Science.gov

Sample records for activated carbons adsorption

  1. Adsorption of carbon monoxide on activated carbon tin ligand

    NASA Astrophysics Data System (ADS)

    Mohamad, A. B.; Iyuke, S. E.; Daud, W. R. W.; Kadhum, A. A. H.; Fisal, Z.; Al-Khatib, M. F.; Shariff, A. M.

    2000-09-01

    Activated carbon was impregnated with 34.57% SnCl 2·2H 2O salt and then dried at 180°C to produce AC-SnO 2 to improve its adsorptive interaction with CO. Besides the fact that activated carbon has its original different pore sizes for normal gas phase CO adsorption (as in the case of pure carbon), the impregnated carbon has additional CO adsorption ability due to the presence of O -(ads) on the active sites. AC-SnO 2 proved to be a superior adsorber of CO than pure carbon when used for H 2 purification in a PSA system. Discernibly, the high adsorptive selectivity of AC-SnO 2 towards gas phase CO portrays a good future for the applicability of this noble adsorbent, since CO has become a notorious threat to the global ecosystem due to the current level of air pollution.

  2. Aqueous mercury adsorption by activated carbons.

    PubMed

    Hadi, Pejman; To, Ming-Ho; Hui, Chi-Wai; Lin, Carol Sze Ki; McKay, Gordon

    2015-04-15

    Due to serious public health threats resulting from mercury pollution and its rapid distribution in our food chain through the contamination of water bodies, stringent regulations have been enacted on mercury-laden wastewater discharge. Activated carbons have been widely used in the removal of mercuric ions from aqueous effluents. The surface and textural characteristics of activated carbons are the two decisive factors in their efficiency in mercury removal from wastewater. Herein, the structural properties and binding affinity of mercuric ions from effluents have been presented. Also, specific attention has been directed to the effect of sulfur-containing functional moieties on enhancing the mercury adsorption. It has been demonstrated that surface area, pore size, pore size distribution and surface functional groups should collectively be taken into consideration in designing the optimal mercury removal process. Moreover, the mercury adsorption mechanism has been addressed using equilibrium adsorption isotherm, thermodynamic and kinetic studies. Further recommendations have been proposed with the aim of increasing the mercury removal efficiency using carbon activation processes with lower energy input, while achieving similar or even higher efficiencies.

  3. Hydrogen adsorption on functionalized nanoporous activated carbons.

    PubMed

    Zhao, X B; Xiao, B; Fletcher, A J; Thomas, K M

    2005-05-12

    There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions.

  4. Adsorption of EDTA on activated carbon from aqueous solutions.

    PubMed

    Zhu, Hai-song; Yang, Xiao-juan; Mao, Yan-peng; Chen, Yu; Long, Xiang-li; Yuan, Wei-kang

    2011-01-30

    In this study, the adsorption of EDTA on activated carbon from aqueous solutions has been investigated in a batch stirred cell. Experiments have been carried out to investigate the effects of temperature, EDTA concentration, pH, activated carbon mass and particle size on EDTA adsorption. The experimental results manifest that the EDTA adsorption rate increases with its concentration in the aqueous solutions. EDTA adsorption also increases with temperature. The EDTA removal from the solution increases as activated carbon mass increases. The Langmuir and Freundlich equilibrium isotherm models are found to provide a good fitting of the adsorption data, with R(2) = 0.9920 and 0.9982, respectively. The kinetic study shows that EDTA adsorption on the activated carbon is in good compliance with the pseudo-second-order kinetic model. The thermodynamic parameters (E(a), ΔG(0), ΔH(0), ΔS(0)) obtained indicate the endothermic nature of EDTA adsorption on activated carbon.

  5. ENTRAINED-FLOW ADSORPTION OF MERCURY USING ACTIVATED CARBON

    EPA Science Inventory

    Bench-scale experiments were conducted in a flow reactor to simulate entrained-flow capture of elemental mercury (Hg) by activated carbon. Adsorption of Hg by several commercial activated carbons was examined at different carbon-to-mercury (C:Hg) ratios (by weight) (600:1 - 29000...

  6. Water vapor adsorption on activated carbon preadsorbed with naphtalene.

    PubMed

    Zimny, T; Finqueneisel, G; Cossarutto, L; Weber, J V

    2005-05-01

    The adsorption of water vapor on a microporous activated carbon derived from the carbonization of coconut shell has been studied. Preadsorption of naphthalene was used as a tool to determine the location and the influence of the primary adsorbing centers within the porous structure of active carbon. The adsorption was studied in the pressure range p/p0=0-0.95 in a static water vapor system, allowing the investigation of both kinetic and equilibrium experimental data. Modeling of the isotherms using the modified equation of Do and Do was applied to determine the effect of preadsorption on the mechanism of adsorption.

  7. Factors affecting the adsorption of chromium (VI) on activated carbon

    SciTech Connect

    Yavuz, R.; Orbak, I.; Karatepe, N.

    2006-09-15

    The aim of this investigation was to determine the adsorption behavior of chromium (VI) on two different activated carbon samples produced from Tuncbilek lignite. The effects of the initial chromium (VI) concentration (250-1000 mg/L), temperature (297-323 K) and pH (2.0-9.5) on adsorption were investigated systematically. The effectiveness of the parameters on chromium adsorption was found to be in the order of pH, the initial Cr(VI) concentration and the temperature. Increasing the pH from 2.0 to 9.5 caused a decrease in adsorption. However, the adsorption was increased by increasing the initial Cr(VI) concentration and temperature. The multilinear mathematical model was also developed to predict the Cr(VI) adsorption on activated carbon samples within the experimental conditions.

  8. Kinetics of adsorption with granular, powdered, and fibrous activated carbon

    SciTech Connect

    Shmidt, J.L.; Pimenov, A.V.; Lieberman, A.I.; Cheh, H.Y.

    1997-08-01

    The properties of three different types of activated carbon, fibrous, powdered, and granular, were investigated theoretically and experimentally. The adsorption rate of the activated carbon fiber was found to be two orders of magnitude higher than that of the granular activated carbon, and one order of magnitude higher than that of the powdered activated carbon. Diffusion coefficients of methylene blue in the fibrous, powdered, and granular activated carbons were determined experimentally. A new method for estimating the meso- and macropore surface areas in these carbons was proposed.

  9. Breakthrough CO₂ adsorption in bio-based activated carbons.

    PubMed

    Shahkarami, Sepideh; Azargohar, Ramin; Dalai, Ajay K; Soltan, Jafar

    2015-08-01

    In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide (KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25-65°C and inlet CO2 concentration range of 10-30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively. Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm(3)/g and surface area of 1400 m(2)/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after 50 cycles with low temperature (160°C) regeneration.

  10. Preparation of activated carbons from agricultural residues for pesticide adsorption.

    PubMed

    Ioannidou, Ourania A; Zabaniotou, Anastasia A; Stavropoulos, George G; Islam, Md Azharul; Albanis, Triantafyllos A

    2010-09-01

    Activated carbons (ACs) can be used not only for liquid but also for vapour phase applications, such as water treatment, deodorisation, gas purification and air treatment. In the present study, activated carbons produced from agricultural residues (olive kernel, corn cobs, rapeseed stalks and soya stalks) via physical steam activation were tested for the removal of Bromopropylate (BP) from water. For the characterization of the activated carbons ICP, SEM, FTIR and XRD analyses were performed. Adsorption kinetics and equilibrium isotherms were investigated for all biomass activated carbons in aqueous solutions. Experimental data of BP adsorption have fitted best to the pseudo 2nd-order kinetic model and Langmuir isotherm. The study resulted that corn cobs showed better adsorption capacity than the other biomass ACs. Comparison among ACs from biomass and commercial ones (F400 and Norit GL50) revealed that the first can be equally effective for the removal of BP from water with the latter.

  11. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    PubMed

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original.

  12. Nickel adsorption by sodium polyacrylate-grafted activated carbon.

    PubMed

    Ewecharoen, A; Thiravetyan, P; Wendel, E; Bertagnolli, H

    2009-11-15

    A novel sodium polyacrylate grafted activated carbon was produced by using gamma radiation to increase the number of functional groups on the surface. After irradiation the capacity for nickel adsorption was studied and found to have increased from 44.1 to 55.7 mg g(-1). X-ray absorption spectroscopy showed that the adsorbed nickel on activated carbon and irradiation-grafted activated carbon was coordinated with 6 oxygen atoms at 2.04-2.06 A. It is proposed that this grafting technique could be applied to other adsorbents to increase the efficiency of metal adsorption.

  13. Select metal adsorption by activated carbon made from peanut shells.

    PubMed

    Wilson, Kermit; Yang, Hong; Seo, Chung W; Marshall, Wayne E

    2006-12-01

    Agricultural by-products, such as peanut shells, contribute large quantities of lignocellulosic waste to the environment each growing season; but few, if any, value-added uses exist for their disposal. The objective of this study was to convert peanut shells to activated carbons for use in adsorption of select metal ions, namely, cadmium (Cd2+), copper (Cu2+), lead (Pb2+), nickel (Ni2+) and zinc (Zn2+). Milled peanut shells were pyrolyzed in an inert atmosphere of nitrogen gas, and then activated with steam at different activation times. Following pyrolysis and activation, the carbons underwent air oxidation. The prepared carbons were evaluated either for adsorption efficiency or adsorption capacity; and these parameters were compared to the same parameters obtained from three commercial carbons, namely, DARCO 12x20, NORIT C GRAN and MINOTAUR. One of the peanut shell-based carbons had metal ion adsorption efficiencies greater than two of the three commercial carbons but somewhat less than but close to Minotaur. This study demonstrates that peanut shells can serve as a source for activated carbons with metal ion-removing potential and may serve as a replacement for coal-based commercial carbons in applications that warrant their use.

  14. The adsorption of sympathomimetic agents by activated carbon hemoperfusion.

    PubMed

    Horres, C R; Hill, J B; Ellis, F W

    1976-01-01

    Sympathomimetic agents with mixed and pure alpha and beta adrenergic activity are adsorbed by coconut shell activated carbon from blood, sufficiently rapidly to markedly reduce the activity of these agents. The results of this study suggest that the site of injection of sympathomimetic agents being considered for correcting hypotension during activated carbon hemoperfusion be selected to permit systemic mixing before circulation into the adsorption device.

  15. Adsorption of Hydantoins on Activated Carbon,

    DTIC Science & Technology

    1985-05-01

    performed for single solute, bisolute, and trisolute solutions as well as an undiluted coal gasification wastewater containing predominantly hydantoin...hydantoin, 5,5-dimethylhydantoin, and 5-ethyl-5-methylhydantoin. Absorption using activated carbon did not appear to be an effective treatment process for the removal of hydantoins from the coal gasification wastewater.

  16. Investigation kinetics mechanisms of adsorption malachite green onto activated carbon.

    PubMed

    Onal, Y; Akmil-Başar, C; Sarici-Ozdemir, C

    2007-07-19

    Lignite was used to prepare activated carbon (T3K618) by chemical activation with KOH. Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by t-plot based on N2 adsorption isotherm. BET surface area of activated carbon is determined as 1000 m2/g. Adsorption capacity of malachite green (MG) onto T3K618 activated carbon was investigated in a batch system by considering the effects of various parameters like initial concentration (100, 150 and 200 mg/L) and temperature (25, 40 and 50 degrees C). The adsorption process was relatively fast and equilibrium was reached after about 20 min for 100, 150 mg/L at all adsorption temperature. Equilibrium time for 200 mg/L was determined as 20 min and 40 min at 298, 313 and 323 K, respectively. Simple mass and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate controlling steps such as external mass transfer, intraparticle diffusion. Pseudo second-order model was found to explain the kinetics of MG adsorption most effectively. It was found that both mass transfer and pore diffusion are important in determining the adsorption rates. The intraparticle diffusion rate constant, external mass transfer coefficient, film and pore diffusion coefficient at various temperatures were evaluated. The activation energy (Ea) was determined as 48.56, 63.16, 67.93 kJ/mol for 100, 150, 200 mg/L, respectively. The Langmiur and Freundlich isotherm were used to describe the adsorption equilibrium studies at different temperatures. Langmiur isotherm shows better fit than Freundlich isotherm in the temperature range studied. The thermodynamic parameters, such as DeltaG degrees, DeltaS and DeltaH degrees were calculated. The thermodynamics of dyes-T3K618 system indicates endothermic process.

  17. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  18. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    SciTech Connect

    Contescu, Cristian I.; Gallego, Nidia C.; Thibaud-Erkey, Catherine; Karra, Reddy

    2016-04-01

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC for measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.

  19. Adsorption onto fluidized powdered activated carbon flocs-pACF.

    PubMed

    Serpa, Ana Lídia; Schneider, Ivo André H; Rubio, Jorge

    2005-02-01

    This work presents a new adsorption technique where the adsorbent (powdered activated carbon-PAC) is in the form of suspended flocs formed with water-soluble polymer flocculants. Thus, the adsorption of a typical dye, methylene blue (MB), was studied onto polyacrylamide flocs of PAC (PACF) in a fluidized bed reactor. The technique is based on the fact that the adsorption capacity of PAC does not decrease after flocculation because the adsorbed polymer occupies only a few surface sites, in the form of trains, loops, and tails. Moreover, the adsorption was found to proceed through a rapid mass transfer of MB to the adsorbing PAC flocs, in the same extent as onto PAC. Because of the rapid settling characteristics of the aggregates formed, the two phase separations, loaded PAC and solution, become easier. Thus, the technique offers the advantages of conducting simultaneously both adsorption and solid/liquid separation all in one single stage. Results obtained showed that high MB removal values can be attained in a fluidized bed reactor (>90%) and that PACF presents a much higher adsorption capacity (breakthrough points) than granulated activated carbon (GAC) in the same adsorbing bed. It is believed that this technique highly broadens the potential of the use of powdered activated carbon or other similar ultrafine adsorbents.

  20. Activated Carbon Modified with Copper for Adsorption of Propanethiol

    PubMed Central

    Moreno-Piraján, Juan Carlos; Tirano, Joaquín; Salamanca, Brisa; Giraldo, Liliana

    2010-01-01

    Activated carbons were characterized texturally and chemically before and after treatment, using surface area determination in the BET model, Boehm titration, TPR, DRX and immersion calorimetry. The adsorption capacity and the kinetics of sulphur compound removal were determined by gas chromatography. It was established that the propanethiol retention capacity is dependent on the number of oxygenated groups generated on the activated carbon surface and that activated carbon modified with CuO at 0.25 M shows the highest retention of propanethiol. Additionally is proposed a mechanism of decomposition of propenothiol with carbon-copper system. PMID:20479992

  1. Enhanced adsorption of quaternary amine using modified activated carbon.

    PubMed

    Prahas, Devarly; Wang, M J; Ismadji, Suryadi; Liu, J C

    2014-01-01

    This study examined different methodologies to modify activated carbon (AC) for the removal of quaternary amine, tetramethylammonium hydroxide (TMAH), from water. Commercial carbon (WAC) was treated by nitric acid oxidation (NA-WAC), silica impregnation (SM-WAC0.5), and oxygen plasma (P10-WAC), and their characteristics and adsorption capacity were compared. The Langmuir model fitted the equilibrium adsorption data well under different pH. The maximum adsorption capacity of WAC was 27.77 mg/g, while those of NA-WAC, SM-WAC 0.5, and P10-WAC were 37.46, 32.83 and 29.03 mg/g, respectively. Nitric acid oxidation was the most effective method for enhancing the adsorption capacity of TMAH. Higher pH was favorable for TMAH adsorption. Desorption study revealed that NA-WAC had no considerable reduction in performance even after five cycles of regeneration by 0.1 N hydrochloric acid. It was proposed that electrostatic interaction was the main mechanism of TMAH adsorption on activated carbon.

  2. Adsorption of dichlorodifluoromethane, chlorodifluoromethane, and chloropentafluoroethane on activated carbon

    SciTech Connect

    Berlier, K.; Frere, M.; Bougard, J.

    1995-09-01

    The CFCs (chlorofluorocarbons) are used as working refrigerant fluids. Recent concerns of the effects of CFCs on the ozone layer requires the development of efficient recovery methods. One technique is to adsorb the fluids onto a porous medium such as silica gel or activated carbon. Isotherms and enthalpies of adsorption curves of dichlorodifluoromethane (R12), chlorodifluoromethane (R22), and chloropentafluoroethane (R115) on three different activated carbons have been obtained at 303 K and at pressures to 602 kPa.

  3. Adsorption of radon and water vapor on commercial activated carbons

    SciTech Connect

    Hassan, N.M.; Ghosh, T.K.; Hines, A.L.; Loyalka, S.K.

    1995-02-01

    Equilibrium adsorption isotherms are reported for radon and water vapor on two commercial activated carbons: coconut shell Type PCB and hardwood Type BD. The isotherms of the water vapor were measured gravimetrically at 298 K. The isotherms of radon from dry nitrogen were obtained at 293, 298, and 308 K while the data for the mixture of radon and water vapor were measured at 298 K. The concentrations of radon in the gas and solid phases were measured simultaneously, once the adsorption equilibrium and the radioactive equilibrium between the radon and its daughter products were established. The shape of the isotherms was of Type III for the radon and Type V for the water vapor, according to Brunauer`s classification. The adsorption mechanism was similar for both the radon and the water vapor, being physical adsorption on the macropore surface area in the low pressure region and micropore filling near saturation pressure. The uptake capacity of radon decreased both with increasing temperature and relative humidity. The heat of adsorption data indicated that the PCB- and the BD-activated carbons provided a heterogeneous surface for radon adsorption. The equilibrium data for radon were correlated with a modified Freundlich equation.

  4. Detoxification of pesticide waste via activated carbon adsorption process.

    PubMed

    Foo, K Y; Hameed, B H

    2010-03-15

    Concern about environmental protection has increased over the years from a global viewpoint. To date, the percolation of pesticide waste into the groundwater tables and aquifer systems remains an aesthetic issue towards the public health and food chain interference. With the renaissance of activated carbon, there has been a consistent growing interest in this research field. Confirming the assertion, this paper presents a state of art review of pesticide agrochemical practice, its fundamental characteristics, background studies and environmental implications. Moreover, the key advance of activated carbon adsorption, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbon adsorption represents a plausible and powerful circumstance, leading to the superior improvement of environmental preservation.

  5. Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon.

    PubMed

    Liu, Fengling; Xu, Zhaoyi; Wan, Haiqin; Wan, Yuqiu; Zheng, Shourong; Zhu, Dongqiang

    2011-04-01

    Humic acids are ubiquitous in surface and underground waters and may pose potential risk to human health when present in drinking water sources. In this study, ordered mesoporous carbon was synthesized by means of a hard template method and further characterized by X-ray diffraction, N2 adsorption, transition electron microscopy, elemental analysis, and zeta-potential measurement. Batch experiments were conducted to evaluate adsorption of two humic acids from coal and soil, respectively, on the synthesized carbon. For comparison, a commercial microporous activated carbon and nonporous graphite were included as additional adsorbents; moreover, phenol was adopted as a small probe adsorbate. Pore size distribution characterization showed that the synthesized carbon had ordered mesoporous structure, whereas the activated carbon was composed mainly of micropores with a much broader pore size distribution. Accordingly, adsorption of the two humic acids was substantially lower on the activated carbon than on the synthesized carbon, because of the size-exclusion effect. In contrast, the synthesized carbon and activated carbon showed comparable adsorption for phenol when the size-exclusion effect was not in operation. Additionally, we verified by size-exclusion chromatography studies that the synthesized carbon exhibited greater adsorption for the large humic acid fraction than the activated carbon. The pH dependence of adsorption on the three carbonaceous adsorbents was also compared between the two test humic acids. The findings highlight the potential of using ordered mesoporous carbon as a superior adsorbent for the removal of humic acids.

  6. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  7. Comparative evaluation of adsorption kinetics of diclofenac and isoproturon by activated carbon.

    PubMed

    Torrellas, Silvia A; Rodriguez, Araceli R; Escudero, Gabriel O; Martín, José María G; Rodriguez, Juan G

    2015-01-01

    Adsorption mechanism of diclofenac and isoproturon onto activated carbon has been proposed using Langmuir and Freundlich isotherms. Adsorption capacity and optimum adsorption isotherms were predicted by nonlinear regression method. Different kinetic equations, pseudo-first-order, pseudo-second-order, intraparticle diffusion model and Bangham kinetic model, were applied to study the adsorption kinetics of emerging contaminants on activated carbon in two aqueous matrices.

  8. Grafting of activated carbon cloths for selective adsorption

    NASA Astrophysics Data System (ADS)

    Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S.

    2016-05-01

    Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.

  9. Irreversible adsorption of phenolic compounds by activated carbons

    SciTech Connect

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs.

  10. Structural characteristics of modified activated carbons and adsorption of explosives.

    PubMed

    Tomaszewski, W; Gun'ko, V M; Skubiszewska-Zieba, J; Leboda, R

    2003-10-15

    Several series of activated carbons prepared by catalytic and noncatalytic gasification and subsequent deposition of pyrocarbon by pyrolysis of methylene chloride or n-amyl alcohol were studied by FTIR, chromatography, and adsorption methods using nitrogen and probe organics (explosives). The relationships between the textural characteristics of carbon samples and the recovery rates (eta) of explosives on solid-phase extraction (SPE) using different solvents for their elution after adsorption were analyzed using experimental and quantum chemical calculation results. The eta values for nitrate esters, cyclic nitroamines, and nitroaromatics only partially correlate with different adsorbent parameters (characterizing microporosity, mesoporosity, pore size distributions, etc.), polarity of eluting solvents, or characteristics of probe molecules, since there are many factors strongly affecting the recovery rates. Some of the synthesized carbons provide higher eta values than those for such commercial adsorbents as Hypercarb and Envicarb.

  11. CO2 adsorption on chemically modified activated carbon.

    PubMed

    Caglayan, Burcu Selen; Aksoylu, A Erhan

    2013-05-15

    CO2 adsorption capacity of a commercial activated carbon was improved by using HNO3 oxidation, air oxidation, alkali impregnation and heat treatment under helium gas atmosphere. The surface functional groups produced were investigated by diffuse reflectance infrared Fourier transform spectrometer (DRIFTS). CO2 adsorption capacities of the samples were determined by gravimetric analyses for 25-200°C temperature range. DRIFTS studies revealed the formation of carboxylic acid groups on the HNO3 oxidized adsorbents. Increased aromatization and uniform distribution of the Na particles were observed on the samples prepared by Na2CO3 impregnation onto HNO3 oxidized AC support. The adsorption capacities of the nonimpregnated samples were increased by high temperature helium treatments or by increasing the adsorption temperature; both leading to decomposition of surface oxygen groups, forming sites that can easily adsorb CO2. The adsorption capacity loss due to cyclic adsorption/desorption procedures was overcome with further surface stabilization of Na2CO3 modified samples with high temperature He treatments. With Na2CO3 impregnation the mass uptakes of the adsorbents at 20 bars and 25 °C were improved by 8 and 7 folds and at 1 bar were increased 15 and 16 folds, on the average, compared to their air oxidized and nitric acid oxidized supports, respectively.

  12. Effect of calcium on adsorption capacity of powdered activated carbon.

    PubMed

    Li, Gang; Shang, Junteng; Wang, Ying; Li, Yansheng; Gao, Hong

    2013-12-01

    We investigated the effect of calcium ion on the adsorption of humic acid (HA) (as a target pollutant) by powered activated carbon. The HA adsorption isotherms at different pH and kinetics of two different solutions including HA alone and HA doped Ca(2+), were performed. It was showed that the adsorption capacity of powdered activated carbon (PAC) for HA was markedly enhanced when Ca(2+) was doped into HA. Also, HA and Ca(2+) taken as nitrate were tested on the uptake of each other respectively and it was showed that the adsorbed amounts of both of them were significantly promoted when HA and calcium co-existed. Furthermore, the adsorbed amount of HA slightly decreased with the increasing of Ca(2+) concentration, whereas the amount of calcium increased with the increasing of HA concentration, but all above the amounts without addition. Finally, the change of pH before and after adsorption process is studied. In the two different solutions including HA alone and HA doped Ca(2+), pH had a small rise, but the extent of pH of later solution was bigger.

  13. Adsorption of nitrophenol onto activated carbon: isotherms and breakthrough curves.

    PubMed

    Chern, Jia-Ming; Chien, Yi-Wen

    2002-02-01

    The adsorption isotherm of p-nitrophenol onto granular activated carbon in 25 degrees C aqueous solution was experimentally determined by batch tests. Both the Freundlich and the Redlich-Peterson models were found to fit the adsorption isotherm data well. A series of column tests were performed to determine the breakthrough curves with varying bed depths (3-6 cm) and water flow rates (21.6-86.4 cm3/h). Explicit equations for the breakthrough curves of the fixed-bed adsorption processes with the Langmuir and the Freundlich adsorption isotherms were developed by the constant-pattern wave approach using a constant driving force model in the liquid phase. The results show that the half breakthrough time increases proportionally with increasing bed depth but decreases inverse proportionally with increasing water flow rate. The constant-pattern wave approach using the Freundlich isotherm model fits the experimental breakthrough curves quite satisfactorily. A correlation was proposed to predict the volumetric mass-transfer coefficient in the liquid phase successfully. The effects of solution temperature and pH on the adsorption isotherm were also studied and the Tóth model was found to fit the isotherm data well at varying solution temperatures and pHs.

  14. Nitroimidazoles adsorption on activated carbon cloth from aqueous solution.

    PubMed

    Ocampo-Pérez, R; Orellana-Garcia, F; Sánchez-Polo, M; Rivera-Utrilla, J; Velo-Gala, I; López-Ramón, M V; Alvarez-Merino, M A

    2013-07-01

    The objective of this study was to analyze the equilibrium and adsorption kinetics of nitroimidazoles on activated carbon cloth (ACC), determining the main interactions responsible for the adsorption process and the diffusion mechanism of these compounds on this material. The influence of the different operational variables, such as ionic strength, pH, temperature, and type of water (ultrapure, surface, and waste), was also studied. The results obtained show that the ACC has a high capacity to adsorb nitroimidazoles in aqueous solution. Electrostatic interactions play an important role at pH<3, which favors the repulsive forces between dimetridazole or metronidazole and the ACC surface. The formation of hydrogen bonds and dispersive interactions play the predominant role at higher pH values. Modifications of the ACC with NH3, K2S2O8, and O3 demonstrated that its surface chemistry plays a predominant role in nitroimidazole adsorption on this material. The adsorption capacity of ACC is considerably high in surface waters and reduced in urban wastewater, due to the levels of alkalinity and dissolved organic matter present in the different types of water. Finally, the results of applying kinetic models revealed that the global adsorption rate of dimetridazole and metronidazole is controlled by intraparticle diffusion.

  15. Adsorption behavior of alpha -cypermethrin on cork and activated carbon.

    PubMed

    Domingues, Valentina F; Priolo, Giuseppe; Alves, Arminda C; Cabral, Miguel F; Delerue-Matos, Cristina

    2007-08-01

    Studies were undertaken to determine the adsorption behavior of alpha -cypermethrin [R)-alpha -cyano-3-phenoxybenzyl(1S)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate, and (S)-alpha-cyano-3-phenoxybenzyl (1R)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate] in solutions on granules of cork and activated carbon (GAC). The adsorption studies were carried out using a batch equilibrium technique. A gas chromatograph with an electron capture detector (GC-ECD) was used to analyze alpha -cypermethrin after solid phase extraction with C18 disks. Physical properties including real density, pore volume, surface area and pore diameter of cork were evaluated by mercury porosimetry. Characterization of cork particles showed variations thereby indicating the highly heterogeneous structure of the material. The average surface area of cork particles was lower than that of GAC. Kinetics adsorption studies allowed the determination of the equilibrium time - 24 hours for both cork (1-2 mm and 3-4 mm) and GAC. For the studied alpha -cypermethrin concentration range, GAC revealed to be a better sorbent. However, adsorption parameters for equilibrium concentrations, obtained through the Langmuir and Freundlich models, showed that granulated cork 1-2 mm have the maximum amount of adsorbed alpha-cypermethrin (q(m)) (303 microg/g); followed by GAC (186 microg/g) and cork 3-4 mm (136 microg/g). The standard deviation (SD) values, demonstrate that Freundlich model better describes the alpha -cypermethrin adsorption phenomena on GAC, while alpha -cypermethrin adsorption on cork (1-2 mm and 3-4 mm) is better described by the Langmuir. In view of the adsorption results obtained in this study it appears that granulated cork may be a better and a cheaper alternative to GAC for removing alpha -cypermethrin from water.

  16. Modeling trapping mechanism for PCB adsorption on activated carbon

    NASA Astrophysics Data System (ADS)

    Jensen, Bjørnar; Kvamme, Bjørn; Kuznetsova, Tatyana; Oterhals, A.˚ge

    2012-12-01

    The levels of polychlorinated dibenzo-p-dioxin, polychlorinated dibenzofuran (PCDD/F) and dioxin-like polychlorinated biphenyl (DL-PCB) in fishmeal and fish oil produced for use in feed for salmon is above present European legislation levels in some regions of the world and different decontamination approaches have been proposed [1]. One of these is adsorption on activated carbon. This approach appears to be efficient for adsorption of PCDD/F but less efficient for DL-PCB [2]. Activated carbon consists of slit pores with average sizes of 20 - 50 Ångstroms. One hypothesis [2] for the mechanism of trapping DL-PCB is reduced ability for intramolecular movements of the PCB molecules inside the slit pores. In order to investigate this hypothesis we have used quantum mechanics [3] to characterize two DL-PCB congeners, respectively congener 77 (3,3',4,4'-Tetrachlorobiphenyl) and congener 118 (2,3',4,4',5-Pentachlorobiphenyl) and Triolein (18:1) [4] as a major constituent of the solvent fish oil. A model for activated carbon was constructed using a crystal structure of graphite from the American Mineralogist Crystal Structure Database [5]. The crystal structure used was originally from Wyckoff [6]. A small program had to be written to generate the desired graphite structure as it contains no less than 31232 Carbon atoms. Partial atomic charges were estimated using QM with DFT/B3LYP/6-311+g** and SM6 [7].

  17. Adsorption of basic dyes onto activated carbon using microcolumns

    SciTech Connect

    El Qada, E.N.; Allen, S.J.; Walker, G.M.

    2006-08-16

    Column studies for the adsorption of basic dyes (methylene blue, basic red, and basic yellow) onto PAC2 (activated carbon produced from bituminous coal using steam activation) and F400 were undertaken in fixed-bed microcolumns. Experimental data were correlated using the bed depth service time (BDST) model. The effect of bisolute interactions on the performance of microcolumn fixed beds was studied. The BDST model was successful in describing the breakthrough curves for the adsorption of MB onto PAC2 and predicts the experimental data with a good degree of accuracy. The results emphasized that the interactions and competition for the available binding sites have considerable influence on the efficiency of adsorbents to remove dyes from the solution.

  18. Adsorption equilibria of chlorinated organic solvents onto activated carbon

    SciTech Connect

    Yun, J.H.; Choi, D.K.; Kim, S.H.

    1998-04-01

    Adsorption equilibria of dichloromethane, 1,1,1-trichloroethane, and trichloroethylene on activated carbon were obtained by a static volumetric technique. Isotherms were measured for the pure vapors in the temperature range from 283 to 363 K and pressures up to 60 kPa for dichloromethane, 16 kPa for 1,1,1-trichloroethane, and 7 kPa for trichloroethylene, respectively. The Toth and Dubinin-Radushkevich equations were used to correlate experimental isotherms. Thermodynamic properties such as the isosteric heat of adsorption and the henry`s constant were calculated. It was found that the values of isosteric heat of adsorption were varied with surface loading. Also, the Henry`s constant showed that the order of adsorption affinity is 1,1,1-trichloroethane, trichloroethylene, and dichloromethane. By employing the Dubinin-Radushkevich equation, the limiting volume of the adsorbed space, which equals micropore volume, was determined, and its value was found to be approximately independent of adsorbates.

  19. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.

    PubMed

    Zhang, Shujuan; Shao, Ting; Kose, H Selcen; Karanfil, Tanju

    2010-08-15

    Adsorption of three aromatic organic compounds (AOCs) by four types of carbonaceous adsorbents [a granular activated carbon (HD4000), an activated carbon fiber (ACF10), two single-walled carbon nanotubes (SWNT, SWNT-HT), and a multiwalled carbon nanotube (MWNT)] with different structural characteristics but similar surface polarities was examined in aqueous solutions. Isotherm results demonstrated the importance of molecular sieving and micropore effects in the adsorption of AOCs by carbonaceous porous adsorbents. In the absence of the molecular sieving effect, a linear relationship was found between the adsorption capacities of AOCs and the surface areas of adsorbents, independent of the type of adsorbent. On the other hand, the pore volume occupancies of the adsorbents followed the order of ACF10 > HD4000 > SWNT > MWNT, indicating that the availability of adsorption site was related to the pore size distributions of the adsorbents. ACF10 and HD4000 with higher microporous volumes exhibited higher adsorption affinities to low molecular weight AOCs than SWNT and MWNT with higher mesopore and macropore volumes. Due to their larger pore sizes, SWNTs and MWNTs are expected to be more efficient in adsorption of large size molecules. Removal of surface oxygen-containing functional groups from the SWNT enhanced adsorption of AOCs.

  20. Adsorption equilibria of chloropentafluoroethane and pentafluoroethane on activated carbon pellet

    SciTech Connect

    Moon, D.J.; Chung, M.J.; Cho, S.Y.; Ahn, B.S.; Park, K.Y.; Hong, S.I.

    1998-09-01

    Chlorofluorocarbons (CFCs) have been widely used as refrigerants, blowing agents, propellants, and cleaning agents. However, their roles in the ozone depletion are of great global concern. In addition, CFCs also contribute to the greenhouse effect and hence to climate change. Therefore, the Montreal Protocol was formulated to restrict the release of CFCs into the atmosphere. This leads to research for ways to recover the halogenated hydrocarbons. Equilibrium studies on the adsorption of chloropentafluoroethane (R-115, CF{sub 3}CF{sub 2}Cl) and pentafluoroethane (CF{sub 3}CF{sub 2}H, R-125) on an activated carbon pellet were made between 298.2 K and 373.6 K. Equilibrium parameters based on the Langmuir-Freundlich equation are derived. The Langmuir-Freundlich isotherms for R-115 and R-125 fit the experimental results within 2%. The isosteric enthalpies of adsorption of R-115 and R-125 were estimated.

  1. Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-11-01

    The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.

  2. Activated carbon from vetiver roots: gas and liquid adsorption studies.

    PubMed

    Gaspard, S; Altenor, S; Dawson, E A; Barnes, P A; Ouensanga, A

    2007-06-01

    Large quantities of lignocellulosic residues result from the industrial production of essential oil from vetiver grass (Vetiveria zizanioides) roots. These residues could be used for the production of activated carbon. The yield of char obtained after vetiver roots pyrolysis follows an equation recently developed [A. Ouensanga, L. Largitte, M.A. Arsene, The dependence of char yield on the amounts of components in precursors for pyrolysed tropical fruit stones and seeds, Micropor. Mesopor. Mater. 59 (2003) 85-91]. The N(2) adsorption isotherm follows either the Freundlich law K(F)P(alpha) which is the small alpha equation limit of a Weibull shaped isotherm or the classical BET isotherm. The surface area of the activated carbons are determined using the BET method. The K(F) value is proportional to the BET surface area. The alpha value increases slightly when the burn-off increases and also when there is a clear increase in the micropore distribution width.

  3. High adsorption capacity NaOH-activated carbon for dye removal from aqueous solution.

    PubMed

    Wu, Feng-Chin; Tseng, Ru-Ling

    2008-04-15

    In this study, the surface coverage ratio (Sc/Sp) and monolayer cover adsorption amount per unit surface area (qmon/Sp) were employed to investigate the adsorption isotherm equilibrium of the adsorption of dyes (AB74, BB1 and MB) on NaOH-activated carbons (FWNa2, FWNa3 and FWNa4); the adsorption rate of the Elovich equation (1/b) and the ratio of 1min adsorption amount of adsorbate to the monolayer cover amount of adsorbate (q1/qmon) were employed to investigate adsorption kinetics. The qmon/Sp of NaOH-activated carbons was better than that of KOH-activated carbons prepared from the same raw material (fir wood). The Sc/Sp values of the adsorption of all adsorbates on adsorbent FWNa3 in this study were found to be higher than those in related literature. Parameters 1/b and q1 of the adsorption of dyes on activated carbons in this study were higher than those on KOH-activated carbons; the q1/qmon value of FWNa3 was the highest. The pore structure and the TPD measurement of the surface oxide groups were employed to explain the superior adsorption performance of FWNa3. A high surface activated carbon (FWNa3) with excellent adsorption performance on dyes with relation to adsorption isotherm equilibrium and kinetics was obtained in this study. Several adsorption data processing methods were employed to describe the adsorption performance.

  4. Factors affecting the adsorption of xenon on activated carbon

    SciTech Connect

    Underhill, D.W.; DiCello, D.C.; Scaglia, L.A.; Watson, J.A.

    1986-08-01

    The presence of water vapor was found to interfere strongly with the dynamic adsorption of /sup 133/Xe on coconut-base activated charcoal. The percent loss in the xenon adsorption coefficient was similar to values reported earlier for the adsorption of krypton on humidified charcoal. Attempts to increase the adsorption of xenon by (a) using a petroleum-based adsorbent with an extremely high surface area and (b) by impregnation of the adsorbent with iodine were not successful.

  5. Comparison of toluene adsorption among granular activated carbon and different types of activated carbon fibers (ACFs).

    PubMed

    Balanay, Jo Anne G; Crawford, Shaun A; Lungu, Claudiu T

    2011-10-01

    Activated carbon fiber (ACF) has been demonstrated to be a good adsorbent for the removal of organic vapors in air. Some ACF has a comparable or larger surface area and higher adsorption capacity when compared with granular activated carbon (GAC) commonly used in respiratory protection devices. ACF is an attractive alternative adsorbent to GAC because of its ease of handling, light weight, and decreasing cost. ACF may offer the potential for short-term respiratory protection for first responders and emergency personnel. This study compares the critical bed depths and adsorption capacities for toluene among GAC and ACF of different forms and surface areas. GAC and ACF in cloth (ACFC) and felt (ACFF) forms were challenged in stainless steel chambers with a constant concentration of 500 ppm toluene via conditioned air at 25°C, 50% RH, and constant airflow (7 L/min). Breakthrough data were obtained for each adsorbent using gas chromatography with flame ionization detector. Surface areas of each adsorbent were determined using a physisorption analyzer. Results showed that the critical bed depth of GAC is 275% higher than the average of ACFC but is 55% lower than the average of ACFF. Adsorption capacity of GAC (with a nominal surface area of 1800 m(2)/g) at 50% breakthrough is 25% higher than the average of ACF with surface area of 1000 m(2)/g, while the rest of ACF with surface area of 1500 m(2)/g and higher have 40% higher adsorption capacities than GAC. ACFC with higher surface area has the smallest critical bed depth and highest adsorption capacity, which makes it a good adsorbent for thinner and lighter respirators. We concluded that ACF has great potential for application in respiratory protection considering its higher adsorption capacity and lower critical bed depth in addition to its advantages over GAC, particularly for ACF with higher surface area.

  6. [Effects of ginkgo diterpene lactones meglumine injection's activated carbon adsorption technology on officinal components].

    PubMed

    Zhou, En-li; Wang, Ren-jie; Li, Miao; Wang, Wei; Xu, Dian-hong; Hu, Yang; Wang, Zhen-zhong; Bi, Yu-an; Xiao, Wei

    2015-10-01

    With the diversion rate of ginkgolide A, B, K as comprehensive evaluation indexes, the amount of activated carbon, ad- sorption time, mix rate, and adsorption temperature were selected as factors, orthogonal design which based on the evaluation method of information entropy was used to optimize activated carbon adsorption technology of ginkgo diterpene lactones meglumine injection. Opti- mized adsorption conditions were as follows: adsorbed 30 min with 0.2% activated carbon in 25 °C, 40 r ·min⁻¹, validation test re- sult display. The optimum extraction condition was stable and feasible, it will provide a basis for ginkgo diterpene lactone meglumine injection' activated carbon adsorption process.

  7. [Adsorption kinetics and mechanism of lead (II) on polyamine-functionalized mesoporous activated carbon].

    PubMed

    Li, Kun-Quan; Wang, Yan-Jin; Yang, Mei-Rong; Zhu, Zhi-Qiang; Zheng, Zheng

    2014-08-01

    Bagasse mesoporous carbon was prepared by microwave assisted H3 PO4 activation. Amido and imido groups were modified with ethanediamine on the channels' surface of mesoporous carbon through nitric oxidation and amide reaction. The influence of Pb(II) concentration, adsorption time on Pb(II) adsorption on the ethanediamine-modified mesoporous carbon (AC-EDA) was investigated. The adsorption kinetics and mechanism were also discussed. The results showed that AC-EDA had a great performance for Pb(II) adsorption, and more than 70% of Pb(II) was adsorbed in 5 minutes. The adsorption amount of Pb(II) on the carbon increased with the increase of solution pH in acidic conditions. It was found that AC-EDA had different binding energies on different adsorption sites for Pb(II) separation. The Pb(II) adsorption process on AC-EDA was controlled by intra-particle diffusion in the first 3 min, and then film diffusion played the important pole on the adsorption. The adsorption amount increased with the increase of temperature, indicating the adsorption was an endothermic reaction. The high adsorption energy (> 11 kJ x mol(-1)) implied that the) adsorption was a chemical adsorption. The XPS of AC-EDA before and after Pb(II) adsorption showed that the polyamine group was involved in the adsorption, and should be a main factor of the high efficient adsorption.

  8. Adsorption of cadmium by sulphur dioxide treated activated carbon.

    PubMed

    Macías-García, A; Gómez-Serrano, V; Alexandre-Franco, M F; Valenzuela-Calahorro, C

    2003-10-01

    Merck carbon (1.5 mm) was treated in three ways: heating from ambient temperature to 900 degrees C in SO(2); treatment at ambient temperature in SO(2); or successive treatments in SO(2) and H(2)S at ambient temperature. All samples were then characterised and tested as adsorbents of Cd(2+) from aqueous solution. The characterisation was in terms of composition by effecting ultimate and proximate analyses and also of textural properties by N(2) adsorption at -196 degrees C. Kinetics and extent of the adsorption process of Cd(2+) were studied at 25 and 45 degrees C at pH of the Cd(2+) solution (i.e., 6.2) and at 25 degrees C also at pH 2.0. The various treatments of the starting carbon had no significant effect on the kinetics of the adsorption of Cd(2+), but increased its adsorption capacity. The most effective treatment was heating to 900 degrees C, the adsorption in this case being 70.3% more than that of the starting carbon. The adsorption increased at 45 degrees C but decreased at pH 2.0 when compared to adsorption at 25 degrees C and pH 6.2, respectively.

  9. Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes.

    PubMed

    Szlachta, M; Wójtowicz, P

    2013-01-01

    This study was conducted to determine the adsorption removal of dyes by powdered activated carbon (PAC, Norit) and multi-walled carbon nanotubes (MWCNTs, Chinese Academy of Science) from an aqueous solution. Methylene blue (MB) and Congo red (CR) were selected as model compounds. The adsorbents tested have a high surface area (PAC 835 m(2)/g, MWCNTs 358 m(2)/g) and a well-developed porous structure which enabled the effective treatment of dye-contaminated waters and wastewaters. To evaluate the capacity of PAC and MWCNTs to adsorb dyes, a series of batch adsorption experiments was performed. Both adsorbents exhibited a high adsorptive capacity for MB and CR, and equilibrium data fitted well with the Langmuir model, with the maximum adsorption capacity up to 400 mg/g for MB and 500 mg/g for CR. The separation factor, RL, revealed the favorable nature of the adsorption process under experimental conditions. The kinetics of adsorption was studied at various initial dye concentrations and solution temperatures. The pseudo-second-order model was used for determining the adsorption kinetics of MB and CR. The data obtained show that adsorption of both dyes was rapid in the initial stage and followed by slower processing to reach the plateau. The uptake of dyes increased with contact time, irrespective of their initial concentration and solution temperature. However, changes in the solution temperature did not significantly influence dye removal.

  10. Influence of cationic surfactant on adsorption of Cr(VI) onto activated carbon.

    PubMed

    Choi, Hyun-Doc; Cho, Jung-Min; Baek, Kitae; Yang, Jung-Seok; Lee, Jae-Young

    2009-01-30

    The effect of a cationic surfactant on the adsorption of Cr(VI) on activated carbon was investigated using cetylpyridinium chloride (CPC). At a concentration below the critical micelle concentration (CMC) of CPC, the adsorption of CPC and Cr(VI) reached equilibrium within 60 min, while it took 180 min at the concentration above CMC. CPC decreased the adsorption rate of Cr(VI) and increased the adsorption amount of Cr(VI) onto activated carbon. To analyze adsorption phenomena of Cr(VI), adsorption kinetic and isotherm were used and fitted well with the pseudo-second order kinetic model and Langmuir adsorption model, respectively. CPC introduced a cationic functional group on the surface of activated carbon and provided an adsorption site for Cr(VI).

  11. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons.

    PubMed

    Rakić, Vesna; Rac, Vladislav; Krmar, Marija; Otman, Otman; Auroux, Aline

    2015-01-23

    In this study, the adsorption of pharmaceutically active compounds - salicylic acid, acetylsalicylic acid, atenolol and diclofenac-Na onto activated carbons has been studied. Three different commercial activated carbons, possessing ∼650, 900 or 1500m(2)g(-1) surface areas were used as solid adsorbents. These materials were fully characterized - their textural, surface features and points of zero charge have been determined. The adsorption was studied from aqueous solutions at 303K using batch adsorption experiments and titration microcalorimetry, which was employed in order to obtain the heats evolved as a result of adsorption. The maximal adsorption capacities of investigated solids for all target pharmaceuticals are in the range of 10(-4)molg(-1). The obtained maximal retention capacities are correlated with the textural properties of applied activated carbon. The roles of acid/base features of activated carbons and of molecular structures of adsorbate molecules have been discussed. The obtained results enabled to estimate the possibility to use the activated carbons in the removal of pharmaceuticals by adsorption.

  12. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    PubMed

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA.

  13. Uranium Adsorption on Granular Activated Carbon – Batch Testing

    SciTech Connect

    Parker, Kent E.; Golovich, Elizabeth C.; Wellman, Dawn M.

    2013-09-01

    The uranium adsorption performance of two activated carbon samples (Tusaar Lot B-64, Tusaar ER2-189A) was tested using unadjusted source water from well 299-W19-36. These batch tests support ongoing performance optimization efforts to use the best material for uranium treatment in the Hanford Site 200 West Area groundwater pump-and-treat system. A linear response of uranium loading as a function of the solution-to-solid ratio was observed for both materials. Kd values ranged from ~380,000 to >1,900,000 ml/g for the B-64 material and ~200,000 to >1,900,000 ml/g for the ER2-189A material. Uranium loading values ranged from 10.4 to 41.6 μg/g for the two Tusaar materials.

  14. Modeling high adsorption capacity and kinetics of organic macromolecules on super-powdered activated carbon.

    PubMed

    Matsui, Yoshihiko; Ando, Naoya; Yoshida, Tomoaki; Kurotobi, Ryuji; Matsushita, Taku; Ohno, Koichi

    2011-02-01

    The capacity to adsorb natural organic matter (NOM) and polystyrene sulfonates (PSSs) on small particle-size activated carbon (super-powdered activated carbon, SPAC) is higher than that on larger particle-size activated carbon (powdered-activated carbon, PAC). Increased adsorption capacity is likely attributable to the larger external surface area because the NOM and PSS molecules do not completely penetrate the adsorbent particle; they preferentially adsorb near the outer surface of the particle. In this study, we propose a new isotherm equation, the Shell Adsorption Model (SAM), to explain the higher adsorption capacity on smaller adsorbent particles and to describe quantitatively adsorption isotherms of activated carbons of different particle sizes: PAC and SPAC. The SAM was verified with the experimental data of PSS adsorption kinetics as well as equilibrium. SAM successfully characterized PSS adsorption isotherm data for SPACs and PAC simultaneously with the same model parameters. When SAM was incorporated into an adsorption kinetic model, kinetic decay curves for PSSs adsorbing onto activated carbons of different particle sizes could be simultaneously described with a single kinetics parameter value. On the other hand, when SAM was not incorporated into such an adsorption kinetic model and instead isotherms were described by the Freundlich model, the kinetic decay curves were not well described. The success of the SAM further supports the adsorption mechanism of PSSs preferentially adsorbing near the outer surface of activated carbon particles.

  15. Hydrogen Adsorption on Activated Carbon an Carbon Nanotubes Using Volumetric Differential Pressure Technique

    NASA Astrophysics Data System (ADS)

    Sanip, S. M.; Saidin, M. A. R.; Aziz, M.; Ismail, A. F.

    2010-03-01

    A simple hydrogen adsorption measurement system utilizing the volumetri differential pressure technique has been designed, fabricated and calibrated. Hydroge adsorption measurements have been carried out at temperatures 298 K and 77 K on activate carbon and carbon nanotubes with different surface areas. The adsorption data obtained will b helpful in understanding the adsorption property of the studied carbon materials using th fundamentals of adsorption theory. The principle of the system follows the Sievert-type metho The system measures a change in pressure between the reference cell, R1 and the sample cell S1, S2, S3 over a certain temperature range. R1, S1, S2, and S3 having known fixed volume The sample temperatures will be monitored by thermocouple TC while the pressures in R1 an S1, S2, S3 will be measured using a digital pressure transducer. The maximum operatin pressure of the pressure transducer is 20 bar and calibrated with an accuracy of ±0.01 bar. Hig purity hydrogen is being used in the system and the amount of samples for the study is betwee 1.0-2.0 grams. The system was calibrated using helium gas without any samples in S1, S2 an S3. This will provide a correction factor during the adsorption process providing an adsorption free reference point when using hydrogen gas resulting in a more accurate reading of th adsorption process by eliminating the errors caused by temperature expansion effects and oth non-adsorption related phenomena. The ideal gas equation of state is applied to calculate th hydrogen adsorption capacity based on the differential pressure measurements. Activated carbo with a surface area of 644.87 m2/g showed a larger amount of adsorption as compared to multiwalled nanotubes (commercial) with a surface area of 119.68 m2/g. This study als indicated that there is a direct correlation between the amounts of hydrogen adsorbed an surface area of the carbon materials under the conditions studied and that the adsorption significant at 77

  16. CHARACTERIZATION OF ACTIVATED CARBONS' PHYSICAL AND CHEMICAL PROPERTIES IN RELATION TO THEIR MERCURY ADSORPTION

    EPA Science Inventory

    The paper gives results of a characterization of the physical and chemical properties of the activated carbons used for elemental mercury (Hgo) adsorption, in order to understand the role of oxygen surface functional groups on the mechanism of Hgo adsorption by activated carbons....

  17. Preparation of sodium dodecyl sulphate-functionalized activated carbon from Gnetum gnemon shell for dye adsorption

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Yahya, Amri; Sasti, Rilis Akista Tria

    2017-03-01

    Preparation of functionalized activated carbon from Gnetum gnemon shell was investigated. This work aimed to prepare highly active adsorbent for dye adsorption process by carbonization of Gnetum gnemon shell followed by functionalization using sodium dodecyl sulphate (SDS) to form SDS-modified activated carbon (SDS-AC). The study of physicochemical character change was performed by SEM and FTIR analysis while the adsorptivity of the materials was tested in methylene blue adsorption. According to the results, it is found that SDS-AC exhibits the greater adsorptivity compared to AC.

  18. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    NASA Astrophysics Data System (ADS)

    Izquierdo, Mª Teresa; de Yuso, Alicia Martínez; Valenciano, Raquel; Rubio, Begoña; Pino, Mª Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation produced activated carbons with surface areas and micropore volumes as high as 1128 m2/g and 0.52 cm3/g, respectively. Moreover, the activated carbons exhibit mesoporosity, ranging from 64.6% to 89.1% the percentage of microporosity. The surface chemistry was characterized by TPD, FTIR and acid-base titration obtaining different values of surface groups from the different techniques because the limitation of each technique, but obtaining similar trends for the activated carbons studied. The exhaustive characterization of the activated carbons allows to state that the measured surface area does not explain the adsorption capacity for either toluene or n-hexane. On the other hand, the surface chemistry does not explain the adsorption results either. A compromise between physical and chemical characteristics can be obtained from the appropriate activation conditions, and the response surface methodology gives the optimal activated carbon to maximize adsorption capacity. Low activation temperature, intermediate impregnation ratio lead to high toluene and n-hexane adsorption capacities depending on the activation time, which a determining factor to maximize toluene adsorption.

  19. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies.

    PubMed

    Hameed, B H; Din, A T M; Ahmad, A L

    2007-03-22

    Bamboo, an abundant and inexpensive natural resource in Malaysia was used to prepare activated carbon by physiochemical activation with potassium hydroxide (KOH) and carbon dioxide (CO(2)) as the activating agents at 850 degrees C for 2h. The adsorption equilibrium and kinetics of methylene blue dye on such carbon were then examined at 30 degrees C. Adsorption isotherm of the methylene blue (MB) on the activated carbon was determined and correlated with common isotherm equations. The equilibrium data for methylene blue adsorption well fitted to the Langmuir equation, with maximum monolayer adsorption capacity of 454.2mg/g. Two simplified kinetic models including pseudo-first-order and pseudo-second-order equation were selected to follow the adsorption processes. The adsorption of methylene blue could be best described by the pseudo-second-order equation. The kinetic parameters of this best-fit model were calculated and discussed.

  20. Adsorption of pharmaceuticals to microporous activated carbon treated with potassium hydroxide, carbon dioxide, and steam.

    PubMed

    Fu, Heyun; Yang, Liuyan; Wan, Yuqiu; Xu, Zhaoyi; Zhu, Dongqiang

    2011-01-01

    Adsorption of sulfapyridine, tetracycline, and tylosin to a commercial microporous activated carbon (AC) and its potassium hydroxide (KOH)-, CO-, and steam-treated counterparts (prepared by heating at 850°C) was studied to explore efficient adsorbents for the removal of selected pharmaceuticals from water. Phenol and nitrobenzene were included as additional adsorbates, and nonporous graphite was included as a model adsorbent. The activation treatments markedly increased the specific surface area and enlarged the pore sizes of the mesopores of AC (with the strongest effects shown on the KOH-treated AC). Adsorption of large-size tetracycline and tylosin was greatly enhanced, especially for the KOH-treated AC (more than one order of magnitude), probably due to the alleviated size-exclusion effect. However, the treatments had little effect on adsorption of low-size phenol and nitrobenzene due to the predominance of micropore-filling effect in adsorption and the nearly unaffected content of small micropores causative to such effect. These hypothesized mechanisms on pore-size dependent adsorption were further tested by comparing surface area-normalized adsorption data and adsorbent pore size distributions with and without the presence of adsorbed antibiotics. The findings indicate that efficient adsorption of bulky pharmaceuticals to AC can be achieved by enlarging the adsorbent pore size through suitable activation treatments.

  1. Methylene blue adsorption from aqueous solution by activated carbon: effect of acidic and alkaline solution treatments.

    PubMed

    Ijagbemi, Christianah O; Chun, Ji I; Han, Da H; Cho, Hye Y; O, Se J; Kim, Dong S

    2010-01-01

    The removal of Methylene Blue (MB) from aqueous solution using activated carbon (AC) has been investigated. Adsorption experiments were conducted and the maximum adsorption capacity was determined. The effect of experimental parameters such as pH, dye concentration and temperature were studied on the adsorption process. Equilibrium data were mathematically modeled using the Langmuir and Freundlich adsorption models to describe the equilibrium isotherms at different dye concentrations and temperature. Parameters of best-fit model were calculated and discussed. To understand the mechanism of adsorption, kinetic models were employed to follow the adsorption processes; the pseudo-first-order best described the adsorption of MB onto AC. It was found that pH plays a major role in the adsorption process; adsorption capacity was influenced by the physical and surface chemical properties of carbon and the pH of the solution. 99.0% MB removal was achieved at equilibrium.

  2. ELEMENTAL MERCURY ADSORPTION BY ACTIVATED CARBON TREATED WITH SULFURIC ACID

    EPA Science Inventory

    The paper gives results of a study of the adsorption of elemental mercury at 125 C by a sulfuric-acid (H2S04, 50% w/w/ solution)-treated carbon for the removal of mercury from flue gas. The pore structure of the sample was characterized by nitrogen (N2) at -196 C and the t-plot m...

  3. Adsorption of SO2 on bituminous coal char and activated carbon fiber prepared from phenol formaldehyde

    USGS Publications Warehouse

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1996-01-01

    Carbon-based materials are used commercially to remove SO2 from coal combustion flue gases. Historically, these materials have consisted of granular activated carbons prepared from lignite or bituminous coal. Recent studies have reported that activated carbon fibers (ACFs) may have potential in this application due to their relatively high SO2 adsorption capacity. In this paper, a comparison of SO2 adsorption for both coal-based carbons and ACFs is presented, as well as ideas on carbon properties that may influence SO2 adsorption

  4. Removal of Ni (II) from aqueous solutions by adsorption onto Ricinus communis seed shell activated carbons.

    PubMed

    Thamilarasu, P; Karunakaran, K

    2011-01-01

    The adsorption studies on the removal of Ni(II) from aqueous solution using Ricinus communis seed shells activated carbon and polypyrrole coated Ricinus communis seed shells activated carbon were carried out under various experimental conditions. The effects of various process parameters have been investigated by following the batch adsorption technique. Adsorption data was modeled with Freundlich, Langmuir and tempkin adsorption isotherms. Thermodynamics parameters such as DeltaH0, DeltaS0, and DeltaG0 were calculated indicating that the adsorption was spontaneous and endothermic nature. A mechanism, involving intra particle diffusion and surface adsorption, has been proposed for the adsorption of Ni(II) onto the adsorbent. Adsorbent used in this study is characterized by FTIR and SEM before and after the adsorption of metal ions.

  5. Investigation of dye adsorption onto activated carbon from the shells of Macoré fruit.

    PubMed

    Aboua, Kouassi Narcisse; Yobouet, Yao Augustin; Yao, Kouassi Benjamin; Goné, Droh Lanciné; Trokourey, Albert

    2015-06-01

    The activated carbon obtained from the shells of Macoré fruit was used as an adsorbent for the removal of dyes such as methylene blue (MB) and methyl orange (MO) from synthetic contaminated aqueous solutions. It holds that the adsorption is more favourable at acidic pH, with an optimum adsorption at pH = 2. At this pH, the adsorption rate is more than 98% for the two dyes. The sorption capacity was enhanced by increasing the amount of activated carbon. Above room temperature, the adsorption rates remain constant at a value of approximately 99%. The study of the adsorption kinetics indicates that the adsorption on the studied dyes follows second-order kinetics. The isotherm adsorption data were found to be described by both Langmuir and Freundlich. In addition, the thermodynamic studies revealed that the adsorption process is a favourable, endothermic and spontaneous phenomenon.

  6. Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon.

    PubMed

    Apul, Onur Guven; Wang, Qiliang; Zhou, Yang; Karanfil, Tanju

    2013-03-15

    Adsorption of two synthetic organic compounds (SOCs; phenanthrene and biphenyl) by two pristine graphene nanosheets (GNS) and one graphene oxide (GO) was examined and compared with those of a coal base activated carbon (HD4000), a single-walled carbon nanotube (SWCNT), and a multi-walled carbon nanotube (MWCNT) in distilled and deionized water and in the presence of natural organic matter (NOM). Graphenes exhibited comparable or better adsorption capacities than carbon nanotubes (CNTs) and granular activated carbon (GAC) in the presence of NOM. The presence of NOM reduced the SOC uptake of all adsorbents. However, the impact of NOM on the SOC adsorption was smaller on graphenes than CNTs and activated carbons. Furthermore, the SOC with its flexible molecular structure was less impacted from NOM preloading than the SOC with planar and rigid molecular structure. The results indicated that graphenes can serve as alternative adsorbents for removing SOCs from water. However, they will also, if released to environment, adsorb organic contaminants influencing their fate and impact in the environment.

  7. Evaluation of the isosteric heat of adsorption at zero coverage for hydrogen on activated carbons

    NASA Astrophysics Data System (ADS)

    Dohnke, E.; Beckner, M.; Romanos, J.; Olsen, R.; Wexler, C.; Pfeifer, P.

    2011-03-01

    Activated carbons made from corn cob show promise as materials for high-capacity hydrogen storage. As part of our characterization of these materials, we are interested in learning how different production methods affect the adsorption energies. In this talk, we will show how hydrogen adsorption isotherms may be used to calculate these adsorption energies at zero coverage using Henry's law. We will additionally discuss differences between the binding energy and the isosteric heat of adsorption by applying this analysis at different temperatures.

  8. Heterogeneity of activated carbons in adsorption of aniline from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Podkościelny, P.; László, K.

    2007-08-01

    The heterogeneity of activated carbons (ACs) prepared from different precursors is investigated on the basis of adsorption isotherms of aniline from dilute aqueous solutions at various pH values. The APET carbon prepared from polyethyleneterephthalate (PET), as well as, commercial ACP carbon prepared from peat were used. Besides, to investigate the influence of carbon surface chemistry, the adsorption was studied on modified carbons based on ACP carbon. Its various oxygen surface groups were changed by both nitric acid and thermal treatments. The Dubinin-Astakhov (DA) equation and Langmuir-Freundlich (LF) one have been used to model the phenomenon of aniline adsorption from aqueous solutions on heterogeneous carbon surfaces. Adsorption-energy distribution (AED) functions have been calculated by using an algorithm based on a regularization method. Analysis of these functions for activated carbons studied provides important comparative information about their surface heterogeneity.

  9. Adsorption, desorption and bioregeneration in the treatment of 2-chlorophenol with activated carbon.

    PubMed

    Aktaş, Ozgür; Ceçen, Ferhan

    2007-03-22

    This study aims to clarify the effect of activated carbon type on the extent of adsorbability, desorbability, and bioregenerability in the treatment of 2-chlorophenol. Four different activated carbon types; thermally activated and chemically activated powdered carbons (PAC), and their granular countertypes (GAC) with similar physical characteristics were used. Thermally activated carbons adsorbed 2-chlorophenol much better than chemically activated ones. However, adsorption was more reversible in the case of chemically activated ones. The use of powdered and granular activated carbon countertypes resulted in comparable adsorption and desorption characteristics. For each activated carbon type, 2-chlorophenol exhibited higher adsorbability and lower desorbability than phenol. Biodegradation of 2-chlorophenol took place very slowly when it was used as the sole carbon source in acclimated and non-acclimated activated sludges. Bioregeneration occurred only via desorption due to an initial concentration gradient and no further desorption took place due to low biodegradability. Bioregeneration of activated carbon loaded with 2-chlorophenol was not a suitable option when 2-chlorophenol was the only carbon source. It is suggested to remove 2-chlorophenol via adsorption onto activated carbon rather than applying biological treatment. Also in such cases, the use of thermally activated carbons with higher adsorption and lower desorption capacities is recommended rather than chemically activated carbons.

  10. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    NASA Astrophysics Data System (ADS)

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  11. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.

    PubMed

    Brooks, A J; Lim, Hyung-nam; Kilduff, James E

    2012-07-27

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  12. Adsorption characteristics of SO2 on activated carbon prepared from coconut shell with potassium hydroxide activation.

    PubMed

    Lee, Young-Whan; Park, Jin-Won; Choung, Jae-Hoon; Choi, Dae-Ki

    2002-03-01

    The adsorption characteristics of SO2 were studied with KOH-impregnated granular activated carbon (K-IAC). To confirm selective SO2 adsorptivity of K-IAC using a fixed bed adsorption column, experiments were conducted on the effects of KOH and of linear velocity, temperature, and concentration. In addition, changes in features before and after adsorption were observed by utilizing FTIR, XRD, ToF-SIMS, and AES/SAM, examining the surface chemistry. K-IAC adsorbed 13.2 times more SO2 than did general activated carbon (GAC). The amount of SO2 adsorbed increased as linear velocity and concentration increased and as temperature decreased. At lower temperature, the dominant reaction between KOH and SO2 produces K2-SO3 and H2O. Any H2O remaining on the surface is converted into H2SO4 as SO2 and O2 are introduced. Then, the KOH and SO2 reaction produces K2SO4 and H2O. The surface characterization results proved that adsorption occurred through chemical reaction between KOH and SO2. The SO2 adsorbed K-IAC exists in the form of stable oxide crystal, K2SO3 and K2SO4, due to potassium. The basic feature given to the surface of activated carbon by KOH impregnation was confirmed to be acting as the main factor in enhancing SO2 adsorptivity.

  13. Computational Chemistry Approach to Interpret the Crystal Violet Adsorption on Golbasi Lignite Activated Carbon

    NASA Astrophysics Data System (ADS)

    Depci, Tolga; Sarikaya, Musa; Prisbrey, Keith A.; Yucel, Aysegul

    2016-10-01

    In this paper, adsorption mechanism of Crystal Violet (CV) dye from the aqueous solution on the activated carbon prepared from Golbasi lignite was explained and interpreted by a computational chemistry approach and experimental studies. Molecular dynamic simulations and Ab initio frontier orbital analysis indicated relatively high energy and electron transfer processes during adsorption, and molecular dynamics simulations showed CV dye molecules moving around on the activated carbon surface after adsorption, facilitating penetration into cracks and pores. The experimental results supported to molecular dynamic simulation and showed that the monolayer coverage occurred on the activated carbon surface and each CV dye ion had equal sorption activation energy.

