Science.gov

Sample records for activated caspase-9 caspase-3

  1. TCR-induced, PKC-θ-mediated NF-κB Activation Is Regulated by a Caspase-8-Caspase-9-Caspase-3 Cascade

    PubMed Central

    Zhao, Yixia; Lei, Minxiang; Wang, Zhaoyuan; Qiao, Guilin; Yang, Tianlun; Zhang, Jian

    2014-01-01

    It has been documented that caspase-8, a central player in apoptosis, is also crucial for TCR-mediated NF-κB activation. However, whether other caspases are also involved this process is unknown. In this report, we showed that in addition to caspase-8, caspase-9 is required for TCR-mediated NF-κB activation. Caspase-9 induces activation of PKC-θ, phosphorylation of Bcl10 and NF-κB activation in a caspase-3-dependent manner, but it appears that Bcl10 phosphorylation is uncoupled from NF-κB activation. Furthermore, caspase-8 lies upstream of caspase-9 during T cell activation. Therefore, TCR ligation elicits a caspase cascade involving caspase-8, caspase-9 and caspase-3 which initiates PKC-θ-dependent pathway leading to NF-κB activation and PKC-θ-independent Bcl10 phosphorylation which limits NF-kB activity. PMID:24924627

  2. Caspase-9 mediates Puma activation in UCN-01-induced apoptosis.

    PubMed

    Nie, C; Luo, Y; Zhao, X; Luo, N; Tong, A; Liu, X; Yuan, Z; Wang, C; Wei, Y

    2014-10-30

    The protein kinase inhibitor 7-hydroxystaurosporine (UCN-01) is one of the most potent and frequently used proapoptotic stimuli. The BH3-only molecule of Bcl-2 family proteins has been reported to contribute to UCN-01-induced apoptosis. Here we have found that UCN-01 triggers Puma-induced mitochondrial apoptosis pathway. Our data confirmed that Akt-FoxO3a pathway mediated Puma activation. Importantly, we elucidate the detailed mechanisms of Puma-induced apoptosis. Our data have also demonstrated that caspase-9 is a decisive molecule of Puma induction after UCN-01 treatment. Caspase-9 mediates apoptosis through two kinds of feedback loops. On the one hand, caspase-9 enhances Puma activation by cleaving Bcl-2 and Bcl-xL independent of caspase-3. On the other hand, caspase-9 directly activated caspase-3 in the presence of caspase-3. Caspase-3 could cleave XIAP in an another positive feedback loop to further sensitize cancer cells to UCN-01-induced apoptosis. Therefore, caspase-9 mediates Puma activation to determine the threshold for overcoming chemoresistance in cancer cells.

  3. MicroRNA-497 Induces Apoptosis and Suppresses Proliferation via the Bcl-2/Bax-Caspase9-Caspase3 Pathway and Cyclin D2 Protein in HUVECs

    PubMed Central

    Wang, Mian; Xu, Xiangdong; Yao, Chen; Wang, Shenming

    2016-01-01

    Introduction MicroRNAs play crucial roles in various types of diseases. However, to date, no information about the role of miR-497 in the development of atherosclerosis has been reported. This study investigated the possible role of miR-497 in vascular endothelial cell injury during the early stage of atherosclerosis. Materials and Methods The expression level of miR-497 in human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL was detected using qRT-PCR. To perform gain of function and loss of function analyses, miR-497 mimics were transfected into HUVECs, and miR-497 inhibitors were transfected into HUVECs stimulated with ox-LDL. Flow cytometry was used to analyze cell cycle progression and apoptosis. EdU and CCK-8 assays were employed to detect DNA synthesis and cell proliferation, respectively. After bioinformatics prediction, a dual Luciferase Reporter assay was used to analyze the direct target genes of miR-497. The mRNA and protein levels of the target genes were detected using qRT-PCR and western blot analyses, respectively. Caspase-9/3 activity was analyzed to determine the mechanism of endothelial dysfunction. Results We showed that miR-497 was significantly upregulated in HUVECs stimulated with ox-LDL. Ectopic expression of miR-497 suppressed cell proliferation, induced apoptosis and increased the activity of caspase-9/3. After verification, Bcl2 and CCND2 were shown to be direct target genes of miR-497 in HUVECs. MiR-497 significantly suppressed cell proliferation by arresting the cell cycle through the CCND2 protein and induced apoptosis through the Bcl2/Bax-caspase9-caspase3 pathway. Conclusion Overall, our study shows that miR-497 might play a role in the development of atherosclerosis by inducing apoptosis and suppressing the proliferation of vascular endothelial cells. Therefore, miR-497 could be a potential therapeutic target for the treatment of atherosclerosis. PMID:27918592

  4. The Apaf-1 apoptosome induces formation of caspase-9 homo- and heterodimers with distinct activities

    PubMed Central

    Wu, Chu-Chiao; Lee, Sunhee; Malladi, Srinivas; Chen, Miao-Der; Mastrandrea, Nicholas J.; Zhang, Zhiwen; Bratton, Shawn B.

    2016-01-01

    According to dogma, initiator caspases are activated through proximity-induced homodimerization, but some studies infer that during apoptosis caspase-9 may instead form a holoenzyme with the Apaf-1 apoptosome. Using several biochemical approaches, including a novel site-specific crosslinking technique, we provide the first direct evidence that procaspase-9 homodimerizes within the apoptosome, markedly increasing its avidity for the complex and inducing selective intramolecular cleavage at Asp-315. Remarkably, however, procaspase-9 could also bind via its small subunit to the NOD domain in Apaf-1, resulting in the formation of a heterodimer that more efficiently activated procaspase-3. Following cleavage, the intersubunit linker (and associated conformational changes) in caspase-9-p35/p12 inhibited its ability to form homo- and heterodimers, but feedback cleavage by caspase-3 at Asp-330 removed the linker entirely and partially restored activity to caspase-9-p35/p10. Thus, the apoptosome mediates the formation of caspase-9 homo- and heterodimers, both of which are impacted by cleavage and contribute to its overall function. PMID:27882936

  5. Oxidative modification of caspase-9 facilitates its activation via disulfide-mediated interaction with Apaf-1.

    PubMed

    Zuo, Yong; Xiang, Binggang; Yang, Jie; Sun, Xuxu; Wang, Yumei; Cang, Hui; Yi, Jing

    2009-04-01

    Intracellular reactive oxygen species (ROS) are known to regulate apoptosis. Activation of caspase-9, the initial caspase in the mitochondrial apoptotic cascade, is closely associated with ROS, but it is unclear whether ROS regulate caspase-9 via direct oxidative modification. The present study aims to elucidate the molecular mechanisms by which ROS mediate caspase-9 activation. Our results show that the cellular oxidative state facilitates caspase-9 activation. Hydrogen peroxide treatment causes the activation of caspase-9 and apoptosis, and promotes an interaction between caspase-9 and apoptotic protease-activating factor 1 (Apaf-1) via disulfide formation. In addition, in an in vitro mitochondria-free system, the thiol-oxidant diamide promotes auto-cleavage of caspase-9 and the caspase-9/Apaf-1 interaction by facilitating the formation of disulfide-linked complexes. Finally, a point mutation at C403 of caspase-9 impairs both H(2)O(2)-promoted caspase-9 activation and interaction with Apaf-1 through the abolition of disulfide formation. The association between cytochrome c and the C403S mutant is significantly weaker than that between cytochrome c and wild-type caspase-9, indicating that oxidative modification of caspase-9 contributes to apoptosome formation under oxidative stress. Taken together, oxidative modification of caspase-9 by ROS can mediate its interaction with Apaf-1, and can thus promote its auto-cleavage and activation. This mechanism may facilitate apoptosome formation and caspase-9 activation under oxidative stress.

  6. Apoptosis of Theileria-infected lymphocytes induced upon parasite death involves activation of caspases 9 and 3.

    PubMed

    Guergnon, Julien; Dessauge, Frédéric; Langsley, Gordon; Garcia, Alphonse

    2003-08-01

    The intracellular parasite Theileria parva (T. parva) can infect bovine B and T-lymphocytes. T. parva-infected cells become transformed, and they survive and proliferate independently of exogenous growth factors. In vivo the uncontrolled cellular proliferation associated with lymphocyte transformation underlies the pathogenesis of the disease called East Coast Fever. The transformed state of parasitised cells can be reversed upon elimination of the parasite by specific theilericide drugs. In this study we found that elimination of the parasite by buparvaquone induces apoptosis of transformed B and CD8(+) T-lymphocytes. Apoptosis is accompanied by the activation of caspase 9 and caspase 3 and processing of poly(ADP ribose) polymerase and is inhibited by Z-VAD a general caspase inhibitor. Based on these observations, we propose that the lack of activation of a caspase 9 > caspase 3 > poly(ADP ribose) polymerase pathway is important and protects T. parva-transformed cells from spontaneous apoptosis.

  7. Oligomerization and activation of caspase-9, induced by Apaf-1 CARD

    PubMed Central

    Shiozaki, Eric N.; Chai, Jijie; Shi, Yigong

    2002-01-01

    Apaf-1 facilitates the proteolytic activation of procaspase-9 and maintains the hyperactive state of the processed caspase-9. The underlying molecular mechanisms for these activities remain poorly characterized. Here we report that the isolated Apaf-1 caspase recruitment domain (CARD) forms a large hetero-oligomer with the active caspase-9. The catalytic activity of caspase-9 is significantly enhanced in this complex, demonstrating that Apaf-1 CARD allosterically up-regulates caspase-9 activity. Point mutations that inactivate the interactions between Apaf-1 CARD and the prodomain of caspase-9 also abolished the formation of this complex. Based on these observations, we discuss the implications of this complex on the observed Apaf-1 function. PMID:11904389

  8. Mechanistic insights into caspase-9 activation by the structure of the apoptosome holoenzyme

    PubMed Central

    Li, Yini; Zhou, Mengying; Hu, Qi; Bai, Xiao-chen; Huang, Weiyun; Shi, Yigong

    2017-01-01

    Mammalian intrinsic apoptosis requires activation of the initiator caspase-9, which then cleaves and activates the effector caspases to execute cell killing. The heptameric Apaf-1 apoptosome is indispensable for caspase-9 activation by together forming a holoenzyme. The molecular mechanism of caspase-9 activation remains largely enigmatic. Here, we report the cryoelectron microscopy (cryo-EM) structure of an apoptotic holoenzyme and structure-guided biochemical analyses. The caspase recruitment domains (CARDs) of Apaf-1 and caspase-9 assemble in two different ways: a 4:4 complex docks onto the central hub of the apoptosome, and a 2:1 complex binds the periphery of the central hub. The interface between the CARD complex and the central hub is required for caspase-9 activation within the holoenzyme. Unexpectedly, the CARD of free caspase-9 strongly inhibits its proteolytic activity. These structural and biochemical findings demonstrate that the apoptosome activates caspase-9 at least in part through sequestration of the inhibitory CARD domain. PMID:28143931

  9. Raf-1 Activation Prevents Caspase 9 Processing Downstream of Apoptosome Formation

    PubMed Central

    Cagnol, Sébastien; Mansour, Anna; Van Obberghen-Schilling, Ellen; Chambard, Jean-Claude

    2011-01-01

    In many cell types, growth factor removal induces the release of cytochrome-c from mitochondria that leads to activation of caspase-9 in the apoptosome complex. Here, we show that sustained stimulation of the Raf-1/MAPK1,3 pathway prevents caspase-9 activation induced by serum depletion in CCL39/ΔRaf-1:ER fibroblasts. The protective effect mediated by Raf-1 is sensitive to MEK inhibition that is sufficient to induce caspase-9 cleavage in exponentially growing cells. Raf-1 activation does not inhibit the release of cytochrome-c from mitochondria while preventing caspase-9 activation. Gel filtration chromatography analysis of apoptosome formation in cells shows that Raf-1/MAPK1,3 activation does not interfere with APAF-1 oligomerization and recruitment of caspase 9. Raf-1-mediated caspase-9 inhibition is sensitive to emetine, indicating that the protective mechanism requires protein synthesis. However, the Raf/MAPK1,3 pathway does not regulate XIAP. Taken together, these results indicate that the Raf-1/MAPK1,3 pathway controls an apoptosis regulator that prevents caspase-9 activation in the apoptosome complex. PMID:21637382

  10. The equine arteritis virus induces apoptosis via caspase-8 and mitochondria-dependent caspase-9 activation.

    PubMed

    St-Louis, Marie-Claude; Archambault, Denis

    2007-10-10

    We have previously showed that equine arteritis virus (EAV), an arterivirus, induces apoptosis in vitro. To determine the caspase activation pathways involved in EAV-induced apoptosis, target cells were treated with peptide inhibitors of apoptosis Z-VAD-FMK (pan-caspase inhibitor), Z-IETD-FMK (caspase-8-specific inhibitor) or Z-LEHD-FMK (caspase-9-specific inhibitor) 4 h prior to infection with the EAV T1329 Canadian isolate. Significant inhibition of apoptosis was obtained with all peptide inhibitors used. Furthermore, apoptosis was inhibited in cells expressing the R1 subunit of herpes simplex virus type 2 ribonucleotide reductase (HSV2-R1) or hsp70, two proteins which are known to inhibit apoptosis associated with caspase-8 activation and cytochrome c release-dependent caspase-9 activation, respectively. Given the activation of Bid and the translocation of cytochrome c within the cytoplasm, the overall results indicate that EAV induces apoptosis initiated by caspase-8 activation and subsequent mitochondria-dependent caspase-9 activation.

  11. ACTIVATION OF CASPASE-3 IN THE SKELETAL MUSCLE DURING HEMODIALYSIS

    PubMed Central

    Boivin, Michel A; Battah, Shadi I; Dominic, Elizabeth A; Kalantar-Zadeh, Kamyar; Ferrando, Arny; Tzamaloukas, Antonios H; Dwivedi, Rama; Ma, Thomas A; Moseley, Pope; Raj, Dominic SC

    2010-01-01

    Background Muscle atrophy in end-stage renal disease (ESRD) may be due to the activation of apoptotic and proteolytic pathways. Objective We hypothesized that activation of caspase-3 in the skeletal muscle mediates apoptosis and proteolysis during hemodialysis (HD). Materials and Methods Eight ESRD patients were studied before (pre-HD) and during HD and the finding were compared with those from six healthy volunteers. Protein kinetics was determined by primed constant infusion of L-(ring 13C6) Phenylalanine. Results Caspase-3 activity in the skeletal muscle was higher in ESRD patients pre-HD than in controls (24966.0±4023.9 vs. 15293.3±2120.0 units, p<0.01) and increased further during HD (end-HD) (37666.6±4208.3 units) (p<0.001). 14 kDa actin fragments generated by caspase-3 mediated cleavage of actinomyosin was higher in the skeletal muscle pre-HD (68%) and during HD (164%) compared to controls. The abundance of ubiquitinized carboxy-terminal actin fragment was also significantly increased during HD. Skeletal muscle biopsies obtained at the end of HD exhibited augmented apoptosis, which was higher than that observed in pre-HD and control samples (p<0.001). IL-6 content in the soluble fraction of the muscle skeletal muscle was increased significantly during HD. Protein kinetic studies showed that catabolism was higher in ESRD patients during HD compared to pre-HD and control subjects. Muscle protein catabolism was positively associated with caspase-3 activity and skeletal muscle IL-6 content. Conclusion Muscle atrophy in ESRD may be due to IL-6 induced activation of caspase-3 resulting in apoptosis as well as muscle proteolysis during HD. PMID:20636378

  12. Activation of caspase-3 by lysosomal cysteine proteases and its role in 2,2'-azobis-(2-amidinopropane)dihydrochloride (AAPH)-induced apoptosis in HL-60 cells.

    PubMed

    Ishisaka, R; Kanno, T; Akiyama, J; Yoshioka, T; Utsumi, K; Utsumi, T

    2001-01-01

    We previously reported that in addition to mitochondrial cytochrome c dependent activation, lysosomal cysteine proteases were also involved in the activation of caspase-3. In this study, we have separately obtained the lysosomal and mitochondrial caspase-3 activating factors in a crude mitochondrial fraction and characterized their ability to activate pro-caspase-3 in the in vitro assay system. When a rat liver crude mitochondrial fraction containing lysosomes (ML) was treated with a low concentration of digitonin, lysosomal factors were selectively released without the release of a mitochondrial factor (cytochrome c, Cyt.c). Treatment of ML with Ca(2+) in the presence of inorganic phosphate (P(i)), in contrast, released mitochondrial Cyt.c without the release of lysosomal factors. The obtained lysosomal and mitochondrial factors activated caspase-3 in different manners; caspase-3 activation by lysosomal and mitochondrial factors was specifically suppressed by E-64, a cysteine protease inhibitor, and caspase-9 inhibitor, respectively. Thus, the activation of caspase-3 by lysosomal factors was found to be distinct from the activation by mitochondrial Cyt.c dependent formation of the Apaf-1/caspase-9 complex. To further determine whether or not the activation of caspase-3 by lysosomal cysteine proteases is involved in cellular apoptosis, the effect of E-64-d, a cell-permeable inhibitor of cysteine protease, on 2,2'-azobis-(2-amidinopropane)dihydrochloride (AAPH)-induced apoptosis in HL-60 cells was investigated. As a result, DNA fragmentation induced by AAPH was found to be remarkably (up to 50%) reduced by pretreatment with E-64-d, indicating the participation of lysosomal cysteine proteases in AAPH-induced apoptosis in HL-60 cells.

  13. Caspase-9/-3 activation and apoptosis are induced in mouse macrophages upon ingestion and digestion of Escherichia coli bacteria.

    PubMed

    Häcker, Hans; Fürmann, Christine; Wagner, Hermann; Häcker, Georg

    2002-09-15

    A number of highly virulent, intracellular bacteria are known to induce cell death by apoptosis in infected host cells. In this work we demonstrate that phagocytosis of bacteria from the Escherichia coli laboratory strain K12 DH5alpha is a potent cell death stimulus for mouse macrophages. RAW264.7 mouse macrophages took up bacteria and digested them within 2-4 h as investigated with green fluorescent protein-expressing bacteria. No evidence of apoptosis was seen at 8 h postexposure, but at 24 h approximately 70% of macrophages displayed an apoptotic phenotype by a series of parameters. Apoptosis was blocked by inhibition of caspases or by forced expression of the apoptosis-inhibiting protein Bcl-2. Processing of caspase-3 and caspase-9 but not caspase-8 was seen suggesting that the mitochondrial branch of the apoptotic pathway was activated. Active effector caspases could be detected in two different assays. Because the adapter molecule myeloid differentiation factor 88 (MyD88) has been implicated in apoptosis, involvement of the Toll-like receptor pathway was investigated. In RAW264.7 cells, heat-treated bacteria were taken up poorly and failed to induce significant apoptosis. However, cell activation was almost identical between live and heat-inactivated bacteria as measured by extracellular signal-regulated kinase activation, generation of free radicals, and TNF secretion. Furthermore, primary bone marrow-derived macrophages from wild-type as well as from MyD88-deficient mice underwent apoptosis upon phagocytosis of bacteria. These results show that uptake and digestion of bacteria leads to MyD88-independent apoptosis in mouse macrophages. This form of cell death might have implications for the generation of the immune response.

  14. Activation of caspase-3 in permanent and transient brain ischaemia in man.

    PubMed

    Love, S; Barber, R; Srinivasan, A; Wilcock, G K

    2000-08-03

    Animal studies have shown brain ischaemia to cause oxidative damage to DNA and activation of caspase-3, leading to apoptosis. These changes may be exacerbated by reperfusion. To assess caspase-3 activation after transient and permanent brain ischaemia in man, we examined brain tissue from patients who had experienced a cardiac arrest with resuscitation or an atherothrombotic brain infarct, and died 12 h to 9 days later. Sections were immunostained for activated caspase-3 or the 89 kDa caspase-3-mediated cleavage product of poly(ADP-ribose) polymerase. Brain ischaemia caused activation of caspase-3 in macrophages/microglia. Some neurons showed delayed activation of caspase-3 after cardiac arrest, but very few in atherothrombotic infarcts. In man, activation of caspase-3 plays little part in neuronal death in atherothrombotic infarcts but may contribute to delayed death of neurons after cardiac arrest.

  15. Activation of caspase-3 in HL-60 cells treated with pyrithione and zinc.

    PubMed

    Kondoh, Masuo; Tasaki, Emi; Takiguchi, Masufumi; Higashimoto, Minoru; Watanabe, Yoshiteru; Sato, Masao

    2005-04-01

    The transition metal zinc (Zn) is an endogenous regulator of apoptosis. The ability of Zn to modulate apoptosis is believed to be mediated by the regulation of caspase activity. Previously, we reported that an acute influx of labile Zn induced apoptosis via activation of caspase in human leukemia HL-60 cells treated with a Zn ionophore (Py, pyrithione) and Zn at 1 and 25 microM, respectively. In the present study, we investigated the involvement of caspase-3 in Py (1 microM)/Zn (25 microM)-induced apoptosis in HL-60 cells. Pro-caspase-3 is an inactive form of caspase-3. The processing of pro-caspase-3, a sign of caspase-3 activation, occurred 6 h after treatment with Py/Zn. Proteolysis of poly (ADP-ribose) polymerase (PARP), a substrate of caspase-3, was also observed 6 h after treatment with Py/Zn. We also confirmed the elevation of caspase-3 activity as an index of the cleavage of amino acid sequences recognized by activated caspase-3. An inhibitor of caspase-3 attenuated the appearance of the DNA ladder. Taken together, these results indicate that the activation of caspase-3 is partly responsible for the induction of apoptosis in Py/Zn-treated HL-60 cells.

  16. Nimesulide, a selective COX-2 inhibitor, acts synergistically with ionizing radiation against A549 human lung cancer cells through the activation of caspase-8 and caspase-3.

    PubMed

    Kim, Byeong Mo; Won, Juyoon; Maeng, Kyung Ah; Han, Young Soo; Yun, Yeon-Sook; Hong, Sung Hee

    2009-05-01

    Several lines of evidence suggest that non-steroidal anti-inflammatory drugs (NSAIDs) have a radiosensitizing effect on cancer cells in vitro and in vivo, but little is known about the underlying cellular mechanism. In this study, we found that the treatment with the NSAID nimesulide significantly increased the sensitivity of A549 human non-small cell lung cancer cells to radiotherapy. The combined nimesulide-radiation treatment increased apoptosis, induced the cleavage of caspase-3, caspase-9, and poly(ADP-ribose) polymerase (PARP), activated caspase-8, and induced cleavage of Bid. A pan-caspase inhibitor, z-VAD-fmk, suppressed this increase in apoptosis and also suppressed the cleavage of caspase-8, caspase-3, and PARP, suggesting a caspase-dependent mechanism. In addition, z-IETD-fmk, a selective caspase-8 inhibitor, suppressed the nimesulide- and radiation-induced cleavage activation of caspase-9, caspase-3, caspase-8, and Bid, and suppressed the concomitant apoptosis, indicating that the nimesulide-induced increase in radiosensitivity was initiated by caspase-8. However, the caspase-3 inhibitor z-DEVD-fmk failed to suppress activation of the caspase-8/Bid pathway, indicating that caspase-3 activation occurred downstream of caspase-8 activation in our experiments. Marked antitumor effects, which were evaluated by measuring protracted tumor regression, were observed when nude mice were treated with a combination of nimesulide at a clinically achievable dose (0.5 mg/kg) and radiation therapy. Our results, demonstrating the radiosensitivity-increasing and tumor growth-inhibiting effects of nimesulide, suggest that nimesulide may be suitable as an adjuvant to enhance the efficacy and selectivity of radiotherapy.

  17. Imaging Caspase-3 Activation as a Marker of Apoptosis-Targeted Treatment Response in Cancer

    PubMed Central

    Chen, Delphine L.; Engle, Jacquelyn T.; Griffin, Elizabeth A.; Miller, J. Philip; Chu, Wenhua; Zhou, Dong; Mach, Robert H.

    2016-01-01

    Purpose We tested whether positron emission tomography (PET) with the caspase-3 targeted isatin analog [18F]WC-4-116 could image caspase-3 activation in response to an apoptosis-inducing anticancer therapy. Procedures [18F]WC-4-116 uptake was determined in etoposide-treated EL4 cells. Biodistribution studies with [18F]WC-4-116 and [18F]ICMT-18, a non-caspase-3-targeted tracer, as well as [18F]WC-4-116 microPET imaging assessed responses in Colo205 tumor bearing mice treated with death receptor 5 (DR5) targeted agonist antibodies. Immunohistochemical staining and enzyme assays confirmed caspase-3 activation. Two-way analysis of variance or Student’s t-test assessed for treatment-related changes in tracer uptake. Results [18F]WC-4-116 increased 8 ± 2-fold in etoposide-treated cells. The [18F]WC-4-116 %ID/g also increased significantly in tumors with high caspase-3 enzyme activity (p < 0.05). [18F]ICMT-18 tumor uptake did not differ in tumors with high or low caspase-3 enzyme activity. Conclusions [18F]WC-4-116 uptake in vivo reflects increased caspase-3 activation and may be useful for detecting caspase-3 mediated apoptosis treatment responses in cancer. PMID:25344147

  18. ASC Induces Apoptosis via Activation of Caspase-9 by Enhancing Gap Junction-Mediated Intercellular Communication.

    PubMed

    Kitazawa, Masato; Hida, Shigeaki; Fujii, Chifumi; Taniguchi, Shun'ichiro; Ito, Kensuke; Matsumura, Tomio; Okada, Nagisa; Sakaizawa, Takashi; Kobayashi, Akira; Takeoka, Michiko; Miyagawa, Shin-Ichi

    2017-01-01

    ASC (apoptosis-associated speck-like protein containing a CARD) is a key adaptor molecule of inflammasomes that mediates inflammatory and apoptotic signals. Aberrant methylation-induced silencing of ASC has been observed in a variety of cancer cells, thus implicating ASC in tumor suppression, although this role remains incompletely defined especially in the context of closely neighboring cell proliferation. As ASC has been confirmed to be silenced by abnormal methylation in HT1080 fibrosarcoma cells as well, this cell line was investigated to characterize the precise role and mechanism of ASC in tumor progression. The effects of ASC were examined using in vitro cell cultures based on comparisons between low and high cell density conditions as well as in a xenograft murine model. ASC overexpression was established by insertion of the ASC gene into pcDNA3 and pMX-IRES-GFP vectors, the latter being packed into a retrovirus and subjected to reproducible competitive assays using parental cells as an internal control, for evaluation of cell viability. p21 and p53 were silenced using shRNA. Cell viability was suppressed in ASC-expressing transfectants as compared with control cells at high cell density conditions in in vitro culture and colony formation assays and in in vivo ectopic tumor formation trials. This suppression was not detected in low cell density conditions. Furthermore, remarkable progression of apoptosis was observed in ASC-introduced cells at a high cell density, but not at a low one. ASC-dependent apoptosis was mediated not by p21, p53, or caspase-1, but rather by cleavage of caspase-9 as well as by suppression of the NF-κB-related X-linked inhibitor-of-apoptosis protein. Caspase-9 cleavage was observed to be dependent on gap junction formation. The remarkable effect of ASC on the induction of apoptosis through caspase-9 and gap junctions revealed in this study may lead to promising new approaches in anticancer therapy.

  19. ASC Induces Apoptosis via Activation of Caspase-9 by Enhancing Gap Junction-Mediated Intercellular Communication

    PubMed Central

    Hida, Shigeaki; Fujii, Chifumi; Taniguchi, Shun’ichiro; Ito, Kensuke; Matsumura, Tomio; Okada, Nagisa; Sakaizawa, Takashi; Kobayashi, Akira; Takeoka, Michiko; Miyagawa, Shin-ichi

    2017-01-01

    ASC (apoptosis-associated speck-like protein containing a CARD) is a key adaptor molecule of inflammasomes that mediates inflammatory and apoptotic signals. Aberrant methylation-induced silencing of ASC has been observed in a variety of cancer cells, thus implicating ASC in tumor suppression, although this role remains incompletely defined especially in the context of closely neighboring cell proliferation. As ASC has been confirmed to be silenced by abnormal methylation in HT1080 fibrosarcoma cells as well, this cell line was investigated to characterize the precise role and mechanism of ASC in tumor progression. The effects of ASC were examined using in vitro cell cultures based on comparisons between low and high cell density conditions as well as in a xenograft murine model. ASC overexpression was established by insertion of the ASC gene into pcDNA3 and pMX-IRES-GFP vectors, the latter being packed into a retrovirus and subjected to reproducible competitive assays using parental cells as an internal control, for evaluation of cell viability. p21 and p53 were silenced using shRNA. Cell viability was suppressed in ASC-expressing transfectants as compared with control cells at high cell density conditions in in vitro culture and colony formation assays and in in vivo ectopic tumor formation trials. This suppression was not detected in low cell density conditions. Furthermore, remarkable progression of apoptosis was observed in ASC-introduced cells at a high cell density, but not at a low one. ASC-dependent apoptosis was mediated not by p21, p53, or caspase-1, but rather by cleavage of caspase-9 as well as by suppression of the NF-κB-related X-linked inhibitor-of-apoptosis protein. Caspase-9 cleavage was observed to be dependent on gap junction formation. The remarkable effect of ASC on the induction of apoptosis through caspase-9 and gap junctions revealed in this study may lead to promising new approaches in anticancer therapy. PMID:28056049

  20. The proteasome is responsible for caspase-3-like activity during xylem development.

    PubMed

    Han, Jia-Jia; Lin, Wei; Oda, Yoshihisa; Cui, Ke-Ming; Fukuda, Hiroo; He, Xin-Qiang

    2012-10-01

    Xylem development is a process of xylem cell terminal differentiation that includes initial cell division, cell expansion, secondary cell wall formation and programmed cell death (PCD). PCD in plants and apoptosis in animals share many common characteristics. Caspase-3, which displays Asp-Glu-Val-Asp (DEVD) specificity, is a crucial executioner during animal cells apoptosis. Although a gene orthologous to caspase-3 is absent in plants, caspase-3-like activity is involved in many cases of PCD and developmental processes. However, there is no direct evidence that caspase-3-like activity exists in xylem cell death. In this study, we showed that caspase-3-like activity is present and is associated with secondary xylem development in Populus tomentosa. The protease responsible for the caspase-3-like activity was purified from poplar secondary xylem using hydrophobic interaction chromatography (HIC), Q anion exchange chromatography and gel filtration chromatography. After identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS), it was revealed that the 20S proteasome (20SP) was responsible for the caspase-3-like activity in secondary xylem development. In poplar 20SP, there are seven α subunits encoded by 12 genes and seven β subunits encoded by 12 genes. Pharmacological assays showed that Ac-DEVD-CHO, a caspase-3 inhibitor, suppressed xylem differentiation in the veins of Arabidopsis cotyledons. Furthermore, clasto-lactacystin β-lactone, a proteasome inhibitor, inhibited PCD of tracheary element in a VND6-induced Arabidopsis xylogenic culture. In conclusion, the 20S proteasome is responsible for caspase-3-like activity and is involved in xylem development.

  1. FK506 treatment inhibits caspase-3 activation and promotes oligodendroglial survival following traumatic spinal cord injury.

    PubMed

    Nottingham, Stephanie; Knapp, Pamela; Springer, Joe

    2002-09-01

    The focus of this study is to examine the ability of FK506, an immunosuppressant that inhibits calcineurin activation, to limit caspase-3 activation in oligodendroglia following spinal cord injury (SCI). To better establish a role for calcineurin and caspase-3 activation in oligodendroglia following SCI, rats received a contusion injury to the spinal cord followed by treatment with FK506 or rapamycin (another immunosuppressant with no detectable inhibitory action on calcineurin activation). Animals were then sacrificed at 8 days postinjury and spinal cord tissue was processed using immunofluorescence histochemistry to examine cellular caspase-3 activation in ventral and dorsal white matter. In all treatment groups, numerous oligodendroglia were found to express the activated form of caspase-3 in regions proximal and distal to the injury epicenter. However, our findings suggest that treatment with FK506, but not rapamycin reduces the number of oligodendroglia expressing activated caspase-3 and increases the number of surviving oligodendroglia in dorsal white matter. These results provide initial evidence that agents that reduce the actions of calcineurin and subsequent caspase-3 activation may prove beneficial in the treatment of traumatic SCI.

  2. Caspase-3 activation and DNA fragmentation in primary hippocampal neurons following glutamate excitotoxicity.

    PubMed

    Brecht, S; Gelderblom, M; Srinivasan, A; Mielke, K; Dityateva, G; Herdegen, T

    2001-10-19

    Excitotoxic glutamate CNS stimulation can result in neuronal cell death. Contributing mechanisms and markers of cell death are the activation of caspase-3 and DNA fragmentation. It remains to be resolved to which extent both cellular reactions overlap and/or indicate different processes of neurodegeneration. In this study, mixed neuronal cultures from newborn mice pubs (0-24 h) were stimulated with glutamate, and the co-localization of active caspase-3 and DNA fragmentation was investigated by immunocytochemistry and the TUNEL nick-end labelling. In untreated cultures, 8% scattered neurons (marked by MAP-2) displayed activated caspase-3 at different morphological stages of degeneration. TUNEL staining was detected in 5% of cell nuclei including GFAP-positive astrocytes. However, co-localization of active caspase-3 with TUNEL was less than 2%. After glutamate stimulation (125 microM), the majority of neurons was dying between 12 and 24 h. The absolute number of active caspase-3 neurons increased only moderately but in relation of surviving neurons after 24 h from 8 to 36% (125 microM), to 53% (250 microM) or to 32% (500 microM). TUNEL staining also increased after 24 h following glutamate treatment to 37% but the co-localization with active caspase-3 remained at the basal low level of 2%. In our system, glutamate-mediated excitotoxicity effects the DNA fragmentation and caspase-3 activation. Co-localization of both parameters, however, is very poor. Active caspase-3 in the absence of TUNEL indicates a dynamic degenerative process, whereas TUNEL marks the end stage of severe irreversible cell damage regardless to the origin of the cell.

  3. p53 activation by Ni(II) is a HIF-1α independent response causing caspases 9/3-mediated apoptosis in human lung cells

    SciTech Connect

    Wong, Victor C.; Morse, Jessica L.; Zhitkovich, Anatoly

    2013-06-15

    Hypoxia mimic nickel(II) is a human respiratory carcinogen with a suspected epigenetic mode of action. We examined whether Ni(II) elicits a toxicologically significant activation of the tumor suppressor p53, which is typically associated with genotoxic responses. We found that treatments of H460 human lung epithelial cells with NiCl{sub 2} caused activating phosphorylation at p53-Ser15, accumulation of p53 protein and depletion of its inhibitor MDM4 (HDMX). Confirming the activation of p53, its knockdown suppressed the ability of Ni(II) to upregulate MDM2 and p21 (CDKN1A). Unlike DNA damage, induction of GADD45A by Ni(II) was p53-independent. Ni(II) also increased p53-Ser15 phosphorylation and p21 expression in normal human lung fibroblasts. Although Ni(II)-induced stabilization of HIF-1α occurred earlier, it had no effect on p53 accumulation and Ser15 phosphorylation. Ni(II)-treated H460 cells showed no evidence of necrosis and their apoptosis and clonogenic death were suppressed by p53 knockdown. The apoptotic role of p53 involved a transcription-dependent program triggering the initiator caspase 9 and its downstream executioner caspase 3. Two most prominently upregulated proapoptotic genes by Ni(II) were PUMA and NOXA but only PUMA induction required p53. Knockdown of p53 also led to derepression of antiapoptotic MCL1 in Ni(II)-treated cells. Overall, our results indicate that p53 plays a major role in apoptotic death of human lung cells by Ni(II). Chronic exposure to Ni(II) may promote selection of resistant cells with inactivated p53, providing an explanation for the origin of p53 mutations by this epigenetic carcinogen. - Highlights: • Ni(II) is a strong activator of the transcription factor p53. • Apoptosis is a principal form of death by Ni(II) in human lung epithelial cells. • Ni(II)-activated p53 triggers caspases 9/3-mediated apoptotic program. • NOXA and PUMA are two main proapoptotic genes induced by Ni(II). • HIF-1α and p53 are independent

  4. Procaspase-activating compound 1 induces a caspase-3-dependent cell death in cerebellar granule neurons

    SciTech Connect

    Aziz, Gulzeb; Akselsen, Oyvind W.; Hansen, Trond V.; Paulsen, Ragnhild E.

    2010-09-15

    Procaspase-activating compound 1, PAC-1, has been introduced as a direct activator of procaspase-3 and has been suggested as a therapeutic agent against cancer. Its activation of procaspase-3 is dependent on the chelation of zinc. We have tested PAC-1 and an analogue of PAC-1 as zinc chelators in vitro as well as their ability to activate caspase-3 and induce cell death in chicken cerebellar granule neuron cultures. These neurons are non-dividing, primary cells with normal caspase-3. The results reported herein show that PAC-1 chelates zinc, activates procaspase-3, and leads to caspase-3-dependent cell death in neurons, as the specific caspase-3-inhibitor Ac-DEVD-cmk inhibited both the caspase-3 activity and cell death. Thus, chicken cerebellar granule neurons is a suitable model to study mechanisms of interference with apoptosis of PAC-1 and similar compounds. Furthermore, the present study also raises concern about potential neurotoxicity of PAC-1 if used in cancer therapy.

  5. ROFA INCREASES CASPASE-3 ACTIVITY IN HUMAN ALVEOLAR MACRAPHAGE

    EPA Science Inventory

    Exposure to air pollution particles produces pulmonary inflammation and injury, but the mechanisms of this injury are unclear. Apoptosis, involving activation of caspases, may be one potential mechanism. In this study, we hypothesized that ROFA, a constituent of air pollution...

  6. Kayeassamin A Isolated from the Flower of Mammea siamensis Triggers Apoptosis by Activating Caspase-3/-8 in HL-60 Human Leukemia Cells

    PubMed Central

    Uto, Takuhiro; Tung, Nguyen Huu; Thongjankaew, Pinjutha; Lhieochaiphant, Sorasak; Shoyama, Yukihiro

    2016-01-01

    Background: Mammea siamensis (Miq.) T. Anders. is used as a medicinal plant in Thailand and has several traditional therapeutic properties. In a previous study, we isolated eight compounds from the flower of M. siamensis and demonstrated that kayeassamin A (KA) exhibited potent antiproliferative activity against human leukemia and stomach cancer cell lines. Objective: In this study, we investigated the effect of KA on cell viability and apoptotic mechanisms in HL-60 human leukemia cells. Materials and Methods: Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Nuclear morphology and DNA fragmentation were observed using Hoechst 33258 staining and agarose gel electrophoresis, respectively. The sub-G1 phase of cells was analyzed by flow cytometry after the cellular DNA had been stained with propidium iodide. The protein levels of poly (ADP-ribose) polymerase (PARP) and caspases were determined by Western blotting. Results: KA exhibited a significant cytotoxic effect in a dose- and time-dependent manner, and induced chromatin condensation, DNA fragmentation, and sub-G1 phase DNA content, known as molecular events associated with the induction of apoptosis. In addition, KA strongly induced the activation of PARP and caspase-3 and -8, with weak caspase-9 activation. Furthermore, KA-induced DNA fragmentation was abolished by pretreatment with z-VAD-FMK (a broad caspase inhibitor), z-DEVD-FMK (a caspase-3 inhibitor), and z-IETD-FMK (a caspase-8 inhibitor), but not by z-LEHD-FMK (a caspase-9 inhibitor) pretreatment. Conclusion: These results indicate that KA triggers apoptotic cell death by activation of caspase-3 and -8 in HL-60 cells. SUMMARY Kayeassamin A (KA) isolated from the flower of Mammea siamensis exhibited a significant cytotoxic effect in HL-60 human leukemia cells. KA triggers apoptotic cell death by activating caspase-3/-8. Abbreviations Used: KA: Kayeassamin A; MTT: 3-(4,5-dimethylthiazol-2-yl)-2

  7. α-1 Antitrypsin Inhibits Caspase-3 Activity, Preventing Lung Endothelial Cell Apoptosis

    PubMed Central

    Petrache, Irina; Fijalkowska, Iwona; Medler, Terry R.; Skirball, Jarrett; Cruz, Pedro; Zhen, Lijie; Petrache, Horia I.; Flotte, Terence R.; Tuder, Rubin M.

    2006-01-01

    α-1 Antitrypsin (A1AT) is an abundant circulating serpin with a postulated function in the lung of potently inhibiting neutrophil-derived proteases. Emphysema attributable to A1AT deficiency led to the concept that a protease/anti-protease imbalance mediates cigarette smoke-induced emphysema. We hypothesized that A1AT has other pathobiological relevant functions in addition to elastase inhibition. We demonstrate a direct prosurvival effect of A1AT through inhibition of lung alveolar endothelial cell apoptosis. Primary pulmonary endothelial cells internalized human A1AT, which co-localized with and inhibited staurosporine-induced caspase-3 activation. In cell-free studies, native A1AT, but not conformers lacking an intact reactive center loop, inhibited the interaction of recombinant active caspase-3 with its specific substrate. Furthermore, overexpression of human A1AT via replication-deficient adeno-associated virus markedly attenuated alveolar wall destruction and oxidative stress caused by caspase-3 instillation in a mouse model of apoptosis-dependent emphysema. Our findings suggest that direct inhibition of active caspase-3 by A1AT may represent a novel anti-apoptotic mechanism relevant to disease processes characterized by excessive structural cell apoptosis, oxidative stress, and inflammation, such as pulmonary emphysema. PMID:17003475

  8. Hyperosmotic Stress Induces Tau Proteolysis by Caspase-3 Activation in SH-SY5Y Cells.

    PubMed

    Olivera-Santa Catalina, Marta; Caballero-Bermejo, Montaña; Argent, Ricardo; Alonso, Juan C; Cuenda, Ana; Lorenzo, María J; Centeno, Francisco

    2016-12-01

    Tau is a microtubule-associated protein implicated in the pathogenesis of Alzheimer's disease and other related tauopathies. In this subset of neurodegenerative disorders, Tau auto-assembles into insoluble fibrils that accumulate in neurons as paired helical filaments (PHFs), promoting cellular dysfunction and cytotoxic effects. Growing evidence suggests that abnormal post-translational regulation, mainly hyperphosphorylation and aberrant cleavage, drives Tau to this pathological state. In this work we show that sorbitol-induced hyperosmotic stress promotes Tau proteolysis in SH-SY5Y neuroblastoma cells. The appearance of cleaved Tau was preceded by the activation of μ-calpain, the proteasome system and caspase-3. Tau proteolysis was completely prevented by caspase-3 inhibition but unaffected by neither the proteasome system nor μ-calpain activity blockade. Concomitantly, hyperosmotic stress induced apoptosis in SH-SY5Y cells, which was efficiently avoided by the inhibition of caspase-3 activity. Altogether, our results provide the first evidence that Tau protein is susceptible to caspase-3 proteolysis under hyperosmotic stress and suggest a positive relationship between Tau proteolysis and apoptosis in SH-SY5Y cells. J. Cell. Biochem. 117: 2781-2790, 2016. © 2016 Wiley Periodicals, Inc.

  9. A new colorimetric strategy for monitoring caspase 3 activity by HRP-mimicking DNAzyme-peptide conjugates.

    PubMed

    Zhou, Zhaojuan; Peng, Lu; Wang, Xiaoyan; Xiang, Yu; Tong, Aijun

    2014-03-07

    A new method for caspase 3 activity assay has been developed based on HRP-mimicking DNAzyme-peptide conjugates. The mechanism of detection was based on the specific cleavage of DEVD-peptides by active caspase 3 for recognition and the catalytic properties of HRP-mimicking DNAzymes for signal amplification. Under optimal conditions, the detection limit of caspase 3 was 0.89 nM. The proposed method was also successfully applied for the detection of caspase 3 in apoptosis cell lysates.

  10. Artemisinin induces ROS-mediated caspase3 activation in ASTC-a-1 cells

    NASA Astrophysics Data System (ADS)

    Xiao, Feng-Lian; Chen, Tong-Sheng; Qu, Jun-Le; Liu, Cheng-Yi

    2010-02-01

    Artemisinin (ART), an antimalarial phytochemical from the sweet wormwood plant or a naturally occurring component of Artemisia annua, has been shown a potential anticancer activity by apoptotic pathways. In our report, cell counting kit (CCK-8) assay showed that treatment of human lung adenocarcinoma (ASTC-a-1) cells with ART effectively increase cell death by inducing apoptosis in a time- and dose-dependent fashion. Hoechst 33258 staining was used to detect apoptosis as well. Reactive oxygen species (ROS) generation was observed in cells exposed to ART at concentrations of 400 μM for 48 h. N-acetyl-L-cysteine (NAC), an oxygen radical scavenger, suppressed the rate of ROS generation and inhibited the ART-induced apoptosis. Moreover, AFC assay (Fluorometric assay for Caspase3 activity) showed that ROS was involved in ART-induced caspase3 acitvation. Taken together, our data indicate that ART induces ROS-mediated caspase3 activation in a time-and dose-dependent way in ASCT-a-1 cells.

  11. Silver Nanoparticle Exposure Induced Mitochondrial Stress, Caspase-3 Activation and Cell Death: Amelioration by Sodium Selenite

    PubMed Central

    Ma, Wanrui; Jing, Li; Valladares, Alexandra; Mehta, Suresh L.; Wang, Zhizhong; Li, P. Andy; Bang, John J.

    2015-01-01

    Silver nanoparticles (AgNP), one of the most commonly used engineered nanomaterial for biomedical and industrial applications, has shown a toxic potential to our ecosystems and humans. In this study, murine hippocampal neuronal HT22 cells were used to delineate subcellular responses and mechanisms to AgNP by assessing the response levels of caspase-3, mitochondrial oxygen consumption, reactive oxygen species (ROS), and mitochondrial membrane potential in addition to cell viability testing. Selenium, an essential trace element that has been known to carry protecting property from heavy metals, was tested for its ameliorating potential in the cells exposed to AgNP. Results showed that AgNP reduced cell viability. The toxicity was associated with mitochondrial membrane depolarization, increased accumulation of ROS, elevated mitochondrial oxygen consumption, and caspase-3 activation. Treatment with sodium selenite reduced cell death, stabilized mitochondrial membrane potential and oxygen consumption rate, and prevented accumulation of ROS and activation of caspase-3. It is concluded that AgNP induces mitochondrial stress and treatment with selenite is capable of preventing the adverse effects of AgNP on the mitochondria. PMID:26157341

  12. Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1, and Caspase-9/-3 activation

    PubMed Central

    Sørensen, Belinda Halling; Nielsen, Dorthe; Thorsteinsdottir, Unnur Arna; Hoffmann, Else Kay

    2016-01-01

    The leucine-rich repeat containing 8A (LRRC8A) protein is an essential component of the volume-sensitive organic anion channel (VSOAC), and using pharmacological anion channel inhibitors (NS3728, DIDS) and LRRC8A siRNA we have investigated its role in development of Cisplatin resistance in human ovarian (A2780) and alveolar (A549) carcinoma cells. In Cisplatin-sensitive cells Cisplatin treatment increases p53-protein level as well as downstream signaling, e.g., expression of p21Waf1/Cip1, Bax, Noxa, MDM2, and activation of Caspase-9/-3. In contrast, Cisplatin-resistant cells do not enter apoptosis, i.e., their p53 and downstream signaling are reduced and caspase activity unaltered following Cisplatin exposure. Reduced LRRC8A expression and VSOAC activity are previously shown to correlate with Cisplatin resistance, and here we demonstrate that pharmacological inhibition and transient knockdown of LRRC8A reduce the protein level of p53, MDM2, and p21Waf1/Cip1 as well as Caspase-9/-3 activation in Cisplatin-sensitive cells. Cisplatin resistance is accompanied by reduction in total LRRC8A expression (A2780) or LRRC8A expression in the plasma membrane (A549). Activation of Caspase-3 dependent apoptosis by TNFα-exposure or hyperosmotic cell shrinkage is almost unaffected by pharmacological anion channel inhibition. Our data indicate 1) that expression/activity of LRRC8A is essential for Cisplatin-induced increase in p53 protein level and its downstream signaling, i.e., Caspase-9/-3 activation, expression of p21Waf1/Cip1 and MDM2; and 2) that downregulation of LRRC8A-dependent osmolyte transporters contributes to acquirement of Cisplatin resistance in ovarian and lung carcinoma cells. Activation of LRRC8A-containing channels is upstream to apoptotic volume decrease as hypertonic cell shrinkage induces apoptosis independent of the presence of LRRC8A. PMID:26984736

  13. Anesthetic Propofol Attenuates the Isoflurane-Induced Caspase-3 Activation and Aβ Oligomerization

    PubMed Central

    Dong, Yuanlin; Xu, Zhipeng; Yue, Yun; Golde, Todd E.; Tanzi, Rudolph E.; Moir, Robert D.; Xie, Zhongcong

    2011-01-01

    Accumulation and deposition of β-amyloid protein (Aβ) are the hallmark features of Alzheimer's disease. The inhalation anesthetic isoflurane has been shown to induce caspase activation and increase Aβ accumulation. In addition, recent studies suggest that isoflurane may directly promote the formation of cytotoxic soluble Aβ oligomers, which are thought to be the key pathological species in AD. In contrast, propofol, the most commonly used intravenous anesthetic, has been reported to have neuroprotective effects. We therefore set out to compare the effects of isoflurane and propofol alone and in combination on caspase-3 activation and Aβ oligomerization in vitro and in vivo. Naïve and stably-transfected H4 human neuroglioma cells that express human amyloid precursor protein, the precursor for Aβ; neonatal mice; and conditioned cell culture media containing secreted human Aβ40 or Aβ42 were treated with isoflurane and/or propofol. Here we show for the first time that propofol can attenuate isoflurane-induced caspase-3 activation in cultured cells and in the brain tissues of neonatal mice. Furthermore, propofol-mediated caspase inhibition occurred when there were elevated levels of Aβ. Finally, isoflurane alone induces Aβ42, but not Aβ40, oligomerization, and propofol can inhibit the isoflurane-mediated oligomerization of Aβ42. These data suggest that propofol may mitigate the caspase-3 activation by attenuating the isoflurane-induced Aβ42 oligomerization. Our findings provide novel insights into the possible mechanisms of isoflurane-induced neurotoxicity that may aid in the development of strategies to minimize potential adverse effects associated with the administration of anesthetics to patients. PMID:22069482

  14. ROS and ERK1/2-mediated caspase-9 activation increases XAF1 expression in dexamethasone-induced apoptosis of EBV-transformed B cells.

    PubMed

    Park, Ga Bin; Choi, Yunock; Kim, Yeong Seok; Lee, Hyun-Kyung; Kim, Daejin; Hur, Dae Young

    2013-07-01

    Dexamethasone (Dex) inhibits the growth of diverse types of cancer cells and is utilized clinically for the therapy of hematological malignancies. In this study, we investigated the molecular mechanisms of Dex action in the apoptosis of Epstein-Barr virus (EBV)-transformed B cells. We showed that Dex inhibited the proliferation of EBV-transformed B cells and induced apoptosis by activating caspase-9, -3 and -8. While activation of caspase-9 was triggered as early as 2 h after Dex treatment, cleavage of caspase-8 was deferred and was found 8 h after the exposure. Dex-dependent activation of caspase-8 was blocked by the specific caspase-9 inhibitor, z-LEHD-fmk. Moreover, Dex significantly increased the expression of X-linked inhibitor of apoptosis (XIAP)‑associated factor 1 (XAF1) and induced the translocation of XAF1 into the cytosol. Cytosolic XAF1 with Puma induced the translocation of Bax into mitochondria. Dex led to up-regulation of reactive oxygen species (ROS) generation and the phosphorylation of ERK1/2 after the exposure. We speculated that ROS generation might be the first event of Dex-induced apoptosis because ROS inhibitor NAC abrogated ROS production and ERK1/2 activation, but PD98059 did not block ROS production. NAC and PD98059 also suppressed the translocation of XAF1, Puma and Bax into mitochondria. These results demonstrated that Dex-mediated activation of caspase-9 via ROS generation and ERK1/2 pathway activation resulted in the activation of caspase-8 and the increment of XAF1, thereby induced apoptosis of EBV-transformed B cells. These findings suggest that Dex constitutes a probable therapy for EBV-associated hematological malignancies.

  15. A constitutively active and uninhibitable caspase-3 zymogen efficiently induces apoptosis

    SciTech Connect

    Walters, Jad; Pop, Cristina; Scott, Fiona L.; Drag, Marcin; Swartz, Paul; Mattos, Carla; Salvesen, Guy S.; Clark, A.Clay

    2010-03-12

    The caspase-3 zymogen has essentially zero activity until it is cleaved by initiator caspases during apoptosis. However, a mutation of V266E in the dimer interface activates the protease in the absence of chain cleavage. We show that low concentrations of the pseudo-activated procaspase-3 kill mammalian cells rapidly and, importantly, this protein is not cleaved nor is it inhibited efficiently by the endogenous regulator XIAP (X-linked inhibitor of apoptosis). The 1.63 {angstrom} (1 {angstrom} = 0.1 nm) structure of the variant demonstrates that the mutation is accommodated at the dimer interface to generate an enzyme with substantially the same activity and specificity as wild-type caspase-3. Structural modelling predicts that the interface mutation prevents the intersubunit linker from binding in the dimer interface, allowing the active sites to form in the procaspase in the absence of cleavage. The direct activation of procaspase-3 through a conformational switch rather than by chain cleavage may lead to novel therapeutic strategies for inducing cell death.

  16. Cytoprotection against Hypoxic and/or MPP+ Injury: Effect of δ–Opioid Receptor Activation on Caspase 3

    PubMed Central

    Xu, Yuan; Zhi, Feng; Shao, Naiyuan; Wang, Rong; Yang, Yilin; Xia, Ying

    2016-01-01

    The pathological changes of Parkinson’s disease (PD) are, at least partially, associated with the dysregulation of PTEN-induced putative kinase 1 (PINK1) and caspase 3. Since hypoxic and neurotoxic insults are underlying causes of PD, and since δ-opioid receptor (DOR) is neuroprotective against hypoxic/ischemic insults, we sought to determine whether DOR activation could protect the cells from damage induced by hypoxia and/or MPP+ by regulating PINK1 and caspase 3 expressions. We exposed PC12 cells to either severe hypoxia (0.5%–1% O2) for 24–48 h or to MPP+ at different concentrations (0.5, 1, 2 mM) and then detected the levels of PINK1 and cleaved caspase 3. Both hypoxia and MPP+ reduced cell viability, progressively suppressed the expression of PINK1 and increased the cleaved caspase 3. DOR activation using UFP-512, effectively protected the cells from hypoxia and/or MPP+ induced injury, reversed the reduction in PINK1 protein and significantly attenuated the increase in the cleaved caspase 3. On the other hand, the application of DOR antagonist, naltrindole, greatly decreased cell viability and increased cleaved caspase 3. These findings suggest that DOR is cytoprotective against both hypoxia and MPP+ through the regulation of PINK1 and caspase 3 pathways. PMID:27517901

  17. Artemisinin induces A549 cell apoptosis dominantly via a reactive oxygen species-mediated amplification activation loop among caspase-9, -8 and -3.

    PubMed

    Gao, Weijie; Xiao, Fenglian; Wang, Xiaoping; Chen, Tongsheng

    2013-10-01

    This report is designed to explore the roles of caspase-8, -9 and -3 in artemisinin (ARTE)-induced apoptosis in non-small cell lung cancer cells (A549 cells). ARTE induced reactive oxygen species (ROS)-mediated apoptosis in dose- and time-dependent fashion. Although ARTE treatment did not induce Bid cleavage and significant loss of mitochondrial membrane potential, it induced release of Smac and AIF but not cytochrome c from mitochondria, and silencing of Bak but not Bax significantly prevented ARTE-induced cytotoxicity. Moreover, ARTE treatment induced ROS-dependent activation of caspase-9, -8 and -3. Of the utmost importance, silencing or inhibiting any one of caspase-8, -9 and -3 almost completely prevented ARTE-induced activation of all the three caspases and remarkably abrogated the cytotoxicity of ARTE, suggesting that ARTE triggered an amplification activation loop among caspase-9, -8 and -3. Collectively, our data demonstrate that ARTE induces a ROS-mediated amplification activation loop among caspase-9, -8 and -3 to dominantly mediate the apoptosis of A549 cells.

  18. Canine distemper virus induces apoptosis through caspase-3 and -8 activation in vero cells.

    PubMed

    Kajita, M; Katayama, H; Murata, T; Kai, C; Hori, M; Ozaki, H

    2006-08-01

    We investigated the signal-transduction pathway of canine distemper virus-Onderstepoort (CDV-Ond) vaccine strain-mediated apoptosis in Vero cells. Canine distemper virus-Onderstepoort at a multiplicity of infection (MOI) of 0.1 induced DNA fragmentation 48 h after infection. Immunofluorescence staining revealed that 57% +/- 4% of the CDV-N-protein-positive cells were terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive, and all TUNEL-positive cells were CDV-N-protein-positive, indicating that CDV-Ond induced apoptosis only in the infected cells. We also found that CDV-Ond infection induced activation of caspase-3 and caspase-8. In the semi-quantitative reverse transcription-polymerase chain reaction assay for apoptosis-related genes, the expression of mRNA of the death receptor, Fas, was also increased in CDV-Ond-infected cells. In contrast, the expressions of Bcl-2 and Bax, regulators for intrinsic apoptotic signaling through the mitochondria, did not change. These results suggest that CDV-Ond induced apoptosis by activating caspase-3, possibly through caspase-8 signaling rather than through p53/Bax-mediated, mitochondrial signaling in the infected cells.

  19. Effects of vitamin C on pathology and caspase-3 activity of kidneys with subacute endosulfan toxicity.

    PubMed

    Ozmen, O; Mor, F

    2015-01-01

    Endosulfan is an insecticide that is composed of two stereoisomers: α- and β- endosulfan in an approximate ratio of 70:30. Owing to its widespread use, poisoning of both humans and animals is possible. We examined the toxic effects of endosulfan on New Zealand white rabbit kidneys. Rabbit kidneys were examined histopathologically and caspase-3 activity was detected using immunohistochemistry. Animals were divided into four groups: Group 1 was given a sublethal dose of endosulfan in corn oil by oral gavage daily for 6 weeks, Group 2 was given endosulfan + vitamin C during the same period, Group 3 was given corn oil daily and vitamin C on alternate days, Group 4 was given only corn oil daily throughout the experiment. By the end of experimental period, the concentration of α-endosulfan was greater than the β-endosulfan concentration in the kidneys of both of endosulfan treated groups (Groups 1 and 2). Decreased accumulation of α- and β-endosulfan was observed in Group 2, possibly because of the antioxidant effect of the vitamin C. Histopathological examination revealed hemorrhages, tubule cell necrosis, glomerular infiltration, glomerulosclerosis and proteinaceous material in the tubules, and Bowman spaces in the kidneys of Group 1. Caspase-3 reaction was stronger in Group 1 than in the other groups. Apoptotic activity was most frequent in proximal tubule cells. Endosulfan is toxic to rabbit kidneys. Vitamin C treatment reduced the accumulation of endosulfan in kidneys and reduced its toxicity.

  20. Expression of procaspase 3 and activated caspase 3 and its relevance in hormone-responsive gallbladder carcinoma chemotherapy

    PubMed Central

    Tewari, Mallika; Sharma, Bechan; Shukla, Hari Shanker

    2013-01-01

    Background/Aims The higher incidence of gallbladder cancer (GBC) in females has been accredited to the involvement of hormones. The clinical implications of sex hormone receptors in GBC are well established. Cysteine proteases (such as caspase-3-9, etc.) are known to play a central role in the apoptotic pathway. Of these, the downstream enzyme caspase-3 is often activated in the apoptotic pathway. The aim of this work was to examine the status of apoptosis (which directly correlated with the level of active caspase-3) in hormone-responsive GBC. Methods We used 10 androgen receptor (AR)-positive, 14 estrogen receptor (ER)-positive, 12 HER/neu-positive, eight triple positive, and 10 triple negative malignant GBC human tissue samples. We isolated the total cellular protein from tumor tissues and carried out Western blotting using antipro-caspase-3 and anti-activated caspase-3 antibodies. Results ER and HER/neu-positive GBC exhibited high caspase-3 activity and low procaspase-3 activity, whereas AR-positive GBC showed no significant level of apoptosis. We also evaluated the apoptosis status of triple positive GBC and triple negative GBC, and found significant apoptosis in triple positive GBC. Conclusions The results indicate that ER and HER/neu-positive GBCs had active apoptosis, whereas AR-positive GBC was highly resistant to apoptosis. PMID:24009453

  1. Imaging of activated caspase-3 in living cell by fluorescence resonance energy transfer during photosensitization-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Wu, Yunxia; Xing, Da; Chen, Qun; Tang, Yonghong

    2005-01-01

    Photodynamic therapy (PDT) is a novel and promising cancer treatment that employs a combination of a photosensitizing chemical and visible light, induces apoptosis in cell, and activation of caspase-3 is considered to be the final step in many apoptosis pathways. The changes of caspase-3 activation in cell during TNFα- and photodynamic therapy-induced apoptosis was measured by fluorescence resonance energy transfer (FRET) analysis. FRET probe consisting of fusions of an enhanced cyan fluorescent protein (ECFP), Venus and a linker peptide containing the caspase-3 cleavage sequence DEVD was utilized. Therefore, activated caspase-3 cleaved the linker peptide of FRET probe and disrupted the FRET signal. Human lung adenocarcinoma cell line (ASTC-a-1) were stably transfected with the plasmid (ECFP-DEVD-Venus) and then were treated by TNF-α and PDT, respectively. Experimental results indicated that caspase-3 activation resulted in cleavage of linker peptide and subsequent disruption of the FRET signal during TNFα- and photodynamic therapy-induced apoptosis, and that the activation of caspase-3 induced by photodynamic therapy was faster than that induce by TNF-α. The study supports that using FRET technique and different recombinant substrates as FRET probes could be used to detect the process of PDT-induced apoptosis and provide a new means to investigate apoptotic mechanism of PDT.

  2. Association of active caspase 8 with the mitochondrial membrane during apoptosis: potential roles in cleaving BAP31 and caspase 3 and mediating mitochondrion-endoplasmic reticulum cross talk in etoposide-induced cell death.

    PubMed

    Chandra, Dhyan; Choy, Grace; Deng, Xiaodi; Bhatia, Bobby; Daniel, Peter; Tang, Dean G

    2004-08-01

    It was recently demonstrated that during apoptosis, active caspase 9 and caspase 3 rapidly accumulate in the mitochondrion-enriched membrane fraction (D. Chandra and D. G. Tang, J. Biol. Chem.278:17408-17420, 2003). We now show that active caspase 8 also becomes associated with the membranes in apoptosis caused by multiple stimuli. In MDA-MB231 breast cancer cells treated with etoposide (VP16), active caspase 8 is detected only in the membrane fraction, which contains both mitochondria and endoplasmic reticulum (ER), as revealed by fractionation studies. Immunofluorescence microscopy, however, shows that procaspase 8 and active caspase 8 predominantly colocalize with the mitochondria. Biochemical analysis demonstrates that both procaspase 8 and active caspase 8 are localized mainly on the outer mitochondrial membrane (OMM) as integral proteins. Functional analyses with dominant-negative mutants, small interfering RNAs, peptide inhibitors, and Fas-associated death domain (FADD)- and caspase 8-deficient Jurkat T cells establish that the mitochondrion-localized active caspase 8 results mainly from the FADD-dependent and tumor necrosis factor receptor-associated death domain-dependent mechanisms and that caspase 8 activation plays a causal role in VP16-induced caspase 3 activation and cell death. Finally, we present evidence that the OMM-localized active caspase 8 can activate cytosolic caspase 3 and ER-localized BAP31. Cleavage of BAP31 leads to the generation of ER- localized, proapoptotic BAP20, which may mediate mitochondrion-ER cross talk through a Ca(2+)-dependent mechanism.

  3. Real-time visualization of caspase-3 activation by fluorescence resonance energy transfer (FRET).

    PubMed

    Alasia, Silvia; Cocito, Carolina; Merighi, Adalberto; Lossi, Laura

    2015-01-01

    As apoptosis occurs via a complex signaling cascade that is tightly regulated at multiple cell points, different methods exist to evaluate the activity of the proteins involved in the intracellular apoptotic pathways and the phenotype of apoptotic neurons. Detention of the activity of the enzyme caspase-3, the key executioner caspase in programmed cell death, by laser scanning confocal fluorescence microscopy and the fluorescence resonance energy transfer technology is an alternative approach to classical standard techniques, such as Western blotting, activity assays, or histological techniques, and allows working with both fixed and living cells. This technique combined with the organotypic culture approach ex vivo represents a valid tool for the study of the mechanisms of neuronal survival /death and neuroprotection.

  4. Erythrocyte caspase-3 activation and oxidative imbalance in erythrocytes and in plasma of type 2 diabetic patients.

    PubMed

    Maellaro, Emilia; Leoncini, Silvia; Moretti, Daniele; Del Bello, Barbara; Tanganelli, Italo; De Felice, Claudio; Ciccoli, Lucia

    2013-08-01

    An increased oxidative stress and a decreased life span of erythrocytes (RBCs) are reported in patients with diabetes. Aim of this study was to assess in RBCs from patients with type 2 diabetes whether downstream effector mechanisms of apoptosis, such as activation of caspase-3, is operative, and whether an iron-related oxidative imbalance, occurring inside RBCs and in plasma, could be involved in caspase-3 activation. In 26 patients with type 2 diabetes and in 12 healthy subjects, oxidative stress was evaluated by means of different markers; non-protein-bound iron, methemoglobin and glutathione were determined in RBCs, and non-protein-bound iron was also determined in plasma. Erythrocyte caspase-3 activation was evaluated by an immunosorbent enzyme assay. Arterial hypertension, demographic and standard biochemical data were also evaluated. The results show, for the first time, that type 2 diabetic RBCs put into motion caspase-3 activation, which is significantly higher than in control RBCs. Such an effector mechanism of "eryptosis" was positively correlated to blood glucose levels and to the increased plasma NPBI level. Caspase-3 activation was also positively correlated to occurrence of arterial hypertension. The results suggest that an extracellular oxidative milieu can be responsible for erythrocyte caspase-3 activation in patients with type 2 diabetes. In turn, caspase-3 activation can be envisaged as a novel mechanism which, by impairing the maintenance of erythrocyte shape and function, might contribute to the shortened life span of RBCs from patients with type 2 diabetes and to hemorheological disorders observed in these patients.

  5. Imaging of caspase-3 activation by a novel FRET probe composed of CFP and DsRed

    NASA Astrophysics Data System (ADS)

    Lin, Juquiang; Zhang, Zhihong; Liu, Bifeng; Luo, Qingming

    2006-01-01

    Caspases-3 is a kind of cysteine proteases and plays an important role in cell apoptosis. It has been reported that caspase-3 activation can be real-time detected in living cells by fluorescence resonance energy transfer (FRET) between an enhanced cyan fluorescent protein and enhanced yellow fluorescent protein. However, the large spectral overlap between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) emission and the highly sensitivity to pH of YFP restricted their detecting sensitivity and reliability. CFP and red fluorescent protein (DsRed) possess superb wavelength separation of donor and acceptor emission spectra and DsRed was insensitive to pH, so the FRET probe composed of CFP and DsRed would be more suitable for imaging caspase-3 activation than the FRET probe composed of CFP and YFP. We constructed a vector that encoded CRS (caspase-3 recognition site) fused with CFP and DsRed (CFP-CRS-DsRed). In CFP-CRS-DsRed expressing tumor cells, FRET from CFP to DsRed could be detected. In the Clinical applications of cancer chemotherapy, cisplatin is one of the most broadly used drugs. It was already confirmed that caspase-3 was activated in HeLa cell treated by cisplatin. When the cells were stimulated with cisplatin, we found that the FRET efficient was remarkably decreased and then disappeared. It indicated that actived caspase-3 cleaved the CFP-CRS-DsRed fusion protein at CRS site. Thus, the FRET probe of CFP-CRS-DsRed could sensitively and reliably monitor caspase-3 activation in living cell. This probe will be highly useful for rapid-screening potential drugs that may target the apoptotic process and for imaging tumors in vivo.

  6. CasExpress reveals widespread and diverse patterns of cell survival of caspase-3 activation during development in vivo

    PubMed Central

    Ding, Austin Xun; Sun, Gongping; Argaw, Yewubdar G; Wong, Jessica O; Easwaran, Sreesankar; Montell, Denise J

    2016-01-01

    Caspase-3 carries out the executioner phase of apoptosis, however under special circumstances, cells can survive its activity. To document systematically where and when cells survive caspase-3 activation in vivo, we designed a system, CasExpress, which drives fluorescent protein expression, transiently or permanently, in cells that survive caspase-3 activation in Drosophila. We discovered widespread survival of caspase-3 activity. Distinct spatial and temporal patterns emerged in different tissues. Some cells activated caspase-3 during their normal development in every cell and in every animal without evidence of apoptosis. In other tissues, such as the brain, expression was sporadic both temporally and spatially and overlapped with periods of apoptosis. In adults, reporter expression was evident in a large fraction of cells in most tissues of every animal; however the precise patterns varied. Inhibition of caspase activity in wing discs reduced wing size demonstrating functional significance. The implications of these patterns are discussed. DOI: http://dx.doi.org/10.7554/eLife.10936.001 PMID:27058168

  7. DNA damage and activated caspase-3 expression in neurons and astrocytes: evidence for apoptosis in frontotemporal dementia.

    PubMed

    Su, J H; Nichol, K E; Sitch, T; Sheu, P; Chubb, C; Miller, B L; Tomaselli, K J; Kim, R C; Cotman, C W

    2000-05-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease which affects mainly the frontal and anterior temporal cortex. It is associated with neuronal loss, gliosis, and microvacuolation of lamina I to III in these brain regions. In previous studies we have described neurons with DNA damage in the absence of tangle formation and suggested this may result in tangle-independent mechanisms of neurodegeneration in the AD brain. In the present study, we sought to examine DNA fragmentation and activated caspase-3 expression in FTD brain where tangle formation is largely absent. The results demonstrate that numerous nuclei were TdT positive in all FTD brains examined. Activated caspase-3 immunoreactivity was detected in both neurons and astrocytes and was elevated in FTD cases as compared to control cases. A subset of activated caspase-3-positive cells were also TdT positive. In addition, the cell bodies of a subset of astrocytes showed enlarged, irregular shapes, and vacuolation and their processes appeared fragmented. These degenerating astrocytes were positive for activated caspase-3 and colocalized with robust TdT-labeled nuclei. These findings suggest that a subset of astrocytes exhibit degeneration and that DNA damage and activated caspase-3 may contribute to neuronal cell death and astrocyte degeneration in the FTD brain. Our results suggest that apoptosis may be a mechanism of neuronal cell death in FTD as well as in AD (228).

  8. Systemic administration of 3-nitropropionic acid points out a different role for active caspase-3 in neurons and astrocytes.

    PubMed

    Duran-Vilaregut, Joaquim; Del Valle, Jaume; Manich, Gemma; Junyent, Fèlix; Camins, Antoni; Pallàs, Mercè; Pelegrí, Carme; Vilaplana, Jordi

    2010-02-01

    The intraperitoneal administration of 3-nitropropionic acid, which is commonly used to induce toxicity models of Huntington's disease in experimental animals, produces severe brain injury in the lateral part of the striatum. We studied the presence of active caspase-3 in neurons and astrocytes from brains of rats treated with 3-nitropropionic acid following a subacute administration protocol. Active caspase-3 was almost absent in the core of the striatal lesion. However, it was expressed, albeit weakly, in the neurons present in the rim of the lesion. In cortex and non-injured striatal areas, and in the cortex and striatum of control animals, active caspase-3 staining was widely distributed and vivid, but localized in the cell bodies of astrocytes rather than in neurons. In treated animals, some of the active caspase-3 positive neurons localized in the rim of the lesion were also positive for TUNEL staining. This indicates the presence of a caspase-mediated apoptotic process. TUNEL was not present in control animals or in the astrocytes of treated animals. Thus, the presence of active caspase-3 in astrocytes may be merely constitutive.

  9. The caspase-3 cleavage product of the plasma membrane Ca2+-ATPase 4b is activated and appropriately targeted.

    PubMed

    Pászty, Katalin; Antalffy, Géza; Penheiter, Alan R; Homolya, László; Padányi, Rita; Iliás, Attila; Filoteo, Adelaida G; Penniston, John T; Enyedi, Agnes

    2005-11-01

    The calmodulin-activated transporter hPMCA4 (human plasma membrane Ca2+-ATPase isoform 4) is a target for cleavage by caspase-3 during apoptosis. We have demonstrated that caspase-3 generates a 120 kDa fragment of this pump which lacks the complete autoinhibitory sequence [Paszty, Verma, Padanyi, Filoteo, Penniston and Enyedi (2002) J. Biol. Chem. 277, 6822-6829]. In the present study we analysed further the characteristics of the fragment of hPMCA4b produced by caspase-3. We did this by overexpressing the caspase-3 cleavage product of hPMCA4b in COS-7 and MDCKII (Madin-Darby canine kidney II) cells. This technique made it possible to clearly define the properties of this fragment, and we showed that it is constitutively active, as it forms a phosphoenzyme intermediate and has high Ca2+ transport activity in the absence of calmodulin. When this fragment of hPMCA4b was stably expressed in MDCKII cell clones, it was targeted without degradation to the basolateral plasma membrane. In summary, our studies emphasize that the caspase-3 cleavage product of hPMCA4b is constitutively active, and that the C-terminus is not required for proper targeting of hPMCA4b to the plasma membrane. Also, for the first time, we have generated cell clones that stably express a constitutively active PMCA.

  10. Caspase-8 and Caspase-9 Functioned Differently at Different Stages of the Cyclic Stretch-Induced Apoptosis in Human Periodontal Ligament Cells

    PubMed Central

    Zhuang, Jiabao; Zhang, Fuqiang; Xu, Chun

    2016-01-01

    Background Human periodontal ligament (PDL) cells underwent apoptosis after mechanical stretch loading. However, the exact signalling pathway remains unknown. This study aimed to elucidate how the apoptotic caspases functioned in the cyclic stretch-induced apoptosis in human PDL cells. Materials and Methods In the present study, 20% cyclic stretch was selected to load the cells for 6 or 24 h. The following parameters were analyzed: apoptotic rates, the protein levels of caspase-3, -7, -8 and -9 and the activities of caspase-8 and -9. Subsequently, the influences of caspase-8 and caspase-9 inhibitors on the apoptotic rate and the protein level of the activated caspase-3 were assessed as well. Results The apoptotic rates increased in response to cyclic stretch, but the cells entered different apoptotic stages after 6 and 24 h stretches. Caspase-3, -7, -8 and -9 were all activated after stretch loading. The stretch-induced apoptosis and the protein level of the activated caspase-3 were inhibited after inhibiting both caspase-8 and caspase-9 in both 6 and 24 h stretched cells and after inhibiting caspase-9 in 24 h stretched cells. Conclusion Caspase-8 and -9 functioned differently at different apoptotic stages in human PDL cells after cyclic stretch. PMID:27942018

  11. Sinomenine induces apoptosis in RAW 264.7 cell-derived osteoclasts in vitro via caspase-3 activation

    PubMed Central

    He, Long-gang; Li, Xiang-lian; Zeng, Xiang-zhou; Duan, Heng; Wang, Song; Lei, Lin-sheng; Li, Xiao-juan; Liu, Shu-wen

    2014-01-01

    Aim: Sinomenine (SIN) is an alkaloid found in the roots and stems of Sinomenium acutum, which has been used to treat rheumatic arthritis in China and Japan. In this study we investigated the effects of SIN on osteoclast survival in vitro and the mechanisms of the actions. Methods: Mature osteoclasts were differentiated from murine monocyte/macrophage cell line RAW264.7 through incubation in the presence of receptor activator of NF-κB ligand (RANKL, 100 ng/mL) for 4 d. The cell viability was detected using the CCK-8 method. The survival and actin ring construction of the osteoclasts were scored using TRACP staining and phalloidin-FITC staining, respectively. The apoptosis of the osteoclasts was detected by DNA fragmentation and Hoechst 33258 staining, and the cell necrosis was indicated by LDH activity. The activation of caspase-3 in osteoclasts was measured using Western blotting and the caspase-3 activity colorimetric method. Results: SIN (0.25–2 mmol/L) inhibited the viability of mature osteoclasts in dose-dependent and time-dependent manners, but did not affect that of RAW264.7 cells. Consistently, SIN dose-dependently suppressed the survival of mature osteoclasts. The formation of actin ring, a marker associated with actively resorbing osteoclasts, was also impaired by the alkaloid. SIN (0.5 mmol/L) induced the apoptosis of mature osteoclasts, which was significantly attenuated in the presence of the caspase-3 inhibitor Ac-DEVD-CHO. SIN increased the cleavage of caspase-3 in mature osteoclasts in dose-dependent and time-dependent manners. Furthermore, SIN dose-dependently enhanced caspase-3 activity, which was blocked in the presence of Ac-DEVD-CHO. Conclusion: Sinomenine inhibits osteoclast survival in vitro through caspase-3-mediated apoptosis, thus it is a potential agent for treating excessive bone resorption diseases. PMID:24362325

  12. Complementary optical and nuclear imaging of caspase-3 activity using combined activatable and radio-labeled multimodality molecular probe

    NASA Astrophysics Data System (ADS)

    Lee, Hyeran; Akers, Walter J.; Cheney, Philip P.; Edwards, W. Barry; Liang, Kexian; Culver, Joseph P.; Achilefu, Samuel

    2009-07-01

    Based on the capability of modulating fluorescence intensity by specific molecular events, we report a new multimodal optical-nuclear molecular probe with complementary reporting strategies. The molecular probe (LS498) consists of tetraazacyclododecanetetraacetic acid (DOTA) for chelating a radionuclide, a near-infrared fluorescent dye, and an efficient quencher dye. The two dyes are separated by a cleavable peptide substrate for caspase-3, a diagnostic enzyme that is upregulated in dying cells. LS498 is radiolabeled with 64Cu, a radionuclide used in positron emission tomography. In the native form, LS498 fluorescence is quenched until caspase-3 cleavage of the peptide substrate. Enzyme kinetics assay shows that LS498 is readily cleaved by caspase-3, with excellent enzyme kinetic parameters kcat and KM of 0.55+/-0.01 s-1 and 1.12+/-0.06 μM, respectively. In mice, the initial fluorescence of LS498 is ten-fold less than control. Using radiolabeled 64Cu-LS498 in a controlled and localized in-vivo model of caspase-3 activation, a time-dependent five-fold NIR fluorescence enhancement is observed, but radioactivity remains identical in caspase-3 positive and negative controls. These results demonstrate the feasibility of using radionuclide imaging for localizing and quantifying the distribution of molecular probes and optical imaging for reporting the functional status of diagnostic enzymes.

  13. Propofol and magnesium attenuate isoflurane-induced caspase-3 activation via inhibiting mitochondrial permeability transition pore

    PubMed Central

    2012-01-01

    Background The inhalation anesthetic isoflurane has been shown to open the mitochondrial permeability transition pore (mPTP) and induce caspase activation and apoptosis, which may lead to learning and memory impairment. Cyclosporine A, a blocker of mPTP opening might attenuate the isoflurane-induced mPTP opening, lessening its ripple effects. Magnesium and anesthetic propofol are also mPTP blockers. We therefore set out to determine whether propofol and magnesium can attenuate the isoflurane-induced caspase activation and mPTP opening. Methods We investigated the effects of magnesium sulfate (Mg2+), propofol, and isoflurane on the opening of mPTP and caspase activation in H4 human neuroglioma cells stably transfected to express full-length human amyloid precursor protein (APP) (H4 APP cells) and in six day-old wild-type mice, employing Western blot analysis and flowcytometry. Results Here we show that Mg2+ and propofol attenuated the isoflurane-induced caspase-3 activation in H4-APP cells and mouse brain tissue. Moreover, Mg2+ and propofol, the blockers of mPTP opening, mitigated the isoflurane-induced mPTP opening in the H4-APP cells. Conclusion These data illustrate that Mg2+ and propofol may ameliorate the isoflurane-induced neurotoxicity by inhibiting its mitochondrial dysfunction. Pending further studies, these findings may suggest the use of Mg2+ and propofol in preventing and treating anesthesia neurotoxicity. PMID:22901676

  14. 5-Fluorouracil-induced apoptosis in colorectal cancer cells is caspase-9-dependent and mediated by activation of protein kinase C-δ

    PubMed Central

    MHAIDAT, NIZAR M.; BOUKLIHACENE, MOHAMMED; THORNE, RICK F.

    2014-01-01

    Elucidation of the molecular mechanisms by which 5-fluorouracil (5-FU) induces apoptosis is required in order to understand the resistance of colorectal cancer (CRC) cells to 5-FU. In the current study, 5-FU-induced apoptosis was assessed using the propidium iodide method. Involvement of protein kinase C (PKC) was assessed by evaluating the extent of their activation in CRC, following treatment with 5-FU, using biochemical inhibitors and western blot analysis. The results revealed that 5-FU induces varying degrees of apoptosis in CRC cells; HCT116 cells were identified to be the most sensitive cells and SW480 were the least sensitive. In addition, 5-FU-induced apoptosis was caspase-dependent as it appeared to be initiated by caspase-9. Furthermore, PKCɛ was marginally expressed in CRC cells and no changes were observed in the levels of cleavage or phosphorylation following treatment with 5-FU. The treatment of HCT116 cells with 5-FU increased the expression, phosphorylation and cleavage of PKCδ. The inhibition of PKCδ was found to significantly inhibit 5-FU-induced apoptosis. These results indicated that 5-FU induces apoptosis in CRC by the activation of PKCδ and caspase-9. In addition, the levels of PKCδ activation may determine the sensitivity of CRC to 5-FU. PMID:25013487

  15. Cytoplasmic myosin exposed apoptotic cells appear with caspase-3 activation and enhance CLL cell viability

    PubMed Central

    Cui, Xiaoxuan; Zhang, Lu; Magli, Amanda R.; Catera, Rosa; Yan, Xiao-Jie; Griffin, Daniel O.; Rothstein, Thomas L.; Barrientos, Jacqueline; Kolitz, Jonathan E.; Allen, Steven L.; Rai, Kanti R.; Chiorazzi, Nicholas; Chu, Charles C.

