Science.gov

Sample records for activated charcoal ac

  1. Activated Charcoal

    MedlinePlus

    ... is used to treat poisonings, reduce intestinal gas (flatulence), lower cholesterol levels, prevent hangover, and treat bile ... lower cholesterol levels in the blood. Decreasing gas (flatulence). Some studies show that activated charcoal is effective ...

  2. Passivation of fluorinated activated charcoal

    SciTech Connect

    Del Cul, G.D.; Trowbridge, L.D.; Simmons, D.W.; Williams, D.F.; Toth, L.M.

    1997-10-01

    The Molten Salt Reactor Experiment (MSRE), at the Oak Ridge National Laboratory has been shut down since 1969 when the fuel salt was drained from the core into two Hastelloy N tanks at the reactor site. In 1995, a multiyear project was launched to remediate the potentially hazardous conditions generated by the movement of fissile material and reactive gases from the storage tanks into the piping system and an auxiliary charcoal bed (ACB). The top 12 in. of the ACB is known by gamma scan and thermal analysis to contain about 2.6 kg U-233. According to the laboratory tests, a few feet of fluorinated charcoal are believed to extend beyond the uranium front. The remainder of the ACB should consist of unreacted charcoal. Fluorinated charcoal, when subjected to rapid heating, can decompose generating gaseous products. Under confined conditions, the sudden exothermic decomposition can produce high temperatures and pressures of near-explosive characteristics. Since it will be necessary to drill and tap the ACB to allow installation of piping and instrumentation for remediation and recovery activities, it is necessary to chemically convert the reactive fluorinated charcoal into a more stable material. Ammonia can be administered to the ACB as a volatile denaturing agent that results in the conversion of the C{sub x}F to carbon and ammonium fluoride, NH{sub 4}F. The charcoal laden with NH{sub 4}F can then be heated without risking any sudden decomposition. The only consequence of heating the treated material will be the volatilization of NH{sub 4}F as a mixture of NH{sub 3} and HF, which would primarily recombine as NH{sub 4}F on surfaces below 200 C. The planned scheme for the ACB denaturing is to flow diluted ammonia gas in steps of increasing NH{sub 3} concentration, 2% to 50%, followed by the injection of pure ammonia. This report summarizes the planned passivation treatment scheme to stabilize the ACB and remove the potential hazards. It also includes basic information

  3. The role of activated charcoal in plant tissue culture.

    PubMed

    Thomas, T Dennis

    2008-01-01

    Activated charcoal has a very fine network of pores with large inner surface area on which many substances can be adsorbed. Activated charcoal is often used in tissue culture to improve cell growth and development. It plays a critical role in micropropagation, orchid seed germination, somatic embryogenesis, anther culture, synthetic seed production, protoplast culture, rooting, stem elongation, bulb formation etc. The promotary effects of AC on morphogenesis may be mainly due to its irreversible adsorption of inhibitory compounds in the culture medium and substancially decreasing the toxic metabolites, phenolic exudation and brown exudate accumulation. In addition to this activated charcoal is involved in a number of stimulatory and inhibitory activities including the release of substances naturally present in AC which promote growth, alteration and darkening of culture media, and adsorption of vitamins, metal ions and plant growth regulators, including abscisic acid and gaseous ethylene. The effect of AC on growth regulator uptake is still unclear but some workers believe that AC may gradually release certain adsorbed products, such as nutrients and growth regulators which become available to plants. This review focuses on the various roles of activated charcoal in plant tissue culture and the recent developments in this area.

  4. Antidotal effectiveness of activated charcoal in rats

    SciTech Connect

    Curd-Sneed, C.D.

    1986-01-01

    This study was designed to investigate the relative adsorption of radiolabeled /sup 14/C-sodium pentobarbital by three types of activated charcoal. Factors affection adsorption of the drug by SuperChar, United States Pharmacopeia (USP), and Darco G-60 activated charcoals with surface areas of 2800-3500 m2/g, 1000 m/sup 2//g, and 650 m/sup 2//g, respectively, were studied both in vitro and in vivo. For in vitro experiments, the drug was dissolved in water of 70% sorbitol (w/v), and the maximum binding capacity and dissociation constants for each of the charcoals were calculated. Rank order of maximum binding capacity was directly proportional to charcoal surface area in both water and sorbitol, while the dissociation constants for the charcoals in water were not different. For in vivo experiments, absorption of orally administered sodium pentobarbital (40 mg/kg) was studied in rats with and without activated charcoal administration. The results of this research suggest that: (1) SuperChar given in water possesses the greatest antidotal efficacy, (2) sorbitol induced catharsis does not reduce oral absorption of sodium pentobarbital, and (3) sorbitol enhances the antidotal efficacy of USP charcoal.

  5. Charcoal and activated carbon at elevated pressure

    SciTech Connect

    Antal, M.J. Jr.; Dai, Xiangfeng; Norberg, N.

    1995-12-01

    High quality charcoal has been produced with very high yields of 50% to 60% from macadamia nut and kukui nut shells and of 44% to 47% from Eucalyptus and Leucaena wood in a bench scale unit at elevated pressure on a 2 to 3 hour cycle, compared to commercial practice of 25% to 30% yield on a 7 to 12 day operating cycle. Neither air pollution nor tar is produced by the process. The effects of feedstock pretreatments with metal additives on charcoal yield are evaluated in this paper. Also, the influences of steam and air partial pressure and total pressure on yields of activated carbon from high yield charcoal are presented.

  6. Activated charcoal for acute overdose: a reappraisal.

    PubMed

    Juurlink, David N

    2016-03-01

    Sometimes mistakenly characterized as a 'universal antidote,' activated charcoal (AC) is the most frequently employed method of gastrointestinal decontamination in the developed world. Typically administered as a single dose (SDAC), its tremendous surface area permits the binding of many drugs and toxins in the gastrointestinal lumen, reducing their systemic absorption. Like other decontamination procedures, the utility of SDAC attenuates with time, and, although generally safe, it is not free of risk. A large body of evidence demonstrates that SDAC can reduce the absorption of drugs and xenobiotics but most such studies involve volunteers and have little generalizability to clinical practice. Few rigorous clinical trials of SDAC have been conducted, and none validate or refute its utility in those patients who are intuitively most likely to benefit. Over the past decade, a growing body of observational data have demonstrated that SDAC can elicit substantial reductions in drug absorption in acutely poisoned patients. The challenge for clinicians rests in differentiating those patients most likely to benefit from SDAC from those in whom meaningful improvement is doubtful. This is often a difficult determination not well suited to an algorithmic approach. The present narrative review summarizes the data supporting the benefits and harms of SDAC, and offers pragmatic suggestions for clinical practice.

  7. Determining the sizes of micropores in activated charcoals by the pulsed NMR method

    NASA Astrophysics Data System (ADS)

    Gogelashvili, G. Sh.; Khozina, E. V.; Vartapetyan, R. Sh.; Ladychuk, D. V.; Grunin, Yu. B.

    2011-07-01

    The pulsed NMR method was used to measure the nuclear spin-spin relaxation of protons of water adsorbed in micropores of activated charcoal (AC) samples with different porous structures. A correlation was found between the spin-spin relaxation time of water protons in AC with completely filled micropores and the volume density of water primary adsorption centers in the AC samples. An equation for approximating obtained dependences is proposed that allows us to determine the volume of micropores in AC.

  8. In vitro adsorption of tilidine HCl by activated charcoal.

    PubMed

    Cordonnier, J A; Van den Heede, M A; Heyndrickx, A M

    In vitro studies were carried out in order to determine the adsorption of tilidine HCl, a narcotic analgesic, by activated charcoal (max. adsorption capacity 185.5 mg/g of charcoal). The path of the adsorption isotherms at pH 1.2 and 7.5 suggests that the in vivo adsorption of tilidine HCl may be increased when the drug passes from the stomach to the intestine, unless the intestinal content exerts a displacing effect. Nevertheless, the adsorption was dependent on the quantity of activated charcoal used, becoming more complete when the quantity of activated charcoal was increased. The effects of additives on the adsorption capacity of activated charcoal were also investigated in vitro. Ethanol, sorbitol and sucrose significantly reduced drug adsorption, while cacao powder, milk and starch had no effect on tilidine adsorption. At an acid pH, Federa Activated Charcoal significantly adsorbed more drug than either Norit A or Activated Charcoal Merck.

  9. Effect of activated charcoal on the pharmacokinetics of pholcodine, with special reference to delayed charcoal ingestion.

    PubMed

    Laine, K; Kivistö, K T; Ojala-Karlsson, P; Neuvonen, P J

    1997-02-01

    We conducted a randomized study with four parallel groups to investigate the effect of single and multiple doses of activated charcoal on the absorption and elimination of pholcodine administered in a cough syrup. The first group received 100 mg of pholcodine on an empty stomach with water only (control); the second group took 25 g of activated charcoal immediately after pholcodine; the third group received 25 g of activated charcoal 2 h and the fourth group 5 h after ingestion of the 100-mg dose of pholcodine. In addition, the fourth group received multiple doses (10 g each) of charcoal every 12 h for 84 h. Blood samples were collected for 96 h and urine for 72 h. Pholcodine concentrations were measured by high-performance liquid chromatography. A significant reduction in absorption was found when charcoal was administered immediately after pholcodine; the AUC0-96h was reduced by 91% (p < 0.0005), the Cmax by 77% (p < 0.0005), and the amount of pholcodine excreted into urine by 85% (p < 0.0005). When charcoal was administered 2 h after pholcodine, the AUC0-96h was reduced by 26% (p = 0.002), the Cmax by 23% (p = NS), and the urinary excretion by 28% (p = 0.004). When administered 5 h after pholcodine, charcoal produced only a 17% reduction in the AUC0-96h (p = 0.06), but reduced the further absorption of pholcodine still present in the gastrointestinal tract at the time of charcoal administration, as measured by AUC5-96h (p = 0.006). Repeated administration of charcoal failed to accelerate the elimination of pholcodine. We conclude that activated charcoal is effective in preventing the absorption of pholcodine, and its administration can be beneficial even several hours after pholcodine ingestion.

  10. Activated coconut shell charcoal carbon using chemical-physical activation

    NASA Astrophysics Data System (ADS)

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  11. Variability of mitomycin C adsorption by activated charcoal.

    PubMed

    Shah, I A; Lindup, W E; McCulloch, P G

    1998-03-01

    A saline suspension of mitomycin C adsorbed on activated charcoal and administered intraperitoneally has been reported to be safe and effective in the treatment of gastric carcinoma. Activated charcoal specifically targets tumour and lymph-node tissues and the sustained higher local drug concentration is thought to be beneficial. The charcoal particles used in these suspensions have varied in size from > 147 microm to < 20 nm in diameter, but no data have been published to show how this might affect drug adsorption and delivery. Any variability in drug adsorption could pose a serious clinical risk for drugs with a narrow therapeutic index. We have, therefore, investigated the adsorption of mitomycin C on activated charcoal in-vitro. Activated charcoal was ground and sieved to yield four size-fractions between 180 and 53 microm. Adsorption isotherms (n > or = 3) were constructed and applied to the Freundlich model with 0-l00 microg mL(-1) mitomycin C measured by HPLC with detection at 365 nm. Adsorption of mitomycin C by activated charcoal varied by a factor of three under identical conditions at room temperature (21 degrees C) and at 37 degrees C. The specific adsorption (microg mitomycin C (mg activated charcoal)(-1)) was generally higher at 37 degrees C than at room temperature. The variability of mitomycin C adsorption was greatly reduced by addition of the surface-active agent polyvinylpyrollidone, used to determine that adsorption of mitomycin C was independent of activated charcoal particle size. The characteristics of adsorption of mitomycin C by activated charcoal are complex and should be thoroughly investigated to discover the critical controlling factors before submitting the suspensions for further clinical evaluation.

  12. Production of charcoal and activated carbon at elevated pressure

    SciTech Connect

    Dai, Xiangfeng; Norberg, N.; Antal, M.J. Jr.

    1995-12-31

    With its wide range of properties, charcoal finds many commercial applications for domestic cooking, refining of metals (steel, copper, bronze, nickel, aluminum and electro-manganese), production of chemicals (carbon disulfide, calcium carbide, silicon carbide, sodium cyanide, carbon black, fireworks, gaseous chemicals, absorbents, soil conditioners and pharmaceuticals), as well as production of activated carbon and synthesis gas. In 1991, the world production of charcoal was 22.8 million cubic meters (3.8 million metric tons) as shown in Table 1. Brazil is the world`s largest charcoal producer --- 5.9 million cubic meters or one million metric tons was produced in 1991, most of which is used in steel and iron industry. African countries produced 45% of the world total amount of charcoal, where 86% of the wood-based energy is for domestic use, most of which is inefficiently used. Charcoal is produced commercially in kilns with a 25% to 30% yield by mass on a 7 to 12 day operating cycle. Until recently, the highest yield of good quality charcoal reported in the literature was 38%. In this paper, and ASME code rated experimental system is presented for producing charcoal and activated carbon from biomass.

  13. Activated Charcoal Does Not Reduce Duration of Phenytoin Toxicity in Hospitalized Patients.

    PubMed

    Cumpston, Kirk; Stromberg, Paul; Wills, Brandon K; Rose, S Rutherfoord

    2016-01-01

    Phenytoin toxicity frequently results in a prolonged inpatient admission. Several publications avow multidose activated charcoal (MDAC) will enhance the elimination of phenytoin. However, these claims are not consistent, and the mechanism of enhanced eliminaiton is unproven. The aim of this investigation is to compare the time to reach a clinical composite end point in phenytoin overdose patients treated with no activated charcoal (NoAC), single-dose activated charcoal (SDAC), and MDAC. This was a retrospective study using electronic poison center data. Patients treated in a health care facility with phenytoin concentrations >20 mg/L were included. Patients were grouped by use of SDAC, MDAC, and NoAC. The primary end points were either time to resolution of symptoms, hospital discharge, or the case was closed by a toxicologist. After applying inclusion and exclusion criteria, 132 cases were included for analysis. There were 88 NoAC, 13 SDAC, and 31 MDAC cases. The groups were similar in symptomatology, age, and chronicity of expsoure. Mean peak phenytoin concentrations (SD) were 42 mg/L (12), 41 mg/L (11), and 42 mg/L (11) for NoAC, SDAC, and MDAC, respectively. Mean time to reach the study end point was 39 hours [95% confidence interval (CI), 31-48], 52 hours (95% CI, 36-68), and 60 hours (95% CI, 45-75) for NoAC, SDAC, and MDAC, respectively. The groups appeared similar with respect to peak phenytoin concentrations and prevalence of signs and symptoms. In this observational series, the use of activated charcoal was associated with increased time to reach the composite end point of clinical improvement.

  14. Evaluation of photocatalytic activities of supported catalysts on NaX zeolite or activated charcoal.

    PubMed

    de Brites-Nóbrega, Fernanda F; Polo, Aldino N B; Benedetti, Angélica M; Leão, Mônica M D; Slusarski-Santana, Veronice; Fernandes-Machado, Nádia R C

    2013-12-15

    This study aimed to evaluate the photocatalytic activity of ZnO and Nb2O5 catalysts, both supported on NaX zeolite and activated charcoal (AC). The synergistic effect between oxide and support and the influence of solution pH (3, 7 and 9) on photocatalytic degradation of reactive blue 5G (C.I. 222) were analyzed. The catalysts Nb2O5/NaX, Nb2O5/AC and ZnO/NaX, ZnO/AC with 5 and 10% (wt%) were prepared by wet impregnation. The results showed that the catalysts exhibit quite different structural and textural properties. The synergic effect between ZnO and NaX support was higher than that with the activated charcoal, showing that these catalysts were more efficient. The most photoactive catalyst was 10% ZnO/NaX which showed 100% discoloration of the dye solution at pH 3, 7 and 9 after 0.5, 5 and 2h of irradiation, respectively. The hydrolytic nature of zeolite favored the formation of surface hydroxyl radicals, which increased the activity of the photocatalyst. Thus, catalysts supported on NaX zeolite are promising for use in photocatalysis.

  15. Pore structure of the activated coconut shell charcoal carbon

    NASA Astrophysics Data System (ADS)

    Budi, E.; Nasbey, H.; Yuniarti, B. D. P.; Nurmayatri, Y.; Fahdiana, J.; Budi, A. S.

    2014-09-01

    The development of activated carbon from coconut shell charcoal has been investigated by using physical method to determine the influence of activation parameters in term of temperature, argon gas pressure and time period on the pore structure of the activated carbon. The coconut shell charcoal was produced by pyrolisis process at temperature of about 75 - 150 °C for 6 hours. The charcoal was activated at various temperature (532, 700 and 868 °C), argon gas pressure (6.59, 15 and 23.4 kgf/cm2) and time period of (10, 60 and 120 minutes). The results showed that the pores size were reduced and distributed uniformly as the activation parameters are increased.

  16. Application of activated charcoal radon collectors in high humidity environments.

    PubMed

    Iimoto, Takeshi; Tokonami, Shinji; Morishita, Yasuaki; Kosako, Toshiso

    2005-01-01

    Most commercially based activated charcoal radon collectors were designed for use in indoor environments. However, at present, they are often used for research in radon surveys in unique environments, such as in the bathrooms, underground areas, mines, caves and tunnels. In these environments, the relative humidity would be around 100%, and a change in the sensitivity of cpm(Bq m(-3))(-1)(radon) would occur. For this study, the reduction in the sensitivity of activated charcoal radon collector due to environmental humidity was investigated, and the data correction was discussed. Here, ST-100 (Pico-Rad) was selected as an example of a familiar activated charcoal radon collector. According to our performance test, the humidity of 90% (20 degrees C) resulted in a 15% reduction of the sensitivity for 24 h collection. The ST-100 user should discuss the necessity of data correction by comparing the change of sensitivity with other levels of estimation errors.

  17. [Possible release of aluminum from activated charcoal filters used in home hemodialysis].

    PubMed

    Jourdan, J L; Maingourd, C; Meguin, C; Nivet, H; Martin, C; Moulier, M C

    1986-01-01

    In 1984, 38 sera from home hemodialysis patients were found with a significant increase of aluminum (Al) from 67.8 +/- 44.3 to 102.0 +/- 45.9 micrograms/l (p less than 0.001) compared to 1983. The only change was an activated charcoal (AC) filter in the water treatment circuit, added downstream of the water softener. Five different home hemodialysis AC filters were tested: Microclean CA Dia Cuno, Traitement Standard des Eaux (TSE)R, Permo, C2R, Gambro. AC was shown to be the main source of Al, its content ranging from 1251 +/- 116 to 7569 +/- 969 mg/kg. Al released in 2000 l of liter rinsing water varied from 1.6 +/- 1.3 to 41.3 +/- 5.5 mg. (mean concentration: 0.8 to 20.6 micrograms/l): Gambro less than or equal to C2R less than TSE less than Permo less than Cuno (p less than 0.01). Al loading of charcoal could occur either before or during the activation process, by contaminated water, other added substances, or during packaging. In conclusion, our study suggests, first, to put AC filters upstream of Al captor to avoid Al intoxication, second, to systematically dose Al and may be other metallic substances in every manufactured AC sold for therapeutic purpose.

  18. The effect of activated charcoal on adenine-induced chronic renal failure in rats.

    PubMed

    Ali, Badreldin H; Alza'abi, Mohamed; Ramkumar, Aishwarya; Al-Lawati, Intisar; Waly, Mostafa I; Beegam, Sumaya; Nemmar, Abderrahim; Brand, Susanne; Schupp, Nicole

    2014-03-01

    Activated charcoal (AC) is a sorbent that has been shown to remove urinary toxins like urea and indoxyl sulfate. Here, the influence of AC on kidney function of rats with experimental chronic renal failure (CRF) is investigated. CRF was induced in rats by feeding adenine (0.75%) for four weeks. As an intervention, AC was added to the feed at concentrations of 10%, 15% or 20%. Adenine treatment impaired kidney function: it lowered creatinine clearance and increased plasma concentrations of creatinine, urea, neutrophil gelatinase-associated lipocalin and vanin-1. Furthermore, it raised plasma concentrations of the uremic toxins indoxyl sulfate, phosphate and uric acid. Renal morphology was severely damaged and histopathological markers of inflammation and fibrosis were especially increased. In renal homogenates, antioxidant indices, including superoxide dismutase and catalase activity, total antioxidant capacity and reduced glutathione were adversely affected. Most of these changes were significantly ameliorated by dietary administration of AC at a concentration of 20%, while effects induced by lower doses of dietary AC on adenine nephrotoxicity were not statistically significant. The results suggest that charcoal is a useful sorbent agent in dietary adenine-induced CRF in rats and that its usability as a nephroprotective agent in human kidney disease should be studied.

  19. Activated charcoal. (Latest citations from the Compendex database). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning theoretical aspects and industrial applications of activated charcoal. Topics include adsorption capacity and mechanism studies, kinetic and thermodynamic aspects, and description and evaluation of adsorptive abilities. Applications include use in water analyses and waste treatment, air pollution control and measurement, and in nuclear facilities. (Contains a minimum of 151 citations and includes a subject term index and title list.)

  20. Lead Induced Hepato-renal Damage in Male Albino Rats and Effects of Activated Charcoal

    PubMed Central

    Offor, Samuel J.; Mbagwu, Herbert O. C.; Orisakwe, Orish E.

    2017-01-01

    Lead is a multi-organ toxicant implicated in various cancers, diseases of the hepatic, renal, and reproductive systems etc. In search of cheap and readily available antidote this study has investigated the role of activated charcoal in chronic lead exposure in albino rats. Eighteen mature male albino rats were used, divided into three groups of six rats per group. Group 1 (control rats) received deionised water (10 ml/kg), group 2 was given lead acetate solution 60 mg/kg and group 3 rats were given lead acetate (60 mg/kg) followed by Activated charcoal, AC (1000 mg/kg) by oral gavage daily for 28 days. Rats in group 2 showed significant increases in serum Aspartate aminotransferase, Alkaline phosphatase, Alanine aminotransferase, urea, bilirubin, total cholesterol, triglycerides, Low Density Lipoprotein, Very Low Density Lipoproteins, Total White Blood Cell Counts, Malondialdehyde, Interleukin-6, and decreases in Packed Cell Volume, hemoglobin concentration, Red blood cell count, total proteins, albumins, superoxide dismutase, glutathione peroxidase and total glutathione. Co-administration of AC significantly decreased these biomarkers with the exception of the sperm parameters. Histopathology of liver and kidney also confirmed the protective effective of AC against lead induced hepato-renal damage. AC may be beneficial in chronic lead induced liver and kidney damage. PMID:28352230

  1. [Sorption of amino acids from aqueous solutions on activated charcoal].

    PubMed

    Nekliudov, A D; Tsibanov, V V

    1985-03-01

    Various methods for quantitative description of amino acid sorption from solutions for parenteral nutrition on activated charcoal were studied under dynamic and static conditions. With the use of the well-known Freindlich and Langmuir absorption isotherms it was shown to be possible to describe in a simplified way the complex multicomponent process of sorption of the amino acids and to estimate their loss at the filtration stage.

  2. Gas and Chemical Activation of Charcoal

    DTIC Science & Technology

    1945-06-29

    supplemented ’ by runs in the laboratory has shown that zinc chloride is by far the most suitable activating agent. 1. In the dehydration mixing of...istics with time of dehydration . 3. The physical appearance of the mixture during the impregnation pperation provides sufficient significant information...to enable the operator to predict .mechanical characteristics of the briquet. CONFIDENTIAL " • ’< i£: • CONFIDENTIAL -4- 4* In the dehydration

  3. Effect of filtration by activated charcoal on the toxicological activity of cigarette mainstream smoke from experimental cigarettes.

    PubMed

    Gaworski, Charles L; Schramke, Heike; Diekmann, Joerg; Meisgen, Thomas J; Tewes, Franz J; Veltel, Detlef J; Vanscheeuwijck, Patrick M; Rajendran, Narayanan; Muzzio, Miguel; Haussmann, Hans-Juergen

    2009-07-01

    Activated charcoal (AC) filtration reportedly decreases the yields of smoke vapor phase constituents including some identified as human carcinogens and respiratory irritants. Non-clinical studies including chemical smoke analysis, in vitro cytotoxicity and mutagenicity (bacterial and mammalian cells), and in vivo subchronic rat inhalation studies were carried out using machine smoking at ISO conditions with lit-end research cigarettes containing AC filters. The objective was to assess whether AC filter technology would alter the established toxicity profile of mainstream smoke by increasing or decreasing any known toxicological properties, or elicit new ones. The reduced yield of vapor phase irritants from AC filter cigarettes correlated with markedly decreased in vitro cytotoxicity and in vivo morphology of the nose and lower respiratory tract. Increased yields of particulate phase constituents (e.g. polycyclic aromatic hydrocarbons) in AC filtered smoke were noted in comparison to controls in some studies. The in vitro bacterial mutagenicity of AC filtered smoke particulate preparations was occasionally increased over control levels. Laryngeal epithelial thickness was increased in some rats inhaling AC filtered smoke in comparison to controls, an effect perhaps related to higher inspiratory flow. When tested under more intense Massachusetts Department of Public Health smoking conditions, AC filter associated reductions in vapor phase constituent yields were smaller than those seen with ISO conditions, but the effect on in vitro cytotoxicity remained.

  4. Release of soluble protein from peanut (Arachis hypogaea, Leguminosae) and its adsorption by activated charcoal.

    PubMed

    Kopper, Randall; Van, Trang; Kim, Ara; Helm, Ricki

    2011-01-12

    Peanut (Arachis hypogaea, Leguminosae) allergy is a major cause of food-induced anaphylaxis. The potential use of activated charcoal (AC) to adsorb and reduce the bioavailability of peanut protein allergens for use in the moderation of hypersensitivity reactions was investigated. The rate and extent of protein release from peanut and the adsorption of the solubilized protein by AC was determined under physiological pH values and confirmed in vivo using a porcine animal model system. Peanut proteins were adsorbed with equal efficiency at pH 2 and 7 and are completely removed from solution by an AC/protein ratio of approximately 80:1. This suggests that AC can bind protein under gastric (pH 2) or intestinal (pH 7) conditions. The rapid adsorption of soluble peanut allergens and the continuous binding of allergens released from peanut particulate material suggest the potential efficacy of using AC for gastric decontamination and possible elimination of a biphasic allergic reaction.

  5. Comparison of Impurities in Charcoal Sorbents Found by Neutron Activation Analysis

    SciTech Connect

    Doll, Charles G.; Finn, Erin C.; Cantaloub, Michael G.; Greenwood, Lawrence R.; Kephart, Jeremy; Kephart, Rosara F.

    2013-01-01

    Abstract: Neutron activation of gas samples in a reactor often requires a medium to retain sufficient amounts of the gas for analysis. Charcoal is commonly used to adsorb gas and hold it for activation; however, the amount of activated sodium in the charcoal after irradiation swamps most signals of interest. Neutron activation analysis (NAA) was performed on several commonly available charcoal samples in an effort to determine the activation background. The results for several elements, including the dominant sodium element, are reported. It was found that ECN charcoal had the lowest elemental background, containing sodium at 2.65 ± 0.05 ppm, as well as trace levels of copper and tungsten.

  6. Some Investigations of the Reaction of Activated Charcoal with Fluorine and Uranium Hexafluoride

    SciTech Connect

    Del Cul, G.D.; Fiedor, J.N.; Simmons, D.W.; Toth, L.M.; Trowbridge, L.D.; Williams

    1998-09-01

    The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory has been shut down since 1969, when the fuel salt was drained from the core into two Hastelloy N drain tanks at the reactor site. Over time, fluorine (F{sub 2}) and uranium hexafluoride (UF{sub 6}) moved from the salt through the gas piping to a charcoal bed, where they reacted with the activated charcoal. Some of the immediate concerns related to the migration of F{sub 2} and UF{sub 6} to the charcoal bed were the possibility of explosive reactions between the charcoal and F{sub 2}, the existence of conditions that could induce a criticality accident, and the removal and recovery of the fissile uranium from the charcoal. This report addresses the reactions and reactivity of species produced by the reaction of fluorine and activated charcoal and between charcoal and F{sub 2}-UF{sub 6} gas mixtures in order to support remediation of the MSRE auxiliary charcoal bed (ACB) and the recovery of the fissile uranium. The chemical identity, stoichiometry, thermochemistry, and potential for explosive decomposition of the primary reaction product, fluorinated charcoal, was determined.

  7. Some theoretical priciples of the activation of wood charcoal by steam

    SciTech Connect

    Fedoseev, A.S.

    1982-01-01

    Kinetics and diffusion in the pores of a carbonaceous material are considered. The macroscopic rate of the reaction of steam with the carbon of wood charcoal has been determined. The optimum conditions for the activation of wood charcoal have been found.

  8. Effects of p-chlorophenoxyisobutyric acid, arabinogalactan, and activated charcoal on microspore embryogenesis in kale.

    PubMed

    Niu, R Q; Zhang, Y; Tong, Y; Liu, Z Y; Wang, Y H; Feng, H

    2015-04-27

    To improve embryogenesis in microspore cultures of kale (Brassica oleracea L. var. acephala DC.), 6-benzylaminopurine (6-BA), naphthaleneacetic acid (NAA), arabinogalactan (AG), p-chlorophenoxyisobutyric acid (PCIB), and activated charcoal (AC) were added to the medium using four varieties of kale. The results showed that the addition of AG (0.1-0.2 g/L), AC (0.1-0.2 g/L) or a combination of 6-BA (0.1-0.2 mg/L) and NAA (0.1-0.2 mg/L) promoted embryo-genesis. Adding 40 μM PCIB or a combination of 40 μM PCIB and 0.2 g/L AC to NLN-13 medium at pH 5.8 effectively enhanced embryogenesis. Treatment with a combination of 40 μM PCIB and 10 mg/L AG gave the highest rate of embryonic induction, especially in genotype "Y007," which showed a twelve-fold increase in yield.

  9. Radon-222 activity flux measurement using activated charcoal canisters: revisiting the methodology.

    PubMed

    Alharbi, Sami H; Akber, Riaz A

    2014-03-01

    The measurement of radon ((222)Rn) activity flux using activated charcoal canisters was examined to investigate the distribution of the adsorbed (222)Rn in the charcoal bed and the relationship between (222)Rn activity flux and exposure time. The activity flux of (222)Rn from five sources of varying strengths was measured for exposure times of one, two, three, five, seven, 10, and 14 days. The distribution of the adsorbed (222)Rn in the charcoal bed was obtained by dividing the bed into six layers and counting each layer separately after the exposure. (222)Rn activity decreased in the layers that were away from the exposed surface. Nevertheless, the results demonstrated that only a small correction might be required in the actual application of charcoal canisters for activity flux measurement, where calibration standards were often prepared by the uniform mixing of radium ((226)Ra) in the matrix. This was because the diffusion of (222)Rn in the charcoal bed and the detection efficiency as a function of the charcoal depth tended to counterbalance each other. The influence of exposure time on the measured (222)Rn activity flux was observed in two situations of the canister exposure layout: (a) canister sealed to an open bed of the material and (b) canister sealed over a jar containing the material. The measured (222)Rn activity flux decreased as the exposure time increased. The change in the former situation was significant with an exponential decrease as the exposure time increased. In the latter case, lesser reduction was noticed in the observed activity flux with respect to exposure time. This reduction might have been related to certain factors, such as absorption site saturation or the back diffusion of (222)Rn gas occurring at the canister-soil interface.

  10. Adsorptive desulphurization study of liquid fuels using Tin (Sn) impregnated activated charcoal.

    PubMed

    Shah, Syed Sikandar; Ahmad, Imtiaz; Ahmad, Waqas

    2016-03-05

    Keeping in view the growing concern regarding desulphurization of petroleum products, the present study was under taken to investigate the efficiency of tin impregnated activated charcoal (Sn-AC) as a potential adsorbent for the desulphurization of model and real commercial straight run kerosene and diesel oil samples. The adsorbent Sn-AC was prepared by wet impregnation process in the laboratory and characterized by SEM, EDX and surface area analysis. Initial experiments were carried out using model oil, which was prepared by dissolving dibenzothiophene (DBT) in cyclohexane, the optimum conditions for desulfurization were found to be, 60°C temperature, 1h contact time and adsorbent dosage of 0.8g, under which about 99.4% of DBT removal was attained. Under optimized conditions the desulfurization of real oil i.e., kerosene and diesel oil was also investigated. Kinetic studies revealed that DBT adsorption followed pseudo second order kinetics and the data best fits in the Langmuir adsorption isotherm as compared to Freundlich adsorption isotherm model. The adsorbent could be easily regenerated simply by washing with toluene for a multiple cycles and reused without losing its efficiency.

  11. Using Macroscopic Charcoal to Reconstruct the Holocene Fire Activity of the Willamette Valley, Oregon and Washington

    NASA Astrophysics Data System (ADS)

    Walsh, M. K.; Whitlock, C.; Bartlein, P. J.; Pearl, C. A.

    2006-12-01

    High-resolution macroscopic charcoal analysis of two lacustrine records has revealed the Holocene fire activity of the Willamette Valley, located between the Coast and Cascade ranges of southwestern Washington and northwestern Oregon. The Willamette Valley experienced major environmental and cultural changes during the Holocene, however, its long-term fire history is poorly known. Of particular interest are shifts in fire activity that occurred in response to (1) millennial- and centennial-scale climate and vegetation changes (e.g., the Early Holocene warm period, the Little Ice Age) and (2) major shifts in human activity and population size (e.g., Native American population decline, Euro-American settlement). Macroscopic charcoal analysis of contiguous core samples was used to reconstruct fire activity at each site. Charcoal source (i.e., herbaceous or woody) was also determined based on particle morphology. Charcoal influx was decomposed into a peak component (which indicates fire episodes) and a background component (which indicates changes in burnable biomass). Charcoal records from Battle Ground Lake and Beaver Lake reveal major shifts in fire activity that are consistent with known changes in regional climate on orbital time scales. The Battle Ground Lake charcoal data, for example, show a general increase in fire frequency from the beginning of the Holocene to a maximum of ~18 fire episodes/1000 years at 6500 cal yr BP, associated with the early Holocene insolation maximum and its influence on summer drought, followed by a decrease to ~5 fire episodes/1000 years at present. Similar trends are indicated by the Beaver Lake charcoal data. Both records also indicate shifts in fire activity that suggest the possibility of anthropogenic burning, but at different times at each site. Additional records are being analyzed to examine the spatial and temporal patterns of fire activity across the Willamette Valley as a whole.