  14. Activated carbons prepared from refuse derived fuel and their gold adsorption characteristics.

    PubMed

    Buah, William K; Williams, Paul T

    2010-02-01

    Activated carbons produced from refuse derived fuel (RDF), which had been prepared from municipal solid waste have been characterized and evaluated for their potential for gold adsorption from gold chloride solution. Pyrolysis of the RDF produced a char, which was then activated via steam gasification to produce activated carbons. Steam gasification of the char at 900 degrees C for 3 h yielded 73 wt% activated carbon. The derived activated carbon had a surface area of 500 m2 g(-1) and a total pore volume of 0.19 cm3 g(-1). The gold adsorption capacity of the activated carbon was 32.1 mg Au g(-1) of carbon when contacted with an acidified gold chloride solution. The gold adsorption capacity was comparable to that of a commercial activated carbon tested under the same conditions and was well in the range of values of activated carbons used in the gold industry. Demineralization of the RDF activated carbon in a 5 M HCl solution resulted in enhancement of its textural properties but a reduction in the gold adsorption rate, indicating that the metal content of the RDF activated carbon influenced its gold adsorption rate.

  15. Adsorption of CO{sub 2} on activated carbon: Simultaneous determination of integral heat and isotherm of adsorption

    SciTech Connect

    Berlier, K.; Frere, M.

    1996-09-01

    Simultaneous measurements of isotherms and integral heats of adsorption of carbon dioxide (CO{sub 2}) at temperatures ranging from 278 K to 327 K (seven temperatures) and at pressures up to 110 kPa on activated carbon are presented.

  16. Influence of heat treatment of rayon-based activated carbon fibers on the adsorption of formaldehyde.

    PubMed

    Rong, Haiqin; Ryu, Zhenyu; Zheng, Jingtang; Zhang, Yuanli

    2003-05-15

    The influence of heat treatment of rayon-based activated carbon fibers on the adsorption behavior of formaldehyde was studied. Heat treatment in an inert atmosphere of nitrogen for rayon-based activated carbon fibers (ACFs) resulted in a significant increase in the adsorption capacities and prolongation of breakthrough time on removing of formaldehyde. The effect of different heat-treatment conditions on the adsorption characteristics was investigated. The porous structure parameters of the samples under study were investigated using nitrogen adsorption at the low temperature 77.4 K. The pore size distributions of the samples under study were calculated by density functional theory. With the aid of these analyses, the relationship between structure and adsorption properties of rayon-based ACFs for removing formaldehyde was revealed. Improvement of their performance in terms of adsorption selectivity and adsorption rate for formaldehyde were achieved by heat post-treatment in an inert atmosphere of nitrogen.

  17. Application of activated carbon derived from scrap tires for adsorption of Rhodamine B.

    PubMed

    Li, Li; Liu, Shuangxi; Zhu, Tan

    2010-01-01

    Activated carbon derived from solid hazardous waste scrap tires was evaluated as a potential adsorbent for cationic dye removal. The adsorption process with respect to operating parameters was investigated to evaluate the adsorption characteristics of the activated pyrolytic tire char (APTC) for Rhodamine B (RhB). Systematic research including equilibrium, kinetics and thermodynamic studies was performed. The results showed that APTC was a potential adsorbent for RhB with a higher adsorption capacity than most adsorbents. Solution pH and temperature exert significant influence while ionic strength showed little effect on the adsorption process. The adsorption equilibrium data obey Langmuir isotherm and the kinetic data were well described by the pseudo second-order kinetic model. The adsorption process followed intra-particle diffusion model with more than one process affecting the adsorption process. Thermodynamic study confirmed that the adsorption was a physisorption process with spontaneous, endothermic and random characteristics.

  18. [Surface characteristics of alkali modified activated carbon and the adsorption capacity of methane].

    PubMed

    Zhang, Meng-Zhu; Li, Lin; Liu, Jun-Xin; Sun, Yong-Jun; Li, Guo-Bin

    2013-01-01

    Coconut shell based activated carbon was modified by alkali with different concentrations. The surface structures of tested carbons were observed and analyzed by SEM and BET methods. Boehm's titration and SEM/EDS methods were applied to assay the functional groups and elements on the carbon surface. The adsorption of methane on tested carbons was investigated and adsorption behavior was described by the adsorption isotherms. Results showed that surface area and pore volume of modified carbon increased and surface oxygen groups decreased as the concentration of the alkali used increased, with no obvious change in pore size. When concentration of alkali was higher than 3.3 mol x L(-1), the specific surface area and pore volume of modified carbon was larger than that of original carbon. Methane adsorption capacity of alkali modified carbon increased 24%. Enlargement of surface area and pore volume, reduction of surface oxygen groups will benefit to enhance the methane adsorption ability on activated carbon. Adsorption behavior of methane followed the Langmuir isotherm and the adsorption coefficient was 163.7 m3 x mg(-1).

  19. Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers.

    PubMed

    Tsai, Jiun-Horng; Chiang, Hsiu-Mei; Huang, Guan-Yinag; Chiang, Hung-Lung

    2008-06-15

    The adsorption characteristics of chloroform, acetone, and acetonitrile on commercial activated carbon (C1), two types of activated carbon fibers (F1 and F2), and sludge adsorbent (S1) was investigated. The chloroform influent concentration ranged from 90 to 7800 ppm and the acetone concentration from 80 to 6900 ppm; the sequence of the adsorption capacity of chloroform and acetone on adsorbents was F2>F1 approximately C1 approximately S1. The adsorption capacity of acetonitrile ranged from 4 to 100 mg/g, corresponding to the influent range from 43 to 2700 ppm for C1, S1, and F1. The acetonitrile adsorption capacity of F2 was approximately 20% higher than that of the other adsorbents at temperatures<30 degrees C. The Freundlich equation fit the data better than the Langmuir and Dubinin-Radushkevich (D-R) equations. The adsorption rate of carbon fibers is higher than that of the other adsorbents due to their smaller fiber diameter and higher surface area. The micropore diffusion coefficient of VOC on activated carbon and sludge adsorbent was approximately 10(-4) cm2 s(-1). The diffusion coefficient of VOC on carbon fibers ranged from 10(-8) to 10(-7) cm2 s(-1). The small carbon fiber pore size corresponds to a smaller diffusion coefficient.

  20. Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons.

    PubMed

    Dai, Xiaodong; Zou, Linda; Yan, Zifeng; Millikan, Mary

    2009-08-30

    This study investigated the removal of N-nitrosodimethylamine (NDMA) by an adsorption mechanism using commercially available activated carbons and surface-modified activated carbons. The effects of the modification on the properties of the activated carbon were studied by N(2) adsorption/desorption, Diffuse Reflectance Infrared Fourier Transmission (DRIFT) analysis and X-Ray Photoelectron Spectroscopy (XPS). Adsorption experiments revealed that the activated carbons demonstrated a greater capacity for NDMA adsorption capacity than can be achieved using zeolite. The equilibrium data was fitted to the Freundlich equation and it was found that the adsorption capacity was significantly influenced by the micropore size, relative pore volume and surface characteristics. Adsorption experiments were conducted using unmodified and modified activated carbons. The results indicated that the adsorption capacity of NDMA can be significantly improved by heat treatment and doping of TiO(2) particles. This was because the surface treatments yielded more hydrophobic sites and fewer oxygen-containing surface functional groups, and consequently an increased capacity for NDMA adsorption.

  1. Initial heats of H{sub 2}S adsorption on activated carbons: Effect of surface features

    SciTech Connect

    Bagreev, A.; Adib, F.; Bandosz, T.J.

    1999-11-15

    The sorption of hydrogen sulfide was studied on activated carbons of various origins by means of inverse gas chromatography at infinite dilution. The conditions of the experiment were dry and anaerobic. Prior to the experiments the surface of some carbon samples was oxidized using either nitric acid or ammonium persulfate. Then the structural parameters of carbons were evaluated from the sorption of nitrogen. From the IGC experiments at various temperatures, heats of adsorption were calculated. The results showed that the heat of H{sub 2}S adsorption under dry anaerobic conditions does not depend on surface chemistry. The dependence of the heat of adsorption on the characteristic energy of nitrogen adsorption calculated from the Dubinin-Raduskevich equation was found. This correlation can be used to predict the heat of H{sub 2}S adsorption based on the results obtained from nitrogen adsorption.

  2. Hexavalent chromium adsorption on impregnated palm shell activated carbon with polyethyleneimine.

    PubMed

    Owlad, Mojdeh; Aroua, Mohamed Kheireddine; Wan Daud, Wan Mohd Ashri

    2010-07-01

    Removal of Cr(VI) ions from aqueous solution was investigated using modified palm shell activated carbon. Low Molecular Weight Polyethyleneimine (LMW PEI) was used for impregnation purpose. The maximum amount of LMW PEI adsorbed on activated carbon was determined to be approximately 228.2mg/g carbon. The adsorption experiments were carried out in a batch system using potassium dichromate K(2)Cr(2)O(7) as the source of Cr(VI) in the synthetic waste water and modified palm shell activated carbon as the adsorbent. The effects of pH, concentration of Cr(VI) and PEI loaded on activated carbon were studied. The adsorption data were found to fit well with the Freundlich isotherm model. This modified Palm shell activated carbon showed high adsorption capacity for chromium ions.

  3. Novel three-stage kinetic model for aqueous benzene adsorption on activated carbon.

    PubMed

    Choi, Jae-Woo; Choi, Nag-Choul; Lee, Soon-Jae; Kim, Dong-Ju

    2007-10-15

    We propose a novel kinetic model for adsorption of aqueous benzene onto both granular activated carbon (GAC) and powdered activated carbon (PAC). The model is based on mass conservation of benzene coupled with three-stage adsorption: (1) the first portion for an instantaneous stage or external surface adsorption, (2) the second portion for a gradual stage with rate-limiting intraparticle diffusion, and (3) the third portion for a constant stage in which the aqueous phase no longer interacts with activated carbon. An analytical solution of the kinetic model was validated with the kinetic data obtained from aqueous benzene adsorption onto GAC and PAC in batch experiments with two different solution concentrations (C(0)=300 mg L(-1), 600 mg L(-1)). Experimental results revealed that benzene adsorption for the two concentrations followed three distinct stages for PAC but two stages for GAC. The analytical solution could successfully describe the kinetic adsorption of aqueous benzene in the batch reaction system, showing a fast instantaneous adsorption followed by a slow rate-limiting adsorption and a final long constant adsorption. Use of the two-stage model gave incorrect values of adsorption coefficients in the analytical solution due to inability to describe the third stage.

  4. Structural characteristics of activated carbons and ibuprofen adsorption affected by bovine serum albumin.

    PubMed

    Melillo, M; Gun'ko, V M; Tennison, S R; Mikhalovska, L I; Phillips, G J; Davies, J G; Lloyd, A W; Kozynchenko, O P; Malik, D J; Streat, M; Mikhalovsky, S V

    2004-03-30

    Structural characteristics of a series of MAST carbons were studied using scanning electron microscopy images and the nitrogen adsorption isotherms analyzed with several models of pores and different adsorption equations. A developed model of pores as a mixture of gaps between spherical nanoparticles and slitlike pores was found appropriate for MAST carbons. Adsorption of ibuprofen [2-(4-isobutylphenyl)propionic acid] on activated carbons possessing different pore size distributions in protein-free and bovine serum albumin (BSA)-containing aqueous solutions reveals the importance of the contribution of mesopores to the total porosity of adsorbents. The influence of the mesoporosity increases when considering the removal of the drug from the protein-containing solution. Cellulose-coated microporous carbon Norit RBX adsorbs significantly smaller amounts of ibuprofen than uncoated micro/mesoporous MAST carbons whose adsorption capability increases with increasing mesoporosity and specific surface area, burnoff dependent variable. A similar effect of broad pores is observed on adsorption of fibrinogen on the same carbons. Analysis of the ibuprofen adsorption data using Langmuir and D'Arcy-Watt equations as the kernel of the Fredholm integral equation shows that the nonuniformity of ibuprofen adsorption complexes diminishes with the presence of BSA. This effect may be explained by a partial adsorption of ibuprofen onto protein molecules immobilized on carbon particles and blocking of a portion of narrow pores.

  5. Pore size distribution analysis of activated carbons prepared from coconut shell using methane adsorption data

    NASA Astrophysics Data System (ADS)

    Ahmadpour, A.; Okhovat, A.; Darabi Mahboub, M. J.

    2013-06-01

    The application of Stoeckli theory to determine pore size distribution (PSD) of activated carbons using high pressure methane adsorption data is explored. Coconut shell was used as a raw material for the preparation of 16 different activated carbon samples. Four samples with higher methane adsorption were selected and nitrogen adsorption on these adsorbents was also investigated. Some differences are found between the PSD obtained from the analysis of nitrogen adsorption isotherms and their PSD resulting from the same analysis using methane adsorption data. It is suggested that these differences may arise from the specific interactions between nitrogen molecules and activated carbon surfaces; therefore caution is required in the interpretation of PSD obtained from the nitrogen isotherm data.

  6. [Adsorption kinetic and thermodynamic studies of lead onto activated carbons from cotton stalk].

    PubMed

    Li, Kun-quan; Zheng, Zheng; Jiang, Jian-chun; Zhang, Ji-biao

    2010-05-01

    Low-cost high surface area microporous carbons were prepared from cotton stalk and cotton stalk fiber by H3PO4 activation. The adsorption of lead ions on the carbons was investigated by conducting a series of batch adsorption experiments. The influence of solution pH value, contact time and temperature was investigated. The adsorption kinetics, thermodynamic behavior and mechanism were also discussed. The surface area and pore structure of the activated carbons were analyzed by BET equation, BJH method and H-K method according to the data from nitrogen adsorption at 77K. Boehm titration, Fourier transform infrared spectroscopy (FTIR), the point of zero charge (pH(PZC)) measurement and elemental analysis were used to characterize the surface properties. The results show that the carbons from cotton stalk and cotton stalk fiber have high surface area of 1570 and 1731 m2 x g(-1), and high content of oxygen-containing functional groups of 1.43 and 0.83 mmol x g(-1). The adsorption experiments show that the carbons have high adsorption capacity for lead, and the maximum adsorption equilibrium amount was found to be 120 mg x g(-1). The adsorption amount increased with contact time, and almost 80% of the adsorption occurred in the first 5 min. The pseudo-second-order model describes the adsorption kinetics most effectively. The Freundlich isotherm was found to the best explanation for experimental data. The negative change in free energy (delta G0) and positive change in enthalpy (delta H0) indicate that the adsorption is a spontaneous and endothermic process, and the adsorption of lead ions onto the carbons might be involved in an ion-exchange mechanism.

  7. Reduction of adsorption capacity of coconut shell activated carbon for organic vapors due to moisture contents.

    PubMed

    Abiko, Hironobu; Furuse, Mitsuya; Takano, Tsuguo

    2010-01-01

    In occupational hygiene, activated carbon produced from coconut shell is a common adsorbent material for harmful substances including organic vapors due to its outstanding adsorption capacity and cost advantage. However, moisture adsorption of the carbon generally decreases the adsorption capacity for organic vapors. In a previous report, we prepared several coconut shell activated carbons which had been preconditioned by equilibration with moisture at different relative humidities and measured the breakthrough times for 6 kinds of organic vapor, in order to clarify the effect of preliminary moisture content in activated carbon on the adsorption capacity in detail. We found that the relative percent weight increase due to moisture adsorption of the carbon specimen had a quantitative effect, reducing the breakthrough time. In this report, we carried out further measurements of the effect of moisture content on the adsorption of 13 kinds of organic vapor, and investigated the relationship between moisture adsorption and the reduction of the breakthrough time of activated carbon specimens. We also applied the data to the Wood's breakthrough time estimation model which is an extension of the Wheeler-Jonas equation.

  8. Adsorption of metal ions by pecan shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-09-01

    The present investigation was undertaken to evaluate the adsorption effectiveness of pecan shell-based granular activated carbons (GACs) in removing metal ions (Cu(2+), Pb(2+), Zn(2+)) commonly found in municipal and industrial wastewater. Pecan shells were activated by phosphoric acid, steam or carbon dioxide activation methods. Metal ion adsorption of shell-based GACs was compared to the metal ion adsorption of a commercial carbon, namely, Calgon's Filtrasorb 200. Adsorption experiments were conducted using solutions containing all three metal ions in order to investigate the competitive effects of the metal ions as would occur in contaminated wastewater. The results obtained from this study showed that acid-activated pecan shell carbon adsorbed more lead ion and zinc ion than any of the other carbons, especially at carbon doses of 0.2-1.0%. However, steam-activated pecan shell carbon adsorbed more copper ion than the other carbons, particularly using carbon doses above 0.2%. In general, Filtrasorb 200 and carbon dioxide-activated pecan shell carbons were poor metal ion adsorbents. The results indicate that acid- and steam-activated pecan shell-based GACs are effective metal ion adsorbents and can potentially replace typical coal-based GACs in treatment of metal contaminated wastewater.

  9. Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides.

    PubMed

    Abdel daiem, Mahmoud M; Rivera-Utrilla, José; Sánchez-Polo, Manuel; Ocampo-Pérez, Raúl

    2015-12-15

    The main aim of this study was to investigate the single, competitive, and dynamic adsorption of phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) on two activated carbons with different chemical natures and similar textural characteristics. The adsorption mechanism was also elucidated by analyzing the influence of solution pH and ionic strength. The activated carbons demonstrated high adsorption capacity to remove all micropollutants due to the presence of active sites on their surfaces, which increase dispersive interactions between the activated carbon graphene layers and the aromatic ring of pollutants. The adsorption capacity of the activated carbons increased in the order: DPAadsorption of contaminants is favored at acid pH (pH<5) due to the establishment of attractive electrostatic interactions. In dynamic regime, the amount of pollutant adsorbed was much higher for PA, followed by DPA, and was approximately similar for BPA, 2,4-D, and MCPA. Finally, the amount of BPA and DPA adsorbed on activated carbon decreased by around 50% and 70% in the presence of DPA and BPA, respectively, indicating that both compounds are adsorbed on the same adsorption sites of the activated carbon.

  10. Activated carbon adsorption of PAHs from vegetable oil used in soil remediation.

    PubMed

    Gong, Zongqiang; Alef, Kassem; Wilke, Berndt-Michael; Li, Peijun

    2007-05-08

    Vegetable oil has been proven to be advantageous as a non-toxic, cost-effective and biodegradable solvent to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated soils for remediation purposes. The resulting vegetable oil contained PAHs and therefore required a method for subsequent removal of extracted PAHs and reuse of the oil in remediation processes. In this paper, activated carbon adsorption of PAHs from vegetable oil used in soil remediation was assessed to ascertain PAH contaminated oil regeneration. Vegetable oils, originating from lab scale remediation, with different PAH concentrations were examined to study the adsorption of PAHs on activated carbon. Batch adsorption tests were performed by shaking oil-activated carbon mixtures in flasks. Equilibrium data were fitted with the Langmuir and Freundlich isothermal models. Studies were also carried out using columns packed with activated carbon. In addition, the effects of initial PAH concentration and activated carbon dosage on sorption capacities were investigated. Results clearly revealed the effectiveness of using activated carbon as an adsorbent to remove PAHs from the vegetable oil. Adsorption equilibrium of PAHs on activated carbon from the vegetable oil was successfully evaluated by the Langmuir and Freundlich isotherms. The initial PAH concentrations and carbon dosage affected adsorption significantly. The results indicate that the reuse of vegetable oil was feasible.

  11. Enhanced mercuric chloride adsorption onto sulfur-modified activated carbons derived from waste tires.

    PubMed

    Yuan, Chung-Shin; Wang, Guangzhi; Xue, Sheng-Han; Ie, Iau-Ren; Jen, Yi-Hsiu; Tsai, Hsieh-Hung; Chen, Wei-Jin

    2012-07-01

    A number of activated carbons derived from waste tires were further impregnated by gaseous elemental sulfur at temperatures of 400 and 650 degrees C, with a carbon and sulfur mass ratio of 1:3. The capabilities of sulfur diffusing into the micropores of the activated carbons were significantly different between 400 and 650 degrees C, resulting in obvious dissimilarities in the sulfur content of the activated carbons. The sulfur-impregnated activated carbons were examined for the adsorptive capacity of gas-phase mercuric chloride (HgC1) by thermogravimetric analysis (TGA). The analytical precision of TGA was up to 10(-6) g at the inlet HgCl2 concentrations of 100, 300, and 500 microg/m3, for an adsorption time of 3 hr and an adsorption temperature of 150 degrees C, simulating the flue gas emitted from municipal solid waste (MSW) incinerators. Experimental results showed that sulfur modification can slightly reduce the specific surface area of activated carbons. High-surface-area activated carbons after sulfur modification had abundant mesopores and micropores, whereas low-surface-area activated carbons had abundant macropores and mesopores. Sulfur molecules were evenly distributed on the surface of the inner pores after sulfur modification, and the sulfur content of the activated carbons increased from 2-2.5% to 5-11%. After sulfur modification, the adsorptive capacity of HgCl2 for high-surface-area sulfurized activated carbons reached 1.557 mg/g (22 times higher than the virgin activated carbons). The injection of activated carbons was followed by fabric filtration, which is commonly used to remove HgCl2 from MSW incinerators. The residence time of activated carbons collected in the fabric filter is commonly about 1 hr, but the time required to achieve equilibrium is less than 10 min. Consequently, it is worthwhile to compare the adsorption rates of HgCl2 in the time intervals of < 10 and 10-60 min.

  12. Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter.

    PubMed

    Gao, Yaohuan; Deshusses, Marc A

    2011-12-01

    The adsorption of two acidic pharmaceutically active compounds (PhACs), clofibric acid and ketoprofen, onto powdered activated carbon (PAC) was investigated with a particular focus on the influence of natural organic matter (NOM) on the adsorption of the PhACs. Suwannee River humic acids (SRHAs) were used as a substitute for NOM. Batch adsorption experiments were conducted to obtain adsorption kinetics and adsorption isotherms with and without SRHAs in the system. The adsorption isotherms and adsorption kinetics showed that the adsorption ofclofibric acid was not significantly affected by the presence of SRHAs at a concentration of 5 mg (as carbon) L(-1). An adsorption capacity of 70 to 140 mg g(-1) was observed and equilibrium was reached within 48 h. In contrast, the adsorption of ketoprofen was markedly decreased (from about 120 mg g(-1) to 70-100 mg g(-1)) in the presence of SRHAs. Higher initial concentrations of clofibric acid than ketoprofen during testing may explain the different behaviours that were observed. Also, the more hydrophobic ketoprofen molecules may have less affinity for PAC when humic acids (which are hydrophilic) are present. The possible intermolecular forces that could account for the different behaviour of clofibric acid and ketoprofen adsorption onto PAC are discussed. In particular, the relevance of electrostatic forces, electron donor-acceptor interaction, hydrogen bonding and London dispersion forces are discussed

  13. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    PubMed

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics.

  14. Adsorption capacities of activated carbons for geosmin and 2-methylisoborneol vary with activated carbon particle size: Effects of adsorbent and adsorbate characteristics.

    PubMed

    Matsui, Yoshihiko; Nakao, Soichi; Sakamoto, Asuka; Taniguchi, Takuma; Pan, Long; Matsushita, Taku; Shirasaki, Nobutaka

    2015-11-15

    The adsorption capacities of nine activated carbons for geosmin and 2-methylisoborneol (MIB) were evaluated. For some carbons, adsorption capacity substantially increased when carbon particle diameter was decreased from a few tens of micrometers to a few micrometers, whereas for other carbons, the increase of adsorption capacity was small for MIB and moderate for geosmin. An increase of adsorption capacity was observed for other hydrophobic adsorbates besides geosmin and MIB, but not for hydrophilic adsorbates. The parameter values of a shell adsorption model describing the increase of adsorption capacity were negatively correlated with the oxygen content of the carbon among other characteristics. Low oxygen content indicated low hydrophilicity. The increase of adsorption capacity was related to the hydrophobic properties of both adsorbates and activated carbons. For adsorptive removal of hydrophobic micropollutants such as geosmin, it is therefore recommended that less-hydrophilic activated carbons, such as coconut-shell-based carbons, be microground to a particle diameter of a few micrometers to enhance their equilibrium adsorption capacity. In contrast, adsorption by hydrophilic carbons or adsorption of hydrophilic adsorbates occur in the inner pores, and therefore adsorption capacity is unchanged by particle size reduction.

  15. [Preparation, characterization and adsorption performance of high surface area biomass-based activated carbons].

    PubMed

    Li, Kun-Quan; Li, Ye; Zheng, Zheng; Sang, Da-Zhi

    2013-01-01

    High surface area activated carbons were prepared with Spartina alterniflora and cotton stalk as raw materials and KOH as activating agent. Effects of materials type, impregnation ratio, activation temperature and heat preservation time on the yield, elemental composition and adsorptive capacity of activated carbon were studied. The properties and pore structure of the carbons were characterized with nitrogen adsorption, powder X-ray diffractometry (XRD), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Main pore characteristics of activated carbons were analyzed by BET equation, Horvath-Kawazoe BET method and DFT method. The considerable preparation conditions are obtained as follows: impregnation ratio of 3: 1, an activation temperature of 800 degrees C and an activation time of 1.5 h. The BET surface area of activated carbon prepared from Spartina alterniflora reached 2 825 m2 x g(-1) when its total pore volume, yield, iodine number and methylene blue adsorption were 1.374 cm3 x g(-1), 16.36%, 1797 mg x g(-1) and 495 mg x g(-1) respectively under above conditions. The activated carbon from cotton stalk was prepared with BET surface area of 2 135 m2 x g(-1), total pore volume of 1.038 cm3 x g(-1), yield of 11.22%, methylene blue adsorption of 1 251 mg x g(-1), and iodine number of 478 mg x g(-1), respectively. The methylene blue adsorption and iodine number are much higher than the national first level for activated carbon. The Langmuir maximum adsorption capacities of 2,4-dinitrophenol on the two carbons were 932 mg x g(-1) and 747 mg x g(-1), respectively, which are superior to ordinary activated carbon and activated carbon fiber.

  16. THE EFFECT OF ACTIVATED CARBON SURFACE MOISTURE ON LOW TEMPERATURE MERCURY ADSORPTION

    EPA Science Inventory

    Experiments with elemental mercury (Hg0) adsorption by activated carbons were performed using a bench-scale fixed-bed reactor at room temperature (27 degrees C) to determine the role of surface moisture in capturing Hg0. A bituminous-coal-based activated carbon (BPL) and an activ...

  17. Kinetics and equilibrium adsorption study of p-nitrophenol onto activated carbon derived from walnut peel.

    PubMed

    Liu, Xiaohong; Wang, Fang; Bai, Song

    2015-01-01

    An original activated carbon prepared from walnut peel, which was activated by zinc chloride, was modified with ammonium hydroxide or sodium hydroxide in order to contrast the adsorption property of the three different activated carbons. The experiment used a static adsorption test for p-nitrophenol. The effects of parameters such as initial concentration, contact time and pH value on amount adsorbed and removal are discussed in depth. The thermodynamic data of adsorption were analyzed by Freundlich and Langmuir models. The kinetic data of adsorption were measured by the pseudo-first-order kinetics and the pseudo-second-order kinetics models. The results indicated that the alkalized carbon samples derived from walnut peel had a better performance than the original activated carbon treated with zinc chloride. It was found that adsorption equilibrium time was 6 h. The maximum removal rate of activated carbon treated with zinc chloride for p-nitrophenol was 87.3% at pH 3,whereas the maximum removal rate of the two modified activated carbon materials was found to be 90.8% (alkalized with ammonium hydroxide) and 92.0% (alkalized with sodium hydroxide) at the same pH. The adsorption data of the zinc chloride activated carbon were fitted to the Langmuir isotherm model. The two alkalized activated carbon samples were fitted well to the Freundlich model. The pseudo-second-order dynamics equation provided better explanation of the adsorption dynamics data of the three activated carbons than the pseudo-first-order dynamics equation.

  18. Adsorption of cadmium ions on oxygen surface sites in activated carbon

    SciTech Connect

    Jia, Y.F.; Thomas, K.M.

    2000-02-08

    Various types of oxygen functional groups were introduced onto the surface of coconut shell derived activated carbon by oxidation using nitric acid. Fourier-transform infrared spectroscopy (FTIR), temperature-programmed desorption (TPD), and selective neutralization were used to characterize the surface oxygen functional groups. The oxidized carbons were also heat treated to provide a suite of carbons where the oxygen functional groups of various thermal stabilities were varied progressively. The adsorption of cadmium ions was enhanced dramatically by oxidation of the carbon. The ratio of released protons to adsorbed cadmium ions on oxidized carbon was approximately 2, indicating cation exchange was involved in the process of adsorption. Na{sup +} exchange studies with the oxidized carbon gave a similar ratio. After heat treatment of the oxidized carbons to remove oxygen functional groups, the ratio of H{sup +} released to Cd{sup 2+} adsorbed and the adsorption capacity decreased significantly. Both reversible and irreversible processes were involved in cadmium ion adsorption with reversible adsorption having higher enthalpy. The irreversible adsorption resulted from cation exchange with carboxylic acid groups, whereas the reversible adsorption probably involved physisorption of the partially hydrated cadmium ion.

  19. [Preparation, characterization and adsorption performance of mesoporous activated carbon with acidic groups].

    PubMed

    Li, Kun-Quan; Li, Ye; Zheng, Zheng; Zhang, Yu-Xuan

    2013-06-01

    Mesoporous activated carbons containing acidic groups were prepared with cotton stalk based fiber as raw materials and H3PO4 as activating agent by one step carbonization method. Effects of impregnation ratio, carbonization temperature and heat preservation time on the yield, elemental composition, oxygen-containing acid functional groups and adsorptive capacity of activated carbon were studied. The adsorption capacity of the prepared activated carbon AC-01 for p-nitroaniline and Pb(II) was studied, and the adsorption mechanism was also suggested according to the equilibrium experimental results. The maximum yield of activated carbons prepared from cotton stalk fiber reached 35.5% when the maximum mesoporous volume and BET surface area were 1.39 cm3 x g(-1) and 1 731 m2 x g(-1), respectively. The activated carbon AC-01 prepared under a H3 PO4/precursor ratio of 3:2 and activated at 900 degrees C for 90 min had a total pore volume of 1.02 cm3 x g(-1), a micoporous ratio of 31%, and a mesoporous ratio of 65%. The pore diameter of the mesoporous activated carbon was mainly distributed in the range of 2-5 nm. The Langmuir maximum adsorption capacities of Pb(II) and p-nitroaniline on cotton stalk fiber activated carbon were 123 mg x g(-1) and 427 mg x g(-1), respectively, which were both higher than those for commercial activated carbon fiber ACF-CK. The equilibrium adsorption experimental data showed that mesopore and oxygen-containing acid functional groups played an important role in the adsorption.

  20. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation.

    PubMed

    Altenor, Sandro; Carene, Betty; Emmanuel, Evens; Lambert, Jacques; Ehrhardt, Jean-Jacques; Gaspard, Sarra

    2009-06-15

    Vetiver roots have been utilized for the preparation of activated carbon (AC) by chemical activation with different impregnation ratios of phosphoric acid, X(P) (gH(3)PO(4)/g precursor): 0.5:1; 1:1 and 1.5:1. Textural characterization, determined by nitrogen adsorption at 77K shows that mixed microporous and mesoporous structures activated carbons (ACs) with high surface area (>1000 m(2)/g) and high pore volume (up to 1.19 cm(3)/g) can be obtained. The surface chemical properties of these ACs were investigated by X-ray photoelectron spectroscopy (XPS) and Boehm titration. Their textural and chemical characteristics were compared to those of an AC sample obtained by steam activation of vetiver roots. Classical molecules used for characterizing liquid phase adsorption, phenol and methylene blue (MB), were used. Adsorption kinetics of MB and phenol have been studied using commonly used kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the intraparticle diffusion model and as well the fractal, BWS (Brouers, Weron and Sotolongo) kinetic equation. The correlation coefficients (R(2)) and the normalized standard deviation Deltaq (%) were determined showing globally, that the recently derived fractal kinetic equation could best describe the adsorption kinetics for the adsorbates tested here, indicating a complex adsorption mechanism. The experimental adsorption isotherms of these molecules on the activated carbon were as well analysed using four isotherms: the classical Freundlich, Langmuir, Redlich-Peterson equations, but as well the newly published deformed Weibull Brouers-Sotolongo isotherm. The results obtained from the application of the equations show that the best fits were achieved with the Brouers-Sotolongo equation and with the Redlich-Peterson equation. Influence of surface functional groups towards MB adsorption is as well studied using various ACs prepared from vetiver roots and sugar cane bagasse. Opposite effects governing MB

  1. Branched pore kinetic model analysis of geosmin adsorption on super-powdered activated carbon.

    PubMed

    Matsui, Yoshihiko; Ando, Naoya; Sasaki, Hiroshi; Matsushita, Taku; Ohno, Koichi

    2009-07-01

    Super-powdered activated carbon (S-PAC) is activated carbon of much finer particle size than powdered activated carbon (PAC). Geosmin is a naturally occurring taste and odor compound that impairs aesthetic quality in drinking water. Experiments on geosmin adsorption on S-PAC and PAC were conducted, and the results using adsorption kinetic models were analyzed. PAC pulverization, which produced the S-PAC, did not change geosmin adsorption capacity, and geosmin adsorption capacities did not differ between S-PAC and PAC. Geosmin adsorption kinetics, however, were much higher on S-PAC than on PAC. A solution to the branched pore kinetic model (BPKM) was developed, and experimental adsorption kinetic data were analyzed by BPKM and by a homogeneous surface diffusion model (HSDM). The HSDM describing the adsorption behavior of geosmin required different surface diffusivity values for S-PAC and PAC, which indicated a decrease in surface diffusivity apparently associated with activated carbon particle size. The BPKM, consisting of macropore diffusion followed by mass transfer from macropore to micropore, successfully described the batch adsorption kinetics on S-PAC and PAC with the same set of model parameter values, including surface diffusivity. The BPKM simulation clearly showed geosmin removal was improved as activated carbon particle size decreased. The simulation also implied that the rate-determining step in overall mass transfer shifted from intraparticle radial diffusion in macropores to local mass transfer from macropore to micropore. Sensitivity analysis showed that adsorptive removal of geosmin improved with decrease in activated carbon particle size down to 1microm, but further particle size reduction produced little improvement.

  2. Effect of pore blockage on adsorption isotherms and dynamics: Anomalous adsorption of iodine on activated carbon

    SciTech Connect

    Bhatia, S.K.; Liu, F.; Arvind, G.

    2000-04-18

    Isotherm hysteresis and pore-clocking effects of trapped molecules on adsorption dynamics is studied here, using the iodine-carbon system in the 300--343 K temperature range. It is found that a portion of the iodine is strongly adsorbed, and does not desorb, even over very long time scales, while the remainder adsorbs reversibly as a homogeneous monolayer with a Langmuirian isotherm in mesopores. The strongly adsorbed iodine appears to adsorb in micropores and at the mesopore mouths, hindering uptake of the reversible iodine. The uptake data for the adsorption and desorption dynamics of the reversible part is found to be best explained by means of a pore mouth resistance control mechanism. it is concluded that the dynamics of the adsorption and desorption at the pore mouth is important at early stages of the process.

  3. Limited adsorption selectivity of active carbon toward non-saccharide compounds in lignocellulose hydrolysate.

    PubMed

    Wang, Zhaojiang; Zhuang, Jingshun; Wang, Xiaojun; Li, Zongquan; Fu, Yingjuan; Qin, Menghua

    2016-05-01

    Prehydrolysis of lignocellulose produces abundant hemicellulose-derived saccharides (HDS). To obtain pure HDS for application in food or pharmaceutical industries, the prehydrolysis liquor (PHL) must be refined to remove non-saccharide compounds (NSC) derived from lignin depolymerization and carbohydrate degradation. In this work, activated carbon (AC) adsorption was employed to purify HDS from NSC with emphasis on adsorption selectivity. The adsorption isotherms showed the priority of NSC to be absorbed over HDS at low AC level. However, increase of AC over 90% of NSC removal made adsorption non-selective due to competitive adsorption between NSC and HDS. Size exclusion chromatography showed that the adsorption of oligomeric HDS was dominant while monomeric HDS was inappreciable. The limited selectivity suggested that AC adsorption is infeasibility for HDS purification, but applicable as a pretreatment method.

  4. Roles of metal/activated carbon hybridization on elemental mercury adsorption.

    PubMed

    Bae, Kyong-Min; Kim, Byung-Joo; Rhee, Kyong Yop; Park, Soo-Jin

    2014-08-01

    In this study, the elemental mercury removal behavior of metal (copper or nickel)/activated carbon hybrid materials were investigated. The pore structures and total pore volumes of the hybrid materials were analyzed using the N2/77 K adsorption isotherms. The microstructure and surface morphologies of the hybrid materials were characterized by X-ray diffraction and scanning electron microscopy, respectively. In the experimental results, the elemental mercury adsorption capacities of all copper/activated carbon hybrid materials were higher than that of the as-received material despite the decrease in specific surface areas and total pore volumes after the metal loading. All the samples containing the metal particles showed excellent elemental mercury adsorption. The Ni/ACs exhibited superior elemental mercury adsorption to those of Cu/ACs. This suggests that Ni/ACs have better elemental mercury adsorption due to the higher activity of nickel.

  5. Adsorption-desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires.

    PubMed

    Tanthapanichakoon, W; Ariyadejwanich, P; Japthong, P; Nakagawa, K; Mukai, S R; Tamon, H

    2005-04-01

    Liquid-phase adsorption-desorption characteristics and ethanol regeneration efficiency of an activated carbon prepared from waste tires and a commercial activated carbon were investigated. Water vapor adsorption experiments reveal that both activated carbons showed hydrophobic surface characteristics. Adsorption experiments reveal that the prepared activated carbon possessed comparable phenol adsorption capacity as the commercial one but clearly larger adsorption capacity of two reactive dyes, Black 5 and Red 31. It was ascertained that the prepared activated carbon exhibited less irreversible adsorption of phenol and the two dyes than its commercial counterpart. Moreover, ethanol regeneration efficiency of the prepared AC saturated with either dye was higher than that of the commercial AC. Because of its superior liquid-phase adsorption-desorption characteristics as well as higher ethanol regeneration efficiency, the prepared activated carbon is more suitable for wastewater treatment, especially for adsorbing similarly bulky adsorbates.

  6. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon.

    PubMed

    Nam, Seung-Woo; Choi, Dae-Jin; Kim, Seung-Kyu; Her, Namguk; Zoh, Kyung-Duk

    2014-04-15

    In this study, we investigated adsorption characteristics of nine selected micropollutants (six pharmaceuticals, two pesticides, and one endocrine disruptor) in water using an activated carbon. The effects of carbon dosage, contact time, pH, DOM (dissolved organic matter), and temperature on the adsorption removal of micropollutants were examined. Increasing carbon dosage and contact time enhanced the removal of micropollutants. Sorption coefficients of hydrophilic compounds (caffeine, acetaminophen, sulfamethoxazole, and sulfamethazine) fit a linear isotherm and hydrophobic compounds (naproxen, diclofenac, 2, 4-D, triclocarban, and atrazine) fit a Freundlich isotherm. The removal of hydrophobic pollutants and caffeine were independent of pH changes, but acetaminophen, sulfamethazine, and sulfamethoxazole were adsorbed by mainly electrostatic interaction with activated carbon and so were affected by pH. The decrease in adsorption removal in surface water samples was observed and this decrease was more significant for hydrophobic than hydrophilic compounds. The decline in the adsorption capacity in surface water samples is caused by the competitive inhibition of DOM with micropollutants onto activated carbon. Low temperature (5°C) also decreased the adsorption removal of micropollutants, and affected hydrophobic compounds more than hydrophilic compounds. The results obtained in this study can be applied to optimize the adsorption capacities of micropollutants using activated carbon in water treatment process.

  7. EFFECT OF MOISTURE ON ADSORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBON

    EPA Science Inventory

    The paper discusses experiments using activated carbon to capture elemental mercury (Hgo), and a bench-scale dixed-bed reactor and a flow reactor to determine the role of surface moisture in Hgo adsorption. Three activated-carbon samples, with different pore structure and ash co...

  8. IMPORTANCE OF ACTIVATED CARBON'S OXYGEN SURFACE FUNCTIONAL GROUPS ON ELEMENTAL MERCURY ADSORPTION

    EPA Science Inventory

    The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury [Hg(0)] was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidat...

  9. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon.

    PubMed

    Deng, Shubo; Nie, Yao; Du, Ziwen; Huang, Qian; Meng, Pingping; Wang, Bin; Huang, Jun; Yu, Gang

    2015-01-23

    A bamboo-derived granular activated carbon with large pores was successfully prepared by KOH activation, and used to remove perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from aqueous solution. The granular activated carbon prepared at the KOH/C mass ratio of 4 and activation temperature of 900°C had fast and high adsorption for PFOS and PFOA. Their adsorption equilibrium was achieved within 24h, which was attributed to their fast diffusion in the micron-sized pores of activated carbon. This granular activated carbon exhibited the maximum adsorbed amount of 2.32mmol/g for PFOS and 1.15mmol/g for PFOA at pH 5.0, much higher than other granular and powdered activated carbons reported. The activated carbon prepared under the severe activation condition contained many enlarged pores, favorable for the adsorption of PFOS and PFOA. In addition, the spent activated carbon was hardly regenerated in NaOH/NaCl solution, while the regeneration efficiency was significantly enhanced in hot water and methanol/ethanol solution, indicating that hydrophobic interaction was mainly responsible for the adsorption. The regeneration percent was up to 98% using 50% ethanol solution at 45°C.

  10. Diffusion barriers in the kinetics of water vapor adsorption/desorption on activated carbons

    SciTech Connect

    Harding, A.W.; Foley, N.J.; Thomas, K.M.; Norman, P.R.; Francis, D.C.

    1998-07-07

    The adsorption of water vapor on a highly microporous coconut-shell-derived carbon and a mesoporous wood-derived carbon was studied. These carbons were chosen as they had markedly different porous structures. The adsorption and desorption characteristics of water vapor on the activated carbons were investigated over the relative pressure range p/p{degree} = 0--0.9 for temperatures in the range 285--313 K in a static water vapor system. The adsorption isotherms were analyzed using the Dubinin-Serpinski equation, and this provided an assessment of the polarity of the carbons. The kinetics of water vapor adsorption and desorption were studied with different amounts of preadsorbed water for set changes in pressure relative to the saturated vapor pressure (p/p{degree}). The adsorption kinetics for each relative pressure step were compared and used to calculate the activation energies for the vapor pressure increments. The kinetic results are discussed in relation to their relative position on the equilibrium isotherm and the adsorption mechanism of water vapor on activated carbons.

  11. Study on the preparation of straw activated carbon and its phenol adsorption properties

    NASA Astrophysics Data System (ADS)

    Chen, Liping

    2017-01-01

    Using sunflower straw as raw materials to manufacture straw activated carbon-modified by phosphoric acidand adsorption isotherm of phenol on straw activated carbon was studied in a batch reactor. The physical properties of the prepared straw activated carbons were characterized by scanning electron microscopy. The effect of various parameters, adsorbent dose, pH and temperature, were studied on optimum conditions. The results have shown that the absorbent was efficient, the removal ratio of phenol up to 99.36% with an adsorbent dosage of 16 g·L-1, a pH of 6.0-8.0, at 25 °C. The experimental adsorption data fitted reasonably well to the Langmuir isotherm, the maximum adsorption capacity was 109.89 mg/g. The process of adsorption is a exothermic process.

  12. Equilibrium and heat of adsorption for organic vapors and activated carbons

    SciTech Connect

    David Ramirez; Shaoying Qi; Mark J. Rood; K. James Hay

    2005-08-01

    Determination of the adsorption properties of novel activated carbons is important to develop new air quality control technologies that can solve air quality problems in a more environmentally sustainable manner. Equilibrium adsorption capacities and heats of adsorption are important parameters for process analysis and design. Experimental adsorption isotherms were thus obtained for relevant organic vapors with activated carbon fiber cloth (ACFC) and coal-derived activated carbon adsorbents (CDAC). The Dubinin-Astakhov (DA) equation was used to describe the adsorption isotherms. The DA parameters were analytically and experimentally shown to be temperature independent. The resulting DA equations were used with the Clausius-Clapeyron equation to analytically determine the isosteric heat of adsorption ({Delta}H{sub s}) of the adsorbate-adsorbent systems studied here. ACFC showed higher adsorption capacities for organic vapors than CDAC. {Delta}H{sub s} values for the adsorbates were independent of the temperature for the conditions evaluated. {Delta}H{sub s} values for acetone and benzene obtained in this study are comparable with values reported in the literature. This is the first time that {Delta}H{sub s} values for organic vapors and these adsorbents are evaluated with an expression based on the Polanyi adsorption potential and the Clausius-Clapeyron equation. 28 refs., 5 figs., 5 tabs., 3 appends.

  13. Adsorption of leather dye onto activated carbon prepared from bottle gourd: equilibrium, kinetic and mechanism studies.

    PubMed

    Foletto, Edson Luiz; Weber, Caroline Trevisan; Paz, Diego Silva; Mazutti, Marcio Antonio; Meili, Lucas; Bassaco, Mariana Moro; Collazzo, Gabriela Carvalho

    2013-01-01

    Activated carbon prepared from bottle gourd has been used as adsorbent for removal of leather dye (Direct Black 38) from aqueous solution. The activated carbon obtained showed a mesoporous texture, with surface area of 556.16 m(2) g(-1), and a surface free of organic functional groups. The initial dye concentration, contact time and pH significantly influenced the adsorption capacity. In the acid region (pH 2.5) the adsorption of dye was more favorable. The adsorption equilibrium was attained after 60 min. Equilibrium data were analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherm models. The equilibrium data were best described by the Langmuir isotherm, with maximum adsorption capacity of 94.9 mg g(-1). Adsorption kinetic data were fitted using the pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models. The adsorption kinetic was best described by the second-order kinetic equation. The adsorption process was controlled by both external mass transfer and intraparticle diffusion. Activated carbon prepared from bottle gourd was shown to be a promising material for adsorption of Direct Black 38 from aqueous solution.

  14. Comparative study of calcium alginate, activated carbon, and their composite beads on methylene blue adsorption.

    PubMed

    Hassan, A F; Abdel-Mohsen, A M; Fouda, Moustafa M G

    2014-02-15

    Three adsorbents, calcium alginate beads (AB), sodium hydroxide activated carbon based coconut shells (C), and calcium alginate/activated carbon composite beads (ACB) were prepared. Their textural properties were characterized by N2-adsorption at -196°C and scanning electron microscopy. The porosity, surface area and total pore volume of C>ACB>AB, but AB adsorbent was more acidic function groups more than the other adsorbents. Adsorption experiments were conducted to examine the effects of adsorbent dosage, pH, time, temperature and initial concentration of methylene blue. Methylene blue adsorption on C, AB and ACB was observed at pH>6 to avoid the competition of H(+). The amount of dye adsorbed increases as the adsorbent dosage increase. Adsorption of dye follows pseudo-second order mechanism. Thermodynamic studies show spontaneous and endothermic nature of the overall adsorption process.

  15. Adsorption of cellulase Aspergillus niger on a commercial activated carbon: kinetics and equilibrium studies.

    PubMed

    Daoud, Fatima Boukraa-Oulad; Kaddour, Samia; Sadoun, Tahar

    2010-01-01

    The adsorption kinetics of cellulase Aspergillus niger on a commercial activated carbon has been performed using a batch-adsorption technique. The effect of various experimental parameters such as initial enzyme concentration, contact time and temperature were investigated. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data which shows that the adsorption of the enzyme followed the pseudo-second-order rate expression and the rate constants were evaluated. The Langmuir and Freundlich adsorption isotherm models were applied to describe the equilibrium isotherms, and the isotherm constants were determined. It was found that Langmuir model was more suitable for our data. The activation energy of adsorption was also evaluated for the adsorption of enzyme onto activated carbon. It was found 11.37 kJ mol(-1). Thermodynamic parameters Delta G(0), Delta H(0) and DeltaS(0) were calculated, indicating that this process can be spontaneous and endothermic. The adsorption enthalpy and entropy were found 11.12 kJ mol(-1) and 0.084 kJ mol(-1)K(-1), respectively. At 30 degrees C and at pH 4.8, 1g activated carbon adsorbed about 1565 mg of cellulase, with a retention of 70% of the native enzyme activity up to five cycles of repeated batch enzyme reactions.

  16. Granular activated carbons from broiler manure: physical, chemical and adsorptive properties.

    PubMed

    Lima, Isabel M; Marshall, Wayne E

    2005-04-01

    Broiler manure produced at large concentrated facilities poses risks to the quality of water and public health. This study utilizes broiler litter and cake as source materials for granular activated carbon production and optimizes conditions for their production. Pelletized manure samples were pyrolyzed at 700 degrees C for 1 h followed by activation in an inert atmosphere under steam at different water flow rates, for a period ranging from 15 to 75 min. Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant, yields varied from 18% to 28%, surface area varied from 253 to 548 m2/g and copper ion adsorption varied from 0.13 to 1.92 mmol Cu2+/g carbon. Best overall performing carbons were steam activated for 45 min at 3 ml/min. Comparative studies with commercial carbons revealed the broiler cake-based carbon as having the highest copper ion efficiency.

  17. Adsorption of CO{sub 2} on microporous materials. 1: On activated carbon and silica gel

    SciTech Connect

    Berlier, K.; Frere, M.

    1997-05-01

    Adsorption isotherms of carbon dioxide (CO{sub 2}) at temperatures ranging from 278 K to 328 K (seven temperatures) and at pressures up to 3300 kPa on activated carbon and on silica gel are presented. These experimental results are useful as they allow one to broaden, the T, P domain of CO{sub 2} adsorption. These data, together with more classical ones (obtained at low temperature and low pressure (Berlier and Frere, 1996)), will make possible the test of theoretical developments for the prediction of adsorption isotherms in a range of temperature and pressure conditions never studied before.

  18. Adsorption of SO2 on bituminous coal char and activated carbon fiber

    USGS Publications Warehouse

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1997-01-01

    The SO2 adsorption behaviors of activated carbons produced from Illinois coal and of commercially prepared activated carbon fibers (ACFs) were compared. There was no relation between surface area of coal-based carbons and SO2 adsorption, whereas adsorption of SO2 on the series of ACFs was inversely proportional to N2 BET surface area. Higher surface area ACFs had wider pores and adsorbed less SO2; thus, pore size distribution is thought to play a significant role in SO2 adsorption for these materials. Oxidation with HNO3 and/or H2SO4, followed by heat treatment at 700−925°C to remove carbon−oxygen complexes, resulted in increased SO2 adsorption for both coal chars and ACFs. This behavior was explained by an increase in the available number of free sites, previously occupied by oxygen and now available for SO2 adsorption. The use of nitrogen-containing functional groups on ACFs of proper pore size shows promise for further increasing SO2 adsorption capacities. Knowledge of the relationship among the number of free sites, pore size, and surface chemistry on corresponding SO2 adsorption should lead to the development of more efficient adsorbents prepared from either coal or ACFs.

  19. Batch studies of adsorption of copper and lead on activated carbon from Eucalyptus camaldulensis dehn. bark.

    PubMed

    Patnukao, Phussadee; Kongsuwan, Apipreeya; Pavasant, Prasert

    2008-01-01

    Powdered activated carbon (PAC) prepared from Eucalyptus camaldulensis Dehn. bark was tested for its adsorption capacity for Cu(II) and Pb(II). The experiment was conducted to investigate the effects of pH, contact time, initial metal concentration, and temperature. The best adsorption of both Cu(II) and Pb(II) occurred at pH 5, where the adsorption reached equilibrium within 45 min for the whole range of initial heavy metal concentrations (0.1-10 mmol/L). The adsorption kinetics was found to follow the pseudo-second order model where equilibrium adsorption capacities and adsorption rate constants increased with initial heavy metal concentrations. The adsorption isotherm followed Langmuir better than Freundlich models within the temperature range (25-60 degrees C). The maximum adsorption capacities (qm) occurred at 60 degrees C, where qm for Cu(II) and Pb(II) were 0.85 and 0.89 mmol/g, respectively. The enthalpies of Cu(II) and Pb(II) adsorption were 43.26 and 58.77 kJ/mol, respectively. The positive enthalpy of adsorption indicated an endothermic nature of the adsorption.

  20. Adsorption Studies of Chromium(VI) on Activated Carbon Derived from Mangifera indica (Mango) Seed Shell

    NASA Astrophysics Data System (ADS)

    Mise, Shashikant; Patil, Trupti Nagendra

    2015-09-01

    The removal of chromium(VI) from synthetic sample by adsorption on activated carbon prepared from Mangifera indica (mango) seed shell have been carried out at room temperature 32 ± 1 °C. The removal of chromium(VI) from synthetic sample by adsorption on two types of activated carbon, physical activation and chemical activation (Calcium chloride and Sodium chloride), Impregnation Ratio's (IR) 0.25, 0.50, 0.75 for optimum time, optimum dosages and variation of pH were studied. It is observed that contact time differs for different carbons i.e. for physically and chemically activated carbons. The contact time decreases for chemically activated carbon compared to the physically activated carbon. It was observed that as dosage increases the adsorption increased along with the increase in impregnation ratio. It was also noted that as I.R. increases the surface area of Mangifera indica shell carbon increased. These dosage data were considered in the construction of isotherms and it was found that adsorption obeys Freundlich Isotherm and does not obey Langmuir Isotherm. The maximum removal of chromium (VI) was obtained in highly acidic medium at a pH of 1.50.

  1. [Active carbon from Thalia dealbata residues: its preparation and adsorption performance to crystal violet].

    PubMed

    Chu, Shu-Yi; Yang, Min; Xiao, Ji-Bo; Zhang, Jun; Zhu, Yan-Ping; Yan, Xiang-Jun; Tian, Guang-Ming

    2013-06-01

    By using phosphoric acid as activation agent, active carbon was prepared from Thalia dealbata residues. The BET specific surface area of the active carbon was 1174.13 m2 x g(-1), micropore area was 426.99 m2 x g(-1), and average pore diameter was 3.23 nm. An investigation was made on the adsorption performances of the active carbon for crystal violet from aqueous solution under various conditions of pH, initial concentration of crystal violet, contact time, and contact temperature. It was shown that the adsorbed amount of crystal violet was less affected by solution pH, and the adsorption process could be divided into two stages, i. e., fast adsorption and slow adsorption, which followed the pseudo-second-order kinetics model. At the temperature 293, 303, and 313 K, the adsorption process was more accordance with Langmuir isotherm model, and the maximum adsorption capacity was 409.83, 425.53, and 438.59 mg x g(-1), respectively. In addition, the adsorption process was spontaneous and endothermic, and the randomness of crystal violet molecules increased.

  2. Preparation of steam activated carbon from rubberwood sawdust (Hevea brasiliensis) and its adsorption kinetics.

    PubMed

    Prakash Kumar, B G; Shivakamy, K; Miranda, Lima Rose; Velan, M

    2006-08-25

    Activated carbon was produced from a biowaste product, rubberwood sawdust (RWSD) using steam in a high temperature fluidized bed reactor. Experiments were carried out to investigate the influence of various process parameters such as activation time, activation temperature, particle size and fluidising velocity on the quality of the activated carbon. The activated carbon was characterized based on its iodine number, methylene blue number, Brauner Emmet Teller (BET) surface area and surface area obtained using the ethylene glycol mono ethyl ether (EGME) retention method. The best quality activated carbon was obtained at an activation time and temperature of 1h and 750 degrees C for an average particle size of 0.46 mm. The adsorption kinetics shows that pseudo-second-order rate fitted the adsorption kinetics better than pseudo-first-order rate equation. The adsorption capacity of carbon produced from RWSD was found to be 1250 mg g(-1) for the Bismark Brown dye. The rate constant and diffusion coefficient for intraparticle transport were determined for steam activated carbon. The characteristic of the prepared activated carbon was found comparable to the commercial activated carbon.

  3. Preparation of activated carbon from corn cob and its adsorption behavior on Cr(VI) removal.

    PubMed

    Tang, Shuxiong; Chen, Yao; Xie, Ruzhen; Jiang, Wenju; Jiang, Yanxin

    2016-01-01

    Operation experiments were conducted to optimize the preparation of activated carbons from corn cob. The Cr(VI) adsorption capacity of the produced activated carbons was also evaluated. The impact of the adsorbent dosage, contact time, initial solution pH and temperature was studied. The results showed that the produced corn cob activated carbon had a good Cr(VI) adsorptive capacity; the theoretical maximum adsorption was 34.48 mg g(-1) at 298 K. The Brunauer-Emmett-Teller and iodine adsorption value of the produced activated carbon could be 924.9 m(2) g(-1) and 1,188 mg g(-1), respectively. Under the initial Cr(VI) concentration of 10 mg L(-1) and the original solution pH of 5.8, an adsorption equilibrium was reached after 4 h, and Cr(VI) removal rate was from 78.9 to 100% with an adsorbent's dosage increased from 0.5 to 0.7 g L(-1). The kinetics and equilibrium data agreed well with the pseudo-second-order kinetics model and the Langmuir isotherm model. The equilibrium adsorption capacity improved with the increment of the temperature.

  4. Carbon Nanotubes Activate Limulus Amebocyte Lysate Coagulation by Interface Adsorption.

    PubMed

    Yang, Man; Nie, Xin; Meng, Jie; Liu, Jian; Sun, Zhiwei; Xu, Haiyan

    2017-03-15

    Limulus amebocyte lysate (LAL) assay is worldwide requested in the assessment of endotoxin contamination for biomaterials. As carbon nanotubes are one major nanomaterial with multiple potentials in biomedical application, here we investigate whether oxidized multiwalled carbon nanotubes (O-MWCNT) interferes the assessment by LAL assays. We showed that the endotoxin free O-MWCNT dispersing in aqueous solutions could activate both the gel-clotting and the end-point chromogenic LAL assay by converting coagulogen into coagulin through interfacial interactions between O-MWCNT and enzymes in the assays. In conclusion, the O-MWCNT could induce false positive results by activating the enzyme cascade of LAL.

  5. Liquid phase adsorption of Crystal violet onto activated carbons derived from male flowers of coconut tree.

    PubMed

    Senthilkumaar, S; Kalaamani, P; Subburaam, C V

    2006-08-25

    Adsorption of Crystal violet, a basic dye onto phosphoric and sulphuric acid activated carbons (PAAC and SAAC), prepared from male flowers coconut tree has been investigated. Equilibrium data were successfully applied to study the kinetics and mechanism of adsorption of dye onto both the carbons. The kinetics of adsorption was found to be pseudo second order with regard to intraparticle diffusion. The pseudo second order is further supported by the Elovich model, which in turn intensifies the fact of chemisorption of dye onto both the carbons. Quantitative removal of dye at higher initial pH of dye solution reveals the basic nature of the Crystal violet and acidic nature of the activated carbons. Influence of temperature on the removal of dye from aqueous solution shows the feasibility of adsorption and its endothermic nature. Mass transfer studies were also carried out. The adsorption capacities of both the carbons were found to be 60.42 and 85.84 mg/g for PAAC and SAAC, respectively. Langmuir's isotherm data were used to design single-stage batch adsorption model.

  6. Adsorption of ethanol onto activated carbon: Modeling and consequent interpretations based on statistical physics treatment

    NASA Astrophysics Data System (ADS)

    Bouzid, Mohamed; Sellaoui, Lotfi; Khalfaoui, Mohamed; Belmabrouk, Hafedh; Lamine, Abdelmottaleb Ben

    2016-02-01

    In this work, we studied the adsorption of ethanol on three types of activated carbon, namely parent Maxsorb III and two chemically modified activated carbons (H2-Maxsorb III and KOH-H2-Maxsorb III). This investigation has been conducted on the basis of the grand canonical formalism in statistical physics and on simplified assumptions. This led to three parameter equations describing the adsorption of ethanol onto the three types of activated carbon. There was a good correlation between experimental data and results obtained by the new proposed equation. The parameters characterizing the adsorption isotherm were the number of adsorbed molecules (s) per site n, the density of the receptor sites per unit mass of the adsorbent Nm, and the energetic parameter p1/2. They were estimated for the studied systems by a non linear least square regression. The results show that the ethanol molecules were adsorbed in perpendicular (or non parallel) position to the adsorbent surface. The magnitude of the calculated adsorption energies reveals that ethanol is physisorbed onto activated carbon. Both van der Waals and hydrogen interactions were involved in the adsorption process. The calculated values of the specific surface AS, proved that the three types of activated carbon have a highly microporous surface.

  7. Activated carbon coated palygorskite as adsorbent by activation and its adsorption for methylene blue.

    PubMed

    Zhang, Xianlong; Cheng, Liping; Wu, Xueping; Tang, Yingzhao; Wu, Yucheng

    2015-07-01

    An activation process for developing the surface and porous structure of palygorskite/carbon (PG/C) nanocomposite using ZnCl2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (SEM), and Brunauer-Emmett-Teller analysis (BET) techniques. The effects of activation conditions were examined, including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of CC and C-H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold (1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay.

  8. Adsorption of indoor toxic gas by ionic liquid impregnated activated carbons

    NASA Astrophysics Data System (ADS)

    Rahman, Noraisyah Azeezah Abdul; Leveque, Jean Marc; Mutalib, Mohamed Ibrahim Abdul; Ghani, Noraini Abdul; Thangarajoo, Nanthinie; Mazlan, Faizureen Afzal; Farooq, Amjad; Irfan, Naseem; Duclaux, Laurent; Reinert, Laurence; Ondarts, Michel

    2016-11-01

    Butylpyridinium thiocyanate [BuPyr]SCN ionic liquid was synthesized by metathesis and characterized. NMR spectrum has shown the [BuPyr] cation while FTIR has shown the SCN anion peak which confirms the structure of the synthesized ionic liquid. The ionic liquid was impregnated on activated carbon in order to enhance performance of sulfur dioxide adsorption compared to the non-impregnated raw activated carbon. Two types of activated carbons were used; activated carbon cylindrical granules and cloth. Different percentages of ionic liquid loading (1%, 10% and 20%) were applied. The capacity of the adsorbent for treatment of 10 ppm and 50 ppm SO2 was determined by breakthrough curve analysis whereby optimum breakthrough time was obtained. [BuPyr]SCN impregnated on activated carbon cloth have shown higher adsorption performance.

  9. Adsorption of aqueous metal ions on oxygen and nitrogen functionalized nanoporous activated carbons.

    PubMed

    Xiao, B; Thomas, K M

    2005-04-26

    In this study, the adsorption characteristics of two series of oxygen and nitrogen functionalized activated carbons were investigated. These series were a low nitrogen content (approximately 1 wt % daf) carbon series derived from coconut shell and a high nitrogen content (approximately 8 wt % daf) carbon series derived from polyacrylonitrile. In both series, the oxygen contents were varied over the range approximately 2-22 wt % daf. The porous structures of the functionalized activated carbons were characterized using N(2) (77 K) and CO(2) (273 K) adsorption. Only minor changes in the porous structure were observed in both series. This allowed the effect of changes in functional group concentrations on metal ion adsorption to be studied without major influences due to differences in porous structure characteristics. The surface group characteristics were examined by Fourier transform infrared (FTIR) spectroscopy, acid/base titrations, and measurement of the point of zero charge (pH(PZC)). The adsorption of aqueous metal ion species, M(2+)(aq), on acidic oxygen functional group sites mainly involves an ion exchange mechanism. The ratios of protons displaced to the amount of M(2+)(aq) metal species adsorbed have a linear relationship for the carbons with pH(PZC) < or = 4.15. Hydrolysis of metal species in solution may affect the adsorption of metal ion species and displacement of protons. In the case of basic carbons, both protons and metal ions are adsorbed on the carbons. The complex nature of competitive adsorption between the proton and metal ion species and the amphoteric character of carbon surfaces are discussed in relation to the mechanism of adsorption.

  10. Adsorption of Basic Violet 14 in aqueous solutions using KMnO4-modified activated carbon.

    PubMed

    Shi, Qianqian; Zhang, Jian; Zhang, Chenglu; Nie, Wei; Zhang, Bo; Zhang, Huayong

    2010-03-01

    In this paper, an activated carbon was prepared from Typha orientalis and then treated with KMnO(4) and used for the removal of Basic Violet 14 from aqueous solutions. KMnO(4) treatment influenced the physicochemical properties of the carbon and improved its adsorption capacity. Adsorption experiments were then conducted with KMnO(4)-modified activated carbon to study the effects of carbon dosage (250-1500 mg/L), pH (2-10), ion strength (0-0.5 mol/L), temperature, and contact time on the adsorption of Basic Violet 14 from aqueous solutions. The equilibrium data were analyzed by the Langmuir and Freundlich isotherms and fitted well with the Langmuir model. The pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were used to evaluate the kinetic data and the pseudo-second-order kinetics was the best with good correlation.

  11. Adsorption characteristics of Bisphenol-A on tailored activated carbon in aqueous solutions.

    PubMed

    Yan, Liang; Lv, Di; Huang, Xinwen; Shi, Huixiang; Zhang, Geshan

    2016-10-01

    The adsorption behavior of pharmaceuticals and personal care product, Bisphenol-A (BPA), according to four coal-based and four wood-based granular activated carbons modified using outgassing treatment, acidic treatment or alkaline treatment was studied. The adsorption isotherm results indicated that carbon surface acidity played a very important role in the adsorption of BPA. It was found that increasing surface acidity would increase the hydrogen bonding effects and increase adsorption of BPA on activated carbon. The acidic modified sample (F600-A and OLC-A) represented the best adsorption capacity, and the equilibrium adsorption amounts reached 346.42 and 338.55 mg/g, respectively. Further, effects of surface charge and surface basicity were examined. It was found that the adsorbed amount of BPA decreased with the increase of surface charge. Finally, there appeared to be a significant oligomerization phenomenon with BPA molecules onto the surface of activated carbon. OLC and OLC-OG, which have higher micropore percentages, are very effective in hampering the oligomerization of BPA under oxic conditions.