    2015-01-01

    The degree of chronic lymphocytic leukemia (CLL) B-cell antigen receptor (BCR) binding to myosin exposed apoptotic cells (MEACs) correlates with worse patient outcomes, suggesting a link to disease activity. Therefore, we studied MEAC formation and the effects of MEAC binding on CLL cells. In cell line studies, both intrinsic (spontaneous or camptothecin-induced) and extrinsic (FasL- or anti-Fas-induced) apoptosis created a high percent of MEACs over time in a process associated with caspase-3 activation, leading to cytoplasmic myosin cleavage and trafficking to cell membranes. The involvement of common apoptosis pathways suggests that most cells can produce MEACs and indeed CLL cells themselves form MEACs. Consistent with the idea that MEAC formation may be a signal to remove dying cells, we found that natural IgM antibodies bind to MEACs. Functionally, co-culture of MEACs with CLL cells, regardless of immunoglobulin heavy chain variable region gene mutation status, improved leukemic cell viability. Based on inhibitor studies, this improved viability involved BCR signaling molecules. These results support the hypothesis that stimulation of CLL cells with antigen, such as those on MEACs, promotes CLL cell viability, which in turn could lead to progression to worse disease. PMID:26220042

  16. Reactive Carbonyl Species Activate Caspase-3-Like Protease to Initiate Programmed Cell Death in Plants.

    PubMed

    Biswas, Md Sanaullah; Mano, Jun'ichi

    2016-07-01

    Reactive oxygen species (ROS)-triggered programmed cell death (PCD) is a typical plant response to biotic and abiotic stressors. We have recently shown that lipid peroxide-derived reactive carbonyl species (RCS), downstream products of ROS, mediate oxidative signal to initiate PCD. Here we investigated the mechanism by which RCS initiate PCD. Tobacco Bright Yellow-2 cultured cells were treated with acrolein, one of the most potent RCS. Acrolein at 0.2 mM caused PCD in 5 h (i.e. lethal), but at 0.1 mM it did not (sublethal). Specifically, these two doses caused critically different effects on the cells. Both lethal and sublethal doses of acrolein exhausted the cellular glutathione pool in 30 min, while the lethal dose only caused a significant ascorbate decrease and ROS increase in 1-2 h. Prior to such redox changes, we found that acrolein caused significant increases in the activities of caspase-1-like protease (C1LP) and caspase-3-like protease (C3LP), the proteases which trigger PCD. The lethal dose of acrolein increased the C3LP activity 2-fold more than did the sublethal dose. In contrast, C1LP activity increments caused by the two doses were not different. Acrolein and 4-hydroxy-(E)-2-nonenal, another RCS, activated both proteases in a cell-free extract from untreated cells. H2O2 at 1 mM added to the cells increased C1LP and C3LP activities and caused PCD, and the RCS scavenger carnosine suppressed their activation and PCD. However, H2O2 did not activate the proteases in a cell-free extract. Thus the activation of caspase-like proteases, particularly C3LP, by RCS is an initial biochemical event in oxidative signal-stimulated PCD in plants.

  17. Methylglyoxal reduces mitochondrial potential and activates Bax and caspase-3 in neurons: Implications for Alzheimer's disease.

    PubMed

    Tajes, Marta; Eraso-Pichot, Abel; Rubio-Moscardó, Fanny; Guivernau, Biuse; Bosch-Morató, Mònica; Valls-Comamala, Victòria; Muñoz, Francisco J

    2014-09-19

    Alzheimer's disease (AD) is characterized by the oxidative stress generated from amyloid β-peptide (Aβ) aggregates. It produces protein nitrotyrosination, after the reaction with nitric oxide to form peroxynitrite, being triosephosphate isomerase (TPI) one of the most affected proteins. TPI is a glycolytic enzyme that catalyzes the interconversion between glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP). Methylglyoxal (MG) is a by-product of TPI activity whose production is triggered when TPI is nitrotyrosinated. MG is harmful to cells because it glycates proteins. Here we found protein glycation when human neuroblastoma cells were treated with Aβ. Moreover glycation was also observed when neuroblastoma cells overexpressed mutated TPI where Tyr165 or Tyr209, the two tyrosines close to the catalytic center, were changed by Phe in order to mimic the effect of nitrotyrosination. The pathological relevance of these findings was studied by challenging cells with Aβ oligomers and MG. A significant decrease in mitochondrial transmembrane potential, one of the first apoptotic events, was obtained. Therefore, increasing concentrations of MG were assayed searching for MG effect in neuronal apoptosis. We found a decrease of the protective Bcl2 and an increase of the proapoptotic caspase-3 and Bax levels. Our results suggest that MG is triggering apoptosis in neurons and it would play a key role in AD neurodegeneration.

  18. Isolation and characterization of a Solanum tuberosum subtilisin-like protein with caspase-3 activity (StSBTc-3).

    PubMed

    Fernández, María Belén; Daleo, Gustavo Raúl; Guevara, María Gabriela

    2015-01-01

    Plant proteases with caspase-like enzymatic activity have been widely studied during the last decade. Previously, we have reported the presence and induction of caspase-3 like activity in the apoplast of potato leaves during Solanum tuberosum- Phytophthora infestans interaction. In this work we have purified and identified a potato extracellular protease with caspase-3 like enzymatic activity from potato leaves infected with P. infestans. Results obtained from the size exclusion chromatography show that the isolated protease is a monomeric enzyme with an estimated molecular weight of 70 kDa approximately. Purified protease was analyzed by MALDI-TOF MS, showing a 100% of sequence identity with the deduced amino acid sequence of a putative subtilisin-like protease from S. tuberosum (Solgenomics protein ID: PGSC0003DMP400018521). For this reason the isolated protease was named as StSBTc-3. This report constitutes the first evidence of isolation and identification of a plant subtilisin-like protease with caspase-3 like enzymatic activity. In order to elucidate the possible function of StSBTc-3 during plant pathogen interaction, we demonstrate that like animal caspase-3, StSBTc-3 is able to produce in vitro cytoplasm shrinkage in plant cells and to induce plant cell death. This result suggest that, StSBTc-3 could exert a caspase executer function during potato- P. infestans interaction, resulting in the restriction of the pathogen spread during plant-pathogen interaction.

  19. Subcellular localization of caspase-3 activation correlates with changes in apoptotic morphology in MOLT-4 leukemia cells exposed to X-ray irradiation.

    PubMed

    Feng, Yongdong; Hu, Junbo; Xie, Daxin; Qin, Jichao; Zhong, Yisheng; Li, Xiaolan; Xiao, Wei; Wu, Jianhong; Tao, Deding; Zhang, Manchao; Zhu, Yunfeng; Song, Yuping; Reed, Eddie; Li, Qingdi Q; Gong, Jianping

    2005-09-01

    Caspase-3 is a critical effector caspase for apoptosis, which cleaves proteins, including cytoskeletal and associated proteins, kinases, and members of the Bcl-2 family of apoptosis-related proteins. This leads to changes in apoptotic morphology, such as membrane externalization and cytoplasm and nuclear condensation. It has been reported that pro-caspase-3 is activated in the cytosol. However, it remains obscure how caspase-3 activation correlates to serial changes in cell morphology during apoptosis. The current study was therefore undertaken to assess the relationship between caspase-3 activation and its subcellular localization and alterations in apoptotic morphology in MOLT-4 human leukemia cells exposed to X-ray irradiation. Fluorescence labeled inhibitor of caspases (FLICA) was used to detect caspase-3 activity in apoptotic cells in this project; cell morphology and caspase-3 sub-localization were determined by confocal microscopy. Our data showed that MOLT-4 cells presented typical morphological changes in apoptosis, such as membrane reversion, DNA fragmentation, and formation of apoptotic cell bodies following 10 Gray (Gy) of X-ray irradiation. Caspase-3 was activated 2 h after X-ray irradiation, and its activity increased markedly after 4-6-h exposure. Membrane reversion in MOLT-4 leukemia cells was detected by Annexin V assay at 4 h following X-ray irradiation, 2 h after the elevated caspase-3 activity was measured. Cytologically, activation of caspase-3 was first observed close to the inside surface of the cellular membrane, then transferred to the cytoplasm, and finally translocated to the nuclear region. We conclude that caspase-3 is activated in MOLT-4 cells following exposure to X-rays, and that the enhanced caspase-3 activity and its sub-localization shifting is correlated to changes in apoptotic morphology. The spatial shift of activated caspase-3 in X-ray-induced apoptotic MOLT-4 leukemia cells is a process of crucial importance for apoptosis.

  20. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro

    PubMed Central

    Xing, Fuqiang; Zhan, Qiuqiang; He, Yiduo; Cui, Jiesheng; He, Sailing; Wang, Guanyu

    2016-01-01

    Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR) at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS) generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant). Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor) and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis. PMID:27689798

  1. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro.

    PubMed

    Xing, Fuqiang; Zhan, Qiuqiang; He, Yiduo; Cui, Jiesheng; He, Sailing; Wang, Guanyu

    Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR) at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS) generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant). Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor) and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis.

  2. The structure of the BIR3 domain of cIAP1 in complex with the N-terminal peptides of SMAC and caspase-9

    SciTech Connect

    Kulathila, Raviraj; Vash, Brian; Sage, David; Cornell-Kennon, Susan; Wright, Kirk; Koehn, James; Stams, Travis; Clark, Kirk; Price, Allen ); )

    2009-06-24

    The inhibitor of apoptosis protein (IAP) family of molecules inhibit apoptosis through the suppression of caspase activity. It is known that the XIAP protein regulates both caspase-3 and caspase-9 through direct protein-protein interactions. Specifically, the BIR3 domain of XIAP binds to caspase-9 via a 'hotspot' interaction in which the N-terminal residues of caspase-9 bind in a shallow groove on the surface of XIAP. This interaction is regulated via SMAC, the N-terminus of which binds in the same groove, thus displacing caspase-9. The mechanism of suppression of apoptosis by cIAP1 is less clear. The structure of the BIR3 domain of cIAP1 (cIAP1-BIR3) in complex with N-terminal peptides from both SMAC and caspase-9 has been determined. The binding constants of these peptides to cIAP1-BIR3 have also been determined using the surface plasmon resonance technique. The structures show that the peptides interact with cIAP1 in the same way that they interact with XIAP: both peptides bind in a similar shallow groove in the BIR3 surface, anchored at the N-terminus by a charge-stabilized hydrogen bond. The binding data show that the SMAC and caspase-9 peptides bind with comparable affinities (85 and 48 nM, respectively).

  3. Caspase 3 inactivates biologically active full length interleukin-33 as a classical cytokine but does not prohibit nuclear translocation

    SciTech Connect

    Ali, Shafaqat; Nguyen, Dang Quan; Falk, Werner; Martin, Michael Uwe

    2010-01-15

    IL-33 is a member of the IL-1 family of cytokines with dual function which either activates cells via the IL-33 receptor in a paracrine fashion or translocates to the nucleus to regulate gene transcription in an intracrine manner. We show that full length murine IL-33 is active as a cytokine and that it is not processed by caspase 1 to mature IL-33 but instead cleaved by caspase 3 at aa175 to yield two products which are both unable to bind to the IL-33 receptor. Full length IL-33 and its N-terminal caspase 3 breakdown product, however, translocate to the nucleus. Finally, bioactive IL-33 is not released by cells constitutively or after activation. This suggests that IL-33 is not a classical cytokine but exerts its function in the nucleus of intact cells and only activates others cells via its receptor as an alarm mediator after destruction of the producing cell.

  4. Aeromonas hydrophila induced head kidney macrophage apoptosis in Clarias batrachus involves the activation of calpain and is caspase-3 mediated.

    PubMed

    Banerjee, Chaitali; Goswami, Ramansu; Verma, Gaurav; Datta, Malabika; Mazumder, Shibnath

    2012-07-01

    The mechanism of macrophage cytotoxicity induced by Aeromonas hydrophila is yet unresolved. We observed A. hydrophila induces Head Kidney Macrophage (HKM) apoptosis in Clarias batrachus, as evident from Hoechst 33342 and AnnexinV-Propidium Iodide staining and presence of oligonucleosomal DNA ladder. Initiation of apoptosis required the bacteria to be alive, be actively phagocytosed into HKM and was dependent on host proteins. Elevated cytosolic calcium and consequent calpain activity that declined following pre-incubation with EGTA, verapamil and nifedipine implicates the role of calcium influx through voltage gated calcium channels and calpain in A. hydrophila-induced HKM apoptosis. Though, calpain-1 and -2 were involved, calpain-2 appeared to be more important in the process. EGTA, verapamil, nifedipine and calpain-2 inhibitor reduced caspase-3 activity and apoptosis. We conclude that A. hydrophila alters cytosolic calcium homeostasis initiating the activation of calpains, more specifically calpain-2, which leads to caspase-3 mediated HKM apoptosis in C. batrachus.

  5. Maintenance of caspase-3 proenzyme dormancy by an intrinsic “safety catch” regulatory tripeptide

    PubMed Central

    Roy, Sophie; Bayly, Christopher I.; Gareau, Yves; Houtzager, Vicky M.; Kargman, Stacia; Keen, Sabina L. C.; Rowland, Kathleen; Seiden, Isolde M.; Thornberry, Nancy A.; Nicholson, Donald W.

    2001-01-01

    Caspase-3 is synthesized as a dormant proenzyme and is maintained in an inactive conformation by an Asp-Asp-Asp “safety-catch” regulatory tripeptide contained within a flexible loop near the large-subunit/small-subunit junction. Removal of this “safety catch” results in substantially enhanced autocatalytic maturation as well as increased vulnerability to proteolytic activation by upstream proteases in the apoptotic pathway such as caspase-9 and granzyme B. The safety catch functions through multiple ionic interactions that are disrupted by acidification, which occurs in the cytosol of cells during the early stages of apoptosis. We propose that the caspase-3 safety catch is a key regulatory checkpoint in the apoptotic cascade that regulates terminal events in the caspase cascade by modulating the triggering of caspase-3 activation. PMID:11353841

  6. Apoptosis in Heart Failure: Release of Cytochrome c from Mitochondria and Activation of Caspase-3 in Human Cardiomyopathy

    NASA Astrophysics Data System (ADS)

    Narula, Jagat; Pandey, Pramod; Arbustini, Eloisa; Haider, Nezam; Narula, Navneet; Kolodgie, Frank D.; dal Bello, Barbara; Semigran, Marc J.; Bielsa-Masdeu, Anna; Dec, G. William; Israels, Sara; Ballester, Manel; Virmani, Renu; Saxena, Satya; Kharbanda, Surender

    1999-07-01

    Apoptosis has been shown to contribute to loss of cardiomyocytes in cardiomyopathy, progressive decline in left ventricular function, and congestive heart failure. Because the molecular mechanisms involved in apoptosis of cardiocytes are not completely understood, we studied the biochemical and ultrastructural characteristics of upstream regulators of apoptosis in hearts explanted from patients undergoing transplantation. Sixteen explanted hearts from patients undergoing heart transplantation were studied by electron microscopy or immunoblotting to detect release of mitochondrial cytochrome c and activation of caspase-3. The hearts explanted from five victims of motor vehicle accidents or myocardial ventricular tissues from three donor hearts were used as controls. Evidence of apoptosis was observed only in endstage cardiomyopathy. There was significant accumulation of cytochrome c in the cytosol, over myofibrils, and near intercalated discs of cardiomyocytes in failing hearts. The release of mitochondrial cytochrome c was associated with activation of caspase-3 and cleavage of its substrate protein kinase C δ but not poly(ADP-ribose) polymerase. By contrast, there was no apparent accumulation of cytosolic cytochrome c or caspase-3 activation in the hearts used as controls. The present study provides in vivo evidence of cytochrome c-dependent activation of cysteine proteases in human cardiomyopathy. Activation of proteases supports the phenomenon of apoptosis in myopathic process. Because loss of myocytes contributes to myocardial dysfunction and is a predictor of adverse outcomes in the patients with congestive heart failure, the present demonstration of an activated apoptotic cascade in cardiomyopathy could provide the basis for novel interventional strategies.

  7. Temporal and spatial distribution of activated caspase-3 after subdural kainic acid infusions in rat spinal cord.

    PubMed

    Nottingham, Stephanie A; Springer, Joe E

    2003-09-29

    The molecular events initiating apoptosis following traumatic spinal cord injury (SCI) remain poorly understood. Soon after injury, the spinal cord is exposed to numerous secondary insults, including elevated levels of glutamate, that contribute to cell dysfunction and death. In the present study, we attempted to mimic the actions of glutamate by subdural infusion of the selective glutamate receptor agonist, kainic acid, into the uninjured rat spinal cord. Immunohistochemical colocalization studies revealed that activated caspase-3 was present in ventral horn motor neurons at 24 hours, but not 4 hours or 96 hours, following kainic acid treatment. However, at no time point examined was there evidence of significant neuronal loss. Kainic acid resulted in caspase-3 activation in several glial cell populations at all time points examined, with the most pronounced effect occurring at 24 hours following infusion. In particular, caspase-3 activation was observed in a significant number of oligodendroglia in the dorsal and ventral funiculi, and there was a pronounced loss of oligodendroglia at 96 hours following treatment. The results of these experiments indicate a role for glutamate as a mediator of oligodendroglial apoptosis in traumatic SCI. In addition, understanding the apoptotic signaling events activated by glutamate will be important for developing therapies targeting this cell death process.

  8. Diatom-derived oxylipins induce cell death in sea urchin embryos activating caspase-8 and caspase 3/7.

    PubMed

    Ruocco, Nadia; Varrella, Stefano; Romano, Giovanna; Ianora, Adrianna; Bentley, Matt G; Somma, Domenico; Leonardi, Antonio; Mellone, Stefano; Zuppa, Antonio; Costantini, Maria

    2016-07-01

    Diatoms are an important class of unicellular algae that produce bioactive secondary metabolites with cytotoxic activity collectively termed oxylipins, including polyunsaturated aldehydes (PUAs), hydroxyacids (HEPEs), oxo-acids and epoxyalcohols. Previous results showed that at higher concentrations, the PUA decadienal induced apoptosis on copepods and sea urchin embryos via caspase-3 activation; at lower concentrations decadienal affected the expression levels of the caspase-8 gene in embryos of the sea urchin Paracentrotus lividus. In the present work, we studied the effects of other common oxylipins produced by diatoms: two PUAs (heptadienal and octadienal) and four hydroxyacids (5-, 9- 11- and 15-HEPE) on P. lividus cell death and caspase activities. Our results showed that (i) at higher concentrations PUAs and HEPEs induced apoptosis in sea urchin embryos, detected by microscopic observation and through the activation of caspase-3/7 and caspase-8 measured by luminescent assays; (ii) at low concentrations, PUAs and HEPEs affected the expression levels of caspase-8 and caspase-3/7 (isolated for the first time here in P. lividus) genes, detected by Real Time qPCR. These findings have interesting implications from the ecological point of view, given the importance of diatom blooms in nutrient-rich aquatic environments.

  9. Analysis of caspase3 activation in ChanSu-induced apoptosis of ASTC-a-1 cells by fluorescence techniques

    NASA Astrophysics Data System (ADS)

    Sun, Lei; Chen, Tongsheng; Wang, Longxiang; Wang, Huiying

    2008-02-01

    ChanSu(CS), a traditional Chinese medicine, is composed of many chemical compoments. It is isolated from the dried white secretion of the auricular and skin glands of toads, and it has been widely used for treating the heart diseases and other systemic illnesses. However, it is difficult to judge antitumor effect of agents derived from ChanSu and the underlying mechanism of ChanSu inducing cell apoptosis is still unclear. This report was performed to explore the inhibitory effect and mechanism of ChanSu on human lung adenocarcinoma cells (ASTC-a-1). Fluorescence emission spectra and fluorescence resonance energy transfer (FRET) were used to study the caspase-3 activation during the ChanSu-induced human lung adenocarcinoma (ASTC-a-1) cell apoptosis. CCK-8 was used to assay the inhibition of ChanSu on the cell viability. The cells expressing stably with SCAT3 was used to examine if caspase-3 was activated by ChanSu using acceptor photobleaching technique. Our data showed that treatment of ASTC-a-1 cell with ChanSu resulted in the inhibition of viability and induction of apoptosis in a dose-dependent manner and the SCAT3 was almost cleaved 24 h after ChanSu treatment, implying that ChanSu induced cell apoptosis via a caspase-3-dependent death pathway. Our findings extend the knowledge about the cellular signaling mechanisms mediating ChanSu-induced apoptosis.

  10. Mitochondria-cytochrome C-caspase-9 cascade mediates isorhamnetin-induced apoptosis.

    PubMed

    Lee, Hyo-Jung; Lee, Hyo-Jeong; Lee, Eun-Ok; Ko, Seong-Gyu; Bae, Hyun-Soo; Kim, Cheol-Ho; Ahn, Kyoo-Seok; Lu, Junxuan; Kim, Sung-Hoon

    2008-11-08

    Isorhamnetin is a flavanoid present in plants of the Polygonaceae family and is also an immediate metabolite of quercetin in mammals. Since the plasma level of isorhamnetin is maintained longer than quercetin, isorhamnetin may be a key metabolite to mediate the anti-tumor effect of quercetin. In the present study, we investigated the apoptotic mechanism of isorhamnetin in Lewis lung cancer (LLC) cells in vitro and established its in vivo anti-cancer efficacy. In cell culture, isorhamnetin significantly increased DNA fragmentation, and TUNEL positive apoptotic bodies and sub-G(1) apoptotic population in time- and dose-dependent manners. Western blot analyses revealed increased cleavage of caspase-3, and caspase-9 and PARP and increased cytosolic cytochrome C in isorhamnetin-treated cells. These events were accompanied by a reduced mitochondrial potential. Apoptosis was blocked by a general caspase inhibitor or the specific inhibitor of caspase-3 or -9. These in vitro results support mitochondria-dependent caspase activation to mediate isorhamnetin-induced apoptosis. Furthermore, an animal study revealed for the first time that isorhamnetin given by i.p. injection at a dose that is at least one order of magnitude lower than quercetin significantly suppressed the weights of tumors excised from LLC bearing mice. The in vivo anti-tumor efficacy was accompanied by increased TUNEL-positive and cleaved-caspase-3-positive tumor cells. Our data therefore support isorhamnetin as an active anti-cancer metabolite of quercetin in part through caspase-mediated apoptosis.

  11. Activation of GSK-3β and Caspase-3 Occurs in Nigral Dopamine Neurons during the Development of Apoptosis Activated by a Striatal Injection of 6-Hydroxydopamine

    PubMed Central

    Hernandez-Baltazar, Daniel; Mendoza-Garrido, Maria E.; Martinez-Fong, Daniel

    2013-01-01

    The 6-Hydroxydopamine (6-OHDA) rat model of Parkinson's disease is essential for a better understanding of the pathological processes underlying the human disease and for the evaluation of promising therapeutic interventions. This work evaluated whether a single striatal injection of 6-OHDA causes progressive apoptosis of dopamine (DA) neurons and activation of glycogen synthase kinase 3β (GSK-3β) and caspase-3 in the substantia nigra compacta (SNc). The loss of DA neurons was shown by three neuron markers; tyrosine hydroxylase (TH), NeuN, and β-III tubulin. Apoptosis activation was determined using Apostain and immunostaining against cleaved caspase-3 and GSK-3β pY216. We also explored the possibility that cleaved caspase-3 is produced by microglia and astrocytes. Our results showed that the 6-OHDA caused loss of nigral TH(+) cells, progressing mainly in rostrocaudal and lateromedial directions. In the neostriatum, a severe loss of TH(+) terminals occurred from day 3 after lesion. The disappearance of TH(+) cells was associated with a decrease in NeuN and β-III tubulin immunoreactivity and an increase in Apostain, cleaved caspase-3, and GSK-3β pY216 in the SNc. Apostain immunoreactivity was observed from days 3 to 21 postlesion. Increased levels of caspase-3 immunoreactivity in TH(+) cells were detected from days 1 to 15, and the levels then decreased to day 30 postlesion. The cleaved caspase-3 also collocated with microglia and astrocytes indicating its participation in glial activation. Our results suggest that caspase-3 and GSK-3β pY216 activation might participate in the DA cell death and that the active caspase-3 might also participate in the neuroinflammation caused by the striatal 6-OHDA injection. PMID:23940672

  12. Melatonin Suppresses Toll Like Receptor 4-Dependent Caspase-3 Signaling Activation Coupled with Reduced Production of Proinflammatory Mediators in Hypoxic Microglia

    PubMed Central

    Yao, Linli; Lu, Pengfei; Ling, Eng-Ang

    2016-01-01

    Microglia activation and associated inflammatory response play pivotal roles in the pathogenesis of different neurodegenerative diseases including neonatal hypoxic brain injury. Here we show that caspase3 expression was upregulated in activated microglia after hypoxic exposure, and remarkably, the cell viability remained unaffected alluding to the possibility of a non-apoptotic role of caspase3 in activated microglia. Chemical inhibition of caspase3 suppressed microglia activation as evident by an obvious reduction in expression of proinflammatory mediators and NF-κB signaling activation. Hypoxia induced caspase3 activation was TLR4 dependent as supported by the fact that caspase3 activation was hindered in cells with TLR4 knockdown. Interestingly, melatonin treatment significantly suppressed caspase3 activation. More importantly, melatonin also inhibited the increase in TLR4 protein and mRNA expression in hypoxic microglia. Inhibition of TLR4 expression by melatonin was also found in microglia of postnatal rats subjected to hypoxic exposure. Taken together, it is concluded that melatonin could inhibit TLR4 expression in hypoxic microglia followed by suppression of caspase3 activation leading to decrease in production of proinflammatory mediators. PMID:27812200

  13. Fluoride-containing podophyllum derivatives exhibit antitumor activities through enhancing mitochondrial apoptosis pathway by increasing the expression of caspase-9 in HeLa cells

    PubMed Central

    Zhao, Wei; Yang, Yong; Zhang, Ya-Xuan; Zhou, Chen; Li, Hong-Mei; Tang, Ya-Ling; Liang, Xin-Hua; Chen, Tao; Tang, Ya-Jie

    2015-01-01

    This work aims to provide sampling of halogen-containing aniline podophyllum derivatives and their mode of action with an in-depth comparison among fluorine, chloride and bromide for clarifying the important role and impact of fluorine substitution on enhancing antitumor activity, with an emphasis on the development of drug rational design for antitumor drug. The tumor cytotoxicity of fluoride-containing aniline podophyllum derivatives were in general improved by 10–100 times than those of the chloride and bromide-containing aniline podophyllum derivatives since fluoride could not only strongly solvated in protic solvents but also forms tight ion pairs in most aprotic solvents. When compared with chloride and bromide, the higher electronegativity fluoride substituted derivatives significantly enhanced mitochondrial apoptosis pathway by remarkably increasing the expression of caspase-9 in HeLa cells. The current findings would stimulate an enormous amount of research directed toward exploiting novel leading compounds based on podophyllum derivatives, especially for the fluoride-substituted structures with promising antitumor activity. PMID:26608216

  14. p53 regulates cyclophosphamide teratogenesis by controlling caspases 3, 8, 9 activation and NF-kappaB DNA binding.

    PubMed

    Pekar, Olga; Molotski, Nataly; Savion, Shoshana; Fein, Amos; Toder, Vladimir; Torchinsky, Arkady

    2007-08-01

    The tumor suppressor protein p53 regulates the sensitivity of embryos to such human teratogens as ionizing radiation, diabetes, and cytostatics. Yet, the molecular mechanisms whereby it fulfills this function remain undefined. We used p53 heterozygous (p53(+/-)) female mice mated with p53(+/-) males and then exposed to cyclophosphamide (CP) to test whether caspases 3, 8, and 9 and the transcription factor nuclear factor (NF)-kappaB may serve as p53 targets. Mice were exposed to CP on day 12 of pregnancy and killed on days 15 and 18 of pregnancy to evaluate CP-induced teratogenic effect. The brain and limbs of embryos harvested 24 h after CP treatment were used to evaluate NF-kappaB (p65) DNA-binding activity by an ELISA-based method, the activity of the caspases by appropriate colorimetric kits, apoptosis, and cell proliferation by TUNEL, and 5'-bromo-2'-deoxyuridine incorporation respectively. We observed that the activation of caspases 3, 8, and 9 and the suppression of NF-kappaB DNA binding following CP-induced teratogenic insult took place only in teratologically sensitive organs of p53(+/+) but not p53(-/-) embryos. CP-induced apoptosis and suppression of cell proliferation were also more intensive in the former, and they exhibited a higher incidence of structural anomalies, such as open eyes, digit, limb, and tail anomalies. The analysis of the correlations between the p53 embryonic genotype, the activity of the tested molecules, and the CP-induced dysmorphic events at the cellular and organ level suggests caspases 3, 8, and 9 and NF-kappaB as components of p53-targeting mechanisms in embryos exposed to the teratogen.

  15. Activation and cleavage of SASH1 by caspase-3 mediates an apoptotic response.

    PubMed

    Burgess, Joshua T; Bolderson, Emma; Adams, Mark N; Baird, Anne-Marie; Zhang, Shu-Dong; Gately, Kathy A; Umezawa, Kazuo; O'Byrne, Kenneth J; Richard, Derek J

    2016-11-10

    Apoptosis is a highly regulated cellular process that functions to remove undesired cells from multicellular organisms. This pathway is often disrupted in cancer, providing tumours with a mechanism to avoid cell death and promote growth and survival. The putative tumour suppressor, SASH1 (SAM and SH3 domain containing protein 1), has been previously implicated in the regulation of apoptosis; however, the molecular role of SASH1 in this process is still unclear. In this study, we demonstrate that SASH1 is cleaved by caspase-3 following UVC-induced apoptosis. Proteolysis of SASH1 enables the C-terminal fragment to translocate from the cytoplasm to the nucleus where it associates with chromatin. The overexpression of wild-type SASH1 or a cleaved form of SASH1 representing amino acids 231-1247 leads to an increase in apoptosis. Conversely, mutation of the SASH1 cleavage site inhibits nuclear translocation and prevents the initiation of apoptosis. SASH1 cleavage is also required for the efficient translocation of the transcription factor nuclear factor-κB (NF-κB) to the nucleus. The use of the NF-κB inhibitor DHMEQ demonstrated that the effect of SASH1 on apoptosis was dependent on NF-κB, indicating a codependence between SASH1 and NF-κB for this process.

  16. Activation and cleavage of SASH1 by caspase-3 mediates an apoptotic response

    PubMed Central

    Burgess, Joshua T; Bolderson, Emma; Adams, Mark N; Baird, Anne-Marie; Zhang, Shu-Dong; Gately, Kathy A; Umezawa, Kazuo; O'Byrne, Kenneth J; Richard, Derek J

    2016-01-01

    Apoptosis is a highly regulated cellular process that functions to remove undesired cells from multicellular organisms. This pathway is often disrupted in cancer, providing tumours with a mechanism to avoid cell death and promote growth and survival. The putative tumour suppressor, SASH1 (SAM and SH3 domain containing protein 1), has been previously implicated in the regulation of apoptosis; however, the molecular role of SASH1 in this process is still unclear. In this study, we demonstrate that SASH1 is cleaved by caspase-3 following UVC-induced apoptosis. Proteolysis of SASH1 enables the C-terminal fragment to translocate from the cytoplasm to the nucleus where it associates with chromatin. The overexpression of wild-type SASH1 or a cleaved form of SASH1 representing amino acids 231–1247 leads to an increase in apoptosis. Conversely, mutation of the SASH1 cleavage site inhibits nuclear translocation and prevents the initiation of apoptosis. SASH1 cleavage is also required for the efficient translocation of the transcription factor nuclear factor-κB (NF-κB) to the nucleus. The use of the NF-κB inhibitor DHMEQ demonstrated that the effect of SASH1 on apoptosis was dependent on NF-κB, indicating a codependence between SASH1 and NF-κB for this process. PMID:27831555

  17. G-CSF prevents caspase 3 activation in Schwann cells after sciatic nerve transection, but does not improve nerve regeneration.

    PubMed

    Frost, Hanna K; Kodama, Akira; Ekström, Per; Dahlin, Lars B

    2016-10-15

    Exogenous granulocyte-colony stimulating factor (G-CSF) has emerged as a drug candidate for improving the outcome after peripheral nerve injuries. We raised the question if exogenous G-CSF can improve nerve regeneration following a clinically relevant model - nerve transection and repair - in healthy and diabetic rats. In short-term experiments, distance of axonal regeneration and extent of injury-induced Schwann cell death was quantified by staining for neurofilaments and cleaved caspase 3, respectively, seven days after repair. There was no difference in axonal outgrowth between G-CSF-treated and non-treated rats, regardless if healthy Wistar or diabetic Goto-Kakizaki (GK) rats were examined. However, G-CSF treatment caused a significant 13% decrease of cleaved caspase 3-positive Schwann cells at the lesion site in healthy rats, but only a trend in diabetic rats. In the distal nerve segments of healthy rats a similar trend was observed. In long-term experiments of healthy rats, regeneration outcome was evaluated at 90days after repair by presence of neurofilaments, wet weight of gastrocnemius muscle, and perception of touch (von Frey monofilament testing weekly). The presence of neurofilaments distal to the suture line was similar in G-CSF-treated and non-treated rats. The weight ratio of ipsi-over contralateral gastrocnemius muscles, and perception of touch at any time point, were likewise not affected by G-CSF treatment. In addition, the inflammatory response in short- and long-term experiments was studied by analyzing ED1 stainable macrophages in healthy rats, but in neither case was any attenuation seen at the injury site or distal to it. G-CSF can prevent caspase 3 activation in Schwann cells in the short-term, but does not detectably affect the inflammatory response, nor improve early or late axonal outgrowth or functional recovery.

  18. Parallel single-cell analysis of active caspase-3/7 in apoptotic and non-apoptotic cells.

    PubMed

    Ledvina, Vojtěch; Janečková, Eva; Matalová, Eva; Klepárník, Karel

    2017-01-01

    Analysing the chemical content of individual cells has already been proven to reveal unique information on various biological processes. Single-cell analysis provides more accurate and reliable results for biology and medicine than analyses of extracts from cell populations, where a natural heterogeneity is averaged. To meet the requirements in the research of important biologically active molecules, such as caspases, we have developed a miniaturized device for simultaneous analyses of individual cells. A stainless steel body with a carousel holder enables high-sensitivity parallel detections in eight microvials. The holder is mounted in front of a photomultiplier tube with cooled photocathode working in photon counting mode. The detection of active caspase-3/7, central effector caspases in apoptosis, in single cells is based on the bioluminescence chemistry commercially available as Caspase-Glo(®) 3/7 reagent developed by Promega. Individual cells were captured from a culture medium under microscope and transferred by micromanipulator into detection microvial filled with the reagent. As a result of testing, the limits of detection and quantification were determined to be 0.27/0.86 of active caspase-3/7 content in an average apoptotic cell and 0.46/2.92 for non-apoptotic cells. Application potential of this technology in laboratory diagnostics and related medical research is discussed. Graphical abstract Miniaturized device for simultaneous analyses of individual cells.

  19. Caspase 3 promotes genetic instability and carcinogenesis

    PubMed Central

    Liu, Xinjian; He, Yujun; Li, Fang; Huang, Qian; Kato, Takamitsu A.; Hall, Russell P; Li, Chuan-Yuan

    2015-01-01

    Summary Apoptosis is typically considered an anti-oncogenic process since caspase activation can promote the elimination of genetically unstable or damaged cells. We report that a central effector of apoptosis, caspase 3, facilitates, rather than suppresses, chemical and radiation-induced genetic instability and carcinogenesis. We found that a significant fraction of mammalian cells treated with ionizing radiation can survive, despite caspase 3 activation. Moreover, this sublethal activation of caspase 3 promoted persistent DNA damage and oncogenic transformation. In addition, chemically-induced skin carcinogenesis was significantly reduced in mice genetically deficient in caspase 3. Furthermore, attenuation of Endo G activity significantly reduced radiation-induced DNA damage and oncogenic transformation, identifying Endo G as a downstream effector of caspase 3 in this pathway. Our findings suggest that rather than acting as a broad inhibitor of carcinogenesis, caspase 3 activation may contribute to genome instability and play a pivotal role in tumor formation following damage. PMID:25866249

  20. The forkhead transcription factor FOXO3a controls microglial inflammatory activation and eventual apoptotic injury through caspase 3.

    PubMed

    Shang, Yan Chen; Chong, Zhao Zhong; Hou, Jinling; Maiese, Kenneth

    2009-02-01

    Memory loss and cognitive failure are increasingly being identified as potential risks with the recognized increase in life expectancy of the general population. As a result, the development of novel therapeutic strategies for disorders such as Alzheimer's disease have garnered increased attention. The etiologies that can lead to Alzheimer's disease are extremely varied, but a number of therapeutic options are directed against amyloid-beta peptide and inflammatory cell regulation to prevent or halt progressive cognitive loss. In particular, inflammatory microglial cells may have disparate functions that in some scenarios lead to disability through the removal of functional neurovascular cells and in other circumstances foster tissue repair. Given the significance microglial cells hold for neurodegenerative disorders, we therefore examined the function that amyloid (Abeta(1-42)) has upon the microglial cell line EOC 2 and identified a novel role for the forkhead transcription factor FoxO3a and caspase 3. Here we show that Abeta(1-42) leads to progressive injury and apoptotic cell loss in microglial cells that involves both early phosphatidylserine (PS) externalization and late genomic DNA fragmentation over a 24 hour course. Prior to these injury programs, Abeta(1-42) results in the activation and proliferation of microglia as demonstrated by increased proliferating cell nuclear antigen (PCNA) expression and bromodeoxyuridine (BrdU) uptake. Both apoptotic injury as well as the prior activation and proliferation of microglial cells relies upon the presence of FoxO3a, since specific gene silencing of FoxO3a promotes microglial cell protection and prevents the early activation and proliferation of these cells. Furthermore, Abeta(1-42) exposure maintained FoxO3a in an unphosphorylated "active" state and facilitated the cellular trafficking of FoxO3a from the cytoplasm to the cell nucleus to potentially lead to "pro-apoptotic" programs by this transcription factor. One

  1. LPS inhibits caspase 3-dependent apoptosis in RAW264.7 macrophages induced by the AMPK activator AICAR

    SciTech Connect

    Russe, Otto Quintus Möser, Christine V. Kynast, Katharina L. King, Tanya S. Olbrich, Katrin Grösch, Sabine Geisslinger, Gerd Niederberger, Ellen

    2014-05-09

    Highlights: • AMPK-activation induces caspase 3-dependent apoptosis in macrophages. • Apoptosis is associated with decreased mTOR and increased p21 levels. • All effects can be significantly inhibited by the TLR4 agonist lipopolysaccharide. - Abstract: AMP-activated kinase is a cellular energy sensor which is activated in stages of increased ATP consumption. Its activation has been associated with a number of beneficial effects such as decreasing inflammatory processes and the disease progress of diabetes and obesity, respectively. Furthermore, AMPK activation has been linked with induction of cell cycle arrest and apoptosis in cancer and vascular cells, indicating that it might have a therapeutic impact for the treatment of cancer and atherosclerosis. However, the impact of AMPK on the proliferation of macrophages, which also play a key role in the formation of atherosclerotic plaques and in inflammatory processes, has not been focused so far. We have assessed the influence of AICAR- and metformin-induced AMPK activation on cell viability of macrophages with and without inflammatory stimulation, respectively. In cells without inflammatory stimulation, we found a strong induction of caspase 3-dependent apoptosis associated with decreased mTOR levels and increased expression of p21. Interestingly, these effects could be inhibited by co-stimulation with bacterial lipopolysaccharide (LPS) but not by other proinflammatory cytokines suggesting that AICAR induces apoptosis via AMPK in a TLR4-pathway dependent manner. In conclusion, our results revealed that AMPK activation is not only associated with positive effects but might also contribute to risk factors by disturbing important features of macrophages. The fact that LPS is able to restore AMPK-associated apoptosis might indicate an important role of TLR4 agonists in preventing unfavorable cell death of immune cells.

  2. Highly sensitive detection of caspase-3 activities via a nonconjugated gold nanoparticle-quantum dot pair mediated by an inner-filter effect.

    PubMed

    Li, Jingwen; Li, Xinming; Shi, Xiujuan; He, Xuewen; Wei, Wei; Ma, Nan; Chen, Hong

    2013-10-09

    We describe here a simple fluorometric assay for the highly sensitive detection of caspase-3 activities on the basis of the inner-filter effect of gold nanoparticles (AuNPs) on CdTe quantum dots (QDs). The method takes advantage of the high molar absorptivity of the plasmon band of gold nanoparticles as well as the large absorption band shift from 520 to 680 nm upon nanoparticle aggregation. When labeled with a peptide possessing the caspase-3 cleavage sequence (DEVD), the monodispersed Au-Ps (peptide-modified AuNPs) exhibited a tendency to aggregate when exposed to caspase-3, which induced the absorption band transition from 520 to 680 nm and turned on the fluorescence of the CdTe QDs for caspase-3 sensing. Under optimum conditions, a high sensitivity towards caspase-3 was achieved with a detection limit as low as 18 pM, which was much lower than the corresponding assays based on absorbance or other approaches. Overall, we demonstrated a facile and sensitive approach for caspase-3 detection, and we expected that this method could be potentially generalized to design more fluorescent assays for sensing other bioactive entities.

  3. THE PARKINSONIAN NEUROTOXIN ROTENONE ACTIVATES CALPAIN AND CASPASE-3 LEADING TO MOTONEURON DEGENERATION IN SPINAL CORD OF LEWIS RATS

    PubMed Central

    SAMANTARAY, S.; KNARYAN, V. H.; GUYTON, M. K.; MATZELLE, D. D.; RAY, S. K.; BANIK, N. L.

    2007-01-01

    Exposure to environmental toxins increases the risk of neurodegenerative diseases including Parkinson’s disease (PD). Rotenone is a neurotoxin that has been used to induce experimental parkinsonism in rats. We used the rotenone model of experimental parkinsonism to explore a novel aspect of extra-nigral degeneration, the neurodegeneration of spinal cord (SC), in PD. Rotenone administration to male Lewis rats caused significant neuronal cell death in cervical and lumbar SC as compared to control animals. Dying neurons were motoneurons as identified by double immunofluorescent labeling for TUNEL+ cells and ChAT-immunoreactivity. Neuronal death was accompanied by abundant astrogliosis and microgliosis as evidenced from GFAP-immunoreactivity and OX-42-immunoreactivity, respectively, implicating an inflammatory component during neurodegeneration in SC. However, the integrity of the white matter in SC was not affected by rotenone administration as evidenced from the non co-localization of any TUNEL+ cells with GFAP-immunoreactivity and MBP-immunoreactivity, the selective markers for astrocytes and oligodendrocytes, respectively. Increased activities of 76 kD active m-calpain and 17/19 kD active caspase-3 further demonstrated involvement of these enzymes in cell death in SC. The finding of ChAT+ cell death also suggested degeneration of SC motoneurons in rotenone-induced experimental parkinsonism. Thus, this is the first report of its kind in which the selective vulnerability of a putative parkinsonian target outside of nigrostriatal system has been tested using an environmental toxin to understand the pathophysiology of PD. Moreover, rotenone-induced degeneration of SC motoneuron in this model of experimental parkinsonism progressed with upregulation of calpain and caspase-3. PMID:17367952

  4. Application of a FRET probe for Caspase-3 activation in living HeLa cells by sequentially treated cisplatin and TRAIL

    NASA Astrophysics Data System (ADS)

    Lin, Juqiang; Zhang, Zhihong; Yi, Qiushi; Zeng, Shaoqun; Luo, Qingming

    2006-02-01

    Caspase-3 is a kind of cysteine proteases that plays an important role in cell apoptosis. We have constructed a FRET (fluorescence resonance energy transfer) probe fused with ECFP (enhanced cyan fluorescence protein) and DsRed (Discosoma red fluorescent protein) with a linker containing a caspase-3 cleavage sequence (CCS, DEVD).It could be observed much change in fluorescence emission ratio when the probe was cleaved by caspase-3. Therefore, application of this probe we can real-time detected the activation of caspase-3. It was already confirmed that caspase-3 was activated in HeLa cells treated by cisplatin or TRAIL (Tumor necrosis factor (TNF)-related apoptosis-inducing ligand). In the present study, we detected the activation of caspase-3 during cisplatin or TRAIL induced apoptosis in living HeLa cells, and also observed the activation of caspase-3 caused by both cisplatin and TRAIL combined treatment. Our results demonstrated a synergistic effect between cisplatin and TRAIL. Cisplatin is one of the most broadly used drugs in the Clinical applications of cancer chemotherapy, and TRAIL, which belongs to the TNF family proteins, can selectively induce apoptosis in many transformed cells but not in normal cells. Therefore, TRAIL is a very valuably prospective utility as its potential tumor-specific cancer therapeutic. Most of anticancer drugs can induce apoptosis which mediated by the activation of caspase pathway. We can select the best synergistic effect group by our FRET probe. This finding would be useful in the design of treatment modalities for patients.

  5. Wood dusts induce the production of reactive oxygen species and caspase-3 activity in human bronchial epithelial cells.

    PubMed

    Pylkkänen, Lea; Stockmann-Juvala, Helene; Alenius, Harri; Husgafvel-Pursiainen, Kirsti; Savolainen, Kai

    2009-08-21

    Wood dusts are associated with several respiratory symptoms, e.g. impaired lung function and asthma, in exposed workers. However, despite the evidence from epidemiological studies, the underlying mechanisms are not well understood. In the present study, we investigated different wood dusts for their capacity to induce cytotoxicity and production of radical oxygen species (ROS) as well as activation of the apoptotic caspase-3 enzyme in human bronchial epithelial cells (BEAS-2B). Dusts from three different tree species widely used in wood industry were studied; birch and oak represented hardwood species, and pine a common softwood species. All the experiments were carried out in three different concentrations (10, 50, and 500 microg/ml) and the analysis was performed after 0.5, 2, 6, and 24h exposure. All wood dusts studied were cytotoxic to human bronchial epithelial cells in a dose-dependent manner after 2 and 6h treatment. Exposure to pine, birch, or oak dust had a significant stimulating effect on the production of ROS. Also an induction in caspase-3 protease activity, one of the central components of the apoptotic cascade, was seen in BEAS-2B cells after 2 and 6h exposure to each of the wood dusts studied. In summary, we demonstrate that dusts from pine, birch and oak are cytotoxic, able to increase the production of ROS and the apoptotic response in human broncho-epithelial cells in vitro. Thus, our current data suggest oxidative stress by ROS as an important mechanism likely to function in wood dust related pulmonary toxicity although details of the cellular targets and cell-particle interactions remain to be solved. It is though tempting to speculate that redox-regulated transcription factors such as NFkappaB or AP-1 may play a role in this wood dust-evoked process leading to apparently induced apoptosis of target cells.

  6. Caspase-3 activation downstream from reactive oxygen species in heat-induced apoptosis of pancreatic carcinoma cells carrying a mutant p53 gene.

    PubMed

    Kobayashi, D; Sasaki, M; Watanabe, N

    2001-04-01

    In the present study we investigated the intracellular signaling pathway leading to p53-independent activation of caspase-3 during heat-induced apoptosis of pancreatic carcinoma cells. Induction of mutant p53 protein, but not p21/WAF-1, was observed after heat treatment of both heat-resistant (PANC-1) and heat-sensitive (MIAPaCa-2) cells. A specific inhibitor of caspase-3 (Ac-DMQD-CHO) caused 84% and 92% inhibition of apoptosis in MIAPaCa-2 and PANC-1 cells, respectively. Caspase-3 mRNA expression was increased in both cell lines after heat treatment. Further, heat-induced caspase-3 activity detected by fluorogenic assay in MIAPaCa-2 cells was almost completely inhibited by addition of the antioxidant N-acetyl-L-cysteine. In contrast, Ac-DMQD-CHO had no inhibitory effect on amounts of reactive oxygen species in heat-treated MIAPaCa-2 cells. These results suggest a possible pathway by which reactive oxygen species lead to caspase-3 activation to cause heat-induced death of pancreatic carcinoma cells carrying mutant p53.

  7. Delayed growth of glioma by a polysaccharide from Aster tataricus involve upregulation of Bax/Bcl-2 ratio, activation of caspase-3/8/9, and downregulation of the Akt.

    PubMed

    Du, Lei; Mei, Hai-Feng; Yin, Xue; Xing, Yi-Qiao

    2014-03-01

    In this study, a homogeneous polysaccharide (ATP-II), with a molecular weight of 3.4 × 10(4) Da, was successfully purified from Aster tataricus by DEAE-Sepharose CL-6B ion exchange and Sepharose CL-6B gel filtration chromatography. Monosaccharide component analysis indicated that ATP-II was composed of glucose, galactose, mannose, rhamnose, and arabinose in molar ratios of 2.1:5.2:2.1:1.0:1.2. We evaluated the anticancer efficacy and associated mechanisms of ATP-II on glioma C6 cells in vitro and in vivo. The results showed that treatment of C6 cells with ATP-II inhibited cell proliferation and this biological response came from induction of DAN damage and consequent inducing apoptosis. Likewise, oral ATP-II administration resulted in consistent regression of glioma tumors and induced apoptosis of transplanted tumor tissues by increasing the ratio of Bax/Bcl-2 and activation of caspase-3, caspase-8, and caspase-9 cascade. Importantly, the efficient downregulation of Akt, which is successfully detected in tumor tissues, is a unique contribution to retard the tumor growth by ATP-II. These data suggest that ATP-II may be a potential candidate for glioma treatment.

  8. Caspase 3 activation and PARP cleavage in lymphocytes from newborn babies of diabetic mothers with unbalanced glycaemic control.

    PubMed

    Tarquini, F; Tiribuzi, R; Crispoltoni, L; Porcellati, S; Del Pino, A M; Orlacchio, A; Coata, G; Arnone, S; Torlone, E; Cappuccini, B; Di Renzo, G C; Orlacchio, A

    2014-01-01

    Several epidemiological studies showed that gestational diabetes mellitus is the most frequent metabolic disorder of pregnancy, the pathogenesis of which has yet to be completely clarified. The aim of this study was to investigate the presence and processing of caspase 3 (Casp3) and poly(ADP-ribose) polymerase 1 (PARP1) in cord blood lymphocytes as markers of apoptosis in relation to glycaemic control during intrauterine life. Our results showed a specific positive correlation between the levels of active Casp3 (17-19 kDa) and the inactive form of PARP1 (89 kDa) in lymphocytes isolated from newborn babies of diabetic women with unbalanced glycaemic control, with a direct correlation between the activation of casp3 and the inactivation of PARP1, that makes lymphocytes unresponsive towards lipopolysaccharide stimulation, highlighting an altered functional response. Besides more studies are required to fully correlate the activation of the apoptotic process during the intrauterine life with the foetal health later in life, our study indicates that a cord blood lymphocyte, an easily accessible source, is informative about the activation of apoptotic stimuli in circulating cells of newborn babies in relation to the glycaemic control reached by the mother during pregnancy.

  9. Moringa oleifera Gold Nanoparticles Modulate Oncogenes, Tumor Suppressor Genes, and Caspase-9 Splice Variants in A549 Cells.

    PubMed

    Tiloke, Charlette; Phulukdaree, Alisa; Anand, Krishnan; Gengan, Robert M; Chuturgoon, Anil A

    2016-10-01

    Gold nanoparticles (AuNP's) facilitate cancer cell recognition and can be manufactured by green synthesis using nutrient rich medicinal plants such as Moringa oleifera (MO). Targeting dysregulated oncogenes and tumor suppressor genes is crucial for cancer therapeutics. We investigated the antiproliferative effects of AuNP synthesized from MO aqueous leaf extracts (MLAuNP ) in A549 lung and SNO oesophageal cancer cells. A one-pot green synthesis technique was used to synthesise MLAuNP . A549, SNO cancer cells and normal peripheral blood mononuclear cells (PBMCs) were exposed to MLAuNP and CAuNP to evaluate cytotoxicity (MTT assay); apoptosis was measured by phosphatidylserine (PS) externalization, mitochondrial depolarization (ΔΨm) (flow cytometry), caspase-3/7, -9 activity, and ATP levels (luminometry). The mRNA expression of c-myc, p53, Skp2, Fbw7α, and caspase-9 splice variants was determined using qPCR, while relative protein expression of c-myc, p53, SRp30a, Bax, Bcl-2, Smac/DIABLO, Hsp70, and PARP-1 were determined by Western blotting. MLAuNP and CAuNP were not cytotoxic to PBMCs, whilst its pro-apoptotic properties were confirmed in A549 and SNO cells. MLAuNP significantly increased caspase activity in SNO cells while MLAuNP significantly increased PS externalization, ΔΨm, caspase-9, caspase-3/7 activities, and decreased ATP levels in A549 cells. Also, p53 mRNA and protein levels, SRp30a (P = 0.428), Bax, Smac/DIABLO and PARP-1 24 kDa fragment levels were significantly increased. Conversely, MLAuNP significantly decreased Bcl-2, Hsp70, Skp2, Fbw7α, c-myc mRNA, and protein levels and activated alternate splicing with caspase-9a splice variant being significantly increased. MLAuNP possesses antiproliferative properties and induced apoptosis in A549 cells by activating alternate splicing of caspase-9. J. Cell. Biochem. 117: 2302-2314, 2016. © 2016 Wiley Periodicals, Inc.

  10. Apigenin Protects Endothelial Cells from Lipopolysaccharide (LPS)-Induced Inflammation by Decreasing Caspase-3 Activation and Modulating Mitochondrial Function

    PubMed Central

    Duarte, Silvia; Arango, Daniel; Parihar, Arti; Hamel, Patrice; Yasmeen, Rumana; Doseff, Andrea I.

    2013-01-01

    Acute and chronic inflammation is characterized by increased reactive oxygen species (ROS) production, dysregulation of mitochondrial metabolism and abnormal immune function contributing to cardiovascular diseases and sepsis. Clinical and epidemiological studies suggest potential beneficial effects of dietary interventions in inflammatory diseases but understanding of how nutrients work remains insufficient. In the present study, we evaluated the effects of apigenin, an anti-inflammatory flavonoid abundantly found in our diet, in endothelial cells during inflammation. Here, we show that apigenin reduced lipopolysaccharide (LPS)-induced apoptosis by decreasing ROS production and the activity of caspase-3 in endothelial cells. Apigenin conferred protection against LPS-induced mitochondrial dysfunction and reestablished normal mitochondrial complex I activity, a major site of electron leakage and superoxide production, suggesting its ability to modulate endothelial cell metabolic function during inflammation. Collectively, these findings indicate that the dietary compound apigenin stabilizes mitochondrial function during inflammation preventing endothelial cell damage and thus provide new translational opportunities for the use of dietary components in the prevention and treatment of inflammatory diseases. PMID:23989609

  11. Glucosidase II β-subunit, a novel substrate for caspase-3-like activity in rice, plays as a molecular switch between autophagy and programmed cell death

    PubMed Central

    Cui, Jing; Chen, Bing; Wang, Hongjuan; Han, Yue; Chen, Xi; Zhang, Wei

    2016-01-01

    Endoplasmic reticulum (ER) stress activates unfolded protein response (UPR) and autophagy. However, prolonged, severe stresses activate programmed cell death (PCD) in both animal and plant cells. Compared to the well-studied UPR pathway, the molecular mechanisms of ER-stress-induced PCD are less understood. Here, we report the identification of Gas2, the glucosidase II β subunit in the ER, as a potential switch between PCD and autophagy in rice. MS analysis identified Gas2, GRP94, and HSP40 protein in a purified caspase-3-like activity from heat stressed rice cell suspensions. The three corresponding genes were down-regulated under DTT-induced ER stress. Gas2 and GRP94 were localized to the ER, while HSP40 localized to the cytoplasm. Compared to wild-type, a Gas2 RNAi cell line was much sensitive to DTT treatment and had high levels of autophagy. Both caspase-3 and heat-stressed cell suspension lysate could cleave Gas2, producing a 14 kDa N-terminal fragment. Conditional expression of corresponding C-terminal fragment resulted in enhanced caspase-3-like activity in the protoplasts under heat stress. We proposed that mild ER stress causes down-regulation of Gas2 and induces autophagy, while severe stress results in Gas2 cleavage by caspase-3-like activity and the cleavage product amplifies this activity, possibly participating in the initiation of PCD. PMID:27538481

  12. Ceramide synthase 6 modulates TRAIL sensitivity and nuclear translocation of active caspase-3 in colon cancer cells.

    PubMed

    White-Gilbertson, S; Mullen, T; Senkal, C; Lu, P; Ogretmen, B; Obeid, L; Voelkel-Johnson, C

    2009-02-26

    We have previously shown that the death receptor ligand TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) induces an increase of intracellular C(16)-ceramide in sensitive SW480 but not in resistant SW620 cells. Resistance in SW620 cells was overcome by exogenous ceramide, leading us to propose that defective ceramide signaling contributes to TRAIL resistance. In this study we found that the increase in C(16)-ceramide in SW480 cells was inhibited by fumonisin B1, an inhibitor of ceramide synthases (CerS). Protein analysis revealed that TRAIL-resistant SW620 cells expressed lower levels of ceramide synthase 6 (CerS6, also known as longevity assurance homologue 6), which prompted us to investigate the effect of CerS6 modulation on TRAIL phenotype. RNAi against CerS6 resulted in a specific and significant decrease of the C(16)-ceramide species, which was sufficient to inhibit TRAIL-induced apoptosis. In cells with decreased levels of CerS6, caspase-3 was activated but failed to translocate into the nucleus. CerS6 localized primarily to the perinuclear region, suggesting this enzyme may be important in regulation of nuclear permeability. Moderate elevation in CerS6 expression was sufficient to reverse TRAIL resistance in SW620 cells. These results suggest that modulation of CerS6 expression may constitute a new therapeutic strategy to alter apoptotic susceptibility.

  13. Alpha-chaconine, a potato glycoalkaloid, induces apoptosis of HT-29 human colon cancer cells through caspase-3 activation and inhibition of ERK 1/2 phosphorylation.

    PubMed

    Yang, Seun-Ah; Paek, Seung-Hwan; Kozukue, Nobuyuki; Lee, Kap-Rang; Kim, Jung-Ae

    2006-06-01

    Although alpha-chaconine, one of the two major potato trisaccharide glycoalkaloids, have shown cytotoxic effects on human cancer cells, the exact mechanism of this action of alpha-chaconine is not completely understood. In this study, we found that alpha-chaconine induced apoptosis of HT-29 cells in a time- and concentration-dependent manner by using flow cytometric analysis. We also found that caspase-3 activity and the active form of caspase-3 were increased 12 h after alpha-chaconine treatment. Caspase inhibitors, N-Ac-DEVD-CHO and Z-VAD-fmk, prevented alpha-chaconine-induced apoptosis, whereas alpha-chaconine-induced apoptosis was potentiated by PD98059, an extracellular signal-regulated kinase (ERK) inhibitor. However, pretreatment of the cells with LY294002 and SB203580, inhibitors of PI3K and p38, respectively, BAPTA-AM, an intracellular Ca(2+) chelator, and antioxidants such as N-acetylcysteine (NAC) and Trolox had no effect on the alpha-chaconine-induced cell death. In addition, phosphorylation of ERK was reduced by the treatment with alpha-chaconine. Moreover, alpha-chaconine-induced caspase-3 activity was further increased by the pretreatment with PD98059. Thus, the results indicate that alpha-chaconine induces apoptosis of HT-29 cells through inhibition of ERK and, in turn, activation of caspase-3.

  14. TNF-α Contributes to Caspase-3 Independent Apoptosis in Neuroblastoma Cells: Role of NFAT

    PubMed Central

    Álvarez, Susana; Blanco, Almudena; Fresno, Manuel; Muñoz-Fernández, Ma Ángeles

    2011-01-01

    There is increasing evidence that soluble factors in inflammatory central nervous system diseases not only regulate the inflammatory process but also directly influence electrophysiological membrane properties of neurons and astrocytes. In this context, the cytokine TNF-α (tumor necrosis factor-α) has complex injury promoting, as well as protective, effects on neuronal viability. Up-regulated TNF-α expression has also been found in various neurodegenerative diseases such as cerebral malaria, AIDS dementia, Alzheimer's disease, multiple sclerosis, and stroke, suggesting a potential pathogenic role of TNF-α in these diseases as well. We used the neuroblastoma cells SK-N-MC. Transcriptional activity was measured using luciferase reporter gene assays by using lipofectin. We performed cotransfection experiments of NFAT (nuclear factor of activated T cells) promoter constructed with a dominant negative version of NFAT (dn-NFAT). Cell death was performed by MTT (3-(4,5-dimethylthiazol-2-yl)5,5-diphenyltetrazolium bromide) and TUNEL assays. NFAT translocation was confirmed by Western blot. Involvement of NFAT in cell death was assessed by using VIVIT. P53, Fas-L, caspase-3, and caspase-9 expressions were carried out by Western blot. The mechanisms involved in TNF-α-induced cell death were assessed by using microarray analysis. TNF-α causes neuronal cell death in the absence of glia. TNF-α treatment results in nuclear translocation of NFAT through activation of calcineurin in a Ca2+ independent manner. We demonstrated the involvement of FasL/Fas, cytochrome c, and caspase-9 but the lack of caspase-3 activation. NB cell death was absolutely reverted in the presence of VIVIT, and partially diminished by anti-Fas treatment. These data demonstrate that TNF-α promotes FasL expression through NFAT activation in neuroblastoma cells and this event leads to increased apoptosis through independent caspase-3 activation. PMID:21298033

  15. Cytochrome c release and caspase-3 activation in retinal ganglion cells following different distance of axotomy of the optic nerve in adult hamsters.

    PubMed

    He, M H; Cheung, Z H; Yu, E H; Tay, D K C; So, K F

    2004-11-01

    This study examined the relationship between the distance of axotomy and the death of injured retinal ganglion cells (RGCs) in adult hamsters and the relationship of cytochrome c and caspase-3 on the death pathway of RGCs. The left optic nerve (ON) of adult hamsters was transected either at 1 or 3 mm away from the optic disc, and retrogradely labeled with Flurogold on the ON stump. After a predetermined period of postoperative time, the surviving RGCs were counted by retina flat-mount, and the activation of cytochrome c and caspase-3 were investigated by immunohistochemistry. Cell loss was found to be much faster (P < 0.01), more cells with cytochrome c were observed (P < 0.05) and the activation of caspase-3 was earlier when ON was transected 1 mm away from the optic disc than when was transected 3 mm away from the optic disc. Distance of axotomy affects the axotomized cell death rate where more RGCs died when the ON transection was applied closer to the eye. The timing of activation of caspase-3 in the RGCs may be linked to the distance of axotomy.

  16. Effects of D-aspartate treatment on D-aspartate oxidase, superoxide dismutase, and caspase 3 activities in frog (Rana esculenta) tissues.

    PubMed

    Burrone, Lavinia; Di Giovanni, Marcello; Di Fiore, M Maddalena; Baccari, Gabriella Chieffi; Santillo, Alessandra

    2010-06-01

    Although D-aspartate (D-Asp) has been recognized to have a physiological role within different organs, high concentrations could elicit detrimental effects on those same organs. In this study, we examined the D-aspartate oxidase (D-AspO) activity and the expression of superoxide dismutase 1 (SOD1) and caspase 3 in different tissues of the frog Rana esculenta after chronic D-Asp treatment. Our in vivo experiments, consisting of intraperitoneal (ip) injections of D-Asp (2.0 micromol/g b.w.) in frogs for ten consecutive days, revealed that all examined tissues can take up and accumulate D-Asp. Further, in D-Asp treated frogs, i) the D-AspO activity significantly increased in all tissues (kidney, heart, testis, liver, and brain), ii) the SOD1 expression (antioxidant enzyme) significantly increased in the kidney, and iii) the caspase 3 level (indicative of apoptosis) increased in both brain and heart. Particularly, after the D-Asp treatment we found in both brain and heart (which showed the lowest SOD1 levels) a significant increase of the caspase 3 expression and, vice versa, in the kidney (which showed the highest SOD1 expression) a significant decrease of the caspase 3 expression. Therefore, we speculate that, in frog tissue, D-AspO plays an essential role in modulating the D-Asp concentration. In addition, exaggerated D-Asp concentrations activated SOD1 as cytoprotective mechanism in the kidney, whereas, in the brain and in the heart, where the antioxidant action of SOD1 is limited, caspase 3 was activated.

  17. Apoptosis in chronic viral hepatitis parallels histological activity: An immunohistochemical investigation using anti-activated caspase-3 and M30 Cytodeath antibody

    PubMed Central

    McPartland, Jo L; Guzail, Muna Ali; Kendall, Charles H; Pringle, James Howard

    2005-01-01

    Apoptosis is implicated as a major pathogenic mechanism in chronic hepatitis B and C. Previous studies of the relationship between apoptotic rates and histological necroinflammatory activity have produced conflicting results. Hepatocyte apoptosis was assessed in liver tissue from 32 cases of chronic viral hepatitis, seven cases of hepatocellular carcinoma (HCC) and six cases of steatohepatitis as non-viral disease controls and eight cases of control liver. Apoptotic rates were measured using H&E morphological assessment and immunohistochemical staining with antibodies to activated caspase-3 and M30. Histological necroinflammatory activity of viral hepatitis cases was scored using the Knodell scoring system, and the cases were divided according to their score into group 1 (mean 2.43 ± 0.48) and group 2 (mean 7.80 ± 0.49). Apoptotic indices were significantly higher in group 2 than group 1 using H&E (11.53 ± 2.70 vs. 0 ± 0, P = 0.015) and activated caspase-3 (22.01 ± 5.27 vs. 1.79 ± 1.79, P = 0.03) methods but were not significantly higher with M30 (3.80 ± 1.74 vs. 0 ± 0, P = 0.207). Apoptotic scores using an antibody to activated caspase-3 are significantly higher in cases of chronic viral hepatitis with greater histological necroinflammatory scores, supporting a central role for apoptosis in disease pathogenesis. This method offers an alternative to routine histological assessment for measuring disease activity. PMID:15676029

  18. Involvement of caspase-3 and p38 mitogen-activated protein kinase in cobalt chloride-induced apoptosis in PC12 cells.

    PubMed

    Zou, Weiguo; Zeng, Jiping; Zhuo, Ming; Xu, Weijing; Sun, Lanying; Wang, Jinxing; Liu, Xinyuan

    2002-03-15

    Our previous study showed that cobalt chloride (CoCl2) could induce PC12 cell apoptosis and that the CoCl2-treated PC12 cells may serve as a simple in vitro model for the study of the mechanism of hypoxia-linked neuronal disorders. The aim of this study is to elucidate the mechanism of CoCl2-induced apoptosis in PC12 cells. Caspases are known to be involved in the apoptosis induced by various stimuli in many cell types. To investigate the involvement of caspases in CoCl2-induced apoptosis in PC12 cells, we generated PC12 cells that stably express the viral caspases inhibitor gene p35 and analyzed the effect of p35 on the process of apoptosis induced by CoCl2. We also examined the effect of cell-permeable peptide inhibitors of caspases. The results showed that the baculovirus p35 gene and the general caspases inhibitor Z-VAD-FMK significantly block apoptosis induced by CoCl2, confirming that caspase is involved in CoCl2-induced apoptosis. Further investigation showed that in this process the caspase-3-like activity is increased, as indicated by the cells' ability to cleave the fluorogenic peptide substrate Ac-Asp-Glu-Val-Asp-7-AMC and to degrade the DNA-repairing enzyme poly-(ADP-ribose) polymerase (PARP), an endogenous caspase-3 substrate. At the same time, caspase-3-specific inhibitors, namely, the peptide Ac-DEVD-CHO, Ac-DEVD-FMK, partially inhibit CoCl2-induced apoptosis. These findings suggested that caspase-3 or caspase-3-like proteases are involved in the apoptosis induced by CoCl2 in PC12 cells. Additionally, we have observed that another apoptotic marker, p38 mitogen-activated protein kinase (MAPK), is significantly activated in this process in a time-dependent manner and that a selective p38 MAPK inhibitor, SB203580, partially inhibits this cell death. The addition of SB203580 also partially suppresses caspase-3-like activity. All these results confirm that the CoCl2-treated PC12 cell is a useful in vitro model with which to study hypoxia-linked neuronal

  19. Rapid cytochrome c release, activation of caspases 3, 6, 7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy.

    PubMed

    Granville, D J; Carthy, C M; Jiang, H; Shore, G C; McManus, B M; Hunt, D W

    1998-10-16

    Photodynamic therapy (PDT) is a clinical approach that utilizes light-activated drugs for the treatment of a variety of pathologic conditions. The initiating events of PDT-induced apoptosis are poorly defined. It has been shown for other proapoptotic stimuli that the integral endoplasmic reticulum protein Bap31 is cleaved by caspases 1 and 8, but not by caspase-3. Further, a 20 kDa Bap31 cleavage fragment is generated which can induce apoptosis. In the current report, we sought to determine whether Bap31 cleavage and generation of p20 is an early event in PDT-induced apoptosis. The mitochondrial release of cytochrome c, involvement of caspases 1, 2, 3, 4, 6, 7, 8, and 10 and the status of several known caspase substrates, including Bap31, were evaluated in PDT-treated HeLa cells. Cytochrome c appeared in the cytosol immediately following light activation of the photosensitizer benzoporphyrin derivative monoacid ring A. Activation of caspases 3, 6, 7, and 8 was evident within 1-2 h post PDT. Processing of caspases 1, 2, 4, and 10 was not observed. Cleavage of Bap31 was observed at 2-3 h post PDT. The caspase-3 inhibitor DEVD-fmk blocked caspase-8 and Bap31 cleavage suggesting that caspase-8 and Bap31 processing occur downstream of caspase-3 activation in PDT-induced apoptosis. These results demonstrate that release of mitochondrial cytochrome c into the cytoplasm is a primary event following PDT, preceding caspase activation and cleavage of Bap31. To our knowledge, this is the first example of a chemotherapeutic agent inducing caspase-8 activation and demonstrates that caspase-8 activation can occur after cytochrome c release.

  20. HDAC6 inhibition prevents TNF-α-induced caspase 3 activation in lung endothelial cell and maintains cell-cell junctions

    PubMed Central

    Yu, Jinyan; Ma, Mengshi; Ma, Zhongsen; Fu, Jian

    2016-01-01

    Pro-inflammatory mediators such as TNF-α induce caspase activation in endothelial cells, which leads to degradation of cellular proteins, induction of apoptotic signaling, and endothelial cell dysfunction. New therapeutic agents that can inhibit caspase activation may provide protection against inflammatory injury to endothelial cells. In the present study, we examined the effects of selective histone deacetylase 6 (HDAC6) inhibition on TNF-α induced caspase 3 activation and cell-cell junction dysfunction in lung endothelial cells. We also assessed the protective effects of HDAC6 inhibition against lung inflammatory injury in a mouse model of endotoxemia. We demonstrated that selective HDAC6 inhibition or knockdown of HDAC6 expression was able to prevent caspase 3 activation in lung endothelial cells and maintain lung endothelial cell-cell junctions. Mice pre-treated with HDAC6 inhibitors exhibited decreased endotoxin-induced caspase 3 activation and reduced lung vascular injury as indicated by the retention of cell-cell junction protein VE-Cadherin level and alleviated lung edema. Collectively, our data suggest that HDAC6 inhibition is a potent therapeutic strategy against inflammatory injury to endothelial cells. PMID:27419634

  1. Caspase-3 dependent nitrergic neuronal apoptosis following cavernous nerve injury is mediated via RhoA and ROCK activation in major pelvic ganglion.

    PubMed

    Hannan, Johanna L; Matsui, Hotaka; Sopko, Nikolai A; Liu, Xiaopu; Weyne, Emmanuel; Albersen, Maarten; Watson, Joseph W; Hoke, Ahmet; Burnett, Arthur L; Bivalacqua, Trinity J

    2016-07-08

    Axonal injury due to prostatectomy leads to Wallerian degeneration of the cavernous nerve (CN) and erectile dysfunction (ED). Return of potency is dependent on axonal regeneration and reinnervation of the penis. Following CN injury (CNI), RhoA and Rho-associated protein kinase (ROCK) increase in penile endothelial and smooth muscle cells. Previous studies indicate that nerve regeneration is hampered by activation of RhoA/ROCK pathway. We evaluated the role of RhoA/ROCK pathway in CN regulation following CNI using a validated rat model. CNI upregulated gene and protein expression of RhoA/ROCK and caspase-3 mediated apoptosis in the major pelvic ganglion (MPG). ROCK inhibitor (ROCK-I) prevented upregulation of RhoA/ROCK pathway as well as activation of caspase-3 in the MPG. Following CNI, there was decrease in the dimer to monomer ratio of neuronal nitric oxide synthase (nNOS) protein and lowered NOS activity in the MPG, which were prevented by ROCK-I. CNI lowered intracavernous pressure and impaired non-adrenergic non-cholinergic-mediated relaxation in the penis, consistent with ED. ROCK-I maintained the intracavernous pressure and non-adrenergic non-cholinergic-mediated relaxation in the penis following CNI. These results suggest that activation of RhoA/ROCK pathway mediates caspase-3 dependent apoptosis of nitrergic neurons in the MPG following CNI and that ROCK-I can prevent post-prostatectomy ED.

  2. Caspase-3 dependent nitrergic neuronal apoptosis following cavernous nerve injury is mediated via RhoA and ROCK activation in major pelvic ganglion

    PubMed Central

    Hannan, Johanna L.; Matsui, Hotaka; Sopko, Nikolai A.; Liu, Xiaopu; Weyne, Emmanuel; Albersen, Maarten; Watson, Joseph W.; Hoke, Ahmet; Burnett, Arthur L.; Bivalacqua, Trinity J.

    2016-01-01

    Axonal injury due to prostatectomy leads to Wallerian degeneration of the cavernous nerve (CN) and erectile dysfunction (ED). Return of potency is dependent on axonal regeneration and reinnervation of the penis. Following CN injury (CNI), RhoA and Rho-associated protein kinase (ROCK) increase in penile endothelial and smooth muscle cells. Previous studies indicate that nerve regeneration is hampered by activation of RhoA/ROCK pathway. We evaluated the role of RhoA/ROCK pathway in CN regulation following CNI using a validated rat model. CNI upregulated gene and protein expression of RhoA/ROCK and caspase-3 mediated apoptosis in the major pelvic ganglion (MPG). ROCK inhibitor (ROCK-I) prevented upregulation of RhoA/ROCK pathway as well as activation of caspase-3 in the MPG. Following CNI, there was decrease in the dimer to monomer ratio of neuronal nitric oxide synthase (nNOS) protein and lowered NOS activity in the MPG, which were prevented by ROCK-I. CNI lowered intracavernous pressure and impaired non-adrenergic non-cholinergic-mediated relaxation in the penis, consistent with ED. ROCK-I maintained the intracavernous pressure and non-adrenergic non-cholinergic-mediated relaxation in the penis following CNI. These results suggest that activation of RhoA/ROCK pathway mediates caspase-3 dependent apoptosis of nitrergic neurons in the MPG following CNI and that ROCK-I can prevent post-prostatectomy ED. PMID:27388816

  3. Reversion of left ventricle remodeling in spontaneously hypertensive rats by valsartan is associated with the inhibition of caspase-3, -8 and -9 activities

    PubMed Central

    DENG, XU; XIA, KE; CHEN, PO; ALI SHEIKH, MD SAYED; YANG, DA-FENG; LI, SI-MIN; YANG, TIAN-LUN

    2015-01-01

    The development of hypertension is closely associated with cardiac hypertrophy and apoptosis, and caspase-3, −8 and −9 are key enzymes of apoptosis. The aim of the present study was to evaluate the effects of valsartan on left ventricle hypertrophy and myocardial apoptosis in spontaneously hypertensive rats (SHRs) and to explore the mechanisms for valsartan against apoptosis. A total of 15 SHRs (16 weeks old) were randomly divided into two groups. The SHRs in the valsartan (n=8) and SHR groups (n=7) were fed with valsartan and distilled water for 8 weeks, respectively. Wistar-Kyoto rats (n=8) were the control group. At the end of the experiments, blood pressure, parameters regarding hypertrophy, apoptosis and activities of caspase-3, −8 and −9 were measured. The results showed that valsartan significantly reduced systolic blood pressure and left ventricular hypertrophy, improved left ventricular remodeling, attenuated the myocardial damage and apoptosis, and decreased the activities of caspase-3, −8 and −9 in SHRs. In conclusion, valsartan is able to reverse hypertension-induced left ventricle remodeling, which is associated with, at least in part, its inhibitory effect on myocardial apoptosis in the death receptor-mediated extrinsic, as well as the mitochondrial-mediated intrinsic pathways. PMID:26171161

  4. Genetically Encoded FRET-Sensor Based on Terbium Chelate and Red Fluorescent Protein for Detection of Caspase-3 Activity.

    PubMed

    Goryashchenko, Alexander S; Khrenova, Maria G; Bochkova, Anna A; Ivashina, Tatiana V; Vinokurov, Leonid M; Savitsky, Alexander P

    2015-07-22

    This article describes the genetically encoded caspase-3 FRET-sensor based on the terbium-binding peptide, cleavable linker with caspase-3 recognition site, and red fluorescent protein TagRFP. The engineered construction performs two induction-resonance energy transfer processes: from tryptophan of the terbium-binding peptide to Tb(3+) and from sensitized Tb(3+) to acceptor--the chromophore of TagRFP. Long-lived terbium-sensitized emission (microseconds), pulse excitation source, and time-resolved detection were utilized to eliminate directly excited TagRFP fluorescence and background cellular autofluorescence, which lasts a fraction of nanosecond, and thus to improve sensitivity of analyses. Furthermore the technique facilitates selective detection of fluorescence, induced by uncleaved acceptor emission. For the first time it was shown that fluorescence resonance energy transfer between sensitized terbium and TagRFP in the engineered construction can be studied via detection of microsecond TagRFP fluorescence intensities. The lifetime and distance distribution between donor and acceptor were calculated using molecular dynamics simulation. Using this data, quantum yield of terbium ions with binding peptide was estimated.

  5. Paeoniflorin inhibits nucleus pulposus cell apoptosis by regulating the expression of Bcl-2 family proteins and caspase-9 in a rabbit model of intervertebral disc degeneration

    PubMed Central

    SHI, LIJUN; TENG, HONGLIN; ZHU, MINYU; LI, CHI; HUANG, KELUN; CHEN, BI; DAI, YUSEN; WANG, JING

    2015-01-01

    Apoptosis plays a key role in the pathogenesis of internal disc disruption (IDD); therefore, the inhibition of apoptosis may offer a novel approach for treating IDD diseases. The aim of the present study was to investigate the effects and the underlying mechanisms of paeoniflorin through the detection of relevant indicators in a rabbit model of IDD. In total, 144 rabbits were used in the study and divided into four groups (n=36 per group). Rabbits successfully modeled with IDD received an intragastric injection of 120 mg/kg·day paeoniflorin (high-dose group), 30 mg/kg·day paeoniflorin (low-dose group) or saline (model saline group), while rabbits without IDD were used as a normal control group. The apoptosis rate of disc nucleus pulposus cells was detected using flow cytometry. In addition, the expression levels of Bcl-2, Bax and caspase-9 in the disc tissues were detected using immunohistochemistry and western blot analysis prior to and following the treatment. The results indicated that the expression levels of Bax in the low- and high-dose paeoniflorin groups were significantly reduced, while the Bcl-2 expression levels were significantly increased when compared with the model saline group (P<0.01). In addition, the expression levels of cleaved caspase-3 and cleaved caspase-9 were reduced in the low- and high-dose paeoniflorin groups, as compared with the model saline group (P<0.05). Furthermore, the average apoptotic index of the high- and low-dose paeoniflorin groups was decreased when compared with the model saline group (P<0.05). In conclusion, paeoniflorin was demonstrated to inhibit the apoptosis of nucleus pulposus cells and the activation of caspase-3 and caspase-9 through the regulation of Bcl-2 family protein expression. These results provide an experimental basis for the future treatment of IDD with paeoniflorin. PMID:26170945

  6. Tetrahydrohyperforin decreases cholinergic markers associated with amyloid-β plaques, 4-hydroxynonenal formation, and caspase-3 activation in AβPP/PS1 mice.

    PubMed

    Carvajal, Francisco J; Zolezzi, Juan M; Tapia-Rojas, Cheril; Godoy, Juan A; Inestrosa, Nibaldo C

    2013-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, amyloid-β peptide (Aβ) accumulation, neurofibrillary tangle deposition, synaptic alterations, and oxidative injury. In AD patients, acetylcholinesterase (AChE) activity is low in most regions of the brain, but increased within and around amyloid plaques, where it accelerates the Aβ assembly into oligomers and fibrils, increasing its neurotoxicity. Tetrahydrohyperforin (THH), a semi-synthetic derivative of hyperforin, reduces tau phosphorylation and Aβ accumulation in AD mouse models. In the present study, we examined the effects of THH on Aβ-AChE complexes, α7-nicotinic acetylcholine receptors (α7-nAChR), 4-hydroxynonenal (4-HNE) adducts, caspase-3 activation, and spatial memory in young AβPPSwe/PSEN1ΔE9 (AβPP/PS1) transgenic mice, in order to evaluate its potential preventive effects on the development of the disease. We report here that treatment with THH prevents the association of AChE to different types of amyloid plaques; partially restores the brain distribution of AChE molecular forms; increases α7-nAChR levels in the hippocampus of treated mice; decreases the amount of these receptors in amyloid plaques; and reduces the oxidative damage, evidenced by 4-HNE adduct formation and caspase-3 activation on AβPP/PS1 mice brain; demonstrating the neuroprotective properties of THH. Finally, we found that the acute treatment of hippocampal neurons with THH, in the presence of Aβ-AChE complexes, prevents 4-HNE adduct formation and caspase-3 activation. Our data support a therapeutic potential of THH for the treatment of AD.

  7. Khz (fusion product of Ganoderma lucidum and Polyporus umbellatus mycelia) induces apoptosis in human colon carcinoma HCT116 cells, accompanied by an increase in reactive oxygen species, activation of caspase 3, and increased intracellular Ca²⁺.

