic microreactor was studied. The immobilization steps were monitored and the activity of the immobilized enzyme in the PS pores was spectrophotometrically determined. The enzyme immobilization in porous silicon has demonstrated its potential as highly efficient enzymatic reactor. The effect of a polar organic solvent (acetonitrile) and the temperature (up to 50°C) on the activity and stability of the biocatalytic microreactor were studied. After 2-h incubation in organic solvent, the microreactor retained 80% of its initial activity in contrast to the system with free soluble peroxidase that lost 95% of its activity in the same period of time. Peroxidase immobilized into the spaces of the porous silicon support would be perspective for applications in treatments for environmental security such as removal of leached dye in textile industry or in treatment of different industrial effluents. The system can be also applied in the field of biomedicine. PMID:25221454

  5. Self-assembled organic-inorganic hybrid glucoamylase nanoflowers with enhanced activity and stability.

    PubMed

    Nadar, Shamraja S; Gawas, Sarita D; Rathod, Virendra K

    2016-11-01

    An organic-inorganic hybrid glucoamylase nanoflower was prepared in single pot by simple, facile and highly efficient method. The stepwise formation of enzyme-embedded hybrid nanoflowers and influence of experimental parameters viz. pH of solution mixture, enzyme and copper ion concentration on the activity of prepared hybrid nanoflowers were systematically investigated. The self-assembled hybrid glucoamylase nanoflowers were synthesized by mixing aqueous solution of copper sulphate (200mM) with PBS (pH 7.5, 5mM) containing glucoamylase (1mg/mL) in 24h at room temperature. These prepared nanoflowers were further characterized by FT-IR, SEM and XRD. The hybrid nanoflowers exhibited 204% enhanced activity recovery and two folds improvement in thermal stability in terms of half-life (in the range of 50-70°C) with respect to the free form. The hybrid glucoamylase nanoflowers retained 70% residual activity after eight successive cycles indicating their excellent durability. Additionally, the nanoflowers retained up to 91% residual activity upto 25 days of storage. Moreover, the conformational changes occurred in glucoamylase structure after preparing hybrid nanoflowers were evaluated by FT-IR spectroscopy data tools.

  6. Magnitudes of muscle activation of spine stabilizers, gluteals, and hamstrings during supine bridge to neutral position.

    PubMed

    Youdas, James W; Hartman, James P; Murphy, Brooke A; Rundle, Ashley M; Ugorowski, Jenna M; Hollman, John H

    2015-01-01

    The aim of this study was to compare the magnitude of selective core muscle activation during supine bridging to neutral exercises (three on a stable and three on an unstable surface). Surface EMG analysis was performed on the lumbar multifidus, gluteus medius, gluteus maximus, and hamstrings from 13 male and 13 female subjects. Lumbar multifidus recruitment was not influenced by exercise or condition and ranged between 29.2 and 35.9% of maximum voluntary isometric contraction (MVIC). Peak gluteus medius activation (42.0% MVIC) occurred in unstable single-leg bridge. Maximum recruitment of gluteus maximus (32.6% MVIC) appeared during stable single-leg bridge. Peak hamstring activation (59.6% MVIC) occurred during stable double-leg hamstring curl. Regardless of condition, hamstrings demonstrated high (51.9-59.6% MVIC) muscle recruitment during double-leg hamstring curls compared with the single-leg bridge or double-leg bridge. Various supine bridging to neutral exercises activated the hamstrings at levels conducive to strengthening, whereas recruitment of lumbar multifidus, gluteus medius, and gluteus maximus promoted endurance training. Clinically, we were unable to conclude the unstable support surface was preferable to the stable surface for boosting muscle recruitment of spine stabilizers, gluteals, and hamstring muscles during supine bridge to neutral position.

  7. JOSD1 Negatively Regulates Type-I Interferon Antiviral Activity by Deubiquitinating and Stabilizing SOCS1.

    PubMed

    Wang, Xiaofang; Zhang, Liting; Zhang, Yunli; Zhao, Peng; Qian, Liping; Yuan, Yukang; Liu, Jin; Cheng, Qiao; Xu, Wenqian; Zuo, Yibo; Guo, Tingting; Yu, Zhengyuan; Zheng, Hui

    2017-03-29

    The Josephin domain-containing (JOSD) protein 1 (JOSD1) is recognized as one member of deubiquitinases (DUBs) due to its catalytic "Josephin" domain. However, the in vivo deubiquitinating activity of JOSD1 remains unidentified, and the biological functions of JOSD1 are largely unknown. In this study, we report that JOSD1 plays an important role in regulating type-I interferon (IFN-I)-mediated antiviral activity. JOSD1 physically interacts with SOCS1, which is an essential negative regulator of many cytokines signaling, and enhances SOCS1 stability by deubiquitinating K48-linked polyubiquitination of SOCS1. Furthermore, JOSD1 inhibits IFN-I-induced signaling pathway and antiviral response. Interestingly, during the early stage of viral infections, the levels of JOSD1 and SOCS1 undergo downregulation, which may facilitate activation of IFN-I signaling and efficient antiviral activity. Thus, our finding identified the first deubiquitinating substrate of JOSD1 and a novel biological function of JOSD1 and may provide a potential target for IFNs-based antiviral therapy.

  8. Immobilization of peroxidase enzyme onto the porous silicon structure for enhancing its activity and stability

    NASA Astrophysics Data System (ADS)

    Sahare, Padmavati; Ayala, Marcela; Vazquez-Duhalt, Rafael; Agrawal, Vivechana

    2014-08-01

    In this work, a commercial peroxidase was immobilized onto porous silicon (PS) support functionalized with 3-aminopropyldiethoxysilane (APDES) and the performance of the obtained catalytic microreactor was studied. The immobilization steps were monitored and the activity of the immobilized enzyme in the PS pores was spectrophotometrically determined. The enzyme immobilization in porous silicon has demonstrated its potential as highly efficient enzymatic reactor. The effect of a polar organic solvent (acetonitrile) and the temperature (up to 50°C) on the activity and stability of the biocatalytic microreactor were studied. After 2-h incubation in organic solvent, the microreactor retained 80% of its initial activity in contrast to the system with free soluble peroxidase that lost 95% of its activity in the same period of time. Peroxidase immobilized into the spaces of the porous silicon support would be perspective for applications in treatments for environmental security such as removal of leached dye in textile industry or in treatment of different industrial effluents. The system can be also applied in the field of biomedicine.

  9. Municipal waste stabilization in a reactor with an integrated active and passive aeration system.

    PubMed

    Kasinski, Slawomir; Slota, Monika; Markowski, Michal; Kaminska, Anna

    2016-04-01

    To test whether an integrated passive and active aeration system could be an effective solution for aerobic decomposition of municipal waste in technical conditions, a full-scale composting reactor was designed. The waste was actively aerated for 5d, passively aerated for 35 d, and then actively aerated for 5d, and the entire composting process was monitored. During the 45-day observation period, changes in the fractional, morphological and physico-chemical characteristics of the waste at the top of the reactor differed from those in the center of the reactor. The fractional and morphological analysis made during the entire process of stabilization, showed the total reduction of organic matter measured of 82 wt% and 86 wt% at the respective depths. The reduction of organic matter calculated using the results of Lost of Ignition (LOI) and Total Organic Carbon (TOC) showed, respectively, 40.51-46.62% organic matter loss at the top and 45.33-53.39% in the center of the reactor. At the end of the process, moisture content, LOI and TOC at the top were 3.29%, 6.10% and 4.13% higher, respectively, than in the center. The results showed that application of passive aeration in larger scale simultaneously allows the thermophilic levels to be maintained during municipal solid waste composting process while not inhibiting microbial activity in the reactor.

  10. Immobilization of peroxidase enzyme onto the porous silicon structure for enhancing its activity and stability.

    PubMed

    Sahare, Padmavati; Ayala, Marcela; Vazquez-Duhalt, Rafael; Agrawal, Vivechana

    2014-01-01

    In this work, a commercial peroxidase was immobilized onto porous silicon (PS) support functionalized with 3-aminopropyldiethoxysilane (APDES) and the performance of the obtained catalytic microreactor was studied. The immobilization steps were monitored and the activity of the immobilized enzyme in the PS pores was spectrophotometrically determined. The enzyme immobilization in porous silicon has demonstrated its potential as highly efficient enzymatic reactor. The effect of a polar organic solvent (acetonitrile) and the temperature (up to 50°C) on the activity and stability of the biocatalytic microreactor were studied. After 2-h incubation in organic solvent, the microreactor retained 80% of its initial activity in contrast to the system with free soluble peroxidase that lost 95% of its activity in the same period of time. Peroxidase immobilized into the spaces of the porous silicon support would be perspective for applications in treatments for environmental security such as removal of leached dye in textile industry or in treatment of different industrial effluents. The system can be also applied in the field of biomedicine.

  11. Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials.

    PubMed

    Huang, Xiao; Zhuang, RanLiang; Muhammad, Faheem; Yu, Lin; Shiau, YanChyuan; Li, Dongwei

    2017-02-01

    Chromite Ore Processing Residue (COPR) produced in chromium salt production process causes a great health and environmental risk with Cr(VI) leaching. The solidification/stabilization (S/S) of COPR using alkali-activated blast furnace slag (BFS) and fly ash (FA) based cementitious material was investigated in this study. The optimum percentage of BFS and FA for preparing the alkali-activated BFS-FA binder had been studied. COPR was used to replace the amount of BFS-FA or ordinary Portland cement (OPC) for the preparation of the cementitious materials, respectively. The immobilization effect of the alkali-activated BFS-FA binder on COPR was much better than that of OPC based cementitious material. The potential for reusing the final treatment product as a readily available construction material was evaluated. X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR) and scanning electron microscope with energy dispersive spectrometer (SEM-EDS) analysis indicated that COPR had been effectively immobilized. The solidification mechanism is the combined effect of reduction, ion exchange, precipitation, adsorption and physical fixation in the alkali-activated composite cementitious material.

  12. Tunable Enzymatic Activity and Enhanced Stability of Cellulase Immobilized in Biohybrid Nanogels.

    PubMed

    Peng, Huan; Rübsam, Kristin; Jakob, Felix; Schwaneberg, Ulrich; Pich, Andrij

    2016-11-14

    the enzyme. The biohybrid nanogels demonstrated significantly improved stability in preserving enzymatic activity compared with free cellulase. The functional biohybrid nanogels with tunable enzymatic activity and improved stability are promising candidates for applications in biocatalysis, biomass conversion, or energy utilization fields.

  13. Relative activities and stabilities of mutant Escherichia coli tryptophan synthase alpha subunits.

    PubMed Central

    Lim, W K; Shin, H J; Milton, D L; Hardman, J K

    1991-01-01

    In vitro mutagenesis of the Escherichia coli trpA gene has yielded 66 mutant tryptophan synthase alpha subunits containing single amino acid substitutions at 49 different residue sites and 29 double and triple amino acid substitutions at 16 additional sites, all within the first 121 residues of the protein. The 66 singly altered mutant alpha subunits encoded from overexpression vectors have been examined for their ability to support growth in trpA mutant host strains and for their enzymatic and stability properties in crude extracts. With the exception of mutant alpha subunits altered at catalytic residue sites Glu-49 and Asp-60, all support growth; this includes those (48 of 66) that have no enzymatic defects and those (18 of 66) that do. The majority of the enzymatically defective mutant alpha subunits have decreased capacities for substrate (indole-3-glycerol phosphate) utilization, typical of the early trpA missense mutants isolated by in vivo selection methods. These defects vary in severity from complete loss of activity for mutant alpha subunits altered at residue positions 49 and 60 to those, altered elsewhere, that are partially (up to 40 to 50%) defective. The complete inactivation of the proteins altered at the two catalytic residue sites suggest that, as found via in vitro site-specific mutagenesis of the Salmonella typhimurium tryptophan synthetase alpha subunit, both residues probably also participate in a push-pull general acid-base catalysis of indole-3-glycerol phosphate breakdown for the E. coli enzyme as well. Other classes of mutant alpha subunits include some novel types that are defective in their functional interaction with the other tryptophan synthetase component, the beta 2 subunit. Also among the mutant alpha subunits, 19 were found altered at one or another of the 34 conserved residue sites in this portion of the alpha polypeptide sequence; surprisingly, 10 of these have wild-type enzymatic activity, and 16 of these can satisfy growth

  14. Effect of compatible and noncompatible osmolytes on the enzymatic activity and thermal stability of bovine liver catalase.

    PubMed

    Sepasi Tehrani, H; Moosavi-Movahedi, A A; Ghourchian, H; Ahmad, F; Kiany, A; Atri, M S; Ariaeenejad, Sh; Kavousi, K; Saboury, A A

    2013-12-01

    Catalase is an important antioxidant enzyme that catalyzes the disproportionation of H2O2 into harmless water and molecular oxygen. Due to various applications of the enzyme in different sectors of industry as well as medicine, the enhancement of stability of the enzyme is important. Effect of various classes of compatible as well as noncompatible osmolytes on the enzymatic activity, disaggregation, and thermal stability of bovine liver catalase have been investigated. Compatible osmolytes, proline, xylitol, and valine destabilize the denatured form of the enzyme and, therefore, increase its disaggregation and thermal stability. The increase in the thermal stability is accompanied with a slight increase of activity in comparison to the native enzyme at 25 °C. On the other hand, histidine, a noncompatible osmolyte stabilizes the denatured form of the protein and hence causes an overall decrease in the thermal stability and enzymatic activity of the enzyme. Chemometric results have confirmed the experimental results and have provided insight into the distribution and number of mole fraction components for the intermediates. The increase in melting temperature (Tm) and enzymatic rate could be further amplified by the intrinsic effect of temperature enhancement on the enzymatic activity for the industrial purposes.

  15. Comparison of deep and superficial abdominal muscle activity between experienced Pilates and resistance exercise instructors and controls during stabilization exercise

    PubMed Central

    Moon, Ji-Hyun; Hong, Sang-Min; Kim, Chang-Won; Shin, Yun-A

    2015-01-01

    Pilates and resistance exercises are used for lumbar stabilization training. However, it is unclear which exercise is more effective for lumbar stabilization. In our study, we aimed to compare surface muscle activity and deep muscle thickness during relaxation and spinal stabilization exercise in experienced Pilates and resistance exercise instructors. This study is a retrospective case control study set in the Exercise Prescription Laboratory and Sports Medicine Center. The participants included Pilates instructors (mean years of experience, 3.20±1.76; n=10), resistance exercise instructors (mean years of experience, 2.53±0.63; n=10), and controls (n=10). The participants performed 4 different stabilization exercises: abdominal drawing-in maneuver, bridging, roll-up, and one-leg raise. During the stabilization exercises, surface muscle activity was measured with electromyography, whereas deep muscle thickness was measured by ultrasound imaging. During the 4 stabilization exercises, the thickness of the transverse abdominis (TrA) was significantly greater in the Pilates-trained group than the other 2 other groups. The internal oblique (IO) thickness was significantly greater in the Pilates- and resistance-trained group than the control group, during the 4 exercises. However, the surface muscle activities were similar between the groups. Both Pilates and resistance exercise instructors had greater activation of deep muscles, such as the TrA and IO, than the control subjects. Pilates and resistance exercise are both effective for increasing abdominal deep muscle thickness. PMID:26171383

  16. Comparison of deep and superficial abdominal muscle activity between experienced Pilates and resistance exercise instructors and controls during stabilization exercise.

    PubMed

    Moon, Ji-Hyun; Hong, Sang-Min; Kim, Chang-Won; Shin, Yun-A

    2015-06-01

    Pilates and resistance exercises are used for lumbar stabilization training. However, it is unclear which exercise is more effective for lumbar stabilization. In our study, we aimed to compare surface muscle activity and deep muscle thickness during relaxation and spinal stabilization exercise in experienced Pilates and resistance exercise instructors. This study is a retrospective case control study set in the Exercise Prescription Laboratory and Sports Medicine Center. The participants included Pilates instructors (mean years of experience, 3.20±1.76; n=10), resistance exercise instructors (mean years of experience, 2.53±0.63; n=10), and controls (n=10). The participants performed 4 different stabilization exercises: abdominal drawing-in maneuver, bridging, roll-up, and one-leg raise. During the stabilization exercises, surface muscle activity was measured with electromyography, whereas deep muscle thickness was measured by ultrasound imaging. During the 4 stabilization exercises, the thickness of the transverse abdominis (TrA) was significantly greater in the Pilates-trained group than the other 2 other groups. The internal oblique (IO) thickness was significantly greater in the Pilates- and resistance-trained group than the control group, during the 4 exercises. However, the surface muscle activities were similar between the groups. Both Pilates and resistance exercise instructors had greater activation of deep muscles, such as the TrA and IO, than the control subjects. Pilates and resistance exercise are both effective for increasing abdominal deep muscle thickness.

  17. A Parametric Study on Using Active Debris Removal to Stabilize the Future LEO Debris Environment

    NASA Technical Reports Server (NTRS)

    Liou, J.C.

    2010-01-01

    Recent analyses of the instability of the orbital debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have reignited the interest in using active debris removal (ADR) to remediate the environment. There are; however, monumental technical, resources, operational, legal, and political challenges in making economically viable ADR a reality. Before a consensus on the need for ADR can be reached, a careful analysis of the effectiveness of ADR must be conducted. The goal is to demonstrate the feasibility of using ADR to preserve the future environment and to guide its implementation to maximize the benefit-cost ratio. This paper describes a comprehensive sensitivity study on using ADR to stabilize the future LEO debris environment. The NASA long-term, orbital debris evolutionary model, LEGEND, is used to quantify the effects of many key parameters. These parameters include (1) the starting epoch of ADR implementation, (2) various target selection criteria, (3) the benefits of collision avoidance maneuvers, (4) the consequence of targeting specific inclination or altitude regimes, (5) the consequence of targeting specific classes of vehicles, and (6) the timescale of removal. Additional analyses on the importance of postmission disposal and how future launches might affect the requirements to stabilize the environment are also included.

  18. In COS cells Vpu can both stabilize tetherin expression and counteract its antiviral activity.

    PubMed

    Waheed, Abdul A; Kuruppu, Nishani D; Felton, Kathryn L; D'Souza, Darren; Freed, Eric O

    2014-01-01

    The interferon-inducible cellular protein tetherin (CD317/BST-2) inhibits the release of a broad range of enveloped viruses. The HIV-1 accessory protein Vpu enhances virus particle release by counteracting this host restriction factor. While the antagonism of human tetherin by Vpu has been associated with both proteasomal and lysosomal degradation, the link between Vpu-mediated tetherin degradation and the ability of Vpu to counteract the antiviral activity of tetherin remains poorly understood. Here, we show that human tetherin is expressed at low levels in African green monkey kidney (COS) cells. However, Vpu markedly increases tetherin expression in this cell line, apparently by sequestering it in an internal compartment that bears lysosomal markers. This stabilization of tetherin by Vpu requires the transmembrane sequence of human tetherin. Although Vpu stabilizes human tetherin in COS cells, it still counteracts the ability of tetherin to suppress virus release. The enhancement of virus release by Vpu in COS cells is associated with a modest reduction in cell-surface tetherin expression, even though the overall expression of tetherin is higher in the presence of Vpu. This study demonstrates that COS cells provide a model system in which Vpu-mediated enhancement of HIV-1 release is uncoupled from Vpu-mediated tetherin degradation.

  19. Mesoporous CLEAs-silica composite microparticles with high activity and enhanced stability

    PubMed Central

    Cui, Jiandong; Jia, Shiru; Liang, Longhao; Zhao, Yamin; Feng, Yuxiao

    2015-01-01

    A novel enzyme immobilization approach was used to generate mesoporous enzymes-silica composite microparticles by co-entrapping gelatinized starch and cross-linked phenylalanine ammonia lyase (PAL) aggregates (CLEAs) containing gelatinized starch into biomemitic silica and subsequently removing the starch by α-amylase treatment. During the preparation process, the gelatinzed starch served as a pore-forming agent to create pores in CLEAs and biomimetic silica. The resulting mesoporous CLEAs-silica composite microparticles exhibited higher activity and stability than native PAL, conventional CLEAs, and PAL encapsulated in biomimetic silica. Furthermore, the mesoporous CLEAs-silica composite microparticles displayed good reusability due to its suitable size and mechanical properties, and had excellent stability for storage. The superior catalytic performances were attributed to the combinational unique structure from the intra-cross-linking among enzyme aggregates and hard mesoporous silica shell, which not only decreased the enzyme-support negative interaction and mass-transfer limitations, but also improved the mechanical properties and monodispersity. This approach will be highly beneficial for preparing various bioactive mesoporous composites with excellent catalytic performance. PMID:26374188

  20. Stabilization by multipoint covalent attachment of a biocatalyst with polygalacturonase activity used for juice clarification.

    PubMed

    Ramírez Tapias, Yuly A; Rivero, Cintia W; Gallego, Fernando López; Guisán, José M; Trelles, Jorge A

    2016-10-01

    Derivatized-agarose supports are suitable for enzyme immobilization by different methods, taking advantage of different physical, chemical and biological conditions of the protein and the support. In this study, agarose particles were modified with MANAE, PEI and glyoxyl groups and evaluated to stabilize polygalacturonase from Streptomyces halstedii ATCC 10897. A new immobilized biocatalyst was developed using glyoxyl-agarose as support; it exhibited high performance in degrading polygalacturonic acid and releasing oligogalacturonides. Maximal enzyme activity was detected at 5h of reaction using 0.05g/mL of immobilized biocatalyst, which released 3mg/mL of reducing sugars and allowed the highest product yield conversion and increased stability. These results are very favorable for pectin degradation with reusability up to 18 successive reactions (90h) and application in juice clarification. Plum (4.7°Bx) and grape (10.6°Bx) juices were successfully clarified, increasing reducing sugars content and markedly decreasing turbidity and viscosity.

  1. Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Pourahmad, A.; Mehdipour Moghaddam, M. J.; Sadeghi, A.

    2015-02-01

    Silver carbonate and silver nanoparticles (NPs) over of stabilizer montmorillonite (MMT) have been synthesized in aqueous and polyol solvent, respectively. Dispersions of silver nanoparticles have been prepared by the reduction of silver nitrate over of MMT in presence and absence of Na2CO3 compound in ethylene glycol. It was observed that montmorillonite was capable of stabilizing formed Ag nanoparticles through the reduction of Ag+ ions in ethylene glycol. Na2CO3 was used as carbonate source in synthesis of Ag2CO3 NPs in water solvent and also for controlling of Ag nanoparticles size in ethylene glycol medium. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The TEM images showed that Ag NPs size in presence Na2CO3 salts was smaller than without that. The results indicated intercalation of Ag and Ag2CO3 nanoparticles into the montmorillonite clay layers. The diffuse reflectance spectra exhibited a strong surface plasmon resonance (SPR) adsorption peak in the visible region, resulting from Ag nanoparticles. The antibacterial testing results showed that the Ag2CO3-MMT nanocomposite exhibited an antibacterial activity higher than Ag-MMT sample against Escherichia coli.

  2. Immobilization of penicillin G acylase in epoxy-activated magnetic cellulose microspheres for improvement of biocatalytic stability and activities.

    PubMed

    Luo, Xiaogang; Zhang, Lina

    2010-11-08

    We prepared magnetic cellulose porous microspheres (MCM) with mean diameter of ∼200 μm by employing the sol-gel transition (SGT) method from a mixture of magnemite ferrofluid and cellulose dissolved in 7 wt % NaOH/12% urea aqueous solvent precooled to -12 °C. Subsequently, the cellulose microspheres were activated with epoxy chloropropane to enhance loading efficiency of biomacromolecules. Their morphology, structure, and properties were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and vibrating-sample magnetometer. The results indicated that the spherical magnetic γ-Fe2O3 nanoparticles with mean size of 10 nm were uniformly dispersed and embedded in the cellulose substrate of MCM, and the structure and nature of γ-Fe2O3 were conserved perfectly. Penicillin G acylase (PGA) as a biocatalyst was immobilized successfully in the porous microspheres, as a result of the existence of the cavity and affinity forces in the activated cellulose matrix. The immobilized PGA exhibited highly effective catalytic activity, thermal stability, and enhanced tolerance to pH variations. Furthermore, the cellulose microspheres loaded with the enzymes could be removed and recovered easily by introducing a magnetic field, leading to an acceptable reusability. Therefore, we have provided a simple and biocompatible support for the enzyme immobilization, which will be promising for the applications in the biomaterial fields.

  3. Kinetic and thermodynamic investigation on ascorbate oxidase activity and stability of a Cucurbita maxima extract.

    PubMed

    Porto, Tatiana S; Porto, Camila S; Cavalcanti, Maria T H; Filho, José L Lima; Perego, Patrizia; Porto, Ana L F; Converti, Attilio; Pessoa, Adalberto

    2006-01-01

    The kinetic and thermodynamic properties of ascorbate oxidase (AO) activity and stability of a Cucurbita maxima extract were investigated. Activity tests performed at 25 degrees C using initial ascorbic acid concentration in the range 50-750 M allowed estimating the Michaelis constant for this substrate (Km = 126 microM) and the maximum initial rate of ascorbic acid oxidation (A0,max = 1.57 mM min-1). The main thermodynamic parameters of the enzyme reaction (DeltaH* = 10.3 kJ mol-1; DeltaG* = 87.2 kJ mol-1; DeltaS* = -258 J mol-1 K-1) were estimated through activity tests performed at 25-48 C. Within such a temperature range, no decrease in the initial reaction rate was detected. The long-term thermostability of the raw extract was then investigated by means of residual activity tests carried out at 10-70 degrees C, which allowed estimating the thermodynamic parameters of the irreversible enzyme inactivation as well (DeltaH*D = 51.7 kJ mol-1; DeltaG*D = 103 kJ mol-1; S*D = -160 J mol-1 K-1). Taking into account the specific rate of AO inactivation determined at different temperatures, we also estimated the enzyme half-life (1047 min at 10 degrees C and 21.2 min at 70 degrees C) and predicted the integral activity of a continuous system using this enzyme preparation. This work should be considered as a preliminary attempt to characterize the AO activity of a C. maxima extract before its concentration by liquid-liquid extraction techniques.

  4. Lipase in aqueous-polar organic solvents: Activity, structure, and stability

    PubMed Central

    Kamal, Md Zahid; Yedavalli, Poornima; Deshmukh, Mandar V; Rao, Nalam Madhusudhana

    2013-01-01

    Studying alterations in biophysical and biochemical behavior of enzymes in the presence of organic solvents and the underlying cause(s) has important implications in biotechnology. We investigated the effects of aqueous solutions of polar organic solvents on ester hydrolytic activity, structure and stability of a lipase. Relative activity of the lipase monotonically decreased with increasing concentration of acetone, acetonitrile, and DMF but increased at lower concentrations (upto ∼20% v/v) of dimethylsulfoxide, isopropanol, and methanol. None of the organic solvents caused any appreciable structural change as evident from circular dichorism and NMR studies, thus do not support any significant role of enzyme denaturation in activity change. Change in 2D [15N, 1H]-HSQC chemical shifts suggested that all the organic solvents preferentially localize to a hydrophobic patch in the active-site vicinity and no chemical shift perturbation was observed for residues present in protein's core. This suggests that activity alteration might be directly linked to change in active site environment only. All organic solvents decreased the apparent binding of substrate to the enzyme (increased Km); however significantly enhanced the kcat. Melting temperature (Tm) of lipase, measured by circular dichroism and differential scanning calorimetry, altered in all solvents, albeit to a variable extent. Interestingly, although the effect of all organic solvents on various properties on lipase is qualitatively similar, our study suggest that magnitudes of effects do not appear to follow bulk solvent properties like polarity and the solvent effects are apparently dictated by specific and local interactions of solvent molecule(s) with the protein. PMID:23625694

  5. Equilibrium and global MHD stability study of KSTAR high beta plasmas under passive and active mode control

    NASA Astrophysics Data System (ADS)

    Katsuro-Hopkins, O.; Sabbagh, S. A.; Bialek, J. M.; Park, H. K.; Bak, J. G.; Chung, J.; Hahn, S. H.; Kim, J. Y.; Kwon, M.; Lee, S. G.; Yoon, S. W.; You, K.-I.; Glasser, A. H.; Lao, L. L.

    2010-02-01

    The Korea Superconducting Tokamak Advanced Research, KSTAR, is designed to operate a steady-state, high beta plasma while retaining global magnetohydrodynamic (MHD) stability to establish the scientific and technological basis of an economically attractive fusion reactor. An equilibrium model is established for stability analysis of KSTAR. Reconstructions were performed for the experimental start-up scenario and experimental first plasma operation using the EFIT code. The VALEN code was used to determine the vacuum vessel current distribution. Theoretical high beta equilibria spanning the expected operational range are computed for various profiles including generic L-mode and DIII-D experimental H-mode pressure profiles. Ideal MHD stability calculations of toroidal mode number of unity using the DCON code shows a factor of 2 improvement in the wall-stabilized plasma beta limit at moderate to low plasma internal inductance. The planned stabilization system in KSTAR comprises passive stabilizing plates and actively cooled in-vessel control coils (IVCCs) designed for non-axisymmetric field error correction and stabilization of slow timescale MHD modes including resistive wall modes (RWMs). VALEN analysis using standard proportional gain shows that active stabilization near the ideal wall limit can be reached with feedback using the midplane segment of the IVCC. The RMS power required for control using both white noise and noise taken from NSTX active stabilization experiments is computed for beta near the ideal wall limit. Advanced state-space control algorithms yield a factor of 2 power reduction assuming white noise while remaining robust with respect to variations in plasma beta.

  6. Microwave-induced formation of platinum nanostructured networks with superior electrochemical activity and stability.

    PubMed

    Jia, Falong; Wang, Fangfang; Lin, Yun; Zhang, Lizhi

    2011-12-16

    Platinum nanostructured networks (PNNs) can be synthesized through the chemical reduction of H(2)PtCl(6) by benzyl alcohol under microwave irradiation without the introduction of any surfactants, templates, or seeds. The synthesis route utilizes benzyl alcohol as both the reductant and the structure-directing agent, and thus, the process is particularly simple and highly repeatable. The formation of the PNN structure was ascribed to the collision-induced fusion of Pt nanocrystals owing to the cooperative functions of microwave irradiation and benzyl alcohol. Compared with a commercial Pt/C catalyst, the as-prepared PNNs possessed superior electrochemical activity and stability on the oxidation of methanol because of the unique 3D nanostructured networks and abundant defects formed during the assembly process. This study may provide a facile microwave-induced approach for the synthesis of other 3D nanostructured noble metals or their alloys.

  7. Overview of Marshall Space Flight Center Activities for the Combustion Stability Tool Development Program

    NASA Technical Reports Server (NTRS)

    Kenny, R. J.; Greene, W. D.

    2016-01-01

    This presentation covers the overall scope, schedule, and activities associated with the NASA - Marshall Space Flight Center (MSFC) involvement with the Combustion Stability Tool Development (CSTD) program. The CSTD program is funded by the Air Force Space & Missile Systems Center; it is approximately two years in duration and; and it is sponsoring MSFC to: design, fabricate, & execute multi-element hardware testing, support Air Force Research Laboratory (AFRL) single element testing, and execute testing of a small-scale, multi-element combustion chamber. Specific MSFC Engineering Directorate involvement, per CSTD-sponsored task, will be outlined. This presentation serves a primer for the corresponding works that provide details of the technical work performed by individual groups within MSFC.

  8. The antioxidant activity and thermal stability of lemon verbena (Aloysia triphylla) infusion.

    PubMed

    Abderrahim, Fatima; Estrella, Seyer; Susín, Cristina; Arribas, Silvia M; González, M Carmen; Condezo-Hoyos, Luis

    2011-05-01

    Because of its good sensorial attributes, lemon verbena is used as a primary ingredient in infusions and nonalcoholic drinks. The present study was designed to assess the antioxidant activity (AA) of lemon verbena infusion (LVI) as well as the thermal stability of its AA and the content of polyphenolic compounds. The values reflecting the AA of LVI, including AA index, fast scavenging rate against 2,2-diphenyl-1-picrylhydrazyl, Trolox equivalent antioxidant capacity, and hydroxyl radical scavenging, are higher than those of many herbal infusions and antioxidant drinks estimated from reported data. In addition, the slope lag time and specific oxyradical antioxidant capacity values of LVI are comparable to those of a commercial antioxidant drink based on green tea. Hence, LVI is a source of bifunctional antioxidants, and thus in vivo studies of the antioxidant capacity of LVI would be useful to evaluate its potential as an ingredient in antioxidant drinks.

  9. Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Patil, Rupali S.; Kokate, Mangesh R.; Kolekar, Sanjay S.

    2012-06-01

    Biosynthesis of nanoparticles is under exploration due to wide biomedical applications and research interest in nanotechnology. We herein reports bioinspired synthesis of silver nanoparticles with the aid of novel, non toxic ecofriendly biological material namely Ocimum tenuiflorum leaf extract. It acts as reducing as well as stabilizing agent. An intense surface plasmon resonance band at ˜450 nm in the UV-visible spectrum clearly reveals the formation of silver nanoparticles. The photoluminescence spectrum was recorded to study excitation and emission. TEM and PSD by dynamic light scattering studies showed that size of silver nanoparticles to be in range 25-40 nm. Face centered cubic structure of silver nanoparticles are confirmed by SAED pattern. The charge on synthesized silver nanoparticles was determined by zeta potential. The colloidal solution of silver nanoparticles were found to exhibit high antibacterial activity against three different strains of bacteria Escherichia coli (Gram negative), Corney bacterium (gram positive), Bacillus substilus (spore forming).

  10. Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity.

    PubMed

    Patil, Rupali S; Kokate, Mangesh R; Kolekar, Sanjay S

    2012-06-01

    Biosynthesis of nanoparticles is under exploration due to wide biomedical applications and research interest in nanotechnology. We herein reports bioinspired synthesis of silver nanoparticles with the aid of novel, non toxic ecofriendly biological material namely Ocimum tenuiflorum leaf extract. It acts as reducing as well as stabilizing agent. An intense surface plasmon resonance band at ∼450 nm in the UV-visible spectrum clearly reveals the formation of silver nanoparticles. The photoluminescence spectrum was recorded to study excitation and emission. TEM and PSD by dynamic light scattering studies showed that size of silver nanoparticles to be in range 25-40 nm. Face centered cubic structure of silver nanoparticles are confirmed by SAED pattern. The charge on synthesized silver nanoparticles was determined by zeta potential. The colloidal solution of silver nanoparticles were found to exhibit high antibacterial activity against three different strains of bacteria Escherichia coli (Gram negative), Corney bacterium (gram positive), Bacillus substilus (spore forming).

  11. Transition-state metal aryl bond stability determines regioselectivity in palladium acetate mediated C-H bond activation of heteroarenes.

    PubMed

    Petit, Alban; Flygare, Josh; Miller, Alex T; Winkel, Gerrit; Ess, Daniel H

    2012-07-20

    Density functional calculations reveal that the stability of developing metal aryl bonds in Pd(II)-acetate C-H activation transition states determines regioselectivity in arene and heteroarene compounds. This kinetic-thermodynamic connection explains the general preference for activation of the strongest C-H bond and provides the possibility for regioselectivity prediction.

  12. Synthesis, characterization and antimicrobial activity of carboxymethyl dextrane stabilized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Glišić, Slobodan; Cakić, Milorad; Nikolić, Goran; Danilović, Bojana

    2015-03-01

    Silver nanoparticles (AgNPs-CMD) were synthesized from aqueous solution of silver nitrate (AgNO3) and carboxymethyl dextrane (CMD) in mole ratio 1:1 and 1:2. The characterization of AgNPs-CMD was performed by ultraviolet-visible (UV-VIS) spectroscopy, gel permeation chromatography (GPC), scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and antimicrobial activity. The formation of AgNPs-CMD was screened by color changes of the reaction mixture to yellow, by measuring the surface plasmon resonance absorption peak in UV-VIS region at 420 nm. The GPC chromatography measurement confirmed the formation of AgNPs-CMD. The SEM microscopy was used for size and shape of AgNPs-CMD nanoparticles determination. The presence of elemental silver and crystalline structure of AgNPs-CMD were confirmed by XRD analyses. The possible functional group of CMD responsible for the reduction and stabilization of AgNPs were determinated by FT-IR spectroscopy. The AgNPs-CMD showed strong antibacterial activity against Bacillus lutea, Bacillus aureus, Bacillus cereus, Enterococus fecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae and antifungal activity against Aspergillus spp., Penicillum spp., and Candida albicans.

  13. Catalase-only nanoparticles prepared by shear alone: Characteristics, activity and stability evaluation.

    PubMed

    Huang, Xiao-Nan; Du, Xin-Ying; Xing, Jin-Feng; Ge, Zhi-Qiang

    2016-09-01

    Catalase is a promising therapeutic enzyme; however, it carries risks of inactivation and rapid degradation when it is used in practical bioprocess, such as delivery in vivo. To overcome the issue, we made catalase-only nanoparticles using shear stress alone at a moderate shear rate of 217s(-1) in a coaxial cylinder flow cell. Properties of nanoparticles, including particle size, polydispersity index and zeta potential, were characterized. The conformational changes of pre- and post-sheared catalase were determined using spectroscopy techniques. The results indicated that the conformational changes of catalase and reduction in α-helical content caused by shear alone were less significant than that by desolvation method. Catalase-only nanoparticles prepared by single shear retained over 90% of its initial activity when compared with the native catalase. Catalase nanoparticles lost only 20% of the activity when stored in phosphate buffer solution for 72h at 4°C, whereas native catalase lost 53% under the same condition. Especially, the activity of nanogranulated catalase was decreased only slightly in the simulated intestinal fluid containing α-chymotrypsin during 4h incubation at 37°C, implying that the catalase nanoparticle was more resistant to the degradation of proteases than native catalase molecules. Overall, catalase-only nanoparticles offered a great potential to stabilize enzymes for various pharmaceutical applications.

  14. The microstructural stability and mechanical properties of two low activation martensitic steels

    SciTech Connect

    Victoria, M.; Marmy, P.; Batawi, E.; Peters, J.; Briguet, C.; Rezai-Aria, F.; Gavillet, D.

    1996-12-31

    A desirable feature of future magnetically confined fusion reactors is the prospect of producing low level radioactive waste. In order to minimize the volume of radioactive material, in particular from the first wall and blanket structures, reduced long term activation alloys are being developed. Here, a low activation composition of a martensitic 9% Cr steel has been studied, based on the DIN (Deutsches Inst. fuer Normung) 1.4914 composition (MANET) but replacing Ni, Mo and Nb by the low activation elements W, V and Ta. Two casts were produced from high purity components, in which the effects of controlled additions of Mn (0.58 and 0.055 wt. %) and N (7 and 290 wt. ppm) were studied, so that the final compositions resulted in one cast with high Mn and low N (steel A) and the other with the opposite conditions (steel B). The two steels were evaluated in terms of structural stability and mechanical properties under tensile, fatigue and fracture toughness tests. It has been found that both alloys have a DBTT below room temperature, which in the case of the steel A is 70 K below that of MANET. Although the tensile strength is somewhat below that of the parent steel, both steels have longer fatigue life.

  15. Shell-anchor-core structures for enhanced stability and catalytic oxygen reduction activity

    NASA Astrophysics Data System (ADS)

    Ramirez-Caballero, Gustavo E.; Hirunsit, Pussana; Balbuena, Perla B.

    2010-10-01

    Density functional theory is used to evaluate activity and stability properties of shell-anchor-core structures. The structures consist of a Pt surface monolayer and a composite core having an anchor bilayer where C atoms in the interstitial sites lock 3d metals in their locations, thus avoiding their surface segregation and posterior dissolution. The modified subsurface geometry induces less strain on the top surface, thus exerting a favorable effect on the surface catalytic activity where the adsorption strength of the oxygenated species becomes more moderate: weaker than on pure Pt(111) but stronger than on a Pt monolayer having a 3d metal subsurface. Here we analyze the effect of changing the nature of the 3d metal in the subsurface anchor bilayer, and we also test the use of a Pd monolayer instead of Pt on the surface. It is found that a subsurface constituted by two layers with an approximate composition of M2C (M=Fe, Ni, and Co) provides a barrier for the migration of subsurface core metal atoms to the surface. Consequently, an enhanced resistance against dissolution in parallel to improved oxygen reduction activity is expected, as given by the values of adsorption energies of reaction intermediates, delayed onset of water oxidation, and/or low coverage of oxygenated species at surface oxidation potentials.