  12. ACS Community Activities Contests

    NASA Astrophysics Data System (ADS)

    Burgener, Marisa

    2007-08-01

    The Committee on Community Activities and the Office of Community Activities announce the winners of the Illustrated Haiku Contest, Earth Day 2007 and the Poster Contest, National Chemistry Week 2006.

  13. In vitro analysis of the effect of supplementation with activated charcoal on the equine hindgut

    PubMed Central

    EDMUNDS, J.L.; WORGAN, H.J.; DOUGAL, K.; GIRDWOOD, S.E.; DOUGLAS, J.-L.; MCEWAN, N.R.

    2016-01-01

    ABSTRACT The present study uses in vitro analytical techniques to investigate the effect of activated charcoal on the microbial community of the equine hindgut and the metabolites they produce. Incubations were performed in Wheaton bottles using a 50 ml incubation of a high-energy feed or a low-energy feed, plus bottles with no added food source, together with five levels of activated charcoal (0, 10, 25, 50 or 100 mg per bottle) and fecal samples as a bacterial inoculum. Using this method the rate of gas production, volatile fatty acid and ammonia concentrations, and pH values were analyzed and found to vary depending on the addition of feed, but the activated charcoal had no effect (P>0.05) on any of these. It is already believed that the effect of activated charcoal as a control for toxic substances is at its highest in the foregut or midgut of animals, and therefore should have little impact on the hindgut. The data presented here suggest that if any of the activated charcoal does reach the hindgut, then it has no significant impact on the microbial community present, nor on the major metabolites produced, and so should not have a detrimental effect on the principal site of fermentation in the horse. PMID:27330398

  14. Development and optimization of the activated charcoal suspension composition based on a mixture design approach.

    PubMed

    Ronowicz, Joanna; Kupcewicz, Bogumiła; Pałkowski, Łukasz; Krysiński, Jerzy

    2015-03-01

    In this study, a new drug product containing activated charcoal was designed and developed. The excipient levels in the pharmaceutical formulation were optimized using a mixture design approach. The adsorption power of the activated charcoal suspension was selected as the critical quality attribute influencing the efficacy of medical treatment. Significant prognostic models (p<0.05) were obtained to describe in detail the interrelations between excipient levels and the adsorption power of the formulation. Liquid flavour had a critical impact on the adsorption power of the suspension. Formulations containing the largest amount of liquid flavour showed the lowest adsorption power. Sorbitol was not adsorbed onto activated charcoal so strongly as liquid flavour. A slight increase in the content of carboxymethylcellulose sodium led to a marked decrease in adsorption power. The obtained mathematical models and response surface allowed selection of the optimal composition of excipients in a final drug product.

  15. Evaluation of fructooligosaccharides separation using a fixed-bed column packed with activated charcoal.

    PubMed

    Kuhn, Raquel Cristine; Mazutti, Marcio A; Albertini, Lilian Buoro; Filho, Francisco Maugeri

    2014-05-25

    Recent studies have shown that the chromatographic separation of mixtures of saccharides may be improved by making use of activated charcoal, a promising low cost material for the separation of sugars, including fructooligosaccharides. In this work, the development of a methodology to separate fructooligosaccharides from glucose, fructose and sucrose, using a fixed bed column packed with activated charcoal is proposed. The influence of temperature, eluant concentration and step gradients were evaluated to increase the separation efficiency and fructooligosaccharide purity. The final degree of fructooligosaccharide purification and separation efficiency were about 94% and 3.03 respectively, using ethanol gradient concentration ranging from 3.5% to 15% (v/v) at 40°C. The fixed bed column packed with the activated charcoal was shown to be a promising alternative for sugar separation, mainly those rich in fructooligosaccharides, leading to solutions of acceptable degrees of purification.

  16. Molecular and structural properties of polymer composites filled with activated charcoal particles

    NASA Astrophysics Data System (ADS)

    Tahir, Dahlang; Liong, Syarifuddin; Bakri, Fahrul

    2016-03-01

    We have studied the molecular properties, structural properties, and chemical composition of composites by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and X-ray fluorescence (XRF) spectroscopy, respectively. FTIR spectra shows absorption band of hydroxyl group (-OH), methyl group (-CH3) and aromatic group (C-C). The absorption band for aromatic group (C-C) shows the formation of carbonaceous in composites. XRF shows chemical composition of composites, which the main chemicals are SO3, Cl, and ZnO. The loss on ignition value (LOI) of activated charcoal indicates high carbonaceous matter. The crystallite size for diffraction pattern from hydrogel polymer is about 17 nm and for activated charcoal are about 19 nm. The crystallite size of the polymer is lower than that of activated charcoal, which make possible of the particle from filler in contact with each other to form continuous conducting polymer through polymer matrix.

  17. Synthesis of activated charcoal supported Bi-doped TiO2 nanocomposite under solar light irradiation for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chandraboss, V. L.; Kamalakkannan, J.; Senthilvelan, S.

    2016-11-01

    In this study, activated charcoal (AC) supported bismuth (Bi)-doped Titanium dioxide (TiO2) nanocomposite was synthesized by precipitation method. The photocatalytic activity of AC-Bi/TiO2 was investigated for the degradation of methylene blue (MB) in aqueous solution under solar light irradiation. The incorporation of Bi3+ into the TiO2 lattice shifts the absorbance of TiO2 to the visible region then the addition of high adsorption capacity activated charcoal to improve the efficiency of TiO2. AC-Bi/TiO2 is found to be more efficient than Bi/TiO2 and undoped TiO2 for the degradation of MB under solar light irradiation. Surface morphology and bulk composition of the composite was obtained using high resolution-scanning electron microscopy with energy dispersive X-ray analysis. The crystal structure evolution and elemental composition were analyzed by combining Fourier transform-Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The ultraviolet-visible (UV-vis) absorption spectra show that the absorption edge for the composite with Bi3+ has red shift as compared with that of undoped TiO2. UV-vis diffuse reflectance spectra demonstrated a decrease in the direct band gap of AC-Bi/TiO2. BET surface area, pore radius and pore volume of the materials were calculated by applying the BET equation to the sorption isotherms. The production of hydroxyl radicals (rad OH) on the surface of solar light irradiated materialswere detected by photoluminescence technique using coumarin as a probe molecule. The mechanism of photocatalytic effect of the AC-Bi/TiO2 was proposed for the degradation of MB under solar light irradiation.

  18. Fractionation of honey carbohydrates using pressurized liquid extraction with activated charcoal.

    PubMed

    Ruiz-Matute, A I; Ramos, L; Martínez-Castro, I; Sanz, M L

    2008-09-24

    This article describes the development of a new procedure that combines the use of activated charcoal and pressurized liquid extraction (PLE) to obtain enriched fractions of di- and trisaccharides from honey. Honey was adsorbed onto activated charcoal and packed into a PLE extraction cell. Optimum results were obtained at 10 MPa and 40 degrees C using two consecutive PLE cycles: first, 1:99 (v/v) ethanol/water for 5 min and second, 50:50 (v/v) ethanol/water for 10 min. Di- and trisaccharide fractions were enriched after PLE treatment, accounting for 73% and 8% of total carbohydrates, respectively. This procedure was also compared with other methodologies reported in the literature for the fractionation of honey carbohydrates (yeast treatment and extraction from activated charcoal). While the removal of monosaccharides was more efficient with yeast treatment, recovery of di- and trisaccharides was higher when either the PLE or the activated charcoal treatment was used. PLE was found to be the faster technique; it also required less solvent volume and minimized handling of the sample.

  19. Effect of supplementing activated charcoal on the intake of honey mesquite leaves by lambs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to determine if intake of honey mesquite (Prosopis glandulosa Torr.) leaves by sheep could be increased by supplementing four levels of activated charcoal supplemental (0.0, 0.33, 0.67 and 1.00 g/kg of BW). Twenty wether lambs (36.6 ± 0.6 kg) were randomly assigned to the 4 tre...

  20. Effect of supplementing activated charcoal on the intake of honey mesquite leaves by lambs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to determine if intake of honey mesquite (Prosopis glandulosa Torr.) leaves by sheep could be increased by supplementing activated charcoal at 0.0, 0.33, 0.67 or 1.00 g / kg of body weight. Twenty wether lambs (36.6 ± 0.6 kg) were randomly assigned to the 4 treatment levels. La...

  1. [Biochemical effects of chronic peroral administration of carbon nanotubes and activated charcoal in drinking water in rats].

    PubMed

    Khripach, L V; Rakhmanin, Iu A; Mikhajlova, R I; Knyazeva, T D; Koganova, Z I; Zhelezniak, E V; Savostikova, O N; Alekseeva, A V; Kameneckaya, D V; Ryzhova, I N; Kruglova, E V; Revazova, T L

    2014-01-01

    Chronic 6-month experiment was carried out in rats, which received drinking water with multi-walled carbon nanotubes (MWCNTs), diameter of 15-40 nm, length ≥ 2 mkm) or activated charcoal (AC, diameter of 10-100 mkm), blood samples of the animals were used for assessment of biochemical markers. Both coal compounds induced the appearance of signs of oxidative stress 2 weeks after the beginning of the experiment and alteration of serum markers of liver and renal damage, as well as changes of cortisol and protein serum concentrations later Thus, despite of known high (asbest-like) inhalation toxicity of carbon nanotubes in comparison with other carbon allotrops (fullerenes and black carbon), we have found similar effects of MWCNTs and carbon microparticles in orally treated rats.

  2. A Novel Activated-Charcoal-Doped Multiwalled Carbon Nanotube Hybrid for Quasi-Solid-State Dye-Sensitized Solar Cell Outperforming Pt Electrode.

    PubMed

    Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Choi, Yun Seon; Jeong, Sung Hoon

    2016-03-23

    Highly conductive mesoporous carbon structures based on multiwalled carbon nanotubes (MWCNTs) and activated charcoal (AC) were synthesized by an enzymatic dispersion method. The synthesized carbon configuration consists of synchronized structures of highly conductive MWCNT and porous activated charcoal morphology. The proposed carbon structure was used as counter electrode (CE) for quasi-solid-state dye-sensitized solar cells (DSSCs). The AC-doped MWCNT hybrid showed much enhanced electrocatalytic activity (ECA) toward polymer gel electrolyte and revealed a charge transfer resistance (RCT) of 0.60 Ω, demonstrating a fast electron transport mechanism. The exceptional electrocatalytic activity and high conductivity of the AC-doped MWCNT hybrid CE are associated with its synchronized features of high surface area and electronic conductivity, which produces higher interfacial reaction with the quasi-solid electrolyte. Morphological studies confirm the forms of amorphous and conductive 3D carbon structure with high density of CNT colloid. The excessive oxygen surface groups and defect-rich structure can entrap an excessive volume of quasi-solid electrolyte and locate multiple sites for iodide/triiodide catalytic reaction. The resultant D719 DSSC composed of this novel hybrid CE fabricated with polymer gel electrolyte demonstrated an efficiency of 10.05% with a high fill factor (83%), outperforming the Pt electrode. Such facile synthesis of CE together with low cost and sustainability supports the proposed DSSCs' structure to stand out as an efficient next-generation photovoltaic device.

  3. Activated charcoal filter effectively reduces p-benzosemiquinone from the mainstream cigarette smoke and prevents emphysema.

    PubMed

    Dey, Neekkan; Das, Archita; Ghosh, Arunava; Chatterjee, Indu B

    2010-06-01

    In this paper, we have made a comparative evaluation of the cytotoxicity and pathophysiological effects of mainstream smoke from cellulose acetate (CA)-filtered cigarettes with that of charcoal-filtered cigarettes developed in our laboratory. Previously, we had demonstrated that the mainstream smoke from an Indian CA-filtered commercial cigarette contains p-benzosemiquinone (p-BSQ), a major, highly toxic, long-lived water-soluble radical. Here, we have examined 16 brands of different CA-filtered cigarettes including Kentucky research cigarettes, and observed that mainstream smoke from all the cigarettes contains substantial amounts of p-BSQ (100-200 μg/cigarette). We also show that when the CA filter is replaced by a charcoal filter, the amount of p-BSQ in the mainstream smoke is reduced by 73-80%, which is accompanied by a reduction of carbonyl formation in bovine serum albumin to the extent of 70- 90%. The charcoal filter also prevented cytotoxicity in A549 cells as evidenced by MTT assay, apoptosis as evidenced by FACS analysis, TUNEL assay, overexpression of Bax, activation of p53 and caspase 3, as well as emphysematous lung damage in a guinea pig model as seen by histology and morphometric analysis. The results indicate that the charcoal filter developed in our laboratory may protect smokers from cigarette smoke-induced cytotoxity, protein modification, apoptosis and emphysema.

  4. Effect of electric current frequency on the activation kinetics of raw charcoal

    SciTech Connect

    Shevchenko, A.O.; Ivakhnyuk, G.K.; Fedorov, N.F.

    1993-12-10

    The effect of electric current frequency on the kinetics of raw charcoal activation with water vapor has been investigated. It was established that under the effect of alternating current the rate constant increases under otherwise equal conditions. A dependence of the reaction rate on the current frequency was found. It was discovered that under the effect of alternating current the activation energy of interaction with water vapor diminishes.

  5. Adsorption of H2, Ne, and N2 on Activated Charcoal

    NASA Technical Reports Server (NTRS)

    Chang, C. K.; Tward, E.; Boudaie, K. I.

    1986-01-01

    9-page report presents measured adsorption isotherms of hydrogen, neon, and nitrogen on activated charcoal for temperatures from 77 to 400 K and pressures from 1 to 80 atmospheres (0.1 to 8.1 MPa). Heats of adsorption calculated from isotherms also presented. Report gives expressions, based on ideal-gas law, which show relationship between different definitions of volume of gas adsorbed and used in describing low-pressure isotherms.

  6. Intake of honey mesquite (Prosopis glandulosa) leaves by lambs using different levels of activated charcoal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 24-day feeding trial was conducted to assess the effect of feeding four levels of activated charcoal (0.0, 0.33, 0.67 and 1.00 g/kg of body weight) on intake of honey mesquite leaves (Prosopis glandulosa Torr.) by 20 wether lambs (36.6 ± 0.6 kg) that were randomly assigned to treatments. Lambs wer...

  7. Liquid phase adsorption behavior of inulin-type fructan onto activated charcoal.

    PubMed

    Li, Kecheng; Liu, Song; Xing, Ronge; Yu, Huahua; Qin, Yukun; Li, Pengcheng

    2015-05-20

    This study describes liquid phase adsorption characteristics of inulin-type fructan onto activated charcoal. Batch mode experiments were conducted to study the effects of pH, contact time, temperature and initial concentration of inulin. Nearly neutral solution (pH 6-8) was favorable to the adsorption and the equilibrium was attained after 40 min with the maximum adsorption Qmax 0.182 g/g (adsorbate/adsorbent) at 298 K. The experimental data analysis indicated that the adsorption process fitted well with the pseudo-second-order kinetic model (R(2) = 1) and Langmuir isotherms model (R(2) > 0.99). Thermodynamic parameters revealed that the adsorption process was spontaneous and exothermic with a physical nature. Inulin desorption could reach 95.9% using 50% ethanol solution and activated charcoal could be reused without significant losses in adsorption capacity. These results are of practical significance for the application of activated charcoal in the production and purification of inulin-type fructan.

  8. Removal of residual colonic ciprofloxacin in the rat by activated charcoal entrapped within zinc-pectinate beads.

    PubMed

    Khoder, Mouhamad; Tsapis, Nicolas; Domergue-Dupont, Valérie; Gueutin, Claire; Fattal, Elias

    2010-10-09

    Residual antibiotics reaching the colon have many deleterious effects on the colonic microbiota including the selection of new antibiotic resistances. In order to avoid the selection of ciprofloxacin resistance, intestine or colon-targeted zinc-pectinate beads containing activated charcoal (AC) were designed for the inactivation of residual ciprofloxacin in the gastrointestinal tract of rats. Bead stability after oral administration was adjusted by tuning the concentration of zinc in the gelling bath and the number of washings. Intestine and colon-targeted beads were administered along with 50mg/kg of ciprofloxacin and ciprofloxacin was dosed in the plasma and the feces using HPLC. Ciprofloxacin pharmacokinetics was not affected by the oral co-administration of beads. The co-administration of intestine-targeted beads led to a significant decrease of the residual fecal free ciprofloxacin with a pronounced dose effect. Our study suggests the rat model is not appropriate for the investigation of bacteria responsive colon-targeted beads probably due to the important anatomical and physiological differences between human and rat gastrointestinal tracts. The ability of AC loaded zinc-pectinate beads to selectively decrease the intestinal residual fraction of ciprofloxacin could provide a better protection of the intestinal microbiota and may prevent the emergence of ciprofloxacin resistance in the gastrointestinal tract.

  9. Antifungal activity of nano and micro charcoal particle polymers against Paecilomyces variotii, Trichoderma virens and Chaetomium globosum.

    PubMed

    Yang, Hee Jin; Cha, Yun Jeong; Kim, Hern; Choi, Shin Sik

    2016-01-25

    This study investigates the antifungal activity of a polymer integrated with nano-porous charcoal particles against Paecilomyces variotii, Chaetomium globosum, Trichoderma virens, which are all filamentous fungi. The charcoal polymers were prepared by combining charcoal powders with plastic resin under a vacuum to form charcoal particle protrusions on the polymer surface. The mycelial growth of P. variotii and T. virens exhibited a reduction of 10 and 30%, respectively, after the conidia were pre-treated with charcoal polymers, and in particular, no mycelial growth was found in C. globosum during 5 days of culture. The adsorption of Ca(2+) into charcoal was suggested to inhibit growth due to the reduction in the flux of calcium ions (Ca(2+)) into the hyphae. In 5 h, about 15 mM of Ca(2+) were removed from CaCl2 solution with 0.2 g/mL of polymers, and the nano-sized pores of the charcoals on the polymer were responsible for the Ca(2+) adsorption.

  10. Comparison of activated charcoal and sodium polystyrene sulfonate resin efficiency on reduction of amitriptyline oral absorption in rat as treatments for overdose and toxicities

    PubMed Central

    Yousefi, Gholamhossein; Bizhani, Mohammad; Jamshidzadeh, Akram; Gholamzadeh, Saeid

    2017-01-01

    Objective(s): Comparative in vivo studies were carried out to determine the adsorption characteristics of amitriptyline (AMT) on activated charcoal (AC) and sodium polystyrene sulfonate (SPS). AC has been long used as gastric decontamination agent for tricyclic antidepressants and SPS has showed to be highly effective on in-vitro drugs adsorption. Materials and Methods: Sprague-Dawley male rats were divided into six groups. Group I: control, group II: AMT 200 mg/kg as single dose orally, group III and IV: AC 1g/kg as single dose orally 5 and 30 min after AMT administration respectively, and group 5 and 6: SPS 1 g/kg as single dose orally 5 and 30 min after AMT administration, respectively. 60 min after oral administration of AMT (Tmax of AMT determined in rats), Cmax plasma levels were determined by a validated GC-Mass method. Results: The Cmax values for groups II to IV were determined as 1.1, 0.5, 0.6, 0.1 and 0.3 µg/ml, respectively. Conclusion: AC and SPS could significantly reduce Cmax of AMT when administrated either 5 or 30 min after AMT overdose (P<0.05). However, SPS showed to be more effective than AC in reducing Cmax when was administrated immediately (5 min) after AMT overdose. The results suggest a more efficient alternative to AC for AMT and probably other TCA overdoses. PMID:28133524

  11. Aminocyclopyrachlor sorption in biochar and activated charcoal amended soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminocyclopyrachlor is a new herbicide active ingredient, classified as a member of the new chemical class “pyrimidine carboxylic acids”. It is used for control of broadleaf weeds and brush on non-cropland. Due to its potential mobility in some soils, there is interest in whether aminocyclopyrachlor...

  12. Binding Potency of Heparin Immobilized on Activated Charcoal for DNA Antibodies.

    PubMed

    Snezhkova, E A; Tridon, A; Evrard, B; Nikolaev, V G; Uvarov, V Yu; Tsimbalyuk, R S; Ivanuk, A A; Komov, V V; Sakhno, L A

    2016-02-01

    In vitro experiments showed that heparin adsorbed on activated charcoal can bind antibodies raised against native and single-stranded DNA in a diluted sera pool with a high level of these DNA. Thus, heparin used as anticoagulant during hemosorption procedure can demonstrate supplementary therapeutic activity resulting from its interaction with various agents involved in acute and chronic inflammatory reactions such as DNA- and RNA-binding substances, proinflammatory cytokines, complement components, growth factors, etc. Research and development of heparin-containing carbonic adsorbents for the therapy of numerous inflammatory and autoimmune diseases seems to be a promising avenue in hematology.

  13. Use of Activated Charcoal for {sup 220}Rn Adsorption for Operations Associated with the Uranium Deposit in the Auxiliary Charcoal Bed at the Molten Salt Reactor Experiment Facility

    SciTech Connect

    Coleman, R.L.

    1999-03-01

    Measurements have been collected with the purpose of evaluating the effectiveness of activated charcoal for the removal of {sup 220}Rn from process off-gas at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory. A series of bench-scale tests were performed at superficial flow velocities of 10, 18, 24, and 33 cm/s (20, 35, 47, and 65 ft/min) with a continuous input concentration of {sup 220}Rn in the range of 9 x 10{sup 3} pCi/L. In addition, two tests were performed at the MSRE facility by flowing helium through the auxiliary charcoal bed uranium deposit. These tests were performed so that the adsorptive effectiveness could be evaluated with a relatively high concentration of {sup 220}Rn. In addition to measuring the effectiveness of activated charcoal as a {sup 220}Rn adsorption media, the source term for available {sup 220}Rn in the deposit is actually available for removal and that the relative activity of fission gases is very small when compared to {sup 220}Rn. The measurement data were then used to evaluate the expected effectiveness of a proposed charcoal adsorption bed consisting of a right circular cylinder having a diameter of 43 cm and a length of 91 cm (17 in. I.D. x 3 ft.). The majority of the measurement data predicts an overall 220Rn activity reduction factor of about 1 x 10{sup 9} for such a design; however, two measurements collected at a flow velocity of 18 cm/s (35 ft/min) indicated that the reduction factor could be as low as 1 x 10{sup 6}. The adsorptive capacity of the proposed trap was also evaluated to determine the expected life prior to degradation of performance. Taking a conservative vantage point during analysis, it was estimated that the adsorption effectiveness should not begin to deteriorate until a {sup 220}Rn activity on the order of 10{sup 10} Ci has been processed. It was therefore concluded that degradation of performance would likely occur as the result of causes other than filling by radon progeny.

  14. Use of Activated Charcoal for Rn-220 Adsorption for Operations Associated with the Uranium Deposit in the Auxiliary Charcoal Bed at the Molten Salt Reactor Experiment Facility

    SciTech Connect

    Coleman, R.L.

    1999-03-17

    Measurements have been collected with the purpose of evaluating the effectiveness of activated charcoal for the removal of {sup 220}Rn from process off-gas at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory. A series of bench-scale tests were performed at superficial flow velocities of 10, 18, 24, and 33 cm s{sup -1} (20, 35, 47, and 65 ft min{sup -1}) with a continuous input concentration of {sup 220}Rn in the range of 9 x 10{sup 3} pCi L{sup -1}. In addition, two tests were performed at the MSRE facility by flowing helium through the auxiliary charcoal bed uranium deposit. These tests were performed so that the adsorptive effectiveness could be evaluated with a relatively high concentration of {sup 220}Rn. In addition to measuring the effectiveness of activated charcoal as a {sup 220}Rn adsorption media, the source term for available {sup 220}Rn and gaseous fission products was evaluated and compared to what is believed to be present in the deposit. The results indicate that only a few percent of the total {sup 220}Rn in the deposit is actually available for removal and that the relative activity of fission gases is very small when compared to {sup 220}Rn. The measurement data were then used to evaluate the expected effectiveness of a proposed charcoal adsorption bed consisting of a right circular cylinder having a diameter of 43 cm and a length of 91 cm (17 in. I.D. x 3 ft.). The majority of the measurement data predicts an overall {sup 220}Rn activity reduction factor of about 1 x 10{sup 9} for such a design; however, two measurements collected at a flow velocity of 18 cm s{sup -1} (35 ft min{sup -1}) indicated that the reduction factor could be as low as 1 x 10{sup 6}. The adsorptive capacity of the proposed trap was also evaluated to determine the expected life prior to degradation of performance. Taking a conservative vantage point during analysis, it was estimated that the adsorption effectiveness should not begin to deteriorate

  15. Electrosorption and photocatalytic one-stage combined process using a new type of nanosized TiO₂/activated charcoal plate electrode.

    PubMed

    Ayoubi-Feiz, Baharak; Aber, Soheil; Khataee, Alireza; Alipour, Esmaeel

    2014-01-01

    In the present study, an activated charcoal (AC) plate was prepared by physical activation method. Its surface was coated with TiO₂ nanoparticles by electrophoretic deposition (EPD) method. The average crystallite size of TiO₂ nanoparticles was determined approximately 28 nm. The nature of prepared electrode was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area measurement before and after immobilization. The electrosorption and photocatalytic one-stage combined process was investigated in degradation of Lanasol Red 5B (LR5B), and the effect of dye concentration, electrolyte concentration, pH, voltage, and contact time was optimized and modeled using response surface methodology (RSM) approach. The dye concentration of 30 mg L(-1), Na₂SO₄ concentration of 4.38 g L(-1), pH of 4, voltage of 250 mV, and contact time of 120 min were determined as optimum conditions. Decolorization efficiency increased in combined process to 85.65% at optimum conditions compared to 66.03% in TiO₂/AC photocatalytic, 20.09% in TiO₂/AC electrosorption, and 1.91% in AC photocatalytic processes.

  16. Evaluation of radon adsorption characteristics of a coconut shell-based activated charcoal system for radon and thoron removal applications.

    PubMed

    Karunakara, N; Sudeep Kumara, K; Yashodhara, I; Sahoo, B K; Gaware, J J; Sapra, B K; Mayya, Y S

    2015-04-01

    Radon ((222)Rn), thoron ((220)Rn), and their decay products contribute a major fraction (more than 50%) of doses received from ionisation radiation in public domain indoor environments and occupation environments such as uranium mines, thorium plants, and underground facilities, and are recognised as important radiological hazardous materials, which need to be controlled. This paper presents studies on the removal of (222)Rn and (220)Rn from air using coconut shell-based granular activated charcoal cylindrical adsorber beds. Experiments were conducted to evaluate the (222)Rn and (220)Rn adsorption characteristics, and the mitigation efficiency of coconut-based activated charcoal available in India. The performance parameters evaluated include breakthrough time (τ) and adsorption coefficient (K), and degassing characteristics of the charcoal bed of varying dimensions at different flow rates. While the breakthrough for (222)Rn occurred depending on the dimension of the adsorber bed and flow rates, for (220)Rn, the breakthrough did not occur. The breakthrough curve exhibited a stretched S-shape response, instead of the theoretically predicted sharp step function. The experiments confirm that the breakthrough time individually satisfies the quadratic relationship with respect to the diameter of the bed, and the linear relationship with respect to the length, as predicted in the theory. The K value varied in the range of 2.3-4.12 m(3) kg(-1) with a mean value of 2.99 m(3) kg(-1). The K value was found to increase with the increase in flow rate. Heating the charcoal to ∼ 100 °C resulted in degassing of the adsorbed (222)Rn, and the K of the degassed charcoal and virgin charcoal were found to be similar with no deterioration in performance indicating the re-usability of the charcoal.

  17. Oral iodinated activated charcoal improves lung function in patients with COPD.

    PubMed

    Skogvall, Staffan; Erjefält, Jonas S; Olin, Anders I; Ankerst, Jaro; Bjermer, Leif

    2014-06-01

    The effect of 8 weeks treatment with oral iodinated activated charcoal (IAC) on lung function of patients with moderate chronic obstructive pulmonary disease (COPD) was examined in a double blind randomized placebo controlled parallel group study with 40 patients. In the IAC group, patients showed a statistically significant improvement of FEV1 baseline by 130 ml compared to placebo, corresponding to 8.2% improvement (p = 0.031*). Correlation statistics revealed that the improvement of FEV1 baseline was significantly correlated both to FEV1 post-bronchodilator (p = 0.0020**) and FEV1 post-exercise (0.033*) values. This demonstrates that the improved baseline lung function by IAC did not inhibit a further beta2-adrenoceptor relaxation, and thus that patients did not reach a limit for maximal improvement of the lung function after IAC treatment. Eight patients in the IAC group developed abnormal thyroid hormone levels transiently during the treatment. This side effect was not correlated to improvement of lung function (p = 0.82). No serious adverse effects directly related to the treatment were recorded. In summary, this study demonstrates that iodinated activated charcoal surprisingly and significantly improved lung function of patients with moderate COPD. The underlying mechanism of action is unclear, but is likely to be different from the drugs used today. The immediate conclusion is that further studies are now justified in order to determine clinical efficacy of IAC in COPD and explore possible mechanisms of action.

  18. In vitro adsorption of sodium pentobarbital by SuperChar, USP and Darco G-60 activated charcoals

    SciTech Connect

    Curd-Sneed, C.D.; Parks, K.S.; Bordelon, J.G.; Stewart, J.J.

    1987-01-01

    This study was designed to examine the in vitro adsorption of sodium pentobarbital by three activated charcoals. Solutions of sodium pentobarbital (20 mM) were prepared in distilled water and in 70% sorbitol (w/v). Radiolabeled (/sup 14/C) sodium pentobarbital was added to each solution to serve as a concentration marker. Two ml of each drug solution was added to test tubes containing 40 mg of either Darco G-60, USP, or SuperChar activated charcoal. The drug-charcoal mixtures were incubated at 37 degrees C for O, 2.5, 5, 7.5 or 10 min. Equilibrium, indicated by a constant percentage of drug bound for two consecutive time periods, was established immediately for the aqueous mixtures and for Darco G-60 in sorbitol. The time to equilibrium was prolonged for USP (2.5 min) and SuperChar (5 min) in the presence of sorbitol. In the second series of experiments, solutions of sodium pentobarbital (1.25 to 160 mM) were prepared in either distilled water or sorbitol. Amount of drug bound by 10 to 320 mg of activated charcoal within a 10 min incubation period was determined. Scatchard analysis determined maximum binding capacity (Bmax) and dissociation constants (Kd) for each activated charcoal. In water, Bmax (mumoles/gm) was greatest for SuperChar (1141), followed by USP (580) and Darco G-60 (381), while the Kd's did not differ. Sorbitol did not change the Bmax or Kd of USP or Darco G-60, but the additive significantly decreased the Bmax (717) and increased the Kd for SuperChar (3.3 to 10.1 mM). The results suggest that relative binding capacity of activated charcoal is directly proportional to surface area, and that sorbitol significantly reduces sodium pentobarbital binding to SuperChar.

  19. Effects of the dietary supplements, activated charcoal and copper chlorophyllin, on urinary excretion of trimethylamine in Japanese trimethylaminuria patients.

    PubMed

    Yamazaki, Hiroshi; Fujieda, Masaki; Togashi, Masahiro; Saito, Tetsuya; Preti, George; Cashman, John R; Kamataki, Tetsuya

    2004-04-16

    Trimethylaminuria (TMAU) is a metabolic disorder characterized by the inability to oxidize and convert dietary-derived trimethylamine (TMA) to trimethylamine N-oxide (TMAO). This disorder has been relatively well-documented in European and North American populations, but no reports have appeared regarding patients in Japan. We identified seven Japanese individuals that showed a low metabolic capacity to convert TMA to its odorless metabolite, TMAO. The metabolic capacity, as defined by the concentration of TMAO excreted in the urine divided by TMA concentration plus TMAO concentration, in these seven individuals ranged from 70 to 90%. In contrast, there were no healthy controls examined with less than 95% of the metabolic capacity to convert TMA to TMAO. The intake of dietary charcoal (total 1.5 g charcoal per day for 10 days) reduced the urinary free TMA concentration and increased the concentration of TMAO to normal values during charcoal administration. Copper chlorophyllin (total 180 mg per day for 3 weeks) was also effective at reducing free urinary TMA concentration and increasing TMAO to those of concentrations present in normal individuals. In the TMAU subjects examined, the effects of copper chlorophyllin appeared to last longer (i.e., several weeks) than those observed for activated charcoal. The results suggest that the daily intake of charcoal and/or copper chlorophyllin may be of significant use in improving the quality of life of individuals suffering from TMAU.

  20. Kinetics studies of d-glucose hydrogenation over activated charcoal supported platinum catalyst

    NASA Astrophysics Data System (ADS)

    Ahmed, Muthanna J.

    2012-02-01

    The kinetics of the catalytic hydrogenation of d-glucose to produce d-sorbitol was studied in a three-phase laboratory scale reactor. The hydrogenation reactions were performed on activated charcoal supported platinum catalyst in the temperature range 25-65°C and in a constant pressure of 1 atm. The kinetic data were modeled by zero, first and second-order reaction equations. In the operating regimes studied, the results show that the hydrogenation reaction was of a first order with respect to d-glucose concentration. Also the activation energy of the reaction was determined, and found to be 12.33 kJ mole-1. A set of experiment was carried out to test the deactivation of the catalyst, and the results show that the deactivation is slow with the ability of using the catalyst for several times with a small decrease in product yield.

  1. Synthesis of a high-yield activated carbon by air gasification of macadamia nut shell charcoal

    SciTech Connect

    Dai, X.; Antal, M.J. Jr.