    PubMed

    Kim, Tae Hwan; Kim, Ju Sung; Kim, Zoo Haye; Huang, Ren Bin; Chae, Young Lye; Wang, Ren Sheng

    2015-03-01

    Khz (a fusion mycelium of Ganoderma lucidum and Polyporus umbellatus mycelia) is isolated from ganoderic acid and P. umbellatus and it exerts antiproliferative effects against malignant cells. However, no previous study has reported the inhibitory effects of Khz on the growth of human colon cancer cells. In the present study, we found that Khz suppressed cell division and induced apoptosis in HCT116 cells. Khz cytotoxicity was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Khz reduced cell viability and mitochondrial membrane potential levels and it also induced disruption of the mitochondrial membrane potential and increased calcium concentration and reactive oxygen species generation. Khz increased caspase 3, PARP, caspase 7, and caspase 9 levels, but reduced Bcl-2 protein levels. Flow cytometry showed that the percentage of HCT116 cells in the sub-G1 phase of the cell cycle increased in response to Khz treatment.

  8. Antrodia camphorata Potentiates Neuroprotection against Cerebral Ischemia in Rats via Downregulation of iNOS/HO-1/Bax and Activated Caspase-3 and Inhibition of Hydroxyl Radical Formation

    PubMed Central

    Yang, Po-Sheng; Lin, Po-Yen; Chang, Chao-Chien; Yu, Meng-Che; Yen, Ting-Lin; Lan, Chang-Chou; Jayakumar, Thanasekaran; Yang, Chih-Hao

    2015-01-01

    Antrodia camphorata (A. camphorata) is a fungus generally used in Chinese folk medicine for treatment of viral hepatitis and cancer. Our previous study found A. camphorata has neuroprotective properties and could reduce stroke injury in cerebral ischemia animal models. In this study, we sought to investigate the molecular mechanisms of neuroprotective effects of A. camphorata in middle cerebral artery occlusion (MCAO) rats. A selective occlusion of the middle cerebral artery (MCA) with whole blood clots was used to induce ischemic stroke in rats and they were orally treated with A. camphorata (0.25 and 0.75 g/kg/day) alone or combined with aspirin (5 mg/kg/day). To provide insight into the functions of A. camphorata mediated neuroprotection, the expression of Bax, inducible nitric oxide synthase (iNOS), haem oxygenase-1 (HO-1), and activated caspase-3 was determined by Western blot assay. Treatment of aspirin alone significantly reduced the expressions of HO-1 (P < 0.001), iNOS (P < 0.001), and Bax (P < 0.01) in ischemic regions. The reduction of these expressions was more potentiated when rats treated by aspirin combined with A. camphorata (0.75 g/kg/day). Combination treatment also reduced apoptosis as measured by a significant reduction in active caspase-3 expression in the ischemic brain compared to MCAO group (P < 0.01). Moreover, treatment of A. camphorata significantly (P < 0.05) reduced fenton reaction-induced hydroxyl radical (OH•) formation at a dose of 40 mg/mL. Taken together, A. camphorata has shown neuroprotective effects in embolic rats, and the molecular mechanisms may correlate with the downregulation of Bax, iNOS, HO-1, and activated caspase-3 and the inhibition of OH• signals. PMID:26379739

  9. Antrodia camphorata Potentiates Neuroprotection against Cerebral Ischemia in Rats via Downregulation of iNOS/HO-1/Bax and Activated Caspase-3 and Inhibition of Hydroxyl Radical Formation.

    PubMed

    Yang, Po-Sheng; Lin, Po-Yen; Chang, Chao-Chien; Yu, Meng-Che; Yen, Ting-Lin; Lan, Chang-Chou; Jayakumar, Thanasekaran; Yang, Chih-Hao

    2015-01-01

    Antrodia camphorata (A. camphorata) is a fungus generally used in Chinese folk medicine for treatment of viral hepatitis and cancer. Our previous study found A. camphorata has neuroprotective properties and could reduce stroke injury in cerebral ischemia animal models. In this study, we sought to investigate the molecular mechanisms of neuroprotective effects of A. camphorata in middle cerebral artery occlusion (MCAO) rats. A selective occlusion of the middle cerebral artery (MCA) with whole blood clots was used to induce ischemic stroke in rats and they were orally treated with A. camphorata (0.25 and 0.75 g/kg/day) alone or combined with aspirin (5 mg/kg/day). To provide insight into the functions of A. camphorata mediated neuroprotection, the expression of Bax, inducible nitric oxide synthase (iNOS), haem oxygenase-1 (HO-1), and activated caspase-3 was determined by Western blot assay. Treatment of aspirin alone significantly reduced the expressions of HO-1 (P < 0.001), iNOS (P < 0.001), and Bax (P < 0.01) in ischemic regions. The reduction of these expressions was more potentiated when rats treated by aspirin combined with A. camphorata (0.75 g/kg/day). Combination treatment also reduced apoptosis as measured by a significant reduction in active caspase-3 expression in the ischemic brain compared to MCAO group (P < 0.01). Moreover, treatment of A. camphorata significantly (P < 0.05) reduced fenton reaction-induced hydroxyl radical (OH(•)) formation at a dose of 40 mg/mL. Taken together, A. camphorata has shown neuroprotective effects in embolic rats, and the molecular mechanisms may correlate with the downregulation of Bax, iNOS, HO-1, and activated caspase-3 and the inhibition of OH(•) signals.

  10. UV-A Irradiation Activates Nrf2-Regulated Antioxidant Defense and Induces p53/Caspase3-Dependent Apoptosis in Corneal Endothelial Cells

    PubMed Central

    Liu, Cailing; Vojnovic, Dijana; Kochevar, Irene E.; Jurkunas, Ula V.

    2016-01-01

    Purpose To examine whether Nrf2-regulated antioxidant defense and p53 are activated in human corneal endothelial cells (CEnCs) by environmental levels of ultraviolet A (UV-A), a known stimulator of oxidative stress. Methods Immortalized human CEnCs (HCEnCi) were exposed to UV-A fluences of 2.5, 5, 10, or 25 J/cm2, then allowed to recover for 3 to 24 hours. Control HCEnCi did not receive UV-A. Reactive oxygen species (ROS) were measured using H2DCFDA. Cell cytotoxicity was evaluated by lactate dehydrogenase (LDH) release. Levels of Nrf2, HO-1, NQO-1, p53, and caspase3 were detected by immunnoblotting or real-time PCR. Activated caspase3 was measured by immunoblotting and a fluorescence assay. Results Exposure of HCEnCi to 5, 10, and 25 J/cm2 UV-A increased ROS levels compared with controls. Nrf2, HO-1, and NQO-1 mRNA increased 1.7- to 3.2-fold at 3 and 6 hours after irradiation with 2.5 and 5 J/cm2 UV-A. At 6 hours post irradiation, UV-A (5 J/cm2) enhanced nuclear Nrf2 translocation. At 24 hours post treatment, UV-A (5, 10, and 25 J/cm2) produced a 1.8- to 2.8-fold increase in phospho-p53 and a 2.6- to 6.0-fold increase in activated caspase3 compared with controls, resulting in 20% to 42% cell death. Conclusions Lower fluences of UV-A induce Nrf2-regulated antioxidant defense and higher fluences activate p53 and caspase3, indicating that even near-environmental levels of UV-A may affect normal CEnCs. This data suggest that UV-A may especially damage cells deficient in antioxidant defense, and thus may be involved in the etiology of Fuchs' endothelial corneal dystrophy (FECD). PMID:27127932

  11. Two new glycosides isolated from Sapindus mukorossi fruits: effects on cell apoptosis and caspase-3 activation in human lung carcinoma cells.

    PubMed

    Zhang, Xuan-Ming; Yang, De-Po; Xie, Zhi-Yong; Li, Qing; Zhu, Long-Ping; Zhao, Zhi-Min

    2016-07-01

    Two new glycosides (1, 2) and two saponins (3, 4) were isolated from the fruits of Sapindus mukorossi Gaertn. The two glycosides were designated as sapindoside G (1) and 4'',4'''''-O-diacetylmukurozioside IIa (2). All four compounds exhibited inhibitory effects against A549 human lung adenocarcinoma cells with inhibition rates up to 69.2-83.3% at a concentration of 100 μg/mL. Flow cytometric analysis revealed that compounds 1-4 could suppress A549 cell growth by promoting cell apoptosis, which was related to the activation of caspase-3.

  12. Effect of ginsenoside Rh-2 via activation of caspase-3 and Bcl-2-insensitive pathway in ovarian cancer cells.

    PubMed

    Kim, Jin Hee; Choi, Jae-Sun

    2016-12-13

    Ginsenoside has been reported to have therapeutic effects for some types of cancer, but its effect on ovarian cancer cells has not been evaluated. In this study, we monitored the effects of ginsenoside-Rh2 (Rh2) on the inhibition of cell proliferation and the apoptotic process in the ovarian cancer cell line SKOV3 using an MTT assay and TUNEL assay. We found that Rh2 inhibited cell proliferation and significantly induced apoptosis. We confirmed the apoptotic effects of Rh2 using western blot analysis of apoptosis-related proteins. Specifically, the levels of cleaved poly ADP ribose polymerase (PARP) and cleaved caspase-3 significantly increased in SKOV3 cells treated with Rh2. Therefore, Rh2 clearly suppressed the growth of SKOV3 cells in vitro, which was associated with induction of the apoptosis pathway. Moreover, the migration assay showed that Rh2 inhibited the invasive ability of SKOV3 cells. Taken together, our results suggest that Rh2 has anticancer effects in SKOV3 cells through inhibition of cell proliferation and induction of apoptosis. Considering the therapeutic potential of Rh2, more studies should be carried out to facilitate the future application of this natural product as a potential anti-cancer agent.

  13. Reduced cellular redox status induces 4-hydroxynonenal-mediated caspase 3 activation leading to erythrocyte death during chronic arsenic exposure in rats

    SciTech Connect

    Biswas, Debabrata; Sen, Gargi; Biswas, Tuli

    2010-05-01

    Chronic exposure to arsenic in rats led to gradual accumulation of the toxicant in erythrocytes causing oxidative stress in these cells. 4-Hydroxynonenal (4-HNE), a major aldehyde product of lipid peroxidation, contributed significantly to the cytopathological events observed during oxidative stress in the erythrocytes of exposed rats. 4-HNE triggered death signal cascade that was initiated with the formation of HNE-protein adducts in cytosol. HNE-protein adduct formation resulted in depletion of cytosolic antioxidants followed by increased generation of ROS. Results showed accumulation of hydrogen peroxide (H{sub 2}O{sub 2}) from the early stages of arsenic exposure, while superoxide (O{sub 2}{sup c}entre dot{sup -}) and hydroxyl radical ({sup c}entre dotOH) also contributed to the oxidative stress during longer period of exposure. Suppression of antioxidant system coupled with increased generation of ROS eventually led to activation of caspase 3 during arsenic exposure. Attenuation of HNE-mediated activation of caspase 3 in presence of N-acetylcysteine (NAC) indicated the involvement of GSH in the process. Prevention of HNE-mediated degradation of membrane proteins in presence of Z-DEVD-FMK identified caspase 3 as the principal mediator of HNE-induced cellular damage during arsenic exposure. Degradation of band 3 followed by its aggregation on the red cell surface promoted immunologic recognition of redistributed band 3 by autologous IgG with subsequent attachment of C3b. Finally, the formation of C3b-IgG-band 3 immune complex accelerated the elimination of affected cells from circulation and led to the decline of erythrocyte life span during chronic arsenic toxicity.

  14. A pro-apoptotic 15-kDa protein from Bacopa monnieri activates caspase-3 and downregulates Bcl-2 gene expression in mouse mammary carcinoma cells.

    PubMed

    Kalyani, Manjula Ishwara; Lingaraju, Sheela Mysore; Salimath, Bharathi P

    2013-01-01

    In diseases such as cancer, induction of apoptosis has been a new target for mechanism-based drug discovery. The central component of the process of apoptosis is a proteolytic system involving a family of proteases called caspases. Apoptosis involves characteristic morphological and biochemical events ultimately leading to cell demise. Apoptotic induction is evidently central to the mechanism of action of plant-derived anticancer drugs. Extract of the medicinal plant, Bacopa monnieri, inhibits tumor cell proliferation and accumulation of malignant ascites fluid. The crude sample when subjected to Soxhlet extraction yielded different solvent extracts of which the aqueous extract showed biological activity of apoptosis in Ehrlich ascites tumor cell lines (EAT). Bacopa monnieri water extract (BMWE) treatment of EAT cells produced apoptotic morphological characteristics and in-vivo DNA fragmentation, which is due to the activity of an endogenous endonuclease. The endonuclease responsible for DNA fragmentation acts downstream of caspase-3 activity and is also referred to as caspase-activated DNase (CAD). The CAD constitutively expressed in the cell cytoplasm is translocated into the nucleus upon BMWE treatment, as verified by Western blotting, leading to DNA fragmentation and to programmed cell death. The expression of the pro-apoptotic gene Bax was increased and the expression of the anti-apoptotic gene Bcl-2 was decreased by BMWE treatment. Considering the above results, BMWE was able induce apoptosis in EAT cells via Bax-related caspase-3 activation. This may provide experimental data for the further clinical use of BMWE in cancer.

  15. Paroxetine-induced apoptosis in human osteosarcoma cells: Activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca{sup 2+}]{sub i} elevation

    SciTech Connect

    Chou, C.-T.; He Shiping; Jan, C.-R. . E-mail: crjan@isca.vghks.gov.tw

    2007-02-01

    Selective serotonin reuptake inhibitors (SSRIs), a group of antidepressants, are generally used for treatment of various mood and anxiety disorders. There has been much research showing the anti-tumor and cytotoxic activities of some antidepressants; but the detailed mechanisms were unclear. In cultured human osteosarcoma cells (MG63), paroxetine reduced cell viability in a concentration- and time-dependent manner. Paroxetine caused apoptosis as assessed by propidium iodide-stained cells and increased caspase-3 activation. Although immunoblotting data revealed that paroxetine could activate the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH{sub 2}-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), only SB203580 (a p38 MAPK inhibitor) partially prevented cells from apoptosis. Paroxetine also induced [Ca{sup 2+}]{sub i} increases which involved the mobilization of intracellular Ca{sup 2+} stored in the endoplasmic reticulum and Ca{sup 2+} influx from extracellular medium. However, pretreatment with BAPTA/AM, a Ca{sup 2+} chelator, to prevent paroxetine-induced [Ca{sup 2+}]{sub i} increases did not protect cells from death. The results suggest that in MG63 cells, paroxetine caused Ca{sup 2+}-independent apoptosis via inducing p38 MAPK-associated caspase-3 activation.

  16. Decreased rate of protein synthesis, caspase-3 activity, and ubiquitin-proteasome proteolysis in soleus muscles from growing rats fed a low-protein, high-carbohydrate diet.

    PubMed

    Batistela, Emanuele; Pereira, Mayara Peron; Siqueira, Juliany Torres; Paula-Gomes, Silvia; Zanon, Neusa Maria; Oliveira, Eduardo Brandt; Navegantes, Luiz Carlos Carvalho; Kettelhut, Isis C; Andrade, Claudia Marlise Balbinotti; Kawashita, Nair Honda; Baviera, Amanda Martins

    2014-06-01

    The aim of this study was to investigate the changes in the rates of both protein synthesis and breakdown, and the activation of intracellular effectors that control these processes in soleus muscles from growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The mass and the protein content, as well as the rate of protein synthesis, were decreased in the soleus from LPHC-fed rats. The availability of amino acids was diminished, since the levels of various essential amino acids were decreased in the plasma of LPHC-fed rats. Overall rate of proteolysis was also decreased, explained by reductions in the mRNA levels of atrogin-1 and MuRF-1, ubiquitin conjugates, proteasome activity, and in the activity of caspase-3. Soleus muscles from LPHC-fed rats showed increased insulin sensitivity, with increased levels of insulin receptor and phosphorylation levels of AKT, which probably explains the inhibition of both the caspase-3 activity and the ubiquitin-proteasome system. The fall of muscle proteolysis seems to represent an adaptive response that contributes to spare proteins in a condition of diminished availability of dietary amino acids. Furthermore, the decreased rate of protein synthesis may be the driving factor to the lower muscle mass gain in growing rats fed the LPHC diet.

  17. Thimerosal-induced apoptosis in human SCM1 gastric cancer cells: activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca2+]i elevation.

    PubMed

    Liu, Shiuh-Inn; Huang, Chorng-Chih; Huang, Chun-Jen; Wang, Being-Whey; Chang, Po-Min; Fang, Yi-Chien; Chen, Wei-Chuan; Wang, Jue-Long; Lu, Yih-Chau; Chu, Sau-Tung; Chou, Chiang-Ting; Jan, Chung-Ren

    2007-11-01

    Thimerosal is a mercury-containing preservative in some vaccines. The effect of thimerosal on human gastric cancer cells is unknown. This study shows that in cultured human gastric cancer cells (SCM1), thimerosal reduced cell viability in a concentration- and time-dependent manner. Thimerosal caused apoptosis as assessed by propidium iodide-stained cells and caspase-3 activation. Although immunoblotting data revealed that thimerosal could activate the phosphorylation of extracellular signal-regulated kinase, c-Jun NH2-terminal protein kinase, and p38 mitogen-activated protein kinase (p38 MAPK), only SB203580 (a p38 MAPK inhibitor) partially prevented cells from apoptosis. Thimerosal also induced [Ca2+](i) increases via Ca2+ influx from the extracellular space. However, pretreatment with (bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetate)/AM, a Ca2+ chelator, to prevent thimerosal-induced [Ca2+](i) increases did not protect cells from death. The results suggest that in SCM1 cells, thimerosal caused Ca2+-independent apoptosis via phosphorylating p38 MAPK resulting in caspase-3 activation.

  18. Environmental neurotoxin dieldrin induces apoptosis via caspase-3-dependent proteolytic activation of protein kinase C delta (PKCdelta): Implications for neurodegeneration in Parkinson's disease

    PubMed Central

    Kanthasamy, Anumantha G; Kitazawa, Masashi; Yang, Yongjie; Anantharam, Vellareddy; Kanthasamy, Arthi

    2008-01-01

    Background In previous work, we investigated dieldrin cytotoxicity and signaling cell death mechanisms in dopaminergic PC12 cells. Dieldrin has been reported to be one of the environmental factors correlated with Parkinson's disease and may selectively destroy dopaminergic neurons. Methods Here we further investigated dieldrin toxicity in a dopaminergic neuronal cell model of Parkinson's disease, namely N27 cells, using biochemical, immunochemical, and flow cytometric analyses. Results In this study, dieldrin-treated N27 cells underwent a rapid and significant increase in reactive oxygen species followed by cytochrome c release into cytosol. The cytosolic cytochrome c activated caspase-dependent apoptotic pathway and the increased caspase-3 activity was observed following a 3 hr dieldrin exposure in a dose-dependent manner. Furthermore, dieldrin caused the caspase-dependent proteolytic cleavage of protein kinase C delta (PKCδ) into 41 kDa catalytic and 38 kDa regulatory subunits in N27 cells as well as in brain slices. PKCδ plays a critical role in executing the apoptotic process in dieldrin-treated dopaminergic neuronal cells because pretreatment with the PKCδ inhibitor rottlerin, or transfection and over-expression of catalytically inactive PKCδK376R, significantly attenuates dieldrin-induced DNA fragmentation and chromatin condensation. Conclusion Together, we conclude that caspase-3-dependent proteolytic activation of PKCδ is a critical event in dieldrin-induced apoptotic cell death in dopaminergic neuronal cells. PMID:18945348

  19. 17beta-estradiol attenuates programmed cell death in cortical pericontusional zone following traumatic brain injury via upregulation of ERalpha and inhibition of caspase-3 activation.

    PubMed

    Li, Li-Zhuo; Bao, Yi-Jun; Zhao, Min

    2011-01-01

    Pericontusional zone (PCZ) of traumatic cerebral contusion is a target of pharmacological intervention. It is well studied that 17beta-estradiol has a protective role in ischemic brain injury, but its role in brain protection of traumatic brain damage deserves further investigation, especially in pericontusional zone. Here we show that 17beta-estradiol enhances the protein expression and mRNA induction of estrogen alpha receptor (ERalpha) and prevents from programmed cell death in cortical pericontusional zone. ERalpha specific antagonist blocks this protective effect of 17beta-estradiol. Caspase-3 activation occurs in cortical pericontusional zone of the oil-treated injured rat brain and its activation is inhibited by 17beta-estradiol treatment. Additionally, ERalpha specific antagonist reverses this inhibition. Pan-caspase inhibitor also protect cortical pericontusional zone from programmed cell death. Our present study indicates 17beta-estradiol protects from programmed cell death in cortical pericontusional zone via enhancement of ERalpha and decrease of caspase-3 activation.

  20. Role of type I & type II reactions in DNA damage and activation of caspase 3 via mitochondrial pathway induced by photosensitized benzophenone.

    PubMed

    Amar, Saroj Kumar; Goyal, Shruti; Mujtaba, Syed Faiz; Dwivedi, Ashish; Kushwaha, Hari Narayan; Verma, Ankit; Chopra, Deepti; Chaturvedi, Rajnish K; Ray, Ratan Singh

    2015-06-01

    Sunscreen users have been increased, since excessive sun exposure increased the risk of skin diseases. Benzophenone (BP) and its derivatives are commonly used in sunscreens as UV blocker. Its photosafety is concern for human health. Our study showed the role of type-I and type-II radicals in activation of caspase 3 and phototoxicity of BP under sunlight/UV radiation. BP photodegraded and formed two photoproducts. BP generates reactive oxygen species (ROS) singlet oxygen ((1)O2), superoxide anion (O2˙(-)) and hydroxyl radical (˙OH) through type-I and type-II photodynamic mechanisms. Photocytotoxicity significantly reduced cell viability under sunlight, UVB and UVA. DCF fluorescence confirmed intracellular ROS generation. BP showed single strand DNA breakage, further proved by cyclobutane pyrimidine dimmers (CPDs) formation. Lipid peroxidation and LDH leakage were enhanced by BP. P21 dependent cell cycle study showed sub G1 population which advocates apoptotic cell death, confirmed through AO/EB and annexin V/PI staining. BP decreased mitochondrial membrane potential, death protein released and activated caspase. We proposed cytochrome c regulated caspase 3 dependent apoptosis in HaCaT cell line through down regulation of Bcl2/Bax ratio. Phototoxicity potential of its photoproducts is essential to understand its total environmental fate. Hence, we conclude that BP may replace from cosmetics preparation of topical application.

  1. Apoptosis induction-related cytosolic calcium responses revealed by the dual FRET imaging of calcium signals and caspase-3 activation in a single cell.

    PubMed

    Miyamoto, Akitoshi; Miyauchi, Hiroshi; Kogure, Takako; Miyawaki, Atsushi; Michikawa, Takayuki; Mikoshiba, Katsuhiko

    2015-04-24

    Stimulus-induced changes in the intracellular Ca(2+) concentration control cell fate decision, including apoptosis. However, the precise patterns of the cytosolic Ca(2+) signals that are associated with apoptotic induction remain unknown. We have developed a novel genetically encoded sensor of activated caspase-3 that can be applied in combination with a genetically encoded sensor of the Ca(2+) concentration and have established a dual imaging system that enables the imaging of both cytosolic Ca(2+) signals and caspase-3 activation, which is an indicator of apoptosis, in the same cell. Using this system, we identified differences in the cytosolic Ca(2+) signals of apoptotic and surviving DT40 B lymphocytes after B cell receptor (BCR) stimulation. In surviving cells, BCR stimulation evoked larger initial Ca(2+) spikes followed by a larger sustained elevation of the Ca(2+) concentration than those in apoptotic cells; BCR stimulation also resulted in repetitive transient Ca(2+) spikes, which were mediated by the influx of Ca(2+) from the extracellular space. Our results indicate that the observation of both Ca(2+) signals and cells fate in same cell is crucial to gain an accurate understanding of the function of intracellular Ca(2+) signals in apoptotic induction.

  2. A recombinant matriptase causes an increase in caspase-3 activity in a small-intestinal epithelial IEC-6 line cultured on fibronectin-coated plates.

    PubMed

    Mochida, Seiya; Tsuzuki, Satoshi; Inouye, Kuniyo; Fushiki, Tohru

    2014-05-01

    Matriptase is an epithelial-derived type-II transmembrane serine protease. This protease is expressed prominently in the villus tip of small-intestinal epithelia at which senescent cells undergo shedding and/or apoptosis. The basement membrane of epithelial cells, including small-intestinal epithelial cells, contains extracellular matrix (ECM) proteins such as fibronectin and laminin. We found previously that high concentrations of a recombinant matriptase catalytic domain (r-MatCD) (e.g. 1 μM) caused an increased detachment of and increases in the activity of apoptotic effector caspase-3 in a rat small-intestinal epithelial IEC-6 line cultured on laminin-coated plates and proposed that at sites with its high level of expression, matriptase contributes to promoting shedding and/or detachment-induced death of epithelial cells through a mechanism mediating loss of cell-ECM adhesion. In this study, we found that even without increasing cell detachment, a high concentration of r-MatCD causes an increase in caspase-3 activity in IEC-6 cells cultured on fibronectin-coated plates, suggesting that the recombinant matriptase can cause apoptosis by a mechanism unrelated to cell detachment. Also, r-MatCD-treated IEC-6 cells on fibronectin were found to display spindle-like morphological changes. We suggest that r-MatCD causes apoptosis of IEC-6 on fibronectin by a mechanism involving the disruption of cell integrity.

  3. Fucose-containing sulfated polysaccharides from brown seaweeds inhibit proliferation of melanoma cells and induce apoptosis by activation of caspase-3 in vitro.

    PubMed

    Ale, Marcel Tutor; Maruyama, Hiroko; Tamauchi, Hidekazu; Mikkelsen, Jørn D; Meyer, Anne S

    2011-12-01

    Fucose-containing sulfated polysaccharides (FCSPs) extracted from seaweeds, especially brown macro-algae, are known to possess essential bioactive properties, notably growth inhibitory effects on tumor cells. In this work, we conducted a series of in vitro studies to examine the influence of FCSPs products from Sargassumhenslowianum C. Agardh (FSAR) and Fucus vesiculosus (FVES), respectively, on proliferation of melanoma B16 cells and to investigate the underlying apoptosis promoting mechanisms. Cell viability analysis showed that both FCSPs products, i.e., FSAR and FVES, decreased the proliferation of the melanoma cells in a dose-response fashion, with FSAR being more potent at lower dosages, and FVES being relatively more anti-proliferative than FSAR at higher dosages. Flow cytometric analysis by Annexin V staining of the melanoma cells exposed to the FCSPs products confirmed that both FSAR and FVES induced apoptosis. The FCSPs-induced apoptosis was evidenced by loss of plasma membrane asymmetry and translocation of the cell membrane phospholipids and was accompanied by the activation of caspase-3. The FCSPs bioactivity is proposed to be attributable to distinct structural features of the FCSPs, particularly the presence of sulfated galactofucans (notably in S.henslowianum) and sulfated fucans (notably in F. vesiculosus). This study thus indicates that unfractionated FCSPs may exert bioactive effects on skin cancer cells via induction of apoptosis through cascades of reactions that involve activation of caspase-3.

  4. Mono-2-ethylhexyl phthalate induced loss of mitochondrial membrane potential and activation of Caspase3 in HepG2 cells.

    PubMed

    Chen, Xi; Wang, Jianshu; Qin, Qizhi; Jiang, Ying; Yang, Guangtao; Rao, Kaimin; Wang, Qian; Xiong, Wei; Yuan, Jing

    2012-05-01

    L02 and HepG2 cells were exposed to mono-(2-ethylhexyl) phthalate (MEHP) at concentrations of 6.25-100μM. After 48h treatment, MEHP decreased HepG2 cell viability in a concentration-dependent manner and L02 cell viability in the 50 and 100μM groups (p<0.01). Furthermore, at 24 and 48h after treatment, MEHP decreased the glutathione levels of HepG2 cells in all treatment groups and in the ΔΨ(m) in L02 and HepG2 cells with MEHP≥25μM (p<0.05 or p<0.01). At 24h after treatment, MEHP induced activation of caspase3 in all treated HepG2 and L02 cells (p<0.05 or p<0.01) except the 100μM MEHP treatment group. The increase in the Bax to Bcl-2 ratio suggests that Bcl-2 family involved in the control of MEHP-induced apoptosis in these two cell types. The data suggest that MEHP could induce apoptosis of HepG2 cells through mitochondria- and caspase3-dependent pathways.

  5. Reduced graphene oxide decorated with gold nanoparticle as signal amplification element on ultra-sensitive electrochemiluminescence determination of caspase-3 activity and apoptosis using peptide based biosensor

    PubMed Central

    Khalilzadeh, Balal; Shadjou, Nasrin; Afsharan, Hadi; Eskandani, Morteza; Nozad Charoudeh, Hojjatollah; Rashidi, Mohammad-Reza

    2016-01-01

    Introduction:Growing demands for ultrasensitive biosensing have led to the development of numerous signal amplification strategies. In this report, a novel electrochemiluminescence (ECL) method was developed for the detection and determination of caspase-3 activity based on reduced graphene oxide sheets decorated by gold nanoparticles as signal amplification element and horseradish peroxidase enzyme (HRP) as ECL intensity enhancing agent. Methods: The ECL intensity of the luminol was improved by using the streptavidin coated magnetic beads and HRP in the presence of hydrogen peroxide. The cleavage behavior of caspase-3 was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques using biotinylated peptide (DEVD containing peptide) which was coated on reduced graphene oxide decorated with gold nanoparticle. The surface modification of graphene oxide was successfully confirmed by FTIR, UV-vis and x-ray spectroscopy. Results: ECL based biosensor showed that the linear dynamic range (LDR) and the lower limit of quantification (LLOQ) were 0.5-100 and 0.5 femtomolar (fM), respectively. Finally, the performance of the engineered peptide based biosensor was validated in the A549 cell line as real samples. Conclusion: The prepared peptide based biosensor could be considered as an excellent candidate for early detection of apoptosis, cell turnover, and cancer related diseases. PMID:27853677

  6. Brazilein from Caesalpinia sappan L. Antioxidant Inhibits Adipocyte Differentiation and Induces Apoptosis through Caspase-3 Activity and Anthelmintic Activities against Hymenolepis nana and Anisakis simplex.

    PubMed

    Liang, Chia-Hua; Chan, Leong-Perng; Chou, Tzung-Han; Chiang, Feng-Yu; Yen, Chuan-Min; Chen, Pin-Ju; Ding, Hsiou-Yu; Lin, Rong-Jyh

    2013-01-01

    Brazilein, a natural, biologically active compound from Caesalpinia sappan L., has been shown to exhibit anti-inflammatory and antioxidant properties and to inhibit the growth of several cancer cells. This study verifies the antioxidant and antitumor characteristics of brazilein in skin cancer cells and is the first time to elucidate the inhibition mechanism of adipocyte differentiation, cestocidal activities against Hymenolepis nana, and reduction of spontaneous movement in Anisakis simplex. Brazilein exhibits an antioxidant capacity as well as the ability to scavenge DPPH(•) and ABTS(•+) free radicals and to inhibit lipid peroxidation. Brazilein inhibited intracellular lipid accumulation during adipocyte differentiation in 3T3-L1 cells and suppressed the induction of peroxisome proliferator-activated receptor γ (PPAR γ ), the master regulator of adipogenesis, suggesting that brazilein presents the antiobesity effects. The toxic effects of brazilein were evaluated in terms of cell viability, induction of apoptosis, and the activity of caspase-3 in BCC cells. The inhibition of the growth of skin cancer cells (A431, BCC, and SCC25) by brazilein is greater than that of human skin malignant melanoma (A375) cells, mouse leukemic monocyte macrophage (RAW 264.7 cells), and noncancerous cells (HaCaT and BNLCL2 cells). The anthelmintic activities of brazilein against Hymenolepis nana are better than those of Anisakis simplex.

  7. Brazilein from Caesalpinia sappan L. Antioxidant Inhibits Adipocyte Differentiation and Induces Apoptosis through Caspase-3 Activity and Anthelmintic Activities against Hymenolepis nana and Anisakis simplex

    PubMed Central

    Liang, Chia-Hua; Chan, Leong-Perng; Chou, Tzung-Han; Chiang, Feng-Yu; Yen, Chuan-Min; Chen, Pin-Ju; Ding, Hsiou-Yu

    2013-01-01

    Brazilein, a natural, biologically active compound from Caesalpinia sappan L., has been shown to exhibit anti-inflammatory and antioxidant properties and to inhibit the growth of several cancer cells. This study verifies the antioxidant and antitumor characteristics of brazilein in skin cancer cells and is the first time to elucidate the inhibition mechanism of adipocyte differentiation, cestocidal activities against Hymenolepis nana, and reduction of spontaneous movement in Anisakis simplex. Brazilein exhibits an antioxidant capacity as well as the ability to scavenge DPPH• and ABTS•+ free radicals and to inhibit lipid peroxidation. Brazilein inhibited intracellular lipid accumulation during adipocyte differentiation in 3T3-L1 cells and suppressed the induction of peroxisome proliferator-activated receptor γ (PPARγ), the master regulator of adipogenesis, suggesting that brazilein presents the antiobesity effects. The toxic effects of brazilein were evaluated in terms of cell viability, induction of apoptosis, and the activity of caspase-3 in BCC cells. The inhibition of the growth of skin cancer cells (A431, BCC, and SCC25) by brazilein is greater than that of human skin malignant melanoma (A375) cells, mouse leukemic monocyte macrophage (RAW 264.7 cells), and noncancerous cells (HaCaT and BNLCL2 cells). The anthelmintic activities of brazilein against Hymenolepis nana are better than those of Anisakis simplex. PMID:23554834

  8. The effects of 3,4-methylenedioxymethamphetamine (MDMA) on nicotinic receptors: Intracellular calcium increase, calpain/caspase 3 activation, and functional upregulation

    SciTech Connect

    Garcia-Rates, Sara; Camarasa, Jordi

    2010-05-01

    Previous work by our group demonstrated that homomeric alpha7 nicotinic acetylcholine receptors (nAChR) play a role in the neurotoxicity induced by 3,4-methylenedioxymethamphetamine (MDMA), as well as the binding affinity of this drug to these receptors. Here we studied the effect of MDMA on the activation of nAChR subtypes, the consequent calcium mobilization, and calpain/caspase 3 activation because prolonged Ca{sup 2+} increase could contribute to cytotoxicity. As techniques, we used fluorimetry in Fluo-4-loaded PC12 cells and electrophysiology in Xenopus oocytes. MDMA produced a rapid and sustained increase in calcium without reaching the maximum effect induced by ACh. It also concentration-dependently inhibited the response induced by ACh, nicotine, and the specific alpha7 agonist PNU 282987 with IC{sub 50} values in the low micromolar range. Similarly, MDMA induced inward currents in Xenopus oocytes transfected with human alpha7 but not with alpha4beta2 nAChR and inhibited ACh-induced currents in both receptors in a concentration-dependent manner. The calcium response was inhibited by methyllycaconitine (MLA) and alpha-bungarotoxin but not by dihydro-beta-erythroidine. These results therefore indicate that MDMA acts as a partial agonist on alpha7 nAChRs and as an antagonist on the heteromeric subtypes. Subsequently, calcium-induced Ca{sup 2+} release from the endoplasmic reticulum and entry through voltage-operated calcium channels are also implicated as proved using specific antagonists. In addition, treatment with MDMA for 24 h significantly increased basal Ca{sup 2+} levels and induced an increase in alpha-spectrin breakdown products, which indicates that calpain and caspase 3 were activated. These effects were inhibited by pretreatment with MLA. Moreover, pretreatment with MDMA induced functional upregulation of calcium responses to specific agonists of both heteromeric and alpha7 nAChR. Sustained calcium entry and calpain activation could favor the

  9. The effects of 3,4-methylenedioxymethamphetamine (MDMA) on nicotinic receptors: intracellular calcium increase, calpain/caspase 3 activation, and functional upregulation.

    PubMed

    Garcia-Ratés, Sara; Camarasa, Jordi; Sánchez-García, Ana I; Gandía, Luis; Escubedo, Elena; Pubill, David

    2010-05-01

    Previous work by our group demonstrated that homomeric alpha7 nicotinic acetylcholine receptors (nAChR) play a role in the neurotoxicity induced by 3,4-methylenedioxymethamphetamine (MDMA), as well as the binding affinity of this drug to these receptors. Here we studied the effect of MDMA on the activation of nAChR subtypes, the consequent calcium mobilization, and calpain/caspase 3 activation because prolonged Ca(2+) increase could contribute to cytotoxicity. As techniques, we used fluorimetry in Fluo-4-loaded PC12 cells and electrophysiology in Xenopus oocytes. MDMA produced a rapid and sustained increase in calcium without reaching the maximum effect induced by ACh. It also concentration-dependently inhibited the response induced by ACh, nicotine, and the specific alpha7 agonist PNU 282987 with IC(50) values in the low micromolar range. Similarly, MDMA induced inward currents in Xenopus oocytes transfected with human alpha7 but not with alpha4beta2 nAChR and inhibited ACh-induced currents in both receptors in a concentration-dependent manner. The calcium response was inhibited by methyllycaconitine (MLA) and alpha-bungarotoxin but not by dihydro-beta-erythroidine. These results therefore indicate that MDMA acts as a partial agonist on alpha7 nAChRs and as an antagonist on the heteromeric subtypes. Subsequently, calcium-induced Ca(2+) release from the endoplasmic reticulum and entry through voltage-operated calcium channels are also implicated as proved using specific antagonists. In addition, treatment with MDMA for 24 h significantly increased basal Ca(2+) levels and induced an increase in alpha-spectrin breakdown products, which indicates that calpain and caspase 3 were activated. These effects were inhibited by pretreatment with MLA. Moreover, pretreatment with MDMA induced functional upregulation of calcium responses to specific agonists of both heteromeric and alpha7 nAChR. Sustained calcium entry and calpain activation could favor the activation of Ca(2

  10. Inhibition of caspase-9 aggravates acute liver injury through suppression of cytoprotective autophagy

    PubMed Central

    Guo, Rui; Lin, Bin; Pan, Jing Fei; Liong, Emily C.; Xu, Ai Min; Youdim, Moussa; Fung, Man Lung; So, Kwok Fai; Tipoe, George L.

    2016-01-01

    Acute liver disease is characterized by inflammation, oxidative stress and necrosis, which can greatly influence the long term clinical outcome and lead to liver failure or cancer. Here, we initially demonstrated the beneficial role of caspase-9-dependent autophagy in acute liver injury. Treatment with caspase-9 inhibitor z-LEHD-FMK in HepG2 cells, AML12 cells and C57BL/b6N mice exacerbated CCl4-induced acute hepatocellular damage, and also down-regulated autophagy markers expression levels, indicating that caspase-9 inhibition may aggravate acute liver damage by suppressing cytoprotective autophagy. CCl4 was used as an acute liver injury inducer which caused oxidative stress and apoptosis through up-regulation of HIF-1α, as well as triggered hepatic inflammation and necroptosis via TLR4/NF-κB pathway. Caspase-9 Thr125 site was firstly phosphorylated by ERK1/2 which subsequently activated the cytoprotective autophagy process to attenuate acute CCl4 injury. Caspase-9 inhibition further aggravated hepatic necroptosis through NF-κB expression, leading to increased pro-inflammatory mediators levels, suggesting a protective role of caspase-9-dependent autophagy in the inflammatory process as well as its possibility being a new therapeutic target for the treatment of acute liver injury. PMID:27580936

  11. Inhibition of caspase-9 aggravates acute liver injury through suppression of cytoprotective autophagy.

    PubMed

    Guo, Rui; Lin, Bin; Pan, Jing Fei; Liong, Emily C; Xu, Ai Min; Youdim, Moussa; Fung, Man Lung; So, Kwok Fai; Tipoe, George L

    2016-09-01

    Acute liver disease is characterized by inflammation, oxidative stress and necrosis, which can greatly influence the long term clinical outcome and lead to liver failure or cancer. Here, we initially demonstrated the beneficial role of caspase-9-dependent autophagy in acute liver injury. Treatment with caspase-9 inhibitor z-LEHD-FMK in HepG2 cells, AML12 cells and C57BL/b6N mice exacerbated CCl4-induced acute hepatocellular damage, and also down-regulated autophagy markers expression levels, indicating that caspase-9 inhibition may aggravate acute liver damage by suppressing cytoprotective autophagy. CCl4 was used as an acute liver injury inducer which caused oxidative stress and apoptosis through up-regulation of HIF-1α, as well as triggered hepatic inflammation and necroptosis via TLR4/NF-κB pathway. Caspase-9 Thr125 site was firstly phosphorylated by ERK1/2 which subsequently activated the cytoprotective autophagy process to attenuate acute CCl4 injury. Caspase-9 inhibition further aggravated hepatic necroptosis through NF-κB expression, leading to increased pro-inflammatory mediators levels, suggesting a protective role of caspase-9-dependent autophagy in the inflammatory process as well as its possibility being a new therapeutic target for the treatment of acute liver injury.

  12. Apoptosis induced by paclitaxel via Bcl-2, Bax and caspases 3 and 9 activation in NB4 human leukaemia cells is not modulated by ERK inhibition.

    PubMed

    Morales-Cano, Daniel; Calviño, Eva; Rubio, Virginia; Herráez, Angel; Sancho, Pilar; Tejedor, M Cristina; Diez, José C

    2013-11-01

    We have studied the role of pivotal bio-molecules involved in signalling of cytotoxic effects induced by paclitaxel (Ptx) on acute promyelocytic human leukaemia NB4 cells. A time-dependent increase in cell death and DNA cleavage was observed after 30μM Ptx treatment. Cell death induction by Ptx proceeds mainly as programmed cell death as shown by annexin V-FITC, reaching up to 30% of apoptotic cells after 24h. Significant reductions of p53, changes in Bax and Bcl-2 and activation of caspases 3 and 9 were observed as the treatment was applied for long times. Ptx treatments produced NFkB depletion with expression levels abolished at 19h what could be involved in reduction of survival signals. Phosphorylation of intracellular kinases showed that pERK1/2 decreased significantly at 19h of Ptx treatment. When these cells were preincubated for 90min with 20μM PD98059, 2'-amino-3'-methoxyflavone, an inhibitor of ERK phosphorylation, a slight reduction of cell viability was observed in comparison to that produced by Ptx alone. Pretreatment with PD98059 neither activated caspases nor significantly increased the apoptotic effect of Ptx. Taken together, our data reveal that the inhibition of ERK phosphorylation does not seem to be an essential pathway for bursting an increased induction of apoptosis by Ptx. Decrease of p53 and Bcl-2, fragmentation of DNA, increase of Bax and, finally, activation of caspases 3 and 9 in NB4 leukaemia cells make the apoptotic process induced by Ptx irreversible. Application of Ptx in leukaemia cells shows therefore a promising potential with particular effects on different leukaemia cell types.

  13. Doxorubicin In Vivo Rapidly Alters Expression and Translation of Myocardial Electron Transport Chain Genes, Leads to ATP Loss and Caspase 3 Activation

    PubMed Central

    Pointon, Amy V.; Walker, Tracy M.; Phillips, Kate M.; Luo, Jinli; Riley, Joan; Zhang, Shu-Dong; Parry, Joel D.; Lyon, Jonathan J.; Marczylo, Emma L.; Gant, Timothy W.

    2010-01-01

    Background Doxorubicin is one of the most effective anti-cancer drugs but its use is limited by cumulative cardiotoxicity that restricts lifetime dose. Redox damage is one of the most accepted mechanisms of toxicity, but not fully substantiated. Moreover doxorubicin is not an efficient redox cycling compound due to its low redox potential. Here we used genomic and chemical systems approaches in vivo to investigate the mechanisms of doxorubicin cardiotoxicity, and specifically test the hypothesis of redox cycling mediated cardiotoxicity. Methodology/Principal Findings Mice were treated with an acute dose of either doxorubicin (DOX) (15 mg/kg) or 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) (25 mg/kg). DMNQ is a more efficient redox cycling agent than DOX but unlike DOX has limited ability to inhibit gene transcription and DNA replication. This allowed specific testing of the redox hypothesis for cardiotoxicity. An acute dose was used to avoid pathophysiological effects in the genomic analysis. However similar data were obtained with a chronic model, but are not specifically presented. All data are deposited in the Gene Expression Omnibus (GEO). Pathway and biochemical analysis of cardiac global gene transcription and mRNA translation data derived at time points from 5 min after an acute exposure in vivo showed a pronounced effect on electron transport chain activity. This led to loss of ATP, increased AMPK expression, mitochondrial genome amplification and activation of caspase 3. No data gathered with either compound indicated general redox damage, though site specific redox damage in mitochondria cannot be entirely discounted. Conclusions/Significance These data indicate the major mechanism of doxorubicin cardiotoxicity is via damage or inhibition of the electron transport chain and not general redox stress. There is a rapid response at transcriptional and translational level of many of the genes coding for proteins of the electron transport chain complexes. Still

  14. Hydrogen-rich saline attenuates isoflurane-induced caspase-3 activation and cognitive impairment via inhibition of isoflurane-induced oxidative stress, mitochondrial dysfunction, and reduction in ATP levels

    PubMed Central

    Li, Cheng; Hou, Lengchen; Chen, Dan; Lin, Fuqing; Chang, Tao; Li, Mengzhu; Zhang, Lingling; Niu, Xiaoyin; Wang, Huiying; Fu, Shukun; Zheng, Junhua

    2017-01-01

    Objectives: The inhaled general anesthetic isoflurane has been shown to induce caspase-3 activation in vitro and in vivo. The underlying mechanisms and functional consequences of this activity remain unclear. Isoflurane can induce caspase-3 activation by causing accumulation of reactive oxygen species (ROS), mitochondrial dysfunction, and reduction in adenosine triphosphate (ATP) levels. This study aimed to investigate the protective effect of hydrogen, a novel antioxidant, against isoflurane-induced caspase-3 activation and cognitive impairment. Methods: H4 human neuroglioma cells overexpressing human amyloid precursor protein were treated with saline or hydrogen-rich saline (HS, 300 μM), with or without 2% isoflurane, for 6 h or 3 h. Western blot analysis, fluorescence assays, and a mitochondrial swelling assay were used to evaluate caspase-3 activation, levels of ROS and ATP, and mitochondrial function. The effect of the interaction of isoflurane (1.4% for 2 h) and HS (5 mL/kg) on cognitive function in mice was also evaluated using a fear conditioning test. Results: We found that HS attenuated isoflurane-induced caspase-3 activation. Moreover, HS treatment mitigated isoflurane-induced ROS accumulation, opening of mitochondrial permeability transition pores, reduction in mitochondrial membrane potential, and reduction in cellular ATP levels. Finally, HS significantly alleviated isoflurane-induced cognitive impairment in mice. Conclusions: Our results suggest that HS attenuates isoflurane-induced caspase-3 activation and cognitive impairment via inhibition of isoflurane-induced oxidative stress, mitochondrial dysfunction, and reduction in ATP levels. These findings warrant further research into the underlying mechanisms of this activity, and indicate that HS has the potential to attenuate anesthesia neurotoxicity. PMID:28386342

  15. Angelica sinensis polysaccharides promotes apoptosis in human breast cancer cells via CREB-regulated caspase-3 activation.

    PubMed

    Zhou, Wei-Jie; Wang, Sheng; Hu, Zhuang; Zhou, Zhen-Yu; Song, Cai-Juan

    2015-11-20

    Angelica sinensis polysaccharide (ASP) is purified from the fresh roots of Angelica sinensis (AS). This traditional Chinese medicine has been used for thousands of years for treating gynecological diseases and used in functional foods for the prevention and treatment of various diseases, such as inflammation and cancer. The antitumor activity of ASP is related to its biological activities, because it suppresses a variety of pro-proliferative or anti-apoptotic factors that are dramatically expressed in cancer cells of given types. In this study, we show that angelica sinensis polysaccharide induced apoptosis in breast cancer cells of T47D over-expressing the Cyclic AMP response element binding protein (CREB), inducing apoptosis-related signaling pathway activity. The result also found that ASP caused cell death was linked to caspase activity, accompanied by the loss of mitochondrial membrane potential, cytochrome c release, and Bax translocation from the cytosol to the mitochondria. We found that ASP significantly affected the poly-ADP-ribose polymerase (PARP), Bcl-2 Associated X Protein (Bax), Bcl-2, Bcl-xL and apoptotic protease activating facter-1 (Apaf1) protein expression in a dose- and time-dependent manner. DAPI staining and Flow cytometry were used to analyze apoptosis. The nude mice xenograft model was used to evaluate the antitumor effect of ASP in vivo. ASP has profound antitumor effect on T47D cells, probably by inducing apoptosis through CREB signaling pathway. Thus, these results suggest that ASP would be a promising therapeutic agent for breast cancer.

  16. Induction of Apoptosis by Green Synthesized Gold Nanoparticles Through Activation of Caspase-3 and 9 in Human Cervical Cancer Cells

    PubMed Central

    Baharara, Javad; Ramezani, Tayebe; Divsalar, Adeleh; Mousavi, Marzieh; Seyedarabi, Arefeh

    2016-01-01

    Background: Gold Nanoparticles (GNPs) are used in imaging and molecular diagnostic applications. As the development of a novel approach in the green synthesis of metal nanoparticles is of great importance and a necessity, a simple and safe method for the synthesis of GNPs using plant extracts of Zataria multiflora leaves was applied in this study and the results on GNPs’ anticancer activity against HeLa cells were reported. Methods: The GNPs were characterized by UV-visible spectroscopy, FTIR, TEM, DLS and Zeta-potential measurements. In addition, the cellular up-take of nanoparticles was investigated using Dark Field Microscopy (DFM). Induction of apoptosis by high dose of GNPs in HeLa cells was assessed by MTT assay, Acridin orange, DAPI staining, Annexin V/PI double-labeling flow cytometry and caspase activity assay. Results: UV-visible spectroscopy results showed a surface plasmon resonance band for GNPs at 530 nm. FTIR results demonstrated an interaction between plant extract and nanoparticles. TEM images revealed different shapes for GNPs and DLS results indicated that the GNPs range in size from 10 to 42 nm. The Zeta potential values of the synthesized GNPs were between 30 to 50 Mev, indicating the formation of stable particles. As evidenced by MTT assay, GNPs inhibit proliferation of HeLa cells in dose-dependent GNPs and cytotoxicity of GNPs in Bone Marrow Mesenchymal Stem Cell (BMSCs) was lower than cancerous cells. At nontoxic concentrations, the cellular up-take of the nanoparticles took place. Acridin orange and DAPI staining showed morphological changes in the cell’s nucleus due to apoptosis. Finally, caspase activity assay demonstrated HeLa cell’s apoptosis through caspase activation. Conclusion: The results showed that GNPs have the ability to induce apoptosis in HeLa cells. PMID:27141266

  17. Poly β-cyclodextrin/TPdye nanomicelle-based two-photon nanoprobe for caspase-3 activation imaging in live cells and tissues.

    PubMed

    Yan, Huijuan; He, Leiliang; Zhao, Wenjie; Li, Jishan; Xiao, Yue; Yang, Ronghua; Tan, Weihong

    2014-11-18

    Two-photon excitation (TPE) with near-infrared (NIR) photons as the excitation source has important advantages over conventional one-photon excitation (OPE) in the field of biomedical imaging. β-cyclodextrin polymer (βCDP)-based two-photon absorption (TPA) fluorescent nanomicelle exhibits desirable two-photon-sensitized fluorescence properties, high photostability, high cell-permeability and excellent biocompatibility. By combination of the nanostructured two-photon dye (TPdye)/βCDP nanomicelle with the TPE technique, herein we have designed a TPdye/βCDP nanomicelle-based TPA fluorescent nanoconjugate for enzymatic activity assay in biological fluids, live cells and tissues. This sensing system is composed of a trans-4-[p-(N,N-diethylamino)styryl]-N-methylpyridinium iodide (DEASPI)/βCDP nanomicelle as TPA fluorophore and carrier vehicle for delivery of a specific peptide sequence to live cell through fast endocytosis, and an adamantine (Ad)-GRRRDEVDK-BHQ2 (black hole quencher 2) peptide (denoted as Ad-DEVD-BHQ2) anchored on the DEASPI/βCDP nanomicelle's surface to form TPA DEASPI/βCDP@Ad-DEVD-BHQ2 nanoconjugate by the βCD/Ad host-guest inclusion strategy. Successful in vitro and in vivo enzymatic activities assay of caspase-3 was demonstrated with this sensing strategy. Our results reveal that this DEASPI/βCDP@Ad-DEVD-BHQ2 nanoconjugate not only is a robust, sensitive and selective sensor for quantitative assay of caspase-3 in the complex biological environment but also can be efficiently delivered into live cells as well as tissues and act as a "signal-on" fluorescent biosensor for specific, high-contrast imaging of enzymatic activities. This DEASPI/βCDP@Ad-DEVD-BHQ2 nanoconjugate provides a new opportunity to screen enzyme inhibitors and evaluate the apoptosis-associated disease progression. Moreover, our design also provides a methodology model scheme for development of future TPdye/βCDP nanomicelle-based two-photon fluorescent probes for in vitro or

  18. Bis(acridine-9-carboxylate)-nitro-europium(III) dihydrate complex a new apoptotic agent through Flk-1 down regulation, caspase-3 activation and oligonucleosomes DNA fragmentation.

    PubMed

    Azab, Hassan A; Hussein, Belal H M; El-Azab, Mona F; Gomaa, Mohamed; El-Falouji, Abdullah I

    2013-01-01

    New bis(acridine-9-carboxylate)-nitro-europium(III) dihydrate complex was synthesized and characterized. In vivo anti-angiogenic activities of bis(acridine-9-carboxylate)-nitro-europium(III) dihydrate complex against Ehrlich ascites carcinoma (EAC) cells are described. The newly synthesized complex resulted in inhibition of proliferation of EAC cells and ascites formation. The anti-tumor effect was found to be through anti-angiogenic activity as evident by the reduction of microvessel density in EAC solid tumors. The anti-angiogenic effect is mediated through down-regulation of VEGF receptor type-2 (Flk-1). The complex was also found to significantly increase the level of caspase-3 in laboratory animals compared to the acridine ligand and to the control group. This was also consistent with the DNA fragmentation detected by capillary electrophoresis that proved the apoptotic effect of the new complex. Our complex exhibited anti-angiogenic and apoptotic activity in vivo, a thing that makes it a potential effective chemotherapeutic agent. The interaction of calf thymus DNA (ct-DNA) with bis(acridine-9-carboxylate)-nitro-europium(III) dihydrate complex has been investigated using fluorescence technique. A competitive experiment of the europium(III)-acridine complex with ethidium bromide (EB) to bind DNA revealed that interaction between the europium(III)-acridine and DNA was via intercalation. The interaction of the synthesized complex with tyrosine kinases was also studied using molecular docking simulation to further substantiate its mode of action.

  19. Effects of Active Components of Fuzi and Gancao Compatibility on Bax, Bcl-2, and Caspase-3 in Chronic Heart Failure Rats

    PubMed Central

    Wang, Liqin; He, Yu; Zhang, Yuyan; Zhou, Huifen; Yu, Li

    2016-01-01

    Hypaconitine (HA) and glycyrrhetinic acid (GA) are active components of Fuzi (Aconitum carmichaelii) and Gancao (Glycyrrhiza uralensis Fisch); they have been used in compatibility for chronic heart failure (CHF) from ancient times. The purpose of the present research was to explore whether apoptosis pathways were related with the protective effects of HA + GA against CHF rats or not. The rats were progressed with transverse-aortic constriction (TAC) operation for 4 weeks to build the CHF state, and then the Digoxin (1 mg/kg), HA (2.07 mg/kg), GA (25 mg/kg), and HA (2.07 mg/kg) + GA (25 mg/kg) were orally administrated to rats for 1 week. The levels of BNP and cTnI in the plasma were decreased in the HA + GA group, and the heart/body weight ratio (H/B) and left ventricular (LV) parameters of transthoracic echocardiography were also declined; moreover, the expressions of Bax, Bcl-2, and caspase-3 were all improved in the HA + GA group than other groups in the immunohistochemistry and western blot methods. In general, the data suggested that Fuzi and Gancao compatibility could protect the CHF rats from apoptosis, which provided a strong evidence for further searching for mechanisms of them. PMID:28053643

  20. Expression and prognostic significance of APAF-1, caspase-8 and caspase-9 in stage II/III colon carcinoma: caspase-8 and caspase-9 is associated with poor prognosis.

    PubMed

    Sträter, Jörn; Herter, Ines; Merkel, Gaby; Hinz, Ulf; Weitz, Jürgen; Möller, Peter

    2010-08-15

    Apoptosis protease activating factor-1 (APAF-1), caspase-8 and caspase-9 are important factors in the execution of death signals. To study their prognostic influence in colon carcinoma, expression of APAF-1, caspase-8 and caspase-9 was determined by immunohistochemistry in normal colon mucosa (n = 8) and R0-resected stage II/III colon carcinomas (n >or= 124) using a semiquantitative score. Staining results were correlated with disease-free survival by Kaplan-Meier estimates, and multivariate Cox analyses were performed. In normal colon, APAF-1 and caspase-8 are most strongly expressed in the luminal surface epithelium, whereas caspase-9 is expressed all along the crypt axis. In colon carcinomas, there is considerable variability in the expression of these proapoptotic factors, although complete loss of caspase-8 and caspase-9 is rare. APAF-1 expression did not correlate with disease-free survival. Instead, both expression of caspase-9 and high-level expression of caspase-8 in a majority of tumor cells were significantly associated with adverse prognosis (p = 0.004 and p = 0.029, respectively). The influence of caspase-8 expression was mainly seen in patients with stage III colon carcinoma (p = 0.011), whereas the prognostic influence of caspase-9 expression was significant in stage II cases (p = 0.037) and just failed to be significant in stage III tumors (p = 0.0581). After adjusting for confounding factors in a multivariate Cox analysis, the effect of caspase-9 in predicting disease-free survival was confirmed (p = 0.003). Our data suggest that, in colon carcinomas, expression of caspase-8 and caspase-9 is significantly associated with poor survival. Caspase-9 may be an independent prognosticator in colon carcinoma.

  1. Inhibition of Caspase 3 Abrogates Lipopolysaccharide-Induced Nitric Oxide Production by Preventing Activation of NF-κB and c-Jun NH2-Terminal Kinase/Stress-Activated Protein Kinase in RAW 264.7 Murine Macrophage Cells

    PubMed Central

    Chakravortty, Dipshikha; Kato, Yutaka; Sugiyama, Tsuyoshi; Koide, Naoki; Mu, Mya Mya; Yoshida, Tomoaki; Yokochi, Takashi

    2001-01-01

    The effect of caspase inhibitors on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 267.4 murine macrophage cells was investigated. Pretreatment of RAW cells with a broad caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK), resulted in a striking reduction in LPS-induced NO production. Z-VAD-FMK inhibited LPS-induced NF-κB activation. Furthermore, it blocked phosphorylation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) but not that of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinases. Similarly, a caspase 3-specific inhibitor, Z-Asp-Glu-Val-Asp-fluoromethylketone, inhibited NO production, NF-κB activation, and JNK/SAPK phosphorylation in LPS-stimulated RAW cells. The attenuated NO production was due to inhibition of the expression of an inducible-type NO synthase (iNOS). The overexpression of the dominant negative mutant of JNK/SAPK and the addition of a JNK/SAPK inhibitor blocked iNOS expression but did not block LPS-induced caspase 3 activation. It was therefore suggested that the inhibition of caspase 3 might abrogate LPS-induced NO production by preventing the activation of NF-κB and JNK/SAPK. The caspase family, especially caspase 3, is likely to play an important role in the signal transduction for iNOS-mediated NO production in LPS-stimulated mouse macrophages. PMID:11179293

  2. Possible involvement of caspase-6 and -7 but not caspase-3 in the regulation of hypoxia-induced apoptosis in tube-forming endothelial cells.

    PubMed

    Eguchi, Ryoji; Toné, Shigenobu; Suzuki, Akio; Fujimori, Yoshihiro; Nakano, Takashi; Kaji, Kazuhiko; Ohta, Toshiro

    2009-01-15

    We recently reported that a broad-spectrum caspase inhibitor zVAD-fmk failed, while p38 inhibitor SB203580 succeeded, to prevent chromatin condensation and nuclear fragmentation induced by hypoxia in tube-forming HUVECs. In this study, we investigated the reasons for zVAD-fmk's inability to inhibit these morphological changes at the molecular level. The inhibitor effectively inhibited DNA ladder formation and activation of caspase-3 and -6, but it surprisingly failed to inhibit caspase-7 activation. On the other hand, SB203580 successfully inhibited all of these molecular events. When zLEHD-fmk, which specifically inhibits initiator caspase-9 upstream of caspase-3, was used, it inhibited caspase-3 activation but failed to inhibit caspase-6 and -7 activation. It also failed to inhibit hypoxia-induced chromatin condensation, nuclear fragmentation and DNA ladder formation. Taken together, our results indicate that, during hypoxia, caspase-7 is responsible for chromatin condensation and nuclear fragmentation while caspase-6 is responsible for DNA ladder formation.

  3. Le Carbone, a charcoal supplement, modulates DSS-induced acute colitis in mice through activation of AMPKα and downregulation of STAT3 and caspase 3 dependent apoptotic pathways.

    PubMed

    Afrin, Mst Rejina; Arumugam, Somasundaram; Rahman, Md Azizur; Karuppagounder, Vengadeshprabhu; Sreedhar, Remya; Harima, Meilei; Suzuki, Hiroshi; Nakamura, Takashi; Miyashita, Shizuka; Suzuki, Kenji; Ueno, Kazuyuki; Watanabe, Kenichi

    2017-02-01

    Le Carbone (LC) is a charcoal supplement, which contains a large amount of dietary fibers. Several studies suggested that charcoal supplement may be beneficial for stomach disorders, diarrhea, gas and indigestion. But no studies address whether LC intake would suppress inflammation, cell proliferation or disease progression in colitis. In the present study, the effect of LC on experimental colitis induced by dextran sulfate sodium (DSS) in mice and its possible mechanism of action were examined. A study was designed for 8days, using C57BL/6 female mice that were administered with 3% DSS in drinking water for 7days followed by another 1day consumption of normal water with or without treatment. LC suspension was administered daily for 7days via oral gavage using 5mg/mouse in treatment group and normal group was supplied with drinking water. LC suspension significantly attenuated the loss of body weight and shortening of colon length induced by DSS. The disease activity index, histopathologic changes were significantly reduced by LC treatment. The inflammatory mediators TNFα, IL-1β, p-STAT3 and p-NF-κB induced in the colon by DSS were markedly suppressed by LC. The increased activation of AMPKα in the colon was also detected in LC group. Furthermore, the apoptotic marker protein cleaved caspase 3 was down-regulated and anti-apoptotic proteins Bcl2 and Bcl-xL were significantly up-regulated by LC treatment. Taken together, our results demonstrate the ability of LC to inhibit inflammation, apoptosis and give some evidence for its potential use as adjuvant treatment of inflammatory bowel disease.

  4. P2X7 receptor blockade protects against cisplatin-induced nephrotoxicity in mice by decreasing the activities of inflammasome components, oxidative stress and caspase-3.

    PubMed

    Zhang, Yuanyuan; Yuan, Fahuan; Cao, Xuejiao; Zhai, Zhifang; GangHuang; Du, Xiang; Wang, Yiqin; Zhang, Jingbo; Huang, Yunjian; Zhao, Jinghong; Hou, Weiping

    2014-11-15

    Nephrotoxicity is a common complication of cisplatin chemotherapy and thus limits the use of cisplatin in clinic. The purinergic 2X7 receptor (P2X7R) plays important roles in inflammation and apoptosis in some inflammatory diseases; however, its roles in cisplatin-induced nephrotoxicity remain unclear. In this study, we first assessed the expression of P2X7R in cisplatin-induced nephrotoxicity in C57BL/6 mice, and then we investigated the changes of renal function, histological injury, inflammatory response, and apoptosis in renal tissues after P2X7R blockade in vivo using an antagonist A-438079. Moreover, we measured the changes of nod-like receptor family, pyrin domain containing proteins (NLRP3) inflammasome components, oxidative stress, and proapoptotic genes in renal tissues in cisplatin-induced nephrotoxicity after treatment with A-438079. We found that the expression of P2X7R was significantly upregulated in the renal tubular epithelial cells in cisplatin-induced nephrotoxicity compared with that of the normal control group. Furthermore, pretreatment with A-438079 markedly attenuated the cisplatin-induced renal injury while lightening the histological damage, inflammatory response and apoptosis in renal tissue, and improved the renal function. These effects were associated with the significantly reduced levels of NLRP3 inflammasome components, oxidative stress, p53 and caspase-3 in renal tissues in cisplatin-induced nephrotoxicity. In conclusions, our studies suggest that the upregulated activity of P2X7R might play important roles in the development of cisplatin-induced nephrotoxicity, and P2X7R blockade might become an effective therapeutic strategy for this disease.

  5. Oridonin, a novel lysine acetyltransferases inhibitor, inhibits proliferation and induces apoptosis in gastric cancer cells through p53- and caspase-3-mediated mechanisms

    PubMed Central

    Zhang, Juan; Diao, Hua; Li, Guangming; Xu, Ling; Wang, Ting; Wei, Jue; Meng, Wenying; Ma, Jia-Li; Yu, Heguo; Wang, Yu-Gang

    2016-01-01

    Lysine acetylation has been reported to involve in the pathogenesis of multiple diseases including cancer. In our screening study to identify natural compounds with lysine acetyltransferase inhibitor (KATi) activity, oridonin was found to possess acetyltransferase-inhibitory effects on multiple acetyltransferases including P300, GCN5, Tip60, and pCAF. In gastric cancer cells, oridonin treatment inhibited cell proliferation in a concentration-dependent manner and down-regulated the expression of p53 downstream genes, whereas p53 inhibition by PFT-α reversed the antiproliferative effects of oridonin. Moreover, oridonin treatment induced cell apoptosis, increased the levels of activated caspase-3 and caspase-9, and decreased the mitochondrial membrane potential in gastric cancer cells in a concentration-dependent manner. Caspase-3 inhibition by Ac-DEVD-CHO reversed the proapoptosis effect of oridonin. In conclusion, our study identified oridonin as a novel KATi and demonstrated its tumor suppressive effects in gastric cancer cells at least partially through p53-and caspase-3-mediated mechanisms. PMID:26980707

  6. RNase activity of sialic acid-binding lectin from bullfrog eggs drives antitumor effect via the activation of p38 MAPK to caspase-3/7 signaling pathway in human breast cancer cells

    PubMed Central

    Kariya, Yukiko; Tatsuta, Takeo; Sugawara, Shigeki; Kariya, Yoshinobu; Nitta, Kazuo; Hosono, Masahiro

    2016-01-01

    Sialic acid-binding lectin obtained from bullfrog eggs (SBL) induces cell death in cancer cells but not in normal cells. This antitumor effect is mediated through its ribo-nuclease (RNase) activity. However, the underlying molecular mechanisms remain unclear. We found that the p38 mitogen-activated protein kinase (MAPK) signaling pathway was activated when SBL induced cell death in three human breast cancer cell lines: SK-BR-3, MCF-7, and MDA-MB231. The suppression of p38 MAPK phosphorylation by a p38 MAPK inhibitor as well as short interference RNA knockdown of p38 MAPK expression significantly decreased cell death and increased the cell viability of SBL-treated MDA-MB231 cells. H103A, an SBL mutant lacking in RNase activity, showed decreased SBL-induced cell death compared with native SBL. However, the loss of RNase activity of SBL had no effect on its internalization into cells. The H103A mutant also displayed decreased phosphorylation of p38 MAPK. Moreover, SBL promoted caspase-3/7 activation followed by a cleavage of poly (ADP-ribose)-polymerase, whereas the SBL mutant, H103A, lost this ability. The SBL-induced caspase-3/7 activation was suppressed by the p38 MAPK inhibitor, SB203580, as well as pan-caspase inhibitor, zVAD-fmk. In the presence of zVAD-fmk, the SBL-induced cell death was decreased. In addition, the cell viability of SBL-treated MDA-MB231 cells recovered by zVAD-fmk treatment. Taken together, our results suggest that the RNase activity of SBL leads to breast cancer cell death through the activation of p38 MAPK followed by the activation of caspase-3/7. PMID:27513956

  7. P2X7 receptor blockade protects against cisplatin-induced nephrotoxicity in mice by decreasing the activities of inflammasome components, oxidative stress and caspase-3

    SciTech Connect

    Zhang, Yuanyuan; Yuan, Fahuan; Cao, Xuejiao; Zhai, Zhifang; Gang Huang; Du, Xiang; Wang, Yiqin; Zhang, Jingbo; Huang, Yunjian; Zhao, Jinghong; Hou, Weiping

    2014-11-15

    Nephrotoxicity is a common complication of cisplatin chemotherapy and thus limits the use of cisplatin in clinic. The purinergic 2X7 receptor (P2X7R) plays important roles in inflammation and apoptosis in some inflammatory diseases; however, its roles in cisplatin-induced nephrotoxicity remain unclear. In this study, we first assessed the expression of P2X7R in cisplatin-induced nephrotoxicity in C57BL/6 mice, and then we investigated the changes of renal function, histological injury, inflammatory response, and apoptosis in renal tissues after P2X7R blockade in vivo using an antagonist A-438079. Moreover, we measured the changes of nod-like receptor family, pyrin domain containing proteins (NLRP3) inflammasome components, oxidative stress, and proapoptotic genes in renal tissues in cisplatin-induced nephrotoxicity after treatment with A-438079. We found that the expression of P2X7R was significantly upregulated in the renal tubular epithelial cells in cisplatin-induced nephrotoxicity compared with that of the normal control group. Furthermore, pretreatment with A-438079 markedly attenuated the cisplatin-induced renal injury while lightening the histological damage, inflammatory response and apoptosis in renal tissue, and improved the renal function. These effects were associated with the significantly reduced levels of NLRP3 inflammasome components, oxidative stress, p53 and caspase-3 in renal tissues in cisplatin-induced nephrotoxicity. In conclusions, our studies suggest that the upregulated activity of P2X7R might play important roles in the development of cisplatin-induced nephrotoxicity, and P2X7R blockade might become an effective therapeutic strategy for this disease. - Highlights: • The P2X7R expression was markedly upregulated in cisplatin-induced nephrotoxicity. • P2X7R blockade significantly attenuated the cisplatin-induced renal injury. • P2X7R blockade reduced activities of NLRP3 inflammasome components in renal tissue. • P2X7R blockade

  8. Increased anticancer activity of the thymidylate synthase inhibitor BGC9331 combined with the topoisomerase I inhibitor SN-38 in human colorectal and breast cancer cells: induction of apoptosis and ROCK cleavage through caspase-3-dependent and -independent mechanisms.

    PubMed

    Coudray, Anne-Marie; Louvet, Christophe; Kornprobst, Michel; Raymond, Eric; André, Thierry; Tournigand, Christophe; Faivre, Sandrine; De Gramont, Aimery; Larsen, Annette K; Gespach, Christian

    2005-08-01

    The folate analogue BGC9331 is a new thymidylate synthase (TS) inhibitor showing a broad spectrum of cyto-toxic activity against several human solid tumors, including colorectal cancer. In this study, we investigated the anticancer activity of BGC9331 either alone or combined with 5-fluorouracil (5-FU), MTA (multi-target antifolate), oxali-platin and SN-38, the active metabolite of the topoisomerase I inhibitor CPT-11. The antiproliferative activity of each drug and BGC9331-based combinations was investigated in the HT-29 human colorectal cancer cell line and its HT-29/5-FU counterparts selected for resistance to 5-FU. BGC9331 combined with MTA or SN-38 induced synergistic responses in HT-29 cells. Treatment of HT-29 cells with either BGC9331 or SN-38 increased caspase-3 activity and the percentage of apoptotic cells from 3 to 13%. Both drugs also augmented the proteolytic cleavage of the Rho-kinase ROCK-1 that was attenuated by the caspase-3 pathway inhibitor z-DEVD-fmk. BGC9331 combined with SN-38 further increased the percentage of apoptotic cells to 25%, and inhibited cell cycle progression and cell proliferation by 65%. This was accompanied by proteolytic activation of ROCK-1, through both caspase-3-dependent and -independent mechanisms, as shown in caspase-3-deficient MCF-7 breast cancer cells. These encouraging results warrant further preclinical investigations and clinical trials on the use of BGC9331 combined with SN-38/CPT-11 in treatment of patients with advanced colorectal or gastric cancers.

  9. Caspase-9 mediates the apoptotic death of megakaryocytes and platelets, but is dispensable for their generation and function.

    PubMed

    White, Michael J; Schoenwaelder, Simone M; Josefsson, Emma C; Jarman, Kate E; Henley, Katya J; James, Chloé; Debrincat, Marlyse A; Jackson, Shaun P; Huang, David C S; Kile, Benjamin T

    2012-05-03

    Apoptotic caspases, including caspase-9, are thought to facilitate platelet shedding by megakaryocytes. They are known to be activated during platelet apoptosis, and have also been implicated in platelet hemostatic responses. However, the precise requirement for, and the regulation of, apoptotic caspases have never been defined in either megakaryocytes or platelets. To establish the role of caspases in platelet production and function, we generated mice lacking caspase-9 in their hematopoietic system. We demonstrate that both megakaryocytes and platelets possess a functional apoptotic caspase cascade downstream of Bcl-2 family-mediated mitochondrial damage. Caspase-9 is the initiator caspase, and its loss blocks effector caspase activation. Surprisingly, steady-state thrombopoiesis is unperturbed in the absence of caspase-9, indicating that the apoptotic caspase cascade is not required for platelet production. In platelets, loss of caspase-9 confers resistance to the BH3 mimetic ABT-737, blocking phosphatidylserine (PS) exposure and delaying ABT-737-induced thrombocytopenia in vivo. Despite this, steady-state platelet lifespan is normal. Casp9(-/-) platelets are fully capable of physiologic hemostatic responses and functional regulation of adhesive integrins in response to agonist. These studies demonstrate that the apoptotic caspase cascade is required for the efficient death of megakaryocytes and platelets, but is dispensable for their generation and function.

  10. FoxO3a governs early microglial proliferation and employs mitochondrial depolarization with caspase 3, 8, and 9 cleavage during oxidant induced apoptosis.

    PubMed

    Shang, Yan Chen; Chong, Zhao Zhong; Hou, Jinling; Maiese, Kenneth

    2009-11-01

    Microglia of the central nervous system have a dual role in the ability to influence the survival of neighboring cells. During inflammatory cell activation, microglia can lead to the disposal of toxic cellular products and permit tissue regeneration, but microglia also may lead to cellular destruction with phagocytic removal. For these reasons, it is essential to elucidate not only the underlying pathways that control microglial activation and proliferation, but also the factors that determine microglial survival. In this regard, we investigated in the EOC 2 microglial cell line with an oxygen-glucose deprivation (OGD) injury model of oxidative stress the role of the "O" class forkhead transcription factor FoxO3a that in some scenarios is closely linked to immune system function. We demonstrate that FoxO3a is a necessary element in the control of early and late apoptotic injury programs that involve membrane phosphatidylserine externalization and nuclear DNA degradation, since transient knockdown of FoxO3a in microglia preserves cellular survival 24 hours following OGD exposure. However, prior to the onset of apoptotic injury, FoxO3a facilitates the activation and proliferation of microglia as early as 3 hours following OGD exposure that occurs in conjunction with the trafficking of the unphosphorylated and active post-translational form of FoxO3a from the cytoplasm to the cell nucleus. FoxO3a also can modulate apoptotic mitochondrial signal transduction pathways in microglia, since transient knockdown of FoxO3a prevents mitochondrial membrane depolarization as well as the release of cytochrome c during OGD. Control of this apoptotic cascade also extends to progressive caspase activation as early as 1 hour following OGD exposure. The presence of FoxO3a is necessary for the expression of cleaved (active) caspase 3, 8, and 9, since loss of FoxO3a abrogates the induction of caspase activity. Interestingly, elimination of FoxO3a reduced caspase 9 activity to a lesser

  11. Effect of polysaccharides extract of rhizoma atractylodis macrocephalae on thymus, spleen and cardiac indexes, caspase-3 activity ratio, Smac/DIABLO and HtrA2/Omi protein and mRNA expression levels in aged rats.

    PubMed

    Guo, Ling; Sun, Yong Le; Wang, Ai Hong; Xu, Chong En; Zhang, Meng Yuan

    2012-10-01

    This study was designed to determine the possible protective effect of polysaccharides extract of rhizoma atractylodis macrocephalae on heart function in aged rats. Polysaccharides extract of rhizoma atractylodis macrocephalae was administered to aged rats. Results showed that thymus, spleen and cardiac indexs were significantly increased, whereas caspase-3 activity ratio, Smac/DIABLO and HtrA2/Omi protein expression, Smac/DIABLO and HtrA2/Omi mRNA expression levels were markedly reduced. It can be concluded that polysaccharides extract of rhizoma atractylodis macrocephalae may enhance immunity and improve heart function in aged rats.

  12. Inhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in Arabidopsis

    PubMed Central

    Ge, Y; Cai, Y-M; Bonneau, L; Rotari, V; Danon, A; McKenzie, E A; McLellan, H; Mach, L; Gallois, P

    2016-01-01

    Programmed cell death (PCD) is used by plants for development and survival to biotic and abiotic stresses. The role of caspases in PCD is well established in animal cells. Over the past 15 years, the importance of caspase-3-like enzymatic activity for plant PCD completion has been widely documented despite the absence of caspase orthologues. In particular, caspase-3 inhibitors blocked nearly all plant PCD tested. Here, we affinity-purified a plant caspase-3-like activity using a biotin-labelled caspase-3 inhibitor and identified Arabidopsis thaliana cathepsin B3 (AtCathB3) by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Consistent with this, recombinant AtCathB3 was found to have caspase-3-like activity and to be inhibited by caspase-3 inhibitors. AtCathepsin B triple-mutant lines showed reduced caspase-3-like enzymatic activity and reduced labelling with activity-based caspase-3 probes. Importantly, AtCathepsin B triple mutants showed a strong reduction in the PCD induced by ultraviolet (UV), oxidative stress (H2O2, methyl viologen) or endoplasmic reticulum stress. Our observations contribute to explain why caspase-3 inhibitors inhibit plant PCD and provide new tools to further plant PCD research. The fact that cathepsin B does regulate PCD in both animal and plant cells suggests that this protease may be part of an ancestral PCD pathway pre-existing the plant/animal divergence that needs further characterisation. PMID:27058316

  13. Synergistic effect of fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway.

    PubMed

    Lin, Ming-Te; Lin, Chia-Liang; Lin, Tzu-Yu; Cheng, Chun-Wen; Yang, Shun-Fa; Lin, Chu-Liang; Wu, Chih-Chien; Hsieh, Yi-Hsien; Tsai, Jen-Pi

    2016-05-01

    Combining antitumor agents with bioactive compounds is a potential strategy for improving the effect of chemotherapy on cancer cells. The goal of this study was to elucidate the antitumor effect of the flavonoid, fisetin, combined with the multikinase inhibitor, sorafenib, against human cervical cancer cells in vitro and in vivo. The combination of fisetin and sorafenib synergistically induced apoptosis in HeLa cells, which is accompanied by a marked increase in loss of mitochondrial membrane potential. Apoptosis induction was achieved by caspase-3 and caspase-8 activation which increased the ratio of Bax/Bcl-2 and caused the subsequent cleavage of PARP level while disrupting the mitochondrial membrane potential in HeLa cells. Decreased Bax/Bcl-2 ratio level and mitochondrial membrane potential were also observed in siDR5-treated HeLa cells. In addition, in vivo studies revealed that the combined fisetin and sorafenib treatment was clearly superior to sorafenib treatment alone using a HeLa xenograft model. Our study showed that the combination of fisetin and sorafenib exerted better synergistic effects in vitro and in vivo than either agent used alone against human cervical cancer, and this synergism was based on apoptotic potential through a mitochondrial- and DR5-dependent caspase-8/caspase-3 signaling pathway. This combined fisetin and sorafenib treatment represents a novel therapeutic strategy for further clinical developments in advanced cervical cancer.

  14. A novel nano-copper-bearing stainless steel with reduced Cu(2+) release only inducing transient foreign body reaction via affecting the activity of NF-κB and Caspase 3.

    PubMed

    Wang, Lei; Ren, Ling; Tang, Tingting; Dai, Kerong; Yang, Ke; Hao, Yongqiang

    2015-01-01

    Foreign body reaction induced by biomaterials is a serious problem in clinical applications. Although 317L-Cu stainless steel (317L-Cu SS) is a new type of implant material with antibacterial ability and osteogenic property, the foreign body reaction level still needs to be assessed due to its Cu(2+) releasing property. For this purpose, two macrophage cell lines were selected to detect cellular proliferation, apoptosis, mobility, and the secretions of inflammatory cytokines with the influence of 317L-Cu SS. Our results indicated that 317L-Cu SS had no obvious effect on the proliferation and apoptosis of macrophages; however, it significantly increased cellular migration and TNF-α secretion. Then, C57 mice were used to assess foreign body reaction induced by 317L-Cu SS. We observed significantly enhanced recruitment of inflammatory cells (primarily macrophages) with increased TNF-α secretion and apoptosis level in tissues around the materials in the early stage of implantation. With tissue healing, both inflammation and apoptosis significantly decreased. Further, we discovered that NF-κB pathway and Caspase 3 played important roles in 317L-Cu SS induced inflammation and apoptosis. We concluded that 317L-Cu SS could briefly promote the inflammation and apoptosis of surrounding tissues by regulating the activity of NF-κB pathway and Caspase 3. All these discoveries demonstrated that 317L-Cu SS has a great potential for clinical application.