  16. PKCδ regulates cortical radial migration by stabilizing the Cdk5 activator p35

    PubMed Central

    Zhao, Chun-tao; Li, Kun; Li, Jun-tao; Zheng, Wang; Liang, Xu-jun; Geng, An-qi; Li, Ning; Yuan, Xiao-bing

    2009-01-01

    Cyclin-dependent kinase 5 (Cdk5) and its activator p35 are critical for radial migration and lamination of cortical neurons. However, how this kinase is regulated by extracellular and intracellular signals during cortical morphogenesis remains unclear. Here, we show that PKCδ, a member of novel PKC expressing in cortical neurons, could stabilize p35 by direct phosphorylation. PKCδ attenuated the degradation of p35 but not its mutant derivative, which could not be phosphorylated by PKCδ. Down-regulation of PKCδ by in utero electroporation of specific small interference RNA (siRNA) severely impaired the radial migration of cortical neurons. This migration defect was similar to that caused by down-regulation of p35 and could be prevented by cotransfection with the wild-type but not the mutant p35. Furthermore, PKCδ could be activated by the promigratory factor brain-derived neurotrophic factor (BDNF) and was required for the activation of Cdk5 by BDNF. Both PKCδ and p35 were required for the promigratory effect of BDNF on cultured newborn neurons. Thus, PKCδ may promote cortical radial migration through maintaining the proper level of p35 in newborn neurons. PMID:19965374

  17. Electrochemically prepared surface-enhanced Raman scattering-active silver substrates with improved stabilities

    NASA Astrophysics Data System (ADS)

    Yang, Kuang-Hsuan; Liu, Yu-Chuan; Yu, Chung-Chin; Chen, Bo-Chuen

    2011-01-01

    In this work, SiO 2 nanoparticles-modified surface-enhanced Raman scattering (SERS)-active silver substrates were prepared by electrochemical oxidation-reduction cycles (ORC) methods in 0.1 N HCl aqueous solutions containing 1 mM SiO 2 nanoparticles to improve their thermal stabilities and anti-aging abilities in SERS performances. Then these SERS-active substrates were further modified with different contents of SiO 2 nanoparticles to improve their corresponding SERS performances. Experimental results indicate that the operation temperature can be significantly raised from 125 to 175 °C based on this modified SERS-active Ag substrate. Also, the aging in SERS intensity is also depressed on this modified Ag substrate due to the contribution of SiO 2 nanoparticles. Moreover, the SERS enhancement capability on this modified Ag substrate is gradually raised from 25 °C to a maximum at 55 °C and monotonically decreased from 55 to 60 °C. This is a 10 °C delay as compared with the similar phenomenon observed on the unmodified Ag substrate.

  18. Activity-stability relationships revisited in blue oxidases catalyzing electron transfer at extreme temperatures.

    PubMed

    Roulling, Frédéric; Godin, Amandine; Cipolla, Alexandre; Collins, Tony; Miyazaki, Kentaro; Feller, Georges

    2016-09-01

    Cuproxidases are a subset of the blue multicopper oxidases that catalyze the oxidation of toxic Cu(I) ions into less harmful Cu(II) in the bacterial periplasm. Cuproxidases from psychrophilic, mesophilic, and thermophilic bacteria display the canonical features of temperature adaptation, such as increases in structural stability and apparent optimal temperature for activity with environmental temperature as well as increases in the binding affinity for catalytic and substrate copper ions. In contrast, the oxidative activities at 25 °C for both the psychrophilic and thermophilic enzymes are similar, suggesting that the nearly temperature-independent electron transfer rate does not require peculiar adjustments. Furthermore, the structural flexibilities of both the psychrophilic and thermophilic enzymes are also similar, indicating that the firm and precise bindings of the four catalytic copper ions are essential for the oxidase function. These results show that the requirements for enzymatic electron transfer, in the absence of the selective pressure of temperature on electron transfer rates, produce a specific adaptive pattern, which is distinct from that observed in enzymes possessing a well-defined active site and relying on conformational changes such as for the induced fit mechanism.

  19. Directed surfaces structures and interfaces for enhanced electrocatalyst activity, selectivity, and stability for energy conversion reactions

    SciTech Connect

    Jaramillo, Thomas F.

    2016-04-20

    IrO3/IrOx catalyst significantly outperforms rutile IrO2 and RuO2, the only other OER catalysts to have reasonable stability and activity in acidic electrolyte, and in fact demonstrates the best activity for any known OER catalyst measured in either acidic or in alkaline electrolyte. For alkaline conditions we have demonstrated that the combined effect of cerium as a dopant and gold as a metal support, significantly enhances the OER activity of electrodeposited NiOx films. This NiCeOx-Au catalyst delivers high OER activity in alkaline media, and is among the most active OER electrocatalysts reported to date (Nature Energy, accepted 2016). These studies of new catalysts for the OER, both in acid and in base, are fundamental to enabling new technologies of interest for the DOE, including the production of sustainable fuels and chemicals. ORR: One method to significantly reduce the Pt loading in fuel cell devices is to increase the ORR activity of Pt based systems. To this end we have synthesized a high surface area supported meso-structured PtxNi alloy thin film with a double gyroid morphology that both exhibits high activity and stability for the ORR (submitted, 2016). We have furthermore developed a Ru-core, Pt-shell system that improves the per Pt site activity by more than a factor of 2 (ChemElectroChem, 2014). Further refinement, optimizing Pt-shell thickness and reducing particle sintering during processing, enabled us to obtain a mass activity that is 2 times higher than commercial Pt/C from TKK. These are important contributions to the DOE goal of reducing Pt loading since an improved understanding of how to increase mass activity and stability helps enable low Pt content fuel cells.

  20. Stability and activity of an Enterobacter aerogenes-specific bacteriophage under simulated gastro-intestinal conditions.

    PubMed

    Verthé, K; Possemiers, S; Boon, N; Vaneechoutte, M; Verstraete, W

    2004-09-01

    A bacteriophage, designated UZ1 and showing lytic activity against a clinically important strain (BE1) of Enterobacter aerogenes was isolated from hospital sewage. The stability and lytic activity against this strain under simulated gastro-intestinal conditions was evaluated. After addition of bacteriophage UZ1 to a liquid feed at gastric pH 2, the phage was immediately inactivated and could not be recovered. However, by use of an antacid to neutralize stomach acidity, no significant changes in phage titer were observed after 2 h incubation at 37 degrees C. After supplementing pancreatic juice and further incubation for 4 h, the phage titer remained stable. The persistence of UZ1 in a mixed microbial ecosystem that was representative for the large intestine was monitored using an in vitro simulation of the human intestinal microbial ecosystem. A pulse administration of bacteriophage UZ1 at a concentration of 10(5) plaque-forming units (PFU)/ml to reactor 3 (which simulates the ascending colon) showed that, in the absence of the host, bacteriophage UZ1 persisted for 13 days in the simulated colon, while the theoretical washout was calculated at 16 days. To assess its lytic activity in an intestinal microbial ecosystem, a green fluorescent protein (gfp)-labeled E. aerogenes BE1 strain was constructed and gfp-specific primers were designed in order to quantify the host strain using real-time PCR. It was observed that bacteriophage UZ1 was able to replicate and showed lytic activity against E. aerogenes BE1/ gfp in an intestinal microbial ecosystem. Indeed, after 17 h a 2 log unit reduction of E. aerogenes BE1/ gfp was measured as compared with the assay without bacteriophage UZ1, while the phage titer increased by 2 log units at an initial multiplicity of infection of 0.07 PFU/colony-forming unit. This is the first report of an in vitro model to study bacteriophage activity in the complex intestinal microbial community.

  1. Effect of Crown Ethers on Structure, Stability, Activity, and Enantioselectivity of Subtilisin Carlsberg in Organic Solvents

    PubMed Central

    Santos, Angélica M.; Vidal, Michael; Pacheco, Yamaris; Frontera, Joel; Báez, Carlos; Ornellas, Olivia; Barletta, Gabriel

    2015-01-01

    Colyophilization or codrying of subtilisin Carlsberg with the crown ethers 18-crown-6, 15-crown-5, and 12-crown-4 substantially improved enzyme activity in THF, acetonitrile, and 1,4-dioxane in the transesterification reactions of N-acetyl-L-phenylalanine ethylester and 1-propanol and that of (±)-1-phenylethanol and vinylbutyrate. The acceleration of the initial rate, V0, ranged from less than 10-fold to more than 100-fold. All crown ethers activated subtilisin substantially, which excludes a specific macrocyclic effect from being responsible. The secondary structure of subtilisin was studied by Fourier-transform infrared (FTIR) spectroscopy. 18-Crown-6 and 15-crown-5 led to a more nativelike structure of subtilisin in the organic solvents employed when compared with that of the dehydrated enzyme obtained from buffer alone. However, the high level of activation with 12-crown-4 where this effect was not observed excluded overall structural preservation from being the primary cause of the observed enzyme activation. The conformational mobility of subtilisin was investigated by performing thermal denaturation experiments in 1,4-dioxane. Although only a small effect of temperature on subtilisin structure was observed for the samples prepared with or without 12-crown-4, both 18-crown-6 and 15-crown-5 caused the enzyme to denature at quite low temperatures (38°C and 56°C, respectively). No relationship between this property and V0 was evident, but increased conformational mobility of the protein decreased its storage stability. The possibility of a “molecular imprinting” effect was also tested by removing 18-crown-6 from the subtilisin-18-crown-6 colyophilizate by washing. V0 was only halved as a result of this procedure, an effect insignificant compared with the ca. 80-fold rate enhancement observed prior to washing in THF. This suggests that molecular imprinting is likely the primary cause of sub-tilisin activation by crown ethers, as recently suggested. PMID

  2. 17 CFR 242.104 - Stabilizing and other activities in connection with an offering.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., maintaining, or adjusting a stabilizing bid to reflect the current exchange rate. If a stabilizing bid is... initiated, maintained, or adjusted to reflect the current exchange rate, consistent with the provisions of... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Stabilizing and...

  3. 17 CFR 242.104 - Stabilizing and other activities in connection with an offering.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., maintaining, or adjusting a stabilizing bid to reflect the current exchange rate. If a stabilizing bid is... initiated, maintained, or adjusted to reflect the current exchange rate, consistent with the provisions of... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Stabilizing and...

  4. 17 CFR 242.104 - Stabilizing and other activities in connection with an offering.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., maintaining, or adjusting a stabilizing bid to reflect the current exchange rate. If a stabilizing bid is... initiated, maintained, or adjusted to reflect the current exchange rate, consistent with the provisions of... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Stabilizing and...

  5. Studies on chalcone derivatives: Complex formation, thermal behavior, stability constant and antioxidant activity

    NASA Astrophysics Data System (ADS)

    El-Sayed, Yusif S.; Gaber, M.

    2015-02-01

    The chalcone 3-[4‧-dimethylaminophenyl]-1-(2-pyridyl) prop-2-en-1-one (DMAPP) and 3-(4‧-diethylaminophenyl)-1-(2-pyridinyl) prop-2-en-1-one abbreviated as DEAPP have been synthesized and characterized with IR, 1H NMR, 13C NMR spectroscopic techniques as described previously (El-Daly et al., 2008; Gaber et al., 2009; El-Sayed, 2013). By using UV visible spectroscopy method the mole fraction ratio for copper with DMAPP and DEAPP complexes were determined and it was found to be 1:1. The stability constants of this complex have been determined by Job's method. The stability constant (Kf) of copper with DMAPP and DEAPP complexes in universal buffer pH = 3.2 was determined to be 9.9 × 104 and 5.2 × 104 respectively. The effect of Cu(II) ion on the emission spectrum of the free chalcone is also assigned. Adherence to Beer's law and Ringbom optimum concentration ranges are determined. The thermal decomposition of the metal complexes is studied by TGA technique. The kinetic parameters like activation energy, pre-exponential factor and entropy of activation are estimated. The structure of complexes was energetically optimized through molecular mechanics applying MM+ force field coupled with molecular dynamics simulation. The bond lengths and bond angles have been calculated to confirm the geometry of the ligands and their Cu(II) complexes. The mode of interaction of the chalcone to copper nanoparticles was studied. The apparent association constants of the colloidal copper nanoparticles:chalcone complexes in solution were evaluated using the spectral method and compared with the formation constant of the Cu(II) chalcone complexes. Antioxidant activity of these chalcones was evaluated by using 1,1‧-diphenyl-2-picrylhydrazyl (DPPHrad) radicals scavenging method, which showed that the antioxidant activity of DMAPP has higher value than the DEAPP. Semi-empirical study results showed that DMAPP have higher dipole moment than DEAPP [1].

  6. Silver Nanoparticles Modified by Gelatin with Extraordinary pH Stability and Long-Term Antibacterial Activity

    PubMed Central

    Sivera, Martin; Kvitek, Libor; Soukupova, Jana; Panacek, Ales; Prucek, Robert; Vecerova, Renata; Zboril, Radek

    2014-01-01

    The potential for application of any nanoparticles, including silver nanoparticles (AgNPs), is strongly dependent on their stability against aggregation. Therefore, improvement of this parameter is a key task, especially in the case of AgNPs, because a correlation between size and biological activity has been demonstrated. In the present work, a natural stabilizer, gelatin, was investigated for the stabilization of AgNPs in an aqueous dispersion. The particles were prepared via a modified Tollens process, and the gelatin modifier was added prior to the reducing agent. The stability against aggregation of the AgNPs prepared by this method was more than one order of magnitude higher (on the basis of the critical coagulation concentration (CCC)) than that of AgNPs prepared via a similar method but without the assistance of gelatin. Their high stability against aggregation was confirmed over wide pH range (from 2 to 13) in which the particles did not exhibit rapid aggregation; such stability has not been previously reported for AgNPs. Additionally, gelatin not only fulfills the role of a unique stabilizer but also positively influences the modified Tollens process used to prepare the AgNPs. The diameter of the gelatin-modified AgNPs was substantially smaller in comparison to those prepared without gelatin. The polydispersity of the dispersion significantly narrowed. Moreover, the gelatin-stabilized AgNPs exhibited long-term stability against aggregation and maintained high antibacterial activity when stored for several months under ambient conditions. PMID:25098570

  7. Stability issues in Pd-based catalysts: the role of surface Pt in improving the stability and oxygen reduction reaction (ORR) activity.

    PubMed

    Singh, R K; Rahul, R; Neergat, M

    2013-08-21

    Carbon-supported Pd and Pd3Co catalysts have been electrochemically characterized in 0.1 M HClO4 solution and we found that both catalysts were unstable. On repeated potential cycling, the electrochemical surface area of the catalysts decreases and the oxygen reduction reaction (ORR) activity suffers. To stabilize surface Pd atoms of both Pd and Pd3Co catalysts, we deposited Pt using adsorbed hydrogen on the catalytically active Pd sites. The Pt : Pd ratio of Pt-coated Pd and Pt-coated Pd3Co catalysts suggests half-a-monolayer coverage of Pt (two hydrogen atoms required for reducing a Pt(2+) ion). The Pt : Pd ratio of Pt-coated Pd3Co catalyst obtained from the simple geometrical hard sphere model, energy-dispersive X-ray spectroscopy (EDS) line scan and bulk EDS agrees very well with that calculated from the hydrogen desorption (H(des)) charge of Pd3Co. At the same time, the Pt : Pd ratio of Pt-coated Pd calculated from the H(des) charge of Pd catalyst is significantly lower than the ratio obtained from the other methods. Thus, the Pt : Pd ratio of the Pt-coated Pd catalyst estimated from the H(des) region of Pd is an underestimation of the composition. This suggests that Pd forms an electrochemically inactive species from the H(upd) region itself and Co in Pd3Co seems to stabilize Pd against oxidation by delaying the formation of electrochemically inactive species to higher potentials above the H(upd) region. The voltammograms along with the peroxide formation characteristics of the catalysts support the above observations. The deposited Pt on the surface of the Pd and Pd3Co catalysts masks active Pd sites from the electrochemical environment and even partial coverage with Pt improves the stability and ORR activity of the catalysts when compared to that of the respective Pt-free counterparts.

  8. The Amino Acid Specificity for Activation of Phenylalanine Hydroxylase Matches the Specificity for Stabilization of Regulatory Domain Dimers.

    PubMed

    Zhang, Shengnan; Hinck, Andrew P; Fitzpatrick, Paul F

    2015-08-25

    Liver phenylalanine hydroxylase is allosterically activated by phenylalanine. The structural changes that accompany activation have not been identified, but recent studies of the effects of phenylalanine on the isolated regulatory domain of the enzyme support a model in which phenylalanine binding promotes regulatory domain dimerization. Such a model predicts that compounds that stabilize the regulatory domain dimer will also activate the enzyme. Nuclear magnetic resonance spectroscopy and analytical ultracentrifugation were used to determine the ability of different amino acids and phenylalanine analogues to stabilize the regulatory domain dimer. The abilities of these compounds to activate the enzyme were analyzed by measuring their effects on the fluorescence change that accompanies activation and on the activity directly. At concentrations of 10-50 mM, d-phenylalanine, l-methionine, l-norleucine, and (S)-2-amino-3-phenyl-1-propanol were able to activate the enzyme to the same extent as 1 mM l-phenylalanine. Lower levels of activation were seen with l-4-aminophenylalanine, l-leucine, l-isoleucine, and 3-phenylpropionate. The ability of these compounds to stabilize the regulatory domain dimer agreed with their ability to activate the enzyme. These results support a model in which allosteric activation of phenylalanine hydroxylase is linked to dimerization of regulatory domains.

  9. Activation and stabilization of the hydroperoxide lyase enzymatic extract from mint leaves (Mentha spicata) using selected chemical additives.

    PubMed

    Akacha, Najla B; Karboune, Salwa; Gargouri, Mohamed; Kermasha, Selim

    2010-03-01

    The effects of selected lyoprotecting excipients and chemical additives on the specific activity and the thermal stability of the hydroperoxide lyase (HPL) enzymatic extract from mint leaves were investigated. The addition of KCl (5%, w/w) and dextran (2.5%, w/w) to the enzymatic extract, prior to lyophilization, increased the HPL specific activity by 2.0- and 1.2-fold, respectively, compared to the control lyophilized extract. From half-life time (t (1/2)), it can be seen that KCl has enhanced the HPL stability by 1.3- to 2.3-fold, during long-period storage at -20 degrees Celsius and 4 degrees Celsius. Among the selected additives used throughout this study, glycine appeared to be the most effective one. In addition to the activation effect conferred by glycine, it also enhanced the HPL thermal stability. In contrast, polyhydroxyl-containing additives were not effective for stabilizing the HPL enzymatic extract. On the other hand, there was no signification increase in HPL activity and its thermal stability with the presence of Triton X-100. The results also showed that in the presence of glycine (10%), the catalytic efficiency of HPL was increased by 2.45-fold than that without additive.

  10. Hypoglycemic activity and stability enhancement of human insulin-tat mixture loaded in elastic anionic niosomes.

    PubMed

    Manosroi, Aranya; Tangjai, Theeraphong; Sutthiwanjampa, Chanutchamon; Manosroi, Worapaka; Werner, Rolf G; Götz, Friedrich; Sainakham, Mathukorn; Manosroi, Jiradej

    2016-10-01

    This study aimed to investigate the synergistic effect of trans-activator of transcription (Tat) and niosomes for the improvement of hypoglycemic activity of orally delivered human insulin. The elastic anionic niosomes composing of Tween 61/cholesterol/dicetyl phosphate/sodium cholate at 1:1:0.05:0.02 molar ratio loaded with insulin-Tat mixture (1:3 molar ratio) was prepared. Deformability of the elastic anionic niosomes decreased after loaded with the mixture of 1.35 times. For the in vitro release, the insulin (T10 = 4 h) loaded in the elastic anionic niosomes indicated the slower release rate than insulin in the mixture (T10 = 3 h) loaded in niosomes. At room temperature (30 ± 2 °C), the mixture loaded in elastic anionic niosomes was more chemical stable than the free mixture of 1.3, 1.4 and 1.7 times after stored for 4, 8 and 12 weeks, respectively. Oral administration in the alloxan-induced diabetic mice of the mixture loaded in elastic anionic niosomes with the insulin doses at 25, 50 and 100 IU/kg body weight indicated significant hypoglycemic activity with the percentage fasting blood glucose reduction of 1.95, 2.10 and 2.10 folds of the subcutaneous insulin injection at 12 h, respectively. This study has demonstrated the synergistic benefits of Tat and elastic anionic niosomes for improving the hypoglycemic activity of the orally delivered human insulin as well as the stability enhancement of human insulin when stored at high temperature. The results from this study can be further developed as an effective oral insulin delivery.

  11. Core muscle activity in a series of balance exercises with different stability conditions.

    PubMed

    Calatayud, Joaquin; Borreani, Sebastien; Martin, Julio; Martin, Fernando; Flandez, Jorge; Colado, Juan C

    2015-07-01

    Literature that provides progression models based on core muscle activity and postural manipulations is scarce. The purpose of this study was to investigate the core muscle activity in a series of balance exercises with different stability levels and additional elastic resistance. A descriptive study of electromyography (EMG) was performed with forty-four healthy subjects that completed 12 exercises in a random order. Exercises were performed unipedally or bipedally with or without elastic tubing as resistance on various unstable (uncontrolled multiaxial and uniaxial movement) and stable surfaces. Surface EMG on the lumbar multífidus spinae (LM), thoracic multífidus spinae (TM), lumbar erector spinae (LE), thoracic erector spinae (TE) and gluteus maximus (GM), on the dominant side of the body were collected to quantify the amount of muscle activity and were expressed as a % of the maximum voluntary isometric contraction (MVIC). Significant differences (p<.001) were found between exercises. The three unipedal standing exercises with additional elastic resistance generated the greatest EMG values, ranging from 19% MVIC to 30% MVIC. Postural manipulations with additional elastic resistance and/or unstable devices increase core muscle activity. An adequate exercise progression based on global core EMG could start with seated positions, progressing to bipedal standing stance (i.e., from either multiaxial or stable surface to uniaxial surface). Following this, unipedal standing positions may be performed (i.e., from either multiaxial or stable surface to uniaxial surface) and finally, elastic resistance must be added in order to increase EMG levels (i.e., from stable surface progressing to any of the used unstable surfaces).

  12. Mechanism of Action and Capsid-Stabilizing Properties of VHHs with an In Vitro Antipolioviral Activity

    PubMed Central

    Schotte, Lise; Strauss, Mike; Thys, Bert; Halewyck, Hadewych; Filman, David J.; Bostina, Mihnea; Rombaut, Bart

    2014-01-01

    ABSTRACT Previously, we reported on the in vitro antiviral activity of single-domain antibody fragments (VHHs) directed against poliovirus type 1. Five VHHs were found to neutralize poliovirus type 1 in an in vitro setting and showed 50% effective concentrations (EC50s) in the nanomolar range. In the present study, we further investigated the mechanism of action of these VHHs. All five VHHs interfere at multiple levels of the viral replication cycle, as they interfere both with attachment of the virus to cells and with viral uncoating. The latter effect is consistent with their ability to stabilize the poliovirus capsid, as observed in a ThermoFluor thermal shift assay, in which the virus is gradually heated and the temperature causing 50% of the RNA to be released from the capsid is determined, either in the presence or in the absence of the VHHs. The VHH-capsid interactions were also seen to induce aggregation of the virus-VHH complexes. However, this observation cannot yet be linked to their mechanism of action. Cryo-electron microscopy (cryo-EM) reconstructions of two VHHs in complex with poliovirus type 1 show no conformational changes of the capsid to explain this aggregation. On the other hand, these reconstructions do show that the binding sites of VHHs PVSP6A and PVSP29F overlap the binding site for the poliovirus receptor (CD155/PVR) and span interfaces that are altered during receptor-induced conformational changes associated with cell entry. This may explain the interference at the level of cell attachment of the virus as well as their effect on uncoating. IMPORTANCE The study describes the mechanism of neutralization and the capsid-stabilizing activity of five single-domain antibody fragments (VHHs) that have an in vitro neutralizing activity against poliovirus type 1. The results show that the VHHs interfere at multiple levels of the viral replication cycle (cell attachment and viral uncoating). These mechanisms are possibly shared by some

  13. Actin polymerization-dependent activation of Cas-L promotes immunological synapse stability

    PubMed Central

    Santos, Luís C; Blair, David A; Kumari, Sudha; Cammer, Michael; Iskratsch, Thomas; Herbin, Olivier; Alexandropoulos, Konstantina; Dustin, Michael L; Sheetz, Michael P

    2016-01-01

    The immunological synapse formed between a T-cell and an antigen-presenting cell is important for cell–cell communication during T-cell-mediated immune responses. Immunological synapse formation begins with stimulation of the T-cell receptor (TCR). TCR microclusters are assembled and transported to the center of the immunological synapse in an actin polymerization-dependent process. However, the physical link between TCR and actin remains elusive. Here we show that lymphocyte-specific Crk-associated substrate (Cas-L), a member of a force sensing protein family, is required for transport of TCR microclusters and for establishing synapse stability. We found that Cas-L is phosphorylated at TCR microclusters in an actin polymerization-dependent fashion. Furthermore, Cas-L participates in a positive feedback loop leading to amplification of Ca2+ signaling, inside–out integrin activation, and actomyosin contraction. We propose a new role for Cas-L in T-cell activation as a mechanical transducer linking TCR microclusters to the underlying actin network and coordinating multiple actin-dependent structures in the immunological synapse. Our studies highlight the importance of mechanotransduction processes in T-cell-mediated immune responses. PMID:27359298

  14. Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion.

    PubMed

    Correa-Betanzo, J; Allen-Vercoe, E; McDonald, J; Schroeter, K; Corredig, M; Paliyath, G

    2014-12-15

    Wild blueberries are rich in polyphenols and have several potential health benefits. Understanding the factors that affect the bioaccessibility and bioavailability of polyphenols is important for evaluating their biological significance and efficacy as functional food ingredients. Since the bioavailability of polyphenols such as anthocyanins is generally low, it has been proposed that metabolites resulting during colonic fermentation may be the components that exert health benefits. In this study, an in vitro gastrointestinal model comprising sequential chemostat fermentation steps that simulate digestive conditions in the stomach, small intestine and colon was used to investigate the breakdown of blueberry polyphenols. The catabolic products were isolated and biological effects tested using a normal human colonic epithelial cell line (CRL 1790) and a human colorectal cancer cell line (HT 29). The results showed a high stability of total polyphenols and anthocyanins during simulated gastric digestion step with approximately 93% and 99% of recovery, respectively. Intestinal digestion decreased polyphenol- and anthocyanin- contents by 49% and 15%, respectively, by comparison to the non-digested samples. During chemostat fermentation that simulates colonic digestion, the complex polyphenol mixture was degraded to a limited number of phenolic compounds such as syringic, cinnamic, caffeic, and protocatechuic acids. Only acetylated anthocyanins were detected in low amounts after chemostat fermentation. The catabolites showed lowered antioxidant activity and cell growth inhibition potential. Results suggest that colonic fermentation may alter the biological activity of blueberry polyphenols.

  15. Patterns of Proliferative Activity in the Colonic Crypt Determine Crypt Stability and Rates of Somatic Evolution

    PubMed Central

    Zhao, Rui; Michor, Franziska

    2013-01-01

    Epithelial cells in the colon are arranged in cylindrical structures called crypts in which cellular proliferation and migration are tightly regulated. We hypothesized that the proliferation patterns of cells may determine the stability of crypts as well as the rates of somatic evolution towards colorectal tumorigenesis. Here, we propose a linear process model of colonic epithelial cells that explicitly takes into account the proliferation kinetics of cells as a function of cell position within the crypt. Our results indicate that proliferation kinetics has significant influence on the speed of cell movement, kinetics of mutation propagation, and sensitivity of the system to selective effects of mutated cells. We found that, of all proliferation curves tested, those with mitotic activities concentrated near the stem cell, including the actual proliferation kinetics determined in in vivo labeling experiments, have a greater ability of delaying the rate of mutation accumulation in colonic stem cells compared to hypothetical proliferation curves with mitotic activities focused near the top of the crypt column. Our model can be used to investigate the dynamics of proliferation and mutation accumulation in spatially arranged tissues. PMID:23785264

  16. Increasing thermal stability and catalytic activity of glutamate decarboxylase in E. coli: An in silico study.

    PubMed

    Tavakoli, Yasaman; Esmaeili, Abolghasem; Saber, Hossein

    2016-10-01

    Glutamate decarboxylase (GAD) is an enzyme that converts l-glutamate to gamma amino butyric acid (GABA) that is a widely used drug to treat mental disorders like Alzheimer's disease. In this study for the first time point mutation was performed virtually in the active site of the E. coli GAD in order to increase thermal stability and catalytic activity of the enzyme. Energy minimization and addition of water box were performed using GROMACS 5.4.6 package. PoPMuSiC 2.1 web server was used to predict potential spots for point mutation and Modeller software was used to perform point mutation on three dimensional model. Molegro virtual docker software was used for cavity detection and stimulated docking study. Results indicate that performing mutation separately at positions 164, 302, 304, 393, 396, 398 and 410 increase binding affinity to substrate. The enzyme is predicted to be more thermo- stable in all 7 mutants based on ΔΔG value.

  17. Microparticles Containing Curcumin Solid Dispersion: Stability, Bioavailability and Anti-Inflammatory Activity.

    PubMed

    Teixeira, C C C; Mendonça, L M; Bergamaschi, M M; Queiroz, R H C; Souza, G E P; Antunes, L M G; Freitas, L A P

    2016-04-01

    This work aimed at improving the solubility of curcumin by the preparation of spray-dried ternary solid dispersions containing Gelucire®50/13-Aerosil® and quantifying the resulting in vivo oral bioavailability and anti-inflammatory activity. The solid dispersion containing 40% of curcumin was characterised by calorimetry, infrared spectroscopy and X-ray powder diffraction. The solubility and dissolution rate of curcumin in aqueous HCl or phosphate buffer improved up to 3600- and 7.3-fold, respectively. Accelerated stability test demonstrated that the solid dispersion was stable for 9 months. The pharmacokinetic study showed a 5.5-fold increase in curcumin in rat blood plasma when compared to unprocessed curcumin. The solid dispersion also provided enhanced anti-inflammatory activity in rat paw oedema. Finally, the solid dispersion proposed here is a promising way to enhance curcumin bioavailability at an industrial pharmaceutical perspective, since its preparation applies the spray drying, which is an easy to scale up technique. The findings herein stimulate further in vivo evaluations and clinical tests as a cancer and Alzheimer chemoprevention agent.

  18. Design and biological evaluation of synthetic retinoids: probing length vs. stability vs. activity.

    PubMed

    Clemens, Graeme; Flower, Kevin R; Gardner, Peter; Henderson, Andrew P; Knowles, Jonathan P; Marder, Todd B; Whiting, Andrew; Przyborski, Stefan

    2013-12-01

    All trans-retinoic acid (ATRA) is widely used to direct the differentiation of cultured stem cells. When exposed to the pluripotent human embryonal carcinoma (EC) stem cell line, TERA2.cl.SP12, ATRA induces ectoderm differentiation and the formation of neuronal cell types. We report in this study that novel polyene chain length analogues of ATRA require a specific chain length to elicit a biological responses of the EC cells TERA2.cl.SP12, with synthetic retinoid AH61 being particularly active, and indeed more so than ATRA. The impacts of both the synthetic retinoid AH61 and natural ATRA on the TERA2.cl.SP12 cells were directly compared using both RT-PCR and Fourier Transform Infrared Micro-Spectroscopy (FT-IRMS) coupled with multivariate analysis. Analytical results produced from this study also confirmed that the synthetic retinoid AH61 had biological activity comparable or greater than that of ATRA. In addition to this, AH61 has the added advantage of greater compound stability than ATRA, therefore, avoiding issues of oxidation or decomposition during use with embryonic stem cells.

  19. S-nitrosation of conserved cysteines modulates activity and stability of S-nitrosoglutathione reductase (GSNOR)

    PubMed Central

    Guerra, Damian; Ballard, Keith; Truebridge, Ian; Vierling, Elizabeth

    2016-01-01

    The free radical nitric oxide (NO•) regulates diverse physiological processes from vasodilation in humans to gas exchange in plants. S-nitrosoglutathione (GSNO) is considered a principal nitroso reservoir due to its chemical stability. GSNO accumulation is attenuated by GSNO reductase (GSNOR), a cysteine-rich cytosolic enzyme. Regulation of protein nitrosation is not well understood since NO•-dependent events proceed without discernible changes in GSNOR expression. Because GSNORs contain evolutionarily-conserved cysteines that could serve as nitrosation sites, we examined the effects of treating plant (Arabidopsis thaliana), mammalian (human), and yeast (Saccharomyces cerevisiae) GSNORs with nitrosating agents in vitro. Enzyme activity was sensitive to nitroso donors, while the reducing agent dithiothreitol (DTT) restored activity, suggesting catalytic impairment was due to S-nitrosation. Protein nitrosation was confirmed by mass spectrometry, by which mono-, di-, and tri-nitrosation were observed, and these signals were sensitive to DTT. GSNOR mutants in specific non-zinc coordinating cysteines were less sensitive to catalytic inhibition by nitroso donors and exhibited reduced nitrosation signals by mass spectrometry. Nitrosation also coincided with decreased tryptophan fluorescence, increased thermal aggregation propensity, and increased polydispersity—properties reflected by differential solvent accessibility of amino acids important for dimerization and the shape of the substrate and coenzyme binding pockets as assessed by hydrogen-deuterium exchange mass spectrometry. Collectively, these data suggest a mechanism for NO• signal transduction in which GSNOR nitrosation and inhibition transiently permit GSNO accumulation. PMID:27064847

  20. Mechanism of RNA stabilization and translational activation by a pentatricopeptide repeat protein

    PubMed Central

    Prikryl, Jana; Rojas, Margarita; Schuster, Gadi; Barkan, Alice

    2011-01-01

    Pentatricopeptide repeat (PPR) proteins comprise a large family of helical repeat proteins that bind RNA and modulate organellar RNA metabolism. The mechanisms underlying the functions attributed to PPR proteins are unknown. We describe in vitro studies of the maize protein PPR10 that clarify how PPR10 modulates the stability and translation of specific chloroplast mRNAs. We show that recombinant PPR10 bound to its native binding site in the chloroplast atpI–atpH intergenic region (i) blocks both 5′→3′ and 3′→ 5 exoribonucleases in vitro; (ii) is sufficient to define the native processed atpH mRNA 5′-terminus in conjunction with a generic 5′→3′ exoribonuclease; and (iii) remodels the structure of the atpH ribosome-binding site in a manner that can account for PPR10’s ability to enhance atpH translation. In addition, we show that the minimal PPR10-binding site spans 17 nt. We propose that the site-specific barrier and RNA remodeling activities of PPR10 are a consequence of its unusually long, high-affinity interface with single-stranded RNA, that this interface provides a functional mimic to bacterial small RNAs, and that analogous activities underlie many of the biological functions that have been attributed to PPR proteins. PMID:21173259

  1. Enhanced activity and stability of L-arabinose isomerase by immobilization on aminopropyl glass.

    PubMed

    Zhang, Ye-Wang; Jeya, Marimuthu; Lee, Jung-Kul

    2011-03-01

    Immobilization of Bacillus licheniformis L: -arabinose isomerase (BLAI) on aminopropyl glass modified with glutaraldehyde (4 mg protein g support⁻¹) was found to enhance the enzyme activity. The immobilization yield of BLAI was proportional to the quantity of amino groups on the surface of support. Reducing particle size increased the adsorption capacity (q(m)) and affinity (k(a)). The pH and temperature for immobilization were optimized to be pH 7.1 and 33 °C using response surface methodology (RSM). The immobilized enzyme was characterized and compared to the free enzyme. There is no change in optimal pH and temperature before and after immobilization. However, the immobilized BLAI enzyme achieved 145% of the activity of the free enzyme. Correspondingly, the catalytic efficiency (k(cat)/K(m)) was improved 1.47-fold after immobilization compared to the free enzyme. The thermal stability was improved 138-fold (t₁/₂) increased from 2 to 275 h) at 50 °C following immobilization.

  2. Iron Opacity Bump Changes the Stability and Structure of Accretion Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Fei; Davis, Shane W.; Stone, James M.

    2016-08-01

    Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be larger than the electron scattering opacity due to the large number of bound-bound transitions in iron. We study the effects of this iron opacity “bump” on the thermal stability and vertical structure of radiation-pressure-dominated accretion disks, utilizing three-dimensional radiation magnetohydrodynamic (MHD) simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a 5 × 108 solar mass black hole with ˜3% of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than 10 thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free-free opacity are included as in the standard thin disk model, the disk collapses on the thermal timescale. The difference is caused by a combination of (1) an anti-correlation between the total optical depth and the midplane pressure, and (2) enhanced vertical advective energy transport. These results suggest that the iron opacity bump may have a strong impact on the stability and structure of active galactic nucleus (AGN) accretion disks, and may contribute to a dependence of AGN properties on metallicity. Since this opacity is relevant primarily in UV emitting regions of the flow, it may help to explain discrepancies between observation and theory that are unique to AGNs.

  3. Pegylation of fibronectin and its functional domains: Effect on stability and biological activity

    NASA Astrophysics Data System (ADS)

    Zhang, Chen

    Delayed wound healing in many chronic wounds has been linked to the lack of extracellular matrix (ECM) support and the degradation of fibronectin (FN) by an abnormally high protease level. The ECM provides physical and chemical cues that direct tissue growth and development while FN is a key ECM protein that attracts and binds different molecules and cells. The goal of my study is creating an ECM analogue based on a composite of polyethylene glycol (PEG) hydrogels and FN binding domains and stabilizing FN against proteolytic degradation by conjugating it to PEG. The work presented here shows a two-prong approach by which the problem of ECM degradation and deficiency chronic wound healing can be addressed. The first approach for addressing ECM deficiency is through a scaffold design methodology. The novelty of the scaffold approach is that it uses the cell-binding domains of FN instead of the often-used RGD peptide. I demonstrate that a PEG hydrogel with the cell-binding domain produces a more robust biological response in cells than a PEG hydrogel with the RGD peptide. I also demonstrate that varying different functional domains of FN can be used to controllably stimulate multiple biological responses. The second approach demonstrates a method by which FN, a key ECM protein, is stabilized against proteolytic degradation without perturbing its activity. These studies of creating PEG-FN conjugates are the first of their kind. Collectively, the data that I present in this thesis will lead to novel therapeutic methods for treating chronic wounds.

  4. Changing the stability conditions in a back squat: the effect on maximum load lifted and erector spinae muscle activity.

    PubMed

    Fletcher, Iain M; Bagley, Ashley

    2014-11-01

    The aim of this study was to identify how changes in the stability conditions of a back squat affect maximal loads lifted and erector spinae muscle activity. Fourteen male participants performed a Smith Machine (SM) squat, the most stable condition, a barbell back (BB) squat, and Tendo-destabilizing bar (TBB) squat, the least stable condition. A one repetition max (1-RM) was established in each squat condition, before electromyography (EMG) activity of the erector spinae was measured at 85% of 1-RM. Results indicated that the SM squat 1-RM load was significantly (p = 0.006) greater (10.9%) than the BB squat, but not greater than the TBB squat. EMG results indicated significantly greater (p < 0.05) muscle activation in the TBB condition compared to other conditions. The BB squat produced significantly greater (p = 0.036) EMG activity compared to the SM squat. A greater stability challenge applied to the torso seems to increase muscle activation. The maximum loads lifted in the most stable and unstable squats were similar. However, the lift with greater stability challenge required greatest muscle activation. The implications of this study may be important for training programmes; if coaches wish to challenge trunk stability, while their athletes lift maximal loads designed to increase strength.

  5. Effect of control surface mass unbalance on the stability of a closed-loop active control system

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1989-01-01

    The effects on stability of inertial forces arising from closed-loop activation of mass-unbalanced control surfaces are studied analytically using inertial energy approach, similar to the aerodynamic energy approach used for flutter suppression. The limitations of a single control surface like a leading-edge (LE) control or a trailing-edge (TE) control are demonstrated and compared to the superior combined LE-TE mass unbalanced system. It is shown that a spanwise section for sensor location can be determined which ensures minimum sensitivity to the mode shapes of the aircraft. It is shown that an LE control exhibits compatibility between inertial stabilization and aerodynamic stabilization, and that a TE control lacks such compatibility. The results of the present work should prove valuable, both for the purpose of flutter suppression using mass unbalanced control surfaces, or for the stabilization of structural modes of large space structures by means of inertial forces.