    1999-09-01

    Macadamia nut shell charcoal was heated in an inert environment to temperatures above 1000 K (carbonized), reacted with oxygen (Po{sub 2} = 2.68--11.3 kPa) at temperatures between 525 and 586 K (oxygenated), and heated again in an inert environment to temperatures above 1000 K (activated) to produce an activated carbon. Carbons produced by this process possess surface areas and iodine numbers in the range of 400--550. Overall yields of these carbons (based on the dry, raw macadamia nut shell feed) ranged from 24 to 30 wt %. Under the conditions employed in this work, the rates of chemisorption and gasification were not mass transfer limited. Initially, the gasification reaction was first-order with respect to oxygen concentration but became independent of oxygen concentration as the surface sites of the carbon became saturated with oxygen.

  2. Radon Adsorbed in Activated Charcoal--A Simple and Safe Radiation Source for Teaching Practical Radioactivity in Schools and Colleges

    ERIC Educational Resources Information Center

    Al-Azmi, Darwish; Mustapha, Amidu O.; Karunakara, N.

    2012-01-01

    Simple procedures for teaching practical radioactivity are presented in a way that attracts students' attention and does not make them apprehensive about their safety. The radiation source is derived from the natural environment. It is based on the radioactivity of radon, a ubiquitous inert gas, and the adsorptive property of activated charcoal.…

  3. Effects of scorched food leachates with or without activated charcoal pretreatment on AhR activation in cultured cells.

    PubMed

    Takahashi, Satoshi; Morita, Koji; Kinoshita, Makoto; Fujimori, Shin; Ishikawa, Toshio

    2015-12-01

    Aryl hydrocarbon receptor (AhR) is a transcription factor activated by xenobiotics, including dioxins and polycyclic aromatic hydrocarbons (PAHs). Although AhR is also activated by some dietary constituents, it has not been completely clarified in what circumstances AhR ligands are ingested in our daily life. Because PAHs are formed by the incomplete combustion of organic materials, we hypothesized that scorched foods might contain and leach out AhR ligands sufficient to stimulate AhR in vitro. To test this hypothesis, scorched foods (bread, cheese, etc.) were mixed vigorously with water, and the supernatants were retrieved as samples. The samples were added to HepG2 cells stably expressing an AhR-responsive reporter gene. Also, expression of CYP1A1, an endogenous AhR-responsive gene, was analyzed by RT-PCR in different cell lines treated with the samples. We further tested whether pretreatment of the samples with activated charcoal would alter their AhR-stimulating activity. All the supernatant samples tested induced AhR-dependent reporter gene activity and CYP1A1 mRNA expression. In some samples, these inductions were inhibited by pretreatment with activated charcoal. Our findings indicate that scorched food leachates stimulate AhR in cultured cells and that activated charcoal adsorbs the AhR-stimulating substances in some leachates. Thus, people who habitually eat scorched foods are exposed to AhR ligands on a regular basis. Further studies are needed to elucidate whether burnt foods actually exert biological effects on our health.

  4. Study of Single Catalytic Events at Copper-in-Charcoal: Localization of Click Activity Through Subdiffraction Observation of Single Catalytic Events.

    PubMed

    Decan, Matthew R; Scaiano, Juan C

    2015-10-15

    Single molecule fluorescence microscopy reveals that copper-in-charcoal--a high performance click catalyst- has remarkably few catalytic sites, with 90% of the charcoal particles being inactive, and for the catalytic ones the active sites represent a minute fraction (∼0.003%) of the surface. The intermittent nature of the catalytic events enables subdiffraction resolution and mapping of the catalytic sites.

  5. Fabrication of Activated Rice Husk Charcoal by Slip Casting as a Hybrid Material for Water Filter Aid

    NASA Astrophysics Data System (ADS)

    Tuaprakone, T.; Wongphaet, N.; Wasanapiarnpong, T.

    2011-04-01

    Activated charcoal has been widely used as an odor absorbent in household and water purification industry. Filtration equipment for drinking water generally consists of four parts, which are microporous membrane (porous alumina ceramic or diatomite, or porous polymer), odor absorbent (activated carbon), hard water treatment (ion exchange resin), and UV irradiation. Ceramic filter aid is usually prepared by slip casting of alumina or diatomite. The membrane offers high flux, high porosity and maximum pore size does not exceed 0.3 μm. This study investigated the fabrication of hybrid activated charcoal tube for water filtration and odor absorption by slip casting. The suitable rice husk charcoal and water ratio was 48 to 52 wt% by weight with 1.5wt% (by dry basis) of CMC binder. The green rice husk charcoal bodies were dried and fired between 700-900 °C in reduction atmosphere. The resulting prepared slip in high speed porcelain pot for 60 min and sintered at 700 °C for 1 h showed the highest specific surface area as 174.95 m2/g. The characterizations of microstructure and pore size distribution as a function of particle size were investigated.

  6. Feasibility of prehospital treatment with activated charcoal: Who could we treat, who should we treat?

    PubMed Central

    Isbister, G; Dawson, A; Whyte, I

    2003-01-01

    Methods: Review of deliberate self poisoning presentations to the emergency department (ED) of a toxicology unit by ambulance over six years. Data were extracted from a standardised prospective database of poisonings. Outcomes included: number of patients attended by ambulance and number arriving in emergency within one hour. Cases were stratified by ingestion type, based on toxicity and sedative activity. Results: 2041 poisoning admissions were included. The median time to ambulance attendance was 1 h 23 min (IQR 37 min–3 h) and to hospital attendance was 2 h 15 min (IQR 1 h 25 min–4 h). In 774 cases (38%) ambulance attendance occurred within one hour, but in only 161 (8%) did ED attendance occur within one hour. Non-sedating, highly toxic substances were ingested in 55 cases, 24 (23 with GCS>14) with ambulance attendance, and five with ED attendance, within one hour. Conversely 439 patients ingested a less toxic, sedative agent, 160 with ambulance attendance, and 32 with ED attendance, within one hour. Limiting decontamination to patients ingesting highly toxic, non-sedating compounds (GCS<14) reduces the proportion requiring treatment to 23 of the 774 (3.0%), an additional 18 patients. Conclusion: More patients could potentially be decontaminated if all patients attended by ambulance within one hour received charcoal. However, this would expose 128 patients with sedative, low risk poisonings to the risk of aspiration, and only treat 18 extra high risk poisonings. This small potential benefit of prehospital charcoal is unlikely to justify the expense in training and protocols required to implement it PMID:12835364

  7. Effects of quebracho tannin extract (Schinopsis balansae Engl.) and activated charcoal on nitrogen balance, rumen microbial protein synthesis and faecal composition of growing Boer goats.

    PubMed

    Al-Kindi, Amal; Dickhoefer, Uta; Schlecht, Eva; Sundrum, Albert; Schiborra, Anne

    2016-08-01

    Under irrigated arid conditions, organic fertiliser rich in slowly decomposable nitrogen (N) and carbon (C) is needed for soil fertility maintenance. Feeding ruminants with condensed tannins will lower ruminal protein degradation, reduce urinary N excretion and might increase the faecal fraction of slowly decomposable N. Supplementation with activated charcoal (AC) might enrich manure with slowly degrading C. Therefore, we investigated the effects of feeding quebracho tannin extract (QTE) and AC on the N balance of goats, the efficiency of microbial protein synthesis in the rumen (EMPS) and the composition of faeces. The feeding trial comprised three periods; in each period, 12 male Boer goats (28 ± 3.9 kg live weight) were assigned to six treatments: a Control diet (per kg diet 500 g grass hay and 500 g concentrate) and to further five treatments the Control diet was supplemented with QTE (20 g and 40 g/kg; diets QTE2 and QTE4, respectively), with AC (15 g and 30 g/kg, diets AC1.5 and AC3.0, respectively) and a mixture of QTE (20 g/kg) plus AC (15 g/kg) (diet QTEAC). In addition to the N balance, EMPS was calculated from daily excretions of purine derivatives, and the composition of faecal N was determined. There was no effect of QTE and AC supplementation on the intake of organic matter (OM), N and fibre, but apparent total tract digestibility of OM was reduced (p = 0.035). Feeding QTE induced a shift in N excretion from urine to faeces (p ≤ 0.001) without altering N retention. Total N excretion tended to decrease with QTE treatments (p = 0.053), but EMPS was not different between treatments. Faecal C excretion was higher in QTE and AC treatments (p = 0.001) compared with the Control, while the composition of faecal N differed only in concentration of undigested dietary N (p = 0.001). The results demonstrate that QTE can be included into diets of goats up to 40 g/kg, without affecting N utilisation, but simultaneously increasing the

  8. An EELS-based study of the effects of pyrolysis on natural carbonaceous materials used for activated charcoal preparation.

    PubMed

    Jeanne-Rose, V; Golabkan, V; Mansot, J L; Largitte, L; Césaire, T; Ouensanga, A

    2003-04-01

    Electron energy-loss spectroscopy (EELS) has been used to characterize the electronic structure of charcoal phases at the nanoscale, thus demonstrating that the technique can be applied to environmental science. Activated charcoal is extensively used to remove pollutants from liquid and gaseous sewage. It is mainly obtained by activation of coke or charcoal produced from ligneous precursors. The present study concerns the use of by-products of local Caribbean agriculture, such as sugar cane bagasse, fruit stones and seeds, for use as activated charcoal precursors. Charcoal phases are prepared by high-temperature pyrolysis of lignocellulosic raw materials under a nitrogen gas flow. With the aim of optimizing the pyrolysis temperature and duration and oxygen content, the concentration of carbon sp2 hybridized chemical bonds and structural ordering have been followed by EELS for different treatment temperatures. To quantify the carbon sp2 content, near edge structure (NES) at the carbon K edge has been measured to determine the strength of pi --> pi* and 1s --> pi* transitions. Three precursors of plant origin, shells of Terminalia catappa and Acrocomia karukerana and seeds of Psidium guajava, with the pyrolysis temperatures between 600 and 900 degrees C, were investigated. The fraction of carbon sp2 bonding is found to increase when the temperature rises from 600 degrees C to the range 700-750 degrees C and becomes stable at higher temperatures. For temperatures in excess of 700 degrees C, structural ordering probably occurs and well-defined 1s --> sigma* NES is present, whose intensity increases with increasing preparation temperature. For the highest temperature of around 900 degrees C, the structure of the final product is less well organized than graphitized carbon but a few per cent of a highly ordered phase is found.

  9. Replacement of charcoal sorbent in the VOST

    SciTech Connect

    Johnson, L.D.; Fuerst, R.G.; Foster, A.L.; Bursey, J.T.

    1993-01-01

    EPA Method 0030, the Volatile Organic Sampling Train (VOST), for sampling volatile organics from stationary sources, specifies the use of petroleum-base charcoal in the second sorbent tube. Charcoal has proven to be a marginal performer as a sampling sorbent, partly due to inconsistency in analyte recovery. In addition, commercial availability of petroleum charcoal for VOST tubes has been variable. Lack of data on comparability and variability of charcoals for VOST application has created uncertainty when other charcoals are substituted. Five potential sorbent replacements for charcoal in Method 0030 were evaluated along with a reference charcoal. Two of the sorbents tested, Ambersorb XE-340 and Tenax GR, did not perform well enough to qualify as replacements. Three candidates, Anasorb 747, Carbosieve S-III and Kureha Beaded Activated Charcoal, performed adequately, and produced statistically equivalent results. Anasorb 747 appears to be an acceptable replacement for petroleum charcoal, based on a combination of performance, availability, and cost.

  10. VOST charcoal specification study

    SciTech Connect

    Fuerst, R.G.; Foster, A.L.; Bursey, J.T.

    1996-12-31

    The volatile organic sampling train (VOST) is currently one the leading methodologies available for the sampling and analysis of volatile principal organic hazardous constituents (POHCs) and products of incomplete combustion (PICs) from stationary sources at very low levels. However, revisions to the original method are necessary to maintain VOST as a viable regulatory tool. To provide performance specifications and identify a replacement for SKC Lot 104 charcoal, a VOST charcoal specification study was initiated. The following carbon-based candidate sorbents were considered: Tenax-GR (a graphitized Tenax); a Petroleum-based Charcoal; Ambersorbe XE-340 (hydrophobic carbonized resin bead); Anasorb 747 (beaded active carbon with very regular pore size); Carbosieve{reg_sign} S-III (carbon molecular sieve); and a Beaded Activated Charcoal (BAC) (with a very regular pore size). The results indicated that Tenax-GR showed significantly poorer performance than the other candidates in preliminary experimental results. Ambersorb did not retain the gaseous volatile organic compounds tested as well as the others and recovery of vinyl chloride was very low at all levels of spiking. Carbosieve was eliminated as a candidate replacement because of cost and handling problems. The petroleum-based charcoal was eliminated because of difficulties in handling a finely-divided powder. The availability of Anasorb 747 proved to be the deciding factor between it and the BAC. Performance, cost, ease of handling, and plentiful supply make Anasorb{reg_sign} 747 a good choice for replacement of SKC Lot 104. 1 tab.

  11. Charcoal rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot is reported occasionally on alfalfa in the U.S. and has also been found in Australia, Pakistan, Uganda, east Africa, and the former Soviet Union. The fungus causing the disease is widespread throughout tropical and subtropical countries. It causes disease on more than 500 crop and we...

  12. Adsorption of ammonium dinitramide (ADN) from aqueous solutions. 1. Adsorption on powdered activated charcoal.

    PubMed

    Santhosh, G; Venkatachalam, S; Ninan, K N; Sadhana, R; Alwan, S; Abarna, V; Joseph, M A

    2003-03-17

    Investigations on the adsorption of ammonium dinitramide (NH(4)N(NO(2))(2)) (ADN) from aqueous solutions on powdered activated charcoal (PAC) were carried out in order to find out an effective and easier method of separating ADN from aqueous solutions. The effectiveness of PAC in the selective adsorption of ADN from aqueous solutions of ADN (ADN-F) and ADN in presence of sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) ions (ADN-PS) was examined and compared using batch and column methods. The adsorption process follows both Langmuir and Freundlich adsorption isotherms and the isotherm parameters for the models were determined. The observed data favor the formation of monolayer adsorption. The adsorption capacities were found to be 63.3, 119, 105.3 and 82 mg of ADN per g of PAC for ADN-F (batch), ADN-PS (batch), ADN-F (column) and ADN-PS (column), respectively. Break-through curves for ADN-F and ADN-PS were obtained for the optimization of separation of ADN from aqueous solutions. Elution curves were generated for the desorption of ADN from PAC using hot water as eluent.

  13. Lead(II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo)--a comparative study.

    PubMed

    Lalhruaitluanga, H; Jayaram, K; Prasad, M N V; Kumar, K K

    2010-03-15

    Melocanna baccifera (Poaceae) is the most abundant and economically important non-timber product in state of Mizoram, India. The communities of the region use this potential resource in many ways, charcoal production is one of them. Bamboo charcoal has application in food, pharmaceutical and chemical industries. Activated charcoal was prepared from M. baccifera charcoal by chemical pretreatment in order to make better use of this abundant biomass material. Batch experiments were conducted under varying range of pH (2.0-6.0), contact time (15-360 min) and metal ion concentrations (50-90 mg L(-1)). The optimum conditions for lead biosorption are almost same for M. baccifera raw charcoal (MBRC) and M. baccifera activated charcoal (MBAC)-pH 5.0, contact time 120 min, adsorption capacity q(max) 10.66 mg g(-1) and 53.76 mg g(-1), respectively. However, the biomass of MBAC was found to be more suitable than MBRC for the development of an efficient adsorbent for the removal of lead(II) from aqueous solutions. FTIR analysis revealed that -OH, C-H bending, C=O stretching vibration and carbonyl functional groups were mainly responsible for Pb(II) biosorption. Thus, this study demonstrated that both the charcoal biomass could be used as adsorbents for the treatment of Pb(II) from aqueous solution.

  14. Population pharmacokinetics and pharmacodynamics of escitalopram in overdose and the effect of activated charcoal

    PubMed Central

    van Gorp, Freek; Duffull, Stephen; Hackett, L Peter; Isbister, Geoffrey K

    2012-01-01

    AIMS To describe the pharmacokinetics and pharmacodynamics (PKPD) of escitalopram in overdose and its effect on QT prolongation, including the effectiveness of single dose activated charcoal (SDAC). METHODS The data set included 78 escitalopram overdose events (median dose, 140 mg [10–560 mg]). SDAC was administered 1.0 to 2.6 h after 12 overdoses (15%). A fully Bayesian analysis was undertaken in WinBUGS 1.4.3, first for a population pharmacokinetic (PK) analysis followed by a PKPD analysis. The developed PKPD model was used to predict the probability of having an abnormal QT as a surrogate for torsade de pointes. RESULTS A one compartment model with first order input and first-order elimination described the PK data, including uncertainty in dose and a baseline concentration for patients taking escitalopram therapeutically. SDAC reduced the fraction absorbed by 31% and reduced the individual predicted area under the curve adjusted for dose (AUCi/dose). The absolute QT interval was related to the observed heart rate with an estimated individual heart rate correction factor (α = 0.35). The heart rate corrected QT interval (QTc) was linearly dependent on predicted escitalopram concentration [slope = 87 ms/(mg l–1)], using a hypothetical effect-compartment (half-life of effect-delay, 1.0h). Administration of SDAC significantly reduced QT prolongation and was shown to reduce the risk of having an abnormal QT by approximately 35% for escitalopram doses above 200 mg. CONCLUSIONS There was a dose-related lengthening of the QT interval that lagged the increase in drug concentration. SDAC resulted in a moderate reduction in fraction of escitalopram absorbed and reduced the risk of the QT interval being abnormal. PMID:21883384

  15. The pharmacokinetics of sertraline in overdose and the effect of activated charcoal

    PubMed Central

    Cooper, Joyce M; Duffull, Stephen B; Saiao, Ana S; Isbister, Geoffrey K

    2015-01-01

    Aims To investigate the pharmacokinetics (PK) of sertraline in overdose and the effect of single dose activated charcoal (SDAC). Methods Patients presenting to a toxicology unit with sertraline overdoses had demographic and clinical information recorded, and serial serum collected for measurement of sertraline concentrations. Monolix® version 4.2 was used to develop a population PK model of sertraline overdose and the effect of SDAC. Uncertainty in dose time was accounted for by shifting dose time using lag time with between subject variability (BSV). BSV on relative fraction absorbed was used to model uncertainty in dose. Results There were 77 timed sertraline concentrations measured in 28 patients with sertraline overdoses with a median dose of 1550 mg (250–5000 mg). SDAC was given to seven patients between 1.5 and 4 h post-overdose. A one compartment model with lag time of 1 h and first order input and elimination adequately described the data. Including BSV on both lag time and relative fraction absorbed improved the model. The population PK parameter estimates for absorption rate constant, volume of distribution and clearance were 0.895 h−1, 5340 l and 130 l h−1, respectively. The calculated half-life of sertraline following overdose was 28 h (IQR 19.4−30.6h). When given up to 4 h post-overdose, SDAC significantly increased the clearance of sertraline by a factor of 1.9, decreased the area under the curve and decreased the maximum plasma concentration (Cmax). Conclusions Sertraline had linear kinetics in overdose with parameter values similar to those in therapeutic use. SDAC is effective in increasing clearance when given 1.5 to 4 h post-overdose. PMID:25155462

  16. A theoretical model for {sup 222}Rn adsorption on activated charcoal canisters in humid air based on Polanyi`s potential theory

    SciTech Connect

    Scarpitta, S.C.

    1995-03-01

    Water vapor interferes with adsorption {sup 222}Rn gas by passive activated charcoal devices used to estimate indoor air concentrations. The {sup 222}Rn adsorption coefficient is the fundamental parameter characterizing charcoal`s ability to adsorb {sup 222}Rn. The Dubinin-Radushkevich equation, based on Polanyi`s potential theory, was modified to include two terms quantifying the effect of both water vapor and sampling time on the {sup 222}Rn adsorption coefficient of passive charcoal devices. A single equation was derived that quantities the {sup 222}Rn adsorption coefficients at any temperature, humidity and exposure time using six experimentally determined physical constants that are unique for a particular passive charcoal device. The theoretical model was verified with published experimental data, and it showed a good correlation between theory and experiment. The model proved to be consistent with experimental data, provided that the amount of water vapor adsorbed by the charcoal device during sampling remains below a critical level, termed the breakpoint. 44 refs., 5 figs., 2 tabs.

  17. Adsorption saturation and chromatographic distortion effects on passive headspace sampling with activated charcoal in fire debris analysis.

    PubMed

    Williams, Mary R; Fernandes, Denise; Bridge, Candice; Dorrien, Derek; Elliott, Stefanie; Sigman, Michael

    2005-03-01

    Distortion of the chromatographic profile obtained for hydrocarbons that have been sampled by adsorption onto activated charcoal is a well-known phenomenon. The work reported here helps to better define the causes of chromatographic profile distortion and offers a potential method to avoid chromatographic distortion in some cases through a subsampling technique. The recovery of hydrocarbons from an equimolar mixture was investigated to determine the influence of hydrocarbon concentration on the molar ratios of recovered components. In a one-quart container, hydrocarbon volumes as small as 24 microL (liquid) were sufficient to saturate the surface area available for adsorption on a 99.0 mm2 square of activated charcoal, resulting in significant distortions in the molar ratio and the chromatographic profile of the recovered hydrocarbons. Passive headspace sampling of a similarly small volume of unweathered gasoline spiked onto carpet padding resulted in a significant distortion of the chromatographic profile. The chromatographic profile of the recovered hydrocarbons closely resembled 75% weathered gasoline. Heating the container spiked with unweathered gasoline to evenly distribute the components and then removing a subsample of the carpet padding to a second container for passive headspace analysis greatly reduced the amount of distortion in the resulting chromatogram.

  18. How feasible is it to conform to the European guidelines on administration of activated charcoal within one hour of an overdose?

    PubMed Central

    Karim, A; Ivatts, S; Dargan, P; Jones, A

    2001-01-01

    Methods—63 patients who had taken potentially serious overdoses and required hospital admission from a London teaching hospital A&E department were identified over a six month period. The patients' case notes were analysed for age, sex, substances taken, and the timing of their management within the A&E department. Results—Median time of arrival after overdose was 136 minutes, and only 15 patients presented within an hour. Ten of these 15 patients were given activated charcoal, and only four of the 10 received it within the one hour limit. Sixteen patients received charcoal outside the time limit. Subanalysis of the individual cases given charcoal shows that triaging is fast (median five minutes), but a significant time delay occurs after this before charcoal is administered (median 21 minutes). Conclusions—These results are likely to be exaggerated in rural hospitals and demonstrate the difficulty of adhering to the recommended guidelines, unless activated charcoal can be safely administered to appropriate patients in the prehospital environment. PMID:11559618

  19. Detection of 5 CFU/g of Escherichia coli O157:H7 on lettuce using activated charcoal and real-time PCR without enrichment.

    PubMed

    Lee, Jung-Lim; Levin, Robert E

    2011-05-01

    A sample treatment method which separates Escherichia coli O157:H7 from lettuce and removes PCR inhibitors allowing 5 CFU/g of target cells to be detected using real-time PCR is described. Lettuce leaves inoculated with E. coli O157:H7 were rinsed with 0.025% sodium dodecyl sulfate (SDS). In this study, there were two major factors that strongly affected the recovery of E. coli O157:H7 during sample preparation, the amount of bentonite coated activated charcoal used to remove PCR inhibitors and the agitated contact time of the samples with the coated charcoal. When 3.0 g of activated carbon coated with bentonite were mixed with target cell suspensions (30 ml) derived from 50 g of lettuce, a high recovery of E. coli O157:H7 (93%) was obtained. Sample agitation with bentonite coated activated charcoal for 15 min resulted in 95% recovery of E. coli O157:H7. When a commercial DNA purification resin was used for detection of E. coli O157:H7 without the use of the bentonite treated charcoal, the real-time PCR (Rti-PCR) failed to detect 1 × 10(2) CFU/g. In contrast, with the use of use of bentonite coated activated charcoal and a commercial DNA purifying resin together, Rti-PCR was able to detect 5 CFU of E. coli O157:H7/g of lettuce which was equivalent to 2.8 CFU/Rti-PCR. Such a successful detection level was the result of the bentonite coated activated charcoal's ability to absorb the PCR inhibitors released from seeded lettuce during detachment. A standard curve was generated by plotting the Ct values against the log of CFU of target bacterial cells. A linear range of DNA amplification was exhibited from 5.0 × 10(0) to 1.0 × 10(4) CFU/g by using Rti-PCR.

  20. Effect of a catalyst on the kinetics of reduction of celestite (SrSO{sub 4}) by active charcoal

    SciTech Connect

    Sonawane, R.S.; Kale, B.B.; Apte, S.K.; Dongare, M.K.

    2000-02-01

    Reduction of celestite (SrSO{sub 4}) powder with particles of active charcoal has been studied extensively in the absence and presence of catalysts. The optimum temperature at the charging zone has been optimized to get a maximum water-soluble strontium sulfide value. The strontium value has been analyzed using a chemical method, which was verified by the instrumental method using an inductively coupled plasma-optical emission spectrophotometer (ICP-OES). The conversion-time data have been analyzed by using a modified volume-reaction (MVR) model, and the effect of the catalyst on kinetic parameters has been elucidated. It was found that potassium carbonate, potassium dichromate, sodium carbonate, and sodium dichromate catalysts were found to enhance the reaction rate quite satisfactorily in the reduction of the celestite (SrSO{sub 4}).

  1. Effects of pH and inorganic salts on the adsorption of phenol from aqueous systems on activated decolorizing charcoal

    SciTech Connect

    Halhouli, K.A.; Darwish, N.A.; Al-Dhoon, N.M.

    1995-10-01

    An experimental investigation of the effects of pH and three inorganic salts (KCl, KI, and NaCl) on the adsorption isotherms of phenol (from a dilute aqueous solution) on activated charcoal was conducted. Each salt was studied at three different concentrations, i.e., 0.1, 0.01, and 0.005 M. The effect of pH (in the pH range 3 to 11) in the presence of KI, KCl, and NaCl was also investigated. The concentration of phenol in the aqueous systems studied ranged from 10 to 200 ppm. The temperature effect was also studied, and the resulting experimental equilibrium isotherms at 30, 40, and 55{degrees}C are well represented by Freundlich, Langmuir, and Redlich-Paterson isotherms. The relevant parameters for these isotherms are presented.

  2. Development of a technique for the measurement of the radon exhalation rate using an activated charcoal collector.

    PubMed

    Iimoto, Takeshi; Akasaka, Yoshinori; Koike, Yuya; Kosako, Toshiso

    2008-04-01

    A simple system to evaluate the 222Rn (radon) exhalation rate from soil has been improved. A sampling cuvette of 2.1 L is placed so that it covers the targeted ground soil, and radon emanating from the soil accumulates within the cuvette for 24 h. Its internal radon concentration is measured by the combination of an activated charcoal (PICO-RAD) and a liquid scintillation counting system. This study shows variations of the conversion factor (CF: unit Bq m(-3)/cpm) of PICO-RAD. The range of CF due to temperature (10-30 degrees C) was between -21% and +69%, and this due to humidity (30-90%) was between 0% and -15%. Humidity and radon concentration in the cuvette covering soil tended to saturate in a few hours. The above information was used to correct the CF for the evaluation. The improved system shows high reliability and can be easily applied to natural environments.

  3. Somatic proembryo production from excised, wounded zygotic carrot embryos on hormone-free medium: evaluation of the effects of pH, ethylene and activated charcoal

    NASA Technical Reports Server (NTRS)

    Smith, D. L.; Krikorian, A. D.

    1990-01-01

    Wounded zygotic embryos of cultivated carrot produce somatic proembryos on hormone-free nutrient medium containing 1 mM NH4+ as the sole nitrogen source. Continued maintenance of proembryos on this medium leads to a "pure" culture of preglobular stage proembryos (PGSPs). Ethylene had no effect on this process. Also, somatic embryo production was not affected by growing cultures on activated charcoal-impregnated filter papers. However, somatic proembyros initiated on activated charcoal papers were not maintainable as PGSPs and developed into later embryo stages. Normally, medium pH dropped from 5.7 to 4 during each subculture period, but when using activated charcoal papers the pH endpoint was around 6 - 7 due to a leachable substance(s) within the filter papers. When powdered, activated charcoal was used in the medium as an adsorbent of products potentially released after wounding, pH dropped at the normal rate and to the expected levels; proembryos did not mature into later embryo stages and were maintainable exclusively as PGSPs. Low pH (approximately 4) is detrimental to proembyro production, but is essential to maintaining PGSPs on hormone-free nutrient medium, whereas a sustained pH > or = 5.7 allows continued development of PGSPs into later embryo stages.

  4. Clarifying the role of activated charcoal filters in preparing an anaesthetic workstation for malignant hyperthermia-susceptible patients.

    PubMed

    Bilmen, J G; Gillies, R I

    2014-01-01

    Malignant hyperthermia (MH) is a life-threatening condition caused by exposure of susceptible individuals to volatile anaesthetics or suxamethonium. MH-susceptible individuals must avoid exposure to these drugs, so accurate and reproducible processes to remove residual anaesthetic agents from anaesthetic workstations are required. Activated charcoal filters (ACFs) have been used for this purpose. ACFs can reduce the time for preparing an anaesthetic workstation for MH patients. Currently, the only commercially available ACFs are the Vapor-Clean$trade; (Dynasthetics, Salt Lake City, UT, USA) filters which retail at approximately AUD$130 per set of two, both of which are to be used in a single anaesthetic. Anaesthetic workstations were saturated with anaesthetic vapours and connected to a Miran ambient air analyser (SapphRe XL, ThermoScientific, Waltham, MA, USA) to measure vapour concentration. Various scenarios were tested in order to determine the most economical configurations of machine flushing, component change and activated charcoal filter use. We found that placement of filters in an unprepared, saturated circuit was insufficient to safely prepare an anaesthetic workstation. Following flushing of the anaesthetic workstation with high-flow oxygen for 90 seconds, a circuit and soda lime canister change and the placement of an ACF on the inspiratory limb, we were able to safely prepare a workstation in less than three minutes. A single filter on the inspiratory limb was able to maintain a clean circuit for 12 hours, with gas flows dropped from 10 lpm to 3 lpm after 90 minutes or removal of the filter after 90 minutes if high gas flows were maintained.

  5. Handbook of charcoal making: the traditional and industrial methods

    SciTech Connect

    Emrich, W.

    1985-01-01

    The reviewer credits this handbook with expanding knowledge about the economic value of charcoal, particularly in the European area. The 10 chapters are: (1) history and fundamentals of the charcoal process, (2) traditional methods of the smallholder producer, (3) concepts and technology for the industrial producer, (4) recovering commercial products from pyrolysis oil, (5) raw materials supply, (6) end-use markets for by-products, (7) planning a charcoal venture, (8) charcoal briquettes and activated charcoal, (9) safety precautions and environmental considerations, and (10) charcoal laboratory work. Each chapter lists references. There are four appendices.

  6. Adsorption and desorption of noble gases on activated charcoal: II. sup 222 Rn studies in a monolayer and packed bed

    SciTech Connect

    Scarpitta, S.C.; Harley, N.H. )

    1990-10-01

    The adsorptive and desorptive characteristics of canisters containing a petroleum-based charcoal were investigated under controlled conditions of temperature, relative humidity, and Rn concentration. Charcoals exposed in a monolayer and packed bed during exposure intervals of 1-7 d demonstrate that Rn adsorption and desorption are dependent on bed depth and the amount of water adsorbed. Changes in the adsorptive and desorptive properties of the charcoal occurred near the break-point where the pores became occluded by water vapor that condenses in the entrance capillaries. Radon-222 adsorption is decreased by an order of magnitude as the amount of adsorbed water exceeds the break-point of the charcoal. The reduction in pore surface due to adsorbed water results in a marked increase in the rate of Rn loss from exposed canisters, accounting for reduced adsorption. The apparent desorption time-constant for a 2-cm bed of loose Witco 6 x 10 mesh charcoal containing 0.220-0.365 kg H{sub 2}O kg-1 is typically between 2-8 h. The apparent desorption time-constant for an equivalent packed bed containing a water vapor content of 0.026-0.060 kg H{sub 2}O kg-1, which is below the break-point of the charcoal, is about 15-30 h. Conventional charcoal canisters, if exposed in the fully-opened configuration, can achieve the break-point in less than 4 d at 70% humidity. The use of a diffusion barrier would allow for longer exposure times until the break-point of the charcoal is achieved.

  7. Gastrointestinal transit measurements in mice with 99mTc-DTPA-labeled activated charcoal using NanoSPECT-CT

    PubMed Central

    2013-01-01

    Background Gastrointestinal (GI) disorders are commonly associated with chronic conditions such as diabetes, obesity, and hypertension. Direct consequences are obstipation or diarrhea as opposite aspects of the irritable bowel syndrome, and more indirectly, alteration of appetite, feeling of fullness, flatulence, bloatedness, and eventually leading to altered absorption of nutrients. Moreover, GI retention and passage times have been recognized as important factors in determining the release site and hence the bioavailability of orally administered drugs. To facilitate the understanding of physiological and pathological processes involved, it is necessary to monitor the gut motility in animal models. Here, we describe a method for studying the GI transit time using technetium-labeled activated charcoal diethylenetriaminepentaacetic acid (99mTc-Ch-DTPA) detected by single-photon emission computed tomography (SPECT). Methods Tc-DTPA was adsorbed onto activated charcoal and administered orally to trypan blue-tainted (n = 4) 129SvEv mice (50 to 80 MBq/animal, n = 11). The exact distribution and movement of radioactivity in the gastrointestinal tract was measured at intervals of 1, 3, 6, 12, and 22 h by SPECT-CT. In addition, in order to validate the imaging of GI transient time, loperamide (0.25 mg/animal, n = 3) was used to delay the GI transit. Results The transit time measured as the peak radioactivity occurring in the rectum was 6 to 7 h after gavaging of 99mTc-Ch-DTPA. After 1 h, the bolus had passed into the small intestine and entered the cecum and the colon. At 6 and 8 h, the cecum, the ascending, transverse, and descending colon, and the rectum showed significant labeling. Several pellets were stored in the rectum for defecation. After 22 h, little activity remained in the stomach and none was detected in the transverse colon or other GI locations. In contrast, 6 h after administration of loperamide, only the cecum and part of the transverse colon were labeled

  8. Efficiency of membrane technology, activated charcoal, and a micelle-clay complex for removal of the acidic pharmaceutical mefenamic acid.