  12. Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor.

    PubMed

    Skodras, G; Diamantopoulou, Ir; Pantoleontos, G; Sakellaropoulos, G P

    2008-10-01

    Activated carbons are suitable materials for Hg(0) adsorption in fixed bed operation or in injection process. The fixed bed tests provide good indication of activated carbons effectiveness and service lives, which depend on the rates of Hg(0) adsorption. In order to correlate fixed bed properties and operation conditions, with their adsorptive capacity and saturation time, Hg(0) adsorption tests were realized in a bench-scale unit, consisted of F400 activated carbon fixed bed reactor. Hg(0) adsorption tests were conducted at 50 degrees C, under 0.1 and 0.35 ng/cm(3) Hg(0) initial concentrations and with carbon particle sizes ranging between 75-106 and 150-250 microm. Based on the experimental breakthrough data, kinetic studies were performed to investigate the mechanism of adsorption and the rate controlling steps. Kinetic models evaluated include the Fick's intraparticle diffusion equation, the pseudo-first order model, the pseudo-second order model and Elovich kinetic equation. The obtained experimental results revealed that the increase in particle size resulted in significant decrease of breakthrough time and mercury adsorptive capacity, due to the enhanced internal diffusion limitations and smaller external mass transfer coefficients. Additionally, higher initial mercury concentrations resulted in increased breakthrough time and mercury uptake. From the kinetic studies results it was observed that all the examined models describes efficiently Hg(0) breakthrough curves, from breakpoint up to equilibrium time. The most accurate prediction of the experimental data was achieved by second order model, indicating that the chemisorption rate seems to be the controlling step in the procedure. However, the successful attempt to describe mercury uptake with Fick's diffusion model and the first order kinetic model, reveals that the adsorption mechanism studied was complex and followed both surface adsorption and particle diffusion.

  13. Mercury adsorption on granular activated carbon in aqueous solutions containing nitrates and chlorides.

    PubMed

    Di Natale, F; Erto, A; Lancia, A; Musmarra, D

    2011-09-15

    Adsorption is an effective process to remove mercury from polluted waters. In spite of the great number of experiments on this subject, the assessment of the optimal working conditions for industrial processes is suffering the lack of reliable models to describe the main adsorption mechanisms. This paper presents a critical analysis of mercury adsorption on an activated carbon, based on the use of chemical speciation analysis to find out correlations between mercury adsorption and concentration of dissolved species. To support this analysis, a comprehensive experimental study on mercury adsorption at different mercury concentrations, temperatures and pH was carried out in model aqueous solutions. This study pointed out that mercury capture occurs mainly through adsorption of cationic species, the adsorption of anions being significant only for basic pH. Furthermore, it was shown that HgOH(+) and Hg(2+) are captured to a higher extent than HgCl(+), but their adsorption is more sensitive to solution pH. Tests on the effect of temperature in a range from 10 to 55 °C showed a peculiar non-monotonic trend for mercury solution containing chlorides. The chemical speciation and the assumption of adsorption exothermicity allow describing this experimental finding without considering the occurrence of different adsorption mechanisms at different temperature.

  14. Adsorption properties of CFC and CFC replacements on activated carbon containing introduced ionic fluoride and chloride

    SciTech Connect

    Tanada, Seiki; Kawasaki, Naohito; Nakamura, Takeo; Abe, Ikuo

    1996-10-15

    Plasma technology has been available for the chlorofluorocarbon (CFC) decomposition or etching of silicone. The adsorption properties of CFC (CFC113) and CFC replacements (HCFC141b, HCFC225cb, and 5FP) on several kinds of plasma-treated activated carbons (P-ACs) prepared under different treatment gases were investigated using the adsorption isotherms, the limiting pore volume and the affinity coefficient and energy of adsorption calculated by the Dubinin-Radushkevich plot, and the quality and kinds of introduced fluoride and chloride. The dissolved fluoride and chloride atoms were introduced to the surface of activated carbon by CFC113, HCFC141b, and HCFC225cb, while the dissolved fluoride atoms were those from 5FP and tetrafluoromethane. The adsorbed amount of CFC and CFC replacements, except for 5FP, on P-ACs was larger than that on U-AC. The specific adsorption site on plasma-treated activated carbon of the CFC and CFC replacements was the fluoride atoms which were introduced by plasma treatment. It is concluded that the plasma-treated activated carbon was suitable for the recovery of CFC and CFC replacements, because the adsorbed amount of CFC and CFC replacements was larger than that on untreated activated carbon, and the adsorbed CFC and CFC replacements on activated carbon were decomposed by the plasma treatment.

  15. Granular bamboo-derived activated carbon for high CO(2) adsorption: the dominant role of narrow micropores.

    PubMed

    Wei, Haoran; Deng, Shubo; Hu, Bingyin; Chen, Zhenhe; Wang, Bin; Huang, Jun; Yu, Gang

    2012-12-01

    Cost-effective biomass-derived activated carbons with a high CO(2) adsorption capacity are attractive for carbon capture. Bamboo was found to be a suitable precursor for activated carbon preparation through KOH activation. The bamboo size in the range of 10-200 mesh had little effect on CO(2) adsorption, whereas the KOH/C mass ratio and activation temperature had a significant impact on CO(2) adsorption. The bamboo-derived activated carbon had a high adsorption capacity and excellent selectivity for CO(2) , and also the adsorption process was highly reversible. The adsorbed amount of CO(2) on the granular activated carbon was up to 7.0 mmol g(-1) at 273 K and 1 bar, which was higher than almost all carbon materials. The pore characteristics of activated carbons responsible for high CO(2) adsorption were fully investigated. Based on the analysis of narrow micropore size distribution of several activated carbons prepared under different conditions, a more accurate micropore range contributing to CO(2) adsorption was proposed. The volume of micropores in the range of 0.33-0.82 nm had a good linear relationship with CO(2) adsorption at 273 K and 1 bar, and the narrow micropores of about 0.55 nm produced the major contribution, which could be used to evaluate CO(2) adsorption on activated carbons.

  16. Fluorine doping into diamond-like carbon coatings inhibits protein adsorption and platelet activation.

    PubMed

    Hasebe, Terumitsu; Yohena, Satoshi; Kamijo, Aki; Okazaki, Yuko; Hotta, Atsushi; Takahashi, Koki; Suzuki, Tetsuya

    2007-12-15

    The first major event when a medical device comes in contact with blood is the adsorption of plasma proteins. Protein adsorption on the material surface leads to the activation of the blood coagulation cascade and the inflammatory process, which impair the lifetime of the material. Various efforts have been made to minimize protein adsorption and platelet adhesion. Recently, diamond-like carbon (DLC) has received much attention because of their antithrombogenicity. We recently reported that coating silicon substrates with fluorine-doped diamond-like carbon (F-DLC) drastically suppresses platelet adhesion and activation. Here, we evaluated the protein adsorption on the material surfaces and clarified the relationship between protein adsorption and platelet behaviors, using polycarbonate and DLC- or F-DLC-coated polycarbonate. The adsorption of albumin and fibrinogen were assessed using a colorimetric protein assay, and platelet adhesion and activation were examined using a differential interference contrast microscope. A higher ratio of albumin to fibrinogen adsorption was observed on F-DLC than on DLC and polycarbonate films, indicating that the F-DLC film should prevent thrombus formation. Platelet adhesion and activation on the F-DLC films were more strongly suppressed as the amount of fluorine doping was increased. These results show that the F-DLC coating may be useful for blood-contacting devices.

  17. The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes.

    PubMed

    Zhang, Shujuan; Shao, Ting; Karanfil, Tanju

    2011-01-01

    Understanding the influence of natural organic matter (NOM) on synthetic organic contaminant (SOC) adsorption by carbon nanotubes (CNTs) is important for assessing the environmental implications of accidental CNT release and spill to natural waters, and their potential use as adsorbents in engineered systems. In this study, adsorption of two SOCs by three single-walled carbon nanotubes (SWNTs), one multi-walled carbon nanotube (MWNT), a microporous activated carbon fiber (ACF) [i.e., ACF10] and a bimodal porous granular activated carbon (GAC) [i.e., HD4000] was compared in the presence and absence of NOM. The NOM effect was found to depend strongly on the pore size distribution of carbons. Minimal NOM effect occurred on the macroporous MWNT, whereas severe NOM effects were observed on the microporous HD4000 and ACF10. Although the single-solute adsorption capacities of the SWNTs were much lower than those of HD4000, in the presence of NOM the SWNTs exhibited adsorption capacities similar to those of HD4000. Therefore, if released into natural waters, SWNTs can behave like an activated carbon, and will be able to adsorb, carry, and transfer SOCs to other systems. However, from an engineering application perspective, CNTs did not exhibit a major advantage, in terms of adsorption capacities, over the GAC and ACF. The NOM effect was also found to depend on molecular properties of SOCs. NOM competition was more severe on the adsorption of 2-phenylphenol, a nonplanar and hydrophilic SOC, than phenanthrene, a planar and hydrophobic SOC, tested in this study. In terms of surface chemistry, both adsorption affinity to SOCs and NOM effect on SOC adsorption were enhanced with increasing hydrophobicity of the SWNTs.

  18. Characterizing o- and p-nitrophenols adsorption onto innovative activated carbon prepared from date pits.

    PubMed

    Altaher, Hossam; Dietrich, Andrea M

    2014-01-01

    The production and performance of activated carbon prepared from date pits was investigated. Date pits are an abundant local waste product in many countries; converting them to a commercial product would increase the sustainability of this fruit crop. The date pit activated carbon was shown to have similar characteristics of pore size and surface functional groups as other commercial carbons. Batch experiments were conducted with o- and p-nitrophenol to evaluate the performance of this carbon. Results were analyzed according to Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherms. The adsorption capacity of o-nitrophenol was 142.9 mg/g while that of p-nitrophenol was 108.7 mg/g. The adsorption process was physical in nature. The position of the -NO(2) group in the benzene ring has a considerable effect on the adsorption capacity and rate of uptake. The kinetic results showed that a pseudo second-order model appropriately describes the experimental data. The analysis of kinetic data revealed that the mechanism of adsorption is complex with both liquid film diffusion and intraparticle diffusion contributing to adsorption of both adsorbates.

  19. Mathematical evaluation of activated carbon adsorption for surfactant recovery in a soil washing process.

    PubMed

    Ahn, Chi K; Lee, Min W; Lee, Dae S; Woo, Seung H; Park, Jong M

    2008-12-15

    The performances of various soil washing processes, including surfactant recovery by selective adsorption, were evaluated using a mathematical model for partitioning a target compound and surfactant in water/sorbent system. Phenanthrene was selected as a representative hazardous organic compound and Triton X-100 as a surfactant. Two activated carbons that differed in size (Darco 20-40 mesh and >100 mesh sizes) were used in adsorption experiments. The adsorption isotherms of the chemicals were used in model simulations for various washing scenarios. The optimal process conditions were suggested to minimize the dosage of activated carbon and surfactant and the number of washings. We estimated that the requirement of surfactant could be reduced to 33% of surfactant requirements (from 265 to 86.6g) with a reuse step using 9.1g activated carbon (>100 mesh) to achieve 90% removal of phenanthrene (initially 100mg kg-soil(-1)) with a water/soil ratio of 10.

  20. Adsorbent-adsorbate interactions in the adsorption of Cd(II) and Hg(II) on ozonized activated carbons.

    PubMed

    Sánchez-Polo, M; Rivera-Utrilla, J

    2002-09-01

    The present work investigated the effect of surface oxygenated groups on the adsorption of Cd(II) and Hg(II) by activated carbon. A study was undertaken to determine the adsorption isotherms and the influence of the pH on the adsorption of each metallic ion by a series of ozonized activated carbons. In the case of Cd(II), the adsorption capacity and the affinity of the adsorbent augmented with the increase in acid-oxygenated groups on the activated carbon surface. These results imply that electrostatic-type interactions predominate in this adsorption process. The adsorption observed at solution pH values below the pH(PZC) of the carbon indicates that other forces also participate in this process. Ionic exchange between -C pi-H3O+ interaction protons and Cd(II) ions would account for these findings. In the case of Hg(II), the adsorption diminished with an increase in the degree of oxidation of the activated carbon. The presence of electron-withdrawing groups on oxidized carbons decreases the electronic density of their surface, producing a reduction in the adsorbent-adsorbate dispersion interactions and in their reductive capacity, thus decreasing the adsorption of Hg(II) on the activated carbon. At pH values above 3, the pH had no influence on the adsorption of Hg(II) by the activated carbon, confirming that electrostatic interactions do not have a determinant influence on Hg(II) adsorption.

  1. Interactions of xanthines with activated carbon. I. Kinetics of the adsorption process

    NASA Astrophysics Data System (ADS)

    Navarrete Casas, R.; García Rodriguez, A.; Rey Bueno, F.; Espínola Lara, A.; Valenzuela Calahorro, C.; Navarrete Guijosa, A.

    2006-06-01

    Because of their pharmaceutical and industrial applications, we have studied the adsorption of xanthine derivates (caffeine and theophylline) by activated carbon. To this end, we examined kinetic, equilibrium and thermodynamic aspects of the process. This paper reports the kinetics results. The experimental results indicate that the process was first order in C and the overall process was assumed to involve a single, reversible adsorption-desorption process obeying a kinetic law postulated by us.

  2. Adsorption and desorption of SO2, NO and chlorobenzene on activated carbon.

    PubMed

    Li, Yuran; Guo, Yangyang; Zhu, Tingyu; Ding, Song

    2016-05-01

    Activated carbon (AC) is very effective for multi-pollutant removal; however, the complicated components in flue gas can influence each other's adsorption. A series of adsorption experiments for multicomponents, including SO2, NO, chlorobenzene and H2O, on AC were performed in a fixed-bed reactor. For single-component adsorption, the adsorption amount for chlorobenzene was larger than for SO2 and NO on the AC. In the multi-component atmosphere, the adsorption amount decreased by 27.6% for chlorobenzene and decreased by 95.6% for NO, whereas it increased by a factor of two for SO2, demonstrating that a complex atmosphere is unfavorable for chlorobenzene adsorption and inhibits NO adsorption. In contrast, it is very beneficial for SO2 adsorption. The temperature-programmed desorption (TPD) results indicated that the binding strength between the gas adsorbates and the AC follows the order of SO2>chlorobenzene > NO. The adsorption amount is independent of the binding strength. The presence of H2O enhanced the component effects, while it weakened the binding force between the gas adsorbates and the AC. AC oxygen functional groups were analyzed using TPD and X-ray photoelectron spectroscopy (XPS) measurements. The results reveal the reason why the chlorobenzene adsorption is less affected by the presence of other components. Lactone groups partly transform into carbonyl and quinone groups after chlorobenzene desorption. The chlorobenzene adsorption increases the number of C=O groups, which explains the positive effect of chlorobenzene on SO2 adsorption and the strong NO adsorption.

  3. Adsorption of cadmium from aqueous solutions on sulfurized activated carbon prepared from nut shells.

    PubMed

    Fouladi Tajar, Amir; Kaghazchi, Tahereh; Soleimani, Mansooreh

    2009-06-15

    Low-cost activated carbon, derived from nut shells, and its modified sample have been used as replacements for the current expensive methods of removing cadmium from aqueous solutions and waste waters. Adsorption of cadmium onto four kinds of activated carbons has been studied; prepared activated carbon (PAC), commercial activated carbon (CAC), and the sulfurized ones (SPAC & SCAC). The activated carbon has been derived, characterized, treated with sulfur and then utilized for the removal of Cd(2+). Sulfurizing agent (SO(2) gas) was successfully used in adsorbents' modification process at the ambient temperature. Samples were then characterized and tested as adsorbents of cadmium. Effect of some parameters such as contact time, initial concentration and pH were examined. With increasing pH, the adsorption of cadmium ions was increased and maximum removal, 92.4% for SPAC, was observed in pH>8.0 (C(0)=100mg/L). The H-type adsorption isotherms, obtained for the adsorbents, indicated a favorable process. Adsorption data on both prepared and commercial activated carbon, before and after sulfurization, followed both the Frendlich and Langmuir models. They were better fitted by Frendlich isotherm as compared to Langmuir. The maximum adsorption capacities were 90.09, 104.17, 126.58 and 142.86 mg/g for CAC, PAC, SCAC and SPAC, respectively. Accordingly, surface modification of activated carbons using SO(2) greatly enhanced cadmium removal. The reversibility of the process has been studied in a qualitative manner and it shows that the spent SPAC can be effectively regenerated for further use easily.

  4. Co-adsorption of Trichloroethylene and Arsenate by Iron-Impregnated Granular Activated Carbon.

    PubMed

    Deng, Baolin; Kim, Eun-Sik

    2016-05-01

    Co-adsorption of trichloroethylene (TCE) and arsenate [As(V)] was investigated using modified granular activated carbons (GAC): untreated, sodium hypochlorite-treated (NaClO-GAC), and NaClO with iron-treated GAC (NaClO/Fe-GAC). Batch experiments of single- [TCE or As(V)] and binary- [TCE and As(V)] components solutions are evaluated through Langmuir and Freundlich isotherm models and adsorption kinetic tests. In the single-component system, the adsorption capacity of As(V) was increased by the NaClO-GAC and the NaClO/Fe-GAC. The untreated GAC showed a low adsorption capacity for As(V). Adsorption of TCE by the NaClO/Fe-GAC was maximized, with an increased Freundlich constant. Removal of TCE in the binary-component system was decreased 15% by the untreated GAC, and NaClO- and NaClO/Fe-GAC showed similar efficiency to the single-component system because of the different chemical status of the GAC surfaces. Results of the adsorption isotherms of As(V) in the binary-component system were similar to adsorption isotherms of the single-component system. The adsorption affinities of single- and binary-component systems corresponded with electron transfer, competitive adsorption, and physicochemical properties.

  5. Effect of effluent organic matter on the adsorption of perfluorinated compounds onto activated carbon.

    PubMed

    Yu, Jing; Lv, Lu; Lan, Pei; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming

    2012-07-30

    Effect of effluent organic matter (EfOM) on the adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) onto powdered activated carbon (PAC) was quantitatively investigated at environmentally relevant concentration levels. The adsorption of both perfluorinated compounds (PFCs) onto PAC followed pseudo-second order kinetics and fitted the Freundlich model well under the given conditions. Intraparticle diffusion was found to be the rate-controlling step in the PFC adsorption process onto PAC in the absence and presence of EfOM. The presence of EfOM, either in PFC-EfOM simultaneous adsorption onto fresh PAC or in PFC adsorption onto EfOM-preloaded PAC, significantly reduced the adsorption capacities and sorption rates of PFCs. The pH of zero point of charge was found to be 7.5 for fresh PAC and 4.2 for EfOM-preloaded PAC, suggesting that the adsorbed EfOM imparted a negative charge on PAC surface. The effect of molecular weight distribution of EfOM on the adsorption of PFCs was investigated with two EfOM fractions obtained by ultrafiltration. The low-molecular-weight compounds (<1kDa) were found to be the major contributors to the significant reduction in PFC adsorption capacity, while large-molecular-weight compounds (>30kDa) had much less effect on PFC adsorption capacity.

  6. Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers

    USGS Publications Warehouse

    Mangun, C.L.; DeBarr, J.A.; Economy, J.

    2001-01-01

    A series of activated carbon fibers (ACFs) and ammonia-treated ACFs prepared from phenolic fiber precursors have been studied to elucidate the role of pore size, pore volume, and pore surface chemistry on adsorption of sulfur dioxide and its catalytic conversion to sulfuric acid. As expected, the incorporation of basic functional groups into the ACFs was shown as an effective method for increasing adsorption of sulfur dioxide. The adsorption capacity for dry SO2 did not follow specific trends; however the adsorption energies calculated from the DR equation were found to increase linearly with nitrogen content for each series of ACFs. Much higher adsorption capacities were achieved for SO2 in the presence of oxygen and water due to its catalytic conversion to H2SO4. The dominant factor for increasing adsorption of SO2 from simulated flue gas for each series of fibers studied was the weight percent of basic nitrogen groups present. In addition, the adsorption energies calculated for dry SO2 were shown to be linearly related to the adsorption capacity of H2SO4 from this flue gas for all fibers. It was shown that optimization of this parameter along with the pore volume results in higher adsorption capacities for removal of SO2 from flue gases. ?? 2001 Elsevier Science Ltd. All rights reserved.

  7. [Toluene, Benzene and Acetone Adsorption by Activated Carbon Coated with PDMS].

    PubMed

    Liu, Han-bing; Jiang, Xin; Wang, Xin; Yang, Bing; Xue, Nan-dong; Zhang, Shi-lei

    2016-04-15

    To improve the adsorption selectivity of volatile organic compounds ( VOCs) , activated carbon ( AC) was modified by polydimethylsiloxane (PDMS) and characterized by BET analysis and Boehm titration. Dynamic adsorption column experiments were conducted and Yoon-Neslon(Y-N) model was used to identify adsorption effect for toluene, beuzene and acetone on AC when relative humidity was 0%, 50% and 90%, respectively. The results showed that the BET area, micropore volume and surface functional groups decreased with the PDMS modification, and surface hydrophobicity of the modified AC was enhanced leading to a lower water adsorption capacity. The results of dynamic adsorption showed that the adsorption kinetics and capacity of Bare-AC decreased with the increase of relative humidity, and the adsorption capacities of PDMS coated AC were 1.86 times (toluene) and 1.92 times (benzene) higher than those of Bare-AC, while a significant improvement of adsorption capacity for acetone was not observed. These findings suggest that polarity of molecule can be an important influencing factor for adsorption on hydrophobic surface developed by PDMS.

  8. Computational study of ibuprofen removal from water by adsorption in realistic activated carbons.

    PubMed

    Bahamon, Daniel; Carro, Leticia; Guri, Sonia; Vega, Lourdes F

    2017-07-15

    Molecular simulations using the Grand Canonical Monte Carlo (GCMC) method have been performed in order to obtain physical insights on how the interaction between ibuprofen (IBP) and activated carbons (ACs) in aqueous mixtures affects IBP removal from water by ACs. A nanoporous carbon model based on units of polyaromatic molecules with different number of rings, defects and polar-oxygenated sites is described. Individual effects of factors such as porous features and chemical heterogeneities in the adsorbents are investigated and quantified. Results are in good agreement with experimental adsorption data, highlightening the ability of GCMC simulation to describe the macroscopic adsorption performance in drug removal applications, while also providing additional insights into the IBP/water adsorption mechanism. The simulation results allow finding the optimal type of activated carbon material for separating this pollutant in water treatment.

  9. Adsorption of butane, 2-methylpropane, and 1-butene on activated carbon

    SciTech Connect

    Olivier, M.G.; Berlier, K.; Jadot, R. . Service de Thermodynamique)

    1994-10-01

    Four adsorption isotherms at 278, 288, 293, and 303 K of butane, 2-methylpropane, and 1-butene are obtained on activated carbon. The results at pressures up to 0.8P/P[sub s] are measured on an automated apparatus and correlated by the vacancy solution model of Cochran and Danner. This work aims at determining the influence of a double bond and a branched structure on the adsorption capacity. For their industrial separation by an adsorption process, it is important to have equilibrium data on the same adsorbent and at different temperatures.

  10. Adsorption of 2-methylpropene and 1,3-butadiene on activated carbon

    SciTech Connect

    Olivier, M.G.; Berlier, K.; Bougard, J. . Service de Thermodynamique)

    1994-10-01

    Four adsorption isotherms at 278, 288, 293, and 303 K of 2-methylpropene and 1, 3-butadiene on activated carbon are given. The results at pressures up to 0.8P/P[sub s] are measured using an automated apparatus and correlated by the vacancy solution model of Cochran and Danner. This work aims at determining the influence of a double bond and a branched structure on the adsorption capacity. For their industrial separation by an adsorption process, it is important to have equilibrium data on the same adsorbent and at different temperatures.

  11. Adsorption of basic dyes on granular activated carbon and natural zeolite.

    PubMed

    Meshko, V; Markovska, L; Mincheva, M; Rodrigues, A E

    2001-10-01

    The adsorption of basic dyes from aqueous solution onto granular activated carbon and natural zeolite has been studied using an agitated batch adsorber. The influence of agitation, initial dye concentration and adsorbent mass has been studied. The parameters of Langmuir and Freundlich adsorption isotherms have been determined using the adsorption data. Homogeneous diffusion model (solid diffusion) combined with external mass transfer resistance is proposed for the kinetic investigation. The dependence of solid diffusion coefficient on initial concentration and mass adsorbent is represented by the simple empirical equations.

  12. Removal of gadolinium-based contrast agents: adsorption on activated carbon.

    PubMed

    Elizalde-González, María P; García-Díaz, Esmeralda; González-Perea, Mario; Mattusch, Jürgen

    2017-01-31

    Three carbon samples were employed in this work, including commercial (1690 m(2) g(-1)), activated carbon prepared from guava seeds (637 m(2) g(-1)), and activated carbon prepared from avocado kernel (1068 m(2) g(-1)), to study the adsorption of the following gadolinium-based contrast agents (GBCAs): gadoterate meglumine Dotarem®, gadopentetate dimeglumine Magnevist®, and gadoxetate disodium Primovist®. The activation conditions with H3PO4 were optimized using a Taguchi methodology to obtain mesoporous materials. The best removal efficiency by square meter in a batch system in aqueous solution and model urine was achieved by avocado kernel carbon, in which mesoporosity prevails over microporosity. The kinetic adsorption curves were described by a pseudo-second-order equation, and the adsorption isotherms in the concentration range 0.5-6 mM fit the Freundlich equation. The chemical characterization of the surfaces shows that materials with a greater amount of phenolic functional groups adsorb the GBCA better. Adsorption strongly depends on the pH due to the combination of the following factors: contrast agent protonated forms and carbon surface charge. The tested carbon samples were able to adsorb 70-90% of GBCA in aqueous solution and less in model urine. This research proposes a method for the elimination of GBCA from patient urine before its discharge into wastewater.

  13. Adsorption of p-nitroaniline from aqueous solutions onto activated carbon fiber prepared from cotton stalk.

    PubMed

    Li, Kunquan; Zheng, Zheng; Feng, Jingwei; Zhang, Jibiao; Luo, Xingzhang; Zhao, Guohua; Huang, Xingfa

    2009-07-30

    Activated carbon fiber prepared from cotton stalk was used as an adsorbent for the removal of p-nitroaniline (PNA) from aqueous solutions. Liquid phase adsorption experiments were conducted and the maximum adsorptive capacity was determined. The effect of experimental parameters such as pH, salinity and temperature on the adsorption was studied. The obtained experimental data were then fitted with the Langmuir, Freundlich and Redlich-Peterson models to describe the equilibrium isotherms. The kinetics rates were modeled by using the pseudo-first-order and pseudo-second-order equations. The results indicated that cotton stalk activated carbon fiber (CS-ACF) is an effective adsorbent for the removal of PNA from aqueous solutions. The maximum adsorption capacity of 406 mg g(-1) was achieved at the initial PNA concentration of 200 mg L(-1). The optimum pH for the removal of PNA was found to be 7.6. The presence of ammonium chloride proved to be favorable for the process of adsorption. The adsorption amount decreased with increasing temperature. The Redlich-Peterson model was found to best represent the equilibrium data. The kinetic data followed closely the pseudo-second-order equation. Thermodynamic study showed the adsorption was a spontaneous exothermic physical process.

  14. Removal of molybdate from water by adsorption onto ZnCl2 activated coir pith carbon.

    PubMed

    Namasivayam, C; Sangeetha, D

    2006-07-01

    Removal and recovery of molybdate from aqueous solution was investigated using ZnCl2 activated carbon developed from coir pith. Studies were conducted to delineate the effects of contact time, adsorbent dose, molybdate concentration, pH and temperature. Two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Q0) was found to be 18.9 mg molybdate/g of the adsorbent. Adsorption followed second order kinetics. Studies were performed at different pH values to find out the pH at which maximum adsorption occurred. The pH effect and desorption studies showed that ion exchange and chemisorption mechanism were involved in the adsorption process. Thermodynamic parameters such as DeltaG0, DeltaH0 and DeltaS0 for the adsorption were evaluated. Effect of foreign ions on adsorption of molybdate has been examined. The results showed that ZnCl2 activated coir pith carbon was effective for the removal and recovery of molybdate from water.

  15. Studies on adsorption of mercury from aqueous solution on activated carbons prepared from walnut shell.

    PubMed

    Zabihi, M; Haghighi Asl, A; Ahmadpour, A

    2010-02-15

    The adsorption ability of a powdered activated carbons (PAC) derived from walnut shell was investigated in an attempt to produce more economic and effective sorbents for the control of Hg(II) ion from industrial liquid streams. Carbonaceous sorbents derived from local walnut shell, were prepared by chemical activation methods using ZnCl(2) as activating reagents. Adsorption of Hg(II) from aqueous solutions was carried out under different experimental conditions by varying treatment time, metal ion concentration, pH and solution temperature. It was shown that Hg(II) uptake decreases with increasing pH of the solution. The proper choice of preparation conditions were resulted in microporous activated carbons with different BET surface areas of 780 (Carbon A, 1:0.5 ZnCl(2)) and 803 (Carbon B, 1:1 ZnCl(2))m(2)/g BET surface area. The monolayer adsorption capacity of these particular adsorbents were obtained as 151.5 and 100.9 mg/g for carbons A and B, respectively. It was determined that Hg(II) adsorption follows both Langmuir and Freundlich isotherms as well as pseudo-second-order kinetics.

  16. 2, 4 dichlorophenol (2, 4-DCP) sorption from aqueous solution using granular activated carbon and polymeric adsorbents and studies on effect of temperature on activated carbon adsorption.

    PubMed

    Ghatbandhe, A S; Yenkie, M K N

    2008-04-01

    Adsorption equilibrium, kinetics and thermodynamics of 2,4-dichlorophenol (2,4-DCP), one of the most commonly used chlorophenol, onto bituminous coal based Filtrasorb-400 grade granular activated carbon, were studied in aqueous solution in a batch system with respect to temperature. Uptake capacity of activated carbon found to increase with temperature. Langmuir isotherm models were applied to experimental equilibrium data of 2, 4-DCP adsorption and competitive studies with respect to XAD resin were carried out. Equilibrium data fitted very well to the Langmuir equilibrium model. Adsorbent monolayer capacity 'Q0, Langmuir constant 'b' and adsorption rate constant 'k(a)' were evaluated at different temperatures for activated carbon adsorption. This data was then used to calculate the energy of activation of adsorption and also the thermodynamic parameters, namely the free energy of adsorption, deltaG0, enthalpy of adsorption, deltaH0 and the entropy of adsorption deltaS0. The obtained results showed that the monolayer capacity increases with the increase in temperatures. The obtained values of thermodynamic parameters showed that adsorption of 2,4 DCP is an endothermic process. Synthetic resin was not found efficient to adsorb 2,4 DCP compared to activated carbon. The order of adsorption efficiencies of three resins used in the study found as XAD7HP > XAD4 > XAD1180.

  17. Isotope microscopy visualization of the adsorption profile of 2-methylisoborneol and geosmin in powdered activated carbon.

    PubMed

    Matsui, Yoshihiko; Sakamoto, Asuka; Nakao, Soichi; Taniguchi, Takuma; Matsushita, Taku; Shirasaki, Nobutaka; Sakamoto, Naoya; Yurimoto, Hisayoshi

    2014-09-16

    Decreasing the particle size of powdered activated carbon may enhance its equilibrium adsorption capacity for small molecules and micropollutants, such as 2-methylisoborneol (MIB) and geosmin, as well as for macromolecules and natural organic matter. Shell adsorption, in which adsorbates do not completely penetrate the adsorbent but instead preferentially adsorb near the outer surface of the adsorbent, may explain this enhancement in equilibrium adsorption capacity. Here, we used isotope microscopy and deuterium-doped MIB and geosmin to directly visualize the solid-phase adsorbate concentration profiles of MIB and geosmin in carbon particles. The deuterium/hydrogen ratio, which we used as an index of the solid-phase concentration of MIB and geosmin, was higher in the shell region than in the inner region of carbon particles. Solid-phase concentrations of MIB and geosmin obtained from the deuterium/hydrogen ratio roughly agreed with those predicted by shell adsorption model analyses of isotherm data. The direct visualization of the localization of micropollutant adsorbates in activated carbon particles provided direct evidence of shell adsorption.

  18. Assessment of CO₂ adsorption capacity on activated carbons by a combination of batch and dynamic tests.

    PubMed

    Balsamo, Marco; Silvestre-Albero, Ana; Silvestre-Albero, Joaquín; Erto, Alessandro; Rodríguez-Reinoso, Francisco; Lancia, Amedeo

    2014-05-27

    In this work, batch and dynamic adsorption tests are coupled for an accurate evaluation of CO2 adsorption performance of three different activated carbons (AC) obtained from olive stones by chemical activation followed by physical activation with CO2 at varying times (i.e., 20, 40, and 60 h). Kinetic and thermodynamic CO2 adsorption tests from simulated flue gas at different temperatures and CO2 pressures are carried out under both batch (a manometric equipment operating with pure CO2) and dynamic (a lab-scale fixed-bed column operating with a CO2/N2 mixture) conditions. The textural characterization of the AC samples shows a direct dependence of both micropore and ultramicropore volume on the activation time; hence, AC60 has the higher contribution. The adsorption tests conducted at 273 and 293 K showed that when CO2 pressure is lower than 0.3 bar, the lower the activation time, the higher CO2 adsorption capacity; a ranking of ω(eq)(AC20) > ω(eq)(AC40) > ω(eq)(AC60) can be exactly defined when T = 293 K. This result is likely ascribed to the narrower pore size distribution of the AC20 sample, whose smaller pores are more effective for CO2 capture at higher temperature and lower CO2 pressure, the latter representing operating conditions of major interest for decarbonation of flue gas effluent. Moreover, the experimental results obtained from dynamic tests confirm the results derived from the batch tests in terms of CO2 adsorption capacity. It is important to highlight the fact that the adsorption of N2 on the synthesized AC samples can be considered to be negligible. Finally, the importance of proper analysis for data characterization and adsorption experimental results is highlighted for the correct assessment of the CO2 removal performance of activated carbons at different CO2 pressures and operating temperatures.

  19. Detection of Hydrogen Spillover in Palladium-Modified Activated Carbon Fibers During Hydrogen Adsorption

    SciTech Connect

    Contescu, Cristian I; Brown, Craig; Liu, Yun; Bhat, Vinay V; Gallego, Nidia C

    2009-01-01

    Palladium-modified activated carbon fibers (Pd-ACF) are being evaluated for adsorptive hydrogen storage at near-ambient conditions because of their enhanced hydrogen uptake in comparison to Pd-free activated carbon fibers (ACF). The net uptake enhancement (at room temperature and 20 bar) is in excess of the amount corresponding to formation of Pd hydride, and is usually attributed to hydrogen spillover. In this paper, inelastic neutron scattering was used to demonstrate the formation of new C-H bonds in Pd-containing activated carbon fibers after exposure to hydrogen at 20 oC and 1.6 MPa, at the expense of physisorbed H2. This finding is a post-factum proof of the atomic nature of H species formed in presence of a Pd catalyst, and of their subsequent spillover and binding to the carbon support. Chemisorption of hydrogen may explain the reduction in hydrogen uptake from first to second adsorption cycle.

  20. Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell.

    PubMed

    Sekar, M; Sakthi, V; Rengaraj, S

    2004-11-15

    Removal of lead from aqueous solutions by adsorption onto coconut-shell carbon was investigated. Batch adsorption experiments were performed to find out the effective lead removal at different metal ion concentrations. Adsorption of Pb2+ ion was strongly affected by pH. The coconut-shell carbon (CSC) exhibited the highest lead adsorption capacity at pH 4.5. Isotherms for the adsorption of lead on CSC were developed and the equilibrium data fitted well to the Langmuir, Freundlich, and Tempkin isotherm models. At pH 4.5, the maximum lead adsorption capacity of CSC estimated with the Langmuir model was 26.50 mg g(-1) adsorbent. Energy of activation (Ea) and thermodynamic parameters such as DeltaG, DeltaH, and DeltaS were evaluated by applying the Arrhenius and van't Hoff equations. The thermodynamics of Pb(II) on CSC indicates the spontaneous and endothermic nature of adsorption. Quantitative desorption of Pb(II) from CSC was found to be 75% which facilitates the sorption of metal by ion exchange.

  1. Effect of surface property of activated carbon on adsorption of nitrate ion.

    PubMed

    Iida, Tatsuya; Amano, Yoshimasa; Machida, Motoi; Imazeki, Fumio

    2013-01-01

    In this study, the removal of acidic functional groups and introduction of basic groups/sites on activated carbons (ACs) by outgassing and ammonia gas treatment were respectively carried out to enhance the nitrate ion adsorption in aqueous solution. Then, the relationships between nitrate ion adsorption and solution pH as well as surface charge of AC were investigated to understand the basic mechanisms of nitrate ion adsorption by AC. The result showed that the nitrate ion adsorption depended on the equilibrium solution pH (pHe) and the adsorption amount was promoted with decreasing pHe. The ACs treated by outgassing and ammonia gas treatment showed larger amount of nitrate ion adsorption than that by untreated AC. These results indicated that, since basic groups/sites could adsorb protons in the solution, the AC surface would be charged positively, and that the nitrate ion would be electrically interacted with positively charged carbon surface. Accordingly, it was concluded that basic groups/sites on the surface of AC could promote nitrate ion adsorption.

  2. Adsorption characteristics of Orange II and Chrysophenine on sludge adsorbent and activated carbon fibers.

    PubMed

    Hsiu-Mei, Chiang; Ting-Chien, Chen; San-De, Pan; Chiang, Hung-Lung

    2009-01-30

    Sludge adsorbent (SA) and commercial activated carbon fibers (ACFC and ACFT) were applied to Orange II and Chrysophenine (CH) adsorption (BET surface area: ACFC>ACFT>SA). ACFT was primarily in the micropore range, while SA was approximately 500 A (macropore) and 80 A (mesopore). The ACFC pore volume was high in both the mesopore and micropore regions. Measurement of the oxygen surface functional groups of the adsorbents using Boehm's titration method showed a similar distribution on the carbon fibers (mainly in the carbonyl group), while SA was mainly in the carboxyl, lactone and phenolic groups. The SA, ACFC and ACFT adsorption capacities of Orange II (30-80 mg/l) ranged from 83 to 270, 209-438, and 25-185 mg/g at temperatures ranging from 10 to 60 degrees C, respectively. CH concentration ranged from 30 to 80 mg/l, corresponding to SA and ACFC adsorption capacities of 39-191 and 48-374 mg/g over the defined temperature range, from 10 to 60 degrees C. CH adsorption on ACFT was low. The adsorption capacity of Orange II on ACFT was lower than on SA at 10 degrees C, but at higher temperatures the Orange II molecules were transported into the ACFT, producing an adsorption capacity similar to that of SA. Mass transfer increased with temperature, overcoming the adsorption energy barrier. Overall, SA and ACFC were more effective than ACFT.

  3. Kinetics of dodecanoic acid adsorption from caustic solution by activated carbon.

    PubMed

    Pendleton, Phillip; Wu, Sophie Hua

    2003-10-15

    This study examines the influences of adsorbent porosity and surface chemistry and of carbon dosage on dodecanoic acid adsorption kinetics from aqueous and 2 M NaOH solutions as batch adsorption processes. Both adsorbents are steam-activated carbons prepared from either coconut or coal precursors. Prior to use the adsorbents were washed in deionized water or 2 M NaOH. Mass transfer coefficients and effective overall diffusion coefficients indicate a minor contribution from adsorbent porosity. In contrast, high surface oxygen content impedes transport to and into the adsorbent structure. Carbon dosage shows a proportional increase in transport coefficients with increasing mass; these coefficients are constant when normalized per unit mass. Neither water nor NaOH treatment of the adsorbents has a significant influence on dodecanoic acid adsorption kinetics. Molecular and Knudsen diffusion coefficients are defined to demonstrate that the overall effective diffusion coefficient values and the diffusion process are controlled by surface diffusion.

  4. Activated carbons prepared from wood particleboard wastes: characterisation and phenol adsorption capacities.

    PubMed

    Girods, P; Dufour, A; Fierro, V; Rogaume, Y; Rogaume, C; Zoulalian, A; Celzard, A

    2009-07-15

    The problems of valorisation of particleboard wastes on one hand, and contamination of aqueous effluents by phenolic compounds on the other hand, are simultaneously considered in this work. Preparation of activated carbons from a two steps thermo-chemical process, formerly designed for generating combustible gases, is suggested. The resultant carbonaceous residue is activated with steam at 800 degrees C. Depending on the preparation conditions, surface areas within the range 800-1300 m(2)/g are obtained, close to that of a commercial activated carbon (CAC) specially designed for water treatment and used as a reference material. The present work shows that particleboard waste-derived activated carbons (WAC) are efficient adsorbents for the removal of phenol from aqueous solutions, with maximum measured capacities close to 500 mg/g. However, most of times, the adsorption capacities are slightly lower than that of the commercial material in the same conditions, i.e., at equilibrium phenol concentrations below 300 ppm. Given the extremely low cost of activated carbons prepared from particleboard waste, it should not be a problem to use it in somewhat higher amounts than what is required with a more expensive commercial material. Phenol adsorption isotherms at 298 K were correctly fitted by various equations modelling type I and type II isotherms for CAC and WAC, respectively. Phenol adsorption isotherms of type II were justified by a 3-stages adsorption mechanism.

  5. Liquid-phase adsorption and desorption of phenol onto activated carbons with ultrasound.

    PubMed

    Juang, Ruey-Shin; Lin, Su-Hsia; Cheng, Ching-Hsien

    2006-04-01

    The effect of 48-kHz ultrasound on the adsorption and desorption of phenol from aqueous solutions onto coconut shell-based granular activated carbons was studied at 25 degrees C. Experiments were performed at different carbon particle sizes (1.15, 2.5, 4.0 mm), initial phenol concentrations (1.06-10.6 mol/m3), and ultrasonic powers (46-133 W). Regardless of the absence and presence of ultrasound, the adsorption isotherms were well obeyed by the Langmuir equation. When ultrasound was applied in the whole adsorption process, the adsorption capacity decreased but the Langmuir constant increased with increasing ultrasonic power. According to the analysis of kinetic data by the Elovich equation, it was shown that the initial rate of adsorption was enhanced after sonication and the number of sites available for adsorption was reduced. The effect of ultrasonic intensity on the initial rate and final amount of desorption of phenol from the loaded carbons using 0.1 mol/dm3 of NaOH were also evaluated and compared.

  6. Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: in comparison with powder activated carbon.

    PubMed

    Li, Xiaona; Chen, Shuo; Fan, Xinfei; Quan, Xie; Tan, Feng; Zhang, Yaobin; Gao, Jinsuo

    2015-06-01

    Carbon nanofibers (CNFs) were prepared by electrospun polyacrylonitrile (PAN) polymer solutions followed by thermal treatment. For the first time, the influence of stabilization procedure on the structure properties of CNFs was explored to improve the adsorption capacity of CNFs towards the environmental pollutants from aqueous solution. The adsorption of three organic chemicals including ciprofloxacin (CIP), bisphenol (BPA) and 2-chlorophenol (2-CP) on electrospun CNFs with high surface area of 2326m(2)/g and micro/mesoporous structure characteristics were investigated. The adsorption affinities were compared with that of the commercial powder activated carbon (PAC). The adsorption kinetics and isotherms showed that the maximum adsorption capacities (qm) of CNFs towards the three pollutants are sequenced in the order of CIP>BPA>2-CP, which are 2.6-fold (CIP), 1.6-fold (BPA) and 1.1-fold (2-CP) increase respectively in comparison with that of PAC adsorption. It was assumed that the micro/mesoporous structure of CNFs, molecular size of the pollutants and the π electron interaction play important roles on the high adsorption capacity exhibited by CNFs. In addition, electrostatic interaction and hydrophobic interaction also contribute to the adsorption of CNFs. This study demonstrates that the electrospun CNFs are promising adsorbents for the removal of pollutants from aqueous solutions.

  7. Adsorption of Neutral Red onto Mn-impregnated activated carbons prepared from Typha orientalis.

    PubMed

    Zhang, Jian; Shi, Qianqian; Zhang, Chenglu; Xu, Jingtao; Zhai, Bing; Zhang, Bo

    2008-12-01

    Activated carbon was prepared from an inexpensive and renewable carbon source, Typha orientalis, by H(3)PO(4) activation and then impregnated with different Mn salts and tested for its Neutral Red (NR) adsorption capacities. The amount of Mn impregnated in the activated carbon was influenced by the anion species. Impregnation with Mn decreased the surface area, changed the pore size and crystal structure, and introduced more acidic functional groups such as carboxyl, lactone and phenol groups. The optimum adsorption performance for all the activated carbons was obtained at pH 3.7, Mn-Carbon dose of 0.100g/100ml solution and contact time 4.5h. The adsorption isotherms fit the Langmuir isotherm equation. The kinetic data followed the pseudo-second-order model. The thermodynamic parameters indicated that the processes were spontaneous and endothermic. According to these results, the prepared Mn modified activated carbons are promising adsorbents for the removal of Neutral Red from wastewater.

  8. Microporous activated carbons prepared from palm shell by thermal activation and their application to sulfur dioxide adsorption.

    PubMed

    Guo, Jia; Lua, Aik Chong

    2002-07-15

    Textural characterization of activated carbons prepared from palm shell by thermal activation with carbon dioxide (CO(2)) gas is reported in this paper. Palm shell (endocarp) is an abundant agricultural solid waste from palm-oil processing mills in many tropical countries such as Malaysia, Indonesia, and Thailand. The effects of activation temperature on the textural properties of the palm-shell activated carbons, namely specific surface area (BET method), porosity, and microporosity, were investigated. The activated carbons prepared from palm shell possessed well-developed porosity, predominantly microporosity, leading to potential applications in gas-phase adsorption for air pollution control. Static and dynamic adsorption tests for sulfur dioxide (SO(2)), a common gaseous pollutant, were carried out in a thermogravimetric analyzer and a packed column configuration respectively. The effects of adsorption temperature, adsorbate inlet concentration, and adsorbate superficial velocity on the adsorptive performance of the prepared activated carbons were studied. The palm-shell activated carbon was found to have substantial capability for the adsorption of SO(2), comparable to those of some commercial products and an adsorbent derived from another biomass.

  9. Removal of Pb(II) by adsorption onto Chinese walnut shell activated carbon.

    PubMed

    Yi, Zheng-ji; Yao, Jun; Kuang, Yun-fei; Chen, Hui-lun; Wang, Fei; Yuan, Zhi-min

    2015-01-01

    The excessive discharge of Pb(II) into the environment has increasingly aroused great concern. Adsorption is considered as the most effective method for heavy metal removal. Chinese walnut shell activated carbon (CWSAC) was used as an adsorbent for the removal of Pb(II) from aqueous solution. Batch experiments were conducted by varying contact time, temperature, pH, adsorbent dose and initial Pb(II) concentration. Adsorption equilibrium was established within 150 min. Although temperature effect was insignificant, the Pb(II) adsorption was strongly pH dependent and the maximum removal was observed at pH 5.5. The Pb(II) removal efficiency increased with increasing CWSAC dosage up to 2.0 g/L and reached a maximum of 94.12%. Langmuir and Freundlich adsorption isotherms were employed to fit the adsorption data. The results suggested that the equilibrium data could be well described by the Langmuir isotherm model, with a maximum adsorption capacity of 81.96 mg/g. Adsorption kinetics data were fitted by pseudo-first- and pseudo-second-order models. The result indicated that the pseudo-first-order model best describes the adsorption kinetic data. In summary, CWSAC could be a promising material for the removal of Pb(II) from wastewater.

  10. Heterogeneous adsorption of activated carbon nanofibers synthesized by electrospinning polyacrylonitrile solution.

    PubMed

    Lee, Jae-Wook; Kang, Hyun-Chul; Shim, Wang-Geun; Kim, Chan; Yang, Kap-Seung; Moon, Hee

    2006-11-01

    This study focuses on the adsorption properties of activated carbon nanofibers (CNFs) fabricated by electrospinning polyacrylonitrile solutions dissolved in dimethylformamide, followed by heat treatment at high activation temperatures (700, 750, 800 degrees C). The samples were characterized by BET, SEM, and XRD. In addition, the adsorption energy distribution functions of CNFs were analyzed by using the generalized nonlinear regularization method. Comparative analysis of energy distribution functions provided significant information on the energetic and structural heterogeneities of CNFs. Furthermore, an investigation of adsorption equilibrium and kinetics of methylene blue (MB) and congo red (CR) revealed that the adsorption capacity and kinetics of MB are much higher and faster than that of CR on a given sample. Our experimental and theoretical results suggest that the CNFs used in this work may be widely used as an adsorbent.

  11. Adsorption of Acid Red 57 from aqueous solutions onto polyacrylonitrile/activated carbon composite.

    PubMed

    El-Bindary, Ashraf A; Diab, Mostafa A; Hussien, Mostafa A; El-Sonbati, Adel Z; Eessa, Ahmed M

    2014-04-24

    The adsorption of Acid Red 57 (AR57) onto Polyacrylonitrile/activated carbon (PAN/AC) composite was investigated in aqueous solution in a batch system with respect to contact time, pH and temperature. Physical characteristics of (PAN/AC) composite such as fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were obtained. Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The activation energy of adsorption was also evaluated for the adsorption of AR57 onto (PAN/AC) composite. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data. The dynamic data fitted the pseudo-second-order kinetic model well. The activation energy, change of free energy, enthalpy and entropy of adsorption were also evaluated for the adsorption of AR57 onto (PAN/AC) composite. The thermodynamics of the adsorption indicated spontaneous and exothermic nature of the process. The results indicate that (PAN/AC) composite could be employed as low-cost material for the removal of acid dyes from textile effluents.

  12. Mechanism of adsorption and electrosorption of bentazone on activated carbon cloth in aqueous solutions.

    PubMed

    Ania, Conchi O; Béguin, François

    2007-08-01

    An electrochemical technique has been applied to enhance the removal of a common herbicide (bentazone) from aqueous solutions using an activated carbon cloth as electrode. A pH increase from acidic to basic reduces the uptake, with capacities going from 127 down to 80 mg/g at pH 2 and 7, respectively. Increasing the oxygen content of the carbon cloth causes a decrease in the bentazone loading capacity at all pH values. This indicates that adsorption is governed by both dispersive and electrostatic interactions, the extent of which is controlled by the solution pH and the nature of the adsorbent. Anodic polarization of the carbon cloth noticeably enhances the adsorption of bentazone, to an extent depending on the current applied to the carbon electrode. The electrosorption is promoted by a local pH decrease provoked by anodic decomposition of water in the pores of the carbon cloth.

  13. Adsorption of binary mixtures of ethane and acetylene on activated carbon

    SciTech Connect

    Lee, T.V.; Huang, J.C.; Rothstein, D.; Madey, R.

    1984-01-01

    Dynamic measurement of the adsorption of binary mixtures of ethane and acetylene (and also of each gas alone) in a helium carrier gas were made on an (Columbia 4LXC 12/28) activated carbon adsorber bed at 25/sup 0/C. The adsorption capacities of the activated carbon for the pure gases and for each component in the mixtures are extracted from the transmission curves by the use of a mass balance equation. Transmission is the ratio of the concentration at the outlet of the adsorber bed to that at the inlet. The adsorption isotherms for pure ethane and acetylene can be presented by a modified Langmuir isotherm known as the Chakravarti-Dhar isotherm at gas concentrations up to at least 4.2 X 19/sup -7/ mol/cm/sup 3/ (viz., 7.8 mmHg). The gas-adsorbate equilibrium composition and the adsorption capacity of each component in the binary mixture of ethane and acetylene are estimated from the corresponding single-component isotherms by applying ideal adsorbed solution theory (IAST). The fact that the estimated values of the adsorption capacities and the gas-adsorbate equilibrium compositions are in good agreement with those extracted from the measurements for the binary mixtures of ethane and acetylene confirms that the ethane-acetylene system forms an ideal adsorbed phase on activated carbon at a pressure of about 7.3 mmHg and a temperature of 25/sup 0/C. 20 references, 4 figures, 4 tables.

  14. TRICHLOROETHYLENE ADSORPTION BY ACTIVATED CARBON PRELOADED WITH HUMIC SUBSTANCES: EFFECTS OF SOLUTION CHEMISTRY. (R828157)

    EPA Science Inventory

    Abstract

    Trichloroethylene (TCE) adsorption by activated carbon previously loaded ("preloaded") with humic substances was found to decrease with increasing concentrations of monovalent ions (NaCl), calcium (until solubility was exceeded), or dissolved oxygen in...

  15. PREDICTING THE ADSORPTION CAPACITY OF ACTIVATED CARBON FOR ORGANIC CONTAMINANTS FROM ADSORBENT AND ADSORBATE PROPERTIES

    EPA Science Inventory

    A quantitative structure-property relationship (QSPR) was developed and combined with the Polanyi-Dubinin-Manes model to predict adsorption isotherms of emerging contaminants on activated carbons with a wide range of physico-chemical properties. Affinity coefficients (βl

  16. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents.

    PubMed

    Ji, Liangliang; Chen, Wei; Duan, Lin; Zhu, Dongqiang

    2009-04-01

    Significant concerns have been raised over the presence of antibiotics including tetracyclines in aquatic environments. We herein studied single-walled carbon nanotubes (SWNT) and multi-walled carbon nanotubes (MWNT) as potential effective adsorbents for removal of tetracycline from aqueous solution. In comparison, a nonpolar adsorbate, naphthalene, and two other carbonaceous adsorbents, pulverized activated carbon (AC) and nonporous graphite, were used. The observed adsorbent-to-solution distribution coefficient (Kd, L/kg) of tetracycline was in the order of 10(4)-10(6) L/kg for SWNT, 10(3)-10(4) L/kg for MWNT, 10(3)-10(4) L/kg for AC, and 10(3)-10(5) L/kg for graphite. Upon normalization for adsorbent surface area, the adsorption affinity of tetracycline decreased in the order of graphite/ SWNT > MWNT > AC. The weaker adsorption of tetracycline to AC indicates that for bulky adsorbates adsorption affinity is greatly affected by the accessibility of available adsorption sites. The remarkably strong adsorption of tetracycline to the carbon nanotubes and to graphite can be attributed to the strong adsorptive interactions (van der Waals forces, pi-pi electron-donor-acceptor interactions, cation-pi bonding) with the graphene surface. Complexation between tetracycline and model graphene compounds (naphthalene, phenanthrene, pyrene) in solution phase was verified by ring current-induced 1H NMR upfield chemical shifts of tetracycline moieties.

  17. Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon.

    PubMed

    Santhy, K; Selvapathy, P

    2006-07-01

    The removal efficiency of activated carbon prepared from coir pith towards three highly used reactive dyes in textile industry was investigated. Batch experiments showed that the adsorption of dyes increased with an increase in contact time and carbon dose. Maximum de-colorisation of all the dyes was observed at acidic pH. Adsorption of dyes was found to follow the Freundlich model. Kinetic studies indicated that the adsorption followed first order and the values of the Lagergren rate constants of the dyes were in the range of 1.77 x 10(-2)-2.69 x 10(-2)min(-1). The column experiments using granular form of the carbon (obtained by agglomeration with polyvinyl acetate) showed that adsorption efficiency increased with an increase in bed depth and decrease of flow rate. The bed depth service time (BDST) analysis carried out for the dyes indicated a linear relationship between bed depth and service time. The exhausted carbon could be completely regenerated and put to repeated use by elution with 1.0M NaOH. The coir pith activated carbon was not only effective in removal of colour but also significantly reduced COD levels of the textile wastewater.

  18. Reduction of COD in refinery wastewater through adsorption on date-pit activated carbon.

    PubMed

    El-Naas, Muftah H; Al-Zuhair, Sulaiman; Abu Alhaija, Manal

    2010-01-15

    Experiments were carried out to evaluate the batch adsorption of COD from petroleum refinery wastewater on a locally prepared date-pit activated carbon (DP-AC), and its adsorption effectiveness was compared to that of commercially available BDH activated carbon (BDH-AC). Adsorption equilibrium and kinetic data were determined for both adsorbents and fitted to several adsorption isotherm and kinetics models, respectively. The Langmuir monolayer isotherm fitted well the equilibrium data of COD on both adsorbents; whereas, the kinetics data were best fitted by the pseudo-second order model. Modeling of the controlling mechanisms indicated that both intrinsic kinetics and mass transfer contributed to controlling the adsorption process. Mass transfer seemed to be the dominant mechanism at low COD content, while intrinsic kinetics dominates at high concentrations. In general, the adsorption effectiveness of locally prepared DP-AC was proven to be comparable to that of BDH-AC. Therefore, DP-AC can be utilized as an effective and less expensive adsorbent for the reduction of COD in refinery wastewater.

  19. An experimental design approach for modeling As(V) adsorption from aqueous solution by activated carbon.

    PubMed

    Bakkal Gula, C; Bilgin Simsek, E; Duranoglu, D; Beker, U

    2015-01-01

    The present paper discusses response surface methodology as an efficient approach for predictive model building and optimization of As(V) adsorption on activated carbon derived from a food industry waste: peach stones. The objectives of the study are application of a three-factor 2³ full factorial and central composite design technique for maximizing As(V) removal by produced activated carbon, and examination of the interactive effects of three independent variables (i.e., solution pH, temperature, and initial concentration) on As(V) adsorption capacity. Adsorption equilibrium was investigated by using Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. First-order and second-order kinetic equations were used for modeling of adsorption kinetics. Thermodynamic parameters (ΔG °, ΔH °, and ΔS °) were calculated and used to explain the As(V) adsorption mechanism. The negative value of ΔH (-7.778 kJ mol⁻¹) supported the exothermic nature of the sorption process and the Gibbs free energy values (ΔG°) were found to be negative, which indicates that the As(V) adsorption is feasible and spontaneous.

  20. Effect of surface acidic oxides of activated carbon on adsorption of ammonia.

    PubMed

    Huang, Chen-Chia; Li, Hong-Song; Chen, Chien-Hung

    2008-11-30

    The influence of surface acidity of activated carbon (AC) was experimentally studied on adsorption of ammonia (NH(3)). Coconut shell-based AC was modified by various acids at different concentrations. There were five different acids employed to modified AC, which included nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, and acetic acid. Acidic functional groups on the surface of ACs were determined by a Fourier transform infrared spectrograph (FTIR) and by the Boehm titration method. Specific surface area and pore volume of the ACs were measured by a nitrogen adsorption apparatus. Adsorption amounts of NH(3) onto the ACs were measured by a dynamic adsorption system at room temperature according to the principle of the ASTM standard test method. The concentration of NH(3) in the effluent stream was monitored by a gas-detecting tube technique. Experimental results showed that adsorption amounts of NH(3) on the modified ACs were all enhanced. The ammonia adsorption amounts on various activated carbons modified by different acids are in the following order: nitric acid>sulfuric acid>acetic acid approximately phosphoric acid>hydrochloric acid. It is worth to note that the breakthrough capacity of NH(3) is linearly proportional to the amount of acidic functional groups of the ACs.

  1. Dynamic adsorption of organic solvent vapors onto a packed bed of activated carbon cloth

    SciTech Connect

    Huang, C.C.; Lin, Y.C.; Lu, F.C.

    1999-02-01

    The adsorption behavior of organic compound vapors onto a packed bed of activated carbon cloth (ACC) has been investigated. Three types of ACCs have been employed: KF1500, FT200-20, and E-ACC. The volatile organic compounds (VOCs) used in this study are acetone, dichloromethane, acrylonitrile, and n-hexane. The operating parameters studied are temperature of adsorber, weight of ACC, relative humidity of fluid, inlet concentration of VOCs, and total volumetric flow rate of gas stream. A simple theoretical model, originally introduced by Yoon and Nelson, has been utilized to simulate the breakthrough curve of VOC vapor on an adsorption column packed with activated carbon cloth. A modified model is proposed to predict the adsorption behavior of an adsorber at different temperatures.

  2. Study of adsorption process of iron colloid substances on activated carbon by ultrasound

    NASA Astrophysics Data System (ADS)

    Machekhina, K. I.; Shiyan, L. N.; Yurmazova, T. A.; Voyno, D. A.

    2015-04-01

    The paper reports on the adsorption of iron colloid substances on activated carbon (PAC) Norit SA UF with using ultrasound. It is found that time of adsorption is equal to three hours. High-frequency electrical oscillation is 35 kHz. The adsorption capacity of activated carbon was determined and it is equal to about 0.25 mg iron colloid substances /mg PAC. The iron colloid substances size ranging from 30 to 360 nm was determined. The zeta potential of iron colloid substances which consists of iron (III) hydroxide, silicon compounds and natural organic substances is about (-38mV). The process of destruction iron colloid substances occurs with subsequent formation of a precipitate in the form of Fe(OH)3 as a result of the removal of organic substances from the model solution.

  3. Binary and ternary adsorption of n-alkane mixtures on activated carbon

    SciTech Connect

    Kalies, G.; Braeuer, P.; Messow, U.

    1999-06-15

    The adsorption isotherms of the binary n-alkane mixtures n-hexane/n-octane, n-octane/n-tetradecane, and n-hexane/n-tetradecane on the activated carbon TA 95 are measured at 298 K and described with mathematical functions. About 40 experimental values of the adsorption excess of the ternary mixture n-hexane/n-octane/n-tetradecane on activated carbon TA 95 at 298 K are gas chromatographically measured inside the ternary triangle. The ternary data are represented in the three-dimensional space with the help of transformation of coordinates and by utilization of the conception of the quasi-two-component representation of the mole fractions. A consistency test for the specific wetting Gibbs energies calculated from the binary data is carried out. The possibilities for a mathematical prediction of ternary data from adsorption data for the constituent binary mixtures are proved.

  4. A comparative study of the adsorption equilibrium of progesterone by a carbon black and a commercial activated carbon

    NASA Astrophysics Data System (ADS)

    Valenzuela-Calahorro, Cristóbal; Navarrete-Guijosa, Antonio; Stitou, Mostafa; Cuerda-Correa, Eduardo M.

    2007-04-01

    In this paper the adsorption process of a natural steroid hormone (progesterone) by a carbon black and a commercial activated carbon has been studied. The corresponding equilibrium isotherms have been analyzed according to a previously proposed model which establishes a kinetic law satisfactorily fitting the C versus t isotherms. The analysis of the experimental data points out the existence of two well-defined sections in the equilibrium isotherms. A general equation including these two processes has been proposed, the global adsorption process being fitted to such equation. From the values of the kinetic equilibrium constant so obtained, values of standard average adsorption enthalpy ( ΔH°) and entropy ( ΔS°) have been calculated. Finally, information related to variations of differential adsorption enthalpy ( ΔH) and entropy ( ΔS) with the surface coverage fraction ( θ) was obtained by using the corresponding Clausius-Clapeyron equations.

  5. Adsorption of Paraquat dichloride from aqueous solution by activated carbon derived from used tires.

    PubMed

    Hamadi, Nadhem K; Sri Swaminathan; Chen, Xiao Dong

    2004-08-09

    The removal of pesticide from wastewater under different batch experimental conditions, using a car tire derived activated carbon was investigated. The pesticide utilized in the study was Paraquat dichloride (1,1-dimethyl-4,4-bipyridyl dichloride), which is a well known herbicide. The adsorbent was produced from the pyrolysis and activation of used tires (TAC). The performances of this adsorbent and a commercial activated carbon F300 (CAC) have been compared. It was determined that the adsorption of Paraquat was weakly pH dependent. The effects of particle size, carbon dosage, temperature and the initial concentration of the Paraquat were studied. Further experiments investigating the regeneration capabilities of the tire-supplied carbon were performed. The regenerated carbons that were washed with basic pH solution were found to have the best sorption capacity recovery. It was found that the rate of sorption of Paraquat onto the carbon is very fast with almost 90% of the maximum possible adsorption taking place in the first 5 min. Nevertheless, the batch sorption kinetics was fitted for a first-order reversible reaction, a pseudo-first-order reaction and a pseudo-second-order reaction. The pseudo-second-order chemical reaction model appears to provide the best correlation. The applicability of the Langmuir isotherm for the present system has been evaluated at different temperatures. The isotherms show that the sorption capacity of CAC decreases with temperature and the dominant mechanism of CAC adsorption is physical sorption.

  6. Optimization of Orange G dye adsorption by activated carbon of Thespesia populnea pods using response surface methodology.

    PubMed

    Arulkumar, M; Sathishkumar, P; Palvannan, T

    2011-02-15

    Thespesia populnea is a large tree found in the tropical regions and coastal forests of India. Its pods were used as a raw material for the preparation of activated carbon. The prepared activated carbon was used for the adsorptive removal of Orange G dye from aqueous system. The effects of various parameters such as agitation time, initial dye concentration and adsorbent dosage were studied using response surface methodology (RSM). RSM results show that 0.54 g of activated carbon was required for the maximum adsorption of Orange G dye (17.6 mg L(-1)) within a time period of 4.03 h. Adsorption data were modeled using Freundlich and Langmuir adsorption isotherms. The adsorption of Orange G dye by activated carbon obeyed both Fruendlich and Langmuir isotherm. Adsorption kinetic data were tested using pseudo-zero, first, second-order and intraparticle diffusion models. Kinetic studies revealed that the adsorption followed pseudo-second-order reaction with regard to the intraparticle diffusion. FTIR spectral result indicated all the functional group except primary amines (3417 cm(-1)) and CN (1618 cm(-1)) were involved in the adsorption process. XRD data showed that Orange G dye adsorbed activated carbon might not induce the bulk phase changes. SEM results showed that the surface of the activated carbon was turned from dark to light color after dye adsorption.