  6. Titanium cobalt nitride supported platinum catalyst with high activity and stability for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Xiao, Yonghao; Zhan, Guohe; Fu, Zhenggao; Pan, Zhanchang; Xiao, Chumin; Wu, Shoukun; Chen, Chun; Hu, Guanghui; Wei, Zhigang

    2015-06-01

    We describe a facile route to the development of novel robust non-carbon titanium cobalt nitride (Ti0.9Co0.1N) used as a support for Pt, and the catalyst exhibits high activity and stability for the oxygen reduction reaction (ORR). XRD and TEM results show that the synthesized Ti0.9Co0.1N is formed as a single-phase solid solution with high purity. The XPS measurements verified the strong metal/support interaction between Pt nanoparticles (NPs) and the Ti0.9Co0.1N support. Most importantly, Ti0.9Co0.1N supported Pt catalyst (Pt/Ti0.9Co0.1N) exhibits a much higher mass activity and durability than that of the commercial JM Pt/C electrocatalyst for ORR. The accelerated durability test (ADT) reveals that the novel Ti0.9Co0.1N support can dramatically enhance the durability of the catalyst and maintain the electrochemical surface area (ECSA) of Pt. Pt/Ti0.9Co0.1N shows great improvement in ECSA preservation, with only 35% of the initial ECSA drop even after 10 000 ADT cycles. The experimental data indicate that the electronic structure of Pt can be modified by Co doping, and there exists a strong interaction between Pt and the Ti0.9Co0.1N support, both of them are playing an important role in improving the activity and durability of the Pt/Ti0.9Co0.1N catalyst.

  7. Relation between dynamics, activity and thermal stability within the cholinesterase family.

    PubMed

    Trovaslet, Marie; Trapp, Marcus; Weik, Martin; Nachon, Florian; Masson, Patrick; Tehei, Moeava; Peters, Judith

    2013-03-25

    Incoherent neutron scattering is one of the most powerful tools for studying dynamics in biological matter. Using the cold neutron backscattering spectrometer IN16 at the Institut Laue Langevin (ILL, Grenoble, France), temperature dependence of cholinesterases' dynamics (human butyrylcholinesterase from plasma: hBChE; recombinant human acetylcholinesterase: hAChE and recombinant mouse acetylcholinesterase: mAChE) was examined using elastic incoherent neutron scattering (EINS). The dynamics was characterized by the averaged atomic mean square displacement (MSD), associated with the sample flexibility at a given temperature. We found MSD values of hAChE above the dynamical transition temperature (around 200K) larger than for mAChE and hBChE, implying that hAChE is more flexible than the other ChEs. Activation energies for thermodynamical transition were extracted through the frequency window model (FWM) (Becker et al. 2004) [1] and turned out to increase from hBChE to mAChE and finally to hAChE, inversely to the MSDs relations. Between 280 and 316K, catalytic studies of these enzymes were carried out using thiocholine esters: at the same temperature, the hAChE activity was systematically higher than the mAChE or hBChE ones. Our results thus suggest a strong correlation between dynamics and activity within the ChE family. We also studied and compared the ChEs thermal inactivation kinetics. Here, no direct correlation with the dynamics was observed, thus suggesting that relations between enzyme dynamics and catalytic stability are more complex. Finally, the possible relation between flexibility and protein ability to grow in crystals is discussed.

  8. Solvothermal synthesis of Ag hybrid BiPO4 heterostructures with enhanced photodegradation activity and stability.

    PubMed

    Huang, Chang-Wei; Wu, Mei-Yao; Lin, Yang-Wei

    2017-03-15

    In this study, Ag hybrid BiPO4 (Ag/BiPO4) heterostructures were synthesized using a solvothermal method. The morphologies and optical properties of the Ag/BiPO4 heterostructures were drastically different from those of BiPO4 and were highly dependent on the AgNO3:BiPO4 weight percent during the synthesis. The three formulated heterostructures were evaluated for their photocatalytic degradation of methylene blue (MB) under UV light illumination; the 0.5%Ag/BiPO4 heterostructure was observed to result in 99% degradation of MB within 60min, a remarkably higher level of photodegradation activity than the levels caused by TiO2 and BiPO4. Furthermore, even after use for five cycles of MB degradation, the 0.5%Ag/BiPO4 heterostructure showed no observable loss in photodegradation activity and no change in XRD patterns, demonstrating its chemical and structural stability. According to the results of a systematic experimental investigation, the enhanced photodegradation activity of this Ag/BiPO4 heterostructure could be ascribed to the high position of its valence band and the highly efficient separation of photogenerated electrons and holes. Moreover, hydroxyl radicals and holes were found to be the major reactive species. Successful photodegradation of standard dye solutions, including acid blue 1, methyl orange, fast green, rhodamine B, rhodamine 6G, and MB, in real water samples was demonstrated with the 0.5%Ag/BiPO4 heterostructure, providing clear evidence of its utility for treating waste water containing organic dyes.

  9. Peroxidase-like activity of gold nanoparticles stabilized by hyperbranched polyglycidol derivatives over a wide pH range

    NASA Astrophysics Data System (ADS)

    Drozd, Marcin; Pietrzak, Mariusz; Parzuchowski, Paweł; Mazurkiewicz-Pawlicka, Marta; Malinowska, Elżbieta

    2015-12-01

    The aim of this work was to carry out comparative studies on the peroxidase-like activity of gold nanoparticles (AuNPs) stabilized with low molecular weight hyperbranched polyglycidol (HBPG-OH) and its derivative modified with maleic acid residues (HBPG-COOH). The influence of the stabilizer to gold precursor ratio on the size and morphology of nanoparticles obtained was checked, and prepared nanoparticles were characterized by means of transmission electron microscopy and UV-Vis spectroscopy. The results indicated the divergent effect of increasing the concentration of stabilizers (HBPG-OH or HBPG-COOH) on the size of the nanostructures obtained. The gold nanoparticles obtained were characterized as having intrinsic peroxidase-like activity and the mechanism of catalysis in acidic and alkaline mediums was consistent with the standard Michaelis-Menten kinetics, revealing a strong affinity of AuNPs with 2, 2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 3, 3‧, 5, 5‧-tetramethylbenzidine (TMB), and significantly lower affinity towards phenol. By comparing the kinetic parameters, a negligible effect of polymeric ligand charge on activity against various types of substrates (anionic or cationic) was indicated. The superiority of steric stabilization via the application of tested low-weight hyperbranched polymers over typical stabilizers in preventing salt-induced aggregation and maintaining high catalytic activity in time was proved. The applied hyperbranched stabilizers provide a good tool for manufacturing gold-based nanozymes, which are highly stable and active over a wide pH range.

  10. DUB3 Deubiquitylating Enzymes Regulate Hippo Pathway Activity by Regulating the Stability of ITCH, LATS and AMOT Proteins.

    PubMed

    Nguyen, Hung Thanh; Kugler, Jan-Michael; Cohen, Stephen M

    2017-01-01

    The YAP and TAZ transcriptional coactivators promote oncogenic transformation. Elevated YAP/TAZ activity has been documented in human tumors. YAP and TAZ are negatively regulated by the Hippo tumor suppressor pathway. The activity and stability of several Hippo pathway components, including YAP/TAZ, is regulated by ubiquitin mediated protein turnover and several ubiquitin ligase complexes have been implicated in human cancer. However, little is known about the deubiquitylating enzymes that counteract these ubiquitin ligases in regulation of the Hippo pathway. Here we identify the DUB3 family deubiquitylating enzymes as regulators of Hippo pathway activity. We provide evidence that DUB3 proteins regulate YAP/TAZ activity by controlling the stability of the E3 ligase ITCH, the LATS kinases and the AMOT family proteins. As a novel Hippo pathway regulator, DUB3 has the potential to act a tumor suppressor by limiting YAP activity.

  11. DUB3 Deubiquitylating Enzymes Regulate Hippo Pathway Activity by Regulating the Stability of ITCH, LATS and AMOT Proteins

    PubMed Central

    2017-01-01

    The YAP and TAZ transcriptional coactivators promote oncogenic transformation. Elevated YAP/TAZ activity has been documented in human tumors. YAP and TAZ are negatively regulated by the Hippo tumor suppressor pathway. The activity and stability of several Hippo pathway components, including YAP/TAZ, is regulated by ubiquitin mediated protein turnover and several ubiquitin ligase complexes have been implicated in human cancer. However, little is known about the deubiquitylating enzymes that counteract these ubiquitin ligases in regulation of the Hippo pathway. Here we identify the DUB3 family deubiquitylating enzymes as regulators of Hippo pathway activity. We provide evidence that DUB3 proteins regulate YAP/TAZ activity by controlling the stability of the E3 ligase ITCH, the LATS kinases and the AMOT family proteins. As a novel Hippo pathway regulator, DUB3 has the potential to act a tumor suppressor by limiting YAP activity. PMID:28061504

  12. Activity stabilization of Aspergillus niger and Escherichia coli phytases immobilized on allophanic synthetic compounds and montmorillonite nanoclays.

    PubMed

    Menezes-Blackburn, Daniel; Jorquera, Milko; Gianfreda, Liliana; Rao, Maria; Greiner, Ralf; Garrido, Elizabeth; de la Luz Mora, María

    2011-10-01

    The aim of this work was to study the stabilization of the activity of two commercial microbial phytases (Aspergillus niger and Escherichia coli) after immobilization on nanoclays and to establish optimal conditions for their immobilization. Synthetic allophane, synthetic iron-coated allophanes and natural montmorillonite were chosen as solid supports for phytase immobilization. Phytase immobilization patterns at different pH values were strongly dependent on both enzyme and support characteristics. After immobilization, the residual activity of both phytases was higher under acidic conditions. Immobilization of phytases increased their thermal stability and improved resistance to proteolysis, particularly on iron-coated allophane (6% iron oxide), which showed activation energy (E(a)) and activation enthalpy (ΔH(#)) similar to free enzymes. Montmorillonite as well as allophanic synthetic compounds resulted in a good support for immobilization of E. coli phytase, but caused a severe reduction of A. niger phytase activity.

  13. p27kip1 controls H-Ras/MAPK activation and cell cycle entry via modulation of MT stability

    PubMed Central

    Fabris, Linda; Berton, Stefania; Pellizzari, Ilenia; Segatto, Ilenia; D’Andrea, Sara; Armenia, Joshua; Bomben, Riccardo; Schiappacassi, Monica; Gattei, Valter; Philips, Mark R.; Vecchione, Andrea; Belletti, Barbara; Baldassarre, Gustavo

    2015-01-01

    The cyclin-dependent kinase (CDK) inhibitor p27kip1 is a critical regulator of the G1/S-phase transition of the cell cycle and also regulates microtubule (MT) stability. This latter function is exerted by modulating the activity of stathmin, an MT-destabilizing protein, and by direct binding to MTs. We recently demonstrated that increased proliferation in p27kip1-null mice is reverted by concomitant deletion of stathmin in p27kip1/stathmin double-KO mice, suggesting that a CDK-independent function of p27kip1 contributes to the control of cell proliferation. Whether the regulation of MT stability by p27kip1 impinges on signaling pathway activation and contributes to the decision to enter the cell cycle is largely unknown. Here, we report that faster cell cycle entry of p27kip1-null cells was impaired by the concomitant deletion of stathmin. Using gene expression profiling coupled with bioinformatic analyses, we show that p27kip1 and stathmin conjunctly control activation of the MAPK pathway. From a molecular point of view, we observed that p27kip1, by controlling MT stability, impinges on H-Ras trafficking and ubiquitination levels, eventually restraining its full activation. Our study identifies a regulatory axis controlling the G1/S-phase transition, relying on the regulation of MT stability by p27kip1 and finely controlling the spatiotemporal activation of the Ras-MAPK signaling pathway. PMID:26512117

  14. p27kip1 controls H-Ras/MAPK activation and cell cycle entry via modulation of MT stability.

    PubMed

    Fabris, Linda; Berton, Stefania; Pellizzari, Ilenia; Segatto, Ilenia; D'Andrea, Sara; Armenia, Joshua; Bomben, Riccardo; Schiappacassi, Monica; Gattei, Valter; Philips, Mark R; Vecchione, Andrea; Belletti, Barbara; Baldassarre, Gustavo

    2015-11-10

    The cyclin-dependent kinase (CDK) inhibitor p27(kip1) is a critical regulator of the G1/S-phase transition of the cell cycle and also regulates microtubule (MT) stability. This latter function is exerted by modulating the activity of stathmin, an MT-destabilizing protein, and by direct binding to MTs. We recently demonstrated that increased proliferation in p27(kip1)-null mice is reverted by concomitant deletion of stathmin in p27(kip1)/stathmin double-KO mice, suggesting that a CDK-independent function of p27(kip1) contributes to the control of cell proliferation. Whether the regulation of MT stability by p27(kip1) impinges on signaling pathway activation and contributes to the decision to enter the cell cycle is largely unknown. Here, we report that faster cell cycle entry of p27(kip1)-null cells was impaired by the concomitant deletion of stathmin. Using gene expression profiling coupled with bioinformatic analyses, we show that p27(kip1) and stathmin conjunctly control activation of the MAPK pathway. From a molecular point of view, we observed that p27(kip1), by controlling MT stability, impinges on H-Ras trafficking and ubiquitination levels, eventually restraining its full activation. Our study identifies a regulatory axis controlling the G1/S-phase transition, relying on the regulation of MT stability by p27(kip1) and finely controlling the spatiotemporal activation of the Ras-MAPK signaling pathway.

  15. Activation and thermal stability of ultra-shallow B{sup +}-implants in Ge

    SciTech Connect

    Yates, B. R.; Darby, B. L.; Jones, K. S.; Petersen, D. H.; Hansen, O.; Lin, R.; Nielsen, P. F.; Doyle, B. L.; Kontos, A.

    2012-12-15

    The activation and thermal stability of ultra-shallow B{sup +} implants in crystalline (c-Ge) and preamorphized Ge (PA-Ge) following rapid thermal annealing was investigated using micro Hall effect and ion beam analysis techniques. The residual implanted dose of ultra-shallow B{sup +} implants in Ge was characterized using elastic recoil detection and was determined to correlate well with simulations with a dose loss of 23.2%, 21.4%, and 17.6% due to ion backscattering for 2, 4, and 6 keV implants in Ge, respectively. The electrical activation of ultra-shallow B{sup +} implants at 2, 4, and 6 keV to fluences ranging from 5.0 Multiplication-Sign 10{sup 13} to 5.0 Multiplication-Sign 10{sup 15} cm{sup -2} was studied using micro Hall effect measurements after annealing at 400-600 Degree-Sign C for 60 s. For both c-Ge and PA-Ge, a large fraction of the implanted dose is rendered inactive due to the formation of a presumable B-Ge cluster. The B lattice location in samples annealed at 400 Degree-Sign C for 60 s was characterized by channeling analysis with a 650 keV H{sup +} beam by utilizing the {sup 11}B(p, {alpha})2{alpha} nuclear reaction and confirmed the large fraction of off-lattice B for both c-Ge and PA-Ge. Within the investigated annealing range, no significant change in activation was observed. An increase in the fraction of activated dopant was observed with increasing energy which suggests that the surface proximity and the local point defect environment has a strong impact on B activation in Ge. The results suggest the presence of an inactive B-Ge cluster for ultra-shallow implants in both c-Ge and PA-Ge that remains stable upon annealing for temperatures up to 600 Degree-Sign C.

  16. Cold stability of microtubules in wood-forming tissues of conifers during seasons of active and dormant cambium.

    PubMed

    Begum, Shahanara; Shibagaki, Masaki; Furusawa, Osamu; Nakaba, Satoshi; Yamagishi, Yusuke; Yoshimoto, Joto; Jin, Hyun-O; Sano, Yuzou; Funada, Ryo

    2012-01-01

    The cold stability of microtubules during seasons of active and dormant cambium was analyzed in the conifers Abies firma, Abies sachalinensis and Larix leptolepis by immunofluorescence microscopy. Samples were fixed at room temperature and at a low temperature of 2-3°C to examine the effects of low temperature on the stability of microtubules. Microtubules were visible in cambium, xylem cells and phloem cells after fixation at room temperature during seasons of active and dormant cambium. By contrast, fixation at low temperature depolymerized microtubules in cambial cells, differentiating tracheids, differentiating xylem ray parenchyma and phloem ray parenchyma cells during the active season. However, similar fixation did not depolymerize microtubules during cambial dormancy in winter. Our results indicate that the stability of microtubules in cambial cells and cambial derivatives at low temperature differs between seasons of active and dormant cambium. Moreover, the change in the stability of microtubules that we observed at low temperature might be closely related to seasonal changes in the cold tolerance of conifers. In addition, low-temperature fixation depolymerized microtubules in cambial cells and differentiating cells that had thin primary cell walls, while such low-temperature fixation did not depolymerize microtubules in differentiating secondary xylem ray parenchyma cells and tracheids that had thick secondary cell walls. The stability of microtubules at low temperature appears to depend on the structure of the cell wall, namely, primary or secondary. Therefore, we propose that the secondary cell wall might be responsible for the cold stability of microtubules in differentiating secondary xylem cells of conifers.

  17. The role of statistical fluctuations on the stability of shockwaves through gases with activated inelastic collisions

    NASA Astrophysics Data System (ADS)

    Sirmas, Nick; Radulescu, Matei

    2016-11-01

    The present study addresses the stability of piston driven shock waves through a system of hard particles subject to activated inelastic collisions. Molecular Dynamics (MD) simulations have previously revealed an unstable structure for such a system in the form of high density non-uniformities and convective rolls within the shock structure. The work has now been extended to the continuum level by considering the Euler and Navier-Stokes equations for granular gases with a modified cooling rate to include an impact threshold necessary for inelastic collisions. We find that the pattern formations produced in MD can be reproduced at the continuum level by continually perturbing the incoming density field. By varying the perturbation amplitude and wavelength, we find that fluctuations consistent with the statistical fluctuations seen in MD yield similar instabilities to those previously observed. While the inviscid model predicts a highly chaotic structure from these perturbations, the inclusion of viscosity and heat conductivity yields equivalent wavelengths of pattern formations to those seen in MD, which is equal to the relaxation length scale of the dissipative shock structure. The authors acknowledged funding through the Alexander Graham Bell Canada Graduate Scholarship (NSERC) and Ontario Graduate Scholarship.

  18. BRCA2 coordinates the activities of cell-cycle kinases to promote genome stability.

    PubMed

    Yata, Keiko; Bleuyard, Jean-Yves; Nakato, Ryuichiro; Ralf, Christine; Katou, Yuki; Schwab, Rebekka A; Niedzwiedz, Wojciech; Shirahige, Katsuhiko; Esashi, Fumiko

    2014-06-12

    Numerous human genome instability syndromes, including cancer, are closely associated with events arising from malfunction of the essential recombinase Rad51. However, little is known about how Rad51 is dynamically regulated in human cells. Here, we show that the breast cancer susceptibility protein BRCA2, a key Rad51 binding partner, coordinates the activity of the central cell-cycle drivers CDKs and Plk1 to promote Rad51-mediated genome stability control. The soluble nuclear fraction of BRCA2 binds Plk1 directly in a cell-cycle- and CDK-dependent manner and acts as a molecular platform to facilitate Plk1-mediated Rad51 phosphorylation. This phosphorylation is important for enhancing the association of Rad51 with stressed replication forks, which in turn protects the genomic integrity of proliferating human cells. This study reveals an elaborate but highly organized molecular interplay between Rad51 regulators and has significant implications for understanding tumorigenesis and therapeutic resistance in patients with BRCA2 deficiency.

  19. The stability and catalytic activity of W13@Pt42 core-shell structure

    PubMed Central

    Huo, Jin-Rong; Wang, Xiao-Xu; Li, Lu; Cheng, Hai-Xia; Su, Yan-Jing; Qian, Ping

    2016-01-01

    This paper reports a study of the electronic properties, structural stability and catalytic activity of the W13@Pt42 core-shell structure using the First-principles calculations. The degree of corrosion of W13@Pt42 core-shell structure is simulated in acid solutions and through molecular absorption. The absorption energy of OH for this structure is lower than that for Pt55, which inhibits the poison effect of O containing intermediate. Furthermore we present the optimal path of oxygen reduction reaction catalyzed by W13@Pt42. Corresponding to the process of O molecular decomposition, the rate-limiting step of oxygen reduction reaction catalyzed by W13@Pt42 is 0.386 eV, which is lower than that for Pt55 of 0.5 eV. In addition by alloying with W, the core-shell structure reduces the consumption of Pt and enhances the catalytic efficiency, so W13@Pt42 has a promising perspective of industrial application. PMID:27759038

  20. The stability and catalytic activity of W13@Pt42 core-shell structure

    NASA Astrophysics Data System (ADS)

    Huo, Jin-Rong; Wang, Xiao-Xu; Li, Lu; Cheng, Hai-Xia; Su, Yan-Jing; Qian, Ping

    2016-10-01

    This paper reports a study of the electronic properties, structural stability and catalytic activity of the W13@Pt42 core-shell structure using the First-principles calculations. The degree of corrosion of W13@Pt42 core-shell structure is simulated in acid solutions and through molecular absorption. The absorption energy of OH for this structure is lower than that for Pt55, which inhibits the poison effect of O containing intermediate. Furthermore we present the optimal path of oxygen reduction reaction catalyzed by W13@Pt42. Corresponding to the process of O molecular decomposition, the rate-limiting step of oxygen reduction reaction catalyzed by W13@Pt42 is 0.386 eV, which is lower than that for Pt55 of 0.5 eV. In addition by alloying with W, the core-shell structure reduces the consumption of Pt and enhances the catalytic efficiency, so W13@Pt42 has a promising perspective of industrial application.

  1. Modulation of LAT1 (SLC7A5) transporter activity and stability by membrane cholesterol

    PubMed Central

    Dickens, David; Chiduza, George N.; Wright, Gareth S. A.; Pirmohamed, Munir; Antonyuk, Svetlana V.; Hasnain, S. Samar

    2017-01-01

    LAT1 (SLC7A5) is a transporter for both the uptake of large neutral amino acids and a number of pharmaceutical drugs. It is expressed in numerous cell types including T-cells, cancer cells and brain endothelial cells. However, mechanistic knowledge of how it functions and its interactions with lipids are unknown or limited due to inability of obtaining stable purified protein in sufficient quantities. Our data show that depleting cellular cholesterol reduced the Vmax but not the Km of the LAT1 mediated uptake of a model substrate into cells (L-DOPA). A soluble cholesterol analogue was required for the stable purification of the LAT1 with its chaperon CD98 (4F2hc,SLC3A2) and that this stabilised complex retained the ability to interact with a substrate. We propose cholesterol interacts with the conserved regions in the LAT1 transporter that have been shown to bind to cholesterol/CHS in Drosophila melanogaster dopamine transporter. In conclusion, LAT1 is modulated by cholesterol impacting on its stability and transporter activity. This novel finding has implications for other SLC7 family members and additional eukaryotic transporters that contain the LeuT fold. PMID:28272458

  2. Perceptual stability during active head movements orthogonal and parallel to gravity.

    PubMed

    Jaekl, P; Jenkin, M; Harris, L R

    2003-01-01

    We measured how much the visual world could be moved during various head rotations and translations and still be perceived as visually stable. Using this as a monitor of how well subjects know about their own movement, we compared performance in different directions relative to gravity. For head rotations, we compared the range of visual motion judged compatible with a stable environment while rotating around an axis orthogonal to gravity (where rotation created a rotating gravity vector across the otolith macula), with judgements made when rotation was around an earth-vertical axis. For translations, we compared the corresponding range of visual motion when translation was parallel to gravity (when imposed accelerations added to or subtracted from gravity), with translations orthogonal to gravity. Ten subjects wore a head-mounted display and made active head movements at 0.5 Hz that were monitored by a low-latency mechanical tracker. Subjects adjusted the ratio between head and image motion until the display appeared perceptually stable. For neither rotation nor translation were there any differences in judgements of perceptual stability that depended on the direction of the movement with respect to the direction of gravity.

  3. Activity, stability and folding analysis of the chitinase from Entamoeba histolytica.

    PubMed

    Muñoz, Patricia L A; Minchaca, Alexis Z; Mares, Rosa E; Ramos, Marco A

    2016-02-01

    Human amebiasis, caused by the parasitic protozoan Entamoeba histolytica, remains as a significant public health issue in developing countries. The life cycle of the parasite compromises two main stages, trophozoite and cyst, linked by two major events: encystation and excystation. Interestingly, the cyst stage has a chitin wall that helps the parasite to withstand harsh environmental conditions. Since the amebic chitinase, EhCHT1, has been recognized as a key player in both encystation and excystation, it is plausible to consider that specific inhibition could arrest the life cycle of the parasite and, thus, stop the infection. However, to selectively target EhCHT1 it is important to recognize its unique biochemical features to have the ability to control its cellular function. Hence, to gain further insights into the structure-function relationship, we conducted an experimental approach to examine the effects of pH, temperature, and denaturant concentration on the enzymatic activity and protein stability. Additionally, dependence on in vivo oxidative folding was further studied using a bacterial model. Our results attest the potential of EhCHT1 as a target for the design and development of new or improved anti-amebic therapeutics. Likewise, the potential of the oxidoreductase EhPDI, involved in oxidative folding of amebic proteins, was also confirmed.

  4. The stability and catalytic activity of W13@Pt42 core-shell structure.

    PubMed

    Huo, Jin-Rong; Wang, Xiao-Xu; Li, Lu; Cheng, Hai-Xia; Su, Yan-Jing; Qian, Ping

    2016-10-19

    This paper reports a study of the electronic properties, structural stability and catalytic activity of the W13@Pt42 core-shell structure using the First-principles calculations. The degree of corrosion of W13@Pt42 core-shell structure is simulated in acid solutions and through molecular absorption. The absorption energy of OH for this structure is lower than that for Pt55, which inhibits the poison effect of O containing intermediate. Furthermore we present the optimal path of oxygen reduction reaction catalyzed by W13@Pt42. Corresponding to the process of O molecular decomposition, the rate-limiting step of oxygen reduction reaction catalyzed by W13@Pt42 is 0.386 eV, which is lower than that for Pt55 of 0.5 eV. In addition by alloying with W, the core-shell structure reduces the consumption of Pt and enhances the catalytic efficiency, so W13@Pt42 has a promising perspective of industrial application.

  5. Tumor-targeted TNFα stabilizes tumor vessels and enhances active immunotherapy.

    PubMed

    Johansson, Anna; Hamzah, Juliana; Payne, Christine J; Ganss, Ruth

    2012-05-15

    Solid tumors are intrinsically resistant to immune rejection. Abnormal tumor vasculature can act as a barrier for immune cell migration into tumors. We tested whether targeting IFNγ and/or TNFα into pancreatic neuroendocrine tumors can alleviate immune suppression. We found that intratumoral IFNγ causes rapid vessel loss, which does not support anti-tumor immunity. In contrast, low-dose TNFα enhances T-cell infiltration and overall survival, an effect that is exclusively mediated by CD8(+) effector cells. Intriguingly, lymphocyte influx does not correlate with increased vessel leakiness. Instead, low-dose TNFα stabilizes the vascular network and improves vessel perfusion. Inflammatory vessel remodeling is, at least in part, mediated by tumor-resident macrophages that are reprogrammed to secrete immune and angiogenic modulators. Moreover, inflammatory vessel remodeling with low-dose TNFα substantially improves antitumor vaccination or adoptive T-cell therapy. Thus, low-dose TNFα promotes both vessel remodeling and antitumor immune responses and acts as a potent adjuvant for active immunotherapy.

  6. Evaluation of the stability and antimicrobial activity of an ethanolic extract of Libidibia ferrea

    PubMed Central

    de Oliveira Marreiro, Raquel; Bandeira, Maria Fulgência Costa Lima; de Souza, Tatiane Pereira; de Almeida, Mailza Costa; Bendaham, Katiana; Venâncio, Gisely Naura; Rodrigues, Isis Costa; Coelho, Cristiane Nagai; Milério, Patrícia Sâmea Lêdo Lima; de Oliveira, Glauber Palma; de Oliveira Conde, Nikeila Chacon

    2014-01-01

    Biofilm is a dense, whitish, noncalcified aggregate of bacteria, with desquamated epithelial cells and food debris creating conditions for an imbalance of resident oral microflora and favoring the destruction of hard and soft tissues by development of caries and gingivitis. The aim of this study was to obtain and characterize an extract of Libidibia ferrea, ex Caesalpinia ferrea L. and to evaluate its feasibility for formulation as a mouthwash, according to current legislation. For this purpose, pH, sedimentation, density, and stability were evaluated, along with microbiological testing of the extract. The microbiological test was used to verify the presence of Staphylococcus aureus, Pseudomonas aeruginosa, fungi, yeasts, coliforms, and minimum inhibitory concentrations of Streptococcus mutans and Streptococcus oralis strains. Characterization, microbiological evaluation, and minimum inhibitory concentration results were tabulated and described using descriptive statistics. The L. ferrea extract showed stable characteristics, product quality, and antibacterial activity against the microorganisms tested irrespective of experimental time intervals. According to these results, it can be concluded that formulation of a mouthwash containing L. ferrea extract to control biofilm is feasible, but further studies are needed. PMID:24501546

  7. Structure-function relationships governing activity and stability of a DNA alkylation damage repair thermostable protein.

    PubMed

    Perugino, Giuseppe; Miggiano, Riccardo; Serpe, Mario; Vettone, Antonella; Valenti, Anna; Lahiri, Samarpita; Rossi, Franca; Rossi, Mosè; Rizzi, Menico; Ciaramella, Maria

    2015-10-15

    Alkylated DNA-protein alkyltransferases repair alkylated DNA bases, which are among the most common DNA lesions, and are evolutionary conserved, from prokaryotes to higher eukaryotes. The human ortholog, hAGT, is involved in resistance to alkylating chemotherapy drugs. We report here on the alkylated DNA-protein alkyltransferase, SsOGT, from an archaeal species living at high temperature, a condition that enhances the harmful effect of DNA alkylation. The exceptionally high stability of SsOGT gave us the unique opportunity to perform structural and biochemical analysis of a protein of this class in its post-reaction form. This analysis, along with those performed on SsOGT in its ligand-free and DNA-bound forms, provides insights in the structure-function relationships of the protein before, during and after DNA repair, suggesting a molecular basis for DNA recognition, catalytic activity and protein post-reaction fate, and giving hints on the mechanism of alkylation-induced inactivation of this class of proteins.

  8. Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells.

    PubMed

    Kato, Tatsuya; Sato, Nagato; Hayama, Satoshi; Yamabuki, Takumi; Ito, Tomoo; Miyamoto, Masaki; Kondo, Satoshi; Nakamura, Yusuke; Daigo, Yataro

    2007-09-15

    We identified a novel gene HJURP (Holliday junction-recognizing protein) whose activation seemed to play a pivotal role in the immortality of cancer cells. HJURP was considered a possible downstream target for ataxia telangiectasia mutated signaling, and its expression was increased by DNA double-strand breaks (DSB). HJURP was involved in the homologous recombination pathway in the DSB repair process through interaction with hMSH5 and NBS1, which is a part of the MRN protein complex. HJURP formed nuclear foci in cells at S phase and those subjected to DNA damage. In vitro assays implied that HJURP bound directly to the Holliday junction and rDNA arrays. Treatment of cancer cells with small interfering RNA (siRNA) against HJURP caused abnormal chromosomal fusions and led to genomic instability and senescence. In addition, HJURP overexpression was observed in a majority of lung cancers and was associated with poor prognosis as well. We suggest that HJURP is an indispensable factor for chromosomal stability in immortalized cancer cells and is a potential novel therapeutic target for the development of anticancer drugs.

  9. Coke induced stabilization of catalytic activity of silylated ZSM-5 zeolite

    SciTech Connect

    Bhat, Y.S.; Das, J.; Halgeri, A.B.

    1995-08-01

    One of the ways to synthesize dialkylbenzenes is to alkylate monoalkylbenzene with an alkylating agent such as alcohol or olefin over a Friedel-Crafts or zeolite catalyst. The latter is gaining importance as it is an environmentally friendly system. Dialkylbenzenes like paraxylene, para-ethyltoluene, and para-diethylbenzene are sources for various monomers. Several techniques have been reported in the literature to modify the zeolite characteristics in such a way that the dialkylbenzenes formed during monoalkylbenzene alkylation contain more para isomer. Among these techniques, the chemical vapor deposition of silica (CVD) is drawing the attention of researchers. The silylation results in fine control of pore opening size with the silica deposited on the external surface. The internal structure remains unaffected; only the pore entrance is narrowed. It was observed that the silylated zeolite used for synthesizing para-dialkylbenzene by monoalkylbenzene alkylation deactivates with increased time on stream. This paper deals with the coke-induced stabilization of catalytic activity of ZSM-5 zeolite during alkylation of ethylbenzene with ethanol.

  10. Nitric oxide stress and activation of AMP-activated protein kinase impair β-cell sarcoendoplasmic reticulum calcium ATPase 2b activity and protein stability.

    PubMed

    Tong, X; Kono, T; Evans-Molina, C

    2015-06-18

    The sarcoendoplasmic reticulum Ca(2+) ATPase 2b (SERCA2b) pump maintains a steep Ca(2+) concentration gradient between the cytosol and ER lumen in the pancreatic β-cell, and the integrity of this gradient has a central role in regulated insulin production and secretion, maintenance of ER function and β-cell survival. We have previously demonstrated loss of β-cell SERCA2b expression under diabetic conditions. To define the mechanisms underlying this, INS-1 cells and rat islets were treated with the proinflammatory cytokine interleukin-1β (IL-1β) combined with or without cycloheximide or actinomycin D. IL-1β treatment led to increased inducible nitric oxide synthase (iNOS) gene and protein expression, which occurred concurrently with the activation of AMP-activated protein kinase (AMPK). IL-1β led to decreased SERCA2b mRNA and protein expression, whereas time-course experiments revealed a reduction in protein half-life with no change in mRNA stability. Moreover, SERCA2b protein but not mRNA levels were rescued by treatment with the NOS inhibitor l-NMMA (NG-monomethyl L-arginine), whereas the NO donor SNAP (S-nitroso-N-acetyl-D,L-penicillamine) and the AMPK activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) recapitulated the effects of IL-1β on SERCA2b protein stability. Similarly, IL-1β-induced reductions in SERCA2b expression were rescued by pharmacological inhibition of AMPK with compound C or by transduction of a dominant-negative form of AMPK, whereas β-cell death was prevented in parallel. Finally, to determine a functional relationship between NO and AMPK signaling and SERCA2b activity, fura-2/AM (fura-2-acetoxymethylester) Ca(2+) imaging experiments were performed in INS-1 cells. Consistent with observed changes in SERCA2b expression, IL-1β, SNAP and AICAR increased cytosolic Ca(2+) and decreased ER Ca(2+) levels, suggesting congruent modulation of SERCA activity under these conditions. In aggregate, these results show that SERCA2b

  11. Green Synthesis of AgNPs Stabilized with biowaste and their antimicrobial activities

    PubMed Central

    Jasuja, Nakuleshwar Dut; Gupta, Deepak Kumar; Reza, Mohtashim; Joshi, Suresh C.

    2014-01-01

    In the present study, rapid reduction and stabilization of Ag+ ions with different NaOH molar concentration (0.5 mM, 1.0 mM and 1.5 mM) has been carried out in the aqueous solution of silver nitrate by the bio waste peel extract of P.granatum. Generally, chemical methods used for the synthesis of AgNPs are quite toxic, flammable and have adverse effect in medical application but green synthesis is a better option due to eco-friendliness, non-toxicity and safe for human. Stable AgNPs were synthesized by treating 90 mL aqueous solution of 2 mM AgNO3 with the 5 mL plant peels extract (0.4% w/v) at different NaOH concentration (5 mL). The synthesized AgNPs were characterized by UV-Vis spectroscopy, TEM and SEM. Further, antimicrobial activities of AgNPs were performed on Gram positive i.e. Staphylococcus aureus, Bacillus subtilius and Gram negative i.e. E. coli, Pseudomonas aeruginosa bacteria. The AgNPs synthesized at 1.5 mM NaOH concentration had shown maximum zone of inhibition (ZOI) i.e. 49 ± 0.64 in E. coli, whereas Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilius had shown 40 ± 0.29 mm, 28 ± 0.13 and 42 ± 0.49 mm ZOI respectively. The MIC value of 30 μg/mL observed for E. coli Whereas, Staphylococcus aureus, Bacillus subtilius and Pseudomonas aeruginosa had shown 45 μg/mL, 38 μg/mL, 35 μg/mL respectively. The study revealed that AgNPs had shown significant antimicrobial activity as compared to Streptomycin. PMID:25763037

  12. Evaluation of functional stability of quercetin as a raw material and in different topical formulations by its antilipoperoxidative activity.

    PubMed

    Casagrande, Rúbia; Georgetti, Sandra R; Verri, Waldiceu A; Jabor, José R; Santos, Antonio C; Fonseca, Maria J V

    2006-03-01

    The present study evaluates the antioxidant activity of the flavonol quercetin, and its functional stability as a raw material and when added in formulations. The iron-chelating activity was determined using the bathophenanthroline assay, and the functional stability was evaluated with the antilipoperoxidative assay. Raw material presented concentration-dependent antilipoperoxidative and iron-chelating activities. The initial antilipoperoxidative activity of the raw material, cream and gel-cream were 63%, 78%, and 69%, respectively. There was no detectable loss of activity during 182 days (6 months) of storage at all tested temperatures (4°C, room temperature [RT], 37°C, and 45°C) for the raw material. Considering the method variability of 10%, activity loss greater than 10% for nonionic cream was detected after 126 days at 4°C (20.1%), decreasing thereafter to 22.2% after 182 days. At 45°C, the loss of activity started after 182 days (13.2%). For the anionic gel-cream, activity loss started after 84 days (28.4%, 45°C), decreasing after 182 days to 40.3% at 45°C. At 37°C, activity loss was detected after 182 days (12%). In conclusion, the results suggest that the activity of quercetin depends on iron chelation, and its posible usefulness as a topical antioxidant to prevent oxidative stress-induced skin damage depends on maintaining its antilipoperoxidative activity stored at RT, which avoids special storage conditions.

  13. PPAR-γ agonist stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination

    SciTech Connect

    Sun, Yan; Zheng, Bin; Zhang, Xin-hua; He, Ming; Guo, Zong-wei; Wen, Jin-kun

    2014-01-10

    Highlights: •PPAR-γ increases KLF4 protein level but does not influence KLF4 gene transcription. •The increase of KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. •Pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination. -- Abstract: Peroxisome proliferator activated receptor γ (PPAR-γ) plays important roles in cell cycle regulation, differentiation and apoptosis. Krüppel-like factor 4 (KLF4) modulates vascular smooth muscle cell (VSMC) phenotype. Both KLF4 and PPAR-γ are involved in VSMC proliferation and differentiation. However, the actual relationship between KLF4 and PPAR-γ in VSMCs is not clear. In this study, we found that PPAR-γ agonist pioglitazone increases KLF4 protein levels but does not influence KLF4 gene transcription. PPAR-γ overexpression increases, while PPAR-γ knockdown reduces KLF4 expression, suggesting that the increase in KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. Further study showed that pioglitazone enhances KLF4 protein stability through reducing KLF4 ubiquitination. Furthermore, we demonstrated that stabilization of KLF4 by pioglitazone was related to the activation of Akt signaling pathway. Taken together, we revealed that PPAR-γ agonist pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination, providing further insights into PPAR-γ and KLF4 in regulating each other’s expression in VSMCs.

  14. Toward assessing the effects of bank stabilization activities on wildlife communities of the upper Yellowstone River, U.S.A

    USGS Publications Warehouse

    Skagen, Susan K.; Muths, Erin; Adams, Rod D.

    2001-01-01

    Four amphibian species, three reptile species, and one mammal species are highly vulnerable to bank stabilization activities. Tiger salamanders, boreal toads, western chorus frogs, spotted frogs, rubber boas, racers, western garter snakes, and water shrews are expected to respond primarily to alterations in stream and bank morphology and the loss of still water for amphibian breeding.