  15. A novel nano-copper-bearing stainless steel with reduced Cu2+ release only inducing transient foreign body reaction via affecting the activity of NF-κB and Caspase 3

    PubMed Central

    Wang, Lei; Ren, Ling; Tang, Tingting; Dai, Kerong; Yang, Ke; Hao, Yongqiang

    2015-01-01

    Foreign body reaction induced by biomaterials is a serious problem in clinical applications. Although 317L-Cu stainless steel (317L-Cu SS) is a new type of implant material with antibacterial ability and osteogenic property, the foreign body reaction level still needs to be assessed due to its Cu2+ releasing property. For this purpose, two macrophage cell lines were selected to detect cellular proliferation, apoptosis, mobility, and the secretions of inflammatory cytokines with the influence of 317L-Cu SS. Our results indicated that 317L-Cu SS had no obvious effect on the proliferation and apoptosis of macrophages; however, it significantly increased cellular migration and TNF-α secretion. Then, C57 mice were used to assess foreign body reaction induced by 317L-Cu SS. We observed significantly enhanced recruitment of inflammatory cells (primarily macrophages) with increased TNF-α secretion and apoptosis level in tissues around the materials in the early stage of implantation. With tissue healing, both inflammation and apoptosis significantly decreased. Further, we discovered that NF-κB pathway and Caspase 3 played important roles in 317L-Cu SS induced inflammation and apoptosis. We concluded that 317L-Cu SS could briefly promote the inflammation and apoptosis of surrounding tissues by regulating the activity of NF-κB pathway and Caspase 3. All these discoveries demonstrated that 317L-Cu SS has a great potential for clinical application. PMID:26604748

  16. Fluid shear stress inhibits TNF-alpha-induced apoptosis in osteoblasts: a role for fluid shear stress-induced activation of PI3-kinase and inhibition of caspase-3

    NASA Technical Reports Server (NTRS)

    Pavalko, Fredrick M.; Gerard, Rita L.; Ponik, Suzanne M.; Gallagher, Patricia J.; Jin, Yijun; Norvell, Suzanne M.

    2003-01-01

    In bone, a large proportion of osteoblasts, the cells responsible for deposition of new bone, normally undergo programmed cell death (apoptosis). Because mechanical loading of bone increases the rate of new bone formation, we hypothesized that mechanical stimulation of osteoblasts might increase their survival. To test this hypothesis, we investigated the effects of fluid shear stress (FSS) on osteoblast apoptosis using three osteoblast cell types: primary rat calvarial osteoblasts (RCOB), MC3T3-E1 osteoblastic cells, and UMR106 osteosarcoma cells. Cells were treated with TNF-alpha in the presence of cyclohexamide (CHX) to rapidly induce apoptosis. Osteoblasts showed significant signs of apoptosis within 4-6 h of exposure to TNF-alpha and CHX, and application of FSS (12 dyne/cm(2)) significantly attenuated this TNF-alpha-induced apoptosis. FSS activated PI3-kinase signaling, induced phosphorylation of Akt, and inhibited TNF-alpha-induced activation of caspase-3. Inhibition of PI3-kinase, using LY294002, blocked the ability of FSS to rescue osteoblasts from TNF-alpha-induced apoptosis and blocked FSS-induced inhibition of caspase-3 activation in osteoblasts treated with TNF-alpha. LY294002 did not, however, prevent FSS-induced phosphorylation of Akt suggesting that activation of Akt alone is not sufficient to rescue cells from apoptosis. This result also suggests that FSS can activate Akt via a PI3-kinase-independent pathway. These studies demonstrate for the first time that application of FSS to osteoblasts in vitro results in inhibition of TNF-alpha-induced apoptosis through a mechanism involving activation of PI3-kinase signaling and inhibition of caspases. FSS-induced activation of PI3-kinase may promote cell survival through a mechanism that is distinct from the Akt-mediated survival pathway. Copyright 2002 Wiley-Liss, Inc.

  17. Combination of the histone deacetylase inhibitor depsipeptide and 5-fluorouracil upregulates major histocompatibility complex class II and p21 genes and activates caspase-3/7 in human colon cancer HCT-116 cells

    PubMed Central

    Okada, Kouji; Hakata, Shuko; Terashima, Jun; Gamou, Toshie; Habano, Wataru; Ozawa, Shogo

    2016-01-01

    Epigenetic anticancer drugs such as histone deacetylase (HDAC) inhibitors have been combined with existing anticancer drugs for synergistic or additive effects. In the present study, we found that a very low concentration of depsipeptide, an HDAC inhibitor, potentiated the antitumor activity of 5-fluorouracil (5-FU) in a human colon cancer cell model using HCT-116, HT29, and SW48 cells via the inhibition of colony formation ability or cellular viability. Exposure to a combination of 5-FU (1.75 µM) and 1 nM depsipeptide for 24 and 48 h resulted in a 3- to 4-fold increase in activated caspase-3/7, while 5-FU alone failed to activate caspase-3/7. Microarray and subsequent gene ontology analyses revealed that compared to 5-FU or depsipeptide alone, the combination treatment of 5-FU and depsipeptide upregulated genes related to cell death and the apoptotic process consistent with the inhibition of colony formation and caspase-3/7 activation. These analyses indicated marked upregulation of antigen processing and presentation of peptide or polysaccharide antigen via major histocompatibility complex (MHC) class (GO:0002504) and MHC protein complex (GO:0042611). Compared with vehicle controls, the cells treated with the combination of 5-FU and depsipeptide showed marked induction (3- to 8.5-fold) of expression of MHC class II genes, but not of MHC class I genes. Furthermore, our global analysis of gene expression, which was focused on genes involved in the molecular regulation of MHC class II genes, showed enhancement of pro-apoptotic PCAF and CIITA after the combination of 5-FU and depsipeptide. These results may indicate a closer relationship between elevation of MHC class II expression and cellular apoptosis induced by the combination of depsipeptide and 5-FU. To the best of our knowledge, this is the first study to report that the combination of 5-FU and depsipeptide induces human colon cancer cell apoptosis in a concerted manner with the induction of MHC class II gene

  18. Serum-stabilized naked caspase-3 siRNA protects autotransplant kidneys in a porcine model.

    PubMed

    Yang, Cheng; Zhao, Tian; Zhao, Zitong; Jia, Yichen; Li, Long; Zhang, Yufang; Song, Mangen; Rong, Ruiming; Xu, Ming; Nicholson, Michael L; Zhu, Tongyu; Yang, Bin

    2014-10-01

    The naked small interfering RNA (siRNA) of caspase-3, a key player in ischemia reperfusion injury, was effective in cold preserved and hemoreperfused kidneys, but not autotransplanted kidneys in our porcine models. Here, chemically modified serum stabilized caspase-3 siRNAs were further evaluated. The left kidney was retrieved and infused by University of Wisconsin solution with/without 0.3 mg caspase-3 or negative siRNA into the renal artery for 24-hour cold storage (CS). After an intravenous injection of 0.9 mg siRNA and right-uninephrectomy, the left kidney was autotransplanted for 2 weeks. The effectiveness of caspase-3 siRNA was confirmed by caspase-3 knockdown in the post-CS and/or post-transplant kidneys with reduced apoptosis and inflammation, while the functional caspase-3 siRNA in vivo was proved by detected caspase-3 mRNA degradation intermediates. HMGB1 protein was also decreased in the post-transplanted kidneys; correlated positively with renal IL-1β mRNA, but negatively with serum IL-10 or IL-4. The minimal off-target effects of caspase-3 siRNA were seen with favorable systemic responses. More importantly, renal function, associated with active caspase-3, HMGB1, apoptosis, inflammation, and tubulointerstitial damage, was improved by caspase-3 siRNA. Taken together, the 2-week autotransplanted kidneys were protected when caspase-3 siRNA administrated locally and systemically, which provides important evidence for future clinical trials.

  19. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy

    PubMed Central

    Huang, Qian; Li, Fang; Liu, Xinjian; Li, Wenrong; Shi, Wei; Liu, Fei-Fei; O’Sullivan, Brian; He, Zhimin; Peng, Yuanlin; Tan, Aik-Choon; Zhou, Ling; Shen, Jingping; Han, Gangwen; Wang, Xiao-Jing; Thorburn, Jackie; Thorburn, Andrew; Jimeno, Antonio; Raben, David; Bedford, Joel S.; Li, Chuan-Yuan

    2011-01-01

    Summary In cancer treatment, apoptosis is a well-recognized cell death mechanism through which cytotoxic agents kill tumor cells. Here we report that dying tumor cells use the apoptotic process to generate potent growth-stimulating signals to stimulate the repopulation of tumors undergoing radiotherapy. Surprisingly, activated caspase 3, a key executioner of apoptosis, plays key roles in the growth stimulation. One downstream effector that caspase 3 regulates is prostaglandin E2, which can potently stimulates growth of surviving tumor cells. Deficiency of caspase 3 either in tumor cells or in tumor stroma caused significant tumor sensitivity to radiotherapy in xenograft or mouse tumors. In human cancer patients, higher levels of activated caspase 3 in tumor tissues are correlated with significantly increased rate of recurrence and deaths. We propose the existence of a “Phoenix Rising” pathway of cell death-induced tumor repopulation in which caspase 3 plays key roles. PMID:21725296

  20. Hispolon Decreases Melanin Production and Induces Apoptosis in Melanoma Cells through the Downregulation of Tyrosinase and Microphthalmia-Associated Transcription Factor (MITF) Expressions and the Activation of Caspase-3, -8 and -9

    PubMed Central

    Chen, Yi-Shyan; Lee, Shu-Mei; Lin, Chih-Chien; Liu, Chia-Yi

    2014-01-01

    Hispolon is one of the most important functional compounds that forms Phellinus linteus (Berkeley & Curtis) Teng. Hispolon has antioxidant, anti-inflammatory, antiproliferative and anticancer effects. In this study, we analyzed the functions of hispolon on melanogenesis and apoptosis in B16-F10 melanoma cells. The results demonstrated that hispolon is not an enzymatic inhibitor for tyrosinase; rather, it represses the expression of tyrosinase and the microphthalmia-associated transcription factor (MITF) to reduce the production of melanin in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16-F10 cells at lower concentrations (less than 2 μM). In contrast, at higher concentration (greater than 10 μM), hispolon can induce activity of caspase-3, -8 and -9 to trigger apoptosis of B16-F10 cells but not of Detroit 551 normal fibroblast cells. Therefore, we suggest that hispolon has the potential to treat hyperpigmentation diseases and melanoma skin cancer in the future. PMID:24445257

  1. N-Formyl-3,4-methylenedioxy-benzylidene-gamma-butyrolaetam, KNK437 induces caspase-3 activation through inhibition of mTORC1 activity in Cos-1 cells.

    PubMed

    Inoue, Hirofumi; Uyama, Takumi; Hayashi, Junko; Watanabe, Akito; Kobayashi, Ken-ichi; Tadokoro, Tadahiro; Yamamoto, Yuji

    2010-04-23

    The mammalian target of rapamycin complex 1 (mTORC1: mTOR-raptor interaction) and heat shock protein 70 (Hsp70) regulate various cellular processes and are crucial for the progression of many cancers and metabolic diseases. In the recent study, we reported that interaction of Hsp70 with tuberous sclerosis complex 1 (TSC1) regulated apoptosis. This study was designed to elucidate the underlying mechanism in Cos-1 cells. Here, we show that N-formyl-3,4-methylenedioxy-benzylidene-gamma-butyrolaetam (KNK437), which inhibits the expression level of Hsp70, abrogated phosphorylation of mTOR and S6K in response to insulin, and inhibited mTORC1 activity via disruption of an interaction between mTOR and raptor. In addition, KNK437 did not alter TSC1/2 complex formation. Furthermore, KNK437 inhibited the mTOR-raptor interaction on the outer membrane of the mitochondria and triggered caspase-3 activation. A reduction in the level of Hsp70 could result in the inhibition of the mTORC1 signaling pathway, thereby inducing apoptosis.

  2. Pisiferdiol and pisiferic acid isolated from Chamaecyparis pisifera activate protein phosphatase 2C in vitro and induce caspase-3/7-dependent apoptosis via dephosphorylation of Bad in HL60 cells.

    PubMed

    Aburai, N; Yoshida, M; Ohnishi, M; Kimura, K

    2010-08-01

    Protein phosphatase 2C (PP2C) dephosphorylates a broad range of substrates and regulates apoptosis, stress response and growth-related pathways. In the course of screening for PP2C activators from natural sources, we isolated abietane-type diterpenes, pisiferdiol and pisiferic acid from Chamaecyparis pisifera. Pisiferdiol having a unique seven-membered ring showed more specific PP2C activation activity (1.3-fold at 100 microM) than pisiferic acid having a normal six-membered ring and oleic acid, which is known to activate PP2C. Pisiferdiol and pisiferic acid showed mixed-type activation with respect to alpha-casein, and this differed from the non-competitive activation of oleic acid in vitro. In vivo, the cytotoxicity of pisiferdiol toward human promyelocytic leukemia cell line HL60 with an IC(50) value of 18.3 microM was 2-fold and 7-fold stronger than those of pisiferic acid and oleic acid, and pisiferdiol induced apoptosis through a caspase 3/7-dependent mechanism involving the dephosphorylation of Bad(1), which is a PP2C substrate. We thus conclude that pisiferdiol and pisiferic acid are novel PP2C activators, and the more specific activator, pisiferdiol, may be a useful chemical probe to study PP2C-mediated signaling pathways, and a lead compound for pharmaceutical agents.

  3. 17-DMAG Diminishes Hemorrhage-Induced Small Intestine Injury by Elevating Bcl-2 Protein and Inhibiting iNOS Pathway, TNF-alpha Increase, and Caspase-3 Activation

    DTIC Science & Technology

    2011-06-03

    Hemorrhagic shock has been shown to cause systemic inflammation response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), and multiple organ...available to tissues and results in an accumulation of carbon dioxide and metabolic waste , leading to activation of signal transduction pathways and...for each specimen was graded using a six-tiered scale [3]. Western blots. Jejunal tissue was minced in 100 µl Hanks’ balanced salt solution

  4. Molecular cloning and characterisation of sea bass (Dicentrarchus labrax L.) caspase-3 gene.

    PubMed

    Reis, Marta I R; Nascimento, Diana S; do Vale, Ana; Silva, Manuel T; dos Santos, Nuno M S

    2007-02-01

    Caspase-3 is one of the major caspases operating in apoptosis, cleaving and inactivating a number of molecules and largely contributing to the apoptotic phenotype and the dismantling of the apoptoting cell. The opening reading frame of sea bass (Dicentrarchus labrax L.) caspase-3 has 281 amino acids. The complete sequence of caspase-3 shows a very close homology to the correspondent sequence from other vertebrates, in particularly with that of Takifugu rubripes and Oryzias latipes, with 87.7 and 87.9% of similarity, respectively. Furthermore, the sea bass caspase-3 sequence retains the motifs that are functionally important, such as the pentapeptide active-site motif (QACRG) and the putative cleavage sites at the aspartic acids. In the sea bass genome, the caspase-3 gene exists as a single copy gene and is organised in six exons and five introns. A very low expression of caspase-3 was detected by RT-PCR in various organs of non-stimulated sea bass, with slightly higher levels in thymus and heart and was increased in head kidneys of Photobacterium damselae ssp. piscicida infected sea bass. This increased expression was accompanied by the occurrence of high numbers of apoptoting cells with activated caspase-3.

  5. Characterization of the interleukin-1beta-converting enzyme/ced-3-family protease, caspase-3/CPP32, in Hodgkin's disease: lack of caspase-3 expression in nodular lymphocyte predominance Hodgkin's disease.

    PubMed

    Izban, K F; Wrone-Smith, T; Hsi, E D; Schnitzer, B; Quevedo, M E; Alkan, S

    1999-05-01

    Apoptosis (programmed cell death) serves an important role in the normal morphogenesis, immunoregulation, and homeostatic mechanisms in both normal and neoplastic cells. Caspase-3/CPP32, a member of the ICE/Ced-3-family of cysteine proteases, is an important downstream mediator of several complex proteolytic cascades that result in apoptosis in both hematopoietic and nonhematopoietic cells. Previous studies have demonstrated that caspase-3 is commonly expressed in classical Hodgkin's disease (CHD); however, the biological significance of its expression in Hodgkin's disease is unknown. In this report, the expression of caspase-3 in nodular lymphocyte predominance Hodgkin's disease (NLPHD) was evaluated by immunohistochemistry; in addition, we investigated the role of caspase-3 in CD95 (Fas)-mediated apoptosis in three CHD cell lines. Formalin-fixed, paraffin-embedded tissue sections from 11 cases of NLPHD were immunostained for caspase-3 using a polyclonal rabbit antibody that detects both the 32-kd zymogen and the 20-kd active subunit of the caspase-3 protease. Only 1/11 cases of NLPHD demonstrated caspase-3 immunopositivity in lymphocytic/histiocytic cells. Caspase-3 expression was also evaluated in three CHD cell lines, HS445, L428, and KMH2. Whereas caspase-3 expression was detected in HS445 and L428 cell lines, no expression was found in KMH2 cells by immunohistochemical staining. Treatment of HS445 and L428 cell lines for 72 hours with agonistic CD95 monoclonal antibody induced marked apoptosis that was significantly inhibited by pretreatment with the caspase-3 inhibitor, DEVD-FMK, as determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay and flow cytometric analysis of 7-amino-actinomycin D staining. In addition, a significant increase in caspase-3 activity as determined by an enzyme colorimetric assay was detected in HS445 and L428 cells after 48 hours of CD95 stimulation. In marked contrast, treatment of caspase-3

  6. Proteasome inhibitor-induced apoptosis is mediated by positive feedback amplification of PKCδ proteolytic activation and mitochondrial translocation

    PubMed Central

    Sun, Faneng; Kanthasamy, Arthi; Song, Chunjuan; Yang, Yongjie; Anantharam, Vellareddy; Kanthasamy, Anumantha G

    2008-01-01

    Emerging evidence implicates impaired protein degradation by the ubiquitin proteasome system (UPS) in Parkinson's disease; however cellular mechanisms underlying dopaminergic degeneration during proteasomal dysfunction are yet to be characterized. In the present study, we identified that the novel PKC isoform PKCδ plays a central role in mediating apoptotic cell death following UPS dysfunction in dopaminergic neuronal cells. Inhibition of proteasome function by MG-132 in dopaminergic neuronal cell model (N27 cells) rapidly depolarized mitochondria independent of ROS generation to activate the apoptotic cascade involving cytochrome c release, and caspase-9 and caspase-3 activation. PKCδ was a key downstream effector of caspase-3 because the kinase was proteolytically cleaved by caspase-3 following exposure to proteasome inhibitors MG-132 or lactacystin, resulting in a persistent increase in the kinase activity. Notably MG-132 treatment resulted in translocation of proteolytically cleaved PKCδ fragments to mitochondria in a time-dependent fashion, and the PKCδ inhibition effectively blocked the activation of caspase-9 and caspase-3, indicating that the accumulation of the PKCδ catalytic fragment in the mitochondrial fraction possibly amplifies mitochondria-mediated apoptosis. Overexpression of the kinase active catalytic fragment of PKCδ (PKCδ-CF) but not the regulatory fragment (RF), or mitochondria-targeted expression of PKCδ-CF triggers caspase-3 activation and apoptosis. Furthermore, inhibition of PKCδ proteolytic cleavage by a caspase-3 cleavage-resistant mutant (PKCδ-CRM) or suppression of PKCδ expression by siRNA significantly attenuated MG-132-induced caspase-9 and -3 activation and DNA fragmentation. Collectively, these results demonstrate that proteolytically activated PKCδ has a significant feedback regulatory role in amplification of the mitochondria-mediated apoptotic cascade during proteasome dysfunction in dopaminergic neuronal cells. PMID

  7. Photothermal treatment of liver cancer with albumin-conjugated gold nanoparticles initiates Golgi Apparatus-ER dysfunction and caspase-3 apoptotic pathway activation by selective targeting of Gp60 receptor.

    PubMed

    Mocan, Lucian; Matea, Cristian; Tabaran, Flaviu A; Mosteanu, Ofelia; Pop, Teodora; Mocan, Teodora; Iancu, Cornel

    2015-01-01

    We present a method of enhanced laser thermal ablation of HepG2 cells based on a simple gold nanoparticle (GNP) carrier system such as serum albumin (Alb), and demonstrate its selective therapeutic efficacy compared with normal hepatocyte cells. HepG2 or hepatocytes were treated with Alb-GNPs at various concentrations and various incubation times, and further irradiated using a 2 W, 808 nm laser. Darkfield microscopy and immunochemical staining was used to demonstrate the selective internalization of Alb-GNPs inside the HepG2 cells via Gp60 receptors targeting. The postirradiation apoptotic rate of HepG2 cells treated with Alb-GNPs ranged from 25.8% (for 5 μg/mL) to 48.2% (for 50 μg/mL) at 60 seconds, while at 30 minutes the necrotic rate increased from 35.7% (5 μg/mL) to 52.3% (50 μg/mL), P-value <0.001. Significantly lower necrotic rates were obtained when human hepatocytes were treated with Alb-GNPs in a similar manner. We also showed by means of immunocytochemistry that photothermal treatment of Alb-conjugated GNPs in liver cancer initiates Golgi apparatus-endoplasmic reticulum dysfunction with consequent caspase-3 apoptotic pathway activation and cellular apoptosis. The presented results may become a new method of treating cancer cells by selective therapeutic vectors using nanolocalized thermal ablation by laser heating.

  8. Combined treatment with vitamin C and methotrexate inhibits triple-negative breast cancer cell growth by increasing H2O2 accumulation and activating caspase-3 and p38 pathways.

    PubMed

    Wu, Ching-Wen; Liu, Hsiao-Chun; Yu, Yung-Luen; Hung, Yu-Ting; Wei, Chyou-Wei; Yiang, Giou-Teng

    2017-04-01

    Methotrexate (MTX) is widely used as both an anticancer and anti-rheumatoid arthritis drug. Although MTX has been used to inhibit the growth of many cancer cells, it cannot effectively inhibit growth of triple-negative breast cancer cells (TNBC cells). Vitamin C is an antioxidant that can prevent oxidative stress. In addition, vitamin C has been applied as adjunct treatment for growth inhibition of cancer cells. Recent studies indicated that combined treatment with vitamin C and MTX may inhibit MCF-7 and MDA-MB-231 breast cancer cell growth through G2/M elongation. However, the mechanisms remain unknown. The aim of the present study was to determine whether combined treatment with low-dose vitamin C and MTX inhibits TNBC cell growth and to investigate the mechanisms of vitamin C/MTX-induced cytotoxicity. Neither low-dose vitamin C alone nor MTX alone inhibited TNBC cell growth. However, combined low-dose vitamin C and MTX had synergistic anti-proliferative/cytotoxic effects on TNBC cells. In addition, co-treatment increased H2O2 levels and activated both caspase-3 and p38 cell death pathways.

  9. Suppressive effects of long-term exposure to P-nitrophenol on gonadal development, hormonal profile with disruption of tissue integrity, and activation of caspase-3 in male Japanese quail (Coturnix japonica).

    PubMed

    Ahmed, Eman; Nagaoka, Kentaro; Fayez, Mostafa; Abdel-Daim, Mohamed M; Samir, Haney; Watanabe, Gen

    2015-07-01

    P-Nitrophenol (PNP) is considered to be one of nitrophenol derivatives of diesel exhaust particles. PNP is a major metabolite of some organophosphorus compounds. PNP is a persistent organic pollutant as well as one of endocrine-disrupting compounds. Consequently, bioaccumulation of PNP potentiates toxicity. The objectives of the current study were to assess in vivo adverse effects of long-term low doses of PNP exposure on reproductive system during development stage. Twenty-eight-day-old male Japanese quails were orally administered different doses of PNP (0, 0.01, 0.1, 1 mg/kg body weight) daily for 2.5 months. Testicular histopathology, hormones, caspase-3 (CASP3), and claudin-1 (CLDN1) tight junction protein, as well as plasma hormones were analyzed. The results revealed that long-term PNP exposure caused testicular histopathological changes such as vacuolation of spermatogenic cell and spermatocyte with significant testicular and cloacal gland atrophy. PNP activated CASP3 enzyme that is an apoptosis-related cysteine peptidase. Besides, it disrupted the expression of CLDN1. Furthermore, a substantial decrease in plasma concentrations of luteinizing hormone (LH) and testosterone was observed after 2 and 2.5 months in the PNP-treated groups. Meanwhile, the pituitary LH did not significantly change. Site of action of PNP may be peripheral on testicular development and/or centrally on the hypothalamic-pituitary-gonadal axis through reduction of pulsatile secretion of gonadotrophin-releasing hormone. Consequently, it may reduce the sensitivity of the anterior pituitary gland to secrete LH. In conclusion, PNP induced profound endocrine disruption in the form of hormonal imbalance, induction of CASP3, and disruption of CLDN1 expression in the testis. Hence, it may hinder the reproductive processes.

  10. BDNF pro-peptide regulates dendritic spines via caspase-3

    PubMed Central

    Guo, J; Ji, Y; Ding, Y; Jiang, W; Sun, Y; Lu, B; Nagappan, G

    2016-01-01

    The precursor of brain-derived neurotrophic factor (BDNF) (proBDNF) is enzymatically cleaved, by either intracellular (furin/PC1) or extracellular proteases (tPA/plasmin/MMP), to generate mature BDNF (mBDNF) and its pro-peptide (BDNF pro-peptide). Little is known about the function of BDNF pro-peptide. We have developed an antibody that specifically detects cleaved BDNF pro-peptide, but not proBDNF or mBDNF. Neuronal depolarization elicited a marked increase in extracellular BDNF pro-peptide, suggesting activity-dependent regulation of its extracellular levels. Exposure of BDNF pro-peptide to mature hippocampal neurons in culture dramatically reduced dendritic spine density. This effect was mediated by caspase-3, as revealed by studies with pharmacological inhibitors and genetic knockdown. BDNF pro-peptide also increased the number of ‘elongated' mitochondria and cytosolic cytochrome c, suggesting the involvement of mitochondrial-caspase-3 pathway. These results, along with BDNF pro-peptide effects recently reported on growth cones and long-term depression (LTD), suggest that BDNF pro-peptide is a negative regulator of neuronal structure and function. PMID:27310873

  11. Caspase-3 Is Involved in the Signalling in Erythroid Differentiation by Targeting Late Progenitors

    PubMed Central

    Giarratana, Marie-Catherine; Darghouth, Dhouha; Faussat, Anne-Marie; Harmand, Laurence; Douay, Luc

    2013-01-01

    A role for caspase activation in erythroid differentiation has been established, yet its precise mode of action remains elusive. A drawback of all previous investigations on caspase activation in ex vivo erythroid differentiation is the lack of an in vitro model producing full enucleation of erythroid cells. Using a culture system which renders nearly 100% enucleated red cells from human CD34+ cells, we investigated the role of active caspase-3 in erythropoiesis. Profound effects of caspase-3 inhibition were found on erythroid cell growth and differentiation when inhibitors were added to CD34+ cells at the start of the culture and showed dose-response to the concentration of inhibitor employed. Enucleation was only reduced as a function of the reduced maturity of the culture and the increased cell death of mature cells while the majority of cells retained their ability to extrude their nuclei. Cell cycle analysis after caspase-3 inhibition showed caspase-3 to play a critical role in cell proliferation and highlighted a novel function of this protease in erythroid differentiation, i.e. its contribution to cell cycle regulation at the mitotic phase. While the effect of caspase-3 inhibitor treatment on CD34+ derived cells was not specific to the erythroid lineage, showing a similar reduction of cell expansion in myeloid cultures, the mechanism of action in both lineages appeared to be distinct with a strong induction of apoptosis causing the decreased yield of myeloid cells. Using a series of colony-forming assays we were able to pinpoint the stage at which cells were most sensitive to caspase-3 inhibition and found activated caspase-3 to play a signalling role in erythroid differentiation by targeting mature BFU-E and CFU-E but not early BFU-E. PMID:23658722

  12. Zinc pyrithione inhibits caspase-3 activity, promotes ErbB1-ErbB2 heterodimerization and suppresses ErbB2 downregulation in cardiomyocytes subjected to ischemia/reperfusion.

    PubMed

    Bodiga, Vijaya Lakshmi; Thokala, Sandhya; Vemuri, Praveen Kumar; Bodiga, Sreedhar

    2015-12-01

    Heart tissue becomes zinc-depleted and the capacity to mobilize labile zinc is diminished, indicating zinc dyshomeostasis during ischemia/reperfusion (I/R). Apparently, zinc pyrithione restores the basal zinc levels during I/R and prevents apoptosis by activating phosphatidyl inositol-3-kinase/Akt and targeting mitochondrial permeability transition. Receptor tyrosine kinases of the ErbB family (ErbB1 to ErbB4) are cell surface proteins that can regulate cell growth, proliferation and survival. Previous studies have shown that zinc pyrithione-induced activation of PI3kinase/Akt requires ErbB2 expression. On the other hand, while I/R decreases ErbB2 levels causing cardiomyocyte dysfunction and cell death, zinc pyrithione restores ErbB2 levels and maintains cardiomyocyte function. H9c2 cells expressed all the four ErbBs, although the expression of ErbB1 and ErbB2 were higher compared to ErbB3 and ErbB4. Hypoxia/Reoxygenation (H/R) had opposing effects on the mRNA expression of ErbB1 and ErbB2. ErbB2 mRNA levels were enhanced, but corresponding ErbB2 protein levels decreased after reoxygenation. H/R induced the degradation of ErbB2 in caspase-3 dependent manner, with the formation of a 25kDa fragment. This fragment could be detected after H/R only upon treatment of the cells with a proteasomal inhibitor, ALLN, suggesting that caspase-mediated cleavage of 185kDa ErbB2 results in C-terminal cleavage and formation of 25kDa fragment, which is further degraded by proteasome. Heterodimerization and phosphorylation of ErbB2/ErbB1 which decreased upon reoxygenation, was promoted by zinc pyrithione. Zinc pyrithione effectively suppressed the caspase activation, decreased the proteolytic cleavage of ErbB2, enhanced the phosphorylation and activation of ErbB1-ErbB2 complexes and improved the cell survival after hypoxia/reoxygenation.

  13. Development of a bidirectional caspase-3 expression system for the induction of apoptosis.

    PubMed

    White, Martyn K; Amini, Shohreh; Khalili, Kamel; Kogan, Michael; Donaldson, Keri; Darbinian, Nune

    2008-06-01

    Caspase-3 is the executioner caspase of apoptosis whose activation in mammalian cells represents the last stage of the programmed cell death signaling pathway and the initiation of the lethal digestion of cell proteins. Active caspase-3 is a tetramer composed of two p12 and two p17 subunits derived from cleavage of procaspase-3 during activation. Here, we armed GFP-fusion proteins of both the caspase-3 p12 and p17 subunits with signals from Ig-kappa light chain that allows its efficient secretion from the cells (Sec) and from HIV-1 Tat that facilitates its uptake and nuclear translocation by other cells (NLS). We found that treatment of cells with conditioned media from cells expressing both Sec-GFP-p17-NLS and Sec-GFP-p12-NLS was able to transduce active caspase-3 with consequent cell death of treated cultures. Use of various combinations of constructs demonstrated that both subunits were required and that each one needed to possess both Sec and NLS. Our observations introduce a bidirectional protein transduction system with the ability to introduce active caspase-3 into cells and cause apoptosis. This system may have important therapeutic applications.

  14. Apoptosis inducing activity of 4-substituted coumarins from Calophyllum brasiliense in human leukaemia HL-60 cells.

    PubMed

    Ito, Chihiro; Murata, Tomiyasu; Itoigawa, Masataka; Nakao, Keisuke; Kaneda, Norio; Furukawa, Hiroshi

    2006-07-01

    With the objective of identifying anti-tumour-promoting agents, we carried out a primary screening of ten 4-substituted coumarins isolated from Calophyllum brasiliense Camb. (Guttiferae), to determine the ability of these compounds to inhibit proliferation of the human leukaemia cell line HL-60. Among the 4-substituted coumarins isolated, calophyllolide (2) and mammea B/BB (3) showed significant cytotoxicity against HL-60 cells. Fluorescence microscopy with Hoechst 33342 staining revealed that the percentage of apoptotic cells with fragmented nuclei and condensed chromatin increased in a time-dependent manner after treatment with calophyllolide (2) or mammea B/BB (3). In addition, the activity of caspase-9 and caspase-3 was also enhanced in a time-dependent manner upon treatment with the 4-substituted coumarins 2 and 3. Caspase-9 and caspase-3 inhibitors suppressed apoptosis induced by 4-substituted coumarins 2 and 3. These results suggest that calophyllolide (2) and mammea B/ BB (3) induced apoptosis in HL-60 cells through activation of the caspase-9/caspase-3 pathway, which is triggered by mitochondrial dysfunction.

  15. CO{sub 2} impairs peroxynitrite-mediated inhibition of human caspase-3

    SciTech Connect

    Ascenzi, Paolo . E-mail: ascenzi@uniroma3.it; Marino, Maria; Menegatti, Enea

    2006-10-13

    Peroxynitrite (ONOO{sup -}) is a transient powerful oxidant produced in vivo as the reaction of nitrogen monoxide ({sup ?}NO) with superoxide (O2?-). The peroxynitrite reactivity is modulated by carbon dioxide (CO{sub 2}) which enhances the peroxynitrite-mediated nitration of aromatics and partially impairs the oxidation of thiols. Here, the effect of CO{sub 2} on the peroxynitrite-mediated inhibition of human caspase-3, the execution enzyme of the apoptotic cascade, is reported. Peroxynitrite inhibits the catalytic activity of human caspase-3 by oxidizing the S{gamma} atom of the Cys catalytic residue. In the absence of CO{sub 2}, 1.0 equivalent of peroxynitrite inactivates 1.0 equivalent of human caspase-3. In the presence of the physiological concentration of CO{sub 2} (=1.3x10{sup -3}M), 1.0 equivalent of peroxynitrite inactivates only 0.38 equivalents of human caspase-3. Peroxynitrite affects the k{sub cat} value of the human caspase-3 catalyzed hydrolysis of N-acetyl-Asp-Glu-Val-Asp-7-amido-4-methylcoumarin, without altering K{sub m}. Both in the absence and presence of CO{sub 2}, the reducing agent dithiothreitol does not prevent human caspase-3 inhibition by peroxynitrite and does not reverse the peroxynitrite-induced inactivation of human caspase-3. These results represent First evidence for modulation of peroxynitrite-mediated inhibition of cysteine proteinase action by CO{sub 2}, supporting the role of CO{sub 2} in fine tuning of cell processes (e.g., apoptosis)

  16. Increased caspase-3 immunoreactivity of erythrocytes in STZ diabetic rats.

    PubMed

    Fırat, Uğur; Kaya, Savaş; Cim, Abdullah; Büyükbayram, Hüseyin; Gökalp, Osman; Dal, Mehmet Sinan; Tamer, Mehmet Numan

    2012-01-01

    Eryptosis is a term to define apoptosis of erythrocytes. Oxidative stress and hyperglycemia, both of which exist in the diabetic intravascular environment, can trigger eryptosis of erythrocytes. In this experimental study, it is presented that the majority of erythrocytes shows caspase-3 immunoreactivity in streptozocin- (STZ)-induced diabetic rats. Besides that, caspase-3 positive erythrocytes are aggregated and attached to vascular endothelium. In conclusion, these results may start a debate that eryptosis could have a role in the diabetic complications.

  17. Hyperosmotic Shock Engages Two Positive Feedback Loops through Caspase-3-dependent Proteolysis of JNK1-2 and Bid*

    PubMed Central

    Yue, Jicheng; Ben Messaoud, Nabil; López, José M.

    2015-01-01

    Hyperosmotic shock induces early calpain activation, Smac/DIABLO release from the mitochondria, and p38/JNK activation in Xenopus oocytes. These pathways regulate late cytochrome c release and caspase-3 activation. Here, we show that JNK1-1 and JNK1-2 are activated early by osmostress, and sustained activation of both isoforms accelerates the apoptotic program. When caspase-3 is activated, JNK1-2 is proteolyzed at Asp-385 increasing the release of cytochrome c and caspase-3 activity, thereby creating a positive feedback loop. Expression of Bcl-xL markedly reduces hyperosmotic shock-induced apoptosis. In contrast, expression of Bid induces rapid caspase-3 activation, even in the absence of osmostress, which is blocked by Bcl-xL co-expression. In these conditions a significant amount of Bid in the cytosol is mono- and bi-ubiquitinated. Caspase-3 activation by hyperosmotic shock induces proteolysis of Bid and mono-ubiquitinated Bid at Asp-52 increasing the release of cytochrome c and caspase-3 activation, and thus creating a second positive feedback loop. Revealing the JNK isoforms and the loops activated by osmostress could help to design better treatments for human diseases caused by perturbations in fluid osmolarity. PMID:26511318

  18. Hyperosmotic Shock Engages Two Positive Feedback Loops through Caspase-3-dependent Proteolysis of JNK1-2 and Bid.

    PubMed

    Yue, Jicheng; Ben Messaoud, Nabil; López, José M

    2015-12-18

    Hyperosmotic shock induces early calpain activation, Smac/DIABLO release from the mitochondria, and p38/JNK activation in Xenopus oocytes. These pathways regulate late cytochrome c release and caspase-3 activation. Here, we show that JNK1-1 and JNK1-2 are activated early by osmostress, and sustained activation of both isoforms accelerates the apoptotic program. When caspase-3 is activated, JNK1-2 is proteolyzed at Asp-385 increasing the release of cytochrome c and caspase-3 activity, thereby creating a positive feedback loop. Expression of Bcl-xL markedly reduces hyperosmotic shock-induced apoptosis. In contrast, expression of Bid induces rapid caspase-3 activation, even in the absence of osmostress, which is blocked by Bcl-xL co-expression. In these conditions a significant amount of Bid in the cytosol is mono- and bi-ubiquitinated. Caspase-3 activation by hyperosmotic shock induces proteolysis of Bid and mono-ubiquitinated Bid at Asp-52 increasing the release of cytochrome c and caspase-3 activation, and thus creating a second positive feedback loop. Revealing the JNK isoforms and the loops activated by osmostress could help to design better treatments for human diseases caused by perturbations in fluid osmolarity.

  19. Caspase activity during cell stasis: avoidance of apoptosis in an invertebrate extremophile, Artemia franciscana.

    PubMed

    Menze, Michael A; Hand, Steven C

    2007-05-01

    Evaluation of apoptotic processes downstream of the mitochondrion reveals caspase-9- and low levels of caspase-3-like activities in partly purified extracts of Artemia franciscana embryos. However, in contrast to experiments with extracts of human hepatoma cells, cytochrome c fails to activate caspase-3 or -9 in extracts from A. franciscana. Furthermore, caspase-9 activity is sensitive to exogenous calcium. The addition of 5 mM calcium leads to a 4.86 +/- 0.19 fold (SD) (n = 3) increase in activity, which is fully prevented with 150 mM KCl. As with mammalian systems, high ATP (>1.25 mM) suppresses caspase activity in A. franciscana extracts. A strong inhibition of caspase-9 activity was also found by GTP. Comparison of GTP-induced inhibition of caspase-9 at 0 and 2.5 mM MgCl(2) indicates that free (nonchelated) GTP is likely to be the inhibitory form. The strongest inhibition among all nucleotides tested was with ADP. Inhibition by ADP in the presence of Mg(2+) is 60-fold greater in diapause embryos than in postdiapause embryos. Because ADP does not change appreciably in concentration between the two physiological states, it is likely that this differential sensitivity to Mg(2+)-ADP is important in avoiding caspase activation during diapause. Finally, mixtures of nucleotides that mimic physiological concentrations in postdiapause and diapause states underscore the depressive action of these regulators on caspase-9 during diapause. Our biochemical characterization of caspase-like activity in A. franciscana extracts reveals that multiple mechanisms are in place to reduce the probability of apoptosis under conditions of energy limitation in this embryo.

  20. Cell-in-Cell Death Is Not Restricted by Caspase-3 Deficiency in MCF-7 Cells

    PubMed Central

    Wang, Shan; He, Meifang; Li, Linmei; Liang, Zhihua; Zou, Zehong

    2016-01-01

    Purpose Cell-in-cell structures are created by one living cell entering another homotypic or heterotypic living cell, which usually leads to the death of the internalized cell, specifically through caspase-dependent cell death (emperitosis) or lysosome-dependent cell death (entosis). Although entosis has attracted great attention, its occurrence is controversial, because one cell line used in its study (MCF-7) is deficient in caspase-3. Methods We investigated this issue using MCF-7 and A431 cell lines, which often display cell-in-cell invasion, and have different levels of caspase-3 expression. Cell-in-cell death morphology, microstructures, and signaling pathways were compared in the two cell lines. Results Our results confirmed that MCF-7 cells are caspase-3 deficient with a partial deletion in the CASP-3 gene. These cells underwent cell death that lacked typical apoptotic properties after staurosporine treatment, whereas caspase-3-sufficient A431 cells displayed typical apoptosis. The presence of caspase-3 was related neither to the lysosome-dependent nor to the caspase-dependent cell-in-cell death pathway. However, the existence of caspase-3 was associated with a switch from lysosome-dependent cell-in-cell death to the apoptotic cell-in-cell death pathway during entosis. Moreover, cellular hypoxia, mitochondrial swelling, release of cytochrome C, and autophagy were observed in internalized cells during entosis. Conclusion The occurrence of caspase-independent entosis is not a cell-specific process. In addition, entosis actually represents a cellular self-repair system, functioning through autophagy, to degrade damaged mitochondria resulting from cellular hypoxia in cell-in-cell structures. However, sustained autophagy-associated signal activation, without reduction in cellular hypoxia, eventually leads to lysosome-dependent intracellular cell death. PMID:27721872

  1. Anticancer activity of Noscapine, an opioid alkaloid in combination with Cisplatin in human non-small cell lung cancer.

    PubMed

    Chougule, Mahavir; Patel, Apurva R; Sachdeva, Pratik; Jackson, Tanise; Singh, Mandip

    2011-03-01

    The purpose of this study was to examine the efficacy of Noscapine (Nos) and Cisplatin (Cis) combination treatment in vitro in A549 and H460 lung cancer cells, in vivo in murine xenograft model and to investigate the underlying mechanism. The combination index values (< 0.6) suggested synergistic effects of Nos+Cis and resulted in the highest increase in percentage of apoptotic NSCLC cells and increased expression of p53, p21, caspase 3, cleaved caspase 3, cleaved PARP, Bax, and decreased expression of Bcl₂ and surviving proteins compared with treatment with either agent. Nos+Cis treatment reduced tumor volume by 78.1 ± 7.5% compared with 38.2 ± 6.8% by Cis or 35.4 ± 6.9% by Nos alone in murine xenograft lung cancer model. Nos+Cis treatment decreased expression of pAkt, Akt, cyclin D1, survivin, PARP, Bcl₂, and increased expression of p53, p21, Bax, cleaved PARP, caspase 3, cleaved caspase 3, cleaved caspase 8, caspase 8, cleaved caspase 9 and caspase 9 compared to single-agent treated and control groups. Our results suggest that Nos enhanced the anticancer activity of Cis in an additive to synergistic manner by activating multiple signaling pathways including apoptosis. These findings suggest potential benefit for use of Nos and Cis combination in treatment of lung cancer.

  2. Homogeneous time-resolved fluorescence quenching assay (LANCE) for caspase-3.

    PubMed

    Karvinen, Jarkko; Hurskainen, Pertti; Gopalakrishnan, Sujatha; Burns, David; Warrior, Usha; Hemmilä, Ilkka

    2002-06-01

    In addition to kinases and G protein-coupled receptors, proteases are one of the main targets in modern drug discovery. Caspases and viral proteases, for instance, are potential targets for new drugs. To satisfy the current need for fast and sensitive high-throughput screening for inhibitors, new homogeneous protease assays are needed. We used a caspase-3 assay as a model to develop a homogeneous time-resolved fluorescence quenching assay technology. The assay utilizes a peptide labeled with both a luminescent europium chelate and a quencher. Cleavage of the peptide by caspase-3 separates the quencher from the chelate and thus recovers europium fluorescence. The sensitivity of the assay was 1 pg/microl for active caspase-3 and 200 pM for the substrate. We evaluated the assay for high-throughput usage by screening 9600 small-molecule compounds. We also evaluated this format for absorption/distribution/metabolism/excretion assays with cell lysates. Additionally, the assay was compared to a commercial fluorescence caspase-3 assay.

  3. Neural Cell Apoptosis Induced by Microwave Exposure Through Mitochondria-dependent Caspase-3 Pathway

    PubMed Central

    Zuo, Hongyan; Lin, Tao; Wang, Dewen; Peng, Ruiyun; Wang, Shuiming; Gao, Yabing; Xu, Xinping; Li, Yang; Wang, Shaoxia; Zhao, Li; Wang, Lifeng; Zhou, Hongmei

    2014-01-01

    To determine whether microwave (MW) radiation induces neural cell apoptosis, differentiated PC12 cells and Wistar rats were exposed to 2.856GHz for 5min and 15min, respectively, at an average power density of 30 mW/cm2. JC-1 and TUNEL staining detected significant apoptotic events, such as the loss of mitochondria membrane potential and DNA fragmentation, respectively. Transmission electron microscopy and Hoechst staining were used to observe chromatin ultrastructure and apoptotic body formation. Annexin V-FITC/PI double staining was used to quantify the level of apoptosis. The expressions of Bax, Bcl-2, cytochrome c, cleaved caspase-3 and PARP were examined by immunoblotting or immunocytochemistry. Caspase-3 activity was measured using an enzyme-linked immunosorbent assay. The results showed chromatin condensation and apoptotic body formation in neural cells 6h after microwave exposure. Moreover, the mitochondria membrane potential decreased, DNA fragmentation increased, leading to an increase in the apoptotic cell percentage. Furthermore, the ratio of Bax/Bcl-2, expression of cytochrome c, cleaved caspase-3 and PARP all increased. In conclusion, microwave radiation induced neural cell apoptosis via the classical mitochondria-dependent caspase-3 pathway. This study may provide the experimental basis for further investigation of the mechanism of the neurological effects induced by microwave radiation. PMID:24688304

  4. Mitogen-activated protein kinases p38 and JNK mediate Actinobacillus pleuropneumoniae exotoxin ApxI-induced apoptosis in porcine alveolar macrophages.

    PubMed

    Wu, Chi-Ming; Chen, Zeng-Weng; Chen, Ter-Hsin; Liao, Jiunn-Wang; Lin, Cheng-Chung; Chien, Maw-Sheng; Lee, Wei-Cheng; Hsuan, Shih-Ling

    2011-08-05

    Actinobacillus pleuropneumoniae exotoxins (Apx) are major virulence factors that play important roles in the pathogenesis of pleuropneumonia in swine. A previous study has demonstrated that native ApxI at low concentrations induces apoptosis in primary porcine alveolar macrophages (PAMs) via a caspase-3-dependent pathway. However, the molecular mechanisms underlying ApxI-induced apoptosis remain largely unknown. In this study, it was shown that ApxI treatment in PAMs rapidly induced phosphorylation of both p38 and JNK, members of the mitogen-activated protein kinase family. Application of a selective p38 or JNK inhibitor significantly reduced ApxI-induced apoptosis, indicating the involvement of p38 and JNK pathways in this event. Furthermore, activation of both caspase-8 and -9 were observed in ApxI-stimulated PAMs. Inhibition of caspase-8 and caspase-9 activity significantly protected PAMs from ApxI-induced apoptosis. In addition, Bid activation was also noted in ApxI-treated PAMs, and inhibition of caspase-8 suppressed the activation of Bid and caspase-9, suggesting that ApxI was able to activate the caspases-8-Bid-caspase-9 pathway. Notably, inhibition of p38 or JNK pathway greatly attenuated the activation of caspases-3, -8, and -9. This study is the first to demonstrate that ApxI-induced apoptosis of PAMs involves the activation of p38 and JNK, and engages the extrinsic and intrinsic apoptotic pathways.

  5. Ellagic acid induces novel and atypical PKC isoforms and promotes caspase-3 dependent apoptosis by blocking energy metabolism.

    PubMed

    Mishra, Sudha; Vinayak, Manjula

    2014-01-01

    Antioxidant ellagic acid is a herbal polyphenolic compound shown to possess growth-inhibiting and apoptotic activities in cancer. Protein kinase C (PKC) plays an important role in cell proliferation, apoptosis, and differentiation. Apoptosis of tumor cells is induced by inactivation of glycolytic enzyme of anaerobic metabolism, lactate dehydrogenase (LDH)-A, and by activating apoptotic protein caspase-3 via PKCδ. The present study aims to analyze the role of ellagic acid on regulation of novel and atypical isozymes of PKC to modulate apoptosis and anaerobic metabolism to prevent lymphoma growth as its role on classical PKCs is reported earlier. Expression of novel and atypical isozymes of PKC, activity of PKCδ, expression and activity of caspase-3, and LDH-A have been analyzed. Expression is measured by RT-PCR, activities of PKCδ as level of its catalytic fragment, caspase-3 as level of its p17 fragment, and LDH-A by specific staining. Lymphoma bearing mice were treated with 3 different doses of ellagic acid. The treatment enhanced expression of all novel and atypical PKCs, activity and expression of caspase-3, and activity of PKCδ but decreased activity and expression of LDH-A. Our results suggest that ellagic acid induces apoptosis via novel and atypical PKCs in association with caspase-3 and induces cancer cell death by blocking the energy metabolism.

  6. RNase activity of sialic acid-binding lectin from bullfrog eggs drives antitumor effect via the activation of p38 MAPK to caspase-3/7 signaling pathway in human breast cancer cells.

    PubMed

    Kariya, Yukiko; Tatsuta, Takeo; Sugawara, Shigeki; Kariya, Yoshinobu; Nitta, Kazuo; Hosono, Masahiro

    2016-10-01

    Sialic acid-binding lectin obtained from bullfrog eggs (SBL) induces cell death in cancer cells but not in normal cells. This antitumor effect is mediated through its ribonuclease (RNase) activity. However, the underlying molecular mechanisms remain unclear. We found that the p38 mitogen-activated protein kinase (MAPK) signaling pathway was activated when SBL induced cell death in three human breast cancer cell lines: SK-BR-3, MCF-7, and MDA‑MB231. The suppression of p38 MAPK phosphorylation by a p38 MAPK inhibitor as well as short interference RNA knockdown of p38 MAPK expression significantly decreased cell death and increased the cell viability of SBL-treated MDA‑MB231 cells. H103A, an SBL mutant lacking in RNase activity, showed decreased SBL-induced cell death compared with native SBL. However, the loss of RNase activity of SBL had no effect on its internalization into cells. The H103A mutant also displayed decreased phosphorylation of p38 MAPK. Moreover, SBL promoted caspase‑3/7 activation followed by a cleavage of poly (ADP-ribose)-polymerase, whereas the SBL mutant, H103A, lost this ability. The SBL-induced caspase‑3/7 activation was suppressed by the p38 MAPK inhibitor, SB203580, as well as pan-caspase inhibitor, zVAD-fmk. In the presence of zVAD-fmk, the SBL-induced cell death was decreased. In addition, the cell viability of SBL-treated MDA‑MB231 cells recovered by zVAD-fmk treatment. Taken together, our results suggest that the RNase activity of SBL leads to breast cancer cell death through the activation of p38 MAPK followed by the activation of caspase‑3/7.

  7. Caspase-3-independent pathways proceeding in bystander effect of HSV-tk/GCV system

    NASA Astrophysics Data System (ADS)

    Lin, Juqiang; Ma, Yan; Zeng, Shaoqun; Zhang, Zhihong

    2008-02-01

    HSV-tk/GCV system, which is the virus-directed enzyme/prodrug therapy of herpes simplex virus (HSV) thymidine kinase (tk) gene / the anti-viral reagent ganciclovir (GCV), is one of the promising approaches in the rapidly growing area of gene therapy. As gene therapy of cancer such as suicide gene therapy has entered the clinic, another therapy effect which is called 'bystander effect' was reported. Bystander effect can lead to killing of non-transduced tumor cells in the immediate vicinity of GCV-treated HSV-TK-positive cells. Now the magnitude of 'bystander effect' is an essential factor for this anti-tumor approach in vivo. However, the mechanism which HSV-tk/ACV brings "bystander effect" is poorly understood. In this study, we monitor the activation of caspase-3 in HSV-tk/GCV system by a FRET probe CD3, a FRET-based indicator for activity of caspase3, which is composed of an enhanced cyan fluorescent protein, a caspase-sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. Through application of CD3 we have visualized the activation of caspase-3 in tk gene positive human adenoid cystic carcinoma (ACC-M) cells but not in bystander effect of HSV-tk/GCV system induced by GCV. This finding provides needed information for understanding the mechanisms by which suicide gene approaches actually kill cancer cells, and may prove to be helpful for the clinical treatment of cancers.

  8. Kinetic and structural characterization of caspase-3 and caspase-8 inhibition by a novel class of irreversible inhibitors

    SciTech Connect

    Wang, Zhigang; Watt, William; Brooks, Nathan A.; Harris, Melissa S.; Urban, Jan; Boatman, Douglas; McMillan, Michael; Kahn, Michael; Heinrikson, Robert L.; Finzel, Barry C.; Wittwer, Arthur J.; Blinn, James; Kamtekar, Satwik; Tomasselli, Alfredo G.

    2010-09-17

    Because of their central role in programmed cell death, the caspases are attractive targets for developing new therapeutics against cancer and autoimmunity, myocardial infarction and ischemic damage, and neurodegenerative diseases. We chose to target caspase-3, an executioner caspase, and caspase-8, an initiator caspase, based on the vast amount of information linking their functions to diseases. Through a structure-based drug design approach, a number of novel {beta}-strand peptidomimetic compounds were synthesized. Kinetic studies of caspase-3 and caspase-8 inhibition were carried out with these urazole ring-containing irreversible peptidomimetics and a known irreversible caspase inhibitor, Z-VAD-fmk. Using a stopped-flow fluorescence assay, we were able to determine individual kinetic parameters of caspase-3 and caspase-8 inhibition by these inhibitors. Z-VAD-fmk and the peptidomimetic inhibitors inhibit caspase-3 and caspase-8 via a three-step kinetic mechanism. Inhibition of both caspase-3 and caspase-8 by Z-VAD-fmk and of caspase-3 by the peptidomimetic inhibitors proceeds via two rapid equilibrium steps followed by a relatively fast inactivation step. However, caspase-8 inhibition by the peptidomimetics goes through a rapid equilibrium step, a slow-binding reversible step, and an extremely slow inactivation step. The crystal structures of inhibitor complexes of caspases-3 and -8 validate the design of the inhibitors by illustrating in detail how they mimic peptide substrates. One of the caspase-8 structures also shows binding at a secondary, allosteric site, providing a possible route to the development of noncovalent small molecule modulators of caspase activity.

  9. Geminin is cleaved by caspase-3 during apoptosis in Xenopus egg extracts

    SciTech Connect

    Auziol, Camille; Mechali, Marcel; Maiorano, Domenico. E-Mail: maiorano@igh.cnrs.fr

    2007-09-21

    Geminin is an important cell cycle regulator having a dual role in cell proliferation and differentiation. During proliferation, Geminin controls DNA synthesis by interacting with the licensing factor Cdt1 and interferes with the onset of differentiation by inhibiting the activity of transcription factors such as Hox and Six3. During early development Geminin also functions as neural inducer. Thus differential interaction of Geminin with Cdt1 or development-specific transcription factors influence the balance between proliferation and differentiation. Here, we report an additional feature of Geminin showing that it is a novel substrate of caspase-3 during apoptosis in in vitro Xenopus egg extracts. We also show that cleavage of Geminin occurs both in solution and on chromatin with distinct kinetics. In addition we show that cleavage of Geminin by caspase-3 is not relevant to its function as regulator of DNA synthesis, suggesting that its cleavage may be relevant to its role in differentiation.

  10. Toxoplasma gondii inhibits cytochrome c-induced caspase activation in its host cell by interference with holo-apoptosome assembly

    PubMed Central

    Graumann, Kristin; Schaumburg, Frieder; Reubold, Thomas F.; Hippe, Diana; Eschenburg, Susanne; Lüder, Carsten G. K.

    2015-01-01

    Inhibition of programmed cell death pathways of mammalian cells often facilitates the sustained survival of intracellular microorganisms. The apicomplexan parasite Toxoplasma gondii is a master regulator of host cell apoptotic pathways. Here, we have characterized a novel anti-apoptotic activity of T. gondii. Using a cell-free cytosolic extract model, we show that T. gondii interferes with the activities of caspase 9 and caspase 3/7 which have been induced by exogenous cytochrome c and dATP. Proteolytic cleavage of caspases 9 and 3 is also diminished suggesting inhibition of holo-apoptosome function. Parasite infection of Jurkat T cells and subsequent triggering of apoptosome formation by exogenous cytochrome c in vitro and in vivo indicated that T. gondii also interferes with caspase activation in infected cells. Importantly, parasite inhibition of cytochrome c-induced caspase activation considerably contributes to the overall anti-apoptotic activity of T. gondii as observed in staurosporine-treated cells. Co-immunoprecipitation showed that T. gondii abolishes binding of caspase 9 to Apaf-1 whereas the interaction of cytochrome c with Apaf-1 remains unchanged. Finally, T. gondii lysate mimics the effect of viable parasites and prevents holo-apoptosome functionality in a reconstituted in vitro system comprising recombinant Apaf-1 and caspase 9. Beside inhibition of cytochrome c release from host cell mitochondria, T. gondii thus also targets the holo-apoptosome assembly as a second mean to efficiently inhibit the caspase-dependent intrinsic cell death pathway. PMID:28357287

  11. The pesticide rotenone induces caspase-3-mediated apoptosis in ventral mesencephalic dopaminergic neurons.

    PubMed

    Ahmadi, Ferogh A; Linseman, Daniel A; Grammatopoulos, Tom N; Jones, Susan M; Bouchard, Ron J; Freed, Curt R; Heidenreich, Kim A; Zawada, W Michael

    2003-11-01

    In vivo, the pesticide rotenone induces degeneration of dopamine neurons and parkinsonian-like pathology in adult rats. In the current study, we utilized primary ventral mesencephalic (VM) cultures from E15 rats as an in vitro model to examine the mechanism underlying rotenone-induced death of dopamine neurons. After 11 h of exposure to 30 nm rotenone, the number of dopamine neurons identified by tyrosine hydroxylase (TH) immunostaining declined rapidly with only 23% of the neurons surviving. By contrast, 73% of total cells survived rotenone treatment, indicating that TH+ neurons are more sensitive to rotenone. Examination of the role of apoptosis in TH+ neuron death, revealed that 10 and 30 nm rotenone significantly increased the number of apoptotic TH+ neurons from 7% under control conditions to 38 and 55%, respectively. The increase in apoptotic TH+ neurons correlated with an increase in immunoreactivity for active caspase-3 in TH+ neurons. The caspase-3 inhibitor, DEVD, rescued a significant number of TH+ neurons from rotenone-induced death. Furthermore, this protective effect lasted for at least 32 h post-rotenone and DEVD exposure, indicating lasting neuroprotection achieved with an intervention prior to the death commitment point. Our results show for the first time in primary dopamine neurons that, at low nanomolar concentrations, rotenone induces caspase-3-mediated apoptosis. Understanding the mechanism of rotenone-induced apoptosis in dopamine neurons may contribute to the development of new neuroprotective strategies against Parkinson's disease.

  12. Pharmacophore Modeling and Docking Studies on Some Nonpeptide-Based Caspase-3 Inhibitors

    PubMed Central

    Sharma, Simant; Basu, Arijit; Agrawal, R. K.

    2013-01-01

    Neurodegenerative disorders are major consequences of excessive apoptosis caused by a proteolytic enzyme known as caspase-3. Therefore, caspase-3 inhibition has become a validated therapeutic approach for neurodegenerative disorders. We performed pharmacophore modeling on some synthetic derivatives of caspase-3 inhibitors (pyrrolo[3,4-c]quinoline-1,3-diones) using PHASE 3.0. This resulted in the common pharmacophore hypothesis AAHRR.6 which might be responsible for the biological activity: two aromatic rings (R) mainly in the quinoline nucleus, one hydrophobic (H) group (CH3), and two acceptor (A) groups (–C=O). After identifying a valid hypothesis, we also developed an atom-based 3D-QSAR model applying the PLS algorithm. The developed model was statistically robust (q2 = 0.53; pred_r2 = 0.80). Additionally, we have performed molecular docking studies, cross-validated our results, and gained a deeper insight into its molecular recognition process. Our developed model may serve as a query tool for future virtual screening and drug designing for this particular target. PMID:24089669

  13. An inducible caspase 9 safety switch can halt cell therapy-induced autoimmune disease.

    PubMed

    de Witte, Moniek A; Jorritsma, Annelies; Swart, Erwin; Straathof, Karin C; de Punder, Karin; Haanen, John B A G; Rooney, Cliona M; Schumacher, Ton N M

    2008-05-01

    Transfer of either allogeneic or genetically modified T cells as a therapy for malignancies can be accompanied by T cell-mediated tissue destruction. The introduction of an efficient "safety switch" can potentially be used to control the survival of adoptively transferred cell populations and as such reduce the risk of severe graft-vs-host disease. In this study, we have tested the value of an inducible caspase 9-based safety switch to halt an ongoing immune attack in a murine model for cell therapy-induced type I diabetes. The data obtained in this model indicate that self-reactive T cells expressing this conditional safety switch show unimpaired lymphopenia- and vaccine-induced proliferation and effector function in vivo, but can be specifically and rapidly eliminated upon triggering. These data provide strong support for the evaluation of this conditional safety switch in clinical trials of adoptive cell therapy.

  14. Evaluation of therapeutic effects of natural killer (NK) cell-based immunotherapy in mice using in vivo apoptosis bioimaging with a caspase-3 sensor.

    PubMed

    Lee, Ho Won; Singh, Thoudam Debraj; Lee, Sang-Woo; Ha, Jeoung-Hee; Rehemtulla, Alnawaz; Ahn, Byeong-Cheol; Jeon, Young Hyun; Lee, Jaetae

    2014-07-01

    Natural killer (NK) cell-based immunotherapy is a promising strategy for cancer treatment, and caspase-3 is an important effector molecule in NK cell-mediated apoptosis in cancers. Here, we evaluated the antitumor effects of NK cell-based immunotherapy by serial noninvasive imaging of apoptosis using a caspase-3 sensor in mice with human glioma xenografts. Human glioma cells expressing both a caspase-3 sensor as a surrogate marker for caspase-3 activation and Renilla luciferase (Rluc) as a surrogate marker for cell viability were established and referred to as D54-CR cells. Human NK92 cells were used as effector cells. Treatment with NK92 cells resulted in a time- and effector number-dependent increase in bioluminescence imaging (BLI) activity of the caspase-3 sensor in D54-CR cells in vitro. Caspase-3 activation by NK92 treatment was blocked by Z-VAD treatment in D54-CR cells. Transfusion of NK92 cells induced an increase of the BLI signal by caspase-3 activation in a dose- and time-dependent manner in D54-CR tumor-bearing mice but not in PBS-treated mice. Accordingly, sequential BLI with the Rluc reporter gene revealed marked retardation of tumor growth in the NK92-treatment group but not in the PBS-treatment group. These data suggest that noninvasive imaging of apoptosis with a caspase-3 sensor can be used as an effective tool for evaluation of therapeutic efficacy as well as for optimization of NK cell-based immunotherapy.-Lee, H. W., Singh, T. D., Lee, S.-W., Ha, J.-H., Rehemtulla, A., Ahn, B.-C., Jeon, Y.-H., Lee, J. Evaluation of therapeutic effects of natural killer (NK) cell-based immunotherapy in mice using in vivo apoptosis bioimaging with a caspase-3 sensor.

  15. Characterization of Social Behaviors in caspase-3 deficient mice

    PubMed Central

    Lo, Shih-Ching; Scearce-Levie, Kimberly; Sheng, Morgan

    2016-01-01

    Impaired social interaction is a defining feature of autism spectrum disorder, a neurodevelopmental disorder that shows a strong male preponderance in prevalence. Studies have identified neural circuits, neuromodulators and genetic factors involved in social behaviors, but mechanistic understanding of gender-specific social deficits is lacking. We report that deletion of the caspase-3 gene, encoding a protease with functions in apoptosis and neural plasticity, alters specific social behaviors in male mice, while leaving females unaffected. Casp3−/− mice showed normal behavioral responses to olfactory cues from food, neutral chemical and biological sources. Both Casp3−/− males and females displayed robust social exploration, sociability, recognition and preference for an enclosed novel mouse in the three-chamber test. However, Casp3−/− males showed significantly reduced social interaction behaviors when exposed to a freely moving novel mouse, including decreased interaction time and diminished mounting. Thus caspase-3 is essential for a subset of social behaviors, but despite similar hyper-locomotion in both sexes, only male Casp3−/− mice exhibited social interaction deficits, which is interesting given the male bias of autism. PMID:26783106

  16. An Inducible Caspase-9 Suicide Gene to Improve the Safety of Therapy Using Human Induced Pluripotent Stem Cells.

    PubMed

    Yagyu, Shigeki; Hoyos, Valentina; Del Bufalo, Francesca; Brenner, Malcolm K

    2015-09-01

    Human induced pluripotent stem cells (hiPSC) hold promise for regenerative therapies, though there are several safety concerns including the risk of oncogenic transformation or unwanted adverse effects associated with hiPSC or their differentiated progeny. Introduction of the inducible caspase-9 (iC9) suicide gene, which is activated by a specific chemical inducer of dimerization (CID), is one of the most appealing safety strategies for cell therapies and is currently being tested in multicenter clinical trials. Here, we show that the iC9 suicide gene with a human EF1α promoter can be introduced into hiPSC by lentiviral transduction. The transduced hiPSC maintain their pluripotency, including their capacity for unlimited self-renewal and the potential to differentiate into three germ layer tissues. Transduced hiPSC are eliminated within 24 hours of exposure to pharmacological levels of CID in vitro, with induction of apoptosis in 94-99% of the cells. Importantly, the iC9 suicide gene can eradicate tumors derived from hiPSC in vivo. In conclusion, we have developed a direct and efficient hiPSC killing system that provides a necessary safety mechanism for therapies using hiPSC. We believe that our iC9 suicide gene will be of value in clinical applications of hiPSC-based therapy.

  17. Analysis of caspase-3 in ASTC-a-1 cells treated with mitomycin C using acceptor photobleaching techniques

    NASA Astrophysics Data System (ADS)

    Wang, Huiying; Chen, Tongsheng; Sun, Lei

    2008-02-01

    Caspase-3 is a key activated death protease, which catalyzes the specific cleavage of many cellular proteins and induces DNA cleavage eventually. In this report, cells were treated with mitomycin C (MMC) at different concentration and its activity was detected by cell counting kit (CCK-8). Based on results of CCK-8, cells were treated with 10μg/mL MMC and Hoechst 33258 has been used to observe cell apoptosis. Fluorescence resonance energy transfer (FRET) and confocal microscopy have been used to the effect of MMC on the caspase3 activation in living cells. Human lung adenocarcinoma cells (ASTC-a-1) was transfected with plasmid SCAT3 (pSCAT3)/CKAR FRET receptor. Acceptor photobleaching techniques of FRET plasmid has been used to destruct fluorophore of cells stably expressing SCAT3 reporter on a fluorescence confocal microscope. The activity of caspase3 can be analyzed by FRET dynamics of SCAT3 in living cells. Our results show that MM C can induce ASTC-a-1 cell apoptosis through activation of caspase3.

  18. SAG/ROC-SCF beta-TrCP E3 ubiquitin ligase promotes pro-caspase-3 degradation as a mechanism of apoptosis protection.

    PubMed

    Tan, Mingjia; Gallegos, Jayme R; Gu, Qingyang; Huang, Yuanhui; Li, Jun; Jin, Yetao; Lu, Hua; Sun, Yi

    2006-12-01

    Skp1-cullin-F-box protein (SCF) is a multicomponent E3 ubiquitin (Ub) ligase that ubiquitinates a number of important biologic molecules such as p27, beta-catenin, and IkappaB for proteasomal degradation, thus regulating cell proliferation and survival. One SCF component, SAG/ROC2/Rbx2/Hrt2, a RING finger protein, was first identified as a redox-inducible protein, which, when overexpressed, inhibited apoptosis both in vitro and in vivo. We report here that sensitive to apoptosis gene (SAG), as well as its family member ROC1/Rbx1, bound to the proinactive form of caspase-3 (pro-caspase-3). Binding was likely mediated through F-box protein, beta-transducin repeat-containing protein (beta-TrCP), which binds to the first 38 amino acids of pro-caspase-3. Importantly, beta-TrCP1 expression significantly shortened the protein half-life of pro-caspase-3, whereas expression of a dominant-negative beta-TrCP1 mutant with the F-box domain deleted extended it. An in vitro ubiquitination assay showed that SAG/ROC-SCF(beta-TrCP) promoted ubiquitination of pro-caspase-3. Furthermore, endogenous levels of pro-caspase-3 were decreased by overexpression of SAG/ROC-SCF(beta-TrCP) E3 Ub ligases, but increased on siRNA silencing of SAG, regulator of cullin-1 (ROC1), or beta-TrCPs, leading to increased apoptosis by etoposide and TNF-related apoptosis-inducing ligand through increased activation of caspase-3. Thus, pro-caspase-3 appears to be a substrate of SAG/ROC-SCF(beta-TrCP) E3 Ub ligase, which protects cells from apoptosis through increased apoptosis threshold by reducing the basal level of pro-caspase-3.

  19. Retina Is Protected by Neuroserpin from Ischemic/Reperfusion-Induced Injury Independent of Tissue-Type Plasminogen Activator

    PubMed Central

    Gu, R. P.; Fu, L. L.; Jiang, C. H.; Xu, Y. F.; Wang, X.; Yu, J.

    2015-01-01

    The purpose of the present study was to investigate the potential neuroprotective effect of neuroserpin (NSP) on acute retinal ischemic/reperfusion-induced (IR) injury. An IR injury model was established by elevating intraocular pressure (IOP) for 60 minutes in wild type and tPA-deficient (tPA-/-) mice. Prior to IR injury, 1 μL of 20 μmol/L NSP or an equal volume of bovine serum albumin (BSA) was intravitreally administered. Retinal function was evaluated by electroretinograph (ERG) and the number of apoptotic neurons was determined via TUNEL labeling. Caspase-3, -8, -9,poly (ADP-ribose) polymerase (PARP)and their cleaved forms were subsequently analyzed. It was found that IR injury significantly damaged retinal function, inducing apoptosis in the retina, while NSP attenuated the loss of retinal function and significantly reduced the number of apoptotic neurons in both wild type and tPA-/- mice. The levels of cleaved caspase-3, cleaved PARP (the substrate of caspase-3) and caspase-9 (the modulator of the caspase-3), which had increased following IR injury, were significantly inhibited by NSP in both wild type and tPA-/- mice. NSP increased ischemic tolerance in the retina at least partially by inhibiting the intrinsic cell death signaling pathway of caspase-3. It was therefore concluded that the protective effect of neuroserpin maybe independent from its canonical interaction with a tissue-type plasminogen activator. PMID:26176694

  20. Targeting caspase-3 as dual therapeutic benefits by RNAi facilitating brain-targeted nanoparticles in a rat model of Parkinson's disease.

    PubMed

    Liu, Yang; Guo, Yubo; An, Sai; Kuang, Yuyang; He, Xi; Ma, Haojun; Li, Jianfeng; Lu, Jing; Lv, Jing; Zhang, Ning; Jiang, Chen

    2013-01-01

    The activation of caspase-3 is an important hallmark in Parkinson's disease. It could induce neuron death by apoptosis and microglia activation by inflammation. As a result, inhibition the activation of caspase-3 would exert synergistic dual effect in brain in order to prevent the progress of Parkinson's disease. Silencing caspase-3 genes by RNA interference could inhibit the activation of caspase-3. We developed a brain-targeted gene delivery system based on non-viral gene vector, dendrigraft poly-L-lysines. A rabies virus glycoprotein peptide with 29 amino-acid linked to dendrigraft poly-L-lysines could render gene vectors the ability to get across the blood brain barrier by specific receptor mediated transcytosis. The resultant brain-targeted vector was complexed with caspase-3 short hairpin RNA coding plasmid DNA, yielding nanoparticles. In vivo imaging analysis indicated the targeted nanoparticles could accumulate in brain more efficiently than non-targeted ones. A multiple dosing regimen by weekly intravenous administration of the nanoparticles could reduce activated casapse-3 levels, significantly improve locomotor activity and rescue dopaminergic neuronal loss and in Parkinson's disease rats' brain. These results indicated the rabies virus glycoprotein peptide modified brain-targeted nanoparticles were promising gene delivery system for RNA interference to achieve anti-apoptotic and anti-inflammation synergistic therapeutic effects by down-regulation the expression and activation of caspase-3.

  1. Caspase-3, myogenic transcription factors and cell cycle inhibitors are regulated by leukemia inhibitory factor to mediate inhibition of myogenic differentiation

    PubMed Central

    2011-01-01

    Background Leukemia inhibitory factor (LIF) is known to inhibit myogenic differentiation as well as to inhibit apoptosis and caspase-3 activation in non-differentiating myoblasts. In addition caspase-3 activity is required for myogenic differentiation. Therefore the aim of this study was to further investigate mechanisms of the differentiation suppressing effect of LIF in particular the possibility of a caspase-3 mediated inhibition of differentiation. Results LIF dependent inhibition of differentiation appeared to involve several mechanisms. Differentiating myoblasts that were exposed to LIF displayed increased transcripts for c-fos. Transcripts for the cell cycle inhibitor p21 as well as muscle regulatory factors myoD and myogenin were decreased with LIF exposure. However, LIF did not directly induce a proliferative effect under differentiation conditions, but did prevent the proportion of myoblasts that were proliferating from decreasing as differentiation proceeded. LIF stimulation decreased the percentage of cells positive for active caspase-3 occurring during differentiation. Both the effect of LIF inhibiting caspase-3 activation and differentiation appeared dependent on mitogen activated protein kinase and extracellular signal regulated kinase kinase (MEK) signalling. The role of LIF in myogenic differentiation was further refined to demonstrate that myoblasts are unlikely to secrete LIF endogenously. Conclusions Altogether this study provides a more comprehensive view of the role of LIF in myogenic differentiation including LIF and receptor regulation in myoblasts and myotubes, mechanisms of inhibition of differentiation and the link between caspase-3 activation, apoptosis and myogenic differentiation. PMID:21798094

  2. F16, a fraction from Eurycoma longifolia jack extract, induces apoptosis via a caspase-9-independent manner in MCF-7 cells.

    PubMed

    Tee, Thiam Tsui; Cheah, Yew Hoong; Hawariah, Lope Pihie Azimahtol

    2007-01-01

    F16 is a plant-derived pharmacologically active fraction extracted from Eurycoma longifolia Jack. Previously, we have reported that F16 inhibited the proliferation of MCF-7 human breast cancer cells by inducing apoptotic cell death while having some degree of cytoselectivity on a normal human breast cell line, MCF-10A. In this study, we attempted to further elucidate the mode of action of F16. We found that the intrinsic apoptotic pathway was invoked, with the reduction of Bcl-2 protein. Then, executioner caspase-7 was cleaved and activated in response to F16 treatment. Furthermore, apoptosis in the MCF- 7 cells was accompanied by the specific proteolytic cleavage of poly(ADP-ribose) polymerase-1 (PARP-1). Surprisingly, caspase-9 and p53 were unchanged with F16 treatment. We believe that the F16-induced apoptosis in MCF-7 cells occurs independently of caspase-9 and p53. Taken together, these results suggest that F16 from E. longifolia exerts anti-proliferative action and growth inhibition on MCF-7 cells through apoptosis induction and that it may have anticancer properties.

  3. A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3

    NASA Astrophysics Data System (ADS)

    Murthy, Aditya; Li, Yun; Peng, Ivan; Reichelt, Mike; Katakam, Anand Kumar; Noubade, Rajkumar; Roose-Girma, Merone; Devoss, Jason; Diehl, Lauri; Graham, Robert R.; van Lookeren Campagne, Menno

    2014-02-01

    Crohn's disease is a debilitating inflammatory bowel disease (IBD) that can involve the entire digestive tract. A single-nucleotide polymorphism (SNP) encoding a missense variant in the autophagy gene ATG16L1 (rs2241880, Thr300Ala) is strongly associated with the incidence of Crohn's disease. Numerous studies have demonstrated the effect of ATG16L1 deletion or deficiency; however, the molecular consequences of the Thr300Ala (T300A) variant remains unknown. Here we show that amino acids 296-299 constitute a caspase cleavage motif in ATG16L1 and that the T300A variant (T316A in mice) significantly increases ATG16L1 sensitization to caspase-3-mediated processing. We observed that death-receptor activation or starvation-induced metabolic stress in human and murine macrophages increased degradation of the T300A or T316A variants of ATG16L1, respectively, resulting in diminished autophagy. Knock-in mice harbouring the T316A variant showed defective clearance of the ileal pathogen Yersinia enterocolitica and an elevated inflammatory cytokine response. In turn, deletion of the caspase-3-encoding gene, Casp3, or elimination of the caspase cleavage site by site-directed mutagenesis rescued starvation-induced autophagy and pathogen clearance, respectively. These findings demonstrate that caspase 3 activation in the presence of a common risk allele leads to accelerated degradation of ATG16L1, placing cellular stress, apoptotic stimuli and impaired autophagy in a unified pathway that predisposes to Crohn's disease.

  4. Regulated apoptosis of genetically modified hematopoietic stem and progenitor cells via an inducible caspase-9 suicide gene in rhesus macaques.

    PubMed

    Barese, Cecilia N; Felizardo, Tania C; Sellers, Stephanie E; Keyvanfar, Keyvan; Di Stasi, Antonio; Metzger, Mark E; Krouse, Allen E; Donahue, Robert E; Spencer, David M; Dunbar, Cynthia E

    2015-01-01

    The high risk of insertional oncogenesis reported in clinical trials using integrating retroviral vectors to genetically modify hematopoietic stem and progenitor cells (HSPCs) requires the development of safety strategies to minimize risks associated with novel cell and gene therapies. The ability to ablate genetically modified cells in vivo is desirable, should an abnormal clone emerge. Inclusion of "suicide genes" in vectors to facilitate targeted ablation of vector-containing abnormal clones in vivo is one potential safety approach. We tested whether the inclusion of the "inducible Caspase-9" (iCasp9) suicide gene in a gamma-retroviral vector facilitated efficient elimination of vector-containing HSPCs and their hematopoietic progeny in vivo long-term, in an autologous non-human primate transplantation model. Following stable engraftment of iCasp9 expressing hematopoietic cells in rhesus macaques, administration of AP1903, a chemical inducer of dimerization able to activate iCasp9, specifically eliminated vector-containing cells in all hematopoietic lineages long-term, suggesting activity at the HSPC level. Between 75% and 94% of vector-containing cells were eliminated by well-tolerated AP1903 dosing, but lack of complete ablation was linked to lower iCasp9 expression in residual cells. Further investigation of resistance mechanisms demonstrated upregulation of Bcl-2 in hematopoietic cell lines transduced with the vector and resistant to AP1903 ablation. These results demonstrate both the potential and the limitations of safety approaches using iCasp9 to HSPC-targeted gene therapy settings, in a model with great relevance to clinical development.

  5. Tetramethylpyrazine Protects against Early Brain Injury after Experimental Subarachnoid Hemorrhage by Affecting Mitochondrial-Dependent Caspase-3 Apoptotic Pathway

    PubMed Central

    Xiao, Xiaolan

    2017-01-01

    This study was to test the hypothesis that tetramethylpyrazine (TMP) protected against early brain injury after subarachnoid hemorrhage (SAH) by affecting the mitochondrial-dependent caspase-3 apoptotic pathway. TMP was administrated after the rats' prechiasmatic SAH mode. Animal neurobehavioral functions were assessed and the mitochondrial morphology, mitochondrial and cytoplasmic calcium, and mitochondrial membrane potential changes (Δψm) of the brain tissues were measured. The expressions of cytoplasmic cytochrome c (cyt c), second mitochondria-derived activator of caspases (Smac), and cleaved caspase-3 B-cell lymphoma 2 (bcl-2) in cells were determined and cellular apoptosis was detected. The treatment of TMP resulted in less apoptotic cells and milder mitochondrial injury and potentially performed better in the neurobehavioral outcome compared to those with saline. Also, TMP ameliorated calcium overload in mitochondria and cytoplasm and alleviated the decrease of Δψm. In addition, TMP inhibited the expression of cytoplasmic cyt c, Smac, and cleaved caspase-3, yet it upregulated the expression of bcl-2. These findings suggest that TMP exerts an antiapoptosis property in the SAH rat model and this is probably mediated by the caspase-3 apoptotic pathway triggered by mitochondrial calcium overload. The finding offers a new therapeutic candidate for early brain injury after SAH. PMID:28337226

  6. Development of an inducible caspase-9 safety switch for pluripotent stem cell–based therapies

    PubMed Central

    Wu, Chuanfeng; Hong, So Gun; Winkler, Thomas; Spencer, David M; Jares, Alexander; Ichwan, Brian; Nicolae, Alina; Guo, Vicky; Larochelle, Andre; Dunbar, Cynthia E

    2014-01-01

    Induced pluripotent stem cell (iPSC) therapies offer a promising path for patient-specific regenerative medicine. However, tumor formation from residual undifferentiated iPSC or transformation of iPSC or their derivatives is a risk. Inclusion of a suicide gene is one approach to risk mitigation. We introduced a dimerizable-“inducible caspase-9” (iCasp9) suicide gene into mouse iPSC (miPSC) and rhesus iPSC (RhiPSC) via a lentivirus, driving expression from either a cytomegalovirus (CMV), elongation factor-1 α (EF1α) or pluripotency-specific EOS-C(3+) promoter. Exposure of the iPSC to the synthetic chemical dimerizer, AP1903, in vitro induced effective apoptosis in EF1α-iCasp9-expressing (EF1α)-iPSC, with less effective killing of EOS-C(3+)-iPSC and CMV-iPSC, proportional to transgene expression in these cells. AP1903 treatment of EF1α-iCasp9 miPSC in vitro delayed or prevented teratomas. AP1903 administration following subcutaneous or intravenous delivery of EF1α-iPSC resulted in delayed teratoma progression but did not ablate tumors. EF1α-iCasp9 expression was downregulated during in vitro and in vivo differentiation due to DNA methylation at CpG islands within the promoter, and methylation, and thus decreased expression, could be reversed by 5-azacytidine treatment. The level and stability of suicide gene expression will be important for the development of suicide gene strategies in iPSC regenerative medicine. PMID:26052521

  7. Proliferation related acidic leucine-rich protein PAL31 functions as a caspase-3 inhibitor

    SciTech Connect

    Sun Weiyong; Kimura, Hiromichi; Shiota, Kunio . E-mail: ashiota@mail.ecc.u-tokyo.ac.jp

    2006-04-14

    Proliferation related acidic leucine-rich protein PAL31 (PAL31) is expressed in proliferating cells and consists of 272 amino acids with a tandem structure of leucine-rich repeats in the N-terminus and a highly acidic region with a putative nuclear localization signal in the C-terminus. We previously reported that PAL31 is required for cell cycle progression. In the present study, we found that the antisense oligonucleotide of PAL31 induced apoptosis to the transfected Nb2 cells. Stable transfectants, in which PAL31 was regulated by an inducible promoter, were generated to gain further insight into the signaling role of PAL31 in the regulation of apoptosis. Expression of PAL31 resulted in the marked rescue of Rat1 cells from etoposide and UV radiation-induced apoptosis and the cytoprotection was correlated with the levels of PAL31 protein. Thus, cytoprotection from apoptosis is a physiological function of PAL31. PAL31 can suppress caspase-3 activity but not cytochrome c release in vitro, indicating that PAL31 is a direct caspase-3 inhibitor. In conclusion, PAL31 is a multifunctional protein working as a cell cycle progression factor as well as a cell survival factor.