  7. Adsorption properties and photocatalytic activity of TiO2/activated carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Yao, Shuhua; Song, Shuangping; Shi, Zhongliang

    2014-06-01

    Photocatalysts of titanium dioxide (TiO2) and TiO2/activated carbon fiber (TiO2/ACF) composite were prepared by sol-gel method, followed by calcining the pure TiO2 sols and the TiO2/ACF sols at 500°C for 2 h in a N2 atmosphere, respectively. These photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption isotherms measurement. Batch experiments were conducted to study the adsorption property of TiO2/ACF composite using methylene blue as adsorbate. The adsorption data obtained from different batch experiments were analyzed using pseudo-second-order kinetic model, the experimental data can be adequately described by the pseudo-second-order equation. The photodecomposition behavior of TiO2/ACF was investigated in aqueous solution using methylene blue as target pollutant. It was found that methylene blue could be removed rapidly from water by TiO2/ACF, the photocatalytic decomposition was obviously improved when the photocatalyst was used. Kinetics analysis revealed that the photocatalytic decomposition reaction can be described well by a first-order rate equation.

  8. Kinetics and thermodynamics studies of silver ions adsorption onto coconut shell activated carbon.

    PubMed

    Silva-Medeiros, Flávia V; Consolin-Filho, Nelson; Xavier de Lima, Mateus; Bazzo, Fernando Previato; Barros, Maria Angélica S D; Bergamasco, Rosângela; Tavares, Célia R G

    2016-12-01

    The presence of silver in the natural water environment has been of great concern because of its toxicity, especially when it is in the free ion form (Ag(+)). This paper aims to study the adsorption kinetics of silver ions from an aqueous solution onto coconut shell activated carbon using batch methods. Batch kinetic data were fitted to the first-order model and the pseudo-second-order model, and this last equation fits correctly the experimental data. Equilibrium experiments were carried out at 30°C, 40°C, and 50°C. The adsorption isotherms were reasonably fit using Langmuir model, and the adsorption process was slightly influenced by changes in temperature. Thermodynamic parameters (ΔH°, ΔG°, and ΔS°) were determined. The adsorption process seems to be non-favorable, exothermic, and have an increase in the orderness.

  9. Thermodynamic and kinetic behaviors of trinitrotoluene adsorption on powdered activated carbons

    SciTech Connect

    Lee, J.W.; Hwang, K.J.; Shim, W.G.; Moon, I.S.

    2006-07-01

    Regulations on the removal of trinitrotoluene (TNT) from wastewater have become increasingly more stringent, demanding faster, less expensive, and more efficient treatment. This study focuses on the adsorption equilibrium and kinetics of TNT on powered activated carbons (PAC). Three types of PACs (i.e., wood based, coal based, and coconut-shell based) were studied as functions of temperature and pH. Thermodynamic properties including Gibbs free energy, enthalpy, and entropy, were evaluated by applying the Van't Hoff equation. In addition, the adsorption energy distribution functions which describe heterogeneous characteristics of porous solid sorbents were calculated by using the generalized nonlinear regularization method. Adsorption kinetic studies were carried out in batch adsorber under important conditions such as PAC types, temperature, pH, and concentration. We found that fast and efficient removal of TNT dissolved in water can be successfully achieved by PAC adsorption.

  10. Adsorption of Crystal Violet on Activated Carbon Prepared from Coal Flotation Concentrate

    NASA Astrophysics Data System (ADS)

    Aydogmus, Ramazan; Depci, Tolga; Sarikaya, Musa; Riza Kul, Ali; Onal, Yunus

    2016-10-01

    The objective of this study is firstly to investigate the floatability properties of Zilan- Van coal after microwave irradiation and secondly to produce activated carbon from flotation concentrate in order to remove Crystal Violet (CV) from waste water. The flotation experiments showed that microwave heating at 0.9 kW power level for 60 sec exposure time enhanced the hydrophobicity and increased the flotation yield. The activated carbon with remarkable surface area (696 m2/g) was produced from the flotation concentrate and used to adsorb CV from aqueous solution in a batch reactor at different temperature. The adsorption properties of CV onto the activated carbon are discussed in terms of the adsorption isotherms (Langmuir and Freundlich) and found that the experimental results best fitted by the Langmuir model.

  11. Intraparticle mass transport mechanism in activated carbon adsorption of phenols

    SciTech Connect

    Furuya, E.G.; Miura, Y.; Yokomura, H.; Tajima, S.; Yamashita, S.; Chang, H.T.; Noll, K.E.

    1996-10-01

    Two parallel diffusion mechanisms, pore and surface, can control the rate of contaminant adsorption. The two mechanisms are different functions of temperature and adsorbate concentration. To develop a mechanistic design model for adsorption processes, the two mechanisms must be evaluated separately. In this paper, the authors show that the mechanisms can be separated accurately using a stepwise linearization technique. The technique can easily be incorporated in adsorption diffusion modeling. Two phenolic compounds were used in this study: p-chlorophenol (PCP) and p-nitrophenol (PNP). The application of the linearization technique is illustrated using two types of reactors: a completely mixed batch reactor and a differential reactor. The study results show that pore and surface diffusivity can be determined accurately using the linearization technique. Furthermore, the tortuosity for the absorbent can be estimated from the pore diffusivity. For PCP that is strongly adsorbed by the adsorbent, surface diffusion is the dominant mechanism controlling the intraparticle transport. For weakly adsorbed PNP, neither surface nor pore diffusion is dominant.

  12. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation.

    PubMed

    Tseng, Ru-Ling

    2007-08-25

    Activated carbon was prepared from plum kernels by NaOH activation at six different NaOH/char ratios. The physical properties including the BET surface area, the total pore volume, the micropore ratio, the pore diameter, the burn-off, and the scanning electron microscope (SEM) observation as well as the chemical properties, namely elemental analysis and temperature programmed desorption (TPD), were measured. The results revealed a two-stage activation process: stage 1 activated carbons were obtained at NaOH/char ratios of 0-1, surface pyrolysis being the main reaction; stage 2 activated carbons were obtained at NaOH/char ratios of 2-4, etching and swelling being the main reactions. The physical properties of stage 2 activated carbons were similar, and specific area was from 1478 to 1887m(2)g(-1). The results of reaction mechanism of NaOH activation revealed that it was apparently because of the loss ratio of elements C, H, and O in the activated carbon, and the variations in the surface functional groups and the physical properties. The adsorption of the above activated carbons on phenol and three kinds of dyes (MB, BB1, and AB74) were used for an isotherm equilibrium adsorption study. The data fitted the Langmuir isotherm equation. Various kinds of adsorbents showed different adsorption types; separation factor (R(L)) was used to determine the level of favorability of the adsorption type. In this work, activated carbons prepared by NaOH activation were evaluated in terms of their physical properties, chemical properties, and adsorption type; and activated carbon PKN2 was found to have most application potential.

  13. Adsorption studies on wastewaters from cypermethrin manufacturing process using activated coconut shell carbon.

    PubMed

    Bhuvaneswari, K; Ravi Prasad, P; Sarma, P N

    2007-10-01

    Cypermethrin is a pyrethroid pesticide and is used in the control of a wide range of insects on crops like vegetables, cereals, maize etc. In the present study, the adsorption efficiency of coconut shell based activated carbon for the removal of color and organic matter from cypermethrin pesticide manufacturing industrial wastewater was investigated. Effect of carbon dosage, pH and contact time on the removal of COD was also studied. Equilibrium and kinetic studies were carried out and the data was fitted in Freundlich and Langmuir models. The study proved that activated coconut shell carbon (acc) is an efficient adsorbent for treatment of cypermethrin industrial wastewaters under study.

  14. The effects of aging on the dynamic adsorption of hazardous organic vapors on impregnated activated carbon.

    PubMed

    Amitay-Rosen, Tal; Leibman, Amir; Nir, Ido; Zaltsman, Amalia; Kaplan, Doron

    2015-01-01

    The effects of an eight-year natural aging of ASC impregnated activated carbon on the adsorption capacity and breakthrough times of model organic vapors and of the nerve agent sarin were investigated. Aging delayed methanol breakthrough from dry air on pre-dried carbon, but shortened the breakthrough time of both methanol and hexane under relative humidity (RH) of 30-85% on pre-humidified carbon. Aging also shortened the breakthrough time of the less volatile model compound 2-methoxyethanol, especially under RH of 60-85%. Aging significantly reduced the protection capacity against sarin at RH of 85%. The effects of aging on physisorption are attributed to enhanced hydrogen-bonding capability and strength of the interaction between water and adsorption sites on the carbon surface.

  15. Characterization of the micropore structure of activated carbons by adsorptions of nitrogen and some hydrocarbons

    SciTech Connect

    Guezel, F.

    1999-02-01

    In the present study the effects of the duration of carbonization and physical activation properties of activated carbon from vegetable materials were investigated. Peanut shells were used to obtain active carbon. These shells were activated chemically with ZnCl{sub 2} and/or CO{sub 2} for different times, and the micropore structures of these active carbons were studied by measuring the adsorption isotherms for nitrogen and some hydrocarbons such as benzene, n-butane, isobutane, 2,2-dimethylbutane, and isooctane. As the physical activation time was increased, the primary micropores, which were measured at 0.01 relative pressure, were reduced, and they were replaced by larger secondary and tertiary micropores which were measured at 0.15--0.01 and 0.30--0.15 relative pressures. The ratios of the mesopore volume to the micropore volume also increased as the duration of physical activation increased.

  16. Comparing graphene, carbon nanotubes, and superfine powdered activated carbon as adsorptive coating materials for microfiltration membranes.

    PubMed

    Ellerie, Jaclyn R; Apul, Onur G; Karanfil, Tanju; Ladner, David A

    2013-10-15

    Multi-walled carbon nanotubes (MWCNTs), nano-graphene platelets (NGPs), and superfine powdered activated carbon (S-PAC) were comparatively evaluated for their applicability as adsorptive coatings on microfiltration membranes. The objective was to determine which materials were capable of contaminant removal while causing minimal flux reduction. Methylene blue and atrazine were the model contaminants. When applied as membrane coatings, MWCNTs had minimal retention capabilities for the model contaminants, and S-PAC had the fastest removal. The membrane coating approach was also compared with a stirred vessel configuration, in which the adsorbent was added to a stirred flask preceding the membrane cell. Direct application of the adsorbent to the membrane constituted a greater initial reduction in permeate concentrations of the model contaminants than with the stirred flask setup. All adsorbents except S-PAC showed flux reductions less than 5% after application as thin-layer membrane coatings, and flux recovery after membrane backwashing was greater than 90% for all materials and masses tested.

  17. Adsorption dynamics and rate assessment of volatile organic compounds in active carbon.

    PubMed

    Zhu, J; Zhan, H L; Miao, X Y; Song, Y; Zhao, K

    2016-10-05

    In this paper, an investigation was presented about terahertz time-domain spectroscopy (THz-TDS) as a novel tool for the characterization of the dynamic adsorption rate of volatile organic compounds, including isooctane, ethanol, and butyl acetate, in the pores of active carbon. The THz-TDS peak intensity (EP) was extracted and corresponded to the measurement time frames. By analyzing EP with time, the entire process could be divided into three physical parts including volatilization, adsorption and stabilization so that the adsorption dynamics could be clearly identified. In addition, based on the pseudo-second-order kinetic model and the relationship between EP and time in the adsorption process, a mathematical model was built in terms of the adsorbed rate parameter and the THz parameter. Consequently, the adsorption rate of isooctane, ethanol, and butyl acetate could be assessed by the THz measurement, indicating that THz spectroscopy could be used as a promising selection tool to monitor the adsorption dynamics and evaluate adsorption efficiency in the recovery of pollutants.

  18. Perchlorate adsorption and desorption on activated carbon and anion exchange resin.

    PubMed

    Yoon, In-Ho; Meng, Xiaoguang; Wang, Chao; Kim, Kyoung-Woong; Bang, Sunbaek; Choe, Eunyoung; Lippincott, Lee

    2009-05-15

    The mechanisms of perchlorate adsorption on activated carbon (AC) and anion exchange resin (SR-7 resin) were investigated using Raman, FTIR, and zeta potential analyses. Batch adsorption and desorption results demonstrated that the adsorption of perchlorate by AC and SR-7 resin was reversible. The reversibility of perchlorate adsorption by the resin was also proved by column regeneration test. Solution pH significantly affected perchlorate adsorption and the zeta potential of AC, while it did not influence perchlorate adsorption and the zeta potential of resin. Zeta potential measurements showed that perchlorate was adsorbed on the negatively charged AC surface. Raman spectra indicated the adsorption resulted in an obvious position shift of the perchlorate peak, suggesting that perchlorate was associated with functional groups on AC at neutral pH through interactions stronger than electrostatic interaction. The adsorbed perchlorate on the resin exhibited a Raman peak at similar position as the aqueous perchlorate, indicating that perchlorate was adsorbed on the resin through electrostatic attraction between the anion and positively charged surface sites.

  19. Adsorption and desorption of mixtures of organic vapors on beaded activated carbon.

    PubMed

    Wang, Haiyan; Jahandar Lashaki, Masoud; Fayaz, Mohammadreza; Hashisho, Zaher; Philips, John H; Anderson, James E; Nichols, Mark

    2012-08-07

    In this study, adsorption and desorption of mixtures of organic compounds commonly emitted from automotive painting operations were experimentally studied. A mixture of two alkanes and a mixture of eight organic compounds were adsorbed onto beaded activated carbon (BAC) and then thermally desorbed under nitrogen. Following both adsorption and regeneration, samples of the BAC were chemically extracted. Gas chromatography-mass spectrometry (GC-MS) was used to quantify the compounds in the adsorption and desorption gas streams and in the BAC extracts. In general, for both adsorbate mixtures, competitive adsorption resulted in displacing low boiling point compounds by high boiling point compounds during adsorption. In addition to boiling point, adsorbate structure and functionality affected adsorption dynamics. High boiling point compounds such as n-decane and 2,2-dimethylpropylbenzene were not completely desorbed after three hours regeneration at 288 °C indicating that these two compounds contributed to heel accumulation on the BAC. Additional compounds not present in the mixtures were detected in the extract of regenerated BAC possibly due to decomposition or other reactions during regeneration. Closure analysis based on breakthrough curves, solvent extraction of BAC and mass balance on the reactor provided consistent results of the amount of adsorbates on the BAC after adsorption and/or regeneration.

  20. On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds.

    PubMed

    Bandosz, Teresa J; Petit, Camille

    2009-10-15

    Ammonia adsorption was studied under dynamic conditions, at room temperature, on activated carbons of different origins (coal-based, wood-based and coconut-shell-based carbons) before and after their impregnation with various inorganic compounds including metal chlorides, metal oxides and polycations. The role of humidity was evaluated by running tests in both dry and moist conditions. Adsorbents were analyzed before and after exposure to ammonia by thermal analyses, sorption of nitrogen, potentiometric titration, X-ray diffraction and FTIR spectroscopy. Results of breakthrough tests show significant differences in terms of adsorption capacity depending on the parent carbon, the impregnates and the experimental conditions. It is found that surface chemistry governs ammonia adsorption on the impregnated carbons. More precisely, it was demonstrated that a proper combination of the surface pH, the strength, type and amount of functional groups present on the adsorbents' surface is a key point in ammonia uptake. Water can have either positive or negative effects on the performance of adsorbents. It can enhance NH(3) adsorption capacity since it favors ammonia dissolution and thus enables reaction between ammonium ions and carboxylic groups from the carbons' surface. On the other hand, water can also reduce the performance from the strength of adsorption standpoint. It promotes dissolution of ammonia and that ammonia is first removed from the system when the adsorbent bed is purged with air. Ammonia, besides adsorption by van der Waals forces and dissolution in water, is also retained on the surface via reactive mechanisms such as acid-base reactions (Brønsted and Lewis) or complexation. Depending on the materials used and the experimental conditions, 6-47% ammonia adsorbed is strongly retained on the surface even when the bed is purged with air.

  1. On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds

    SciTech Connect

    Bandosz, T.J.; Petit, C.

    2009-10-15

    Ammonia adsorption was studied under dynamic conditions, at room temperature, on activated carbons of different origins (coal-based, wood-based and coconut-shell-based carbons) before and after their impregnation with various inorganic compounds including metal chlorides, metal oxides and polycations. The role of humidity was evaluated by running tests in both dry and moist conditions. Adsorbents were analyzed before and after exposure to ammonia by thermal analyses, sorption of nitrogen, potentiometric titration, X-ray diffraction and FTIR spectroscopy. Results of breakthrough tests show significant differences in terms of adsorption capacity depending on the parent carbon, the impregnates and the experimental conditions. It is found that surface chemistry governs ammonia adsorption on the impregnated carbons. More precisely, it was demonstrated that a proper combination of the surface pH, the strength, type and amount of functional groups present on the adsorbents' surface is a key point in ammonia uptake. Water can have either positive or negative effects on the performance of adsorbents. It can enhance NH{sub 3} adsorption capacity since it favors ammonia dissolution and thus enables reaction between ammonium ions and carboxylic groups from the carbons' surface. On the other hand, water can also reduce the performance from the strength of adsorption standpoint. It promotes dissolution of ammonia and that ammonia is first removed from the system when the adsorbent bed is purged with air. Ammonia, besides adsorption by van der Waals forces and dissolution in water, is also retained on the surface via reactive mechanisms such as acid-base reactions (Bronsted and Lewis) or complexation. Depending on the materials used and the experimental conditions, 6-47% ammonia adsorbed is strongly retained on the surface even when the bed is purged with air.

  2. CO(2) adsorption on supported molecular amidine systems on activated carbon.

    PubMed

    Alesi, W Richard; Gray, McMahan; Kitchin, John R

    2010-08-23

    The CO(2) capture capacities for typical flue gas capture and regeneration conditions of two tertiary amidine N-methyltetrahydropyrimidine (MTHP) derivatives supported on activated carbon were determined through temperature-controlled packed-bed reactor experiments. Adsorption-desorption experiments were conducted at initial adsorption temperatures ranging from 29 degrees C to 50 degrees C with temperature-programmed regeneration under an inert purge stream. In addition to the capture capacity of each amine, the efficiencies at which the amidines interact with CO(2) were determined. Capture capacities were obtained for 1,5-diazo-bicyclo[4.3.0]non-5-ene (DBN) and 1,8-diazobicyclo[5.4.0]-undec-7-ene (DBU) supported on activated carbon at a loading of approximately 2.7 mol amidine per kg of sorbent. Moisture was found to be essential for CO(2) capture on the amidines, but parasitic moisture sorption on the activated carbon ultimately limited the capture capacities. DBN was shown to have a higher capture capacity of 0.8 mol CO(2) per kg of sorbent and an efficiency of 0.30 mol CO(2) per mol of amidine at an adsorption temperature of 29 degrees C compared to DBU. The results of these experiments were then used in conjunction with a single-site adsorption model to derive the Gibbs free energy for the capture reaction, which can provide information about the suitability of the sorbent under different operating conditions.

  3. Recovery of glycols, sugars, and Related Multiple -OH Compounds from Dilute-Aqueous Solution by Regenerable Adsorption onto Activated Carbons

    SciTech Connect

    Chinn, Daniel

    1999-06-01

    The present research explores the use of adsorption onto activated carbons as a means of recover glycerol, glycols, and sugars from dilute-aqueous solution. Our work is focused on understanding the mechanisms of adsorption onto carbons, assessing the degree of adsorption reversibility with precision, and implementing a bench-scale recovery process that results in a higher product concentration and reduction of the energy load for final purification.

  4. Comparative study of the adsorption of acetaminophen on activated carbons in simulated gastric fluid.

    PubMed

    Rey-Mafull, Carlos A; Tacoronte, Juan E; Garcia, Raquel; Tobella, Jorge; Llópiz, Julio C; Iglesias, Alberto; Hotza, Dachamir

    2014-01-01

    Samples of commercial activated carbons (AC) obtained from different sources: Norit E Supra USP, Norit B Test EUR, and ML (Baracoa, Cuba) were investigated. The adsorption of acetaminophen, Co = 2500 mg/L, occured in simulated gastric fluid (SGF) at pH 1.2 in contact with activated carbon for 4 h at 310 K in water bath with stirring. Residual acetaminophen was monitored by UV visible. The results were converted to scale adsorption isotherms using alternative models: Langmuir TI and TII, Freundlich, Dubinin-Radushkevich (DR) and Temkin. Linearized forms of the characteristic parameters were obtained in each case. The models that best fit the experimental data were Langmuir TI and Temkin with R(2) ≥0.98. The regression best fits followed the sequence: Langmuir TI = Temkin > DR > LangmuirTII > Freundlich. The microporosity determined by adsorption of CO2 at 273 K with a single term DR regression presented R(2) > 0.98. The adsorption of acetaminophen may occur in specific sites and also in the basal region. It was determined that the adsorption process of acetaminophen on AC in SGF is spontaneous (ΔG <0) and exothermic (-ΔHads.). Moreover, the area occupied by the acetaminophen molecule was calculated with a relative error from 7.8 to 50%.

  5. Soil washing using various nonionic surfactants and their recovery by selective adsorption with activated carbon.

    PubMed

    Ahn, C K; Kim, Y M; Woo, S H; Park, J M

    2008-06-15

    The performance of activated carbon in soil washing and subsequent selective adsorption for surfactant recovery from the washed solution was investigated. Sandy loam soil contaminated with phenanthrene at 200 mg kg(-1) was washed with four different nonionic surfactants: Tween 40, Tween 80, Brij 30 and Brij 35. The efficiency of soil washing was highest when using Brij 30 with the highest solubilizing ability for phenanthrene and low adsorption onto soil. In the selective adsorption step, surfactant recovery was quite effective for all surfactants ranging from 85.0 to 89.0% at 1 g L(-1) of activated carbon (Darco 20-40 mesh). Phenanthrene removal from the solution washed with Brij 30 was only 33.9%, even though it was 54.1-56.4% with other surfactants. The selectivity was larger than 7.02 except for Brij 30 (3.60). The overall performance considering both the washing and surfactant recovery step was effective when using Tween 80 and Brij 35. The results suggest that higher solubilizing ability of surfactants is a requirement for soil washing but causes negative effects on phenanthrene removal in the selective adsorption. Therefore, if a surfactant recovery process by selective adsorption is included in soil remediation by washing, the overall performance including the two steps should be considered for properly choosing the surfactant.

  6. Adsorption of valuable metals from leachates of mobile phone wastes using biopolymers and activated carbon.

    PubMed

    Zazycki, Maria A; Tanabe, Eduardo H; Bertuol, Daniel A; Dotto, Guilherme L

    2017-03-01

    In this work, chitin (CTN), chitosan (CTS) and activated carbon (AC) were used as adsorbents to recover valuable metals from leachates of mobile phone wastes. The mobile phone wastes (contactors) were collected and characterized. The valuable metals were extracted by thiourea leaching. The adsorption of valuable metals from leachates was studied according to the kinetic and equilibrium viewpoints. It was found that the contactors were composed by Au, Ni, Cu and Sn. The thiourea leaching provided extraction percentages of 68.6% for Au, 22.1% for Ni and 2.8% for Cu. Sn was not extracted. The leachate presented 17.5 mg L(-1) of Au, 324.9 mg L(-1) of Ni and 573.1 mg L(-1) of Cu. The adsorption was fast, being the equilibrium attained within 120 min. The adsorption of Au, Ni and Cu onto CTN and AC followed the Langmuir model, while, the adsorption of these metals onto CTS, followed the Freundlich model. Removal percentages higher than 95% were obtained for all metals, depending of the type and amount of adsorbent. It was demonstrated that the adsorption onto chitin, chitosan and activated carbon can be an alternative to recover valuable metals from leachates of mobile phone wastes.

  7. Enhancing the adsorption of ionic liquids onto activated carbon by the addition of inorganic salts

    PubMed Central

    Neves, Catarina M. S. S.; Lemus, Jesús; Freire, Mara G.; Palomar, Jose; Coutinho, João A. P.

    2014-01-01

    Most ionic liquids (ILs) are either water soluble or present a non-negligible miscibility with water that may cause some harmful effects upon their release into the environment. Among other methods, adsorption of ILs onto activated carbon (AC) has shown to be an effective technique to remove these compounds from aqueous solutions. However, this method has proved to be viable only for hydrophobic ILs rather than for the hydrophilic that, being water soluble, have a larger tendency for contamination. In this context, an alternative approach using the salting-out ability of inorganic salts is here proposed to enhance the adsorption of hydrophilic ILs onto activated carbon. The effect of the concentrations of Na2SO4 on the adsorption of five ILs onto AC was investigated. A wide range of ILs that allow the inspection of the IL cation family (imidazolium- and pyridinium-based) and the anion nature (accounting for its hydrophilicity and fluorination) through the adsorption onto AC was studied. In general, it is shown that the use of Na2SO4 enhances the adsorption of ILs onto AC. In particular, this effect is highly relevant when dealing with hydrophilic ILs that are those that are actually poorly removed by AC. In addition, the COnductor like Screening MOdel for Real Solvents (COSMO-RS) was used aiming at complementing the experimental data obtained. This work contributes with the development of novel methods to remove ILs from water streams aiming at creating “greener” processes. PMID:25516713

  8. Removal of Heavy Metals by Adsorption onto Activated Carbon Derived from Pine Cones of Pinus roxburghii.

    PubMed

    Saif, Muhammad Jawwad; Zia, Khalid Mahmood; Fazal-ur-Rehman; Usman, Muhammad; Hussain, Abdullah Ijaz; Chatha, Shahzad Ali Shahid

    2015-04-01

    Activated carbon derived from cones of Pinus roxburghii (Himalayan Pine) was used as an adsorbent for the removal of copper, nickel and chromium ions from waste water. Surface analysis was carried out to determine the specific surface area and pore size distribution of the pine cone derived activated carbon. Optimal parameters, effect of adsorbent quantity, pH, equilibrium time, agitation speed and temperature were studied. Equilibrium data were evaluated by Langmuir and Freundlich isotherm models. Langmuir isotherm afforded the best fit to the equilibrium data with a maximum adsorption capacity of 14.2, 31.4 and 29.6 mg/g for Cu(II), Ni(II) and Cr(VI) respectively. Maximum adsorption of Cu(II), Ni(II) was observed in the pH range 4.0 to 4.5, whereas the best adsorption of Cr(VI) was observed at pH 2.5. It was found that 180 minutes was sufficient to gain adsorption equilibrium. The adsorption process follows a pseudo-second-order kinetic model.

  9. Aqueous phase adsorption of different sized molecules on activated carbon fibers: Effect of textural properties.

    PubMed

    Prajapati, Yogendra N; Bhaduri, Bhaskar; Joshi, Harish C; Srivastava, Anurag; Verma, Nishith

    2016-07-01

    The effect that the textural properties of rayon-based activated carbon fibers (ACFs), such as the BET surface area and pore size distribution (PSD), have on the adsorption of differently sized molecules, namely, brilliant yellow (BY), methyl orange (MO) and phenol (PH), was investigated in the aqueous phase. ACF samples with different BET areas and PSDs were produced by steam-activating carbonized fibers for different activation times (0.25, 0.5, and 1 h). The samples activated for 0.25 h were predominantly microporous, whereas those activated for relatively longer times contained hierarchical micro-mesopores. The adsorption capacities of the ACFs for the adsorbate increased with increasing BET surface area and pore volume, and ranged from 51 to 1306 mg/g depending on the textural properties of the ACFs and adsorbate size. The adsorption capacities of the hierarchical ACF samples followed the order BY > MO > PH. Interestingly, the number of molecules adsorbed by the ACFs followed the reverse order: PH > MO > BY. This anomaly was attributed to the increasing molecular weight of the PH, MO and BY molecules. The equilibrium adsorption data were described using the Langmuir isotherm. This study shows that suitable textural modifications to ACFs are required for the efficient aqueous phase removal of an adsorbate.

  10. Improving CO2 adsorption onto activated carbon through functionalization by chitosan and triethylenetetramine

    NASA Astrophysics Data System (ADS)

    Keramati, Mona; Ghoreyshi, Ali Asghar

    2014-03-01

    Activated carbon (AC) is one of the most dominant adsorbents for CO2 capture. To increase the capacity of CO2 adsorption, amine functional groups are grafted onto the adsorbent surfaces. In this study AC was functionalized by two different amines; chitosan and triethylenetetramine. The adsorption of CO2 onto raw and amine functionalized AC was experimentally investigated using volumetric technique in the temperature range of 293-313 K and pressure range of 1-40 bar. Results indicated that amine functionalization of the adsorbent significantly improved the adsorption of CO2. The adsorption capacity of CO2 achieved by the amine functionalized AC with triethylenetetramine (AC-TETA) was more than the amount, reached by amine functionalized AC with chitosan (AC-chitosan). The maximum amount of CO2 uptake achieved by AC-TETA and AC-chitosan was16.16 and 13.65 mmol/g at 298 K and 40 bar which shows 90% and 60% increase compared to raw AC, respectively. The experimental data of CO2 adsorption were analyzed using different model isotherms such as Freundlich, Langmuir, and Langmuir-Freundlich. Freundlich isotherm presented a nearly perfect fit in all cases which indicated the heterogeneous nature of the adsorbents surfaces. Gas adsorption kinetic study on the adsorbents revealed fast kinetics of CO2 adsorption on the AC before and after amine functionalization. Small values of isosteric heat of adsorption evaluated by a set of isotherms based on the Clasius-Clapeyron equation indicated that physisorption was the dominant mechanism in the adsorption process.

  11. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 1. Adsorption capacity and kinetics

    SciTech Connect

    Yu, Z.; Peldszus, S.; Huck, P.M.

    2009-03-01

    The adsorption of two representative PhACs (naproxen and carbamazepine) and one EDC (nonylphenol) were evaluated on two granular activated carbons (GAC) namely coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. The primary objective was to investigate preloading effects by natural organic matter (NOM) on adsorption capacity and kinetics under conditions and concentrations (i.e., ng/L) relevant for drinking water treatment. Isotherms demonstrated that all compounds were significantly negatively impacted by NOM fouling. Adsorption capacity reduction was most severe for the acidic naproxen, followed by the neutral carbamazepine and then the more hydrophobic nonylphenol. The GAC with the wider pore size distribution had considerably greater NOM loading, resulting in lower adsorption capacity. Different patterns for the change in Freundlich KF and 1/n with time revealed different competitive mechanisms for the different compounds. Mass transport coefficients determined by short fixed-bed (SFB) tests with virgin and preloaded GAC demonstrated that film diffusion primarily controls mass transfer on virgin and preloaded carbon. Naproxen suffered the greatest deteriorative effect on kinetic parameters due to preloading, followed by carbamazepine, and then nonylphenol. A type of surface NOM/biofilm, which appeared to add an additional mass transfer resistance layer and thus reduce film diffusion, was observed. In addition, electrostatic interactions between NOM/biofilm and the investigated compounds are proposed to contribute to the reduction of film diffusion. A companion paper building on this work describes treatability studies in pilot-scale GAC adsorbers and the effectiveness of a selected fixed-bed model. 32 refs., 3 figs., 2 tabs.

  12. Phenol adsorption onto powdered and granular activated carbon, prepared from Eucalyptus wood.

    PubMed

    Tancredi, Nestor; Medero, Natalia; Möller, Fabiana; Píriz, Javier; Plada, Carina; Cordero, Tomás

    2004-11-15

    Eucalyptus grandis sawdust, a major waste from the growing Uruguayan wood industry, was used in previous work to prepare powdered activated carbon (PAC). In the present work, granular activated carbon (GAC) was prepared by mixing PAC, carboxymethyl cellulose as a binder, and kaolin as reinforcer. Ultimate analysis and surface characterization of GAC and PAC were performed. Phenol adsorption was used as a way to compare the characteristics of different PAC and GAC preparations. Kinetics and isotherms of the different GAC and PAC were performed in a shaking bath at 100 rpm and 298 K. Phenol concentrations were determined by UV spectroscopy. Some kinetics parameters were calculated; from kinetics results, external resistance to mass transfer from the bulk liquid can be neglected as the controlling step. Isotherms were fitted to Langmuir and Freundlich models, and corresponding parameters were determined. Maximum phenol uptakes for all carbons were determined and correlated with carbon characteristics. Thermogravimertic analysis (TGA) determinations were performed in order to study adsorption characteristics and conditions for GAC regeneration after its use. The results showed that phenol is preferentially physisorbed on the carbon of the granules, though some chemisorption was detected. No adsorption was detected in the kaolin-carboxymethyl cellulose mixture.

  13. Enhanced adsorption of phenolic compounds, commonly encountered in olive mill wastewaters, on olive husk derived activated carbons.

    PubMed

    Michailof, Chrysoula; Stavropoulos, George G; Panayiotou, Costas

    2008-09-01

    Olive husk was used for the preparation of activated carbon by chemical activation with KOH. The effects of carbonization and activation time on carbon properties were evaluated. The surface area of the produced carbons was measured by means of N(2) adsorption at 77K. The carbons with the highest surface area were further characterized by means of elemental analysis, particle size measurement, Boehm titration, zeta potential measurement, and temperature programmed desorption (TPD). Subsequently they were used for adsorption of a mixture of polyphenols consisting of caffeic acid, vanillin, vanillic acid, pi-hydroxybenzoic acid and gallic acid at two temperatures, and their adsorptive capacity was compared to a commercial carbon Acticarbon CX and found to be higher enough. The role of the porosity and surface groups are discussed in relation to the adsorption forces and the properties of the adsorbed substances. A thermodynamic interpretation of the results is also attempted.

  14. Effect of Na+ impregnated activated carbon on the adsorption of NH4(+)-N from aqueous solution.

    PubMed

    Shi, Mo; Wang, Zhengfang; Zheng, Zheng

    2013-08-01

    Two kinds of activated carbons modified by Na+ impregnation after pre-treatments involving oxidation by nitric acid or acidification by hydrochloric acid (denoted as AC/N-Na and AC/HCl-Na, respectively), were used as adsorbents to remove NH4(+)-N. The surface features of samples were investigated by BET, SEM, XRD and FT-IR. The adsorption experiments were conducted in equilibrium and kinetic conditions. Influencing factors such as initial solution pH and initial concentration were investigated. A possible mechanism was proposed. Results showed that optimal NH4(+)-N removal efficiency was achieved at a neutral pH condition for the modified ACs. The Langmuir isotherm adsorption equation provided a better fit than other models for the equilibrium study. The adsorption kinetics followed both the pseudo second-order kinetics model and intra-particle kinetic model. Chemical surface analysis indicated that Na+ ions form ionic bonds with available surface functional groups created by pre-treatment, especially oxidation by nitric acid, thus increasing the removal efficiency of the modified ACs for NH4(+)-N. Na(+)-impregnated ACs had a higher removal capability in removing NH4(+)-N than unmodified AC, possibly resulting from higher numbers of surface functional groups and better intra-particle diffusion. The good fit of Langmuir isotherm adsorption to the data indicated the presence of monolayer NH4(+)-N adsorption on the active homogenous sites within the adsorbents. The applicability of pseudo second-order and intra-particle kinetic models revealed the complex nature of the adsorption mechanism. The intra-particle diffusion model revealed that the adsorption process consisted not only of surface adsorption but also intra-particle diffusion.

  15. A quantitative speciation model for the adsorption of organic pollutants on activated carbon.

    PubMed

    Grivé, M; García, D; Domènech, C; Richard, L; Rojo, I; Martínez, X; Rovira, M

    2013-01-01

    Granular activated carbon (GAC) is commonly used as adsorbent in water treatment plants given its high capacity for retaining organic pollutants in aqueous phase. The current knowledge on GAC behaviour is essentially empirical, and no quantitative description of the chemical relationships between GAC surface groups and pollutants has been proposed. In this paper, we describe a quantitative model for the adsorption of atrazine onto GAC surface. The model is based on results of potentiometric titrations and three types of adsorption experiments which have been carried out in order to determine the nature and distribution of the functional groups on the GAC surface, and evaluate the adsorption characteristics of GAC towards atrazine. Potentiometric titrations have indicated the existence of at least two different families of chemical groups on the GAC surface, including phenolic- and benzoic-type surface groups. Adsorption experiments with atrazine have been satisfactorily modelled with the geochemical code PhreeqC, assuming that atrazine is sorbed onto the GAC surface in equilibrium (log Ks = 5.1 ± 0.5). Independent thermodynamic calculations suggest a possible adsorption of atrazine on a benzoic derivative. The present work opens a new approach for improving the adsorption capabilities of GAC towards organic pollutants by modifying its chemical properties.

  16. Arsenic removal from aqueous solutions by adsorption onto iron oxide/activated carbon magnetic composite

    PubMed Central

    2014-01-01

    In this work the adsorption features of activated carbon and the magnetic properties of iron oxides were combined in a composite to produce magnetic adsorbent. Batch experiments were conducted to study the adsorption behavior of arsenate onto the synthetic magnetic adsorbent. The effects of initial solution pH, contact time, adsorbent dosage and co-existing anionic component on the adsorption of arsenate were investigated. The results showed that the removal percentage of arsenate could be over 95% in the conditions of adsorbent dosage 5.0 g/L, initial solution pH 3.0-8.0, and contact time 1 h. Under the experimental conditions, phosphate and silicate caused greater decrease in arsenate removal percentage among the anions, and sulfate had almost no effect on the adsorption of arsenate. Kinetics study showed that the overall adsorption rate of arsenate was illustrated by the pseudo-second-order kinetic model. The applicability of the Langmuir and Freundlich models for the arsenate adsorption data was tested. Both the models adequately describe the experimental data. Moreover, the magnetic composite adsorbent could be easily recovered from the medium by an external magnetic field. It can therefore be potentially applied for the treatment of water contaminated by arsenate. PMID:24602339

  17. Equilibrium and dynamic study on hexavalent chromium adsorption onto activated carbon.

    PubMed

    Di Natale, F; Erto, A; Lancia, A; Musmarra, D

    2015-01-08

    In this work, the results of equilibrium and dynamic adsorption tests of hexavalent chromium, Cr (VI), on activated carbon are presented. Adsorption isotherms were determined at different levels of pH and temperature. Dynamic tests were carried out in terms of breakthrough curves of lab-scale fixed bed column at different pH, inlet concentration and flow rate. Both the adsorption isotherms and the breakthrough curves showed non-linear and unconventional trends. The experimental results revealed that chromium speciation played a key role in the adsorption process, also for the occurrence of Cr(VI)-to-Cr(III) reduction reactions. Equilibrium tests were interpreted in light of a multi-component Langmuir model supported by ion speciation analysis. For the interpretation of the adsorption dynamic tests, a mass transfer model was proposed. Dynamic tests at pH 11 were well described considering the external mass transfer as the rate controlling step. Differently, for dynamic tests at pH 6 the same model provided a satisfying description of the experimental breakthrough curves only until a sorbent coverage around 1.6mgg(-1). Above this level, a marked reduction of the breakthrough curve slope was observed in response to a transition to an inter-particle adsorption mechanism.

  18. Adsorption properties of an activated carbon for 18 cytokines and HMGB1 from inflammatory model plasma.

    PubMed

    Inoue, Satoru; Kiriyama, Kentaro; Hatanaka, Yoshihiro; Kanoh, Hirofumi

    2015-02-01

    The ability of an activated carbon (AC) to adsorb 18 different cytokines with molecular weights ranging from 8 kDa to 70 kDa and high mobility group box-1 (HMGB1) from inflammatory model plasma at 310 K and the mechanisms of adsorption were examined. Porosity analysis using N2 gas adsorption at 77K showed that the AC had micropores with diameters of 1-2 nm and mesopores with diameters of 5-20 nm. All 18 cytokines and HMGB1 were adsorbed on the AC; however, the shapes of the adsorption isotherms changed depending on the molecular weight. The adsorption isotherms for molecules of 8-10 kDa, 10-20 kDa, 20-30 kDa, and higher molecular weights were classified as H-2, L-3, S-3, and S-1 types, respectively. These results suggested that the adsorption mechanism for the cytokines and HMGB1 in the mesopores and on the surface of the AC differed as a function of the molecular weight. On the basis of these results, it can be concluded that AC should be efficient for cytokine adsorption.

  19. TREATMENT OF LANDFILL LEACHATE BY COUPLING COAGULATION-FLOCCULATION OR OZONATION TO GRANULAR ACTIVATED CARBON ADSORPTION.

    PubMed

    Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim; Demeestere, Kristof; Van Hulle, Stijn W H

    2015-01-01

    A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate prior to granular activated carbon (GAC) adsorption. The efficiency of the pre treatment techniques is evaluated using COD and UVA254 measurements. For coagulation- flocculation, different chemicals are compared and optimal dosages are determined. After this, iron (III) chloride is selected for subsequent adsorption studies due to its high percentage of COD and UVA254 removal and good sludge settle-ability. Our finding show that ozonation as a single treatment is effective in reducing COD in landfill leachate by 66% compared to coagulation flocculation (33%). Meanwhile, coagulation performs better in UVA254 reduction than ozonation. Subsequent GAC adsorption of ozonated effluent, coagulated effluent and untreated leachate resulted in 77%, 53% and 8% total COD removal respectively (after 6 bed volumes). The effect of the pre-treatment techniques on GAC adsorption properties is evaluated experimentally and mathematically using Thomas and Yoon-Nelson models. Mathematical modelling of the experimental GAC adsorption data shows that ozonation increases the adsorption capacity and break through time with a factor of 2.5 compared to coagulation-flocculation.

  20. Visualization and Measurement of Adsorption/Desorption Process of Ethanol in Activated Carbon Adsorber

    NASA Astrophysics Data System (ADS)

    Asano, Hitoshi; Murata, Kenta; Takenaka, Nobuyuki; Saito, Yasushi

    Adsorption refrigerator is one of the efficient tools for waste heat recovery, because the system is driven by heat at relative low temperature. However, the coefficient of performance is low due to its batch operation and the heat capacity of the adsorber. In order to improve the performance, it is important to optimize the configuration to minimize the amount of driving heat, and to clarify adsorption/desorption phenomena in transient conditions. Neutron radiography was applied to visualize and measure the adsorption amount distribution in an adsorber. The visualization experiments had been performed at the neutron radiography facility of E-2 port of Kyoto University Research Reactor. Activated carbon and ethanol were used as the adsorbent and refrigerant. From the acquired radiographs, adsorption amount was quantitatively measured by applying the umbra method using a checkered neutron absorber with boron powder. Then, transient adsorption and desorption processes of a rectangular adsorber with 84 mm in width, 50 mm in height and 20 mm in depth were visualized. As the result, the effect of fins in the adsorbent layer on the adsorption amount distribution was clearly visualized.

  1. Characteristic and mercury adsorption of activated carbon produced by CO2 of chicken waste.

    PubMed

    Huang, Yaji; Jin, Baosheng; Zhong, Zhaoping; Zhong, Wenqi; Xiao, Rui

    2008-01-01

    Preparation of activated carbon from chicken waste is a promising way to produce a useful adsorbent for Hg removal. A three-stage activation process (drying at 200 degrees C, pyrolysis in N2 atmosphere, followed by CO2 activation) was used for the production of activated samples. The effects of carbonization temperature (400-600 degrees C), activation temperature (700-900 degrees C), and activation time (1-2.5 h) on the physicochemical properties (weight-loss and BET surface) of the prepared carbon were investigated. Adsorptive removal of mercury from real flue gas onto activated carbon has been studied. The activated carbon from chicken waste has the same mercury capacity as commercial activated carbon (Darco LH) (Hg(v): 38.7% vs. 53.5%, Hg(0): 50.5% vs. 68.8%), although its surface area is around 10 times smaller, 89.5 m2/g vs. 862 m2/g. The low cost activated carbon can be produced from chicken waste, and the procedure is suitable.

  2. Partitioning and removal of dioxin-like congeners in flue gases treated with activated carbon adsorption.

    PubMed

    Chi, Kai Hsien; Chang, Shu Hao; Huang, Chia Hua; Huang, Hung Chi; Chang, Moo Been

    2006-08-01

    Activated carbon adsorption is commonly used to control dioxin-like congener (PCDD/Fs and PCBs) emissions. Partitioning of PCDD/Fs and PCBs between vapor and solid phases and their removal efficiencies achieved with existing air pollution control devices (APCDs) at a large-scale municipal waste incinerator (MWI) and an industrial waste incinerator (IWI) are evaluated via intensive stack sampling and analysis. Those two facilities investigated are equipped with activated carbon injection (ACI) with bag filter (BF) and fixed activated carbon bed (FACB) as major PCDD/F control devices, respectively. Average PCDD/F and PCB concentrations of stack gas with ACI+BF as APCDs are 0.031 and 0.006ng-TEQ/Nm(3), and that achieved with FACB are 1.74 and 0.19ng-TEQ/Nm(3) in MWI and IWI, respectively. The results show that FACB could reduce vapor-phase PCDD/Fs and PCBs concentrations in flue gas, while the ACI+BF can effectively adsorb the vapor-phase dioxin-like congener and collect the solid-phase PCDD/Fs and PCBs in the meantime. Additionally, the results of the pilot-scale adsorption system (PAS) experimentation indicate that each gram activated carbon adsorbs 105-115ng-PCDD/Fs and each surface area (m(2)) of activated carbon adsorbs 10-25ng-PCDD/Fs. Based on the results of PAS experimentation, this study confirms that the surface area of mesopore+macropore (20-200A) of the activated carbon is a critical factor affecting PCDD/F adsorption capacity.

  3. Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot.

    PubMed

    Onal, Yunus

    2006-10-11

    Adsorbent (WA11Zn5) has been prepared from waste apricot by chemical activation with ZnCl(2). Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N(2) adsorption and DFT plus software. Adsorption of three dyes, namely, Methylene Blue (MB), Malachite Green (MG), Crystal Violet (CV), onto activated carbon in aqueous solution was studied in a batch system with respect to contact time, temperature. The kinetics of adsorption of MB, MG and CV have been discussed using six kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the Elovich equation, the intraparticle diffusion model, the Bangham equation, the modified Freundlich equation. Kinetic parameters and correlation coefficients were determined. It was shown that the second-order kinetic equation could describe the adsorption kinetics for three dyes. The dyes uptake process was found to be controlled by external mass transfer at earlier stages (before 5 min) and by intraparticle diffusion at later stages (after 5 min). Thermodynamic parameters, such as DeltaG, DeltaH and DeltaS, have been calculated by using the thermodynamic equilibrium coefficient obtained at different temperatures and concentrations. The thermodynamics of dyes-WA11Zn5 system indicates endothermic process.

  4. Adsorption of pharmaceuticals onto activated carbon fiber cloths - Modeling and extrapolation of adsorption isotherms at very low concentrations.

    PubMed

    Fallou, Hélène; Cimetière, Nicolas; Giraudet, Sylvain; Wolbert, Dominique; Le Cloirec, Pierre

    2016-01-15

    Activated carbon fiber cloths (ACFC) have shown promising results when applied to water treatment, especially for removing organic micropollutants such as pharmaceutical compounds. Nevertheless, further investigations are required, especially considering trace concentrations, which are found in current water treatment. Until now, most studies have been carried out at relatively high concentrations (mg L(-1)), since the experimental and analytical methodologies are more difficult and more expensive when dealing with lower concentrations (ng L(-1)). Therefore, the objective of this study was to validate an extrapolation procedure from high to low concentrations, for four compounds (Carbamazepine, Diclofenac, Caffeine and Acetaminophen). For this purpose, the reliability of the usual adsorption isotherm models, when extrapolated from high (mg L(-1)) to low concentrations (ng L(-1)), was assessed as well as the influence of numerous error functions. Some isotherm models (Freundlich, Toth) and error functions (RSS, ARE) show weaknesses to be used as an adsorption isotherms at low concentrations. However, from these results, the pairing of the Langmuir-Freundlich isotherm model with Marquardt's percent standard of deviation was evidenced as the best combination model, enabling the extrapolation of adsorption capacities by orders of magnitude.

  5. An overview of landfill leachate treatment via activated carbon adsorption process.

    PubMed

    Foo, K Y; Hameed, B H

    2009-11-15

    Water scarcity and pollution rank equal to climate change as the most urgent environmental issue for the 21st century. To date, the percolation landfill leachate into the groundwater tables and aquifer systems which poses a potential risk and potential hazards towards the public health and ecosystems, remains an aesthetic concern and consideration abroad the nations. Arising from the steep enrichment of globalization and metropolitan growth, numerous mitigating approaches and imperative technologies have currently drastically been addressed and confronted. Confirming the assertion, this paper presents a state of art review of leachate treatment technologies, its fundamental background studies, and environmental implications. Moreover, the key advance of activated carbons adsorption, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbons adsorption represents a potentially viable and powerful tool, leading to the superior improvement of environmental conservation.

  6. Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column.

    PubMed

    Sulaymon, Abbas H; Ahmed, Kawther W

    2008-01-15

    For a multicomponent competitive adsorption of furfural and phenolic compounds, a mathematical model was builtto describe the mass transfer kinetics in a fixed bed column with activated carbon. The effects of competitive adsorption equilibrium constant, axial dispersion, external mass transfer, and intraparticle diffusion resistance on the breakthrough curve were studied for weakly adsorbed compound (furfural) and strongly adsorbed compounds (parachlorophenol and phenol). Experiments were carried out to remove the furfural and phenolic compound from aqueous solution. The equilibrium data and intraparticle diffusion coefficients obtained from separate experiments in a batch adsorber, by fitting the experimental data with theoretical model. The results show that the mathematical model includes external mass transfer and pore diffusion using nonlinear isotherms and provides a good description of the adsorption process for furfural and phenolic compounds in a fixed bed adsorber.

  7. Quantitative structure property relationships for the adsorption of pharmaceuticals onto activated carbon.

    PubMed

    Dickenson, E R V; Drewes, J E

    2010-01-01

    Isotherms were determined for the adsorption of five pharmaceutical residues, primidone, carbamazepine, ibuprofen, naproxen and diclofenac, to Calgon Filtrasorb 300 powdered activated carbon (PAC). The sorption behavior was examined in ultra-pure and wastewater effluent organic matter (EfOM) matrices, where more sorption was observed in the ultra-pure water for PAC doses greater than 10 mg/L suggesting the presence of EfOM hinders the sorption of the pharmaceuticals to the PAC. Adsorption behaviors were described by the Freundlich isotherm model. Quantitative structure property relationships (QSPRs) in the form of polyparameter linear solvation energy relationships were developed for simulating the Freundlich adsorption capacity in both ultra-pure and EfOM matrices. The significant 3D-based descriptors for the QSPRs were the molar volume, polarizability and hydrogen-bond donor parameters.

  8. Two-dimensional modeling of volatile organic compounds adsorption onto beaded activated carbon.

    PubMed

    Tefera, Dereje Tamiru; Jahandar Lashaki, Masoud; Fayaz, Mohammadreza; Hashisho, Zaher; Philips, John H; Anderson, James E; Nichols, Mark

    2013-10-15

    A two-dimensional heterogeneous computational fluid dynamics model was developed and validated to study the mass, heat, and momentum transport in a fixed-bed cylindrical adsorber during the adsorption of volatile organic compounds (VOCs) from a gas stream onto a fixed bed of beaded activated carbon (BAC). Experimental validation tests revealed that the model predicted the breakthrough curves for the studied VOCs (acetone, benzene, toluene, and 1,2,4-trimethylbenzene) as well as the pressure drop and temperature during benzene adsorption with a mean relative absolute error of 2.6, 11.8, and 0.8%, respectively. Effects of varying adsorption process variables such as carrier gas temperature, superficial velocity, VOC loading, particle size, and channelling were investigated. The results obtained from this study are encouraging because they show that the model was able to accurately simulate the transport processes in an adsorber and can potentially be used for enhancing absorber design and operation.

  9. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon.

    PubMed

    Machado, Fernando M; Bergmann, Carlos P; Fernandes, Thais H M; Lima, Eder C; Royer, Betina; Calvete, Tatiana; Fagan, Solange B

    2011-09-15

    Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment.

  10. Removal of N-nitrosodimethylamine precursors with powdered activated carbon adsorption.

    PubMed

    Beita-Sandí, Wilson; Ersan, Mahmut Selim; Uzun, Habibullah; Karanfil, Tanju

    2016-01-01

    The main objective of this study was to examine the roles of powdered activated carbon (PAC) characteristics (i.e., surface chemistry, pore size distribution, and surface area) in the removal of N-nitrosodimethylamine (NDMA) formation potential (FP) in surface and wastewater-impacted waters. Also, the effects of natural attenuation of NDMA precursors in surface waters, NDMA FP concentration, and carbon dose on the removal of NDMA FP by PAC were evaluated. Finally, the removal of NDMA FP by PAC at two full-scale DWTPs was monitored. Wastewater-impacted and surface water samples were collected to conduct adsorption experiments using different PACs and activated carbon fibers (ACFs) with a wide range of physicochemical characteristics. The removal efficiency of NDMA FP by PAC was significantly higher in wastewater-impacted than surface waters. Adsorbable NDMA precursors showed a size distribution in the waters tested; the adsorbable fraction included precursors accessing the pore size regions of 10-20 Å and <10 Å. Basic carbons showed higher removal of NDMA FP than acidic carbons on a surface area basis. The overall removal of NDMA FP by PAC on a mass basis depended on the surface area, pore size distribution and pHPZC. Thus, PACs with hybrid characteristics (micro and mesoporous), higher surface areas, and basic surface chemistry are more likely to be effective for NDMA precursor control by PAC adsorption. The application of PAC in DWTPs for taste and odor control resulted in an additional 20% removal of NDMA FP for the PAC doses of 7-10 mg/L. The natural attenuation of NDMA precursors through a combination of processes (biodegradation, photolysis and adsorption) decreased their adsorbability and removal by PAC adsorption.

  11. Adsorption of malachite green on groundnut shell waste based powdered activated carbon

    SciTech Connect

    Malik, R.; Ramteke, D.S. Wate, S.R.

    2007-07-01

    In the present technologically fast changing situation related to waste management practices, it is desirable that disposal of plant waste should be done in a scientific manner by keeping in view economic and pollution considerations. This is only possible when the plant waste has the potential to be used as raw material for some useful product. In the present study, groundnut shell, an agricultural waste, was used for the preparation of an adsorbent by chemical activation using ZnCl{sub 2} under optimized conditions and its comparative characterisation was conducted with commercially available powdered activated carbon (CPAC) for its physical, chemical and adsorption properties. The groundnut shell based powdered activated carbon (GSPAC) has a higher surface area, iodine and methylene blue number compared to CPAC. Both of the carbons were used for the removal of malachite green dye from aqueous solution and the effect of various operating variables, viz. adsorbent dose (0.1-1 g l{sup -1}), contact time (5-120 min) and adsorbate concentrations (100-200 mg l{sup -1}) on the removal of dye, has been studied. The experimental results indicate that at a dose of 0.5 g l{sup -1} and initial concentration of 100 mg l{sup -1}, GSPAC showed 94.5% removal of the dye in 30 min equilibrium time, while CPAC removed 96% of the dye in 15 min. The experimental isotherm data were analyzed using the linearized forms of Freundlich, Langmuir and BET equations to determine maximum adsorptive capacities. The equilibrium data fit well to the Freundlich isotherm, although the BET isotherm also showed higher correlation for both of the carbons. The results of comparative adsorption capacity of both carbons indicate that groundnut shell can be used as a low-cost alternative to commercial powdered activated carbon in aqueous solution for dye removal.

  12. Superfine powdered activated carbon incorporated into electrospun polystyrene fibers preserve adsorption capacity.

    PubMed

    Apul, Onur G; Hoogesteijn von Reitzenstein, Natalia; Schoepf, Jared; Ladner, David; Hristovski, Kiril D; Westerhoff, Paul

    2017-03-17

    A composite material consisted of superfine powdered activated carbon (SPAC) and fibrous polystyrene (PS) was fabricated for the first time by electrospinning. SPAC is produced by pulverizing powdered activated carbon. The diameter of SPAC (100-400nm) is more than one hundred times smaller than conventional powdered activated carbon, but it maintains the internal pore structure based on organic micropollutant adsorption isotherms and specific surface area measurements. Co-spinning SPAC into PS fibers increased specific surface area from 6m(2)/g to 43m(2)/g. Unlike metal oxide nanoparticles, which are non-accessible for sorption from solution, electrospinning with SPAC created porous fibers. Composite SPAC-PS electrospun fibers, containing only 10% SPAC, had 30% greater phenanthrene sorption compared against PS fibers alone. SPAC particles embedded within the polymer were either partially or fully incorporated, and the accessibility of terminal adsorption sites were conserved. Conserving the adsorptive functionality of SPAC particles in electrospun non-woven polymeric fiber scaffolding can enable their application in environmental applications such as drinking water treatment.

  13. Toward an effective adsorbent for polar pollutants: formaldehyde adsorption by activated carbon.

    PubMed

    Lee, Kyung Jin; Miyawaki, Jin; Shiratori, Nanako; Yoon, Seong-Ho; Jang, Jyongsik

    2013-09-15

    Due to increasing concerns about environmental pollutants, the development of an effective adsorbent or sensitive sensor has been pursued in recent years. Diverse porous materials have been selected as promising candidates for detecting and removing harmful materials, but the most appropriate pore structure and surface functional groups, both important factors for effective adsorbency, have not yet been fully elucidated. In particular, there is limited information relating to the use of activated carbon materials for effective adsorbent of specific pollutants. Here, the pore structure and surface functionality of polyacrylonitrile-based activated carbon fibers were investigated to develop an efficient adsorbent for polar pollutants. The effect of pore structure and surface functional groups on removal capability was investigated. The activated carbons with higher nitrogen content show a great ability to absorb formaldehyde because of their increased affinity with polar pollutants. In particular, nitrogen functional groups that neighbor oxygen atoms play an important role in maximizing adsorption capability. However, because there is also a similar increase in water affinity in adsorbents with polar functional groups, there is a considerable decrease in adsorption ability under humid conditions because of preferential adsorption of water to adsorbents. Therefore, it can be concluded that pore structures, surface functional groups and the water affinity of any adsorbent should be considered together to develop an effective and practical adsorbent for polar pollutants. These studies can provide vital information for developing porous materials for efficient adsorbents, especially for polar pollutants.

  14. Exploring molecular sieve capabilities of activated carbon fibers to reduce the impact of NOM preloading on trichloroethylene adsorption.

    PubMed

    Karanfil, Tanju; Dastgheib, Seyed A; Mauldin, Dina

    2006-02-15

    Adsorption of trichloroethylene (TCE) by two activated carbon fibers (ACFs) and two granular activated carbons (GACs) preloaded with hydrophobic and transphilic fractions of natural organic matter (NOM) was examined. ACF10, the most microporous activated carbon used in this study, had over 90% of its pore volume in pores smaller than 10 A. It also had the highest volume in pores 5-8 A, which is the optimum pore size region for TCE adsorption, among the four activated carbons. Adsorption of NOM fractions by ACF10 was, in general, negligible. Therefore, ACF10, functioning as a molecular sieve during preloading, exhibited the least NOM uptake for each fraction, and subsequently the highest TCE adsorption. The other three sorbents had wider pore size distributions, including high volumes in pores larger than 10 A, where NOM molecules can adsorb. As a result, they showed a higher degree of uptake for all NOM fractions, and subsequently lower adsorption capacities for TCE, as compared to ACF10. The results obtained in this study showed that understanding the interplay between the optimum pore size region for the adsorption of target synthetic organic contaminant (SOC) and the pore size region for the adsorption of NOM molecules is important for controlling NOM-SOC competitions. Experiments with different NOM fractions indicated that the degree of NOM loading is important in terms of preloading effects; however the waythatthe carbon pores are filled and loaded by different NOM fractions can be different and may create an additional negative impact on TCE adsorption.

  15. Adsorption of Selected Pharmaceutical Compounds onto Activated Carbon in Dilute Aqueous Solutions Exemplified by Acetaminophen, Diclofenac, and Sulfamethoxazole

    PubMed Central

    Chang, E.-E.; Wan, Jan-Chi; Liang, Chung-Huei; Dai, Yung-Dun; Chiang, Pen-Chi

    2015-01-01

    The adsorption of three pharmaceuticals, namely, acetaminophen, diclofenac, and sulfamethoxazole onto granular activated carbon (GAC), was investigated. To study competitive adsorption, both dynamic and steady-state adsorption experiments were conducted by careful selection of pharmaceuticals with various affinities and molecular size. The effective diffusion coefficient of the adsorbate was increased with decease in particle size of GAC. The adsorption affinity represented as Langmuir was consistent with the ranking of the octanol-water partition coefficient, Kow. The adsorption behavior in binary or tertiary systems could be described by competition adsorption. In the binary system adsorption replacement occurred, under which the adsorbate with the smaller Kow was replaced by the one with larger Kow. Results also indicated that portion of the micropores could be occupied only by the small target compound, but not the larger adsorbates. In multiple-component systems the competition adsorption might significantly be affected by the macropores and less by the meso- or micropores. PMID:26078989

  16. Geosmin and 2-methylisoborneol adsorption on super-powdered activated carbon in the presence of natural organic matter.

    PubMed

    Matsui, Y; Nakano, Y; Hiroshi, H; Ando, N; Matsushita, T; Ohno, K

    2010-01-01

    Geosmin and 2-methylisoborneol (2-MIB) are naturally occurring compounds responsible for musty-earthy-odors in surface water supplies. They are a severe problem confronting utilities worldwide. Adsorption by powdered activated carbon (PAC) is a widely used process to control this problem, but it has low efficiency, which engenders large budget spending for utilities services. Super-powdered activated carbon (S-PAC) is activated carbon with much finer particles than those of PAC. Experiments on geosmin and 2-MIB adsorptions on S-PAC and PAC were conducted. Geosmin and 2-MIB adsorption capacities on S-PAC were not smaller than those on PAC although natural organic matter, which adversely impacted the adsorption capacity of geosmin and 2-MIB, was more adsorbed on S-PAC than on PAC, meaning that the adsorption competition is less severe for S-PAC than for PAC.

  17. Membrane filtration of two sulphonamides in tertiary effluents and subsequent adsorption on activated carbon.

    PubMed

    Hartig, C; Ernst, M; Jekel, M

    2001-11-01

    The adsorption behaviour of two polar organic micropollutants (N-n-butylbenzenesulphonamide and sulphmethoxazole) onto powdered activated carbon (PAC) under competitive conditions prior to and after filtration with a tight ultrafiltration membrane was examined. The sulphonamides were spiked into microfiltered tertiary municipal effluent in microg L(-1) quantities. Ultrafiltration of these effluents resulted in better adsorbability for both the micropollutants and the background organic matter in the permeates compared to the feed waters. This behaviour seems to be caused by a reduced blocking of micropores by lower concentrations of high molecular weight compounds in membrane filtrates. A combined treatment of ultrafiltration prior to adsorption can therefore reduce the carbon demand for potentially harmful micropollutants in effluents.

  18. Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review.

    PubMed

    Ahmed, Muthanna J

    2017-03-01

    Antibiotics, an important type of pharmaceutical pollutant, have attracted many researchers to the study of their removal from aqueous solutions. Activated carbon (AC) has been widely used as highly effective adsorbent for antibiotics because of its large specific surface area, high porosity, and favorable pore size distribution. In this article, the adsorption performance of AC towards three major types of antibiotics such as tetracyclines, quinolones, and penicillins were reviewed. According to collected data, maximum adsorption capacities of 1340.8, 638.6, and 570.4mg/g were reported for tetracyclines, quinolones, and penicillins, respectively. The values of 1/n for Freundlich isotherm were less than unity, suggesting that the adsorption was nonlinear and favorable. Adsorption kinetics followed closely the pseudo-second-order model and analysis using the Weber-Morris model revealed that the intra-particle diffusion was not the only rate controlling step. AC adsorption demonstrated superior performance for all selected drugs, thus being efficient technology for treatment of these pollutants.

  19. Adsorptive removal of acrylonitrile by commercial grade activated carbon: kinetics, equilibrium and thermodynamics.

    PubMed

    Kumar, Arvind; Prasad, B; Mishra, I M

    2008-04-01

    The potential of activated carbons--powdered (PAC) and granular (GAC), for the adsorption of acrylonitrile (AN) at different initial AN concentrations (50adsorption was studied. The Langmuir, Freundlich, Tempkin, and Redlich-Peterson (R-P) isotherm equations were used to test their fit with the experimental data, and the model parameters were determined for different temperatures. The Langmuir and R-P models were found to be the best to describe the equilibrium isotherm data of AN adsorption on PAC and GAC, respectively. Error analysis also confirmed the efficacy of the R-P isotherm to best fit the experimental data. The pseudo-second order kinetic model best represents the kinetics of the adsorption of AN onto PAC and GAC. Maximum adsorption capacity of PAC and GAC at optimum conditions of AN removal (adsorbent dose approximately 20 g/l of solution, and equilibrium time approximately 5 h) was found to be 51.72 and 46.63 mg/g, respectively.

  20. Impacts of amount of impregnated iron in granular activated carbon on arsenate adsorption capacities and kinetics.

    PubMed

    Chang, Qigang; Lin, Wei; Ying, Wei-Chi

    2012-06-01

    Iron-impregnated granular activated carbons (Fe-GAC) can remove arsenic effectively from water. In this study, Fe-GACs with iron content of 1.64 to 28.90% were synthesized using a new multi-step procedure for the investigation of effects of iron amount on arsenic adsorption capacities and kinetics. Langmuir model satisfactorily fit arsenic adsorption on Fe-GACs. The maximum arsenic adsorption capacity (q(m)) increased significantly with iron impregnation and reached 1,867 to 1,912 microg/g with iron content of 9.96 to 13.59%. Further increase of iron content (> 13.59%) caused gradual decrease of q(m). It was found that the amount of impregnated iron showed little impact on the affinity for arsenate. Kinetic study showed that the amount of impregnated iron affected the arsenic intraparticle diffusion rate greatly. The pseudo-second-order kinetic model fit arsenic adsorption kinetics on Fe-GACs better than the pseudo-first-order model. The arsenic adsorption rate increased with increasing of iron content from 1.64% to 13.59%, and then decreased with more impregnated iron (13.59 to 28.90%).