  15. Antibacterial Properties and Mechanism of Activity of a Novel Silver-Stabilized Hydrogen Peroxide

    PubMed Central

    Martin, Nancy L.; Bass, Paul; Liss, Steven N.

    2015-01-01

    Huwa-San peroxide (hydrogen peroxide; HSP) is a NSF Standard 60 (maximum 8mg/L-1) new generation peroxide stabilized with ionic silver suitable for continuous disinfection of potable water. Experiments were undertaken to examine the mechanism of HSP against planktonic and biofilm cultures of indicator bacterial strains. Contact/kill time (CT) relationships that achieve effective control were explored to determine the potential utility in primary disinfection. Inhibitory assays were conducted using both nutrient rich media and a medium based on synthetic wastewater. Assays were compared for exposures to three disinfectants (HSP, laboratory grade hydrogen peroxide (HP) and sodium hypochlorite) at concentrations of 20 ppm (therefore at 2.5 and 5 times the NSF limit for HP and sodium hypochlorite, respectively) and at pH 7.0 and 8.5 in dechlorinated tap water. HSP was found to be more or equally effective as hypochlorite or HP. Results from CT assays comparing HSP and HP at different bacterial concentrations with neutralization of residual peroxide with catalase suggested that at a high bacterial concentration HSP, but not HP, was protected from catalase degradation possibly through sequestration by bacterial cells. Consistent with this hypothesis, at a low bacterial cell density residual HSP was more effectively neutralized as less HSP was associated with bacteria and therefore accessible to catalase. Silver in HSP may facilitate this association through electrostatic interactions at the cell surface. This was supported by experiments where the addition of mono (K+) and divalent (Ca+2) cations (0.005-0.05M) reduced the killing efficacy of HSP but not HP. Experiments designed to distinguish any inhibitory effect of silver from that of peroxide in HSP were carried out by monitoring the metabolic activity of established P. aeruginosa PAO1 biofilms. Concentrations of 70-500 ppm HSP had a pronounced effect on metabolic activity while the equivalent concentrations of ionic

  16. Glycosylated a-lactalbumin-based nanocomplex for curcumin: physicochemical stability and DPPH-scavenging activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low stability at high salt concentrations, iso-electric point, and high temperature restricted the application of proteins as stabilizers in nutraceutical encapsulation. Protein-polysaccharide conjugates made with Maillard reaction may be better alternatives. In this study, the characteristics of cu...

  17. Stability and antioxidant activity of polyphenols in extracts of Myrtus communis L. berries used for the preparation of myrtle liqueur.

    PubMed

    Montoro, Paola; Tuberoso, Carlo I G; Piacente, Sonia; Perrone, Angela; De Feo, Vincenzo; Cabras, Paolo; Pizza, Cosimo

    2006-08-28

    Flavonoids and anthocyanins in berry extracts from Myrtus communis, prepared by following a typical Sardinia myrtle liqueur recipe, were identified by HPLC coupled with Electrospray Mass Spectrometry and quantified by HPLC coupled with Ultraviolet/Visible Detection in order to evaluate the stability of the extracts during 1 year of storage. Antioxidant activity was measured by using TEAC assay, and the free-radical scavenging activity was monitored during time of the stability evaluation. Anthocyanins have found to be the most instable compounds, but a considerable instability was observed also for flavonoids, suggesting the use of extracts not over 3 months from their preparation. The myrtle extract showed interesting free-radical scavenging activity. Antioxidant activity was preserved in 3 months.

  18. The E3 ubiquitin ligase TRIM23 regulates adipocyte differentiation via stabilization of the adipogenic activator PPARγ.

    PubMed

    Watanabe, Masashi; Takahashi, Hidehisa; Saeki, Yasushi; Ozaki, Takashi; Itoh, Shihori; Suzuki, Masanobu; Mizushima, Wataru; Tanaka, Keiji; Hatakeyama, Shigetsugu

    2015-04-23

    Adipocyte differentiation is a strictly controlled process regulated by a series of transcriptional activators. Adipogenic signals activate early adipogenic activators and facilitate the transient formation of early enhanceosomes at target genes. These enhancer regions are subsequently inherited by late enhanceosomes. PPARγ is one of the late adipogenic activators and is known as a master regulator of adipogenesis. However, the factors that regulate PPARγ expression remain to be elucidated. Here, we show that a novel ubiquitin E3 ligase, tripartite motif protein 23 (TRIM23), stabilizes PPARγ protein and mediates atypical polyubiquitin conjugation. TRIM23 knockdown caused a marked decrease in PPARγ protein abundance during preadipocyte differentiation, resulting in a severe defect in late adipogenic differentiation, whereas it did not affect the formation of early enhanceosomes. Our results suggest that TRIM23 plays a critical role in the switching from early to late adipogenic enhanceosomes by stabilizing PPARγ protein possibly via atypical polyubiquitin conjugation.

  19. Quantum chemistry calculation-aided structural optimization of combretastatin A-4-like tubulin polymerization inhibitors: improved stability and biological activity.

    PubMed

    Jiang, Junhang; Zheng, Canhui; Zhu, Kongkai; Liu, Jia; Sun, Nannan; Wang, Chongqing; Jiang, Hualiang; Zhu, Ju; Luo, Cheng; Zhou, Youjun

    2015-03-12

    A potent combretastatin A-4 (CA-4) like tubulin polymerization inhibitor 22b was found with strong antitumor activity previously. However, it easily undergoes cis-trans isomerization under natural light, and the resulting decrease in activity limits its further applications. In this study, we used quantum chemistry calculations to explore the molecular basis of its instability. Aided by the calculations, two rounds of structural optimization of 22b were conducted. Accelerated quantitative light stability testing confirmed that the stability of these designed compounds was significantly improved as predicted. Among them, compounds 1 and 3b displayed more potent inhibitory activity on tumor cell growth than 22b. In addition, the potent in vivo antitumor activity of compound 1 was confirmed. Quantum chemistry calculations were used in the optimization of stilbene-like molecules, providing new insight into stilbenoid optimization and important implications for the future development of novel CA-4-like tubulin polymerization inhibitors.

  20. Stability, antimicrobial activity, and effect of nisin on the physico-chemical properties of fruit juices.

    PubMed

    de Oliveira Junior, Adelson Alves; de Araújo Couto, Hyrla Grazielle Silva; Barbosa, Ana Andréa Teixeira; Carnelossi, Marcelo Augusto Guitierrez; de Moura, Tatiana Rodrigues

    2015-10-15

    Heat processing is the most commonly used hurdle for inactivating microorganisms in fruit juices. However, this preservation method could interfere with the organoleptic characteristics of the product. Alternative methods have been proposed and bacteriocins such as nisin are potential candidates. However, the approval of bacteriocins as food additives is limited, especially in foods from vegetal origin. We aimed to verify the stability, the effect on physico-chemical properties, and the antimicrobial activity of nisin in different fruit juices. Nisin remained stable in fruit juices (cashew, soursop, peach, mango, passion fruit, orange, guava, and cupuassu) for at least 30 days at room or refrigerated temperature and did not cause any significant alterations in the physico-chemical characteristics of the juices. Besides, nisin favored the preservation of vitamin C content in juices. The antimicrobial activity of nisin was tested against Alicyclobacillus acidoterrestris, Bacillus cereus, Staphylococcus aureus and Listeria monocytogenes in cashew, soursop, peach, and mango juices. Nisin caused a 4-log reduction in viable cells of A. acidoterrestris in soursop, peach, and mango juices after 8h of incubation, and no viable cells were detected in cashew juices. After 24h of incubation in the presence of nisin, no viable cells were detected, independently of the juices. To S. aureus, at 24h of incubation in the presence of nisin, viable cells were only detected in mango juices, representing a 4-log decrease as compared with the control treatment. The number of viable cells of B. cereus at 24h of incubation in the presence of nisin represented at least a 4-log decrease compared to the control treatment. When the antimicrobial activity of nisin was tested against L. monocytogenes in cashew and soursop juices, no reduction in the viable cell number was observed compared to the control treatment after 24h of incubation. Viable cells were four and six times less than in the

  1. Alteration/deficiency in activation-3 (Ada3) plays a critical role in maintaining genomic stability

    PubMed Central

    Mirza, Sameer; Katafiasz, Bryan J.; Kumar, Rakesh; Wang, Jun; Mohibi, Shakur; Jain, Smrati; Gurumurthy, Channabasavaiah Basavaraju; Pandita, Tej K.; Dave, Bhavana J.; Band, Hamid; Band, Vimla

    2012-01-01

    Cell cycle regulation and DNA repair following damage are essential for maintaining genome integrity. DNA damage activates checkpoints in order to repair damaged DNA prior to exit to the next phase of cell cycle. Recently, we have shown the role of Ada3, a component of various histone acetyltransferase complexes, in cell cycle regulation, and loss of Ada3 results in mouse embryonic lethality. Here, we used adenovirus-Cre-mediated Ada3 deletion in Ada3fl/fl mouse embryonic fibroblasts (MEFs) to assess the role of Ada3 in DNA damage response following exposure to ionizing radiation (IR). We report that Ada3 depletion was associated with increased levels of phospho-ATM (pATM), γH2AX, phospho-53BP1 (p53BP1) and phospho-RAD51 (pRAD51) in untreated cells; however, radiation response was intact in Ada3−/− cells. Notably, Ada3−/− cells exhibited a significant delay in disappearance of DNA damage foci for several critical proteins involved in the DNA repair process. Significantly, loss of Ada3 led to enhanced chromosomal aberrations, such as chromosome breaks, fragments, deletions and translocations, which further increased upon DNA damage. Notably, the total numbers of aberrations were more clearly observed in S-phase, as compared with G₁ or G₂ phases of cell cycle with IR. Lastly, comparison of DNA damage in Ada3fl/fl and Ada3−/− cells confirmed higher residual DNA damage in Ada3−/− cells, underscoring a critical role of Ada3 in the DNA repair process. Taken together, these findings provide evidence for a novel role for Ada3 in maintenance of the DNA repair process and genomic stability. PMID:23095635

  2. Activity and stability of uricase from Lactobacillus plantarum immobilizated on natural zeolite for uric acid biosensor.

    PubMed

    Iswantini, Dyah; Nurhidayat, Novik; Trivadila; Widiyatmoko, Okik

    2014-01-15

    Determination of uric acid concentration in human urine and blood is needed to diagnose several diseases, especially the occurrence of kidney disease in gout patients. Therefore, it is needed to develop a simple and inexpensive method for uric acid detection. The purpose of the research was to observe the use of Indonesian microbe that was immobilized on natural zeolite as a source of uricase for uric acid biosensor. Selection of mediators and determination of optimum condition measurement, the stability and kinetic properties of L. plantarum uricase were performed using carbon paste electrode. Cyclic voltammetry was employed to investigate the catalytic behavior of the biosensor. The result indicated that the best mediator for measurement of L. plantarum uricase activity was Qo (2,3-dimethoxy-5-methyl-1,4 benzoquinone). Optimum conditions for immobilization of L. plantarum uricase on zeolite were obtained at pH 7.6, with temperature of 28 degrees C, using uric acid concentration of 0.015 mM and zeolite mass at 135 mg K(M) and V(Max) of L. plantarum uricase obtained from Lineweaver-burk equation for the immobilization uricase on zeolite were 8.6728 x 10(-4) mM and 6.3052 mM, respectively. K(M) value of L. plantarum uricase directly immobilized onto the electrode surface was smaller than K(M) value of L. plantarum uricase immobilized on zeolite. The smaller K(M) value shows the higher affinity toward the substrate. The Electrode when kept at 10 degrees C was stable until 6 days, however the immobilized electrode on zeolite was stable until 18 days. Therefore, Indonesian L. plantarum could be used as a uric acid biosensor.

  3. Evidence that the amino acid residue Cys117 of chloroplastic monodehydroascorbate reductase is involved in its activity and structural stability.

    PubMed

    Li, Feng; Wu, Qing-Yun; Sun, Yan-Li; Ma, Na-Na; Wang, Xiao-Yun; Meng, Qing-Wei

    2010-04-01

    Monodehydroascorbate reductase (MDAR; EC 1.6.5.4) is crucial for AsA regeneration and essential for maintaining the reduced pool of AsA. And the amino acid residue C117 of chloroplastic MDAR is the conserved cysteine residue in MDAR isoforms. A series mutation of conserved amino acid residue cysteine117 (C117) was constructed to investigate its role in MDAR structural stability and activity. Our study revealed that mutation in this conserved residue could cause pronounced loss of activity and conformational changes. Spectroscopic experiments indicated that these mutations influenced transition from the molten globule intermediate to the native state in folding process. These results suggested that amino acid residue C117 played a relatively important role in keeping MDAR structural stability and activity.

  4. Tumor suppressor protein DAB2IP participates in chromosomal stability maintenance through activating spindle assembly checkpoint and stabilizing kinetochore-microtubule attachments

    PubMed Central

    Yu, Lan; Shang, Zeng-Fu; Abdisalaam, Salim; Lee, Kyung-Jong; Gupta, Arun; Hsieh, Jer-Tsong; Asaithamby, Aroumougame; Chen, Benjamin P.C.; Saha, Debabrata

    2016-01-01

    Defects in kinetochore-microtubule (KT-MT) attachment and the spindle assembly checkpoint (SAC) during cell division are strongly associated with chromosomal instability (CIN). CIN has been linked to carcinogenesis, metastasis, poor prognosis and resistance to cancer therapy. We previously reported that the DAB2IP is a tumor suppressor, and that loss of DAB2IP is often detected in advanced prostate cancer (PCa) and is indicative of poor prognosis. Here, we report that the loss of DAB2IP results in impaired KT-MT attachment, compromised SAC and aberrant chromosomal segregation. We discovered that DAB2IP directly interacts with Plk1 and its loss inhibits Plk1 kinase activity, thereby impairing Plk1-mediated BubR1 phosphorylation. Loss of DAB2IP decreases the localization of BubR1 at the kinetochore during mitosis progression. In addition, the reconstitution of DAB2IP enhances the sensitivity of PCa cells to microtubule stabilizing drugs (paclitaxel, docetaxel) and Plk1 inhibitor (BI2536). Our findings demonstrate a novel function of DAB2IP in the maintenance of KT-MT structure and SAC regulation during mitosis which is essential for chromosomal stability. PMID:27568005

  5. Comparison of electromyographic activities of lumbar iliocostalis and lumbar multifidus muscles during stabilization exercises in prone, quadruped, and sitting positions

    PubMed Central

    Kelly, Marie; Jacobs, Dee; Wooten, Mary E.; Edeer, Ayse Ozcan

    2016-01-01

    [Purpose] The purposes of this study were: 1) describe a hierarchy of electromyographic activity production, using percentage maximum voluntary contraction of lumbar iliocostalis and lumbar multifidus muscles during prone, quadruped and sitting exercises; and 2) identify optimal recruitment exercises for both lumbar iliocostalis as a global multi-segmental stabilizer and lumbar multifidus as a segmental stabilizer. [Subjects] Twelve healthy volunteers (six male and six female) aged 24 to 45 participated. [Methods] Surface electromyographic activity data were collected bilaterally from lumbar iliocostalis and lumbar multifidus muscles during exercises. [Results] Two-way ANOVA showed that prone extension, and prone alternate arm and leg lifting exercises produce a statistically significant difference in percent maximum voluntary contraction of lumbar iliocostalis and lumbar multifidus bilaterally compared to other exercises. Quadruped alternate arm and leg lifting exercises produce greater activity in lumbar multifidus muscle than sitting exercises [Conclusion] Prone exercises generate the greatest electromyographic activity and may be the most effective exercises for strengthening both lumbar iliocostalis and lumbar multifidus muscles. Quadruped alternate arm and leg lifting produces electromyographic activity at the recommended percent maximum voluntary contraction for training the lumbar multifidus in its role as a segmental stabilizer and is an effective training exercise for this goal. PMID:27821968

  6. Surface-active monomer as a stabilizer for polyurea nanocapsules synthesized via interfacial polyaddition in inverse miniemulsion.

    PubMed

    Rosenbauer, Eva-Maria; Landfester, Katharina; Musyanovych, Anna

    2009-10-20

    A surface-active monomer, polyisobutylene-succinimide pentamine (Lubrizol U), was used as a stabilizer for synthesizing polyurea nanocapsules with aqueous core via polyaddition at inverse miniemulsion droplet interface. Because of the presence of amine groups in the Lubrizol molecule, it is covalently incorporated into the polymeric interfacial layer after reaction, resulting in more compact (less permeable) capsule shell. The influence of the stabilizer and the monomer concentration on the shell thickness, colloidal stability, average capsule size, and capsule size polydispersity were examined in detail. Different materials, such as a water-soluble fluorescent dye and aqueous dispersion of magnetite nanoparticles with 10 nm in size, were used as inner phase of the polyurea capsules. The encapsulation efficiency was studied using fluorescein as a marker. As an example for biomedical application, the fluorescein-containing capsules were utilized in cell uptake experiments and visualized using fluorescence microscopy.

  7. Cooperative hydration effect causes thermal unfolding of proteins and water activity plays a key role in protein stability in solutions.

    PubMed

    Miyawaki, Osato; Dozen, Michiko; Hirota, Kaede

    2016-08-01

    The protein unfolding process observed in a narrow temperature range was clearly explained by evaluating the small difference in the enthalpy of hydrogen-bonding between amino acid residues and the hydration of amino acid residue separately. In aqueous solutions, the effect of cosolute on the protein stability is primarily dependent on water activity, aw, the role of which has been long neglected in the literature. The effect of aw on protein stability works as a power law so that a small change in aw is amplified substantially through the cooperative hydration effect. In the present approach, the role of hydrophobic interaction stands behind. This affects protein stability indirectly through the change in solution structure caused by the existence of cosolute.

  8. Frequency stabilization of the zero-phonon line of a quantum dot via phonon-assisted active feedback

    SciTech Connect

    Hansom, Jack; Schulte, Carsten H. H.; Matthiesen, Clemens; Stanley, Megan J.; Atatüre, Mete

    2014-10-27

    We report on the feedback stabilization of the zero-phonon emission frequency of a single InAs quantum dot. The spectral separation of the phonon-assisted component of the resonance fluorescence provides a probe of the detuning between the zero-phonon transition and the resonant driving laser. Using this probe in combination with active feedback, we stabilize the zero-phonon transition frequency against environmental fluctuations. This protocol reduces the zero-phonon fluorescence intensity noise by a factor of 22 by correcting for environmental noise with a bandwidth of 191 Hz, limited by the experimental collection efficiency. The associated sub-Hz fluctuations in the zero-phonon central frequency are reduced by a factor of 7. This technique provides a means of stabilizing the quantum dot emission frequency without requiring access to the zero-phonon emission.

  9. SN-38-cyclodextrin complexation and its influence on the solubility, stability, and in vitro anticancer activity against ovarian cancer.

    PubMed

    Vangara, Kiran Kumar; Ali, Hamed Ismail; Lu, Dai; Liu, Jingbo Louise; Kolluru, Srikanth; Palakurthi, Srinath

    2014-04-01

    SN-38, an active metabolite of irinotecan, is up to 1,000-fold more potent than irinotecan. But the clinical use of SN-38 is limited by its extreme hydrophobicity and instability at physiological pH. To enhance solubility and stability, SN-38 was complexed with different cyclodextrins (CDs), namely, sodium sulfobutylether β-cyclodextrin (SBEβCD), hydroxypropyl β-cyclodextrin, randomly methylated β-cyclodextrin, and methyl β-cyclodextrin, and their influence on SN-38 solubility, stability, and in vitro cytotoxicity was studied against ovarian cancer cell lines (A2780 and 2008). Phase solubility studies were conducted to understand the pattern of SN-38 solubilization. SN-38-βCD complexes were characterized by differential scanning calorimetry (DSC), X-ray powder diffraction analysis (XRPD), and Fourier transform infrared (FTIR). Stability of SN-38-SBEβCD complex in pH 7.4 phosphate-buffered saline was evaluated and compared against free SN-38. Phase solubility studies revealed that SN-38 solubility increased linearly as a function of CD concentration and the linearity was characteristic of an AP-type system. Aqueous solubility of SN-38 was enhanced by about 30-1,400 times by CD complexation. DSC, XRPD, and FTIR studies confirmed the formation of inclusion complexes, and stability studies revealed that cyclodextrin complexation significantly increased the hydrolytic stability of SN-38 at physiological pH 7.4. Cytotoxicity of SN-38-SBEβCD complex was significantly higher than SN-38 and irinotecan in both A2780 and 2008 cell lines. Results suggest that SBEβCD encapsulated SN-38 deep into the cavity forming stable inclusion complex and as a result increased the solubility, stability, and cytotoxicity of SN-38. It may be concluded that preparation of inclusion complexes with SBEβCD is a suitable approach to overcome the solubility and stability problems of SN-38 for future clinical applications.

  10. Stability of soil microbial structure and activity depends on microbial diversity.

    PubMed

    Tardy, Vincent; Mathieu, Olivier; Lévêque, Jean; Terrat, Sébastien; Chabbi, Abad; Lemanceau, Philippe; Ranjard, Lionel; Maron, Pierre-Alain

    2014-04-01

    Despite the central role of microbes in soil processes, empirical evidence concerning the effect of their diversity on soil stability remains controversial. Here, we addressed the ecological insurance hypothesis by examining the stability of microbial communities along a gradient of soil microbial diversity in response to mercury pollution and heat stress. Diversity was manipulated by dilution extinction approach. Structural and functional stabilities of microbial communities were assessed from patterns of genetic structure and soil respiration after the stress. Dilution led to the establishment of a consistent diversity gradient, as revealed by 454 sequencing of ribosomal genes. Diversity stability was enhanced in species-rich communities whatever the stress whereas functional stability was improved with increasing diversity after heat stress, but not after mercury pollution. This discrepancy implies that the relevance of ecological insurance for soil microbial communities might depend on the type of stress. Our results also suggest that the significance of microbial diversity for soil functional stability might increase with available soil resources. This could have strong repercussions in the current 'global changes' context because it suggests that the combined increased frequencies of extreme climatic events, nutrient loading and biotic exploitation may amplify the functional consequences of diversity decrease.

  11. Hot melt extrusion for amorphous solid dispersions: temperature and moisture activated drug-polymer interactions for enhanced stability.

    PubMed

    Sarode, Ashish L; Sandhu, Harpreet; Shah, Navnit; Malick, Waseem; Zia, Hossein

    2013-10-07

    Hot melt extrudates (HMEs) of indomethacin (IND) with Eudragit EPO and Kollidon VA 64 and those of itraconazole (ITZ) with HPMCAS-LF and Kollidon VA 64 were manufactured using a Leistritz twin screw extruder. The milled HMEs were stored at controlled temperature and humidity conditions. The samples were collected after specified time periods for 3 months. The stability of amorphous HMEs was assessed using moisture analysis, thermal evaluation, powder X-ray diffraction, FTIR, HPLC, and dissolution study. In general, the moisture content increased with time, temperature, and humidity levels. Amorphous ITZ was physically unstable at very high temperature and humidity levels, and its recrystallization was detected in the HMEs manufactured using Kollidon VA 64. Although physical stability of IND was better sustained by both Eudragit EPO and Kollidon VA 64, chemical degradation of the drug was identified in the stability samples of HMEs with Eudragit EPO stored at 50 °C. The dissolution rates and the supersaturation levels were significantly decreased for the stability samples in which crystallization was detected. Interestingly, the supersaturation was improved for the stability samples of IND:Eudragit EPO and ITZ:HPMCAS-LF, in which no physical or chemical instability was observed. This enhancement in supersaturation was attributed to the temperature and moisture activated electrostatic interactions between the drugs and their counterionic polymers.

  12. SUMF1 mutations affecting stability and activity of formylglycine generating enzyme predict clinical outcome in multiple sulfatase deficiency.

    PubMed

    Schlotawa, Lars; Ennemann, Eva Charlotte; Radhakrishnan, Karthikeyan; Schmidt, Bernhard; Chakrapani, Anupam; Christen, Hans-Jürgen; Moser, Hugo; Steinmann, Beat; Dierks, Thomas; Gärtner, Jutta

    2011-03-01

    Multiple Sulfatase Deficiency (MSD) is caused by mutations in the sulfatase-modifying factor 1 gene encoding the formylglycine-generating enzyme (FGE). FGE post translationally activates all newly synthesized sulfatases by generating the catalytic residue formylglycine. Impaired FGE function leads to reduced sulfatase activities. Patients display combined clinical symptoms of single sulfatase deficiencies. For ten MSD patients, we determined the clinical phenotype, FGE expression, localization and stability, as well as residual FGE and sulfatase activities. A neonatal, very severe clinical phenotype resulted from a combination of two nonsense mutations leading to almost fully abrogated FGE activity, highly unstable FGE protein and nearly undetectable sulfatase activities. A late infantile mild phenotype resulted from FGE G263V leading to unstable protein but high residual FGE activity. Other missense mutations resulted in a late infantile severe phenotype because of unstable protein with low residual FGE activity. Patients with identical mutations displayed comparable clinical phenotypes. These data confirm the hypothesis that the phenotypic outcome in MSD depends on both residual FGE activity as well as protein stability. Predicting the clinical course in case of molecularly characterized mutations seems feasible, which will be helpful for genetic counseling and developing therapeutic strategies aiming at enhancement of FGE.

  13. Stabilization of the Activated hERG Channel Voltage Sensor by Depolarization Involves the S4-S5 Linker.

    PubMed

    Thouta, Samrat; Hull, Christina M; Shi, Yu Patrick; Sergeev, Valentine; Young, James; Cheng, Yen M; Claydon, Thomas W

    2017-01-24

    Slow deactivation of hERG channels is critical for preventing cardiac arrhythmia yet the mechanistic basis for the slow gating transition is unclear. Here, we characterized the temporal sequence of events leading to voltage sensor stabilization upon membrane depolarization. Progressive increase in step depolarization duration slowed voltage-sensor return in a biphasic manner (τfast = 34 ms, τslow = 2.5 s). The faster phase of voltage-sensor return slowing correlated with the kinetics of pore opening. The slower component occurred over durations that exceeded channel activation and was consistent with voltage sensor relaxation. The S4-S5 linker mutation, G546L, impeded the faster phase of voltage sensor stabilization without attenuating the slower phase, suggesting that the S4-S5 linker is important for communications between the pore gate and the voltage sensor during deactivation. These data also demonstrate that the mechanisms of pore gate-opening-induced and relaxation-induced voltage-sensor stabilization are separable. Deletion of the distal N-terminus (Δ2-135) accelerated off-gating current, but did not influence the relative contribution of either mechanism of stabilization of the voltage sensor. Lastly, we characterized mode-shift behavior in hERG channels, which results from stabilization of activated channel states. The apparent mode-shift depended greatly on recording conditions. By measuring slow activation and deactivation at steady state we found the "true" mode-shift to be ∼15 mV. Interestingly, the "true" mode-shift of gating currents was ∼40 mV, much greater than that of the pore gate. This demonstrates that voltage sensor return is less energetically favorable upon repolarization than pore gate closure. We interpret this to indicate that stabilization of the activated voltage sensor limits the return of hERG channels to rest. The data suggest that this stabilization occurs as a result of reconfiguration of the pore gate upon opening by

  14. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice.

    PubMed

    Liu, Susan B; Ikenaga, Naoki; Peng, Zhen-Wei; Sverdlov, Deanna Y; Greenstein, Andrew; Smith, Victoria; Schuppan, Detlef; Popov, Yury

    2016-04-01

    Collagen stabilization through irreversible cross-linking is thought to promote hepatic fibrosis progression and limit its reversibility. However, the mechanism of this process remains poorly defined. We studied the functional contribution of lysyl oxidase (LOX) to collagen stabilization and hepatic fibrosis progression/reversalin vivousing chronic administration of irreversible LOX inhibitor β-aminopropionitrile (BAPN, or vehicle as control) in C57Bl/6J mice with carbon tetrachloride (CCl4)-induced fibrosis. Fibrotic matrix stability was directly assessed using a stepwise collagen extraction assay and fibrotic septae morphometry. Liver cells and fibrosis were studied by histologic, biochemical methods and quantitative real-time reverse-transcription PCR. During fibrosis progression, BAPN administration suppressed accumulation of cross-linked collagens, and fibrotic septae showed widening and collagen fibrils splitting, reminiscent of remodeling signs observed during fibrosis reversal. LOX inhibition attenuated hepatic stellate cell activation markers and promoted F4/80-positive scar-associated macrophage infiltration without an increase in liver injury. In reversal experiments, BAPN-treated fibrotic mice demonstrated accelerated fibrosis reversal after CCl4withdrawal. Our findings demonstrate for the first time that LOX contributes significantly to collagen stabilization in liver fibrosis, promotes fibrogenic activation of attenuated hepatic stellate cells, and limits fibrosis reversal. Our data support the concept of pharmacologic targeting of LOX pathway to inhibit liver fibrosis and promote its resolution.-Liu, S. B., Ikenaga, N., Peng, Z.-W., Sverdlov, D. Y., Greenstein, A., Smith, V., Schuppan, D., Popov, Y. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice.

  15. Characterization of the Activity and Stability of Amylase from Saliva and Detergent: Laboratory Practicals for Studying the Activity and Stability of Amylase from Saliva and Various Commercial Detergents

    ERIC Educational Resources Information Center

    Valls, Cristina; Rojas, Cristina; Pujadas, Gerard; Garcia-Vallve, Santi; Mulero, Miquel

    2012-01-01

    This article presents two integrated laboratory exercises intended to show students the role of [alpha]-amylases (AAMYs) in saliva and detergents. These laboratory practicals are based on the determination of the enzymatic activity of amylase from saliva and different detergents using the Phadebas test (quantitative) and the Lugol test…

  16. Identification of two forms of Q{beta} replicase with different thermal stabilities but identical RNA replication activity.

    PubMed

    Ichihashi, Norikazu; Matsuura, Tomoaki; Hosoda, Kazufumi; Yomo, Tetsuya

    2010-11-26

    The enzyme Qβ replicase is an RNA-dependent RNA polymerase, which plays a central role in infection by the simple single-stranded RNA virus bacteriophage Qβ. This enzyme has been used in a number of applications because of its unique activity in amplifying RNA from an RNA template. Determination of the thermal stability of Qβ replicase is important to gain an understanding of its function and potential applications, but data reported to date have been contradictory. Here, we provide evidence that these previous inconsistencies were due to the heterogeneous forms of the replicase with different stabilities. We purified two forms of replicase expressed in Escherichia coli, which differed in their thermal stability but showed identical RNA replication activity. Furthermore, we found that the replicase undergoes conversion between these forms due to oxidation, and the Cys-533 residue in the catalytic β subunit and Cys-82 residue in the EF-Tu subunit of the replicase are essential prerequisites for this conversion to occur. These results strongly suggest that the thermal stable replicase contains the intersubunit disulfide bond between these cysteines. The established strategies for isolating and purifying a thermally stable replicase should increase the usefulness of Qβ replicase in various applications, and the data regarding thermal stability obtained in this study may yield insight into the precise mechanism of infection by bacteriophage Qβ.

  17. The effects of R683S (G) genetic mutations on the JAK2 activity, structure and stability.

    PubMed

    Li, Feng; Guo, Hua-Yan; Wang, Man; Geng, Hong-Li; Bian, Mei-Ru; Cao, Jiang; Chen, Chong; Zeng, Ling-Yu; Wang, Xiao-Yun; Wu, Qing-Yun

    2013-09-01

    Janus kinase 2 (JAK2) is an important mediator of cytokine receptor signaling and plays key roles in the hematopoietic and immune response. The acquired JAK2 R683S (G) mutations are presumed to be a biomarker for B-cell acute lymphoblastic leukemia (B-ALL). However, how these mutations leading to the B-ALL is still unclear. The crystal structure of JAK2 JH2 domain suggests that the residue R683 locating in the linker between the N and C lobes of JH2 domain is important for keeping the compact structure, activity and structural stability of this domain. Mutations R683S, R683G and R683E significantly increase JAK2 activity and decrease its structural stability. While the R683K and R683H mutations almost have no effects on the JAK2 activity and structural stability. Furthermore, the spectroscopic experiments imply that mutations R683S, R683G and R683E impair the structure of JAK2 JH2 domain, and lead JAK2 to partially unfolded state. It may be this partially unfolded state that caused JAK2 R683S (G) constitutive activation. This study provides clues in understanding the mechanism of JAK2 R683S (G) mutations caused B-ALL.

  18. Transgelin-2 in B-Cells Controls T-Cell Activation by Stabilizing T Cell - B Cell Conjugates

    PubMed Central

    Chae, Myoung-Won; Kim, Hye-Ran; Kim, Chang-Hyun; Jun, Chang-Duk; Park, Zee-Yong

    2016-01-01

    The immunological synapse (IS), a dynamic and organized junction between T-cells and antigen presenting cells (APCs), is critical for initiating adaptive immunity. The actin cytoskeleton plays a major role in T-cell reorganization during IS formation, and we previously reported that transgelin-2, an actin-binding protein expressed in T-cells, stabilizes cortical F-actin, promoting T-cell activation in response to antigen stimulation. Transgelin-2 is also highly expressed in B-cells, although no specific function has been reported. In this study, we found that deficiency in transgelin-2 (TAGLN2-/-) in B-cells had little effect on B-cell development and activation, as measured by the expression of CD69, MHC class II molecules, and CD80/86. Nevertheless, in B-cells, transgelin-2 accumulated in the IS during the interaction with T-cells. These results led us to hypothesize that transgelin-2 may also be involved in IS stability in B-cells, thereby influencing T-cell function. Notably, we found that transgelin-2 deficiency in B-cells reduced T-cell activation, as determined by the release of IL-2 and interferon-γ and the expression of CD69. Furthermore, the reduced T-cell activation was correlated with reduced B-cell–T-cell conjugate formation. Collectively, these results suggest that actin stability in B-cells during IS formation is critical for the initiation of adaptive T-cell immunity. PMID:27232882

  19. The Kinase Activity of Rip2 Determines Its Stability and Consequently Nod1- and Nod2-mediated Immune Responses*

    PubMed Central

    Nembrini, Chiara; Kisielow, Jan; Shamshiev, Abdijapar T.; Tortola, Luigi; Coyle, Anthony J.; Kopf, Manfred; Marsland, Benjamin J.

    2009-01-01

    Rip2 (RICK, CARD3) has been identified as a key effector molecule downstream of the pattern recognition receptors, Nod1 and Nod2; however, its mechanism of action remains to be elucidated. In particular, it is unclear whether its kinase activity is required for signaling or for maintaining protein stability. We have investigated the expression level of different retrovirally expressed kinase-dead Rip2 mutants and the role of Rip2 kinase activity in the signaling events that follow Nod1 and Nod2 stimulation. We show that in primary cells expressing kinase-inactive Rip2, protein levels were severely compromised, and stability could not be reconstituted by the addition of a phospho-mimetic mutation in its autophosphorylation site. Consequently, inflammatory cytokine production in response to Nod1 and Nod2 ligands was abrogated both in vitro and in vivo in the absence of Rip2 kinase activity. Our results highlight the central role that Rip2 kinase activity plays in conferring stability to the protein and thus in the preservation of Nod1- and Nod2-mediated innate immune responses. PMID:19473975

  20. Electrochemical fabrication of platinum nanoflakes on fulleropyrrolidine nanosheets and their enhanced electrocatalytic activity and stability for methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Ma, Li-Xia

    2015-07-01

    Pyridine-functionalized fulleropyrrolidine nanosheets are prepared by a fast reprecipitation method under ultrasonication, and used as a novel nanostructured support materials to fabricate Pt catalyst nanoflakes by a simple electrodeposition approach. The as-prepared novel Pt-fullerene hybrid catalyst (Pt/PyC60) exhibits much enhanced electrocatalytic activity and stability for methanol oxidation reaction compared to the unsupported Pt nanoflakes and commercial Pt/C. The introduction of nanostructured fulleropyrrolidine as new support materials not only increases the electrochemically active surface area of catalyst, but also significantly improves the long-term stability. This will contribute to developing functionalized fullerenes as new nanostructured support materials for advanced electrocatalysts in fuel cells.

  1. Importance of cis determinants and nitrogenase activity in regulated stability of the Klebsiella pneumoniae nitrogenase structural gene mRNA.

    PubMed

    Simon, H M; Gosink, M M; Roberts, G P

    1999-06-01

    The Klebsiella pneumoniae nitrogen fixation (nif) mRNAs are unusually stable, with half-lives of 20 to 30 min under conditions favorable to nitrogen fixation (limiting nitrogen, anaerobiosis, temperatures of 30 degrees C). Addition of O2 or fixed nitrogen or temperature increases to 37 degrees C or more result in the dramatic destabilization of the nif mRNAs, decreasing the half-lives by a factor of 3 to 5. A plasmid expression system, independent of nif transcriptional regulation, was used to define cis determinants required for the regulated stability of the 5.2-kb nifHDKTY mRNA and to test the model suggested by earlier work that NifA is required in trans to stabilize nif mRNA under nif-derepressing conditions. O2 regulation of nifHDKTY mRNA stability is impaired in a plasmid containing a deletion of a 499-bp region of nifH, indicating that a site(s) required for the O2-regulated stability of the mRNA is located within this region. The simple model suggested from earlier work that NifA is required for stabilizing nif mRNA under conditions favorable for nitrogen fixation was disproved, and in its place, a more complicated model involving the sensing of nitrogenase activity as a component of the system regulating mRNA stability is proposed. Analysis of nifY mutants and overexpression suggests a possible involvement of the protein in this sensing process.

  2. Role of Cysteine Residues in the Structure, Stability, and Alkane Producing Activity of Cyanobacterial Aldehyde Deformylating Oxygenase

    PubMed Central

    Hayashi, Yuuki; Yasugi, Fumitaka; Arai, Munehito

    2015-01-01

    Aldehyde deformylating oxygenase (AD) is a key enzyme for alkane biosynthesis in cyanobacteria, and it can be used as a catalyst for alkane production in vitro and in vivo. However, three free Cys residues in AD may impair its catalytic activity by undesired disulfide bond formation and oxidation. To develop Cys-deficient mutants of AD, we examined the roles of the Cys residues in the structure, stability, and alkane producing activity of AD from Nostoc punctiforme PCC 73102 by systematic Cys-to-Ala/Ser mutagenesis. The C71A/S mutations reduced the hydrocarbon producing activity of AD and facilitated the formation of a dimer, indicating that the conserved Cys71, which is located in close proximity to the substrate-binding site, plays crucial roles in maintaining the activity, structure, and stability of AD. On the other hand, mutations at Cys107 and Cys117 did not affect the hydrocarbon producing activity of AD. Therefore, we propose that the C107A/C117A double mutant is preferable to wild type AD for alkane production and that the double mutant may be used as a pseudo-wild type protein for further improvement of the alkane producing activity of AD. PMID:25837679

  3. Structure-based activity prediction of CYP21A2 stability variants: A survey of available gene variations

    PubMed Central

    Bruque, Carlos D.; Delea, Marisol; Fernández, Cecilia S.; Orza, Juan V.; Taboas, Melisa; Buzzalino, Noemí; Espeche, Lucía D.; Solari, Andrea; Luccerini, Verónica; Alba, Liliana; Nadra, Alejandro D.; Dain, Liliana

    2016-01-01

    Congenital adrenal hyperplasia due to 21-hydroxylase deficiency accounts for 90–95% of CAH cases. In this work we performed an extensive survey of mutations and SNPs modifying the coding sequence of the CYP21A2 gene. Using bioinformatic tools and two plausible CYP21A2 structures as templates, we initially classified all known mutants (n = 343) according to their putative functional impacts, which were either reported in the literature or inferred from structural models. We then performed a detailed analysis on the subset of mutations believed to exclusively impact protein stability. For those mutants, the predicted stability was calculated and correlated with the variant’s expected activity. A high concordance was obtained when comparing our predictions with available in vitro residual activities and/or the patient’s phenotype. The predicted stability and derived activity of all reported mutations and SNPs lacking functional assays (n = 108) were assessed. As expected, most of the SNPs (52/76) showed no biological implications. Moreover, this approach was applied to evaluate the putative synergy that could emerge when two mutations occurred in cis. In addition, we propose a putative pathogenic effect of five novel mutations, p.L107Q, p.L122R, p.R132H, p.P335L and p.H466fs, found in 21-hydroxylase deficient patients of our cohort. PMID:27966633

  4. The effect of the shoulder stability exercise using resistant vibration stimulus on forward head posture and muscle activity

    PubMed Central

    Kim, Eun-Kyung; Kang, Jong Ho; Lee, Hyo Taek

    2016-01-01

    [Purpose] The purpose of this study was to analyze shoulder stabilization using resistant vibration stimulus during bodyblade exercise followed by forward head posture improvement. [Subjects and Methods] Craniovertebral angle and cranial rotation angle were measured with 24 patients who were diagnosed with forward head posture. The experimental group conducted bodyblade exercise for 6 weeks and all patients received conventional physical therapy. The craniovertebral angle and cranial rotation angle were measured using a diagnostic imaging device to measure the change in forward head posture. Sternocleidomastoid, upper trapezius and serratus anterior muscle activity were measured using surface electromyography, voluntary contraction was converting into a percentage and mean value was calculated. [Results] The experimental group showed a significant increase in the comparison of the results of both groups before and after the intervention. The comparing group showed no significant difference. The experimental group showed the significant difference in mean value after the intervention in the comparison between the groups. [Conclusion] Resistant vibration stimulus by bodyblade controlled shoulder muscle activity causing scapular stabilization followed by neck position stability improvement. Rehabilitation program that activates whole kinetic chain of proximal and distal muscles such as bodyblade will show more effective improvement when choosing rehabilitation program for neck and shoulder disease clinically. PMID:27942122

  5. Structure-based activity prediction of CYP21A2 stability variants: A survey of available gene variations.

    PubMed

    Bruque, Carlos D; Delea, Marisol; Fernández, Cecilia S; Orza, Juan V; Taboas, Melisa; Buzzalino, Noemí; Espeche, Lucía D; Solari, Andrea; Luccerini, Verónica; Alba, Liliana; Nadra, Alejandro D; Dain, Liliana

    2016-12-14

    Congenital adrenal hyperplasia due to 21-hydroxylase deficiency accounts for 90-95% of CAH cases. In this work we performed an extensive survey of mutations and SNPs modifying the coding sequence of the CYP21A2 gene. Using bioinformatic tools and two plausible CYP21A2 structures as templates, we initially classified all known mutants (n = 343) according to their putative functional impacts, which were either reported in the literature or inferred from structural models. We then performed a detailed analysis on the subset of mutations believed to exclusively impact protein stability. For those mutants, the predicted stability was calculated and correlated with the variant's expected activity. A high concordance was obtained when comparing our predictions with available in vitro residual activities and/or the patient's phenotype. The predicted stability and derived activity of all reported mutations and SNPs lacking functional assays (n = 108) were assessed. As expected, most of the SNPs (52/76) showed no biological implications. Moreover, this approach was applied to evaluate the putative synergy that could emerge when two mutations occurred in cis. In addition, we propose a putative pathogenic effect of five novel mutations, p.L107Q, p.L122R, p.R132H, p.P335L and p.H466fs, found in 21-hydroxylase deficient patients of our cohort.