    PubMed

    Khalaf, Samer; Al-Rimawi, Fuad; Khamis, Mustafa; Nir, Shlomo; Bufo, Sabino A; Scrano, Laura; Mecca, Gennaro; Karaman, Rafik

    2013-01-01

    The efficiency of sequential advanced membrane technology wastewater treatment plant towards removal of a widely used non-steroid anti-inflammatory drug (NSAID) mefenamic acid was investigated. The sequential system included activated sludge, ultrafiltration by hollow fibre membranes with 100 kDa cutoff, and spiral wound membranes with 20 kDa cutoff, activated carbon and a reverse osmosis (RO) unit. The performance of the integrated plant showed complete removal of mefenamic acid from spiked wastewater samples. The activated carbon column was the most effective component in removing mefenamic acid with a removal efficiency of 97.2%. Stability study of mefenamic acid in pure water and Al-Quds activated sludge revealed that the anti-inflammatory drug was resistant to degradation in both environments. Batch adsorption of mefenamic acid by activated charcoal and a composite micelle (otadecyltrimethylammonium (ODTMA)-clay (montmorillonite) was determined at 25.0°C. Langmuir isotherm was found to fit the data with Qmax of 90.9 mg g(-1) and 100.0 mg g(-1) for activated carbon and micelle-clay complex, respectively. Filtration experiment by micelle-clay columns mixed with sand in the mg L(-1) range revealed complete removal of the drug with much larger capacity than activated carbon column. The combined results demonstrated that an integration of a micelle-clay column in the plant system has a good potential to improve the removal efficiency of the plant towards NSAID drugs such as mefenamic acid.

  9. Soil organic matter dynamics and microbial activity in a cropland and soil treated with wood ash containing charcoal

    NASA Astrophysics Data System (ADS)

    Omil, B.; Fonturbel, M. T.; Vega, J. A.; Balboa, M. A.; Merino, A.

    2012-04-01

    Wood ash is generated as a by-product of biomass combustion in power plants, and can be applied to soil to improve nutritional status and crop production. The application of mixed wood ash, a mixture of ash and charcoal, may also improve the SOM content and quality. The charcoal contained in mixed wood ash is a pyrogenic organic material, a heterogeneous mixture of thermally altered polymers with aromatic domains. This structure may favour oxidation, facilitating further microbial attack and generation of new SOM compounds. In addition, accelerated C mineralization of this material may also be due to the priming effect of the rhizosphere, which may even enhance the decomposition of more recalcitrant SOM. The study was carried out in a field devoted to cereal crops during the last few decades. The soil was acidic (pH 4.5) with a low SOC content (3 %). The experiment was based on a randomised block design with four replicates. Each block included the following four treatments: Control, 16 Mg fly wood ash, 16 Mg mixed wood ash and 32 Mg mixed wood ash ha-1. The ash used in the study was obtained from a thermal power plant and was mainly derived from the combustion of Pinus radiata bark. The changes in SOM were monitored over two years by solid state 13C CPMAS NMR and Differential Scanning Calorimetry (DSC). The changes in microbial activity were studied by analysis of microbial biomass C and basal respiration. The soil bacterial community was studied by the Biolog method. Both 13 C-CPMAS NMR spectra and DSC curves revealed that the SOM in the treated soils displayed a higher degree of aromaticity than in the untreated soils, indicating a gain in more stable SOM compounds. However, both methods also revealed increases in other labile C compounds. Microbial biomass and soil respiration increased significantly as a result of these effects and possibly also due to a priming effect. The treatments also led to increases in the functional diversity indices. The amended soils

  10. Heavy metal removal from MSWI fly ash by electrokinetic remediation coupled with a permeable activated charcoal reactive barrier

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Li, Dongwei; Kexiang, Liu; Zhang, Yuewei

    2015-10-01

    This paper presents the investigations into the feasibility of the application of a remediation system that couples electrokinetic remediation (EKR) with the permeable reactive barrier (PRB) concept for municipal solid waste incineration (MSWI) fly ash with activated charcoal as the PRB material. The experimental results of this study showed that the proposed combined method can effectively improve the remediation efficiency and that the addition of the oxalic acid to the PRB media before the coupled system can further enhance the remediation process. In the optimization tests, the maximum removals of Zn, Pb, Cu and Cd were achieved under different experimental conditions. The voltage gradient and processing time were shown to have significant effects on the removal of Cu and Cd, whereas the addition of the oxalic acid had a more significant influence on the removal of Pb. Generally, the processing time is the most significant factor in changing the removal rates of HMs in the enhanced coupled system. In terms of the leaching toxicity, the specimen remediated by ENEKR + PRB showed the lowest leaching value for each HM in the S2 and S3 regions.

  11. A simple and rapid technique for radiochemical separation of iodine radionuclides from irradiated tellurium using an activated charcoal column.

    PubMed

    Chattopadhyay, Sankha; Saha Das, Sujata

    2009-10-01

    A simple and inexpensive method for the separation of medically useful no-carrier-added (nca) iodine radionuclides from bulk amounts of irradiated tellurium dioxide (TeO(2)) target was developed. The beta(-) emitting (131)I radionuclide, produced by the decay of (131)Te through the (nat)Te(n, gamma)(131)Te nuclear reaction, was used for standardization of the radiochemical separation procedure. The radiochemical separation was performed by precipitation followed by column (activated charcoal) chromatography. Quantitative post-irradiation recovery of the TeO(2) target material (98-99%), in a form suitable for reuse in future irradiations, was achieved. The overall radiochemical yield for the complete separation of (131)I was 75-85% (n=8). The separated nca (131)I was of high, approximately 99%, radionuclidic and radiochemical purities and did not contain detectable amounts of the target material. This method can be adopted for the radiochemical separation of other different iodine radionuclides produced from tellurium matrices through cyclotron as well as reactor irradiation.

  12. Heavy metal removal from MSWI fly ash by electrokinetic remediation coupled with a permeable activated charcoal reactive barrier.

    PubMed

    Huang, Tao; Li, Dongwei; Kexiang, Liu; Zhang, Yuewei

    2015-10-21

    This paper presents the investigations into the feasibility of the application of a remediation system that couples electrokinetic remediation (EKR) with the permeable reactive barrier (PRB) concept for municipal solid waste incineration (MSWI) fly ash with activated charcoal as the PRB material. The experimental results of this study showed that the proposed combined method can effectively improve the remediation efficiency and that the addition of the oxalic acid to the PRB media before the coupled system can further enhance the remediation process. In the optimization tests, the maximum removals of Zn, Pb, Cu and Cd were achieved under different experimental conditions. The voltage gradient and processing time were shown to have significant effects on the removal of Cu and Cd, whereas the addition of the oxalic acid had a more significant influence on the removal of Pb. Generally, the processing time is the most significant factor in changing the removal rates of HMs in the enhanced coupled system. In terms of the leaching toxicity, the specimen remediated by ENEKR + PRB showed the lowest leaching value for each HM in the S2 and S3 regions.

  13. Heavy metal removal from MSWI fly ash by electrokinetic remediation coupled with a permeable activated charcoal reactive barrier

    PubMed Central

    Huang, Tao; Li, Dongwei; Kexiang, Liu; Zhang, Yuewei

    2015-01-01

    This paper presents the investigations into the feasibility of the application of a remediation system that couples electrokinetic remediation (EKR) with the permeable reactive barrier (PRB) concept for municipal solid waste incineration (MSWI) fly ash with activated charcoal as the PRB material. The experimental results of this study showed that the proposed combined method can effectively improve the remediation efficiency and that the addition of the oxalic acid to the PRB media before the coupled system can further enhance the remediation process. In the optimization tests, the maximum removals of Zn, Pb, Cu and Cd were achieved under different experimental conditions. The voltage gradient and processing time were shown to have significant effects on the removal of Cu and Cd, whereas the addition of the oxalic acid had a more significant influence on the removal of Pb. Generally, the processing time is the most significant factor in changing the removal rates of HMs in the enhanced coupled system. In terms of the leaching toxicity, the specimen remediated by ENEKR + PRB showed the lowest leaching value for each HM in the S2 and S3 regions. PMID:26486449

  14. Determination of trace elements in medicinal activated charcoal using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry with low vaporization temperature.

    PubMed

    Chen, Chien-Chou; Jiang, Shiuh-Jen; Sahayam, A C

    2015-01-01

    The determination of Cd, Sb, Te, Hg, Tl and Pb in medicinal activated charcoal by ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) was described. EDTA was used as the modifier to enhance the volatility of elements studied. The influences of instrument operating conditions and slurry preparation on the ion signals were studied. A relatively low vaporization temperature of 1000°C was used, which separated the analyte from the major matrix components that improved ion signals. The method has been applied to determine Cd, Sb, Te, Hg, Tl and Pb in an NIST SRM 1633b Coal Fly Ash reference material and three brands of medicinal activated charcoal capsules using isotope dilution and standard addition calibration methods. The concentrations that are in ng g(-1) levels were in good agreement between different calibration methods. The precision between sample replicates was better than 7% with USS-ETV-ICP-MS technique. The method detection limit estimated from standard addition curves was 0.4, 0.3, 0.3, 0.3, 0.04 and 0.9 ng g(-1) for Cd, Sb, Te, Hg, Tl and Pb, respectively, in original medicinal activated charcoal.

  15. The Effect of Humidity on the Collection Efficiency for Oxygenated Compounds Absorbed on Activated Charcoal

    DTIC Science & Technology

    1990-08-01

    Journal 43: 423-426 (1982). 6. Mantell, C. L.: Adsorption , pp. 2-161. McGraw-Hill Book Co., New York, (1951). 7. Smisek, M. and S. Cerny: Active Carbon ...Farris: The Effect of Moisture on the Adsorption of Chloroform by Activated Carbon . American Industrial Hygiene Association Journal. 46: 20-23, (1985...522-625 (1987). 20. Okazaki, M., H. Tamon, R. Toei: Prediction of Binary Adsorption Equilibria of Solvent and Water Vapor on Activated Carbon . Journal

  16. Activation of waste MDF sawdust charcoal and its reactive dye adsorption characteristics.

    PubMed

    Gan, Q; Allen, S J; Matthews, R

    2004-01-01

    This paper reports an experimental investigation of converting waste medium density fibreboard (MDF) sawdust into chars and activated carbon using chemical activation and thermal carbonisation processes. The MDF sawdust generated during the production of architectural mouldings was characterised and found to have unique properties in terms of fine particle size and high particle density. It also has a high content of urea formaldehyde resin used as a binder in the manufacturing of MDF board. Direct thermal carbonisation and chemical activation of the sawdust by metal impregnation and acid (phosphoric acid) treatment prior to pyrolysis treatment were carried out. The surface morphology of the raw dust, its chars and activated carbon were examined using scanning electron microscopy (SEM). Adsorptive properties and total pore volume of the materials were also analysed using the BET nitrogen adsorption method. Liquid adsorption of a reactive dye (Levafix Brilliant red E-4BA) by the derived sawdust carbon was investigated in batch isothermal adsorption process and the results compared to adsorption on to a commercial activated carbon (Filtrasorb F400). The MDF sawdust carbon exhibited in general a very low adsorption capacity towards the reactive dye, and physical characterisation of the carbon revealed that the conventional chemical activation and thermal carbonisation process were ineffective in developing a microporous structure in the dust particles. The small size of the powdery dust, the high particle density, and the presence of the urea formaldehyde resin all contributed to the difficulty of developing a proper porous structure during the thermal and chemical activation process. Finally, activation of the dust material in a consolidated form (cylindrical pellet) only achieved very limited improvement in the dye adsorption capacity. This original study, reporting some unexpected outcomes, may serve as a stepping-stone for future investigations of recycle and

  17. Preparation of a new adsorbent from activated carbon and carbon nanofiber (AC/CNF) for manufacturing organic-vacbpour respirator cartridge

    PubMed Central

    2013-01-01

    In this study a composite of activated carbon and carbon nanofiber (AC/CNF) was prepared to improve the performance of activated carbon (AC) for adsorption of volatile organic compounds (VOCs) and its utilization for respirator cartridges. Activated carbon was impregnated with a nickel nitrate catalyst precursor and carbon nanofibers (CNF) were deposited directly on the AC surface using catalytic chemical vapor deposition. Deposited CNFs on catalyst particles in AC micropores, were activated by CO2 to recover the surface area and micropores. Surface and textural characterizations of the prepared composites were investigated using Brunauer, Emmett and Teller’s (BET) technique and electron microscopy respectively. Prepared composite adsorbent was tested for benzene, toluene and xylene (BTX) adsorption and then employed in an organic respirator cartridge in granular form. Adsorption studies were conducted by passing air samples through the adsorbents in a glass column at an adjustable flow rate. Finally, any adsorbed species not retained by the adsorbents in the column were trapped in a charcoal sorbent tube and analyzed by gas chromatography. CNFs with a very thin diameter of about 10-20 nm were formed uniformly on the AC/CNF. The breakthrough time for cartridges prepared with CO2 activated AC/CNF was 117 minutes which are significantly longer than for those cartridges prepared with walnut shell- based activated carbon with the same weight of adsorbents. This study showed that a granular form CO2 activated AC/CNF composite could be a very effective alternate adsorbent for respirator cartridges due to its larger adsorption capacities and lower weight. PMID:23369424

  18. Spacelab Charcoal Analyses

    NASA Technical Reports Server (NTRS)

    Slivon, L. E.; Hernon-Kenny, L. A.; Katona, V. R.; Dejarme, L. E.

    1995-01-01

    This report describes analytical methods and results obtained from chemical analysis of 31 charcoal samples in five sets. Each set was obtained from a single scrubber used to filter ambient air on board a Spacelab mission. Analysis of the charcoal samples was conducted by thermal desorption followed by gas chromatography/mass spectrometry (GC/MS). All samples were analyzed using identical methods. The method used for these analyses was able to detect compounds independent of their polarity or volatility. In addition to the charcoal samples, analyses of three Environmental Control and Life Support System (ECLSS) water samples were conducted specifically for trimethylamine.

  19. VOST charcoal specification study

    SciTech Connect

    Foster, A.L.; Bursey, J.T.

    1995-07-01

    The volatile organic sampling train, SW-846 Method 0030, (VOST) is currently one of the leading methodology`s available for the sampling and analysis of volatile organic hazardous compounds from stationary sources at very low levels. The method does not identify a specific equivalent sorbent, nor the performance specifications which would allow determination of an equivalent. Lot 104 petroleum-based charcoal is no longer commercially available. Laboratories are presently using a wide range of substitutes with varying performance from batch to batch of charcoal. To provide performance specifications and identify a replacement for SKC Lot 104 charcoal, a VOST charcoal specification study was initiated. Performance, cost, ease of handling, and plentiful supply make Anasorb 747 a good choice for replacement of SKX Lot 104.

  20. Inhibition of mammalian DNA polymerases and the suppression of inflammatory and allergic responses by tyrosol from used activated charcoal waste generated during sake production.

    PubMed

    Mizushina, Yoshiyuki; Ogawa, Yoshiaki; Onodera, Takefumi; Kuriyama, Isoko; Sakamoto, Yuka; Nishikori, Shu; Kamisuki, Shinji; Sugawara, Fumio

    2014-08-06

    The components adsorbed onto activated charcoal following the fermentation process of the Japanese rice wine "sake" have been studied with the aim of identifying suitable applications for this industrial food waste product. The absorbed materials were effectively extracted from the charcoal, and inhibited the activity of several mammalian DNA polymerases (pols). Subsequent purification of the extract afforded tyrosol [4-(2-hydroxyethyl)phenol] as the active component, which selectively inhibited the activity of 11 mammalian pols with IC50 values in the range of 34.3-46.1 μM. In contrast, this compound did not influence the activities of plant or prokaryotic pols or any of the other DNA metabolic enzymes tested. Tyrosol suppressed both anti-inflammatory and antiallergic effects in vivo, including 12-O-tetradecanoylphorbol-13-acetate-induced inflammatory mouse ear edema, and immunoglobulin E-induced passive cutaneous anaphylactic reaction in mice. These results suggested that this byproduct formed during the sake-brewing process could be used as an anti-inflammatory and/or antiallergic agent.

  1. Activated-charcoal filters: water treatment, pollution control, and industrial applications. January 1970-July 1988 (citations from the US Patent data base). Report for January 1970-July 1988

    SciTech Connect

    Not Available

    1988-08-01

    This bibliography contains citations of selected patents concerning activated-charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic gases and pollutants are described. Applications include drinking water purification, filtering beverages, production of polymer materials, solvent and metal recovery, swimming pool filtration, waste conversion, automobile fuel and exhaust systems, and footwear deodorizing. (Contains 129 citations fully indexed and including a title list.)

  2. Activated charcoal filters: Water treatment, pollution control, and industrial applications. (Latest citations from the Patent Bibliographic database with exemplary claims. ) Published Search

    SciTech Connect

    Not Available

    1993-08-01

    The bibliography contains citations of selected patents concerning activated charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic materials and contaminants are described. Applications include drinking water purification, filtering beverages, production of polymer materials, solvent and metal recovery, waste conversion, automotive fuel and exhaust systems, swimming pool filtration, tobacco smoke filters, kitchen ventilators, medical filtration treatment, and odor absorbing materials. (Contains 250 citations and includes a subject term index and title list.)

  3. Activated charcoal filters: Water treatment, pollution control, and industrial applications. (Latest citations from the US Patent Bibliographic File with exemplary claims). Published Search

    SciTech Connect

    Not Available

    1994-06-01

    The bibliography contains citations of selected patents concerning activated charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, and filtration of toxic materials and contaminants are described. Applications are discussed, including drinking water purification, air and water pollution control, manufacture of industrial materials, materials recovery, waste treatment, automotive fuel and exhaust systems, cigarette filters, ventilation systems, medical filtration, and odor absorbing materials. (Contains a minimum of 125 citations and includes a subject term index and title list.)

  4. Activated charcoal filters: Water treatment, pollution control, and industrial applications. (Latest citations from the US Patent Bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations of selected patents concerning activated charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, and filtration of toxic materials and contaminants are described. Applications are discussed, including drinking water purification, air and water pollution control, manufacture of industrial materials, materials recovery, waste treatment, automotive fuel and exhaust systems, cigarette filters, ventilation systems, medical filtration, and odor absorbing materials. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. paleofire: An R package to analyse sedimentary charcoal records from the Global Charcoal Database to reconstruct past biomass burning

    NASA Astrophysics Data System (ADS)

    Blarquez, Olivier; Vannière, Boris; Marlon, Jennifer R.; Daniau, Anne-Laure; Power, Mitchell J.; Brewer, Simon; Bartlein, Patrick J.

    2014-11-01

    We describe a new R package, paleofire, for analysis and synthesis of charcoal time series, such as those contained in the Global Charcoal Database (GCD), that are used to reconstruct paleofire activity (past biomass burning). paleofire is an initiative of the Global Paleofire Working Group core team (www.gpwg.org), whose aim is to encourage the use of sedimentary charcoal series to develop regional-to-global syntheses of paleofire activity, and to enhance access to the GCD data by providing a common research framework. Currently, paleofire features are organized into three different parts related to (i) site selection and charcoal series extraction from the GCD; (ii) charcoal data transformation; and (iii) charcoal series compositing and synthesis. We provide a technical description of paleofire and describe some new implementations such as the circular block bootstrap procedure. We tested the software using GCDv3 data from eastern North America, and provide examples of interpreting results of regional and global syntheses.

  6. Determination of trace triclosan in environmental water by microporous bamboo-activated charcoal solid-phase extraction combined with HPLC-ESI-MS.

    PubMed

    Sun, Jing; Yi, Chun-Liang; Zhao, Ru-Song; Wang, Xia; Jiang, Wen-Qiang; Wang, Xi-Kui

    2012-10-01

    A sensitive and efficient analytical method for triclosan (TCS) determination in water, which involves enrichment with bamboo-activated charcoal and detection with HPLC-ESI-MS, was developed. The influence of several operational parameters, including the eluant and its volume, the flow rate, the volume andacidity of the sample, and the amount of bamboo-activated charcoal, were investigated and optimized. Under the optimum conditions, linearity of the method was observed in the range of 0.02-20 μg/L, with correlation coefficients (r(2) ) >0.9990. The limit of detection was 0.002 μg/L based on the ratio of chromatographic signal to baseline noise (S/N = 3). The spiked recoveries of TCS in real water samples were achieved in the range of 97.6-112.5%. The proposed method was applied to analyze TCS in real aqueous samples. All the surface water samples collected in Xiaoqing River had detectable levels of TCS with concentrations of 42-197 ng/L.

  7. Charcoal filter testing

    SciTech Connect

    Lyons, J.

    1997-08-01

    In this very brief, informal presentation, a representative of the US Nuclear Regulatory Commission outlines some problems with charcoal filter testing procedures and actions being taken to correct the problems. Two primary concerns are addressed: (1) the process to find the test method is confusing, and (2) the requirements of the reference test procedures result in condensation on the charcoal and causes the test to fail. To address these problems, emergency technical specifications were processed for three nuclear plants. A generic or an administrative letter is proposed as a more permanent solution. 1 fig.

  8. Paracetamol biodegradation by activated sludge and photocatalysis and its removal by a micelle-clay complex, activated charcoal, and reverse osmosis membranes.

    PubMed

    Karaman, Rafik; Khamis, Mustafa; Abbadi, Jehad; Amro, Ahmad; Qurie, Mohannad; Ayyad, Ibrahim; Ayyash, Fatima; Hamarsheh, Omar; Yaqmour, Reem; Nir, Shlomo; Bufo, Sabino A; Scrano, Laura; Lerman, Sofia; Gur-Reznik, Shirra; Dosoretz, Carlos G

    2016-10-01

    Kinetic studies on the stability of the pain killer paracetamol in Al-Quds activated sludge demonstrated that paracetamol underwent biodegradation within less than one month to furnish p-aminophenol in high yields. Characterizations of bacteria contained in Al-Quds sludge were accomplished. It was found that Pseudomonas aeruginosa is the bacterium most responsible for the biodegradation of paracetamol to p-aminophenol and hydroquinone. Batch adsorptions of paracetamol and its biodegradation product (p-aminophenol) by activated charcoal and a composite micelle (octadecyltrimethylammonium)-clay (montmorillonite) were determined at 25°C. Adsorption was adequately described by a Langmuir isotherm, and indicated better efficiency of removal by the micelle-clay complex. The ability of bench top reverse osmosis (RO) plant as well as advanced membrane pilot plant to remove paracetamol was also studied at different water matrixes to test the effect of organic matter composition. The results showed that at least 90% rejection was obtained by both plants. In addition, removal of paracetamol from RO brine was investigated by using photocatalytic processes; optimal conditions were found to be acidic or basic pH, in which paracetamol degraded in less than 5 min. Toxicity studies indicated that the effluent and brine were not toxic except for using extra low energy membrane which displayed a half maximal inhibitory concentration (IC-50) value of 80%.

  9. Active AC/DC control for wideband piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Morel, A.; Grézaud, R.; Pillonnet, G.; Gasnier, P.; Despesse, G.; Badel, A.

    2016-11-01

    This paper proposes a simple interface circuit enabling resonant frequency tuning of highly coupled piezoelectric harvesters. This work relies on an active AC/DC architecture that introduces a tunable short-circuit sequence in order to control the phase between the piezoelectric current and voltage, allowing the emulation of a capacitive load. It is notably shown that this short-circuit time increases the harvested power when the piezoelectric operates outside of resonance. Measurements on a piezoelectric harvester exhibiting a large global coupling coefficient (k2 = 15.3%) have been realized and have proven the efficiency and potential of this technique.

  10. Le Carbone, a charcoal supplement, modulates DSS-induced acute colitis in mice through activation of AMPKα and downregulation of STAT3 and caspase 3 dependent apoptotic pathways.

    PubMed

    Afrin, Mst Rejina; Arumugam, Somasundaram; Rahman, Md Azizur; Karuppagounder, Vengadeshprabhu; Sreedhar, Remya; Harima, Meilei; Suzuki, Hiroshi; Nakamura, Takashi; Miyashita, Shizuka; Suzuki, Kenji; Ueno, Kazuyuki; Watanabe, Kenichi

    2017-02-01

    Le Carbone (LC) is a charcoal supplement, which contains a large amount of dietary fibers. Several studies suggested that charcoal supplement may be beneficial for stomach disorders, diarrhea, gas and indigestion. But no studies address whether LC intake would suppress inflammation, cell proliferation or disease progression in colitis. In the present study, the effect of LC on experimental colitis induced by dextran sulfate sodium (DSS) in mice and its possible mechanism of action were examined. A study was designed for 8days, using C57BL/6 female mice that were administered with 3% DSS in drinking water for 7days followed by another 1day consumption of normal water with or without treatment. LC suspension was administered daily for 7days via oral gavage using 5mg/mouse in treatment group and normal group was supplied with drinking water. LC suspension significantly attenuated the loss of body weight and shortening of colon length induced by DSS. The disease activity index, histopathologic changes were significantly reduced by LC treatment. The inflammatory mediators TNFα, IL-1β, p-STAT3 and p-NF-κB induced in the colon by DSS were markedly suppressed by LC. The increased activation of AMPKα in the colon was also detected in LC group. Furthermore, the apoptotic marker protein cleaved caspase 3 was down-regulated and anti-apoptotic proteins Bcl2 and Bcl-xL were significantly up-regulated by LC treatment. Taken together, our results demonstrate the ability of LC to inhibit inflammation, apoptosis and give some evidence for its potential use as adjuvant treatment of inflammatory bowel disease.

  11. Charcoal bed operation for optimal organic carbon removal

    SciTech Connect

    Merritt, C.M.; Scala, F.R.

    1995-05-01

    Historically, evaporation, reverse osmosis or charcoal-demineralizer systems have been used to remove impurities in liquid radwaste processing systems. At Nine Mile point, we recently replaced our evaporators with charcoal-demineralizer systems to purify floor drain water. A comparison of the evaporator to the charcoal-demineralizer system has shown that the charcoal-demineralizer system is more effective in organic carbon removal. We also show the performance data of the Granulated Activated Charcoal (GAC) vessel as a mechanical filter. Actual data showing that frequent backflushing and controlled flow rates through the GAC vessel dramatically increases Total Organic Carbon (TOC) removal efficiency. GAC vessel dramatically increases Total Organic Carbon (TOC) removal efficiency. Recommendations are provided for operating the GAC vessel to ensure optimal performance.

  12. Fusion reactor high vacuum pumping: Charcoal cryosorber tritium exposure results

    SciTech Connect

    Sedgley, D.W.; Walthers, C.R.; Jenkins, E.M. )

    1991-01-01

    Recent experiments, have shown the practically of using activated charcoal (coconut charcoal) at 4{degrees}K to pump helium and hydrogen isotopes for a fusion reactor. Both speed and capacity for deuterium/helium and tritium/helium-3 mixtures were shown to be satisfactory. The long term effects of tritium on the charcoal/cement system developed by Grumman and LLNL were not known and a program was undertaken to see what, if any, effect long term tritium exposure has on the cryosorber. Several charcoal on aluminum test samples were subjected to six months exposure of tritium at approximately 77{degrees}K. The tritium was scanned several times with a residual gas analyzer and the speed-capacity performance of the samples was measured before, approximately half way through and after the exposure. Modest effects were noted which would not seriously restrict charcoal's use as a cryosorber for fusion reactor high vacuum pumping applications. 4 refs., 8 figs.

  13. Impact of land-use and long-term (>150 years) charcoal accumulation on microbial activity, biomass and community structure in temperate soils (Belgium).

    NASA Astrophysics Data System (ADS)

    Hardy, Brieuc; Cornelis, Jean-Thomas; Dufey, Joseph E.

    2015-04-01

    In the last decade, biochar has been increasingly investigated as a soil amendment for long-term soil carbon sequestration while improving soil fertility. On the short term, biochar application to soil generally increases soil respiration as well as microbial biomass and activity and affects significantly the microbial community structure. However, such effects are relatively short-term and tend to vanish over time. In our study, we investigated the long-term impact of charcoal accumulation and land-use on soil biota in temperate haplic Luvisols developed in the loess belt of Wallonia (Belgium). Charcoal-enriched soils were collected in the topsoil of pre-industrial (>150 years old) charcoal kilns in forest (4 sites) and cropland (5 sites). The topsoil of the adjacent charcoal-unaffected soils was sampled in a comparable way. Soils were characterized (pH, total, organic and inorganic C, total N, exchangeable Ca, Mg, K, Na, cation exchange capacity and available P) and natural soil organic matter (SOM) and black carbon (BC) contents were determined by differential scanning calorimetry. After rewetting at pF 2.5, soils were incubated during 140 days at 20 °C. At 70 days of incubation, 10 g of each soil were freeze dried in order to measure total microbial biomass and community structure by PLFA analysis. The PLFA dataset was analyzed by principal component analysis (PCA) while soil parameters were used as supplementary variables. For both agricultural and forest soils, the respiration rate is highly related to the total microbial biomass (R²=0.90). Both soil respiration and microbial biomass greatly depend on the SOM content, which indicates that the BC pool is relatively inert microbiologically. Land-use explains most of the variance in the PLFA dataset, largely governing the first principal component of the ACP. In forest soils, we observe a larger proportion of gram + bacteria, actinomycetes and an increased bacteria:fungi ratio compared to cropland, where gram

  14. RECYCLE AND REUSE OF CHARCOAL MADE FROM EXCESS SLUDGE IN MEMBRANE BIOREACTOR

    NASA Astrophysics Data System (ADS)

    Tran, Tuyet Thi; Shafiquzzaman, Md.; Nakajima, Jun

    Charcoal produced from excess sludge appeared to be useful for removing SMP (soluble microbial products) in MBR (membrane bioreactors) and therefore for reducing membrane fouling. Batch experiments and long-term MBR experiments were performed by using charcoal made of actual excess sludge. In the batch experiments, SMP was removed effectively through charcoal addition. This approach proved especially effective for the removal of carbohydrate. Charcoal would serve as an absorbent and coagulant in SMP removal. High BOD (biochemical oxygen demand) removal efficiencies produced no negative effects on biological activity in the reactors during the long-term MBR experiments involving charcoal addition. The decrease of humic substances and COD (chemical oxygen demand) through charcoal addition suggested that this approach effectively enhanced the performance of activated sludge treatment. A charcoal addition of more than 0.1% in long-term MBR experiments effectively decreased the membrane fouling frequency. The use of charcoal therefore served to mitigate membrane fouling. A decrease in carbohydrate, corresponding to the increase in the mean fouling period, suggested that a charcoal addition of more than 0.1% effectively removed SMP, especially carbohydrate. A charcoal cyclic reuse system is also proposed. This system would involve charcoal production and charcoal addition to MBR.

  15. Research report: Charcoal type used for hookah smoking influences CO production.

    PubMed

    Medford, Marlon A; Gasier, Heath G; Hexdall, Eric; Moffat, Andrew D; Freiberger, John J; Moon, Richard E

    2015-01-01

    A hookah smoker who was treated for severe carbon monoxide poisoning with hyperbaric oxygen reported using a different type of charcoal prior to hospital admission, i.e., quick-light charcoal. This finding led to a study aimed at determining whether CO production differs between charcoals commonly used for hookah smoking, natural and quick-light. Our hypothesis was that quick-light charcoal produces significantly more CO than natural charcoal. A medium-sized hookah, activated charcoal filter, calibrated syringe, CO gas analyzer and infrared thermometer were assembled in series. A single 9-10 g briquette of either natural or quick-light charcoal was placed atop the hookah bowl and ignited. CO output (ppm) and temperature (degrees C) were measured in three-minute intervals over 90 minutes. The mean CO levels produced by quick-light charcoal over 90 minutes was significantly higher (3728 ± 2028) compared to natural charcoal (1730 ± 501 ppm, p = 0.016). However, the temperature was significantly greater when burning natural charcoal (292 ± 87) compared to quick-light charcoal (247 ± 92 degrees C, p = 0.013). The high levels of CO produced when using quick-light charcoals may be contributing to the increase in reported hospital admissions for severe CO poisoning.

  16. Commercial charcoal manufacture in Brazil

    SciTech Connect

    Rezende, M.E.; Lessa, A.; Pasa, V.; Sampaio, R.; Macedo, P.

    1993-12-31

    Brazil is the only country where charcoal has a major industrial us. Almost 40% of the pig iron and all the ferroalloys produced in the country are based on it and were established near Minas Gerais iron ore deposits using non-sustainable farm charcoal. Since the 1980s charcoal production from large eucalyptus forests is gradually increasing, accounting for 40% of the 8 million tonnes produced in 1991. Farm charcoal is produced when native forests are slashed to give way to farm land. Adequate techniques, labor rights or environmental concerns are not common in this scenario. In large eucalyptus forests charcoal production has a different business approach. Several kinds of masonry ovens are used in both scenarios. Continuous carbonization kilns are not feasible yet because of their high capital cost. The search for a new cheapest design or for the upgrading of the carbonization byproducts is a must. Promising results are shown. Plastics and fine chemicals were already obtained from wood tar. The first Brazilian pilot plant for wood tar fractionation will be started by 9/93. Ironworks have different profiles. Some plants are up-to-date integrated mini-steelworks. Others are small producers of pig ingots. They have in common the need to face coke ironmaking route. Brazilian exports of charcoal based iron and steel products have attained the goal until now. Future charcoal competitiveness will not be so easy. Although expertises believe that coke prices can not stand low for long time it poses additional difficulty to the Brazilian charcoal ironmaker. Three scenarios projected for the future of charcoal ironmaking show that as long as charcoal production costs are properly managed, charcoal will be competitive with coke. The authors defend a common research program that looks for technologies suited to the Brazilian reality.