  8. Atorvastatin attenuates cognitive deficits through Akt1/caspase-3 signaling pathway in ischemic stroke.

    PubMed

    Yang, Jie; Pan, Ying; Li, Xuejing; Wang, Xianying

    2015-12-10

    Neuronal damage in the hippocampal formation is more sensitive to ischemic stimulation and easily injured, causing severe learning and memory impairment. Therefore, protection of hippocampal neuronal damage is the main contributor for learning and memory impairment during cerebral ischemia. Atorvastatin has been reported to ameliorate ischemic brain damage after ischemia reperfusion (I/R). However, its molecular mechanism has not been elucidated clearly. In this study, we established four-vessel occlusion model in rats with cerebral ischemia. Here, we demonstrated that atorvastatin significantly improves the behavior of I/R-rat in open field tasks. We also found that atorvastatin significantly shortens the distance and time of loading onto the hidden platform in the positioning navigation process, decreases the latency in the space exploration process when cognitive testing with Morris water maze was performed during ischemic stroke in rats. Furthermore, the survival rate of neurons in the CA1 area of the hippocampus and the phosphorylation of Akt (Ser473) in the neurons are increased, whereas the expression of caspase-3 are inhibited by atorvastatin. However, after an intracerebroventricular injection of LY294002 (an inhibitor of Akt1), the above neuroprotective effects of atorvastatin are attenuated. In summary, our results imply atorvastatin may improve the survival rate of hippocampal neurons and reduce the impairment of learning and memory by downregulating the activation of the caspase-3 via increasing the phosphorylation of Akt1 during ischemia/reperfusion.

  9. Cinnamomum cassia Suppresses Caspase-9 through Stimulation of AKT1 in MCF-7 Cells but Not in MDA-MB-231 Cells

    PubMed Central

    Kianpour Rad, Sima; Kanthimathi, M. S.; Abd Malek, Sri Nurestri; Lee, Guan Serm; Looi, Chung Yeng; Wong, Won Fen

    2015-01-01

    Background Cinnamomum cassia bark is a popular culinary spice used for flavoring and in traditional medicine. C. cassia extract (CE) induces apoptosis in many cell lines. In the present study, particular differences in the mechanism of the anti-proliferative property of C. cassia on two breast cancer cell lines, MCF-7 and MDA-MB-231, were elucidated. Methodology/Principal Findings The hexane extract of C. cassia demonstrated high anti-proliferative activity against MCF-7 and MDA-MB-231 cells (IC50, 34±3.52 and 32.42 ±0.37 μg/ml, respectively). Oxidative stress due to disruption of antioxidant enzyme (SOD, GPx and CAT) activity is suggested as the probable cause for apoptosis initiation. Though the main apoptosis pathway in both cell lines was found to be through caspase-8 activation, caspase-9 was also activated in MDA-MB-231 cells but suppressed in MCF-7 cells. Gene expression studies revealed that AKT1, the caspase-9 suppressor, was up-regulated in MCF-7 cells while down-regulated in MDA-MB-231 cells. Although, AKT1 protein expression in both cell lines was down-regulated, a steady increase in MCF-7 cells was observed after a sharp decrease of suppression of AKT1. Trans-cinnamaldehyde and coumarin were isolated and identified and found to be mainly responsible for the observed anti-proliferative activity of CE (Cinnamomum cassia). Conclusion Activation of caspase-8 is reported for the first time to be involved as the main apoptosis pathway in breast cancer cell lines upon treatment with C. cassia. The double effects of C. cassia on AKT1 gene expression in MCF-7 cells is reported for the first time in this study. PMID:26700476

  10. QSAR Analysis for Some 1, 2-Benzisothiazol-3-one Derivatives as Caspase-3 Inhibitors by Stepwise MLR Method

    PubMed Central

    Hajimahdi, Zahra; Safizadeh, Fatemeh; Zarghi, Afshin

    2016-01-01

    Caspase-3 inhibitory activities of some 1, 2-benzisothiazol-3-one derivatives were modeled by quantitative structure–activity relationship (QSAR) using stepwise-multiple linear regression (SW-MLR) method. The built model was robust and predictive with correlation coefficient (R2) of 0.91 and 0.59 for training and test groups, respectively. The quality of the model was evaluated by leave-one out (LOO) cross validation (LOO correlation coefficient, Q2) of 0.80). The results indicate that the descriptors related to the electronegativity, the atomic masses, the atomic van der Waals volumes and R--CX--R Atom-centered fragments play a more significant role in caspase-3 inhibitory activity. PMID:27642314

  11. Preclinical Studies Identify Non-Apoptotic Low-Level Caspase-3 as Therapeutic Target in Pemphigus Vulgaris

    PubMed Central

    Luyet, Camille; Schulze, Katja; Sayar, Beyza S.; Howald, Denise; Müller, Eliane J.; Galichet, Arnaud

    2015-01-01

    The majority of pemphigus vulgaris (PV) patients suffer from a live-threatening loss of intercellular adhesion between keratinocytes (acantholysis). The disease is caused by auto-antibodies that bind to desmosomal cadherins desmoglein (Dsg) 3 or Dsg3 and Dsg1 in mucous membranes and skin. A currently unresolved controversy in PV is whether apoptosis is involved in the pathogenic process. The objective of this study was to perform preclinical studies to investigate apoptotic pathway activation in PV pathogenesis with the goal to assess its potential for clinical therapy. For this purpose, we investigated mouse and human skin keratinocyte cultures treated with PV antibodies (the experimental Dsg3 monospecific antibody AK23 or PV patients IgG), PV mouse models (passive transfer of AK23 or PVIgG into adult and neonatal mice) as well as PV patients’ biopsies (n=6). A combination of TUNEL assay, analyses of membrane integrity, early apoptotic markers such as cleaved poly-ADP-ribose polymerase (PARP) and the collapse of actin cytoskeleton failed to provide evidence for apoptosis in PV pathogenesis. However, the in vitro and in vivo PV models, allowing to monitor progression of lesion formation, revealed an early, transient and low-level caspase-3 activation. Pharmacological inhibition confirmed the functional implication of caspase-3 in major events in PV such as shedding of Dsg3, keratin retraction, proliferation including c-Myc induction, p38MAPK activation and acantholysis. Together, these data identify low-level caspase-3 activation downstream of disrupted Dsg3 trans- or cis-adhesion as a major event in PV pathogenesis that is non-synonymous with apoptosis and represents, unlike apoptotic components, a promising target for clinical therapy. At a broader level, these results posit that an impairment of adhesive functions in concert with low-level, non-lethal caspase-3 activation can evoke profound cellular changes which may be of relevance for other diseases

  12. Preclinical studies identify non-apoptotic low-level caspase-3 as therapeutic target in pemphigus vulgaris.

    PubMed

    Luyet, Camille; Schulze, Katja; Sayar, Beyza S; Howald, Denise; Müller, Eliane J; Galichet, Arnaud

    2015-01-01

    The majority of pemphigus vulgaris (PV) patients suffer from a live-threatening loss of intercellular adhesion between keratinocytes (acantholysis). The disease is caused by auto-antibodies that bind to desmosomal cadherins desmoglein (Dsg) 3 or Dsg3 and Dsg1 in mucous membranes and skin. A currently unresolved controversy in PV is whether apoptosis is involved in the pathogenic process. The objective of this study was to perform preclinical studies to investigate apoptotic pathway activation in PV pathogenesis with the goal to assess its potential for clinical therapy. For this purpose, we investigated mouse and human skin keratinocyte cultures treated with PV antibodies (the experimental Dsg3 monospecific antibody AK23 or PV patients IgG), PV mouse models (passive transfer of AK23 or PVIgG into adult and neonatal mice) as well as PV patients' biopsies (n=6). A combination of TUNEL assay, analyses of membrane integrity, early apoptotic markers such as cleaved poly-ADP-ribose polymerase (PARP) and the collapse of actin cytoskeleton failed to provide evidence for apoptosis in PV pathogenesis. However, the in vitro and in vivo PV models, allowing to monitor progression of lesion formation, revealed an early, transient and low-level caspase-3 activation. Pharmacological inhibition confirmed the functional implication of caspase-3 in major events in PV such as shedding of Dsg3, keratin retraction, proliferation including c-Myc induction, p38MAPK activation and acantholysis. Together, these data identify low-level caspase-3 activation downstream of disrupted Dsg3 trans- or cis-adhesion as a major event in PV pathogenesis that is non-synonymous with apoptosis and represents, unlike apoptotic components, a promising target for clinical therapy. At a broader level, these results posit that an impairment of adhesive functions in concert with low-level, non-lethal caspase-3 activation can evoke profound cellular changes which may be of relevance for other diseases including

  13. Nitric oxide-mediated apoptosis of neutrophils through caspase-8 and caspase-3-dependent mechanism

    PubMed Central

    Dubey, Megha; Nagarkoti, Sheela; Awasthi, Deepika; Singh, Abhishek K; Chandra, Tulika; Kumaravelu, J; Barthwal, Manoj K; Dikshit, Madhu

    2016-01-01

    Neutrophils play an indispensable role in killing of invading pathogens by enhancing reactive oxygen species (ROS) and NO generation, and subsequently undergoing apoptosis. Unlike ROS/NOX2, role of NO/NOS still remains undefined in the apoptosis of neutrophils (PMNs) and the present study attempts to decipher the importance of NO/NOS in the neutrophil apoptosis. Prolonged treatment of human PMNs or mice bone marrow derived neutrophils (BMDN) with NO led to enhanced ROS generation, caspase-8/caspase-3 cleavage, reduced mitochondrial membrane potential and finally cellular apoptosis. NO-induced ROS generation led to caspase-8 deglutathionylation and activation, which subsequently activated mitochondrial death pathway via BID (Bcl-2 family protein) cleavage. NO-mediated augmentation of caspase-8 and BID cleavage was significantly prevented in BMDN from neutrophil cytosolic factor-1 (NCF-1) knockout (KO) mice, implying the involvement of NOX2 in NO-induced apoptosis of PMNs. Furthermore, ROS, NO generation and inducible nitric oxide synthase (iNOS) expression were enhanced in a time-dependent manner in human PMNs and mice BMDN undergoing spontaneous apoptosis. Pharmacological and genetic ablation of iNOS in human PMNs and mice BMDN significantly reduced the levels of apoptosis. Impaired apoptosis of BMDN from iNOS KO mice was due to reduced caspase-8 activity which subsequently prevented caspase-3 and -9 activation. Altogether, our results suggest a crucial role of NO/iNOS in neutrophil apoptosis via enhanced ROS generation and caspase-8 mediated activation of mitochondrial death pathway. PMID:27584786

  14. Exendin-4 Protects MIN6 Cells from t-BHP-Induced Apoptosis via IRE1-JNK-Caspase-3 Signaling.

    PubMed

    Chen, Wen-Jia; Wang, Lin-Xi; Wang, Yan-Ping; Chen, Zhou; Liu, Xiao-Ying; Liu, Xiao-Hong; Liu, Li-Bin

    2012-01-01

    Objectives. This study aimed to explore the effect of exendin-4 on t-BHP-induced apoptosis in pancreatic β cells and the mechanism of action. Methods. Murine MIN6 pancreatic β cells were treated with exendin-4 in the presence or absence of tert-butyl hydroperoxide (t-BHP). Cell survival was assessed by MTT staining. The percentage of apoptotic cells was determined by fluorescence microscopy analysis after Hoechst/PI staining and flow cytometric assay after Annexin V-FITC/PI staining. The activity of caspase-3 was determined using a caspase-3 activity kit. Expression of P-IRE1α, IRE1α, C-Jun N-terminal kinase (JNK), P-JNK, C-JUN, and P-C-JUN was detected by western blotting. Results. Exendin-4 was found to inhibit t-BHP-induced apoptosis in pancreatic β-cells by downregulating caspase-3 activity. Exendin-4 also inhibited the endoplasmic reticulum transmembrane protein IRE1, the apoptosis-related signaling molecule JNK, and c-Jun activation. Conclusions. Our findings suggest that exendin-4 ultimately reduces t-BHP-induced β-cell apoptosis. IRE1-JNK-c-Jun signaling is involved in the exendin-4-mediated modulation of β-cell apoptosis.

  15. Endothelial apoptosis in pulmonary hypertension is controlled by a microRNA/programmed cell death 4/caspase-3 axis.

    PubMed

    White, Kevin; Dempsie, Yvonne; Caruso, Paola; Wallace, Emma; McDonald, Robert A; Stevens, Hannah; Hatley, Mark E; Van Rooij, Eva; Morrell, Nicholas W; MacLean, Margaret R; Baker, Andrew H

    2014-07-01

    Pulmonary endothelial cell apoptosis is a transient, yet defining pathogenic event integral to the onset of many pulmonary vascular diseases such as pulmonary hypertension (PH). However, there is a paucity of information concerning the molecular pathway(s) that control pulmonary arterial endothelial cell apoptosis. Here, we introduce a molecular axis that when functionally active seems to induce pulmonary arterial endothelial cell apoptosis in vitro and PH in vivo. In response to apoptotic stimuli, human pulmonary arterial endothelial cells exhibited robust induction of a programmed cell death 4 (PDCD4)/caspase-3/apoptotic pathway that was reversible by direct PDCD4 silencing. Indirectly, this pathway was also repressed by delivery of a microRNA-21 mimic. In vivo, genetic deletion of microRNA-21 in mice (miR-21(-/-) mice) resulted in functional activation of the PDCD4/caspase-3 axis in the pulmonary tissues, leading to the onset of progressive PH. Conversely, microRNA-21-overexpressing mice (CAG-microRNA-21 mice) exhibited reduced PDCD4 expression in pulmonary tissues and were partially resistant to PH in response to chronic hypoxia plus SU 5416 injury. Furthermore, direct PDCD4 knockout in mice (PDCD4(-/-) mice) potently blocked pulmonary caspase-3 activation and the development of chronic hypoxia plus SU 5416 PH, confirming its importance in disease onset. Broadly, these findings support the existence of a microRNA-21-responsive PDCD4/caspase-3 pathway in the pulmonary tissues that when active serves to promote endothelial apoptosis in vitro and PH in vivo.

  16. Anti-cancer effect of ursolic acid activates apoptosis through ROCK/PTEN mediated mitochondrial translocation of cofilin-1 in prostate cancer

    PubMed Central

    Gai, Wen-Tao; Yu, Da-Peng; Wang, Xin-Sheng; Wang, Pei-Tao

    2016-01-01

    Ursolic acid is a type of pentacyclic triterpene compound with multiple pharmacological activities including cancer resistance, protection from liver injury, antisepsis, anti-inflammation and antiviral activity. The present study aimed to investigate the anticancer effect of ursolic acid. Ursolic acid activates cell apoptosis and its pro-apoptotic mechanism remains to be fully elucidated. Cell Counting kit-8 assays, flow cytometric analysis and analysis of caspase-3 and caspase-9 activity were used to estimate the anticancer effect of ursolic acid on DU145 prostate cancer cells. The protein expression of cytochrome c, rho-associated protein kinase (ROCK), phosphatase and tensin homolog (PTEN) and cofilin-1 were examined using western blot analysis. In the present study, ursolic acid significantly suppressed cell growth and induced apoptosis, as well as increasing caspase-3 and caspase-9 activities of DU145 cells. Furthermore, cytoplasmic and mitochondrial cytochrome c protein expression was significantly activated and suppressed, respectively, by ursolic acid. Ursolic acid significantly suppressed the ROCK/PTEN signaling pathway and inhibited cofilin-1 protein expression in DU145 cells. The results of the present study indicate that the anticancer effect of ursolic acid activates cell apoptosis through ROCK/PTEN mediated mitochondrial translocation of cofilin-1 in prostate cancer. PMID:27698874

  17. Antitumor activity of dobutamine on human osteosarcoma cells

    PubMed Central

    YIN, JUN; DONG, QIRONG; ZHENG, MINQIAN; XU, XIAOZU; ZOU, GUOYOU; MA, GUOLIN; LI, KEFENG

    2016-01-01

    Dobutamine has been widely used for the treatment of heart failure and cardiogenic shock since the 1970s. Osteosarcoma is the most commonly observed malignant bone tumor in children. Currently, there are no effective drugs for the treatment of osteosarcoma. In the present study, the potential anticancer activity of dobutamine on human osteosarcoma cells was examined. Human osteosarcoma MG-63 cells were treated with dobutamine at various concentrations and for various incubation times. The inhibition of cell growth by dobutamine was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Flow cytometry was utilized to evaluate the effect of dobutamine on cell apoptosis and the cell cycle. Furthermore, the expression levels of caspase-3 and caspase-9 were assessed by western blot analysis. The influence of dobutamine on cancer cell migration and invasion was additionally evaluated using wound-healing assay and the Boyden Chamber migration method. Dobutamine significantly inhibited the growth of MG-63 cells at a concentration of 10 µM or higher when incubated for 12 h or longer (P=0.023). Dobutamine augmented cell apoptosis and arrested the cell cycle in the G2/M phase. Western blot analysis revealed that dobutamine induces expression of caspase-3 and caspase-9. In addition, the invasiveness and migration of MG-63 cells was inhibited by dobutamine in a concentration-dependent manner. The results of the present study may lead to novel applications for dobutamine in the treatment of osteosarcoma. PMID:27284371

  18. [Role of BCL-2, caspase-3 and NF-κB in astragaloside inducing apoptosis of human NB4 cells].

    PubMed

    Ni, Jing; Xie, Xi; Xie, Jing; Hu, Xue-Ying; Huang, Zhen-Qi; Xia, Rui-Xiang

    2014-06-01

    This study was purposed to investigate the apoptosis-inducing effect of astragalosides on acute promyelocytic leukemia(APL) cell line NB4 and its mechanism. NB4 cells were treated with different concentrations (200, 300, 400 µg /ml) of astragalosides for 48 h. The cell proliferation was assayed by using CCK-8 method; the cell apoptosis was analyzed by flow cytometry with Annexin V-FITE/PI double staining. The mRNA expression of BCL-2 and the relative activity of BCL-2, NF-κB and caspase-3 were detected by RT-PCR and Western blot, respectively. The results showed that after treated with astragalosides for 48 h, astragalosides inhibited NB4 cell proliferation in concentration-dependent way, the apoptosis rate of NB4 cells gradually elevated from 4.69% to 40.85% with the increasing of astragalosides concentration. Simultaneously, the mRNA expression of BCL-2 was down-regulated, Western blot analysis showed that the protein expression levels of BCL-2 and NF-κB decreased after astragalosides treatment, while caspase-3 protein expression level increased. It is concluded that the molecular mechanism of the astragalosides-induced apoptosis in NB4 cells may be associated with down-regulation of the expression of BCL-2 and NF-κB, finally the relative activity of caspase-3 activated.

  19. Pro-Apoptotic Activity of 4-Isopropyl-2-(1-Phenylethyl) Aniline Isolated from Cordyceps bassiana

    PubMed Central

    Kim, Mi Seon; Lee, Yunmi; Sung, Gi-Ho; Kim, Ji Hye; Park, Jae Gwang; Kim, Han Gyung; Baek, Kwang Soo; Cho, Jae Han; Han, Jaegu; Lee, Kang-Hyo; Hong, Sungyoul; Kim, Jong-Hoon; Cho, Jae Youl

    2015-01-01

    Cordyceps species including Cordyceps bassiana are a notable anti-cancer dietary supplement. Previously, we identified several compounds with anti-cancer activity from the butanol fraction (Cb-BF) of Cordyceps bassiana. To expand the structural value of Cb-BF-derived anti-cancer drugs, we employed various chemical moieties to produce a novel Cb-BF-derived chemical derivative, KTH-13-amine-monophenyl [4-isopropyl-2-(1-phenylethyl) aniline (KTH-13-AMP)], which we tested for anti-cancer activity. KTH-13-AMP suppressed the proliferation of MDA-MB-231, HeLa, and C6 glioma cells. KTH-13-AMP also dose-dependently induced morphological changes in C6 glioma cells and time-dependently increased the level of early apoptotic cells stained with annexin V-FITC. Furthermore, the levels of the active full-length forms of caspase-3 and caspase-9 were increased. In contrast, the levels of total forms of caspases-3, caspase-8, caspase-9, and Bcl-2 were decreased in KTH-13-AMP treated-cells. We also confirmed that the phosphorylation of STAT3, Src, and PI3K/p85, which is linked to cell survival, was diminished by treatment with KTH-13-AMP. Therefore, these results strongly suggest that this compound can be used to guide the development of an anti-cancer drug or serve as a lead compound in forming another strong anti-proliferative agent. PMID:26157554

  20. Pro-Apoptotic Activity of 4-Isopropyl-2-(1-Phenylethyl) Aniline Isolated from Cordyceps bassiana.

    PubMed

    Kim, Mi Seon; Lee, Yunmi; Sung, Gi-Ho; Kim, Ji Hye; Park, Jae Gwang; Kim, Han Gyung; Baek, Kwang Soo; Cho, Jae Han; Han, Jaegu; Lee, Kang-Hyo; Hong, Sungyoul; Kim, Jong-Hoon; Cho, Jae Youl

    2015-07-01

    Cordyceps species including Cordyceps bassiana are a notable anti-cancer dietary supplement. Previously, we identified several compounds with anti-cancer activity from the butanol fraction (Cb-BF) of Cordyceps bassiana. To expand the structural value of Cb-BF-derived anti-cancer drugs, we employed various chemical moieties to produce a novel Cb-BF-derived chemical derivative, KTH-13-amine-monophenyl [4-isopropyl-2-(1-phenylethyl) aniline (KTH-13-AMP)], which we tested for anti-cancer activity. KTH-13-AMP suppressed the proliferation of MDA-MB-231, HeLa, and C6 glioma cells. KTH-13-AMP also dose-dependently induced morphological changes in C6 glioma cells and time-dependently increased the level of early apoptotic cells stained with annexin V-FITC. Furthermore, the levels of the active full-length forms of caspase-3 and caspase-9 were increased. In contrast, the levels of total forms of caspases-3, caspase-8, caspase-9, and Bcl-2 were decreased in KTH-13-AMP treated-cells. We also confirmed that the phosphorylation of STAT3, Src, and PI3K/p85, which is linked to cell survival, was diminished by treatment with KTH-13-AMP. Therefore, these results strongly suggest that this compound can be used to guide the development of an anti-cancer drug or serve as a lead compound in forming another strong anti-proliferative agent.

  1. Nascent histamine induces α-synuclein and caspase-3 on human cells

    SciTech Connect

    Caro-Astorga, Joaquín; Fajardo, Ignacio; Ruiz-Pérez, María Victoria; Sánchez-Jiménez, Francisca; Urdiales, José Luis

    2014-09-05

    Highlights: • Nascent histamine alters cyclin expression pattern. • Nascent histamine increases expression of α-synuclein. • Nascent histamine activates caspase-3. - Abstract: Histamine (Hia) is the most multifunctional biogenic amine. It is synthetized by histidine decarboxylase (HDC) in a reduced set of mammalian cell types. Mast cells and histaminergic neurons store Hia in specialized organelles until the amine is extruded by exocytosis; however, other immune and cancer cells are able to produce but not store Hia. The intracellular effects of Hia are still not well characterized, in spite of its physiopathological relevance. Multiple functional relationships exist among Hia metabolism/signaling elements and those of other biogenic amines, including growth-related polyamines. Previously, we obtained the first insights for an inhibitory effect of newly synthetized Hia on both growth-related polyamine biosynthesis and cell cycle progression of non-fully differentiated mammalian cells. In this work, we describe progress in this line. HEK293 cells were transfected to express active and inactive versions of GFP-human HDC fusion proteins and, after cell sorting by flow cytometry, the relative expression of a large number of proteins associated with cell signaling were measured using an antibody microarray. Experimental results were analyzed in terms of protein–protein and functional interaction networks. Expression of active HDC induced a cell cycle arrest through the alteration of the levels of several proteins such as cyclin D1, cdk6, cdk7 and cyclin A. Regulation of α-synuclein and caspase-3 was also observed. The analyses provide new clues on the molecular mechanisms underlying the regulatory effects of intracellular newly synthetized Hia on cell proliferation/survival, cell trafficking and protein turnover. This information is especially interesting for emergent and orphan immune and neuroinflammatory diseases.

  2. Pfaffosidic Fraction from Hebanthe paniculata Induces Cell Cycle Arrest and Caspase-3-Induced Apoptosis in HepG2 Cells

    PubMed Central

    da Silva, Tereza Cristina; Cogliati, Bruno; Latorre, Andréia Oliveira; Akisue, Gokithi; Nagamine, Márcia Kazumi; Haraguchi, Mitsue; Hansen, Daiane; Sanches, Daniel Soares; Dagli, Maria Lúcia Zaidan

    2015-01-01

    Hebanthe paniculata roots (formerly Pfaffia paniculata and popularly known as Brazilian ginseng) show antineoplastic, chemopreventive, and antiproliferative properties. Functional properties of these roots and their extracts are usually attributed to the pfaffosidic fraction, which is composed mainly by pfaffosides A–F. However, the therapeutic potential of this fraction in cancer cells is not yet entirely understood. This study aimed to analyze the antitumoral effects of the purified pfaffosidic fraction or saponinic fraction on the human hepatocellular carcinoma HepG2 cell line. Cellular viability, proliferation, and apoptosis were evaluated, respectively, by MTT assay, BrdU incorporation, activated caspase-3 immunocytochemistry, and DNA fragmentation assay. Cell cycle was analyzed by flow cytometry and the cell cycle-related proteins were analyzed by quantitative PCR and Western blot. The cells exposed to pfaffosidic fraction had reduced viability and cellular growth, induced G2/M at 48 h or S at 72 h arrest, and increased sub-G1 cell population via cyclin E downregulation, p27KIP1 overexpression, and caspase-3-induced apoptosis, without affecting the DNA integrity. Antitumoral effects of pfaffosidic fraction from H. paniculata in HepG2 cells originated by multimechanisms of action might be associated with cell cycle arrest in the S phase, by CDK2 and cyclin E downregulation and p27KIP1 overexpression, besides induction of apoptosis through caspase-3 activation. PMID:26075002

  3. Sub-lethal oxidative stress induces lysosome biogenesis via a lysosomal membrane permeabilization-cathepsin-caspase 3-transcription factor EB-dependent pathway.

    PubMed

    Leow, San Min; Chua, Shu Xian Serene; Venkatachalam, Gireedhar; Shen, Liang; Luo, Le; Clement, Marie-Veronique

    2016-12-18

    Here we provide evidence to link sub-lethal oxidative stress to lysosomal biogenesis. Exposure of cells to sub-lethal concentrations of exogenously added hydrogen peroxide resulted in cytosol to nuclear translocation of the Transcription Factor EB (TFEB), the master controller of lysosome biogenesis and function. Nuclear translocation of TFEB was dependent upon the activation of a cathepsin-caspase 3 signaling pathway, downstream of a lysosomal membrane permeabilization and accompanied by a significant increase in lysosome numbers as well as induction of TFEB dependent lysosome-associated genes expression such as Ctsl, Lamp2 and its spliced variant Lamp2a, Neu1and Ctsb and Sqstm1 and Atg9b. The effects of sub-lethal oxidative stress on lysosomal gene expression and biogenesis were rescued upon gene silencing of caspase 3 and TFEB. Notably, caspase 3 activation was not associated with phenotypic hallmarks of apoptosis, evidenced by the absence of caspase 3 substrate cleavage, such as PARP, Lamin A/C or gelsolin. Taken together, these data demonstrate for the first time an unexpected and non-canonical role of a cathepsin-caspase 3 axis in the nuclear translocation of TFEB leading to lysosomes biogenesis under conditions of sub-lethal oxidative stress.

  4. Axonal Cleaved Caspase-3 Regulates Axon Targeting and Morphogenesis in the Developing Auditory Brainstem

    PubMed Central

    Rotschafer, Sarah E.; Allen-Sharpley, Michelle R.; Cramer, Karina S.

    2016-01-01

    Caspase-3 is a cysteine protease that is most commonly associated with cell death. Recent studies have shown additional roles in mediating cell differentiation, cell proliferation and development of cell morphology. We investigated the role of caspase-3 in the development of chick auditory brainstem nuclei during embryogenesis. Immunofluorescence from embryonic days E6–13 revealed that the temporal expression of cleaved caspase-3 follows the ascending anatomical pathway. The expression is first seen in the auditory portion of VIIIth nerve including central axonal regions projecting to nucleus magnocellularis (NM), then later in NM axons projecting to nucleus laminaris (NL), and subsequently in NL dendrites. To examine the function of cleaved caspase-3 in chick auditory brainstem development, we blocked caspase-3 cleavage in developing chick embryos with the caspase-3 inhibitor Z-DEVD-FMK from E6 to E9, then examined NM and NL morphology and NM axonal targeting on E10. NL lamination in treated embryos was disorganized and the neuropil around NL contained a significant number of glial cells normally excluded from this region. Additionally, NM axons projected into inappropriate portions of NL in Z-DEVD-FMK treated embyros. We found that the presence of misrouted axons was associated with more severe NL disorganization. The effects of axonal caspase-3 inhibition on both NL morphogenesis and NM axon targeting suggest that these developmental processes are coordinated, likely through communication between axons and their targets. PMID:27822180

  5. Nuclear condensation during mouse erythropoiesis requires caspase-3-mediated nuclear opening

    PubMed Central

    Zhao, Baobing; Mei, Yang; Schipma, Matthew J; Roth, Eric Wayne; Bleher, Reiner; Rappoport, Joshua Z.; Wickrema, Amittha; Yang, Jing; Ji, Peng

    2016-01-01

    SUMMARY Mammalian erythropoiesis involves chromatin condensation that is initiated in the early stage of terminal differentiation. The mechanisms of chromatin condensation during erythropoiesis are unclear. Here, we show that the mouse erythroblast forms large, transient, and recurrent nuclear openings that coincide with the condensation process. The opening lacks nuclear lamina, nuclear pore complexes, and nuclear membrane, but it is distinct from nuclear envelope changes that occur during apoptosis and mitosis. A fraction of the major histones are released from the nuclear opening and degraded in the cytoplasm. We demonstrate that caspase-3 is required for the nuclear opening formation throughout terminal erythropoiesis. Loss of caspase-3 or ectopic expression of a caspase-3 non-cleavable lamin B mutant blocks nuclear opening formation, histone release, chromatin condensation, and terminal erythroid differentiation. We conclude that caspase-3-mediated nuclear opening formation accompanied by histone release from the opening is a critical step towards chromatin condensation during erythropoiesis in mice. PMID:26954545

  6. Sca-1(+) mesenchymal stromal cells inhibit splenic marginal zone B lymphocytes commitment through Caspase-3.

    PubMed

    Chen, Yaozhen; Yang, Jialei; Zhang, Hui-Jie; Fan, Hong; An, Ning; Xin, Jiajia; Li, Na; Xu, Jinmei; Yin, Wen; Wu, Zhongliang; Hu, Xingbin

    2016-05-01

    Mesenchymal stromal cells (MSCs) have been characterized as an important component of hematopoietic niche, which are capable of modulating the immune system through interaction with a wide range of immune cells. Marginal zone B cells, one main type of mature B lymphocytes, play a central role in eliciting antibody response against pathogens. However, how MSCs and its subpopulations regulate marginal zone B cells commitment is unknown yet. In this study, we assessed the contribution of Sca-1(+) MSCs on marginal zone B cells commitment. Our results showed that Sca-1(+) MSCs inhibit the commitment of marginal zone B lymphocytes. The inhibition was exerted through lowered Caspase-3 expression. Furthermore, we found marginal zone B lymphocytes in spleen of Caspase-3 knockout mice decreased and Caspase-3 knockout Sca-1(+) MSCs accounted for the MZB lymphocytes decrease. In conclusion, our investigation provided clues about Sca-1(+) MSCs regulation on the commitment of marginal zone B cells through Caspase-3 gene.

  7. Terazosin Treatment Induces Caspase-3 Expression in the Rat Ventral Prostate

    PubMed Central

    Papadopoulos, Georgios; Vlachodimitropoulos, Dimitrios; Kyroudi, Aspasia; Kouloukoussa, Mirsini; Perrea, Despina; Mitropoulos, Dionisios

    2013-01-01

    Background Quinazoline-based alpha1-adrenergic receptor antagonists may not act solely on smooth muscle contractility. We evaluated the in vivo effect of terazosin on the expression of caspase-3 in the rat ventral prostate. Methods Fifteen Wistar rats were treated with terazosin (1.2 mg/kg body weight, given orally every second day) for 120 days. Another 15 control animals received the same amount of distilled water. The expression of caspase-3 was assessed immunohistochemically in formalin-fixed, paraffin-embedded tissue sections. Results Terazosin treatment did not affect prostate weight and histomorphology. In controls caspase-3 was expressed weakly and sporadically. In contrast, strong and weak expression was evident in 67% and 33% of the terazosin-treated specimens, respectively. Conclusions These findings implicate the induction of caspase-3 expression by terazosin as a potential molecular mechanism of its apoptotic action on prostate cells. PMID:23518907

  8. Nuclear Condensation during Mouse Erythropoiesis Requires Caspase-3-Mediated Nuclear Opening.

    PubMed

    Zhao, Baobing; Mei, Yang; Schipma, Matthew J; Roth, Eric Wayne; Bleher, Reiner; Rappoport, Joshua Z; Wickrema, Amittha; Yang, Jing; Ji, Peng

    2016-03-07

    Mammalian erythropoiesis involves chromatin condensation that is initiated in the early stage of terminal differentiation. The mechanisms of chromatin condensation during erythropoiesis are unclear. Here, we show that the mouse erythroblast forms large, transient, and recurrent nuclear openings that coincide with the condensation process. The opening lacks nuclear lamina, nuclear pore complexes, and nuclear membrane, but it is distinct from nuclear envelope changes that occur during apoptosis and mitosis. A fraction of the major histones are released from the nuclear opening and degraded in the cytoplasm. We demonstrate that caspase-3 is required for the nuclear opening formation throughout terminal erythropoiesis. Loss of caspase-3 or ectopic expression of a caspase-3 non-cleavable lamin B mutant blocks nuclear opening formation, histone release, chromatin condensation, and terminal erythroid differentiation. We conclude that caspase-3-mediated nuclear opening formation accompanied by histone release from the opening is a critical step toward chromatin condensation during erythropoiesis in mice.

  9. Caspase-3/-8/-9, Bax and Bcl-2 expression in the cerebellum, lymph nodes and leukocytes of dogs naturally infected with canine distemper virus.

    PubMed

    Del Puerto, H L; Martins, A S; Moro, L; Milsted, A; Alves, F; Braz, G F; Vasconcelos, A C

    2010-01-26

    Canine distemper is an immunosuppressive disease caused by the canine distemper virus (CDV). Pathogenesis mainly involves the central nervous system and immunosuppression. Dogs naturally infected with CDV develop apoptotic cells in lymphoid tissues and the cerebellum, but this apoptotic mechanism is not well characterized. To better understand this process, we evaluated the expression of Bax, Bcl-2, and caspase-3, -8 and -9, by evaluating mRNA levels in the peripheral blood, lymph nodes and cerebellum of CDV-infected (CDV+) and uninfected (CDV-) dogs by real-time polymerase chain reaction (PCR). Blood samples from 12 CDV+ and 8 CDV- dogs, diagnosed by reverse transcription-PCR, were subjected to hematological analysis and apoptotic gene expression was evaluated using real-time-PCR. Tissues from the cerebellum and lymph nodes of four CDV+ and three CDV-dogs were also subjected to real time-PCR. No significant differences were found between CDV+ and CDV- dogs in the hemotological results or in the expression of caspase-3, -8, -9, Bax, and Bcl-2 in the peripheral blood. However, expression of Bax, caspase-3, -8 and -9 was significantly higher in the cerebellum of CDV+ compared to CDV- dogs. Expression of caspase-3 and -8 was significantly higher in the lymph nodes of CDV+ compared to CDV- dogs. We concluded that infection with CDV induces apoptosis in the cerebellum and lymph nodes in different ways. Lymph node apoptosis apparently occurs via caspase-3 activation, through the caspase-8 pathway, and cerebellum apoptosis apparently occurs via caspase-3 activation, through the caspase-8 and mitochondrial pathways.

  10. Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane.

    PubMed

    Karmakar, S; Weinberg, M S; Banik, N L; Patel, S J; Ray, S K

    2006-09-01

    Glioblastoma is the most malignant and prevalent brain tumor that still remains incurable. Recent studies reported anti-cancer effect of the broccoli-derived compound sulforaphane. We explored the mechanisms of sulforaphane-mediated apoptosis in human glioblastoma T98G and U87MG cells. Wright staining and ApopTag assay confirmed apoptosis in glioblastoma cells treated with sulforaphane. Increase in intracellular free Ca2+ was detected by fura-2 assay, suggesting activation of Ca2+-dependent pathways for apoptosis. Western blotting was used to detect changes in expression of Bax and Bcl-2 proteins resulting in increased Bax:Bcl-2 ratio that indicated a commitment of glioblastoma cells to apoptosis. Upregulation of calpain, a Ca2+-dependent cysteine protease, activated caspase-12 that in turn caused activation of caspase-9. With the increased Bax:Bcl-2 ratio, cytochrome c was released from mitochondria to cytosol for sequential activation of caspase-9 and caspase-3. Increased calpain and caspase-3 activities generated 145 kD spectrin breakdown product and 120 kD spectrin breakdown product, respectively. Activation of caspase-3 also cleaved the inhibitor-of-caspase-activated-DNase. Accumulation of apoptosis-inducing-factor in cytosol suggested caspase-independent pathway of apoptosis as well. Two of the inhibitor-of-apoptosis proteins were downregulated because of an increase in 'second mitochondrial activator of caspases/Direct inhibitor-of-apoptosis protein binding protein with low pI.' Decrease in nuclear factor kappa B and increase in inhibitor of nuclear factor kappa B alpha expression favored the process of apoptosis. Collectively, our results indicated activation of multiple molecular mechanisms for apoptosis in glioblastoma cells following treatment with sulforaphane.

  11. Ghrelin Protection against Lipopolysaccharide-Induced Gastric Mucosal Cell Apoptosis Involves Constitutive Nitric Oxide Synthase-Mediated Caspase-3 S-Nitrosylation

    PubMed Central

    Slomiany, Bronislaw L.; Slomiany, Amalia

    2010-01-01

    Ghrelin, a peptide hormone produced mainly in the stomach, has emerged as an important modulator of the inflammatory responses that are of significance to the maintenance of gastric mucosal integrity. Here, we report on the role of ghrelin in controlling the apoptotic processes induced in gastric mucosal cells by H. pylori lipopolysaccharide (LPS). The countering effect of ghrelin on the LPS-induced mucosal cell apoptosis was associated with the increase in constitutive nitric oxide synthase (cNOS) activity, and the reduction in caspase-3 and inducible nitric oxide synthase (NOS-2). The loss in countering effect of ghrelin on the LPS-induced changes in apoptosis and caspase-3 activity was attained with Src kinase inhibitor, PP2, as well as Akt inhibitor, SH-5, and cNOS inhibitor, L-NAME. Moreover, the effect of ghrelin on the LPS-induced changes in cNOS activity was reflected in the increased cNOS phosphorylation that was sensitive to SH-5. Furthermore, the ghrelin-induced up-regulation in cNOS activity was associated with the increase in caspase-3 S-nitrosylation that was susceptible to the blockage by L-NAME. Therefore, ghrelin protection of gastric mucosal cells against H. pylori LPS-induced apoptosis involves Src/Akt-mediated up-regulation in cNOS activation that leads to the apoptotic signal inhibition through the NO-induced caspase-3 S-nitrosylation. PMID:20369000

  12. MicroRNA-378 Alleviates Cerebral Ischemic Injury by Negatively Regulating Apoptosis Executioner Caspase-3

    PubMed Central

    Zhang, Nan; Zhong, Jie; Han, Song; Li, Yun; Yin, Yanling; Li, Junfa

    2016-01-01

    miRNAs have been linked to many human diseases, including ischemic stroke, and are being pursued as clinical diagnostics and therapeutic targets. Among the aberrantly expressed miRNAs in our previous report using large-scale microarray screening, the downregulation of miR-378 in the peri-infarct region of middle cerebral artery occluded (MCAO) mice can be reversed by hypoxic preconditioning (HPC). In this study, the role of miR-378 in the ischemic injury was further explored. We found that miR-378 levels significantly decreased in N2A cells following oxygen-glucose deprivation (OGD) treatment. Overexpression of miR-378 significantly enhanced cell viability, decreased TUNEL-positive cells and the immunoreactivity of cleaved-caspase-3. Conversely, downregulation of miR-378 aggravated OGD-induced apoptosis and ischemic injury. By using bioinformatic algorithms, we discovered that miR-378 may directly bind to the predicted 3′-untranslated region (UTR) of Caspase-3 gene. The protein level of caspase-3 increased significantly upon OGD treatment, and can be downregulated by pri-miR-378 transfection. The luciferase reporter assay confirmed the binding of miR-378 to the 3′-UTR of Caspase-3 mRNA and repressed its translation. In addition, miR-378 agomir decreased cleaved-caspase-3 ratio, reduced infarct volume and neural cell death induced by MCAO. Furthermore, caspase-3 knockdown could reverse anti-miR-378 mediated neuronal injury. Taken together, our data demonstrated that miR-378 attenuated ischemic injury by negatively regulating the apoptosis executioner, caspase-3, providing a potential therapeutic target for ischemic stroke. PMID:27598143

  13. Caspase-3 binds diverse P4 residues in peptides as revealed by crystallography and structural modeling.

    SciTech Connect

    Fang, Bin; Fu, Guoxing; Agniswamy, Johnson; Harrison, Robert W.; Weber, Irene T.

    2009-03-31

    Caspase-3 recognition of various P4 residues in its numerous protein substrates was investigated by crystallography, kinetics, and calculations on model complexes. Asp is the most frequent P4 residue in peptide substrates, although a wide variety of P4 residues are found in the cellular proteins cleaved by caspase-3. The binding of peptidic inhibitors with hydrophobic P4 residues, or no P4 residue, is illustrated by crystal structures of caspase-3 complexes with Ac-IEPD-Cho, Ac-WEHD-Cho, Ac-YVAD-Cho, and Boc-D(OMe)-Fmk at resolutions of 1.9-2.6 {angstrom}. The P4 residues formed favorable hydrophobic interactions in two separate hydrophobic regions of the binding site. The side chains of P4 Ile and Tyr form hydrophobic interactions with caspase-3 residues Trp206 and Trp214 within a non-polar pocket of the S4 subsite, while P4 Trp interacts with Phe250 and Phe252 that can also form the S5 subsite. These interactions of hydrophobic P4 residues are distinct from those for polar P4 Asp, which indicates the adaptability of caspase-3 for binding diverse P4 residues. The predicted trends in peptide binding from molecular models had high correlation with experimental values for peptide inhibitors. Analysis of structural models for the binding of 20 different amino acids at P4 in the aldehyde peptide Ac-XEVD-Cho suggested that the majority of hydrophilic P4 residues interact with Phe250, while hydrophobic residues interact with Trp206, Phe250, and Trp214. Overall, the S4 pocket of caspase-3 exhibits flexible adaptation for different residues and the new structures and models, especially for hydrophobic P4 residues, will be helpful for the design of caspase-3 based drugs.

  14. Gastric mucosal inflammatory responses to Helicobacter pylori lipopolysaccharide: down-regulation of nitric oxide synthase-2 and caspase-3 by sulglycotide.

    PubMed

    Slomiany, B L; Piotrowski, J; Slomiany, A

    1999-07-22

    We applied the animal model of H. pylori lipopolysaccharide-induced gastritis to assess the effect of antiulcer agent, sulglycotide, on the mucosal inflammatory responses by analyzing the interplay between the activity of a key apoptotic caspase, caspase-3, epithelial cell apoptosis, and the expression of constitutive (cNOS) and inducible (NOS-2) nitric oxide synthase. H. pylori lipopolysaccharide applied intragastrically elicited within 4 days a pattern of mucosal responses resembling that of acute gastritis. This was accompanied by an 11.2-fold increase in epithelial cell apoptosis, a 6.5-fold induction in mucosal expression of NOS-2 and a 2.2-fold decline in cNOS, and a 5.4-fold increase in caspase-3 activity. Treatment with sulglycotide led to a 56.7% reduction in the extent of mucosal inflammatory changes elicited by H. pylori lipopolysaccharide and an 88.3% decrease in the epithelial cells apoptosis. Furthermore, this effect of sulglycotide was associated with a 51% decrease in mucosal expression of caspase-3 activity, a 73.7% decline in NOS-2, and a 64.1% increase in cNOS. The findings suggest that sulglycotide suppresses the H. pylori-induced mucosal inflammatory responses by up-regulating cNOS and interfering with the events propagated by NOS-2 and caspase-3.

  15. Glucotoxic conditions induce endoplasmic reticulum stress to cause caspase 3 mediated lamin B degradation in pancreatic β-cells: protection by nifedipine.

    PubMed

    Syeda, Khadija; Mohammed, Abiy M; Arora, Daleep K; Kowluru, Anjaneyulu

    2013-11-01

    Nuclear lamins form the lamina on the interior of the nuclear envelope, and are involved in the regulation of various cellular processes, including DNA replication and chromatin organization. Despite this evidence, little is known about potential alterations in nuclear metabolism, specifically lamin structure and integrity in isolated β-cells subjected to stress conditions, including chronic exposure to hyperglycemia (i.e., glucotoxicity). Herein, we investigated effects of glucotoxic conditions on the catalytic activation of caspase 3 and the associated degradation of one of its substrate proteins, namely lamin-B. We report that incubation of insulin-secreting INS-1 832/13 cells, normal rat islets or human islets under glucotoxic conditions (20 mM; 12-48 h) results in the degradation of native lamin B leading to accumulation of the degraded products in non-relevant cellular compartments, including cytosol. Moreover, the effects of high glucose on caspase 3 activation and lamin B degradation were mimicked by thapsigargin, a known inducer of endoplasmic reticulum stress (ER stress). Nifedipine, a known blocker of calcium channel activation, inhibited high glucose-induced caspase 3 activation and lamin B degradation in these cells. 4-Phenyl butyric acid, a known inhibitor of ER stress, markedly attenuated glucose-induced CHOP expression (ER stress marker), caspase 3 activation and lamin B degradation. We conclude that glucotoxic conditions promote caspase 3 activation and lamin B degradation, which may, in part, be due to increased ER stress under these conditions. We also provide further evidence to support beneficial effects of calcium channel blockers against metabolic dysfunction of the islet β-cell induced by hyperglycemic conditions.

  16. Glucotoxic conditions induce endoplasmic reticulum stress to cause caspase 3 mediated lamin B degradation in pancreatic β-cells: Protection by nifedipine

    PubMed Central

    Syeda, Khadija; Mohammed, Abiy M.; Arora, Daleep K.; Kowluru, Anjaneyulu

    2013-01-01

    Nuclear lamins form the lamina on the interior of the nuclear envelope, and are involved in the regulation of various cellular processes, including DNA replication and chromatin organization. Despite this evidence, little is known about potential alterations in nuclear metabolism, specifically lamin structure and integrity in isolated β-cells subjected to stress conditions, including chronic exposure to hyperglycemia [i.e., glucotoxicity]. Herein, we investigated effects of glucotoxic conditions on the catalytic activation of caspase 3 and the associated degradation of one of its substrate proteins, namely lamin-B. We report that incubation of insulin-secreting INS-1 832/13 cells, normal rat islets or human islets under glucotoxic conditions [20 mM; 12–48 hr] results in the degradation of native lamin B leading to accumulation of the degraded products in non-relevant cellular compartments, including cytosol. Moreover, the effects of high glucose on caspase 3 activation and lamin B degradation were mimicked by thapsigargin, a known inducer of endoplasmic reticulum stress [ER stress]. Nifedipine, a known blocker of calcium channel activation, inhibited high glucose-induced caspase 3 activation and lamin B degradation in these cells. 4-phenyl butyric acid, a known inhibitor of ER stress, markedly attenuated glucose-induced CHOP expression [ER stress marker], caspase 3 activation and lamin B degradation. We conclude that glucotoxic conditions promote caspase 3 activation and lamin B degradation, which may, in part, be due to increased ER stress under these conditions. We also provide further evidence to support beneficial effects of calcium channel blockers against metabolic dysfunction of the islet β-cell induced by hyperglycemic conditions. PMID:23994168

  17. Fenretinide (4-HPR) Targets Caspase-9, ERK 1/2 and the Wnt3a/β-Catenin Pathway in Medulloblastoma Cells and Medulloblastoma Cell Spheroids

    PubMed Central

    Bassani, Barbara; Bartolini, Desirèe; Pagani, Arianna; Principi, Elisa; Zollo, Massimo; Noonan, Douglas M.; Albini, Adriana; Bruno, Antonino

    2016-01-01

    Medulloblastoma (MB), a neuroectodermal tumor arising in the cerebellum, represents the most frequent childhood brain malignancy. Current treatments for MB combine radiation and chemotherapy and are often associated with relevant side effects; novel therapeutic strategies are urgently needed. N-(4-Hydroxyphenyl) retinamide (4-HPR, fenretinide), a synthetic analogue of all-trans retinoic acid, has emerged as a promising and well-tolerated cancer chemopreventive and chemotherapeutic agent for various neoplasms, from breast cancer to neuroblastoma. Here we investigated the effects of 4-HPR on MB cell lines and identified the mechanism of action for a potential use in therapy of MB. Flow cytometry analysis was performed to evaluate 4-HPR induction of apoptosis and oxygen reactive species (ROS) production, as well as cell cycle effects. Functional analysis to determine 4-HPR ability to interfere with MB cell migration and invasion were performed. Western Blot analysis were used to investigate the crucial molecules involved in selected signaling pathways associated with apoptosis (caspase-9 and PARP-1), cell survival (ERK 1/2) and tumor progression (Wnt3a and β-catenin). We show that 4-HPR induces caspase 9-dependent cell death in DAOY and ONS-76 cells, associated with increased ROS generation, suggesting that free radical intermediates might be directly involved. We observed 4-HPR induction of cell cycle arrest in G1/S phase, inactivated β-catenin, and inhibition of MB cell migration and invasion. We also evaluated the ability of 4-HPR to target MB cancer-stem/cancer-initiating cells, using an MB spheroids model, followed by flow cytometry and quantitative real-time PCR. 4-HPR treatment reduced DAOY and ONS-76 spheroid formation, in term of number and size. Decreased expression of the surface markers CD133+ and ABCG2+ as well as Oct-4 and Sox-2 gene expression were observed on BTICs treated with 4-HPR further reducing BITIC invasive activities. Finally, we analyzed 4

  18. Acute cytotoxicity of MIRA-1/NSC19630, a mutant p53-reactivating small molecule, against human normal and cancer cells via a caspase-9-dependent apoptosis.

    PubMed

    Bou-Hanna, Chantal; Jarry, Anne; Lode, Laurence; Schmitz, Ingo; Schulze-Osthoff, Klaus; Kury, Sébastien; Bezieau, Stéphane; Mosnier, Jean-François; Laboisse, Christian L

    2015-04-10

    Although numerous studies have focused on the mechanisms of action of the candidate chemotherapeutic drug MIRA-1/NSC19630, initially described as a mutant p53-reactivating small molecule, the issue of its toxicological evaluation remains open. Here, we devised a strategy to examine the effects of MIRA-1 on a variety of human normal cells and cancer cell lines. First, we demonstrated a massive and rapid (within 2 hours) MIRA-1 apoptotic effect on human normal primary epithelial cells as shown using an intestinal mucosa explant assay. MIRA-1 was also cytotoxic to primary and subcultured human mesenchymal cells. Interestingly these effects were restricted to actively proliferating cells. Second, MIRA-1 acute toxicity was independent of p53, since it occurred in human normal cells with increased or silenced p53 expression level, in cancer cells derived from solid or liquid tumors, with either mutated or wt TP53, and in cancer cells devoid of p53. Third, combined pharmacological and genetic approaches showed that MIRA-1 acute cytotoxicity was mediated by a caspase-9-dependent apoptosis. In conclusion, our strategy unveils the limitations of the targeted action of a small molecule designed to reactivate mutant p53.

  19. Caspase-3 controls AML1-ETO-driven leukemogenesis via autophagy modulation in a ULK1 dependent manner.

    PubMed

    Man, Na; Tan, Yurong; Sun, Xiao-Jian; Liu, Fan; Cheng, Guoyan; Greenblatt, Sarah; Martinez, Camilo; Karl, Daniel L; Ando, Koji; Sun, Ming; Hou, Dan; Chen, Bingyi; Xu, Mingjiang; Yang, Feng-Chun; Chen, Zhu; Chen, Saijuan; Nimer, Stephen D; Wang, Lan

    2017-04-05

    AML1-ETO (AE), a fusion oncoprotein, generated by the t(8;21), can trigger acute myeloid leukemia (AML) in collaboration with mutations including c-Kit, ASXL1/2, FLT3, N-RAS, and K-RAS. Caspase-3, a key executor among its family, plays multiple roles in cellular processes, including hematopoietic development and leukemia progression. Caspase-3 was revealed to directly cleave AE in vitro, suggesting that AE may accumulate in a Caspase-3 compromised background and thereby accelerate leukemogenesis. Therefore, we developed a Caspase-3 knockout genetic mouse model of AML and found that loss of Caspase-3 actually delayed AML1-ETO9a (AE9a)-driven leukemogenesis, indicating that Caspase-3 may play distinct roles in the initiation and/or progression of AML. We report here that loss of Caspase-3 triggers a conserved, adaptive mechanism, namely autophagy (or macroautophagy), that acts to limit AE9a-driven leukemia. Furthermore, we identify ULK1 as a novel substrate of Caspase-3 and show that upregulation of ULK1 drives autophagy initiation in leukemia cells and that inhibition of ULK1 can rescue the phenotype induced by Caspase-3 deletion in vitro and in vivo Collectively, these data highlight Caspase-3 as an important regulator of autophagy in AML and demonstrate that the balance and selectivity between its substrates can dictate the pace of disease.

  20. E-Cigarette Vapor Induces an Apoptotic Response in Human Gingival Epithelial Cells Through the Caspase-3 Pathway.

    PubMed

    Rouabhia, Mahmoud; Park, Hyun Jin; Semlali, Abdelhabib; Zakrzewski, Andrew; Chmielewski, Witold; Chakir, Jamila

    2017-06-01

    Electronic cigarettes represent an increasingly significant proportion of today's consumable tobacco products. E-cigarettes contain several chemicals which may promote oral diseases. The aim of this study was to investigate the effect of e-cigarette vapor on human gingival epithelial cells. Results show that e-cigarette vapor altered the morphology of cells from small cuboidal form to large undefined shapes. Both single and multiple exposures to e-cigarette vapor led to a bulky morphology with large faint nuclei and an enlarged cytoplasm. E-cigarette vapor also increased L-lactate dehydrogenase (LDH) activity in the targeted cells. This activity was greater with repeated exposures. Furthermore, e-cigarette vapor increased apoptotic/necrotic epithelial cell percentages compared to that observed in the control. Epithelial cell apoptosis was confirmed by TUNEL assay showing that exposure to e-cigarette vapor increased apoptotic cell numbers, particularly after two and three exposures. This negative effect involved the caspase-3 pathway, the activity of which was greater with repeated exposure and which decreased following the use of caspase-3 inhibitor. The adverse effects of e-cigarette vapor on gingival epithelial cells may lead to dysregulated gingival cell function and result in oral disease. J. Cell. Physiol. 232: 1539-1547, 2017. © 2016 Wiley Periodicals, Inc.

  1. Bcl-2 and caspase-3 are major regulators in Agaricus blazei-induced human leukemic U937 cell apoptosis through dephoshorylation of Akt.

    PubMed

    Jin, Cheng-Yun; Moon, Dong-Oh; Choi, Yung Hyun; Lee, Jae-Dong; Kim, Gi-Young

    2007-08-01

    Agaricus blazei is a medicinal mushroom that possesses antimetastatic, antitumor, antimutagenic, and immunostimulating effects. However, the molecular mechanisms involved in A. blazei-mediated apoptosis remain unclear. In the present study, to elucidate the role of the Bcl-2 in A. blazei-mediated apoptosis, U937 cells were transfected with either empty vector (U937/vec) or vector containing cDNA encoding full-length Bcl-2 (U937/Bcl-2). As compared with U937/vec, U937/Bcl-2 cells exhibited a 4-fold greater expression of Bcl-2. Treatment of U937/vec with 1.0-4.0 mg/ml of A. blazei extract (ABE) for 24 h resulted in a significant induction of morphologic features indicative of apoptosis. In contrast, U937/Bcl-2 exposed to the same ABE treatment only exhibited a slight induction of apoptotic features. ABE-induced apoptosis was accompanied by downregulation of antiapoptotic proteins such as X-linked inhibitor of apoptosis protein (XIAP), inhibitor of apoptosis protein (cIAP)-2 and Bcl-2, activation of caspase-3, and cleavage of poly(ADP-ribose)polymerase (PARP). Ectopic expression of Bcl-2 was associated with significantly induced expression of antiapoptotic proteins, such as cIAP-2 and Bcl-2, but not XIAP. Ectopic expression of Bcl-2 also reduced caspase-3 activation and PARP cleavage in ABE treated U937 cells. Furthermore, treatment with the caspase-3 inhibitor z-DEVD-fmk was sufficient to restore cell viability following ABE treatment. This increase in viability was ascribed to downregulation of caspase-3 and blockage of PARP and PLC-gamma cleavage. ABE also triggered the downregulation of Akt, and combined treatment with LY294002 (an inhibitor of Akt) significantly decreased cell viability. The results indicated that major regulators of ABE-induced apoptosis in human leukemic U937 cells are Bcl-2 and caspase-3, which are associated with dephosphorylation of the Akt signal pathway.

  2. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death

    PubMed Central

    Rogers, Corey; Fernandes-Alnemri, Teresa; Mayes, Lindsey; Alnemri, Diana; Cingolani, Gino; Alnemri, Emad S.

    2017-01-01

    Apoptosis is a genetically regulated cell suicide programme mediated by activation of the effector caspases 3, 6 and 7. If apoptotic cells are not scavenged, they progress to a lytic and inflammatory phase called secondary necrosis. The mechanism by which this occurs is unknown. Here we show that caspase-3 cleaves the GSDMD-related protein DFNA5 after Asp270 to generate a necrotic DFNA5-N fragment that targets the plasma membrane to induce secondary necrosis/pyroptosis. Cells that express DFNA5 progress to secondary necrosis, when stimulated with apoptotic triggers such as etoposide or vesicular stomatitis virus infection, but disassemble into small apoptotic bodies when DFNA5 is deleted. Our findings identify DFNA5 as a central molecule that regulates apoptotic cell disassembly and progression to secondary necrosis, and provide a molecular mechanism for secondary necrosis. Because DFNA5-induced secondary necrosis and GSDMD-induced pyroptosis are dependent on caspase activation, we propose that they are forms of programmed necrosis. PMID:28045099

  3. Real-Time Monitoring of Apoptosis by Caspase-3-Like Protease Induced FRET Reduction Triggered by Amyloid Aggregation

    PubMed Central

    Paulsson, Johan F.; Schultz, Sebastian W.; Köhler, Martin; Leibiger, Ingo; Berggren, Per-Olof; Westermark, Gunilla T.

    2008-01-01

    Amyloid formation is cytotoxic and can activate the caspase cascade. Here, we monitor caspase-3-like activity as reduction of fluorescence resonance energy transfer (FRET) using the contstruct pFRET2-DEVD containing enhanced cyan fluorescent protin (EYFP) linked by the caspase-3 specific cleavage site residues DEVD. Beta-TC-6 cells were transfected, and the fluoorescence was measured at 440 nm excitation and 535 nm (EYFP) and 480 nm (ECFP) emission wavelength. Cells were incubated with recombinant pro lset Amyloid Polypeptide (rec prolAPP) or the processing metabolites of prolAPP; the N-terminal flanking peptide withIAPP (recN+IAPP); IAPP with the C-terminal flanking peptied (recIAPP+C) and lslet Amyloid Polypeptide (recIAPP) . Peptides were added in solubilized from (50 μM) or as performed amyloid-like fibrils, or as a combination of these. FRET was measured and incubation with a mixture of solubilized peptide and performed fibrils resulted in loss of FRET and apoptosis was determined to occure in cells incubated with recproIAPP (49%), recN+IAPP (46%), recIAPP (72%) and recIAPP+C (59%). These results show that proIAPP and the processing intermediates reside the same cell toxic capacity as IAPP, and they can all have a central role in the reduction of beta-cell number in type 2 diabetes. PMID:18566681

  4. Cyclin E marks quiescent neural stem cells and caspase-3-positive newborn cells during adult hippocampal neurogenesis in mice.

    PubMed

    Ikeda, Yayoi; Ikeda, Masa-Aki

    2015-10-21

    Cyclin E is a key regulator of progression through the G1-phase of the cell cycle. Recently, a cell cycle-independent role for cyclin E in the adult mouse central nervous system has been suggested. In the present study, we examined expression of cyclin E in the mouse hippocampal dentate gyrus (DG), a region of neurogenesis in adulthood, using immunofluorescence. In the adult DG, cyclin E-immunoreactive (cyclin E+) cells was limited to postmitotic cells. In the subgranular zone, cyclin E was detected in the vertical process of radial glia-like cells, which were marked by the neural stem cell markers nestin and GFAP. Cyclin E was also detected in the nucleus of cells, which were labeled with stage-specific neuronal cell markers, including Pax6, Sox2, NeuroD, doublecortin, and NeuN. The densities of cyclin E+ cells in the DG reduced and increased with age and running, respectively. Furthermore, the majority of cyclin E+ cells co-expressed active caspase-3, a marker of apoptosis. Together, the results indicate that cyclin E is expressed in the process of quiescent neural stem cells and in the nucleus of active caspase-3+ cells during neuronal cell differentiation, suggesting that cyclin E has a Cdk-independent function, which might be important for the mechanisms regulating adult hippocampal neurogenesis.

  5. The Growing Complexity of Cancer Cell Response to DNA-Damaging Agents: Caspase 3 Mediates Cell Death or Survival?

    PubMed Central

    Mirzayans, Razmik; Andrais, Bonnie; Kumar, Piyush; Murray, David

    2016-01-01

    It is widely stated that wild-type p53 either mediates the activation of cell cycle checkpoints to facilitate DNA repair and promote cell survival, or orchestrates apoptotic cell death following exposure to cancer therapeutic agents. This reigning paradigm has been challenged by numerous discoveries with different human cell types, including solid tumor-derived cell lines. Thus, activation of the p53 signaling pathway by ionizing radiation and other DNA-damaging agents hinders apoptosis and triggers growth arrest (e.g., through premature senescence) in some genetic backgrounds; such growth arrested cells remain viable, secrete growth-promoting factors, and give rise to progeny with stem cell-like properties. In addition, caspase 3, which is best known for its role in the execution phase of apoptosis, has been recently reported to facilitate (rather than suppress) DNA damage-induced genomic instability and carcinogenesis. This observation is consistent with an earlier report demonstrating that caspase 3 mediates secretion of the pro-survival factor prostaglandin E2, which in turn promotes enrichment of tumor repopulating cells. In this article, we review these and related discoveries and point out novel cancer therapeutic strategies. One of our objectives is to demonstrate the growing complexity of the DNA damage response beyond the conventional “repair and survive, or die” hypothesis. PMID:27187358

  6. Caspase-9 is required for normal hematopoietic development and protection from alkylator-induced DNA damage in mice

    PubMed Central

    Lu, Elise Peterson; McLellan, Michael; Ding, Li; Fulton, Robert; Mardis, Elaine R.; Wilson, Richard K.; Miller, Christopher A.; Westervelt, Peter; DiPersio, John F.; Link, Daniel C.; Walter, Matthew J.; Ley, Timothy J.

    2014-01-01

    Apoptosis and the DNA damage responses have been implicated in hematopoietic development and differentiation, as well as in the pathogenesis of myelodysplastic syndromes (MDS) and leukemia. However, the importance of late-stage mediators of apoptosis in hematopoiesis and leukemogenesis has not been elucidated. Here, we examine the role of caspase-9 (Casp9), the initiator caspase of the intrinsic apoptotic cascade, in murine fetal and adult hematopoiesis. Casp9 deficiency resulted in decreased erythroid and B-cell progenitor abundance and impaired function of hematopoietic stem cells after transplantation. Mouse bone marrow chimeras lacking Casp9 or its cofactor Apaf1 developed low white blood cell counts, decreased B-cell numbers, anemia, and reduced survival. Defects in apoptosis have also been previously implicated in susceptibility to therapy-related leukemia, a disease caused by exposure to DNA-damaging chemotherapy. We found that the burden of DNA damage was increased in Casp9-deficient cells after exposure to the alkylator, N-ethyl-nitrosourea (ENU). Furthermore, exome sequencing revealed that oligoclonal hematopoiesis emerged in Casp9-deficient bone marrow chimeras after alkylator exposure. Taken together, these findings suggest that defects in apoptosis could be a key step in the pathogenesis of alkylator-associated secondary malignancies. PMID:25349173

  7. In silico identification and crystal structure validation of caspase-3 inhibitors without a P1 aspartic acid moiety

    PubMed Central

    Ganesan, Rajkumar; Jelakovic, Stjepan; Mittl, Peer R. E.; Caflisch, Amedeo; Grütter, Markus G.

    2011-01-01

    Using a fragment-based docking procedure, several small-molecule inhibitors of caspase-3 were identified and tested and the crystal structures of three inhibitor complexes were determined. The crystal structures revealed that one inhibitor (NSC 18508) occupies only the S1 subsite, while two other inhibitors (NSC 89167 and NSC 251810) bind only to the prime part of the substrate-binding site. One of the major conformational changes observed in all three caspase-3–inhibitor complexes is a rotation of the Tyr204 side chain, which blocks the S2 subsite. In addition, the structural variability of the residues shaping the S1–S4 as well as the S1′ subsites supports an induced-fit mechanism for the binding of the inhibitors in the active site. The high-resolution crystal structures reported here provide novel insights into the architecture of the substrate-binding site, which might be useful for the design of more potent caspase inhibitors. PMID:21821879

  8. Caspase-3 Deletion Promotes Necrosis in Atherosclerotic Plaques of ApoE Knockout Mice

    PubMed Central

    Schrijvers, Dorien M.; Hermans, Marthe; Van Hoof, Viviane O.; De Meyer, Guido R. Y.

    2016-01-01

    Apoptosis of macrophages and vascular smooth muscle cells (VSMCs) in advanced atherosclerotic plaques contributes to plaque progression and instability. Caspase-3, a key executioner protease in the apoptotic pathway, has been identified in human and mouse atherosclerotic plaques but its role in atherogenesis is not fully explored. We therefore investigated the impact of caspase-3 deletion on atherosclerosis by crossbreeding caspase-3 knockout (Casp3−/−) mice with apolipoprotein E knockout (ApoE−/−) mice. Bone marrow-derived macrophages and VSMCs isolated from Casp3−/−ApoE−/− mice were resistant to apoptosis but showed increased susceptibility to necrosis. However, caspase-3 deficiency did not sensitize cells to undergo RIP1-dependent necroptosis. To study the effect on atherosclerotic plaque development, Casp3+/+ApoE−/− and Casp3−/−ApoE−/− mice were fed a western-type diet for 16 weeks. Though total plasma cholesterol, triglycerides, and LDL cholesterol levels were not altered, both the plaque size and percentage necrosis were significantly increased in the aortic root of Casp3−/−ApoE−/− mice as compared to Casp3+/+ApoE−/− mice. Macrophage content was significantly decreased in plaques of Casp3−/−ApoE−/− mice as compared to controls, while collagen content and VSMC content were not changed. To conclude, deletion of caspase-3 promotes plaque growth and plaque necrosis in ApoE−/− mice, indicating that this antiapoptotic strategy is unfavorable to improve atherosclerotic plaque stability. PMID:27847551

  9. Aronia melanocarpa juice induces a redox-sensitive p73-related caspase 3-dependent apoptosis in human leukemia cells.

    PubMed

    Sharif, Tanveer; Alhosin, Mahmoud; Auger, Cyril; Minker, Carole; Kim, Jong-Hun; Etienne-Selloum, Nelly; Bories, Pierre; Gronemeyer, Hinrich; Lobstein, Annelise; Bronner, Christian; Fuhrmann, Guy; Schini-Kerth, Valérie B

    2012-01-01

    Polyphenols are natural compounds widely present in fruits and vegetables, which have antimutagenic and anticancer properties. The aim of the present study was to determine the anticancer effect of a polyphenol-rich Aronia melanocarpa juice (AMJ) containing 7.15 g/L of polyphenols in the acute lymphoblastic leukemia Jurkat cell line, and, if so, to clarify the underlying mechanism and to identify the active polyphenols involved. AMJ inhibited cell proliferation, which was associated with cell cycle arrest in G(2)/M phase, and caused the induction of apoptosis. These effects were associated with an upregulation of the expression of tumor suppressor p73 and active caspase 3, and a downregulation of the expression of cyclin B1 and the epigenetic integrator UHRF1. AMJ significantly increased the formation of reactive oxygen species (ROS), decreased the mitochondrial membrane potential and caused the release of cytochrome c into the cytoplasm. Treatment with intracellular ROS scavengers prevented the AMJ-induced apoptosis and upregulation of the expression of p73 and active caspase 3. The fractionation of the AMJ and the use of identified isolated compounds indicated that the anticancer activity was associated predominantly with chlorogenic acids, some cyanidin glycosides, and derivatives of quercetin. AMJ treatment also induced apoptosis of different human lymphoblastic leukemia cells (HSB-2, Molt-4 and CCRF-CEM). In addition, AMJ exerted a strong pro-apoptotic effect in human primary lymphoblastic leukemia cells but not in human normal primary T-lymphocytes. Thus, the present findings indicate that AMJ exhibits strong anticancer activity through a redox-sensitive mechanism in the p53-deficient Jurkat cells and that this effect involves several types of polyphenols. They further suggest that AMJ has chemotherapeutic properties against acute lymphoblastic leukemia by selectively targeting lymphoblast-derived tumor cells.

  10. Cleavage of the Bloom’s syndrome gene product during apoptosis by caspase-3 results in an impaired interaction with topoisomerase IIIα

    PubMed Central

    Freire, Raimundo; d’Adda di Fagagna, Fabrizio; Wu, Leonard; Pedrazzi, Graziella; Stagljar, Igor; Hickson, Ian D.; Jackson, Stephen P.

    2001-01-01

    In higher eukaryotes, the integration of signals triggered in response to certain types of stress can result in programmed cell death. Central to these events is the sequential activation of a cascade of proteinases known as caspases. The final activated effector caspases of this cascade digest a number of cellular proteins, in some cases increasing their enzymatic activity, in others destroying their function. Of the proteins shown to be targets for caspase-mediated proteolysis, a surprisingly large proportion are proteins involved in the signalling or repair of DNA damage. Here we investigate whether BLM, the product of the gene mutated in Bloom’s syndrome, a human autosomal disease characterised by cancer predisposition and sunlight sensitivity, is cleaved during apoptosis. BLM interacts with topoisomerase IIIα and has been proposed to play an important role in maintaining genomic integrity through its roles in DNA repair and replication. We show that BLM is cleaved during apoptosis by caspase-3 and reveal that the main cleavage site is located at the junction between the N-terminal and central helicase domains of BLM. Proteolytic cleavage by caspase-3 produces a 120 kDa fragment, which contains the intact helicase domain and three smaller fragments, the relative amounts of which depend on time of incubation with caspase-3. The 120 kDa fragment retains the helicase activity of the intact BLM protein. However, its interaction with topoisomerase IIIα is severely impaired. Since the BLM–topoisomerase interaction is believed to be necessary for many of the replication and recombination functions of BLM, we suggest that caspase-3 cleavage of BLM could alter the localisation and/or function of BLM and that these changes may be important in the process of apoptosis. PMID:11470874

  11. Betaine supplementation protects against renal injury induced by cadmium intoxication in rats: role of oxidative stress and caspase-3.

    PubMed

    Hagar, Hanan; Al Malki, Waleed

    2014-03-01

    Cadmium (Cd) is an environmental and industrial pollutant that can induce a broad spectrum of toxicological effects that affect various organs in humans and experimental animals. This study aims to investigate the effect of betaine supplementation on cadmium-induced oxidative impairment in rat kidney. The animals were divided into four groups (n=10 per group): control, cadmium, betaine and betaine+cadmium (1) saline control group; (2) cadmium group in which cadmium chloride (CdCl2) was given orally at a daily dose of 5 mg/kg body weight for four weeks; (3) betaine group, in which betaine was given to rats at a dose of 250 mg/kg/day, orally via gavage for six weeks; (4) cadmium+betaine group in which betaine was given at a dose of 250 mg/kg/day, orally via gavage for two weeks prior to cadmium administration and concurrently during cadmium administration for four weeks. Cadmium nephrotoxicity was indicated by elevated blood urea nitrogen (BUN) and serum creatinine levels. Kidneys from cadmium-treated rats showed an increase in lipid peroxidation measured as thiobarbituric acid-reactive substances (TBARS) concentration and reductions in total antioxidant status (TAS), reduced glutathione (GSH) content, glutathione peroxidase (GSH-Px) activity, superoxide dismutase concentration (SOD) and catalase activity. Caspase-3 activity, a marker of DNA damage was also elevated in renal tissues of cadmium-treated rats. Pre-treatment of rats with betaine substantially attenuated the increase in BUN and serum creatinine levels. Betaine also inhibited the increase in TBARS concentration and reversed the cadmium-induced depletion in total antioxidant status, GSH, GSH-Px, SOD and catalase concentrations in renal tissues. Renal caspase-3 activity was also reduced with betaine supplementation. These data emphasize the importance of oxidative stress and caspase signaling cascade in cadmium nephrotoxicity and suggest that betaine pretreatment reduces severity of cadmium nephrotoxicity

  12. Hyperosmotic stress activates p65/RelB NFkappaB in cultured cardiomyocytes with dichotomic actions on caspase activation and cell death.

    PubMed

    Eisner, Verónica; Quiroga, Clara; Criollo, Alfredo; Eltit, José Miguel; Chiong, Mario; Parra, Valentina; Hidalgo, Karla; Toro, Barbra; Díaz-Araya, Guillermo; Lavandero, Sergio

    2006-06-12

    NFkappaB is a participant in the process whereby cells adapt to stress. We have evaluated the activation of NFkappaB pathway by hyperosmotic stress in cultured cardiomyocytes and its role in the activation of caspase and cell death. Exposure of cultured rat cardiomyocytes to hyperosmotic conditions induced phosphorylation of IKKalpha/beta as well as degradation of IkappaBalpha. All five members of the NFkappaB family were identified in cardiomyocytes. Analysis of the subcellular distribution of NFkappaB isoforms in response to hyperosmotic stress showed parallel migration of p65 and RelB from the cytosol to the nucleus. Measurement of the binding of NFkappaB to the consensus DNA kappaB-site binding by EMSA revealed an oscillatory profile with maximum binding 1, 2 and 6h after initiation of the hyperosmotic stress. Supershift analysis revealed that p65 and RelB (but not p50, p52 or cRel) were involved in the binding of NFkappaB to DNA. Hyperosmotic stress also resulted in activation of the NFkappaB-lux reporter gene, transient activation of caspases 9 and 3 and phosphatidylserine externalization. The effect on cell viability was not prevented by ZVAD (a general caspase inhibitor). Blockade of NFkappaB with AdIkappaBalpha, an IkappaBalpha dominant negative overexpressing adenovirus, prevented activation of caspase 9 (more than that caspase 3) but did not affect cell death in hyperosmotically stressed cardiomyocytes. We conclude that hyperosmotic stress activates p65 and RelB NFkappaB isoforms and NFkappaB mediates caspase 9 activation in cardiomyocytes. However cell death triggered by hyperosmotic stress was caspase- and NFkappaB-independent.

  13. Neuroprotective effect of acute melatonin treatment on hippocampal neurons against irradiation by inhibition of caspase-3

    PubMed Central

    LI, JIANGUO; ZHANG, GUOWEI; MENG, ZHUANGZHI; WANG, LINGZHAN; LIU, HAIYING; LIU, QIANG; BUREN, BATU

    2016-01-01

    Neuronal cell apoptosis is associated with various factors that induce neurological damage, including radiation exposure. When administered prior to exposure to radiation, a protective agent may prevent cellular and molecular injury. The present study aimed to investigate whether melatonin exerts a neuroprotective effect by inhibiting the caspase cell death pathway. Male Sprague-Dawley rats were administered melatonin (100 mg/kg body weight) 30 min prior to radiation exposure in red light during the evening. In order to elucidate whether melatonin has a neuroprotective role, immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick-end labeling, Nissl staining, reverse transcription-quantitative polymerase chain reaction, reactive oxygen species analysis and western blotting were performed. At 24 h post-melatonin treatment, caspase-3 mRNA and protein expression levels were significantly decreased. These results demonstrated that melatonin may protect hippocampal neurons via the inhibition of caspase-3 when exposed to irradiation. Therefore, caspase-3 inhibition serves a neuroprotective and antioxidant role in the interventional treatment of melatonin. The results of the present study suggested that melatonin may have a potential therapeutic effect against irradiation; however, further studies are required in order to elucidate the underlying antioxidant mechanisms. PMID:27313671

  14. Intrinsic-mediated caspase activation is essential for cardiomyocyte hypertrophy.

    PubMed

    Putinski, Charis; Abdul-Ghani, Mohammad; Stiles, Rebecca; Brunette, Steve; Dick, Sarah A; Fernando, Pasan; Megeney, Lynn A

    2013-10-22

    Cardiomyocyte hypertrophy is the cellular response that mediates pathologic enlargement of the heart. This maladaptation is also characterized by cell behaviors that are typically associated with apoptosis, including cytoskeletal reorganization and disassembly, altered nuclear morphology, and enhanced protein synthesis/translation. Here, we investigated the requirement of apoptotic caspase pathways in mediating cardiomyocyte hypertrophy. Cardiomyocytes treated with hypertrophy agonists displayed rapid and transient activation of the intrinsic-mediated cell death pathway, characterized by elevated levels of caspase 9, followed by caspase 3 protease activity. Disruption of the intrinsic cell death pathway at multiple junctures led to a significant inhibition of cardiomyocyte hypertrophy during agonist stimulation, with a corresponding reduction in the expression of known hypertrophic markers (atrial natriuretic peptide) and transcription factor activity [myocyte enhancer factor-2, nuclear factor kappa B (NF-κB)]. Similarly, in vivo attenuation of caspase activity via adenoviral expression of the biologic effector caspase inhibitor p35 blunted cardiomyocyte hypertrophy in response to agonist stimulation. Treatment of cardiomyocytes with procaspase 3 activating compound 1, a small-molecule activator of caspase 3, resulted in a robust induction of the hypertrophy response in the absence of any agonist stimulation. These results suggest that caspase-dependent signaling is necessary and sufficient to promote cardiomyocyte hypertrophy. These results also confirm that cell death signal pathways behave as active remodeling agents in cardiomyocytes, independent of inducing an apoptosis response.

  15. Levofloxacin increases the effect of serum deprivation on anoikis of rat nucleus pulposus cells via Bax/Bcl-2/caspase-3 pathway.

    PubMed

    Yang, Si-Dong; Bai, Zhi-Long; Zhang, Feng; Ma, Lei; Yang, Da-Long; Ding, Wen-Yuan

    2014-12-01

    Levofloxacin, a fluoroquinolone, is a widely-used and effective antibiotic. However, various adverse side effects are associated with levofloxacin. The purpose of this study was to further explore the effects of levofloxacin on rat nucleus pulposus cells (NPCs). Inverted phase-contrast microscopy, flow cytometry and caspase-3 activity assays were used and revealed that serum deprivation induced apoptosis, which was markedly increased by levofloxacin in a dose-dependent manner. Simultaneously, levofloxacin decreased cell binding to type II collagen (COL2). Thus, levofloxacin-induced apoptosis exhibits characteristics of anoikis, the process by which cell death is triggered by separation from the extracellular matrix, which contains COL2. Furthermore, real-time quantitative RT-PCR was used to further confirm that levofloxacin downregulates COL2 expression in a dose-dependent manner. At last, western blot was used to find that levofloxacin increased the ratio of Bax/Bcl-2 and active caspase-3 in a dose-dependent manner. Levofloxacin therefore increases the effects of serum deprivation on anoikis by downregulating COL2 in rat NPCs in vitro via Bax/Bcl-2/caspase-3 pathway. This research provides a novel insight into the mechanisms of levofloxacin-induced toxicity and may potentially lead to a better understanding of the clinical effects of levofloxacin, especially in terms of intervertebral disc degeneration.