  6. An aeroelastician's perspective of wind tunnel and flight experiences with active control of structural response and stability

    NASA Technical Reports Server (NTRS)

    Hanson, P. W.

    1984-01-01

    Active controls technology is assessed based on a review of most of the wind-tunnel and flight tests and actual applications of active control concepts since the late sixties. The distinction is made between so-called ""rigid-body'' active control functions and those that involve significant modification of structural elastic response or stability. Both areas are reviewed although the focus is on the latter area. The basic goals and major results of the various studies or applications are summarized, and the anticipated use of active controls on current and near-future research and demonstration aircraft is discussed. Some of the ""holes'' remaining in the feasbility/benefits demonstration of active controls technology are examined.

  7. Enhanced immunomodulatory activity and stability in simulated digestive juices of Lactobacillus plantarum L-137 by heat treatment.

    PubMed

    Fujiki, Takashi; Hirose, Yoshitaka; Yamamoto, Yoshihiro; Murosaki, Shinji

    2012-01-01

    This study reports the effect of heat treating Lactobacillus plantarum L-137 on its in vitro cytokine-inducing activity, on the stability of this activity in simulated digestive juices, and on its in vivo immunomodulatory properties. L-137 cells were harvested at the stationary phase with or without the subsequent heat treatment and then lyophilized. Heat-killed L-137 cells stimulated mouse spleen cells to produce more interleukin-12p40 than unheated L-137. The interleukin-12p40-inducing activity of unheated L-137 was significantly lower when incubated with simulated intestinal juice, but the activity of heat-killed L-137 cells was maintained. Furthermore, heat-killed L-137 was more protective than unheated L-137 in a mouse model of dextran sulfate sodium-induced colitis. A heat treatment may therefore be effective for enhancing the immunomodulatory activity of L-137 cells.

  8. Phytosterol moiety effects on stability, tocopherol interaction, and anti-polymerization activity of phytosteryl ferulates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antioxidant, anti-polymerization, stability, and interaction with tocopherols of corn and rice phytosteryl ferulates have been compared in several heating and frying studies. We have found that corn steryl ferulates are very protective of soybean oil from polymerization during heating and frying...

  9. Mathematical modeling and numerical simulation of an actively stabilized beam-column with circular cross-section

    NASA Astrophysics Data System (ADS)

    Schaeffner, Maximilian; Enss, Georg C.; Platz, Roland

    2014-04-01

    Buckling of axially loaded beam-columns represents a critical design constraint for light-weight structures. Besides passive solutions to increase the critical buckling load, active buckling control provides a possibility to stabilize slender elements in structures. So far, buckling control by active forces or bending moments has been mostly investigated for beam-columns with rectangular cross-section and with a preferred direction of buckling. The proposed approach investigates active buckling control of a beam-column with circular solid cross-section which is fixed at its base and pinned at its upper end. Three controlled active lateral forces are applied near the fixed base with angles of 120° to each other to stabilize the beam-column and allow higher critical axial loads. The beam-column is subject to supercritical static axial loads and lateral disturbance forces with varying directions and offsets. Two independent modal state space systems are derived for the bending planes in the lateral y- and z-directions of the circular cross-section. These are used to design two linear-quadratic regulators (LQR) that determine the necessary control forces which are transformed into the directions of the active lateral forces. The system behavior is simulated with a finite element model using one-dimensional beam elements with six degrees of freedom at each node. With the implemented control, it is possible to actively stabilize a beam-column with circular cross-section in arbitrary buckling direction for axial loads significantly above the critical axial buckling load.

  10. Photocatalytic activity and stability of TiO{sub 2} and WO{sub 3} thin films

    SciTech Connect

    Carcel, Radu Adrian; Andronic, Luminita Duta, Anca

    2012-08-15

    Photocatalysis represents a viable option for complete degrading the dye molecules resulted in the textile industry, up to products that do not represent environmental threats. The photocatalytic degradation of methyl orange has been investigated using TiO{sub 2}, WO{sub 3} and mixed thin films. The photodegradation efficiency is examined in correlation with the experimental parameters (irradiation time, H{sub 2}O{sub 2} addition and stability), along with the morphology and crystallinity data. The H{sub 2}O{sub 2} addition increases the photodegradation efficiency by providing additional hydroxyl groups and further reducing the recombination of the electron-hole pairs by reacting with the electrons at the catalyst interface. To test the stability of the photocatalytic films in long time running processes, batch series of experiments were conducted using contact periods up to 9 days. The results show that the thin films maintained their photocatalytic properties confirming their stability and viability for up-scaling. Highlights: Black-Right-Pointing-Pointer TiO{sub 2}, WO{sub 3} and mixed thin films Black-Right-Pointing-Pointer We tested the photocatalytic activity and photocatalyst stability over a period up to 9 days of continuous irradiation. Black-Right-Pointing-Pointer The influence of medium pH and oxidizing agent (H{sub 2}O{sub 2}) was analyzed.

  11. Identification and Structural Analysis of Amino Acid Substitutions that Increase the Stability and Activity of Aspergillus niger Glucose Oxidase

    PubMed Central

    Marín-Navarro, Julia; Roupain, Nicole; Talens-Perales, David; Polaina, Julio

    2015-01-01

    Glucose oxidase is one of the most conspicuous commercial enzymes due to its many different applications in diverse industries such as food, chemical, energy and textile. Among these applications, the most remarkable is the manufacture of glucose biosensors and in particular sensor strips used to measure glucose levels in serum. The generation of ameliorated versions of glucose oxidase is therefore a significant biotechnological objective. We have used a strategy that combined random and rational approaches to isolate uncharacterized mutations of Aspergillus niger glucose oxidase with improved properties. As a result, we have identified two changes that increase significantly the enzyme's thermal stability. One (T554M) generates a sulfur-pi interaction and the other (Q90R/Y509E) introduces a new salt bridge near the interphase of the dimeric protein structure. An additional double substitution (Q124R/L569E) has no significant effect on stability but causes a twofold increase of the enzyme's specific activity. Our results disclose structural motifs of the protein which are critical for its stability. The combination of mutations in the Q90R/Y509E/T554M triple mutant yielded a version of A. niger glucose oxidase with higher stability than those previously described. PMID:26642312

  12. Ion pairs and their role in modulating stability of cold- and warm-active uracil DNA glycosylase.

    PubMed

    Olufsen, Magne; Papaleo, Elena; Smalås, Arne Oskar; Brandsdal, Bjørn Olav

    2008-05-15

    MD simulations and continuum electrostatics calculations have been used to study the observed differences in thermostability of cold- and warm-active uracil DNA glycosylase (UDG). The present study focuses on the role of ion pairs and how they affect the thermal stability of the two enzymes. Analysis of the MD generated structural ensembles show that cod UDG (cUDG) and human UDG (hUDG) have 11 and 12 ion pairs which are present in at least 30% of the conformations. The electrostatic contribution of the ion pairs, computed using continuum electrostatics, is slightly more favorable in cUDG at 298 K. This is primarily attributed to more optimized interactions between the ion pairs and nearby dipoles/charges in cUDG. More global salt bridges are found in hUDG and are more stabilizing when compared to cUDG, possibly playing a role in maintaining overall stability and reducing conformational entropy. Both enzymes contain one three-member ionic network, but the one found in hUDG is far more stabilizing. Our results also suggest that care should be taken when performing statistical analysis of crystal structures with respect to ion pairs, and that crystallization conditions must be carefully examined when performing such analysis.

  13. Antioxidant activity of raspberry (Rubus fruticosus) leaves extract and its effect on oxidative stability of sunflower oil.

    PubMed

    Asnaashari, Maryam; Tajik, Raheleh; Khodaparast, Mohammad Hossein Haddad

    2015-08-01

    Efficacy of R. fruticosus leaves extract in stabilizing sunflower oil during accelerated storage has been studied. Extracts of R. fruticosus were prepared in different solvents which methanolic extract yield with 15.43 % was higher than water and acetone ones (11.87 and 6.62 %, respectively). Methanolic extract was chosen to evaluate its thermal stability at 70 °C in sunflower oil, due to the highest yield, antioxidant and antiradical potential and also high content of phenolic compounds campared to other solvents. So, different concentrations of methanolic extract (200, 400, 600, 800 and 1,000 ppm) were added to sunflower oil. BHA and BHT at 200 ppm served as standards besides the control. Peroxide value (PV) and thiobarbituric acid (TBA) were taken as parameters for evaluation of effectiveness of R. fruticosus leaves extract in stabilization of sunflower oil. Moreover, antioxidant activity index (AAI) of the extract at 120 °C at rancimat were conducted. Results from different parameters were in agreement with each other, suggesting the highest efficiency of 1,000 ppm of the extract followed by BHT, BHA and other concentrations of the extract. Results reveal the R. fruticosus leaves extract to be a potent antioxidant for stabilization of sunflower oil.

  14. Heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible light

    NASA Astrophysics Data System (ADS)

    Wang, Wan-Sheng; Du, Hong; Wang, Rui-Xia; Wen, Tao; Xu, An-Wu

    2013-03-01

    A heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst was prepared by a rational in situ ion exchange reaction between Ag3PO4 micro-cubes and Br- in aqueous solution followed by photoreduction. The photocatalytic activities of obtained photocatalysts were measured by the degradation of methyl orange (MO) and methylene blue (MB) under visible light irradiation (λ >= 400 nm). Compared to AgBr/Ag, Ag3PO4/AgBr heterocrystals and pure Ag3PO4 crystals, the heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalysts exhibit much higher photocatalytic activity and stability. This enhanced photocatalytic activity suggests that the synergetic effects of the heterostructured Ag3PO4/AgBr/Ag and the strong SPR of Ag NPs on the surface result in the high efficiencies of the photocatalytic activity and the improved stability. With the assistance of Ag3PO4/AgBr/Ag heterostructures, only 8 min and 12 min are taken to completely decompose MO and MB molecules under visible-light irradiation, respectively. Furthermore, the photodegradation rate does not show an obvious decrease during ten successive cycles, indicating that our heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalysts are extremely stable under visible-light irradiation.A heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst was prepared by a rational in situ ion exchange reaction between Ag3PO4 micro-cubes and Br- in aqueous solution followed by photoreduction. The photocatalytic activities of obtained photocatalysts were measured by the degradation of methyl orange (MO) and methylene blue (MB) under visible light irradiation (λ >= 400 nm). Compared to AgBr/Ag, Ag3PO4/AgBr heterocrystals and pure Ag3PO4 crystals, the heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalysts exhibit much higher photocatalytic activity and stability. This enhanced photocatalytic activity suggests that the synergetic effects of the heterostructured Ag3PO4/AgBr/Ag and the strong SPR of Ag NPs on the surface result in the high

  15. Probing the Role of N-Linked Glycans in the Stability and Activity of Fungal Cellobiohydrolases by Mutational Analysis

    SciTech Connect

    Adney, W. S.; Jeoh, T.; Beckham, G. T.; Chou,Y. C.; Baker, J. O.; Michener, W.; Brunecky, R.; Himmel, M. E.

    2009-01-01

    The filamentous fungi Trichoderma reesei and Penicillium funiculosum produce highly effective enzyme mixtures that degrade the cellulose and hemicellulose components of plant cell walls. Many fungal species produce a glycoside hydrolase family 7 (Cel7A) cellobiohydrolase, a class of enzymes that catalytically process from the reducing end of cellulose. A direct amino acid comparison of these two enzymes shows that they not only have high amino acid homology, but also contain analogous N-linked glycosylation sites on the catalytic domain. We have previously shown (Jeoh et al. in Biotechnol Biofuels, 1:10, 2008) that expression of T. reesei cellobiohydrolase I in a commonly used industrial expression host, Aspergillus niger var. awamori, results in an increase in the amount of N-linked glycosylation of the enzyme, which negatively affects crystalline cellulose degradation activity as well as thermal stability. This complementary study examines the significance of individual N-linked glycans on the surface of the catalytic domain of Cel7A cellobiohydrolases from T. reesei and P. funiculosum by genetically adding or removing N-linked glycosylation motifs using site directed mutagenesis. Modified enzymes, expressed in A. niger var. awamori, were tested for activity and thermal stability. It was concluded that N-linked glycans in peptide loops that form part of the active site tunnel have the greatest impact on both thermal stability and enzymatic activity on crystalline cellulose for both the T. reesei and P. funiculosum Cel7A enzymes. Specifically, for the Cel7A T. reesei enzyme expressed in A. niger var. awamori, removal of the N384 glycosylation site yields a mutant with 70% greater activity after 120 h compared to the heterologously expressed wild type T. reesei enzyme. In addition, similar activity improvements were found to be associated with the addition of a new glycosylation motif at N194 in P. funiculosum. This mutant also exhibits 70% greater activity after

  16. Preserving catalytic activity and enhancing biochemical stability of the therapeutic enzyme asparaginase by biocompatible multilayered polyelectrolyte microcapsules.

    PubMed

    Karamitros, Christos S; Yashchenok, Alexey M; Möhwald, Helmuth; Skirtach, Andre G; Konrad, Manfred

    2013-12-09

    The present study focuses on the formation of microcapsules containing catalytically active L-asparaginase (L-ASNase), a protein drug of high value in antileukemic therapy. We make use of the layer-by-layer (LbL) technique to coat protein-loaded calcium carbonate (CaCO3) particles with two or three poly dextran/poly-L-arginine-based bilayers. To achieve high loading efficiency, the CaCO3 template was generated by coprecipitation with the enzyme. After assembly of the polymer shell, the CaCO3 core material was dissolved under mild conditions by dialysis against 20 mM EDTA. Biochemical stability of the encapsulated L-asparaginase was analyzed by treating the capsules with the proteases trypsin and thrombin, which are known to degrade and inactivate the enzyme during leukemia treatment, allowing us to test for resistance against proteolysis by physiologically relevant proteases through measurement of residual l-asparaginase activities. In addition, the thermal stability, the stability at the physiological temperature, and the long-term storage stability of the encapsulated enzyme were investigated. We show that encapsulation of l-asparaginase remarkably improves both proteolytic resistance and thermal inactivation at 37 °C, which could considerably prolong the enzyme's in vivo half-life during application in acute lymphoblastic leukemia (ALL). Importantly, the use of low EDTA concentrations for the dissolution of CaCO3 by dialysis could be a general approach in cases where the activity of sensitive biomacromolecules is inhibited, or even irreversibly damaged, when standard protocols for fabrication of such LbL microcapsules are used. Encapsulated and free enzyme showed similar efficacies in driving leukemic cells to apoptosis.

  17. The effects of horse riding simulation exercise on muscle activation and limits of stability in the elderly.

    PubMed

    Kim, Seong-Gil; Lee, Jung-Ho

    2015-01-01

    This study aimed to investigate the effect of horse riding simulation (HRS) on balance and trunk muscle activation as well as to provide evidence of the therapeutic benefits of the exercise. Thirty elderly subjects were recruited from a medical care hospital and randomly divided into an experimental and a control group. The experimental group performed the HRS exercise for 20 min, 5 times a week, for 8 weeks, and conventional therapy was also provided as usual. The muscle activation and limits of stability (LOS) were measured. The LOS significantly increased in the HRS group (p<0.05) but not in the control group (p>0.05). The activation of all muscles significantly increased in the HRS group. However, in the control group, the muscle activations of the lateral low-back (external oblique and quadratus lumborum) and gluteus medius (GM) significantly decreased, and there was no significant difference in other muscles. After the intervention, the LOS and all muscle activations significantly increased in the HRS group compared with the control group. The results suggest that the HRS exercise is effective for reducing the overall risk of falling in the elderly. Thus, it is believed that horse riding exercise would help to increase dynamic stability and to prevent elderly people from falling.

  18. Influence of Reactive Oxygen Species on the Enzyme Stability and Activity in the Presence of Ionic Liquids

    PubMed Central

    Attri, Pankaj; Choi, Eun Ha

    2013-01-01

    In this paper, we have examined the effect of ammonium and imidazolium based ionic liquids (ILs) on the stability and activity of proteolytic enzyme α-chymotrypsin (CT) in the presence of cold atmospheric pressure plasma jet (APPJ). The present work aims to illustrate the state of art implementing the combined action of ILs and APPJ on the enzyme stability and activity. Our circular dichroism (CD), fluorescence and enzyme activity results of CT have revealed that buffer and all studied ILs {triethylammonium hydrogen sulphate (TEAS) from ammonium family and 1-butyl-3-methyl imidazolium chloride ([Bmim][Cl]), 1-methylimidazolium chloride ([Mim][Cl]) from imidazolium family} are notable to act as protective agents against the deleterious action of the APPJ, except triethylammonium dihydrogen phosphate (TEAP) ammonium IL. However, TEAP attenuates strongly the deleterious action of reactive oxygen species (ROS) created by APPJ on native structure of CT. Further, TEAP is able to retain the enzymatic activity after APPJ exposure which is absent in all the other systems.This study provides the first combined effect of APPJ and ILs on biomolecules that may generate many theoretical and experimental opportunities. Through this methodology, we can utilise both enzyme and plasma simultaneously without affecting the enzyme structure and activity on the material surface; which can prove to be applicable in various fields. PMID:24066167

  19. Tuning the morphology, stability and photocatalytic activity of TiO{sub 2} nanocrystal colloids by tungsten doping

    SciTech Connect

    Xu, Haiping; Liao, Jianhua; Yuan, Shuai; Zhao, Yin; Zhang, Meihong; Wang, Zhuyi; Shi, Liyi

    2014-03-01

    Graphical abstract: - Highlights: • W{sup 6+}-doped TiO{sub 2} nanocrystal colloids were prepared by hydrothermal methods. • The properties of TiO{sub 2} nanocrystal colloids can be tuned by tungsten doping. • W{sup 6+}-doped TiO{sub 2} nanocrystal colloids show higher stability and dispersity. • W{sup 6+}-doped TiO{sub 2} nanocrystal colloids show higher photocatalytic activity. - Abstract: The effects of tungsten doping on the morphology, stability and photocatalytic activity of TiO{sub 2} nanocrystal colloids were investigated. The nanostructure, chemical state of Ti, W, O, and the properties of tungsten doped TiO{sub 2} samples were investigated carefully by TEM, XRD, XPS, UV–vis, PL and photocatalytic degradation experiments. And the structure–activity relationship was discussed according to the analysis and measurement results. The analysis results reveal that the morphology, zeta potential and photocatalytic activity of TiO{sub 2} nanocrystals can be easily tuned by changing the tungsten doping concentration. The tungsten doped TiO{sub 2} colloid combines the characters of high dispersity and high photocatalytic activity.

  20. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts.

    PubMed

    Wang, Deli; Xin, Huolin L; Hovden, Robert; Wang, Hongsen; Yu, Yingchao; Muller, David A; DiSalvo, Francis J; Abruña, Héctor D

    2013-01-01

    To enhance and optimize nanocatalyst performance and durability for the oxygen reduction reaction in fuel-cell applications, we look beyond Pt-metal disordered alloys and describe a new class of Pt-Co nanocatalysts composed of ordered Pt(3)Co intermetallic cores with a 2-3 atomic-layer-thick platinum shell. These nanocatalysts exhibited over 200% increase in mass activity and over 300% increase in specific activity when compared with the disordered Pt(3)Co alloy nanoparticles as well as Pt/C. So far, this mass activity for the oxygen reduction reaction is the highest among the Pt-Co systems reported in the literature under similar testing conditions. Stability tests showed a minimal loss of activity after 5,000 potential cycles and the ordered core-shell structure was maintained virtually intact, as established by atomic-scale elemental mapping. The high activity and stability are attributed to the Pt-rich shell and the stable intermetallic Pt(3)Co core arrangement. These ordered nanoparticles provide a new direction for catalyst performance optimization for next-generation fuel cells.

  1. Enhanced Stability of Blood Matrices Using a Dried Sample Spot Assay to Measure Human Butyrylcholinesterase Activity and Nerve Agent Adducts

    PubMed Central

    Perez, Jonas W.; Pantazides, Brooke G.; Watson, Caroline M.; Thomas, Jerry D.; Blake, Thomas A.; Johnson, Rudolph C.

    2015-01-01

    Dried matrix spots are safer to handle and easier to store than wet blood products, but factors such as intra-spot variability and unknown sample volumes have limited their appeal as a sampling format for quantitative analyses. In this work, we introduce a dried spot activity assay for quantifying butyrylcholinesterase (BChE) specific activity which is BChE activity normalized to the total protein content in a sample spot. The method was demonstrated with blood, serum, and plasma spotted on specimen collection devices (cards) which were extracted to measure total protein and BChE activity using a modified Ellman assay. Activity recovered from dried spots was ∼80% of the initial spotted activity for blood and >90% for plasma and serum. Measuring total protein in the sample and calculating specific activity substantially improved quantification and reduced intra-spot variability. Analyte stability of nerve agent adducts was also evaluated, and the results obtained via BChE-specific activity measurements were confirmed by quantification of BChE adducts using a previously established LC-MS/MS method. The spotted samples were up to 10-times more resistant to degradation compared to unspotted control samples when measuring BChE inhibition by the nerve agents sarin and VX. Using this method, both BChE activity and adducts can be accurately measured from a dried sample spot. This use of a dried sample spot with normalization to total protein is robust, demonstrates decreased intra-spot variability without the need to control for initial sample volume, and enhances analyte stability. PMID:25955132

  2. Explorative study on the anticancer activity, selectivity and metabolic stability of related analogs of aminosteroid RM-133.

    PubMed

    Perreault, Martin; Maltais, René; Dutour, Raphaël; Poirier, Donald

    2016-11-01

    RM-133 is a key representative of a new family of aminosteroids reported as potent anticancer agents. Although RM-133 produced interesting results in 4 mouse xenograft cancer models when injected subcutaneously, it needs to be improved to increase its in vivo potency. Thus, to obtain an analog of RM-133 with a better drug potential, a structure-activity relationship study was conducted by synthesizing eleven RM-133-related compounds and addressing their antiproliferative activity on 3 human cancer cells (HL-60, OVCAR-3 and PANC-1) and 3 human normal cell lines (primary ovary, pancreas and renal proximal tubule) as well as their metabolic stability in human liver microsomes. When the 2β-tertiary amine of RM-133 was transformed into a salt or moved to position 3β, the anticancer activity was lost. Modifying the orientation of the side chain of RM-133 increased anticancer activity and selectivity, but led to a drastic loss of stability. The protection of the 3α-hydroxyl of RM-133 by the formation of an ester or a carbamate stabilized the molecule against the phase I metabolic enzymes without affecting its anticancer activity. In comparison to RM-133, the 3-dimethylcarbamate derivative 3 is more selective for cancer cells over normal cells and is much more stable in liver microsomes. Those results support the use of a pro-drug strategy targeting the 3α-hydroxyl of RM-133 as an approach to improve its drug properties. The work presented will enable the development of an optimized anticancer drug of the aminosteroid family that is suitable for a future phase I clinical trial.

  3. The effect of time delay on control stability of an electromagnetic active tuned mass damper for vibration control

    NASA Astrophysics Data System (ADS)

    Hassan, A.; Torres-Perez, A.; Kaczmarczyk, S.; Picton, P.

    2016-05-01

    The aim of this paper is to investigate the effect of time delays on the stability of a zero-placement position and velocity feedback law for a vibratory system comprising harmonic excitation equipped with an electromagnetic active tuned mass damper (ATMD). The purpose of the active control is broadening the vibration attenuation envelope of a primary mass to a higher frequency region identified as from 50±0.5Hz with a passive tuned mass damper (TMD) to a wider range of 50±5Hz with an ATMD. Stability conditions of the closed-loop system are determined by studying the position of the system closed-loop poles after the introduction of time delays for different excitation frequencies. A computer simulation of the model predicted that the proposed control system is subject to instability after a critical time delay margin dependent upon the frequency of excitation and the finding were experimentally validated. Three solutions are derived and experimentally tested for minimising the effect of time delays on the stability of the control system. The first solution is associated with the introduction of more damping in the absorber system. The second incorporates using a time-delayed ATMD by tuning its original natural resonant frequency to beyond the nominal operational frequency range of the composite system. The third involves an online gain tuning of filter coefficients in a dual arrangement of low-pass and high-pass filters to eliminate the effect time delays by manipulating the signal phase shifts.

  4. Modification of ascorbic acid using transglycosylation activity of Bacillus stearothermophilus maltogenic amylase to enhance its oxidative stability.

    PubMed

    Bae, Hee-Kyung; Lee, Soo-Bok; Park, Cheon-Seok; Shim, Jae-Hoon; Lee, Hye-Young; Kim, Myo-Jeong; Baek, Jin-Sook; Roh, Hoe-Jin; Choi, Jin-Hwan; Choe, Eun-Ok; Ahn, Dong-Uk; Park, Kwan-Hwa

    2002-05-22

    Ascorbic acid (1), a natural antioxidant, was modified by employing transglycosylation activity of Bacillus stearothermophilus maltogenic amylase with maltotriose and acarbose as donor molecules to enhance its oxidative stability. The transglycosylation reaction with maltotriose as donor created mono- and di-glycosyl transfer products with an alpha-(1,6)-glycosidic linkage. In addition, two acarviosine-glucosyl transfer products were generated when transglycosylation was performed with acarbose as a donor. All transfer products were observed by TLC and HPLC, and purified by Q-sepharose anion exchange and Biogel P-2 gel permeation chromatographies. LC/MS and (13)C NMR analyses revealed that the structures of the transfer products were 6-O-alpha-D-glucosyl- (2) and 6-O-alpha-D-maltosyl-ascorbic acids (3) in the reaction of maltotriose, and 6-O-alpha-acarviosine-D-glucosyl- (4) and 2-O-alpha-acarviosine-D-glucosyl ascorbic acids (5) in the reaction of acarbose. The stability of the transglycosylated ascorbic acid derivatives was greatly enhanced against oxidation by Cu(2+) ion and ascorbate oxidase. Among them, compound 3 proved to be the most stable against in vitro oxidation. The antioxidant effects of glycosyl-derivatives of ascorbic acid on the lipid oxidation in cooked chicken breast meat patties indicated that they had antioxidant activities similar to that of ascorbic acid. It is suggested that the transglycosylated ascorbic acids can possibly be applied as effective antioxidants with improved stability in food, cosmetic, and other applications.

  5. Impact of cysteine variants on the structure, activity, and stability of recombinant human α-galactosidase A.

    PubMed

    Qiu, Huawei; Honey, Denise M; Kingsbury, Jonathan S; Park, Anna; Boudanova, Ekaterina; Wei, Ronnie R; Pan, Clark Q; Edmunds, Tim

    2015-09-01

    Recombinant human α-galactosidase A (rhαGal) is a homodimeric glycoprotein deficient in Fabry disease, a lysosomal storage disorder. In this study, each cysteine residue in rhαGal was replaced with serine to understand the role each cysteine plays in the enzyme structure, function, and stability. Conditioned media from transfected HEK293 cells were assayed for rhαGal expression and enzymatic activity. Activity was only detected in the wild type control and in mutants substituting the free cysteine residues (C90S, C174S, and the C90S/C174S). Cysteine-to-serine substitutions at the other sites lead to the loss of expression and/or activity, consistent with their involvement in the disulfide bonds found in the crystal structure. Purification and further characterization confirmed that the C90S, C174S, and the C90S/C174S mutants are enzymatically active, structurally intact and thermodynamically stable as measured by circular dichroism and thermal denaturation. The purified inactive C142S mutant appeared to have lost part of its alpha-helix secondary structure and had a lower apparent melting temperature. Saturation mutagenesis study on Cys90 and Cys174 resulted in partial loss of activity for Cys174 mutants but multiple mutants at Cys90 with up to 87% higher enzymatic activity (C90T) compared to wild type, suggesting that the two free cysteines play differential roles and that the activity of the enzyme can be modulated by side chain interactions of the free Cys residues. These results enhanced our understanding of rhαGal structure and function, particularly the critical roles that cysteines play in structure, stability, and enzymatic activity.

  6. Nematic and blue phase liquid crystals for temperature stabilization and active optical tuning of silicon photonic devices (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ptasinski, Joanna N.; Khoo, Iam Choon; Fainman, Yeshaiahu

    2015-10-01

    We describe the underlying theories and experimental demonstrations of passive temperature stabilization of silicon photonic devices clad in nematic liquid crystal mixtures, and active optical tuning of silicon photonic resonant structures combined with dye-doped nematic and blue phase liquid crystals. We show how modifications to the resonator device geometry allow for not only enhanced tuning of the resonator response, but also aid in achieving complete athermal operations of silicon photonic circuits. [Ref.: I.C. Khoo, "DC-field-assisted grating formation and nonlinear diffractions in methyl-red dye-doped blue phase liquid crystals," Opt. Lett. 40, 60-63 (2015); J. Ptasinski, I.C. Khoo, and Y. Fainman, "Enhanced optical tuning of modified-geometry resonators clad in blue phase liquid crystals," Opt. Lett. 39, 5435-5438 (2014); J. Ptasinski, I.C. Khoo, and Y. Fainman, "Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals," Materials 7(3), 2229-2241 (2014)].

  7. Influence of a voltage compensation type active superconducting fault current limiter on the transient stability of power system

    NASA Astrophysics Data System (ADS)

    Chen, L.; Tang, Y. J.; Shi, J.; Chen, N.; Song, M.; Cheng, S. J.; Hu, Y.; Chen, X. S.

    2009-10-01

    We have proposed a voltage compensation type active superconducting fault current limiter (SFCL). In this paper, the influence of the SFCL on the transient stability of power system is investigated. For the typical one-machine infinite-bus system, the power-angle characteristics of generator with SFCL are studied in different working conditions, and the transient physical process is analyzed. Using MATLAB SIMULINK, the power-angle swing curves are simulated under different current-limiting modes, fault types and fault clearance times. The results show that the proposed SFCL can effectively reduce the transient swing amplitude of rotor and extend the critical clearance time under mode 1, compared with mode 2 and mode 3 having few effects on enhancing the transient stability.

  8. The Three-Herb Formula Shuang-Huang-Lian stabilizes mast cells through activation of mitochondrial calcium uniporter

    PubMed Central

    Gao, Yuan; Hou, Rui; Fei, Qiaoling; Fang, Lei; Han, Yixin; Cai, Runlan; Peng, Cheng; Qi, Yun

    2017-01-01

    Mast cells (MCs) are key effector cells of IgE-FcεRI- or MrgprX2-mediated signaling event. Shuang-Huang-Lian (SHL), a herbal formula from Chinese Pharmacopoeia, has been clinically used in type I hypersensitivity. Our previous study demonstrated that SHL exerted a non-negligible effect on MC stabilization. Herein, we sought to elucidate the molecular mechanisms of the prominent anti-allergic ability of SHL. MrgprX2- and IgE-FcεRI-mediated MC activation in vitro and in vivo models were developed by using compound 48/80 (C48/80) and shrimp tropomyosin (ST), respectively. Our data showed that SHL markedly dampened C48/80- or ST-induced MC degranulation in vitro and in vivo. Mechanistic study indicated that cytosolic Ca2+ (Ca2+[c]) level decreased rapidly and sustainably after SHL treatment, and then returned to homeostasis when SHL was withdrawn. Moreover, SHL decreases Ca2+[c] levels mainly through enhancing the mitochondrial Ca2+ (Ca2+[m]) uptake. After genetically silencing or pharmacologic inhibiting mitochondrial calcium uniporter (MCU), the effect of SHL on the Ca2+[c] level and MC degranulation was significantly weakened. Simultaneously, the activation of SHL on Ca2+[m] uptake was completely lost. Collectively, by activating MCU, SHL decreases Ca2+[c] level to stabilize MCs, thus exerting a remarkable anti-allergic activity, which could have considerable influences on clinical practice and research. PMID:28045016

  9. Effects of dietary sodium selenite and selenium yeast on antioxidant enzyme activities and oxidative stability of chicken breast meat.

    PubMed

    Ahmad, Hussain; Tian, Jinke; Wang, Jianjun; Khan, Muhammad Ammar; Wang, Yuanxiao; Zhang, Lili; Wang, Tian

    2012-07-25

    The effects of sodium selenite (SS) and selenium yeast (SY) alone and in combination (MS) on the selenium (Se) content, antioxidant enzyme activities (AEA), total antioxidant capacity (TAC), and oxidative stability of chicken breast meat were investigated. The results showed that the highest (p < 0.05) glutathione peroxidase (GSH-Px) activity was found in the SS-supplemented chicken breast meat; however, SY and MS treatments significantly increased (p < 0.05) the Se content and the activities of catalase (CAT), total superoxide dismutase (T-SOD), and TAC, but decreased (p < 0.05) the malondialdehyde (MDA) content at 42 days of age. Twelve days of storage at 4 °C decreased (p < 0.05) the activity of the GSH-Px, but CAT, T-SOD, and TAC remained stable. SY decreased the lipid oxidation more effectively in chicken breast meat. It was concluded that SY and MS are more effective than SS in increasing the AEA, TAC, and oxidative stability of chicken breast meat.

  10. The stability and activity of human neuroserpin are modulated by a salt bridge that stabilises the reactive centre loop

    PubMed Central

    Noto, Rosina; Randazzo, Loredana; Raccosta, Samuele; Caccia, Sonia; Moriconi, Claudia; Miranda, Elena; Martorana, Vincenzo; Manno, Mauro

    2015-01-01

    Neuroserpin (NS) is an inhibitory protein belonging to the serpin family and involved in several pathologies, including the dementia Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB), a genetic neurodegenerative disease caused by accumulation of NS polymers. Our Molecular Dynamics simulations revealed the formation of a persistent salt bridge between Glu289 on strand s2C and Arg362 on the Reactive Centre Loop (RCL), a region important for the inhibitory activity of NS. Here, we validated this structural feature by simulating the Glu289Ala mutant, where the salt bridge is not present. Further, MD predictions were tested in vitro by purifying recombinant Glu289Ala NS from E. coli. The thermal and chemical stability along with the polymerisation propensity of both Wild Type and Glu289Ala NS were characterised by circular dichroism, emission spectroscopy and non-denaturant gel electrophoresis, respectively. The activity of both variants against the main target protease, tissue-type plasminogen activator (tPA), was assessed by SDS-PAGE and chromogenic kinetic assay. Our results showed that deletion of the salt bridge leads to a moderate but clear reduction of the overall protein stability and activity. PMID:26329378

  11. Effects of Zn Content on Crystal Structure, Cytocompatibility, Antibacterial Activity, and Chemical Stability in Zn-Modified Calcium Silicate Coatings

    NASA Astrophysics Data System (ADS)

    Li, Kai; Yu, Jiangming; Xie, Youtao; Huang, Liping; Ye, Xiaojian; Zheng, Xuebin

    2013-08-01

    In our previous study, Zn-modified calcium silicate coatings possess not only excellent chemical stability but also well antibacterial activity. Still, effects of zinc content on these properties and cytocompatibility remain unclear. In this paper, two kinds of Zn-modified calcium silicate coatings (ZC0.3, ZC0.5) were fabricated on Ti-6Al-4V substrates via plasma spraying technology. X-ray diffraction results and transmission electron microscopy observations showed that the ZC0.5 coating was composed of pure hardystonite (Ca2ZnSi2O7) phase, while, besides Ca2ZnSi2O7 phase, the amorphous CaSiO3 phase was also detected in the ZC0.3 coating. Chemical stability in Tris-HCl buffer solution and antibacterial activity of the Zn-modified calcium silicate coatings increased with an increase in zinc content. In vitro cytocompatibility evaluation demonstrated that the proliferation and alkaline phosphatase activity and collagen type I (COLI) secretion of osteoblast-like MC3T3-E1 cells on Zn-modified coatings were significantly enhanced compared to the Zn-free coating and Ti-6Al-4V control, and no cytotoxicity appeared on Zn-modified coatings. The better antibacterial activity and the enhanced capability to promote MC3T3-E1 cells differentiation of Zn-modified coatings should be attributed to the slow and constant Zn2+ releasing from the coatings.

  12. Global exponential stability of neural networks with globally Lipschitz continuous activations and its application to linear variational inequality problem.

    PubMed

    Liang, X B; Si, J

    2001-01-01

    This paper investigates the existence, uniqueness, and global exponential stability (GES) of the equilibrium point for a large class of neural networks with globally Lipschitz continuous activations including the widely used sigmoidal activations and the piecewise linear activations. The provided sufficient condition for GES is mild and some conditions easily examined in practice are also presented. The GES of neural networks in the case of locally Lipschitz continuous activations is also obtained under an appropriate condition. The analysis results given in the paper extend substantially the existing relevant stability results in the literature, and therefore expand significantly the application range of neural networks in solving optimization problems. As a demonstration, we apply the obtained analysis results to the design of a recurrent neural network (RNN) for solving the linear variational inequality problem (VIP) defined on any nonempty and closed box set, which includes the box constrained quadratic programming and the linear complementarity problem as the special cases. It can be inferred that the linear VIP has a unique solution for the class of Lyapunov diagonally stable matrices, and that the synthesized RNN is globally exponentially convergent to the unique solution. Some illustrative simulation examples are also given.

  13. Activation Layer Stabilization of High Polarization Photocathodes in Sub-Optimal RF Gun Environments

    SciTech Connect

    Mulhollan, Gregory; /SLAC /Saxed Surface Science, Austin, TX

    2010-08-25

    We have developed an activation procedure by which the reactivity to CO{sub 2}, a principal cause of yield decay for GaAs photocathodes, is greatly reduced. The use of a second alkali in the activation process is responsible for the increased immunity of the activated surface. The best immunity was obtained by using a combination of Cs and Li without any loss in near bandgap yield. Optimally activated photocathodes have nearly equal quantities of both alkalis.