  17. AC Electric Field Activated Shape Memory Polymer Composite

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  18. Fire history reconstruction in grassland ecosystems: amount of charcoal reflects local area burned

    NASA Astrophysics Data System (ADS)

    Leys, Bérangère; Brewer, Simon C.; McConaghy, Scott; Mueller, Joshua; McLauchlan, Kendra K.

    2015-11-01

    Fire is one of the most prevalent disturbances in the Earth system, and its past characteristics can be reconstructed using charcoal particles preserved in depositional environments. Although researchers know that fires produce charcoal particles, interpretation of the quantity or composition of charcoal particles in terms of fire source remains poorly understood. In this study, we used a unique four-year dataset of charcoal deposited in traps from a native tallgrass prairie in mid-North America to test which environmental factors were linked to charcoal measurements on three spatial scales. We investigated small and large charcoal particles commonly used as a proxy of fire activity at different spatial scales, and charcoal morphotypes representing different types of fuel. We found that small (125-250 μm) and large (250 μm-1 mm) particles of charcoal are well-correlated (Spearman correlation = 0.88) and likely reflect the same spatial scale of fire activity in a system with both herbaceous and woody fuels. There was no significant relationship between charcoal pieces and fire parameters <500 m from the traps. Moreover, local area burned (<5 km distance radius from traps) explained the total charcoal amount, and regional burning (200 km radius distance from traps) explained the ratio of non arboreal to total charcoal (NA/T ratio). Charcoal variables, including total charcoal count and NA/T ratio, did not correlate with other fire parameters, vegetation cover, landscape, or climate variables. Thus, in long-term studies that involve fire history reconstructions, total charcoal particles, even of a small size (125-250 μm), could be an indicator of local area burned. Further studies may determine relationships among amount of charcoal recorded, fire intensity, vegetation cover, and climatic parameters.

  19. Decolorization of crude latex by activated charcoal, purification and physico-chemical characterization of religiosin, a milk-clotting serine protease from the latex of Ficus religiosa.

    PubMed

    Kumari, Moni; Sharma, Anurag; Jagannadham, M V

    2010-07-14

    The crude latex of Ficus religiosa is decolorized by activated charcoal. Decolorization follows the Freundlich and Langmuir equations. A serine protease, named religiosin, has been purified to homogeneity from the decolorized latex using anion exchange chromatography. Religiosin is a glycoprotein with a molecular mass of 43.4 kDa by MALDI-TOF. Religiosin is an acidic protein with a pI value of 3.8 and acts optimally at pH 8.0-8.5 and temperature 50 degrees C. The proteolytic activity of religiosin is strongly inhibited by PMSF and chymostatin indicating that the enzyme is a serine protease. The extinction coefficient (epsilon(1%)(280)) of religiosin is 29.47 M(-1) cm(-1)with 16 tryptophan, 26 tyrosine, and 11 cysteine residues per molecule. The enzyme shows broad substrate specificity against natural as well as synthetic substrates with an apparent K(m) of 0.066 mM and 6.25 mM using casein and Leu-pNA, respectively. MS/MS analysis confirms the novelty of the enzyme. Religiosin is highly stable against denaturants, metal ions, and detergents as well as over a wide range of pH and temperature. In addition, the enzyme exhibits milk-clotting as well as detergent activity.

  20. Recovery of datable charcoal beneath young lavas: lessons from Hawaii.

    USGS Publications Warehouse

    Lockwood, J.P.; Lipman, P.W.

    1980-01-01

    Field studies in Hawaii aimed at providing a radiocarbon-based chronology of prehistoric eruptive activity have led to a good understanding of the processes that govern the formation and preservation of charcoal beneath basaltic lava flows. Charcoal formation is a rate-dependent process controlled primarily by temperature and duration of heating, as well as by moisture content, density, and size of original woody material. Charcoal will form wherever wood buried by lava is raised to sufficiently high temperatures, but owing to the availability of oxygen it is commonly burned to ash soon after formation. Wherever oxygen circulation is sufficiently restricted, charcoal will be preserved, but where atmospheric oxygen circulates freely, charcoal will only be preserved at a lower temperature, below that required for charcoal ignition or catalytic oxidation. These factors cause carbonized wood, especially that derived from living roots, to be commonly preserved beneath all parts of pahoehoe flows (where oxygen circulation is restricted), but only under margins of aa. Practical guidelines are given for the recovery of datable charcoal beneath pahoehoe and aa. Although based on Hawaiian basaltic flows, the guidelines should be applicable to other areas. -Authors

  1. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan.

    PubMed

    Babel, Sandhya; Kurniawan, Tonni Agustiono

    2004-02-01

    In this study, the technical feasibility of coconut shell charcoal (CSC) and commercial activated carbon (CAC) for Cr(VI) removal is investigated in batch studies using synthetic electroplating wastewater. Both granular adsorbents are made up of coconut shell (Cocos nucifera L.), an agricultural waste from local coconut industries. Surface modifications of CSC and CAC with chitosan and/or oxidizing agents, such as sulfuric acid and nitric acid, respectively, are also conducted to improve removal performance. The results of their Cr removal performances are statistically compared. It is evident that adsorbents chemically modified with an oxidizing agent demonstrate better Cr(VI) removal capabilities than as-received adsorbents in terms of adsorption rate. Both CSC and CAC, which have been oxidized with nitric acid, have higher Cr adsorption capacities (CSC: 10.88, CAC: 15.47 mg g(-1)) than those oxidized with sulfuric acid (CSC: 4.05, CAC: 8.94 mg g(-1)) and non-treated CSC coated with chitosan (CSCCC: 3.65 mg g(-1)), respectively, suggesting that surface modification of a carbon adsorbent with a strong oxidizing agent generates more adsorption sites on their solid surface for metal adsorption.

  2. Preparation of highly developed mesoporous activated carbon fiber from liquefied wood using wood charcoal as additive and its adsorption of methylene blue from solution.

    PubMed

    Ma, Xiaojun; Zhang, Fan; Zhu, Junyan; Yu, Lili; Liu, Xinyan

    2014-07-01

    Activated carbon fiber (C-WACF) with super high surface area and well-developed small mesopores were prepared by liquefied wood and uses wood charcoal (WC) as additive. The characterization and properties of C-WACF were investigated by XRD, XPS and N2 adsorption. Results showed the pore development was significant at temperatures >750°C, and reached a maximum BET surface area (2604.7 m(2)/g) and total pore volume (1.433 cm(3)/g) at 850°C, of which 86.8% was from the contribution of the small mesopores of 2-4 nm. It was also found that the mesopore volume and methylene blue adsorption of C-WACF were highly increased as the temperature increases from 750 to 850°C. Additionally, the reduction of graphitic layers, the obvious changes of functional groups and the more unstable carbons on the surface of C-WACF, which played important roles in the formation of mesopores, were also observed.

  3. Determination of the Impregnant Concentrations on ASC Type Charcoal. A Magnetic Susceptibility Study

    DTIC Science & Technology

    1987-10-01

    chloropicrin etc., before and after adsorption on the diamagnetic charcoal prepared from coconut shell . However, the conclusions drawn from these... activation analysis for 55 elements was performed on two charcoal samples, namely the BPL and the CAL-1048, both supplied directly from Calgon Carbon ...of Neutron Activation Analysis on the BPL- Charcoal (Coal-Based, No Impregnants)................2424 TABLE B-2: Result of Neutron Activation Analysis

  4. Facile xenon capture and release at room temperature using a metal-organic framework: a comparison with activated charcoal

    SciTech Connect

    Thallapally, Praveen K.; Grate, Jay W.; Motkuri, Radha K.

    2012-01-11

    Two well known Metal organic frameworks (MOF-5, NiDOBDC) were synthesized and studied for facile xenon capture and separation. Our results indicate the NiDOBDC adsorbs significantly more xenon than MOF-5, releases it more readily than activated carbon, and is more selective for Xe over Kr than activated carbon.

  5. Activated charcoal-mediated RNA extraction method for Azadirachta indica and plants highly rich in polyphenolics, polysaccharides and other complex secondary compounds

    PubMed Central

    2013-01-01

    Background High quality RNA is a primary requisite for numerous molecular biological applications but is difficult to isolate from several plants rich in polysaccharides, polyphenolics and other secondary metabolites. These compounds either bind with nucleic acids or often co-precipitate at the final step and many times cannot be removed by conventional methods and kits. Addition of vinyl-pyrollidone polymers in extraction buffer efficiently removes polyphenolics to some extent, but, it failed in case of Azadirachta indica and several other medicinal and aromatic plants. Findings Here we report the use of adsorption property of activated charcoal (0.03%–0.1%) in RNA isolation procedures to remove complex secondary metabolites and polyphenolics to yield good quality RNA from Azadirachta indica. We tested and validated our modified RNA isolation method across 21 different plants including Andrographis paniculata, Aloe vera, Rosa damascena, Pelargonium graveolens, Phyllanthus amarus etc. from 13 other different families, many of which are considered as tough system for isolating RNA. The A260/280 ratio of the extracted RNA ranged between 1.8-2.0 and distinct 28S and 18S ribosomal RNA bands were observed in denaturing agarose gel electrophoresis. Analysis using Agilent 2100 Bioanalyzer revealed intact total RNA yield with very good RNA Integrity Number. Conclusions The RNA isolated by our modified method was found to be of high quality and amenable for sensitive downstream molecular applications like subtractive library construction and RT-PCR. This modified RNA isolation procedure would aid and accelerate the biotechnological studies in complex medicinal and aromatic plants which are extremely rich in secondary metabolic compounds. PMID:23537338

  6. [Hygienic study of an activated fibrous charcoal material as a sorbing filtering element for drinking water afterpurification].

    PubMed

    Prokopov, V A; Mironets, N V; Gakal, R K; Maktaz, E D; Dugan, A M; Teteneva, I A; Tarabarova, S B; Martyshchenko, N V; Nadvornaia, Zh D

    1993-01-01

    The results of complex toxicological and hygienic study showed that the quality of pipe water filtered through the activated carbonic fibrous material (ACFM) "Dnepr-F" forming a part of absorptive filtering element improved markedly. The content of organic substances decreased drastically as well as that of nitrates and iron. Microbiological indices did not suffer appreciable changes and were within permissible limits. The water filtered through the absorptive element with ACFM had no adverse influence on the organisms of warm-blooded animals. Proceeding from foregoing one can conclude that the "Dnepr-F" may be recommended as a part of absorptive filtering element for the final refinement of drinking water.

  7. Effect of Catnip Charcoal on the In Vivo Pharmacokinetics of the Main Alkaloids of Rhizoma Coptidis

    PubMed Central

    He, Yanfei; Chen, Siyu; Yu, Hai; Zhu, Long; Liu, Yayun; Han, Chunyang; Liu, Cuiyan

    2016-01-01

    This study aims to explore the effect of catnip Nepeta cataria (CNC) charcoal on the pharmacokinetics of the main alkaloids of Rhizoma Coptidis in vivo. Twenty-four rabbits were randomly divided into four groups and given oral administration of an aqueous extract of Rhizoma Coptidis (RCAE), RCAE plus CNC, RCAE plus activated carbon (AC), or distilled water, respectively. Plasma samples were collected after administration. The concentrations of berberine, coptisine, palmatine, and epiberberine in plasma were measured by high-performance liquid chromatography (HPLC). The pharmacokinetics data were calculated using pharmacokinetic DAS 2.0 software. The results showed that the area under the concentration-time curve (AUC) of berberine increased, while the AUC of coptisine, palmatine, and epiberberine decreased in the rabbits that received RCAE plus CNC. Meanwhile, the AUC of berberine, coptisine, palmatine, and epiberberine decreased in the group given RCAE plus AC. The difference of main pharmacokinetics parameters among the four groups was significant (P < 0.05). This study showed that CNC improved the bioavailability of berberine in comparison to AC and prolonged its release in comparison to RCAE alone. However, it decreased the bioavailability of coptisine, palmatine, and epiberberine. In comparison, AC uniformly declined the bioavailability of berberine, coptisine, palmatine, and epiberberine. PMID:27313645

  8. Effect of Catnip Charcoal on the In Vivo Pharmacokinetics of the Main Alkaloids of Rhizoma Coptidis.

    PubMed

    He, Yanfei; Chen, Siyu; Yu, Hai; Zhu, Long; Liu, Yayun; Han, Chunyang; Liu, Cuiyan

    2016-01-01

    This study aims to explore the effect of catnip Nepeta cataria (CNC) charcoal on the pharmacokinetics of the main alkaloids of Rhizoma Coptidis in vivo. Twenty-four rabbits were randomly divided into four groups and given oral administration of an aqueous extract of Rhizoma Coptidis (RCAE), RCAE plus CNC, RCAE plus activated carbon (AC), or distilled water, respectively. Plasma samples were collected after administration. The concentrations of berberine, coptisine, palmatine, and epiberberine in plasma were measured by high-performance liquid chromatography (HPLC). The pharmacokinetics data were calculated using pharmacokinetic DAS 2.0 software. The results showed that the area under the concentration-time curve (AUC) of berberine increased, while the AUC of coptisine, palmatine, and epiberberine decreased in the rabbits that received RCAE plus CNC. Meanwhile, the AUC of berberine, coptisine, palmatine, and epiberberine decreased in the group given RCAE plus AC. The difference of main pharmacokinetics parameters among the four groups was significant (P < 0.05). This study showed that CNC improved the bioavailability of berberine in comparison to AC and prolonged its release in comparison to RCAE alone. However, it decreased the bioavailability of coptisine, palmatine, and epiberberine. In comparison, AC uniformly declined the bioavailability of berberine, coptisine, palmatine, and epiberberine.

  9. Removal of NOx or its conversion into harmless gases by charcoals and composites of metal oxides

    SciTech Connect

    Ishihara, Shigehisa; Furutsuka, Takeshi

    1996-12-31

    In recent years, much attention has been devoted to environmental problems such as acid rain, photochemical smog and water pollution. In particular, NOx emissions from factories, auto mobiles, etc. in urban areas have become worse. To solve these problems on environmental pollution on a global scale, the use of activated charcoal to reduce air pollutants is increasing. However, the capability of wood-based charcoal materials is not yet fully known. The removal of NOx or its conversion into harmless gases such as N{sub 2} should be described. In this study, the adsorption of NO over wood charcoal or metal oxide-dispersed wood charcoal was investigated. In particular, carbonized wood powder of Sugi (Cryptomeria japonica D. Don) was used to study the effectivity of using these materials in adsorbing NOx. Since wood charcoal is chemically stable, metal oxide with the ability of photocatalysis was dispersed into wood charcoal to improve its adsorption and capability to use the light energy effectively.

  10. Gamma-irradiation produces active chlorine species (ACS) in physiological solutions: Secoisolariciresinol diglucoside (SDG) scavenges ACS - A novel mechanism of DNA radioprotection

    PubMed Central

    Mishra, Om P.; Popov, Anatoliy V.; Pietrofesa, Ralph A.; Christofidou-Solomidou, Melpo

    2017-01-01

    Background Secoisolariciresinol diglucoside (SDG), the main lignan in whole grain flaxseed, is a potent antioxidant and free radical scavenger with known radioprotective properties. However, the exact mechanism of SDG radioprotection is not well understood. The current study identified a novel mechanism of DNA radioprotection by SDG in physiological solutions by scavenging active chlorine species (ACS) and reducing chlorinated nucleobases. Methods The ACS scavenging activity of SDG was determined using two highly specific fluoroprobes: hypochlorite-specific 3′-(p-aminophenyl) fluorescein (APF) and hydroxyl radical-sensitive 3′-(p-hydroxyphenyl) fluorescein (HPF). Dopamine, an SDG structural analog, was used for proton 1H NMR studies to trap primary ACS radicals. Taurine N-chlorination was determined to demonstrate radiation-induced generation of hypochlorite, a secondary ACS. DNA protection was assessed by determining the extent of DNA fragmentation and plasmid DNA relaxation following exposure to ClO− and radiation. Purine base chlorination by ClO− and γ-radiation was determined by using 2-aminopurine (2-AP), a fluorescent analog of 6-aminopurine. Results: Chloride anions (Cl−) consumed >90% of hydroxyl radicals in physiological solutions produced by γ-radiation resulting in ACS formation, which was detected by 1H NMR. Importantly, SDG scavenged hypochlorite- and γ-radiation-induced ACS. In addition, SDG blunted ACS-induced fragmentation of calf thymus DNA and plasmid DNA relaxation. SDG treatment before or after ACS exposure decreased the ClO− or γ-radiation-induced chlorination of 2-AP. Exposure to γ-radiation resulted in increased taurine chlorination, indicative of ClO− generation. NMR studies revealed formation of primary ACS radicals (chlorine atoms (Cl•) and dichloro radical anions (Cl2−•)), which were trapped by SDG and its structural analog dopamine. Conclusion We demonstrate that γ-radiation induces the generation of ACS in

  11. Development of charcoal sorbents for helium cryopumping

    SciTech Connect

    Sedgley, D.W.; Tobin, A.G.

    1984-01-01

    Testing of the cryogenically cooled charcoal using fusion-compatible binders for pumping helium has shown promising results. The program demonstrated comparable or improved performance with these binders compared to the charcoal (type and size) using an epoxy binder.

  12. Combustion characteristics of husk charcoal

    SciTech Connect

    Shimizu, H.; Kimura, T.; Nishiyama, Y.; Terui, T.

    1984-07-01

    This paper analyzes the factors involved in the extraordinary temperature generation in husk combustion furnaces, and investigates methods of protecting furnaces from heat damage. The combustion characteristics of fixed carbon in rice husks are examined in relation to the air flow rate using different husk charcoals. The theoretical flame temperature in a practical bed was determined from the combustion propagation velocity. It is determined that deviation from the regression line relating the combustion propagation velocity with the specific air flow rate showed a slight correlation with the bulk density of the charcoal samples used.

  13. Charcoal production in the Mopane woodlands of Mozambique: what are the trade-offs with other ecosystem services?

    PubMed Central

    Baumert, Sophia; Vollmer, Frank; Grundy, Isla; Fisher, Janet; Fernando, Jone; Luz, Ana; Lisboa, Sá N.

    2016-01-01

    African woodlands form a major part of the tropical grassy biome and support the livelihoods of millions of rural and urban people. Charcoal production in particular is a major economic activity, but its impact on other ecosystem services is little studied. To address this, our study collected biophysical and social datasets, which were combined in ecological production functions, to assess ecosystem service provision and its change under different charcoal production scenarios in Gaza Province, southern Mozambique. We found that villages with longer histories of charcoal production had experienced declines in wood suitable for charcoal, firewood and construction, and tended to have lower perceived availabilities of these services. Scenarios of future charcoal impacts indicated that firewood and woody construction services were likely to trade-off with charcoal production. However, even under the most extreme charcoal scenario, these services were not completely lost. Other provisioning services, such as wild food, medicinal plants and grass, were largely unaffected by charcoal production. To reduce the future impacts of charcoal production, producers must avoid increased intensification of charcoal extraction by avoiding the expansion of species and sizes of trees used for charcoal production. This is a major challenge to land managers and policymakers in the area. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502380

  14. Could charcoal filtration of cigarette smoke reduce smoking-induced disease? A review of the literature.

    PubMed

    Coggins, Christopher R E; Gaworski, Charles L

    2008-04-01

    A review of the published work with charcoal-filtered cigarettes indicates that there are reductions in the concentrations for many gas-vapor phase constituents found in mainstream smoke. However, charcoal filters provided no apparent capacity for reduction of smoke particulate phase components. The reductions in gas-vapor phase smoke chemistry analytes generally correspond with findings of reduced toxicological activity, principally related to a reduction in the cytotoxic action of the volatile smoke constituents. Results of a short-term clinical study show small reductions in the biomarkers of the gas-vapor phase smoke constituents in subjects smoking charcoal-filtered cigarettes, compared to subjects smoking non-charcoal filtered cigarettes. The very limited epidemiology data (a single study) fail to demonstrate a conclusive beneficial effect of charcoal-filtered cigarette products compared to non-charcoal filtered cigarette products. Review of the scientific literature is hindered due to the lack of documentation regarding the activity of the charcoal used in the filter, and the inconsistency in product designs used between the various different disciplines (chemistry, pre-clinical, clinical and epidemiology) that have conducted studies with charcoal filtered cigarettes. There do not appear to be any published studies using a combination of data from the different disciplines based on a consistently designed charcoal cigarette filter. Although the literature presently available would suggest that smoke filtration provided by current charcoal filter techniques alone may not be substantial enough to reduce smoking-related disease, the data are limited. Therefore, for the reduction of smoking-induced disease, it is difficult to come to a definitive conclusion regarding the potential health benefits of using charcoal as a smoke filtration technology.

  15. Carcinogenic PAH in waterpipe charcoal products

    PubMed Central

    Sepetdjian, Elizabeth; Saliba, Najat; Shihadeh, Alan

    2010-01-01

    Because narghile waterpipe (shisha, hooka) smoking normally involves the use of burning charcoal, smoke inhaled by the user contains constituents originating from the charcoal in addition to those from the tobacco. We have previously found that charcoal accounts for most of the polyaromatic hydrocarbons (PAH) and carbon monoxide in the smoke of the waterpipe, both of which are present in alarming quantities. Because charcoal manufacturing conditions favor formation of PAH, it is reasonable to assume that charcoal sold off the shelf may be contaminated by PAH residues. These residues may constitute a significant fraction of the PAH inhaled by the waterpipe user and those in her/his vicinity. We measured PAH residues on three kinds of raw waterpipe charcoal sampled from Beirut stores and cafés. We found that PAH residues in raw charcoal can account for more than half of the total PAH emitted in the mainstream and sidestream smoke, and about one sixth of the carcinogenic 5- and 6-ring PAH compounds. Total PAH content of the three charcoal types varied systematically by a factor of six from the charcoal with the least to the greatest PAH residue. These findings indicate the possibility of regulating charcoal carcinogen content. PMID:20807559

  16. H3K36ac Is an Evolutionary Conserved Plant Histone Modification That Marks Active Genes1[OPEN

    PubMed Central

    Arellano, Minerva Susana Trejo; Shu, Huan; Gruissem, Wilhelm

    2016-01-01

    In eukaryotic cells, histones are subject to a large number of posttranslational modifications whose sequential or combinatorial action affects chromatin structure and genome function. We identified acetylation at Lys-36 in histone H3 (H3K36ac) as a new chromatin modification in plants. The H3K36ac modification is evolutionary conserved in seed plants, including the gymnosperm Norway spruce (Picea abies) and the angiosperms rice (Oryza sativa), tobacco (Nicotiana tabacum), and Arabidopsis (Arabidopsis thaliana). In Arabidopsis, H3K36ac is highly enriched in euchromatin but not in heterochromatin. Genome-wide chromatin immunoprecipitation sequencing experiments revealed that H3K36ac peaks at the 5′ end of genes, mainly on the two nucleosomes immediately distal to the transcription start site, independently of gene length. H3K36ac overlaps with H3K4me3 and the H2A.Z histone variant. The histone acetyl transferase GCN5 and the histone deacetylase HDA19 are required for H3K36ac homeostasis. H3K36ac and H3K36me3 show negative crosstalk, which is mediated by GCN5 and the histone methyl transferase SDG8. Although H3K36ac is associated with gene activity, we did not find a linear relationship between H3K36ac and transcript levels, suggesting that H3K36ac is a binary indicator of transcription. PMID:26764380

  17. Effects of Carbonization Parameters of Moso-Bamboo-Based Porous Charcoal on Capturing Carbon Dioxide

    PubMed Central

    Jhan, Jhih-Wei; Cheng, Yi-Ming; Cheng, Hau-Hsein

    2014-01-01

    This study experimentally analyzed the carbon dioxide adsorption capacity of Moso-bamboo- (Phyllostachys edulis-) based porous charcoal. The porous charcoal was prepared at various carbonization temperatures and ground into powders with 60, 100, and 170 meshes, respectively. In order to understand the adsorption characteristics of porous charcoal, its fundamental properties, namely, charcoal yield, ash content, pH value, Brunauer-Emmett-Teller (BET) surface area, iodine number, pore volume, and powder size, were analyzed. The results show that when the carbonization temperature was increased, the charcoal yield decreased and the pH value increased. Moreover, the bamboo carbonized at a temperature of 1000°C for 2 h had the highest iodine sorption value and BET surface area. In the experiments, charcoal powders prepared at various carbonization temperatures were used to adsorb 1.854% CO2 for 120 h. The results show that the bamboo charcoal carbonized at 1000°C and ground with a 170 mesh had the best adsorption capacity, significantly decreasing the CO2 concentration to 0.836%. At room temperature and atmospheric pressure, the Moso-bamboo-based porous charcoal exhibited much better CO2 adsorption capacity compared to that of commercially available 350-mesh activated carbon. PMID:25225639

  18. Time-dependent response of a charcoal bed to radon and water vapor in flowing air

    SciTech Connect

    Henkel, J.A.; Fentiman, A.W.; Blue, T.E.

    1995-12-31

    Extremely high airborne concentrations of radon gas may be encountered during the remediation of uranium mill tailings storage facilities. Radon is also a constituent of the off-gas of mill-tailing vitrification. An effective way to remove radon from either gas is to pass the gas through a packed bed containing activated charcoal. Measurements of radon concentrations in the environment using charcoal canisters were first described by George. Canisters similar to those used by George in his first experiments have become the U.S. Environmental Protection Agency`s (EPA`s) standard for measuring environmental radon and were described in the EPA protocol for environmental radon measurement. The dynamic behavior of EPA charcoal canisters has been previously described with a mathematical model for the kinetics of radon gas adsorption in air in the presence of water vapor. This model for charcoal canisters has been extended to large charcoal beds with flowing air containing radon and water vapor. The mathematical model for large charcoal beds can be used to evaluate proposed bed designs or to model existing beds. Parameters that affect the radon distribution within a charcoal bed that can be studied using the mathematical model include carrier gas relative humidity and flow velocity, and input radon concentration. In addition, the relative performances of several different charcoals can be studied, provided sufficient information about their adsorption, desorption, and diffusion constants is known.

  19. Effects of carbonization parameters of Moso-bamboo-based porous charcoal on capturing carbon dioxide.

    PubMed

    Huang, Pei-Hsing; Jhan, Jhih-Wei; Cheng, Yi-Ming; Cheng, Hau-Hsein

    2014-01-01

    This study experimentally analyzed the carbon dioxide adsorption capacity of Moso-bamboo- (Phyllostachys edulis-) based porous charcoal. The porous charcoal was prepared at various carbonization temperatures and ground into powders with 60, 100, and 170 meshes, respectively. In order to understand the adsorption characteristics of porous charcoal, its fundamental properties, namely, charcoal yield, ash content, pH value, Brunauer-Emmett-Teller (BET) surface area, iodine number, pore volume, and powder size, were analyzed. The results show that when the carbonization temperature was increased, the charcoal yield decreased and the pH value increased. Moreover, the bamboo carbonized at a temperature of 1000(°)C for 2 h had the highest iodine sorption value and BET surface area. In the experiments, charcoal powders prepared at various carbonization temperatures were used to adsorb 1.854% CO2 for 120 h. The results show that the bamboo charcoal carbonized at 1000(°)C and ground with a 170 mesh had the best adsorpt on capacity, significantly decreasing the CO2 concentration to 0.836%. At room temperature and atmospheric pressure, the Moso-bamboo-based porous charcoal exhibited much better CO2 adsorption capacity compared to that of commercially available 350-mesh activated carbon.

  20. Improvement of thermostability and activity of firefly luciferase through [TMG][Ac] ionic liquid mediator.

    PubMed

    Ebrahimi, Mehdi; Hosseinkhani, Saman; Heydari, Akbar; Khavari-Nejad, Ramazan Ali; Akbari, Jafar

    2012-10-01

    Firefly luciferase catalyzes production of light from luciferin in the presence of Mg(2+)-ATP and oxygen. This enzyme has wide range of applications in biotechnology and development of biosensors. The low thermal stability of wild-type firefly luciferase is a limiting factor in most applications. Improvements in activity and stability of few enzymes in the presence of ionic liquids were shown in many reports. In this study, kinetic and thermal stability of firefly luciferase from Photinus pyralis in the presence of three tetramethylguanidine-based ionic liquids was investigated. The enzyme has shown improved activity in the presence of [1, 1, 3, 3-tetramethylguanidine][acetate], but in the presence of [TMG][trichloroacetate] and [TMG][triflouroacetate] activity, it decreased or unchanged significantly. Among these ionic liquids, only [TMG][Ac] has increased the thermal stability of luciferase. Incubation of [TMG][Ac] with firefly luciferase brought about with decrease of K(m) for ATP.

  1. Characterization and photocatalytic activity of Zn 2+-TiO 2/AC composite photocatalyst

    NASA Astrophysics Data System (ADS)

    Lu, Xincheng; Jiang, Jianchun; Sun, Kang; Cui, Dandan

    2011-12-01

    Activated carbon (AC) supported Zn 2+-TiO 2 photocatalyst was prepared by sol-gel method. The prepared samples were characterized by X-ray diffraction, scanning electron micrograph, nitrogen absorption, diffuse reflectance UV/VIS and X-ray photoelectron spectroscopy. Using toluene as a pollution target, the photocatalytic activity of photocatalyst was evaluated. The results showed that prepared photocatalyst was obviously helpful for the removal of toluene in air. The photocatalytic degradation of toluene by Zn 2+-TiO 2/AC reached 100% for 40 min and remained 75% after 160 min, while degradation by TiO 2 was only 30%. It indicated that the photocatalytic activity of prepared photocatalyst was enhanced. It is due to Zn 2+-doping increased the oxidation and reduction of hole-electron pairs, which was the important factor in heterogeneous photocatalysis.

  2. Inhibitory effect of açaí (Euterpe oleracea Mart.) pulp on IgE-mediated mast cell activation.

    PubMed

    Horiguchi, Tomoko; Ishiguro, Nahoko; Chihara, Kazuyasu; Ogi, Kazuhiro; Nakashima, Kenji; Sada, Kiyonao; Hori-Tamura, Naoko

    2011-05-25

    The palm fruit açaí is known to have potential health benefits due to its antioxidant scavenging capacities. Pretreatment of IgE-sensitized mouse primary cultured mast cells with açaí pulp resulted in the dramatic suppression of antigen-induced degranulation in a dose-dependent manner. Similarly, açaí suppressed IgE-mediated degranulation and transcription of the cytokine genes from a cultured mast cell line of rat basophilic leukemia (RBL)-2H3 cells. Açaí could selectively inhibit FcεRI signaling pathways. Furthermore, the FcεRI-mediated complementary signaling pathway was also suppressed by açaí. These results demonstrate that açaí is a potent inhibitor of IgE-mediated mast cell activation.

  3. Spatial variation in the charcoal pool

    NASA Astrophysics Data System (ADS)

    Ohlson, M.; Bjune, A. E.; Kasin, I.; Nordtug Wist, A.

    2012-04-01

    Mikael Ohlson, Anne E. Bjune, Isabella Kasin and Anveig Nordtug Wist It is well known that the soil charcoal pool varies significantly in size across different types of forest landscapes and regional climates. However, the level of variation on fine spatial scales within a given forest landscape remains poorly known. Here we use a geostatistical approach to describe the spatial structure and variability of the soil charcoal pool in a boreal forest landscape. Our study landscape is a watershed including a small lake and two distinct types of forests, viz. Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) forests. The study is based on 200 forest soil cores and one lake sediment core in which the amount of macroscopic charcoal was measured. The amount of charcoal in the forest soil cores was very variable and ranged from 0 to 3600 g per square meter. The variation was profound also on fine spatial scales, i.e. 0.05 - 0.2 m, and geostatistical analysis revealed only weak spatial structuring on scales from 0.05 up to 200 m. Although weak spatial structuring, there were three significant and general patterns in the soil charcoal pool. First, there was a positive relationship between the amount of charcoal in the soil and the density of the contemporary forest. Second, there was more charcoal in the spruce forest than in the pine forest. Third, the amount of charcoal in the soil increased with increasing distance from the lake. The lake sediment core, which had a depth of 3 m and an age of 11 000 years, recorded a continuous influx of macroscopic charcoal throughout the Holocene. Interestingly, the amount of charcoal in the lake sediment exceeded that in the majority of the forest soil cores, indicating a relatively high degradation rate of charcoal in the forest soil and that charcoal is well preserved in the lake sediment.

  4. Excision Patterns of Activator (Ac) and Dissociation (Ds) Elements in Zea Mays L.: Implications for the Regulation of Transposition

    PubMed Central

    Heinlein, M.

    1996-01-01

    The pattern of aleurone variegation of maize kernels carrying Ac and bz-m2(DI) as reporter allele for Ac activity depends on the dosage of both Ac and Ds. Alterations of Ac dosage can abolish Ds excision at certain times and allow it to occur at other times. wx-m7 and wx-m9 are different Ac insertions in the Waxy gene which have different dosage effects on Ds excision. Kernels, heterozygous for the two Ac alleles and being either wx-m7/wx-m7/wx-m9 or wx-m9/wx-m9/wx-m7 exhibit characteristic patterns of predominantly late excisions; this is in strong contrast to the pattern of early excisions present on wx-m7/wx-m7/wx-m7 homozygotes. This observation supports the hypothesis that the Ac alleles express different amounts of transposase (TPase) during development and that above a certain level of TPase transposition is inhibited. Furthermore, experimental results suggest that the frequency of Ac-induced events is influenced by the dosage and composition of the transactivated Ds or Ac allele. Thus, transposition frequency seems not to be exclusively determined in trans by the amount of active TPase, but also by specific cis-acting properties of the TPase substrate. PMID:8978069

  5. Parameters characterization and optimization of activated carbon (AC) cathodes for microbial fuel cell application.

    PubMed

    Santoro, Carlo; Artyushkova, Kateryna; Babanova, Sofia; Atanassov, Plamen; Ieropoulos, Ioannis; Grattieri, Matteo; Cristiani, Pierangela; Trasatti, Stefano; Li, Baikun; Schuler, Andrew J

    2014-07-01

    Activated carbon (AC) is employed as a cost-effective catalyst for cathodic oxygen reduction in microbial fuel cells (MFC). The fabrication protocols of AC-based cathodes are conducted at different applied pressures (175-3500 psi) and treatment temperatures (25-343°C). The effects of those parameters along with changes in the surface morphology and chemistry on the cathode performances are comprehensively examined. The cathodes are tested in a three-electrode setup and explored in single chamber membraneless MFCs (SCMFCs). The results show that the best performance of the AC-based cathode is achieved when a pressure of 1400 psi is applied followed by heat treatment of 150-200°C for 1h. The influence of the applied pressure and the temperature of the heat treatment on the electrodes and SCMFCs is demonstrated as the result of the variation in the transfer resistance, the surface morphology and surface chemistry of the AC-based cathodes tested.