  16. Low doses of the novel caspase-inhibitor GS-9450 leads to lower caspase-3 and -8 expression on peripheral CD4+ and CD8+ T-cells.

    PubMed

    Arends, J E; Hoepelman, A I M; Nanlohy, N M; Höppener, F J P; Hirsch, K R; Park, J G; van Baarle, D

    2011-09-01

    Chronic hepatitis C virus (HCV) infection is characterized by increased rates of apoptotic hepatocytes and activated caspases have been shown in HCV-infected patients. GS-9450, a novel caspase-inhibitor has demonstrated hepatoprotective activity in fibrosis/apoptosis animal models. This study evaluated the effects of GS-9450 on peripheral T-cell apoptosis in chronic HCV-infected patients. As sub study of the GS-US-227-0102, a double-blind, placebo-controlled phase 2a trial evaluating the safety and tolerability of GS-9450, apoptosis of peripheral CD4+ and CD8+ T-cells was measured using activated caspase-3, activated caspase-8 and CD95 (Fas). Blood samples were drawn at baseline, day 14 after therapy and at 5 weeks off-treatment follow-up in the first cohort of 10 mg. In contrast to the placebo-treated patients, GS-9450 caused a median of 46% decrease in ALT-values from baseline to day 14 in all treated patients (median of 118-64 U/l) rising again to a median of 140 U/l (19%) at 5 weeks off-treatment follow-up. In GS9450-treated patients, during treatment and follow-up, percentages of activated caspase-3+ and caspase-8 expression tended to decrease, in contrast to placebo-treated patients. Interestingly, compared to healthy controls, higher percentages of caspase-3 and caspase-8 positive CD4+ and CD8+ T-cells were demonstrated in HCV-infected patients at baseline. Decreased ALT-values were observed in all HCV-infected patients during treatment with low dose of the caspase-inhibitor GS-9450 accompanied by a lower expression of caspase-3 and -8 on peripheral T-cells. Furthermore, at baseline percentages of activated caspase-3, activated caspase-8 and CD95+ T-cells were higher in chronic HCV-infected patients compared to healthy controls.

  17. Mollugin induces apoptosis in human Jurkat T cells through endoplasmic reticulum stress-mediated activation of JNK and caspase-12 and subsequent activation of mitochondria-dependent caspase cascade regulated by Bcl-xL

    SciTech Connect

    Kim, Sun Mi; Park, Hae Sun; Jun, Do Youn; Woo, Hyun Ju; Woo, Mi Hee; Yang, Chae Ha; Kim, Young Ho

    2009-12-01

    Exposure of Jurkat T cells to mollugin (15-30 muM), purified from the roots of Rubia cordifolia L., caused cytotoxicity and apoptotic DNA fragmentation along with mitochondrial membrane potential disruption, mitochondrial cytochrome c release, phosphorylation of c-Jun N-terminal kinase (JNK), activation of caspase-12, -9, -7, -3, and -8, cleavage of FLIP and Bid, and PARP degradation, without accompanying necrosis. While these mollugin-induced cytotoxicity and apoptotic events including activation of caspase-8 and mitochondria-dependent activation of caspase cascade were completely prevented by overexpression of Bcl-xL, the activation of JNK and caspase-12 was prevented to much lesser extent. Pretreatment of the cells with the pan-caspase inhibitor (z-VAD-fmk), the caspase-9 inhibitor (z-LEHD-fmk), the caspase-3 inhibitor (z-DEVD-fmk) or the caspase-12 inhibitor (z-ATAD-fmk) at the minimal concentration to prevent mollugin-induced apoptosis appeared to completely block the activation of caspase-7 and -8, and PARP degradation, but failed to block the activation of caspase-9 and -3 with allowing a slight enhancement in the level of JNK phosphorylation. Both FADD-positive wild-type Jurkat clone A3 and FADD-deficient Jurkat clone I2.1 exhibited a similar susceptibility to the cytotoxicity of mollugin, excluding involvement of Fas/FasL system in triggering mollugin-induced apoptosis. Normal peripheral T cells were more refractory to the cytotoxicity of mollugin than were Jurkat T cells. These results demonstrated that mollugin-induced cytotoxicity in Jurkat T cells was mainly attributable to apoptosis provoked via endoplasmic reticulum (ER) stress-mediated activation of JNK and caspase-12, and subsequent mitochondria-dependent activation of caspase-9 and -3, leading to activation of caspase-7 and -8, which could be regulated by Bcl-xL.

  18. Synthesis and Evaluation of 1,5-Disubstituted Tetrazoles as Rigid Analogues of Combretastatin A-4 with Potent Antiproliferative and Antitumor Activity

    PubMed Central

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Salvador, Maria Kimatrai; Preti, Delia; Tabrizi, Mojgan Aghazadeh; Brancale, Andrea; Fu, Xian-Hua; Li, Jun; Zhang, Su-Zhan; Hamel, Ernest; Bortolozzi, Roberta; Basso, Giuseppe; Viola, Giampietro

    2012-01-01

    Tubulin, the major structural component of microtubules, is a target for the development of anticancer agents. Two series of 1,5-diaryl substituted 1,2,3,4-tetrazoles were concisely synthesized, using a palladium-catalyzed cross-coupling reaction, and identified as potent antiproliferative agents and novel tubulin polymerization inhibitors that act at the colchicine site. SAR analysis indicated that compounds with a 4-ethoxyphenyl group at the N-1 or C-5 position of the 1,2,3,4-tetrazole ring exhibited maximal activity. Several of these compounds also had potent activity in inhibiting the growth of multidrug resistant cells overexpressing P-glycoprotein. Active compounds induced apoptosis through the mitochondrial pathway with activation of caspase-9 and caspase-3. Furthermore, compound 4l significantly reduced in vivo the growth of the HT-29 xenograft in a nude mouse model, suggesting that 4l is a promising new antimitotic agent with clinical potential. PMID:22136312

  19. Evidence of cellular stress and caspase-3 resulting from a combined two-frequency signal in the cerebrum and cerebellum of Sprague-dawley rats

    PubMed Central

    López-Furelos, Alberto; Leiro-Vidal, José Manuel; Salas-Sánchez, Aarón Ángel; Ares-Pena, Francisco José; López-Martín, María Elena

    2016-01-01

    Multiple simultaneous exposures to electromagnetic signals induced adjustments in mammal nervous systems. In this study, we investigated the non-thermal SAR (Specific Absorption Rate) in the cerebral or cerebellar hemispheres of rats exposed in vivo to combined electromagnetic field (EMF) signals at 900 and 2450 MHz. Forty rats divided into four groups of 10 were individually exposed or not exposed to radiation in a GTEM chamber for one or two hours. After radiation, we used the Chemiluminescent Enzyme-Linked Immunosorbent Assay (ChELISA) technique to measure cellular stress levels, indicated by the presence of heat shock proteins (HSP) 90 and 70, as well as caspase-3-dependent pre-apoptotic activity in left and right cerebral and cerebellar hemispheres of Sprague Dawley rats. Twenty-four hours after exposure to combined or single radiation, significant differences were evident in HSP 90 and 70 but not in caspase 3 levels between the hemispheres of the cerebral cortex at high SAR levels. In the cerebellar hemispheres, groups exposed to a single radiofrequency (RF) and high SAR showed significant differences in HSP 90, 70 and caspase-3 levels compared to control animals. The absorbed energy and/or biological effects of combined signals were not additive, suggesting that multiple signals act on nervous tissue by a different mechanism. PMID:27589837

  20. FoxP3 inhibits proliferation and induces apoptosis of gastric cancer cells by activating the apoptotic signaling pathway

    SciTech Connect

    Ma, Gui-Fen; Chen, Shi-Yao; Sun, Zhi-Rong; Miao, Qing; Liu, Yi-Mei; Zeng, Xiao-Qing; Luo, Tian-Cheng; Ma, Li-Li; Lian, Jing-Jing; Song, Dong-Li

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer The article revealed FoxP3 gene function in gastric cancer firstly. Black-Right-Pointing-Pointer Present the novel roles of FoxP3 in inhibiting proliferation and promoting apoptosis in gastric cancer cells. Black-Right-Pointing-Pointer Overexpression of FoxP3 increased proapoptotic molecules and repressed antiapoptotic molecules. Black-Right-Pointing-Pointer Silencing of FoxP3 reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Black-Right-Pointing-Pointer FoxP3 is sufficient for activating the apoptotic signaling pathway. -- Abstract: Forkhead Box Protein 3 (FoxP3) was identified as a key transcription factor to the occurring and function of the regulatory T cells (Tregs). However, limited evidence indicated its function in tumor cells. To elucidate the precise roles and underlying molecular mechanism of FoxP3 in gastric cancer (GC), we examined the expression of FoxP3 and the consequences of interfering with FoxP3 gene in human GC cell lines, AGS and MKN45, by multiple cellular and molecular approaches, such as immunofluorescence, gene transfection, CCK-8 assay, clone formation assay, TUNEL assay, Flow cytometry, immunoassay and quantities polymerase chain reaction (PCR). As a result, FoxP3 was expressed both in nucleus and cytoplasm of GC cells. Up-regulation of FoxP3 inhibited cell proliferation and promoted cell apoptosis. Overexpression of FoxP3 increased the protein and mRNA levels of proapoptotic molecules, such as poly ADP-ribose polymerase1 (PARP), caspase-3 and caspase-9, and repressed the expression of antiapoptotic molecules, such as cellular inhibitor of apoptosis-1 (c-IAP1) and the long isoform of B cell leukemia/lymphoma-2 (Bcl-2). Furthermore, silencing of FoxP3 by siRNA in GC cells reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Collectively, our findings identify the novel roles of FoxP3 in inhibiting proliferation and inducing apoptosis

  1. Changes in Levels of Seminal Nitric Oxide Synthase, Macrophage Migration Inhibitory Factor, Sperm DNA Integrity and Caspase-3 in Fertile Men after Scrotal Heat Stress

    PubMed Central

    Shi, Zhi-Da; Wang, Lei-Guang; Qiu, Yi

    2015-01-01

    Background This study observes changes in levels of seminal nitric oxide (NO), nitric oxide synthase (NOS), macrophage migration inhibitory factor (MIF), sperm DNA integrity, chromatin condensation and Caspase-3in adult healthy men after scrotal heat stress (SHS). Methods Exposure of the scrotum of 25 healthy male volunteers locally at 40–43°C SHS belt warming 40 min each day for successive 2 d per week. The course of SHS was continuously 3 months. Routine semen analysis, hypo-osmotic swelling (HOS) test, Aniline blue (AB) staining, HOS/AB and terminal deoxynucleotidyl transferase-mediated d UDP nick-end labeling (TUNEL) were carried out before, during and after SHS. Seminal NO and NOS contents were determined by nitrate reduction method. The activated Caspase-3 levels of spermatozoa and MIF in seminal plasma were measured by the enzyme-linked immunosorbent assay (ELISA) method. Statistical significance between mean values was determined using statistical ANOVA tests. Results The mean parameters of sperm concentration, motile and progressive motile sperm and normal morphological sperm were significantly decreased in groups during SHS 1, 2 and 3 months compared with those in groups of pre-SHS (P<0.001). Statistically significant differences of sperm DNA fragmentation, normal sperm membrane, and Caspase-3 activity as well as the level of NO, NOS and MIF in semen were observed between the groups before SHS and after SHS 3 months and the groups during SHS 1, 2 and 3 months (P<0.001). After three months of the SHS, various parameters recovered to the level before SHS. WBC in semen showed a positively significant correlation with the levels of NO, NOS, MIF and Caspase-3 activity. The percentage of abnormal sperm by using the test of HOS showed a positively significant correlation with that of HOS/AB. Conclusions The continuously constant SHS can impact the semen quality and sperm DNA and chromatin, which may be contributed to the high level of NO, NOS, MIF and Caspase

  2. Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia

    PubMed Central

    Figueira, R.L.; Gonçalves, F.L.; Simões, A.L.; Bernardino, C.A.; Lopes, L.S.; Castro e Silva, O.; Sbragia, L.

    2016-01-01

    Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC). This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group): 1) preterm control (PTC), 2) preterm ventilated (PTV), 3) preterm asphyxiated (PTA), 4) preterm asphyxiated and ventilated (PTAV), 5) term control (TC), 6) term ventilated (TV), 7) term asphyxiated (TA), and 8) term asphyxiated and ventilated (TAV). We measured body, brain, and intestine weights and respective ratios [(BW), (BrW), (IW), (BrW/BW) and (IW/BW)]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus) and intestine (jejunum/ileum) tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP). IW was lower in the TA than in the other terms (P<0.05), and the IW/BW ratio was lower in the TA than in the TAV (P<0.005). PTA, PTAV and TA presented high levels of brain damage. In histological intestinal analysis, PTAV and TAV had higher scores than the other groups. Caspase-3 was higher in PTAV (cortex) and TA (cortex/hippocampus) (P<0.005). I-FABP was higher in PTAV (P<0.005) and TA (ileum) (P<0.05). I-FABP expression was increased in PTAV subgroup (P<0.0001). Brain and intestinal responses in neonatal rats caused by neonatal asphyxia, with or without mechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers. PMID:27356106

  3. Induction of apoptosis in human cervical carcinoma Hela cells with active components of Menispermum dauricum.

    PubMed

    Wang, J Y; Sun, S; Liu, L; Yang, W S

    2014-02-13

    Menispermum dauricum DC possesses a wide range of pharmacological effects. In this study, the mechanism of apoptosis induced by active components of M. dauricum was investigated in the human cervical carcinoma HeLa cell line. HeLa cells were treated with different M. dauricum concentrations over different time periods. The proliferation-inhibitory rate and cytotoxic effect of HeLa cells were measured by using the methyl thiazolyl tetrazolium (MTT) assay, and the apoptotic rate was detected by flow cytometry. Expressions of caspase-9, caspase-8, caspase-3, Bcl-2, and Fas proteins, in the apoptotic pathway, and the expression of nuclear factor-kappa B (NF-κB) were detected by SP immunocytochemistry. The MTT assay showed that active components of M. dauricum could significantly inhibit the growth of HeLa cells in a dose- and time-dependent manner (P<0.01). The Sub-Gl peak was found by flow cytometry, and the maximal apoptosis rate was 24.93%. Immunocytochemistry showed that after treatment with M. dauricum, the expressions of caspase-8, caspase-9, caspase-3, Fas protein, and NF-κB all increased, and the expression of the Bcl-2 protein decreased, with significant differences relative to the control group (P<0.01). Apoptosis in HeLa cells could be induced by active components of M. dauricum through the NF-κB signal transduction pathway and the caspase pathway, which was related to the downregulation of Bcl-2 expression and the upregulation of Fas expression.

  4. Cytotoxicity of diacetoxyscirpenol is associated with apoptosis by activation of caspase-8 and interruption of cell cycle progression by down-regulation of cdk4 and cyclin B1 in human Jurkat T cells

    SciTech Connect

    Jun, Do Youn; Kim, Jun Seok; Park, Hae Sun; Song, Woo Sun; Bae, Young Seuk; Kim, Young Ho . E-mail: ykim@knu.ac.kr

    2007-07-15

    To understand the mechanism underlying T-cell toxicity of diacetoxyscirpenol (DAS) from Fusarium sambucinum, its apoptogenic as well as growth retardation activity was investigated in human Jurkat T cells. Exposure to DAS (0.01-0.15 {mu}M) caused apoptotic DNA fragmentation along with caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, activation of caspase-9 and caspase-3, and PARP degradation, without any alteration in the levels of Fas or FasL. Under these conditions, necrosis was not accompanied. The cytotoxicity of DAS was not blocked by the anti-Fas neutralizing antibody ZB-4. Although the DAS-induced apoptotic events were completely prevented by overexpression of Bcl-xL, the cells overexpressing Bcl-xL were unable to divide in the presence of DAS, resulting from the failure of cell cycle progression possibly due to down-regulation in the protein levels of cdk4 and cyclin B1. The DAS-mediated apoptosis and activation of caspase-8, -9, and -3 were abrogated by either pan-caspase inhibitor (z-VAD-fmk) or caspase-8 inhibitor (z-IETD-fmk). While the DAS-mediated apoptosis and activation of caspase-9 and caspase-3 were slightly suppressed by the mitochondrial permeability transition pore inhibitor (CsA), both caspase-8 activation and Bid cleavage were not affected by CsA. The activated normal peripheral T cells possessed a similar susceptibility to the cytotoxicity of DAS. These results demonstrate that the T-cell toxicity of DAS is attributable to not only apoptosis initiated by caspase-8 activation and subsequent mitochondrion-dependent or -independent activation of caspase cascades, which can be regulated by Bcl-xL, but also interruption of cell cycle progression caused by down-regulation of cdk4 and cyclin B1 proteins.

  5. Eccentric Exercise Leads to Glial Activation but not Apoptosis in Mice Spinal Cords.

    PubMed

    Pereira, B C; Lucas, G; da Rocha, A L; Pauli, J R; Ropelle, E R; Cintra, D; de Souza, C T; Bueno, C R; da Silva, A S

    2015-05-01

    The aim of this investigation was to evaluate the effects of 3 overtraining (OT) protocols on the glial activation and apoptosis in the spinal cords of mice. Rodents were divided into control (C; sedentary mice), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up) and overtrained by running without inclination (OTR). The incremental load test, ambulation test, exhaustive test and functional behavioural assessment were used as performance evaluation parameters. 36 h after the exhaustive test, the dorsal and ventral parts of the lumbar spinal cord (L4-L6) were dissected for subsequent protein analysis by immunoblotting. The OT protocols led to similar responses of some performance parameters. The ventral glial fibrillary acidic protein (GFAP) protein levels were diminished in the OTR/up and OTR compared to CT and OTR/down groups. The ventral ionized calcium binding adaptor molecule 1 (Iba-1), and the dorsal GFAP and Iba-1 protein levels were increased in the OTR/down compared to the other groups. The ratio between the cleaved capase-3/caspase-3 and cleaved caspase-9/caspase-9 measured in the spinal cord were not sensitive to the OT protocols. In summary, the OTR/down activated the glial cells in the motor (i. e. Iba-1) and sensory (i. e. GFAP and Iba-1) neurons without leading to apoptosis.

  6. Immunoexpression of cleaved caspase-3 shows lower apoptotic area indices in lip carcinomas than in intraoral cancer

    PubMed Central

    LEITE, Ana Flávia Schueler de Assumpção; BERNARDO, Vagner Gonçalves; BUEXM, Luisa Aguirre; da FONSECA, Eliene Carvalho; da SILVA, Licínio Esmeraldo; BARROSO, Danielle Resende Camisasca; LOURENÇO, Simone de Queiroz Chaves

    2016-01-01

    ABSTRACT Objective This study aimed to evaluate apoptosis by assessing cleaved caspase-3 immunoexpression in hyperplastic, potentially malignant disorder (PMD), and malignant tumors in intraoral and lower lip sites. Material and Methods A retrospective study using paraffin blocks with tissues from patients with inflammatory fibrous hyperplasia (IFH), actinic cheilitis, oral leukoplakia, lower lip and intraoral squamous cell carcinoma (SCC) was performed. The tissues were evaluated by immunohistochemical analysis with anti-cleaved caspase-3 antibody. Apoptotic area index was then correlated with lesion type. Results From 120 lesions assessed, 55 (46%) were cleaved caspase-3-positive. The SCC samples (n=40) had the highest apoptotic area indices (n=35; 87.5%). Significant differences were detected between SCCs and PMDs (p=0.0003), as well as SCCs and IFHs (p=0.001), regarding caspase-3 immunopositivity. Carcinomas of the lower lip had lower apoptotic area indices than intraoral cancer (p=0.0015). Conclusions Cleaved caspase-3 immunoexpression showed differences in oral SCCs and PMDs and demonstrated a distinct role of apoptosis in carcinogenesis of intraoral and lower lip cancer. In future, the expression of cleaved caspase-3 with other target molecules in oral cancer may be helpful in delineating the prognosis and treatment of these tumors. PMID:27556207

  7. Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart

    PubMed Central

    Cardona, Maria; López, Juan Antonio; Serafín, Anna; Rongvaux, Anthony; Inserte, Javier; García-Dorado, David; Flavell, Richard; Llovera, Marta; Cañas, Xavier; Vázquez, Jesús; Sanchis, Daniel

    2015-01-01

    Executioner caspase-3 and -7 are proteases promoting cell death but non-apoptotic roles are being discovered. The heart expresses caspases only during development, suggesting they contribute to the organ maturation process. Therefore, we aimed at identifying novel functions of caspases in heart development. We induced simultaneous deletion of executioner caspase-3 and -7 in the mouse myocardium and studied its effects. Caspase knockout hearts are hypoplastic at birth, reaching normal weight progressively through myocyte hypertrophy. To identify the molecular pathways involved in these effects, we used microarray-based transcriptomics and multiplexed quantitative proteomics to compare wild type and executioner caspase-deficient myocardium at different developmental stages. Transcriptomics showed reduced expression of genes promoting DNA replication and cell cycle progression in the neonatal caspase-deficient heart suggesting reduced myocyte proliferation, and expression of non-cardiac isoforms of structural proteins in the adult null myocardium. Proteomics showed reduced abundance of proteins involved in oxidative phosphorylation accompanied by increased abundance of glycolytic enzymes underscoring retarded metabolic maturation of the caspase-null myocardium. Correlation between mRNA expression and protein abundance of relevant genes was confirmed, but transcriptomics and proteomics indentified complementary molecular pathways influenced by caspases in the developing heart. Forced expression of wild type or proteolytically inactive caspases in cultured cardiomyocytes induced expression of genes promoting cell division. The results reveal that executioner caspases can modulate heart’s cellularity and maturation during development, contributing novel information about caspase biology and heart development. PMID:26121671

  8. Growth inhibitory effect of KYKZL-1 on Hep G{sub 2} cells via inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest

    SciTech Connect

    Cheng, Jing; Du, Yi-Fang; Xiao, Zhi-Yi; Pan, Li-Li; Li, Wei; Huan, Lin; Gong, Zhu-Nan; Wei, Shao-Hua; Huang, Shi-Qian; Xun, Wei; Zhang, Yi; Chang, Lei-Lei; Xie, Meng-Yu; Ao, Gui-Zhen; Cai, Jie; Qiu, Ting; Wu, Hao; Sun, Ting; Xu, Guang-Lin

    2014-01-01

    KYKZL-1, a newly synthesized compound with COX/5-LOX dual inhibition, was subjected to the inhibitory activity test on Hep G{sub 2} growth. We found that KYKZL-1 inhibited the growth of Hep G{sub 2} cells via inducing apoptosis. Further studies showed that KYKZL-1 activated caspase-3 through cytochrome c release from mitochondria and down regulation of Bcl-2/Bax ratio and reduced the high level of COX-2 and 5-LOX. As shown in its anti-inflammatory effect, KYKZL-1 also exhibited inhibitory effect on the PGE{sub 2} and LTB{sub 4} production in Hep G{sub 2} cells. Accordingly, exogenous addition of PGE{sub 2} or LTB{sub 4} reversed the decreases in cell viability. In addition, KYKZL-1 caused cell cycle arrest at the S–G{sub 2} checkpoint via the activation of p21{sup CIP1} protein and down-regulation of cyclin A expression. These data indicate that the growth inhibitory effect of KYKZL-1 is associated with inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest. Combined with our previous findings, KYKZL-1 exhibiting COX/5-LOX inhibition may be a promising potential agent not only for inflammation control but also for cancer prevention/therapy with an enhanced gastric safety profile. - Highlights: • KYKZL-1 is designed to exhibit COX/5-LOX dual inhibition. • KYKZL-1 resulted in apoptosis of Hep G{sub 2} cells. • KYKZL-1 activated caspase-3 through cytochrome c and bcl-2/bax ratio. • KYKZL-1 caused cell cycle arrest via modulation of p21{sup CIP1} and cyclin A level.

  9. Garlic (Allium sativum) Fresh Juice Induces Apoptosis in Human Oral Squamous Cell Carcinoma: The Involvement of Caspase-3, Bax and Bcl-2

    PubMed Central

    Farhadi, Farrokh; Jahanpour, Salar; Hazem, Kameliya; Aghbali, Amirala; Baradran, Behzad; Vahid Pakdel, Seyyed Mahdi

    2015-01-01

    Background and aims. There is no report on the apoptotic impact of Allium sativum L.(Garlic) on the oral squamous cell carcinoma (KB); hence, this study was designed to survey the apoptotic effects of garlic fresh juice (GFJ) on the KB cells. Materials and methods. MTTassay (MicrocultureTetrazolium Assay) was carried out to evaluate the cytotoxicity of GFJ on KB cells. Furthermore, TUNEL(Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling)and DNA fragmentation tests were performed to determine if GFJ is able to induce apoptosis in KB cells. Also a standard kit was used to assess caspase-3 activity in KB cells. Also western blotting was employed to evaluate the effect of GFJ on Bax:Bcl-2 ratio. Results. Significant cytotoxic effects were observed for the minimum used concentration (1μg/mL) as calculated to be 77.97±2.3% for 24 h and 818±3.1% for 36h of incubation (P < 0.001). Furthermore, TUNEL and DNA fragmentation tests corroborated the apoptosis inducing activity of GFJ. Consistently, after treating KB cells with GFJ(1μg/mL), caspase-3 activity and Bax:Bcl-2 ratio were raised by 7.3±0.6 and (P <0.001) folds, respectively. Conclusion. The results of this study advanced that GFJ induces apoptosis in the KB cells through increasing caspase-3 activity and Bax:Bcl2 ratio which could be attributed to its organo-sulfurcomponents. PMID:26889365

  10. Combined fluorimetric caspase 3/7 assay and bradford protein determination for assessment of polycation-mediated cytotoxicity.

    PubMed

    Larsen, Anna K; Hall, Arnaldur; Lundsgart, Henrik; Moghimi, S Moein

    2013-01-01

    Cationic polyplexes and lipoplexes are widely used as artificial systems for nucleic acid delivery into the cells, but they can also induce cell death. Mechanistic understanding of cell toxicity and biological side effects of these cationic entities is essential for optimization strategies and design of safe and efficient nucleic acid delivery systems. Numerous methods are presently available to detect and delineate cytotoxicity and cell death-mediated signals in cell cultures. Activation of caspases is part of the classical apoptosis program and increased caspase activity is therefore a well-established hallmark of programmed cell death. Additional methods to monitor cell death-related signals must, however, also be carried out to fully define the type of cell toxicity in play. These may include methods that detect plasma membrane damage, loss of mitochondrial membrane potential, phosphatidylserine exposure, and cell morphological changes (e.g., membrane blebbing, nuclear changes, cytoplasmic swelling, cell rounding). Here we describe a 96-well format protocol for detection of capsase-3/7 activity in cell lysates, based on a fluorescent caspase-3 assay, combined with a method to simultaneously determine relative protein contents in the individual wells.

  11. Comparative anti-proliferative activity of some new 2-(arylazo)phenolate-palladium (II) complexes and cisplatin against some human cancer cell lines.

    PubMed

    Banerjee, P; Majumder, P; Halder, S; Drew, M G B; Bhattacharya, S; Mazumder, S

    2015-03-01

    In this study, we report the synthesis of four 2-(arylazo)phenol-Pd(II) complexes and their anti-proliferative property against the human lung cancer (A549), cervical cancer (HeLa), and ovarian teratocarcinoma (PA-1) cell lines with cisplatin as the gold standard. One of the complexes, [Pd(L(2))2], induced robust apoptosis in all the chosen cells, as revealed by annexin-V-positive/propidium iodide dual staining, increased sub-G1 cell cycle population, and significant morphological changes in the treated cells. The Pd complex inflicted mitochondrial dysfunction leading to mitochondrial membrane potential loss, reactive oxygen species generation and release of cytosolic cytochrome c that activated caspase-9 and caspase-3 proteins which finally caused programmed cell death.

  12. Colon cancer chemopreventive effects of baicalein, an active enteric microbiome metabolite from baicalin.

    PubMed

    Wang, Chong-Zhi; Zhang, Chun-Feng; Chen, Lina; Anderson, Samantha; Lu, Fang; Yuan, Chun-Su

    2015-11-01

    Baicalin is a major constituent of Scutellaria baicalensis, which is a commonly used herbal medicine in many Asian countries. After oral ingestion, intestinal microbiota metabolism may change parent compound's structure and its biological activities. However, whether baicalin can be metabolized by enteric microbiota and the related anticancer activity is not clear. In this study, using human enteric microbiome incubation and HPLC analysis, we observed that baicalin can be quickly converted to baicalein. We compared the antiproliferative effects of baicalin and baicalein using a panel of human cancer cell lines, including three human colorectal cancer (CRC) cell lines. In vitro antiproliferative effects on CRC cells were verified using an in vivo xenograft nude mouse model. Baicalin showed limited antiproliferative effects on some of these cancer cell lines. Baicalein, however, showed significant antiproliferative effects in all the tested cancer cell lines, especially on HCT-116 human colorectal cancer cells. In vivo antitumor results supported our in vitro data. We demonstrated that baicalein exerts potent S phase cell cycle arrest and pro-apoptotic effects in HCT-116 cells. Baicalein induced the activation of caspase 3 and 9. The in silico modeling suggested that baicalein forms hydrogen bonds with residues Ser251 and Asp253 at the active site of caspase 3, while interactions with residues Leu227 and Asp228 in caspase 9 through its hydroxyl groups. Data from this study suggested that baicalein is a potent anticancer metabolite derived from S. baicalensis. Enteric microbiota play a key role in the colon cancer chemoprevention of S. baicalensis.

  13. GDP dissociation inhibitor D4-GDI (Rho-GDI 2), but not the homologous rho-GDI 1, is cleaved by caspase-3 during drug-induced apoptosis.

    PubMed Central

    Essmann, F; Wieder, T; Otto, A; Müller, E C; Dörken, B; Daniel, P T

    2000-01-01

    Different cytotoxic drugs induce cell death by activating the apoptotic programme; a family of cysteinyl aspartate proteases named caspases has been shown to be involved in the initiation as well as the execution of this kind of cell death. In the present study, cleavage of D4-GDI (Rho-GDI 2), an abundant haemopoietic-cell GDP dissociation inhibitor for the Ras-related Rho family GTPases, was demonstrated after treatment of BJAB Burkitt-like lymphoma cells with taxol or epirubicin. The cleavage of D4-GDI occurred simultaneously with the activation of caspase-3 but preceded DNA fragmentation and the morphological changes associated with apoptotic cell death. By using high-resolution two-dimensional gel electrophoresis it was shown that this cleavage is specific: whereas the level of the homologous protein Rho-GDI 1 was not significantly altered during drug-induced apoptosis and in cytochrome c/dATP-activated cellular extracts, D4-GDI disappeared owing to proteolytic cleavage. Inhibitor experiments with Z-DEVD-fmk (in which Z stands for benzyloxycarbonyl and fmk for fluoromethyl ketone) and microsequencing of the D4-GDI fragment revealed that this occurs at the caspase-3 cleavage site. Our results strongly suggest the differential regulation of the homologous GDP dissociation inhibitors Rho-GDI 1 and D4-GDI during drug-induced apoptosis by proteolysis mediated by caspase-3 but not by caspase-1. Owing to their crucial role as modulators of Rho GTPases, this might in turn have a significant impact on the mechanisms that induce the cytoskeletal and morphological changes in apoptotic cells. PMID:10698706

  14. Eukaryotic Translation Initiation Factor 4G Is Targeted for Proteolytic Cleavage by Caspase 3 during Inhibition of Translation in Apoptotic Cells

    PubMed Central

    Marissen, Wilfred E.; Lloyd, Richard E.

    1998-01-01

    Although much is known about the multiple mechanisms which induce apoptosis, comparatively little is understood concerning the execution phase of apoptosis and the mechanism(s) of cell killing. Several reports have demonstrated that cellular translation is shut off during apoptosis; however, details of the mechanism of translation inhibition are lacking. Translation initiation factor 4G (eIF4G) is a crucial protein required for binding cellular mRNA to ribosomes and is known to be cleaved as the central part of the mechanism of host translation shutoff exerted by several animal viruses. Treatment of HeLa cells with the apoptosis inducers cisplatin and etoposide resulted in cleavage of eIF4G, and the extent of its cleavage correlated with the onset and extent of observed inhibition of cellular translation. The eIF4G-specific cleavage activity could be measured in cell lysates in vitro and was inhibited by the caspase inhibitor Ac-DEVD-CHO at nanomolar concentrations. A combination of in vivo and in vitro inhibitor studies suggest the involvement of one or more caspases in the activation and execution of eIF4G cleavage. Furthermore recombinant human caspase 3 was expressed in bacteria, and when incubated with HeLa cell lysates, was shown to produce the same eIF4G cleavage products as those observed in apoptotic cells. In addition, purified caspase 3 caused cleavage of purified eIF4G, demonstrating that eIF4G could serve as a substrate for caspase 3. Taken together, these data suggest that cellular translation is specifically inhibited during apoptosis by a mechanism involving cleavage of eIF4G, an event dependent on caspase activity. PMID:9819442

  15. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine co-expressing pro-apoptotic caspase-3.

    PubMed

    Gartner, Tatiana; Romano, Marta; Suin, Vanessa; Kalai, Michaël; Korf, Hannelie; De Baetselier, Patrick; Huygen, Kris

    2008-03-10

    DNA vaccination is a potent means for inducing strong cell-mediated immune responses and protective immunity against viral, bacterial and parasite pathogens in rodents. In an attempt to increase cross-presentation through apoptosis, the DNA-encoding caspase-2 prodomain followed by wild-type or catalytically inactive mutated caspase-3 was inserted into a plasmid encoding the 32 kDa mycolyl transferase (Ag85A) from Mycobacterium tuberculosis. Transient transfection showed that the mutated caspase induced slow apoptosis, normal protein expression and NF-kappaB activation while wild-type caspase induced rapid apoptosis, lower protein expression and no NF-kappaB activation. Ag85A specific antibody production was increased by co-expressing the mutated and decreased by co-expressing the wild-type caspase. Vaccination with pro-apoptotic plasmids triggered more Ag85A specific IFN-gamma producing spleen cells, and more efficient IL-2 and IFN-gamma producing memory cells in spleen and lungs after M. tuberculosis challenge. Compared to DNA-encoding secreted Ag85A, vaccination with DNA co-expressing wild-type caspase increased protection after infection with M. tuberculosis, while vaccination with plasmid co-expressing mutated caspase was not protective, possibly due to the stimulation of IL-6, IL-10 and IL-17A production.

  16. Selective cytotoxicity of squamocin on T24 bladder cancer cells at the S-phase via a Bax-, Bad-, and caspase-3-related pathways.

    PubMed

    Yuan, Shyng-Shiou F; Chang, Hsueh-Ling; Chen, Hsiao-Wen; Kuo, Fu-Chen; Liaw, Chih-Chuang; Su, Jinu-Huang; Wu, Yang-Chang

    2006-01-18

    Annonaceous acetogenins are a group of potential anti-neoplastic agents isolated from Annonaceae plants. We purified squamocin, a cytotoxic bis-tetrahydrofuran acetogenin, from the seeds of Annona reticulata and analyzed its biologic effects on cancer cells. We showed that squamocin was cytotoxic to all the cancer lines tested. Furthermore, squamocin arrested T24 bladder cancer cells at the G1 phase and caused a selective cytotoxicity on S-phase-enriched T24 cells. It induced the expression of Bax and Bad pro-apoptotic genes, enhanced caspase-3 activity, cleaved the functional protein of PARP and caused cell apoptosis. These results suggest that squamocin is a potentially promising anticancer compound.

  17. Lens fiber connexin turnover and caspase-3-mediated cleavage are regulated alternately by phosphorylation.

    PubMed

    Yin, Xinye; Liu, Jialu; Jiang, Jean X

    2008-05-01

    Lens connexins are phosphorylated in vivo; however, the function and regulation of the phosphorylation remain largely unknown. We have previously identified an in vivo phosphorylation site, Ser(364), at the COOH terminus of lens connexin (Cx) Cx45.6 and phosphorylation appears to regulate connexin protein turnover. To assess the specific mechanism of Ser(364) phosphorylation in Cx45.6, exogenous wild type and Ser(364) mutant Cx45.6 were expressed in primary lens cultures through retroviral infection. Cx45.6 turnover was attenuated primarily by proteasomal inhibitors and to a lesser extent by lysosomal inhibitors. Furthermore, the level of Cx45.6 protein in ubiquitin co-expressed cells was significantly reduced as compared to the cells expressing Cx45.6 alone. Moreover, overexpression of ubiquitin led to a more significant decrease in wild type Cx45.6 than Cx45.6(S364A), a mutant deficient of phosphorylation site at Ser(364), although we did not detect any difference in the levels of ubiquitination between wild type and mutant Cx45.6. Interestingly, the mutant mimicking constitutive phosphorylation, Cx45.6(S364D), partially prevented the cleavage of Cx45.6 by caspase-3. Together, our data suggest that phosphorylation of Cx45.6 at Ser(364) appears to stimulate Cx45.6 turnover primarily through proteasome pathway and this phosphorylation inhibits the cleavage of Cx45.6 by caspase-3. These findings provide further insights into regulatory mechanism of the specific phosphorylation of connexins in the lens.

  18. Implication of Caspase-3 as a Common Therapeutic Target for Multineurodegenerative Disorders and Its Inhibition Using Nonpeptidyl Natural Compounds

    PubMed Central

    Khan, Saif; Ahmad, Khurshid; Alshammari, Eyad M. A.; Adnan, Mohd; Baig, Mohd Hassan; Lohani, Mohtashim; Haque, Shafiul

    2015-01-01

    Caspase-3 has been identified as a key mediator of neuronal apoptosis. The present study identifies caspase-3 as a common player involved in the regulation of multineurodegenerative disorders, namely, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). The protein interaction network prepared using STRING database provides a strong evidence of caspase-3 interactions with the metabolic cascade of the said multineurodegenerative disorders, thus characterizing it as a potential therapeutic target for multiple neurodegenerative disorders. In silico molecular docking of selected nonpeptidyl natural compounds against caspase-3 exposed potent leads against this common therapeutic target. Rosmarinic acid and curcumin proved to be the most promising ligands (leads) mimicking the inhibitory action of peptidyl inhibitors with the highest Gold fitness scores 57.38 and 53.51, respectively. These results were in close agreement with the fitness score predicted using X-score, a consensus based scoring function to calculate the binding affinity. Nonpeptidyl inhibitors of caspase-3 identified in the present study expeditiously mimic the inhibitory action of the previously identified peptidyl inhibitors. Since, nonpeptidyl inhibitors are preferred drug candidates, hence, discovery of natural compounds as nonpeptidyl inhibitors is a significant transition towards feasible drug development for neurodegenerative disorders. PMID:26064904

  19. Staurosporine shows insecticidal activity against Mythimna separata Walker (Lepidoptera: Noctuidae) potentially via induction of apoptosis.

    PubMed

    Zhang, Yang; Liu, Songlin; Yang, Xing; Yang, Mingjun; Xu, Wenping; Li, Yaxiao; Tao, Liming

    2016-03-01

    Staurosporine (STS), a wide-spectrum kinase inhibitor, is widely used in studies of apoptosis in mammalian cells. However, its physiological and mechanistic effects have never been clearly defined in insect cells, and other applications of STS have rarely been reported. The present study reveals the insecticidal activity of STS on larvae of Mythimna separata Walker, and the apoptotic mechanism induced by STS on lepidopteran Sf9 cell lines. We demonstrate that the viability of Sf9 cells is inhibited by STS in a time- and concentration-dependent manner. Intracellular biochemical assays show that STS-induced apoptosis of Sf9 cells coincides with a decrease in the mitochondrial membrane potential, the release of cytochrome c into the cytosol, a significant increase of the Bax/Bcl-2 ratio, and a marked activation of caspase-9 and caspase-3. These results indicate that a mitochondrial-dependent intrinsic pathway contributes to STS induced caspase-3 activation and apoptosis in Sf9 cells which is homologous to the mechanisms in mammalian cells. This study contributes to our understanding of the mechanism of insect cell apoptosis and suggests a possible new application of STS as a potential insecticide against Lepidopteran insect pests in agriculture.

  20. Swainsonine promotes apoptosis in human oesophageal squamous cell carcinoma cells in vitro and in vivo through activation of mitochondrial pathway.

    PubMed

    Li, Zhaocal; Huang, Yong; Dong, Feng; Li, Wei; Ding, Li; Yu, Gaoshui; Xu, Dan; Yang, Yuanyuan; Xu, Xingang; Tong, Dewen

    2012-12-01

    Swainsonine, a natural indolizidine alkaloid, has been reported to have antitumour effects, and can induce apoptosis in human gastric and lung cancer cells. In the present study, we evaluated the antitumour effects of swainsonine on several oesophageal squamous cell carcinoma cells and investigated relative molecular mechanisms. Swainsonine treatment inhibited the growth of Eca-109, TE-1 and TE-10 cells in a concentration-dependent manner as measured by MTT assay. Morphological observation, DNA laddering detection and flow cytometry analysis demonstrated that swainsonine treatment induced Eca-109 cell apoptosis in vitro. Further results showed that swainsonine treatment up-regulated Bax, downregulated Bcl-2 expression, triggered Bax translocation to mitochondria, destructed mitochondria integrity and activated mitochondria-mediated apoptotic pathway, followed by the release of cytochrome c, which in turn activated caspase-9 and caspase-3, promoted the cleavage of PARP, resulting in Eca-109 cell apoptosis. Moreover, swainsonine treatment inhibited Bcl-2 expression, promoted Bax translocation, cytochrome c release and caspase-3 activation in xenograft tumour cells, resulting in a significant decrease of tumour volume and tumour weight in the swainsoninetreated xenograft mice groups compared with that in the control group. Taken together, this study demonstrated that swainsonine inhibited Eca-109 cells growth through activation of mitochondria-mediated caspase-dependent pathway.

  1. Morus alba Accumulates Reactive Oxygen Species to Initiate Apoptosis via FOXO-Caspase 3-Dependent Pathway in Neuroblastoma Cells

    PubMed Central

    Kwon, Young Hwi; Bishayee, Kausik; Rahman, Ataur; Hong, Jae Seung; Lim, Soon-Sung; Huh, Sung-Oh

    2015-01-01

    Morus alba root extract (MARE) has been used to treat hyperglycaemic conditions in oriental medicine. Here, we studied whether MARE possesses a cytotoxic effect on neuroblastoma. To check the cytotoxicity generated by MARE was whether relatively higher against the cancer cells rather than normal cells, we chose a neuroblastoma cell line (B103) and a normal cell line (Rat-2). A CCK assay revealed that MARE (10 μg/ml) reduced cell viability to approximately 60% compared to an untreated control in B103 cells. But in Rat-2 cells, MARE induced relatively lower cytotoxicity. To investigate the mechanisms underlying the cytotoxic effect of MARE, we used flow cytometry combined with immunoblot analyses. We found that MARE-treatment could accumulate ROS and depolarize mitochondria membrane potential of B103 cells. Further treatment with MARE in B103 cells also could damage DNA and induce apoptosis. An expression study of p-Akt also suggested that there was a reduction in cellular proliferation and transcription along with the process of apoptosis, which was further evidenced by an increase in Bax and cleaved-caspase 3 activity. Together, our findings suggest that MARE produces more cytotoxicity in cancer cells while having a relatively attenuated effect on normal cells. As such, MARE may be a safer option in cancer therapeutics, and it also shows potential for the patients with symptoms of hyperglycemia and cancer. PMID:25921607

  2. A fusion protein composed of IL-2 and caspase-3 ameliorates the outcome of experimental inflammatory colitis.

    PubMed

    Sagiv, Yuval; Kaminitz, Ayelet; Lorberboum-Galski, Haya; Askenasy, Nadir; Yarkoni, Shai

    2009-09-01

    Targeted depletion of immune cells expressing the interleukin-2 (IL-2) receptor can exacerbate inflammatory bowel disease (IBD) through elimination of regulatory T (Treg) cells, or ameliorate its course by depletion of cytotoxic cells. To answer this question we used a fusion protein composed of IL-2 and caspase-3 (IL2-cas) in an experimental model of DSS-induced toxic colitis. In a preventive setting, co-administration of DSS with a daily therapeutic dose of IL2-cas for seven days improved all disease parameters. Although CD4(+)CD25(+) T cells were depleted in the mesenteric lymph nodes, a fractional increase in CD4(+)FoxP3(+) T cells was observed in the spleen. Likewise, IL2-cas therapy improved the outcome of established disease in a chronic model of colitis. These data demonstrate that therapies that use IL-2 as a targeting moiety exert a protective effect over the colon under conditions of inflammation. The efficacy of IL-2-targeted therapy is attributed to reduced activity of reactive T cells, which ameliorates the secondary inflammatory infiltration. IL2-cas evolves as a potential therapeutic tool in IBD.

  3. Bilberry extract (Antho 50) selectively induces redox-sensitive caspase 3-related apoptosis in chronic lymphocytic leukemia cells by targeting the Bcl-2/Bad pathway

    PubMed Central

    Alhosin, Mahmoud; León-González, Antonio J.; Dandache, Israa; Lelay, Agnès; Rashid, Sherzad K.; Kevers, Claire; Pincemail, Joël; Fornecker, Luc-Matthieu; Mauvieux, Laurent; Herbrecht, Raoul; Schini-Kerth, Valérie B.

    2015-01-01

    Defect in apoptosis has been implicated as a major cause of resistance to chemotherapy observed in B cell chronic lymphocytic leukaemia (B CLL). This study evaluated the pro-apoptotic effect of an anthocyanin-rich dietary bilberry extract (Antho 50) on B CLL cells from 30 patients and on peripheral blood mononuclear cells (PBMCs) from healthy subjects, and determined the underlying mechanism. Antho 50 induced concentration- and time-dependent pro-apoptotic effects in B CLL cells but little or no effect in PBMCs. Among the main phenolic compounds of the bilberry extract, delphinidin-3-O-glucoside and delphinidin-3-O-rutinoside induced a pro-apoptotic effect. Antho 50-induced apoptosis is associated with activation of caspase 3, down-regulation of UHRF1, a rapid dephosphorylation of Akt and Bad, and down-regulation of Bcl-2. Antho 50 significantly induced PEG-catalase-sensitive formation of reactive oxygen species in B CLL cells. PEG-catalase prevented the Antho 50-induced induction of apoptosis and related signaling. The present findings indicate that Antho 50 exhibits strong pro-apoptotic activity through redox-sensitive caspase 3 activation-related mechanism in B CLL cells involving dysregulation of the Bad/Bcl-2 pathway. This activity of Antho 50 involves the glucoside and rutinoside derivatives of delphinidin. They further suggest that Antho 50 has chemotherapeutic potential by targeting selectively B CLL cells. PMID:25757575

  4. Enteric glial cells counteract Clostridium difficile Toxin B through a NADPH oxidase/ROS/JNK/caspase-3 axis, without involving mitochondrial pathways

    PubMed Central

    Macchioni, Lara; Davidescu, Magdalena; Fettucciari, Katia; Petricciuolo, Maya; Gatticchi, Leonardo; Gioè, Davide; Villanacci, Vincenzo; Bellini, Massimo; Marconi, Pierfrancesco; Roberti, Rita; Bassotti, Gabrio; Corazzi, Lanfranco

    2017-01-01

    Enteric glial cells (EGCs) are components of the intestinal epithelial barrier essential for regulating the enteric nervous system. Clostridium difficile is the most common cause of antibiotic-associated colitis, toxin B (TcdB) being the major virulence factor, due to its ability to breach the intestinal epithelial barrier and to act on other cell types. Here we investigated TcdB effects on EGCs and the activated molecular mechanisms. Already at 2 hours, TcdB triggered ROS formation originating from NADPH-oxidase, as demonstrated by their reduction in the presence of the NADPH-oxidase inhibitor ML171. Although EGCs mitochondria support almost completely the cellular ATP need, TcdB exerted weak effects on EGCs in terms of ATP and mitochondrial functionality, mitochondrial ROS production occurring as a late event. ROS activated the JNK signalling and overexpression of the proapoptotic Bim not followed by cytochrome c or AIF release to activate the downstream apoptotic cascade. EGCs underwent DNA fragmentation through activation of the ROS/JNK/caspase-3 axis, evidenced by the ability of ML171, N-acetylcysteine, and the JNK inhibitor SP600125 to inhibit caspase-3 or to contrast apoptosis. Therefore, TcdB aggressiveness towards EGCs is mainly restricted to the cytosolic compartment, which represents a peculiar feature, since TcdB primarily influences mitochondria in other cellular types. PMID:28349972

  5. Single or multiple injections of methamphetamine increased dopamine turnover but did not decrease tyrosine hydroxylase levels or cleave caspase-3 in caudate-putamen.

    PubMed

    Pereira, Frederico Costa; Lourenço, Elita Santos; Borges, Fernanda; Morgadinho, Teresa; Ribeiro, Carlos Fontes; Macedo, Tice Reis; Ali, Syed F

    2006-09-01

    Methamphetamine (METH), leading to striatal dopamine (DA) nerve terminal toxicity in mammals, is also thought to induce apoptosis of striatal neurons in rodents. We investigated the acute effects induced by multiple injections of METH (4 x 5 mg/kg, i.p.) at 2-h intervals or a single injection of METH (20 mg/kg, i.p.) on terminal dopaminergic toxicity markers, including DA levels, DA turnover, and tyrosine hydroxylase (TH) immunoreactivity in rat caudate-putamen (CPu). We further investigated whether both treatment paradigms would change Bax and activate caspase-3 expression, thus triggering striatal apoptotic mitochondria-dependent biochemical cascades. The first injection of METH (5 mg/kg, i.p.) produced a significant release of DA that peaked 30 min and stayed above control levels up to 1.5 h within CPu. In another set of experiments, rats were killed 1 and 24 h following the last injection, for tissue DA and metabolite content measurement and Western blot analysis (24 h). Multiple doses induced DA depletion and increased turnover at both endpoints. Single-dose METH reproduced these effects at 24 h; however, turnover was significantly higher than that evoked by the multiple doses at 24 h. Although both paradigms evoked similar DA depletion, however, none of the dosing regimens induced changes in TH expression at 24 h. The former paradigm produced an increase in Bax expression in CPu not sufficient to induce cleavage of caspase-3 proenzyme at 24 h. This study suggests that both paradigm induced changes in striatal dopaminergic markers that are independent of terminal degeneration and striatal apoptotic mitochondria-dependent caspase-3 driven cascade within 24 h.

  6. The Association between Splenocyte Apoptosis and Alterations of Bax, Bcl-2 and Caspase-3 mRNA Expression, and Oxidative Stress Induced by Dietary Nickel Chloride in Broilers

    PubMed Central

    Huang, Jianying; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wu, Bangyuan

    2013-01-01

    Two hundred and forty avian broilers were equally divided into four groups, and raised with a corn-soybean basal diet or the same diet supplemented with 300, 600, 900 mg/kg NiCl2 for 42 days. Numbers or percentages of apoptotic splenocytes by flow cytometry (FCM) and TUNEL were higher (p < 0.05 or p < 0.01) in the 300, 600 and 900 mg/kg groups than those in the control group. Results measured by qRT-PCR and ELISA showed that mRNA expression and contents were significantly higher (p < 0.05 or p < 0.01) in Bax and Caspase-3, and were significantly lower (p < 0.05 or p < 0.01) in Bcl-2 of the 300, 600 and 900 mg/kg groups. Also, the SOD, CAT and GSH-Px activities, and the ability to inhibit hydroxyl radical, and GSH contents were significantly decreased (p < 0.05 or p < 0.01), and MDA contents were increased (p < 0.05 or p < 0.01) in all groups. In conclusion, dietary NiCl2 in excess of 300 mg/kg caused apoptosis, altered Bax, Bcl-2 and Caspase-3 mRNA expression levels and contents, and induced oxidative stress in the spleen. Also, splenocyte apoptosis was closely related to the alternations of Bax, Bcl-2 and Caspase-3 mRNA expression, and oxidative damage. The splenic immunity and blood filtration functions were impaired in broilers. PMID:24351749

  7. Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF) and this process is inhibited by equine estrogens

    PubMed Central

    Zhang, YueMei; Bhavnani, Bhagu R

    2006-01-01

    Background Glutamate, a major excitatory amino acid neurotransmitter, causes apoptotic neuronal cell death at high concentrations. Our previous studies have shown that depending on the neuronal cell type, glutamate-induced apoptotic cell death was associated with regulation of genes such as Bcl-2, Bax, and/or caspase-3 and mitochondrial cytochrome c. To further delineate the intracellular mechanisms, we have investigated the role of calpain, an important calcium-dependent protease thought to be involved in apoptosis along with mitochondrial apoptosis inducing factor (AIF) and caspase-3 in primary cortical cells and a mouse hippocampal cell line HT22. Results Glutamate-induced apoptotic cell death in neuronal cells was associated with characteristic DNA fragmentation, morphological changes, activation of calpain and caspase-3 as well as the upregulation and/or translocation of AIF from mitochondria into cytosol and nuclei. Our results reveal that primary cortical cells and HT22 cells display different patterns of regulation of these genes/proteins. In primary cortical cells, glutamate induces activation of calpain, caspase-3 and translocation of AIF from mitochondria to cytosol and nuclei. In contrast, in HT22 cells, only the activation of calpain and upregulation and translocation of AIF occurred. In both cell types, these processes were inhibited/reversed by 17β-estradiol and Δ8,17β-estradiol with the latter being more potent. Conclusion Depending upon the neuronal cell type, at least two mechanisms are involved in glutamate-induced apoptosis: a caspase-3-dependent pathway and a caspase-independent pathway involving calpain and AIF. Since HT22 cells lack caspase-3, glutamate-induced apoptosis is mediated via the caspase-independent pathway in this cell line. Kinetics of this apoptotic pathway further indicate that calpain rather than caspase-3, plays a critical role in the glutamate-induced apoptosis. Our studies further indicate that glutamate- induced changes

  8. The effect of celecoxib and its combination with imatinib on human HT-29 colorectal cancer cells: Involvement of COX-2, Caspase-3, VEGF and NF-κB genes expression.

    PubMed

    Atari-Hajipirloo, S; Nikanfar, S; Heydari, A; Noori, F; Kheradmand, F

    2016-02-29

    It has been shown that combination of imatinib (IM) with other agents may have some advantages in avoiding toxicity and resistance caused by this drug. The selective cyclooxygenase-2 inhibitor, celecoxib (CX), has been known to have antitumor and chemo-sensitizing effect in the treatment of colorectal cancer. In this study, we investigated the effectiveness of CX and its combination with anticancer agent IM on human colorectal cancer HT-29 cell and their probable molecular targets. Cultured HT-29 cells were exposed to IC50 dose of CX, IM, and their combination (half dose of IC50) for 24 hours to assess their effect on proliferation inhibition by MTT assay. The caspase-3 activity was estimated in HT-29 cells with colorimetric kit. COX-2, Caspase-3, VEGF and NF-κB genes expression was also investigated using real-time PCR method. Combined treatment with IM and CX, resulted in a significant (P˂0.05) decrease in cell viability and increased caspase-3 enzyme activity. Decreased COX-2 gene expression has been found in CX and combined treated group. Significant increase in Caspase-3 gene expression has been shown in IM and combined treated cells. In conclusion, the present in vitro study with colon cancer cell line demonstrated that CX and its combination with IM improved the anticancer activity of each component. Caspase-3 and COX-2 dependent molecular targets seem to be involved in mediating the anti-proliferative effects of IM and CX combination. Of course, the other molecular pathways are also likely to play the role and should be explored in future studies.

  9. Cadmium induces apoptosis in primary rat osteoblasts through caspase and mitogen-activated protein kinase pathways

    PubMed Central

    Zhao, Hongyan; Liu, Wei; Wang, Yi; Dai, Nannan; Gu, Jianhong; Yuan, Yan; Liu, Xuezhong; Bian, Jianchun

    2015-01-01

    Exposure to cadmium (Cd) induces apoptosis in osteoblasts (OBs); however, little information is available regarding the specific mechanisms of Cd-induced primary rat OB apoptosis. In this study, Cd reduced cell viability, damaged cell membranes and induced apoptosis in OBs. We observed decreased mitochondrial transmembrane potentials, ultrastructure collapse, enhanced caspase-3 activity, and increased concentrations of cleaved PARP, cleaved caspase-9 and cleaved caspase-3 following Cd treatment. Cd also increased the phosphorylation of p38-mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases (ERK)1/2 and c-jun N-terminal kinase (JNK) in OBs. Pretreatment with the caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, ERK1/2 inhibitor (U0126), p38 inhibitor (SB203580) and JNK inhibitor (SP600125) abrogated Cd-induced cell apoptosis. Furthermore, Cd-treated OBs exhibited signs of oxidative stress protection, including increased antioxidant enzymes superoxide dismutase and glutathione reductase levels and decreased formation of reactive oxygen species. Taken together, the results of our study clarified that Cd has direct cytotoxic effects on OBs, which are mediated by caspase- and MAPK pathways in Cd-induced apoptosis of OBs. PMID:26425111

  10. E2F1-CDK1 pathway activation in kanamycin-induced spiral ganglion cell apoptosis and the protective effect of CR8.

    PubMed

    Liu, Yu-ying; Wang, Guo-peng; Peng, Zhe; Guo, Jing-ying; Wu, Qian; Xie, Jing; Gong, Shu-sheng

    2016-03-23

    Cochlear hair cell loss results in the secondary loss of spiral ganglion cells (SGCs). The death of these SGCs is due to apoptosis. The E2F1-cyclin dependent kinase 1 (CDK1) pathway is believed to represent an important mechanism of neuronal cell death. However, the role of this pathway in spiral ganglion neuronal apoptosis has not yet been reported. In this study, we deafened guinea pigs with a subcutaneous injection of kanamycin followed by an intravenous infusion of furosemide and then assayed the expression levels of cleaved caspase-3, E2F1, CDK1 and cleaved caspase-9 during the induced SGC apoptosis. Our results revealed that co-administration of kanamycin and furosemide rapidly induced hair cell loss in the guinea pigs and then resulted in a progressive loss of SGCs. Expression levels of E2F1 and CDK1 were obviously up-regulated at 1 and 3 days after deafening. Cleaved caspase-9 also increased robustly 1 or 2 weeks after the deafening procedure. The up-regulation of E2F1, CDK1 and cleaved caspase-9 was significantly attenuated by the systemic injection of CR8 (1mg/kg/day, intraperitoneally) starting at 5min after deafening. These findings indicate that the activation of the E2F1-CDK1 pathway and cell cycle re-entry contributes to the apoptosis of SGCs and that the selective inhibition of this signaling cascade may represent an attractive therapeutic strategy. CR8 has the potential to protect SGCs from apoptosis.

  11. Anti-Proliferative Activity of λ-Carrageenan Through the Induction of Apoptosis in Human Breast Cancer Cells

    PubMed Central

    Jazzara, Marie; Ghannam, Ahmed; Soukkarieh, Chadi; Murad, Hossam

    2016-01-01

    Background Sulfated Polysaccharides (SPs) possess spectrum of pharmacological and therapeutic properties that could attributed to their origins variation, chemical structures and biological activities. Various studies have shown the impact of SPs on proliferation in different cancer cell lines. Objectives In this study, we have evaluated the biological effects of λ-carrageenan, a highly SP, extracted from the red seaweed Laurencia papillosa, on MDA-MB-231 cancer cell line. Materials and Methods MDA-MB-231 cells have treated with λ-carrageenan, the viability and apoptosis have assessed by the appropriate florescent probes on flow cytometer. The expression levels of mRNA of apoptotic genes have detected by real-time PCR analysis. Results Our results have indicated that the signaling pathway of λ-carrageenan inhibited the proliferation of MDA-MB-231 cells by up-regulating the pro-apoptotic genes caspase-8, caspase-9, caspase-3 which have been resulting the increased levels of active caspase-3 protein. Furthermore, This SP had that capacity to disrupt the mitochondrial function by altering the bax/bcl-2 ratio of expression which has considered an important element in apoptosis induction. Conclusions The presented results have signposted that λ-carrageenan was a promising bioactive polymer which could be a potential candidate in preventing or treating breast cancer. PMID:27761203

  12. Isoflavone Attenuates the Caspase-1 and Caspase-3 Level in Cell Model of Parkinsonism

    PubMed Central

    Xu, Jian-xin; Song, Hai-ping; Bu, Qing-Xia; Feng, De-Peng; Xu, Xiao-Fan; Sun, Qian-Ru; Li, Xue-Li

    2015-01-01

    The study has investigated the effect of isoflavone attenuates the caspase-1 and caspase-3 level in cell model of Parkinsonism. The subjects were PC12 cells. They were randomly divided into six groups: control, MPP+ (250 μmol/L), isoflavone (10 μM), isoflavone (10 μM) + MPP+ (250 μmol/L), Z-YVAD-CHO (10 nM) + MPP+ group, and Z-DEVD-CHO (10 nM) + MPP+ group. Cell viability was measured by MTT methods; the content of tyrosine hydroxylase was measured by immunocytochemistry method of avidinbiotin peroxidase complex; apoptosis ratio was measured by flow cytometry. The results showed that cell viability in the MPP+ group was lower than in all other five groups. There was no difference in cell viability between isoflavone + MPP+ and control group. Optical density of TH positive cells in isoflavone group was higher than in control, isoflavone + MPP+, and MPP+ only groups. The apoptosis ratio in the isoflavone + MPP+ group and control group and the Z-YVAD-CHO + MPP+ and Z-DEVD-CHO + MPP+ group was similar, which was lower than in the MPP+ group. The lowest apoptosis ratio was found in the isoflavone only group. PMID:26161002

  13. PLGA-carbon nanotube conjugates for intercellular delivery of caspase-3 into osteosarcoma cells.

    PubMed

    Cheng, Qingsu; Blais, Marc-Olivier; Harris, Greg M; Harris, Greg; Jabbarzadeh, Ehsan

    2013-01-01

    Cancer has arisen to be of the most prominent health care issues across the world in recent years. Doctors have used physiological intervention as well as chemical and radioactive therapeutics to treat cancer thus far. As an alternative to current methods, gene delivery systems with high efficiency, specificity, and safety that can reduce side effects such as necrosis of tissue are under development. Although viral vectors are highly efficient, concerns have arisen from the fact that viral vectors are sourced from lethal diseases. With this in mind, rod shaped nano-materials such as carbon nanotubes (CNTs) have become an attractive option for drug delivery due to the enhanced permeability and retention effect in tumors as well as the ability to penetrate the cell membrane. Here, we successfully engineered poly (lactic-co-glycolic) (PLGA) functionalized CNTs to reduce toxicity concerns, provide attachment sites for pro-apoptotic protein caspase-3 (CP3), and tune the temporal release profile of CP3 within bone cancer cells. Our results showed that CP3 was able to attach to functionalized CNTs, forming CNT-PLGA-CP3 conjugates. We show this conjugate can efficiently transduce cells at dosages as low as 0.05 μg/ml and suppress cell proliferation up to a week with no further treatments. These results are essential to showing the capabilities of PLGA functionalized CNTs as a non-viral vector gene delivery technique to tune cell fate.

  14. Increased placental XIAP and caspase 3 is associated with increased placental apoptosis in a baboon model of maternal nutrient reduction (MNR)

    PubMed Central

    Arroyo, Juan A; Li, Cun; Schlabritz-Loutsevitch, Natalia; McDonald, Tom; Nathanielsz, Peter; Galan, Henry L

    2010-01-01

    Objective Our objective was to determine signaling molecules and apoptosis rate in the term placenta of a baboon model of maternal nutrient reduction (MNR). Study Design Female baboons were fed ad libitum for controls (CTR; n=7) or 70% of CTR diet (MNR; n=6) from 30 to 165 days of gestation (dG) with necropsy at 165 dG. Placental tissues were collected, fixed for immunohistochemistry or snap frozen to measure ERK, AKT, JNK, XIAP and caspase 3. Placental villous apoptosis was determined by TUNEL and cytokeratin 18 cleavage. Results Compared to CTR, MNR placentas demonstrated: reduced placental weight (p<0.02), decreased p-ERK (p<0.04), increase placental villous apoptosis (p<0.001), increased villous cytokeratin 18 cleavage, increased XIAP protein (p<0.007) and increased active caspase 3 (p<0.02). Conclusion We conclude that placental apoptosis is increased in this baboon model of MNR at term and that the increase in XIAP may be a protective mechanism against this apoptosis. PMID:20599184

  15. Single-cell analysis of dihydroartemisinin-induced apoptosis through reactive oxygen species-mediated caspase-8 activation and mitochondrial pathway in ASTC-a-1 cells using fluorescence imaging techniques

    NASA Astrophysics Data System (ADS)

    Lu, Ying-Ying; Chen, Tong-Sheng; Wang, Xiao-Ping; Li, Li

    2010-07-01

    Dihydroartemisinin (DHA), a front-line antimalarial herbal compound, has been shown to possess promising anticancer activity with low toxicity. We have previously reported that DHA induced caspase-3-dependent apoptosis in human lung adenocarcinoma cells. However, the cellular target and molecular mechanism of DHA-induced apoptosis is still poorly defined. We use confocal fluorescence microscopy imaging, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching techniques to explore the roles of DHA-elicited reactive oxygen species (ROS) in the DHA-induced Bcl-2 family proteins activation, mitochondrial dysfunction, caspase cascade, and cell death. Cell Counting Kit-8 assay and flow cytometry analysis showed that DHA induced ROS-mediated apoptosis. Confocal imaging analysis in a single living cell and Western blot assay showed that DHA triggered ROS-dependent Bax translocation, mitochondrial membrane depolarization, alteration of mitochondrial morphology, cytochrome c release, caspase-9, caspase-8, and caspase-3 activation, indicating the coexistence of ROS-mediated mitochondrial and death receptor pathway. Collectively, our findings demonstrate for the first time that DHA induces cell apoptosis by triggering ROS-mediated caspase-8/Bid activation and the mitochondrial pathway, which provides some novel insights into the application of DHA as a potential anticancer drug and a new therapeutic strategy by targeting ROS signaling in lung adenocarcinoma therapy in the future.

  16. Immunoexpression of the COX-2, p53, and caspase-3 proteins in colorectal adenoma and non-neoplastic mucosa

    PubMed Central

    Nogueira, Renan Brito; Pires, Andréa Rodrigues Cordovil; Soares, Thélia Maria Santos; Rodrigues, Simone Rabello de Souza; Campos, Mariane Antonieta Menino; Toloi, Giovanna Canato; Waisberg, Jaques

    2013-01-01

    ABSTRACT Objective: To analyze the immunoexpression of the COX-2, p53, and caspase-3 proteins in colorectal adenomas and non-neoplastic mucosa. Methods: 72 individuals were subjected to colonoscopy, which provided 50 samples of adenomas and 45 samples of non-neoplastic colorectal mucosa. The tissue samples were obtained via the tissue microarray technique and subjected to immunohistochemical analysis using primary anti-p53, anti-COX-2, and anti-caspase-3 antibodies. The positivity and intensity of the immunoreaction were classified. The analyzed variables were as follows: site of the adenomas in the colon, degree of dysplasia, size, and score of positivity and intensity of immunoexpression of the p-53, caspase-3, and COX-2 proteins. Results: The immunoexpression of mutated protein p53 was positive in 30 (60%) adenoma samples and negative in 20 (40%) adenoma samples. The immunoexpression of mutated protein p53 was negative in 39 (86.6%) samples and positive in 6 (13.3%) samples of the non-neoplastic colorectal mucosa (p<0.0001). Significant differences were seen between both the largest size (p=0.006) and the highest degree of dysplasia (p<0.0001) of the adenomas and the intensity of immunoexpression of mutated protein p53. The positivity and intensity of immunoexpression of COX-2 (p=0.14) and caspase-3 (p=0.23) showed no significant differences between the adenomas and the non-neoplastic colorectal mucosa. Conclusion: Mutated protein p53 was hyperexpressed in the adenomas compared with the non-neoplastic mucosa. Greater size and greater degree of dysplasia in the adenomas were associated with higher expression of mutated protein p53. The immunoexpression of COX-2 and caspase-3 in the adenomas did not exhibit a correlation with the anatomical-pathological features of the tumors and did not differ from the corresponding expression levels in the non-neoplastic mucosa. PMID:24488384

  17. Chronic sleep restriction induces changes in the mandibular condylar cartilage of rats: roles of Akt, Bad and Caspase-3

    PubMed Central

    Zhu, Yong; Wu, Gaoyi; Zhu, Guoxiong; Ma, Chuan; Zhao, Huaqiang

    2014-01-01

    Aims: The aim of the present study was to observe changes in the temporomandibular joint (TMJ) of rats that had been subjected to chronic sleep restriction and to investigate whether Akt, Bad and Caspase3 play a role in the mechanism underlying the changes. Main methods: One hundred and eighty male Wistar rats were randomly divided into three groups (n = 60 in each): cage control group, large-platform control group, and sleep restriction group. Each group was divided into three subgroups (n = 20 in each) of three different time points (7, 14 and 21 days), respectively. The modified multiple platform method was used to induce chronic sleep restriction. The TMJ tissue histology was studied by staining with haematoxylin and eosin. The expression of Akt, p-Aktser473, Bad, p-Badser136 and Caspase3 proteins was detected by immunohistochemistry and western blotting. The expression of Akt, Bad and Caspase3 mRNAs was measured by real-time quantitative polymerase chain reaction (RT-qPCR). Key findings: Compared with the large-platform and cage control groups, condylar cartilage pathological alterations were found in the sleep restriction group. There were significantly decreased expression levels of Akt, p-Aktser473 and p-Badser136 and significantly increased expression levels of Bad and Caspase3 after sleep restriction. Significance: These data suggest that sleep restriction may induce pathological alterations in the condylar cartilage of rats. Alterations in Akt, Bad and Caspase3 may be associated with the potential mechanism by which chronic sleep restriction influences the condylar cartilage. PMID:25356113

  18. Geldanamycin Inhibits Hemorrhage-Induced Increases in Caspase-3 Activity: Role of Inducible Nitric Oxide Synthase

    DTIC Science & Technology

    2016-07-04

    Radiobiology Research Institute, Bethesda; Departments of Radiation Biology , Medicine and of Pharmacology, Uniformed Services University of the Health...Kiang JG, Tsen KT. Biology of hypoxia. Chin J Physiol 49: 223–233, 2006. 1054 GELDANAMYCIN PREVENTS CASPASE INCREASES J Appl Physiol • VOL 103

  19. Coactivation of the PI3K/Akt and ERK signaling pathways in PCB153-induced NF-κB activation and caspase inhibition

    SciTech Connect

    Liu, Changjiang; Yang, Jixin; Fu, Wenjuan; Qi, Suqin; Wang, Chenmin; Quan, Chao; Yang, Kedi

    2014-06-15

    Polychlorinated biphenyls (PCBs) are a group of persistent and widely distributed environmental pollutants that have various deleterious effects, e.g., neurotoxicity, endocrine disruption and reproductive abnormalities. In order to verify the hypothesis that the PI3K/Akt and MAPK pathways play important roles in hepatotoxicity induced by PCBs, Sprague–Dawley (SD) rats were dosed with PCB153 intraperitoneally at 0, 4, 16 and 32 mg/kg for five consecutive days; BRL cells (rat liver cell line) were treated with PCB153 (0, 1, 5, and 10 μM) for 24 h. Results indicated that the PI3K/Akt and ERK pathways were activated in vivo and in vitro after exposure to PCB153, and protein levels of phospho-Akt and phospho-ERK were significantly increased. Nuclear factor-κB (NF-κB) activation and caspase-3, -8 and -9 inhibition caused by PCB153 were also observed. Inhibiting the ERK pathway significantly attenuated PCB153-induced NF-κB activation, whereas inhibiting the PI3K/Akt pathway hardly influenced phospho-NF-κB level. However, inhibiting the PI3K/Akt pathway significantly elevated caspase-3, -8 and -9 activities, while the ERK pathway only synergistically regulated caspase-9. Proliferating cell nuclear antigen (PCNA), a reliable indicator of cell proliferation, was also induced. Moreover, PCB153 led to hepatocellular hypertrophy and elevated liver weight. Taken together, PCB153 leads to aberrant proliferation and apoptosis of hepatocytes through NF-κB activation and caspase inhibition, and coactivated PI3K/Akt and ERK pathways play critical roles in PCB153-induced hepatotoxicity. - Highlights: • PCB153 led to hepatotoxicity through NF-κB activation and caspase inhibition. • The PI3K/Akt and ERK pathways were coactivated in vivo and in vitro by PCB153. • The ERK pathway regulated levels of phospho-NF-κB and caspase-9. • The PI3K/Akt pathway regulated levels of caspase-3, -8 and -9.

  20. Annonacin, a mono-tetrahydrofuran acetogenin, arrests cancer cells at the G1 phase and causes cytotoxicity in a Bax- and caspase-3-related pathway.

    PubMed

    Yuan, Shyng-Shiou F; Chang, Hsueh-Ling; Chen, Hsiao-Wen; Yeh, Yao-Tsung; Kao, Ying-Hsien; Lin, Kuei-Hsiang; Wu, Yang-Chang; Su, Jinu-Huang

    2003-05-09

    Annonaceous acetogenins are a group of potential anti-neoplastic agents isolated from Annonaceae plants. In this study, we purified annonacin, a cytotoxic mono-tetrahydrofuran acetogenin, from the seeds of Annona reticulata and analyzed its biological effects. Herein, we have shown that annonacin caused significant cell death in various cancer cell lines. T24 bladder cancer cells at the S phase were more vulnerable to the cytotoxicity of annonacin. Furthermore, annonacin activated p21 in a p53-independent manner and arrested T24 cells at the G1 phase. It also induced Bax expression, enhanced caspase-3 activity, and caused apoptotic cell death in T24 cells. In summary, these results suggest that annonacin is potentially a promising anti-cancer compound.

  1. Safrole induces cell death in human tongue squamous cancer SCC-4 cells through mitochondria-dependent caspase activation cascade apoptotic signaling pathways.

    PubMed

    Yu, Fu-Shun; Huang, An-Cheng; Yang, Jai-Sing; Yu, Chun-Shu; Lu, Chi-Cheng; Chiang, Jo-Hua; Chiu, Chang-Fang; Chung, Jing-Gung

    2012-07-01

    Safrole is one of important food-borne phytotoxin that exhibits in many natural products such as oil of sassafras and spices such as anise, basil, nutmeg, and pepper. This study was performed to elucidate safrole-induced apoptosis in human tongue squamous carcinoma SCC-4 cells. The effect of safrole on apoptosis was measured by flow cytometry and DAPI staining and its regulatory molecules were studied by Western blotting analysis. Safrole-induced apoptosis was accompanied with up-regulation of the protein expression of Bax and Bid and down-regulation of the protein levels of Bcl-2 (up-regulation of the ratio of Bax/Bcl-2), resulting in cytochrome c release, promoted Apaf-1 level and sequential activation of caspase-9 and caspase-3 in a time-dependent manner. We also used real-time PCR to show safrole promoted the mRNA expressions of caspase-3, -8, and -9 in SCC-4 cells. These findings indicate that safrole has a cytotoxic effect in human tongue squamous carcinoma SCC-4 cells by inducing apoptosis. The induction of apoptosis of SCC-4 cells by safrole is involved in mitochondria- and caspase-dependent signal pathways.

  2. Relaxin attenuates aristolochic acid induced human tubular epithelial cell apoptosis in vitro by activation of the PI3K/Akt signaling pathway.

    PubMed

    Xie, Xiang-Cheng; Zhao, Ning; Xu, Qun-Hong; Yang, Xiu; Xia, Wen-Kai; Chen, Qi; Wang, Ming; Fei, Xiao

    2017-04-06

    Aristolochic acid nephropathy remains a leading cause of chronic kidney disease (CKD), however few treatment strategies exist. Emerging evidence has shown that H2 relaxin (RLX) possesses powerful antifibrosis and anti-apoptotic properties, therefore we aimed to investigate whether H2 relaxin can be employed to reduce AA-induced cell apoptosis. Human proximal tubular epithelial (HK-2) cells exposed to AA-I were treated with or without administration of H2 RLX. Cell viability was examined using the WST-8 assay. Apoptotic morphologic alterations were observed using the Hoechst 33342 staining method. Apoptosis was detected using flow cytometry. The expression of caspase 3, caspase 8, caspase 9, ERK1/2, Bax, Bcl-2, and Akt proteins was determined by Western blot. Co-treatment with RLX reversed the increased apoptosis observed in the AA-I only treated group. RLX restored expression of phosphorylated Akt which found to be decreased in the AA-I only treated cells. RLX co-treatment led to a decrease in the Bax/Bcl-2 ratio as well as the cleaved form of caspase-3 compared to the AA-I only treated cells. This anti-apoptotic effect of RLX was attenuated by co-administration of the Akt inhibitor LY294002. The present study demonstrated H2 RLX can decrease AA-I induced apoptosis through activation of the PI3K/Akt signaling pathway.

  3. Analysis of Apoptosis in Ultraviolet-Induced Sea Cucumber (Stichopus japonicus) Melting Using Terminal Deoxynucleotidyl-Transferase-Mediated dUTP Nick End-Labeling Assay and Cleaved Caspase-3 Immunohistochemistry.

    PubMed

    Yang, Jing-Feng; Gao, Rong-Chun; Wu, Hai-Tao; Li, Peng-Fei; Hu, Xian-Shu; Zhou, Da-Yong; Zhu, Bei-Wei; Su, Yi-Cheng

    2015-11-04

    The sea cucumber body wall melting phenomenon occurs under certain circumstances, and the mechanism of this phenomenon remains unclear. This study investigated the apoptosis in the ultraviolet (UV)-induced sea cucumber melting phenomenon. Fresh sea cucumbers (Stichopus japonicus) were exposed to UV radiation for half an hour at an intensity of 0.056 mW/cm(2) and then held at room temperature for melting development. The samples were histologically processed into formalin-fixed paraffin-embedded tissues. The apoptosis of samples was analyzed with the terminal deoxynucleotidyl-transferase-mediated dUTP nick end-labeling (TUNEL) assay and cleaved caspase-3 immunohistochemistry. The emergence of TUNEL-positive cells speeds up between 0.5 and 2 h after UV irradiation. Cleaved caspase-3 positive cells were obviously detected in sample tissues immediately after the UV irradiation. These results demonstrated that sea cucumber melting induced by UV irradiation was triggered by the activation of caspase-3 followed by DNA fragmentation in sea cucumber tissue, which was attributed to apoptosis but was not a consequence of autolysis activity.

  4. Human caspase-3 inhibition by Z-tLeu-Asp-H: tLeu(P{sub 2}) counterbalances Asp(P{sub 4}) and Glu(P{sub 3}) specific inhibitor truncation

    SciTech Connect

    Colantonio, Patrizia; Leboffe, Loris; Bolli, Alessandro; Marino, Maria; Ascenzi, Paolo; Luisi, Grazia

    2008-12-19

    Caspase-3 is responsible for the cleavage of several proteins including the nuclear enzyme poly(ADP-ribose) polymerase (PARP). Designed on the cleavage site of PARP, Ac-Asp-Glu-Val-Asp-H has been reported as a highly specific inhibitor. To overcome the susceptibility to proteolysis, the intrinsic instability, and the scarce membrane permeability of tetra-peptidyl aldehydes, di- and tri-peptidyl caspase-3 inhibitors have been synthesized. Here, the synthesis and the inhibition properties of peptidyl aldehydes Z-tLeu-Asp-H, Z-tLeu-Val-Asp-H, and Z-Val-tLeu-Asp-H are reported. Z-tLeu-Asp-H, Z-tLeu-Val-Asp-H, and Z-Val-tLeu-Asp-H inhibit competitively human caspase-3 activity in vitro with K{sub i}{sup 0} = 3.6 nM, 18.2 nM, and 109 nM, respectively (pH 7.4 and 25 deg. C). Moreover, Z-tLeu-Asp-H impairs apoptosis in human DLD-1 colon adenocarcinoma cells without affecting caspase-8. Therefore, Ac-Asp-Glu-Val-Asp-H can be truncated to Z-tLeu-Asp-H retaining nanomolar inhibitory activity in vitro and displaying action in whole cells, these properties reflect the unprecedented introduction of the bulky and lipophilic tLeu residue at the P{sub 2} position.

  5. Involvement of caspase-3, lipid peroxidation and TNF-alpha in causing apoptosis of macrophages by coordinately expressed Salmonella phenotype under stress conditions.

    PubMed

    Chanana, Vishal; Majumdar, Siddharth; Rishi, Praveen

    2007-03-01

    Invasive Salmonella has been reported to induce apoptosis of macrophages as a part of its infection process, which may allow it to avoid detection by the innate immune system. However, the bacterial components capable of inducing apoptosis, particularly under the environments offered by the host have not been fully identified. Therefore, in the present study, attempts were made to evaluate the apoptotic potential of Salmonella enterica serovar Typhi (S. typhi) outer membrane protein expressed under stress conditions like iron, oxidative and anaerobic simulating the in vivo situations encountered by the pathogen. Analysis of data revealed that a coordinately expressed 69kDa outer membrane protein (OMP) expressed with enhanced intensity under iron, oxidative and anaerobic stress conditions caused apoptotic cell death in 51% of macrophages, whereas OMPs of S. typhi extracted under normal conditions accounted for apoptotic cell death in only 31% of macrophages. A significantly enhanced activity of caspase-3 was observed during macrophage-apoptosis induced by this protein. A significant increase in the extent of lipid peroxidation (levels of oxidant) and decrease in the activities of antioxidants was also observed which correlated with the increased generation of tumor necrosis factor-alpha, interleukine-1alpha and interleukine-6. These results suggest that caspase-3 and tumor necrosis factor-alpha in conjunction with other cytokines may induce apoptotic cell death through the up-regulation of oxidants and down-regulation of antioxidants. These findings may be relevant for the better understanding of the disease pathophysiology and for the future developments of diagnostic and preventive strategies during the host-pathogen interactions.

  6. Quercetin nanoparticles induced autophagy and apoptosis through AKT/ERK/Caspase-3 signaling pathway in human neuroglioma cells: In vitro and in vivo.