  14. Insulin analog with additional disulfide bond has increased stability and preserved activity

    PubMed Central

    Vinther, Tine N; Norrman, Mathias; Ribel, Ulla; Huus, Kasper; Schlein, Morten; Steensgaard, Dorte B; Pedersen, Thomas Å; Pettersson, Ingrid; Ludvigsen, Svend; Kjeldsen, Thomas; Jensen, Knud J; Hubálek, František

    2013-01-01

    Insulin is a key hormone controlling glucose homeostasis. All known vertebrate insulin analogs have a classical structure with three 100% conserved disulfide bonds that are essential for structural stability and thus the function of insulin. It might be hypothesized that an additional disulfide bond may enhance insulin structural stability which would be highly desirable in a pharmaceutical use. To address this hypothesis, we designed insulin with an additional interchain disulfide bond in positions A10/B4 based on Cα-Cα distances, solvent exposure, and side-chain orientation in human insulin (HI) structure. This insulin analog had increased affinity for the insulin receptor and apparently augmented glucodynamic potency in a normal rat model compared with HI. Addition of the disulfide bond also resulted in a 34.6°C increase in melting temperature and prevented insulin fibril formation under high physical stress even though the C-terminus of the B-chain thought to be directly involved in fibril formation was not modified. Importantly, this analog was capable of forming hexamer upon Zn addition as typical for wild-type insulin and its crystal structure showed only minor deviations from the classical insulin structure. Furthermore, the additional disulfide bond prevented this insulin analog from adopting the R-state conformation and thus showing that the R-state conformation is not a prerequisite for binding to insulin receptor as previously suggested. In summary, this is the first example of an insulin analog featuring a fourth disulfide bond with increased structural stability and retained function. PMID:23281053

  15. Glutamine deprivation enhances antitumor activity of 3-bromopyruvate through the stabilization of monocarboxylate transporter-1.

    PubMed

    Cardaci, Simone; Rizza, Salvatore; Filomeni, Giuseppe; Bernardini, Roberta; Bertocchi, Fabio; Mattei, Maurizio; Paci, Maurizio; Rotilio, Giuseppe; Ciriolo, Maria Rosa

    2012-09-01

    Anticancer drug efficacy might be leveraged by strategies to target certain biochemical adaptations of tumors. Here we show how depriving cancer cells of glutamine can enhance the anticancer properties of 3-bromopyruvate, a halogenated analog of pyruvic acid. Glutamine deprival potentiated 3-bromopyruvate chemotherapy by increasing the stability of the monocarboxylate transporter-1, an effect that sensitized cells to metabolic oxidative stress and autophagic cell death. We further elucidated mechanisms through which resistance to chemopotentiation by glutamine deprival could be circumvented. Overall, our findings offer a preclinical proof-of-concept for how to employ 3-bromopyruvate or other monocarboxylic-based drugs to sensitize tumors to chemotherapy.

  16. Slope Stability: Factor of Safety along the Seismically Active Continental Slope Offshore Sumatra

    NASA Astrophysics Data System (ADS)

    Patton, J. R.; Goldfinger, C.; Djadjadihardja, Y.; None, U.

    2013-12-01

    Recent papers have documented the probability that turbidites deposited along and downslope of subduction zone accretionary prisms are likely the result of strong ground shaking from great earthquakes. Given the damaging nature of these earthquakes, along with the casualties from the associated tsunamis, the spatial and temporal patterns of these earthquakes can only be evaluated with paleoseismologic coring and seismic reflection methods. We evaluate slope stability for seafloor topography along the Sunda subduction offshore Sumatra, Indonesia. We use sediment material properties, from local (Sumatra) and analogous sites, to constrain our estimates of static slope stability Factor of Safety (FOS) analyses. We then use ground motion prediction equations (GMPE's) to estimate ground motion intensity (Arias Intensity, AI) and acceleration (Peak Ground Acceleration, PGA), as possibly generated by fault rupture, to constrain seismic loads for pseudostatic slope stability FOS analyses. The ground motions taper rapidly with distance from the fault plane, consistent with ground motion - fault distance relations measured during the 2011 Tohoku-Oki subduction zone earthquake. Our FOS analyses include a Morgenstern method of slices probabilistic analysis for 2-D profiles along with Critical Acceleration (Ac) and Newmark Displacement (Dn) analysis of multibeam bathymetry of the seafloor. In addition, we also use estimates of ground motion modeled with a 2004 Sumatra-Andaman subduction zone (SASZ) earthquake fault slip model, to also compare with our static FOS analyses of seafloor topography. All slope and trench sites are statically stable (FOS < 1) and sensitive to ground motions generated by earthquakes of magnitude greater than 7. We conclude that for earthquakes of magnitude 6 to 9, PGA of 0.4-0.6 to 1.4-2.5 g would be expected, respectively, from existing GMPE's. However, saturation of accelerations in the accretionary wedge may limit actual accelerations to less than 1

  17. Continuously active interferometer stabilization and control for time-bin entanglement distribution

    DOE PAGES

    Toliver, Paul; Dailey, James M.; Agarwal, Anjali; ...

    2015-02-10

    In this study, we describe a new method enabling continuous stabilization and fine-level phase control of time-bin entanglement interferometers. Using this technique we demonstrate entangled photon transmission through 50 km of standard single-mode fiber. This technique reuses the entangled-pair generation pump which is co-propagated with the transmitted entangled photons. In addition, the co-propagating pump adds minimal noise to the entangled photons which are characterized by measuring a two-photon interference fringe.

  18. Improved activity and pH stability of E. coli ATCC 11105 penicillin acylase by error-prone PCR.

    PubMed

    Balci, Huseyin; Ozturk, Merve Tuzlakoglu; Pijning, Tjaard; Ozturk, Saliha Issever; Gumusel, Fusun

    2014-05-01

    Penicillin G acylase is the key enzyme used in the industrial production of β-lactam antibiotics. This enzyme hydrolyzes penicillin G and related β-lactam antibiotics releasing 6-aminopenicillanic acid, which is an intermediate in the production of semisynthetic penicillins. To improve the enzymatic activity of Escherichia coli penicillin acylase, sequential rounds of error-prone polymerase chain reaction were applied to the E. coli pac gene. After the second round of evolution, the best mutant M2234 with enhanced activity was selected and analyzed. DNA sequence analyses of M2234 revealed that one amino acid residue (K297I), located far from the center of the catalytic pocket, was changed. This mutant (M2234) has a specific activity 4.0 times higher than the parent enzyme and also displayed higher stability at pH 10.

  19. Ligand Exchange-Mediated Activation and Stabilization of a Re-Based Olefin Metathesis Catalyst by Chlorinated Alumina.

    PubMed

    Gallo, Alessandro; Fong, Anthony; Szeto, Kai C; Rieb, Julia; Delevoye, Laurent; Gauvin, Régis M; Taoufik, Mostafa; Peters, Baron; Scott, Susannah L

    2016-10-05

    Extensive chlorination of γ-Al2O3 results in the formation of highly Lewis acidic surface domains depleted in surface hydroxyl groups. Adsorption of methyltrioxorhenium (MTO) onto these chlorinated domains serves to activate it as a low temperature, heterogeneous olefin metathesis catalyst and confers both high activity and high stability. Characterization of the catalyst reveals that the immobilized MTO undergoes partial ligand exchange with the surface, whereby some Re sites acquire a chloride ligand from the modified alumina while donating an oxo ligand to the support. More specifically, Re LIII-edge EXAFS and DFT calculations support facile ligand exchange between MTO and Cl-Al2O3 to generate [CH3ReO2Cl(+)] fragments that interact with a bridging oxygen of the support via a Lewis acid-base interaction. According to IR and solid-state NMR, the methyl group remains intact, and does not evolve spontaneously to a stable methylene tautomer. Nevertheless, the chloride-promoted metathesis catalyst is far more active and productive than MTO/γ-Al2O3, easily achieving a TON of 100 000 for propene metathesis in a flow reactor at 10 °C (compared to TON < 5000 for the nonchlorinated catalyst). Increased activity is a consequence of both a larger fraction of active sites and a higher intrinsic activity for the new sites. Increased stability is tentatively attributed to a stronger interaction between MTO and chlorinated surface regions, as well as extensive depletion of the Brønsted acidic surface hydroxyl population. The reformulated catalyst represents a major advance for Re-based metathesis catalysts, whose widespread use has thus far been severely hampered by their instability.

  20. Aldehyde PEGylation of laccase from Trametes versicolor in route to increase its stability: effect on enzymatic activity.

    PubMed

    Mayolo-Deloisa, Karla; González-González, Mirna; Simental-Martínez, Jesús; Rito-Palomares, Marco

    2015-03-01

    Laccase is a multicopper oxidase that catalyzes the oxidation of phenolic compounds. Laccase can be used in bioremediation, beverage (wine, fruit juice, and beer) processing, ascorbic acid determination, sugar beet pectin gelation baking, and as a biosensor. Recently, the antiproliferative activity of laccase toward tumor cells has been reported. Because of the potential applications of this enzyme, the efforts for enhancing and stabilizing its activity have increased. Thus, the PEGylation of laccase can be an alternative. PEGylation is the covalent attachment of one or more molecules of methoxy poly(ethylene glycol) (mPEG) to a protein. Normally, during the PEGylation reaction, the activity is reduced but the stability increases; thus, it is important to minimize the loss of activity. In this work, the effects of molar ratio (1:4, 1:8, and 1:12), concentration of laccase (6 and 12 mg/ml), reaction time (4 and 17 h), molecular weight, and type of mPEG (20, 30, 40 kDa and 40 kDa-branched) were analyzed. The activity was measured using three substrates: ABTS, 2,6-dimethoxyphenol, and syringaldazine. The best conditions for laccase PEGylation were 12 mg/ml of laccase, molar ratio 1:4, and 4 h reaction time. Under these conditions, the enzyme was able to maintain nearly 100% of its enzymatic activity with ABTS. The PEGylation of laccase has not been extensively explored, so it is important to analyze the effects of this bioconjugation in route to produce a robust modified enzyme.

  1. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres

    PubMed Central

    Ibrahim, Abdelnasser Salah Shebl; Al-Salamah, Ali A.; El-Toni, Ahmed M.; Almaary, Khalid S.; El-Tayeb, Mohamed A.; Elbadawi, Yahya B.; Antranikian, Garabed

    2016-01-01

    The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS–NH2 nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 μg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher Vmax, kcat and kcat/Km, than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media. PMID:26840303

  2. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres.

    PubMed

    Ibrahim, Abdelnasser Salah Shebl; Al-Salamah, Ali A; El-Toni, Ahmed M; Almaary, Khalid S; El-Tayeb, Mohamed A; Elbadawi, Yahya B; Antranikian, Garabed

    2016-01-29

    The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS-NH₂ nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 μg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher V(max), k(cat) and k(cat)/K(m), than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media.

  3. NHERF1, a novel GPER associated protein, increases stability and activation of GPER in ER-positive breast cancer

    PubMed Central

    Xiong, Ying; Wang, Yan; Zheng, Junfang; Zhao, Yuan; Tao, Tao; Wang, Qiqi; Liu, Hua; Wang, Songlin; Jiang, Wen G.; He, Junqi

    2016-01-01

    G protein-coupled estrogen receptor (GPER) plays an important role in mediating the effects of estradiol. High levels of GPER have been implicated to associate with the malignant progress of invasive breast cancer (IBC). However, the mechanisms by which GPER protein levels were regulated remain unclear. In this study, PDZ protein Na+/H+ exchanger regulatory factor (NHERF1) was found to interact with GPER in breast cancer cells. This interaction was mediated by the PDZ2 domain of NHERF1 and the carboxyl terminal PDZ binding motif of GPER. NHERF1 was demonstrated to facilitate GPER expression at post-transcriptional level and improve GPER protein stability by inhibiting the receptor degradation via ubiquitin-proteasome pathway in a GPER/NHERF1 interaction-dependent manner. In addition, GPER protein levels are positively associated with NHERF1 protein levels in a panel of estrogen receptor (ER)-positive breast cancer cells. Furthermore, analysis of clinical IBC data from The Cancer Genome Atlas (TCGA) showed no significant difference in GPER mRNA levels between ER-positive IBC and normal breast tissues. However, gene set enrichment analysis (GSEA) showed that GPER signaling is ultra-activated in ER-positive IBC when compared with normal and its activation is positively associated with NHERF1 mRNA levels. Taken together, our findings identify NHERF1 as a new binding partner for GPER and its overexpression promotes protein stability and activation of GPER in ER-positive IBC. Our data indicate that regulation of GPER stability by NHERF1 may contribute to GPER-mediated carcinogenesis in ER-positive IBC. PMID:27448983

  4. DNA Damage activates A Spatially Distinct Late Cytoplasmic Cell Cycle Checkpoint Network Controlled by MK2-mediated RNA Stabilization

    PubMed Central

    Reinhardt, H. Christian; Hasskamp, Pia; Schmedding, Ingolf; Morandell, Sandra; van Vugt, Marcel .A.T.M.; Wang, XiaoZhe; Linding, Rune; Ong, Shao-En; Weaver, David; Carr, Steven A.

    2010-01-01

    Summary Following genotoxic stress, cells activate a complex kinase-based signaling network to arrest the cell cycle and initiate DNA repair. p53-defective tumor cells rewire their checkpoint response and become dependent on the p38/MK2 pathway for survival after DNA damage, despite a functional ATR-Chk1 pathway. We used functional genetics to dissect the contributions of Chk1 and MK2 to checkpoint control. We show that nuclear Chk1 activity is essential to establish a G2/M checkpoint, while cytoplasmic MK2 activity is critical for prolonged checkpoint maintenance through a process of post-transcriptional mRNA stabilization. Following DNA damage, the p38/MK2 complex relocalizes from nucleus to cytoplasm where MK2, phosphorylates hnRNPA0, to stabilize Gadd45α mRNA, while p38 phosphorylates and releases the translational inhibitor TIAR. In addition, MK2 phosphorylates PARN, blocking Gadd45α mRNA degradation. Gadd45α functions within a positive feedback loop, sustaining the MK2-dependent cytoplasmic sequestration of Cdc25B/C to block mitotic entry in the presence of unrepaired DNA damage. Our findings demonstrate a critical role for the MK2 pathway in the post-transcriptional regulation of gene expression as part of the DNA damage response in cancer cells. PMID:20932473

  5. The oxidation of methionine-54 of epoetinum alfa does not affect molecular structure or stability, but does decrease biological activity.

    PubMed

    Labrenz, Steven R; Calmann, Melissa A; Heavner, George A; Tolman, Glen

    2008-01-01

    Erythropoietin therapy is used to treat severe anemia in renal failure and chemotherapy patients. One of these therapies based on recombinant human erythropoietin is marketed under the trade name of EPREX and utilizes epoetinum alfa as the active pharmaceutical ingredient. The effect of oxidation of methionine-54 on the structure and stability of the erythropoietin molecule has not been directly tested. We have observed partial and full chemical oxidation of methionine-54 to methionine-54 sulfoxide, accomplished using tert-Butylhydroperoxide and hydrogen peroxide, respectively. A blue shift in the fluorescence center of spectral mass wavelength was observed as a linear response to the level of methionine sulfoxide in the epoetinum alfa molecule, presumably arising from a local change in the environment near tryptophan-51, as supported by potassium iodide quenching studies. Circular dichroism studies demonstrated no change in the folded structure of the molecule with methionine oxidation. The thermal unfolding profiles of partial and completely oxidized epoetinum alfa overlap, with a T(m) of 49.5 degrees C across all levels of methionine sulfoxide content. When the protein was tested for activity, a decrease in biological activity was observed, correlating with methionine sulfoxide levels. An allosteric effect between Met54, Trp51, and residues involved in receptor binding is proposed. These results indicate that methionine oxidation has no effect on the folded structure and global thermodynamic stability of the recombinant human erythropoietin molecule. Oxidation can affect potency, but only at levels significantly in excess of those seen in EPREX.

  6. Stability to gastrointestinal enzymes and structure-activity relationship of beta-casein-peptides with antihypertensive properties.

    PubMed

    Quirós, Ana; del Mar Contreras, María; Ramos, Mercedes; Amigo, Lourdes; Recio, Isidra

    2009-10-01

    Physiological digestion plays a key role in the formation and degradation of angiotensin-converting enzyme (ACE)-inhibitory peptides. In this study, we evaluated the impact of a simulated gastrointestinal digestion on the stability of eight peptides previously identified in fermented milk with antihypertensive activity. Two of these identified peptides with sequences LHLPLP and LVYPFPGPIPNSLPQNIPP, possess ACE-inhibitory activity in vitro and antihypertensive activity in vivo. The results showed that LHLPLP was resistant to digestive enzymes. In contrast, LVYPFPGPIPNSLPQNIPP was totally hydrolyzed and its activity decreased after incubation with pepsin and a pancreatic extract. The peptide LHLPLP was incubated with ACE and was found to be a true inhibitor of the enzyme and to exhibit a competitive inhibitor pattern. A structure-activity relationship study of this peptide was carried out by synthesizing several modified peptides related to the sequence LHLPLP. The substitution of amino acid Leu in the penultimate position by Gly improved the ACE-inhibitory activity twofold and the substitution of Pro at C-terminal position by Arg increased the activity twofold, with an IC50 of LHLPLR as low as 1.8 microM.

  7. Hybrid nanomaterial for stabilizing the antibiofilm activity of Eugenia carryophyllata essential oil.

    PubMed

    Grumezescu, Alexandru Mihai; Chifiriuc, Mariana Carmen; Saviuc, Crina; Grumezescu, Valentina; Hristu, Radu; Mihaiescu, Dan Eduard; Stanciu, George A; Andronescu, Ecaterina

    2012-12-01

    The aim of the present study was to demonstrate that Fe(3)O(4)/oleic acid core/shell nanostructures could be used as systems for stabilizing the Eugenia carryophyllata essential oil (EO) on catheter surface pellicles, in order to improve their resistance to fungal colonization. EO microwave assisted extraction was performed in a Neo-Clevenger (related) device and its chemical composition was settled by GC-MS analysis. Fe(3)O(4)/oleic acid-core/shell nanoparticles (NP) were obtained by a precipitation method under microwave condition. High resolution transmission electron microscopy (HR-TEM) was used as a primary characterization method. The NPs were processed to achieve a core/shell/EO coated-shell nanosystem further used for coating the inner surface of central venous catheter samples. The tested fungal strains have been recently isolated from different clinical specimens. The biofilm architecture was assessed by confocal laser scanning microscopy (CLSM). Our results claim the usage of hybrid nanomaterial (core/shell/coated-shell) for the stabilization of E. carryophyllata EO, which prevented or inhibited the fungal biofilm development on the functionalized catheter, highlighting the opportunity of using these nanosystems to obtain improved, anti-biofilm coatings for biomedical applications.

  8. Epsin is required for Dishevelled stability and Wnt signalling activation in colon cancer development.

    PubMed

    Chang, Baojun; Tessneer, Kandice L; McManus, John; Liu, Xiaolei; Hahn, Scott; Pasula, Satish; Wu, Hao; Song, Hoogeun; Chen, Yiyuan; Cai, Xiaofeng; Dong, Yunzhou; Brophy, Megan L; Rahman, Ruby; Ma, Jian-Xing; Xia, Lijun; Chen, Hong

    2015-03-16

    Uncontrolled canonical Wnt signalling supports colon epithelial tumour expansion and malignant transformation. Understanding the regulatory mechanisms involved is crucial for elucidating the pathogenesis of and will provide new therapeutic targets for colon cancer. Epsins are ubiquitin-binding adaptor proteins upregulated in several human cancers; however, the involvement of epsins in colon cancer is unknown. Here we show that loss of intestinal epithelial epsins protects against colon cancer by significantly reducing the stability of the crucial Wnt signalling effector, dishevelled (Dvl2), and impairing Wnt signalling. Consistently, epsins and Dvl2 are correspondingly upregulated in colon cancer. Mechanistically, epsin binds Dvl2 via its epsin N-terminal homology domain and ubiquitin-interacting motifs and prohibits Dvl2 polyubiquitination and degradation. Our findings reveal an unconventional role for epsins in stabilizing Dvl2 and potentiating Wnt signalling in colon cancer cells to ensure robust colon cancer progression. The pro-carcinogenic role of Epsins suggests that they are potential therapeutic targets to combat colon cancer.

  9. Enhanced photocatalytic activity of a self-stabilized synthetic flavin anchored on a TiO2 surface.

    PubMed

    Pandiri, Manjula; Hossain, Mohammad S; Foss, Frank W; Rajeshwar, Krishnan; Paz, Yaron

    2016-07-21

    Synthetic flavin molecules were anchored on Degussa P25 titanium dioxide (TiO2). The effect of their presence on the photocatalytic (PC) activity of TiO2 was studied. Under UV light, an increase in the degradation rate of ethanol was observed. This increase was accompanied by stabilization of the anchored flavin against self-degradation. The unprecedented stabilization effect was found also in the absence of a reducing agent such as ethanol. In contrast, under the less energetic visible light, fast degradation of the anchored flavin was observed. These rather surprising observations were attributed to the propensity for charge transport from excited flavin molecules to the semiconductor and to the role that such charge transfer may play in stabilizing the overall assembly. Anchored flavins excited by UV light to their S2, S3 electronic states were able to transfer the excited electrons to the TiO2 phase whereas anchored flavin molecules that were excited by visible light to the S1 state were less likely to transfer the photo-excited electrons and therefore were destabilized. These findings may be relevant not only to anchored flavins in general but to other functionalized photocatalysts, and may open up new vistas in the implementation of sensitizers in PC systems.

  10. Integrated control of active suspension system and electronic stability programme using hierarchical control strategy: theory and experiment

    NASA Astrophysics Data System (ADS)

    Xiao, Hansong; Chen, Wuwei; Zhou, HuiHui; Zu, Jean W.

    2011-02-01

    Integrated vehicle dynamics control has been an important research topic in the area of vehicle dynamics and control over the past two decades. The aim of integrated vehicle control is to improve the overall vehicle performance including handling, stability, and comfort through creating synergies in the use of sensor information, hardware, and control strategies. This paper proposes a two-layer hierarchical control architecture for integrated control of the active suspension system (ASS) and the electronic stability programme (ESP). The upper-layer controller is designed to coordinate the interactions between the ASS and the ESP. While in the lower layer, the two controllers including the ASS and the ESP are developed independently to achieve their local control objectives. Both a simulation investigation and a hardware-in-the-loop experimental study are performed. Simulation results demonstrate that the proposed hierarchical control system is able to improve the multiple vehicle performance indices including both the ride comfort and the lateral stability, compared with the non-integrated control system. Moreover, the experimental results verify the effectiveness of the design of the hierarchical control system.

  11. Stability and activity of Dictyoglomus thermophilum GH11 xylanase and its disulphide mutant at high pressure and temperature.

    PubMed

    Li, He; Voutilainen, Sanni; Ojamo, Heikki; Turunen, Ossi

    2015-03-01

    The functional properties of extremophilic Dictyoglomus thermophilum xylanase (XYNB) and the N-terminal disulphide-bridge mutant (XYNB-DS) were studied at high pressure and temperature. The enzymes were quite stable even at the pressure of 500MPa at 80°C. The half-life of inactivation in these conditions was over 30h. The inactivation at 80°C in atmospheric pressure was only 3-times slower. The increase of pressure up to 500MPa at 80°C decreased only slightly the enzyme's stability, whereas in 500MPa the increase of temperature from 22 to 80°C decreased significantly more the enzyme's stability. While the high temperature (80-100°C) decreased the enzyme reaction with short xylooligosaccharides (xylotetraose and xylotriose), the high pressure (100-300MPa) had an opposite effect. The temperature of 100°C strongly increased the Km but did not affect the kcat to the same extent, thus indicating that the interaction of the substrate with the active site suffers before the catalytic reaction begins to decrease as the temperature rises. Circular dichroism spectroscopy showed the high structural stability of XYNB and XYNB-DS at 93°C.

  12. Integrated chassis control of active front steering and yaw stability control based on improved inverse nyquist array method.

    PubMed

    Zhu, Bing; Chen, Yizhou; Zhao, Jian

    2014-01-01

    An integrated chassis control (ICC) system with active front steering (AFS) and yaw stability control (YSC) is introduced in this paper. The proposed ICC algorithm uses the improved Inverse Nyquist Array (INA) method based on a 2-degree-of-freedom (DOF) planar vehicle reference model to decouple the plant dynamics under different frequency bands, and the change of velocity and cornering stiffness were considered to calculate the analytical solution in the precompensator design so that the INA based algorithm runs well and fast on the nonlinear vehicle system. The stability of the system is guaranteed by dynamic compensator together with a proposed PI feedback controller. After the response analysis of the system on frequency domain and time domain, simulations under step steering maneuver were carried out using a 2-DOF vehicle model and a 14-DOF vehicle model by Matlab/Simulink. The results show that the system is decoupled and the vehicle handling and stability performance are significantly improved by the proposed method.

  13. Integrated Chassis Control of Active Front Steering and Yaw Stability Control Based on Improved Inverse Nyquist Array Method

    PubMed Central

    2014-01-01

    An integrated chassis control (ICC) system with active front steering (AFS) and yaw stability control (YSC) is introduced in this paper. The proposed ICC algorithm uses the improved Inverse Nyquist Array (INA) method based on a 2-degree-of-freedom (DOF) planar vehicle reference model to decouple the plant dynamics under different frequency bands, and the change of velocity and cornering stiffness were considered to calculate the analytical solution in the precompensator design so that the INA based algorithm runs well and fast on the nonlinear vehicle system. The stability of the system is guaranteed by dynamic compensator together with a proposed PI feedback controller. After the response analysis of the system on frequency domain and time domain, simulations under step steering maneuver were carried out using a 2-DOF vehicle model and a 14-DOF vehicle model by Matlab/Simulink. The results show that the system is decoupled and the vehicle handling and stability performance are significantly improved by the proposed method. PMID:24782676

  14. Concurrent Intervention With Exercises and Stabilized Tumor Necrosis Factor Inhibitor Therapy Reduced the Disease Activity in Patients With Ankylosing Spondylitis

    PubMed Central

    Liang, Hui; Li, Wen-Rong; Zhang, Hua; Tian, Xu; Wei, Wei; Wang, Chun-Mei

    2015-01-01

    Abstract Since the use of tumor necrosis factor (TNF) inhibitor therapy is becoming wider, the effects of concurrent intervention with exercises and stabilized TNF inhibitors therapy in patients with ankylosing spondylitis (AS) are different. The study aimed to objectively evaluate whether concurrent intervention with exercises and stabilized TNF inhibitors can reduce the disease activity in patients with AS. A search from PubMed, Web of Science, EMBASE, and the Cochrane Library was electronically performed to collect studies which compared concurrent intervention with exercise and TNF inhibitor to conventional approach in terms of disease activity in patients with AS published from their inception to June 2015. Studies that measured the Bath Ankylosing Spondylitis Functional Index (BASFI), the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), the Bath Ankylosing Spondylitis Metrology Index (BASMI), and chest expansion as outcomes were included. Two independent investigators screened the identified articles, extracted the data, and assessed the methodological quality of the included studies. Quantitative analysis was performed with Review Manager (RevMan) software (version 5.3.0). A total of 5 studies comprising 221 participants were included in the study. Meta-analyses showed that concurrent intervention with exercises and stabilized TNF inhibitors therapy significantly reduced the BASMI scores (MD, −0.99; 95% CI, −1.61 to −0.38) and BASDAI scores (MD, −0.58; 95% CI, −1.10 to −0.06), but the BASFI scores (MD, −0.31; 95% CI, −0.76 to 0.15) was not reduced, and chest expansion (MD, 0.80; 95% CI, −0.18 to 1.78) was not increased. Concurrent intervention with exercises and stabilized TNF inhibitors therapy can reduce the disease activity in patients with AS. More randomized controlled trials (RCTs) with high-quality, large-scale, and appropriate follow-up are warranted to further establish the benefit of concurrent intervention with

  15. Theoretical Study of an Actively Mode-Locked Fiber Laser Stabilized by an Intracavity Fabry-Perot Etalon: Linear Regime

    DTIC Science & Technology

    2007-07-01

    an actively mode-locked fiber laser stabilized by an intracavity Fabry–Perot etalon: linear regime Yurij Parkhomenko,1 Moshe Horowitz,1,* Curtis R... Menyuk ,2 and Thomas F. Carruthers3,4 1Department of Electrical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel 2Department of...Naval Research aboratory. C. R. Menyuk can be reached via e-mail at enyuk@umbc.edu, and T. F. Carruthers can be reached ia e-mail at tcarruth@nsf.gov

  16. Understanding the Effects of Surface Chemistry and Microstructure on the Activity and Stability of Pt Electrocatalysts on Non-Carbon Supports

    SciTech Connect

    Mustain, William

    2015-02-12

    The objective of this project is to elucidate the effects of the chemical composition and microstructure of the electrocatalyst support on the activity, stability and utilization of supported Pt clusters.

  17. The Association between Physical Activity During the Day and Long-Term Memory Stability

    PubMed Central

    Pontifex, Matthew B.; Gwizdala, Kathryn L.; Parks, Andrew C.; Pfeiffer, Karin A.; Fenn, Kimberly M.

    2016-01-01

    Despite positive associations between chronic physical activity and memory; we have little understanding of how best to incorporate physical activity during the day to facilitate the consolidation of information into memory, nor even how time spent physically active during the day relates to memory processes. The purpose of this investigation was to examine the relation between physical activity during the day and long-term memory. Ninety-two young adults learned a list of paired-associate items and were tested on the items after a 12-hour interval during which heart rate was recorded continuously. Although the percentage of time spent active during the day was unrelated to memory, two critical physical activity periods were identified as relating to the maintenance of long-term memory. Engaging in physical activity during the period 1 to 2-hours following the encoding of information was observed to be detrimental to the maintenance of information in long-term memory. In contrast, physical activity during the period 1-hour prior to memory retrieval was associated with superior memory performance, likely due to enhanced retrieval processing. These findings provide initial evidence to suggest that long-term memory may be enhanced by more carefully attending to the relative timing of physical activity incorporated during the day. PMID:27909312

  18. The Contribution of the Activation Entropy to the Gas-Phase Stability of Modified Nucleic Acid Duplexes.

    PubMed

    Hari, Yvonne; Dugovič, Branislav; Istrate, Alena; Fignolé, Annabel; Leumann, Christian J; Schürch, Stefan

    2016-07-01

    Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes. Graphical Abstract ᅟ.

  19. The Contribution of the Activation Entropy to the Gas-Phase Stability of Modified Nucleic Acid Duplexes

    NASA Astrophysics Data System (ADS)

    Hari, Yvonne; Dugovič, Branislav; Istrate, Alena; Fignolé, Annabel; Leumann, Christian J.; Schürch, Stefan

    2016-07-01

    Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes.

  20. Activation Layer Stabilization of High Polarization Photocathodes in Sub-Optimal RF Gun Environments

    SciTech Connect

    Gregory A. Mulhollan

    2010-11-16

    Specific activation recipes for bulk, 100 nm thick MBE grown and high polarization III-V photocathode material have been developed which mitigate the effects of exposure to background gasses. Lifetime data using four representative gasses were acquired for bulk GaAs, 100 nm unstrained GaAs and strained superlattice GaAs/GaAsP, all activated both with Cs and then Cs and Li (bi-alkali). Each photoemitter showed marked resilience improvement when activated using the bi-alkali recipe compared to the standard single alkali recipe. A dual alkali activation system at SLAC was constructed, baked and commissioned with the purpose of performing spin-polarization measurements on electrons emitted from the bi-alkali activated surfaces. An end station at SSRL was configured with the required sources for energy resolved photoemission measurements on the bi-alkali activated and CO2 dosed surfaces. The bi-alkali recipes were successfully implemented at SLAC/SSRL. Measurements at SLAC of the photoelectron spin-polarization from the modified activation surface showed no sign of a change in value compared to the standard activated material, i.e., no ill effects. Analysis of photoemission data indicates that the addition of Li to the activation layer results in a multi-layer structure. The presence of Li in the activation layer also acts as an inhibitor to CO2 absorption, hence better lifetimes in worse vacuum were achieved. The bi-alkali activation has been tested on O2 activated GaAs for comparison with NF3 activated surfaces. Comparable resilience to CO2 exposure was achieved for the O2 activated surface. An RF PECVD amorphous silicon growth system was modified to allow high temperature heat cleaning of GaAs substrates prior to film deposition. Growth versus thickness data were collected. Very thin amorphous silicon germanium layers were optimized to exhibit good behavior as an electron emitter. Growth of the amorphous silicon germanium films on the above substrates was fine tuned

  1. Gemini surfactants affect the structure, stability, and activity of ribonuclease Sa.

    PubMed

    Amiri, Razieh; Bordbar, Abdol-Khalegh; Laurents, Douglas V

    2014-09-11

    Gemini surfactants have important advantages, e.g., low micromolar CMCs and slow millisecond monomer ↔ micelle kinetics, for membrane mimetics and for delivering nucleic acids for gene therapy or RNA silencing. However, as a prerequisite, it is important to characterize interactions occurring between Gemini surfactants and proteins. Here NMR and CD spectroscopies are employed to investigate the interactions of cationic Gemini surfactants with RNase Sa, a negatively charged ribonuclease. We find that RNase Sa binds Gemini surfactant monomers and micelles at pH values above 4 to form aggregates. Below pH 4, where the protein is positively charged, these aggregates dissolve and interactions are undetectable. Thermal denaturation experiments show that surfactant lowers RNase Sa's conformational stability, suggesting that surfactant binds the protein's denatured state preferentially. Finally, Gemini surfactants were found to bind RNA, leading to the formation of large complexes. Interestingly, Gemini surfactant binding did not prevent RNase Sa from cleaving RNA.

  2. Density Functional Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires

    SciTech Connect

    Matanovic, Ivana; Kent, Paul; Garzon, Fernando; Henson, Neil J.

    2013-03-14

    We used density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5–1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, non-hollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity toward the oxygen reduction reaction of platinum nanowires was assessed by studying the change in the chemisorption energies of oxygen, hydroxyl, and hydroperoxyl groups, induced by converting the nanotube models to nanowires. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Single-wall nanotubes and platinum nanowires with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.

  3. Theoretical Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires

    SciTech Connect

    Matanovic, Ivana; Kent, Paul; Garzon, Fernando; Henson, Neil J.

    2012-10-10

    We use density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5- 1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, nonhollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity towards the oxygen reduction reaction of platinum nanowires was addressed by studying the change in the chemisorption energies of oxygen and hydroxyl groups, induced by inserting the inner chain of platinum atoms into the hollow nanotubes. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Nanotubes with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.

  4. Stabilization of active matter by flow-vortex lattices and defect ordering

    NASA Astrophysics Data System (ADS)

    Doostmohammadi, Amin; Adamer, Michael F.; Thampi, Sumesh P.; Yeomans, Julia M.

    2016-02-01

    Active systems, from bacterial suspensions to cellular monolayers, are continuously driven out of equilibrium by local injection of energy from their constituent elements and exhibit turbulent-like and chaotic patterns. Here we demonstrate both theoretically and through numerical simulations, that the crossover between wet active systems, whose behaviour is dominated by hydrodynamics, and dry active matter where any flow is screened, can be achieved by using friction as a control parameter. Moreover, we discover unexpected vortex ordering at this wet-dry crossover. We show that the self organization of vortices into lattices is accompanied by the spatial ordering of topological defects leading to active crystal-like structures. The emergence of vortex lattices, which leads to the positional ordering of topological defects, suggests potential applications in the design and control of active materials.

  5. Stabilization of active matter by flow-vortex lattices and defect ordering

    PubMed Central

    Doostmohammadi, Amin; Adamer, Michael F.; Thampi, Sumesh P.; Yeomans, Julia M.

    2016-01-01

    Active systems, from bacterial suspensions to cellular monolayers, are continuously driven out of equilibrium by local injection of energy from their constituent elements and exhibit turbulent-like and chaotic patterns. Here we demonstrate both theoretically and through numerical simulations, that the crossover between wet active systems, whose behaviour is dominated by hydrodynamics, and dry active matter where any flow is screened, can be achieved by using friction as a control parameter. Moreover, we discover unexpected vortex ordering at this wet–dry crossover. We show that the self organization of vortices into lattices is accompanied by the spatial ordering of topological defects leading to active crystal-like structures. The emergence of vortex lattices, which leads to the positional ordering of topological defects, suggests potential applications in the design and control of active materials. PMID:26837846

  6. A Heparin-Mimicking Block Copolymer Both Stabilizes and Increases the Activity of Fibroblast Growth Factor 2 (FGF2)

    PubMed Central

    2016-01-01

    Fibroblast growth factor 2 (FGF2) is a protein involved in cellular functions in applications such as wound healing and tissue regeneration. Stabilization of this protein is important for its use as a therapeutic since the native protein is unstable during storage and delivery. Additionally, the ability to increase the activity of FGF2 is important for its application, particularly in chronic wound healing and the treatment of various ischemic conditions. Here we report a heparin mimicking block copolymer, poly(styrenesulfonate-co-poly(ethylene glycol) methyl ether methacrylate)-b-vinyl sulfonate) (p(SS-co-PEGMA)-b-VS, that contains a segment that enhances the stability of FGF2 and one that binds to the FGF2 receptor. The FGF2 conjugate retained activity after exposure to refrigeration (4 °C) and room temperature (23 °C) for 7 days, while unmodified FGF2 was inactive after these standard storage conditions. A cell study performed with a cell line lacking native heparan sulfate proteoglycans indicated that the conjugated block copolymer facilitated binding of FGF2 to its receptor similar to the addition of heparin to FGF2. A receptor-based enzyme-linked immunosorbant assay (ELISA) confirmed the results. The conjugate also increased the migration of endothelial cells by 80% compared to FGF2 alone. Additionally, the FGF2-p(SS-co-PEGMA)-b-VS stimulated endothelial cell sprouting 250% better than FGF2 at low concentration. These data verify that this rationally designed protein-block copolymer conjugate enhances receptor binding, cellular processes such as migration and tube-like formation, and stability, and suggest that it may be useful for applications in biomaterials, tissue regeneration, and wound healing. PMID:27580376

  7. Evaluation of antioxidant activity of green tea extract and its effect on the biscuits lipid fraction oxidative stability.

    PubMed

    Mildner-Szkudlarz, S; Zawirska-Wojtasiak, R; Obuchowski, W; Gośliński, M

    2009-10-01

    This article investigates the effect of green tea extract (GTE) on biscuits lipid fraction oxidative stability. The antioxidant activity of GTE was compared with commonly used synthetic antioxidant butylated hydroxyanisole (BHA). Biscuits were prepared in 3 variations. Control samples were prepared without addition of antioxidants. The other variations were prepared by adding BHA (0.02%) and GTE at 3 different levels: 0.02%, 0.1%, and 1%. Biscuits were subjected to sensory studies and instrumental and chemical analysis. Phenolic compounds of GTE characterized powerful antioxidant activities evaluated using free radical, 2,2-diphenyl-1-picrylhydrazyl method, compared with gallic acid and significantly better than BHA. Antioxidants added to the samples clearly slowed down the process of oxidation of fatty acids, inhibiting the monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) decomposition. Addition of GTE at the level of 1% gave an excellent antioxidant effect on the biscuits lipid stability, inhibiting hydroperoxides formation by about 47% to 73% compared with BHA, which showed about 16% to 60% inhibition. However, GTE did not improve significantly lipid stability, measured by anisidine value (p-AV), and inhibited formation of secondary oxidation products only by 3.5%. After accelerated storage time, insensitivity of oxidized-like flavor was about 2 times higher for control samples compared to samples with addition of antioxidants. Moreover, after storage biscuits treated with natural antioxidant received a higher panel score of overall acceptance compared to samples with BHA. Using volatile compound formation as a marker of lipid oxidation, both GTE and BHA were effective inhibitors of the decomposition of hydroperoxides.

  8. Preformulation studies of novel 5'-O-carbonates of lamivudine with biological activity: solubility and stability assays.