  1. Comparison of adsorption behavior of PCDD/Fs on carbon nanotubes and activated carbons in a bench-scale dioxin generating system.

    PubMed

    Zhou, Xujian; Li, Xiaodong; Xu, Shuaixi; Zhao, Xiyuan; Ni, Mingjiang; Cen, Kefa

    2015-07-01

    Porous carbon-based materials are commonly used to remove various organic and inorganic pollutants from gaseous and liquid effluents and products. In this study, the adsorption of dioxins on both activated carbons and multi-walled carbon nanotube was internally compared, via series of bench scale experiments. A laboratory-scale dioxin generator was applied to generate PCDD/Fs with constant concentration (8.3 ng I-TEQ/Nm(3)). The results confirm that high-chlorinated congeners are more easily adsorbed on both activated carbons and carbon nanotubes than low-chlorinated congeners. Carbon nanotubes also achieved higher adsorption efficiency than activated carbons even though they have smaller BET-surface. Carbon nanotubes reached the total removal efficiency over 86.8 % to be compared with removal efficiencies of only 70.0 and 54.2 % for the two other activated carbons tested. In addition, because of different adsorption mechanisms, the removal efficiencies of carbon nanotubes dropped more slowly with time than was the case for activated carbons. It could be attributed to the abundant mesopores distributed in the surface of carbon nanotubes. They enhanced the pore filled process of dioxin molecules during adsorption. In addition, strong interactions between the two benzene rings of dioxin molecules and the hexagonal arrays of carbon atoms in the surface make carbon nanotubes have bigger adsorption capacity.

  2. Effect of oxidation and catalytic reduction of trace organic contaminants on their activated carbon adsorption.

    PubMed

    Schoutteten, Klaas V K M; Hennebel, Tom; Dheere, Ellen; Bertelkamp, Cheryl; De Ridder, David J; Maes, Synthia; Chys, Michael; Van Hulle, Stijn W H; Vanden Bussche, Julie; Vanhaecke, Lynn; Verliefde, Arne R D

    2016-12-01

    The combination of ozonation and activated carbon (AC) adsorption is an established technology for removal of trace organic contaminants (TrOCs). In contrast to oxidation, reduction of TrOCs has recently gained attention as well, however less attention has gone to the combination of reduction with AC adsorption. In addition, no literature has compared the removal behavior of reduction vs. ozonation by-products by AC. In this study, the effect of pre-ozonation vs pre-catalytic reduction on the AC adsorption efficiency of five TrOCs and their by-products was compared. All compounds were susceptible to oxidation and reduction, however the catalytic reductive treatment proved to be a slower reaction than ozonation. New oxidation products were identified for dinoseb and new reduction products were identified for carbamazepine, bromoxynil and dinoseb. In terms of compatibility with AC adsorption, the influence of the oxidative and reductive pretreatments proved to be compound dependent. Oxidation products of bromoxynil and diatrizoic acid adsorbed better than their parent TrOCs, but oxidation products of atrazine, carbamazepine and dinoseb showed a decreased adsorption. The reductive pre-treatment showed an enhanced AC adsorption for dinoseb and a major enhancement for diatrizoic acid. For atrazine and bromoxynil, no clear influence on adsorption was noted, while for carbamazepine, the reductive pretreatment resulted in a decreased AC affinity. It may thus be concluded that when targeting mixtures of TrOCs, a trade-off will undoubtedly have to be made towards overall reactivity and removal of the different constituents, since no single treatment proves to be superior to the other.

  3. Adsorptive Removal of Nitrate from Aqueous Solution Using Nitrogen Doped Activated Carbon.

    PubMed

    Machida, Motoi; Goto, Tatsuru; Amano, Yoshimasa; Iida, Tatsuya

    2016-01-01

    Activated carbon (AC) has been widely applied for adsorptive removal of organic contaminants from aqueous phase, but not for ionic pollutants. In this study, nitrogen doped AC was prepared to increase the adsorption capacity of nitrate from water. AC was oxidized with (NH4)2S2O8 solution to maximize oxygen content for the first step, and then NH3 gas treatment was carried out at 950°C to aim at forming quaternary nitrogen (N-Q) species on AC surface (Ox-9.5AG). Influence of solution pH was examined so as to elucidate the relationship between surface charge and adsorption amounts of nitrate. The results showed that Ox-9.5AG exhibited about twice higher adsorption capacity than non-treatment AC at any initial nitrate concentration and any equilibrium solution pH (pHe) investigated. The more decrease in pHe value, the more adsorption amount of negatively charged nitrate ion, because the surface charge of AC and Ox-9.5AG could become more positive in acidic solution. The oxidation and consecutive ammonia treatments lead to increase in nitrogen content from 0.35 to 6.4% and decrease in the pH of the point of zero charge (pHpzc) from 7.1 to 4.0 implying that positively charged N-Q of a Lewis acid was created on the surface of Ox-9.5AG. Based on a Langmuir data analysis, maximum adsorption capacity attained 0.5-0.6 mmol/g of nitrate and adsorption affinity was 3.5-4.0 L/mmol at pHe 2.5 for Ox-9.5AG.

  4. High temperature hydrogen sulfide adsorption on activated carbon - I. Effects of gas composition and metal addition

    USGS Publications Warehouse

    Cal, M.P.; Strickler, B.W.; Lizzio, A.A.

    2000-01-01

    Various types of activated carbon sorbents were evaluated for their ability to remove H2S from a simulated coal gas stream at a temperature of 550 ??C. The ability of activated carbon to remove H2S at elevated temperature was examined as a function of carbon surface chemistry (oxidation, thermal desorption, and metal addition), and gas composition. A sorbent prepared by steam activation, HNO3 oxidation and impregnated with Zn, and tested in a gas stream containing 0.5% H2S, 50% CO2 and 49.5% N2, had the greatest H2S adsorption capacity. Addition of H2, CO, and H2O to the inlet gas stream reduced H2S breakthrough time and H2S adsorption capacity. A Zn impregnated activated carbon, when tested using a simulated coal gas containing 0.5% H2S, 49.5% N2, 13% H2, 8.5% H2O, 21% CO, and 7.5% CO2, had a breakthrough time of 75 min, which was less than 25 percent of the length of breakthrough for screening experiments performed with a simplified gas mixture of 0.5% H2S, 50% CO2, and 49.5% N2.

  5. Adsorption of polychlorinated dibenzo-p-dioxins/dibenzofurans on activated carbon from hexane.

    PubMed

    Zhou, Xu-Jian; Buekens, Alfons; Li, Xiao-Dong; Ni, Ming-Jiang; Cen, Ke-Fa

    2016-02-01

    Activated carbon is widely used to abate dioxins and dioxin-like compounds from flue gas. Comparing commercial samples regarding their potential to adsorb dioxins may proceed by using test columns, yet it takes many measurements to characterise the retention and breakthrough of dioxins. In this study, commercial activated carbon samples are evaluated during tests to remove trace amounts of dioxins dissolved in n-hexane. The solution was prepared from fly ash collected from a municipal solid waste incinerator. The key variables selected were the concentration of dioxins in n-hexane and the dosage of activated carbon. Both polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) showed very high removal efficiencies (94.7%-98.0% for PCDDs and 99.7%-99.8% for PCDFs). The presence of a large excess of n-hexane solvent had little effect on the removal efficiency of PCDD/Fs. The adsorbed PCDD/Fs showed a linear correlation (R(2) > 0.98) with the initial concentrations. Comparative analysis of adsorption isotherms showed that a linear Henry isotherm fitted better the experimental data (R(2) = 0.99 both for PCDDs and PCDFs) than the more usual Freundlich isotherm (R(2) = 0.88 for PCDDs and 0.77 for PCDFs). Finally, the results of fingerprint analysis indicated that dioxin fingerprint (weight proportion of different congeners) on activated carbon after adsorption did not change from that in hexane.

  6. Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method.

    PubMed

    Tran, Hai Nguyen; You, Sheng-Jie; Chao, Huan-Ping

    2017-03-01

    Activated carbon (AC) was synthesized from golden shower (GS) through a new chemical activation process. The three-stage process comprised (1) hydrothermal carbonization of GS to produce hydrochar, (2) pyrolysis of hydrochar to produce biochar, and (3) subsequent chemical activation of biochar with K2CO3 to obtain GSHBAC. The traditional synthesis processes (i.e., one-stage and two-stage) were also examined for comparison. In the one-stage process, GS that was impregnated with K2CO3 was directly pyrolyzed (GSAC), and the two-stage process consisted of (1) pyrolytic or hydrothermal carbonization to produce biochar or hydrochar and (2) subsequent chemical activation was defined as GSBAC and GSHAC, respectively. The synthesized ACs were characterized by scanning electron microscope, Brunauer-Emmett-Teller (BET) surface area analysis, Fourier transform infrared spectrometry, point zero charge, and Boehm titration. The adsorption results demonstrated that the MG5 adsorption process was not remarkably affected by neither the solution pH (2.0-10) nor ionic strength (0-0.5 M NaCl). Kinetic studies showed that the adsorption equilibrium was quickly established, with a low activation energy required for adsorption (Ea; 3.30-27.8 kJ/mol), and the ACs removed 50-73% of the MG5 concentration from solution within 01 min. Desorption studies confirmed the adsorption was irreversible. Thermodynamic experiments suggested that the MG5 adsorption was spontaneous (-ΔG°) and endothermic (+ΔH°), and increased the randomness (+ΔS°) in the system. Although the specific surface areas of the ACs followed the order GSAC (1,413) > GSHAC (1,238) > GSHBAC (903) > GSBAC (812 m(2)/g), the maximum adsorption capacities determined from the Langmuir model (Q(o)max) at 30 °C exhibited the following order: GSHBAC (531) > GSAC (344) > GSHAC (332) > GSBAC (253 mg/g). Oxygenation of the ACs' surface through a hydrothermal process with acrylic acid resulted in a decrease in MG5

  7. Adsorption of direct dye onto activated carbon prepared from areca nut pod--an agricultural waste.

    PubMed

    Gopalswami, P; Sivakumar, N; Ponnuswamy, S; Venkateswaren, V; Kavitha, G

    2010-10-01

    Activated carbons are made from various agricultural wastes by physical and chemical activation. The preparation of activated carbon from agricultural waste could increase economic return and also provides an excellent method for the solid waste disposal thereby reduce pollution. Areca nut pod, which is an agricultural waste, has been used as a raw material to produce activated carbon (AAC) by four different methods. The adsorption of Direct blue dye used in textile industry on the porous areca nut pod activated carbon was investigated. The activated carbon AAC has an average surface area of 502 m2/g. CAC, the commercial reference was mainly micro porous with a surface area of 1026 m2/g .The study investigated the removal of direct dye from simulated water. The effects of adsorbent dosage, initial dye concentration, pH and contact time were studied. The results showed that as the amount of the adsorbent was increased, the percentage of dye removal increased accordingly. The results indicate that AAC could be employed as low-cost alternative to commercial activated carbon in wastewater treatment for the removal of acid dyes.

  8. Study on preparation of Luffa activated carbon and its adsorption of metal ions

    NASA Astrophysics Data System (ADS)

    Zhai, Kuilu; Li, Zichao; Li, Qun

    2017-03-01

    In this paper, loofah was used as raw material and alkali and hydrogen peroxide were used to pre-oxidize. The activated carbon was activated by zinc chloride, and the activated carbon was used to desorb the heavy metal ions nickel and copper. The removal efficiency of heavy metal ions was studied under different conditions. The effects of retinervus Luffae Fructus active carbon adsorption of metal ions on process conditions, including metal ion concentration, reaction temperature, loofah activated carbon types and activated carbon dosage. In the present study, in different strain rate on the loofah sponge material compression tests in a wide range of density from 24 to 64 kg cubic meters. Luffa fibers and followed by carbonization to prepare MCAC KOH activation. MCAC has dense in parallel channels 10 mm in diameter and 4 - 0.3 - 1 mm wall thickness, which is inherited from the native structure of Luffa. Micro and middle holes are formed on the inner surface of the channel wall to form a hierarchical porous structure.

  9. Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon.

    PubMed

    Prola, Lizie D T; Machado, Fernando M; Bergmann, Carlos P; de Souza, Felipe E; Gally, Caline R; Lima, Eder C; Adebayo, Matthew A; Dias, Silvio L P; Calvete, Tatiana

    2013-11-30

    Multi-walled carbon nanotubes (MWCNT) and powder activated carbon (PAC) were used as adsorbents for adsorption of Direct Blue 53 dye (DB-53) from aqueous solutions. The adsorbents were characterised using Raman spectroscopy, N2 adsorption/desorption isotherms, and scanning and transmission electron microscopy. The effects of initial pH, contact time and temperature on adsorption capacity of the adsorbents were investigated. At pH 2.0, optimum adsorption of the dye was achieved by both adsorbents. Equilibrium contact times of 3 and 4 h were achieved by MWCNT and PAC adsorbents, respectively. The general order kinetic model provided the best fit of the experimental data compared to pseudo-first order and pseudo-second order kinetic adsorption models. For DB-53 dye, the equilibrium data (298-323 K) were best fitted to the Sips isotherm model. The maximum sorption capacity for adsorption of the dye occurred at 323 K, with the values of 409.4 and 135.2 mg g(-1) for MWCNT and PAC, respectively. Studies of adsorption/desorption were conducted and the results showed that DB-53 loaded MWCNT could be regenerated (97.85%) using a mixture 50% acetone + 50% of 3 mol L(-1) NaOH. Simulated dye house effluents were used to evaluate the application of the adsorbents for effluent treatment (removal of 99.87% and 97.00% for MWCNT and PAC, respectively, were recorded).

  10. EFFECT OF MOLECULAR OXYGEN ON THE ACTIVATED CARBON ADSORPTION OF NATURAL ORGANIC MATTER IN OHIO RIVER WATER

    EPA Science Inventory

    Recently published data show that the adsorptive capacity of granular activated carbon for phenois increases significantly in the presence of molecular oxygen (Vidic, Suidan,Traegner and Nakhla, 1990). in this study, the effect of molecular oxygen on the adsorptive capacity of a...

  11. Characterization and ciprofloxacin adsorption properties of activated carbons prepared from biomass wastes by H3PO4 activation.

    PubMed

    Sun, Yuanyuan; Li, Hong; Li, Guangci; Gao, Baoyu; Yue, Qinyan; Li, Xuebing

    2016-10-01

    As biomass wastes, Arundo donax Linn and pomelo peel were used as precursors for activated carbons (ALAC and PPAC) preparation by phosphoric acid activation. The pore structure and surface acidic functional groups of both carbons were characterized by nitrogen adsorption/desorption experiment, NH3-temperature-programmed desorption (NH3-TPD) and Fourier transform infrared spectroscopy (FTIR). A batch of experiments was carried out to investigate the adsorption performances of ciprofloxacin under different conditions. Results showed that PPAC exhibited larger surface area (1252m(2)/g) and larger portion of mesoporous, while ALAC was typical of microporous materials. Results from NH3-TPD suggested that ALAC was characteristic of more acidic functional group than PPAC. The maximum monolayer adsorption capability was 244mg/g for ALAC and 400mg/L for PPAC. Kinetics studies showed intra-particle diffusion was not the unique rate-controlling step. Boundary layer resistance existed between adsorbent and adsorbate.

  12. Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin-water system.

    PubMed

    Ng, Chilton; Losso, Jack N; Marshall, Wayne E; Rao, Ramu M

    2002-11-01

    The present study was designed to model the adsorption of geosmin from water under laboratory conditions using the Freundlich isotherm model. This model was used to compare the efficiency of sugarcane bagasse and pecan shell-based powdered activated carbon to the efficiency of a coal-based commercial activated carbon (Calgon Filtrasorb 400). When data were generated from Freundlich isotherms, Calgon Filtrasorb 400 had greater geosmin adsorption at all geosmin concentrations studied than the laboratory produced steam-activated pecan shell carbon, steam-activated bagasse carbon, and the CO2-activated pecan shell carbon. At geosmin concentrations < 0.07 microg/l for the phosphoric acid-activated pecan shell carbon and below 0.08 microg/l for a commercially produced steam-activated pecan shell carbon obtained from Scientific Carbons, these two carbons had a higher calculated geosmin adsorption than Filtrasorb 400. While the commercial carbon was more efficient than some laboratory prepared carbons at most geosmin concentrations, the results indicate that when the amount of geosmin was below the threshold level of human taste (about 0.10 microg/l), the phosphoric acid-activated pecan shell carbon and the Scientific Carbons sample were more efficient than Filtrasorb 400 at geosmin removal.

  13. Removal of sulfur compounds from petroleum refinery wastewater through adsorption on modified activated carbon.

    PubMed

    Ben Hariz, Ichrak; Al Ayni, Foued; Monser, Lotfi

    2014-01-01

    The adsorption of sulfur compounds from petroleum refinery wastewater on a chemically modified activated carbon (MAC) was investigated. The modification technique (nitric acid, hydrogen peroxide and thermal modification) enhanced the removal capacity of carbon and therefore decreases cost-effective removal of sulfide from refinery wastewater. Adsorption equilibrium and kinetics data were determined for sulfur removal from real refinery wastewater. The data were evaluated according to several adsorption isotherm and kinetics models. The Freundlich isotherm fitted well with the equilibrium data of sulfur on different adsorbents, whereas the kinetics data were best fitted by the pseudo-second-order model. Insights of sulfide removal mechanisms indicated that the sorption was controlled through the intraparticle diffusion mechanism with a significant contribution of film diffusion. The MAC adsorbent was found to have an effective removal capacity of approximately 2.5 times that of non-modified carbon. Using different MAC, sulfides were eliminated with a removal capacity of 52 mg g(-1). Therefore, MAC can be utilized as an effective and less expensive adsorbent for the reduction of sulfur in refinery wastewater.

  14. Modeling high-pressure adsorption of gas mixtures on activated carbon and coal using a simplified local-density model.

    PubMed

    Fitzgerald, James E; Robinson, Robert L; Gasem, Khaled A M

    2006-11-07

    The simplified local-density (SLD) theory was investigated regarding its ability to provide accurate representations and predictions of high-pressure supercritical adsorption isotherms encountered in coalbed methane (CBM) recovery and CO2 sequestration. Attention was focused on the ability of the SLD theory to predict mixed-gas adsorption solely on the basis of information from pure gas isotherms using a modified Peng-Robinson (PR) equation of state (EOS). An extensive set of high-pressure adsorption measurements was used in this evaluation. These measurements included pure and binary mixture adsorption measurements for several gas compositions up to 14 MPa for Calgon F-400 activated carbon and three water-moistened coals. Also included were ternary measurements for the activated carbon and one coal. For the adsorption of methane, nitrogen, and CO2 on dry activated carbon, the SLD-PR can predict the component mixture adsorption within about 2.2 times the experimental uncertainty on average solely on the basis of pure-component adsorption isotherms. For the adsorption of methane, nitrogen, and CO2 on two of the three wet coals, the SLD-PR model can predict the component adsorption within the experimental uncertainties on average for all feed fractions (nominally molar compositions of 20/80, 40/60, 60/40, and 80/20) of the three binary gas mixture combinations, although predictions for some specific feed fractions are outside of their experimental uncertainties.

  15. Activated carbon from pyrolysis of brewer's spent grain: Production and adsorption properties.

    PubMed

    Vanreppelen, Kenny; Vanderheyden, Sara; Kuppens, Tom; Schreurs, Sonja; Yperman, Jan; Carleer, Robert

    2014-07-01

    Brewer's spent grain is a low cost residue generated by the brewing industry. Its chemical composition (high nitrogen content 4.35 wt.%, fibres, etc.) makes it very useful for the production of added value in situ nitrogenised activated carbon. The composition of brewer's spent grain revealed high amounts of cellulose (20.8 wt.%), hemicellulose (48.78 wt.%) and lignin (11.3 wt.%). The fat, ethanol extractives and ash accounted for 8.17 wt.%, 4.7 wt.% and 3.2 wt.%, respectively. Different activated carbons were produced in a lab-scale pyrolysis/activation reactor by applying several heat and steam activation profiles on brewer's spent grain. Activated carbon yields from 16.1 to 23.6 wt.% with high N-contents (> 2 wt.%) were obtained. The efficiency of the prepared activated carbons for phenol adsorption was studied as a function of different parameters: pH, contact time and carbon dosage relative to two commercial activated carbons. The equilibrium isotherms were described by the non-linear Langmuir and Freundlich models, and the kinetic results were fitted using the pseudo-first-order model and the pseudo-second-order model. The feasibility of an activated carbon production facility (onsite and offsite) that processes brewer's spent grain for different input feeds is evaluated based on a techno-economic model for estimating the net present value. Even though the model assumptions start from a rather pessimistic scenario, encouraging results for a profitable production of activated carbon using brewer's spent grain are obtained.

  16. Production of granular activated carbon from waste walnut shell and its adsorption characteristics for Cu(2+) ion.

    PubMed

    Kim, J W; Sohn, M H; Kim, D S; Sohn, S M; Kwon, Y S

    2001-08-17

    Production of granular activated carbon by chemical activation has been attempted employing walnut shells as the raw material. The thermal characteristics of walnut shell were investigated by TG/DTA and the adsorption capacity of the produced activated carbon was evaluated using the titration method. As the activation temperature increased, the iodine value increased. However, a temperature higher than 400 degrees C resulted in a thermal degradation, which was substantiated by scanning electron microscopy (SEM) analysis, and the adsorption capacity decreased. Activation longer than 1h at 375 degrees C resulted in the destruction of the microporous structure of activated carbon. The iodine value increased with the increase in the concentration of ZnCl2 solution. However, excessive ZnCl2 in the solution decreased the iodine value. The extent of activation by ZnCl2 was compared with that by CaCl2 activation. Enhanced activation was achieved when walnut shell was activated by ZnCl2. Applicability of the activated carbon as adsorbent was examined for synthetic copper wastewater. Adsorption of copper ion followed the Freundlich model. Thermodynamic aspects of adsorption have been discussed based on experimental results. The adsorption capacity of the produced activated carbon met the conditions for commercialization and was found to be superior to that made from coconut shell.

  17. Adsorption of doxorubicin on poly(methyl methacrylate)-chitosan-heparin-coated activated carbon beads.

    PubMed

    Miao, Jianjun; Zhang, Fuming; Takieddin, Majde; Mousa, Shaker; Linhardt, Robert J

    2012-03-06

    Extracorporeal filter cartridges, filled with an activated carbon bead (ACB) adsorbent, have been used for removal of overdosed cancer drugs from the blood. Coatings on adsorbent matrices, poly(methyl methacrylate) (PMMA)/activated carbon bead and PMMA/chitosan/heparin/ACB composites, were tested to improve their biocompatibility and blood compatibility. PMMA coating on ACBs was accomplished in a straightforward manner using a PMMA solution in ethyl acetate. A one-step hybrid coating of ACBs with PMMA-anticoagulant heparin required the use of acetone and water co-solvents. Multilayer coatings with three components, PMMA, chitosan, and heparin, involved three steps: PMMA was first coated on ACBs; chitosan was then coated on the PMMA-coated surface; and finally, heparin was covalently attached to the chitosan coating. Surface morphologies were studied by scanning electron microscopy. X-ray photoelectron spectroscopy confirmed the -SO(3)(-) group. Adsorption, of a chemotherapy drug (doxorubicin) from both water and phosphate-buffered saline, by the coated ACBs was examined. The adsorption isotherm curves were fitted using the Freundlich model. The current adsorption system might find potential applications in the removal of high-dose regional chemotherapy drugs while maintaining high efficiency, biocompatibility, and blood compatibility.

  18. Numerical Analysis on Adsorption Characteristics of Activated Carbon/Ethanol Pair in Finned Tube Type Adsorber

    NASA Astrophysics Data System (ADS)

    Makimoto, Naoya; Kariya, Keishi; Koyama, Shigeru

    The cycle performance of adsorption cooling system depends on the thermophysical properties of the adsorbent/refrigerant pair and configuration of the adsorber/desorber heat exchanger. In this study, a twodimensional analysis is carried out in order to clarify the performance of the finned tube type adsorber/desorber heat exchanger using a highly porous activated carbon powder (ACP)/ethanol pair. The simulation results show that the average cooling capacity per unit volume of adsorber/desorber heat exchanger and coefficient of performance (COP) can be improved by optimizing fin thickness, fin height, fin pitch and tube diameter. The performance of a single stage adsorption cooling system using ACP/ethanol pair is also compared with that of activated carbon fiber (ACF)/ethanol pair. It is found that the cooling capacities of each adsorbent/refrigerant pair increase with the decrease of adsorption/desorption time and the cooling capacity of ACP/ethanol pair is approximately 2.5 times as much as that of ACF/ethanol pair. It is also shown that COP of ACP/ethanol pair is superior to that of ACF/ethanol pair.

  19. Adsorption of arsenic by activated carbon, calcium alginate and their composite beads.

    PubMed

    Hassan, A F; Abdel-Mohsen, A M; Elhadidy, H

    2014-07-01

    The present investigation deals with preparation of three different adsorbent materials namely; potassium hydroxide activated carbon based apricot stone (C), calcium alginate beads (G) and calcium alginate/activated carbon composite beads (GC) were used for the removal of arsenic. The prepared adsorbent materials were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), N2-adsorption at -196°C and point of zero charge. From the obtained results, it was found that the porosity, surface area and total pore volume of the adsorbent material C>GC>G respectively, however, the G adsorbent has more acidic function group than the other adsorbents. The influence of pH, time, temperature and initial concentration of arsenic(V) were studied and optimized. GC exhibits the maximum As(V) adsorption (66.7mg/g at 30°C). The adsorption of arsenic ions was observed to follow pseudo-second order mechanism as well as the thermodynamic parameters confirm also the endothermic spontaneous and a physisorption process.

  20. Effect of functionalization of carbon nanotubes with psychosine on complement activation and protein adsorption.

    PubMed

    Rybak-Smith, Malgorzata J; Tripisciano, Carla; Borowiak-Palen, Ewa; Lamprecht, Constanze; Sim, Robert B

    2011-12-01

    Carbon nanotubes possess interesting physicochemical properties which make them potentially usable in medicine. Single-walled carbon nanotubes and multi-walled carbon nanotubes, for example, may carry and deliver anticancer drugs, such as cisplatin. Magnetic nanoparticles, like iron filled MWCNT, can be used in hyperthermia therapy. However, their hydrophobic character is a major difficulty, as preparation of stable dispersions of carbon nanotubes in biological buffers is an essential step towards biomedical applications. Recently, a novel treatment using the glycolipid, Galactosyl-beta1-sphingosine (psychosine), was employed to make stable suspensions of psychosine-functionalized carbon nanotubes in biological buffers. In this paper, the interactions of psychosine-functionalized carbon nanotubes with a part of the human immune system, complement, is presented. To investigate if human serum complement proteins can interact with psychosine-functionalized carbon nanotubes, complement consumption (depletion) assays were conducted. Moreover, direct protein binding studies, to analyze the interaction of plasma proteins with the psychosine-functionalized carbon nanotubes, using affinity chromatography and sodium dodecyl sulphate polyacrylamide gel electrophoresis techniques, were applied. The psychosine-functionalized carbon nanotubes activate human complement via the classical pathway. Interestingly, as the hydrophilic part of the glycolipid may bind to ficolins, the lectin pathway could also be involved. Binding of human plasma proteins is very selective as only very few proteins adsorb to the psychosine-functionalized carbon nanotube surface, when placed in contact with human plasma. Bovine serum albumin-coated carbon nanotubes were used as a standard to find the differences in complement activation and protein adsorption patterns, caused by various non-covalent coatings of carbon nanotubes.

  1. Adsorption of low concentration phosphine in yellow phosphorus off-gas by impregnated activated carbon.

    PubMed

    Wang, Xueqian; Ning, Ping; Shi, Yan; Jiang, Ming

    2009-11-15

    In order to utilize high concentration CO comprehensively, impregnated activated carbon sorbent and the catalytic oxidation reaction for PH(3) were investigated in this study. Carbon was impregnated with HCl, KNO(3), or hexanediol. The activated carbon modified by 7% (mass fraction) HCl could enhance the adsorption purification ability significantly. Raising the reaction temperature or increasing the oxygen content of the gas can improve the purification efficiency. The structure of the materials after modification was determined using nitrogen adsorption. The modification decreased the volume of pores smaller than 2 nm in diameter with the most noticeable change occurring in the micropores ranging from 0.3 nm to 1.5 nm in diameter. Decreases in micropore volume accounted for 87% of the total pore volume change. After the adsorption, the surface areas decreased 28%, 29% of which was due to decreased micropore surface. HCl significantly increased the performance of carbon as a PH(3) adsorbent when HCl impregnation was applied whereas the effects of other materials used in this study were much less pronounced. HCl present in the small pores probably acted as a catalyst for oxygen activation that caused PH(3) oxidation. As a result of this process, H(3)PO(4) and P(4)O(10) were formed, strongly adsorbed, and present in the small pores ranging from 0.3 nm to 1.5 nm. In conclusion, this study provides evidence that CO from industrial off-gas can be purified and used as the raw material for a broader range of products.

  2. Influence of the pore structure and surface chemical properties of activated carbon on the adsorption of mercury from aqueous solutions.

    PubMed

    Lu, Xincheng; Jiang, Jianchun; Sun, Kang; Wang, Jinbiao; Zhang, Yanping

    2014-01-15

    Reactivation and chemical modification were used to obtain modified activated carbons with different pore structure and surface chemical properties. The samples were characterized by nitrogen absorption-desorption, Fourier transform infrared spectroscopy and the Bothem method. Using mercury chloride as the target pollutant, the Hg(2+) adsorption ability of samples was investigated. The results show that the Hg(2+) adsorption capacity of samples increased significantly with increases in micropores and acidic functional groups and that the adsorption process was exothermic. Different models and thermodynamic parameters were evaluated to establish the mechanisms. It was concluded that the adsorption occurred through a monolayer mechanism by a two-speed process involving both rapid adsorption and slow adsorption. The adsorption rate was determined by chemical reaction.

  3. Comparisons of kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide adsorption in aqueous solution with graphene oxide, zeolite and activated carbon

    NASA Astrophysics Data System (ADS)

    Chang, Shenteng; Lu, Chungsying; Lin, Kun-Yi Andrew

    2015-01-01

    Graphene oxide (GO), sodium Y-type zeolite (NaY) and granular activated carbon (GAC) are selected as adsorbents to study their kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide (TMAH) adsorption from water. The adsorption kinetics follows the pseudo-second-order rate law while the adsorption thermodynamics shows an exothermic reaction with GO and GAC but displays an endothermic reaction with NaY. The adsorbed TMAH can be readily desorbed from the surface of GO and NaY by 0.05 M NaCl solution. A comparative study on the cyclic TMAH adsorption with GO, NaY and GAC is also conducted and the results reveal that GO exhibits the greatest TMAH adsorption capacity as well as superior reversibility of TMAH adsorption over 10 cycles of adsorption and desorption process. These features indicate that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment.

  4. Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside: influence of operational parameters.

    PubMed

    Foo, K Y; Hameed, B H

    2012-01-01

    Preparation of activated carbon has been attempted using KOH as activating agent by microwave heating from biodiesel industry solid residue, oil palm empty fruit bunch (EFBAC). The significance of chemical impregnation ratio (IR), microwave power and activation time on the properties of activated carbon were investigated. The optimum condition has been identified at the IR of 1.0, microwave power of 600 W and activation time of 7 min. EFBAC was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement, determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue as dye model compound. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 395.30 mg/g and carbon yield of 73.78%, while the BET surface area and total pore volume were corresponding to 1372 m2/g and 0.76 cm3/g, respectively.

  5. [Harvest of the carbon source in wastewater by the adsorption and desorption of activated sludge].

    PubMed

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang; Mei, Yi-Jun

    2011-04-01

    The carbon source in municipal wastewater was adsorbed by activated sludge and then harvested through the hydrolysis of activated sludge. Results indicated that activated sludge had high absorbing ability towards organic carbon and phosphorus under continuous operation mode, and the average COD and TP absorption rate reached as high as 63% and 76%, respectively. Moreover, about 50% of the soluble carbon source was outside of the sludge cell and could be released under mild hydrolysis condition. Whereas the absorbed amount of nitrogen was relatively low, and the removal rate of ammonia was only 13% . Furthermore, the releases of organic carbon, nitrogen and phosphorus from the sludge absorbing pollutants in the wastewater were studied. By comparing different hydrolysis conditions of normal (pH 7.5, 20 degrees C), heating (pH 7.5, 60 degrees C) and the alkaline heating (pH 11, 60 degrees C), the last one presented the optimum hydrolysis efficiency. Under which, the release rate of COD could reach 320 mg/g after 24 hours, whereas nitrogen and phosphorus just obtained low release rates of 18 mg/g and 2 mg/g, respectively. Results indicate that the carbon source in wastewater could be harvested by the adsorption and desorption of activated sludge, and the concentrations of nitrogen and phosphorus are low and would not influence the reuse of the harvested carbon source.

  6. Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry.

    PubMed

    Zhu, Xuan; Tsang, Daniel C W; Chen, Feng; Li, Shiyu; Yang, Xin

    2015-01-01

    Ciprofloxacin (CIP) is a commonly used antibiotic and widely detected in wastewaters and farmlands nowadays. This study evaluated the efficacy of next-generation adsorbent (graphene) and conventional adsorbent (granular activated carbon, GAC) for CIP removal. Batch experiments and characterization tests were conducted to investigate the adsorption kinetics, equilibrium isotherms, thermodynamic properties, and the influences of solution chemistry (pH, ionic strength, natural organic matter (NOM), and water sources). Compared to GAC, graphene showed significantly faster adsorption and reached equilibrium within 3 min, confirming the rapid access of CIP into the macroporous network of high surface area of graphene as revealed by the Brunner-Emmet-Teller measurements analysis. The kinetics was better described by a pseudo-second-order model, suggesting the importance of the initial CIP concentration related to surface site availability of graphene. The adsorption isotherm on graphene followed Langmuir model with a maximum adsorption capacity of 323 mg/g, which was higher than other reported carbonaceous adsorbents. The CIP adsorption was thermodynamically favourable on graphene and primarily occurred through π - π interaction, according to the FTIR spectroscopy. While the adsorption capacity of graphene decreased with increasing solution pH due to the speciation change of CIP, the adverse effects of ionic strength (0.01-0.5 mol L(-1)), presence of NOM (5 mg L⁻¹), and different water sources (river water or drinking water) were less significant on graphene than GAC. These results indicated that graphene can serve as an alternative adsorbent for CIP removal in commonly encountered field conditions, if proper separation and recovery is available in place.

  7. Application of water-activated carbon isotherm models to water adsorption isotherms of single-walled carbon nanotubes.

    PubMed

    Kim, Pyoungchung; Agnihotri, Sandeep

    2008-09-01

    The objective of this study is to understand the interactions of water with novel nanocarbons by implementing semiempirical models that were developed to interpret adsorption isotherms of water in common carbonaceous adsorbents. Water adsorption isotherms were gravimetrically determined on several single-walled carbon nanotube (SWNT) and activated carbon samples. Each isotherm was fitted to the Dubinin-Serpinsky (DS) equation, the Dubinin-Astakov equation, the cooperative multimolecular sorption theory, and the Do and Do equations. The applicability of these models was evaluated by high correlation coefficients and the significance of fitting parameters, especially those that delineate the concentration of hydrophilic functional groups, micropore volume, and the size of water clusters. Samples were also characterized by spectroscopic and adsorption techniques, and properties complementary to those quantified by the fitting parameters were extracted from the data collected. The comparison of fitting parameters with sample characterization results was used as the methodology for selecting the most informative and the best-fitting model. We conclude that the Do equation, as modified by Marban et al., is the most suitable semiempirical equation for predicting from experimental isotherms alone the size of molecular clusters that facilitate adsorption in SWNTs, deconvoluting the experimental isotherms into two subisotherms: adsorption onto hydrophilic groups and filling of micropores, and quantifying the concentration of hydrophilic functional groups, as well as determining the micropore volume explored by water. With the exception of the DS equation, the application of other water isotherm models to SWNTs is not computationally tractable. The findings from this research should aid studies of water adsorption in SWNTs by molecular simulation, which remains the most popular tool for understanding the microscopic behavior of water in nanocarbons.

  8. EFFECT OF MOLECULAR OXYGEN ON ADSORPTIVE CAPACITY AND EXTRACTION EFFICIENCY OF GRANULATED ACTIVATED CARBON FOR THREE ORTHO-SUBSTITUTED PHENOLS

    EPA Science Inventory

    Adsorptive capacity of activated carbon for several organic compounds was found to be strongly influenced by the presence of molecular oxygen. This influence is manifested by the polymerization of adsorbate on the surface of activated carbon. As a result, GAC exhibits much high...

  9. Deactivation model for the adsorption of trichloroethylene vapor on an activated carbon bed

    SciTech Connect

    Suyadal, Y.; Erol, M.; Oguz, H.

    2000-03-01

    In this work, the adsorption of trichloroethylene (TCE) vapor was investigated in a laboratory-scale packed-bed adsorber by using granular activated carbon (GAC) at constant pressure (101.3 kPa). The packed-bed adsorber (PBA) was operated batchwise with the charges of GAC particles in the ranges of 2.5--10.0 g for obtaining TCE breakthrough curves. Experiments were carried out at different temperatures (25.6 {le} T({degree}C) {le} 35.8) and TCE feedstock concentrations (6,350 {le} C (ppm TCE) {le} 7,950) within the range of space velocity (5,000 {le} {var_theta} (h{sup {minus}1}) {le} 17,000). The effects of TCE inlet concentration, operating temperature, and mass of adsorbent (m{sub Ads}) on the TCE breakthrough curves were investigated, respectively. The deactivation model (DM) was tested for these curves by using the analogy between the adsorption of TCE and the deactivation of catalyst particles. Observed adsorption rate constants (k{sub S}) and first-order deactivation rate constants (k{sub d}) were obtained from the model. It was found that the deactivation model describes the experimental breakthrough curves more accurately compared to the adsorption isotherms given in the literature.

  10. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth.

    PubMed

    Son, H K; Sivakumar, S; Rood, M J; Kim, B J

    2016-01-15

    Adsorption is an effective means to selectively remove volatile organic compounds (VOCs) from industrial gas streams and is particularly of use for gas streams that exhibit highly variable daily concentrations of VOCs. Adsorption of such gas streams by activated carbon fiber cloths (ACFCs) and subsequent controlled desorption can provide gas streams of well-defined concentration that can then be more efficiently treated by biofiltration than streams exhibiting large variability in concentration. In this study, we passed VOC-containing gas through an ACFC vessel for adsorption and then desorption in a concentration-controlled manner via electrothermal heating. Set-point concentrations (40-900 ppm(v)) and superficial gas velocity (6.3-9.9 m/s) were controlled by a data acquisition and control system. The results of the average VOC desorption, desorption factor and VOC in-and-out ratio were calculated and compared for various gas set-point concentrations and superficial gas velocities. Our results reveal that desorption is strongly dependent on the set-point concentration and that the VOC desorption rate can be successfully equalized and controlled via an electrothermal adsorption system.

  11. Simultaneous activated carbon adsorption within a membrane bioreactor for an enhanced micropollutant removal.

    PubMed

    Li, Xueqing; Hai, Faisal I; Nghiem, Long D

    2011-05-01

    Significant adsorption of sulfamethoxazole and carbamazepine to powdered activated carbon (PAC) was confirmed by a series of adsorption tests. In contrast, adsorption of these micropollutants to the sludge was negligible. The removal of these compounds in membrane bioreactor (MBR) was dependent on their hydrophobicity and loading as well as the PAC dosage. Sulfamethoxazole exhibited better removal rate during operation under no or low (0.1g/L) PAC dosage. When the PAC concentration in MBR was raised to 1.0 g/L, a sustainable and significantly improved performance in the removal of both compounds was observed - the removal efficiencies of sulfamethoxazole and carbamazepine increased to 82 ± 11% and 92 ± 15% from the levels of 64 ± 7%, and negligible removal, respectively. The higher removal efficiency of carbamazepine at high (1.0 g/L) PAC dosage could be attributed to the fact that carbamazepine is relatively more hydrophobic than sulfamethoxazole, which subsequently resulted in its higher adsorption affinity toward PAC.

  12. Effect of the both texture and electrical properties of activated carbon on the CO{sub 2} adsorption capacity

    SciTech Connect

    Djeridi, W.; Ouederni, A.; Mansour, N.Ben; Llewellyn, P.L.; Alyamani, A.; El Mir, L.

    2016-01-15

    Highlights: • A series of activated carbon pellet without binder was prepared by chemical activation. • Carbon dioxide storage isotherm at 30 °C and up to 25 bars was measured for the microporous carbon. • Adsorption enthalpies have been correlated with the carbon dioxide uptake. • Pyrolysis temperature effect on the electrical conductivity of the samples. • Impact of the both texture and electrical properties on CO{sub 2} adsorption capacity have been deducted - Abstract: A series of activated carbon pellets (ACP) based on olive stones were studied for CO{sub 2} storage application. The surface area, pore volume, and pore diameter were evaluated from the analysis of N{sub 2} adsorption isotherm data. The characterization of carbon materials was performed by scanning electron microscopy (SEM), the powder X-ray diffraction (PXRD) and transmission electron microscopy (TEM). The adsorption enthalpies were obtained by microcalorimetry. The effect of pyrolysis temperature on textural, electrical conductivity and gas adsorption capacities of the ACP were investigated by adsorbing CO{sub 2} at 303 K in the pressure range of 0–2.3 MPa. In fact the electrical conductivity is strongly affected by the microporosity of the samples and the size of the micropore. It increases when the pore size decreases which affect the CO{sub 2} adsorption. Also with increases temperature the free electrons concentration on the surface increases which affect the interaction of the adsorbed gas molecules.

  13. Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions.

    PubMed

    Song, Xianghua; Gunawan, Poernomo; Jiang, Rongrong; Leong, Susanna Su Jan; Wang, Kean; Xu, Rong

    2011-10-30

    We report the synthesis and activation of colloidal carbon nanospheres (CNS) for adsorption of Ag(I) ions from aqueous solutions. CNS (400-500 nm in diameter) was synthesized via simple hydrothermal treatment of glucose solution. The surface of nonporous CNS after being activated by NaOH was enriched with -OH and -COO(-) functional groups. Despite the low surface area (<15m(2)/g), the activated CNS exhibited a high adsorption capacity of 152 mg silver/g. Under batch conditions, all Ag(I) ions can be completely adsorbed in less than 6 min with the initial Ag(I) concentrations lower than 2 ppm. This can be attributed to the minimum mass transfer resistance as Ag(I) ions were all deposited and reduced as Ag(0) nanoparticles on the external surface of CNS. The kinetic data can be well fitted to the pseudo-second-order kinetics model. The adsorbed silver can be easily recovered by dilute acid solutions and the CNS can be reactivated by the same treatment with NaOH solution. The excellent adsorption performance and reusability have also been demonstrated in a continuous mode. The NaOH activated CNS reported here could represent a new type of low-cost and efficient adsorbent nanomaterials for removal of trace Ag(I) ions for drinking water production.

  14. Ozone treatment of coal- and coffee grounds-based active carbons: Water vapor adsorption and surface fractal micropores

    SciTech Connect

    Tsunoda, Ryoichi; Ozawa, Takayoshi; Ando, Junichi

    1998-09-15

    Characteristics of the adsorption iostherms of water vapor on active carbons from coal and coffee grounds and those ozonized ones from the surface fractal dimension analysis are discussed. The upswing of the adsorption isotherms in the low relative pressure of coffee grounds-based active carbon, of which isotherms were not scarcely affected on ozonization, was attributed to the adsorption of water molecules on the metallic oxides playing the role of oxygen-surface complexes, which formed the corrugated surfaces on the basal planes of micropore walls with the surface fractal dimension D{sub s} > 2. On the other hand, coal-based active carbon with D{sub s} < 2, which indicated the flat surfaces of micropore walls, showed little effect on the upswing even on ozonization, even though the adsorption amounts of water vapor were increased in the low relative pressure.

  15. Energetic changes in the surface of activated carbons and relationship with Ni(II) adsorption from aqueous solution

    NASA Astrophysics Data System (ADS)

    Rodríguez-Estupiñan, Paola; Giraldo, Liliana; Moreno-Piraján, Juan Carlos

    2013-12-01

    This study investigated Ni(II) ion adsorption from aqueous solution on activated carbons obtained by chemically modifying the surface with the oxidizing agents nitric acid and hydrogen peroxide (CAGoxP and CAGoxN, respectively). The activated carbons were characterized by total acidity and basicity, pH at the point of charge zero determination and IR spectroscopy. Textural parameters such as the BET area and pore volumes were evaluated by gas adsorption. The BET area of the materials was between 816 and 876 m2 g-1. Additionally, the immersion enthalpies of the activated carbons in water and benzene were determined. The experimental results on adsorption in solution were adjusted to the Langmuir and Freundlich models, obtaining values for the monolayer capacity between 29.68 and 50.97 mg g-1, which indicates that the adsorption capacity depends largely on solid surface chemistry.

  16. Adsorption interference in mixtures of trace contaminants flowing through activated carbon adsorber beds

    NASA Technical Reports Server (NTRS)

    Madey, R.; Photinos, P. J.

    1980-01-01

    Adsorption interference in binary and ternary mixtures of trace contaminants in a helium carrier gas flowing through activated carbon adsorber beds are studied. The isothermal transmission, which is the ratio of the outlet to the inlet concentration, of each component is measured. Interference between co-adsorbing gases occurs when the components are adsorbed strongly. Displacement of one component by another is manifested by a transmission greater than unity for the displaced component over some range of eluted volume. Interference is evidenced not only by a reduction of the adsorption capacity of each component in the mixture in comparison with the value obtained in a single-component experiment, but also by a change in the slope of the transmission curve of each component experiment.

  17. Adsorption of organic acids from dilute aqueous solution onto activated carbon

    SciTech Connect

    Wang, S.W.

    1980-06-01

    The radioisotope technique was used to study the removal of organic acid contaminants from dilute aqueous solutions onto activated carbon. Acetic acid, propionic acid, n-butyric acid, n-hexanoic acid and n-heptanoic acid were studied at 278, 298, and 313/sup 0/K. Three bi-solute acid mixtures (acetic and propionic acids, acetic and butanoic acids, and propionic and butanoic acids) were studied at 278 and 298/sup 0/K. Isotherms of the single-solute systems were obtained at three different temperatures in the very dilute concentration region (less than 1% by weight). These data are very important in the prediction of bi-solute equilibrium data. A Polanyi-based competitive adsorption potential theory was used to predict the bi-solute equilibrium uptakes. Average errors between calculated and experimental data ranges from 4% to 14%. It was found that the competitive adsorption potential theory gives slightly better results than the ideal adsorbed solution theory.

  18. Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation.

    PubMed

    Secondes, Mona Freda N; Naddeo, Vincenzo; Belgiorno, Vincenzo; Ballesteros, Florencio

    2014-01-15

    Advanced wastewater treatment is necessary to effectively remove emerging contaminants (ECs) with chronic toxicity, endocrine disrupting effects, and the capability to induce the proliferation of highly resistant microbial strains in the environment from before wastewater disposal or reuse. This paper investigates the efficiency of a novel hybrid process that applies membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation simultaneously to remove ECs. Diclofenac, carbamazepine, and amoxicillin are chosen for this investigation because of their assessed significant environmental risks. Removal mechanisms and enhancement effects are analysed in single and combined processes. The influence of adsorbent dose and ultrasonic frequency to EC removal are also investigated. Results suggest that adsorption is probably the main removal mechanism and is affected by the nature of ECs and the presence of other components in the mixture. Almost complete removals are achieved in the hybrid process for all ECs.

  19. Biodegradation of persistent organics can overcome adsorption-desorption hysteresis in biological activated carbon systems.

    PubMed

    Abromaitis, V; Racys, V; van der Marel, P; Meulepas, R J W

    2016-04-01

    In Biological Activated Carbon (BAC) systems, persistent organic pollutants can be removed through a combination of adsorption, desorption and biodegradation. These processes might be affected by the presence of other organics, especially by the more abundant easily-biodegradable organics, like acetate. In this research these relations are quantified for the removal of the persistent pharmaceutical metoprolol. Acetate did not affect the adsorption and desorption of metoprolol, but it did greatly enhance the metoprolol biodegradation. At least part of the BAC biomass growing on acetate was also able to metabolise metoprolol, although metoprolol was only converted after the acetate was depleted. The presence of easily-degradable organics like acetate in the feeding water is therefore beneficial for the removal of metoprolol in BAC systems. The isotherms obtained from metoprolol adsorption and desorption experiments showed that BAC systems are subject to hysteresis; for AC bioregeneration to take place the microbial biomass has to reduce the concentration at the AC-biomass interface 2.7 times compared to the concentration at which the carbon was being loaded. However, given the threshold concentration of the MET degrading microorganisms (<0.08 μg/L) versus the average influent concentration (1.3 μg/L), bioregeneration is feasible.

  20. Production of granular activated carbon from waste Rosa canina sp. seeds and its adsorption characteristics for dye.

    PubMed

    Gürses, A; Doğar, C; Karaca, S; Açikyildiz, M; Bayrak, R

    2006-04-17

    An activated carbon was developed from Rosa canina sp. seeds, characterized and used for the removal of methylene blue (basic dye) from aqueous solutions. Adsorption studies were carried out at 20 degrees C and various initial dye concentrations (20, 40, 60, 80, and 100 mg/L) for different times (15, 30, 60, and 120 min). The adsorption isotherm was obtained from data. The results indicate that the adsorption isotherm of methylene blue is typically S-shaped. The shape of isotherm is believed to reflect three distinct modes of adsorption. In region 1, the adsorption of methylene blue is carried out mainly by ion exchange. In region 2 by polarizations of pi-electrons established at cyclic parts of the previously adsorbed methylene blue molecules is occurred. However, it is not observed any change at the sign of the surface charge although zeta potential value is decreased with increase of amount adsorbed. In region 3, the slope of the isotherm is reduced, because adsorption now must overcome electrostatic repulsion between oncoming ions and the similarly charged solid. Adsorption in this fashion is usually complete when the surface is covered with a monolayer of methylene blue. To reveal the adsorptive characteristics of the produced active carbon, porosity and BET surface area measurements were made. Structural analysis was performed using SEM-EDS. The produced active carbon has the specific surface area of 799.2 m2 g-1 and the iodine number of 495 mg/g.

  1. Adsorption of the complex ion Au(CN)2- onto sulfur-impregnated activated carbon in aqueous solutions.

    PubMed

    Ramírez-Muñiz, Kardia; Song, Shaoxian; Berber-Mendoza, Selene; Tong, Shitang

    2010-09-15

    The adsorption of the gold-cyanide complex ion (Au(CN)(2)(-)) on sulfur-impregnated activated carbon in aqueous solution has been studied in order to find a better adsorbent for the gold cyanidation process for extracting gold from ores. This study was performed using sulfur-impregnated activated carbon (SIAC 8.0) made from high-sulfur petroleum coke and an artificial aqueous solution of Au(CN)(2)(-). The experimental results have shown that Au(CN)(2)(-) strongly adsorbed onto the SIAC 8.0, leading the gold adsorption capacity of the SIAC 8.0 to be 2.25x that on conventional activated carbon. It has been also found that the adsorption fit the Langmuir isotherm well, and the adsorption density of Au(CN)(2)(-) on the SIAC 8.0 in aqueous solution increased with increasing temperature, suggesting chemical adsorption. The chemical adsorption might be attributed to the formation of S-Au-CN on SIAC 8.0 surfaces through the covalent bond between the gold atom of the ion and the sulfur in the molecular structure of the SIAC 8.0. In addition, the desorption test has demonstrated that the majority of the adsorption was irreversible, which depended on the density of the adsorption sites on the SIAC.

  2. CO2 Adsorption on Activated Carbon Honeycomb-Monoliths: A Comparison of Langmuir and Tóth Models

    PubMed Central

    Vargas, Diana P.; Giraldo, Liliana; Moreno-Piraján, Juan C.

    2012-01-01

    Activated carbon honeycomb-monoliths with different textural properties were prepared by chemical activation of African palm shells with H3PO4, ZnCl2 and CaCl2 aqueous solutions of various concentrations. The adsorbents obtained were characterized by N2 adsorption at 77 K, and their carbon dioxide adsorption capacities were measured at 273 K and 1 Bar in volumetric adsorption equipment. The experimental adsorption isotherms were fitted to Langmuir and Tóth models, and a better fit was observed to Tóth equation with a correlation coefficient of 0.999. The maximum experimental values for adsorption capacity at the highest pressure (2.627–5.756 mmol·g−1) are between the calculated data in the two models. PMID:22942710

  3. Heterogeneity of activated carbons in adsorption of phenols from aqueous solutions—Comparison of experimental isotherm data and simulation predictions

    NASA Astrophysics Data System (ADS)

    Podkościelny, P.; Nieszporek, K.

    2007-01-01

    Surface heterogeneity of activated carbons is usually characterized by adsorption energy distribution (AED) functions which can be estimated from the experimental adsorption isotherms by inverting integral equation. The experimental data of phenol adsorption from aqueous solution on activated carbons prepared from polyacrylonitrile (PAN) and polyethylene terephthalate (PET) have been taken from literature. AED functions for phenol adsorption, generated by application of regularization method have been verified. The Grand Canonical Monte Carlo (GCMC) simulation technique has been used as verification tool. The definitive stage of verification was comparison of experimental adsorption data and those obtained by utilization GCMC simulations. Necessary information for performing of simulations has been provided by parameters of AED functions calculated by regularization method.

  4. Adsorption studies of molasse's wastewaters on activated carbon: modelling with a new fractal kinetic equation and evaluation of kinetic models.

    PubMed

    Figaro, S; Avril, J P; Brouers, F; Ouensanga, A; Gaspard, S

    2009-01-30

    Adsorption kinetic of molasses wastewaters after anaerobic digestion (MSWD) and melanoidin respectively on activated carbon was studied at different pH. The kinetic parameters could be determined using classical kinetic equations and a recently published fractal kinetic equation. A linear form of this equation can also be used to fit adsorption data. Even with lower correlation coefficients the fractal kinetic equation gives lower normalized standard deviation values than the pseudo-second order model generally used to fit adsorption kinetic data, indicating that the fractal kinetic model is much more accurate for describing the kinetic adsorption data than the pseudo-second order kinetic model.

  5. Adsorption characteristics of activated carbon fibers (ACFs) for toluene: application in respiratory protection.

    PubMed

    Balanay, Jo Anne G; Bartolucci, Alfred A; Lungu, Claudiu T

    2014-01-01

    Granular activated carbon (GAC) is currently the standard adsorbent in respirators against several gases and vapors because of its efficiency, low cost, and available technology. However, a drawback of GAC due to its granular form is its need for containment, adding weight and bulkiness to respirators. This makes respirators uncomfortable to wear, resulting in poor compliance in their use. Activated carbon fibers (ACF) are considered viable alternative adsorbent materials for developing thinner, light-weight, and efficient respirators because of their larger surface area, lighter weight, and fabric form. This study aims to determine the critical bed depth and adsorption capacity of different types of commercially available ACFs for toluene to understand how thin a respirator can be and the service life of the adsorbents, respectively. ACF in cloth (ACFC) and felt (ACFF) forms with three different surface areas per form were tested. Each ACF type was challenged with six concentrations of toluene (50, 100, 200, 300, 400, 500 ppm) at constant air temperature (23°C), relative humidity (50%), and airflow (16 LPM) at different adsorbent weights and bed depths. Breakthrough data were obtained for each adsorbent using gas chromatography with flame ionization detector. The ACFs' surface areas were measured by an automatic physisorption analyzer. The results showed that ACFC has a lower critical bed depth and higher adsorption capacity compared to ACFF with similar surface area for each toluene concentration. Among the ACF types, ACFC2000 (cloth with the highest measured surface area of 1614 ± 5 m(2)/g) has one of the lowest critical bed depths (ranging from 0.11-0.22 cm) and has the highest adsorption capacity (ranging from 595-878 mg/g). Based on these studied adsorption characteristics, it is concluded that ACF has great potential for application in respiratory protection against toluene, particularly the ACFC2000, which is the best candidate for developing thinner and

  6. Simultaneous activation/sulfurization method for production of sulfurized activated carbons: characterization and Hg(II) adsorption capacity.

    PubMed

    Shamsijazeyi, Hadi; Kaghazchi, Tahereh

    2014-01-01

    As an inexpensive method for modification of activated carbons (ACs), sulfurization has attracted significant attention. However, the resulting sulfurized activated carbons (SACs) often are less porous than the original ACs. In this work, we propose a new method for concurrent sulfurization/activation that can lead to preparation of SACs with more porosity than the corresponding non-sulfurized ACs. By using scanning electron microscopy, nitrogen adsorption/desorption, and iodine number experiments, the porous structure of the SACs has been compared with that of non-sulfurized ACs. The specific surface areas of SACs are higher than the corresponding ACs, regardless of the type of activation agents used. For instance, the specific surface area of SAC and AC activated with phosphoric acid is 1,637 and 1,338 m(2)/g, respectively. Additionally, sulfur contents and surface charges (pHpzc) of the SACs and non-sulfurized ACs are compared. In fact, the SACs have higher sulfur contents and more acidic surfaces. Furthermore, the Hg(II) adsorption capacity of SACs has been compared with the corresponding non-sulfurized ACs. The Hg(II) adsorption isotherms on a selected SAC is measured at different pH values and temperatures. Hg(II) adsorptions as high as 293 mg/g are observed by using SACs prepared by the method proposed in this study.

  7. An XPS study for mechanisms of arsenate adsorption onto a magnetite-doped activated carbon fiber.

    PubMed

    Zhang, Shujuan; Li, Xiao-yan; Chen, J Paul

    2010-03-01

    The surface and bulk structures of a newly developed carbon-based iron-containing adsorbent for As(V) adsorption were investigated by using X-ray diffraction (XRD), field emission scanning electronic microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). XRD patterns of the adsorbents indicated that the modified activated carbon fiber (MACF) was a simple mixture of the raw activated carbon fiber (RACF) and magnetite. After modification, a porous film was formed on the surface of the MACF with nano-sized magnetite on it. The As(V) uptake on the MACF was highly pH dependent and was facilitated in acidic solutions. XPS studies demonstrated that the surface oxygen-containing functional groups were involved in the adsorption and that magnetite played a key role in As(V) uptake. The dominance of HAsO(4)(2-) in surface complexes and the pH effect on As(V) uptake demonstrated that the monoprotonated bidentate complexes were dominant on the surface of the MACF. No reduction of As(V) was observed on the surface of the ACFs.

  8. Study of the adsorption and electroadsorption process of Cu (II) ions within thermally and chemically modified activated carbon.

    PubMed

    Macías-García, A; Gómez Corzo, M; Alfaro Domínguez, M; Alexandre Franco, M; Martínez Naharro, J

    2017-04-15

    The aim of this work is to modify the porous texture and superficial groups of a commercial activated carbon through chemical and thermal treatment and subsequently study the kinetics of adsorption and electroadsorption of Cu (II) ion for these carbons. Samples of three activated carbons were used. These were a commercial activated carbon, commercial activated carbon modified thermically (C-N2-900) and finally commercial activated carbon modified chemically C-SO2-H2S-200. The activated carbons were characterized chemically and texturally and the electrical conductivity of them determined. Different kinetic models were applied. The kinetics of the adsorption and electroadsorption process of the Cu (II) ion fits a pseudo second order model and the most likely mechanism takes place in two stages. A first step through transfer of the metal mass through the boundary layer of the adsorbent and distribution of the Cu (II) on the external surface of the activated carbon and a second step that represents intraparticle diffusion and joining of the Cu (II) with the active centres of the activated carbon. Finally, the kinetics of the adsorption process are faster than the kinetics of the electroadsorption but the percentage of the Cu (II) ion retained is much higher in the electroadsorption process.

  9. Kinetic modeling of liquid-phase adsorption of Congo red dye using guava leaf-based activated carbon

    NASA Astrophysics Data System (ADS)

    Ojedokun, Adedamola Titi; Bello, Olugbenga Solomon

    2016-02-01

    Guava leaf, a waste material, was treated and activated to prepare adsorbent. The adsorbent was characterized using Scanning Electron Microscopy (SEM), Fourier Transform Infra Red (FTIR) and Energy-Dispersive X-ray (EDX) techniques. The carbonaceous adsorbent prepared from guava leaf had appreciable carbon content (86.84 %). The adsorption of Congo red dye onto guava leaf-based activated carbon (GLAC) was studied in this research. Experimental data were analyzed by four different model equations: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms and it was found to fit Freundlich equation most. Adsorption rate constants were determined using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion model equations. The results clearly showed that the adsorption of CR dye onto GLAC followed pseudo-second-order kinetic model. Intraparticle diffusion was involved in the adsorption process. The mean energy of adsorption calculated from D-R isotherm confirmed the involvement of physical adsorption. Thermodynamic parameters were obtained and it was found that the adsorption of CR dye onto GLAC was an exothermic and spontaneous process at the temperatures under investigation. The maximum adsorption of CR dye by GLAC was found to be 47.62 mg/g. The study shows that GLAC is an effective adsorbent for the adsorption of CR dye from aqueous solution.

  10. Adsorption and Electrothermal Desorption of Organic Vapors Using Activated Carbon Adsorbents With Novel Morphologies

    DTIC Science & Technology

    2006-01-01

    Principles of adsorption and adsorption processes. New York: Wiley; 1984. [5] Guerin P, Domine D. Process for separating a binary gas mixture by contact with...and ACFC electrothermal– swing adsorption systems are pro- vided below. The properties used to describe these systems include their pressure drop...Carbon 1996;34(7):851–6. [8] Petkovska M, Tondeur D, Grevillot G, Granger J, Mitrovic M. Temperature swing gas separation with electrothermal

  11. Adsorption behavior of pesticide methomyl on activated carbon in a high gravity rotating packed bed reactor.

    PubMed

    Chang, Chiung-Fen; Lee, Shu-Chi

    2012-06-01

    High gravity rotating packed bed (HGRPB) reactor possesses the property of high mass transfer rate, which is expected to promote the adsorption rate for the process. In this study, HGRPB has been applied on adsorption removal of methomyl from solution, adopting the adsorbent of activated carbon F400. The influence of operating parameters of HGRPB on mass transfer such as the rotating speed (N(R)), the flow rate of solution (F(L)) and initial concentration of methomyl (C(b0)) were examined. The traditionally internal mass transfer models combined with Freundlich isotherm were used to predict the surface and effective diffusion coefficients. In addition, the results have also been compared with those obtained from the traditional basket stirred batch reactor (BBR). The results showed that the larger values of N(R) and F(L) enhanced the effective intraparticle diffusion and provided more accessible adsorption sites so as to result in lower equilibrium concentration in HGRPB system when compared to SBR system. The results of adsorption kinetics demonstrated that surface and effective diffusions were both significantly greater in HGRPB system instead of BBR system. Furthermore, the values of Bi(S) also manifested less internal mass transfer resistance in HGRPB system. The contribution ratio (R(F)) of the surface to pore diffusion mass transport showed that the larger contribution resulted from the surface diffusion in HGRPB system. Therefore, the results reasonably led to the conclusion that when the HGRPB system applied on the adsorption of methomyl on F400, the lower equilibrium concentration and faster internal mass transfer can be obtained so as to highly possess great potential to match the gradually stricter environmental standard.

  12. [Removal of DON in micro-polluted raw water by coagulation and adsorption using activated carbon].

    PubMed

    Liu, Bing; Yu, Guo-Zhong; Gu, Li; Zhao, Cheng-Mei; Li, Qing-Fei; Zhai, Hui-Min

    2013-04-01

    Dissolved organic nitrogen as a precursor of new type nitrogenous disinfection by-products in drinking water attracted gradually the attention of scholars all over the world. In order to explore the mechanism of DON removal in micro-polluted raw water by coagulation and adsorption, water quality parameters, such as DON, DOC, NH4(+) -N, UV254, pH and dissolved oxygen, were determined in raw water and the molecular weight distribution of the DON and DOC was investigated. The variations in DON, DOC and UV254 in the coagulation and adsorption tests were investigated, and the changes of DON in raw water were characterized using three-dimensional fluorescence spectroscopy. The results showed that DON, DOC and UV254 were 1.28 mg x L(-1), 8.56 mg x L(-1), 0.16 cm(-1), and DOC/DON and SUVA were 6.69 mg x mg(-1), 1.87 m(-1) x (mg x L(-1))(-1) in raw water, respectively. The molecular weight distribution of the DON in raw water showed a bimodal distribution. The small molecular weight (< 6 000) fractions accounted for a high proportion of 68% and the large (> 20 000) fractions accounted for about 22%. The removal of DON, DOC and UV254 was about 20%, 26% and 70%, respectively, in the coagulation test and the dosage of coagulant was 10 mg x L(-1). The removal of DON, DOC and UV254 was about 60%, 35% and 100%, respectively, in the adsorption test and the dosage of activated carbon was 1.0 g. In the combination of coagulation and adsorption, the removal of DON and DOC reached approximately 82% and 64%, respectively. 3DEEM revealed that the variation of DON in the coagulation and adsorption tests depended intimately on tryptophan protein-like substances, aromatic protein-like substances and fulvic acid-like substances.

  13. Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon.