    PubMed

    Lou, Miao; Zhang, Li-Na; Ji, Pei-Gang; Feng, Fu-Qiang; Liu, Jing-Hui; Yang, Chen; Li, Bao-Fu; Wang, Liang

    2016-12-01

    Neuroglioma is a complex neuroglial tumor involving dysregulation of many biological pathways at multiple levels. Quercetin is a potent cancer therapeutic agent presented in fruit and vegetables, preventing tumor proliferation, and is a well known cancer therapeutic agent and autophagy mediator. Recent studies showed that drug delivery by nanoparticles have enhanced efficacy with reduced side effects. In this regard, gold-quercetin into poly (dl-lactide-co-glycolide) nanoparticles was examined. In the present study, quercetin nanoparticle induced cell autophagy and apoptosis in human neuroglioma cell was investigated. Quercetin nanoparticle administrated to animals displayed suppressed role in tumor growth. The cell viability was deterined through CCK8 assay. Transmission electron microscopy was utilized to observe the formation of autophagosome. The cell apoptosis was assessed by annexin V-PI staining. The protein expression of cell autophagy regulators and tumor suppressors were analyzed via western blot and RT-PCR. Treatment of human neuroglioma cell with quercetin nanoparticle induced cell death in a dose-and time-dependent manner. The flow cytometry results showed that the proportion of the apoptosis cells had gained after quercetin nanoparticle treatment compared to untreatment group. Moreover, the expression of activated PI3K/AKT and Bcl-2 were down-regulated upon quercetin nanoparticle treatment in human neuroglioma cells. The expression level of LC3 and ERK as well as cytoplasm p53, cleaved Caspase-3 and PARP was positively correlated with the concentration of quercetin nanoparticle. In addition, p-mTOR and GAIP were obviously down-regulated by quercetin nanoparticle treatment in a dose-dependent manner. These results indicated that quercetin nanoparticle could induce autophagy and apoptosis in human neuroglioma cells, the underlying molecular mechanisms, at least partly, through activation LC3/ERK/Caspase-3 and suppression AKT/mTOR signaling.

  7. Tumor necrosis factor-α mediates JNK activation response to intestinal ischemia-reperfusion injury

    PubMed Central

    Yang, Qi; Zheng, Feng-Ping; Zhan, Ya-Shi; Tao, Jin; Tan, Si-Wei; Liu, Hui-Ling; Wu, Bin

    2013-01-01

    AIM: To investigate whether tumor necrosis factor-α (TNF-α) mediates ischemia-reperfusion (I/R)-induced intestinal mucosal injury through c-Jun N-terminal kinase (JNK) activation. METHODS: In this study, intestinal I/R was induced by 60-min occlusion of the superior mesenteric artery in rats followed by 60-min reperfusion, and the rats were pretreated with a TNF-α inhibitor, pentoxifylline, or the TNF-α antibody infliximab. After surgery, part of the intestine was collected for histological analysis. The mucosal layer was harvested for RNA and protein extraction, which were used for further real-time polymerase chain reaction, enzyme-linked immunosorbent assay and Western blotting analyses. The TNF-α expression, intestinal mucosal injury, cell apoptosis, activation of apoptotic protein and JNK signaling pathway were analyzed. RESULTS: I/R significantly enhanced expression of mucosal TNF-α at both the mRNA and protein levels, induced severe mucosal injury and cell apoptosis, activated caspase-9/caspase-3, and activated the JNK signaling pathway. Pretreatment with pentoxifylline markedly downregulated TNF-α at both the mRNA and protein levels, whereas infliximab pretreatment did not affect the expression of TNF-α induced by I/R. However, pretreatment with pentoxifylline or infliximab dramatically suppressed I/R-induced mucosal injury and cell apoptosis and significantly inhibited the activation of caspase-9/3 and JNK signaling. CONCLUSION: The results indicate there was a TNF-α-mediated JNK activation response to intestinal I/R injury. PMID:23946597

  8. Nicotine-induced damages in testicular tissue of rats; evidences for bcl-2, p53 and caspase-3 expression

    PubMed Central

    Mosadegh, Maryam; Hasanzadeh, Shapour; Razi, Mazdak

    2017-01-01

    Objective(s): Present study was performed in order to uncover new aspects for nicotine-induced damages on spermatogenesis cell lineage. Materials and Methods: For this purpose, 36 mature male Wistar rats were divided into three groups as; control-sham (0.2 ml, saline normal, IP), low dose (0.2 mg/kg BW-1, IP) nicotine-received and high dose (0.4 mg/kg BW-1, IP) nicotine-received groups. Following 7 weeks, the expression of bcl-2, p53 and caspase-3 at mRNA and protein levels were investigated by using reverse-transcriptase PCR (RT-PCR) and immunohistochemical (IHC) analyses, respectively. Moreover, the serum level of FSH, LH and testosterone were evaluated. Finally, the mRNA damage was analyzed by using special fluorescent staining. Results: Nicotine, at both dose levels, decreased tubular differentiation, spermiogenesis and repopulation indices and enhanced cellular depletion. Animals in nicotine-received groups exhibited a significant (P<0.05) reduction at mRNA and protein levels of bcl-2. More analyses revealed a remarkable (P<0.05) enhancement in expression of p53 and caspase-3 in comparison to control-sham animals. Finally, nicotine resulted in a significant (P<0.05) reduction in serum level of testosterone and elevated mRNA damage. Conclusion: Our data showed that, nicotine by suppressing the testosterone biosynthesis, reducing mRNA and protein levels of bcl-2 and up regulating the p53 and caspase-3 mRNA and protein levels adversely affects the spermatogenesis and results in cellular depletion. PMID:28293398

  9. Meta-analysis of the relationship between single nucleotide polymorphism rs72689236 of caspase-3 and Kawasaki disease.

    PubMed

    Xing, Yanlin; Wang, Hong; Liu, Xiaomei; Yu, Xianyi; Chen, Rui; Wang, Ce; Yu, Xuexin; Sun, Le

    2014-10-01

    Kawasaki disease is a pediatric systemic vasculitis of unknown etiology, for which a genetic influence is suspected. But whether single nucleotide polymorphism (SNP) of caspase-3 rs72689236 is associated with Kawasaki disease is controversial. The aim of our study is to assess the association between the SNP of caspase-3 and risk for Kawasaki disease. We searched PubMed, MEDLINE, EMBASE, Springer, Elsevier Science Direct, Cochrane Library Google scholar, CNKI (China National Knowledge Infrastructure, in Chinese) and Wanfang database (in Chinese) to identify studies investigating the association between rs72689236 polymorphism and Kawasaki disease occurrence. There were five eligible studies, which included 4,241 (case group 1,560; control group 2,681) participants in this meta-analysis. Pooled odds ratios (ORs) and 95 % confidence intervals (95 % CIs) were calculated in a fixed-effects model (the Mantel-Haenszel method) or a random-effects model (the DerSimonian and Laird method) when appropriate. Significant associations were found under the overall ORs for A-allele comparison (A vs. G, pooled OR 1.33, 95 % CI 1.21-1.46), AA versus GG comparison (pooled OR 1.64, 95 % CI 1.35-2.00), GA versus GG comparison (pooled OR 1.42, 95 % CI 1.24-1.63), recessive model (AA vs. GG + GA, pooled OR 1.37, 95 % CI 1.15-1.64) and dominant model (AA + GA vs. GG, pooled OR 1.47, 95 % CI 1.29-1.67). This meta-analysis suggested that SNP rs72689236 of caspase-3 might be associated with susceptibility of Kawasaki disease and the allele A might increase the risk of Kawasaki disease in Asian samples such as Japanese and Chinese. In addition, individual studies with large sample size are needed to further evaluate the associations in various ethnic populations.

  10. Sertraline, an antidepressant, induces apoptosis in hepatic cells through the mitogen-activated protein kinase pathway.

    PubMed

    Chen, Si; Xuan, Jiekun; Wan, Liqing; Lin, Haixia; Couch, Letha; Mei, Nan; Dobrovolsky, Vasily N; Guo, Lei

    2014-02-01

    Sertraline is generally used for the treatment of depression and is also approved for the treatment of panic, obsessive-compulsive, and posttraumatic stress disorders. Previously, using rat primary hepatocytes and isolated mitochondria, we demonstrated that sertraline caused hepatic cytotoxicity and mitochondrial impairment. In the current study, we investigated and characterized molecular mechanisms of sertraline toxicity in human hepatoma HepG2 cells. Sertraline decreased cell viability and induced apoptosis in a dose- and time-dependent manner. Sertraline activated the intrinsic checkpoint protein caspase-9 and caused the release of cytochrome c from mitochondria to cytosol; this process was Bcl-2 family dependent because antiapoptotic Bcl-2 family proteins were decreased. Pretreatment of the HepG2 cells with caspase-3, caspase-8, and caspase-9 inhibitors partially but significantly reduced the release of lactate dehydrogenase, indicating that sertraline-induced apoptosis is mediated by both intrinsic and extrinsic apoptotic pathways. Moreover, sertraline markedly increased the expression of tumor necrosis factor (TNF) and the phosphorylation of JNK, extracellular signal-regulated kinase (ERK1/2), and p38. In sertraline-treated cells, the induction of apoptosis and cell death was shown to be the result of activation of JNK, but not ERK1/2 or p38 in the mitogen-activated protein kinase (MAPK) pathway. Furthermore, silencing MAP4K4, the upstream kinase of JNK, attenuated both apoptosis and cell death caused by sertraline. Taken together, our findings suggest that sertraline induced apoptosis in HepG2 cells at least partially via activation of the TNF-MAP4K4-JNK cascade signaling pathway.

  11. Sann-Joong-Kuey-Jian-Tang inhibits hepatocellular carcinoma Hep-G2 cell proliferation by increasing TNF-α, Caspase-8, Caspase- 3 and Bax but by decreasing TCTP and Mcl-1 expression in vitro.

    PubMed

    Chen, Yao-Li; Yan, Meng-Yi; Chien, Su-Yu; Kuo, Shou-Jen; Chen, Dar-Ren; Cheng, Chun-Yuan; Su, Chin-Cheng

    2013-05-01

    Hepatic cancer remains a challenging disease and there is a need to identify new treatments. Sann-Joong-Kuey-Jian-Tang (SJKJT), a traditional medicinal prescription, has been used to treat lymphadenopathy and exhibits cytotoxic activity in many types of human cancer cells. Our previous studies revealed that SJKJT is capable of inhibiting colon cancer colo 205 cells by inducing autophagy and apoptosis. However, the effects and molecular mechanisms of SJKJT in human hepatocellular carcinoma have not been clearly elucidated. In the present study we evaluated the effects of SJKJT in human hepatic cellular carcinoma Hep-G2 cells. The cytotoxicity of SJKJT in Hep-G2 cells was measured by MTT assay. The cell cycles were analyzed by fluorescence‑activated cell sorting (FACS). The protein expression of translationally controlled tumor protein (TCTP), Mcl-1, Fas, TNF-α, Caspase-8, Caspase-3 and Bax in Hep-G2 cells treated with SJKJT was evaluated by western blotting. The protein expression of Caspase-3 was also detected by immunofluorescence staining. The results showed that SJKJT inhibits Hep-G2 cells in a time- and dose‑dependent manner. During SJKJT treatment for 48 and 72 h, the half-maximum inhibitory concentration (IC50) was 1.48 and 0.94 mg/ml, respectively. The FACS results revealed that increased doses of SJKJT were capable of increasing the percentage of cells in the sub-G1 phase. Immunofluorescence staining showed that Hep-G2 treated with SJKJT had increased expression of Caspase-3. The western blot results showed that the protein expression of Fas, TNF-α, Caspase-8, Caspase- 3 and Bax was upregulated, but that of TCTP and Mcl-1 was downregulated in Hep-G2 cells treated with SJKJT. In conclusion, these findings indicated that SJKJT inhibits Hep-G2 cells. One of the molecular mechanisms responsible for this may be the increased Fas, TNF-α, Caspase-8, Caspase- 3 and Bax expression; another mechanism may be via decreasing TCTP and Mcl-1 expression in order

  12. In vivo photoacoustic imaging of chemotherapy-induced apoptosis in squamous cell carcinoma using a near-infrared caspase-9 probe

    NASA Astrophysics Data System (ADS)

    Yang, Qiuhong; Cui, Huizhong; Cai, Shuang; Yang, Xinmai; Forrest, M. Laird

    2011-11-01

    Anti-cancer drugs typically exert their pharmacological effect on tumors by inducing apoptosis, or programmed cell death, within the cancer cells. However, no tools exist in the clinic for detecting apoptosis in real time. Microscopic examination of surgical biopsies and secondary responses, such as morphological changes, are used to verify efficacy of a treatment. Here, we developed a novel near-infrared dye-based imaging probe to directly detect apoptosis with high specificity in cancer cells by utilizing a noninvasive photoacoustic imaging (PAI) technique. Nude mice bearing head and neck tumors received cisplatin chemotherapy (10 mg/kg) and were imaged by PAI after tail vein injection of the contrast agent. In vivo PAI indicated a strong apoptotic response to chemotherapy on the peripheral margins of tumors, whereas untreated controls showed no contrast enhancement by PAI. The apoptotic status of the mouse tumor tissue was verified by immunohistochemical techniques staining for cleaved caspase-3 p11 subunit. The results demonstrated the potential of this imaging probe to guide the evaluation of chemotherapy treatment.

  13. Nerve growth factor determines survival and death of PC12 cells by regulation of the bcl-x, bax, and caspase-3 genes.

    PubMed

    Rong, P; Bennie, A M; Epa, W R; Barrett, G L

    1999-06-01

    We investigated the effects of nerve growth factor (NGF) and NGF withdrawal on expression of members of the bcl-2 family of genes and caspase-3 in PC12 cells. NGF regulated several members of the bcl-2 family and caspase-3 in a manner consistent with its effect on apoptosis in PC12 cells. Levels of bcl-xl, bcl-xs, and caspase-3 mRNAs were increased by NGF treatment. The increases in caspase-3 and bcl-xs levels should have disposed the cells toward apoptosis but were opposed by the simultaneous increase in bcl-xl level. NGF withdrawal resulted in abrupt down-regulation of bcl-xl and up-regulation of bax, favoring apoptosis. Forced expression of bcl-xl after NGF withdrawal was sufficient to prevent cell death. Cell death was rapid when NGF was withdrawn after 5 days of treatment but relatively slow when NGF was withdrawn after only 1 or 2 days of treatment. This was consistent with the reduced accumulation of caspase-3 mRNA with shorter NGF treatments. These results indicate that Bcl-xl, Bcl-xs, Bax, and caspase-3 are important regulators of apoptosis in PC12 cells. Furthermore, regulation of their mRNA levels is implicated in the signal transduction of NGF.

  14. Post-traumatic caspase-3 expression in the adjacent areas of growth plate injury site: a morphological study.

    PubMed

    Musumeci, Giuseppe; Castrogiovanni, Paola; Loreto, Carla; Castorina, Sergio; Pichler, Karin; Weinberg, Annelie Martina

    2013-07-29

    The epiphyseal plate is a hyaline cartilage plate that sits between the diaphysis and the epiphysis. The objective of this study was to determine the impact of an injury in the growth plate chondrocytes through the study of histological morphology, immunohistochemistry, histomorphometry and Western Blot analyses of the caspase-3 and cleaved PARP-1, and levels of the inflammatory cytokines, Interleukin-6 (IL-6) and Tumor Necrosis Factor alpha (TNF-α), in order to acquire more information about post-injury reactions of physeal cell turnover. In our results, morphological analysis showed that in experimental bones, neo-formed bone trabeculae-resulting from bone formation repair-invaded the growth plate and reached the metaphyseal bone tissue (bone bridge), and this could result in some growth arrest. We demonstrated, by ELISA, increased expression levels of the inflammatory cytokines IL-6 and TNF-α. Immunohistochemistry, histomorphometry and Western Blot analyses of the caspase-3 and cleaved PARP-1 showed that the physeal apoptosis rate of the experimental bones was significantly higher than that of the control ones. In conclusion, we could assume that the inflammation process causes stress to chondrocytes that will die as a biological defense mechanism, and will also increase the survival of new chondrocytes for maintaining cell homeostasis. Nevertheless, the exact stimulus leading to the increased apoptosis rate, observed after injury, needs additional research to understand the possible contribution of chondrocyte apoptosis to growth disturbance.

  15. Post-Traumatic Caspase-3 Expression in the Adjacent Areas of Growth Plate Injury Site: A Morphological Study

    PubMed Central

    Musumeci, Giuseppe; Castrogiovanni, Paola; Loreto, Carla; Castorina, Sergio; Pichler, Karin; Weinberg, Annelie Martina

    2013-01-01

    The epiphyseal plate is a hyaline cartilage plate that sits between the diaphysis and the epiphysis. The objective of this study was to determine the impact of an injury in the growth plate chondrocytes through the study of histological morphology, immunohistochemistry, histomorphometry and Western Blot analyses of the caspase-3 and cleaved PARP-1, and levels of the inflammatory cytokines, Interleukin-6 (IL-6) and Tumor Necrosis Factor alpha (TNF-α), in order to acquire more information about post-injury reactions of physeal cell turnover. In our results, morphological analysis showed that in experimental bones, neo-formed bone trabeculae—resulting from bone formation repair—invaded the growth plate and reached the metaphyseal bone tissue (bone bridge), and this could result in some growth arrest. We demonstrated, by ELISA, increased expression levels of the inflammatory cytokines IL-6 and TNF-α. Immunohistochemistry, histomorphometry and Western Blot analyses of the caspase-3 and cleaved PARP-1 showed that the physeal apoptosis rate of the experimental bones was significantly higher than that of the control ones. In conclusion, we could assume that the inflammation process causes stress to chondrocytes that will die as a biological defense mechanism, and will also increase the survival of new chondrocytes for maintaining cell homeostasis. Nevertheless, the exact stimulus leading to the increased apoptosis rate, observed after injury, needs additional research to understand the possible contribution of chondrocyte apoptosis to growth disturbance. PMID:23899790

  16. Exposure to 1950-MHz TD-SCDMA Electromagnetic Fields Affects the Apoptosis of Astrocytes via Caspase-3-Dependent Pathway

    PubMed Central

    Li, Guo-qing; Zhang, Zhi-wen; Xue, Jing-hui; Liu, Hong-sheng; Zhu, Heng; Cheng, Ji-de; Liu, Yuan-ling; Li, An-ming; Zhang, Yi

    2012-01-01

    The usage of mobile phone increases globally. However, there is still a paucity of data about the impact of electromagnetic fields (EMF) on human health. This study investigated whether EMF radiation would alter the biology of glial cells and act as a tumor-promoting agent. We exposed rat astrocytes and C6 glioma cells to 1950-MHz TD-SCDMA for 12, 24 and 48 h respectively, and found that EMF exposure had differential effects on rat astroctyes and C6 glioma cells. A 48 h of exposure damaged the mitochondria and induced significant apoptosis of astrocytes. Moreover, caspase-3, a hallmark of apoptosis, was highlighted in astrocytes after 48 h of EMF exposure, accompanied by a significantly increased expression of bax and reduced level of bcl-2. The tumorigenicity assays demonstrated that astrocytes did not form tumors in both control and exposure groups. In contrast, the unexposed and exposed C6 glioma cells show no significant differences in both biological feature and tumor formation ability. Therefore, our results implied that exposure to the EMF of 1950-MHz TD-SCDMA may not promote the tumor formation, but continuous exposure damaged the mitochondria of astrocytes and induce apoptosis through a caspase-3-dependent pathway with the involvement of bax and bcl-2. PMID:22870319

  17. Dopaminergic neurotoxicant 6-OHDA induces oxidative damage through proteolytic activation of PKC{delta} in cell culture and animal models of Parkinson's disease

    SciTech Connect

    Latchoumycandane, Calivarathan; Anantharam, Vellareddy; Jin, Huajun; Kanthasamy, Anumantha; Kanthasamy, Arthi

    2011-11-15

    The neurotoxicant 6-hydroxydopamine (6-OHDA) is used to investigate the cellular and molecular mechanisms underlying selective degeneration of dopaminergic neurons in Parkinson's disease (PD). Oxidative stress and caspase activation contribute to the 6-OHDA-induced apoptotic cell death of dopaminergic neurons. In the present study, we sought to systematically characterize the key downstream signaling molecule involved in 6-OHDA-induced dopaminergic degeneration in cell culture and animal models of PD. Treatment of mesencephalic dopaminergic neuronal N27 cells with 6-OHDA (100 {mu}M) for 24 h significantly reduced mitochondrial activity and increased cytosolic cytochrome c, followed by sequential activation of caspase-9 and caspase-3. Co-treatment with the free radical scavenger MnTBAP (10 {mu}M) significantly attenuated 6-OHDA-induced caspase activities. Interestingly, 6-OHDA induced proteolytic cleavage and activation of protein kinase C delta (PKC{delta}) was completely suppressed by treatment with a caspase-3-specific inhibitor, Z-DEVD-FMK (50 {mu}M). Furthermore, expression of caspase-3 cleavage site-resistant mutant PKC{delta}{sup D327A} and kinase dead PKC{delta}{sup K376R} or siRNA-mediated knockdown of PKC{delta} protected against 6-OHDA-induced neuronal cell death, suggesting that caspase-3-dependent PKC{delta} promotes oxidative stress-induced dopaminergic degeneration. Suppression of PKC{delta} expression by siRNA also effectively protected N27 cells from 6-OHDA-induced apoptotic cell death. PKC{delta} cleavage was also observed in the substantia nigra of 6-OHDA-injected C57 black mice but not in control animals. Viral-mediated delivery of PKC{delta}{sup D327A} protein protected against 6-OHDA-induced PKC{delta} activation in mouse substantia nigra. Collectively, these results strongly suggest that proteolytic activation of PKC{delta} is a key downstream event in dopaminergic degeneration, and these results may have important translational value for

  18. Ruthenium(II) p-cymene complex bearing 2,2'-dipyridylamine targets caspase 3 deficient MCF-7 breast cancer cells without disruption of antitumor immune response.

    PubMed

    Kaluđerović, Goran N; Krajnović, Tamara; Momcilovic, Miljana; Stosic-Grujicic, Stanislava; Mijatović, Sanja; Maksimović-Ivanić, Danijela; Hey-Hawkins, Evamarie

    2015-12-01

    [Ru(η(6)-p-cym)Cl{dpa(CH2)4COOEt}][PF6] (cym=cymene; dpa=2,2'-dipyridylamine; complex 2) was prepared and characterized by elemental analysis, IR and multinuclear NMR spectroscopy, as well as ESI-MS and X-ray structural analysis. The structural analog without a side chain [Ru(η(6)-p-cym)Cl(dpa)][PF6] (1) as well as 2 were investigated in vitro against 518A2, SW480, 8505C, A253 and MCF-7 cell lines. Complex 1 is active against all investigated tumor cell lines while the activity of compound 2 is limited only to caspase 3 deficient MCF-7 breast cancer cells, however, both are less active than cisplatin. As CD4(+)Th cells are necessary to trigger all the immune effector mechanisms required to eliminate tumor cells, besides testing the in vitro antitumor activity of 1 and 2, the effect of ruthenium(II) complexes on the cells of the adaptive immune system have also been evaluated. Importantly, complex 1 applied in concentrations which were effective against tumor cells did not affect immune cell viability, nor did exert a general immunosuppressive effect on cytokine production. Thus, beneficial characteristics of 1 might contribute to the overall therapeutic properties of the complex.

  19. Sphallerocarpus gracilis polysaccharide protects pancreatic β-cells via regulation of the bax/bcl-2, caspase-3, pdx-1 and insulin signalling pathways.

    PubMed

    Guo, Jie; Wang, Junlong; Song, Shen; Liu, Qin; Huang, Yulong; Xu, Yunfei; Wei, YanXia; Zhang, Ji

    2016-12-01

    In this study, the structural characterization of Sphallerocarpus gracilis polysaccharide (SGP) and its hypoglycaemic activities are reported for the first time. SGP, which has a weight average molar mass (Mw) of 7.413×10(5), was isolated from Sphallerocarpus gracilis and purified by ion-exchange chromatography. The polysaccharide is composed of rhamnose, arabinose, mannose, glucose and galactose, with the molar ratio of 4.12: 8.99: 5.45: 65.94: 15.50. The mechanism underlying the hypoglycaemic effect of SGP was evaluated. Experimental results showed that SGP protected pancreatic β-cells from alloxan damage by several possible mechanisms, including: (1) repairing free radical damage; (2) reducing the apoptosis of pancreatic β-cells by inhibiting the activities of caspase-3 and bax, and enhancing the activity of bcl-2; (3) stimulating insulin secretion and upregulating the pancreatic and duodenal homeobox 1 gene and the insulin gene and the pancreatic in pancreatic β-cells. The results obtained in this study suggest that SGP may be a promising therapeutic agent in the treatment of diabetes mellitus.

  20. Effects of ischemic preconditioning on myocardium Caspase-3, SOCS-1, SOCS-3, TNF-α and IL-6 mRNA expression levels in myocardium IR rats.

    PubMed

    Ma, Jiangwei; Qiao, Zengyong; Xu, Biao

    2013-10-01

    The aim of this study was to characterise the effects of ischemic preconditioning (IP) on heart function parameters (ΔST and ΔT), activities of serum creatine kinase (CK), lactate dehydrogenase (LDH), and levels of serum nitric oxide (NO), malondialdehyde (MDA), and myocardium Caspase-3 mRNA, SOCS-1, SOCS-3, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) expression levels and Apoptosis index in myocardium IR rats. Results showed that ΔST and ΔST values in IP group were markedly lower than those in IR group. Compared with IR group, IP significantly (p < 0.01) decreased serum CK (0.83 ± 0.09 vs 1.36 ± 0.15), LDH (5613 ± 462 vs 7106 ± 492) activities and MDA (11.32 ± 1.05 vs 15.49 ± 1.26) level, increased the serum NO (86.39 ± 7.03 vs 53.77 ± 4.27) level in IR group. The IP induced a significant decreased in myocardium Caspase-3 mRNA (0.303 ± 0.021 vs 0.515 ± 0.022) gene expression (p < 0.01) compared to IR model group. The IP induced a significant decreased in myocardium SOCS-1 (0.241 ± 0.031 vs 0.596 ± 0.036), SOCS-3 (0.258 ± 0.031 vs 0.713 ± 0.057), TNF-α (0.137 ± 0.011 vs 0.427 ± 0.035) and IL-6 (0.314 ± 0.021 vs 0.719 ± 0.064) mRNA gene expression (p < 0.01) compared to IR model group. We conclude that IP is effective in the therapy of heart disease. These findings may have implications for the clinical development of preconditioning-based therapies for ischemic heart disease.

  1. Neochromine S5 improves contact hypersensitivity through a selective effect on activated T lymphocytes.

    PubMed

    Gao, Zhe; Ma, Yuxiang; Zhao, Dan; Zhang, Xiong; Zhou, Hang; Liu, Hailiang; Zhou, Yang; Wu, Xuefeng; Shen, Yan; Sun, Yang; Li, Jianxin; Wu, Xudong; Xu, Qiang

    2014-11-15

    Strategy on activated T cells is an effective treatment for T cell mediated diseases. By using a synthesized chromone derivative, we examined its effects on the activated T cells. This compound, (Z)-1,3-dihydroxy-9-methyl-13H-benzo[b]chromeno[3,2-f][1,4]oxazepin-13-one (neochromine S5), exhibited immunosuppressive activity in vitro and in vivo. Interestingly, neochromine S5 selectively inhibited proliferation and induced apoptosis in T lymphocytes activated by concanavalin A (Con A) in a dose-dependent manner but not in naïve T lymphocytes, distinct from quercetin. This compound triggered mitochondrial apoptotic pathway including cleavage of caspase 3, caspase 9 and PARP, downregulation of bcl-2 and release of cytochrome c in activated T cells, but did not affect ER stress or Fas signals. In addition, neochromine S5 downregulated the expression of CD25 and CD69 and the production of inflammatory cytokines, including TNFα, IFNγ and IL-2, improved ear swelling in mice with contact hypersensitivity, reduced CD4(+) T cells infiltration, and increased apoptosis of isolated T lymphocytes from peripheral lymph nodes. Moreover, neochromine S5 showed no effect on the weight of mice and their immune organs, while dexamethasone caused a significant weight loss. Taken together, our results suggest that neochromine S5 exerts a unique anti-inflammatory activity mainly through a selective effect on activated T cells, which is different from the current immunosuppressant, dexamethasone.

  2. The caspase 3-dependent apoptotic effect of pycnogenol in human oral squamous cell carcinoma HSC-3 cells

    PubMed Central

    Yang, In-Hyoung; Shin, Ji-Ae; Kim, Lee-Han; Kwon, Ki Han; Cho, Sung-Dae

    2016-01-01

    In the present study, the apoptotic effect of pycnogenol and its molecular mechanism in human oral squamous cell carcinoma HSC-3 cells were investigated. Pycnogenol significantly inhibited the viability of HSC-3 cells and suppressed neoplastic cell transformation in HSC-3 cells and TPA-treated JB6 cells. It caused caspase-dependent apoptosis evidenced by the increase in cleaved poly (ADP-ribose) polymerase and caspase 3 in a dose-dependent manner. Pycnogenol increased Bak protein by enhancing its protein stability whereas other Bcl-2 family members were not altered. In addition, the treatment with pycnogenol led to the production of reactive oxygen species and N-acetyl-l-cysteine almost blocked pycnogenol-induced reactive oxygen species generation. Taken together, these findings suggest that pycnogenol may be a potential candidate for the chemoprevention or chemotherapy of human oral cancer. PMID:26798196

  3. The caspase 3-dependent apoptotic effect of pycnogenol in human oral squamous cell carcinoma HSC-3 cells.

    PubMed

    Yang, In-Hyoung; Shin, Ji-Ae; Kim, Lee-Han; Kwon, Ki Han; Cho, Sung-Dae

    2016-01-01

    In the present study, the apoptotic effect of pycnogenol and its molecular mechanism in human oral squamous cell carcinoma HSC-3 cells were investigated. Pycnogenol significantly inhibited the viability of HSC-3 cells and suppressed neoplastic cell transformation in HSC-3 cells and TPA-treated JB6 cells. It caused caspase-dependent apoptosis evidenced by the increase in cleaved poly (ADP-ribose) polymerase and caspase 3 in a dose-dependent manner. Pycnogenol increased Bak protein by enhancing its protein stability whereas other Bcl-2 family members were not altered. In addition, the treatment with pycnogenol led to the production of reactive oxygen species and N-acetyl-l-cysteine almost blocked pycnogenol-induced reactive oxygen species generation. Taken together, these findings suggest that pycnogenol may be a potential candidate for the chemoprevention or chemotherapy of human oral cancer.

  4. FANCJ protein is important for the stability of FANCD2/FANCI proteins and protects them from proteasome and caspase-3 dependent degradation.

    PubMed

    Clark, David W; Tripathi, Kaushlendra; Dorsman, Josephine C; Palle, Komaraiah

    2015-10-06

    Fanconi anemia (FA) is a rare genome instability syndrome with progressive bone marrow failure and cancer susceptibility. FANCJ is one of 17 genes mutated in FA-patients, comprises a DNA helicase that is vital for properly maintaining genomic stability and is known to function in the FA-BRCA DNA repair pathway. While exact role(s) of FANCJ in this repair process is yet to be determined, it is known to interact with primary effector FANCD2. However, FANCJ is not required for FANCD2 activation but is important for its ability to fully respond to DNA damage. In this report, we determined that transient depletion of FANCJ adversely affects stability of FANCD2 and its co-regulator FANCI in multiple cell lines. Loss of FANCJ does not significantly alter cell cycle progression or FANCD2 transcription. However, in the absence of FANCJ, the majority of FANCD2 is degraded by both the proteasome and Caspase-3 dependent mechanism. FANCJ is capable of complexing with and stabilizing FANCD2 even in the absence of a functional helicase domain. Furthermore, our data demonstrate that FANCJ is important for FANCD2 stability and proper activation of DNA damage responses to replication blocks induced by hydroxyurea.

  5. TNF receptors regulate vascular homeostasis in zebrafish through a caspase-8, caspase-2 and P53 apoptotic program that bypasses caspase-3.

    PubMed

    Espín, Raquel; Roca, Francisco J; Candel, Sergio; Sepulcre, María P; González-Rosa, Juan M; Alcaraz-Pérez, Francisca; Meseguer, José; Cayuela, María L; Mercader, Nadia; Mulero, Victoriano

    2013-03-01

    Although it is known that tumor necrosis factor receptor (TNFR) signaling plays a crucial role in vascular integrity and homeostasis, the contribution of each receptor to these processes and the signaling pathway involved are still largely unknown. Here, we show that targeted gene knockdown of TNFRSF1B in zebrafish embryos results in the induction of a caspase-8, caspase-2 and P53-dependent apoptotic program in endothelial cells that bypasses caspase-3. Furthermore, the simultaneous depletion of TNFRSF1A or the activation of NF-κB rescue endothelial cell apoptosis, indicating that a signaling balance between both TNFRs is required for endothelial cell integrity. In endothelial cells, TNFRSF1A signals apoptosis through caspase-8, whereas TNFRSF1B signals survival via NF-κB. Similarly, TNFα promotes the apoptosis of human endothelial cells through TNFRSF1A and triggers caspase-2 and P53 activation. We have identified an evolutionarily conserved apoptotic pathway involved in vascular homeostasis that provides new therapeutic targets for the control of inflammation- and tumor-driven angiogenesis.

  6. Crocetin prevents retinal degeneration induced by oxidative and endoplasmic reticulum stresses via inhibition of caspase activity.

    PubMed

    Yamauchi, Mika; Tsuruma, Kazuhiro; Imai, Shunsuke; Nakanishi, Tomohiro; Umigai, Naofumi; Shimazawa, Masamitsu; Hara, Hideaki

    2011-01-10

    Crocetin is a carotenoid that is the aglicone of crocin, which are found in saffron stigmas (Crocus sativus L.) and gardenia fruit (Gardenia jasminoides Ellis). In this study, we investigated the effects of crocetin on retinal damage. To examine whether crocetin affects stress pathways, we investigated intracellular oxidation induced by reactive oxygen species, expression of endoplasmic reticulum (ER) stress-related proteins, disruption of the mitochondrial membrane potential (ΔΨ(m)), and caspases activation. In vitro, we employed cultured retinal ganglion cells (RGC-5, a mouse ganglion cell-line transformed using E1A virus). Cell damage was induced by tunicamycin or hydrogen peroxide (H(2)O(2)) exposure. Crocetin at a concentration of 3μM showed the inhibitory effect of 50-60% against tunicamycin- and H(2)O(2)-induced cell death and inhibited increase in caspase-3 and -9 activity. Moreover, crocetin inhibited the enzymatic activity of caspase-9 in a cell-free system. In vivo, retinal damage in mice was induced by exposure to white light at 8000lx for 3h after dark adaptation. Photoreceptor damage was evaluated by measuring the outer nuclear layer thickness at 5days after light exposure and recording the electroretinogram (ERG). Retinal cell damage was also detected with Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining at 48h after light exposure. Crocetin at 100mg/kg, p.o. significantly inhibited photoreceptor degeneration and retinal dysfunction and halved the expression of TUNEL-positive cells. These results indicate that crocetin has protective effects against retinal damage in vitro and in vivo, suggesting that the mechanism may inhibit increase in caspase-3 and -9 activities after retinal damage.

  7. miR-30e controls DNA damage-induced stress responses by modulating expression of the CDK inhibitor p21WAF1/CIP1 and caspase-3

    PubMed Central

    Sohn, Dennis; Peters, Dominik; Piekorz, Roland P.; Budach, Wilfried; Jänicke, Reiner U.

    2016-01-01

    MicroRNAs (miRNAs), a class of small non-coding RNAs that usually cause gene silencing by translational repression or degradation of mRNAs, are implicated in DNA damage-induced stress responses. To identify senescence-associated miRNAs, we performed microarray analyses using wild-type and p53-deficient HCT116 colon carcinoma cells that following gamma-irradiation (γIR) are driven into senescence and apoptosis, respectively. Several miRNAs including miR-30e were found upregulated in a p53-dependent manner specifically in senescent cells, but not in apoptotic cells. Overexpression of miR-30e in HCT116 cells not only inhibited γIR-, etoposide- or miR-34a-induced caspase-3-like DEVDase activities and cell death, but greatly accelerated and augmented their senescent phenotype. Consistently, procaspase-3 protein, but not mRNA decreased in the presence of miR-30e, whereas expression of the cyclin-dependent kinase inhibitor p21 increased both at the mRNA and protein level. Performing luciferase reporter gene assays, we identified the 3′-UTR of the caspase-3 mRNA as a direct miR-30e target. In contrast, although miR-30e was unable to bind to the p21 mRNA, it increased expression of a luciferase construct containing the p21 promoter, suggesting that the miR-30e-mediated upregulation of p21 occurs indirectly at the transcriptional level. Interestingly, despite suppressing procaspase-3 expression, miR-30e was unable to protect RKO colon carcinoma cells from DNA damage-induced death or to induce senescence, as miR-30e completely fails to upregulate p21 in these cells. These data suggest that miR-30e functions in a cell type-dependent manner as an important molecular switch for DNA damage-induced stress responses and may thus represent a target of therapeutic value. PMID:26895377

  8. Aloe-emodin induces apoptosis of human nasopharyngeal carcinoma cells via caspase-8-mediated activation of the mitochondrial death pathway.

    PubMed

    Lin, Meng-Liang; Lu, Yao-Cheng; Chung, Jing-Gung; Li, Yi-Chen; Wang, Shyang-Guang; N G, Sue-Hwee; Wu, Chia-Yin; Su, Hong-Lin; Chen, Shih-Shun

    2010-05-01

    Aloe-emodin (AE), a natural, biologically active compound from the rhizome of Rheum palmatum, has been shown to induce apoptosis in several cancer cell lines in vitro. However, its molecular mechanism of action in the apoptosis induction of human nasopharyngeal carcinoma (NPC) cells has not been explored. This study shows that AE induced G(2)/M phase arrest by increasing levels of cyclin B1 bound to Cdc2, and also caused an increase in apoptosis of NPC cells, which was characterized by morphological changes, nuclear condensation, DNA fragmentation, caspase-3 activation, cleavage of poly (ADP-ribose) polymerase (PARP) and increased sub-G(1) population. Treatment of NPC cells with AE also resulted in a decrease in Bcl-X(L) and an increase in Bax expression. Ectopic expression of Bcl-X(L) but not Bcl-2 or small interfering RNA (siRNA)-mediated attenuation of Bax suppressed AE-induced apoptotic cell death. AE-induced loss of mitochondrial membrane potential (MMP) and increase in cellular Ca(++) content, reactive oxygen species (ROS) and apoptotic cell death were suppressed by the treatment of cyclosporin A (CsA) or caspase-8 inhibitor Z-IETD-FMK. Co-treatment with caspase-9 inhibitor Z-LEHD-FMK could inhibit AE-induced cell death and the activation of caspase-3 and -9. In addition, suppression of caspase-8 with the specific inhibitor Z-IETD-FMK inhibited AE-induced the activation of Bax, the cleavage of Bid, the translocation of tBid to the mitochondria and the release of cytochrome c, apoptosis-inducing factor (AIF) and Endo G from the mitochondria and subsequent apoptosis. Taken together, these results indicate that the caspase-8-mediated activation of the mitochondrial death pathway plays a critical role in AE-induced apoptosis of NPC cells.

  9. Neuroprotection of Sevoflurane Against Ischemia/Reperfusion-Induced Brain Injury Through Inhibiting JNK3/Caspase-3 by Enhancing Akt Signaling Pathway.

    PubMed

    Wen, Xiang-Ru; Fu, Yan-Yan; Liu, Hong-Zhi; Wu, Jian; Shao, Xiao-Ping; Zhang, Xun-Bao; Tang, Man; Shi, Yue; Ma, Kai; Zhang, Fang; Wang, Yi-Wen; Tang, Hui; Han, Dong; Zhang, Pu; Wang, Shu-Ling; Xu, Zhou; Song, Yuan-Jian

    2016-04-01

    In this study, we investigated the neuroprotective effect of sevoflurane against ischemic brain injury and its underlying molecular mechanisms. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The rats were pretreated with sevoflurane alone or sevoflurane combined with LY294002/wortmannin (selective inhibitor of PI3K) before ischemia. Cresyl violet staining was used to examine the survival of hippocampal CA1 pyramidal neurons. Immunoblotting and immunoprecipitation were performed to measure the phosphorylation of Akt1, PRAS40, ASK1, and JNK3 and the expression of cleaved-caspase-3. The results demonstrated that a moderate dose of sevoflurane inhalation of 2% for 2 h had significant neuroprotective effects against ischemia/reperfusion induced hippocampal neuron death. Sevoflurane significantly increased Akt and PRAS40 phosphorylation and decreased the phosphorylation of ASK1 at 6 h after reperfusion and the phosphorylation of JNK3 at 3 days after reperfusion following 15 min of transient global brain ischemia. Conversely, LY294002 and wortmannin significantly inhibited the effects of sevoflurane. Taken together, the results suggest that sevoflurane could suppress ischemic brain injury by downregulating the activation of the ASK1/JNK3 cascade via increasing the phosphorylation of Akt1 during ischemia/reperfusion.

  10. CpG oligodeoxynucleotide 5mer-induced apoptosis in MOLT-4 leukaemia cells does not require caspase 3 or new protein synthesis.

    PubMed

    Tidd, David M; Broughton, Caroline M; Clark, Richard E

    2003-05-01

    We have established that CpG oligodeoxynucleotide 5mers, of sequence type CGNNN (N = A, G, C or T), rapidly induce apoptosis/cell cycle arrest in human leukaemia lines. The 5'-CpG is obligatory for these effects. Induction of apoptosis in MOLT-4 cells did not require new protein synthesis and was insensitive to the caspase 3 inhibitor, Ac-DEVD-CHO, although the latter abrogated DNA laddering, phosphatidylserine externalization and collapse of the mitochondrial transmembrane potential. A subline of MOLT-4 cells, MOLT-4CpGR, was selected for acquired resistance to CpG 5mers. Differences in gene expression between MOLT-4 and MOLT-4CpGR cells were identified following three independent reciprocal cDNA subtractions, consensus selection and virtual cloning through targeted display. Several known genes were implicated in the action of or resistance to CpG oligodeoxynucleotide 5mers. Their protein products listed below immediately suggest cell signalling pathways/processes worthy of further investigation in elucidating the mechanism of CpG 5mer activity: caspase 2, the transcription factors Atf4, Hic, HoxB3 and Rqcd1, the splicing factors Rbmx, Sfrs5 and Sfrs7, the DNA replication factors Mcm5 and Brd4, phosphoinositide-3-kinase, annexin A1, mucosa-associated lymphoid tissue lymphoma translocation 1 and three enzymes involved in protein ubiquitylation, Siah1, Gsa7 and Nin283.

  11. Subacute Zinc Administration and L-NAME Caused an Increase of NO, Zinc, Lipoperoxidation, and Caspase-3 during a Cerebral Hypoxia-Ischemia Process in the Rat

    PubMed Central

    Blanco-Alvarez, Victor Manuel; Lopez-Moreno, Patricia; Soto-Rodriguez, Guadalupe; Martinez-Fong, Daniel; Rubio, Hector; Gonzalez-Barrios, Juan Antonio; Piña-Leyva, Celia; Torres-Soto, Maricela; Gomez-Villalobos, María de Jesus; Hernandez-Baltazar, Daniel; Eguibar, José Ramon; Ugarte, Araceli; Cebada, Jorge

    2013-01-01

    Zinc or L-NAME administration has been shown to be protector agents, decreasing oxidative stress and cell death. However, the treatment with zinc and L-NAME by intraperitoneal injection has not been studied. The aim of our work was to study the effect of zinc and L-NAME administration on nitrosative stress and cell death. Male Wistar rats were treated with ZnCl2 (2.5 mg/kg each 24 h, for 4 days) and N-ω-nitro-L-arginine-methyl ester (L-NAME, 10 mg/kg) on the day 5 (1 hour before a common carotid-artery occlusion (CCAO)). The temporoparietal cortex and hippocampus were dissected, and zinc, nitrites, and lipoperoxidation were assayed at different times. Cell death was assayed by histopathology using hematoxylin-eosin staining and caspase-3 active by immunostaining. The subacute administration of zinc before CCAO decreases the levels of zinc, nitrites, lipoperoxidation, and cell death in the late phase of the ischemia. L-NAME administration in the rats treated with zinc showed an increase of zinc levels in the early phase and increase of zinc, nitrites, and lipoperoxidation levels, cell death by necrosis, and the apoptosis in the late phase. These results suggest that the use of these two therapeutic strategies increased the injury caused by the CCAO, unlike the alone administration of zinc. PMID:23997853

  12. Polyvinyl pyrrolidone-coated silver nanoparticles in a human lung cancer cells: time- and dose-dependent influence over p53 and caspase-3 protein expression and epigenetic effects.

    PubMed

    Blanco, Jordi; Lafuente, Daisy; Gómez, Mercedes; García, Tánia; Domingo, José L; Sánchez, Domènec J

    2017-02-01

    The present study was aimed at providing a better understanding of the influence of silver nanoparticles (AgNPs) on the p53 tumor suppressor protein. Cell line A549 was exposed to a range of concentrations of AgNPs, and a time course (up to 72 h) of cell viability was determined. We also determined the time course of gene and protein expression of p53, p21, murine double minute 2 (MDM2) and caspase-3. The expression of all of these proteins was also determined after daily exposure of the cells to 10 µg/mL of AgNPs for 7 days, or after discontinuous exposure by treating the cells every 3 days, for 15 or 30 days. Moreover, epigenetic changes in the acetylation of the histone H3 protein and in global DNA methylation patterns were determined after 72 h of exposure. Results showed that daily exposure to low doses of AgNPs, or a single exposure to high concentrations for 72 h, decreased gene and protein expression of p53, p21, MDM2 and caspase-3 in A549 cells. In contrast, a discontinuous exposure to low doses or a single exposure to low concentrations for 72 h increased the levels of the active forms of p53 and caspase-3, as well as the p21 and MDM2 protein levels. In addition, exposure to high concentrations of AgNPs for 72 h induced higher levels of global DNA methylation and global histone H3 deacetylation in A549 cells. These results provide new information on the toxic action of AgNPs.

  13. Mycobacterium bovis Induces Endoplasmic Reticulum Stress Mediated-Apoptosis by Activating IRF3 in a Murine Macrophage Cell Line

    PubMed Central

    Cui, Yongyong; Zhao, Deming; Sreevatsan, Srinand; Liu, Chunfa; Yang, Wei; Song, Zhiqi; Yang, Lifeng; Barrow, Paul; Zhou, Xiangmei

    2016-01-01

    Mycobacterium bovis (M. bovis) is highly adapted to macrophages and has developed multiple mechanisms to resist intracellular assaults. However, the host cells in turn deploy a multipronged defense mechanism to control bacterial infection. Endoplasmic reticulum (ER) stress-mediated apoptosis is one such primary defense mechanism. However, the role of interferon regulatory factor 3 (IRF3) between ER stress and apoptosis during M. bovis infection is unknown. Here, we demonstrate that M. bovis effectively induced apoptosis in murine macrophages. Caspase-12, caspase-9, and caspase-3 were activated over a 48 h infection period. The splicing of XBP-1 mRNA and the level of phosphorylation of eIF2α, indicators of ER stress, significantly increased at early time points after M. bovis infection. The expansion of the ER compartment, a morphological hallmark of ER stress, was observed at 6 h. Pre-treatment of Raw 264.7 cells with 4-PBA (an ER stress-inhibitor) reduced the activation of the ER stress indicators, caspase activation and its downstream poly (ADP-ribose) polymerase (PARP) cleavage, phosphorylation of TBK1 and IRF3 and cytoplasmic co-localization of STING and TBK1. M. bovis infection led to the interaction of activated IRF3 and cytoplasmic Bax leading to mitochondrial damage. Role of IRF3 in apoptosis was further confirmed by blocking this molecule with BX-795 that showed significant reduction expression of caspase-8 and caspase-3. Intracellular survival of M. bovis increased in response to 4-PBA and BX-795. These findings indicate that STING-TBK1-IRF3 pathway mediates a crosstalk between ER stress and apoptosis during M. bovis infection, which can effectively control intracellular bacteria. PMID:28018864

  14. Caspase 3 Targeted Cargo Delivery in Apoptotic Cells Using Capped Mesoporous Silica Nanoparticles.

    PubMed

    de la Torre, Cristina; Mondragón, Laura; Coll, Carmen; García-Fernández, Alba; Sancenón, Félix; Martínez-Máñez, Ramón; Amorós, Pedro; Pérez-Payá, Enrique; Orzáez, Mar

    2015-10-26

    Excessive apoptotic cell death is at the origin of several pathologies, such as degenerative disorders, stroke or ischemia-reperfusion damage. In this context, strategies to improve inhibition of apoptosis and other types of cell death are of interest and may represent a pharmacological opportunity for the treatment of cell-death-related disorders. In this scenario new peptide-containing delivery systems (solids S1 -P1 and S1 -P2 ) are described based on mesoporous silica nanoparticles (MSNs) loaded with a dye and capped with the KKGDEVDKKARDEVDK (P1 ) peptide that contains two repeats of the DEVD target sequence that are selectively hydrolyzed by caspase 3 (C3). This enzyme plays a central role in the execution-phase of apoptosis. HeLa cells electroporated with S1 -P1 are able to deliver the cargo in the presence of staurosporin (STS), which induces apoptosis with the consequent activation of the cytoplasmic C3 enzyme. Moreover, the nanoparticles S1 -P2 , containing both a cell-penetrating TAT peptide and P1 also entered in HeLa cells and delivered the cargo preferentially in cells treated with the apoptosis inducer cisplatin.

  15. Effect of morin-5'-sulfonic acid sodium salt on the expression of apoptosis related proteins caspase 3, Bax and Bcl 2 due to the mercury induced oxidative stress in albino rats.

    PubMed

    Venkatesan, Rantham Subramaniam; Sadiq, Abdul Majeeth Mohamed

    2017-01-01

    Many environmental contaminants have been reported to disturb the pro-oxidant or antioxidant balance of the cells by inducing oxidative stress. Oxidative stress mediated by the HgCl2 induces DNA, protein and lipid oxidation resulted in necrosis or apoptosis, or both. Currently flavonoids are being emerging topic and reported to have antiviral, anti-inflammatory, anti- tumor and antioxidant activities. Morin is one of the flavonoid protects the cells from oxygen free radical damage and scavenges the free radicals and metals and also heals the injured cells commercially. Morin hydrate is sparingly soluble in water. Hence, the water soluble morin -5'- sulfonic acid sodium salt (NaMSA) was selected and synthesized. Aim of the present study was to analyze the effect of morin-5'-sulfonic acid sodium salt on the expression of apoptosis related proteins caspase 3, Bax and Bcl 2 due to the mercury induced oxidative stress in albino rats.. The experimental rats were exposed to sub lethal concentration of mercuric chloride (1.25mg/kg) and the ameliorating effect of NaMSA was studied by using apoptotic protein markers Bax and caspase-3 and Bcl-2. The obtained results were analyzed using one way analysis of variance by the Duncan's Multiple comparison test to determine the level of significance (p) and p<0.05 was considered as statistically significant. Administration of mercuric chloride (1.25mg/kg) in the experimental rats increased the expression of Bax and caspase-3 and a decreased expression was noted in the Bcl-2 level compared with control bands significantly (p<0.05). On the other hand NaMSA (50mg/kg) and HgCl2 (1.25mg/kg) simultaneous administration did not bring any change in the protein expression of Bax, Caspase-3 and Bcl-2 levels compared with control rats. Hence, the membrane damage was protected, stopped the cell death and apoptosis. This could be due to the morin-5'-sulfonic acid sodium salt effective chelation action on the HgCl2 generated free radicals.

  16. Mitochondria-dependent apoptosis of activated T lymphocytes induced by astin C, a plant cyclopeptide, for preventing murine experimental colitis.

    PubMed

    Shen, Yan; Luo, Qiong; Xu, Huimin; Gong, Fangyuan; Zhou, Xiaobin; Sun, Yang; Wu, Xuefeng; Liu, Wen; Zeng, Guangzhi; Tan, Ninghua; Xu, Qiang

    2011-08-01

    Facilitating T-cell apoptosis is implicated as an effective therapeutic strategy for treatment of T cell-mediated disease, including inflammatory bowel disease. Here, we report that astin C, a plant cyclopeptide isolated from the roots of Aster tataricus (Compositae), induced apoptosis of activated T cells in a mitochondria-dependent but Fas-independent manner in that such activity was still observed in T cells from Fas-mutated MRLlpr/lpr mice. Although caspase 8 was not activated, astin C treatment led to the cleavage of caspase 9 and caspase 3, the upregulation of Bad protein expression as well as release of cytochrome c in activated T cells. Astin C did not induce the expression of GRP78 and GADD153, excluding involvement of endoplasmic reticulum stress-mediated pathway. Moreover, oral administration of astin C protected mice against TNBS-induced colonic inflammation, as assessed by a reduced colonic weight/length ratio and histological scoring. Administering astin C significantly decreased serum levels of TNF-α, IL-4 and IL-17, accompanied with the induction of apoptosis in activated T cells in vivo. The results demonstrate, for the first time, the ability of astin C to induce apoptosis in activated T cells and its potential use in the treatment of colonic inflammation.

  17. Time-Dependent Increases in Protease Activities for Neuronal Apoptosis in Spinal Cords of Lewis Rats During Development of Acute Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Das, Arabinda; Guyton, M. Kelly; Matzelle, Denise D.; Ray, Swapan K.; Banik, Naren L.

    2008-01-01

    Multiple sclerosis (MS) is characterized by axonal demyelination and neurodegeneration, the latter having been inadequately explored in the MS animal model experimental autoimmune encephalomyelitis (EAE). The purpose of this study was to examine the time-dependent correlation between increased calpain and caspase activities and neurodegeneration in spinal cord tissues from Lewis rats with acute EAE. An increase in TUNEL-positive neurons and internucleosomal DNA fragmentation in EAE spinal cords suggested that neuronal death was a result of apoptosis on days 8–10 following induction of EAE. Increases in calpain expression in EAE correlated with activation of pro-apoptotic proteases, leading to apoptotic cell death beginning on day 8 of EAE, which occurred before the appearance of visible clinical symptoms. Increases in calcineurin expression and decreases in phospho-Bad (p-Bad) suggested Bad activation in apoptosis during acute EAE. Increases in the Bax:Bcl-2 ratio and activation of caspase-9 showed the involvement of mitochondria in apoptosis. Further, caspase-8 activation suggested induction of the death receptor–mediated pathway for apoptosis. Endoplasmic reticulum stress leading to caspase-3 activation was also observed, indicating that multiple apoptotic pathways were activated following EAE induction. In contrast, cell death was mostly a result of necrosis on the later day (day 11), when EAE entered a severe stage. From these findings, we conclude that increases in calpain and caspase activities play crucial roles in neuronal apoptosis during the development of acute EAE. PMID:18521931

  18. Methanol extract of the ethnopharmaceutical remedy Smilax spinosa exhibits anti-neoplastic activity.

    PubMed

    Seelinger, Mareike; Popescu, Ruxandra; Giessrigl, Benedikt; Jarukamjorn, Kanokwan; Unger, Christine; Wallnöfer, Bruno; Fritzer-Szekeres, Monika; Szekeres, Thomas; Diaz, Rene; Jäger, Walter; Frisch, Richard; Kopp, Brigitte; Krupitza, Georg

    2012-09-01

    Plants have been the source of several effective drugs for the treatment of cancer and over 60% of anticancer drugs originate from natural sources. Therefore, extracts of the rhizome of Smilax spinosa, an ethnomedicinal plant from Guatemala which is used for the treatment of inflammatory conditions, were investigated regarding their anti-neoplastic activities. By using several solvents the methanol extract was by far the most potent against HL60 cell proliferation (50% inhibition at 60 µg/ml). Furthermore, fractionation of this extract yielded fraction F2, which exhibited enforced pro-apoptotic activity, and activated CYP1A1. Proteins that are relevant for cell cycle progression and apoptosis, as well as proto-oncogenes were investigated by western blotting. This revealed that the methanol extract increased the levels of p21 and this may have caused cell cycle attenuation. The derivative fraction F2 induced apoptosis through the intrinsic pathway, which correlated with the inhibition of Stat3 phosphorylation and concomitant induction of caspase 9, then caspase 8 and caspase 3. In summary, the methanol extract and the derivative fraction F2 of S. spinosa showed anti-neoplastic effects in HL-60 cells and CYP1A1 activation in estrogen receptor-positive MCF-7 breast cancer cells but not in estrogen-negative MDA-MB231 breast cancer cells. Based on our data Smilax spinosa may be a promising source for novel anticancer agents.

  19. Synergistic anti-myeloma activity of the proteasome inhibitor marizomib and the IMiD immunomodulatory drug pomalidomide.

    PubMed

    Das, Deepika S; Ray, Arghya; Song, Yan; Richardson, Paul; Trikha, Mohit; Chauhan, Dharminder; Anderson, Kenneth C

    2015-12-01

    The proteasome inhibitor bortezomib is an effective therapy for the treatment of relapsed and refractory multiple myeloma (RRMM); however, prolonged treatment can be associated with toxicity, peripheral neuropathy and drug resistance. Our earlier studies showed that the novel proteasome inhibitor marizomib is distinct from bortezomib in its chemical structure, mechanisms of action and effects on proteasomal activities, and that it can overcome bortezomib resistance. Pomalidomide, like lenalidomide, has potent immunomodulatory activity and has been approved by the US Food and Drug Administration for the treatment of RRMM. Here, we demonstrate that combining low concentrations of marizomib with pomalidomide induces synergistic anti-MM activity. Marizomib plus pomalidomide-induced apoptosis is associated with: (i) activation of caspase-8, caspase-9, caspase-3 and PARP cleavage, (ii) downregulation of cereblon (CRBN), IRF4, MYC and MCL1, and (iii) suppression of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities. CRBN-siRNA attenuates marizomib plus pomalidomide-induced MM cells death. Furthermore, marizomib plus pomalidomide inhibits the migration of MM cells and tumour-associated angiogenesis, as well as overcomes cytoprotective effects of bone marrow microenvironment. In human MM xenograft model studies, the combination of marizomib and pomalidomide is well tolerated, inhibits tumour growth and prolongs survival. These preclinical studies provide the rationale for on-going clinical trials of combined marizomib and pomalidomide to improve outcome in patients with RRMM.

  20. Synergistic Anti-Myeloma Activity of the Proteasome Inhibitor Marizomib and the IMiD® Immunomodulatory Drug Pomalidomide

    PubMed Central

    Das, Deepika Sharma; Ray, Arghya; Song, Yan; Richardson, Paul; Trikha, Mohit; Chauhan, Dharminder; Anderson, Kenneth C.

    2015-01-01

    The proteasome inhibitor bortezomib is an effective therapy for the treatment of relapsed and refractory multiple myeloma (RRMM); however, prolonged treatment can be associated with toxicity, peripheral neuropathy and drug resistance. Our earlier studies showed that the novel proteasome inhibitor marizomib is distinct from bortezomib in its chemical structure, mechanisms of action and effects on proteasomal activities, and that it can overcome bortezomib resistance. Pomalidomide, like lenalidomide, has potent immunomodulatory activity and has been approved by the US Food and Drug Administration for the treatment of RRMM. Here, we demonstrate that combining low concentrations of marizomib with pomalidomide induces synergistic anti-MM activity. Marizomib plus pomalidomide-induced apoptosis is associated with: 1) activation of caspase-8, caspase-9, caspase-3 and PARP cleavage; 2) downregulation of cereblon (CRBN), IRF4, MYC and MCL1; and 3) suppression of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities. CRBN-siRNA attenuates marizomib plus pomalidomide-induced MM cells death. Furthermore, marizomib plus pomalidomide inhibits the migration of MM cells and tumour-associated angiogenesis, as well as overcomes cytoprotective effects of bone marrow microenvironment. In human MM xenograft model studies, the combination of marizomib and pomalidomide is well tolerated, inhibits tumour growth and prolongs survival. These preclinical studies provide the rationale for on-going clinical trials of combined marizomib and pomalidomide to improve outcome in patients with RRMM. PMID:26456076

  1. Activation of caspase 8 in the pituitaries of streptozotocin-induced diabetic rats: implication in increased apoptosis of lactotrophs.

    PubMed

    Arroba, Ana I; Frago, Laura M; Argente, Jesús; Chowen, Julie A

    2005-10-01

    Lactotroph cell death is increased in streptozotocin-induced diabetic rats. To determine the mechanism involved, cell death proteins were accessed in pituitaries of diabetic (streptozotocin at 65 mg/kg, 2 months evolution) and control male rats by Western blot analysis and double immunohistochemistry. The intact and cleaved forms of caspase 9 were increased in diabetic rat pituitaries compared with controls. Although the proforms of caspases 3, 6, and 7 were increased in diabetic rat pituitaries, their activated forms were either unchanged or decreased. Activation of these effector caspases may be blocked by the increased expression of X-chromosome-linked inhibitor of apoptosis protein (XIAP) in diabetic rat pituitaries. However, in diabetic rats, XIAP expression in lactotrophs was decreased, suggesting that this cell type is not protected. Caspase 8, p53, and nuclear factor kappaB were more highly activated in diabetic rat pituitaries, with caspase 8 colocalization in lactotrophs being increased. These results suggest that, in the pituitaries of diabetic rats, the cascades of normal cell turnover are partially inhibited, possibly via XIAP, and this may be cell specific. Furthermore, activation of the extrinsic cell-death pathway, including activation of caspase 8, may underlie the diabetes-associated increase in lactotroph death.

  2. Amyloid-β induced astrocytosis and astrocyte death: Implication of FoxO3a-Bim-caspase3 death signaling.

    PubMed

    Saha, Pampa; Biswas, Subhas Chandra

    2015-09-01

    Astrocytes, the main element of the homeostatic system in the brain, are affected in various neurological conditions including Alzheimer's disease (AD). A common astrocytic reaction in pathological state is known as astrocytosis which is characterized by a specific change in astrocyte shape due to cytoskeletal remodeling, cytokine secretion and cellular proliferation. Astrocytes also undergo apoptosis in various neurological conditions or in response to toxic insults. AD is pathologically characterized by progressive deposition of amyloid-β (Aβ) in senile plaques, intraneuronal neurofibrillary tangles, synaptic dysfunction and neuron death. Astrocytosis and astrocyte death have been reported in AD brain as well as in response to Aβ in vitro. However, how astrocytes undergo both proliferation and death in response to Aβ remains elusive. In this study, we used primary cultures of cortical astrocytes and exposed them to various doses of oligomeric Aβ. We found that cultured astrocytes proliferate and manifest all signs of astrocytosis at a low dose of Aβ. However, at high dose of Aβ the activated astrocytes undergo apoptosis. Astrocytosis was also noticed in vivo in response to Aβ in the rat brain. Next, we investigated the mechanism of astrocyte apoptosis in response to a high dose of Aβ. We found that death of astrocyte induced by Aβ requires a set of molecules that are instrumental for neuron death in response to Aβ. It involves activation of Forkhead transcription factor Foxo3a, induction of its pro-apoptotic target Bim and activation of its downstream molecule, caspase3. Hence, this study demonstrates that the concentration of Aβ decides whether astrocytes do proliferate or undergo apoptosis via a mechanism that is required for neuron death.

  3. Protochlamydia Induces Apoptosis of Human HEp-2 Cells through Mitochondrial Dysfunction Mediated by Chlamydial Protease-Like Activity Factor

    PubMed Central

    Matsuo, Junji; Nakamura, Shinji; Ito, Atsushi; Yamazaki, Tomohiro; Ishida, Kasumi; Hayashi, Yasuhiro; Yoshida, Mitsutaka; Takahashi, Kaori; Sekizuka, Tsuyoshi; Takeuchi, Fumihiko; Kuroda, Makoto; Nagai, Hiroki; Hayashida, Kyoko; Sugimoto, Chihiro; Yamaguchi, Hiroyuki

    2013-01-01

    Obligate amoebal endosymbiotic bacterium Protochlamydia with ancestral pathogenic chlamydial features evolved to survive within protist hosts, such as Acanthamoba, 0.7–1.4 billion years ago, but not within vertebrates including humans. This observation raises the possibility that interactions between Protochlamydia and human cells may result in a novel cytopathic effect, leading to new insights into host-parasite relationships. Previously, we reported that Protochlamydia induces apoptosis of the immortalized human cell line, HEp-2. In this study, we attempted to elucidate the molecular mechanism underlying this apoptosis. We first confirmed that, upon stimulation with the bacteria, poly (ADP-ribose) polymerase (PARP) was cleaved at an early stage in HEp-2 cells, which was dependent on the amount of bacteria. A pan-caspase inhibitor and both caspase-3 and -9 inhibitors similarly inhibited the apoptosis of HEp-2 cells. A decrease of the mitochondrial membrane potential was also confirmed. Furthermore, lactacystin, an inhibitor of chlamydial protease-like activity factor (CPAF), blocked the apoptosis. Cytochalasin D also inhibited the apoptosis, which was dependent on the drug concentration, indicating that bacterial entry into cells was required to induce apoptosis. Interestingly, Yersinia type III inhibitors (ME0052, ME0053, and ME0054) did not have any effect on the apoptosis. We also confirmed that the Protochlamydia used in this study possessed a homologue of the cpaf gene and that two critical residues, histidine-101 and serine-499 of C. trachomatis CPAF in the active center, were conserved. Thus, our results indicate that after entry, Protochlamydia-secreted CPAF induces mitochondrial dysfunction with a decrease of the membrane potential, followed by caspase-9, caspase-3 and PARP cleavages for apoptosis. More interestingly, because C. trachomatis infection can block the apoptosis, our finding implies unique features of CPAF between pathogenic and primitive

  4. VMY-1-103, a dansylated analog of purvalanol B, induces caspase-3-dependent apoptosis in LNCaP prostate cancer cells.

    PubMed

    Ringer, Lymor; Sirajuddin, Paul; Yenugonda, Venkata Mahidhar; Ghosh, Anup; Divito, Kyle; Trabosh, Valerie; Patel, Yesha; Brophy, Amanda; Grindrod, Scott; Lisanti, Michael P; Rosenthal, Dean; Brown, Milton L; Avantaggiati, Maria Laura; Rodriguez, Olga; Albanese, Chris

    2010-08-15

    The 2,6,9-trisubstituted purine group of cyclin dependent kinase inhibitors have the potential to be clinically relevant inhibitors of cancer cell proliferation. We have recently designed and synthesized a novel dansylated analog of purvalanol B, termed VMY-1-103, that inhibited cell cycle progression in breast cancer cell lines more effectively than did purvalanol B and allowed for uptake analyses by fluorescence microscopy. ErbB-2 plays an important role in the regulation of signal transduction cascades in a number of epithelial tumors, including prostate cancer (PCa). Our previous studies demonstrated that transgenic expression of activated ErbB-2 in the mouse prostate initiated PCa and either the overexpression of ErbB-2 or the addition of the ErbB-2/ErbB-3 ligand, heregulin (HRG), induced cell cycle progression in the androgen-responsive prostate cancer cell line, LNCaP. In the present study, we tested the efficacy of VMY-1-103 in inhibiting HRG-induced cell proliferation in LNCaP prostate cancer cells. At concentrations as low as 1 μM, VMY-1-103 increased both the proportion of cells in G(1) and p21(CIP1) protein levels. At higher concentrations (5 μM or 10 μM), VMY-1-103 induced apoptosis via decreased mitochondrial membrane polarity and induction of p53 phosphorylation, caspase-3 activity and PARP cleavage. Treatment with 10 μM Purvalanol B failed to either influence proliferation or induce apoptosis. Our results demonstrate that VMY-1-103 was more effective in inducing apoptosis in PCa cells than its parent compound, purvalanol B, and support the testing of VMY-1-103 as a potential small molecule inhibitor of prostate cancer in vivo.

  5. Acceleration of pro-caspase-3 maturation and cell migration inhibition in human breast cancer cells by phytoconstituents of Rheum emodi rhizome extracts

    PubMed Central

    Naveen Kumar, D.R.; George, V. Cijo; Suresh, P.K.; Kumar, R. Ashok

    2013-01-01

    The aggressive nature of estrogen receptor (ER)-negative breast cancer subtype obligates for innovative targeted therapies. The present study aimed to investigate the phytoconstituents and specific anticancer activities of Rheum emodi rhizome, a known food source used locally to treat various ailments. Petroleum ether extracts (hot [PHR] and cold [PCR]) of R. emodi, exhibited significant free radical scavenging potentials through DPPH and reducing power assays, rendering them as good sources of antioxidants. The extracts, PHR and PCR had shown significant (P < 0.05) cancer-cell-specific cytotoxicity in the assayed cells (MDA-MB-231 [breast carcinoma] and WRL-68 [non-tumoral]) at 100 μg/ml, and 50 and 100 μg/ml concentrations respectively. Extracts also induced fervent apoptosis in ER-negative cells (MDA-MB-231) compared to ER-positive subtype (MCF-7), and found to involve CPP32/caspase-3 in its apoptosis induction mechanism. Moreover, extracts had an inevitable potential to inhibit the migration of metastatic breast cancer cells (MDA-MB-231) in vitro. Further, the active principles of extracts were identified through HPLC and GC-MS analysis to reveal major polyphenolics, 4,7-Dimethyl-(octahydro)indolo[4,3-fg]quinolin-10-one, 5-Oxo-isolongifolene, Valencene-2, and other quinone, quinoline and anthraquinone derivatives. The extracts are thus good candidates to target malignant ER-negative breast cancer, and the identified phytoconstituents could be eluted in further exploratory studies for use in dietary-based anti-breast cancer therapies. PMID:26417238

  6. Lactuside B decreases aquaporin-4 and caspase-3 mRNA expression in the hippocampus and striatum following cerebral ischaemia-reperfusion injury in rats

    PubMed Central

    LI, PING-FA; ZHAN, HE-QIN; LI, SHENG-YING; LIU, RUI-LI; YAN, FU-LIN; CUI, TAI-ZHEN; YANG, YU-PING; LI, PENG; WANG, XIN-YAO

    2014-01-01

    This study aimed to investigate the effects of lactuside B (LB) on aquaporin-4 (AQP4) and caspase-3 mRNA expression in the hippocampus and the striatum following cerebral ischaemia-reperfusion (I/R) injury in rats. Cerebral I/R injury was established in Sprague-Dawley rats by occluding the middle cerebral artery for 2 h and then inducing reperfusion. Rats in the I/R + LB groups were treated with various doses of LB following reperfusion. Neurological deficit scores and brain water content were obtained to determine the pharmacodynamics of LB. Reverse transcription polymerase chain reaction was performed to determine the expression levels of AQP4 and caspase-3 mRNA in the hippocampus and the striatum. The results of the present study indicate that LB decreased the neurological deficit scores and the brain water content. In the hippocampus, AQP4 and caspase-3 mRNA expression levels were significantly downregulated in the I/R + LB groups at 24 and 72 h following drug administration, compared with those in the I/R group (P<0.05). In the striatum, LB was also shown to significantly reduce AQP4 and caspase-3 mRNA expression levels at 24 and 72 h following drug administration, compared with those in the I/R group (P<0.05). The effects became stronger as the LB dose was increased. The most significant reductions in AQP4 and caspase-3 mRNA expression were noted in the I/R + LB 25 mg/kg and I/R + LB 50 mg/kg groups at 72 h following drug administration. The results of the present study show that LB is capable of significantly downregulating AQP4 and caspase-3 mRNA expression in the hippocampus and striatum following cerebral I/R injury in rats. The mechanism by which LB improved ischaemic brain injury may be associated with changes in AQP4 and caspase-3 mRNA expression in the hippocampus and the striatum. PMID:24520266

  7. Dorzolamide synergizes the antitumor activity of mitomycin C against Ehrlich's carcinoma grown in mice: role of thioredoxin-interacting protein.

    PubMed

    Ali, Belal M; Zaitone, Sawsan A; Shouman, Samia A; Moustafa, Yasser M

    2015-12-01

    The antitumor activity of carbonic anhydrase (CA) inhibitors is attributed to their ability to induce a state of intracellular acidification. In fact, acidic intracellular pH was demonstrated to upregulate several tumor suppressor proteins and increase the activity of many chemotherapies. The present study aimed to investigate the antitumor activity of the CA inhibitor, dorzolamide, in combination with mitomycin C and to study the effect of these drugs on tumoral thioredoxin-interacting protein (TXNIP) as well as tumor cell proliferation and apoptosis. Solid tumors were induced by subcutaneous inoculation of Ehrlich's ascites carcinoma (EAC) cells in female mice. Mice were treated with dorzolamide (3, 10, or 30 mg/kg/day, i.p.) and/or mitomycin C (1 mg/kg, i.p.) weekly for 3 weeks. Treatment with mitomycin C increased TXNIP level in EAC solid tumors in mice. Likewise, treatment with dorzolamide upregulated TXNIP and p53 while downregulated bcl-2. Both drug therapies increased tumoral caspase 9, caspase 3, and PARP-1 cleavage in addition to decreasing the proliferative Ki-67-stained nuclear fraction. Indeed, a synergistic effect was detected between mitomycin C and dorzolamide. The current data demonstrated that the antitumor activity of mitomycin C and dorzolamide was, at least in part, mediated through stimulating tumoral expression of TXNIP and enhancing tumor apoptosis.

  8. Xanthohumol induces apoptosis in human malignant glioblastoma cells by increasing reactive oxygen species and activating MAPK pathways.

    PubMed

    Festa, Michela; Capasso, Anna; D'Acunto, Cosimo W; Masullo, Milena; Rossi, Adriano G; Pizza, Cosimo; Piacente, Sonia

    2011-12-27

    The effect of the biologically active prenylated chalcone and potential anticancer agent xanthohumol (1) has been investigated on apoptosis of the T98G human malignant glioblastoma cell line. Compound 1 decreased the viability of T98G cells by induction of apoptosis in a time- and concentration-dependent manner. Apoptosis induced by 1 was associated with activation of caspase-3, caspase-9, and PARP cleavage and was mediated by the mitochondrial pathway, as exemplified by mitochondrial depolarization, cytochrome c release, and downregulation of the antiapoptotic Bcl-2 protein. Xanthohumol induced intracellular reactive oxygen species (ROS), an effect that was reduced by pretreatment with the antioxidant N-acetyl-L-cysteine (NAC). Intracellular ROS production appeared essential for the activation of the mitochondrial pathway and induction of apoptosis after exposure to 1. Oxidative stress due to treatment with 1 was associated with MAPK activation, as determined by ERK1/2 and p38 phosphorylation. Phosphorylation of ERK1/2 and p38 was attenuated using NAC to inhibit ROS production. After treatment with 1, ROS provided a specific environment that resulted in MAPK-induced cell death, with this effect reduced by the ERK1/2 specific inhibitor PD98059 and partially inhibited by the p38 inhibitor SB203580. These findings suggest that xanthohumol (1) is a potential chemotherapeutic agent for the treatment of glioblastoma multiforme.

  9. Inhibition of cathepsin B activity reduces apoptosis by preventing cytochrome c release from mitochondria in porcine parthenotes

    PubMed Central

    KIM, Seon-Hyang; ZHAO, Ming-Hui; LIANG, Shuang; CUI, Xiang-Shun; KIM, Nam-Hyung

    2015-01-01

    Cathepsin B, a lysosomal cysteine protease of the papain family, has recently been implicated in the quality and developmental competence of bovine preimplantation embryos. In this study, to determine whether inhibition of cathepsin B activity can improve porcine oocyte maturation and early embryo developmental competence, we supplemented in vitro maturation or embryo culture media with E-64, a cathepsin B inhibitor. Cathepsin B activity was high in poor quality germinal vesicle stage oocytes, but no differences in mRNA expression or protein localization were observed between good and poor quality oocytes, which were categorized based on morphology. Following treatment with 1 μM E-64, cathepsin B activity sharply decreased in 4-cell and blastocyst stage embryos. E-64 had no effect on cell number but significantly (P < 0.05) increased blastocyst formation and decreased the number of apoptotic cells in blastocysts. It also significantly (P < 0.05) enhanced mitochondrial membrane potential in blastocysts, reducing the release of cytochrome c and resulting in decreased expression of Caspase-3 and Caspase-9. In conclusion, inhibition of cathepsin B activity in porcine parthenotes using 1 μM E-64 resulted in attenuation of apoptosis via a reduction in the release of cytochrome c from mitochondria. PMID:25903788

  10. Inhibition of cathepsin B activity reduces apoptosis by preventing cytochrome c release from mitochondria in porcine parthenotes.

    PubMed

    Kim, Seon-Hyang; Zhao, Ming-Hui; Liang, Shuang; Cui, Xiang-Shun; Kim, Nam-Hyung

    2015-01-01

    Cathepsin B, a lysosomal cysteine protease of the papain family, has recently been implicated in the quality and developmental competence of bovine preimplantation embryos. In this study, to determine whether inhibition of cathepsin B activity can improve porcine oocyte maturation and early embryo developmental competence, we supplemented in vitro maturation or embryo culture media with E-64, a cathepsin B inhibitor. Cathepsin B activity was high in poor quality germinal vesicle stage oocytes, but no differences in mRNA expression or protein localization were observed between good and poor quality oocytes, which were categorized based on morphology. Following treatment with 1 μM E-64, cathepsin B activity sharply decreased in 4-cell and blastocyst stage embryos. E-64 had no effect on cell number but significantly (P < 0.05) increased blastocyst formation and decreased the number of apoptotic cells in blastocysts. It also significantly (P < 0.05) enhanced mitochondrial membrane potential in blastocysts, reducing the release of cytochrome c and resulting in decreased expression of Caspase-3 and Caspase-9. In conclusion, inhibition of cathepsin B activity in porcine parthenotes using 1 μM E-64 resulted in attenuation of apoptosis via a reduction in the release of cytochrome c from mitochondria.

  11. Synthesis of a novel adamantyl nitroxide derivative with potent anti-hepatoma activity in vitro and in vivo.

    PubMed

    Sun, Jin; Wang, Shan; Bu, Wei; Wei, Meng-Ying; Li, Wei-Wei; Yao, Min-Na; Ma, Zhong-Ying; Lu, Cheng-Tao; Li, Hui-Hui; Hu, Na-Ping; Zhang, En-Hu; Yang, Guo-Dong; Wen, Ai-Dong; Zhu, Xiao-He

    2016-01-01

    In this study, a novel adamantyl nitroxide derivative was synthesized and its antitumor activities in vitro and in vivo were investigated. The adamantyl nitroxide derivative 4 displayed a potent anticancer activity against all the tested human hepatoma cells, especially with IC50 of 68.1 μM in Bel-7404 cells, compared to the positive control 5-FU (IC50=607.7 μM). The significant inhibition of cell growth was also observed in xenograft mouse model, with low toxicity. Compound 4 suppressed the cell migration and invasion, induced the G2/M phase arrest. Further mechanistic studies revealed that compound 4 induced cell death, which was accompanied with damaging mitochondria, increasing the generation of intracellular reactive oxygen species, cleavages of caspase-9 and caspase-3, as well as activations of Bax and Bcl-2. These results confirmed that adamantyl nitroxide derivative exhibited selective antitumor activities via mitochondrial apoptosis pathway in Bel-7404 cells, and would be a potential anticancer agent for liver cancer.

  12. Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade

    PubMed Central

    Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong

    2015-01-01

    Gecko proteins have long been used as anti-tumor agents in oriental medicine, without any scientific background. Although anti-tumor effects of Gecko proteins on several cancers were recently reported, their effect on bladder cancer has not been investigated. Thus, we explored the anti-tumor effect of Gecko proteins and its cellular mechanisms in human bladder cancer 5637 cells. Gecko proteins significantly reduced the viability of 5637 cells without any cytotoxic effect on normal cells. These proteins increased the Annexin-V staining and the amount of condensed chromatin, demonstrating that the Gecko proteinsinduced cell death was caused by apoptosis. Gecko proteins suppressed Akt activation, and the overexpression of constitutively active form of myristoylated Akt prevented Gecko proteins-induced death of 5637 cells. Furthermore, Gecko proteins activated caspase 9 and caspase 3/7. Taken together, our data demonstrated that Gecko proteins suppressed the Akt pathway and activated the intrinsic caspase pathway, leading to the apoptosis of bladder cancer cells. [BMB Reports 2015; 48(9): 531-536] PMID:26246284

  13. Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade.

    PubMed

    Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong

    2015-09-01

    Gecko proteins have long been used as anti-tumor agents in oriental medicine, without any scientific background. Although anti-tumor effects of Gecko proteins on several cancers were recently reported, their effect on bladder cancer has not been investigated. Thus, we explored the anti-tumor effect of Gecko proteins and its cellular mechanisms in human bladder cancer 5637 cells. Gecko proteins significantly reduced the viability of 5637 cells without any cytotoxic effect on normal cells. These proteins increased the Annexin-V staining and the amount of condensed chromatin, demonstrating that the Gecko proteinsinduced cell death was caused by apoptosis. Gecko proteins suppressed Akt activation, and the overexpression of constitutively active form of myristoylated Akt prevented Gecko proteins-induced death of 5637 cells. Furthermore, Gecko proteins activated caspase 9 and caspase 3/7. Taken together, our data demonstrated that Gecko proteins suppressed the Akt pathway and activated the intrinsic caspase pathway, leading to the apoptosis of bladder cancer cells. [BMB Reports 2015; 48(9): 531-536].