    PubMed

    Gualdesi, María S; Ravetti, Soledad; Raviolo, Mónica A; Briñón, Margarita C

    2014-09-01

    As a part of preformulation studies, the aim of this work was to examine the solubility and stability of a series of 5'-O-carbonates of lamivudine with proven antihuman immunodeficiency virus activity. Solubility studies were carried out using pure solvents (water, ethanol and polyethylene glycol 400 [PEG 400]), as well as cosolvents in binary mixture systems (water-ethanol and water-PEG 400). These ionizable compounds showed that their aqueous solubility is decreasing as the carbon length of the substituent moiety increases, but being enhanced as the pH was reduced from 7.4 to 1.2. Thus, 3TC-Metha an active compound of the series, with an intrinsic solubility at 25 °C of 17 mg/mL, was about 70 times more soluble than 3TC-Octa (0.24 mg/mL), and at pHs of 1.2, 5.8 and 7.4 had intrinsic solubilities of 36.48, 19.20 and 15.40 mg/mL, respectively. In addition, the solubility was enhanced significantly by using ethanol and PEG 400 as cosolvents. A stability study was conducted in buffer solutions at pH 1.2, 5.8, 7.4 and 13.0 and in human plasma at 37 °C. Stability-indicating high-performance liquid chromatography procedure was found to be selective, sensitive and accurate for these compounds and good recovery, linearity and precision were also observed.

  9. Mutagenesis of Paramyxovirus Hemagglutinin-Neuraminidase Membrane-Proximal Stalk Region Influences Stability, Receptor Binding, and Neuraminidase Activity

    PubMed Central

    Adu-Gyamfi, Emmanuel; Kim, Lori S.; Jardetzky, Theodore S.

    2016-01-01

    ABSTRACT Paramyxoviridae consist of a large family of enveloped, negative-sense, nonsegmented single-stranded RNA viruses that account for a significant number of human and animal diseases. The fusion process for nearly all paramyxoviruses involves the mixing of the host cell plasma membrane and the virus envelope in a pH-independent fashion. Fusion is orchestrated via the concerted action of two surface glycoproteins: an attachment protein called hemagglutinin-neuraminidase (HN [also called H or G depending on virus type and substrate]), which acts as a receptor binding protein, and a fusion (F) protein, which undergoes a major irreversible refolding process to merge the two membranes. Recent biochemical evidence suggests that receptor binding by HN is dispensable for cell-cell fusion. However, factors that influence the stability and/or conformation of the HN 4-helix bundle (4HB) stalk have not been studied. Here, we used oxidative cross-linking as well as functional assays to investigate the role of the structurally unresolved membrane-proximal stalk region (MPSR) (residues 37 to 58) of HN in the context of headless and full-length HN membrane fusion promotion. Our data suggest that the receptor binding head serves to stabilize the stalk to regulate fusion. Moreover, we found that the MPSR of HN modulates receptor binding and neuraminidase activity without a corresponding regulation of F triggering. IMPORTANCE Paramyxoviruses require two viral membrane glycoproteins, the attachment protein variously called HN, H, or G and the fusion protein (F), to couple host receptor recognition to virus-cell fusion. The HN protein has a globular head that is attached to a membrane-anchored flexible stalk of ∼80 residues and has three activities: receptor binding, neuraminidase, and fusion activation. In this report, we have identified the functional significance of the membrane-proximal stalk region (MPSR) (HN, residues 37 to 56) of the paramyxovirus parainfluenza virus

  10. Handling qualities of a wide-body transport airplane utilizing Pitch Active Control Systems (PACS) for relaxed static stability application

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Person, Lee H., Jr.; Brown, Philip W.; Becker, Lawrence E.; Hunt, George E.; Rising, J. J.; Davis, W. J.; Willey, C. S.; Weaver, W. A.; Cokeley, R.

    1985-01-01

    Piloted simulation studies have been conducted to evaluate the effectiveness of two pitch active control systems (PACS) on the flying qualities of a wide-body transport airplane when operating at negative static margins. These two pitch active control systems consisted of a simple 'near-term' PACS and a more complex 'advanced' PACS. Eight different flight conditions, representing the entire flight envelope, were evaluated with emphasis on the cruise flight conditions. These studies were made utilizing the Langley Visual/Motion Simulator (VMS) which has six degrees of freedom. The simulation tests indicated that (1) the flying qualities of the baseline aircraft (PACS off) for the cruise and other high-speed flight conditions were unacceptable at center-of-gravity positions aft of the neutral static stability point; (2) within the linear static stability flight envelope, the near-term PACS provided acceptable flying qualities for static stabilty margins to -3 percent; and (3) with the advanced PACS operative, the flying qualities were demonstrated to be good (satisfactory to very acceptable) for static stabilty margins to -20 percent.

  11. Ionic Polymer-Coated Laccase with High Activity and Enhanced Stability: Application in the Decolourisation of Water Containing AO7

    PubMed Central

    Zhang, Xiaolin; Hua, Ming; Lv, Lu; Pan, Bingcai

    2015-01-01

    Eliminating dyes in environmental water purification remains a formidable challenge. Laccase is a unique, environmentally friendly and efficient biocatalyst that can degrade pollutants. However, the use of laccase for the degradation of pollutants is considerably limited by its susceptibility to environmental changes and its poor reusability. We fabricated a novel biocatalyst (LacPG) by coating polyethylenimine onto the native laccase (Lac) followed by crosslinking with glutaraldehyde. The stability of the resulting LacPG was highly enhanced against pH variations, thermal treatments and provided better long-term storage with a negligible loss in enzymatic activity. Compared to Lac, LacPG exhibited significantly higher decolourisation efficiency in the degradation of a representative azo dye, acid orange 7 (AO7), which resulted from the electrostatic attraction between the coating and AO7. LacPG was separated from the AO7 solution using an ultrafiltration unit. The increased size and modified surface chemistry of LacPG facilitated ultrafiltration and reduced membrane fouling. LacPG exhibited enhanced stability, high catalytic activity and favourable properties for membrane separation; therefore, LacPG could be continuously reused in an enzymatic membrane reactor with a high efficiency for decolourising water containing AO7. The developed strategy appears to be promising for enhancing the applicability of laccase in practical water treatment. PMID:25652843

  12. Deubiquitinating enzyme USP22 positively regulates c-Myc stability and tumorigenic activity in mammalian and breast cancer cells.

    PubMed

    Kim, Dongyeon; Hong, Ahyoung; Park, Hye In; Shin, Woo Hyun; Yoo, Lang; Jeon, Seo Jeong; Chung, Kwang Chul

    2017-02-04

    The proto-oncogene c-Myc has a pivotal function in growth control, differentiation and apoptosis and is frequently affected in human cancer, including breast cancer. Ubiquitin-specific protease 22 (USP22), a member of the USP family of deubiquitinating enzymes (DUBs), mediates deubiquitination of target proteins, including histone H2B and H2A, telomeric repeat binding factor 1, and cyclin B1. USP22 is also a component of the mammalian SAGA transcriptional co-activating complex. In this study, we explored the functional role of USP22 in modulating c-Myc stability and its physiological relevance in breast cancer progression. We found that USP22 promotes deubiquitination of c-Myc in several breast cancer cell lines, resulting in increased levels of c-Myc. Consistent with this, USP22 knockdown reduces c-Myc levels. Furthermore, overexpression of USP22 stimulates breast cancer cell growth and colony formation, and increases c-Myc tumorigenic activity. In conclusion, the present study reveals that USP22 in breast cancer cell lines increases c-Myc stability through c-Myc deubiquitination, which is closely correlated with breast cancer progression. This article is protected by copyright. All rights reserved.

  13. Ionic Polymer-Coated Laccase with High Activity and Enhanced Stability: Application in the Decolourisation of Water Containing AO7

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolin; Hua, Ming; Lv, Lu; Pan, Bingcai

    2015-02-01

    Eliminating dyes in environmental water purification remains a formidable challenge. Laccase is a unique, environmentally friendly and efficient biocatalyst that can degrade pollutants. However, the use of laccase for the degradation of pollutants is considerably limited by its susceptibility to environmental changes and its poor reusability. We fabricated a novel biocatalyst (LacPG) by coating polyethylenimine onto the native laccase (Lac) followed by crosslinking with glutaraldehyde. The stability of the resulting LacPG was highly enhanced against pH variations, thermal treatments and provided better long-term storage with a negligible loss in enzymatic activity. Compared to Lac, LacPG exhibited significantly higher decolourisation efficiency in the degradation of a representative azo dye, acid orange 7 (AO7), which resulted from the electrostatic attraction between the coating and AO7. LacPG was separated from the AO7 solution using an ultrafiltration unit. The increased size and modified surface chemistry of LacPG facilitated ultrafiltration and reduced membrane fouling. LacPG exhibited enhanced stability, high catalytic activity and favourable properties for membrane separation; therefore, LacPG could be continuously reused in an enzymatic membrane reactor with a high efficiency for decolourising water containing AO7. The developed strategy appears to be promising for enhancing the applicability of laccase in practical water treatment.

  14. Titanium oxynitride interlayer to influence oxygen reduction reaction activity and corrosion stability of Pt and Pt-Ni alloy.

    PubMed

    Tan, XueHai; Wang, Liya; Zahiri, Beniamin; Kohandehghan, Alireza; Karpuzov, Dimitre; Lotfabad, Elmira Memarzadeh; Li, Zhi; Eikerling, Michael H; Mitlin, David

    2015-01-01

    A key advancement target for oxygen reduction reaction catalysts is to simultaneously improve both the electrochemical activity and durability. To this end, the efficacy of a new highly conductive support that comprises of a 0.5 nm titanium oxynitride film coated by atomic layer deposition onto an array of carbon nanotubes has been investigated. Support effects for pure platinum and for a platinum (50 at %)/nickel alloy have been considered. Oxynitride induces a downshift in the d-band center for pure platinum and fundamentally changes the platinum particle size and spatial distribution. This results in major enhancements in activity and corrosion stability relative to an identically synthesized catalyst without the interlayer. Conversely, oxynitride has a minimal effect on the electronic structure and microstructure, and therefore, on the catalytic performance of platinum-nickel. Calculations based on density functional theory add insight with regard to compositional segregation that occurs at the alloy catalyst-support interface.

  15. Trans-cleaving hammerhead ribozymes with tertiary stabilizing motifs: in vitro and in vivo activity against a structured viroid RNA

    PubMed Central

    Carbonell, Alberto; Flores, Ricardo; Gago, Selma

    2011-01-01

    Trans-cleaving hammerheads with discontinuous or extended stem I and with tertiary stabilizing motifs (TSMs) have been tested previously against short RNA substrates in vitro at low Mg2+ concentration. However, the potential of these ribozymes for targeting longer and structured RNAs in vitro and in vivo has not been examined. Here, we report the in vitro cleavage of short RNAs and of a 464-nt highly structured RNA from potato spindle tuber viroid (PSTVd) by hammerheads with discontinuous and extended formats at submillimolar Mg2+. Under these conditions, hammerheads derived from eggplant latent viroid and peach latent mosaic viroid (PLMVd) with discontinuous and extended formats, respectively, where the most active. Furthermore, a PLMVd-derived hammerhead with natural TSMs showed activity in vivo against the same long substrate and interfered with systemic PSTVd infection, thus reinforcing the idea that this class of ribozymes has potential to control pathogenic RNA replicons. PMID:21097888

  16. Comparative Analysis of Benzoxazinoid Biosynthesis in Monocots and Dicots: Independent Recruitment of Stabilization and Activation Functions[W][OA

    PubMed Central

    Dick, Regina; Rattei, Thomas; Haslbeck, Martin; Schwab, Wilfried; Gierl, Alfons; Frey, Monika

    2012-01-01

    Benzoxazinoids represent preformed protective and allelophatic compounds that are found in a multitude of species of the family Poaceae (Gramineae) and occur sporadically in single species of phylogenetically unrelated dicots. Stabilization by glucosylation and activation by hydrolysis is essential for the function of these plant defense compounds. We isolated and functionally characterized from the dicot larkspur (Consolida orientalis) the benzoxazinoid-specific UDP-glucosyltransferase and β-glucosidase that catalyze the enzymatic functions required to avoid autotoxicity and allow activation upon challenge by herbivore and pathogen attack. A phylogenetic comparison of these enzymes with their counterparts in the grasses indicates convergent evolution by repeated recruitment from homologous but not orthologous genes. The data reveal a great evolutionary flexibility in recruitment of these essential functions of secondary plant metabolism. PMID:22415274

  17. Enzymatic activity and thermal stability of metallo proteins in hydrated ionic liquids.

    PubMed

    Fujita, Kyoko; Ohno, Hiroyuki

    2010-12-01

    Hydrated choline dihydrogen phosphate (Hy[ch][dhp]) containing 30 wt% water was investigated as a novel protein solvent. The Hy[ch][dhp] dissolved some metallo proteins (cytochrome c, peroxidase, ascorbate oxidase, azurin, pseudoazurin and fructose dehydrogenase) without any modification. These proteins retained the surroundings of the active site after dissolution in Hy[ch][dhp]. Some metallo proteins were found to retain their activity in the Hy[ch][dhp].

  18. Covalent attachment of cholesterol oxidase and horseradish peroxidase on perlite through silanization: activity, stability and co-immobilization.

    PubMed

    Torabi, Seyed-Fakhreddin; Khajeh, Khosro; Ghasempur, Salehe; Ghaemi, Nasser; Siadat, Seyed-Omid Ranaei

    2007-08-31

    In the present work, co-immobilization of cholesterol oxidase (COD) and horseradish peroxidase (POD) on perlite surface was attempted. The surface of perlite were activated by 3-aminopropyltriethoxysilane and covalently bonded with COD and POD via glutaraldehyde. Enzymes activities have been assayed by spectrophotometric technique. The stabilities of immobilized COD and POD to pH were higher than those of soluble enzymes and immobilization shifted optimum pH of enzymes to the lower pH. Heat inactivation studies showed improved thermostability of the immobilized COD for more than two times, but immobilized POD was less thermostable than soluble POD. Also activity recovery of immobilized COD was about 50% since for immobilized POD was 11%. The K(m) of immobilized enzymes was found slightly lower than that of soluble enzymes. Immobilized COD showed inhibition in its activity at high cholesterol concentration which was not reported for soluble COD before. Co-immobilized enzymes retained 65% of its initial activity after 20 consecutive reactor batch cycles.

  19. EPAC1 activation by cAMP stabilizes CFTR at the membrane by promoting its interaction with NHERF1.

    PubMed

    Lobo, Miguel J; Amaral, Margarida D; Zaccolo, Manuela; Farinha, Carlos M

    2016-07-01

    Cyclic AMP (cAMP) activates protein kinase A (PKA) but also the guanine nucleotide exchange factor 'exchange protein directly activated by cAMP' (EPAC1; also known as RAPGEF3). Although phosphorylation by PKA is known to regulate CFTR channel gating - the protein defective in cystic fibrosis - the contribution of EPAC1 to CFTR regulation remains largely undefined. Here, we demonstrate that in human airway epithelial cells, cAMP signaling through EPAC1 promotes CFTR stabilization at the plasma membrane by attenuating its endocytosis, independently of PKA activation. EPAC1 and CFTR colocalize and interact through protein adaptor NHERF1 (also known as SLC9A3R1). This interaction is promoted by EPAC1 activation, triggering its translocation to the plasma membrane and binding to NHERF1. Our findings identify a new CFTR-interacting protein and demonstrate that cAMP activates CFTR through two different but complementary pathways - the well-known PKA-dependent channel gating pathway and a new mechanism regulating endocytosis that involves EPAC1. The latter might constitute a novel therapeutic target for treatment of cystic fibrosis.

  20. Coexistence and local μ-stability of multiple equilibrium points for memristive neural networks with nonmonotonic piecewise linear activation functions and unbounded time-varying delays.

    PubMed

    Nie, Xiaobing; Zheng, Wei Xing; Cao, Jinde

    2016-12-01

    In this paper, the coexistence and dynamical behaviors of multiple equilibrium points are discussed for a class of memristive neural networks (MNNs) with unbounded time-varying delays and nonmonotonic piecewise linear activation functions. By means of the fixed point theorem, nonsmooth analysis theory and rigorous mathematical analysis, it is proven that under some conditions, such n-neuron MNNs can have 5(n) equilibrium points located in ℜ(n), and 3(n) of them are locally μ-stable. As a direct application, some criteria are also obtained on the multiple exponential stability, multiple power stability, multiple log-stability and multiple log-log-stability. All these results reveal that the addressed neural networks with activation functions introduced in this paper can generate greater storage capacity than the ones with Mexican-hat-type activation function. Numerical simulations are presented to substantiate the theoretical results.

  1. The Mos/MAP kinase pathway stabilizes c-Fos by phosphorylation and augments its transforming activity in NIH 3T3 cells.

    PubMed Central

    Okazaki, K; Sagata, N

    1995-01-01

    The c-mos proto-oncogene product, Mos, is a serine/threonine kinase that can activate ERK1 and 2 mitogen-activated protein (MAP) kinases by direct phosphorylation of MAPK/ERK kinase (MEK). ERK activation is essential for oncogenic transformation of NIH 3T3 cells by Mos. In this study, we examined how mitogenic and oncogenic signalling from the Mos/MEK/ERK pathway reaches the nucleus to activate downstream target genes. We show that c-Fos (the c-fos protooncogene product), which is an intrinsically unstable nuclear protein, is metabolically highly stabilized, and greatly enhances the transforming efficiency of NIH 3T3 cells, by Mos. This stabilization of c-Fos required Mos-induced phosphorylation of its C-terminal region on Ser362 and Ser374, and double replacements of these serines with acidic (Asp) residues markedly increased the stability and transforming efficiency of c-Fos even in the absence of Mos. Moreover, activation of the ERK pathway was necessary and sufficient for the c-Fos phosphorylation and stabilization by Mos. These results indicate that c-Fos undergoes stabilization, and mediates at least partly the oncogenic signalling, by the Mos/MEK/ERK pathway. The present findings also suggest that, in general, the ERK pathway may regulate the cell fate and function by affecting the metabolic stability of c-Fos. Images PMID:7588633

  2. Stability of active mantle upwelling revealed by net characteristics of plate tectonics.

    PubMed

    Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H

    2013-06-27

    Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time.

  3. Myristic acid-modified thymopentin for enhanced plasma stability and immune-modulating activity.

    PubMed

    Tan, Yuanyan; Wang, Wei; Wu, Chunlei; Pan, Zhengyin; Yao, Guiyang; Fang, Lijing; Su, Wu

    2017-03-30

    Natural albumin ligand (fatty acids)-conjugated peptides can rapidly bind to circulating albumin and form complexes to control the release of peptides. The purpose of this study was to prolong the half-life and immune-modulating effects of thymopentin (TP5) by using the albumin binding strategy. We synthesized myristic acid-modified TP5 (TP5-MA) by conjugating a myristic acid-acylated lysine to a permissive site of TP5, which improved the albumin binding affinity of TP5-MA and dramatically enhanced its stability in human plasma. We observed well-preserved bioactivities of TP5-MA in RAW264.7 macrophages using a tumor necrosis factor (TNF)-α stimulation assay. Moreover, the prolonged immune-modulating effect of TP5-MA was confirmed by the normalized CD4(+)/CD8(+) ratio in immune-depressed rat models, which resulted in a reduced administration frequency (twice per week). In general, the enhanced pharmacokinetic and pharmacodynamic properties of TP5-MA make it a promising product for the treatment of immunodeficiency diseases.

  4. Quantum Chemical Studies on Stability and Chemical Activities in Calcium Ion Bound Calmodulin Loops.

    PubMed

    Sikdar, Samapan; Ghosh, Mahua; De Raychaudhury, Molly; Chakrabarti, J

    2015-11-19

    Quantum chemical (QC) calculations for macromolecules require truncation of the molecule, highlighting the portion of interest due to heavy computation cost. As a result, an estimation of the effects of truncation is important to interpret the energy spectrum of such calculations. We perform density functional theory based QC calculations on calcium ion bound EF-hand loops of Calmodulin isolated from the crystal structure in an implicit solvent. We find that the terminal contributions of neutral capping are negligible across the entire ground-state energy spectrum. The coordination energy range and the nature of hybridization of the coordination state molecular orbitals remain qualitatively similar across these loops. While the HOMO and LUMO of loops in the N-terminal domain are dominated by the acidic aspartates, and the polar/hydrophobic residues, respectively, these levels of the C-terminal domain loops show strong localized electron density on the phenyl rings of the tyrosines. The Fukui index calculation identifies the hydroxyl oxygen in the phenyl ring of Y99 as a potent nucleophile. Our analysis indicates a general way of interpreting the electronic energy spectra to understand stability and functions of large biomolecules where the truncation of the molecule and, hence, the terminal capping effects are inevitable.

  5. Stability of antimicrobial activity of peracetic acid solutions used in the final disinfection process.

    PubMed

    Costa, Solange Alves da Silva; Paula, Olívia Ferreira Pereira de; Silva, Célia Regina Gonçalves E; Leão, Mariella Vieira Pereira; Santos, Silvana Soléo Ferreira dos

    2015-01-01

    The instruments and materials used in health establishments are frequently exposed to microorganism contamination, and chemical products are used before sterilization to reduce occupational infection. We evaluated the antimicrobial effectiveness, physical stability, and corrosiveness of two commercial formulations of peracetic acid on experimentally contaminated specimens. Stainless steel specimens were contaminated with Staphylococcus aureus, Escherichia coli, Candida albicans, blood, and saliva and then immersed in a ready peracetic acid solution: 2% Sekusept Aktiv (SA) or 0.25% Proxitane Alpha (PA), for different times. Then, washes of these instruments were plated in culture medium and colony-forming units counted. This procedure was repeated six times per day over 24 non-consecutive days. The corrosion capacity was assessed with the mass loss test, and the concentration of peracetic acid and pH of the solutions were measured with indicator tapes. Both SA and PA significantly eliminated microorganisms; however, the SA solution was stable for only 4 days, whereas PA remained stable throughout the experiment. The concentration of peracetic acid in the SA solutions decreased over time until the chemical was undetectable, although the pH remained at 5. The PA solution had a concentration of 500-400 mg/L and a pH of 2-3. Neither formulation induced corrosion and both reduced the number of microorganisms (p = 0.0001). However, the differences observed in the performance of each product highlight the necessity of establishing a protocol for optimizing the use of each one.

  6. Pressure-enhanced activity and stability of a hyperthermophilic protease from a deep-sea methanogen.

    PubMed

    Michels, P C; Clark, D S

    1997-10-01

    We describe the properties of a hyperthermophilic, barophilic protease from Methanococcus jannaschii, an extremely thermophilic deep-sea methanogen. This enzyme is the first protease to be isolated from an organism adapted to a high-pressure-high-temperature environment. The partially purified enzyme has a molecular mass of 29 kDa and a narrow substrate specificity with strong preference for leucine at the P1 site of polypeptide substrates. Enzyme activity increased up to 116(deg)C and was measured up to 130(deg)C, one of the highest temperatures reported for the function of any enzyme. In addition, enzyme activity and thermostability increased with pressure: raising the pressure to 500 atm increased the reaction rate at 125(deg)C 3.4-fold and the thermostability 2.7-fold. Spin labeling of the active-site serine revealed that the active-site geometry of the M. jannaschii protease is not grossly different from that of several mesophilic proteases; however, the active-site structure may be relatively rigid at moderate temperatures. The barophilic and thermophilic behavior of the enzyme is consistent with the barophilic growth of M. jannaschii observed previously (J. F. Miller et al., Appl. Environ. Microbiol. 54:3039-3042, 1988).

  7. Carbon Flux and Isotopic Character of Soil and Soil Gas in Stabilized and Active Thaw Slumps in Northwest Alaska

    NASA Astrophysics Data System (ADS)

    Jensen, A.; Crosby, B. T.; Mora, C. I.; Lohse, K. A.

    2012-12-01

    Permafrost soils store nearly half the world's global carbon. Warming of arctic landscape results in permafrost thaw which causes ground subsidence or thermokarst. On hillslopes, these features rapidly and dramatically alter soil structure, temperature, and moisture, as well as the content and quality of soil organic matter. These changes alter both the rate and mechanism of carbon cycling in permafrost soils, making frozen soils available to both anaerobic and aerobic decomposition. In order to improve our predictive capabilities, we use a chronosequence thaw slumps to examine how fluxes from active and stabilized features differ. Our study site is along the Selawik River in northwest Alaska where a retrogressive thaw slump initiated in the spring of 2004. It has grown to a surface area of 50,000 m2. Products of the erosion are stored on the floor of the feature, trapped on a fan or flushed into the Selawik River. North of slump is undisturbed tundra and adjacent to the west is a slump feature that stabilized and is now covered with a second generation of spruce trees. In this 2 year study, we use measurements of CO2 efflux, δC13 in soil profiles and CO2 and CH4 abundance to constrain the response of belowground carbon emissions. We also focused on constraining which environmental factors govern C emissions within each of the above ecosystems. To this end, we measured soil temperature, and moisture, abundance and quality of soil organic carbon (SOC), water content, and bulk carbon compositions. Preliminary data from the summer of 2011 suggest that vegetation composition and soil temperature exert the strong control on CO2 efflux. The floor of the active slump and fan are bare mineral soils and are generally 10 to 15°C warmer than the tundra and stabilized slump. Consistently decreasing δC13 soil gas profiles in the recovered slump confirm that this region is a well-drained soil dominated by C3 vegetation. The δC13 gas profiles for the tundra, active slump

  8. Temperature affects the production, activity and stability of ligninolytic enzymes in Pleurotus ostreatus and Trametes versicolor.

    PubMed

    Snajdr, J; Baldrian, P

    2007-01-01

    Enzyme activity was determined in cultures of Pleurotus ostreatus and Trametes versicolor with cellulose as a sole C source and high C/N ratio. The fungi were able to grow and produce laccase and Mn-peroxidase (MnP) at 5-35 degrees C, the highest production being recorded at 25-30 degrees C in P. ostreatus and at 35 degrees C in T. versicolor. Production of both enzymes at 10 degrees C accounted only for 4-20% of the maximum value. Temperature optima for enzyme activity were 50 and 55 degrees C for P. ostreatus and T. versicolor laccases, respectively, and 60 degrees C for MnP. Temperatures causing 50% loss of activity after 24 h were 32 and 47 degrees C for laccases and 36 and 30 degrees C for MnP from P. ostreatus and T. versicolor, respectively.

  9. Effects of Drying Temperature on Antioxidant Activities of Tomato Powder and Storage Stability of Pork Patties

    PubMed Central

    2016-01-01

    This study was performed to evaluate the antioxidant activity of oven-dried tomato powder (OTP) as affected by drying temperature and the effect of OTP on the product quality of pork patties. Three OTP products were obtained by drying of fresh tomato at 60, 80 and 100℃ oven until constant weight was obtained. Total phenolic content of three kinds of OTPs ranged from 1.95 to 5.94 g/100 g. The highest amount of total phenolic compound was observed in OTP dried at 100℃. Antioxidant activity of three kinds of OTPs was measured by 1,1-diphenyl-2-pycrylhydrazyl (DPPH)-radical scavenging activity, iron chelating ability, reducing power and measurement of lipid peroxide in linoleic acid emulsion system. In all parameters, OTP at 100℃ showed the higher antioxidant activity than other temperatures (p<0.05). Based on the model study, the physicochemical properties, and antioxidant and antimicrobial activities of pork patties containing 1% OTP were measured. Redness of pork patties were increased with the addition of OTPs (p<0.05). Thiobarbituric acid reactive substances (TBARS) values of raw pork patties containing OTPs were lower than those of control (CTL) until 7 d of storage, regardless of drying temperatures (p<0.05). Peroxide values of pork patties made with OTP (1%) were lower than those of CTL until the end of storage time (p<0.05). However, no antimicrobial activities were observed among the treatments (p>0.05). Therefore, OTPs could be used as a natural antioxidant in meat products. PMID:27499664

  10. Metal-Induced Stabilization and Activation of Plasmid Replication Initiator RepB

    PubMed Central

    Ruiz-Masó, José A.; Bordanaba-Ruiseco, Lorena; Sanz, Marta; Menéndez, Margarita; del Solar, Gloria

    2016-01-01

    Initiation of plasmid rolling circle replication (RCR) is catalyzed by a plasmid-encoded Rep protein that performs a Tyr- and metal-dependent site-specific cleavage of one DNA strand within the double-strand origin (dso) of replication. The crystal structure of RepB, the initiator protein of the streptococcal plasmid pMV158, constitutes the first example of a Rep protein structure from RCR plasmids. It forms a toroidal homohexameric ring where each RepB protomer consists of two domains: the C-terminal domain involved in oligomerization and the N-terminal domain containing the DNA-binding and endonuclease activities. Binding of Mn2+ to the active site is essential for the catalytic activity of RepB. In this work, we have studied the effects of metal binding on the structure and thermostability of full-length hexameric RepB and each of its separate domains by using different biophysical approaches. The analysis of the temperature-induced changes in RepB shows that the first thermal transition, which occurs at a range of temperatures physiologically relevant for the pMV158 pneumococcal host, represents an irreversible conformational change that affects the secondary and tertiary structure of the protein, which becomes prone to self-associate. This transition, which is also shown to result in loss of DNA binding capacity and catalytic activity of RepB, is confined to its N-terminal domain. Mn2+ protects the protein from undergoing this detrimental conformational change and the observed protection correlates well with the high-affinity binding of the cation to the active site, as substituting one of the metal-ligands at this site impairs both the protein affinity for Mn2+and the Mn2+-driven thermostabilization effect. The level of catalytic activity of the protein, especially in the case of full-length RepB, cannot be explained based only on the high-affinity binding of Mn2+ at the active site and suggests the existence of additional, lower-affinity metal binding site

  11. Genetic stability, active constituent, and pharmacoactivity of Salvia miltiorrhiza hairy roots and wild plant.

    PubMed

    Yuan, Yuan; Liu, Yunjun; Lu, Dongmei; Huang, Luqi; Liang, Rixin; Yang, Zhaochun; Chen, Shunqin

    2009-01-01

    Salvia miltiorrhiza is an annual plant growing in China, Mongolia, Korea and some other Asian countries. The extract from S. miltiorrhiza roots has been used for supporting healthy cardiovascular and circulatory systems during the last decade. The active constituents of S. miltiorrhiza from different areas vary significantly, and the wild resources are overexploited. To adapt the demand for active constituents of S. miltiorrhiza against cardiovascular-related diseases, alternative materials need to be developed. The aim of the present work was to investigate the possibility of S. miltiorrhiza hairy roots as the alternative materials. The results showed that S. miltiorrhiza hairy roots are genetically stable. The contents of salvianolic acid B and tanshinone IIA, two main active constituents in hairy roots, determined by the assessment of combining flow cytometry and phytochemical analysis, are comparable to or significantly lower than in wild plant roots. The extract from S. miltiorrhiza hairy roots also had similar protection activity for hypoxia and reoxygenation injury in rat cardiac myocytes like that from wild plant roots. S. miltiorrhiza hairy roots may be alternative materials to obtain the drug or healthy food for cardiovascular-related diseases.

  12. Sol immobilization technique: a delicate balance between activity, selectivity and stability for gold catalyst

    SciTech Connect

    Villa, Alberto; Wang, Di; Veith, Gabriel M; Prati, Laura

    2013-01-01

    Sol immobilization is a widely used method to prepare gold catalysts. The presence of the protective layer can have a significant influence on catalyst properties by mediating metal-support and reactantmetal interactions. This paper details the effect of a polyvinyl alcohol (PVA) protecting groups on the activity of a supported gold catalysts as well as its selectivity towards glycerol oxidation.

  13. VARIATIONS IN SOIL AGGREGATE STABILITY AND ENZYME ACTIVITIES IN A TEMPERATE AGROFORESTRY PRACTICE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroforestry and grass buffers have been shown to improve soil properties and overall environmental quality. The objective of this study was to examine management and landscape effects on water stable soil aggregates (WSA), soil carbon, soil nitrogen, enzyme activity, and microbial community DNA co...

  14. Spatiotemporal Stability of Neonatal Rat Cardiomyocyte Monolayers Spontaneous Activity Is Dependent on the Culture Substrate

    PubMed Central

    Boudreau-Béland, Jonathan; Duverger, James Elber; Petitjean, Estelle; Maguy, Ange; Ledoux, Jonathan; Comtois, Philippe

    2015-01-01

    In native conditions, cardiac cells must continuously comply with diverse stimuli necessitating a perpetual adaptation. Polydimethylsiloxane (PDMS) is commonly used in cell culture to study cellular response to changes in the mechanical environment. The aim of this study was to evaluate the impact of using PDMS substrates on the properties of spontaneous activity of cardiomyocyte monolayer cultures. We compared PDMS to the gold standard normally used in culture: a glass substrate. Although mean frequency of spontaneous activity remained unaltered, incidence of reentrant activity was significantly higher in samples cultured on glass compared to PDMS substrates. Higher spatial and temporal instability of the spontaneous rate activation was found when cardiomyocytes were cultured on PDMS, and correlated with decreased connexin-43 and increased CaV3.1 and HCN2 mRNA levels. Compared to cultures on glass, cultures on PDMS were associated with the strongest response to isoproterenol and acetylcholine. These results reveal the importance of carefully selecting the culture substrate for studies involving mechanical stimulation, especially for tissue engineering or pharmacological high-throughput screening of cardiac tissue analog. PMID:26035822

  15. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles.

    PubMed

    Singh, Ragini; Singh, Sanjay

    2015-08-01

    Cerium oxide nanoparticles (CeNPs) have been recently shown to scavenge reactive oxygen and nitrogen species (ROS and RNS) in different experimental model systems. CeNPs (3+) and CeNPs (4+) have been shown to exhibit superoxide dismutase (SOD) and catalase mimetic activity, respectively. Due to their nanoscale dimension, CeNPs are expected to interact with the components of biologically relevant buffers and medium, which could alter their catalytic properties. We have demonstrated earlier that CeNPs (3+) interact with phosphate and lose the SOD activity. However, very little is known about the interaction of CeNPs (4+) with the phosphate and other anions, predominantly present in biological buffers and their effects on the catalase mimetic-activity of these nanoparticles. In this study, we report that catalase mimetic-activity of CeNPs (4+) is resistant to the phosphate anions, pH changes and composition of cell culture media. Given the abundance of phosphate anions in the biological system, it is likely that internalized CeNPs would be influenced by cytoplasmic and nucleoplasmic concentration of phosphate.

  16. Hydroxyproline substitutions stabilize non-glycosylated drosocin against serum proteases without challenging its antibacterial activity.

    PubMed

    Knappe, Daniel; Cassone, Marco; Nollmann, Friederike Inga; Otvos, Laszlo; Hoffmann, Ralf

    2014-04-01

    The increasing incidence of multi- and pan-resistant pathogens demands novel compounds to fight Grampositive and especially Gram-negative bacteria. Among the currently investigated compound classes, antimicrobial peptides (AMPs) inhibiting specific bacterial targets appear especially promising for systemic therapy of infections, although unmodified linear peptides are typically rapidly degraded by serum proteases. Proline-rich AMPs have been heavily investigated in recent years due to their low toxicity and proven in vivo efficacy. Here, we report novel unglycosylated drosocin analogs with extended half-life in mouse serum and improved activity against Gram-negative pathogens Escherichia coli and Klebsiella pneumoniae. Substituting proline (Pro) residues in positions 3, 5, 10, and 14 with trans-4-hydroxy-Lproline ((t)Hyp) improved the antibacterial activity, whereas substitution of Pro-16 reduced the activity. Drosocin analogs with (t)Hyp in positions 3 and 5 were also four to eight times more stable in mouse serum than the unmodified analog. The new compounds were not toxic against human HeLa, HEK293, and HepG2 cell lines and showed no hemolytic activity against human erythrocytes at peptide concentrations of at least 600 µg/mL.

  17. Enhancing activity and stability of Burkholderia cepacia lipase by immobilization on surface-functionalized mesoporous silicates.

    PubMed

    Kato, Katsuya; Seelan, Sindhu

    2010-06-01

    Burkholderia cepacia lipase was immobilized on various types of phenyl-functionalized mesoporous silicates (MPS). MPS, anchored with a phenyl group on the silica wall and with three dimensional (3D) mesoporosity, showed highest lipase adsorption capacity and best activities both in aqueous and organic reagents.

  18. Enhancing the Stability and Security of Iraq through the Monitoring of Former Detainee Recidivist Insurgent Activity

    DTIC Science & Technology

    2012-05-04

    population sensitive to recidivism that may be influenced to engage in future destabilizing activities. Two factors that may influence future recidivist...by interagency partners with enduring missions in Iraq. These existing programs can be modified for recidivism trend evaluation, bringing...development of new counter-insurgency courses of action or strategic leadership engagements. 15. SUBJECT TERMS Iraq, Detainee, Recidivism , CENTCOM

  19. Stabilization of activity and repeated usage of biomaterial during integration with transducers and analysis of irreversible inhibitors

    NASA Astrophysics Data System (ADS)

    Starodub, Nickolaj F.; Torbicz, Wladislaw; Starodub, Valentyna M.; Kanjuk, Mykola I.; Ternovoj, Konstantin S.

    1997-09-01

    At the creation and application of biosensors appeared a number of problems which are: 1) optimization of process connected with stabilization of the structure of biomolecules at the integration with the transducers to preserve their maximum activity and 2) search of approaches to accomplish repeated analysis of substances which are irreversible inhibitors of activity of above mentioned molecules. In this article the results obtained in time of solving of these problems at the usage of enzymes as sensitive bilayer of biosensors are analyzed. For stabilization of the structure of such enzymes as:(beta) - glucose oxydase, urease, cholinesterases during their immobilization the following approaches were examined: 1) usage of one or combination of chemical substances: protein, saccharose, ethylendiamine tetraacetic acid (EDTA), glycerol, ditiotrie-tole (DTT) and specific substrates or their homologues; 2) variation of covalent crosslinking methods including usage of bifunctional reagents in aqueous and vaporous phases; 3) change of time of the influence of this reagent. Optimization of these parameters can allow to preserve about 70-80 percent of initial enzyme activity at the usage of such bifunctional reagent as glutaraldehyde. For repeated analysis of phosphoroganic pesticides and heavy metal ions which are irreversible inhibitors of enzymes the following approaches were applied: 1) treatment of enzyme membrane by special reactivating substances ; 2) usage of easily replaceable enzymatic membrane. It was shown that the last way is more preferable, particularly if alginate gel or nitrocellulose is used for direct enzyme immobilization or preparation of separated biomembrane respectively. Standard deviation of sensor responses for different membrane castings did not exceed 10 percent. At the same time this parameter changed more strongly after even one use of reactivating reagents.

  20. Entrapment of curcumin into monoolein-based liquid crystalline nanoparticle dispersion for enhancement of stability and anticancer activity

    PubMed Central

    Baskaran, Rengarajan; Madheswaran, Thiagarajan; Sundaramoorthy, Pasupathi; Kim, Hwan Mook; Yoo, Bong Kyu

    2014-01-01

    Despite the promising anticancer potential of curcumin, its therapeutic application has been limited, owing to its poor solubility, bioavailability, and chemical fragility. Therefore, various formulation approaches have been attempted to address these problems. In this study, we entrapped curcumin into monoolein (MO)-based liquid crystalline nanoparticles (LCNs) and evaluated the physicochemical properties and anticancer activity of the LCN dispersion. The results revealed that particles in the curcumin-loaded LCN dispersion were discrete and monodispersed, and that the entrapment efficiency was almost 100%. The stability of curcumin in the dispersion was surprisingly enhanced (about 75% of the curcumin survived after 45 days of storage at 40°C), and the in vitro release of curcumin was sustained (10% or less over 15 days). Fluorescence-activated cell sorting (FACS) analysis using a human colon cancer cell line (HCT116) exhibited 99.1% fluorescence gating for 5 μM curcumin-loaded LCN dispersion compared to 1.36% for the same concentration of the drug in dimethyl sulfoxide (DMSO), indicating markedly enhanced cellular uptake. Consistent with the enhanced cellular uptake of curcumin-loaded LCNs, anticancer activity and cell cycle studies demonstrated apoptosis induction when the cells were treated with the LCN dispersion; however, there was neither noticeable cell death nor significant changes in the cell cycle for the same concentration of the drug in DMSO. In conclusion, entrapping curcumin into MO-based LCNs may provide, in the future, a strategy for overcoming the hurdles associated with both the stability and cellular uptake issues of the drug in the treatment of various cancers. PMID:25061290

  1. Regulation of HTLV-1 tax stability, cellular trafficking and NF-κB activation by the ubiquitin-proteasome pathway.

    PubMed

    Lavorgna, Alfonso; Harhaj, Edward William

    2014-10-23

    Human T-cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that infects CD4+ T cells and causes adult T-cell leukemia/lymphoma (ATLL) in 3%-5% of infected individuals after a long latent period. HTLV-1 Tax is a trans-activating protein that regulates viral gene expression and also modulates cellular signaling pathways to enhance T-cell proliferation and cell survival. The Tax oncoprotein promotes T-cell transformation, in part via constitutive activation of the NF-κB transcription factor; however, the underlying mechanisms remain unknown. Ubiquitination is a type of post-translational modification that occurs in a three-step enzymatic cascade mediated by E1, E2 and E3 enzymes and regulates protein stability as well as signal transduction, protein trafficking and the DNA damage response. Emerging studies indicate that Tax hijacks the ubiquitin machinery to activate ubiquitin-dependent kinases and downstream NF-κB signaling. Tax interacts with the E2 conjugating enzyme Ubc13 and is conjugated on C-terminal lysine residues with lysine 63-linked polyubiquitin chains. Tax K63-linked polyubiquitination may serve as a platform for signaling complexes since this modification is critical for interactions with NEMO and IKK. In addition to NF-κB signaling, mono- and polyubiquitination of Tax also regulate its subcellular trafficking and stability. Here, we review recent advances in the diverse roles of ubiquitin in Tax function and how Tax usurps the ubiquitin-proteasome pathway to promote oncogenesis.