  6. Charcoal kiln relicts - a favorable site for tree growth?

    NASA Astrophysics Data System (ADS)

    Buras, Allan; Hirsch, Florian; van der Maaten, Ernst; Takla, Melanie; Räbiger, Christin; Cruz Garcia, Roberto; Schneider, Anna; Raab, Alexandra; Raab, Thomas; Wilmking, Martin

    2015-04-01

    the German lowlands (e.g. Raab et al., 2015) and their potentially adverse effects on tree growth, these findings elucidate a yet unknown impact of past human activities on recent biological processes. Glaser, B., Haumaier, L., Guggenberger, G., and Zech, W., 2001: The 'Terra Preta' phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften, 88, 37-41. Raab, A., Takla, M., Raab, T., Nicolay, A., Schneider, A., Rösler, H., Heußner, K.U., Bönisch, E., 2015. Pre-industrial charcoal production in Lower Lusatia (Brandenburg, Germany): Detection and evaluation of a large charcoal-burning field by combining archaeological studies, GIS-based analyses of shaded-relief maps and dendrochronological age determination. Quaternary International, doi: 10.1016/j.quaint.2014.09.041.

  7. Hot Plasma from Solar Active Region Cores: a Test of AC and DC Coronal Heating Models?

    NASA Astrophysics Data System (ADS)

    Schmelz, J. T.; Asgari-Targhi, M.; Christian, G. M.; Dhaliwal, R. S.; Pathak, S.

    2015-06-01

    Direct current (DC) models of solar coronal heating invoke magnetic reconnection to convert magnetic free energy into heat, whereas alternating current (AC) models invoke wave dissipation. In both cases the energy is supplied by photospheric footpoint motions. For a given footpoint velocity amplitude, DC models predict lower average heating rates but greater temperature variability when compared to AC models. Therefore, evidence of hot plasma (T > 5 MK) in the cores of active regions could be one of the ways for current observations to distinguish between AC and DC models. We have analyzed data from the X-Ray Telescope (XRT) and the Atmospheric Imaging Assembly for 12 quiescent active region cores, all of which were observed in the XRT Be_thick channel. We did Differential Emission Measure (DEM) analysis and achieved good fits for each data set. We then artificially truncated the hot plasma of the DEM model at 5 MK and examined the resulting fits to the data. For some regions in our sample, the XRT intensities continued to be well-matched by the DEM predictions, even without the hot plasma. This truncation, however, resulted in unacceptable fits for the other regions. This result indicates that the hot plasma is present in these regions, even if the precise DEM distribution cannot be determined with the data available. We conclude that reconnection may be heating the hot plasma component of these active regions.

  8. HOT PLASMA FROM SOLAR ACTIVE REGION CORES: A TEST OF AC AND DC CORONAL HEATING MODELS?

    SciTech Connect

    Schmelz, J. T.; Christian, G. M.; Dhaliwal, R. S.; Pathak, S.; Asgari-Targhi, M.

    2015-06-20

    Direct current (DC) models of solar coronal heating invoke magnetic reconnection to convert magnetic free energy into heat, whereas alternating current (AC) models invoke wave dissipation. In both cases the energy is supplied by photospheric footpoint motions. For a given footpoint velocity amplitude, DC models predict lower average heating rates but greater temperature variability when compared to AC models. Therefore, evidence of hot plasma (T > 5 MK) in the cores of active regions could be one of the ways for current observations to distinguish between AC and DC models. We have analyzed data from the X-Ray Telescope (XRT) and the Atmospheric Imaging Assembly for 12 quiescent active region cores, all of which were observed in the XRT Be-thick channel. We did Differential Emission Measure (DEM) analysis and achieved good fits for each data set. We then artificially truncated the hot plasma of the DEM model at 5 MK and examined the resulting fits to the data. For some regions in our sample, the XRT intensities continued to be well-matched by the DEM predictions, even without the hot plasma. This truncation, however, resulted in unacceptable fits for the other regions. This result indicates that the hot plasma is present in these regions, even if the precise DEM distribution cannot be determined with the data available. We conclude that reconnection may be heating the hot plasma component of these active regions.

  9. Charcoal/Nitrogen Adsorption Cryocooler

    NASA Technical Reports Server (NTRS)

    Bard, Steven

    1987-01-01

    Refrigerator with no wear-related moving parts produces 0.5 W of cooling at 118 K. When fully developed, refrigerator needs no electrical power, and life expectancy of more than 10 yr, operates unattended to cool sensitive infrared detectors for long periods. Only moving parts in adsorption cryocooler are check valves. As charcoal is cooled in canister, gas pressure drops, allowing inlet check valve to open and admit more nitrogen. When canister is heated, pressure rises, closing inlet valve and eventually opening outlet valve.

  10. CHARCOAL-PRODUCING INDUSTRIES IN NORTHEASTERN BRAZIL

    EPA Science Inventory

    Charcoal workers in northeastern Brazil: Occupational risks and effects of exposure to wood smoke
    ABSTRACT
    Brazil has the largest production of charcoal in the world, which is used mostly in the iron and steel industries. In most of the production sites, the process is ba...

  11. Development of charcoal sorbents for helium cryopumping

    SciTech Connect

    Sedgley, D.W.; Tobin, A.G.

    1985-09-30

    Improved methods for cryopumping helium were developed for application to fusion reactors where high helium generation rates are expected. This study period evaluated charcoal particle size, bonding agent type and thickness, and substrate thickness. The optimum combination of charcoal, bond, and substrate was used to form a scaled-up panel for evaluation in the Tritium Systems Test Assembly (TSTA) at Los Alamos. The optimum combination is a 12 x 30 mesh coconut charcoal attached to a 0.48 cm thick copper substrate by a 0.015 cm thick silver phosphorus copper braze. A copper cement bond for attaching charcoal to a substrate was identified and tested. Helium pumping performance of this combination was comparable to that of the charcoal braze system. Environmental tests showed the charcoal's susceptibility to vacuum chamber contamination. Performance degradation followed exposure of ambient temperature charcoal to a vacuum for prolonged periods. Maintaining a liquid nitrogen-cooled shield between the charcoal and the source of contamination prevented this degradation. A combination of bake-out and LN shielding effected recovery of degraded performance.

  12. Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac)

    PubMed Central

    Fedoroff, Nina V.; Furtek, Douglas B.; Nelson, Oliver E.

    1984-01-01

    The bronze (bz) locus of maize has been cloned by an indirect procedure utilizing the cloned transposable controlling element Activator (Ac). Restriction endonuclease fragments of maize DNA were cloned in bacteriophage λ and recombinant phage with homology to the center of the Ac element were isolated. The cloned fragments were analyzed to determine which contained sequences that were structurally identical to a previously isolated Ac element. Two such fragments were identified. Sequences flanking the Ac element were subcloned and used to probe genomic DNA from plants with well-defined mutations at the bz locus. By this means, it was established that one of the genomic clones contained a bz locus sequence. The subcloned probe fragment was then used to clone a nonmutant Bz allele of the locus. The method described here should prove useful in cloning other loci with Ac insertion mutations. Images PMID:16593478

  13. Treatment of soil eluate containing nitro aromatic compounds by adsorption on activated coke (AC).

    PubMed

    Zhang, Yiping; Jiang, Zhenming; Zhao, Quanlin; Zhang, Zhenzhong; Su, Hongping; Gao, Xuewen; Ye, Zhengfang

    2016-01-01

    Soil washing is a kind of physical method to remove organic matters from contaminated soil. However, its eluate after washing may result in secondary pollution to the environment. In this study, activated coke (AC) was used to remove organic pollutants from contaminated soil eluate. The effect of temperature, initial chemical oxygen demand (COD) and AC dosage on COD removal efficiency was investigated. The results showed that the organic matter can be removed in the eluate because the COD dropped a lot. When the AC dosage was 20 g·L(-1), 88.92% of COD decreased after 480 min of adsorption at 50 °C. The process of adsorption can be described by the Redlich-Peterson isotherm. The adsorption was spontaneous and endothermic. The pseudo-second-order model can be used to describe the adsorption process. After adsorption, the acute toxicity of the eluate was reduced by 76%, and the water qualities were in agreement with Chinese discharge standard GB 14470.1-2002, which means the eluate could be discharged to the environment.

  14. What can we tell from particle morphology in Mesozoic charcoal assemblages?

    NASA Astrophysics Data System (ADS)

    Crawford, Alastair; Belcher, Claire

    2015-04-01

    Sedimentary charcoal particles provide a valuable record of palaeofire activity on both human and geological timescales. Charcoal is both an unambiguous indicator of wildfire, and a means of preservation of plant material in an inert form; thus it records not only the occurrence and extent of wildfire, but also the species affected. While scanning electron microscopy can be usefully employed for precise taxonomic identification of charcoals, the time and cost associated with this limit the extent to which the technique is employed. Morphometric analysis of mesocharcoal particles (c. 125-1000 µm) potentially provides a simple method for obtaining useful information from optical microscopy images. Grass fires have been shown to produce mesocharcoal particles with a higher length-to-width ratio than woodland fuel sources. In Holocene archives, aspect ratio measurements are thus used to infer the broad taxonomic affinity of the burned vegetation. Since Mesozoic charcoals display similarly heterogeneous morphologies, we investigate whether there is a similar potential to infer the broad botanical affinities of Mesozoic charcoal assemblages from simple morphological metrics. We have used image analysis to analyse a range of Jurassic and Cretaceous sedimentary rocks representing different vegetation communities and depositional environments, and also to determine the range of charcoal particle morphologies which can be produced from different modern taxa under laboratory conditions. We find that modern charcoals break down into mesocharcoal particles of very variable aspect ratio, and this appears to be dependent on taxonomic position. Our analysis of fragmented laboratory-produced charcoals indicates that pteridophytes produce much more elongate particles than either conifers or non-grass angiosperms. We suggest that for charcoal assemblages that predate the evolution of grasses, high average aspect ratios may be a useful indicator of the burning of a pteridophyte

  15. Wet hydrogen peroxide catalytic oxidation of phenol with FeAC (iron-embedded activated carbon) catalysts.

    PubMed

    Liou, Rey-May; Chen, Shih-Hsiung; Huang, Cheng-Hsien; Hung, Mu-Ya; Chang, Jing-Song; Lai, Cheng-Lee

    2010-01-01

    This investigation aims at exploring the catalytic oxidation activity of iron-embedded activated carbon (FeAC) and the application for the degradation of phenol in the wet hydrogen peroxide catalytic oxidation (WHPCO). FeAC catalysts were prepared by pre-impregnating iron in coconut shell with various iron loadings in the range of 27.5 to 46.5% before they were activated. The FeAC catalysts were characterised by measuring their surface area, pore distribution, functional groups on the surface, and X-ray diffraction patterns. The effects of iron loading strongly inhibited the pore development of the catalyst but benefited the oxidation activity in WHPCO. It was found that the complete conversion of phenol was observed with all FeAC catalysts in oxidation. High level of chemical oxygen demand (COD) abatement can be achieved within the first 30 minutes of oxidation. The iron embedded in the activated carbon showed good performance in the degradation and mineralisation of phenol during the oxidation due to the active sites as iron oxides formed on the surface of the activated carbon. It was found that the embedding irons were presented in gamma-Fe(2)O(3), alpha-Fe(2)O(3), and alpha-FeCOOH forms on the activated carbon. The aging tests on FeAC catalysts showed less activity loss, and less iron leaching was found after four oxidation runs.

  16. 49 CFR 176.405 - Stowage of charcoal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Stowage of charcoal. 176.405 Section 176.405... Materials § 176.405 Stowage of charcoal. (a) Before stowing charcoal Division 4.2 (flammable solid), UN 1361... petroleum product, a vegetable or animal oil, nitrate, or sulfur, must be removed. (b) Charcoal packed...

  17. 49 CFR 176.405 - Stowage of charcoal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Stowage of charcoal. 176.405 Section 176.405... Materials § 176.405 Stowage of charcoal. (a) Before stowing charcoal Division 4.2 (flammable solid), UN 1361... petroleum product, a vegetable or animal oil, nitrate, or sulfur, must be removed. (b) Charcoal packed...

  18. 49 CFR 176.405 - Stowage of charcoal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Stowage of charcoal. 176.405 Section 176.405... Materials § 176.405 Stowage of charcoal. (a) Before stowing charcoal Division 4.2 (flammable solid), UN 1361... petroleum product, a vegetable or animal oil, nitrate, or sulfur, must be removed. (b) Charcoal packed...

  19. 49 CFR 176.405 - Stowage of charcoal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Stowage of charcoal. 176.405 Section 176.405... Materials § 176.405 Stowage of charcoal. (a) Before stowing charcoal Division 4.2 (flammable solid), UN 1361... petroleum product, a vegetable or animal oil, nitrate, or sulfur, must be removed. (b) Charcoal packed...

  20. 49 CFR 176.405 - Stowage of charcoal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Stowage of charcoal. 176.405 Section 176.405... Materials § 176.405 Stowage of charcoal. (a) Before stowing charcoal Division 4.2 (flammable solid), UN 1361... petroleum product, a vegetable or animal oil, nitrate, or sulfur, must be removed. (b) Charcoal packed...

  1. Development of an incineration system for pulverized spent charcoal

    SciTech Connect

    Furukawa, Osamu; Shibata, Minoru; Kani, Koichi

    1995-12-31

    In the existing charcoal treatment system granular charcoal is charged directly into an incinerator together with other combustible waste. Since the combustion rate of the charcoal is slow in this system, there is a problem that unburnt charcoal accumulates at the bottom of the incinerator, when incineration is performed for an extended period of time. To prevent this difficulty, the combustion rate of the charcoal must be limited to 6 kg/h. To increase the incineration rate of charcoal, the authors have developed a system in which the charcoal is pulverized and incinerated while it is mixed with propane gas. The operational performance of this system was tested using an actual equipment.

  2. Discovery and antibacterial activity of glabramycin A-C from Neosartorya glabra by an antisense strategy.

    PubMed

    Jayasuriya, Hiranthi; Zink, Deborah; Basilio, Angela; Vicente, Francisca; Collado, Javier; Bills, Gerald; Goldman, Mary Lee; Motyl, Mary; Huber, Joann; Dezeny, Gabe; Byrne, Kevin; Singh, Sheo B

    2009-05-01

    Treatment of drug-resistant bacteria is a significant unmet medical need. This challenge can be met only by the discovery and development of new antibiotics. Antisense technology is one of the newest discovery tools that provides enhanced sensitivity for detection of antibacterials, and has led to the discovery of a number of interesting new antibacterial natural products. Continued utilization of this technology led to the discovery of three new bicyclic lactones, glabramycins A-C, from a Neosartorya glabra strain. Glabramycin C showed strong antibiotic activity against Streptococcus pneumoniae (MIC 2 microg ml(-1)) and modest antibiotic activity against Staphylococcus aureus (MIC 16 microg ml(-1)). The isolation, structure, relative configuration and antibacterial activity, and plausible biogenesis of these compounds have been discussed.

  3. Soil charcoal to assess the impacts of past human disturbances on tropical forests.

    PubMed

    Vleminckx, Jason; Morin-Rivat, Julie; Biwolé, Achille B; Daïnou, Kasso; Gillet, Jean-François; Doucet, Jean-Louis; Drouet, Thomas; Hardy, Olivier J

    2014-01-01

    The canopy of many central African forests is dominated by light-demanding tree species that do not regenerate well under themselves. The prevalence of these species might result from ancient slash-and-burn agricultural activities that created large openings, while a decline of these activities since the colonial period could explain their deficit of regeneration. To verify this hypothesis, we compared soil charcoal abundance, used as a proxy for past slash-and-burn agriculture, and tree species composition assessed on 208 rainforest 0.2 ha plots located in three areas from Southern Cameroon. Species were classified in regeneration guilds (pioneer, non-pioneer light-demanding, shade-bearer) and characterized by their wood-specific gravity, assumed to reflect light requirement. We tested the correlation between soil charcoal abundance and: (i) the relative abundance of each guild, (ii) each species and family abundance and (iii) mean wood-specific gravity. Charcoal was found in 83% of the plots, indicating frequent past forest fires. Radiocarbon dating revealed two periods of fires: "recent" charcoal were on average 300 years old (up to 860 BP, n = 16) and occurred in the uppermost 20 cm soil layer, while "ancient" charcoal were on average 1900 years old (range: 1500 to 2800 BP, n = 43, excluding one sample dated 9400 BP), and found in all soil layers. While we expected a positive correlation between the relative abundance of light-demanding species and charcoal abundance in the upper soil layer, overall there was no evidence that the current heterogeneity in tree species composition can be explained by charcoal abundance in any soil layer. The absence of signal supporting our hypothesis might result from (i) a relatively uniform impact of past slash-and-burn activities, (ii) pedoturbation processes bringing ancient charcoal to the upper soil layer, blurring the signal of centuries-old Human disturbances, or (iii) the prevalence of other environmental

  4. Mapping the Legacies of Historic Charcoal Production

    NASA Astrophysics Data System (ADS)

    Schneider, A.; Raab, A.; Raab, T. A.; Takla, M.; Nicolay, A.; Rösler, H.

    2014-12-01

    The historic production of charcoal is an important component of the late Holocene fire history for many landscapes. Charcoal production can have numerous effects on ecosystems, e.g., through changes in forest area and structure, or through the effects of pyrolysis, charcoal and ash addition to soils. To assess such effects, it is necessary to understand the spatial extent and patterns of historic charcoal production, which has so far hardly been approached for the Northern European Lowlands. In the forefield of the open-cast mine Jänschwalde (north of Cottbus, Germany), archaeological excavations have revealed one of the largest charcoal production fields described so far. For this area, we applied and evaluated different methods for mapping the spatial distribution of charcoal kiln remains. We present methods and results of our work in this exceptionally well-described charcoal production field and of additional studies on kiln site distribution in regions of the Northern European Lowlands. The large-scale excavations in the mine forefield provide exact information on kiln site geometry. Using airborne laser scanning elevation models, the mapping of kiln sites could be extended to areas beyond the mine forefield. To detect kiln sites for larger areas, an automated GIS based mapping routine, based on a combination of morphometric parameters, was developed and evaluated. By manual digitization from Shaded Relief Maps, more than 5000 kiln sites in an area of 32 km2 were detected in the Jänschwalde mine forefield, with 1355 kiln sites that are wider than 12 m. These relatively large kiln sites could be mapped with detection rates that are close to those of manual digitization using the automated routine. First results for different study areas indicate that charcoal production is a so far underestimated component of the land use history in many parts of the Northern European Lowlands.

  5. Charcoal Performance under Simulated Accident Conditions.

    DTIC Science & Technology

    1982-06-30

    demonstrated how TEDA impregnations alone will behave. 30 6. REFERENCES (1) "Effects of Weathering on Impregnated Charcoal Perform- ance," Victor R. Deitz, NUREG ...CR-2112, NRL Memo Report 4516 (1981). (2) "Effects of Weathering on Impregnated Charcoal Perform- ance," Victor R. Deitz, NRL Memo Report 4006, NUREG ...Characteristics. 4 i i 42 BIBLIOGRAPHIC DATA SHEET NUREG /CR/2550 9. PERFORMING ORGANIZATION NAME AND MAILING ADDRESS finclud ZIP Cod.) DATE REPORT ISSUED Naval

  6. Fluidized bed charcoal particle production system

    SciTech Connect

    Sowards, N.K.

    1985-04-09

    A fluidized bed charcoal particle production system, including apparatus and method, wherein pieces of combustible waste, such as sawdust, fragments of wood, etc., are continuously disposed within a fluidized bed of a pyrolytic vessel. Preferably, the fluidized bed is caused to reach operating temperatures by use of an external pre-heater. The fluidized bed is situated above an air delivery system at the bottom of the vessel, which supports pyrolysis within the fluidized bed. Charcoal particles are thus formed within the bed from the combustible waste and are lifted from the bed and placed in suspension above the bed by forced air passing upwardly through the bed. The suspended charcoal particles and the gaseous medium in which the particles are suspended are displaced from the vessel into a cyclone mechanism where the charcoal particles are separated. The separated charcoal particles are quenched with water to terminate all further charcoal oxidation. The remaining off-gas is burned and, preferably, the heat therefrom used to generate steam, kiln dry lumber, etc. Preferably, the bed material is continuously recirculated and purified by removing tramp material.

  7. Comparing modelled fire dynamics with charcoal records for the Holocene

    NASA Astrophysics Data System (ADS)

    Brücher, Tim; Brovkin, Victor; Kloster, Silvia; Marlon, Jennifer; Power, Mitch

    2014-05-01

    An Earth System model of intermediate complexity, CLIMBER-2, and land surface model JSBACH that includes dynamic vegetation, carbon cycle, and fire regime are used for simulation of natural fire dynamics through the last 8,000 years. To compare the fire model results with the charcoal reconstructions, several output variables of the fire model (burned area, carbon emissions) and several approaches of model output processing are tested. The z-scores out of charcoal dataset have been calculated for the period 8,000 to 200 BP to exclude a period of strong anthropogenic forcing during the last two centuries. The model analysis points mainly to an increasing fire activity during the Holocene for most of the investigated areas, which is in good correspondence to reconstructed fire trends out of charcoal data for most of the tested regions, while for few regions such as Europe the simulated trend and the reconstructed trends are different. The difference between the modeled and reconstructed fire activity could be due to absence of the anthropogenic forcing in the model simulations, but also due to limitations of model assumptions for modeling fire dynamics. For the model trends, the usage of averaging or z-score processing of model output resulted in similar directions of trend. Therefore, the approach of fire model output processing does not effect results of the model-data comparison. Global fire modeling is still in its infancy; improving our representations of fire through validation exercises such as what we present here is thus essential before testing hypotheses about the effects of extreme climate changes on fire behavior and potential feedbacks that result from those changes. Brücher, T., Brovkin, V., Kloster, S., Marlon, J. R., and Power, M. J.: Comparing modelled fire dynamics with charcoal records for the Holocene, Clim. Past Discuss., 9, 6429-6458, doi:10.5194/cpd-9-6429-2013, 2013.

  8. Adsorption of dimethyl sulfide from aqueous solution by a cost-effective bamboo charcoal.

    PubMed

    Wang, Ming; Huang, Zheng-Hong; Liu, Guangjia; Kang, Feiyu

    2011-06-15

    The adsorption of dimethyl sulfide from an aqueous solution by a cost-effective bamboo charcoal from Dendrocalamus was studied in comparison with other carbon adsorbents. The bamboo charcoal exhibited superior adsorption on dimethyl sulfide compared with powdered activated carbons at different adsorbent dosages. The adsorption characteristics of dimethyl sulfide onto bamboo charcoal were investigated under varying experimental conditions such as particle size, contact time, initial concentration and adsorbent dosage. The dimethyl sulfide removal was enhanced from 31 to 63% as the particle size was decreased from 24-40 to >300 mesh for the bamboo charcoal. The removal efficiency increased with increasing the adsorbent dosage from 0.5 to 10mg, and reached 70% removal efficiency at 10mg adsorbed. The adsorption capacity (μg/g) increased with increasing concentration of dimethyl sulfide while the removal efficiency decreased. The adsorption process conforms well to a pseudo-second-order kinetics model. The adsorption of dimethyl sulfide is more appropriately described by the Freundlich isotherm (R(2), 0.9926) than by the Langmuir isotherm (R(2), 0.8685). Bamboo charcoal was characterized by various analytical methods to understand the adsorption mechanism. Bamboo charcoal is abundant in acidic and alcohol functional groups normally not observed in PAC. A distinct difference is that the superior mineral composition of Fe (0.4 wt%) and Mn (0.6 wt%) was detected in bamboo charcoal-elements not found in PAC. Acidic functional group and specific adsorption sites would be responsible for the strong adsorption of dimethyl sulfide onto bamboo charcoal of Dendrocalamus origin.

  9. New emission controls for Missouri batch-type charcoal kilns

    SciTech Connect

    Yronwode, P.; Graf, W.J.

    1999-07-01

    Charcoal kilns have been exempted from air emission regulation in the state of Missouri. Today, 80% of US charcoal production takes place in Missouri. As a result of a petition filed by people in the area around an installation in southern Missouri, the US Environmental Protection Agency (EPA) set up air monitors and measured ambient air levels at that charcoal manufacturing installation. These monitors yielded the highest particulate matter less than 10 micron (PM{sub 10}) levels ever recorded in the state. Earlier stack testing at another charcoal manufacturing installation indicated that toxics and carcinogens are present in charcoal kiln air emissions. A Charcoal Kiln Workgroup was formed to determine the Best Available Control Technology (BACT) for charcoal kilns and to draft a charcoal kiln rule that requires BACT. The BACT report determined that afterburners were suitable for controlling emissions from batch-type charcoal kilns. In addition, the charcoal industry supported incorporating the BACT limits and requirements into an enforceable state rule and submitting this rule to the EPA for federal approval. A consent agreement between the EPA and three major charcoal companies was signed with provisions to install, operate, and maintain emission control devices on charcoal kilns. This agreement was to settle complaints alleging that the three major charcoal producers had failed to report toxic air emissions to federal and state regulators. The agreement provided that industry would install control devices on a set schedule with some charcoal kilns being shut down.

  10. Post-Flight Sampling and Loading Characterization of Trace Contaminant Control Subassembly Charcoal

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Cole, H. E.; Cramblitt, E. L.; El-Lessy, H. N.; Manuel, S.; Tucker, C. D.

    2003-01-01

    Trace chemical contaminants produced by equipment offgassing and human metabolic processes are removed from the atmosphere of the International Space Station s U.S. Segment by a trace contaminant control subassembly (TCCS). The TCCS employs a combination of physical adsorption, thermal catalytic oxidation, and chemical adsorption processes to accomplish its task. A large bed of granular activated charcoal is a primary component of the TCCS. The charcoal contained in this bed, known as the charcoal bed assembly (CBA), is expendable and must be replaced periodically. Pre-flight engineering analyses based upon TCCS performance testing results established a service life estimate of 1 year. After nearly 1 year of cumulative in-flight operations, the first CBA was returned for refurbishment. Charcoal samples were collected and analyzed for loading to determine the best estimate for the CBAs service life. A history of in-flight TCCS operations is presented as well as a discussion of the charcoal sampling procedures and chemical analysis results. A projected service life derived from the observed charcoal loading is provided. Recommendations for better managing TCCS resources are presented.

  11. The influence of production conditions, starting material and deposition environment on charcoal alteration in a tropical biome.

    NASA Astrophysics Data System (ADS)

    Ascough, Philippa; Bird, Michael; Meredith, Will; Large, David; Snape, Colin; Manion, Corinne

    2014-05-01

    , molecular structure, resistant carbon content, microbial interactions and physical characteristics were investigated using a suite of techniques including 13C-MAS-NMR, scanning electron microscopy, stable isotope ratio mass spectrometery, elemental analysis, Raman spectroscopy and hydropyrolysis. The study results have important implications for: i.) the use of quantitative charcoal measurements within global carbon budgets and fire history reconstruction; ii.) understanding of the dynamic role of charcoal within soil and sedimentary systems. References: [1] Langenfelds RL, Francey RJ, Pak BC, Steele LP, Lloyd J, Trudinger CM, Allison CE. 2002. Global Biogeochem. Cycles, 16, doi:10.1029/2001GB001466. [2] Schimel D, Baker D. 2002. Nature 420, 29-30. [3] Levine JS, 1991. The MIT Press, Cambridge, Massachusetts. [4] Preston CM, Schmidt MWI. 2006. Biogeoscience 3, 397-420. [5] Lehmann J, Gaunt J, Rondon M. 2006. Mitigation and Adaptation Strategies for Global Change 11, 395-419. [6] Sohi SP, Krull E, Lopez-Capel E, Bol R. 2010. Advances in Agronomy, Academic Press, 105, 47-82 [7] Woolf D, Amonette J.E, Street-Perrott F.A, Lehmann J, Joseph S. 2010. Nature Communications, 1, 56. [8] Ascough PL, Bird M I, Francis SM, Thornton B, Midwood A, Scott AC, 10 Apperley D. 2011. Geochimica et Cosmochimica Acta. 75 (9), 2361-2378. [9] Zimmermann M et al. 2012. Global Change Biology. doi: 10.1111/j.1365- 2486.2012.02796.x

  12. Targeting Mitogen-Activated Protein Kinase Signaling in Mouse Models of Cardiomyopathy Caused by Lamin A/C Gene Mutations

    PubMed Central

    Muchir, Antoine; Worman, Howard J.

    2016-01-01

    The most frequently occurring mutations in the gene encoding nuclear lamin A and nuclear lamin C cause striated muscle diseases virtually always involving the heart. In this review, we describe the approaches and methods used to discover that cardiomyopathy-causing lamin A/C gene mutations increase MAP kinase signaling in the heart and that this plays a role in disease pathogenesis. We review different mouse models of cardiomyopathy caused by lamin A/C gene mutations and how transcriptomic analysis of one model identified increased cardiac activity of the ERK1/2, JNK, and p38α MAP kinases. We describe methods used to measure the activity of these MAP kinases in mouse hearts and then discuss preclinical treatment protocols using pharmacological inhibitors to demonstrate their role in pathogenesis. Several of these kinase inhibitors are in clinical development and could potentially be used to treat human subjects with cardiomyopathy caused by lamin A/C gene mutations. PMID:26795484

  13. Effect of Charcoal Volatile Matter Content and Feedstock on Soil Microbe-Carbon-Nitrogen Dynamics

    NASA Astrophysics Data System (ADS)

    McClellan, T.; Deenik, J. L.; Hockaday, W. C.; Campbell, S.; Antal, M. J., Jr.

    2010-12-01

    Charcoal has important biogeochemical implications in soil—first as a means to sequester carbon, and second as a soil conditioner to potentially enhance soil quality and fertility. Volatile matter (VM) content is a property of charcoal which describes its degree of thermal alteration, or carbonization. Results from greenhouse experiments have shown that plant growth can be negatively affected by charcoals with high VM content (20-35%), with and without fertilizer supplements, whereas low VM charcoal (6-9%) increased plant growth when combined with fertilizer. We conducted two laboratory studies to characterize the VM content of charcoals derived from two feedstocks (corncob and kiawe) and relate observed differences to key aspects of soil fertility. Using Fourier transform infrared spectroscopy (FTIR), 13C nuclear magnetic resonance (NMR), total phenol content (using a Prussian blue colorimetric assay), and gas chromatography-mass spectrometry (GC-MS), we found that the VM content of charcoal primarily consisted of alkanes, oxygen-substituted alkanes, and phenolic compounds. However, the GC-MS data indicated that charcoals can differ vastly in their extractable fraction, depending upon both VM content and feedstock. In a second set of experiments, we examined the effect of VM content and feedstock on soil microbial activity, available nitrogen (N), and soluble carbon (C). High VM corncob charcoals significantly enhanced microbial activity, coupled with net reduction in available N and soluble C. For a given feedstock, the extent of this effect was dependent upon VM content. However, the overall effect of VM content on microbial dynamics was apparently related to the composition of the acetone-extractable fraction, which was particularly important when comparing two charcoals derived from different feedstocks but with the equivalent VM contents. Removing the acetone-extractable fraction from the 23% VM corncob charcoal significantly reduced the enhancement of

  14. Novel application of confocal laser scanning microscopy and 3D volume rendering toward improving the resolution of the fossil record of charcoal.

    PubMed

    Belcher, Claire M; Punyasena, Surangi W; Sivaguru, Mayandi

    2013-01-01

    Variations in the abundance of fossil charcoals between rocks and sediments are assumed to reflect changes in fire activity in Earth's past. These variations in fire activity are often considered to be in response to environmental, ecological or climatic changes. The role that fire plays in feedbacks to such changes is becoming increasingly important to understand and highlights the need to create robust estimates of variations in fossil charcoal abundance. The majority of charcoal based fire reconstructions quantify the abundance of charcoal particles and do not consider the changes in the morphology of the individual particles that may have occurred due to fragmentation as part of their transport history. We have developed a novel application of confocal laser scanning microscopy coupled to image processing that enables the 3-dimensional reconstruction of individual charcoal particles. This method is able to measure the volume of both microfossil and mesofossil charcoal particles and allows the abundance of charcoal in a sample to be expressed as total volume of charcoal. The method further measures particle surface area and shape allowing both relationships between different size and shape metrics to be analysed and full consideration of variations in particle size and size sorting between different samples to be studied. We believe application of this new imaging approach could allow significant improvement in our ability to estimate variations in past fire activity using fossil charcoals.

  15. Calibration of diffusion barrier charcoal detectors and application to radon sampling in dwellings

    NASA Astrophysics Data System (ADS)

    Cabrera, M. E. M.; Sujo, L. C.; Villalba, L.; Peinado, J. S.; Jimenez, A. C.; Baca, A. M.; Gandara, S. D.; Villalobos, M. R.; Miranda, A. L.; Peraza, E. F. H.

    2003-10-01

    Some calibration conditions of diffusion barrier charcoal canister (DBCC) detectors for measuring radon concentration in air were studied. A series of functional expressions and graphs were developed to describe relationship between radon concentration in air and the activity adsorbed in DBCC, when placed in small chambers. A semi-empirical expression for the DBCC calibration was obtained, based on the detector integration time and the adsorption coefficient of radon on activated charcoal. Both, the integration time for 10% of DBCC of the same batch, and the adsorption coefficient of radon for the activated charcoal used in these detectors, were experimentally determined. Using these values as the calibration parameters, a semi-empirical calibration function was used for the interpretation of the radon activities in the detectors used for sampling more than 200 dwellings in the major cities of the state of Chihuahua, Mexico.