  14. A novel orally active proteasome inhibitor ONX 0912 triggers in vitro and in vivo cytotoxicity in multiple myeloma.

    PubMed

    Chauhan, Dharminder; Singh, Ajita V; Aujay, Monette; Kirk, Christopher J; Bandi, Madhavi; Ciccarelli, Bryan; Raje, Noopur; Richardson, Paul; Anderson, Kenneth C

    2010-12-02

    Bortezomib therapy has proven successful for the treatment of relapsed, relapsed/refractory, and newly diagnosed multiple myeloma (MM). At present, bortezomib is available as an intravenous injection, and its prolonged treatment is associated with toxicity and development of drug resistance. Here we show that the novel proteasome inhibitor ONX 0912, a tripeptide epoxyketone, inhibits growth and induces apoptosis in MM cells resistant to conventional and bortezomib therapies. The anti-MM activity of ONX-0912 is associated with activation of caspase-8, caspase-9, caspase-3, and poly(ADP) ribose polymerase, as well as inhibition of migration of MM cells and angiogenesis. ONX 0912, like bortezomib, predominantly inhibits chymotrypsin-like activity of the proteasome and is distinct from bortezomib in its chemical structure. Importantly, ONX 0912 is orally bioactive. In animal tumor model studies, ONX 0912 significantly reduced tumor progression and prolonged survival. Immununostaining of MM tumors from ONX 0912-treated mice showed growth inhibition, apoptosis, and a decrease in associated angiogenesis. Finally, ONX 0912 enhances anti-MM activity of bortezomib, lenalidomide dexamethasone, or pan-histone deacetylase inhibitor. Taken together, our study provides the rationale for clinical protocols evaluating ONX 0912, either alone or in combination, to improve patient outcome in MM.

  15. Synthesis of a novel adamantyl nitroxide derivative with potent anti-hepatoma activity in vitro and in vivo

    PubMed Central

    Sun, Jin; Wang, Shan; Bu, Wei; Wei, Meng-Ying; Li, Wei-Wei; Yao, Min-Na; Ma, Zhong-Ying; Lu, Cheng-Tao; Li, Hui-Hui; Hu, Na-Ping; Zhang, En-Hu; Yang, Guo-Dong; Wen, Ai-Dong; Zhu, Xiao-He

    2016-01-01

    In this study, a novel adamantyl nitroxide derivative was synthesized and its antitumor activities in vitro and in vivo were investigated. The adamantyl nitroxide derivative 4 displayed a potent anticancer activity against all the tested human hepatoma cells, especially with IC50 of 68.1 μM in Bel-7404 cells, compared to the positive control 5-FU (IC50=607.7 μM). The significant inhibition of cell growth was also observed in xenograft mouse model, with low toxicity. Compound 4 suppressed the cell migration and invasion, induced the G2/M phase arrest. Further mechanistic studies revealed that compound 4 induced cell death, which was accompanied with damaging mitochondria, increasing the generation of intracellular reactive oxygen species, cleavages of caspase-9 and caspase-3, as well as activations of Bax and Bcl-2. These results confirmed that adamantyl nitroxide derivative exhibited selective antitumor activities via mitochondrial apoptosis pathway in Bel-7404 cells, and would be a potential anticancer agent for liver cancer. PMID:27429843

  16. Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B against skin tumor-initiation triggering mitochondrial death pathway.

    PubMed

    Bhui, Kulpreet; Prasad, Sahdeo; George, Jasmine; Shukla, Yogeshwer

    2009-09-18

    Chemoprevention impels the pursuit for either single targeted or cocktail of multi-targeted agents. Bromelain, potential agent in this regard, is a pharmacologically active compound, present in stems and fruits of pineapple (Ananas cosmosus), endowed with anti-inflammatory, anti-invasive and anti-metastatic properties. Herein, we report the anti tumor-initiating effects of bromelain in 2-stage mouse skin tumorigenesis model. Pre-treatment of bromelain resulted in reduction in cumulative number of tumors (CNT) and average number of tumors per mouse. Preventive effect was also comprehended in terms of reduction in tumor volume up to a tune of approximately 65%. Components of the cell signaling pathways, connecting proteins involved in cell death were targeted. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in Bcl-2. A marked inhibition in cyclooxygenase-2 (Cox-2) expression and inactivation of nuclear factor-kappa B (NF-kappaB) was recorded, as phosphorylation and consequent degradation of I kappa B alpha was blocked by bromelain. Also, bromelain treatment curtailed extracellular signal regulated protein kinase (ERK1/2), p38 mitogen-activated protein kinase (MAPK) and Akt activity. The basis of anti tumor-initiating activity of bromelain was revealed by its time dependent reduction in DNA nick formation and increase in percentage prevention. Thus, modulation of inappropriate cell signaling cascades driven by bromelain is a coherent approach in achieving chemoprevention.

  17. ROS-mediated JNK/p38-MAPK activation regulates Bax translocation in Sorafenib-induced apoptosis of EBV-transformed B cells.

    PubMed

    Park, Ga Bin; Choi, Yunock; Kim, Yeong Seok; Lee, Hyun-Kyung; Kim, Daejin; Hur, Dae Young

    2014-03-01

    Sorafenib (SRF) is a multi-kinase inhibitor that has been shown to have antitumor activity against several types of cancers, but the effect of SRF on EBV-transformed B cells is unknown. We report that SRF can induce the apoptosis of EBV-transformed B cells through JNK/p38-MAPK activation. SRF triggered the generation of reactive oxygen species (ROS), translocation of Bax into the mitochondria, disruption of mitochondrial membrane potential, activation of caspase-9, caspase-3 and PARP, and subsequent apoptosis. Moreover, we found that SRF exposure activated the phosphorylation of JNK and p38-MAPK and suppressed the phosphorylation of PI3K-p85 and Akt. N-acetyl-l-cysteine (NAC) inhibited the activation of JNK and p38-MAPK. SP600125 and SB203580 blocked apoptosis and mitochondrial membrane disruption but did not affect ROS production after SRF treatment. These findings provide novel insights into the molecular mechanisms driving SRF-mediated cell death and suggest that SRF could be a potential therapeutic drug for the treatment of EBV-related malignant diseases.

  18. The Amaryllidaceae isocarbostyril narciclasine induces apoptosis by activation of the death receptor and/or mitochondrial pathways in cancer cells but not in normal fibroblasts.

    PubMed

    Dumont, Patrick; Ingrassia, Laurent; Rouzeau, Sébastien; Ribaucour, Fabrice; Thomas, Stéphanie; Roland, Isabelle; Darro, Francis; Lefranc, Florence; Kiss, Robert

    2007-09-01

    Our study has shown that the Amaryllidaceae isocarbostyril narciclasine induces marked apoptosis-mediated cytotoxic effects in human cancer cells but not in normal fibroblasts by triggering the activation of the initiator caspases of the death receptor pathway (caspase-8 and caspase-10) at least in human MCF-7 breast and PC-3 prostate carcinoma cells. The formation of the Fas and death receptor 4 (DR4) death-inducing signaling complex was clearly evidenced in MCF-7 and PC-3 cancer cells. Caspase-8 was found to interact with Fas and DR4 receptors on narciclasine treatment. However, narciclasine-induced downstream apoptotic pathways in MCF-7 cells diverged from those in PC-3 cells, where caspase-8 directly activated effector caspases such as caspase-3 in the absence of any further release of mitochondrial proapoptotic effectors. In contrast, in MCF-7 cells, the apoptotic process was found to require an amplification step that is mitochondria-dependent, with Bid processing, release of cytochrome c, and caspase-9 activation. It is postulated that the high selectivity of narciclasine to cancer cells might be linked, at least in part, to this activation of the death receptor pathway. Normal human fibroblasts appear approximately 250-fold less sensitive to narciclasine, which does not induce apoptosis in these cells probably due to the absence of death receptor pathway activation.

  19. IPD-196, a novel phosphatidylinositol 3-kinase inhibitor with potent anticancer activity against hepatocellular carcinoma.

    PubMed

    Lee, Ju-Hee; Lee, Hyunseung; Yun, Sun-Mi; Jung, Kyung Hee; Jeong, Yujeong; Yan, Hong Hua; Hong, Sungwoo; Hong, Soon-Sun

    2013-02-01

    As the activation of phosphatidylinositol 3-kinase (PI3K) is associated with a wide variety of human malignancies, it is emerging as an attractive target for cancer treatment. In this study we synthesized a novel PI3Kα inhibitor, IPD-196 [ethyl 6-(5-(2,4-difluorophenylsulfonamido)pyridin-3-yl)imidazo[1,2-a]pyridine-3-carboxylate], and evaluated its anticancer effects on human hepatocellular carcinoma (HCC) cells. IPD-196 effectively inhibited the phosphorylation of downstream PI3K effectors such as Akt, mTOR, p70S6K, and 4E-BP1, and its antiproliferative effect was more potent than that of sorafenib or LY294002. It also induced cell cycle arrest at the G0/G1 phase as well as apoptosis by increasing the proportion of sub-G1 apoptotic cells, and the levels of cleaved PARP, caspase-3, and caspase-9. Furthermore, it decreased the expression of HIF-1α and VEGF in Huh-7 cells, and inhibited tube formation and migration of human umbilical vein endothelial cells, which was confirmed by a Matrigel plug assay in mice. Taken together, IPD-196 exhibited its anticancer activity through disruption of the PI3K/Akt pathway that caused cell cycle arrest, apoptosis induction, and inhibition of angiogenesis in human HCC cells. We therefore suggest that IPD-196 may be a potential candidate drug for targeted HCC therapy.

  20. Inhibitor of Nicotinamide Phosphoribosyltransferase Sensitizes Glioblastoma Cells to Temozolomide via Activating ROS/JNK Signaling Pathway

    PubMed Central

    Feng, Jun; Yan, Peng-Fei; Zhao, Hong-yang; Zhang, Fang-Cheng; Zhao, Wo-Hua

    2016-01-01

    Overcoming temozolomide (TMZ) resistance is a great challenge in glioblastoma (GBM) treatment. Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide and has a crucial role in cancer cell metabolism. In this study, we investigated whether FK866 and CHS828, two specific NAMPT inhibitors, could sensitize GBM cells to TMZ. Low doses of FK866 and CHS828 (5 nM and 10 nM, resp.) alone did not significantly decrease cell viability in U251-MG and T98 GBM cells. However, they significantly increased the antitumor action of TMZ in these cells. In U251-MG cells, administration of NAMPT inhibitors increased the TMZ (100 μM)-induced apoptosis and LDH release from GBM cells. NAMPT inhibitors remarkably enhanced the activities of caspase-1, caspase-3, and caspase-9. Moreover, NAMPT inhibitors increased reactive oxygen species (ROS) production and superoxide anion level but reduced the SOD activity and total antioxidative capacity in GBM cells. Treatment of NAMPT inhibitors increased phosphorylation of c-Jun and JNK. Administration of JNK inhibitor SP600125 or ROS scavenger tocopherol with TMZ and NAMPT inhibitors substantially attenuated the sensitization of NAMPT inhibitor on TMZ antitumor action. Our data indicate a potential value of NAMPT inhibitors in combined use with TMZ for GBM treatment. PMID:28097126

  1. A Novel Resveratrol Based Tubulin Inhibitor Induces Mitotic Arrest and Activates Apoptosis in Cancer Cells

    PubMed Central

    Thomas, Elizabeth; Gopalakrishnan, Vidya; Hegde, Mahesh; Kumar, Sujeet; Karki, Subhas S.; Raghavan, Sathees C.; Choudhary, Bibha

    2016-01-01

    Resveratrol is one of the most widely studied bioactive plant polyphenols which possesses anticancer properties. Previously we have reported synthesis, characterization and identification of a novel resveratrol analog, SS28. In the present study, we show that SS28 induced cytotoxicity in several cancer cell lines ex vivo with an IC50 value of 3–5 μM. Mechanistic evaluation of effect of SS28 in non-small cell lung cancer cell line (A549) and T-cell leukemic cell line (CEM) showed that it inhibited Tubulin polymerization during cell division to cause cell cycle arrest at G2/M phase of the cell cycle at 12–18 h time period. Immunofluorescence studies confirmed the mitotic arrest upon treatment with SS28. Besides, we show that SS28 binds to Tubulin with a dissociation constant of 0.414 ± 0.11 μM. Further, SS28 treatment resulted in loss of mitochondrial membrane potential, activation of Caspase 9 and Caspase 3, leading to PARP-1 cleavage and finally cell death via intrinsic pathway of apoptosis. Importantly, treatment with SS28 resulted in regression of tumor in mice. Hence, our study reveals the antiproliferative activity of SS28 by disrupting microtubule dynamics by binding to its cellular target Tubulin and its potential to be developed as an anticancer molecule. PMID:27748367

  2. Chan-Yu-Bao-Yuan-Tang and 5-fluorouracil synergistically induce apoptosis by means of the caspase-3 signaling pathway in lung and cervical cancer cells.

    PubMed

    Zeng, Fang; Liu, Xiaoguang; Li, Yuncheng; Chen, Gang; Wang, Yekai; Zhou, Shiquan; Zhu, Wangyu; Huang, Yanyan; Zhou, Jiehang; Li, Shibo; Zhang, Yongkui

    2011-01-01

    Previous clinical studies have shown the safety and efficacy of the traditional Chinese medicinal herbal aqueous extract Chan-Yu-Bao-Yuan-Tang (CYBYT) for the treatment of lung and cervical cancer patients. Used in combination with 5-fluorouracil (5-Fu), CYBYT has been observed to be particularly effective in cancer treatment. Herein, the combined anticancer effect and the underlying mechanisms of 5-Fu and CYBYT in the human lung cancer cell line A549 and the human cervical cancer cell line HeLa were investigated in vitro. The MTT assay, Annexin V-FITC staining and Western blotting were applied to identify cell viability, the stages of apoptosis and the expression of signaling proteins, respectively. The results indicated that CYBYT and 5-Fu, alone or in combination, significantly inhibited proliferation and induced marked apoptosis in A549 and HeLa cells, but had no significant inhibitory effects on normal human IMR-90 fibroblasts. The rate of mid and late apoptosis or necrosis was greater after 5-Fu treatment compared to treatment with CYBYT or the combination of agents; however, the early apoptotic rate showed opposite results. CYBYT and 5-Fu, alone or in combination, up-regulated cleaved caspase-3 expression in a time-dependent manner, with CYBYT being more effective than 5-Fu. Taken together, our data show that the pro-apoptotic activity of the two-drug combination was much stronger than that of CYBYT or 5-Fu alone; CYBYT combined with 5-Fu had synergistic effects at lower concentrations and promoted apoptosis, while the combined treatment also decreased the cytotoxic side effects of 5-Fu.

  3. S-benzyl-cysteine-mediated cell cycle arrest and apoptosis involving activation of mitochondrial-dependent caspase cascade through the p53 pathway in human gastric cancer SGC-7901 cells.

    PubMed

    Sun, Hua-Jun; Meng, Lin-Yi; Shen, Yang; Zhu, Yi-Zhun; Liu, Hong-Rui

    2013-01-01

    S-benzyl-cysteine (SBC) is a structural analog of S-allylcysteine (SAC), which is one of the major water- soluble compounds in aged garlic extract. In this study, anticancer activities and the underlying mechanisms of SBC action were investigated and compared these with those of SAC using human gastric cancer SGC-7901 cells. SBC significantly suppressed the survival rate of SGC-7901 cells in a concentration- and time-dependent manner, and the inhibitory activities of SBC were stronger than those of SAC. Flow cytometry revealed that SBC induced G2-phase arrest and apoptosis in SGC-7901 cells. Typical apoptotic morphological changes were observed by Hoechst 33258 dye assay. SBC-treatment dramatically induced the dissipation of mitochondrial membrane potential (Δψm), and enhanced the enzymatic activities of caspase-9 and caspase-3 whilst hardly affecting caspase-8 activity. Furthermore, Western blotting indicated that SBC-induced apoptosis was accompanied by up-regulation of the expression of p53, Bax and the down-regulation of Bcl-2. Taken together, this study suggested that SBC exerts cytotoxic activity involving activation of mitochondrial-dependent apoptosis through p53 and Bax/Bcl-2 pathways in human gastric cancer SGC-7901 cells.

  4. Antiproliferative and Apoptosis-Inducing Activities of 4-Isopropyl-2,6-bis(1-phenylethyl)phenol Isolated from Butanol Fraction of Cordyceps bassiana

    PubMed Central

    Kim, Ji Hye; Sung, Gi-Ho; Kim, Han Gyung; Park, Jae Gwang; Baek, Kwang-Soo; Yoon, Deok Hyo; Lee, Sang Yeol; Kang, Hyojeung; Song, Changsik; Cho, Jae Han; Lee, Kang-Hyo; Kim, Tae Woong

    2015-01-01

    The Cordyceps species have been widely used for treating various cancer diseases. Although the Cordyceps species have been widely known as an alternative anticancer remedy, which compounds are responsible for their anticancer activity is not fully understood. In this study, therefore, we examined the anticancer activity of 5 isolated compounds derived from the butanol fraction (Cb-BF) of Cordyceps bassiana. For this purpose, several cancer cell lines such as C6 glioma, MDA-MB-231, and A549 cells were employed and details of anticancer mechanism were further investigated. Of 5 compounds isolated by activity-guided fractionation from BF of Cb-EE, KTH-13, and 4-isopropyl-2,6-bis(1-phenylethyl)phenol, Cb-BF was found to be the most potent antiproliferative inhibitor of C6 glioma and MDA-MB-231 cell growth. KTH-13 treatment increased DNA laddering, upregulated the level of Annexin V positive cells, and altered morphological changes of C6 glioma and MDA-MB-231 cells. In addition, KTH-13 increased the levels of caspase 3, caspase 7, and caspase 9 cleaved forms as well as the protein level of Bax but not Bcl-2. It was also found that the phosphorylation of AKT and p85/PI3K was also clearly reduced by KTH-13 exposure. Therefore, our results suggest KTH-13 can act as a potent antiproliferative and apoptosis-inducing component from Cordyceps bassiana, contributing to the anticancer activity of this mushroom. PMID:25918546

  5. Procyanidin-rich extract of natural cocoa powder causes ROS-mediated caspase-3 dependent apoptosis and reduction of pro-MMP-2 in epithelial ovarian carcinoma cell lines.

    PubMed

    Taparia, Shruti Sanjay; Khanna, Aparna

    2016-10-01

    Over the last four centuries, cocoa and chocolate have been described as having potential medicinal value. As of today, Theobroma cacao L. (Sterculiaceae) and its products are consumed worldwide. They are of great research interest because of the concentration dependent antioxidant as well as pro-oxidant properties of some of their polyphenolic constituents, specially procyanidins and flavan-3-ols such as catechin. This study was aimed at investigating the cellular and molecular changes associated with cytotoxicity, caused due pro-oxidant activity of cocoa catechins and procyanidins, in ovarian cancer cell lines. Extract of non-alkalized cocoa powder enriched with catechins and procyanidins was used to treat human epithelial ovarian cancer cell lines OAW42 and OVCAR3 at various concentrations ≤1000μg/mL. The effect of treatment on intracellular reactive oxygen species (ROS) levels was determined. Apoptotic cell death, post treatment, was evaluated microscopically and using flow cytometry by means of annexin-propidium iodide (PI) dual staining. Levels of active caspase-3 as a pro-apoptotic marker and matrix metalloproteinase 2 (MMP2) as an invasive potential marker were detected using Western blotting and gelatin zymography. Treatment with extract caused an increase in intracellular ROS levels in OAW42 and OVCAR3 cell lines. Bright field and fluorescence microscopy of treated cells revealed apoptotic morphology and DNA damage. Increase in annexin positive cell population and dose dependent upregulation of caspase-3 confirmed apoptotic cell death. pro-MMP2 was found to be downregulated in a dose dependent manner in cells treated with the extract. Treated cells also showed a reduction in MMP2 activity. Our data suggests that cocoa catechins and procyanidins are cytotoxic to epithelial ovarian cancer, inducing apoptotic morphological changes, DNA damage and caspase-3 mediated cell death. Downregulation of pro-MMP2 and reduction in active MMP2 levels imply a decrease

  6. Activation of the SIRT1/p66shc antiapoptosis pathway via carnosic acid-induced inhibition of miR-34a protects rats against nonalcoholic fatty liver disease

    PubMed Central

    Shan, W; Gao, L; Zeng, W; Hu, Y; Wang, G; Li, M; Zhou, J; Ma, X; Tian, X; Yao, J

    2015-01-01

    Recent studies have demonstrated that miR-34a expression is significantly upregulated and associated with apoptosis in nonalcoholic fatty liver disease (NAFLD). Carnosic acid (CA) is a novel antioxidant and a potential inhibitor of apoptosis in organ injury, including liver injury. This study aimed to investigate the signaling mechanisms underlying miR-34a expression and the antiapoptotic effect of CA in NAFLD. CA treatment significantly reduced the high-fat diet (HFD)-induced elevations in aminotransferase activity as well as in serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and malondialdehyde (MDA) levels but increased serum high-density lipoprotein cholesterol (HDL-C) and hepatic superoxide dismutase (SOD) levels. Moreover, CA treatment ameliorated the increase in cleaved caspase-3 caused by HFD exposure and completely reversed the HFD-induced decreases in manganese superoxide dismutase (MnSOD) and B-cell lymphoma-extra large expression. CA also counteracted the HFD- or palmitic acid (PA)-induced increases in caspase-3 and caspase-9 activity. Mechanistically, CA reversed the HFD- or PA-induced upregulation of miR-34a, which is the best-characterized regulator of SIRT1. Importantly, the decrease in miR-34a expression was closely associated with the activation of the SIRT1/p66shc pathway, which attenuates hepatocyte apoptosis in liver ischemia/reperfusion injury. A dual luciferase assay in L02 cells validated the modulation of SIRT1 by CA, which occurs at least partly via miR-34a. In addition, miR-34a overexpression was significantly counteracted by CA, which prevented the miR-34a-dependent repression of the SIRT1/p66shc pathway and apoptosis. Collectively, our results support a link between liver cell apoptosis and the miR-34a/SIRT1/p66shc pathway, which can be modulated by CA in NAFLD. PMID:26203862

  7. Graphene quantum dots induce apoptosis, autophagy, and inflammatory response via p38 mitogen-activated protein kinase and nuclear factor-κB mediated signaling pathways in activated THP-1 macrophages.

    PubMed

    Qin, Yiru; Zhou, Zhi-Wei; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Qiu, Jia-Xuan; Duan, Wei; Yang, Tianxin; Zhou, Shu-Feng

    2015-01-02

    The biomedical application of graphene quantum dots (GQDs) is a new emerging area. However, their safety data are still in scarcity to date. Particularly, the effect of GQDs on the immune system remains unknown. This study aimed to elucidate the interaction of GQDs with macrophages and the underlying mechanisms. Our results showed that GQDs slightly affected the cell viability and membrane integrity of macrophages, whereas GQDs significantly increased reactive oxygen species (ROS) generation and apoptotic and autophagic cell death with an increase in the expression level of Bax, Bad, caspase 3, caspase 9, beclin 1, and LC3-I/II and a decrease in that of Bcl-2. Furthermore, low concentrations of GQDs significantly increased the expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-8, whereas high concentrations of GQDs elicited opposite effects on the cytokines production. SB202190, a selective inhibitor of p38 mitogen-activated protein kinase (MAPK), abolished the cytokine-inducing effect of GQDs in macrophages. Moreover, GQDs significantly increased the phosphorylation of p38 MAPK and p65, and promoted the nuclear translocation of nuclear factor-κB (NF-κB). Taken together, these results show that GQDs induce ROS generation, apoptosis, autophagy, and inflammatory response via p38MAPK and NF-κB mediated signaling pathways in THP-1 activated macrophages.

  8. Apoptotic and anti-adhesion effect of ajoene, a garlic derived compound, on the murine melanoma B16F10 cells: possible role of caspase-3 and the alpha(4)beta(1) integrin.

    PubMed

    Ledezma, Eliades; Apitz-Castro, Rafael; Cardier, José

    2004-03-31

    In this study we evaluated the hypothesis that the antitumor activity of ajoene could be associated with its apoptosis-inducing effect, and with its ability to block the expression of the alpha(4)beta(1) integrin, in the murine melanoma B16F10 cells. Ajoene induced a significant reduction in B16F10 viability (IC(50)=62 microM), in a dose-dependent manner. Flow cytometric analysis showed that the cytotoxic effect of this compound was associated with caspase-3 activation. Ajoene at 25 microM altered the alpha(4)beta(1) integrin expression on B16F10, and induced a significant reduction in the adhesion of these cells to an endothelial cell monolayer.

  9. Improvement Characteristics of Bio-active Materials Coated Fabric on Rat Muscular Mitochondria.

    PubMed

    Lee, Donghee; Kim, Young-Won; Kim, Jung-Ha; Yang, Misuk; Bae, Hyemi; Lim, Inja; Bang, Hyoweon; Go, Kyung-Chan; Yang, Gwang-Wung; Rho, Yong-Hwan; Park, Hyo-Suk; Park, Eun-Ho; Ko, Jae-Hong

    2015-05-01

    This study surveys the improvement characteristics in old-aged muscular mitochondria by bio-active materials coated fabric (BMCF). To observe the effects, the fabric (10 and 30%) was worn to old-aged rat then the oxygen consumption efficiency and copy numbers of mitochondria, and mRNA expression of apoptosis- and mitophagy-related genes were verified. By wearing the BMCF, the oxidative respiration significantly increased when using the 30% materials coated fabric. The mitochondrial DNA copy number significantly decreased and subsequently recovered in a dose-dependent manner. The respiratory control ratio to mitochondrial DNA copy number showed a dose-dependent increment. As times passed, Bax, caspase 9, PGC-1α and β-actin increased, and Bcl-2 decreased in a dose-dependent manner. However, the BMCF can be seen to have had no effect on Fas receptor. PINK1 expression did not change considerably and was inclined to decrease in control group, but the expression was down-regulated then subsequently increased with the use of the BMCF in a dose-dependent manner. Caspase 3 increased and subsequently decreased in a dose-dependent manner. These results suggest that the BMCF invigorates mitophagy and improves mitochondrial oxidative respiration in skeletal muscle, and in early stage of apoptosis induced by the BMCF is not related to extrinsic death-receptor mediated but mitochondria-mediated signaling pathway.

  10. Activation of JNK/p38 pathway is responsible for α-methyl-n-butylshikonin induced mitochondria-dependent apoptosis in SW620 human colorectal cancer cells.

    PubMed

    Wang, Hai-Bing; Ma, Xiao-Qiong

    2014-01-01

    α-Methyl-n-butylshikonin (MBS), one of the active components in the root extracts of Lithospermum erythrorhizon, posses antitumor activity. In this study, we assess the molecular mechanisms of MBS in causing apoptosis of SW620 cells. MBS reduced the cell viability of SW620 cells in a dose-and time-dependent manner and induced cell apoptosis. Treatment of SW620 cells with MBS down-regulated the expression of Bcl-2 and up-regulated the expression of Bak and caused the loss of mitochondrial membrane potential. Additionally, MBS treatment led to activation of caspase-9, caspase-8 and caspase-3, and cleavage of PARP, which was abolished by pretreatment with the pan-caspase inhibitor Z-VAD-FMK. MBS also induced significant elevation in the phosphorylation of JNK and p38. Pretreatment of SW620 cells with specific inhibitors of JNK (SP600125) and p38 (SB203580) abrogated MBS-induced apoptosis. Our results demonstrated that MBS inhibited growth of colorectal cancer SW620 cells by inducing JNK and p38 signaling pathway, and provided a clue for preclinical and clinical evaluation of MBS for colorectal cancer therapy.

  11. Epoxyeicosatrienoic Acids Attenuate Reactive Oxygen Species Level, Mitochondrial Dysfunction, Caspase Activation, and Apoptosis in Carcinoma Cells Treated with Arsenic TrioxideS⃞

    PubMed Central

    Liu, Liu; Chen, Chen; Gong, Wei; Li, Yuanjing; Edin, Matthew L.; Zeldin, Darryl C.

    2011-01-01

    Epoxyeicosatrienoic acids (EETs) and the cytochrome P450 epoxygenase CYP2J2 promote tumorogenesis in vivo and in vitro via direct stimulation of tumor cell growth and inhibition of tumor cell apoptosis. Herein, we describe a novel mechanism of inhibition of tumor cell apoptosis by EETs. In Tca-8113 cancer cells, the antileukemia drug arsenic trioxide (ATO) led to the generation of reactive oxygen species (ROS), impaired mitochondrial function, and induced apoptosis. 11,12-EET pretreatment increased expression of the antioxidant enzymes superoxide dismutase and catalase and inhibited ATO-induced apoptosis. 11,12-EET also prevented the ATO-induced activation of p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, caspase-3, and caspase-9. Therefore, 11,12-EET-pretreatment attenuated the ROS generation, loss of mitochondrial function, and caspase activation observed after ATO treatment. Moreover, the CYP2J2-specific inhibitor compound 26 enhanced arsenic cytotoxicity to a clinically relevant concentration of ATO (1–2 μM). Both the thiol-containing antioxidant, N-acetyl-cysteine, and 11,12-EET reversed the synergistic effect of the two agents. Taken together, these data indicate that 11,12-EET inhibits apoptosis induced by ATO through a mechanism that involves induction of antioxidant proteins and attenuation of ROS-mediated mitochondrial dysfunction. PMID:21846841

  12. Aflatoxin B1 affects apoptosis and expression of Bax, Bcl-2, and Caspase-3 in thymus and bursa of fabricius in broiler chickens.

    PubMed

    Peng, Xi; Chen, Kejie; Chen, Jin; Fang, Jing; Cui, Hengmin; Zuo, Zhicai; Deng, Junliang; Chen, Zhengli; Geng, Yi; Lai, Weimin

    2016-09-01

    Aflatoxin B1 is known as a mycotoxin that develops various health problems of animals, the effects of AFB1 on thymus and bursa of Fabricius in chickens are not clear. The objective of this study was to investigate the apoptosis of thymus and bursa of Fabricius in broilers fed with AFB1 . Two hundred Avian broilers were randomly divided into four groups of 50 each, namely control group and three AFB1 groups fed with 0.15 mg, 0.3 mg, and 0.6 mg AFB1 /kg diet, respectively. In this study, flow cytometer and immunohistochemical approaches were used to determine the percentage of apoptotic cells and the expression of Bax, Bcl-2, and Caspase-3. The results showed that consumption of AFB1 diets results in increased percentage of apoptotic cells and increased expression of Caspase-3 in both thymus and bursa of Fabricius. The expression of Bax was increased and the expression of Bcl-2 was decreased in the thymus, but no significant changes in Bax and Bcl-2 expression were observed in the bursa of Fabricius when broilers fed with AFB1 . These findings suggest that adverse effects of AFB1 on thymus and bursa of Fabricius in broilers were confirmed by increased apoptotic cells and abnormal expression of Caspase-3. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1113-1120, 2016.

  13. Dietary high fluorine induces apoptosis and alters Bcl-2, Bax, and caspase-3 protein expression in the cecal tonsil lymphocytes of broilers.

    PubMed

    Liu, Juan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Wang, Hesong; Wu, Bangyuan; Deng, Yuanxin; Wang, Kangping

    2013-04-01

    Long-term excessive fluoride intake is known to be toxic and can lead to fluorosis and bone pathologies. However, the cellular mechanisms underlying sodium fluoride-induced cytotoxicity in the cecal tonsil lymphocytes are not well understood. The aims of this study were to investigate the effects of high dietary fluorine on apoptosis and the expression of the Bcl-2, Bax, and caspase-3 in the cecal tonsil lymphocytes of broilers. The broilers were fed on high-fluorine diets containing 0, 400, 800, and 1,200 mg/kg fluorine. As measured by flow cytometry, the percentage of apoptotic lymphocytes was significantly increased in the high-fluorine groups II and III when compared with those in the control group. Meanwhile, immunohistochemical tests showed that the Bcl-2 protein expression decreased, and the Bax and caspase-3 protein expression increased in the high-fluorine groups II and III. In conclusion, dietary fluorine in the range of 800-1,200 mg/kg increased lymphocyte apoptosis in the cecal tonsil of broilers, suggesting that the lymphocyte apoptosis in the cecal tonsil was mediated by direct effects of fluoride on the expression of Bcl-2, Bax, and caspase-3.

  14. Apoptotic effects of Physalis minima L. chloroform extract in human breast carcinoma T-47D cells mediated by c-myc-, p53-, and caspase-3-dependent pathways.

    PubMed

    Ooi, Kheng Leong; Tengku Muhammad, Tengku Sifzizul; Lim, Chui Hun; Sulaiman, Shaida Fariza

    2010-03-01

    The chloroform extract of Physalis minima produced a significant growth inhibition against human T-47D breast carcinoma cells as compared with other extracts with an EC(50) value of 3.8 microg/mL. An analysis of cell death mechanisms indicated that the extract elicited an apoptotic cell death. mRNA expression analysis revealed the coregulation of apoptotic genes, that is, c-myc , p53, and caspase-3. The c-myc was significantly induced by the chloroform extract at the earlier phase of treatment, followed by p53 and caspase-3. Biochemical assay and ultrastructural observation displayed typical apoptotic features in the treated cells, including DNA fragmentation, blebbing and convolution of cell membrane, clumping and margination of chromatin, and production of membrane-bound apoptotic bodies. The presence of different stages of apoptotic cell death and phosphatidylserine externalization were further reconfirmed by annexin V and propidium iodide staining. Thus, the results from this study strongly suggest that the chloroform extract of P. minima induced apoptotic cell death via p53-, caspase-3-, and c-myc-dependent pathways.

  15. Two Chitotriose-Specific Lectins Show Anti-Angiogenesis, Induces Caspase-9-Mediated Apoptosis and Early Arrest of Pancreatic Tumor Cell Cycle

    PubMed Central

    Sarkar, Dhiman; Suresh, C. G.

    2016-01-01

    The antiproliferative activity of two chito- specific agglutinins purified from Benincasa hispida (BhL) and Datura innoxia (DiL9) of different plant family origin was investigated on various cancer cell lines. Both lectins showed chitotriose specificity, by inhibiting lectin hemagglutinating activity. On further studies, it was revealed that these agglutinins caused remarkable concentration-dependent antiproliferative effect on human pancreatic cancerous cells but not on the normal human umbilical vein endothelial cells even at higher doses determined using MTT assay. The GI50 values were approximately 8.4 μg ml-1 (0.247 μM) and 142 μg ml-1(14.8 μM) for BhL and DiL9, respectively, against PANC-1 cells. The growth inhibitory effect of these lectins on pancreatic cancer cells were shown to be a consequence of lectin cell surface binding and triggering G0/G1 arrest, mitochondrial membrane depolarization, sustained increase of the intracellular calcium release and the apoptotic signal is amplified by activation of caspases executing cell death. Interestingly, these lectins also showed anti-angiogenic activity by disrupting the endothelial tubulogenesis. Therefore, we report for the first time two chito-specific lectins specifically binding to tumor glycans; they can be considered to be a class of molecules with antitumor activity against pancreatic cancer cells mediated through caspase dependent mitochondrial apoptotic pathway. PMID:26795117

  16. Activation of mitochondria-mediated apoptotic pathway in tri-ortho-cresyl phosphate-induced delayed neuropathy.

    PubMed

    Zou, Chaoshuang; Kou, Ruirui; Gao, Yuan; Xie, Keqin; Song, Fuyong

    2013-06-01

    Previous studies suggest that abnormal neurons death has been implicated in organophosphate-induced delayed neuropathy (OPIDN). However, the precise mechanism of neuronal death in OPIDN remains largely unknown. In this study, adult hens were treated with a dosage of 750 mg/kg tri-ortho-cresyl phosphate (TOCP) by gavage, and then sacrificed on the time-points of 1, 5, 10, and 21 days after dosing TOCP, respectively. The apoptotic change of spinal cord neurons induced by TOCP was examined, and the role of mitochondria-mediated apoptosis of neurons during OPIDN was investigated. TUNEL assays showed that apoptotic neurons in hen spinal cords began to appear on day 5 following TOCP exposure. Immunohistochemistry and western blot analysis revealed a translocation of cytochrome C from mitochondria to cytoplasm after dosing TOCP. Moreover, the level of Bcl-2, Bcl-xl, Pro-caspase3 and Pro-caspase9 in hen spinal cord was significantly decreased, whereas that of Bax and cleaved-PARP was significantly elevated. Taken together, these findings indicate that the administration of TOCP can induce neuron apoptosis in hen spinal cords, which might be mediated by the activation of mitochondrial apoptotic pathway.

  17. Apoptotic effect of novel Schiff Based CdCl2(C14H21N3O2) complex is mediated via activation of the mitochondrial pathway in colon cancer cells

    PubMed Central

    Hajrezaie, Maryam; Paydar, Mohammadjavad; Looi, Chung Yeng; Moghadamtousi, Soheil Zorofchian; Hassandarvish, Pouya; Salga, Muhammad Saleh; Karimian, Hamed; Shams, Keivan; Zahedifard, Maryam; Majid, Nazia Abdul; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2015-01-01

    The development of metal-based agents has had a tremendous role in the present progress in cancer chemotherapy. One well-known example of metal-based agents is Schiff based metal complexes, which hold great promise for cancer therapy. Based on the potential of Schiff based complexes for the induction of apoptosis, this study aimed to examine the cytotoxic and apoptotic activity of a CdCl2(C14H21N3O2) complex on HT-29 cells. The complex exerted a potent suppressive effect on HT-29 cells with an IC50 value of 2.57 ± 0.39 after 72 h of treatment. The collapse of the mitochondrial membrane potential and the elevated release of cytochrome c from the mitochondria to the cytosol indicate the involvement of the intrinsic pathway in the induction of apoptosis. The role of the mitochondria-dependent apoptotic pathway was further proved by the significant activation of the initiator caspase-9 and the executioner caspases-3 and -7. In addition, the activation of caspase-8, which is associated with the suppression of NF-κB translocation to the nucleus, also revealed the involvement of the extrinsic pathway in the induced apoptosis. The results suggest that the CdCl2(C14H21N3O2) complex is able to induce the apoptosis of colon cancer cells and is a potential candidate for future cancer studies. PMID:25764970

  18. 11H-Pyrido[3',2':4,5]pyrrolo[3,2-c]cinnoline and pyrido[3',2':4,5]pyrrolo[1,2-c][1,2,3]benzotriazine: two new ring systems with antitumor activity.

    PubMed

    Parrino, Barbara; Carbone, Anna; Muscarella, Marina; Spanò, Virginia; Montalbano, Alessandra; Barraja, Paola; Salvador, Alessia; Vedaldi, Daniela; Cirrincione, Girolamo; Diana, Patrizia

    2014-11-26

    Derivatives of new ring systems 11H-pyrido[3',2':4,5]pyrrolo[3,2-c]cinnoline and pyrido[3',2':4,5]pyrrolo[1,2-c][1,2,3]benzotriazine have been prepared from the key intermediates 2-(1H-pyrrolo[2,3-b]pyridin-2-yl)anilines in excellent yields (94-99%) and screened by the National Cancer Institute (Bethesda, MD) on about 60 human tumor cell lines derived from nine cancer cell types. The tested compounds exhibited antiproliferative activity against all the human cell lines, showing comparable MG_MID (mean graph midpoint) values in the range of 0.74-1.15 μM. A particular efficacy was observed against the leukemia subpanel (GI50 = 0.73-0.0090 μM). Flow cytometric analysis of the cell cycle demonstrated an increase in the percentage of cells in the G2/M phase. The compounds caused apoptosis of the cells, mitochondrial depolarization, generation of reactive oxygen species, and activation of caspase-3, caspase-8, and caspase-9. Moreover, they acted as topoisomerase I inhibitors.

  19. Antitumor activity of 4-O-(2″-O-acetyl-6″-O-p-coumaroyl-β-D-glucopyranosyl)-p-coumaric acid against lung cancers via mitochondrial-mediated apoptosis.

    PubMed

    Peng, Wei; Wu, Jian-Guo; Jiang, Yun-Bin; Liu, Yu-Jie; Sun, Tao; Wu, Na; Wu, Chun-Jie

    2015-05-25

    This study was aimed to investigate antitumor activity of 4-O-(2″-O-acetyl-6″-O-p-coumaroyl-β-D-glucopyranosyl)-p-coumaric acid (4-ACGC) against lung cancer and its mechanisms. The anti-proliferative effects of 4-ACGC on lung cancer cell lines including A549, NCI-H1299, HCC827 were evaluated by MTT method and the IC50 values were calculated, and subsequently a mice xenograft model of A549 was established to investigate the antitumor effect of 4-ACGC in vivo. Furthermore, the apoptosis of the A549 cells was determined by fluorescence microscope by staining with Hoechst 33324 and flow cytometer by staining with FITC conjugated Annexin V/PI, and the further mechanisms were investigated by Western blotting. Our results demonstrated that 4-ACGC possessed notable anti-tumor activity on lung cancer in vivo and in vitro; the mechanisms were involved in inducing mitochondria-mediated apoptosis via up-regulations of caspase-3, caspase-9, Bad and Bax, and down-regulation of Bcl-2. Collectively, our results indicated that the 4-ACGC could be treated as a new candidate for treatment of lung cancer in the future.

  20. The protective effects of shikonin on hepatic ischemia/reperfusion injury are mediated by the activation of the PI3K/Akt pathway

    PubMed Central

    Liu, Tong; Zhang, QingHui; Mo, Wenhui; Yu, Qiang; Xu, Shizan; Li, Jingjing; Li, Sainan; Feng, Jiao; Wu, Liwei; Lu, Xiya; Zhang, Rong; Li, Linqiang; Cheng, Keran; Zhou, Yuqing; Zhou, Shunfeng; Kong, Rui; Wang, Fan; Dai, Weiqi; Chen, Kan; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Zhao, Yan; Guo, Chuanyong

    2017-01-01

    Hepatic ischemia/reperfusion (I/R) injury, which can result in severe liver injury and dysfunction, occurs in a variety of conditions such as liver transplantation, shock, and trauma. Cell death in hepatic I/R injury has been linked to apoptosis and autophagy. Shikonin plays a significant protective role in ischemia/reperfusion injury. The purpose of the present study was to investigate the protective effect of shikonin on hepatic I/R injury and explore the underlying mechanism. Mice were subjected to segmental (70%) hepatic warm ischemia to induce hepatic I/R injury. Two doses of shikonin (7.5 and 12.5 mg/kg) were administered 2 h before surgery. Balb/c mice were randomly divided into four groups: normal control, I/R, and shikonin preconditioning at two doses (7.5 and 12.5 mg/kg). The serum and liver tissues were collected at three time points (3, 6, and 24 h). Shikonin significantly reduced serum AST and ALT levels and improved pathological features. Shikonin affected the expression of Bcl-2, Bax, caspase 3, caspase 9, Beclin-1, and LC3, and upregulated PI3K and p-Akt compared with the levels in the I/R group. Shikonin attenuated hepatic I/R injury by inhibiting apoptosis and autophagy through a mechanism involving the activation of PI3K/Akt signaling. PMID:28322249

  1. Induction of Apoptosis and Antitumor Activity of Eel Skin Mucus, Containing Lactose-Binding Molecules, on Human Leukemic K562 Cells

    PubMed Central

    Kwak, Choong-Hwan; Lee, Sook-Hyun; Lee, Sung-Kyun; Ha, Sun-Hyung; Suh, Seok-Jong; Kwon, Kyung-Min; Chung, Tae-Wook; Ha, Ki-Tae; Chang, Young-Chae; Lee, Young-Choon; Kim, Dong-Soo; Chang, Hyeun-Wook; Kim, Cheorl-Ho

    2015-01-01

    For innate immune defense, lower animals such as fish and amphibian are covered with skin mucus, which acts as both a mechanical and biochemical barrier. Although several mucus sources have been isolated and studied for their biochemical and immunological functions, the precise mechanism(s) of action remains unknown. In the present study, we additionally found the eel skin mucus (ESM) to be a promising candidate for use in anti-tumor therapy. Our results showed that the viability of K562 cells was decreased in a dose-dependent manner by treatment with the isolated ESM. The cleaved forms of caspase-9, caspase-3 and poly adenosine diphosphate-ribose polymerase were increased by ESM. The levels of Bax expression and released cytochrome C were also increased after treatment with ESM. Furthermore, during the ESM mediated-apoptosis, phosphorylation levels of ERK1/2 and p38 but not JNK were increased and cell viabilities of the co-treated cells with ESM and inhibitors of ERK 1/2 or p38 were also increased. In addition, treatment with lactose rescued the ESM-mediated decrease in cell viability, indicating lactose-containing glycans in the leukemia cells acted as a counterpart of the ESM for interaction. Taken together, these results suggest that ESM could induce mitochondria-mediated apoptosis through membrane interaction of the K562 human leukemia cells. To the best of our knowledge, this is the first observation that ESM has anti-tumor activity in human cells. PMID:26090845

  2. Cytotoxic and Apoptosis-Inducing Activity of Triterpene Glycosides from Holothuria scabra and Cucumaria frondosa against HepG2 Cells

    PubMed Central

    Wang, Juanjuan; Han, Hua; Chen, Xiangfeng; Yi, Yanghua; Sun, Hongxiang

    2014-01-01

    The cytotoxic effects of thirteen triterpene glycosides from Holothuria scabra Jaeger and Cucumaria frondosa Gunnerus (Holothuroidea) against four human cell lines were detected and their cytotoxicity-structure relationships were established. The apoptosis-inducing activity of a more potent glycoside echinoside A (1) in HepG2 cells was further investigated by determining its effect on the morphology, mitochondrial transmembrane potential (Δψm) and mRNA expression levels of the apoptosis-related genes. The results showed that the number of glycosyl residues in sugar chains and the side chain of aglycone could affect their cytotoxicity towards tumor cells and selective cytotoxicity. 1 significantly inhibited cell viability and induced apoptosis in HepG2 cells. 1 also markedly decreased the Δψm and Bcl-2/Bax mRNA express ratio, and up-regulated the mRNA expression levels of Caspase-3, Caspase-8 and Caspase-9 in HepG2 cells. Therefore, 1 induced apoptosis in HepG2 cells through both intrinsic and extrinsic pathway. These findings could potentially promote the usage of these glycosides as leading compounds for developing new antitumor drugs. PMID:25062508

  3. Disturbance of Bcl-2, Bax, Caspase-3, Ki-67 and C-myc expression in acute and subchronic exposure to benzo(a)pyrene in cervix.

    PubMed

    Gao, Meili; Li, Yongfei; Ji, Xiaoying; Xue, Xiaochang; Chen, Lan; Feng, Guodong; Zhang, Huqin; Wang, Huichun; Shah, Walayat; Hou, Zhanwu; Kong, Yu

    2016-03-01

    Epidemiological studies have demonstrated that cigarette smoking is an important cofactor or an independent risk factor for the development of cervical cancer. Benzo(a)pyrene (BaP) is one of the most potent tobacco smoke carcinogens in tobacco smoke. BaP induced DNA damage and over expression in p53 cervical tissue of mice as demonstrated in our previous study. Here we present the findings of exposure to BaP on the expression of Bcl-2, C-myc, Ki-67, Caspase-3 and Bax genes in mouse cervix. Acute intraperitoneal administration of BaP (12.5, 25, 50, 100mg/kg body weight) to ICR female mice induced a significant increase in Bcl-2, C-myc, Ki-67 mRNA and protein level till 72h except in Bcl-2 at 24h with 12.5, 25, 50mg/kg as well as at 48h with 12.5mg/kg body weight post treatment. A significant increase was also seen in Caspase-3 and Bax mRNA and protein level with peak level at 24h and gradual decrease till 72h, however, the expression of caspase-3 increased while that of Bax decreased with increasing dose of Bap after 24h. In sub chronic intraperitoneal and oral gavage administration of BaP (2.5, 5, 10mg/kg body weight), similar significant increase was observed for all the examined genes as compared to the control and vehicle groups, however the expression of Bax decreased in a dose dependent manner. The findings of this study will help in further understanding the molecular mechanism of BaP induced carcinogenesis of cervical cancer.

  4. The effect of aloe emodin-encapsulated nanoliposome-mediated r-caspase-3 gene transfection and photodynamic therapy on human gastric cancer cells.

    PubMed

    Li, Kai-Ting; Duan, Qin-Qin; Chen, Qing; He, Juan-Wen; Tian, Si; Lin, Hai-Dan; Gao, Qing; Bai, Ding-Qun

    2016-02-01

    Gastric carcinoma (GC) has high incidence and mortality rates in China. Surgery and chemotherapy are the main treatments. Photodynamic therapy (PDT) has become a new treatment modality, appearing in recent experimental studies and clinical trials in various tumors. This study explores the combined effect of gene transfection with PDT on GC cells using aloe emodin (AE)-encapsulated nanoliposomes, which acted as gene carrier as well as one photosensitizer (PS). AE-encapsulated nanoliposomes (nano-AE) were prepared by reverse evaporation method. Electron microscopy and nano-ZS90 analyzer were used to detect its morphology, size, and wavelength. Western blot was used to detect the expression of the caspase-3 after transfection. MTT assay and flow cytometry were employed to determine the cytotoxic and apoptotic rates, respectively. Hoechst 33342 staining was adopted to detect the morphological changes in death gastric cancer cells. Cellular reactive oxygen species (ROS) contents were measured by DCFH-DA staining. Outcomes demonstrated that the nano-AE has good properties as gene delivery carriers as well as a PS. The group in which the recombinant plasmid of r-caspase-3 was transfected had higher protein expression of the caspase-3 than controls, meanwhile the proliferation rates of the transfected cells were inhibited by the nano-AE-mediated PDT in an energy-dependent manner. In addition, in the transfected cells, the death rate increased to 77.3% as assessed 12 h after PDT (6.4 J/cm(2) ). Hochest 33342 staining also revealed that the death rate increased significantly in the transfected group compared with other groups. Compared to control groups, the production of ROS in nano-AE PDT group had quadrupled in SGC-7901 cells as early as 1 h after PDT, while it is similar to the group of nano-AE transfection and PDT. Nano-AE-mediated r-caspase-3 gene transfection coupled with PDT could inhibit the proliferation rate and increase the apoptotic rate remarkably in human

  5. Kelussia odoratissima Mozaff. activates intrinsic pathway of apoptosis in breast cancer cells associated with S phase cell cycle arrest via involvement of p21/p27 in vitro and in vivo

    PubMed Central

    Karimian, Hamed; Arya, Aditya; Fadaeinasab, Mehran; Razavi, Mahboubeh; Hajrezaei, Maryam; Karim Khan, Ataul; Mohd Ali, Hapipah; Abdulla, Mahmood Ameen; Noordin, Mohamad Ibrahim

    2017-01-01

    Background The aim of this study was to evaluate the anticancer potential of Kelussia odoratissima. Several in vitro and in vivo biological assays were applied to explore the direct effect of an extract and bioactive compound of this plant against breast cancer cells and its possible mechanism of action. Materials and methods K. odoratissima methanol extract (KME) was prepared, and MTT assay was used to evaluate the cytotoxicity. To identify the cytotoxic compound, a bioassay-guided investigation was performed on methanol extract. 8-Hydroxy-ar-turmerone was isolated as a bioactive compound. In vivo study was performed in the breast cancer rat model. LA7 cell line was used to induce the breast tumor. Histopathological and expression changes of PCNA, Bcl-2, Bax, p27 and p21 and caspase-3 were examined. The induction of apoptosis was tested using Annexin V-fluorescein isothiocyanate (FITC) assay. To confirm the intrinsic pathway of apoptosis, caspase-7 and caspase-9 assays were utilized. In addition, cell cycle arrest was evaluated. Results Our results demonstrated that K. odoratissima has an obvious effect on the arrest of proliferation of cancer cells. It induced apoptosis, transduced the cell death signals, decreased the threshold of mitochondrial membrane potential (MMP), upregulated Bax and downregulated Bcl-2. Conclusion This study demonstrated that K. odoratissima exhibits antitumor activity against breast cancer cells via cell death and cell cycle arrest. PMID:28203057

  6. Cannabidiol normalizes caspase 3, synaptophysin, and mitochondrial fission protein DNM1L expression levels in rats with brain iron overload: implications for neuroprotection.

    PubMed

    da Silva, Vanessa Kappel; de Freitas, Betânia Souza; da Silva Dornelles, Arethuza; Nery, Laura Roesler; Falavigna, Lucio; Ferreira, Rafael Dal Ponte; Bogo, Maurício Reis; Hallak, Jaime Eduardo Cecílio; Zuardi, Antônio Waldo; Crippa, José Alexandre S; Schröder, Nadja

    2014-02-01

    We have recently shown that chronic treatment with cannabidiol (CBD) was able to recover memory deficits induced by brain iron loading in a dose-dependent manner in rats. Brain iron accumulation is implicated in the pathogenesis of neurodegenerative diseases, including Parkinson's and Alzheimer's, and has been related to cognitive deficits in animals and human subjects. Deficits in synaptic energy supply have been linked to neurodegenerative diseases, evidencing the key role played by mitochondria in maintaining viable neural cells and functional circuits. It has also been shown that brains of patients suffering from neurodegenerative diseases have increased expression of apoptosisrelated proteins and specific DNA fragmentation. Here, we have analyzed the expression level of brain proteins involved with mitochondrial fusion and fission mechanisms (DNM1L and OPA1), the main integral transmembrane protein of synaptic vesicles (synaptophysin), and caspase 3, an apoptosis-related protein, to gain a better understanding of the potential of CBD in restoring the damage caused by iron loading in rats. We found that CBD rescued iron-induced effects, bringing hippocampal DNM1L, caspase 3, and synaptophysin levels back to values comparable to the control group. Our results suggest that iron affects mitochondrial dynamics, possibly trigging synaptic loss and apoptotic cell death and indicate that CBD should be considered as a potential molecule with memory-rescuing and neuroprotective properties to be used in the treatment of cognitive deficits observed in neurodegenerative disorders.

  7. Tracing the accumulation and effects of mercury uptake in the previtellogenic ovary of crucian carp, Carassius auratus gibelio by autometallography and caspase-3 immunohistochemistry.

    PubMed

    Zarnescu, Otilia

    2009-02-01

    The aims of the present study were to apply the AMG technique for localization of mercury at the light and electron microscopic level in the ovary of crucian carp after exposure to mercuric chloride and to find out if this heavy metal induces expression of caspase-3. Depending on the stage of ovarian follicle development, two patterns of mercury accumulation have been found in previtellogenic ovary of crucian carp. The first mercury accumulation pattern has been found in the early previtellogenic oocyte without zona radiata. In these oocytes, mercury accumulates into an ooplasmic region that seems to correspond to the Balbiani body (32-65 microm oocyte diameter), throughout the cytoplasm (84-116 microm oocyte diameter) and in the cortical cytoplasm (approximately 180 microm oocyte diameter). The second mercury accumulation pattern has been found in the late previtellogenic oocyte with cortical alveoli (229-330 microm oocyte diameter). Ultrastructural observations have shown grains of silver-enhanced mercury inside coated vesicles, the cortical lysosome-like bodies or multivesicular bodies and cortical alveoli. Immunohistochemistry reaction for caspase-3 was positive in nuclei of the early previtellogenic oocyte and Balbiani body.

  8. Development and characterization of antibodies specific to caspase-3-produced alpha II-spectrin 120 kDa breakdown product: marker for neuronal apoptosis.

    PubMed

    Nath, R; Huggins, M; Glantz, S B; Morrow, J S; McGinnis, K; Nadimpalli, R; Wanga, K K

    2000-10-01

    Alpha II-spectrin (alpha-fodrin) is a demonstrated endogenous substrate for caspase-3 in neurons undergoing unscheduled apoptotic death. We have previously identified the caspase cleavage site that yields the distinctive 120 kDa spectrin breakdown product (SBDP120) as (DSLD(1478)*SVEAL). Here, by using a synthetic peptide (NH(2)-SVEALC) mimicking the neo-N-terminal of SBDP120 as antigen, we report the development of chicken antibodies that specifically recognize the SBDP120 generated by in vitro caspase-3 digestion of bovine alpha-spectrin on Western blot. These anti-SBDP120 antibodies recognize SBDP120 generated by two apoptotic challenges (staurosporine, EGTA) to human neuroblastoma SH-SY5Y cells. Yet they neither react with intact alpha-spectrin nor its other fragments on Western blots. These anti-SBDP120 work equally well in detecting SBDP120 generated in rat cerebellar granule neurons undergoing potassium withdrawal-induced apoptosis. In immunocytochemical studies, these antibodies also specifically stained apoptotic SH-SY5Y or CGN's undergoing apoptosis in a caspase- inhibitor-sensitive manner. These anti-SBDP120s might become powerful markers for apoptotic neurons in various neurological or neurodegenerative conditions in vivo.

  9. TAF15 and the leukemia-associated fusion protein TAF15-CIZ/NMP4 are cleaved by caspases-3 and -7

    SciTech Connect

    Alves, Juliano; Wurdak, Heiko; Garay-Malpartida, Humberto M.; Harris, Jennifer L.; Occhiucci, Joao M.; Belizario, Jose E.; Li, Jun

    2009-07-10

    Caspases are central players in proteolytic pathways that regulate cellular processes such as apoptosis and differentiation. To accelerate the discovery of novel caspase substrates we developed a method combining in silico screening and in vitro validation. With this approach, we identified TAF15 as a novel caspase substrate in a trial study. We find that TAF15 was specifically cleaved by caspases-3 and -7. Site-directed mutagenesis revealed the consensus sequence {sup 106}DQPD/Y{sup 110} as the only site recognized by these caspases. Surprisingly, TAF15 was cleaved at more than one site in staurosporine-treated Jurkat cells. In addition, we generated two oncogenic TAF15-CIZ/NMP4-fused proteins which have been found in acute myeloid leukemia and demonstrate that caspases-3 and -7 cleave the fusion proteins at one single site. Broad application of this combination approach should expedite identification of novel caspase-interacting proteins and provide new insights into the regulation of caspase pathways leading to cell death in normal and cancer cells.

  10. In vivo treatment of HCV core-positive HepG2 cells with the transfer of recombinant caspase-3 using a 2'-5' OAS promoter.

    PubMed

    Zi, Yuan; Wang, Ying; Wiegmann, Peter S; Luo, Junming; Feng, Deyun

    2012-03-01

    Hepatitis C virus (HCV) is one of the most common pathogens causing liver-related morbidity and mortality, which affect 170 million individuals worldwide. There is no vaccine available, and current therapy is only partially effective. In a previous study, we constructed a recombinant caspase-3 expression vector under the 2'-5'-oligoadenylate synthetase gene (OAS) promoter (pGL3-OAS-re-caspase-3) and demonstrated that it is an effective gene therapy for HCV core-positive liver cells in vitro. In the present study, the human hepatoma cell line HepG2 was transfected with the pcDNA3.1-HCV-core-EGFP plasmid and selected by G418. Expression of HCV core protein was confirmed by RT-PCR and immunocytochemistry. Both HepG2-expressing HCV core protein and parental HepG2 cells were inoculated subcutaneously into BALB/c mice, respectively. Tumor-bearing mice were treated with an intratumoral injection of pGL3-OAS-re-caspase-3. The mice were sacrificed after 48 h. The correlation between HCV core and caspase-3 expression in tumor tissues was analyzed by immunohistochemical staining and double-label immunofluorescence staining. The subcutaneous hepatoma in vivo mouse models stably expressing HCV core protein and co-expressing HCV core protein and pGL3-OAS-re-caspase-3 were established. Double-label immunofluorescence staining showed that the percentage of co-expression of both HCV core and caspase-3 was 76 ± 6% in the group treated with pGL3-OAS-re-caspase-3. There was a significant increase in the number of apoptotic cells in the group treated with the pGL3-OAS-re-caspase-3 system by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and transmission electron microscopy. The results suggest that the pGL3-OAS-re-caspase-3 construct can effectively induce apoptosis in HCV core-positive hepatocytes in vivo. The results presented strongly suggest that the transfer of pGL3-OAS-re-caspase-3 is an effective and promising gene therapy strategy for HCV infection.

  11. Condurango glycoside-rich components stimulate DNA damage-induced cell cycle arrest and ROS-mediated caspase-3 dependent apoptosis through inhibition of cell-proliferation in lung cancer, in vitro and in vivo.

    PubMed

    Sikdar, Sourav; Mukherjee, Avinaba; Ghosh, Samrat; Khuda-Bukhsh, Anisur Rahman

    2014-01-01

    Chemotherapeutic potential of Condurango glycoside-rich components (CGS) was evaluated in NSCLC, in vitro and in BaP-intoxicated rats, in vivo. NSCLC cells were treated with different concentrations of CGS to test their effect on cell viability. Cellular morphology, DNA-damage, AnnexinV-FITC/PI, cell cycle regulation, ROS-accumulation, MMP, and expressions of related signalling genes were critically analysed. 0.22 μg/μl CGS (IC₅₀ dose at 24 h) was selected for the study. CGS-induced apoptosis via DNA damage was evidenced by DNA-ladder formation, increase of AnnexinV-positive cells, cell cycle arrest at subG0/G1 and differential expressions of apoptotic genes. ROS-elevation and MMP-depolarization with significant caspase-3 activation might lead to apoptotic cell death. Anti-proliferative activity was confirmed by EGFR-expression modulation. ROS accumulation and DNA-nick formation with tissue damage-repair activity after post-cancerous CGS treatment, in vivo, supported the in vitro findings. Overall results advocate considerable apoptosis-inducing potential of CGS against NSCLC, validating its use against lung cancer by CAM practitioners.

  12. Berberine-induced anticancer activities in FaDu head and neck squamous cell carcinoma cells.

    PubMed

    Seo, Yo-Seob; Yim, Min-Ji; Kim, Bok-Hee; Kang, Kyung-Rok; Lee, Sook-Young; Oh, Ji-Su; You, Jae-Seek; Kim, Su-Gwan; Yu, Sang-Joun; Lee, Gyeong-Je; Kim, Do Kyung; Kim, Chun Sung; Kim, Jin-Soo; Kim, Jae-Sung

    2015-12-01

    In the present study, we investigated berberine‑induced apoptosis and the signaling pathways underlying its activity in FaDu head and neck squamous cell carcinoma cells. Berberine did not affect the viability of primary human normal oral keratinocytes. In contrast, the cytotoxicity of berberine was significantly increased in FaDu cells stimulated with berberine for 24 h. Furthermore, berberine increased nuclear condensation and apoptosis rates in FaDu cells than those in untreated control cells. Berberine also induced the upregulation of apoptotic ligands, such as FasL and TNF-related apoptosis-inducing ligand, and triggered the activation of caspase-8, -7 and -3, and poly(ADP ribose) polymerase, characteristic of death receptor-dependent extrinsic apoptosis. Moreover, berberine activated the mitochondria‑dependent apoptotic signaling pathway by upregulating pro-apoptotic factors, such as Bax, Bad, Apaf-1, and the active form of caspase-9, and downregulating anti-apoptotic factors, such as Bcl-2 and Bcl-xL. In addition, berberine increased the expression of the tumor suppressor p53 in FaDu cells. The pan-caspase inhibitor Z-VAD-fmk suppressed the activation of caspase-3 and prevented cytotoxicity in FaDu cells treated with berberine. Interestingly, berberine suppressed cell migration through downregulation of vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-2, and MMP-9. Moreover, the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and p38, components of the mitogen-activated protein kinase pathway that are associated with the expression of MMP and VEGF, was suppressed in FaDu cells treated with berberine for 24 h. Therefore, these data suggested that berberine exerted anticancer effects in FaDu cells through induction of apoptosis and suppression of migration. Berberine may have potential applications as a chemotherapeutic agent for the management of head and neck squamous carcinoma.

  13. Melatonin inhibits the caspase-1/cytochrome c/caspase-3 cell death pathway, inhibits MT1 receptor loss and delays disease progression in a mouse model of amyotrophic lateral sclerosis

    PubMed Central

    Zhang, Yi; Cook, Anna; Kim, Jinho; Baranov, Sergei V.; Jiang, Jiying; Smith, Karen; Cormier, Kerry; Bennett, Erik; Browser, Robert P.; Day, Arthur L.; Carlisle, Diane; Ferrante, Robert J.; Wang, Xin; Friedlander, Robert M.

    2013-01-01

    Caspase-mediated cell death contributes to the pathogenesis of motor neuron degeneration in the mutant SOD1G93A transgenic mouse model of amyotrophic lateral sclerosis (ALS), along with other factors such as inflammation and oxidative damage. By screening a drug library, we found that melatonin, a pineal hormone, inhibited cytochrome c release in purified mitochondria and prevented cell death in cultured neurons. In this study, we evaluated whether melatonin would slow disease progression in SOD1G93A mice. We demonstrate that melatonin significantly delayed disease onset, neurological deterioration and mortality in ALS mice. ALS-associated ventral horn atrophy and motor neuron death were also inhibited by melatonin treatment. Melatonin inhibited Rip2/caspase-1 pathway activation, blocked the release of mitochondrial cytochrome c, and reduced the overexpression and activation of caspase-3. Moreover, for the first time, we determined that disease progression was associated with the loss of both melatonin and the melatonin receptor 1A (MT1) in the spinal cord of ALS mice. These results demonstrate that melatonin is neuroprotective in transgenic ALS mice, and this protective effect is mediated through its effects on the caspase-mediated cell death pathway. Furthermore, our data suggest that melatonin and MT1 receptor loss may play a role in the pathological phenotype observed in ALS. The above observations indicate that melatonin and modulation of Rip2/caspase-1/cytochrome c or MT1 pathways may be promising therapeutic approaches for ALS. PMID:23537713

  14. Apoptosis induced by copper oxide quantum dots in cultured C2C12 cells via caspase 3 and caspase 7: a study on cytotoxicity assessment.

    PubMed

    Amna, Touseef; Van Ba, Hoa; Vaseem, M; Hassan, M Shamshi; Khil, Myung-Seob; Hahn, Y B; Lee, Hak-Kyo; Hwang, I H

    2013-06-01

    We report herein the synthesis and characterization of copper oxide quantum dots and their cytotoxic impact on mouse C2C12 cells. The utilized CuO quantum dots were prepared by the one-pot wet chemical method using copper acetate and hexamethylenetetramine as precursors. The physicochemical characterization of the synthesized CuO quantum dots was carried out using X-ray diffraction, energy-dispersive X-ray analysis, and transmission electron microscopy. To examine the in vitro cytotoxicity, C2C12 cell lines were treated with different concentrations of as-prepared quantum dots and the viability of cells was analyzed using Cell Counting Kit-8 assay at regular time intervals. The morphology of the treated C2C12 cells was observed under a phase-contrast microscope, whereas the quantification of cell viability was carried out via confocal laser scanning microscopy. To gain insight into the mechanism of cell death, we examined the effect of CuO quantum dots on the candidate genes such as caspases 3 and 7, which are key mediators of apoptotic events. In vitro investigations of the biological effect of CuO quantum dots have shown that it binds genomic DNA, decreases significantly the viability of cells in culture in a concentration (10-20 μg/mL) dependent manner, and inhibits mitochondrial caspases 3 and 7. To sum up, the elucidation of the pathways is to help in understanding CuO quantum dot-induced effects and evaluating CuO quantum dot-related hazards to human health.

  15. DNA-ligase IV and DNA-protein kinase play a critical role in deficient caspases activation in apoptosis-resistant cancer cells by using doxorubicin.

    PubMed

    Friesen, Claudia; Uhl, Miriam; Pannicke, Ulrich; Schwarz, Klaus; Miltner, Erich; Debatin, Klaus-Michael

    2008-08-01

    Resistance toward cytotoxic drugs is one of the primary causes for therapeutic failure in cancer therapy. DNA repair mechanisms as well as deficient caspases activation play a critical role in apoptosis resistance of tumor cells toward anticancer drug treatment. Here, we discovered that deficient caspases activation in apoptosis-resistant cancer cells depends on DNA-ligase IV and DNA-protein kinase (DNA-PK), playing crucial roles in the nonhomologous end joining (NHEJ) pathway, which is the predominant pathway for DNA double-strand break repair (DNA-DSB-repair) in mammalian cells. DNA-PK(+/+) as well as DNA-ligase IV (+/+) cancer cells were apoptosis resistant and deficient in activation of caspase-3, caspase-9, and caspase-8 and in cleavage of poly(ADP-ribose) polymerase after doxorubicin treatment. Inhibition of NHEJ by knocking out DNA-PK or DNA-ligase IV restored caspases activation and apoptosis sensitivity after doxorubicin treatment. In addition, inhibition of caspases activation prevented doxorubicin-induced apoptosis but could not prevent doxorubicin-induced DNA damage, indicating that induction of DNA damage is independent of caspases activation. However, caspases activation depends on induction of DNA damage left unrepaired by NHEJ-DNA-DSB-repair. We conclude that DNA damage left unrepaired by DNA-ligase IV or DNA-PK might be the initiator for caspases activation by doxorubicin in cancer cells. Failure in caspases activation using doxorubicin depends on loss of DNA damage and is due to higher rates of NHEJ-DNA-DBS-repair.

  16. Activation of JNK Contributes to Evodiamine-Induced Apoptosis and G2/M Arrest in Human Colorectal Carcinoma Cells: A Structure-Activity Study of Evodiamine

    PubMed Central

    Ko, Ching-Huai; Chen, Chih-Hung; Yang, Ling-Ling; Chen, Yen-Chou

    2014-01-01

    Evodiamine (EVO; 8,13,13b,14-tetrahydro-14-methylindolo[2′3′-3,4]pyrido[2,1-b]quinazolin-5-[7H]-one derived from the traditional herbal medicine Evodia rutaecarpa was reported to possess anticancer activity; however, the anticancer mechanism is still unclear. In this study, we investigated the anticancer effects of EVO on human colon COLO205 and HT-29 cells and their potential mechanisms. MTT and lactate dehydrogenase (LDH) release assays showed that the viability of COLOL205 and HT-29 cells was inhibited by EVO at various concentrations in accordance with increases in the percentage of apoptotic cells and cleavage of caspase-3 and poly(ADP ribose) polymerase (PARP) proteins. Disruption of the mitochondrial membrane potential by EVO was accompanied by increased Bax, caspase-9 protein cleavage, and cytochrome (Cyt) c protein translocation in COLO205 and HT-29 cells. Application of the antioxidant N-acetyl-L-cysteine (NAC) inhibited H2O2-induced reactive oxygen species (ROS) production and apoptosis, but did not affect EVO-induced apoptosis of COLO205 or HT-29 cells. Significant increases in the G2/M ratio and cyclinB1/cdc25c protein expression by EVO were respectively identified in colon carcinoma cells via a flow cytometric analysis and Western blotting. Induction of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) protein phosphorylation was detected in EVO-treated cells, and the JNK inhibitor, SP600125, but not the ERK inhibitor, U0126, inhibited EVO-induced phosphorylated JNK protein expression, apoptosis, and G2/M arrest of colon carcinoma cells. Data of the structure-activity analysis showed that EVO-related chemicals containing an alkyl group at position 14 were able to induce apoptosis, G2/M arrest associated with increased DNA ladder formation, cleavage of caspase-3 and PARP, and elevated cycB1 and cdc25c protein expressions in COLO205 and HT-29 cells. Evidence supporting JNK activation leading to EVO-induced apoptosis and G

  17. CYP24A1 Inhibition Enhances the Antitumor Activity of Calcitriol

    PubMed Central

    Muindi, Josephia R.; Yu, Wei-Dong; Ma, Yingyu; Engler, Kristie L.; Kong, Rui-Xian; Trump, Donald L.; Johnson, Candace S.

    2010-01-01

    High systemic exposures to calcitriol are necessary for optimal antitumor effects. Human prostate cancer PC3 cells are insensitive to calcitriol treatment. Therefore, we investigated whether the inhibition of 24-hydroxylase (CYP24A1), the major calcitriol inactivating enzyme, by ketoconazole (KTZ) or RC2204 modulates calcitriol serum pharmacokinetics and biologic effects. Dexamethasone (Dex) was added to minimize calcitriol-induced hypercalcemia and as a steroid replacement for the KTZ inhibition of steroid biosynthesis cytochrome P450 enzymes. KTZ effectively inhibited time-dependent calcitriol-inducible CYP24A1 protein expression and enzyme activity in PC3 cells and C3H/HeJ mouse kidney tissues. Systemic calcitriol exposure area under the curve was higher in mice treated with a combination of calcitriol and KTZ than with calcitriol alone. KTZ and Dex synergistically potentiated calcitriol-mediated antiproliferative effects in PC3 cells in vitro; this effect was associated with enhanced apoptosis. After treatment with calcitriol and KTZ/Dex, although caspase-9 and caspase-3 were not activated and cytochrome c was not released by mitochondria, caspase-8 was activated and the truncated Bid protein level was increased. Translocation of apoptosis-inducing factor to the nucleus was observed, indicating a role of the apoptosis-inducing factor-mediated and caspase-independent apoptotic pathways. Calcitriol and KTZ/Dex combination suppressed the clonogenic survival and enhanced the growth inhibition observed with calcitriol alone in PC3 human prostate cancer xenograft mouse model. Our results show that the administration of calcitriol in combination with CYP24A1 inhibitor enhances antiproliferative effects, increases systemic calcitriol exposure, and promotes the activation of caspase-independent apoptosis pathway. PMID:20591973

  18. Porcine parvovirus infection induces apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated pathway

    SciTech Connect

    Zhang, Hongling; Huang, Yong; Du, Qian; Luo, Xiaomao; Zhang, Liang; Zhao, Xiaomin; Tong, Dewen

    2015-01-09

    Highlights: • PPV reduces PK-15 cells viability by inducing apoptosis. • PPV infection induces apoptosis through mitochondria-mediated pathway. • PPV infection activates p53 to regulate the mitochondria apoptotic signaling. - Abstract: Porcine parvovirus (PPV) infection has been reported to induce the cytopathic effects (CPE) in some special host cells and contribute the occurrence of porcine parvovirus disease, but the molecular mechanisms underlying PPV-induced CPE are not clear. In this study, we investigated the morphological and molecular changes of porcine kidney cell line (PK-15 cells) infected with PPV. The results showed that PPV infection inhibited the viability of PK-15 cells in a time and concentration dependent manner. PPV infection induced typical apoptotic features including chromatin condensation, apoptotic body formation, nuclear fragmentation, and Annexin V-binding activity. Further studies showed that Bax was increased and translocated to mitochondria, whereas Bcl-2 was decreased in PPV-infected cells, which caused mitochondrial outer-membrane permeabilization, resulting in the release of mitochondrial cytochrome c, followed by caspase-9 and caspase-3 activation. However, the expression of Fas and Fas ligand (FasL) did not appear significant changes in the process of PPV-induced apoptosis. Moreover, PPV infection activated p53 signaling, which was involved in the activation of apoptotic signaling induced by PPV infection via regulation of Bax and Bcl-2. Taken together, our results demonstrated that PPV infection induced apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated apoptosis pathway. This study may contribute to shed light on the molecular pathogenesis of PPV infection.

  19. Novel indole-based tambjamine-analogues induce apoptotic lung cancer cell death through p38 mitogen-activated protein kinase activation.

    PubMed

    Manuel-Manresa, Pilar; Korrodi-Gregório, Luís; Hernando, Elsa; Villanueva, Alberto; Martínez-García, David; Rodilla, Ananda M; Ramos, Ricard; Fardilha, Margarida; Moya, Juan; Quesada, Roberto; Soto-Cerrato, Vanessa; Perez-Tomas, Ricardo

    2017-04-10

    Lung cancer has become the leading killer cancer worldwide, due to late diagnosis and lack of efficient anticancer drugs. We have recently described novel natural-derived tambjamine analogues that are potent anion transporters capable of disrupting cellular ion balance, inducing acidification of the cytosol and hyperpolarization of cellular plasma membranes. Although these tambjamine analogues were able to compromise cell survival, their molecular mechanism of action remains largely unknown. Herein we characterize the molecular cell responses induced by highly active indole-based tambjamine analogues treatment in lung cancer cells. Expression changes produced after compounds treatment comprised genes related to apoptosis, cell cycle, growth factors and its receptors, protein kinases and topoisomerases, among others. Dysregulation of BCL2 and BIRC5/survivin genes suggested the apoptotic pathway as the induced molecular cell death mechanism. In fact, activation of several pro-apoptotic markers (caspase 9, caspase 3 and PARP) and reversion of the cytotoxic effect upon treatment with an apoptosis inhibitor (Z-VAD-FMK) were observed. Moreover, members of the Bcl-2 protein family suffered changes after tambjamine analogues treatment, with a concomitant protein decrease towards the pro-survival members. Besides this, it was observed cellular accumulation of ROS upon compound treatment and an activation of the stress-kinase p38 MAPK route that, when inhibited, reverted the cytotoxic effect of the tambjamine analogues. Finally, a significant therapeutic effect of these compounds was observed in subcutaneous and orthotopic lung cancer mice models. Taken together, these results shed light on the mechanism of action of novel cytotoxic anionophores and demonstrate the therapeutic effects against lung cancer.

  20. Caspase-3 and GFAP as early markers for apoptosis and astrogliosis in shRNA-induced hippocampal cytotoxicity.

    PubMed

    Günther, Anne; Luczak, Vince; Abel, Ted; Baumann, Arnd

    2017-02-06

    Genetic manipulation of cells and tissue by RNA interference has significantly contributed to the functional characterization of individual proteins and their role in physiological processes. Despite its versatility, RNA interference can have detrimental side effects, including reduced cell viability. We applied recombinant adeno-associated viruses by stereotaxic injection into the murine hippocampus to express different short hairpin RNA (shRNA) constructs along with eGFP. Tissue responses were assessed immunohistochemically for up to 8 weeks post infection. Strong hippocampal degeneration and tissue atrophy was observed, most likely induced by high shRNA expression. The effect was entirely absent in mice injected with vectors driving only expression of eGFP. Active caspase‑3 (Casp-3) and glial fibrillary acidic protein (GFAP) were identified as molecular markers and early indicators of adverse tissue responses. Our findings also demonstrate that detrimental effects of high shRNA expression in hippocampal tissue can be monitored even before the onset of tissue degeneration.

  1. Apoptosis induction in human breast cancer (MCF-7) cells by a novel venom L-amino acid oxidase (Rusvinoxidase) is independent of its enzymatic activity and is accompanied by caspase-7 activation and reactive oxygen species production.

    PubMed

    Mukherjee, Ashis K; Saviola, Anthony J; Burns, Patrick D; Mackessy, Stephen P

    2015-10-01

    We report the elucidation of a mechanism of apoptosis induction in breast cancer (MCF-7) cells by an L-amino acid oxidase (LAAO), Rusvinoxidase, purified from the venom of Daboia russelii russelii. Peptide mass fingerprinting analysis of Rusvinoxidase, an acidic monomeric glycoprotein with a mass of ~57 kDa, confirmed its identity as snake venom LAAO. The enzymatic activity of Rusvinoxidase was completely abolished after two cycles of freezing and thawing; however, its cytotoxicity toward MCF-7 cells remained unaffected. Dose- and time-dependent induction of apoptosis by Rusvinoxidase on MCF-7 cells was evident from changes in cell morphology, cell membrane integrity, shrinkage of cells and apoptotic body formation accompanied by DNA fragmentation. Rusvinoxidase induced apoptosis in MCF-7 cells by both the extrinsic (death-receptor) and intrinsic (mitochondrial) signaling pathways. The former pathway of apoptosis operated through activation of caspase-8 that subsequently activated caspase-7 but not caspase-3. Rusvinoxidase-induced intrinsic pathway of apoptosis was accompanied by a time-dependent depolarization of the mitochondrial membrane through the generation of reactive oxygen species, followed by a decrease in cellular glutathione content and catalase activity, and down-regulation of expression of anti-apoptotic proteins Bcl-XL and heat-shock proteins (HSP-90 and HSP-70). Rusvinoxidase treatment resulted in increase of the pro-apoptotic protein Bax, subsequently leading to the release of cytochrome c from mitochondria to the cytosol and activating caspase-9, which in turn stimulated effector caspase-7. Rusvinoxidase at a dose of 4 mg/kg was non-toxic in mice, indicating that it may be useful as a model for the development of peptide-based anticancer drugs.

  2. Activation of the endoplasmic reticulum stress response by the amyloid-beta 1-40 peptide in brain endothelial cells.

    PubMed

    Fonseca, Ana Catarina R G; Ferreiro, Elisabete; Oliveira, Catarina R; Cardoso, Sandra M; Pereira, Cláudia F

    2013-12-01

    Neurovascular dysfunction arising from endothelial cell damage is an early pathogenic event that contributes to the neurodegenerative process occurring in Alzheimer's disease (AD). Since the mechanisms underlying endothelial dysfunction are not fully elucidated, this study was aimed to explore the hypothesis that brain endothelial cell death is induced upon the sustained activation of the endoplasmic reticulum (ER) stress response by amyloid-beta (Aβ) peptide, which deposits in the cerebral vessels in many AD patients and transgenic mice. Incubation of rat brain endothelial cells (RBE4 cell line) with Aβ1-40 increased the levels of several markers of ER stress-induced unfolded protein response (UPR), in a time-dependent manner, and affected the Ca(2+) homeostasis due to the release of Ca(2+) from this intracellular store. Finally, Aβ1-40 was shown to activate both mitochondria-dependent and -independent apoptotic cell death pathways. Enhanced release of cytochrome c from mitochondria and activation of the downstream caspase-9 were observed in cells treated with Aβ1-40 concomitantly with caspase-12 activation. Furthermore, Aβ1-40 activated the apoptosis effectors' caspase-3 and promoted the translocation of apoptosis-inducing factor (AIF) to the nucleus demonstrating the involvement of caspase-dependent and -independent mechanisms during Aβ-induced endothelial cell death. In conclusion, our data demonstrate that ER stress plays a significant role in Aβ1-40-induced apoptotic cell death in brain endothelial cells suggesting that ER stress-targeted therapeutic strategies might be useful in AD to counteract vascular defects and ultimately neurodegeneration.

  3. Methylprednisolone promotes recovery of neurological function after spinal cord injury: association with Wnt/β-catenin signaling pathway activation

    PubMed Central

    Lu, Gong-biao; Niu, Fu-wen; Zhang, Ying-chun; Du, Lin; Liang, Zhi-yuan; Gao, Yuan; Yan, Ting-zhen; Nie, Zhi-kui; Gao, Kai

    2016-01-01

    Some studies have indicated that the Wnt/β-catenin signaling pathway is activated following spinal cord injury, and expression levels of specific proteins, including low-density lipoprotein receptor related protein-6 phosphorylation, β-catenin, and glycogen synthase kinase-3β, are significantly altered. We hypothesized that methylprednisolone treatment contributes to functional recovery after spinal cord injury by inhibiting apoptosis and activating the Wnt/β-catenin signaling pathway. In the current study, 30 mg/kg methylprednisolone was injected into rats with spinal cord injury immediately post-injury and at 1 and 2 days post-injury. Basso, Beattie