    PubMed

    Demirbas, E; Kobya, M; Sulak, M T

    2008-09-01

    The preparation of activated carbon from apricot stone with H(2)SO(4) activation and its ability to remove a basic dye, astrazon yellow 7 GL, from aqueous solutions were reported in this study. The adsorbent was characterized by FTIR, BET and SEM, respectively. The effects of various experimental parameters, such as initial dye concentration, pH, adsorbent dosage and temperature were investigated in a batch-adsorption technique. The optimum conditions for removal of the basic dye were found to be pH 10, 6g/l of adsorbent dosage and equilibrium time of 35 min, respectively. A comparison of three kinetic models, the pseudo first-order, second-order and diffusion controlled kinetic models, on the basic dye-adsorbent system showed that the removal rate was heavily dependent on diffusion controlled kinetic models. The adsorption isotherm data were fitted well to Langmuir and Freundlich isotherms. The adsorption capacity was calculated as 221.23 mg/g at 50 degrees C. Thermodynamics parameters were also evaluated. The values of enthalpy and entropy were 49.87 kJ/mol and 31.93 J/mol K, respectively, indicating that this process was spontaneous and endothermic. The experimental studies were indicated that ASC had the potential to act as an alternative adsorbent to remove the basic dye from aqueous solutions.

  14. Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon.

    PubMed

    Qu, Yan; Zhang, Chaojie; Li, Fei; Bo, Xiaowen; Liu, Guangfu; Zhou, Qi

    2009-09-30

    Powdered activated carbon (PAC) was applied to remove perfluorooctanoic acid (PFOA) from the aqueous PFOA solution in this study. Contact time, adsorbent dose and temperature were analyzed as the effect factors in the adsorption reaction. The contact time of maximum PFOA uptake was around 1h while the sorption removal efficiency increased with the PAC concentrations. And the process of adsorption increased from 303 K to 313 K and then decreased from 313 K to 323 K. Among four applied models, the experimental isotherm data were discovered to follow Langmuir isotherm model more closely. Thermodynamically, adsorption was endothermic because enthalpy, entropy and Gibbs constants were 198.5 kJ/mol, 0.709 kJ/mol/K and negative, respectively, which also indicated that the adsorption process was spontaneous and feasible. From kinetic analysis, the adsorption was suggested to be pseudo-second-order model. The adsorption of PFOA on the PAC was mainly controlled by particle diffusion.

  15. Equilibrium and kinetic studies of adsorption of phosphate onto ZnCl2 activated coir pith carbon.

    PubMed

    Namasivayam, C; Sangeetha, D

    2004-12-15

    Phosphate removal from aqueous solution was investigated using ZnCl(2)-activated carbon developed from coir pith, an agricultural solid waste. Studies were conducted to delineate the effect of contact time, adsorbent dose, phosphate concentration, pH, and temperature. The adsorption equilibrium data followed both Langmuir and Freundlich isotherms. Langmuir adsorption capacity was found to be 5.1 mg/g. Adsorption followed second-order kinetics. The removal was maximum in the pH range 3-10. pH effect and desorption studies showed that adsorption occurred by both ion exchange and chemisorption mechanisms. Adsorption was found to be spontaneous and endothermic. Effect of foreign ions on adsorption shows that perchlorate, sulfate, and selenite decreased the percent removal of phosphate.

  16. Adsorption of gold cyanide complexes by activated carbon on non-coconut shell origin

    SciTech Connect

    Yalcin, M.; Arol, A.I.

    1995-12-31

    Coconut shells are the most widely used raw material for the production of activated carbon used in the gold production by cyanide leaching. There have been efforts to find alternatives to coconut shells. Shells and stones of certain fruits, have been tested. Although promising results to some extent were obtained, coconut shells remain the main source of activated carbon. Turkey has become a country of interest in terms of gold deposits of epithermal origin. Four deposits have already been discovered and, mining and milling operations are expected to start in the near future. Explorations are underway in many other areas of high expectations. Turkey is also rich in fruits which can be a valuable source of raw material for activated carbon production. In this study, hazelnut shells, peach and apricot stones, abundantly available locally, have been tested to determine whether they are suitable for the gold metallurgy. Parameters of carbonization and activation have been optimized. Gold loading capacity and adsorption kinetics have been studied.

  17. Elucidating the role of phenolic compounds in the effectiveness of DOM adsorption on novel tailored activated carbon.

    PubMed

    Yan, Liang; Fitzgerald, Martha; Khov, Cindy; Schafermeyer, Amy; Kupferle, Margaret J; Sorial, George A

    2013-11-15

    Two novel tailored activated carbons (BC-41-OG and BC-41-MnN) with favorable physicochemical characteristics were successfully prepared for adsorption of dissolved natural organic matter (DOM) by applying systematically chemical and thermal treatment. This research was conducted to investigate the impact of the presence of phenolics on the adsorption capacity of DOM. Isotherm tests were performed for both humic acid (HA) and phenolics on both novel tailored activated carbons and commercial activated carbon F400. The presence of phenolics display a significant effect on hindering the adsorption of HA, however; the physicochemical characteristics of novel activated carbons (surface metal oxides and mesoporosity) can play an important role in alleviating this effect. In contrast, F400, with a relatively lower mesoporosity and surface basicity as compared to the developed adsorbents, was severely impacted by the oligomerization of phenolic compounds. The adsorption capacity of DOM in presence of phenolics was further studied in a continuous flow microcolumn system. The column results showed that both BC-41-OG and BC-41-MnN have not only higher HA adsorption capacity but also better selective adsorption ability than F400.

  18. Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture.

    PubMed

    García, S; Pis, J J; Rubiera, F; Pevida, C

    2013-05-21

    We present experimentally measured adsorption isotherms of CO2, H2, and N2 on a phenol-formaldehyde resin-based activated carbon, which had been previously synthesized for the separation of CO2 in a precombustion capture process. The single component adsorption isotherms were measured in a magnetic suspension balance at three different temperatures (298, 318, and 338 K) and over a large range of pressures (from 0 to 3000-4000 kPa). These values cover the temperature and pressure conditions likely to be found in a precombustion capture scenario, where CO2 needs to be separated from a CO2/H2/N2 gas stream at high pressure (~1000-1500 kPa) and with a high CO2 concentration (~20-40 vol %). Data on the pure component isotherms were correlated using the Langmuir, Sips, and dual-site Langmuir (DSL) models, i.e., a two-, three-, and four-parameter model, respectively. By using the pure component isotherm fitting parameters, adsorption equilibrium was then predicted for multicomponent gas mixtures by the extended models. The DSL model was formulated considering the energetic site-matching concept, recently addressed in the literature. Experimental gas-mixture adsorption equilibrium data were calculated from breakthrough experiments conducted in a lab-scale fixed-bed reactor and compared with the predictions from the models. Breakthrough experiments were carried out at a temperature of 318 K and five different pressures (300, 500, 1000, 1500, and 2000 kPa) where two different CO2/H2/N2 gas mixtures were used as the feed gas in the adsorption step. The DSL model was found to be the one that most accurately predicted the CO2 adsorption equilibrium in the multicomponent mixture. The results presented in this work highlight the importance of performing experimental measurements of mixture adsorption equilibria, as they are of utmost importance to discriminate between models and to correctly select the one that most closely reflects the actual process.

  19. Adsorption kinetic and equilibrium study for removal of mercuric chloride by CuCl2-impregnated activated carbon sorbent.

    PubMed

    Li, Xin; Liu, Zhouyang; Lee, Joo-Youp

    2013-05-15

    The intrinsic adsorption kinetics of mercuric chloride (HgCl2) was studied for raw, 4% and 10% CuCl2-impregnated activated carbon (CuCl2-AC) sorbents in a fixed-bed system. An HgCl2 adsorption kinetic model was developed for the AC sorbents by taking into account the adsorption kinetics, equilibrium, and internal and external mass transfer. The adsorption kinetic constants determined from the comparisons between the simulation and experimental results were 0.2, 0.3, and 0.5m(3)/(gs) for DARCO-HG, 4%(wt), and 10%(wt) CuCl2-AC sorbents, respectively, at 140 °C. CuCl2 loading was found to slightly increase the adsorption kinetic constant or at least not to decrease it. The HgCl2 equilibrium adsorption data based on the Langmuir isotherm show that high CuCl2 loading can result in high binding energy of the HgCl2 adsorption onto the carbon surface. The adsorption equilibrium constant was found to increase by ~10 times when CuCl2 loading varied from 0 to 10%(wt), which led to a decrease in the desorption kinetic constant (k2) by ~10 times and subsequently the desorption rate by ~50 times. Intraparticle pore diffusion considered in the model showed good accuracy, allowing for the determination of intrinsic HgCl2 adsorption kinetics.

  20. Prediction of adsorption from multicomponent solutions by activated carbon using single-solute parameters.

    PubMed

    Wurster, D E; Alkhamis, K A; Matheson, L E

    2000-08-31

    The adsorption of 3 barbiturates--phenobarbital, mephobarbital, and primidone--from simulated intestinal fluid (SIF), without pancreatin, by activated carbon was studied using the rotating bottle method. The concentrations of each drug remaining in solution at equilibrium were determined with the aid of a high-performance liquid chromatography (HPLC) system employing a reversed-phase column. The competitive Langmuir-like model, the modified competitive Langmuir-like model, and the LeVan-Vermeulen model were each fit to the data. Excellent agreement was obtained between the experimental and predicted data using the modified competitive Langmuir-like model and the LeVan-Vermeulen model. The agreement obtained from the original competitive Langmuir-like model was less satisfactory. These observations are not surprising because the competitive Langmuir-like model assumes that the capacities of the adsorbates are equal, while the other 2 models take into account the differences in the capacities of the components. The results of these studies indicate that the adsorbates employed are competing for the same binding sites on the activated carbon surface. The results also demonstrate that it is possible to accurately predict multicomponent adsorption isotherms using only single-solute isotherm parameters. Such prediction is likely to be useful for improving in vivo/in vitro correlations.

  1. Pharmaceutical wastewater treatment by internal micro-electrolysis--coagulation, biological treatment and activated carbon adsorption.

    PubMed

    Wang, Kangle; Liu, Suiqing; Zhang, Qiang; He, Yiliang

    2009-12-01

    Treatment of pharmaceutical wastewater by the combined process of internal micro-electrolysis and coagulation, biological treatment and activated carbon adsorption was studied. Internal micro-electrolysis and coagulation served as the pretreatment for the wastewater before biological treatment to reduce the contaminants' toxicity to microbes and improve the biodegradability of wastewater to guarantee the smooth operation of the biological process. Biological treatment was the main body of the whole process which took an unparalleled role in removing COD (chemical oxygen demand). Activated carbon adsorption was adopted as the post-treatment process to further remove the remaining non-biodegradable particles. Results showed that the removal rates of COD and S2- (sulphide ion) by pretreatment were 66.9% and 98.9%, respectively, and the biodegradability, as measured by the ratio of biodegradable COD to initial COD, of the wastewater was greatly improved from 0.16 +/- 0.02 to 0.41 +/- 0.02. The overall removal rate of COD in the wastewater achieved by this combined treatment process was up to 96%, and the effluent COD met the Chinese tertiary discharge standard (GB 8978-1996).

  2. Exploring molecular sieve capabilities of activated carbon fibers to reduce the impact of NOM preloading on trichloroethylene adsorption

    SciTech Connect

    Tanju Karanfil; Seyed A. Dastgheib; Dina Mauldin

    2006-02-15

    Adsorption of trichloroethylene (TCE) by two activated carbon fibers ACF10 and ACF20H and two granular activated carbons, coal-based F400 and Macro preloaded with hydrophobic and transphilic fractions of natural organic matter (NOM) was examined. ACF10, the most microporous activated carbon used in this study, had over 90% of its pore volume in pores smaller than 10 {angstrom}. It also had the highest volume in pores 5-8 {angstrom}, which is the optimum pore size region for TCE adsorption, among the four activated carbons. Adsorption of NOM fractions by ACF10 was, in general, negligible. Therefore, ACF10, functioning as a molecular sieve during preloading, exhibited the least NOM uptake for each fraction, and subsequently the highest TCE adsorption. The other three sorbents had wider pore size distributions, including high volumes in pores larger than 10 {angstrom}, where NOM molecules can adsorb. As a result, they showed a higher degree of uptake for all NOM fractions, and subsequently lower adsorption capacities for TCE, as compared to ACF10. The results obtained in this study showed that understanding the interplay between the optimum pore size region for the adsorption of target synthetic organic contaminant (SOC) and the pore size region for the adsorption of NOM molecules is important for controlling NOM-SOC competitions. Experiments with different NOM fractions indicated that the degree of NOM loading is important in terms of preloading effects; however the way that the carbon pores are filled and loaded by different NOM fractions can be different and may create an additional negative impact on TCE adsorption. 40 refs., 3 figs., 2 tabs.

  3. Evaluating Activated Carbon Adsorption of Dissolved Organic Matter and Micropollutants Using Fluorescence Spectroscopy.

    PubMed

    Shimabuku, Kyle K; Kennedy, Anthony M; Mulhern, Riley E; Summers, R Scott

    2017-02-14

    Dissolved organic matter (DOM) negatively impacts granular activated carbon (GAC) adsorption of micropollutants and is a disinfection byproduct precursor. DOM from surface waters, wastewater effluent, and 1 kDa size fractions were adsorbed by GAC and characterized using fluorescence spectroscopy, UV-absorption, and size exclusion chromatography (SEC). Fluorescing DOM was preferentially adsorbed relative to UV-absorbing DOM. Humic-like fluorescence (peaks A and C) was selectively adsorbed relative to polyphenol-like fluorescence (peaks T and B) potentially due to size exclusion effects. In the surface waters and size fractions, peak C was preferentially removed relative to peak A, whereas the reverse was found in wastewater effluent, indicating that humic-like fluorescence is associated with different compounds depending on DOM source. Based on specific UV-absorption (SUVA), aromatic DOM was preferentially adsorbed. The fluorescence index (FI), if interpreted as an indicator of aromaticity, indicated the opposite but exhibited a strong relationship with average molecular weight, suggesting that FI might be a better indicator of DOM size than aromaticity. The influence of DOM intermolecular interactions on adsorption were minimal based on SEC analysis. Fluorescence parameters captured the impact of DOM size on the fouling of 2-methylisoborneol and warfarin adsorption and correlated with direct competition and pore blockage indicators.

  4. Nickel(II) adsorption onto biomass based activated carbon obtained from sugarcane bagasse pith.

    PubMed

    Krishnan, K Anoop; Sreejalekshmi, K G; Baiju, R S

    2011-11-01

    Bioavailability of Nickel in the form of hydrated Nickel(II) attributes to its toxicological effects and hence its removal from aqueous solution is of great concern. Adsorption is used as an efficient technique for the removal of Nickel(II), hereafter Ni(II), from water and wastewaters. Activated carbon obtained from sugarcane bagasse pith (SBP-AC), a waste biomass collected from juice shops in Sarkara Devi Temple, Chirayinkeezhu, Trivandrum, India during annual festival, is used as adsorbent in the study. The process of adsorption is highly dependent on solution pH, and maximum removal occurs in the pH range of 4.0-8.0. Moreover, the amount of Ni(II) adsorbed onto SBP-AC increased with the time increase and reached equilibrium at 4h. Adsorption kinetic and equilibrium data were analyzed for determining the best fit kinetic and isotherm models. The overall study reveals the potential value of steam pyrolysed SBP-AC as a possible commercial adsorbent in wastewater treatment strategies.

  5. Experimental study on activated carbon-nitrogen pair in a prototype pressure swing adsorption refrigeration system

    NASA Astrophysics Data System (ADS)

    Anupam, Kumar; Palodkar, Avinash V.; Halder, G. N.

    2016-04-01

    Pressure swing adsorption of nitrogen onto granular activated carbon in the single-bed adsorber-desorber chamber has been studied at six different pressures 6-18 kgf/cm2 to evaluate their performance as an alternative refrigeration technique. Refrigerating effect showed a linear rise with an increase in the operating pressure. However, the heat of adsorption and COP exhibited initial rise with the increasing operating pressure but decreased later after reaching a maximum value. The COP initially increases with operating pressures however, with the further rise of operating pressure it steadily decreased. The highest average refrigeration, maximum heat of adsorption and optimum coefficient of performance was evaluated to be 415.38 W at 18 kgf/cm2, 92756.35 J at 15 kgf/cm2 and 1.32 at 12 kgf/cm2, respectively. The system successfully produced chilled water at 1.7 °C from ambient water at 28.2 °C.

  6. Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm, and thermodynamic studies.

    PubMed

    Boopathy, Ramasamy; Karthikeyan, Sekar; Mandal, Asit Baran; Sekaran, Ganesan

    2013-01-01

    Ammonium ions are one of the most encountered nitrogen species in polluted water bodies. High level of ammonium ion in aqueous solution imparts unpleasant taste and odor problems, which can interfere with the life of aquatics and human population when discharged. Many chemical methods are developed and being used for removal of ammonium ion from aqueous solution. Among various techniques, adsorption was found to be the most feasible and environmentally friendly with the use of natural-activated adsorbents. Hence, in this study, coconut shell-activated carbon (CSAC) was prepared and used for the removal of ammonium ion by adsorption techniques. Ammonium chloride (analytical grade) was purchased from Merck Chemicals for adsorption studies. The CSAC was used to adsorb ammonium ions under stirring at 100 rpm, using orbital shaker in batch experiments. The concentration of ammonium ion was estimated by ammonia distillate, using a Buchi distillation unit. The influence of process parameters such as pH, temperature, and contact time was studied for adsorption of ammonium ion, and kinetic, isotherm models were validated to understand the mechanism of adsorption of ammonium ion by CSAC. Thermodynamic properties such as ∆G, ∆H, and ∆S were determined for the ammonium adsorption, using van't Hoff equation. Further, the adsorption of ammonium ion was confirmed through instrumental analyses such as SEM, XRD, and FTIR. The optimum conditions for the effective adsorption of ammonium ion onto CSAC were found to be pH 9.0, temperature 283 K, and contact time 120 min. The experimental data was best followed by pseudosecond order equation, and the adsorption isotherm model obeyed the Freundlich isotherm. This explains the ammonium ion adsorption onto CSAC which was a multilayer adsorption with intraparticle diffusion. Negative enthalpy confirmed that this adsorption process was exothermic. The instrumental analyses confirmed the adsorption of ammonium ion onto CSAC.

  7. Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells.

    PubMed

    Flores-Cano, J V; Sánchez-Polo, M; Messoud, J; Velo-Gala, I; Ocampo-Pérez, R; Rivera-Utrilla, J

    2016-03-15

    This study analyzed the overall adsorption rate of metronidazole, dimetridazole, and diatrizoate on activated carbons prepared from coffee residues and almond shells. It was also elucidated whether the overall adsorption rate was controlled by reaction on the adsorbent surface or by intraparticle diffusion. Experimental data of the pollutant concentration decay curves as a function of contact time were interpreted by kinetics (first- and second-order) and diffusion models, considering external mass transfer, surface and/or pore volume diffusion, and adsorption on an active site. The experimental data were better interpreted by a first-order than second-order kinetic model, and the first-order adsorption rate constant varied linearly with respect to the surface area and total pore volume of the adsorbents. According to the diffusion model, the overall adsorption rate is governed by intraparticle diffusion, and surface diffusion is the main mechanism controlling the intraparticle diffusion, representing >90% of total intraparticle diffusion.

  8. Adsorption performance of coconut shell activated carbon for the removal of chlorate from chlor-alkali brine stream.

    PubMed

    Lakshmanan, Shyam; Murugesan, Thanapalan

    2016-12-01

    Activated carbon from coconut shell was used to investigate the adsorption of chlorate from a chlor-alkali plant's brine stream. The effect of pH, flowrate, chlorate and chloride concentration on the breakthrough curves were studied in small-scale column trials. The results obtained show enhanced adsorption at low flowrates, higher chlorate concentrations, and at a pH of 10. These studies show that introducing an activated carbon adsorption column just before the saturator would remove sufficient quantities of chlorate to allow more of the chlor-alkali plant's brine stream to be reused. From column dynamic studies, the Thomas model showed close approximation when the chlorate in the effluent was higher than breakthrough concentrations and there was close correlation at high influent concentration. The qo (maximum adsorption capacity) values were close to those obtained experimentally, indicating close representation of the breakthrough curve by the Thomas model.

  9. Kinetic studies on the adsorption of methylene blue onto vegetal fiber activated carbons

    NASA Astrophysics Data System (ADS)

    Cherifi, Hakima; Fatiha, Bentahar; Salah, Hanini

    2013-10-01

    The vegetable sponge of cylindrical loofa (CL), a natural product which grows in the north of Algeria, was used to prepare activated carbons. Two activated carbons, AC1 and AC2, by two physiochemical activation methods to be used for methylene blue removal from wastewater. The surface structure of AC1, AC2 and CL were analyzed by scanning electron microscopy. Adsorption isotherm of methylene blue onto the prepared activated carbons was determined by batch tests. The effects of various parameters such as contact time, initial concentration, pH, temperature, adsorbent dose and granulometry were investigated, at agitation rate 150 rpm. The results showed that the equilibrium uptake increased with increasing initial MB concentration. The maximum % removal of MB obtained was 99% at 50 °C for AC1 and 82% at 30 °C for AC2. The increase in initial pH in the ranges of 2-10 increases the yields removal of MB on AC2. The pseudo-first-order and pseudo-second-order kinetic models were applied to test the experimental data. The latter provided the best correlation of the experimental data compared to the pseudo-first-order model.

  10. Adsorptive displacement analysis of many-component priority pollutants on activated carbon

    SciTech Connect

    Thakkar, S.; Manes, M.

    1987-06-01

    Multiple trace contaminants on activated carbon are determined by adsorptive displacement, i.e., equilibration in a solvent containing a large excess of a strongly adsorbing solute (displacer). Many components are desorbed completely. For most of the others, the adsorption isotherms become linear and mutually independent with a zero intercept, and the amount of the remaining adsorbed contaminant is readily calculable. The method is applied to the simultaneous determination of 25 preloaded base-neutral priority pollutants, which included refractory adsorbates such as benz(a)anthracene and dibenz(a,h)-sorbates such as benz(a)anthracene and dibenz(a,h)-anthracene; all were determined at loadings less than 0.1 mg/g, in methylene chloride containing 7.5% methanol and saturated benz(a)anthracene-7,12-dione as the displacer. About half of the pollutants were completely extracted. Phenol and derivatives exhibit nonlinear isotherms in this displacer system, presumably because of specific interactions with surface groups on the carbon. However, each of these compounds exhibits a zero-intercept linear isotherm in methanol at relatively high concentrations of the other. 4 figures.

  11. Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones - an agricultural waste.

    PubMed

    Soleimani, Mansooreh; Kaghazchi, Tahereh

    2008-09-01

    In this study, hard shell of apricot stones was selected from agricultural solid wastes to prepare effective and low cost adsorbent for the gold separation from gold-plating wastewater. Different adsorption parameters like adsorbent dose, particle size of activated carbon, pH and agitation speed of mixing on the gold adsorption were studied. The results showed that under the optimum operating conditions, more than 98% of gold was adsorbed onto activated carbon after only 3h. The equilibrium adsorption data were well described by the Freundlich and Langmuir isotherms. Isotherms have been used to obtain thermodynamic parameters. Gold desorption studies were performed with aqueous solution mixture of sodium hydroxide and organic solvents at ambient temperatures. Quantitative recovery of gold ions is possible by this method. As hard shell of apricot stones is a discarded as waste from agricultural and food industries, the prepared activated carbon is expected to be an economical product for gold ion recovery from wastewater.

  12. Removal of vertigo blue dyes from Batik textile wastewater by adsorption onto activated carbon and coal bottom ash

    NASA Astrophysics Data System (ADS)

    Kusmiyati, L., Puspita Adi; Deni, V.; Robi Indra, S.; Islamica, Dlia; Fuadi, M.

    2016-04-01

    Removal of vertigo blue dye from batik textile wastewater was studied by adsorptionprocess onto activated carbon (AC) and coal bottom ash (CBA).The influence of experimental conditions (pH solution, dye concentration, and contact time) were studied on the both adsorbents. At equilibrium conditions, the data were fitted to Langmuir and Freundlich adsorption models. The maximum adsorption capacity calculated from the Langmuir model for carbon active was 6.29mg/g at pH that found to be considerably higher than that obtained for coal bottom ash 3.72mg/g pH 9. From Freundlich model, the maximum adsorption capacity is less for coal bottom ash (pH 9) than that for carbon active (pH4).

  13. Adsorptive removal of phthalate ester (Di-ethyl phthalate) from aqueous phase by activated carbon: a kinetic study.

    PubMed

    Venkata Mohan, S; Shailaja, S; Rama Krishna, M; Sarma, P N

    2007-07-19

    Adsorptive studies were carried out on Di-ethyl phthalate (DEP) removal from aqueous phase onto activated carbon. Batch sorption studies were performed and the results revealed that activated carbon demonstrated ability to adsorb DEP. Influence of varying experimental conditions such as DEP concentration, pH of aqueous solution, and dosage of adsorbent were investigated on the adsorption process. Sorption interaction of DEP onto activated carbon obeyed the pseudo second order rate equation. Experimental data showed good fit with both the Langmuir and Freundlich adsorption isotherm models. DEP sorption was found to be dependent on the aqueous phase pH and the uptake was observed to be greater at acidic pH.

  14. Adsorption behavior of activated carbon derived from pyrolusite-modified sewage sludge: equilibrium modeling, kinetic and thermodynamic studies.

    PubMed

    Chen, Yao; Jiang, Wenju; Jiang, Li; Ji, Xiujuan

    2011-01-01

    Activated carbon was developed from sewage sludge using pyrolusite as an additive. It was demonstrated that the removal efficiency of two synthetic dyes (Tracid orange GS and Direct fast turquoise blue GL) by the produced adsorbent was up to 97.6%. The activated carbon with pyrolusite addition had 38.2% higher surface area, 43.8% larger micropore and 54.4% larger mesopore production than ordinary sludge-based activated carbons. Equilibrium adsorption isotherms and kinetics were also investigated based on dyes adsorption tests. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption, and the results fitted well to the Langmuir isotherm. The kinetic data have been analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion equation. The experimental data fitted very well with pseudo-second-order kinetic model. Activation energies for the adsorption processes ranged between 8.7 and 19.1 kJ mol 1. Thermodynamic parameters such as standard free energy (deltaG0), standard enthalpy (deltaH0) and standard entropy (deltaS0) were evaluated. The adsorption of these two dyes on the activated carbon was found to be a spontaneous and endothermic process in nature.

  15. Optimization of nickel adsorption from aqueous solution by using activated carbon prepared from waste apricot by chemical activation

    NASA Astrophysics Data System (ADS)

    Erdoğan, S.; Önal, Y.; Akmil-Başar, C.; Bilmez-Erdemoğlu, S.; Sarıcı-Özdemir, Ç.; Köseoğlu, E.; İçduygu, G.

    2005-12-01

    Waste apricot supplied by Malatya apricot plant (Turkey) was activated by using chemical activation method and K 2CO 3 was chosen for this purpose. Activation temperature was varied over the temperature range of 400-900 °C and N 2 atmosphere was used with 10 °C/min heat rate. The maximum surface area (1214 m 2/g) and micropore volume (0.355 cm 3/g) were obtained at 900 °C, but activated carbon was predominantly microporous at 700 °C. The resulting activated carbons were used for removal of Ni(II) ions from aqueous solution and adsorption properties have been investigated under various conditions such as pH, activation temperature, adsorbent dosage and nickel concentration. Adsorption parameters were determined by using Langmuir model. Optimal condition was determined as; pH 5, 0.7 g/10 ml adsorbent dosage, 10 mg/l Ni(II) concentration and 60 min contact time. The results indicate that the effective uptake of Ni(II) ions was obtained by activating the carbon at 900 °C.

  16. Measurement and modelling of adsorption equilibrium, adsorption kinetics and breakthrough curve of toluene at very low concentrations on to activated carbon.

    PubMed

    Réguer, Anne; Sochard, Sabine; Hort, Cécile; Platel, Vincent

    2011-01-01

    Indoor air pollution, characterized by many pollutants at very low concentrations, is nowadays known as a worrying problem for human health. Among physical treatments, adsorption is a widely used process, since porous materials offer high capacity for volatile organic chemicals. However, there are few studies in the literature that deal with adsorption as an indoor air pollution treatment. The aim of this study was to investigate the adsorption of toluene on to activated carbon at characteristic indoor air concentrations. Firstly, global kinetic parameters were determined by fitting Thomas's model to experimental data obtained with batch experiments. Then, these kinetic parameters led to the determination of Henry's coefficient, which was checked with experimental data of the adsorption isotherm. Secondly, we simulated a breakthrough curve made at an inlet concentration 10 times higher than the indoor air level. Even if the kinetic parameters in this experiment are different from those in batch experiments, it can be emphasized that the Henry coefficient stays the same.

  17. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 2. Model prediction

    SciTech Connect

    Yu, Z.; Peldszus, S.; Huck, P.M.

    2009-03-01

    The adsorption of two representative pharmaceutically active compounds (PhACs) naproxen and carbamazepine and one endocrine disrupting compound (EDC) nonylphenol was studied in pilot-scale granular activated carbon (GAC) adsorbers using post-sedimentation (PS) water from a full-scale drinking water treatment plant. The GAC adsorbents were coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. Acidic naproxen broke through fastest while nonylphenol was removed best, which was consistent with the degree to which fouling affected compound removals. Model predictions and experimental data were generally in good agreement for all three compounds, which demonstrated the effectiveness and robustness of the pore and surface diffusion model (PSDM) used in combination with the time-variable parameter approach for predicting removals at environmentally relevant concentrations (i.e., ng/L range). Sensitivity analyses suggested that accurate determination of film diffusion coefficients was critical for predicting breakthrough for naproxen and carbamazepine, in particular when high removals are targeted. Model simulations demonstrated that GAC carbon usage rates (CURs) for naproxen were substantially influenced by the empty bed contact time (EBCT) at the investigated conditions. Model-based comparisons between GAC CURs and minimum CURs for powdered activated carbon (PAC) applications suggested that PAC would be most appropriate for achieving 90% removal of naproxen, whereas GAC would be more suitable for nonylphenol. 25 refs., 4 figs., 1 tab.

  18. Adsorption of iodine from COIL waste gas on soaked coal-based activated carbon

    NASA Astrophysics Data System (ADS)

    Zhou, Junbo; Hao, Shan; Gao, Liping

    2014-04-01

    The chemical oxygen-iodine laser (COIL) has wide application prospects in military, industrial and medical treatment fields as a second generation gas chemical laser to follow the first HF/DF chemical laser. However, a COIL releases large amounts of gas, such as helium, oxygen, chlorine and iodine. Chlorides have a serious corrosive effect on the system, especially iodine vapor crystallization, which seriously endangers the normal use of vacuum systems, and radioactive methyl iodide, which is hazardous to operators and pollutes the environment. The use of soaked coal-based activated carbon as an adsorbent for removing methyl iodine is proposed, while it is proposed that coal-based activated carbon is an effective adsorbent for removing stable iodine. The research conducted in this work shows that iodine residues are less than 0.5 μg ml-1 after the adsorption treatment and the decontamination factor of the coal-based activated carbon for removing stable iodine is more than 1000. Using this method can achieve the purpose of removing harmful iodine, satisfy the requirements for engineering applications, and also be applied to other nuclear power plant flue gas treatments.

  19. Importance of surface diffusivities in pesticide adsorption kinetics onto granular versus powdered activated carbon: experimental determination and modeling.

    PubMed

    Baup, S; Wolbert, D; Laplanche, A

    2002-10-01

    Three pesticides (atrazine, bromoxynil and diuron) and two granular activated carbons are involved in equilibrium and kinetic adsorption experiments. Equilibrium is represented by Freundlich isotherm law and kinetic is described by the Homogeneous Surface Diffusion Model, based on external mass transfer and intraparticle surface diffusion. Equilibrium and long-term experiments are conducted to compare Powdered Activated Carbon and Granular Activated Carbon. These first investigations show that crushing GAC into PAC improves the accessibility of the adsorption sites without increasing the number of these sites. In a second part, kinetics experiments are carried out using a Differential Column Batch Reactor. Thanks to this experimental device, the external mass transfer coefficient k(f) is calculated from empirical correlation and the effect of external mass transfer on adsorption is likely to be minimized. In order to obtain the intraparticle surface diffusion coefficient D. for these pesticides, comparisons between experimental kinetic data and simulations are conducted and the best agreement leads to the Ds coefficient. This procedure appears to be an efficient way to acquire surface diffusion coefficients for the adsorption of pesticides onto GAC. Finally it points out the role of surface diffusivity in the adsorption rate. As a matter of fact, even if the amount of the target-compound that could be potentially adsorbed is really important, its surface diffusion coefficient may be small, so that its adsorption may not have enough contact time to be totally achieved.

  20. Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons.

    PubMed

    Mansouri, Hayet; Carmona, Rocio J; Gomis-Berenguer, Alicia; Souissi-Najar, Souad; Ouederni, Abdelmottaleb; Ania, Conchi O

    2015-07-01

    This work investigates the competitive adsorption under dynamic and equilibrium conditions of ibuprofen (IBU) and amoxicillin (AMX), two widely consumed pharmaceuticals, on nanoporous carbons of different characteristics. Batch adsorption experiments of pure components in water and their binary mixtures were carried out to measure both adsorption equilibrium and kinetics, and dynamic tests were performed to validate the simultaneous removal of the mixtures in breakthrough experiments. The equilibrium adsorption capacities evaluated from pure component solutions were higher than those measured in dynamic conditions, and were found to depend on the porous features of the adsorbent and the nature of the specific/dispersive interactions that are controlled by the solution pH, density of surface change on the carbon and ionization of the pollutant. A marked roll-up effect was observed for AMX retention on the hydrophobic carbons, not seen for the functionalized adsorbent likely due to the lower affinity of amoxicillin towards the carbon adsorbent. Dynamic adsorption of binary mixtures from wastewater of high salinity and alkalinity showed a slight increase in IBU uptake and a reduced adsorption of AMX, demonstrating the feasibility of the simultaneous removal of both compounds from complex water matrices.

  1. Kinetic studies of adsorption of thiocyanate onto ZnCl2 activated carbon from coir pith, an agricultural solid waste.

    PubMed

    Namasivayam, C; Sangeetha, D

    2005-09-01

    The adsorption of thiocyanate onto ZnCl2 activated carbon developed from coir pith was investigated to assess the possible use of this adsorbent. The influence of various parameters such as agitation time, thiocyanate concentration, adsorbent dose, pH and temperature has been studied. Adsorption followed second-order rate kinetics. Two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Q0) was found to be 16.2 mg g(-1) of the adsorbent. The per cent adsorption was maximum in the pH range 3.0-7.0. pH effect and desorption studies showed that ion exchange and chemisorption mechanism are involved in the adsorption process. Thermodynamic parameters such as DeltaG0, DeltaH0 and DeltaS0 for the adsorption were evaluated. The negative values of DeltaH0 confirm the exothermic nature of adsorption. Effects of foreign ions on the adsorption of thiocyanate have been investigated. Removal of thiocyanate from ground water was also tested.

  2. A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye--Acid Blue 113.

    PubMed

    Gupta, V K; Gupta, Bina; Rastogi, Arshi; Agarwal, Shilpi; Nayak, Arunima

    2011-02-15

    A mesoporous carbon developed from waste tire rubber, characterized by chemical analysis, FTIR, and SEM studies, was used as an adsorbent for the removal and recovery of a hazardous azo dye, Acid Blue 113. Surface area, porosity, and density were determined. The adsorption of the dye over the prepared adsorbent and a commercial activated carbon was achieved under different pH, adsorbate concentration, sieve size, adsorbent dosage, contact time and temperature conditions. Langmuir and Freundlich adsorption isotherm models were applied and thermodynamic parameters were calculated. Kinetic studies indicated that the adsorption process follow first order kinetics and particle diffusion mechanisms are operative. By percolating the dye solution through fixed-bed columns the bulk removal of the Acid Blue 113 was carried out and necessary parameters were determined to find out the percentage saturation of both the columns. Recovery of the dye was made by eluting 0.1 M NaOH through the column.

  3. Removal of ethylenthiourea and 1,2,4-triazole pesticide metabolites from water by adsorption in commercial activated carbons.

    PubMed

    Amorim, Camila C; Bottrel, Sue Ellen C; Costa, Elizângela P; Teixeira, Ana Paula C; Leão, Mônica M D

    2013-01-01

    This study evaluated the adsorption capacity of ethylenthiourea (ETU) and 1H-1,2,4-triazole (1,2,4-T) for two commercial activated carbons: charcoal-powdered activated carbon (CPAC) and bovine bone-powdered activated carbon (BPAC). The tests were conducted at a bench scale, with ETU and 1,2,4-T diluted in water, for isotherm and adsorption kinetic studies. The removal of the compounds was accompanied by a total organic carbon (TOC) analysis and ultraviolet (UV) reduction analysis. The coals were characterized by their surface area using nitrogen adsorption/desorption, by a scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDS) and by a zero charge point analysis (pHpcz). The results showed that adsorption kinetics followed a pseudo-second-order model for both coals, and the adsorption isotherms for CPAC and BPAC were adjusted to the Langmuir and Freundlich isotherms, respectively. The CPAC removed approximately 77% of the ETU and 76% of the 1,2,4-T. The BPAC was ineffective at removing the contaminants.

  4. Effect of the concentration of inherent mineral elements on the adsorption capacity of coconut shell-based activated carbons.

    PubMed

    Afrane, G; Achaw, Osei-Wusu

    2008-09-01

    Coconut shells of West Africa Tall, a local variety of the coconut species Cocos nucifera L., were taken from five different geographical locations in Ghana and examined for the presence and concentration levels of some selected mineral elements using atomic absorption spectrometer. Activated carbons were subsequently made from the shells by the physical method. The iodine adsorption characteristics of the activated carbons measured showed a definite relationship to the concentration levels of potassium and other mineral elements in the precursor shell. Samples with lower total minerals content recorded higher iodine numbers. It was observed that the origin of the shells was related to the concentration levels of the analyzed mineral elements in the shells, which in turn affected the adsorption capacity of the activated carbons. The results of this study have important implications for the sourcing of coconuts whose shells are used in the manufacture of activated carbons.

  5. Equilibrium and column adsorption studies of 2,4-dinitroanisole (DNAN) on surface modified granular activated carbons.

    PubMed

    Boddu, V M; Abburi, K; Fredricksen, A J; Maloney, S W; Damavarapu, R

    2009-02-01

    2,4-Dinitroanisole (DNAN) is used as a component extensively in the development of insensitive munitions. This may result in release of DNAN into the environment. Here, the results are reported of a study on the removal characteristics of DNAN through adsorption on granular activated carbon (GAC), chitosan coated granular activated carbon (CGAC), acid treated granular activated carbon (AGAC) and alkali treated granular activated carbon (BGAC) under equilibrium and column flow conditions. The effect of pH, contact time, concentration of DNAN, and presence of electrolytes on the uptake of DNAN by the adsorbents was investigated. The equilibrium data were fitted to different types of adsorption isotherms. The data were further analysed on the basis of Lagergren first-order, pseudo second-order and intraparticle diffusion kinetic models. Breakthrough curves were obtained based on column flow results. All the adsorbents were capable of removing about 99% of DNAN from aqueous media, except CGAC which adsorbed about 87% of DNAN.

  6. Adsorptive performance for methylene blue of magnetic Ni@activated carbon nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Panfeng; Xu, Jingcai; Zhang, Beibei; Li, Jing; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Hong, Bo; Gong, Jie; Ge, Hongliang; Wang, Xinqing

    2015-11-01

    Owing to the unique microporous structure and high specific surface area, activated carbon (AC) can act as a good candidate for functional materials. In this paper, Ni@AC magnetic nanocomposites with excellent magnetic response are synthesized by the hydrothermal method. All Ni@AC nanocomposites present ferromagnetism and Ni nanoparticles exist in the pores of AC. The saturation magnetization (Ms) increases with the increasing content of Ni, while the specific surface area and pore volume decrease. The S-50 sample possesses the parameters of the specific surface area of 1156.8 m2 ṡ g-1 and Ms of 3.5 emu/g. Furthermore, the methylene blue (MB) removal analysis indicates that 99% MB can be adsorbed in 50 min. The as-prepared Ni@AC nanocomposites present good adsorptive capacity of MB and can be separated easily from water by magnetic separation technique.

  7. Bisphenol A removal by combination of powdered activated carbon adsorption and ultrafiltration

    NASA Astrophysics Data System (ADS)

    Wang, Rongchang; Tong, Hao; Xia, Siqing; Zhang, Yalei; Zhao, Jianfu

    2010-11-01

    Bisphenol A (BPA) removal from surface water in the presence of natural organic matter (NOM) by combination of powdered activated carbon (PAC) adsorption and ultrafiltration (UF) was investigated in this study. It was especially focused on the effects of various factors on BPA removal, such as PAC dosage, NOM concentration and pH value. BPA removal by UF+PAC process increased sharply from 4% to 92%, when PAC dosage increased from 0 to 120 mg/L. The optimal PAC dosage was determined to be 30 mg/L. The results also showed that BPA retention was slightly favored in the presence of NOM. As pH increased from 7.0 to 10.5, BPA removal substantially decreased from 90% to 59%. PAC+UF process is recommended to be used as an emergence facility in drinking water treatment, especially when an accidental spilling of deleterious substance, e.g., BPA, in the water resources happens.

  8. LSER model for organic compounds adsorption by single-walled carbon nanotubes: Comparison with multi-walled carbon nanotubes and activated carbon.

    PubMed

    Yu, Xiangquan; Sun, Weiling; Ni, Jinren

    2015-11-01

    LSER models for organic compounds adsorption by single and multi-walled carbon nanotubes and activated carbon were successfully developed. The cavity formation and dispersion interactions (vV), hydrogen bond acidity interactions (bB) and π-/n-electron interactions (eE) are the most influential adsorption mechanisms. SWCNTs is more polarizable, less polar, more hydrophobic, and has weaker hydrogen bond accepting and donating abilities than MWCNTs and AC. Compared with SWCNTs and MWCNTs, AC has much less hydrophobic and less hydrophilic adsorption sites. The regression coefficients (e, s, a, b, v) vary in different ways with increasing chemical saturation. Nonspecific interactions (represented by eE and vV) have great positive contribution to organic compounds adsorption, and follow the order of SWCNTs > MWCNTs > AC, while hydrogen bond interactions (represented by aA and bB) demonstrate negative contribution. These models will be valuable for understanding adsorption mechanisms, comparing adsorbent characteristics, and selecting the proper adsorbents for certain organic compounds.

  9. Adsorption of phenol onto activated carbon from Rhazya stricta: determination of the optimal experimental parameters using factorial design

    NASA Astrophysics Data System (ADS)

    Hegazy, A. K.; Abdel-Ghani, N. T.; El-Chaghaby, G. A.

    2014-09-01

    A novel activated carbon was prepared from Rhazya stricta leaves and was successfully used as an adsorbent for phenol removal from aqueous solution. The prepared activated carbon was characterized by FTIR and SEM analysis. Three factors (namely, temperature, pH and adsorbent dose) were screened to study their effect on the adsorption of phenol by R. stricta activated carbon. A 23 full factorial design was employed for optimizing the adsorption process. The removal of phenol by adsorption onto R. stricta carbon reached 85 % at a solution pH of 3, an adsorbent dose of 0.5 g/l and a temperature of 45 °C. The temperature and adsorbent weight had a positive effect on phenol removal percentage, when both factors were changed from low to high and the opposite is true for the initial solution pH. The results of the main effects showed that the three studied factors significantly affected phenol removal by R. stricta carbon with 95 % confidence level. The interaction effects revealed that the interaction between the temperature and pH had the most significant effect on the removal percentage of phenol by R. stricta activated carbon. The present work showed that the carbon prepared from a low-cost and natural material which is R. stricta leaves is a good adsorbent for the removal of phenol from aqueous solution.

  10. Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenol-A.

    PubMed

    Arampatzidou, Anastasia C; Deliyanni, Eleni A

    2016-03-15

    Activated carbon prepared from potato peels, a solid waste by product has been studied for the adsorption of an endocrine disruptor, Bisphenol-A, from aqueous solutions. The potato peels biomass was activated with H3PO4, KOH and ZnCl2 in order the effect of the activation agent to be evaluated. The activated biomass was carbonized at 400, 600 and/or 800 °C in order the effect of carbonization temperature on the texture, surface chemistry and adsorption properties to be found. The activated carbons prepared were characterized by nitrogen adsorption, Scanning Electron Microscope, thermal analysis and Fourier Transform Infrared Spectroscopy. Equilibrium adsorption data followed both Langmuir and Freundlich isotherms. Adsorption followed second order rate kinetics. The adsorption capacity calculated from the Langmuir isotherm was found 454.62 mg g(-1) at an initial pH 3 at 25 °C for the phosphoric acid activated carbon carbonized at 400 °C that proved to be the best adsorbent.

  11. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution.

    PubMed

    Mopoung, Sumrit; Moonsri, Phansiri; Palas, Wanwimon; Khumpai, Sataporn

    2015-01-01

    This research studies the characterization of activated carbon from tamarind seed with KOH activation. The effects of 0.5 : 1-1.5 : 1 KOH : tamarind seed charcoal ratios and 500-700°C activation temperatures were studied. FTIR, SEM-EDS, XRD, and BET were used to characterize tamarind seed and the activated carbon prepared from them. Proximate analysis, percent yield, iodine number, methylene blue number, and preliminary test of Fe(III) adsorption were also studied. Fe(III) adsorption was carried out by 30 mL column with 5-20 ppm Fe(III) initial concentrations. The percent yield of activated carbon prepared from tamarind seed with KOH activation decreased with increasing activation temperature and impregnation ratios, which were in the range from 54.09 to 82.03 wt%. The surface functional groups of activated carbon are O-H, C=O, C-O, -CO3, C-H, and Si-H. The XRD result showed high crystallinity coming from a potassium compound in the activated carbon. The main elements found in the activated carbon by EDS are C, O, Si, and K. The results of iodine and methylene blue adsorption indicate that the pore size of the activated carbon is mostly in the range of mesopore and macropore. The average BET pore size and BET surface area of activated carbon are 67.9764 Å and 2.7167 m(2)/g, respectively. Finally, the tamarind seed based activated carbon produced with 500°C activation temperature and 1.0 : 1 KOH : tamarind seed charcoal ratio was used for Fe(III) adsorption test. It was shown that Fe(III) was adsorbed in alkaline conditions and adsorption increased with increasing Fe(III) initial concentration from 5 to 20 ppm with capacity adsorption of 0.0069-0.019 mg/g.

  12. Effect of Polarity of Activated Carbon Surface, Solvent and Adsorbate on Adsorption of Aromatic Compounds from Liquid Phase.

    PubMed

    Goto, Tatsuru; Amano, Yoshimasa; Machida, Motoi; Imazeki, Fumio

    2015-01-01

    In this study, introduction of acidic functional groups onto a carbon surface and their removal were carried out through two oxidation methods and outgassing to investigate the adsorption mechanism of aromatic compounds which have different polarity (benzene and nitrobenzene). Adsorption experiments for these aromatics in aqueous solution and n-hexane solution were conducted in order to obtain the adsorption isotherms for commercial activated carbon (BAC) as a starting material, its two types of oxidized BAC samples (OXs), and their outgassed samples at 900 °C (OGs). Adsorption and desorption kinetics of nitrobenzene for the BAC, OXs and OGs in aqueous solution were also examined. The results showed that the adsorption of benzene molecules was significantly hindered by abundant acidic functional groups in aqueous solution, whereas the adsorbed amount of nitrobenzene on OXs gradually increased as the solution concentration increased, indicating that nitrobenzene can adsorb favourably on a hydrophilic surface due to its high dipole moment, in contrast to benzene. In n-hexane solution, it was difficult for benzene to adsorb on any sample owing to the high affinity between benzene and n-hexane solvent. On the other hand, adsorbed amounts of nitrobenzene on OXs were larger than those of OGs in n-hexane solution, implying that nitrobenzene can adsorb two adsorption sites, graphene layers and surface acidic functional groups. The observed adsorption and desorption rate constants of nitrobenzene on the OXs were lower than those on the BAC due to disturbance of diffusion by the acidic functional groups.

  13. Adsorption of divalent lead ions by zeolites and activated carbon: effects of pH, temperature, and ionic strength.

    PubMed

    Payne, Kelly B; Abdel-Fattah, Tarek M

    2004-01-01

    Lead alloy bullets used at the 2600 military small arm ranges and 9000 nonmilitary outdoor shooting ranges in the United States are a source of mobilized lead ions under conditions of low pH, significant changes in ionic strength, changes in the reduction oxidation potential (redox), and through binding metal ions to soil organic matter. Once mobile, these lead ions can contaminate adjacent soil and water. Batch adsorption kinetic and isotherm studies were conducted to compare and evaluate different types of adsorbents for lead ion removal from aqueous media. The effects on lead ion absorption from pH changes, competing ions, and temperature increases were also investigated. Adsorbent materials such as activated carbon and naturally occurring zeolites (clinoptilolite and chabazite) were selected because of their relative low cost and because the zeolites are potential point-of-use materials for mitigating wastewater runoff. Molecular sieves, Faujasite (13X) and Linde type A (5A) were selected because they provide a basis for comparison with previous studies and represent well-characterized materials. The relative rate for lead ion adsorption was: 13X > chabazite > clinoptilolite > 5A > activated carbon. Modeling lead ion adsorption by these adsorbents using the Langmuir and Freundlich isotherm expressions determined the adsorbents' capacity for lead ion removal from aqueous media. 13X, 5A, and activated carbon best fit the Langmuir isotherm expression; chabazite and clinoptilolite best fit the Freundlich isotherm. Applications of chabazite would require pH values between 4 and 11, clinoptilolite between 3 and 11, while activated carbon would operate at a pH above 7. Ionic competition reduced lead ion removal by the zeolites, but enhanced activated carbon performance. Increasing temperature improved adsorption performance for the zeolites; activated carbon lead ion adsorption was temperature independent.

  14. Adsorptive removal of aniline by granular activated carbon from aqueous solutions with catechol and resorcinol.

    PubMed

    Suresh, S; Srivastava, V C; Mishrab, I M

    2012-01-01

    In the present paper, the removal of aniline by adsorption process onto granular activated carbon (GAC) is reported from aqueous solutions containing catechol and resorcinol separately. The Taguchi experimental design was applied to study the effect of such parameters as the initial component concentrations (C(0,i)) of two solutes (aniline and catechol or aniline and resorcinol) in the solution, temperature (T), adsorbent dosage (m) and contact time (t). The L27 orthogonal array consisting of five parameters each with three levels was used to determine the total amount of solutes adsorbed on GAC (q(tot), mmol/g) and the signal-to-noise ratio. The analysis of variance (ANOVA) was used to determine the optimum conditions. Under these conditions, the ANOVA shows that m is the most important parameter in the adsorption process. The most favourable levels of process parameters were T = 303 K, m = 10 g/l and t = 660 min for both the systems, qtot values in the confirmation experiments carried out at optimum conditions were 0.73 and 0.95 mmol/g for aniline-catechol and aniline-resorcinol systems, respectively.

  15. A Biomedical Application of Activated Carbon Adsorption: An Experiment Using Acetaminophen and N-Acetylcysteine.

    ERIC Educational Resources Information Center

    Rybolt, Thomas R.; And Others

    1988-01-01

    Illustrates an interesting biomedical application of adsorption from solution and demonstrates some of the factors that influence the in vivo adsorption of drug molecules onto activated charcoal. Uses acetaminophen and N-acetylcysteine for the determination. Suggests several related experiments. (MVL)

  16. Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions.

    PubMed

    Angin, Dilek

    2014-09-01

    The use of activated carbon obtained from sour cherry (Prunus cerasus L.) stones for the removal of a basic textile dye, which is Yellow 18, from aqueous solutions at different contact times, pH values and solution temperatures was investigated. The surface area and micropore volume of chemically modified activated carbon were 1704 m(2) g(-1) and 0.984 cm(3) g(-1), respectively. The experimental data indicated that the adsorption isotherms were well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity was 75.76 mg g(-1) at 318 K. The adsorption kinetic of Yellow 18 obeys the pseudo-second-order kinetic model. The thermodynamic parameters were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 0.71-2.36 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal of Yellow 18 from wastewater.

  17. Comparing the removal of perchlorate when using single-walled carbon nanotubes (SWCNTs) or granular activated carbon: adsorption kinetics and thermodynamics.

    PubMed

    Lou, Jie C; Hsu, Yung S; Hsu, Kai L; Chou, Ming S; Han, Jia Y

    2014-01-01

    This study aims to remove perchlorate using single-walled carbon nanotubes (SWCNTs) or granular activated carbon (GAC). Dynamic and equilibrium adsorption experiments were performed to evaluate the thermodynamic behavior of perchlorate on SWCNTs and GAC. Key parameters affecting the adsorption, such as pH, ionic strength, and temperature were studied. The experimental results showed that the dynamic adsorption experiment achieved equilibrium in approximately eight hours. The adsorption capacity increased as the concentration of perchlorate increased or as the ionic strength decreased. The selected adsorption models were the modified Freundlich, the pseudo-1st-order, and the pseudo-2nd-order equations. The results showed that the modified Freundlich equation best described the kinetic adsorption processes. The maximal adsorption capacities of GAC and SWCNTs were 33.87-28.21 mg/g and 13.64 - 10.03 mg/g, respectively, at a constant temperature between 5°C and 45°C. The thermodynamic parameters, such as the equilibrium constant (K0 ), the standard free energy changes (ΔG°), the standard enthalpy change (ΔH°) and the standard entropy change (ΔS°), were obtained. The results of the isothermal equilibrium adsorption experiment showed that low pH levels, low ionic strength, and low-temperature conditions facilitated the perchlorate adsorption, indicating that GAC and SWCNTs are potential absorbents for water treatment.

  18. Modeling competitive adsorption of mixtures of volatile organic compounds in a fixed-bed of beaded activated carbon.

    PubMed

    Tefera, Dereje Tamiru; Hashisho, Zaher; Philips, John H; Anderson, James E; Nichols, Mark

    2014-05-06

    A two-dimensional mathematical model was developed to study competitive adsorption of n-component mixtures in a fixed-bed adsorber. The model consists of an isotherm equation to predict adsorption equilibria of n-component volatile organic compounds (VOCs) mixture from single component isotherm data, and a dynamic adsorption model, the macroscopic mass, energy and momentum conservation equations, to simulate the competitive adsorption of the n-components onto a fixed-bed of adsorbent. The model was validated with experimentally measured data of competitive adsorption of binary and eight-component VOCs mixtures onto beaded activated carbon (BAC). The mean relative absolute error (MRAE) was used to compare the modeled and measured breakthrough profiles as well as the amounts of adsorbates adsorbed. For the binary and eight-component mixtures, the MRAE of the breakthrough profiles was 13 and 12%, respectively, whereas, the MRAE of the adsorbed amounts was 1 and 2%, respectively. These data show that the model provides accurate prediction of competitive adsorption of multicomponent VOCs mixtures and the competitive adsorption isotherm equation is able to accurately predict equilibrium adsorption of VOCs mixtures.

  19. Adsorption of Selected Pharmaceutical Compounds onto Activated Carbon in Dilute Aqueous Solutions Exemplified by Acetaminophen, Diclofenac, and Sulfamethoxazole.

    PubMed

    Chang, E-E; Wan, Jan-Chi; Kim, Hyunook; Liang, Chung-Huei; Dai, Yung-Dun; Chiang, Pen-Chi

    2015-01-01

    The adsorption of three pharmaceuticals, namely, acetaminophen, diclofenac, and sulfamethoxazole onto granular activated carbon (GAC), was investigated. To study competitive adsorption, both dynamic and steady-state adsorption experiments were conducted by careful selection of pharmaceuticals with various affinities and molecular size. The effective diffusion coefficient of the adsorbate was increased with decease in particle size of GAC. The adsorption affinity represented as Langmuir was consistent with the ranking of the octanol-water partition coefficient, K(ow). The adsorption behavior in binary or tertiary systems could be described by competition adsorption. In the binary system adsorption replacement occurred, under which the adsorbate with the smaller K(ow) was replaced by the one with larger K(ow). Results also indicated that portion of the micropores could be occupied only by the small target compound, but not the larger adsorbates. In multiple-component systems the competition adsorption might significantly be affected by the macropores and less by the meso- or micropores.

  20. Salt-enhanced removal of 2-ethyl-1-hexanol from aqueous solutions by adsorption on activated carbon.

    PubMed

    Chang, Ganggang; Bao, Zongbi; Zhang, Zhiguo; Xing, Huabin; Su, Baogen; Yang, Yiwen; Ren, Qilong

    2013-12-15

    2-Ethyl-1-hexanol has extensive industrial applications in solvent extraction, however, in view of its potential pollution to environment, the removal and recovery of 2-ethyl-1-hexanol is considered an essential step toward its sustainable use in the future. In this work, we report the removal of 2-ethyl-1-hexanol from aqueous solutions containing salts in high concentrations by adsorption on a coal-based activated carbon. Adsorption thermodynamics showed that the experimental isotherms were conformed well to the Langmuir equation. Also it was found that inorganic salts, i.e. MgCl2 and CaCl2 in high concentration significantly enhanced the adsorption capacity from 223 mg/g in the deionized water to 277 mg/g in a saline water. This phenomenon of adsorption enhancement could be ascribed to the salt-out effect. Kinetic analysis indicated that adsorption kinetics follows the pseudo-second-order equation and the adsorption rate constants increase with the salt concentration. The dynamic breakthrough volume and adsorbed amount of 2-ethyl-1-hexanol were significantly elevated when the salt is present in the water. The dynamic saturated adsorption amount increased from 218.3mg/g in the deionized water to 309.5mg/g in a salt lake brine. The Tomas model was well applied to predict the breakthrough curves and determine the characteristics parameters of the adsorption column.

  1. Impact of Nanoparticles and Natural Organic Matter on the Removal of Organic Pollutants by Activated Carbon Adsorption

    EPA Science Inventory

    Isotherm experiments evaluating trichloroethylene (TCE) adsorption onto powdered activated carbon (PAC) were conducted in the presence and absence of three commercially available nanomaterials— iron oxide (Fe2O3), titanium dioxide (TiO2), and silicon dioxide (SiO2). Isotherm exp...

  2. PREDICTING THE ADSORPTION CAPACITY OF ACTIVATED CARBON FOR EMERGING ORGANIC CONTAMINANTS FROM FUNDAMENTAL ADSORBENT AND ADSORBATE PROPERTIES - PRESENTATION

    EPA Science Inventory

    A quantitative structure-property relationship (QSPR) was developed and combined with the Polanyi-Dubinin-Manes model to predict adsorption isotherms of emerging contaminants on activated carbons with a wide range of physico-chemical properties. Affinity coefficients (βl

  3. Adsorption of ciprofloxacin and norfloxacin from aqueous solution onto granular activated carbon in fixed bed column.

    PubMed

    Darweesh, Teeba M; Ahmed, Muthanna J

    2017-04-01

    Carbonization of Phoenix dactylifera L stones followed by microwave K2CO3 activation was adopted for preparation of granular activated carbon (KAC). High yield and favorable pore characteristics in terms of surface area and pore volume were reported for KAC as follows: 44%, 852m(2)/g, and 0.671cm(3)/g, respectively. The application of KAC as adsorbent for attraction of ciprofloxacin (CIP) and norfloxacin (NOR) was investigated using fixed bed systems. The effect of flow rate (0.5-1.5ml/min), bed height (15-25cm), and initial drug concentration (75-225mg/l) on the behavior of breakthrough curves was explained. The fixed bed analysis showed the better correlation of breakthrough data by both Thomas and Yoon-Nelson models. Inlet drug concentration was of greatest effect on breakthrough data compared to other fixed bed variables. Experimental and calculated breakthrough data were obtained for CIP and NOR adsorption on KAC, thus being important for design of fixed bed column.

  4. The effect of water temperature on the adsorption equilibrium of dissolved organic matter and atrazine on granular activated carbon

    SciTech Connect

    Bernd Schreiber; Viktor Schmalz; Thomas Brinkmann; Eckhard Worch

    2007-09-15

    The influence of water temperature on the adsorption of natural dissolved organic matter (DOM) on activated carbon has not been investigated intensively yet. In this study, batch experiments with granular activated carbon (GAC) F300, from bituminous coal, have been carried out at three temperatures (5, 20, 35{sup o} C) using a humic acid model water and different types of surface water (lake, river, canal). Furthermore, the adsorption of an anthropogenic contaminant, atrazine, was quantified in the absence and presence of DOM. The results indicate a significant influence of water temperature on the adsorption equilibrium of DOM and atrazine. Contrary to expectations, DOM and atrazine adsorption in surface water tends to be increased with increasing water temperature, whereas the extent of this effect is dependent on the type and concentration of DOM. Furthermore, the temperature effect on atrazine adsorption is controlled by competition of DOM and atrazine on adsorption sites. Some assumptions are proposed and discussed for explaining the temperature effects observed in the batch studies. 39 refs., 4 figs., 2 tabs.

  5. Synthesis of activated carbon-based amino phosphonic acid chelating resin and its adsorption properties for Ce(III) removal.

    PubMed

    Chen, Tao; Yan, Chunjie; Wang, Yixia; Tang, Conghai; Zhou, Sen; Zhao, Yuan; Ma, Rui; Duan, Ping

    2015-01-01

    This work aims to investigate the adsorption of Ce(III) onto chelating resin based on activated carbon (CRAC). The CRAC adsorbent was prepared from activated carbon (AC) followed by oxidation, silane coupling, ammoniation and phosphorylation, and characterized by Fourier transform-infrared spectrometry, nitrogen adsorption measurements and scanning electron microscopy. The effects of solution pH, adsorbent dosage and contact time were studied by batch technique. Langmuir and Freundlich isotherms were used to describe the adsorption behaviour of Ce(III) by CRAC, and the results showed that the adsorption behaviour well fitted the Langmuir model. The maximum uptake capacity (qmax) calculated by using the Langmuir equation for cerium ions was found to be 94.34 mg/g. A comparison of the kinetic models and the overall experimental data was best fitted with the type 1 pseudo second-order kinetic model. The calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) showed that the adsorption for Ce(III) was feasible, spontaneous and exothermic at 25-45 °C. The CRAC showed an excellent adsorptive selectivity towards Ce(III). Moreover, more than 82% of Ce(III) adsorbed onto CRAC could be desorbed with HCl and could be used several times.

  6. Quantitative evaluation of the effect of moisture contents of coconut shell activated carbon used for respirators on adsorption capacity for organic vapors.

    PubMed

    Abiko, Hironobu; Furuse, Mitsuya; Takano, Tsuguo

    2010-01-01

    Activated carbon is an elemental material used for hygienic applications, particularly as an adsorbent for harmful gases and vapors. In Japanese industrial and occupational hygiene, activated carbon produced from coconut shell is a traditional and popular adsorbent material due to its excellent adsorption ability and cost advantage. In this research, in order to clarify the effect of the preliminary content of moisture on the adsorption capacity in detail, we prepared several coconut shell activated carbons which were preconditioned by equilibration with moisture at different relative humidities. We measured their adsorption capacities as breakthrough times for 6 kinds of organic vapor, and attempted to determine the relationships between the relative weight increase of water adsorption and the decrease of adsorption capacities of the activated carbon specimens for the organic vapors. The procedure of the quantitative evaluation of the effect of moisture and the results are useful for practical applications of activated carbon, particularly those used as adsorbents in workplaces.

  7. Batch and fixed-bed adsorption of tartrazine azo-dye onto activated carbon prepared from apricot stones

    NASA Astrophysics Data System (ADS)

    Albroomi, H. I.; Elsayed, M. A.; Baraka, A.; Abdelmaged, M. A.

    2016-02-01

    This work describes the potential of utilizing prepared activated carbon from apricot stones as an efficient adsorbent material for tartrazine (TZ) azo-dye removal in a batch and dynamic adsorption system. The results revealed that activated carbons with well-developed surface area (774 m2/g) and pore volume (1.26 cm3/g) can be manufactured from apricot stones by H3PO4 activation. In batch experiments, effects of the parameters such as initial dye concentration and temperature on the removal of the dye were studied. Equilibrium was achieved in 120 min. Adsorption capacity was found to be dependent on the initial concentration of dye solution, and maximum adsorption was found to be 76 mg/g at 100 mg/L of TZ. The adsorption capacity at equilibrium (q e) increased from 22.6 to 76 mg/g with an increase in the initial dye concentrations from 25 to 100 mg/L. The thermodynamic parameters such as change in free energy (ΔG 0), enthalpy (ΔH 0) and entropy (ΔS 0) were determined and the positive value of (ΔH) 78.1 (K J mol-1) revealed that adsorption efficiency increased with an increase in the process temperature. In fixed-bed column experiments, the effect of selected operating parameters such as bed depth, flow rate and initial dye concentration on the adsorption capacity was evaluated. Increase in bed height of adsorption columns leads to an extension of breakthrough point as well as the exhaustion time of adsorbent. However, the maximum adsorption capacities decrease with increases of flow rate. The breakthrough data fitted well to bed depth service time and Thomas models with high coefficient of determination, R 2 ≥ 94.

  8. A key parameter on the adsorption of diluted aniline solutions with activated carbons: The surface oxygen content.

    PubMed

    Pardo, Beatrice; Ferrer, Nabí; Sempere, Julià; Gonzalez-Olmos, Rafael

    2016-11-01

    A total of 11 different commercial activated carbons (AC) with well characterized textural properties and oxygen surface content were tested as adsorbents for the removal of aniline as a target water pollutant. The maximum adsorption capacity of aniline for the studied AC was from 138.9 to 257.9 mg g(-1) at 296.15 K and it was observed to be strongly related to the textural properties of the AC, mainly with the BET surface area and the micropore volume. It was not observed any influence of the oxygen surface content of the AC on the maximum adsorption capacity. However, it was found that at low aniline aqueous concentration, the presence of oxygen surface groups plays a dominant role during the adsorption. A high concentration of oxygen surface groups, mainly carboxylic and phenolic groups, decreases the aniline adsorption regardless of the surface area of the AC.