  16. Recovery of Technetium Adsorbed on Charcoal

    SciTech Connect

    Engelmann, Mark D.; Metz, Lori A.; Ballou, Nathan E.

    2006-05-01

    Two methods capable of near complete recovery of technetium adsorbed on charcoal are presented. The first involves liquid extraction of the technetium from the charcoal by hot 4M nitric acid. An average recovery of 98% (n=3) is obtained after three rounds of extraction. The second method involves dry ashing with air in a quartz combustion tube at 400-450 C. This method yields an average recovery of 96% (n=5). Other thermal methods were attempted, but resulted in reduced recovery and incomplete material balance

  17. Structural improvement of compounds with analgesic activity: AC-MPF4, a compound with mixed anti-inflammatory and antinociceptive activity via opioid receptor.

    PubMed

    Rossato, Mateus Fortes; Oliveira, Sara Marchesan; Trevisan, Gabriela; Rotta, Mariane; Machado, Pablo; Martins, Marcos A P; Ferreira, Juliano

    2015-02-01

    Successful pain control is a world health problem, which indicates an ever-growing need in the discovery of new molecules with improved analgesic activity and reduced side effects. The aim of this study was to describe the synthesis and biological activity of AC-MPF4, a new acetyl- and pyrazole-containing molecule derivate from MPF4. Firstly, we evaluated the analgesic and anti-edematogenic effect of AC-MPF4 in the carrageenan test. AC-MPF4 presented similar analgesic properties to MPF4 (opioid drug) and acetylsalicylic acid (ASA-a non-steroidal anti-inflammatory drug) (maximal effect of 85.4±10.9%, 62.0±11.0% and 95.0±10.4% of allodynia reduction, respectively). Regarding anti-edematogenic properties, AC-MPF4 presented similar results to ASA, while MPF4 presented no effect (maximal effect of 42.2±8.3% and 46.1±5.1% in paw thickness reduction, respectively). Remarkably, Naloxone fully prevented the analgesic effect of MPF4 and partially prevented the analgesic effect of AC-MPF4. However, neither ASA nor the anti-edematogenic activity was affected by Naloxone. The gastrointestinal motility and gastric mucosa integrity, which are parameters affected by opioid and NSAID drugs, respectively, were also evaluated. Neither of these parameters showed alterations induced by AC-MPF4, whereas ASA induced gastric ulceration (10 fold higher), and MPF4 decreased gastrointestinal motility (62.0±7.7%). Together, these data indicate that AC-MPF4 presents good analgesic and anti-edematogenic effects with no detectable side effects. AC-MPF4 may be considered a good prototype for the development of new analgesic/anti-inflammatory drugs.

  18. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation

    PubMed Central

    Covarrubias, Anthony J; Aksoylar, Halil Ibrahim; Yu, Jiujiu; Snyder, Nathaniel W; Worth, Andrew J; Iyer, Shankar S; Wang, Jiawei; Ben-Sahra, Issam; Byles, Vanessa; Polynne-Stapornkul, Tiffany; Espinosa, Erika C; Lamming, Dudley; Manning, Brendan D; Zhang, Yijing; Blair, Ian A; Horng, Tiffany

    2016-01-01

    Macrophage activation/polarization to distinct functional states is critically supported by metabolic shifts. How polarizing signals coordinate metabolic and functional reprogramming, and the potential implications for control of macrophage activation, remains poorly understood. Here we show that IL-4 signaling co-opts the Akt-mTORC1 pathway to regulate Acly, a key enzyme in Ac-CoA synthesis, leading to increased histone acetylation and M2 gene induction. Only a subset of M2 genes is controlled in this way, including those regulating cellular proliferation and chemokine production. Moreover, metabolic signals impinge on the Akt-mTORC1 axis for such control of M2 activation. We propose that Akt-mTORC1 signaling calibrates metabolic state to energetically demanding aspects of M2 activation, which may define a new role for metabolism in supporting macrophage activation. DOI: http://dx.doi.org/10.7554/eLife.11612.001 PMID:26894960

  19. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation.

    PubMed

    Covarrubias, Anthony J; Aksoylar, Halil Ibrahim; Yu, Jiujiu; Snyder, Nathaniel W; Worth, Andrew J; Iyer, Shankar S; Wang, Jiawei; Ben-Sahra, Issam; Byles, Vanessa; Polynne-Stapornkul, Tiffany; Espinosa, Erika C; Lamming, Dudley; Manning, Brendan D; Zhang, Yijing; Blair, Ian A; Horng, Tiffany

    2016-02-19

    Macrophage activation/polarization to distinct functional states is critically supported by metabolic shifts. How polarizing signals coordinate metabolic and functional reprogramming, and the potential implications for control of macrophage activation, remains poorly understood. Here we show that IL-4 signaling co-opts the Akt-mTORC1 pathway to regulate Acly, a key enzyme in Ac-CoA synthesis, leading to increased histone acetylation and M2 gene induction. Only a subset of M2 genes is controlled in this way, including those regulating cellular proliferation and chemokine production. Moreover, metabolic signals impinge on the Akt-mTORC1 axis for such control of M2 activation. We propose that Akt-mTORC1 signaling calibrates metabolic state to energetically demanding aspects of M2 activation, which may define a new role for metabolism in supporting macrophage activation.

  20. Determination of 63Ni and 59Ni in spent ion-exchange resin and activated charcoal from the IEA-R1 nuclear research reactor.

    PubMed

    Taddei, M H T; Macacini, J F; Vicente, R; Marumo, J T; Sakata, S K; Terremoto, L A A

    2013-07-01

    A radiochemical method has been adapted to determine (59)Ni and (63)Ni in samples of radioactive wastes from the water cleanup system of the IEA-R1 nuclear research reactor. The process includes extraction chromatographic resin with dimethylglyoxime (DMG) as a functional group. Activity concentrations of (59)Ni and (63)Ni were measured, respectively, by X-ray spectrometry and liquid scintillation counting, whereas the chemical yield was determined by ICP-OES. The average ratio of measured activity concentrations of (63)Ni and (59)Ni agree well with theory.

  1. Charcoal from the pyrolysis of rapeseed plant straw-stalk

    SciTech Connect

    Karaosmanoglu, F.; Tetik, E.

    1999-07-01

    Charcoal is an important product of pyrolysis of biomass sources. Charcoal can be used for domestic, agricultural, metallurgical, and chemical purposes. In this study different characteristics of charcoal, one of the rape seed plant straw-stalk pyrolysis product, was researched and presented as candidates.

  2. Emissions of air pollutants from indoor charcoal barbecue.

    PubMed

    Huang, Hsiao-Lin; Lee, Whei-May Grace; Wu, Feng-Shu

    2016-01-25

    Ten types of commercial charcoal commonly used in Taiwan were investigated to study the potential health effects of air pollutants generated during charcoal combustion in barbecue restaurants. The charcoal samples were combusted in a tubular high-temperature furnace to simulate the high-temperature charcoal combustion in barbecue restaurants. The results indicated that traditional charcoal has higher heating value than green synthetic charcoal. The amount of PM10 and PM2.5 emitted during the smoldering stage increased when the burning temperature was raised. The EF for CO and CO2 fell within the range of 68-300 and 644-1225 g/kg, respectively. Among the charcoals, the lowest EF for PM2.5 and PM10 were found in Binchōtan (B1). Sawdust briquette charcoal (I1S) emitted the smallest amount of carbonyl compounds. Charcoal briquettes (C2S) emitted the largest amount of air pollutants during burning, with the EF for HC, PM2.5, PM10, formaldehyde, and acetaldehyde being the highest among the charcoals studied. The emission of PM2.5, PM10, formaldehyde, and acetaldehyde were 5-10 times those of the second highest charcoal. The results suggest that the adverse effects of the large amounts of air pollutants generated during indoor charcoal combustion on health and indoor air quality must not be ignored.

  3. [The effect of the application sorption of a fibrous activated charcoal material with highly dispersed iron on the course of a wound process].

    PubMed

    Symorot, M I; Shvets, T M; Kryzyna, P S; Kushchevs'ka, N F; Denys, R O

    1999-09-01

    Results of the experiments carried out show that the use of the activated carbon fibrous material "Dnipro" for medical purposes (ABBM "Dnipro" MP) and the suspension of high-dispersity iron combined in treatment of infected and suppurating wounds is associated with a more pronounced therapeutical effect than application to the wound surfaces of the standard ABBM "Dnipro" MP. The compositional method using ABBM "Dnipro" MP and high-dispersity iron obtainable by thermochemical techniques has a marked antimicrobial action and stimulates the course of the wound process.

  4. Late Quaternary stratigraphic charcoal records from Madagascar

    NASA Astrophysics Data System (ADS)

    Burney, David A.

    1987-09-01

    The classic view regarding the cause of the extinction of at least 17 species of large mammals, birds, and reptiles in Madagascar during the late Holocene implicates human use of fire to modify the environment. However, analysis of the charcoal stratigraphy of three sediment cores from Madagascar shows that late Pleistocene and early- to mid-Holocene sediments deposited prior to human settlement often contain more charcoal than postsettlement and modern sediments. This observation, which is confirmed by independent measurements from direct assay and palynological counting techniques, suggests that widely held but previously untested beliefs concerning the importance of anthropogenic fires in late Holocene environmental changes and megafaunal extinctions of Madagascar may be based on an overly simplified version of actual prehistoric conditions. Moderate to low charcoal values characterized only the late Holocene millennia immediately prior to the presumed time of arrival of the first settlers. Human settlement is probably indicated in the stratigraphy by the sharp rise in charcoal content observed beginning ca. 1500 yr B.P. Fire appears to be a significant natural component of prehuman environments in Madagascar, but some factor, probably climate, has modulated the extent of natural burning.

  5. Sawdust and Charcoal: Fuel for Raku.

    ERIC Educational Resources Information Center

    Brisson, Harriet E.

    1980-01-01

    Raku is an ancient Japanese process of firing pottery in which the bisqued piece is glazed and placed in a preheated kiln. Described are the benefits of substituting sawdust and charcoal for firing pottery by those people who do not have access to a kiln. (KC)

  6. Influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for the synthesis of dimethyl carbonate

    NASA Astrophysics Data System (ADS)

    Zhang, Guoqiang; Li, Zhong; Zheng, Huayan; Hao, Zhiqiang; Wang, Xia; Wang, Jiajun

    2016-12-01

    Activated carbon (AC) supported Cu catalysts are employed to study the influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for oxidative carbonylation of methanol to dimethyl carbonate (DMC). The AC supports are thermal treated under different temperatures in order to adjust the levels of surface oxygenated groups. The AC supports are characterized by BET, TPD-MS and XRD, and the Cu/AC catalysts are characterized by BET, XRD, TEM, XPS, AAS, CH3OH-TPD and N2O chemisorption. The results show that as the treatment temperature is below 800 °C, the BET surface area of the corresponding AC supports are nearly unchanged and close to that of the original AC (1529.6 m2/g). But as the thermal treatment temperature is elevated from 1000 to 1600 °C, the BET surface area of AC supports gradually decreases from 1407.6 to 972.2 m2/g. After loading of Cu, the BET surface area of copper catalysts is in the range of 834.4 to 1545.3 m2/g, which is slightly less than that of the respective supports. When AC is thermal treated at 400 and 600 °C, the unstable carboxylic acid and anhydrides groups are selectively removed, which has weakened the mobility and agglomeration of Cu species during the calcination process, and thus improve the Cu species dispersion over AC support. But as the treatment temperature is elevated from 600 °C to 1200 °C, the Cu species dispersion begins to decline suggesting further removal of stable surface oxygenated groups is unfavorable for Cu species dispersion. Moreover, higher thermal treatment temperature (above 1200 °C) promotes the graphitization degree of AC and leds to the decrease of Cu loading on AC support. Meanwhile, the removal of surface oxygenated groups by thermal treatment is conducive to the formation of more π-sites, and thus promote the reduction of Cu2+ to Cu+ and Cu0 as active centers. The specific surface area of (Cu+ + Cu0) is improved by thermal treatment of AC

  7. Fire history in western Patagonia from paired tree-ring fire-scar and charcoal records

    NASA Astrophysics Data System (ADS)

    Holz, A.; Haberle, S.; Veblen, T. T.; de Pol-Holz, R.; Southon, J.

    2012-03-01

    Fire history reconstructions are typically based on tree ages and tree-ring fire scars or on charcoal in sedimentary records from lakes or bogs, but rarely on both. In this study of fire history in western Patagonia (47-48° S) in southern South America (SSA) we compared three sedimentary charcoal records collected in bogs with tree-ring fire-scar data collected at 13 nearby sample sites. We examined the temporal and spatial correspondence between the two fire proxies and also compared them to published charcoal records from distant sites in SSA, and with published proxy reconstructions of regional climate variability and large-scale climate modes. Two of our three charcoal records record fire activity for the last 4 ka yr and one for the last 11 ka yr. For the last ca. 400 yr, charcoal accumulation peaks tend to coincide with high fire activity in the tree-ring fire scar records, but the charcoal records failed to detect some of the fire activity recorded by tree rings. Potentially, this discrepancy reflects low-severity fires that burn in herbaceous and other fine fuels without depositing charcoal in the sedimentary record. Periods of high fire activity tended to be synchronous across sample areas, across proxy types, and with proxy records of regional climatic variability as well as major climate drivers. Fire activity throughout the Holocene in western Patagonia has responded to regional climate variation affecting a broad region of southern South America that is teleconnected to both tropical- and high-latitude climate drivers-El Niño-Southern Oscillation and the Southern Annular Mode. An early Holocene peak in fire activity pre-dates any known human presence in our study area, and consequently implicates lightning as the ignition source. In contrast, the increased fire activity during the 20th century, which was concomitantly recorded by charcoal from all the sampled bogs and at all fire-scar sample sites, is attributed to human-set fires and is outside the

  8. Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution.

    PubMed

    Asadullah, Mohammad; Asaduzzaman, Mohammad; Kabir, Mohammad Shajahan; Mostofa, Mohammad Golam; Miyazawa, Tomohisa

    2010-02-15

    Activated carbons have been prepared from jute sticks by chemical activation using ZnCl(2) and physical activation using steam for the removal of Brilliant Green dye from aqueous solution. The activated carbons and charcoal prepared from jute sticks were characterized by evaluating the surface chemistry, structural features and surface morphology. The maximum BET surface area was obtained to be 2304 m(2)/g for chemical activated carbon (ACC) while it is 730 and 80 m(2)/g for steam activated carbon (ACS) and charcoal, respectively. The FT-IR spectra exhibited that the pyrolysis and steam activation of jute sticks resulted in the release of aliphatic and O-containing functional groups by thermal effect. However, the release of functional groups is the effect of chemical reaction in the ZnCl(2) activation process. A honeycomb-type carbon structure in ACC was formed as observed on SEM images. Although charcoal and ACC were prepared at 500 degrees C the ACC exhibited much lower Raman sensitivity due to the formation of condensed aromatic ring systems. Due to high surface area and high porous structure with abundance of functional groups, the ACC adsorbed dye molecules with much higher efficiency than those of ACS and charcoal.

  9. Dynamics and functions of bacterial communities in bark, charcoal and sand filters treating greywater.

    PubMed

    Dalahmeh, Sahar S; Jönsson, Håkan; Hylander, Lars D; Hui, Nan; Yu, Dan; Pell, Mikael

    2014-05-01

    This study explored the effects of greywater application on the dynamics and functions of biofilms developed in bark, activated charcoal and sand filters used for removal of organic matter and nitrogen. Duplicate columns (20 cm diameter, 60 cm deep) were packed with bark, charcoal or sand with effective size 1.4 mm and uniformity coefficient 2.2, and dosed with 32 L m(-2) day(-1) of an artificial greywater (14 g BOD5 m(-2) day(-1)) for 116 days. Potential respiration rate (PRR), determined in filter samples after addition of excess glucose, and bacterial diversity and composition, analysed by 454-pyrosequencing of bacterial 16S ribosomal DNA, were measured at different times and depths in the filters. The bark and charcoal filters were more efficient in removing BOD5 than the sand (98, 97% and 75%, respectively). The highest PRR in the 0-2 cm layer of the columns on day 84 was found in the bark filters, followed by the charcoal and sand filters (632 ± 66, 222 ± 34 and 56 ± 2 mg O2 L(-1), respectively; n = 2). Bacterial community in the bark filters showed the highest richness. The charcoal and sand filters both developed more diverse and dynamic (changing over time and depth) bacterial communities than the bark. In addition to the greywater, the lignocelluosic composition of the bark and its lower pH probably selected for the bacterial community structure and the organic content provided additional substrate, as shown by its higher PRR and its different nitrifying bacterial genera. In the oligotrophic charcoal and sand, the composition of the greywater itself defined the bacterial community. Thus, the initially low bacterial biomass in the latter filters was enriched over time, allowing a diversified bacterial community to develop. The top layers of the bark and charcoal filters displayed a high dominance of Rhizobium, Pseudomonas and Acinetobacter, which were less evident in the 60 cm layer, whereas in the sand filters these genera were

  10. Aerosol hygroscopicity and CCN activity during the AC3Exp campaign: Implications for CCN parameterization

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Li, Yanan; Li, Zhanqing

    2015-04-01

    Atmospheric aerosol particles acting as CCN are pivotal elements of the hydrological cycle and climate change. In this study, we measured and characterized NCCN in relatively clean and polluted air during the AC3Exp campaign conducted at Xianghe, China during summer 2013. The aim was to examine CCN activation properties under high aerosol loading conditions in a polluted region and to assess the impacts of particle size and chemical composition on the CCN AR which acts as a proxy of the total number of aerosol particles in the atmosphere. A gradual increase in size-resolved AR with particle diameter suggests that aerosol particles have different hygroscopicities. For particles in the accumulation mode, values of κapa range from 0.31-0.38 under background conditions, which is about 20% higher than that derived under polluted conditions. For particles in the nucleation or Aitken mode, κ range from 0.20-0.34 under both background and polluted conditions. Larger particles were on average more hygroscopic than smaller particles. However, the case is more complex for particles originating from heavy pollution due to the diversity in particle composition and mixing state. The low R2 for the NPO CCN closure test suggests a 30%-40% uncertainty in total NCCN estimation. Using bulk chemical composition data from ACSM measurements, the relationship between bulk AR and the physical and chemical properties of atmospheric aerosols is investigated. Based on a case study, it has been concluded that one cannot use a parameterized formula using only total NCN to estimate total NCCN. Our results showed a possibility of using bulk κchem and f44 in combination with bulk NCN > 100 nm to parameterize CCN number concentrations.

  11. Method And Apparatus For Production Of Bi-213 From The Activity Ac-225 Source

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.

    2005-12-06

    A method and apparatus for isolating and purifying a .sup.213 Bi radioactive isotope from an .sup.225 Ac source using a primary column and a primary sorbent which preferentially retains .sup.225 Ac over .sup.213 Bi when exposed to a compatible solvent in combination with a secondary column having a secondary sorbent which retains .sup.213 Bi when exposed to a mixture of the compatible solvent and .sup.213 Bi. A "compatible solvent" is a solvent which will preferentially remove .sup.213 Bi radioactive isotopes from a primary sorbent without removing .sup.225 Ac radioactive isotopes, and then allow .sup.213 Bi radioactive isotopes removed from the primary sorbent to be retained on a secondary sorbent, without having to dilute or otherwise chemically or physically modify the compatible solvent in between exposure to the primary and secondary sorbents.

  12. In vitro cytotoxicity of Selol-loaded magnetic nanocapsules against neoplastic cell lines under AC magnetic field activation

    NASA Astrophysics Data System (ADS)

    Falqueiro, A. M.; Siqueira-Moura, M. P.; Jardim, D. R.; Primo, F. L.; Morais, P. C.; Mosiniewicz-Szablewska, E.; Suchocki, P.; Tedesco, A. C.

    2012-04-01

    The goals of this study are to evaluate invitro compatibility of magnetic nanomaterials and their therapeutic potential against cancer cells. Highly stable ionic magnetic fluid sample (maghemite, γ-Fe2O3) and Selol were incorporated into polymeric nanocapsules by nanoprecipitation method. The cytotoxic effect of Selol-loaded magnetic nanocapsules was assessed on murine melanoma (B16-F10) and oral squamous cell carcinoma (OSCC) cell lines following AC magnetic field application. The influence of different nanocapsules on cell viability was investigated by colorimetric MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. In the absence of AC magnetic field Selol-loaded magnetic nanocapsules, containing 100 µg/mL Selol plus 5 × 1012 particle/mL, showed antitumoral activity of about 50% on B16-F10 melanoma cells while OSCC carcinoma cells demonstrated drug resistance at all concentrations of Selol and magnetic fluid (range of 100-500 µg/mL Selol and 5 × 1012-2.5 × 1013 particle/mL). On the other hand, under AC applied fields (1 MHz and 40 Oe amplitude) B16-F10 cell viability was reduced down to 40.5% (±3.33) at the highest concentration of nanoencapsulated Selol. The major effect, however, was observed on OSCC cells since the cell viability drops down to about 33.3% (±0.38) under application of AC magnetic field. These findings clearly indicate that the Selol-loaded magnetic nanocapsules present different toxic effects on neoplastic cell lines. Further, the cytotoxic effect was maximized under AC magnetic field application on OSCC, which emphasizes the effectiveness of the magnetohyperthermia approach.

  13. High-speed ultrashort pulse fiber ring laser using charcoal nanoparticles.

    PubMed

    Li, Wenbo; Hu, Hongyu; Zhang, Xiang; Zhao, Shuai; Fu, Kan; Dutta, Niloy K

    2016-03-20

    A mode-locked erbium-doped fiber ring laser that is easy to set up is proposed and experimentally demonstrated to generate a high-repetition-rate optical pulse train with an ultrashort pulse width. The laser combines a rational harmonic mode-locking technique and charcoal nanoparticles as saturable absorbers. Compared to a solely active mode-locking scheme, the scheme with charcoal nanoparticles can remove the supermodes and narrow the pulse width by a factor of 0.57 at a repetition rate of 20 GHz. Numerical simulation of the laser performance is also provided, which shows good agreement with the experimental results.

  14. Steady-state response of a charcoal bed to radon in flowing air with water vapor

    SciTech Connect

    Blue, T.E.; Jarzemba, M.S.; Fentiman, A.W.

    1995-06-01

    Previously we have developed a mathematical model of radon adsorption in active air with water vapor on small U.S. Environmental Protection Agency charcoal canisters that are used for environmental measurements of radon. The purpose of this paper is to extend this mathematical model to describe the adsorption of radon by large charcoal beds with radon-laden air flowing through them. The resulting model equations are solved analytically to predict the steady-state adsorption of radon by such beds. 14 refs., 3 figs.

  15. Soil Charcoal to Assess the Impacts of Past Human Disturbances on Tropical Forests

    PubMed Central

    Vleminckx, Jason; Morin-Rivat, Julie; Biwolé, Achille B.; Daïnou, Kasso; Gillet, Jean-François; Doucet, Jean-Louis; Drouet, Thomas; Hardy, Olivier J.

    2014-01-01

    The canopy of many central African forests is dominated by light-demanding tree species that do not regenerate well under themselves. The prevalence of these species might result from ancient slash-and-burn agricultural activities that created large openings, while a decline of these activities since the colonial period could explain their deficit of regeneration. To verify this hypothesis, we compared soil charcoal abundance, used as a proxy for past slash-and-burn agriculture, and tree species composition assessed on 208 rainforest 0.2 ha plots located in three areas from Southern Cameroon. Species were classified in regeneration guilds (pioneer, non-pioneer light-demanding, shade-bearer) and characterized by their wood-specific gravity, assumed to reflect light requirement. We tested the correlation between soil charcoal abundance and: (i) the relative abundance of each guild, (ii) each species and family abundance and (iii) mean wood-specific gravity. Charcoal was found in 83% of the plots, indicating frequent past forest fires. Radiocarbon dating revealed two periods of fires: “recent” charcoal were on average 300 years old (up to 860 BP, n = 16) and occurred in the uppermost 20 cm soil layer, while “ancient” charcoal were on average 1900 years old (range: 1500 to 2800 BP, n = 43, excluding one sample dated 9400 BP), and found in all soil layers. While we expected a positive correlation between the relative abundance of light-demanding species and charcoal abundance in the upper soil layer, overall there was no evidence that the current heterogeneity in tree species composition can be explained by charcoal abundance in any soil layer. The absence of signal supporting our hypothesis might result from (i) a relatively uniform impact of past slash-and-burn activities, (ii) pedoturbation processes bringing ancient charcoal to the upper soil layer, blurring the signal of centuries-old Human disturbances, or (iii) the prevalence of other

  16. Charcoal anatomy of Brazilian species. I. Anacardiaceae.

    PubMed

    Gonçalves, Thaís A P; Scheel-Ybert, Rita

    2016-01-01

    Anthracological studies are firmly advancing in the tropics during the last decades. The theoretical and methodological bases of the discipline are well established. Yet, there is a strong demand for comparative reference material, seeking for an improvement in the precision of taxonomic determination, both in palaeoecological and palaeoethnobotanical studies and to help preventing illegal charcoal production. This work presents descriptions of charcoal anatomy of eleven Anacardiaceae species from six genera native to Brazil (Anacardium occidentale, Anacardium parvifolium, Astronium graveolens, Astronium lecointei, Lithrea molleoides, Schinus terebenthifolius, Spondias mombin, Spondias purpurea, Spondias tuberosa, Tapirira guianensis, and Tapirira obtusa). They are characterized by diffuse-porous wood, vessels solitary and in multiples, tyloses and spiral thickenings sometimes present; simple perforation plates, alternate intervessel pits, rounded vessel-ray pits with much reduced borders to apparently simple; parenchyma paratracheal scanty to vasicentric; heterocellular rays, some with radial canals and crystals; septate fibres with simple pits. These results are quite similar to previous wood anatomical descriptions of the same species or genera. Yet, charcoal identification is more effective when unknown samples are compared to charred extant equivalents, instead of to wood slides.

  17. Charcoal as an airway isoflurane reflection filter.

    PubMed

    Dahm, S L; Steptoe, P; Luttropp, H H; Reinstrup, P

    1998-03-01

    The isoflurane-saving and CO2-retaining effects of a charcoal filter were compared with a Siemens standard heat and moisture (HME) exchanger and an emptied specimen (dummy). Isoflurane was delivered during the inspiratory phase and consumption investigated at 10, 15 and 25 cycles min-1. The investigation was performed by ventilation with humidified air with a constant end-tidal CO2 and temperature. For a comparison, isoflurane was delivered in a conventional manner via the ventilator. The arrangement with a charcoal filter reduced the isoflurane consumption by a factor of 2.0-2.6, depending on ventilatory rate. Most of the saving was a result of the method of isoflurane delivery (factor 1.4-2.0), while adding the reflector gave a further reduction (factor 1.3-1.5). One circumstance that reduced the net efficiency of the charcoal filter was that it also reflected CO2; consequently, total minute ventilation had to be increased to maintain constant end-tidal CO2.

  18. The addition of charcoals to broiler diets did not alter the recovery of Salmonella Typhimurium during grow-out.

    PubMed

    Wilson, K M; Bourassa, D V; Davis, A J; Freeman, M E; Buhr, R J

    2016-03-01

    Two experiments evaluated prebiotics added to feed on the recovery of Salmonella in broilers during grow-out and processing. In Experiment 1, "seeder" chicks were inoculated with Salmonella Typhimurium and placed with penmates. Treatments were: basal control diet, added 0.3% bamboo charcoal, 0.6% bamboo charcoal, or 0.12% Aromabiotic (medium chain fatty acids). The ceca from seeders and penmates were sampled to confirm Salmonella colonization at 3, 4, and 6 wk, and pen litter was sampled weekly. At 3 wk, charcoal fed chicks had significantly lower cecal recovery (37% lower) of Salmonella via direct plating but no differences at wk 4 or 6. At 6 wk, broilers fed Aromabiotic had no recovery of Salmonella from ceca with direct plating and significantly, 18%, lower recovery with enrichment. In Experiment 2, the treatments were: basal control diet, added 0.3% bamboo charcoal, 0.3% activated bamboo charcoal, or 0.3% pine charcoal. At placement, 2 seeders were challenged with Salmonella and commingled with penmates and ceca sampled at 1 and 2 wk, and ceca from 5 penmates/pen at 3 to 6 wk. Weekly, the pH of the crop and duodenum was measured from 1 penmate/pen and the litter surface sampled. At the end of grow-out broilers were processed. Results showed that penmates had colonized at 1 and 2 wk. Cecal Salmonella showed no differences except at 4 wk, when activated bamboo charcoal had a 18% lower recovery of Salmonella (enrichment) compared to the control (88%). Similar to Experiment 1, the recovery of Salmonella from the litter was not significantly different among treatments, however an overall decrease in recovery by 4 wk with direct plating reoccurred. The pH of the duodenum and the crop were not different among treatments. Crop pH (6.0) for all treatments were significantly higher at wk 1 compared to wk 2 to 6. Charcoals had minimal effect on Salmonella recovery in the ceca, but following defeathering, broilers fed charcoals had significantly lower Salmonella

  19. Cry1Ac Transgenic Sugarcane Does Not Affect the Diversity of Microbial Communities and Has No Significant Effect on Enzyme Activities in Rhizosphere Soil within One Crop Season.

    PubMed

    Zhou, Dinggang; Xu, Liping; Gao, Shiwu; Guo, Jinlong; Luo, Jun; You, Qian; Que, Youxiong

    2016-01-01

    Cry1Ac transgenic sugarcane provides a promising way to control stem-borer pests. Biosafety assessment of soil ecosystem for cry1Ac transgenic sugarcane is urgently needed because of the important role of soil microorganisms in nutrient transformations and element cycling, however little is known. This study aimed to explore the potential impact of cry1Ac transgenic sugarcane on rhizosphere soil enzyme activities and microbial community diversity, and also to investigate whether the gene flow occurs through horizontal gene transfer. We found no horizontal gene flow from cry1Ac sugarcane to soil. No significant difference in the population of culturable microorganisms between the non-GM and cry1Ac transgenic sugarcane was observed, and there were no significant interactions between the sugarcane lines and the growth stages. A relatively consistent trend at community-level, represented by the functional diversity index, was found between the cry1Ac sugarcane and the non-transgenic lines. Most soil samples showed no significant difference in the activities of four soil enzymes: urease, protease, sucrose, and acid phosphate monoester between the non-transgenic and cry1Ac sugarcane lines. We conclude, based on one crop season, that the cry1Ac sugarcane lines may not affect the microbial community structure and functional diversity of the rhizosphere soil and have few negative effects on soil enzymes.

  20. Cry1Ac Transgenic Sugarcane Does Not Affect the Diversity of Microbial Communities and Has No Significant Effect on Enzyme Activities in Rhizosphere Soil within One Crop Season

    PubMed Central

    Zhou, Dinggang; Xu, Liping; Gao, Shiwu; Guo, Jinlong; Luo, Jun; You, Qian; Que, Youxiong

    2016-01-01

    Cry1Ac transgenic sugarcane provides a promising way to control stem-borer pests. Biosafety assessment of soil ecosystem for cry1Ac transgenic sugarcane is urgently needed because of the important role of soil microorganisms in nutrient transformations and element cycling, however little is known. This study aimed to explore the potential impact of cry1Ac transgenic sugarcane on rhizosphere soil enzyme activities and microbial community diversity, and also to investigate whether the gene flow occurs through horizontal gene transfer. We found no horizontal gene flow from cry1Ac sugarcane to soil. No significant difference in the population of culturable microorganisms between the non-GM and cry1Ac transgenic sugarcane was observed, and there were no significant interactions between the sugarcane lines and the growth stages. A relatively consistent trend at community-level, represented by the functional diversity index, was found between the cry1Ac sugarcane and the non-transgenic lines. Most soil samples showed no significant difference in the activities of four soil enzymes: urease, protease, sucrose, and acid phosphate monoester between the non-transgenic and cry1Ac sugarcane lines. We conclude, based on one crop season, that the cry1Ac sugarcane lines may not affect the microbial community structure and functional diversity of the rhizosphere soil and have few negative effects on soil enzymes. PMID:27014291

  1. Studies on the activation energy from the ac conductivity measurements of rubber ferrite composites containing manganese zinc ferrite

    NASA Astrophysics Data System (ADS)

    Hashim, Mohd.; Alimuddin; Kumar, Shalendra; Shirsath, Sagar E.; Mohammed, E. M.; Chung, Hanshik; Kumar, Ravi

    2012-11-01

    Manganese zinc ferrites (MZF) have resistivities between 0.01 and 10 Ω m. Making composite materials of ferrites with either natural rubber or plastics will modify the electrical properties of ferrites. The moldability and flexibility of these composites find wide use in industrial and other scientific applications. Mixed ferrites belonging to the series Mn(1-x)ZnxFe2O4 were synthesized for different ‘x’ values in steps of 0.2, and incorporated in natural rubber matrix (RFC). From the dielectric measurements of the ceramic manganese zinc ferrite and rubber ferrite composites, ac conductivity and activation energy were evaluated. A program was developed with the aid of the LabVIEW package to automate the measurements. The ac conductivity of RFC was then correlated with that of the magnetic filler and matrix by a mixture equation which helps to tailor properties of these composites.

  2. Emissions of air toxics from the production of charcoal in a simulated Missouri charcoal kiln

    SciTech Connect

    Lemieux, P.M.; Kariher, P.H.; Fairless, B.J.; Tapp, J.A.