  2. MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer

    PubMed Central

    Chaika, Nina V.; Gebregiworgis, Teklab; Lewallen, Michelle E.; Purohit, Vinee; Radhakrishnan, Prakash; Liu, Xiang; Zhang, Bo; Mehla, Kamiya; Brown, Roger B.; Caffrey, Thomas; Yu, Fang; Johnson, Keith R.; Powers, Robert; Hollingsworth, Michael A.; Singh, Pankaj K.

    2012-01-01

    Aberrant glucose metabolism is one of the hallmarks of cancer that facilitates cancer cell survival and proliferation. Here, we demonstrate that MUC1, a large, type I transmembrane protein that is overexpressed in several carcinomas including pancreatic adenocarcinoma, modulates cancer cell metabolism to facilitate growth properties of cancer cells. MUC1 occupies the promoter elements of multiple genes directly involved in glucose metabolism and regulates their expression. Furthermore, MUC1 expression enhances glycolytic activity in pancreatic cancer cells. We also demonstrate that MUC1 expression enhances in vivo glucose uptake and expression of genes involved in glucose uptake and metabolism in orthotopic implantation models of pancreatic cancer. The MUC1 cytoplasmic tail is known to activate multiple signaling pathways through its interactions with several transcription factors/coregulators at the promoter elements of various genes. Our results indicate that MUC1 acts as a modulator of the hypoxic response in pancreatic cancer cells by regulating the expression/stability and activity of hypoxia-inducible factor-1α (HIF-1α). MUC1 physically interacts with HIF-1α and p300 and stabilizes the former at the protein level. By using a ChIP assay, we demonstrate that MUC1 facilitates recruitment of HIF-1α and p300 on glycolytic gene promoters in a hypoxia-dependent manner. Also, by metabolomic studies, we demonstrate that MUC1 regulates multiple metabolite intermediates in the glucose and amino acid metabolic pathways. Thus, our studies indicate that MUC1 acts as a master regulator of the metabolic program and facilitates metabolic alterations in the hypoxic environments that help tumor cells survive and proliferate under such conditions. PMID:22869720

  3. Enhanced stability and activity of cellulase in an ionic liquid and the effect of pretreatment on cellulose hydrolysis.

    PubMed

    Bose, Sayantan; Barnes, Charles A; Petrich, Jacob W

    2012-02-01

    We discuss the hydrolysis of cellulose using a pure cellulase: endo-1,4-β-D-glucanase (EG) from the fungus, Aspergillus niger, in buffer, the pure ionic liquid (IL), tris-(2-hydroxyethyl)-methylammonium methylsulfate (HEMA), and various mixtures of the two at different temperatures. Steady-state fluorescence and absorbance studies were performed to monitor the stability and activity of EG using cellulose azure as the substrate. EG attains its highest activity at 45°C in buffer and denatures at ∼55°C. On the other hand, HEMA imparts substantial stability to the enzyme, permitting the activity to peak at 75°C. The relative roles of temperature, viscosity, pH, polarity, and the constituent ions of the ILs on the hydrolysis reaction are examined. It is demonstrated that pretreatment of cellulose with ILs such as BMIM Cl, MIM Cl, and HEMA results in more rapid conversion to glucose than hydrolysis with cellulose that is not pretreated. The percent conversion to glucose from pretreated cellulose is increased when the temperature is increased from 45 to 60°C. Two different ILs are used to increase the efficiency of cellulose conversion to glucose. Cellulose is pretreated with BMIM Cl. Subsequent hydrolysis of the pretreated cellulose in 10-20% solutions of HEMA in buffer provides higher yields of glucose at 60°C. Finally, to our knowledge, this is the first study dealing with a pure endoglucanase from commercial A. niger. This enzyme not only shows higher tolerance to ILs, such as HEMA, but also has enhanced thermostability in the presence of the IL.

  4. Fluoride enhances transfection activity of carbonate apatite by increasing cytoplasmic stability of plasmid DNA

    SciTech Connect

    Chowdhury, E.H.

    2011-06-17

    Highlights: {yields} Cytoplasmic stability of plasmid DNA is enhanced by fluoride incorporation into carbonate apatite carrier. {yields} Fluoridated carbonate apatite promotes a robust increase in transgene expression. {yields} Controlled dissolution of fluoridated carbonate apatite in endosomal acidic environment might buffer the endosomes and prevent degradation of the released DNA. -- Abstract: Intracellular delivery of a functional gene or a nucleic acid sequence to specifically knockdown a harmful gene is a potential approach to precisely treat a critical human disease. The intensive efforts in the last few decades led to the development of a number of viral and non-viral synthetic vectors. However, an ideal delivery tool in terms of the safety and efficacy has yet to be established. Recently, we have developed pH-sensing inorganic nanocrystals of carbonate apatite for efficient and cell-targeted delivery of gene and gene-silencing RNA. Here we show that addition of very low level of fluoride to the particle-forming medium facilitates a robust increase in transgene expression following post-incubation of the particles with HeLa cells. Confocal microscopic observation and Southern blotting prove the cytoplasmic existence of plasmid DNA delivered by likely formed fluoridated carbonate apatite particles while degradation of plasmid DNA presumably by cytoplasmic nucleases was noticed following delivery with apatite particles alone. The beneficial role of fluoride in enhancing carbonate apatite-mediated gene expression might be due to the buffering potential of generated fluoridated apatite in endosomal acidic environment, thereby increasing the half-life of delivered plasmid DNA.

  5. Engineering of the yeast antioxidant enzyme Mpr1 for enhanced activity and stability.

    PubMed

    Iinoya, Kaoru; Kotani, Tetsuya; Sasano, Yu; Takagi, Hiroshi

    2009-06-01

    The budding yeast Saccharomyces cerevisiae Sigma1278b has the MPR1 gene, which confers resistance to the proline analogue azetidine-2-carboxylate (AZC). This gene encodes an N-acetyltransferase Mpr1 that detoxifies AZC, and the homologous genes have been found in many yeasts. Recently, we found that Mpr1 protects yeast cells by reducing the intracellular reactive oxygen species (ROS) levels under oxidative stresses, such as heat-shock, freezing, or ethanol treatment. Unlike the known antioxidant enzymes, Mpr1 is thought to acetylate toxic metabolite(s) involved in ROS generation via oxidative events. To improve the enzymatic functions of Mpr1, we applied PCR random mutagenesis to MPR1. The mutagenized plasmid library was introduced into the S. cerevisiae S288C strain lacking MPR1, and we successfully isolated two Mpr1 variants with higher AZC resistance (K63R and F65L/L117V). Interestingly, overexpression of the K63R variant was found to increase cell viability or decrease intracellular ROS levels after exposure to H(2)O(2) or ethanol compared with the wild-type Mpr1. In vitro studies with the recombinant enzymes showed that the catalytic efficiency of the K63R variant for AZC and acetyl-CoA was higher than that of the wild-type Mpr1 and that the F65L mutation greatly enhanced the thermal stability. The mutational analysis and molecular modeling suggest that an alpha-helix containing Lys63 and Phe65 has important roles in the function of Mpr1. In addition, the wild-type and K63R variant Mpr1 reduced intracellular ROS levels under ethanol stress conditions on haploid sake yeast cells. These results suggest that engineering Mpr1 might be useful in breeding oxidative stress-tolerant yeast strains.

  6. Poly(2-hydroxyethyl methacrylate) for enzyme immobilization: impact on activity and stability of horseradish peroxidase.

    PubMed

    Lane, Sarah M; Kuang, Zhifeng; Yom, Jeannie; Arifuzzaman, Shafi; Genzer, Jan; Farmer, Barry; Naik, Rajesh; Vaia, Richard A

    2011-05-09

    On the basis of their versatile structure and chemistry as well as tunable mechanical properties, polymer brushes are well-suited as supports for enzyme immobilization. However, a robust surface design is hindered by an inadequate understanding of the impact on activity from the coupling motif and enzyme distribution within the brush. Herein, horseradish peroxidase C (HRP C, 44 kDa), chosen as a model enzyme, was immobilized covalently through its lysine residues on a N-hydroxysuccinimidyl carbonate-activated poly(2-hydroxyethyl methacrylate) (PHEMA) brush grafted chemically onto a flat impenetrable surface. Up to a monolayer coverage of HRP C is achieved, where most of the HRP C resides at or near the brush-air interface. Molecular modeling shows that lysines 232 and 241 are the most probable binding sites, leading to an orientation of the immobilized HRP C that does not block the active pocket of the enzyme. Michaelis-Menten kinetics of the immobilized HRP C indicated little change in the K(m) (Michaelis constant) but a large decrease in the V(max) (maximum substrate conversion rate) and a correspondingly large decrease in the k(cat) (overall catalytic rate). This indicates a loss in the percentage of active enzymes. Given the relatively ideal geometry of the HRPC-PHEMA brush, the loss of activity is most likely due to structural changes in the enzyme arising from either secondary constraints imposed by the connectivity of the N-hydroxysuccinimidyl carbonate linking moiety or nonspecific interactions between HRP C and DSC-PHEMA. Therefore, a general enzyme-brush coupling motif must optimize reactive group density to balance binding with neutrality of surroundings.

  7. Increases in Calmodulin Abundance and Stabilization of Activated iNOS Mediate Bacterial Killing in RAW 264.7 Macrophages

    SciTech Connect

    Smallwood, Heather S.; Shi, Liang; Squier, Thomas C.

    2006-08-01

    The rapid activation of macrophages in response to bacterial antigens is central to the innate immune system that permits the recognition and killing of pathogens to limit infection. To understand regulatory mechanisms underlying macrophage activation, we have investigated changes in the abundance of calmodulin (CaM) and iNOS in response to the bacterial cell wall component lipopolysaccharide (LPS) using RAW 264.7 macrophages. Critical to these measurements was the ability to differentiate free iNOS from the CaM-bound (active) form of iNOS associated with nitric oxide generation. We observe a rapid two-fold increase in CaM abundance during the first 30 minutes that is blocked by inhibition of NF?B nuclear translocation or protein synthesis. A similar two-fold increase in the abundance of the complex between CaM and iNOS is observed with the same time dependence. In contrast, there are no detectable increases in the CaM-free (i.e., inactive) form of iNOS within the first hour; it remains at a very low abundance during the initial phase of macrophage activation. Increasing cellular CaM levels in stably transfected cells results in a corresponding increase in the abundance of the CaM/iNOS complex that promotes effective bacterial killing following challenge by Salmonella typhimurium. Thus, LPS-dependent increases in CaM abundance function in the stabilization and activation of iNOS on the rapid time-scale associated with macrophage activation and bacterial killing. These results explain how CaM and iNOS coordinately function to form a stable complex that is part of a rapid host-response that functions within the first 30 minutes following bacterial infection to up-regulate the innate immune system involving macrophage activation.

  8. The effect of composition on stability ((14)C activity) of soil organic matter fractions from the albic and black soils.

    PubMed

    Jin, Jie; Sun, Ke; Wang, Ziying; Han, Lanfang; Wu, Fengchang; Xing, Baoshan

    2016-01-15

    The importance of the composition of soil organic matter (SOM) for carbon (C) cycling is still under debate. Here a single soil source was used to examine the specific influence of its composition on stability ((14)C activity) of SOM fractions while constraining other influential C turnover factors such as mineral, climate and plant input. The following SOM fractions were isolated from two soil samples: four humic acids, two humins, non-hydrolyzable carbon, and the demineralized fraction. We examined the isotope ratios of SOM fractions in relation to composition (such as aliphatic and aromatic C content) using solid state (13)C nuclear magnetic resonance (NMR) and thermal analysis. The Δ(14)C values of the fractions isolated from both an albic soil (SOMs-A) and a black soil (SOMs-B) correlated negatively with their peak temperature of decomposition and the temperature where half of the total heat of reaction was evolved, implying a potential link between thermal and biogeochemical stability of SOM fractions. Aryl C contents of SOMs-A determined using (13)C NMR varied inversely with δ(15)N values and directly with δ(13)C values, suggesting that part of aryl C of SOMs-A might be fire-derived. The Δ(14)C values of SOMs-A correlated positively with aliphatic C content and negatively with aromatic C content. We therefore concluded that fire-derived aromatic C in SOMs-A appeared to be more stable than microbially-derived aliphatic C. The greater decomposition of SOMs-B fractions weakened the relationship of their Δ(14)C values with alkyl and aryl C contents. Hence, the role of the composition of SOM fractions in regulating stability might be dependent on the source of specific C forms and their stage of decomposition.

  9. Ferulic acid-coupled chitosan: thermal stability and utilization as an antioxidant for biodegradable active packaging film.

    PubMed

    Woranuch, Sarekha; Yoksan, Rangrong; Akashi, Mitsuru

    2015-01-22

    The aim of the present research was to study the thermal stability of ferulic acid after coupling onto chitosan, and the possibility of using ferulic acid-coupled chitosan (FA-CTS) as an antioxidant for biodegradable active packaging film. FA-CTS was incorporated into biodegradable film via a two-step process, i.e. compounding extrusion at temperatures up to 150°C followed by blown film extrusion at temperatures up to 175°C. Although incorporation of FA-CTS with a content of 0.02-0.16% (w/w) caused decreased water vapor barrier property and reduced extensibility, the biodegradable films possessed improved oxygen barrier property and antioxidant activity. Radical scavenging activity and reducing power of film containing FA-CTS were higher than those of film containing naked ferulic acid, by about 254% and 94%, respectively. Tensile strength and rigidity of the films were not significantly affected by the addition of FA-CTS with a content of 0.02-0.08% (w/w). The above results suggested that FA-CTS could potentially be used as an antioxidant for active packaging film.

  10. Phosphorylation and dephosphorylation of tyrosine 141 regulate stability and degradation of INrf2: a novel mechanism in Nrf2 activation.

    PubMed

    Jain, Abhinav K; Mahajan, Shilpi; Jaiswal, Anil K

    2008-06-20

    INrf2-Nrf2 proteins are sensors of chemical/radiation stress. Nrf2, in response to stresses, is released from INrf2. Nrf2 is translocated into the nucleus where it binds to the antioxidant response element and coordinately activates the expression of a battery of genes that protect cells against oxidative and electrophilic stress. An autoregulatory loop between INrf2 and Nrf2 regulates their cellular abundance. Nrf2 activates INrf2 gene expression, and INrf2 serves as an adapter for degradation of Nrf2. In this report, we demonstrate that mutation of tyrosine 141 in bric-a-bric, tramtrack, broad complex domain to alanine rendered INrf2 unstable and nonfunctional. INrf2Y141A mutant degraded rapidly as compared with wild type INrf2, although it could dimerize and bind Nrf2. De novo synthesized INrf2 protein was phosphorylated at tyrosine 141. Tyrosine 141-phosphorylated INrf2 was highly stable. Treatment with hydrogen peroxide, which is an oxidizing agent, led to dephosphorylation of INrf2Y141, resulting in rapid degradation of INrf2. This resulted in stabilization of Nrf2 and activation of ARE-mediated gene expression. These results demonstrate that stress-induced dephosphorylation of tyrosine 141 is a novel mechanism in Nrf2 activation and cellular protection.

  11. Magnetically Separable Fe3O4/AgBr Hybrid Materials: Highly Efficient Photocatalytic Activity and Good Stability

    NASA Astrophysics Data System (ADS)

    Cao, Yuhui; Li, Chen; Li, Junli; Li, Qiuye; Yang, Jianjun

    2015-06-01

    Magnetically separable Fe3O4/AgBr hybrid materials with highly efficient photocatalytic activity were prepared by the precipitation method. All of them exhibited much higher photocatalytic activity than the pure AgBr in photodegradation of methyl orange (MO) under visible light irradiation. When the loading amount of Fe3O4 was 0.5 %, the hybrid materials displayed the highest photocatalytic activity, and the degradation yield of MO reached 85 % within 12 min. Silver halide often suffers serious photo-corrosion, while the stability of the Fe3O4/AgBr hybrid materials improved apparently than the pure AgBr. Furthermore, depositing Fe3O4 onto the surface of AgBr could facilitate the electron transfer and thereby leading to the elevated photocatalytic activity. The morphology, phase structure, and optical properties of the composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-visible diffuse reflectance spectra (UV-vis DRS), and photoluminescence (PL) techniques.

  12. Adsorption between TC-stabilized AuNPs and the phosphate group: application of the PTP1B activity assay.

    PubMed

    Lv, Jun; Wang, Xiaonan; Zhang, Yuanyuan; Li, Defeng; Zhang, Juan; Sun, Lizhou

    2015-12-07

    Based on the adsorption between tetracycline (TC) and phosphate groups, a general colorimetric method is explored in this work by using TC-stabilized gold nanoparticles (TC/AuNPs) and 4-aminophenyl phosphate-functionalized Fe3O4 magnetic nanoparticles (APP/MNPs). Taking protein tyrosine phosphatase 1B (PTP1B) as an example, 4-aminophenyl phosphate (APP) can be hydrolyzed into 4-aminophenol (AP) by PTP1B, resulting in the disappearance of the phosphate group on the outer layer of MNPs and the loss of corresponding adsorptive ability. Upon addition of TC/AuNP solution, TC/AuNPs will remain in the supernatant solution after magnetic separation and a high absorbance value can be observed. So PTP1B activity is related to the concentrations of TC/AuNPs in the supernatant solution. In this work, the enzyme activity can be determined at levels as low as 0.0885 U mL(-1) and over a linear detection range as wide as 0.1 U mL(-1) to 0.9 U mL(-1). Moreover, using the proposed method, the inhibition effect of betulinic acid (BA) and sodium orthovanadate (Na3VO4) on PTP1B activity can be tested with IC50 values of 30 μM and 4 μM, respectively. Therefore, a universal platform for the accurate colorimetric analysis of kinase and phosphatase activities can be established through the adsorption between TC and phosphate groups.

  13. Testing promotes long-term learning via stabilizing activation patterns in a large network of brain areas.

    PubMed

    Keresztes, Attila; Kaiser, Daniel; Kovács, Gyula; Racsmány, Mihály

    2014-11-01

    The testing effect refers to the phenomenon that repeated retrieval of memories promotes better long-term retention than repeated study. To investigate the neural correlates of the testing effect, we used event-related functional magnetic resonance imaging methods while participants performed a cued recall task. Prior to the neuroimaging experiment, participants learned Swahili-German word pairs, then half of the word pairs were repeatedly studied, whereas the other half were repeatedly tested. For half of the participants, the neuroimaging experiment was performed immediately after the learning phase; a 1-week retention interval was inserted for the other half of the participants. We found that a large network of areas identified in a separate 2-back functional localizer scan were active during the final recall of the word pair associations. Importantly, the learning strategy (retest or restudy) of the word pairs determined the manner in which the retention interval affected the activations within this network. Recall of previously restudied memories was accompanied by reduced activation within this network at long retention intervals, but no reduction was observed for previously retested memories. We suggest that retrieval promotes learning via stabilizing cue-related activation patterns in a network of areas usually associated with cognitive and attentional control functions.

  14. Stabilizing short-lived Schiff base derivatives of 5-aminouracils that activate mucosal-associated invariant T cells

    NASA Astrophysics Data System (ADS)

    Mak, Jeffrey Y. W.; Xu, Weijun; Reid, Robert C.; Corbett, Alexandra J.; Meehan, Bronwyn S.; Wang, Huimeng; Chen, Zhenjun; Rossjohn, Jamie; McCluskey, James; Liu, Ligong; Fairlie, David P.

    2017-03-01

    Mucosal-associated invariant T (MAIT) cells are activated by unstable antigens formed by reactions of 5-amino-6-D-ribitylaminouracil (a vitamin B2 biosynthetic intermediate) with glycolysis metabolites such as methylglyoxal. Here we show superior preparations of antigens in dimethylsulfoxide, avoiding their rapid decomposition in water (t1/2 1.5 h, 37 °C). Antigen solution structures, MAIT cell activation potencies (EC50 3-500 pM), and chemical stabilities are described. Computer analyses of antigen structures reveal stereochemical and energetic influences on MAIT cell activation, enabling design of a water stable synthetic antigen (EC50 2 nM). Like native antigens, this antigen preparation induces MR1 refolding and upregulates surface expression of human MR1, forms MR1 tetramers that detect MAIT cells in human PBMCs, and stimulates cytokine expression (IFNγ, TNF) by human MAIT cells. These antigens also induce MAIT cell accumulation in mouse lungs after administration with a co-stimulant. These chemical and immunological findings provide new insights into antigen properties and MAIT cell activation.

  15. Stabilizing short-lived Schiff base derivatives of 5-aminouracils that activate mucosal-associated invariant T cells

    PubMed Central

    Mak, Jeffrey Y. W.; Xu, Weijun; Reid, Robert C.; Corbett, Alexandra J.; Meehan, Bronwyn S.; Wang, Huimeng; Chen, Zhenjun; Rossjohn, Jamie; McCluskey, James; Liu, Ligong; Fairlie, David P.

    2017-01-01

    Mucosal-associated invariant T (MAIT) cells are activated by unstable antigens formed by reactions of 5-amino-6-D-ribitylaminouracil (a vitamin B2 biosynthetic intermediate) with glycolysis metabolites such as methylglyoxal. Here we show superior preparations of antigens in dimethylsulfoxide, avoiding their rapid decomposition in water (t1/2 1.5 h, 37 °C). Antigen solution structures, MAIT cell activation potencies (EC50 3–500 pM), and chemical stabilities are described. Computer analyses of antigen structures reveal stereochemical and energetic influences on MAIT cell activation, enabling design of a water stable synthetic antigen (EC50 2 nM). Like native antigens, this antigen preparation induces MR1 refolding and upregulates surface expression of human MR1, forms MR1 tetramers that detect MAIT cells in human PBMCs, and stimulates cytokine expression (IFNγ, TNF) by human MAIT cells. These antigens also induce MAIT cell accumulation in mouse lungs after administration with a co-stimulant. These chemical and immunological findings provide new insights into antigen properties and MAIT cell activation. PMID:28272391

  16. Production of sophorolipids from whey. II. Product composition, surface active properties, cytotoxicity and stability against hydrolases by enzymatic treatment.

    PubMed

    Otto, R T; Daniel, H J; Pekin, G; Müller-Decker, K; Fürstenberger, G; Reuss, M; Syldatk, C

    1999-10-01

    Sophorolipids, obtained by a two-stage process starting from deproteinized whey concentrate using Cryptococcus curvatus ATCC 20509 and Candida bombicola ATCC 22214, were compared to products from one-stage processes, using different lipidic compounds as substrates. Results showed that above all carbon source and not cultivation conditions had a distinct influence on the composition of the crude product mixture and therefore on the physicochemical and biological properties of the sophorolipids, such as, for example, surface activity, cytotoxicity and stability against hydrolases. The results were completed by corresponding data for purified mono- and diacetylated (17-hydroxyoctadecenoic)-1',4"-lactonized sophorolipids. Crude sophorolipid mixtures showed moderate to good surface active properties (SFTmin 39 mN m-1, CMC 130 mg l-1), water solubilities (2-3 g l-1) and low cytotoxicities (LC50 300-700 mg l-1). In contrast, purified sophorolipids were more surface active (SFTmin 36 mN m-1, CMC 10 mg l-1), less water soluble (max. 70 mg l-1) and showed stronger cytotoxic effects (LC50 15 mg l-1). Incubation of crude sophorolipid mixtures with different hydrolases demonstrated that treatment with commercially available lipases such as from Candida rugosa and Mucor miehei distinctly reduced the surface active properties of the sophorolipids, while treatment with porcine liver esterase and glycosidases had no effect.

  17. Muscular activity of different shooting distances, different release techniques, and different performance levels, with and without stabilizers, in target archery.

    PubMed

    Clarys, J P; Cabri, J; Bollens, E; Sleeckx, R; Taeymans, J; Vermeiren, M; Van Reeth, G; Voss, G

    1990-01-01

    the muscular activity of elite archers shooting at distances of 70 and 90 m with and without stabilizers. Differences in iEMG were not supported by differences in precision. Over time, the low iEMG in shooting without stabilizers increases precision and delays fatigue.

  18. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China.

    PubMed

    Zhang, Man; Cheng, Gong; Feng, Hao; Sun, Benhua; Zhao, Ying; Chen, Haixin; Chen, Jing; Dyck, Miles; Wang, Xudong; Zhang, Jianguo; Zhang, Afeng

    2017-02-23

    Soil from the Loess Plateau of China is typically low in organic carbon and generally has poor aggregate stability. Application of organic amendments to these soils could help to increase and sustain soil organic matter levels and thus to enhance soil aggregate stability. A field experiment was carried out to evaluate the effect of the application of wheat straw and wheat straw-derived biochar (pyrolyzed at 350-550 °C) amendments on soil aggregate stability, soil organic carbon (SOC), and enzyme activities in a representative Chinese Loess soil during summer maize and winter wheat growing season from 2013 to 2015. Five treatments were set up as follows: no fertilization (CK), application of inorganic fertilizer (N), wheat straw applied at 8 t ha(-1) with inorganic fertilizer (S8), and wheat straw-derived biochar applied at 8 t ha(-1) (B8) and 16 t ha(-1) (B16) with inorganic fertilizer, respectively. Compared to the N treatment, straw and straw-derived biochar amendments significantly increased SOC (by 33.7-79.6%), microbial biomass carbon (by 18.9-46.5%), and microbial biomass nitrogen (by 8.3-38.2%), while total nitrogen (TN) only increased significantly in the B16 plot (by 24.1%). The 8 t ha(-1) straw and biochar applications had no significant effects on soil aggregation, but a significant increase in soil macro-aggregates (>2 mm) (by 105.8%) was observed in the B16 treatment. The concentrations of aggregate-associated SOC increased by 40.4-105.8% in macro-aggregates (>2 mm) under straw and biochar amendments relative to the N treatment. No significant differences in invertase and alkaline phosphatase activity were detected among different treatments. However, urease activity was greater in the biochar treatment than the straw treatment, indicating that biochar amendment improved the transformation of nitrogen in the soil. The carbon pool index and carbon management index were increased with straw and biochar amendments, especially in the B16

  19. Structural stability and surface activity of sunflower 2S albumins and nonspecific lipid transfer protein.

    PubMed

    Berecz, Bernadett; Mills, E N Clare; Tamás, László; Láng, Ferenc; Shewry, Peter R; Mackie, Alan R

    2010-05-26

    The structural and interfacial properties of five different fractions of sunflower ( Helianthus annuus L.) seed storage proteins were studied. The fractions comprised lipid transfer protein (LTP), the methionine-rich 2S albumin SFA8 (sunflower albumin 8), and three mixtures of non-methionine-rich 2S albumins called Alb1 and Alb2 proteins (sunflower albumins 1 and 2). Heating affected all of the proteins studied, with SFA8 and LTP becoming more surface active than the native proteins after heating and cooling. LTP appeared to be less thermostable than homologous LTPs from other plant species. SFA8 generated the greatest elastic modulus and formed the most stable emulsions, whereas LTP showed poorer emulsification properties. The mixed 2S albumin fractions showed moderate levels of surface activity but had the poorest emulsification properties among the proteins studied.

  20. Developmental stability of taurine's activation on glycine receptors in cultured neurons of rat auditory cortex.

    PubMed

    Tang, Zheng-Quan; Lu, Yun-Gang; Chen, Lin

    2008-01-03

    Taurine is an endogenous amino acid that can activate glycine and/or gamma-aminobutyric acid type A (GABA(A)) receptors in the central nervous system. During natural development, taurine's receptor target undergoes a shift from glycine receptors to GABA(A) receptors in cortical neurons. Here, we demonstrate that taurine's receptor target in cortical neurons remains stable during in vitro development. With whole-cell patch-clamp recordings, we found that taurine always activated glycine receptors, rather than GABA(A) receptors, in neurons of rat auditory cortex cultured for 5-22 days. Our results suggest that the functional sensitivity of glycine and GABA(A) receptors to taurine is critically regulated by their developmental environments.

  1. Antifouling activities of β-cyclodextrin stabilized peg based silver nanocomposites

    NASA Astrophysics Data System (ADS)

    Punitha, N.; Saravanan, P.; Mohan, R.; Ramesh, P. S.

    2017-01-01

    Self-polishing polymer composites which release metal biocide in a controlled rate have been widely used in the design of antimicrobial agents and antifouling coatings. The present work focuses on the environmental friendly green synthesis of PEG based SNCs and their application to biocidal activity including marine biofouling. Biocompatible polymer β-CD and adhesive resistance polymer PEG were used to functionalize the SNPs and the as synthesized SNCs exhibit excellent micro fouling activities. The structural and optical properties were confirmed by XRD and UV-visible techniques respectively. The particle surface and cross sectional characteristics were examined by SEM-EDS, HR-TEM, AFM and FTIR. The surface potential was evaluated using ZP analysis and assessment of antibiofouling property was investigated using static immersion method.

  2. Stability and antibacterial activity of bacteriocins produced by Bacillus thuringiensis and Bacillus thuringiensis ssp. kurstaki.

    PubMed

    Jung, Woo-Jin; Mabood, Fazli; Souleimanov, Alfred; Zhou, Xiaomin; Jaoua, Samir; Kamoun, Fakher; Smith, Donald L

    2008-11-01

    Bacteriocins are antimicrobial peptides that are produced by bacteria and toxic to bacterial strains closely related to the producer strain. It has previously been reported that Bacillus thuringiensis strain NEB17 and Bacillus thuringiensis subsp. kurstaki BUPM4 produce the bacteriocins thuricin 17 (3,162 Da) and bacthuricin F4 (3,160.05 Da), respectively. Here, we demonstrate that these bacteriocins have functional similarities and show a similar spectrum of antimicrobial activities against indicator strains. We also studied the effects of sterilization methods on the recovery and biological activities of these bacteriocins. They were completely degraded by autoclaving and the two were similarly affected by the tested filter membranes. Polyvinylidene fluoride (PVDF), polyestersulfone (PES), and cellulose acetate (CA) are suitable for filter sterilization of these bacteriocins. The two bacteriocins were stable across a range of storage conditions. These data will facilitate their utilization in food preservation or agricultural applications.

  3. A novel solubility-enhanced curcumin formulation showing stability and maintenance of anticancer activity.

    PubMed

    Zhang, Fang; Koh, Gar Yee; Jeansonne, Duane P; Hollingsworth, Javoris; Russo, Paul S; Vicente, Graca; Stout, Rhett W; Liu, Zhijun

    2011-07-01

    Curcumin (CUR) is an active food compound, but its insolubility and instability in water contributes to low bioavailability. In this study, the solubility of CUR was enhanced by utilizing the solubilizing properties of rubusoside (RUB). The solubility of CUR in water increased linearly from 61 μg/mL to 2.318 mg/mL in the presence of RUB ranging from 1% to 10% (w/v). Dynamic light scattering and transmission electron microscopy studies found that CUR and RUB formed CUR-RUB nanoparticle (∼8 nm) complexes. The RUB-solubilized CUR was stable in physiological conditions and did not precipitate when diluted or degrade when spray-dried to a completely reconstitutable powder. Furthermore, cell viability assays demonstrated the efficacy of RUB-solubilized CUR against human colon, breast, and pancreatic cancer cell lines. The development of this new solubilized, stable, and biologically active CUR formulation lays the foundation for future bioavailability improvement.

  4. Activity, short-term stability (poisoning tolerance) and durability of carbon supported Pt-Pr catalysts for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Corradini, Patricia G.; Antolini, Ermete; Perez, Joelma

    2014-04-01

    Pt-Pr/C electrocatalysts were prepared by a modified formic acid method, and their activity for carbon monoxide and ethanol oxidation, their short term stability and durability were compared to that of commercial Pt/C and Pt-Sn/C (3:1) catalysts. By derivative voltammetry (DV) it was found that ethanol electro-oxidation takes place by two main pathways at different potentials. It was observed that, in the presence of Pr, ethanol electro-oxidation takes place mostly through the pathway at lower potential, which is the most interesting for fuel cell application. The Pt-Pr/C catalysts were less tolerant to poisoning by ethanol oxidation intermediate species than Pt/C. Durability test by a repetitive potential cycling under Ar atmosphere revealed a good structural stability of Pt-Pr/C catalysts. A repetitive potential cycling under CO atmosphere carried out on the Pt-Pr/C (1:1) catalyst, instead, indicated a structural change, likely by formation of a core-shell structure.

  5. One-step preparation of Fe3O4/Pd@polypyrrole composites with enhanced catalytic activity and stability.

    PubMed

    Zhang, Hui; Liu, Yang; Wu, Jie; Xin, Baifu

    2016-08-15

    Core/shell Fe3O4/Pd@polypyrrole (PPy) composites with a Fe3O4 core and a PPy shell embedding Pd nanoparticles were prepared in one-step. The diameter of highly dispersed Pd nanoparticles was as small as 2.9nm owing to coordination interaction generated between Pd(2+) ions and amino groups on PPy chains. The outer PPy shell was only 6.8nm: on one hand, the coverage was beneficial to improving the stability of resulting composites; on the other hand, the shell was thin enough to permit free contact between embedding Pd nanoparticles and reactants. Additionally, the as-prepared Fe3O4/Pd@PPy composites displayed good magnetic separation property due to incorporation of Fe3O4 nanospheres. Based on above merits, they served as suitable catalyst candidates. Their catalytic performance and reusability were evaluated by reduction of 4-nitrophenol with sodium borohydride as reducing agent. Compared with traditional Fe3O4/Pd composites, Fe3O4/Pd@PPy composites not only showed superior catalytic activity; but also exhibited much better stability in successive cycling tests.

  6. A novel ionic amphiphilic chitosan derivative as a stabilizer of nanoemulsions: Improvement of antimicrobial activity of Cymbopogon citratus essential oil.

    PubMed

    Bonferoni, Maria Cristina; Sandri, Giuseppina; Rossi, Silvia; Usai, Donatella; Liakos, Ioannis; Garzoni, Alice; Fiamma, Maura; Zanetti, Stefania; Athanassiou, Athanassia; Caramella, Carla; Ferrari, Franca

    2017-01-24

    Amphiphilic chitosans have been recently proposed to improve delivery of poorly soluble drugs. In the present paper a derivative obtained by ionic interaction between chitosan and oleic acid was for the first time studied to physically stabilize o/w nanoemulsions of an antimicrobial essential oil, Cymbopogon citratus (Lemongrass), in a low energy and mild conditions emulsification process. The novel combination of spontaneous emulsification process with chitosan oleate amphiphilic properties resulted in a stable dispersion of a few hundred nanometer droplets. Positive zeta potential confirmed the presence of a chitosan shell around the oil droplets, which is responsible for the nanoemulsion physical stabilization and for the maintenance of chitosan bioactive properties, such as mucoadhesion. Cytotoxicity test was performed on four different cell lines (HEp-2, Caco-2, WKD and McCoy cells) showing biocompatibility of the system. The maintenance and in some cases even a clear improvement in the essential oil antimicrobial activity towards nine bacterial and ten fungal strains, all of clinical relevance was verified for Lemongrass nanoemulsion.

  7. Human Cryptochrome-1 Confers Light Independent Biological Activity in Transgenic Drosophila Correlated with Flavin Radical Stability

    PubMed Central

    Vieira, Jacqueline; Jones, Alex R.; Danon, Antoine; Sakuma, Michiyo; Hoang, Nathalie; Robles, David; Tait, Shirley; Heyes, Derren J.; Picot, Marie; Yoshii, Taishi; Helfrich-Förster, Charlotte; Soubigou, Guillaume; Coppee, Jean-Yves; Klarsfeld, André; Rouyer, Francois; Scrutton, Nigel S.; Ahmad, Margaret

    2012-01-01

    Cryptochromes are conserved flavoprotein receptors found throughout the biological kingdom with diversified roles in plant development and entrainment of the circadian clock in animals. Light perception is proposed to occur through flavin radical formation that correlates with biological activity in vivo in both plants and Drosophila. By contrast, mammalian (Type II) cryptochromes regulate the circadian clock independently of light, raising the fundamental question of whether mammalian cryptochromes have evolved entirely distinct signaling mechanisms. Here we show by developmental and transcriptome analysis that Homo sapiens cryptochrome - 1 (HsCRY1) confers biological activity in transgenic expressing Drosophila in darkness, that can in some cases be further stimulated by light. In contrast to all other cryptochromes, purified recombinant HsCRY1 protein was stably isolated in the anionic radical flavin state, containing only a small proportion of oxidized flavin which could be reduced by illumination. We conclude that animal Type I and Type II cryptochromes may both have signaling mechanisms involving formation of a flavin radical signaling state, and that light independent activity of Type II cryptochromes is a consequence of dark accumulation of this redox form in vivo rather than of a fundamental difference in signaling mechanism. PMID:22427812

  8. Structural stability and endonuclease activity of a PI-SceI GFP-fusion protein

    PubMed Central

    Senejani, Alireza G.; Gogarten, J. Peter

    2007-01-01

    Homing endonucleases are site-specific and rare cutting endonucleases often encoded by intron or intein containing genes. They lead to the rapid spread of the genetic element that hosts them by a process termed 'homing'; and ultimately the allele containing the element will be fixed in the population. PI-SceI, an endonuclease encoded as a protein insert or intein within the yeast V-ATPase catalytic subunit encoding gene (vma1), is among the best characterized homing endonucleases. The structures of the Sce VMA1 intein and of the intein bound to its target site are known. Extensive biochemical studies performed on the PI-SceI enzyme provide information useful to recognize critical amino acids involved in self-splicing and endonuclease functions of the protein. Here we describe an insertion of the Green Fluorescence Protein (GFP) into a loop which is located between the endonuclease and splicing domains of the Sce VMA1 intein. The GFP is functional and the additional GFP domain does not prevent intein excision and endonuclease activity. However, the endonuclease activity of the newly engineered protein was different from the wild-type protein in that it required the presence of Mn2+ and not Mg2+ metal cations for activity. PMID:17389927

  9. Biologically active [Pd2L4](4+) quadruply-stranded helicates: stability and cytotoxicity.

    PubMed

    McNeill, Samantha M; Preston, Dan; Lewis, James E M; Robert, Anja; Knerr-Rupp, Katrin; Graham, Danyon O; Wright, James R; Giles, Gregory I; Crowley, James D

    2015-06-28

    There is emerging interest in the anti-proliferative effects of metallosupramolecular systems due to the different size and shape of these metallo-architectures compared to traditional small molecule drugs. Palladium(II)-containing systems are the most abundant class of metallosupramolecular complexes, yet their biological activity has hardly been examined. Here a small series of [Pd2(L)4](BF4)4 quadruply-stranded, dipalladium(II) architectures were screened for their cytotoxic effects against three cancer cell lines and one non-malignant line. The helicates exhibited a range of cytotoxic properties, with the most cytotoxic complex [Pd2(hextrz)4](BF4)4 possessing low micromolar IC50 values against all of the cell lines tested, while the other helicates displayed moderate or no cytotoxicity. Against the MDA-MB-231 cell line, which is resistant to platinum-based drugs, [Pd2(hextrz)4](BF4)4 was 7-fold more active than cisplatin. Preliminary mechanistic studies indicate that the [Pd2(hextrz)4](BF4)