  9. Effect of heat on the adsorption capacity of an activated carbon for decolorizing/deodorizing yellow zein.

    PubMed

    Sessa, D J; Palmquist, D E

    2008-09-01

    The Freundlich model was evaluated for use to assess the effect of heat on the adsorption capacity of an activated carbon for decolorizing/deodorizing corn zein. Because zein protein and its color/odor components are all adsorbed by activated carbon, a method to monitor their removal was needed. Yellow color is due to xanthophylls; a contributor to off-odor is diferuloylputrescine. The off-odor component absorbs ultraviolet (UV) light at about 325 nm and its removal coincides with removal of yellow color. A spectrophotometric method based on UV absorbances 280 nm for protein and 325 nm for the off-odor component was used to monitor their adsorptions onto activated carbon. Equilibrium studies were performed over temperature range from 25 to 60 degrees C for zein dissolved in 70% aqueous ethanol. Runs made at 55 degrees C adsorbed significantly more of the color/odor components than the protein.

  10. Copper (II) Adsorption by Activated Carbons from Pecan Shells: Effect of Oxygen Level During Activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural by-products represent a considerable quantity of harvested commodity crops. The use of by-products as precursors for the production of widely used adsorbents, such as activated carbons, may impart a value-added component of the overall biomass harvested. Our objective in this paper is...

  11. Metal Ion Adsorption by Activated Carbons Made from Pecan Shells: Effect of Oxygen Level During Activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural by-products represent a considerable quantity of harvested commodity crops. The use of by-products as precursors for the production of widely used adsorbents, such as activated carbons, may impart a value-added component of the overall biomass harvested. Our objective in this presenta...

  12. Quantitation of microorganic compounds in waters of the Great Lakes by adsorption on activated carbon

    USGS Publications Warehouse

    Daniels, Stacy L.; Kempe, Lloyd L.; Graham, E. S.; Beeton, Alfred M.

    1963-01-01

    Microorganic compounds in waters of Lakes Michigan and Huron have been sampled by adsorption on activated carbon in filters installed aboard the M/V Cisco and at the Hammond Bay Laboratory of the U.S. Bureau of Commercial Fisheries. The organic compounds were eluted from the carbon according to techniques developed at the U.S. Public Health Service. On the assumption that chloroform eluates represent less polar compounds from industrial sources and alcohol eluates the more polar varieties of natural origin, plots of chloroform eluates against alcohol eluates appear to be useful in judging water qualities. Based upon these criteria, the data in this paper indicate that both the waters of northern Lake Michigan and of Lake Huron, in the vicinity of Hammond Bay, Michigan, are relatively free from pollution. The limnetic waters of Lake Michigan showed a particularly high ratio of alcohol to chloroform eluates. Data for monthly samples indicated that this ratio fluctuated seasonally. The periodicity of the fluctuations was similar to those of lake levels and water temperatures.

  13. Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption.

    PubMed

    Zietzschmann, F; Mitchell, R-L; Jekel, M

    2015-11-01

    This study investigates if ozonation of wastewater treatment plant (WWTP) effluent can reduce the negative impacts of effluent organic matter (EfOM) on the adsorption of organic micro-pollutants (OMP) onto powdered activated carbon (PAC). Pre-treatment of the water included membrane filtration for the removal of suspended/colloidal organics, ozonation with various specific ozone consumptions, and subsequent OMP spiking to comparable initial concentrations in all of the ozonated waters. This approach allowed for comparative PAC adsorption tests. Adsorption analyses show that the adsorbability of EfOM decreases with increasing specific ozone consumptions. This is also reflected by liquid chromatography with online carbon and UV254 detection (LC-OCD) which shows the ozone-induced disintegration of large EfOM into smaller fragments. Also, small organic neutrals are decreased while the small organic acids peak continuously increases with rising specific ozone consumptions. UV254 demonstrates that the aromaticity of all LC-OCD fractions continuously declines together with increasing specific O3 consumptions. This explains the varying EfOM adsorbabilities that occur due to ozonation. The ozone-induced decrease of EfOM adsorbability directly translates into reduced adsorption competition against the adsorption of OMP. With higher specific ozone consumptions, OMP removal and OMP loadings increase. The reduced adsorption competition is reflected in the outputs from equivalent background compound (EBC) modeling. In each of the ozonated waters, correlations between the OMP removals and the UV254 removal were found.

  14. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions.

    PubMed

    Wang, Xueqian; Qiu, Juan; Ning, Ping; Ren, Xiaoguang; Li, Ziyan; Yin, Zaifei; Chen, Wei; Liu, Wei

    2012-08-30

    Activated carbon modified with different impregnants has been studied for COS removal efficiency under micro-oxygen conditions. Activated carbon modified with Cu(NO(3))(2)-CoPcS-KOH (denoted as Cu-Co-KW) is found to have markedly enhanced adsorption purification ability. In the adsorption purification process, the reaction temperature, oxygen concentration, and relative humidity of the gas are determined to be three crucial factors. A breakthrough of 43.34 mg COS/g adsorbent at 60°С and 30% relative humidity with 1.0% oxygen is shown in Cu-Co-KW for removing COS. The structures of the activated carbon samples are characterized using nitrogen adsorption, and their surface chemical structures are analyzed with X-ray photoelectron spectroscopy (XPS). Modification of Cu(NO(3))(2)-CoPcS-KOH appears to improve the COS removal capacity significantly, during which, SO(4)(2-) is presumably formed, strongly adsorbed, and present in the micropores ranging from 0.7 to 1.5 nm. TPD is used to identify the products containing sulfur species on the carbon surface, where SO(2) and COS are detected in the effluent gas generated from exhausted Cu-Co-KW (denoted Cu-Co-KWE). According to the current study results, the activated carbon impregnated with Cu(NO(3))(2)-CoPcS-KOH promises a good candidate for COS adsorbent, with the purified gas meeting requirements for desirable chemical feed stocks.

  15. Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue.

    PubMed

    Marrakchi, F; Ahmed, M J; Khanday, W A; Asif, M; Hameed, B H

    2017-05-01

    In this work, mesoporous-activated carbon (CSAC) was prepared from chitosan flakes (CS) via single-step sodium hydroxide activation for the adsorption of methylene blue (MB). CSAC was prepared using different impregnation ratios of NaOH:CS (1:1, 2:1, 3:1, and 4:1) at 800°C for 90min. The adsorption performance of CSAC was evaluated for MB at different adsorption variables, such MB initial concentrations (25-400mg/L), solution pH (3-11), and temperature (30-50°C). The adsorption isotherm data of CSAC-MB were well fitted to Langmuir model with a maximum adsorption capacity 143.53mg/g at 50°C. Best representation of kinetic data was obtained by the pseudo-second order model. CSAC exhibited excellent adsorption uptake for MB and can potentially be used for other cationic dyes.

  16. Characterization of Sodium Carbonate (Na2CO3) Treated Rice Husk Activated Carbon and Adsorption of Lead from Car Battery Wastewater

    NASA Astrophysics Data System (ADS)

    Hanum, F.; Bani, O.; Izdiharo, A. M.

    2017-03-01

    The use of rice husk as adsorbent would not only reduce its disposal problems, but would also produce value-added products, such as activated carbon derived from rice husk. This study aimed to determine the optimum carbonization temperature for activated carbon production from rice husk and its adsorption performance on Pb in car battery wastewater. In this study, activated carbon was produced by carbonizing rice husk 400–600 °C for 90–150 minutes followed by chemical activation using 5% Na2CO3 and sieving to 100 meshes. Lead adsorption was measured using atomic absorption spectroscopy (AAS). Results suggested that highest carbon yield of 47.75% was obtained for carbonization at 500 °C for 150 minutes. At that condition, produced activated carbon contained 3.35% moisture, 30.86% ash, 18.04% volatile matter. The adsorption capacity was found to be 0.6007 mg lead/g adsorbent with % adsorpsi 58.08%

  17. Fast voltammetry of metals at carbon-fiber microelectrodes: copper adsorption onto activated carbon aids rapid electrochemical analysis.

    PubMed

    Pathirathna, Pavithra; Samaranayake, Srimal; Atcherley, Christopher W; Parent, Kate L; Heien, Michael L; McElmurry, Shawn P; Hashemi, Parastoo

    2014-09-21

    Rapid, in situ trace metal analysis is essential for understanding many biological and environmental processes. For example, trace metals are thought to act as chemical messengers in the brain. In the environment, some of the most damaging pollution occurs when metals are rapidly mobilized and transported during hydrologic events (storms). Electrochemistry is attractive for in situ analysis, primarily because electrodes are compact, cheap and portable. Electrochemical techniques, however, do not traditionally report trace metals in real-time. In this work, we investigated the fundamental mechanisms of a novel method, based on fast-scan cyclic voltammetry (FSCV), that reports trace metals with sub-second temporal resolution at carbon-fiber microelectrodes (CFMs). Electrochemical methods and geochemical models were employed to find that activated CFMs rapidly adsorb copper, a phenomenon that greatly advances the temporal capabilities of electrochemistry. We established the thermodynamics of surface copper adsorption and the electrochemical nature of copper deposition onto CFMs and hence identified a unique adsorption-controlled electrochemical mechanism for ultra-fast trace metal analysis. This knowledge can be exploited in the future to increase the sensitivity and selectivity of CFMs for fast voltammetry of trace metals in a variety of biological and environmental models.

  18. Multilayer Dye Adsorption in Activated Carbons-Facile Approach to Exploit Vacant Sites and Interlayer Charge Interaction.

    PubMed

    Hadi, Pejman; Guo, Jiaxin; Barford, John; McKay, Gordon

    2016-05-17

    Altering the textural properties of activated carbons (ACs) via physicochemical techniques to increase their specific surface area and/or to manipulate their pore size is a common practice to enhance their adsorption capacity. Instead, this study proposes the utilization of the vacant sites remaining unoccupied after dye uptake saturation by removing the steric hindrance and same-charge repulsion phenomena via multilayer adsorption. Herein, it has been shown that the adsorption capacity of the fresh AC is a direct function of the dye molecular size. As the cross-sectional area of the dye molecule increases, the steric hindrance effect exerted on the neighboring adsorbed molecules increases, and the geometrical packing efficiency is constrained. Thus, ACs saturated with larger dye molecules render higher concentrations of vacant adsorption sites which can accommodate an additional layer of dye molecules on the exhausted adsorbent through interlayer attractive forces. The second layer adsorption capacity (60-200 mg·g(-1)) has been demonstrated to have a linear relationship with the uncovered surface area of the exhausted AC, which is, in turn, inversely proportional to the adsorbate molecular size. Unlike the second layer adsorption, the third layer adsorption is a direct function of the charge density of the second layer.

  19. Equilibrium, kinetic and thermodynamic studies on the adsorption of 2-nitroaniline onto activated carbon prepared from cotton stalk fibre.

    PubMed

    Li, Kunquan; Zheng, Zheng; Huang, Xingfa; Zhao, Guohua; Feng, Jingwei; Zhang, Jibiao

    2009-07-15

    Activated carbon prepared from cotton stalk fibre has been utilized as an adsorbent for the removal of 2-nitroaniline from aqueous solutions. The influence of adsorbent mass, contact time and temperature on the adsorption was investigated by conducting a series of batch adsorption experiments. The equilibrium data at different temperatures were fitted with the Langmuir, Freundlich, Tempkin, Redlich-Peterson and Langmuir-Freundlich models. The Langmuir-Freundlich isotherm was found to best describe the experimental data. The adsorption amount increased with increasing temperature. The maximum adsorption capacity of 2-nitroaniline was found to be 383 mg/g for initial 2-nitroaniline concentration of 200mg/L at 45 degrees C. The kinetic rates were modeled by using the Lagergren-first-order, pseudo-second-order and Elovich models. The pseudo-second-order model was found to explain the adsorption kinetics most effectively. It was also found that the pore diffusion played an important role in the adsorption, and intraparticle diffusion was the rate-limiting step at the first 30 min for the temperatures of 25, 35 and 45 degrees C. FTIR and (13)C NMR study revealed that the amino and isocyanate groups present on the surface of the adsorbent were involved in chemical interaction with 2-nitroaniline. The negative change in free energy (Delta G degrees) and positive change in enthalpy (Delta H degrees) indicated that the adsorption was a spontaneous and endothermic process.

  20. Production of granular activated carbon from food-processing wastes (walnut shells and jujube seeds) and its adsorptive properties.

    PubMed

    Bae, Wookeun; Kim, Jongho; Chung, Jinwook

    2014-08-01

    Commercial activated carbon is a highly effective absorbent that can be used to remove micropollutants from water. As a result, the demand for activated carbon is increasing. In this study, we investigated the optimum manufacturing conditions for producing activated carbon from ligneous wastes generated from food processing. Jujube seeds and walnut shells were selected as raw materials. Carbonization and steam activation were performed in a fixed-bed laboratory electric furnace. To obtain the highest iodine number, the optimum conditions for producing activated carbon from jujube seeds and walnut shells were 2 hr and 1.5 hr (carbonization at 700 degrees C) followed by 1 hr and 0.5 hr (activation at 1000 degrees C), respectively. The surface area and iodine number of activated carbon made from jujube seeds and walnut shells were 1,477 and 1,184 m2/g and 1,450 and 1,200 mg/g, respectively. A pore-distribution analysis revealed that most pores had a pore diameter within or around 30-40 angstroms, and adsorption capacity for surfactants was about 2 times larger than the commercial activated carbon, indicating that waste-based activated carbon can be used as alternative. Implications: Wastes discharged from agricultural and food industries results in a serious environmental problem. A method is proposed to convert food-processing wastes such as jujube seeds and walnut shells into high-grade granular activated carbon. Especially, the performance of jujube seeds as activated carbon is worthy of close attention. There is little research about the application ofjujube seeds. Also, when compared to two commercial carbons (Samchully and Calgon samples), the results show that it is possible to produce high-quality carbon, particularly from jujube seed, using a one-stage, 1,000 degrees C, steam pyrolysis. The preparation of activated carbon from food-processing wastes could increase economic return and reduce pollution.

  1. Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4 activation: Adsorption capacity, kinetic and isotherm studies

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Li, Shunxing; Chen, Jianhua; Zhang, Xueliang; Chen, Yiping

    2014-02-01

    Activated carbons with high mesoporosity and abundant oxygen-containing functional groups were prepared from water hyacinth using H3PO4 activation (WHAC) to eliminate Pb(II) in water. Characterizations of the WHAC were performed using Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The BET analysis showed that WHAC possesses a high mesoporosity (93.9%) with a BET surface area of 423.6 m2/g. The presence of oxygen-containing functional groups including hydroxyl, carbonyl, carboxyl and phosphate groups renders the WHAC a favorable adsorbent for Pb(II) with the maximum monolayer capacity (qm) 118.8 mg/g. The adsorption behavior follows pseudo-first order kinetic and Langmuir isotherm. The desorption study demonstrated that the WHAC could be readily regenerated using 0.1 M HCl (pH = 1.0). The desorbed WHAC could be reused at least six times without significant adsorption capacity reduction. The adsorption process was spontaneous and endothermic with ΔG (-0.27, -1.13, -3.02, -3.62, -5.54, and -9.31 kJ/mol) and ΔH (38.72 kJ/mol). Under the optimized conditions, a small amount of the adsorbent (1.0 g/L) could remove as much as 90.1% of Pb(II) (50 mg/L) in 20 min at pH 6.0 and temperature of 298 K. Therefore, the WHAC has a great potential to be an economical and efficient adsorbent in the treatment of lead-contaminated water.

  2. Magnetic properties and adsorptive performance of manganese–zinc ferrites/activated carbon nanocomposites

    SciTech Connect

    Zhang, B.B.; Xu, J.C.; Xin, P.H.; Han, Y.B.; Hong, B.; Jin, H.X.; Jin, D.F.; Peng, X.L.; Li, J.; Gong, J.; Ge, H.L.; Zhu, Z.W.; Wang, X.Q.

    2015-01-15

    Owing to the unique microstructure and high specific surface area, activated carbon (AC) could act as an excellent adsorbent for wastewater treatment and good carrier for functional materials. In this paper, manganese–zinc ferrites (Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}: MZF) were anchored into AC by hydrothermal method, resulting in the excellent magnetic response for AC nanocomposites in wastewater treatment. All results demonstrated the magnetic nanoparticles presented a spinel phase structure and existed in the pores of AC. The saturation magnetization (Ms) of MZF/AC nanocomposites increased with the ferrites content, while the pore volume and specific surface area declined. The Sample-5 possessed the specific surface area of 1129 m{sup 2} g{sup −1} (close to 1243 m{sup 2} g{sup −1} of AC) and Ms of 3.96 emu g{sup −1}. Furthermore, the adsorptive performance for organic dyes was studied and 99% methylene blue was adsorbed in 30 min. The magnetic AC nanocomposites could be separated easily from solution by magnetic separation technique. - Graphical abstract: The Sample-5 presented both good magnetic response and high BET surface area up to 1129 m{sup 2} g{sup −1} (close to AC of 1243 m{sup 2} g{sup −1}), which could be separated completely for about 60 s. MZF/AC nanocomposites (Sample-3, 4, 5) in our work could be used as the magnetic absorbents, which could be separated easily by an outer magnet after the MB adsorption. - Highlights: • Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} (MZF) as few as possible was implanted into activated carbon (AC) for the higher surface area. • Sample-5 possessed the high specific surface area (1129 m{sup 2} g{sup −1}) and the suitable Ms (3.96 emu g{sup −1}). • Methylene blue was adsorbed almost completely by MZF/AC nanocomposites in 30 min. • MZF/AC nanocomposites were separated easily from solution by magnetic separation technique.

  3. Binary adsorption equilibrium of carbon dioxide and water vapor on activated alumina.

    PubMed

    Li, Gang; Xiao, Penny; Webley, Paul

    2009-09-15

    Adsorption equilibria of a CO2/H2O binary mixture on activated alumina F-200 were measured at several temperatures and over a wide range of concentrations from 4% to around 90% of the saturated water vapor pressure. In comparison with the single-component data, the loading of CO2 was not reduced in the presence of H2O, whereas at low relative humidity the adsorption of H2O was depressed. The binary system was described by a competitive/cooperative adsorption model where the readily adsorbed water layers acted as secondary sites for further CO2 adsorption via hydrogen bonding or hydration reaction. The combination of kinetic models, namely, a Langmuir isotherm for characterizing pure CO2 adsorption and a BET isotherm for H2O, was extended to derive a binary adsorption equilibrium model for the CO2/H2O mixture. Models based on the ideal adsorbed solution theory of Myers and Prausnitz failed to characterize the data over the whole composition range, and a large deviation of binary CO2/H2O equilibrium from ideal solution behavior was observed. The extended Langmuir-BET (LBET) isotherm, analogous to the extended Langmuir equation, drastically underestimated the CO2 loading. By incorporating the interactions between CO2 and H2O molecules on the adsorbent surface and taking into account the effect of nonideality, the realistic interactive LBET (R-LBET) model was found to be in very good agreement with the experimental data. The derived binary isosteric heat of adsorption showed that the heat was reduced by competitive adsorption but promoted by cooperative adsorption.

  4. Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes.

    PubMed

    Ma, Jie; Yu, Fei; Zhou, Lu; Jin, Lu; Yang, Mingxuan; Luan, Jingshuai; Tang, Yuhang; Fan, Haibo; Yuan, Zhiwen; Chen, Junhong

    2012-11-01

    An alkali-acitvated method was explored to synthesize activated carbon nanotubes (CNTs-A) with a high specific surface area (SSA), and a large number of mesopores. The resulting CNTs-A were used as an adsorbent material for removal of anionic and cationic dyes in aqueous solutions. Experimental results indicated that CNTs-A have excellent adsorption capacity for methyl orange (149 mg/g) and methylene blue (399 mg/g). Alkali-activation treatment of CNTs increased the SSA and pore volume (PV), and introduced oxygen-containing functional groups on the surface of CNTs-A, which would be beneficial to improving the adsorption affinity of CNTs-A for removal of dyes. Kinetic regression results shown that the adsorption kinetic was more accurately represented by a pseudo second-order model. The overall adsorption process was jointly controlled by external mass transfer and intra-particle diffusion, and intra-particle diffusion played a dominant role. Freundlich isotherm model showed a better fit with adsorption data than Langmuir isotherm model. Adsorption interactions of dyes onto CNTs-A from aqueous solutions were investigated using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) method. The remarkable adsorption capacity of dye onto CNTs-A can be attributed to the multiple adsorption interaction mechanisms (hydrogen bonding, π-π electron-donor-acceptor interactions, electrostatic interactions, mesopore filling) on the CNTs-A. Results of this work are of great significance for environmental applications of activated CNTs as a promising adsorbent nanomaterial for organic pollutants from aqueous solutions.

  5. Efficient utilization of Eucheuma denticulatum hydrolysates using an activated carbon adsorption process for ethanol production in a 5-L fermentor.

    PubMed

    Ra, Chae Hun; Kim, Min Ji; Jeong, Gwi-Taek; Kim, Sung-Koo

    2017-03-01

    A total monosaccharide concentration of 37.8 g/L and 85.9% conversion from total fermentable monosaccharides of 44.0 g/L from 110 g dw/L Eucheuma denticulatum slurry were obtained by thermal acid hydrolysis and enzymatic saccharification. Subsequent adsorption treatment to remove 5-hydroxymethylfurfural (5-HMF) using 5% activated carbon and an adsorption time of 10 min were used to prevent a prolonged lag phase, reduced cell growth, and low ethanol production. The equilibrium adsorption capacity (q e) of HMF (58.183 mg/g) showed high affinity to activated carbon comparing to those of galactose (2.466 mg/g) and glucose (2.474 mg/g). The efficiency of cell growth and ethanol production with activated carbon treatment was higher than that without activated carbon treatment. Fermentation using S. stipitis KCTC7228 produced a cell concentration of 3.58 g dw/L with Y X/S of 0.107, and an ethanol concentration of 15.8 g/L with Y P/S of 0.48 in 96 h.

  6. Impacts of coagulation on the adsorption of organic micropollutants onto powdered activated carbon in treated domestic wastewater.

    PubMed

    Altmann, Johannes; Zietzschmann, Frederik; Geiling, Eva-Linde; Ruhl, Aki Sebastian; Sperlich, Alexander; Jekel, Martin

    2015-04-01

    The application of powdered activated carbon (PAC) as an advanced wastewater treatment step for the removal of organic micropollutants (OMP) necessitates complete separation of the PAC particles, e.g. by coagulation. In this study, potential positive or negative indirect or direct effects of coagulation on the adsorption of OMPs onto PAC in treated wastewater were investigated. Although the concentration of dissolved organic matter (DOM) was significantly reduced by coagulation, the selective removal of mainly larger DOM components such as biopolymers and humic substances did not improve subsequent OMP adsorption onto PAC, demonstrating that coagulation has minor effects on DOM constituents that are relevant for direct competition or pore blocking. The combination of coagulation and adsorption yielded the sum of the individual removals, as adsorption predominantly affected smaller compounds. While the formation of flocs led to visible incorporation of PAC particles, no significant mass transfer limitations impeded the OMP adsorption. As a result, the dosing sequence of coagulant and PAC is not critical for efficient adsorption of OMPs onto PAC. The relationships between adsorptive OMP removal and corresponding reduction of UV absorption at 254 nm (UVA254) as a promising surrogate correlation for the real-time monitoring and PAC adjustment were affected by coagulation, leading to individual correlations depending on the water composition. Correcting for UVA254 reduction by coagulation produces adsorptive UVA254 removal, which correlates highly with OMP removal for different WWTP effluents and varying coagulant doses and can be applied in combined adsorption/coagulation processes to predict OMP removal and control PAC dosing.

  7. Activated carbon adsorptive removal of azo dye and peroxydisulfate regeneration: from a batch study to continuous column operation.

    PubMed

    Li, Jing; Du, Yue; Deng, Bin; Zhu, Kangmeng; Zhang, Hui

    2016-12-17

    The performance of activated carbon (AC) for the adsorption of Acid Orange 7 (AO7) was investigated in both batch and column studies. The optimal conditions for adsorption process in batch study were found to be a stirring speed of 500 rpm, AC dosage of 5 g/L, and initial AO7 concentration of 100 mg/L. The spent AC was then treated with peroxydisulfate (PDS), and the regenerated AC was used again to adsorb AO7. Both pseudo-first-order and pseudo-second-order rate models for adsorption kinetics were investigated, and the results showed that the latter model was more appropriate. The effects of regeneration time, PDS concentration, and stirring speed on AO7-spent AC regeneration were investigated in batch studies, and the optimal conditions were time 2 h, stirring speed 700 rpm, and PDS concentration 10 g/L. Under the same adsorption conditions, 89% AO7 could be decolorized by adsorption using regenerated AC. In the column studies, the effect of flow rate was investigated and the adsorption capacity was nearly the same when the flow rate rose from 7.9 to 11.4 mL/min, but it decreased significantly when the flow rate was increased to 15.2 mL/min. The performance of regenerated AC in the column was also investigated, and a slight increase in the adsorption capacity was observed in the second adsorption cycle. However, the adsorption capacity decreased to some extent in the third cycle due to the consumption of C-OH group on the AC surface during PDS regeneration.

  8. [Adsorption behavior and influence factors of p-nitroaniline on high surface area activated carbons prepared from plant stems].

    PubMed

    Li, Kun-quan; Zheng, Zheng; Luo, Xing-zhang

    2010-08-01

    Low-cost and high surface area microporous activated carbons were prepared from Spartina alternilora and cotton stalk with KOH activation under the conditions of impregnation ratio of 3.0, activation temperature at 800 degrees C and activation time of 1.5 h. The adsorption behavior of p-nitroaniline on the activated carbons was investigated by batch sorption experiments. The influences of solution pH value, adsorbent dose and temperature were investigated. The adsorption isotherm and thermodynamic characteristics were also discussed. The Spartina alterniflora activated carbon (SA-AC) has a high surface area of 2825 m2 x g(-1) and a micropore volume of 1.192 cm3 x g(-1). The BET surface area and micropore volume of the cotton stalk activated carbon (CS-AC) are 2135 m2 x g(-1) and 1.011 cm3 x g(-1), respectively. The sorption experiments show that both the activated carbons have high sorption capacity for p-nitroaniline. The Langmuir maximum sorption amount was found to be 719 mg x g(-1) for SA-AC and 716 mg x g(-1) for CS-AC, respectively. The sorption was found to depend on solution pH, adsorbent dose, and temperature. The optimum pH for the removal of p-nitroaniline was found to be 7.0. The Freundlich model and Redlich-Peterson model can describe the experimental data effectively. The negative changes in free energy (delta G0) and enthalpy (delta H0) indicate that the sorption is a spontaneous and exothermic procedure. The negative values of the adsorption entropy delta S0 indicate that the mobility of p-nitroaniline on the carbon surface becomes more restricted as compared with that of those in solution.

  9. Preparation of novel activated carbons from H2SO4-pretreated corncob hulls with KOH activation for quick adsorption of dye and 4-chlorophenol.

    PubMed

    Wu, Feng-Chin; Wu, Pin-Hsueh; Tseng, Ru-Ling; Juang, Ruey-Shin

    2011-03-01

    Corncob hull was immersed in 25 wt% H(2)SO(4) and was carbonized in an oven at 290 °C for 2h to obtain the char. The char was then activated for 1h at 780 °C by KOH at weight ratio of KOH/char of 2.5, 3.0, and 3.5. SEM photos of the carbons revealed that the cell wall of corncob hull was etched into thin film structure. It was shown that the adsorption isotherms of methylene blue and 4-chlorophenol on the carbons were well fitted by the Langmuir equation. Moreover, the adsorption kinetics could be satisfactorily described by the Elovich equation. The normalized standard deviations are less than 2.8%. The high fraction of adsorption amount adsorbed within 1 min to that at saturation demonstrated the advantage of the prepared activated carbons. The fraction of adsorption amount within 1 min to that at saturation (q(1)/q(mon)) for the adsorption of 4-CP is high up to 0.807. Such quick adsorption behavior was mainly attributed to the presence of the thin film structure of carbons.

  10. Removal of Acid Violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull.

    PubMed

    Thinakaran, N; Baskaralingam, P; Pulikesi, M; Panneerselvam, P; Sivanesan, S

    2008-03-01

    The adsorption of Acid Violet 17 (AV17) was carried out using various activated carbons prepared from sunflower seed hull (SSH), an agricultural solid waste by-product. The effect of parameters such as agitation time, initial dye concentration, adsorbent dosage, pH and temperature were studied. The Langmuir and Freundlich isotherm models were applied and the Langmuir model was found to best report the equilibrium isotherm data. Langmuir adsorption capacity was found to be 116.27 mg/g. Kinetic data followed pseudo-second-order kinetics. Maximum colour removal was observed at pH 2.0. It was observed that the rate of adsorption improves with increasing temperature and the process is endothermic. The adsorbent surface was analysed with a scanning electron microscope. The results indicate that activated sunflower seed hull could be an attractive option for colour removal from dilute industrial effluents.

  11. Adsorption of p-nitrophenol on activated carbon fixed-bed.

    PubMed

    Sabio, E; Zamora, F; Gañan, J; González-García, C M; González, J F

    2006-09-01

    Carbon fixed-beds are usually used to remove organic contaminants. Adsorption in a carbon filter is a dynamic, non-steady process which is not yet completely understood. The objective of this paper is to establish a methodology to simplify the study of this process based on the wave theory, rapid small-scale column test and experimental design/surface response analysis. The constant pattern wave hypothesis was confirmed by the experimental data. The influence of the inlet concentration of p-nitrophenol and the flow rate on dynamic adsorption was studied at 20 degrees C following a central composite design using a second-order model. Both parameters have an important influence on the response variables studied. The methodology used is a useful tool for studying the dynamic process and shows interactions that are difficult to verify by the classical step-by-step method.

  12. A procedure to find thermodynamic equilibrium constants for CO2 and CH4 adsorption on activated carbon.

    PubMed

    Trinh, T T; van Erp, T S; Bedeaux, D; Kjelstrup, S; Grande, C A

    2015-03-28

    Thermodynamic equilibrium for adsorption means that the chemical potential of gas and adsorbed phase are equal. A precise knowledge of the chemical potential is, however, often lacking, because the activity coefficient of the adsorbate is not known. Adsorption isotherms are therefore commonly fitted to ideal models such as the Langmuir, Sips or Henry models. We propose here a new procedure to find the activity coefficient and the equilibrium constant for adsorption which uses the thermodynamic factor. Instead of fitting the data to a model, we calculate the thermodynamic factor and use this to find first the activity coefficient. We show, using published molecular simulation data, how this procedure gives the thermodynamic equilibrium constant and enthalpies of adsorption for CO2(g) on graphite. We also use published experimental data to find similar thermodynamic properties of CO2(g) and of CH4(g) adsorbed on activated carbon. The procedure gives a higher accuracy in the determination of enthalpies of adsorption than ideal models do.

  13. Treating PCDD/Fs by combined catalysis and activated carbon adsorption.

    PubMed

    Ji, Sha-sha; Ren, Yong; Buekens, Alfons; Chen, Tong; Lu, Sheng-yong; Cen, Ke-fa; Li, Xiao-Dong

    2014-05-01

    V2O5-WO3/TiO2 catalysts are used to destroy dioxins present in the gas phase, yet both their removal efficiency (RE) and destruction efficiency (DE) decrease with rising initial concentration (IC). Therefore, activated carbons (AC-1: based on lignite; AC-2: based on coconut shell) were mixed with the catalyst to tackle these high IC gases. A gas phase dioxin-generating system was used to supply three different stable IC-values. When the highest IC is used (20.5 ng I-TEQ Nm(-3)) without AC, at 200°C, the RE and DE-value of PCDD/Fs reaches only 76% and 64%, respectively. At the same conditions, using a mix of catalyst and AC-2, these RE and DE-values rise to 90.1% and 82.0%, respectively. The mix catalyst/AC also shows better performance at low temperature (160 and 180°C). The AC characteristics influence upon the adsorption and degradation abilities of the mixtures.

  14. An experimental study of adsorption interference in binary mixtures flowing through activated carbon

    NASA Technical Reports Server (NTRS)

    Madey, R.; Photinos, P. J.

    1983-01-01

    The isothermal transmission through activated carbon adsorber beds at 25 C of acetaldehyde-propane and acetylene-ethane mixtures in a helium carrier gas was measured. The inlet concentration of each component was in the range between 10 ppm and 500 ppm. The constant inlet volumetric flow rate was controlled at 200 cc (STP)/min in the acetaldehyde-propane experiments and at 50 cc (STP)/min in the acetaldehyde-ethane experiments. Comparison of experimental results with the corresponding single-component experiments under similar conditions reveals interference phenomena between the components of the mixtures as evidenced by changes in both the adsorption capacity and the dispersion number. Propane was found to displace acetaldehyde from the adsorbed state. The outlet concentration profiles of propane in the binary mixtures tend to become more diffuse than the corresponding concentration profiles of the one-component experiments. Similar features were observed with mixtures of acetylene and ethane; however, the displacement of acetylene by ethane is less pronounced.

  15. Bioregeneration of granular activated carbon in simultaneous adsorption and biodegradation of chlorophenols.

    PubMed

    Oh, Wen-Da; Lim, Poh-Eng; Seng, Chye-Eng; Sujari, Amat Ngilmi Ahmad

    2011-10-01

    The objectives of this study are to obtain the time courses of the amount of chlorophenol adsorbed onto granular activated carbon (GAC) in the simultaneous adsorption and biodegradation processes involving 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP), respectively, and to quantify the bioregeneration efficiency of GAC loaded with 4-CP and 2,4-DCP by direct measurement of the amount of chlorophenol adsorbed onto GAC. Under abiotic and biotic conditions, the time courses of the amount of chlorophenol adsorbed onto GAC at various GAC dosages for the initial 4-CP and 2,4-DCP concentrations below and above the biomass acclimated concentrations of 300 and 150 mg/L, respectively, were determined. The results show that the highest bioregeneration efficiency was achieved provided that the initial adsorbate concentration was lower than the acclimated concentration. When the initial adsorbate concentration was higher than the acclimated concentration, the highest bioregeneration efficiency was achieved if excess adsorbent was used.

  16. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part II. Models with more than two parameters.

    PubMed

    Hamdaoui, Oualid; Naffrechoux, Emmanuel

    2007-08-17

    The adsorption equilibrium isotherms of five phenolic compounds, phenol, 2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol, from aqueous solutions onto granular activated carbon were studied and modeled. In order to determine the best-fit isotherm, the experimental equilibrium data were analyzed using thirteen adsorption isotherm models with more than two-parameter; nine three-parameter equations - the Redlich-Peterson, Sips, Langmuir-Freundlich, Fritz-Schlunder, Radke-Prasnitz (three models), Tóth, and Jossens isotherms - three four-parameter equation - the Weber-van Vliet, Fritz-Schlunder, and Baudu isotherms - and one five-parameter equation - the Fritz-Schlunder isotherm. The results reveal that the adsorption isotherm models fitted the experimental data in the order: Baudu (four-parameter)>Langmuir-Freundlich (three-parameter)>Sips (three-parameter)>Fritz-Schlunder (five-parameter)>Tóth (three-parameter)>Fritz-Schlunder (four-parameter)>Redlich-Peterson (three-parameter). The influence of solution pH on the adsorption isotherms of 4-CP was investigated. It was shown that the solution pH has not an effect on the adsorption isotherms for pHadsorptive pKa and the pH(PZC).

  17. Application of zeolite-activated carbon macrocomposite for the adsorption of Acid Orange 7: isotherm, kinetic and thermodynamic studies.

    PubMed

    Lim, Chi Kim; Bay, Hui Han; Neoh, Chin Hong; Aris, Azmi; Abdul Majid, Zaiton; Ibrahim, Zaharah

    2013-10-01

    In this study, the adsorption behavior of azo dye Acid Orange 7 (AO7) from aqueous solution onto macrocomposite (MC) was investigated under various experimental conditions. The adsorbent, MC, which consists of a mixture of zeolite and activated carbon, was found to be effective in removing AO7. The MC were characterized by scanning electron microscopy (SEM), energy dispersive X-ray, point of zero charge, and Brunauer-Emmett-Teller surface area analysis. A series of experiments were performed via batch adsorption technique to examine the effect of the process variables, namely, contact time, initial dye concentration, and solution pH. The dye equilibrium adsorption was investigated, and the equilibrium data were fitted to Langmuir, Freundlich, and Tempkin isotherm models. The Langmuir isotherm model fits the equilibrium data better than the Freundlich isotherm model. For the kinetic study, pseudo-first-order, pseudo-second-order, and intraparticle diffusion model were used to fit the experimental data. The adsorption kinetic was found to be well described by the pseudo-second-order model. Thermodynamic analysis indicated that the adsorption process is a spontaneous and endothermic process. The SEM, Fourier transform infrared spectroscopy, ultraviolet-visible spectral and high performance liquid chromatography analysis were carried out before and after the adsorption process. For the phytotoxicity test, treated AO7 was found to be less toxic. Thus, the study indicated that MC has good potential use as an adsorbent for the removal of azo dye from aqueous solution.

  18. Adsorption of low concentration ceftazidime from aqueous solutions using impregnated activated carbon promoted by Iron, Copper and Aluminum

    NASA Astrophysics Data System (ADS)

    Hu, Xiang; Zhang, Hua; Sun, Zhirong

    2017-01-01

    In this paper, three impregnated activated carbon IAC (AC-Cu, AC-Fe, and AC-Al) promoted by Iron, Copper and Aluminum were used for adsorption of ceftazidime. Iron(III), Copper(II) and Aluminum(III) nitrate were used as an impregnant. The IACs were characterized by scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer, Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS).The influence of factors, such as ion strength, pH, temperature, initial concentration, and concentration of natural organic matter organic matter on the adsorption process were studied. The adsorption kinetics and isotherms of ceftazidime were studied for the three IACs. The results showed that the adsorption was accurately represented by pseudo-second order model. Under different temperature, the maximum adsorption quantity of ceftazidime on AC-Cu calculated by pseudo-second order kinetic model were 200.0 mg g-1 (298 K), 196.1 mg g-1 (303 K) and 185.2 mg g-1 (308 K). It was much higher than that of AC-Fe and AC-Al. And the process was controlled by both film diffusion and intra particle mass transport. The results also showed that, the Freundlich and Temkin isotherm fit the adsorption well.

  19. Highly porous activated carbon based adsorption cooling system employing difluoromethane and a mixture of pentafluoroethane and difluoromethane

    NASA Astrophysics Data System (ADS)

    Askalany, Ahmed A.; Saha, Bidyut B.

    2017-01-01

    This paper presents a simulation for a low-grade thermally powered two-beds adsorption cooling system employing HFC-32 and a mixture of HFC-32 and HFC-125 (HFC-410a) with activated carbon of type Maxsorb III. The present simulation model adopts experimentally measured adsorption isotherms, adsorption kinetics and isosteric heat of adsorption data. Effect of operating conditions (mass flow rate of hot water, driving heat source temperature and evaporator temperature) on the system performance has been studied in detail. The simulation results showed that the system could be powered by low-grade heat source temperature (below 85 °C). AC/HFC-32 and AC/HFC-410a adsorption cooling cycles achieved close specific cooling power and coefficient of performance values of 0.15 kW/kg and 0.3, respectively at a regeneration temperature of 90 °C along with evaporator temperature of 10 °C. The investigated semi continuous adsorption cooling system could produce a cooling power of 9 kW.

  20. Isotherm and thermodynamic studies of Zn (II) adsorption on lignite and coconut shell-based activated carbon fiber.

    PubMed

    Shrestha, Sohan; Son, Guntae; Lee, Seung Hwan; Lee, Tae Gwan

    2013-08-01

    The Zn (II) adsorption capacity of lignite and coconut shell-based activated carbon fiber (ACF) was evaluated as a function of initial Zn (II) concentration, temperature and contact time in batch adsorption process in this study. Adsorption uptake increased with initial Zn (II) concentration and temperature. Optimal contact time for the adsorption of Zn (II) ions onto lignite and coconut shell-based ACF was found to be 50 min. Removal percentage decreased from 88.0% to 78.54% with the increment in initial Zn (II) concentration from 5 to 50 mg L(-1). Equilibrium data fit well with Langmuir-I isotherm indicating homogeneous monolayer coverage of Zn (II) ions on the adsorbent surface. Maximum monolayer adsorption capacity of Zn (II) ions on ACF was found to be 9.43 mg g(-1). Surface morphology and functionality of ACF prior to and after adsorption were characterized by electron microscopy and infrared spectroscopy. Various thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were evaluated.

  1. Statistical optimization of adsorption processes for removal of 2,4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches.

    PubMed

    Alam, M Zahangir; Muyibi, Suleyman A; Toramae, Juria

    2007-01-01

    The adsorption capacity of activated carbon produced from oil palm empty fruit bunches through removal of 2,4-dichlorophenol from aqueous solution was carried out in the laboratory. The activated carbon was produced by thermal activation of activation time with 30 min at 800 degrees C. The adsorption process conditions were determined with the statistical optimization followed by central composite design. A developed polynomial model for operating conditions of adsorption process indicated that the optimum conditions for maximum adsorption of phenolic compound were: agitation rate of 100 r/min, contact time of 8 h, initial adsorbate concentration of 250 mg/L and pH 4. Adsorption isotherms were conducted to evaluate biosorption process. Langmuir isotherm was more favorable (R2 = 0.93) for removal of 2,4-dichlorophenol by the activated carbon rather than Freundlich isotherm (R2 = 0.88).

  2. Simple preparation of tungsten supported carbon nanoreactors for specific applications: Adsorption, catalysis and electrochemical activity

    NASA Astrophysics Data System (ADS)

    Mayani, Vishal J.; Mayani, Suranjana V.; Kim, Sang Wook

    2015-08-01

    Porous carbon supported tungsten carbide nanoreactors, two sizes (∼25 and 170 nm), were designed using economical petroleum pitch residue followed by tungsten (W) doping. X-ray diffractions showed both carbon tungsten composites (CTC-25 and CTC-170) contained tungsten subcarbide (W2C) and monocarbide (WC) as the major and minor crystalline phases, respectively. The present study provides a multiple perspective of carbon tungsten composites (CTCs) for methanol oxidation (as an electrode), adsorption (as an adsorbent) and degradation (as a solid catalyst) of methylene blue (MB). The operational electrodes were designed from both CTCs and used as a catalyst in an electrocatalysis process. The electrocatalysts exhibited high and stable catalytic performance (CTCE-25 > CTCE-170) in methanol electro-oxidation. The newly synthesized W-doped carbon nanoreactors were used successfully as an adsorbent for MB and a heterogeneous catalyst for MB oxidation. Ordered CTC-25 and CTC-170 exhibited dynamic MB adsorption within 15 min and complete oxidation of MB in 25-40 min. A synergetic effect between tungsten carbide and the carbon cage framework was noted.

  3. [Adsorption Characteristics of Nitrate and Phosphate from Aqueous Solution on Zirconium-Hexadecyltrimethylammonium Chloride Modified Activated Carbon].

    PubMed

    Zheng, Wen-jing; Lin, Jian-wei; Zhan, Yan-hui; Wang, Hong

    2015-06-01

    A novel adsorbent material, i.e., zirconium-cationic surfactant modified activated carbon (ZrSMAC) was prepared by loading zirconium hydroxide and hexadecyltrimethylammonium chloride (CTAC) on activated carbon, and was used as an adsorbent for nitrate and phosphate removal from aqueous solution. The adsorption characteristics of nitrate and phosphate on ZrSMAC from aqueous solution were investigated in batch mode. Results showed that the ZrSMAC was effective for nitrate and phosphate removal from aqueous solution. The pseudo-second-order kinetic model fitted both the nitrate and phosphate kinetic experimental data well. The equilibrium isotherm data of nitrate adsorption onto the ZrSMAC were well fitted to the Langmuir, Dubinin-Radushkevich (D-R) and Freundlich isotherm models. The equilibrium isotherm data of phosphate adsorption onto the ZrSMAC could be described by the Langmuir and,D- R isotherm models. According to the Langmuir isotherm model, the maximum nitrate and phosphate adsorption capacities for the ZrSMAC were 7.58 mg x g(-1) and 10.9 mg x g(-1), respectively. High pH value was unfavorable for nitrate and phosphate adsorption onto the ZrSMAC. The presence of Cl-, HCO3- and SO4(2-) in solution reduced the nitrate and phosphate adsorption capacities for the ZrSMAC. The nitrate adsorption capacity for the ZrSMAC was reduced by the presence of coexisting phosphate in solution, and the phosphate adsorption capacity for the ZrSMAC was also reduced by the presence of coexisting nitrate in solution. About 90% of nitrate adsorbed on the ZrSMAC could be desorbed in 1 mol x L(-1) NaCl solution, and about 78% of phosphate adsorbed on the ZrSMAC could be desorbed in 1 mol x L(-1) NaOH solution. The adsorption mechanism of nitrate on the ZrSMAC included the anion exchange interactions and electrostatic attraction, and the adsorption mechanism of phosphate on the ZrSMAC included the ligand exchange interaction, electrostatic attraction and anion exchange interaction.

  4. Enhanced adsorption of chromium onto activated carbon by microwave-assisted H(3)PO(4) mixed with Fe/Al/Mn activation.

    PubMed

    Sun, Yuanyuan; Yue, Qinyan; Mao, Yanpeng; Gao, Baoyu; Gao, Yuan; Huang, Lihui

    2014-01-30

    FeCl3, AlCl3 and MnCl2 were used as the assisted activation agent in activated carbon preparation by H3PO4 activation using microwave heating method. The physico-chemical properties of activated carbons were investigated by scanning electron microscope (SEM), N2 adsorption/desorption, Boehm's titration, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). To investigate the adsorption performances of chromium onto these newly developed activated carbons, a batch of experiments were performed under different adsorption conditions: solution pH, initial Cr(VI) ion concentration, contact time and co-existing ions. The results suggested that carbon with MnCl2 as assisted activation agent displayed the highest BET surface area (1332m(2)/g) and the highest pore volume (1.060cm(3)/g). FeCl3, AlCl3 and MnCl2 had successfully improved Cr(VI) adsorption and activated carbon with FeCl3 as assisted activation agent exhibited the best uptake capacity. To study the transformation of Cr(VI) in adsorption process, total chromium in the aqueous solution was also recorded. The ratio of the amount of Cr(VI) to Cr(III) on each adsorbent was explained by XPS analysis results. Both the co-existing salts (Na2SO4 and NaNO3) demonstrated promoted effects on Cr(VI) removal by four carbons. The pseudo-second-order model and Freundlich equation displayed a good correlation with adsorption data.

  5. Interference of iron as a coagulant on MIB removal by powdered activated carbon adsorption for low turbidity waters.

    PubMed

    Seckler, Ferreira Filho Sidney; Margarida, Marchetto; Rosemeire, Alves Laganaro

    2013-08-01

    Powered activated carbon (PAC) is widely used in water treatment plants to minimize odors in drinking water. This study investigated the removal of 2-methylisoborneol (MIB) by PAC adsorption, combined with coagulation using iron as a coagulant. The adsorption and coagulation process were studied through different case scenarios of jar tests. The analysis evaluated the effect of PAC dosing in the liquid phase immediately before or after the coagulant addition. Ferric sulphate was used as the coagulant with dosages from 10 to 30 mg/L, and PAC dosages varied from 10 to 40 mg/L. The highest MIB removal efficiency (about 70%) was achieved without the coagulant addition and with the highest PAC dosage (40 mg/L). Lower MIB removal efficiencies were observed in the presence of coagulant, showing a clear interference of the iron precipitate or coagulant in the adsorption process. The degree of interference of the coagulation process in the MIB removal was proportional to the ratio of ferric hydroxide mass to the PAC mass. For both cases of PAC dosing, upstream and downstream of the coagulant injection point, the MIB removal efficiency was similar. However, MIB removal efficiency was 15% lower when compared with experiments without the coagulant application. This interference in the MIB adsorption occurs potentially because the coagulant coats the surface of the carbon and interferes with the MIB coming in contact with the carbon's surface and pores. This constraint requires an increase of the PAC dosage to provide the same efficiency observed without coagulation.

  6. Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon.

    PubMed

    Yousuf, Ahasa; Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2016-10-01

    Amberlite IRA-67 and activated carbon were tested as promising candidates for carboxylic acid recovery by adsorption. Dark fermentation was performed without pH control and without addition of external inoculum at 37°C in batch mode. Lactic, acetic and butyric acids, were obtained, after 7days of fermentation. The maximum acid removal, 74%, from the Amberlite IRA-67 and 63% from activated carbon was obtained from clarified fermentation broth using 200gadsorbent/Lbroth at pH 3.3. The pH has significant effect and pH below the carboxylic acids pKa showed to be beneficial for both the adsorbents. The un-controlled pH fermentation creates acidic environment, aiding in adsorption by eliminating use of chemicals for efficient removal. This study proposes simple and easy valorization of waste to valuable chemicals.

  7. Ammonia stripping, activated carbon adsorption and anaerobic biological oxidation as process combination for the treatment of oil shale wastewater.

    PubMed

    Alexandre, Verônica M F; do Nascimento, Felipe V; Cammarota, Magali C

    2016-10-01

    Anaerobic biodegradability of oil shale wastewater was investigated after the following pretreatment sequence: ammonia stripping and activated carbon adsorption. Anaerobic biological treatment of oil shale wastewater is technically feasible after stripping at pH 11 for reducing the N-NH3 concentration, adsorption with 5 g/L of activated carbon in order to reduce recalcitrance and pH adjustment with CO2 so that the sulphate concentration in the medium remains low. After this pretreatment sequence, it was possible to submit the wastewater without dilution to an anaerobic treatment with 62.7% soluble chemical oxygen demand removal and specific methane production of 233.2 mL CH4STP/g CODremoved.

  8. Preparation of polyacrylnitrile (PAN)/ Manganese oxide based activated carbon nanofibers (ACNFs) for adsorption of Cadmium (II) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Abdullah, N.; Yusof, N.; Jaafar, J.; Ismail, AF; Che Othman, F. E.; Hasbullah, H.; Salleh, W. N. W.; Misdan, N.

    2016-06-01

    In this work, activated carbon nanofibers (ACNFs) from precursor polyacrylnitrile (PAN) and manganese oxide (MnO2) were prepared via electrospinning process. The electrospun PAN/MnO2-based ACNFs were characterised in term of its morphological structure and specific surface area using SEM and BET analysis respectively. The comparative adsorption study of cadmium (II) ions from aqueous solution between the neat ACNFs, composite ACNFs and commercial granular activated carbon was also conducted. SEM analysis illustrated that composite ACNFs have more compact fibers with presence of MnO2 beads with smaller fiber diameter of 437.2 nm as compared to the neat ACNFs which is 575.5 nm. BET analysis elucidated specific surface area of ACNFs/MnO2 to be 67 m2/g. Under adsorption study, it was found out that Cd (II) removal by ACNFs/MnO2 was the highest (97%) followed by neat ACNFs (96%) and GAC (74%).

  9. Adsorptive removal of Zn(II) ion from aqueous solution using rice husk-based activated carbon

    NASA Astrophysics Data System (ADS)

    Taha, Mohd F.; Ibrahim, Muhammad H. C.; Shaharun, Maizatul S.; Chong, F. K.

    2012-09-01

    The study of rice husk-based activated carbon as a potential low-cost adsorbent for the removal of Zn(II) ion from aqueous solution was investigated. Rice husk, an agricultural waste, is a good alternative source for cheap precursor of activated carbon due to its abundance and constant availability. In this work, rice husk-based activated carbon was prepared via chemical treatment using NaOH as an activation agent prior the carbonization process. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon carbonized at 650°C, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). Other analyses were also conducted on these samples using fourier transmitter infrared spectroscopy (FTIR), CHN elemental analyzer and X-ray diffraction (XRD) for characterization study. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were found to be 255 m2/g and 0.17 cm2/g, respectively. The adsorption studies for the removal of Zn(II) ion from aqueous solution were carried out as a function of varied contact time at room temperature. The concentration of Zn(II) ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Zn(II) ion from aqueous solution.

  10. CARBON ADSORPTION FOR INDOOR AIR CLEANING

    EPA Science Inventory

    The paper discusses the use of carbon adsorption for indoor air cleaning, focusing on the removal of volatile organic compounds (VOCs) using granular activated carbon (GAC). It addresses GAC performance in two directions. Initially, it presents performance measurements for GAC at...

  11. Adsorption of dissolved organic matter onto activated carbon--the influence of temperature, absorption wavelength, and molecular size.

    PubMed

    Schreiber, Bernd; Brinkmann, Thomas; Schmalz, Viktor; Worch, Eckhard

    2005-09-01

    In this study, batch and column adsorption experiments with granular activated carbon (GAC) were carried out for removing dissolved organic matter (DOM) of a pond water at different water temperatures (5, 20, and 35 degrees C). The water was characterized before and after the adsorption step using UV/VIS spectroscopy and size-exclusion chromatography (SEC) combined with diode array detection (DAD). DOM breakthrough of GAC filters has been found to be slower at higher water temperatures, the DOM removal being most effective at 35 degrees C. UV/VIS spectra and SEC chromatograms of water samples treated at different water temperatures indicate that an increase in temperature especially supports the adsorption of small DOM molecules as well as molecules absorbing at higher wavelengths, specifying aromatic structures of DOM. SEC-DAD has been demonstrated to be an efficient method for characterizing DOM of natural waters and for detecting relative changes of DOM during the water treatment process.

  12. Water Adsorption Equilibria on Microporous Carbons

    DTIC Science & Technology

    1988-11-01

    of water adsorption on activated carbon is the presence of a large hysteresis loop indicating that the amount adsorbed depends on the past exposure...conditions of the carbon. The theories to describe hysteresis in microporous adsorbents and the experimental evidence to support each theory have been...observed behaviors on activated carbon. Neither the Dubinin- Serpinsky, nor the Sircar equations provide any explanation for hysteresis . It appears that

  13. Effect of the porous structure of activated carbon on the adsorption kinetics of gold(I) cyanide complex

    NASA Astrophysics Data System (ADS)

    Ibragimova, P. I.; Grebennikov, S. F.; Gur'yanov, V. V.; Fedyukevich, V. A.; Vorob'ev-Desyatovskii, N. V.

    2014-06-01

    The effect the porous structure of activated carbons obtained from furfural and coconut shells has on the kinetics of [Au(CN)2]- ion adsorption is studied. Effective diffusion coefficients for [Au(CN)2]- anions in transport and adsorbing pores and mass transfer coefficients in a transport system of the pores and in microporous zones are calculated using the statistical moments of the kinetic curve.

  14. Activated carbons from waste of oil-palm kernel shells, sawdust and tannery leather scraps and application to chromium(VI), phenol, and methylene blue dye adsorption.

    PubMed

    Montoya-Suarez, Sergio; Colpas-Castillo, Fredy; Meza-Fuentes, Edgardo; Rodríguez-Ruiz, Johana; Fernandez-Maestre, Roberto

    2016-01-01

    Phenol, chromium, and dyes are continuously dumped into water bodies; the adsorption of these contaminants on activated carbon is a low-cost alternative for water remediation. We synthesized activated carbons from industrial waste of palm oil seed husks (kernel shells), sawdust, and tannery leather scraps. These materials were heated for 24 h at 600, 700 or 800°C, activated at 900°C with CO2 and characterized by proximate analysis and measurement of specific surface area (Brunauer-Emmett-Teller (BET) and Langmuir), and microporosity (t-plot). Isotherms showed micropores and mesopores in activated carbons. Palm seed activated carbon showed the highest fixed carbon content (96%), and Langmuir specific surface areas up to 1,268 m2/g, higher than those from sawdust (581 m2/g) and leather scraps (400 m2/g). The carbons were applied to adsorption of Cr(VI), phenol, and methylene blue dye from aqueous solutions. Phenol adsorption on activated carbons was 78-82 mg/g; on palm seed activated carbons, Cr(VI) adsorption at pH 7 was 0.35-0.37 mg/g, and methylene blue adsorption was 40-110 mg/g, higher than those from sawdust and leather scraps. Activated carbons from palm seed are promising materials to remove contaminants from the environment and represent an alternative application for vegetal wastes instead of dumping into landfills.

  15. Superiority of wet-milled over dry-milled superfine powdered activated carbon for adsorptive 2-methylisoborneol removal.

    PubMed

    Pan, Long; Matsui, Yoshihiko; Matsushita, Taku; Shirasaki, Nobutaka

    2016-10-01

    Superfine powdered activated carbon (SPAC), which is produced from conventionally sized powdered activated carbon (PAC) by wet milling in a bead mill, has attracted attention for its high adsorptive removal ability in both research and practice. In this study, the performance of dry-milled SPAC was investigated. 2-Methylisoborneol (MIB), an earthy-musty compound commonly targeted by water treatment systems, was used as the target adsorbate. Dry-milled SPAC exhibited lower adsorptive removal of MIB than wet-milled SPAC, even when both SPACs were produced from the same PAC and were composed of particles of the same size. One reason for the lower removal of MIB by the dry-milled SPAC was a higher degree of aggregation in the dry-milled SPAC after production; as a result the apparent particle size of dry-milled SPAC was larger than that of wet-milled SPAC. The dry-milled SPAC was also more negatively charged than the wet-milled SPAC, and, owing to its higher repulsion, it was more amenable to dispersion by ultrasonication. However, even after the dry-milled SPAC was ultrasonicated so that its apparent particle size was similar to or less than that of the wet-milled SPAC, the dry-milled SPAC was still inferior in adsorptive removal to the wet-milled SPAC. Therefore, another reason for the lower adsorptive removal of dry-milled SPAC was its lower equilibrium adsorption capacity due to the oxidation during the milling. The adsorption kinetics by SPACs with different degrees of particle aggregation were successfully simulated by a pore diffusion model and a fractal aggregation model.

  16. Multi-component adsorption of copper, nickel and zinc from aqueous solutions onto activated carbon prepared from date stones.

    PubMed

    Bouhamed, F; Elouear, Z; Bouzid, J; Ouddane, B

    2016-08-01

    The removal of Cu(2+), Ni(2+), and Zn(2+) ions from their multi-component aqueous mixture by sorption on activated carbon prepared from date stones was investigated. In the batch tests, experimental parameters were studied, including solution pH, contact time, initial metal ions concentration, and temperature. Adsorption efficiency of the heavy metals was pH-dependent and the maximum adsorption was found to occur at around 5.5 for Cu, Zn, and Ni. The maximum sorption capacities calculated by applying the Langmuir isotherm were 18.68 mg/g for Cu, 16.12 mg/g for Ni, and 12.19 mg/g for Zn. The competitive adsorption studies showed that the adsorption affinity order of the three heavy metals was Cu(2+) > Ni(2+) > Zn(2+). The test results using real wastewater indicated that the prepared activated carbon could be used as a cheap adsorbent for the removal of heavy metals in aqueous solutions.

  17. Iodine adsorption on ion-exchange resins and activated carbons: batch testing

    SciTech Connect

    Parker, Kent E.; Golovich, Elizabeth C.; Wellman, Dawn M.

    2014-09-30

    Iodine sorption onto seven resins and six carbon materials was evaluated using water from well 299-W19-36 on the Hanford Site. These materials were tested using a range of solution-to-solid ratios. The test results are as follows. The efficacy of the resin and granular activated carbon materials was less than predicted based on manufacturers’ performance data. It is hypothesized that this is due to the differences in speciation previously determined for Hanford groundwater. The sorption of iodine is affected by the iodine species in the source water. Iodine loading on resins using source water ranged from 1.47 to 1.70 µg/g with the corresponding Kd values from 189.9 to 227.0 mL/g. The sorption values when the iodine is converted to iodide ranged from 2.75 to 5.90 µg/g with the corresponding Kd values from 536.3 to 2979.6 mL/g. It is recommended that methods to convert iodine to iodide be investigated in fiscal year (FY) 2015. The chemicals used to convert iodine to iodate adversely affected the sorption of iodine onto the carbon materials. Using as-received source water, loading and Kd values ranged from 1.47 to 1.70 µg/g and 189.8 to 226.3 mL/g respectively. After treatment, loading and Kd values could not be calculated because there was little change between the initial and final iodine concentration. It is recommended the cause of the decrease in iodine sorption be investigated in FY15. In direct support of CH2M HILL Plateau Remediation Company, Pacific Northwest National Laboratory has evaluated samples from within the 200W pump and treat bioreactors. As part of this analysis, pictures taken within the bioreactor reveal a precipitate that, based on physical properties and known aqueous chemistry, is hypothesized to be iron pyrite or chalcopyrite, which could affect iodine adsorption. It is recommended these materials be tested at different solution-to-solid ratios in FY15 to determine their effect on iodine

  18. Combining activated carbon adsorption with heterogeneous photocatalytic oxidation: Lack of synergy for biologically treated greywater and tetraethylene glycol dimethyl ether

    PubMed Central

    Gulyas, Holger; Argáez, Ángel Santiago Oria; Kong, Fanzhuo; Jorge, Carlos Liriano; Eggers, Susanne; Otterpohl, Ralf

    2013-01-01

    The aim of the study was to evaluate whether the addition of activated carbon in the photocatalytic oxidation of biologically pretreated greywater and of a polar aliphatic compound gives synergy, as previously demonstrated with phenol. Photocatalytic oxidation kinetics were recorded with fivefold concentrated biologically pretreated greywater and with aqueous tetraethylene glycol dimethyl ether solutions using a UV lamp and the photocatalyst TiO2 P25 in the presence and the absence of powdered activated carbon. The synergy factor, SF, was quantified as the ratio of photocatalytic oxidation rate constant in the presence of powdered activated carbon to the rate constant without activated carbon. No synergy was observed for the greywater concentrate (SF ≈ 1). For the aliphatic compound, tetraethylene glycol dimethyl ether, addition of activated carbon actually had an inhibiting effect on photocatalysis (SF < 1), while synergy was confirmed in reference experiments using aqueous phenol solutions. The absence of synergy for the greywater concentrate can be explained by low adsorbability of its organic constituents by activated carbon. Inhibition of the photocatalytic oxidation of tetraethylene glycol dimethyl ether by addition of powdered activated carbon was attributed to shading of the photocatalyst by the activated carbon particles. It was assumed that synergy in the hybrid process was limited to aromatic organics. Regardless of the lack of synergy in the case of biologically pretreated greywater, the addition of powdered activated carbon is advantageous since, due to additional adsorptive removal of organics, photocatalytic oxidation resulted in a 60% lower organic concentration when activated carbon was present after the same UV irradiation time. PMID:24191472

  19. Combining activated carbon adsorption with heterogeneous photocatalytic oxidation: lack of synergy for biologically treated greywater and tetraethylene glycol dimethyl ether.

    PubMed

    Gulyas, Holger; Argáez, Angel Santiago Oria; Kong, Fanzhuo; Jorge, Carlos Liriano; Eggers, Susanne; Otterpohl, Ralf

    2013-01-01

    The aim of the study was to evaluate whether the addition of activated carbon in the photocatalytic oxidation of biologically pretreated greywater and of a polar aliphatic compound gives synergy, as previously demonstrated with phenol. Photocatalytic oxidation kinetics were recorded with fivefold concentrated biologically pretreated greywater and with aqueous tetraethylene glycol dimethyl ether solutions using a UV lamp and the photocatalyst TiO2 P25 in the presence and the absence of powdered activated carbon. The synergy factor, SF, was quantified as the ratio of photocatalytic oxidation rate constant in the presence of powdered activated carbon to the rate constant without activated carbon. No synergy was observed for the greywater concentrate (SF approximately 1). For the aliphatic compound, tetraethylene glycol dimethyl ether, addition of activated carbon actually had an inhibiting effect on photocatalysis (SF < 1), while synergy was confirmed in reference experiments using aqueous phenol solutions. The absence of synergy for the greywater concentrate can be explained by low adsorbability of its organic constituents by activated carbon. Inhibition of the photocatalytic oxidation of tetraethylene glycol dimethyl ether by addition of powdered activated carbon was attributed to shading of the photocatalyst by the activated carbon particles. It was assumed that synergy in the hybrid process was limited to aromatic organics. Regardless of the lack of synergy in the case of biologically pretreated greywater, the addition of powdered activated carbon is advantageous since, due to additional adsorptive removal of organics, photocatalytic oxidation resulted in a 60% lower organic concentration when activated carbon was present after the same UV irradiation time.

  20. The adsorptive capacity of vapor-phase mercury chloride onto powdered activated carbon derived from waste tires.

    PubMed

    Lin, Hsun-Yu; Yuan, Chung-Shin; Wu, Chun-Hsin; Hung, Chung-Hsuang

    2006-11-01

    Injection of powdered activated carbon (PAC) upstream of particulate removal devices (such as electrostatic precipitator and baghouses) has been used effectively to remove hazardous air pollutants, particularly mercury-containing pollutants, emitted from combustors and incinerators. Compared with commercial PACs (CPACs), an alternative PAC derived from waste tires (WPAC) was prepared for this study. The equilibrium adsorptive capacity of mercury chloride (HgCl2) vapor onto the WPAC was further evaluated with a self-designed bench-scale adsorption column system. The adsorption temperatures investigated in the adsorption column were controlled at 25 and 150 degrees C. The superficial velocity and residence time of the flow were 0.01 m/sec and 4 sec, respectively. The adsorption column tests were run under nitrogen gas flow. Experimental results showed that WPAC with higher Brunauer-Emmett-Teller (BET) surface area could adsorb more HgCl2 at room temperature. The equilibrium adsorptive capacity of HgCl2 for WPAC measured in this study was 1.49 x 10(-1) mg HgCl2/g PAC at 25 degrees C with an initial HgCI2 concentration of 25 microg/m3. With the increase of adsorption temperature < or = 150 degrees C, the equilibrium adsorptive capacity of HgCl2 for WPAC was decreased to 1.34 x 10(-1) mg HgCl2/g PAC. Furthermore, WPAC with higher sulfur contents could adsorb even more HgCl2 because of the reactions between sulfur and Hg2+ at 150 degrees C. It was demonstrated that the mechanisms for adsorbing HgCl2 onto WPAC were physical adsorption and chemisorption at 25 and 150 degrees C, respectively. Experimental results also indicated that the apparent overall driving force model appeared to have the good correlation with correlation coefficients (r) > 0.998 for HgCl2 adsorption at 25 and 150 degrees C. Moreover, the equilibrium adsorptive capacity of HgCl2 for virgin WPAC was similar to that for CPAC at 25 degrees C, whereas it was slightly higher for sulfurized WPAC than for

  1. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution

    PubMed Central

    Mopoung, Sumrit; Moonsri, Phansiri; Palas, Wanwimon; Khumpai, Sataporn

    2015-01-01

    This research studies the characterization of activated carbon from tamarind seed with KOH activation. The effects of 0.5 : 1–1.5 : 1 KOH : tamarind seed charcoal ratios and 500–700°C activation temperatures were studied. FTIR, SEM-EDS, XRD, and BET were used to characterize tamarind seed and the activated carbon prepared from them. Proximate analysis, percent yield, iodine number, methylene blue number, and preliminary test of Fe(III) adsorption were also studied. Fe(III) adsorption was carried out by 30 mL column with 5–20 ppm Fe(III) initial concentrations. The percent yield of activated carbon prepared from tamarind seed with KOH activation decreased with increasing activation temperature and impregnation ratios, which were in the range from 54.09 to 82.03 wt%. The surface functional groups of activated carbon are O–H, C=O, C–O, –CO3, C–H, and Si–H. The XRD result showed high crystallinity coming from a potassium compound in the activated carbon. The main elements found in the activated carbon by EDS are C, O, Si, and K. The results of iodine and methylene blue adsorption indicate that the pore size of the activated carbon is mostly in the range of mesopore and macropore. The average BET pore size and BET surface area of activated carbon are 67.9764 Å and 2.7167 m2/g, respectively. Finally, the tamarind seed based activated carbon produced with 500°C activation temperature and 1.0 : 1 KOH : tamarind seed charcoal ratio was used for Fe(III) adsorption test. It was shown that Fe(III) was adsorbed in alkaline conditions and adsorption increased with increasing Fe(III) initial concentration from 5 to 20 ppm with capacity adsorption of 0.0069–0.019 mg/g. PMID:26689357

  2. Impact of EfOM size on competition in activated carbon adsorption of organic micro-pollutants from treated wastewater.

    PubMed

    Zietzschmann, Frederik; Worch, Eckhard; Altmann, Johannes; Ruhl, Aki Sebastian; Sperlich, Alexander; Meinel, Felix; Jekel, Martin

    2014-11-15

    The competitive impacts of different fractions of wastewater treatment plant effluent organic matter (EfOM) on organic micro-pollutant (OMP) adsorption were investigated. The fractionation was accomplished using separation by nanofiltration (NF). The waters resulting from NF were additionally treated to obtain the same dissolved organic carbon (DOC) concentrations as the initial water. Using size exclusion chromatography (LC-OCD) it could be shown that the NF treatment resulted in an EfOM separation by size. Adsorption tests showed different competitive effects of the EfOM fractions with the OMP. While large EfOM compounds that were retained in NF demonstrated a reduced competition as compared to the raw water, the NF-permeating EfOM compounds showed an increased competition with the majority of the measured OMP. The effects of small size EfOM are particularly negative for OMP which are weak/moderate adsorbates. Adsorption analysis was carried out for the differently fractionized waters. The small sized EfOM contain better adsorbable compounds than the raw water while the large EfOM are less adsorbable. This explains the observed differences in the EfOM competitiveness. The equivalent background compound (EBC) model was applied to model competitive adsorption between OMP and EfOM and showed that the negative impacts of EfOM on OMP adsorption increase with decreasing size of the EfOM fractions. The results suggest that direct competition for adsorption sites on the internal surface of the activated carbon is more substantial than indirect competition due to pore access restriction by blockage. Another explication for reduced competition by large EfOM compounds could be the inability to enter and block the pores due to size exclusion.

  3. Removal of xenobiotics from effluent discharge by adsorption on zeolite and expanded clay: an alternative to activated carbon?

    PubMed

    Tahar, A; Choubert, J M; Miège, C; Esperanza, M; Le Menach, K; Budzinski, H; Wisniewski, C; Coquery, M

    2014-04-01

    Xenobiotics such as pesticides and pharmaceuticals are an increasingly large problem in aquatic environments. A fixed-bed adsorption filter, used as tertiary stage of sewage treatment, could be a solution to decrease xenobiotics concentrations in wastewater treatment plants (WWTPs) effluent. The adsorption efficiency of two mineral adsorbent materials (expanded clay (EC) and zeolite (ZE)), both seen as a possible alternative to activated carbon (AC), was evaluated in batch tests. Experiments involving secondary treated domestic wastewater spiked with a cocktail of ten xenobiotics (eight pharmaceuticals and two pesticides) known to be poorly eliminated in conventional biological process were carried out. Removal efficiencies and partitions coefficients were calculated for two levels of initial xenobiotic concentration, i.e, concentrations lower to 10 μg/L and concentrations ranged from 100 to 1,000 μg/L. While AC was the most efficient adsorbent material, both alternative adsorbent materials showed good adsorption efficiencies for all ten xenobiotics (from 50 to 100 % depending on the xenobiotic/adsorbent material pair). For all the targeted xenobiotics, at lower concentrations, EC presented the best adsorption potential with higher partition coefficients, confirming the results in terms of removal efficiencies. Nevertheless, Zeolite presents virtually the same adsorption potential for both high and low xenobiotics concentrations to be treated. According to this first batch investigation, ZE and EC could be used as alternative absorbent materials to AC in WWTP.

  4. [Effect of physico-chemical characteristics of activated carbon on the adsorption of organic pollutants in natural water].

    PubMed

    Zhang, Jing-Yi; Shi, Bao-You; Xie, Jian-Kun; Yuan, Hong-Lin; Wang, Dong-Sheng

    2011-02-01

    In this paper, the adsorption characteristics of two synthetic organic compounds (SOCs), i. e., methyl parathion(MP) and trichloroethylene (TCE), and natural organic matter (NOM) on powdered activated carbons (PAC) in natural water were studied. On the basis of fully characterizing the physical and chemical characteristics of PAC, the effect of physical and chemical properties of PAC on the adsorption of low molecular weight SOCs in natural water was studied by correlation analysis. The effect of molecular weight fractionation on the adsorption of NOM on PAC was investigated using high performance size exclusion chromatography (HPSEC). It was found that, compared to the surface chemistry, the physical property (pore properties) of PAC was the critical factor to determine its adsorption capacity of MP and TCE in natural water. The adsorption of the low molecular weight SOC and NOM with apparent molecular weight (AMW) < 500 on PAC was primarily impacted by the micropore surface area, and that of NOM with 500 < AMW < 3 000 was affected by the mesopore surface area combined with the mesopore size distribution.

  5. Adsorption behavior of direct red 80 and congo red onto activated carbon/surfactant: process optimization, kinetics and equilibrium.

    PubMed

    Cheng, Zhengjun; Zhang, Lei; Guo, Xiao; Jiang, Xiaohui; Li, Tian

    2015-02-25

    Adsorptions of congo red and direct red 80 onto activated carbon/surfactant from aqueous solution were optimized. The Box-Behnken design (BBD) has been employed to analyze the effects of concentration of surfactant, temperature, pH, and initial concentration of the dye in the adsorption capacity. Their corresponding experimental data could be evaluated excellently by second order polynomial regression models and the two models were also examined based on the analysis of variance and t test statistics, respectively. The optimum conditions were obtained as follows: Cs=34.10 μM, T=50°C, pH=3.5, and CCR=160 mg/L for the congo red system, and Cs=34.10 μM, T=50°C, pH=6.1, and CDR80=110 mg/L for the direct red 80 system. And in these conditions, the measured experimental maximum adsorption capacities for the congo red and direct red 80 removals were 769.48 mg/g and 519.90 mg/g, which were consistent with their corresponding predicted values, with small relative errors of -2.81% and -0.67%, respectively. The adsorption equilibrium and kinetics for the two dye adsorptions onto AC/DDAC were also investigated. The experimental data were fitted by four isotherm models, and Langmuir model presented the best fit. The kinetic studies indicated that the kinetic data followed the pseudo-second-order model.

  6. Breakthrough curves for toluene adsorption on different types of activated carbon fibers: application in respiratory protection.

    PubMed

    Balanay, Jo Anne G; Floyd, Evan L; Lungu, Claudiu T

    2015-05-01

    Activated carbon fibers (ACF) are considered viable alternative adsorbent materials in respirators because of their larger surface area, lighter weight, and fabric form. The purpose of this study was to characterize the breakthrough curves of toluene for different types of commercially available ACFs to understand their potential service lives in respirators. Two forms of ACF, cloth (AC) and felt (AF), with three surface areas each were tested. ACFs were challenged with six toluene concentrations (50-500 p.p.m.) at constant air temperature (23°C), relative humidity (50%), and air flow (16 l min-1) at different bed depths. Breakthrough data were obtained using continuous monitoring by gas chromatography using a gas sampling valve. The ACF specific surface areas were measured by an automatic physisorption analyzer. Results showed unique shapes of breakthrough curves for each ACF form: AC demonstrated a gradual increase in breakthrough concentration, whereas AF showed abrupt increase in concentration from the breakpoint, which was attributed to the difference in fiber density between the forms. AF has steeper breakthrough curves compared with AC with similar specific surface area. AC exhibits higher 10% breakthrough times for a given bed depth due to higher mass per bed depth compared with AF, indicating more adsorption per bed depth with AC. ACF in respirators may be appropriate for use as protection in environments with toluene concentration at the Occupational Safety and Health Administration Permissible Exposure Limit, or during emergency escape for higher toluene concentrations. ACF has shown great potential for application in respiratory protection against toluene and in the development of thinner, lighter, and more efficient respirators.

  7. Enhancing the adsorption of vapor-phase mercury chloride with an innovative composite sulfur-impregnated activated carbon.

    PubMed

    Ie, Iau-Ren; Chen, Wei-Chin; Yuan, Chung-Shin; Hung, Chung-Hsuang; Lin, Yuan-Chung; Tsai, Hsieh-Hung; Jen, Yi-Shiu

    2012-05-30

    Mercury chloride (HgCl(2)) is the major mercury derivate emitted from municipal solid waste incinerators, which has high risk to the environment and human health. This study investigated the adsorption of vapor-phase HgCl(2) with an innovative composite sulfurized activated carbon (AC), which was derived from the pyrolysis, activation, and sulfurization of waste tires. The composite sulfur-impregnation process impregnated activated carbon with aqueous-phase sodium sulfide (Na(2)S) and followed with vapor-phase elemental sulfur (S(0)). Thermogravimetric analysis (TGA) was applied to investigate the adsorptive capacity of vapor-phase HgCl(2) using the composite sulfurized AC. The operating parameters included the types of composite sulfurized AC, the adsorption temperature, and the influent HgCl(2) concentration. Experimental results indicated that the sulfur-impregnation process could increase the sulfur content of the sulfurized AC, but decreased its specific surface area. This study further revealed that the composite sulfurized AC impregnated with aqueous-phase Na(2)S and followed with vapor-phase S(0) (Na(2)S+S(0) AC) had much higher saturated adsorptive capacity of HgCl(2) than AC impregnated in the reverse sequence (S(0)+Na(2)S AC). A maximum saturated adsorptive capacity of HgCl(2) up to 5236 μg-HgCl(2)/g-C was observed for the composite Na(2)S+S(0) AC, which was approximately 2.00 and 3.17 times higher than those for the single Na(2)S and S(0) ACs, respectively.

  8. Characterization and lead adsorption properties of activated carbons prepared from cotton stalk by one-step H3PO4 activation.

    PubMed

    Li, Kunquan; Zheng, Zheng; Li, Ye

    2010-09-15

    Activated carbons were prepared from cotton stalk by one-step H(3)PO(4) activation and used as adsorbent for the removal of lead(II). Taguchi experimental design method was used to optimize the preparation of the adsorbents. The results showed that the optimized conditions were: impregnation with a 50% (w/v) phosphoric acid solution with a mass ratio of 3:2 and activation temperature at 500 degrees C for 60 min with the rate of achieving the activation temperature equal to 10 degrees C min(-1). The cotton stalk activated carbon (CSAC) prepared at these conditions have 1.43 mmol g(-1) acidic surface groups and 1570 m(2) g(-1) BET surface area. Adsorption isotherms for lead(II) on the adsorbents were measured by conducting a series of batch adsorption experiments. The Langmuir maximum adsorption amount of lead(II) on CSAC was more than 119 mg g(-1), which was superior to the ordinary commercial activated carbon (CAC) on the market. Compared with the CAC, the CSAC had a wider applicable pH range from 3.5 to 6.5 for lead(II) uptake. The final pH values at equilibrium after adsorption were lower than the initial pH value, indicating that the ion-exchange process was involved in the adsorption. This is also confirmed by the result that the increase of acidic surface groups favored the adsorption process. Thermodynamic study indicated that the adsorption was a spontaneous and endothermic process.

  9. Adsorption and oxidation of SO₂in a fixed-bed reactor using activated carbon produced from oxytetracycline bacterial residue and impregnated with copper.

    PubMed

    Zhou, Baohua; Yu, Lei; Song, Hanning; Li, Yaqi; Zhang, Peng; Guo, Bin; Duan, Erhong

    2015-02-01

    The SO₂removal ability (including adsorption and oxidation ability) of activated carbon produced from oxytetracycline bacterial residue and impregnated with copper was investigated. The activated carbon produced from oxytetracycline bacterial residue and modified with copper was characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The effects of the catalysts, SO₂concentration, weight hourly space velocity, and temperature on the SO₂adsorption and oxidation activity were evaluated. Activated carbon produced from oxytetracycline bacterial residue and used as catalyst supports for copper oxide catalysts provided high catalytic activity for the adsorbing and oxidizing of SO₂from flue gases.

  10. Preparation of activated carbon derived from cotton linter fibers by fused NaOH activation and its application for oxytetracycline (OTC) adsorption.

    PubMed

    Sun, Yuanyuan; Yue, Qinyan; Gao, Baoyu; Li, Qian; Huang, Lihui; Yao, Fujiang; Xu, Xing

    2012-02-15

    The objective of this research is to produce high surface area-activated carbon derived from cotton linter fibers by fused NaOH activation and to examine the feasibility of removing oxytetracycline (OTC) from aqueous solution. The cotton linter fibers activated carbon (CLAC) was characterized by N(2) adsorption/desorption isotherms, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). The results showed that CLAC had a predominantly microporous structure with a large surface area of 2143 m(2)/g. The adsorption system followed pseudo-second-order kinetic model, and equilibrium was achieved within 24h. The equilibrium data were described well by Langmuir isotherm. Thermodynamic study showed that the adsorption was exothermic reaction at low concentration and became endothermic nature with the concentration increasing. Competitive adsorption took place in the weakly acidic to neutral conditions. Under the strong acidity or strong alkaline condition, the adsorption of the oxytetracycline was hindered by electrostatic repulsion. The adsorption mechanism depended on the pH of the solutions as well as the pK(a) of the oxytetracycline.

  11. Carbon dioxide adsorption in graphene sheets

    NASA Astrophysics Data System (ADS)

    Mishra, Ashish Kumar; Ramaprabhu, Sundara

    2011-09-01

    Control over the CO2 emission via automobiles and industrial exhaust in atmosphere, is one of the major concerns to render environmental friendly milieu. Adsorption can be considered to be one of the more promising methods, offering potential energy savings compared to absorbent systems. Different carbon nanostructures (activated carbon and carbon nanotubes) have attracted attention as CO2 adsorbents due to their unique surface morphology. In the present work, we have demonstrated the CO2 adsorption capacity of graphene, prepared via hydrogen induced exfoliation of graphitic oxide at moderate temperatures. The CO2 adsorption study was performed using high pressure Sieverts apparatus and capacity was calculated by gas equation using van der Waals corrections. Physical adsorption of CO2 molecules in graphene was confirmed by FTIR study. Synthesis of graphene sheets via hydrogen exfoliation is possible at large scale and lower cost and higher adsorption capacity of as prepared graphene compared to other carbon nanostructures suggests its possible use as CO2 adsorbent for industrial application. Maximum adsorption capacity of 21.6 mmole/g was observed at 11 bar pressure and room temperature (25 °C).

  12. Comparative study on composition, structure, and adsorption behavior of activated carbons derived from different synthetic waste polymers.

    PubMed

    Lian, Fei; Xing, Baoshan; Zhu, Lingyan

    2011-08-15

    The composition, structure, and adsorption behavior of activated carbons (ACs) derived from three different types of waste polymers, i.e., tire rubber (TR), polyvinyl chloride (PVC), and polyethyleneterephtalate (PET), by KOH activation were compared. The AC derived from PET exhibited the largest surface area (2831 m(2)/g) and pore volume (1.68 cm(3)/g) due to the homogenous aromatic composition of PET. The AC derived from PVC exhibited relatively lower surface area (2666 m(2)/g) but more narrowed pore size distribution (2-3 nm). The complex composition and high ash content of tire particles resulted in AC product with significantly lower surface area (398.5 m(2)/g) and heterogeneous pore width. Adsorption data of methylene blue (MB) were fitted well by Langmuir equation, indicating monolayer coverage on the ACs. The high oxygen content of PET-derived AC heavily affected its adsorption to MB and iodine. Due to the remarkable surface area and highly mesoporous structures, ACs based on both PET and PVC exhibited much higher adsorption capacities than that of TR and commercial coal-based AC (F400). This study demonstrates that the properties of ACs are highly dependent on their starting polymers and the potential of converting synthetic polymer waste into effective adsorbents for environmental remediation and cleanup.

  13. Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound-Naproxen, carbamazepine and nonylphenol-on activated carbon.

    PubMed

    Yu, Zirui; Peldszus, Sigrid; Huck, Peter M

    2008-06-01

    The adsorption of two representative pharmaceutically active compounds (PhACs) (naproxen and carbamazepine) and one endocrine disrupting compound (nonylphenol) were evaluated on two types of activated carbon. When determining their isotherms at environmentally relevant concentration levels, it was found that at this low concentration range (10-800 ng/L), removals of the target compounds were contrary to expectations based on their hydrophobicity. Nonylphenol (log K(ow) 5.8) was most poorly adsorbed, whereas carbamazepine (log K(ow) 2.45) was most adsorbable. Nonylphenol Freundlich isotherms at this very low concentration range had a much higher 1/n compared to isotherms at much higher concentrations. This indicates that extrapolation from an isotherm obtained at a high concentration range to predict the adsorption of nonylphenol at a concentration well below the range of the original isotherm, leads to a substantial overestimation of its removals. Comparison of isotherms for the target compounds to those for other conventional micropollutants suggested that naproxen and carbamazepine could be effectively removed by applying the same dosage utilized to remove odorous compounds (geosmin and MIB) at very low concentrations. The impact of competitive adsorption by background natural organic matter (NOM) on the adsorption of the target compounds was quantified by using the ideal adsorbed solution theory (IAST) in combination with the equivalent background compound (EBC) approach. The fulfilment of the requirements for applying the simplified IAST-EBC model, which leads to the conclusion that the percentage removal of the target compounds at a given carbon dosage is independent of the initial contaminant concentration, was confirmed for the situation examined in the paper. On this basis it is suggested that the estimated minimum carbon usage rates (CURs) to achieve 90% removal of these emerging contaminants would be valid at concentrations of less than 500 ng/L in

  14. Evaluation of the treatment of reverse osmosis concentrates from municipal wastewater reclamation by coagulation and granular activated carbon adsorption.

    PubMed

    Sun, Ying-Xue; Yang, Zhe; Ye, Tao; Shi, Na; Tian, Yuan

    2016-07-01

    Reverse osmosis concentrate (ROC) from municipal wastewater reclamation reverse osmosis (mWRRO) contains elevated concentrations of contaminants which pose potential risks to aquatic environment. The treatment of ROC from an mWRRO using granular activated carbon (GAC) combined pretreatment of coagulation was optimized and evaluated. Among the three coagulants tested, ferric chloride (FeCl3) presented relatively higher DOC removal efficiency than polyaluminium chloride and lime at the same dosage and coagulation conditions. The removal efficiency of DOC, genotoxicity, and antiestrogenic activity concentration of the ROC could achieve 16.9, 18.9, and 39.7 %, respectively, by FeCl3 coagulation (with FeCl3 dosage of 180.22 mg/L), which can hardly reduce UV254 and genotoxicity normalized by DOC of the DOM with MW <5 kDa. However, the post-GAC adsorption column (with filtration velocity of 5.7 m/h, breakthrough point adsorption capacity of 0.22 mg DOC/g GAC) exhibited excellent removal efficiency on the dominant DOM fraction of MW <5 kDa in the ROC. The removal efficiency of DOC, UV254, and TDS in the ROC was up to 91.8, 96, and 76.5 %, respectively, by the FeCl3 coagulation and post-GAC adsorption. Also, the DOM with both genotoxicity and antiestrogenic activity were completely eliminated by the GAC adsorption. The results suggest that GAC adsorption combined pretreatment of FeCl3 coagulation as an efficient method to control organics, genotoxicity, and antiestrogenic activity in the ROC from mWRRO system.

  15. Preparation of sewage sludge based activated carbon by using Fenton's reagent and their use in 2-naphthol adsorption.

    PubMed

    Gu, Lin; Wang, Yachen; Zhu, Nanwen; Zhang, Daofang; Huang, Shouqiang; Yuan, Haiping; Lou, Ziyang; Wang, Miaolin

    2013-10-01

    In this study, Fenton's reagents (H2O2/Fe(2+)) are used to activate raw sewage sludge for the preparation of the sludge based activated carbon. The effect of the amount of hydrogen peroxide addition on carbon's chemical composition, texture properties, surface chemistry and morphology are investigated. Choosing an appropriate H2O2 dosage (5 v%) (equivalent to 70.7 mM/(g VS)), it is possible to obtain a comparatively highly porous materials with SBET and the total pore volume being 321 m(2)/g and 0.414 cm(3)/g, respectively. Continuously increasing the oxidant ratio resulted in a decreased SBET value. Further adsorption experiments by using 2-naphthol as model pollutant revealed that the adoption followed a pseudo-second-order kinetics better than pseudo-first-order. The calculated adsorption capacity is 111.9 mg/g on the carbon with 5% H2O2 pretreatment while this value is just 51.5mg/g on carbons without any pretreatment.

  16. Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies.

    PubMed

    Gao, Jun-Jie; Qin, Ye-Bo; Zhou, Tao; Cao, Dong-Dong; Xu, Ping; Hochstetter, Danielle; Wang, Yue-Fei

    2013-07-01

    Tea (Camellia sinensis L.) seed shells, the main byproduct of the manufacture of tea seed oil, were used as precursors for the preparation of tea activated carbon (TAC) in the present study. A high yield (44.1%) of TAC was obtained from tea seed shells via a one-step chemical method using ZnCl2 as an agent. The Brunauer-Emmett-Teller (BET) surface area and the total pore volumes of the obtained TAC were found to be 1530.67 mg(2)/g and 0.7826 cm(3)/g, respectively. The equilibrium adsorption results were complied with Langmuir isotherm model and its maximum monolayer adsorption capacity was 324.7 mg/g for methylene blue. Adsorption kinetics studies indicated that the pseudo-second-order model yielded the best fit for the kinetic data. An intraparticle diffusion model suggested that the intraparticle diffusion was not the only rate-controlling step. Thermodynamics studies revealed the spontaneous and exothermic nature of the sorption process. These results indicate that tea seed shells could be utilized as a renewable resource to develop activated carbon which is a potential adsorbent for methylene blue.

  17. Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies*

    PubMed Central

    Gao, Jun-jie; Qin, Ye-bo; Zhou, Tao; Cao, Dong-dong; Xu, Ping; Hochstetter, Danielle; Wang, Yue-fei

    2013-01-01

    Tea (Camellia sinensis L.) seed shells, the main byproduct of the manufacture of tea seed oil, were used as precursors for the preparation of tea activated carbon (TAC) in the present study. A high yield (44.1%) of TAC was obtained from tea seed shells via a one-step chemical method using ZnCl2 as an agent. The Brunauer-Emmett-Teller (BET) surface area and the total pore volumes of the obtained TAC were found to be 1 530.67 mg2/g and 0.782 6 cm3/g, respectively. The equilibrium adsorption results were complied with Langmuir isotherm model and its maximum monolayer adsorption capacity was 324.7 mg/g for methylene blue. Adsorption kinetics studies indicated that the pseudo-second-order model yielded the best fit for the kinetic data. An intraparticle diffusion model suggested that the intraparticle diffusion was not the only rate-controlling step. Thermodynamics studies revealed the spontaneous and exothermic nature of the sorption process. These results indicate that tea seed shells could be utilized as a renewable resource to develop activated carbon which is a potential adsorbent for methylene blue. PMID:23825151

  18. Pb(II) adsorption by a novel activated carbon - alginate composite material. A kinetic and equilibrium study.

    PubMed

    Cataldo, Salvatore; Gianguzza, Antonio; Milea, Demetrio; Muratore, Nicola; Pettignano, Alberto

    2016-11-01

    The adsorption capacity of an activated carbon - calcium alginate composite material (ACAA-Ca) has been tested with the aim of developing a new and more efficient adsorbent material to remove Pb(II) ion from aqueous solution. The study was carried out at pH=5, in NaCl medium and in the ionic strength range 0.1-0.75molL(-1). Differential Pulse Anodic Stripping Voltammetry (DP-ASV) technique was used to check the amount of Pb(II) ion removed during kinetic and equilibrium experiments. Different kinetic (pseudo first order, pseudo second order and Vermuelen) and equilibrium (Langmuir and Freundlich) models were used to fit experimental data, and were statistically compared. Calcium alginate (AA-Ca) improves the adsorption capacity (qm) of active carbon (AC) in the ACAA-Ca adsorbent material (e.g., qm=15.7 and 10.5mgg(-1) at I=0.25molL(-1), for ACAA-Ca and AC, respectively). SEM-EDX and thermogravimetric (TGA) measurements were carried out in order to characterize the composite material. The results of the speciation study on the Pb(II) solution and of the characterization of the ACAA-Ca and of the pristine AA-Ca and AC were evaluated in order to explain the specific contribution of AC and AA-Ca to the adsorption of the metal ion.

  19. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon.

    PubMed

    Tan, I A W; Ahmad, A L; Hameed, B H

    2009-05-30

    The adsorption characteristics of 2,4,6-trichlorophenol (TCP) on activated carbon prepared from oil palm empty fruit bunch (EFB) were evaluated. The effects of TCP initial concentration, agitation time, solution pH and temperature on TCP adsorption were investigated. TCP adsorption uptake was found to increase with increase in initial concentration, agitation time and solution temperature whereas adsorption of TCP was more favourable at acidic pH. The adsorption equilibrium data were best represented by the Freundlich and Redlich-Peterson isotherms. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The mechanism of the adsorption process was determined from the intraparticle diffusion model. Boyd plot revealed that the adsorption of TCP on the activated carbon was mainly governed by particle diffusion. Thermodynamic parameters such as standard enthalpy (DeltaH degrees ), standard entropy (DeltaS degrees ), standard free energy (DeltaG degrees ) and activation energy were determined. The regeneration efficiency of the spent activated carbon was high, with TCP desorption of 99.6%.

  20. Adsorption of a Textile Dye on Commercial Activated Carbon: A Simple Experiment to Explore the Role of Surface Chemistry and Ionic Strength

    ERIC Educational Resources Information Center

    Martins, Angela; Nunes, Nelson

    2015-01-01

    In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the ionic strength of the dye solution is also modified, simulating distinct conditions of water…

  1. Lab-testing, predicting, and modeling multi-stage activated carbon adsorption of organic micro-pollutants from treated wastewater.

    PubMed

    Zietzschmann, F; Altmann, J; Hannemann, C; Jekel, M

    2015-10-15

    Multi-stage reuse of powdered activated carbon (PAC) is often applied in practice for a more efficient exploitation of the PAC capacity to remove organic micro-pollutants (OMP). However, the adsorption mechanisms in multi-stage PAC reuse are rarely investigated, as large-scale experiments do not allow for systematic tests. In this study, a laboratory method for the separation of PAC/water suspensions and the subsequent reuse of the PAC and the water was developed. The method was tested on wastewater treatment plant (WWTP) effluent in a setup with up to 7 PAC reuse stages. The tests show that the overall OMP removal from WWTP effluent can be increased when reusing PAC. The reason is that a repeated adsorption in multi-stage PAC reuse results in similar equilibrium concentrations as a single-stage adsorption. Thus, a single relationship between solid and liquid phase OMP concentrations appears valid throughout all stages. This also means that the adsorption efficiency of multi-stage PAC reuse setups can be estimated from the data of a single-stage setup. Furthermore, the overall OMP removals in multi-stage setups coincide with the overall UV254 removals, and for each respective OMP one relationship to UV254 removal is valid throughout all stages. The results were modeled by a simple modification of the equivalent background compound model (EBCM) which was also used to simulate the additional OMP removals in multi-stage setups with up to 50 reuse stages.

  2. Microwave-swing adsorption to capture and recover vapors from air streams with activated carbon fiber cloth.

    PubMed

    Hashisho, Zaher; Rood, Mark; Botich, Leon

    2005-09-01

    Adsorption with regeneration is a desirable means to control the emissions of organic vapors such as hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from air streams as it allows for capture, recovery, and reuse of those VOCs/HAPS. Integration of activated-carbon fiber-cloth (ACFC) adsorbent with microwave regeneration provides promise as a new adsorption/ regeneration technology. This research investigates the feasibility of using microwaves to regenerate ACFC as part of a process for capture and recovery of organic vapors from gas streams. A bench-scale fixed-bed microwave-swing adsorption (MSA) system was built and tested for adsorption of water vapor, methyl ethyl ketone (MEK), and tetrachloroethylene (PERC) from an airstream and then recovery of those vapors with microwave regeneration. The electromagnetic heating behavior of dry and vapor-saturated ACFC was also characterized. The MSA system successfully adsorbed organic vapors from the airstreams, allowed for rapid regeneration of the ACFC cartridge, and recovered the water and organic vapors as liquids.

  3. Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures

    SciTech Connect

    Khan, A.R.; Ataullah, R.; Al-Haddad, A.

    1997-10-01

    Aqueous solutions of phenol, p-chlorophenol, and p-nitrophenol have been used to determine the adsorption isotherm for single solute systems on activated carbon at different temperatures. The experimental program has been conducted to investigate the influence of concentration and temperature. All the reported equilibrium isotherm equations have been tried on present and published experimental data. A generalized isotherm equation which was proposed by Khan et al. and tested for bi-solute adsorption data has been modified for single-solute system. The temperature dependency has also been incorporated into a generalized equation. It has been noticed that the Radke and Prausnitz and generalized isotherm equations could represent the entire data with a minimum average percentage error. The influence of different adsorbents, sorbate concentrations, and pH of aqueous solutions has also been discussed in detail. The temperature dependency has been investigated using both the Dubinin-Astakov and the modified generalized equation. The generalized equation describes the experimental and published data adequately and provides a single value of differential molar heat of adsorption, {Delta}H{sub ads}, for a single solute adsorption system. The Dubinin-Astakov isotherm equation has shown an increasing trend of {Delta}H{sub ads} as the loading of adsorbent has increased.

  4. Aqueous phase adsorption of cephalexin by walnut shell-based activated carbon: A fixed-bed column study

    NASA Astrophysics Data System (ADS)

    Nazari, Ghadir; Abolghasemi, Hossein; Esmaieli, Mohamad; Sadeghi Pouya, Ehsan

    2016-07-01

    The walnut shell was used as a low cost adsorbent to produce activated carbon (AC) for the removal of cephalexin (CFX) from aqueous solution. A fixed-bed column adsorption was carried out using the walnut shell AC. The effect of various parameters like bed height (1.5, 2 and 2.5 cm), flow rate (4.5, 6 and 7.5 mL/min) and initial CFX concentration (50, 100 and 150 mg/L) on the breakthrough characteristics of the adsorption system was investigated at optimum pH 6.5. The highest bed capacity of 211.78 mg/g was obtained using 100 mg/L inlet drug concentration, 2 cm bed height and 4.5 mL/min flow rate. Three kinetic models, namely Adam's-Bohart, Thomas and Yoon-Nelson were applied for analysis of experimental data. The Thomas and Yoon-Nelson models were appropriate for walnut shell AC column design under various conditions. The experimental adsorption capacity values were fitted to the Bangham and intra-particle diffusion models in order to propose adsorption mechanisms. The effect of temperature on the degradation of CFX was also studied.

  5. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons.

    PubMed

    Quesada-Peñate, I; Julcour-Lebigue, C; Jáuregui-Haza, U J; Wilhelm, A M; Delmas, H

    2012-06-30

    The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  6. Hydrogen Adsorption in Carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Cabrera, A. L.; Rojas, S.; Dias-Droguett, D. E.; Bhuyan, H.; Aomoa, N.; Kakati, M.

    2013-03-01

    We have studied hydrogen adsorption in carbon nanoparticles using a quartz crystal microbalance. The carbon nanoparticles were synthesized from a thermal plasma jet at different pressure (15 - 263 torr) of the reactants and different current (50 - 250 A) to generate the plasma. The as-prepared carbon nanoparticles were directly deposited on top of the gold electrode of a quartz crystal and we monitored in-situ the changes in resonance frequency while the chamber was pressurized at different hydrogen pressures. These changes enabled determination of absorbed hydrogen mass in order to get H/C mass ratio curves as a function of H2 pressure. Adsorption curves obtained in some carbon nanoparticles indicated the formation of hydrogen monolayer inside the pores of the carbon nanoparticles. Using the value of the jump due to the formation of a H2\\ monolayer, a surface area was estimated between 40-60 m2/g for hydrogen adsorption. In other carbon samples, hydrogen uptake curves indicated that H2 was filling the sample's pores when pore volume was large. These observations will be discussed in detail for several carbon nanoparticles samples. Funds provided by VRI Puente 9/2012 and 10/2012

  7. Kinetic and Isotherm Modelling of the Adsorption of
Phenolic Compounds from Olive Mill Wastewater onto Activated Carbon

    PubMed Central

    Casazza, Alessandro A.; Perego, Patrizia

    2015-01-01

    Summary The adsorption of phenolic compounds from olive oil wastewater by commercial activated carbon was studied as a function of adsorbent quantity and temperature. The sorption kinetics and the equilibrium isotherms were evaluated. Under optimum conditions (8 g of activated carbon per 100 mL), the maximum sorption capacity of activated carbon expressed as mg of caffeic acid equivalent per g of activated carbon was 35.8 at 10 °C, 35.4 at 25 °C and 36.1 at 40 °C. The pseudo-second-order model was considered as the most suitable for kinetic results, and Langmuir isotherm was chosen to better describe the sorption system. The results confirmed the efficiency of activated carbon to remove almost all phenolic compound fractions from olive mill effluent. The preliminary results obtained will be used in future studies. The carbohydrate fraction of this upgraded residue could be employed to produce bioethanol, and adsorbed phenolic compounds can be recovered and used in different industries. PMID:27904350

  8. Comparing and modeling organic micro-pollutant adsorption onto powdered activated carbon in different drinking waters and WWTP effluents.

    PubMed

    Zietzschmann, Frederik; Aschermann, Geert; Jekel, Martin

    2016-10-01

    The adsorption of organic micro-pollutants (OMP) onto powdered activated carbon (PAC) was compared between regionally different waters within two groups, namely five drinking waters and seven wastewater treatment plant (WWTP) effluents. In all waters, OMP were spiked to adjust similar ratios of the initial OMP and DOC concentrations (c0,OMP/c0,DOC). PAC was dosed specific to the respective DOC (e.g. 2 mg PAC/per mg DOC). Liquid chromatography with online carbon detection shows differences of the background organic matter (BOM) compositions. The OMP removals at given DOC-specific PAC doses vary by ±15% (drinking waters) and ±10% (WWTP effluents). Similar BOM-induced adsorption competition in the waters of the respective group results in overall relationships between the PAC loadings and the liquid phase concentrations of each OMP (in the case of strong adsorbates). Weaker adsorbates show no overall relationships because of the strong BOM-induced adsorption competition near the initial OMP concentration. Correlations between OMP removals and UV254 removals were independent of the water (within the respective group). The equivalent background compound (EBC) model was applied to the experimental data. Using global EBC Freundlich coefficients, the initial EBC concentration correlates with the DOC (both water groups separately) and the low molecular weight (LMW) organics concentrations (all waters combined). With these correlations, the EBC could be initialized by using the DOC or the LMW organics concentration of additional drinking water, WWTP effluent, and surface water samples.

  9. Modeling nonequilibrium adsorption of MIB and sulfamethoxazole by powdered activated carbon and the role of dissolved organic matter competition.

    PubMed

    Shimabuku, Kyle K; Cho, Hyukjin; Townsend, Eli B; Rosario-Ortiz, Fernando L; Summers, R Scott

    2014-12-02

    This study demonstrates that the ideal adsorbed solution theory-equivalent background compound (IAST-EBC) as a stand-alone model can simulate and predict the powdered activated carbon (PAC) adsorption of organic micropollutants found in drinking water sources in the presence of background dissolved organic matter (DOM) under nonequilibrium conditions. The IAST-EBC represents the DOM competitive effect as an equivalent background compound (EBC). When adsorbing 2-methylisoborneol (MIB) with PAC, the EBC initial concentration was a similar percentage, on average 0.51%, of the dissolved organic carbon in eight nonwastewater impacted surface waters. Using this average percentage in the IAST-EBC model yielded good predictions for MIB removal in two nonwastewater impacted waters. The percentage of competitive DOM was significantly greater in wastewater impacted surface waters, and varied markedly in DOM size fractions. Fluorescence parameters exhibited a strong correlation with the percentage of competitive DOM in these waters. Utilizing such correlations in the IAST-EBC successfully modeled MIB and sulfamethoxazole adsorption by three different PACs in the presence of DOM that varied in competitive effect. The influence of simultaneous coagulant addition on PAC adsorption of micropollutants was also investigated. Coagulation caused the DOM competitive effect to increase and decrease with MIB and sulfamethoxazole, respectively.

  10. Adsorption of gases on carbon molecular sieves

    SciTech Connect

    Vyas, S.N.; Patwardhan, S.R.; Vijayalakshmi, S. . Dept. of Chemical Engineering); Ganesh, K.S. )

    1994-12-01

    Adsorption on carbon molecular sieves (CMS) prepared by coke deposition has become an interesting area of adsorption due to its microporous nature and favorable separation factor on size and shape selectivity basis for many gaseous systems. In the present work CMS was synthesized from coconut shell through three major steps, namely, carbonization, activation, and coke deposition by hydrocarbon cracking. The crushed, washed, and sieved granules of coconut shell (particle size 2--3 mm) were pretreated with sodium silicate solution and oven-dried at 150 C to create the inorganic sites necessary for coke deposition. Carbonization and activation of the dried granules were carried out at 800 C, for 30 min each. The activated char thus produced was subjected to hydrocarbon cracking at 600 C for periods varying from 30 to 180 min. The product samples were characterized in terms of adsorption isotherm, kinetic adsorption curve, surface area, pore volume, pore size distribution, and characteristic energy for adsorption by using O[sub 2], N[sub 2], C[sub 2]H[sub 2], CO[sub 2], C[sub 3]H[sub 6], and CH[sub 4].

  11. Automotive hydrogen storage system using cryo-adsorption on activated carbon.

    SciTech Connect

    Ahluwalia, R. K.; Peng, J. K.; Nuclear Engineering Division

    2009-07-01

    An integrated model of a sorbent-based cryogenic compressed hydrogen system is used to assess the prospect of meeting the near-term targets of 36 kg-H{sub 2}/m{sup 3} volumetric and 4.5 wt% gravimetric capacity for hydrogen-fueled vehicles. The model includes the thermodynamics of H{sub 2} sorption, heat transfer during adsorption and desorption, sorption dynamics, energetics of cryogenic tank cooling, and containment of H{sub 2} in geodesically wound carbon fiber tanks. The results from the model show that recoverable hydrogen, rather than excess or absolute adsorption, is a determining measure of whether a sorbent is a good candidate material for on-board storage of H{sub 2}. A temperature swing is needed to recover >80% of the sorption capacity of the superactivated carbon sorbent at 100 K and 100 bar as the tank is depressurized to 3-8 bar. The storage pressure at which the system needs to operate in order to approach the system capacity targets has been determined and compared with the breakeven pressure above which the storage tank is more compact if H{sub 2} is stored only as a cryo-compressed gas. The amount of liquid N{sub 2} needed to cool the hydrogen dispensed to the vehicle to 100 K and to remove the heat of adsorption during refueling has been estimated. The electrical energy needed to produce the requisite liquid N{sub 2} by air liquefaction is compared with the electrical energy needed to liquefy the same amount of H{sub 2} at a central plant. The alternate option of adiabatically refueling the sorbent tank with liquid H{sub 2} has been evaluated to determine the relationship between the storage temperature and the sustainable temperature swing. Finally, simulations have been run to estimate the increase in specific surface area and bulk density of medium needed to satisfy the system capacity targets with H{sub 2} storage at 100 bar.

  12. Adsorption of methylene blue dye onto activated carbons based on agricultural by-products: equilibrium and kinetic studies.

    PubMed

    Ioannou, Z; Simitzis, J

    2013-01-01

    Mixtures of novolac resin and olive stone biomass (20/80 and 40/60 w/w) were cured, pyrolyzed up to 1,000 °C and activated with CO2 under a continuous flow operation (named N20B-cCa and N40B-cCa respectively). Commercial activated charcoal was similarly re-activated with CO2 and used for comparison reasons (AC-a). The characterization of these materials was performed by Fourier transform Infrared (FTIR) analysis and their specific surface area was determined according to DIN 66132. The materials were tested for their adsorption abilities at different temperatures (298, 333 K) and initial dye concentrations (0.01-0.35 g/L) using 1 L of methylene blue (MB) solution in 10 g of activated carbon. MB adsorption kinetic was also studied. The FTIR spectra of all activated carbons show absorption peaks which correspond to -OH, -CH, -C-O-C- groups and to aromatic ring. The presence of the absorption peak at about 1,400 cm(-1) for N20B-cCa, N40B-cCa indicates more acidic groups on them compared to the commercial AC-a. The specific surface area of N20B-cCa, N40B-cCa and AC-a has values equal to 352, 342 and 760 m(2)/g respectively. From the applied kinetic models, pseudo-second-order equation could best describe MB adsorption. Consequently, such adsorbents can be used as filters to adsorb dyes from wastewaters.

  13. A quantitative structure-activity relationship to predict efficacy of granular activated carbon adsorption to control emerging contaminants.

    PubMed

    Kennicutt, A R; Morkowchuk, L; Krein, M; Breneman, C M; Kilduff, J E

    2016-08-01

    A quantitative structure-activity relationship was developed to predict the efficacy of carbon adsorption as a control technology for endocrine-disrupting compounds, pharmaceuticals, and components of personal care products, as a tool for water quality professionals to protect public health. Here, we expand previous work to investigate a broad spectrum of molecular descriptors including subdivided surface areas, adjacency and distance matrix descriptors, electrostatic partial charges, potential energy descriptors, conformation-dependent charge descriptors, and Transferable Atom Equivalent (TAE) descriptors that characterize the regional electronic properties of molecules. We compare the efficacy of linear (Partial Least Squares) and non-linear (Support Vector Machine) machine learning methods to describe a broad chemical space and produce a user-friendly model. We employ cross-validation, y-scrambling, and external validation for quality control. The recommended Support Vector Machine model trained on 95 compounds having 23 descriptors offered a good balance between good performance statistics, low error, and low probability of over-fitting while describing a wide range of chemical features. The cross-validated model using a log-uptake (qe) response calculated at an aqueous equilibrium concentration (Ce) of 1 μM described the training dataset with an r(2) of 0.932, had a cross-validated r(2) of 0.833, and an average residual of 0.14 log units.

  14. Synergy between surface adsorption and photocatalysis during degradation of humic acid on TiO2/activated carbon composites.

    PubMed

    Xue, Gang; Liu, Huanhuan; Chen, Quanyuan; Hills, Colin; Tyrer, Mark; Innocent, Francis

    2011-02-15

    A photocatalyst comprising nano-sized TiO(2) particles on granular activated carbon (GAC) was prepared by a sol-dipping-gel process. The TiO(2)/GAC composite was characterized by scanning electron microscopy (SEM), X-ray diffractiometry (XRD) and nitrogen sorptometry, and its photocatalytic activity was studied through the degradation of humic acid (HA) in a quartz glass reactor. The factors influencing photocatalysis were investigated and the GAC was found to be an ideal substrate for nano-sized TiO(2) immobilization. A 99.5% removal efficiency for HA from solution was achieved at an initial concentration of 15 mg/L in a period of 3h. It was found that degradation of HA on the TiO(2)/GAC composite was facilitated by the synergistic relationship between surface adsorption characteristics and photocatalytic potential. The fitting of experimental results with the Langmuir-Hinshelwood (L-H) model showed that the reaction rate constant and the adsorption constant values were 0.1124 mg/(L min) and 0.3402 L/mg. The latter is 1.7 times of the calculated value by fitting the adsorption equilibrium data into the Langmuir equation.

  15. The influence of activating agents on the performance of rice husk-based carbon for sodium lauryl sulfate and chrome (Cr) metal adsorptions

    NASA Astrophysics Data System (ADS)

    Arneli; Safitri, Z. F.; Pangestika, A. W.; Fauziah, F.; Wahyuningrum, V. N.; Astuti, Y.

    2017-02-01

    This research aims to study the influence of activating agents to produce rice husk based-carbon with high adsorption capacity and efficiency for either hazardous organic molecules or heavy metals which are unfriendly for the environment. Firstly, rice husk was burned by pyrolysis at different temperatures to produce rice husk-based carbon. To improve its ability as an adsorbent, carbon was treated with activating agents, namely, H3PO4 and KOH at room and high temperature (420 °C). The performance of carbon was then tested by contacting it with surfactant (SLS). Finally, the surfactant-modified active carbon was applied for chrome metal removal. The result shows that activation of carbon using phosphate acid (H3PO4) was more effective than potassium hydroxide (KOH) conducted at high temperature to adsorb sodium lauryl sulfate (SLS) and chrome metal with the adsorption capacity 1.50 mgg-1 and 0.375 mgg-1, respectively.

  16. Charcoal Regeneration - Part 2. Modified Carbon Surface Activity and Reversibility of TNT Adsorption

    DTIC Science & Technology

    1980-07-01

    Table A-i. Small columna adsorption/desorption cycling as a function of particle size of FS300. o... . . ~Cumulative TNT b Volume Retained, m Effluent, mg...1.4 cm h/in; adsorption from aqueous solution, desorption with acet-,ne. 37 A, Table A-2. Small columna adsorption/desorption cycling as a function of...aqueous solution, desorption with acetone. 38 r ............................................ Table A-2. Small columna adsorption/desorption cycling as a

  17. 2,4-D adsorption to biochars: effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data.

    PubMed

    Kearns, J P; Wellborn, L S; Summers, R S; Knappe, D R U

    2014-10-01

    Batch isotherm experiments were conducted with chars to study adsorption of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Chars generated from corncobs, bamboo and wood chips in a laboratory pyrolyzer at 400-700 °C were compared with traditional kiln charcoals collected from villages in S/SE Asia and with activated carbons (ACs). 2,4-D uptake by laboratory chars obtained from bamboo and wood chips after 14 h of pyrolysis at 700 °C, from wood chips after 96 h of pyrolysis at 600 °C, and one of the field-collected chars (basudha) was comparable to ACs. H:C and O:C ratios declined with pyrolysis temperature and duration while surface area increased to >500 m(2)/g. Increasing pyrolysis intensity by increasing temperature and/or duration of heating was found to positively influence adsorption capacity yield (mg(2,4-D/g(feedstock))) over the range of conditions studied. Economic analysis showed that high temperature chars can be a cost-effective alternative to ACs for water treatment applications.

  18. Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption.

    PubMed

    Santhi, T; Manonmani, S; Smitha, T

    2010-07-15

    The use of low-cost, locally available, highly efficient and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This study investigates the potential use of activated carbon prepared from the epicarp of Ricinus communis for the removal of malachite green (MG) dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH and contact time were investigated and optimal experimental conditions were ascertained. The results showed that as the amount of the adsorbent increased, the percentage of dye removal increased accordingly. Optimum pH value for dye adsorption was 7.0. Maximum dye was sequestered within 50 min of the start of every experiment. The adsorption of malachite green followed the pseudo-second-order rate equation and fits the Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Tempkin equations well. The maximum removal of MG was obtained at pH 7 as 99.04% for adsorbent dose of 1 g 50 mL(-1) and 25 mg L(-1) initial dye concentration at room temperature. Activated carbon developed from R. communis can be an attractive option for dye removal from diluted industrial effluents since test reaction made on simulated dyeing wastewater showed better removal percentage of MG.

  19. Adsorption and photodegradation of methylene blue by iron oxide impregnated on granular activated carbons in an oxalate solution

    NASA Astrophysics Data System (ADS)

    Kadirova, Zukhra C.; Katsumata, Ken-ichi; Isobe, Toshihiro; Matsushita, Nobuhiro; Nakajima, Akira; Okada, Kiyoshi

    2013-11-01

    The photocatalytic adsorbents BAU-OA, BAU-CL and BAU-HA with varying iron oxide content (9-10 mass%) were prepared by heat treatment at 250 °C from commercial activated carbon (BAU) impregnated with iron oxalate, chloride, tris-benzohydroxamate, respectively. The XRD patterns showed amorphous structure in the BAU-CL sample (SBET 50 m2/g) and low crystallinity (as FeOOH and Fe2O3 phases) in the BAU-HA and BAU-OA samples (SBET 4 and 111 m2/g, respectively). The methylene blue adsorption capacities was decreased in order of BAU-OA < BAU-CL < BAU-HA sample and the adsorption followed Langmuir model. The apparent MB photodegradation rate constant (kapp) was increased in same order BAU-HA < BAU-CL < BAU-OA under the standard experimental conditions (initial MB concentrations 0.015-0.025 mM; sample content - 10 mg/l; initial oxalic acid concentration - 0.43 mM; pH 3-4; UV illumination). The process included high efficiency combination of adsorption, heterogeneous and homogeneous catalysis under UV and solar lights illumination without addition of hydrogen peroxide. The detoxification of water sample containing organic dyes was confirmed after combined sorption-photocatalytic treatment.

  20. Evaluation of Fuller's earth for the adsorption of mercury from aqueous solutions: a comparative study with activated carbon.

    PubMed

    Oubagaranadin, John U Kennedy; Sathyamurthy, N; Murthy, Z V P

    2007-04-02

    Fuller's earth (FE) has been used as an adsorbent in this work to remove mercury from aqueous solutions. For the purpose of comparison, simultaneous experiments using activated carbon (AC) have also been done. The aim of the work is to test how best FE can be used as an adsorbent for mercury. Equilibrium isotherms, such as Freundlich, Langmuir, Dubinin-Redushkevich, Temkin, Harkins-Jura, Halsey and Henderson have been tested. Kinetic studies based on Lagergren first-order, pseudo-second-order rate expressions and intra-particle diffusion studies have been done. The batch experiments were conducted at room temperature (30 degrees C) and at the normal pH (6.7+/-0.2) of the solution. It has been observed that Hg(II) removal rate is better for FE than AC, due to large dosage requirement, whereas the adsorption capacity of AC is found to be much better than FE. Hence, although FE can be used as an adsorbent, a high dosage is required, when compared to AC. Hybrid fractional error function analysis shows that the best-fit for the adsorption equilibrium data is represented by Freundlich isotherm. Kinetic and film diffusion studies show that the adsorption of mercury on FE and AC is both intra-particle diffusion and film diffusion controlled.

  1. Granular activated carbon for simultaneous adsorption and biodegradation of toxic oil sands process-affected water organic compounds.

    PubMed

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-04-01

    Naphthenic acids (NAs) released into oil sands process-affected water (OSPW) during bitumen processing in Northern Alberta are problematic for oil sands industries due to their toxicity in the environment and resistance to degradation during conventional wastewater treatment processes. Granular activated carbon (GAC) has shown to be an effective media in removing biopersistent organics from wastewater using a combination of adsorption and biodegradation removal mechanisms. A simultaneous GAC (0.4 g GAC/L) adsorption and biodegradation (combined treatment) study was used for the treatment of raw and ozonated OSPW. After 28 days of batch treatment, classical and oxidized NAs removals for raw OSPW were 93.3% and 73.7%, and for ozonated OSPW were 96.2% and 77.1%, respectively. Synergetic effects of the combined treatment process were observed in removals of COD, the acid extractable fraction, and oxidized NAs, which indicated enhanced biodegradation and bioregeneration in GAC biofilms. A bacteria copy number >10(8) copies/g GAC on GAC surfaces was found using quantitative real time polymerase chain reaction after treatment for both raw and ozonated OSPW. A Microtox(®) acute toxicity test (Vibrio fischeri) showed effective toxicity removal (>95.3%) for the combined treatments. Therefore, the simultaneous GAC adsorption and biodegradation treatment process is a promising technology for the elimination of toxic OSPW NAs.

  2. Separation of H2S and NH3 gases from tofu waste water-based biogas using activated carbon adsorption

    NASA Astrophysics Data System (ADS)

    Harihastuti, Nani; Purwanto, P.; Istadi, I.

    2015-12-01

    Research on the separation of H2S and NH3 gases from tofu waste water-based biogas has been conducted to improve the content of CH4 of biogas in order to increase calorific value. Biogas from tofu waste water contained many kinds of gases such as: CH4 of 53-64%, CO2 of 36-45%, H2S of 3,724-5,880 mg/Nm3, NH3 of 0.19-70.36 mg/Nm3, and H2O of 33,800-19,770,000 mg/Nm3. In fact, CO2, H2S, NH3, and moisture are impurities that have disturbance to human and environment, so that they are necessary to be separated from biogas. Particularly, H2S and NH3 have high toxicity to people, particularly the workers in the tofu industry. Therefore, separation of H2S and NH3 from biogas to increase calorific value is the focus of this research. The method used in this research is by adsorption of H2S and NH3 gases using activated carbon as adsorbent. It also used condensation as pretreatment to remove moisture content in biogas. Biogas was flowed to adsorption column (70 cm height and 9 cm diameter containing activated carbon as much as 500 g) so that the H2S and NH3 gases were adsorbed. This research was conducted by varying flow rate and flow time of biogas. From this experiment, it was found that the optimum adsorption conditions were flow rate of 3.5 l/min and 4 hours flow time. This condition could reach 99.95% adsorption efficiency of H2S from 5,879.50 mg/Nm3 to 0.67 mg/Nm3, and 74.96% adsorption efficiency of NH3 from 2.93 mg/Nm3 to 0.73 mg/Nm3. The concentration of CH4 increased from 63.88% to 76.24% in the biogas.

  3. Adsorption of basic Red 46 using sea mango (Cerbera odollam) based activated carbon

    NASA Astrophysics Data System (ADS)

    Azmi, Nur Azira Iqlima; Zainudin, Nor Fauziah; Ali, Umi Fazara Md

    2015-05-01

    Sea mango or Cerbera Odollam is another source of carbonaceous material that can be found abundantly in Malaysia. In this research, it is used as a new agricultural source of activated carbon. Sea mango activated carbon was prepared by chemical activation using potassium hydroxide (KOH). The sea mango was soaked in KOH at impregnation ratio of 1:1 and followed by carbonization at temperature of 600°C for 1 hour. The sample was then characterized using Scanning Electron Microscope (SEM) for surface morphology, while Brunauer-Emmett-Teller (BET) was used to study the surface area. The result shown that sea mango activated carbon (SMAC) developed new pores on its surface and the BET surface area measured was 451.87 m2/g. The SMAC performance was then tested for the removal of Basic Red 46 in batch process. The removal of Basic Red 46 (50 mg/L, natural pH, 0.1 g SMAC) was more than 99% in 15 minutes where it reached equilibrium in 30 minutes.

  4. Adsorption of basic Red 46 using sea mango (Cerbera odollam) based activated carbon

    SciTech Connect

    Azmi, Nur Azira Iqlima; Zainudin, Nor Fauziah; Ali, Umi Fazara Md

    2015-05-15

    Sea mango or Cerbera Odollam is another source of carbonaceous material that can be found abundantly in Malaysia. In this research, it is used as a new agricultural source of activated carbon. Sea mango activated carbon was prepared by chemical activation using potassium hydroxide (KOH). The sea mango was soaked in KOH at impregnation ratio of 1:1 and followed by carbonization at temperature of 600°C for 1 hour. The sample was then characterized using Scanning Electron Microscope (SEM) for surface morphology, while Brunauer-Emmett-Teller (BET) was used to study the surface area. The result shown that sea mango activated carbon (SMAC) developed new pores on its surface and the BET surface area measured was 451.87 m{sup 2}/g. The SMAC performance was then tested for the removal of Basic Red 46 in batch process. The removal of Basic Red 46 (50 mg/L, natural pH, 0.1 g SMAC) was more than 99% in 15 minutes where it reached equilibrium in 30 minutes.

  5. MOF@activated carbon: a new material for adsorption of aldicarb in biological systems.

    PubMed

    de Oliveira, Carlos Alberto Fernandes; da Silva, Fausthon Fred; Jimenez, George Chaves; Neto, José Ferreira da S; de Souza, Daniela Maria Bastos; de Souza, Ivone Antônia; Alves, Severino

    2013-07-25

    A new composite was synthesized by the hydrothermal method using a 3D coordination network [Ln2(C4H4O4)3(H2O)2]·H2O (Ln = Eu and Tb) and activated carbon. The coordination network is formed within the pores of the charcoal, allowing for the use of this material as a detoxifying agent.

  6. Synthesis of N-doped microporous carbon via chemical activation of polyindole-modified graphene oxide sheets for selective carbon dioxide adsorption.

    PubMed

    Saleh, Muhammad; Chandra, Vimlesh; Kemp, K Christian; Kim, Kwang S

    2013-06-28

    A polyindole-reduced graphene oxide (PIG) hybrid was synthesized by reducing graphene oxide sheets in the presence of polyindole. We have shown PIG as a material for capturing carbon dioxide (CO2). The PIG hybrid was chemically activated at temperatures of 400-800 °C, which resulted in nitrogen (N)-doped graphene sheets. The N-doped graphene sheets are microporous with an adsorption pore size of 0.6 nm for CO2 and show a maximum (Brunauer, Emmet and Teller) surface area of 936 m(2) g(-1). The hybrid activated at 600 °C (PIG6) possesses a surface area of 534 m(2) g(-1) and a micropore volume of 0.29 cm(3) g(-1). PIG6 shows a maximum CO2 adsorption capacity of 3.0 mmol g(-1) at 25 °C and 1 atm. This high CO2 uptake is due to the highly microporous character of the material and its N content. The material retains its original adsorption capacity on recycling even after 10 cycles (within experimental error). PIG6 also shows high adsorption selectivity ratios for CO2 over N2, CH4 and H2 of 23, 4 and 85 at 25 °C, respectively.

  7. Effect of cation type, alkyl chain length, adsorbate size on adsorption kinetics and isotherms of bromide ionic liquids from aqueous solutions onto microporous fabric and granulated activated carbons.

    PubMed

    Hassan, Safia; Duclaux, Laurent; Lévêque, Jean-Marc; Reinert, Laurence; Farooq, Amjad; Yasin, Tariq

    2014-11-01

    The adsorption from aqueous solution of imidazolium, pyrrolidinium and pyridinium based bromide ionic liquids (ILs) having different alkyl chain lengths was investigated on two types of microporous activated carbons: a fabric and a granulated one, well characterized in terms of surface chemistry by "Boehm" titrations and pH of point of zero charge measurements and of porosity by N2 adsorption at 77 K and CO2 adsorption at 273 K. The influence of cation type, alkyl chain length and adsorbate size on the adsorption properties was analyzed by studying kinetics and isotherms of eight different ILs using conductivity measurements. Equilibrium studies were carried out at different temperatures in the range [25-55 °C]. The incorporation of ILs on the AC porosity was studied by N2 adsorption-desorption measurements at 77 K. The experimental adsorption isotherms data showed a good correlation with the Langmuir model. Thermodynamic studies indicated that the adsorption of ILs onto activated carbons was an exothermic process, and that the removal efficiency increased with increase in alkyl chain length, due to the increase in hydrophobicity of long chain ILs cations determined with the evolution of the calculated octanol-water constant (Kow). The negative values of free energies indicated that adsorption of ILs with long chain lengths having hydrophobic cations was more spontaneous at the investigated temperatures.

  8. An investigation of groundwater organics, soil minerals, and activated carbon on the complexation, adsorption, and separation of technetium-99

    SciTech Connect

    Gu, B.; Dowlen, K.E.

    1996-01-01

    This report summarizes studies on the interactions of technetium-99 (Tc) with different organic compounds and soil minerals under both oxidizing and reducing conditions. The report is divided into four parts and includes (1) effect of natural organic matter (NOM) on the complexation and solubility of Tc, (2) complexation between Tc and trichloroethylene (TCE) in aqueous solutions, (3) adsorption of Tc on soil samples from Paducah Gaseous Diffusion Plant (PGDP), and (4) adsorption and separation of Tc on activated carbon. Various experimental techniques were applied to characterize and identify Tc complexation with organic compounds and TCE, including liquid-liquid extraction, membrane filtration, size exclusion, and gel chromatography. Results indicate, within the experimental error, Tc (as pertechnetate, TcO{sub 4}) did not appear to form complexes with groundwater or natural organic matter under both atmospheric and reducing conditions. However, Tc can form complexes with certain organic compounds or specific functional groups such as salicylate. Tc did not appear to form complexes with TCE in aqueous solution.Both liquid-liquid extraction and high performance liquid chromatography (HPLC) gave no indication Tc was complexed with TCE. The correlations between Tc and TCE concentrations in monitoring wells at PGDP may be a coincidence because TCE was commonly used as a decontamination reagent. Once TCE and Tc entered the groundwater, they behaved similarly because both TcO{sub 4}{sup {minus}} and TCE are poorly adsorbed by soils. An effective remediation technique to remove TcO{sub 4}{sup {minus}} from PGDP contaminated groundwater is needed. One possibility is the use of an activated carbon adsorption technique developed in this study.

  9. Adsorption of 2,4-dichlorophenoxyacetic acid by mesoporous activated carbon prepared from H3PO4-activated langsat empty fruit bunch.

    PubMed

    Njoku, V O; Islam, Md Azharul; Asif, M; Hameed, B H

    2015-05-01

    The removal of toxic herbicide from wastewater is challenging due to the availability of suitable adsorbents. The Langsat empty fruit bunch is an agricultural waste and was used in this study as a cheap precursor to produce activated carbon for the adsorption of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) at different initial concentrations ranging from 50 to 400 mg/L. The produced Langsat empty fruit bunch activated carbon (LEFBAC) was mesoporous and had high surface area of 1065.65 m(2)/g with different active functional groups. The effect of shaking time, temperature and pH on 2,4-D removal were investigated using the batch technique. The adsorption capacity of 2,4-D by LEFBAC was decreased with increase in pH of solution whereas adsorption capacity increased with temperature. The adsorption data was well described by Langmuir isotherm followed by removal capacity of 261.2 mg/g at 30 °C. The results from this work showed that LEFBAC can be used as outstanding material for anionic herbicide uptake from wastewater.

  10. Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation--application in methylene blue adsorption from aqueous solution.

    PubMed

    Deng, Hui; Yang, Le; Tao, Guanghui; Dai, Jiulei

    2009-07-30

    The activated carbon prepared from cotton stalk with ZnCl(2) as activation was investigated under microwave radiation. Effects on the yield and adsorption capacities of activated carbon were evaluated then, such as, microwave power, microwave radiation time and the impregnation ratio of ZnCl(2). It indicated that the optimum conditions were as follows: microwave power of 560 W, microwave radiation time of 9 min and the impregnation ratio of ZnCl(2) was 1.6g/g. Iodine number, amount of methylene blue adsorption and the yield of activated carbon prepared under optimum conditions were 972.92 mg/g, 193.50mg/g and 37.92%, respectively. Laboratory prepared activated carbons were characterized by pH(ZPC), SEM, FT-IR, S(BET) and pore structural parameters. Then they were used as adsorbent for the removal of methylene blue from aqueous solutions under varying conditions of initial concentration, carbon dosage and pH. It indicated that Langmuir isotherm was fitter than Freundlich isotherm and Temkin isotherm.

  11. Magnetic modification of microporous carbon for dye adsorption.

    PubMed

    Kyzas, George Z; Deliyanni, Eleni A; Lazaridis, Nikolaos K

    2014-09-15

    In this study, impregnation of microporous activated carbon with magnetite was achieved by co-precipitation of iron salts onto activated carbon. The evaluation of the adsorption ability of this material was examined using the anionic dye Reactive Black 5 as model dye pollutant (adsorbate). The effect of pH, ionic strength, contact time and initial dye concentration were also studied. It was found that high pH and high ionic strength favor the adsorption of Reactive Black 5. The adsorption kinetics and isotherms were well fitted by the fractal BS model and Langmuir model, respectively. The impregnation with magnetite decreases the adsorption capacity of activated carbon. Thermal re-activation of dye-loaded activated carbons was also succeeded. The characterization of the magnetic carbons was investigated by various techniques (SEM/EDAX, VSM, BET, FTIR, XRD, DTG) revealing many possible interactions in the carbon-dye system.

  12. Adsorptive desulfurization by activated alumina.

    PubMed

    Srivastav, Ankur; Srivastava, Vimal Chandra

    2009-10-30

    This study reports usage of commercial grade activated alum