    1998-11-01

    The paper gives results of experiments in a laboratory-scale charcoal kiln simulator to evaluate emissions of hazardous air pollutant from the production of charcoal in Missouri-type kilns. Fixed combustion gases were measured using continuous monitors. In addition, other pollutants, including methanol, volatile organic compounds, semivolatile organic compounds, and particle emission rates and size distributions were measured using various techniques. Emissions of all pollutants are reported in grams emitted per unit mass of initial wood converted to charcoal. Two burn conditions--slow and fast burn--were examined. High levels of methanol, benzene, and fine particulate were emitted from all tests. The estimated emissions from the fast burn conditions were significantly higher than those from the slow burn conditions.

  3. Impact of ancient charcoal kilns on chemical properties of several forest soils after 2 centuries

    NASA Astrophysics Data System (ADS)

    Dufey, Joseph; Hardy, Brieuc; Cornelis, Jean-Thomas

    2014-05-01

    Pyrogenic carbon plays a major role in soil biogeochemical processes and carbon budgets. Until the early 19th century, charcoal was the unique combustible used for iron metallurgy in Wallonia (Belgium). Traditional charcoal kilns were built directly in the forest: wood logs were piled into a mound and isolated from air oxygen with a covering of vegetation residues and soil before setting fire, inducing wood pyrolysis. Nowadays, ancient wood-charring platforms are still easy to identify on the forest floor as heightened domes of 10 meters in diameter characterized by a very dark topsoil horizon containing charcoal dust and fragments. Our goal is to assess the effects of wood charring at mound kiln sites on the properties of various forest soil types in Wallonia (Belgium), after two centuries. We sampled soil by horizon in 18 ancient kiln sites to 1.20 meter depth. The adjacent charcoal-unaffected soils were sampled the same way. We also collected recent charcoal fragments and topsoil samples from a still active charcoal kiln located close to Dole (France) to apprehend the evolution of soil properties over time. The pH, total carbon (C) and nitrogen (N) content, available phosphorus (Pav), cation exchange capacity at pH 7 (CEC), exchangeable cations (Ca++, Mg++, K+, Na+) and loss on ignition at 550°C (LI550) were measured on each soil sample. We separated the soil profiles in 5 groups based on the nature of soil substrate and pedogenesis for interpretation of the results. We show that the total carbon stock is significantly increased at kiln sites due to higher C concentrations and greater depth of the organo-mineral horizon. The C/N ratio in charcoal-enriched soil horizons is significantly higher than in the neighboring reference soils but clearly attenuated compared to pure wood-charcoal fragments. The CEC is higher in the charcoal-enriched soil horizons, not only due to higher C concentrations but also to increased CEC by carbon unit at kiln sites. The high

  4. Charcoal deposition and redeposition in Elk Lake, Minnesota, USA

    USGS Publications Warehouse

    Platt, Bradbury J.

    1996-01-01

    Sedimentary charcoal, diatom and phytolith records of the past 1500 years at Elk Lake, Minnesota, in combination with sediment trap studies and a transect of surface sediment samples, document the mechanisms by which previously deposited charcoal is redeposited and finally buried in this lake. The frequent correspondence of high diatom concentrations and peaks of phytolith and charcoal fragments suggest that currents and turbulence related to lake circulation are responsible for winnowing charcoal and phytoliths from shallow water depositional sites to deeper areas of the lake. High diatom concentrations in the record relate to increased nutrient fluxes also supplied by circulation. Despite the fact that the watershed and area around Elk Lake has not been burned since AD 1922, charcoal continues to reach the profundal zone from littoral source areas in Elk Lake. The variable redeposition of within-lake charcoal requires evaluation before fire-history records can be related to global, regional or even local fire events.

  5. Charcoal in the soil and the Earth System

    NASA Astrophysics Data System (ADS)

    Scott, A. C.

    2012-04-01

    Charcoal occurs in the natural environment as either a result of wildfire or volcanic processes. Charcoal is one of a range of pyrolysis products that may be included in the term black carbon. This paper outlines aspects of charcoal formation (both natural and experimental) and briefly considers the taphonomic processes leading to a final assemblage. This is done using examples from recent fires and through experimentation. In particular, it is shown that the temperature of charcoal formation may influence the rate of subsequent decay. This has significance for biochar studies. While charcoal may remain near the place of it's formation and be buried in soils it still may be affected by physical and chemical changes that result in fragmentation and subsequent loss to the soil. Charcoal may also be washed out of the fire site by overland flow particularly if the rain occurs soon after the fire. Charcoal is abundant in many sedimentary rocks deposited in a wide range of environments, from terrestrial to marine. Charcoal has a long fossil record and is found in rock sequences from the late Silurian onwards. Charcoal provides evidence of the deep time history of wildfire. There is an intimate relationship between the history of oxygen in the atmosphere and periods of extensive wildfires. High atmospheric oxygen levels (around 30%) in the late Palaeozoic and Cretaceous had a profound effect on the Earth System. The use of charcoal for plant evolution studies, fire history studies, vegetation studies, anatomical studies, climate and atmospheric studies and the wider importance of charcoal for the Earth and Biological Sciences will be considered (Scott 2010, Glasspool and Scott in press). Charcoal is information-rich but yet is an under-utilized resource.

  6. Influences of charcoal and bamboo charcoal amendment on soil-fluoride fractions and bioaccumulation of fluoride in tea plants.

    PubMed

    Gao, Hongjian; Zhang, Zhengzhu; Wan, Xiaochun

    2012-10-01

    High levels of fluoride in tea plants pose a potential health risk to humans who drink tea. It has been demonstrated that tea plant fluoride is closely related to the available fluoride in soil. But approaches that could be used to regulate the availability of fluoride in soil have been rarely seen. This study aims to investigate how the addition of charcoal and bamboo charcoal affected soil fluoride availability and bioaccumulation of fluoride in tea plants. In a microcosm experiment, tea plants were grown in the tea garden soil mixed with different amounts of charcoal and bamboo charcoal [that is, 0.5, 1.0, 2.5, and 5.0 % (w/w)]. Soil-fluoride fractions and fluoride accumulated in tea plants were determined using the sequential extraction and ion selective electrode method. Obtained results showed that both charcoal and bamboo charcoal additions significantly enhanced the concentrations of Fe/Mn oxide-bound fluoride, but significantly reduced the concentrations of water-soluble and exchangeable fluoride (p < 0.05) in soil. Charcoal and bamboo charcoal additions also significantly decreased the amounts of fluoride in tea roots and tea leaves (p < 0.05). However, the additions of charcoal and bamboo charcoal had no impacts on the tea quality, as indexed by the concentrations of polysaccharides, polyphenols, amino acids, and caffeine in tea leaves. These results suggested that application of charcoal and bamboo charcoal may provide a useful method to reduce the availability of fluoride in soil and the subsequent fluoride uptake by tea plants.

  7. Charcoal as an alternative energy source. sub-project: briquetting of charcoal

    SciTech Connect

    Enstad, G.G.

    1982-02-02

    Charcoal briquettes have been studied both theoretically and experimentally. It appears most realistic to use binders in solution. Binders of this kind have been examined and the briquettes' mechanical properties measured. Most promising are borresperse, gum arabic, dynolex, and wood tar.

  8. Ostalactones A-C, β- and ε-Lactones with Lipase Inhibitory Activity from the Cultured Basidiomycete Stereum ostrea.

    PubMed

    Kang, Hahk-Soo; Kim, Jong-Pyung

    2016-12-23

    Ostalactones A-C (1-3), three new β- and ε-lactone natural products, were isolated from the culture broth of the basidiomycete Stereum ostrea. The structures were elucidated by interpretation of HRFABMS and 1D and 2D NMR data. The structures of 1 and 2 are characterized by the presence of a β-lactone containing a fused 4/5 bicyclic core structure. Compound 3 possesses a 2-oxepinone ring system, which is likely to be a biosynthetic precursor of compounds 1 and 2. Ostalactones A (1) and B (2) displayed potent inhibitory activity against human pancreatic lipase.

  9. Superfund record of decision amendment (EPA Region 4): Wrigley Charcoal Superfund Site, Hickman County, Wrigley, TN, February 2, 1995

    SciTech Connect

    1995-03-01

    This decision document presents the selected Interim Remedial Action (IRA) for the Wrigley Charcoal Site, in Wrigley, Hickman County, Tennessee. The U.S. EPA has modified a wide variety of items that require immediate response action for the first step of cleanup activities to be taken at the Wrigley Charcoal Site. The major goal of these cleanup activities is to address the most serious threats at the Wrigley Charcoal Site by removing contaminated media from the Primary Site flood plain, remediating wastes at the Storage Basin, and through limited access restrictions at the Primary Site and the Storage Basin. The cleanup activities as presented in this IRA Record of Decision (ROD) Amendment will achieve significant risk reduction and will prepare the Site for future remedial activities.

  10. Charcoal tattoo localization for differentiated thyroid cancer recurrence in the central compartment of the neck.

    PubMed

    Soprani, F; Bondi, F; Puccetti, M; Armaroli, V

    2012-04-01

    Recurrence of differentiated thyroid cancer can often require further surgical options. Reoperations may carry significant risk of surgical complications; additionally, as the anatomy is subverted, there is the possibility of leaving residual neoplasm. In order to avoid such problems during reoperation for differentiated thyroid cancer recurrence, we have introduced the technique of preoperative ultrasound-guided tattooing localization of the lymphatic structure to be removed with a 4% solution of active charcoal. Using ultrasound guidance, the lesion is identified and 0.5-2 ml of colloidal charcoal is injected near the lesion. The extraction of the needle is accompanied by injection at constant pressure of other charcoal as to leave a trace of colouring along the path of the needle up to the skin. The preoperative injection was well tolerated in all cases. In the last 5 years, we have used this technique in 13 patients with suspected recurrence in the central compartment (all from papillary carcinomas). Postoperative ultrasound and histological examination confirmed the removal of the lesion in all patients; in one case, the lesion was a parathyroid cyst. Complications were observed in two of 13 (15.4%) cases (one transitory hypoparathyroidism, and one transitory vocal cord paresis). Considering our experience, charcoal tattoo localization can be considered a safe, low-cost technique that is extremely useful for facilitating surgical procedures, and reduces the risk of iatrogenic damage.

  11. [Adsorption mechanism of furfural onto modified rice husk charcoals].

    PubMed

    Deng, Yong; Wang, Xianhua; Li, Yunchao; Shao, Jing'ai; Yang, Haiping; Chen, Hanping

    2015-10-01

    To evaluate the absorptive characteristics of furfural onto biomass charcoals derived from rice husk pyrolysis, we studied the information of the structure and surface chemistry properties of the rice husk charcoals modified by thermal treatment under nitrogen and carbon dioxide flow and adsorption mechanism of furfural. The modified samples are labeled as RH-N2 and RH-CO2. Fresh rice husk charcoal sample (RH-450) and modified samples were characterized by elemental analysis, nitrogen adsorption-desorption isotherms, Fourier-transform infrared spectroscopy and Boehm titration. The results show that fresh rice husk charcoal obtained at 450 degrees C had a large number of organic groups on its surface and poor pore structure. After the modification under nitrogen and carbon dioxide flow, oxygenic organics in rice husk charcoals decompose further, leading to the reduction of acidic functional groups on charcoals surface, and the increase of the pyrone structures of the basic groups. Meanwhile, pore structure was improved significantly and the surface area was increased, especially for the micropores. This resulted in the increase of π-π dispersion between the surfaces of rice husk charcoals and furfural molecular. With making comprehensive consideration of π-π dispersion and pore structure, the best removal efficiency of furfural was obtained by rice husk charcoal modified under carbon dioxide flow.

  12. Evaluation of soybean genotypes for resistance to charcoal rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot caused by Macrophomina phaseolina causes more yield loss in soybean than most other diseases in the southern U.S.A. There are no commercial genotypes marketed as resistant to charcoal rot of soybean. Reactions of 27 maturity group (MG) III, 29 Early MG IV, 34 Late MG IV, and 59 MG V gen...

  13. Characterization of charcoals for helium cryopumping in fusion devices

    SciTech Connect

    Sedgley, D.W.; Tobin, A.G.; Batzer, T.H.; Call, W.R.

    1987-07-01

    The capability of charcoal as a sorbent for helium at cryogenic temperatures depends upon charcoal characteristics that are not well understood. Previous work by the authors has indicated that the charcoals' pumping capability for helium depends as much on their source as on their particle size distributions. To develop a correlation between the physical characteristics of charcoal and helium pumping performance, different charcoals based on wood, coal, coconut, and a petroleum by-product were obtained from commercial sources. They were bonded to an aluminum substrate, and cooled to liquid-helium temperatures in a vacuum chamber. The helium pumping speed at constant throughput versus quantity of helium absorbed was measured for each charcoal grade. Porosimetry measurements on each charcoal grade using nitrogen as the sorbent gas were made that included total surface area, adsorption and desorption isotherms, and pore area and pore volume distributions. Significant differences in helium pumping performance and in pore size distribution were observed. Comparisons are made between helium pumping performance and charcoal characteristics and a possible correlation is identified.

  14. Resistance to charcoal rot identified in ancestral soybean germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot, caused by the fungal pathogen Macrophomina phaseolina, is an economically important disease on soybean and other crops including maize, sorghum, and sunflowers. Without effective cultural or chemical options to control charcoal rot in soybean, finding sources of genetic resistance is o...

  15. Effects of historic charcoal burning on soil properties

    NASA Astrophysics Data System (ADS)

    Hirsch, Florian; Schneider, Anna; Raab, Alexandra; Raab, Thomas; Buras, Allan; van der Maaten, Ernst; Takla, Melanie; Räbiger, Christin; Cruz Garcia, Roberto; Wilmking, Martin

    2015-04-01

    In Northeastern Germany the production of ironware between the 16th and 19th century left behind a remarkable amount of charcoal kiln remains. At the study site in the forests north of Cottbus, Rubic Brunic Arenosols are developed on Weichselian glaciofluvial deposits. Remote sensing surveys, underpinned by archaeological studies, show that charcoal was gained from several thousand kilns. The round charcoal kiln remains with inner diameters up to 20 m are smooth platforms elevated a few decimeters higher than the surrounding area. The remaining mounds consist of an about 40 cm thick sheet containing residuals of the charcoal production process such as charcoal fragments, ash but also organic material covering the Rubic Brunic Arenosols. The charcoal kiln remains are distanced only up to 100 m from each other. For the 32 square kilometers large study site, the ground area covered by such charcoal production residuals is about 0.5 square kilometer, i.e. 1.5% of the study area. The charcoal kiln sites are a remarkable carbon accumulator on the sandy parent material. Against this background, we aim to characterize the effects of pyrolysis and the enrichment of carbon, induced by the charcoal production, on soil properties. Field work was done during archaeological rescue excavations on three charcoal kiln relicts having diameters of about 15 m. We applied 150 l of Brilliant Blue solution on six 1 square meter plots (three inside, three outside of the charcoal kiln mound) and afterwards trenched horizontal and vertical profiles for recording the staining patterns. Undisturbed soil samples to study soil micromorphology and further undisturbed samples for characterizing soil physical and hydraulic properties were taken. Outside of the charcoal kiln remain the Brilliant Blue solution drained within less than 10 minutes, whereas on the charcoal kiln remains the draining took between 20 and 40 minutes. Preliminary laboratory analyses underline the findings from the field and

  16. Density and porosity as controls on charcoal storage in soils

    NASA Astrophysics Data System (ADS)

    Masiello, C. A.; Liu, Z.; Ziegelgruber, K. L.; Dugan, B.; Gonnermann, H.; Chuang, V. J.; Zygourakis, K.

    2012-04-01

    A number of studies have documented very low biotic and abiotic decomposition rates of charcoal in the environment, leading to the assumption that it stays within soils after deposition. This assumption forms one tenet of a promising carbon sequestration technique, soil biochar amendment. Laboratory and greenhouse trials with biochar (charcoal produced for addition to soil) do show that charcoal remains in soils after amendment. However, when charcoal has been added to soils in field trials, its retention rate in soils is highly variable. Low retention rates have been reported in some environments, leading to questions about its physical movement across landscapes. Density and porosity are fundamental physical characteristics that play a key role in determining charcoal soil residence time. Measuring the density of charcoal has been challenging historically because of its very high porosity (approaching 80%), making standard fluid displacement methods of density measurement error-prone. Here we review techniques available to measure the density and porosity of BC, focusing on two measurements: skeletal density (the density of the solid component of BC), and envelope density (the mass of a BC sample divided by the volume of its exterior envelope). We present skeletal and envelope density data for environmental charcoal samples and for a series of laboratory-produced charcoals, showing that the skeletal density of charcoal is significantly greater than 1.0 g/cc, while the envelope density is significantly less than 1.0 g/cc. This difference means that pore connectivity and pore structure will be important to quantify to understand landscape movement of charcoal.

  17. Influence of charcoal burning induced pyrolysis on soils

    NASA Astrophysics Data System (ADS)

    Hirsch, Florian; Nicolay, Alexander; Pötzsch, Bastian; Fritzsche, Marie; Raab, Alexandra; Raab, Thomas

    2014-05-01

    In Lusatia, Northeastern Germany, the production of ironware between the 16th and 19th century left behind a remarkable amount of charcoal kilns in the forests north of Cottbus. Remote sensing surveys, underpinned by archaeological studies, show that charcoal was gained around Cottbus from several thousand charcoal kilns which had internal diameters up to 20 m. For the study site with 35 km2 area, the until now prospected total ground area below the charcoal kilns which was potentially affected by the pyrolysis is about 0,5 km2. Historic data indicates that the pyrolysis in the charcoal kiln took up to several weeks, for the kilns with a diameter of 20 m about 20 days. To characterize the depth of thermal alteration of soils below the kiln our current focus is on the differentiation of the iron hydroxides by small-scale vertical analysis of soil profiles. The study site is situated 16 km northeast of Cottbus at the opencast mine Jänschwalde. Field work was done during the archaeological rescue excavation of a charcoal kiln in a 50 m long trench crossing an about 15 m wide charcoal kiln. One vertical profile outside the charcoal kiln and two vertical profiles below the charcoal kiln were chosen for analysis. The magnetic susceptibility was measured in situ on the undisturbed profile and ex situ on stepwise heated samples (105, 350, 550, 750 and 950°C). The total iron content was quantified ex situ by x-ray fluorescence. Our first results indicate a change in the magnetic susceptibility in the contact area of the mineral soil and the charcoal kiln. The influence of the pyrolysis on the soil is restricted to areas where the soil was not shielded against the heat by ash or organic material.

  18. Enhancement of Bacillus thuringiensis insecticidal activity by combining Cry1Ac and bi-functional toxin HWTX-XI from spider.

    PubMed

    Sun, Yunjun; Fu, Zujiao; He, Xiaohong; Yuan, Chunhua; Ding, Xuezhi; Xia, Liqiu

    2016-03-01

    In order to assess the potency of bi-functional HWTX-XI toxin from spider Ornithoctonus huwena in improving the insecticidal activity of Bacillus thuringiensis, a fusion gene of cry1Ac and hwtx-XI was constructed and expressed in an acrystalliferous B. thuringiensis strain Cry(-)B. Western blot analysis and microscopic observation revealed that the recombinant strain could express 140-kDa Cry1Ac-HWTX-XI fusion protein and produce parasporal inclusions during sporulation. Bioassay using the larvae of Helicoverpa armigera and Spodoptera exigua showed that the Cry1Ac-HWTX-XI fusion was more toxic than the control Cry1Ac protoxin, as revealed by 95% lethal concentration. Our study indicated that the HWTX-XI from spider might be a candidate for enhancing the toxicity of B. thuringiensis products.

  19. Protein kinase C activity is altered in HL60 cells exposed to 60 Hz AC electric fields

    SciTech Connect

    Holian, O.; Reyes, H.M.; Attar, B.M.; Walter, R.J.; Astumian, R.D.; Lee, R.C.

    1996-12-31

    The authors examined the effects of electric fields (EFs) on the activity and subcellular distribution of protein kinase C (PKC) of living HL60 cells. Sixty Hertz AC sinusoidal EFs (1.5--1,000 mV/cm p-p) were applied for 1 h to cells (10{sup 7}/ml) in Teflon chambers at 37 C in the presence or absence of 2 {micro}M phorbol 12-myristate 13-acetate (PMA). PMA stimulation alone evoked intracellular translocation of PKC from the cytosolic to particulate fractions. In cells that were exposed to EFs (100--1,000 mV/cm) without PMA, a loss of PKC activity from the cytosol, but no concomitant rise in particulate PKC activity, was observed. In the presence of PMA, EFs (33--330 mV/cm) also accentuated the expected loss of PKC activity from the cytosol and augmented the rise in PKC activity in the particulate fraction. These data show that EFs alone or combined with PMA promote down-regulation of cytosolic PKC activity similar to that evoked by mitogens and tumor promoters but that it does not elicit the concomitant rise in particulate activity seen with those agents.

  20. Tubular bamboo charcoal for anode in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Li, Jun; Ye, Dingding; Zhu, Xun; Liao, Qiang; Zhang, Biao

    2014-12-01

    The anode material plays a significant role in determining the performance of microbial fuel cells (MFCs). In this study, the bamboo charcoal tube is proposed as a novel anode substrate by carbonizing the natural bamboo. Its surface functional groups, biocompatibility and internal resistance are thoroughly investigated. Performance of the MFCs with a conventional graphite tube anode and a bamboo charcoal tube anode is also compared. The results indicate that the tubular bamboo charcoal anode exhibits advantages over the graphite tube anode in terms of rougher surface, superior biocompatibility and smaller total internal resistance. Moreover, the X-ray photoelectron spectroscopy (XPS) analysis for the bamboo charcoal reveals that the introduced C-N bonds facilitate the electron transfer between the biofilm and electrodes. As a result, the MFC with a bamboo charcoal tube anode achieves a 50% improvement in the maximum power density over the graphite tube case. Furthermore, scale-up of the bamboo charcoal tube anode is demonstrated by employing a bundle of tubular bamboo charcoal to reach higher power output.

  1. The antidepressant-like activity of AC-5216, a ligand for 18KDa translocator protein (TSPO), in an animal model of diabetes mellitus

    PubMed Central

    Qiu, Zhi-Kun; He, Jia-Li; Liu, Xu; Zhang, Guan-Hua; Zeng, Jia; Nie, Hong; Shen, Yong-Gang; Chen, Ji-Sheng

    2016-01-01

    Diabetes mellitus is a chronic disease that is associated with depression. Also, depression is common in adults with type 2 diabetes mellitus (T2DM). Translocator protein (18kDa) (TSPO) and allopregnanolone play an important role in the depression treatment. However, few studies have evaluated TSPO and allopregnanolone in the treatment of depression in T2DM. AC-5216, a ligand for TSPO, produces anxiolytic- and antidepressant-like effects in animal models. The present study aimed to explore antidepressant-like effects of AC-5216 on diabetic rats. Following the development of diabetic model induced by high fat diet (HFD) feeding and streptozotocin (STZ), AC-5216 (0.3 and 1 mg/kg, i.g.) elicited the antidepressant-like effects in behavioral tests while these activities were blocked by TSPO antagonist PK11195 (3 mg/kg, i.p.). The levels of allopregnanolone in the prefrontal cortex and hippocampus were increased by AC-5216 (0.3 and 1 mg/kg, i.g.), which was antagonized by PK11195 (3 mg/kg, i.p.). The increased plasma glucose (PG) and decreased insulin (INS) in HFD-STZ rats were reversed by AC-5216 (0.3 and 1 mg/kg, i.g.). This study indicates that the antidepressant-like effects of AC-5216 on HFD-STZ rats, suggesting that TSPO may represent a novel therapeutic target for depression in T2DM. PMID:27886206

  2. Ancient charcoal as a natural archive for paleofire regime and vegetation change in the Mayumbe, Democratic Republic of the Congo

    NASA Astrophysics Data System (ADS)

    Hubau, Wannes; Van den Bulcke, Jan; Kitin, Peter; Mees, Florias; Baert, Geert; Verschuren, Dirk; Nsenga, Laurent; Van Acker, Joris; Beeckman, Hans

    2013-09-01

    Charcoal was sampled in four soil profiles at the Mayumbe forest boundary (DRC). Five fire events were recorded and 44 charcoal types were identified. One stratified profile yielded charcoal assemblages around 530 cal yr BP and > 43.5 cal ka BP in age. The oldest assemblage precedes the period of recorded anthropogenic burning, illustrating occasional long-term absence of fire but also natural wildfire occurrences within tropical rainforest. No other charcoal assemblages older than 2500 cal yr BP were recorded, perhaps due to bioturbation and colluvial reworking. The recorded paleofires were possibly associated with short-lived climate anomalies. Progressively dry climatic conditions since ca. 4000 cal yr BP onward did not promote paleofire occurrence until increasing seasonality affected vegetation at the end of the third millennium BP, as illustrated by a fire occurring in mature rainforest that persisted until around 2050 cal yr BP. During a drought episode coinciding with the 'Medieval Climate Anomaly', mature rainforest was locally replaced by woodland savanna. Charcoal remains from pioneer forest indicate that fire hampered forest regeneration after climatic drought episodes. The presence of pottery shards and oil-palm endocarps associated with two relatively recent paleofires suggests that the effects of climate variability were amplified by human activities.

  3. Overview of NATO/AC 243/Panel 3 activities concerning radiowave propagation in coastal environments

    NASA Astrophysics Data System (ADS)

    Christophe, F.; Douchin, N.; Hurtaud, Y.; Dion, D.; Makaruschka, R.; Heemskerk, H.; Anderson, K.

    1995-02-01

    The performances of most systems operating at RF and millimeter waves can be seriously affected by propagation effects. That is the reason why NATO established the Research Study group No. 8 (RSG8) within Panel 3 (physics and electronics) of Defense Research Group (AC 243), with its Propagation Subgroup (PSG) responsible for the propagation aspects. Comparison of mm and other wavelengths was to be considered. In maritime and coastal environments, the use of such wavelengths for various military applications like anti-ship seekers, fire control radars, ship to ship communications or Electronic Support Measurements (ESM) led to the setting up of specific measurement campaigns; the last three are reported hereafter. The first two experiments used facilities close to Lorient, on the Atlantic coast, and Toulon, on the Mediterranean coast of France, with the purpose of documenting the refractive effects for medium range over the horizon paths. These experiments where are referred to as Lorient 89 and Toulon 90 campaigns, are described in this paper, and some typical results are presented. The latest cooperative work of RSG8/PSG took place recently (fall 1993) near Lorient, on a line-of-sight 10 km path over seawater. This experiment, referred to as Lorient 93 campaign, was devoted to the analysis of phase-front distortions due to multipath along with refractive effects, and to the assessment of performances for naval systems like short range tracking radars. Analysis of the data, either on a statistical base or as specific case studies, is being performed presently, but some early typical results will be given in this paper after a detailed description of the experiment.

  4. Reduction of the polycyclic aromatic hydrocarbon (PAH) content of charcoal smoke during grilling by charcoal preparation using high carbonisation and a preheating step.

    PubMed

    Chaemsai, Suriyapong; Kunanopparat, Thiranan; Srichumpuang, Jidapa; Nopharatana, Montira; Tangduangdee, Chairath; Siriwattanayotin, Suwit

    2016-01-01

    Charcoal-grilling may lead to contamination of food with carcinogenic polycyclic aromatic hydrocarbons (PAHs) during the grilling process. The objective of this work was to determine the effect of charcoal preparation on 16 USEPA priority PAHs in the smoke produced during the grilling process. Firstly, mangrove charcoal was prepared at carbonisation temperatures of 500, 750 and 1000 °C. The charcoal were then preheated by burning at 650 °C. This preheating step is usually used to prepare hot charcoal for the grilling process in the food industry. In this study, charcoal was preheated at different burning times at 5, 20 min and 5 h, at which time partial and whole charcoal glowed, and charcoal was completely burnt, respectively. Finally, PAHs in the smoke were collected and determined by GC/MS. The result showed that charcoal prepared at a carbonisation temperature of 500 °C had higher levels of PAHs released into the smoke. In contrast, charcoal produced at 750 and 1000 °C had lower PAHs released for all burning times. In addition, PAHs released for 5, 20 min and 5 h of burning time were about 19.9, 1.2 and 0.7 µg g(-1) dry charcoal for charcoal produced at 500 °C, and about 0.9-1.4, 0.8-1.2 and 0.15-0.3 µg g(-1) dry charcoal for charcoal produced at 750 and 1000 °C, respectively. Therefore, this research suggests that food grilled using charcoal carbonised at a high temperature of about 750 °C presents a lower risk of PAH contamination. In addition, in the preheating step, whole charcoal should fully glow in order to reduce the PAH content in charcoal before grilling.

  5. Predicting distributions of charcoal in Amazonian soils: approaches from earth and space

    NASA Astrophysics Data System (ADS)

    McMichael, C.; Palace, M. W.; Bush, M. B.; Braswell, R.; Hagen, S. C.; Czarnecki, C.; Neves, E.; Raczka, M.

    2011-12-01

    The direct linkage between fire and human activity in Amazonian rainforests is evidenced in both remote sensing datasets and field-based research. Paleoecological and archaeological data suggest the synergy has persisted millennia, and that human populations may have equaled modern numbers before European contact. Pre-Columbian people used fire to clear forests, but also combined charcoal with other materials to form Amazonian Black Earths (ABE), a nutrient rich anthrosol believed to be capable of sustaining large-scale permanent societies in such nutrient-poor tropical settings. The majority of impacted sites are found on bluffs overlooking Amazonian rivers, which are considered 'preferred' settings. Here, we examine predictions about preferred settings and the distributions of charcoal resulting from pre-Columbian human activity in western and central Amazonia using proxies from both earth and space. Soil sampling, stratified based on distance from river and forest seasonality, was used to determine whether preferred locations had higher probabilities of impacts. We analyzed more than 351 soil cores for ABE and macroscopic charcoal (> 500 μm) in the upper 20 cm of soil (representing modern fires), and in soils > 20 cm depth (representing historic fires). ABE was absent from all sites, but logistic regressions indicated that probabilities of finding soil charcoal significantly decreased as distance from river increased in aseasonal forests. However, in more seasonal forests, the probability of finding charcoal was increased, although distance from river was not a significant factor. Alternately, the location of ABE and charcoal mainly along major rivers may be an artifact of sampling. To look at distributions of ABE across broad spatial scales that may not be accessible from the ground, we used Hyperion satellite images to detect canopy chemistry differences resulting from various soil nutrients (i.e. soil enrichment occurring at ABE sites). Our initial findings

  6. INTERIOR DETAIL, STOVE. SMALL CHARCOAL FIRES WERE LIT IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR DETAIL, STOVE. SMALL CHARCOAL FIRES WERE LIT IN THE DEPRESSIONS, WHICH WERE COVERED WITH IRON GRATES TO SUSPEND POTS OVER THE HEAT SOURCE - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  7. 24. Photocopy of photograph. VIEW OF CHARCOAL KILNS AND IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Photocopy of photograph. VIEW OF CHARCOAL KILNS AND IRON PLANT FROM SOUTH END OF BEACH, probably 1901. (From the Robert Teagle Private Collection, Port Townsend, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  8. Formation of charcoal from biomass in a sealed reactor

    SciTech Connect

    Mok, W.S.L.; Antal, M.J. Jr. ); Szabo, P.; Varhegyi, G.; Zelei, B. )

    1992-04-01

    In this paper, samples o cellulose, hemicellulose, lignin, and nine species of whole biomass are pyrolyzed in sealed reactors. Very high charcoal yields (e.g., 40% from cellulose, 48% from Eucalyptus gummifera) were obtained. Higher sample loading (sample mass per unit reactor volume) increased charcoal yield and the associated exothermic heat release and lowered the reaction onset temperature. These effects were induced by the vapor-phase concentrations of the volatile products, and not the system pressure. Addition of water catalyzed the reaction and increased the char yield. These observations suggest that charcoal formation is autocatalyzed by water, an initial pyrolysis product. When whole biomass was used as a feedstock, higher charcoal yields were obtained from species with high lignin and/or low hemicellulose content.

  9. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil.

    PubMed

    Marchal, Geoffrey; Smith, Kilian E C; Rein, Arno; Winding, Anne; Wollensen de Jonge, Lis; Trapp, Stefan; Karlson, Ulrich G

    2013-10-01

    Sorption of PAHs to carbonaceous soil amendments reduces their dissolved concentrations, limiting toxicity but also potentially biodegradation. Therefore, the maximum abiotic desorption of freshly sorbed phenanthrene (≤5 mg kg(-1)) was measured in three soils amended with activated carbon (AC), biochar or compost. Total amounts of phenanthrene desorbed were similar between the different soils, but the amendment type had a large influence. Complete desorption was observed in the unamended and compost amended soils, but this reduced for biochar (41% desorbed) and AC (8% desorbed). Cumulative amounts mineralized were 28% for the unamended control, 19% for compost, 13% for biochar and 4% for AC. Therefore, the effects of the amendments in soil in reducing desorption were also reflected in the extents of mineralization. Modeling was used to analyze key processes, indicating that for the AC and charcoal treatments bacterial activity did not limit mineralization, but rather desorption into the dissolved phase.

  10. Attenuation of polychlorinated biphenyl sorption to charcoal by humic acids.

    PubMed

    Koelmans, Albert A; Meulman, Brendo; Meijer, Thijs; Jonker, Michiel T O

    2009-02-01

    Strong sorption to black carbon may limit the environmental risks of organic pollutants, but interactions with cosorbing humic acid (HA) may interfere. We studied the attenuative effect of HA additions on the sorption of polychlorinated biphenyls (PCBs) to a charcoal. "Intrinsic" sorption to HA-amended charcoal was calculated by subtracting the sorption contribution of HA from the total sorption to charcoal and HA. Association of PCBs with HA was proportional to hydrophobicity. However, the planar PCBs 77 and 126 had an additional 2-4 times stronger association than expected from hydrophobicity alone. Sorption isotherms for the raw charcoal fitted slightly better to a three-parameter Polanyi-Dubinin-Manes model than to a two-parameter Langmuir model. Preloading the charcoal with 1-75 mg of HA/g of charcoal increasingly attenuated sorption to charcoal with up to a factor of 10. The resultant isotherms could be described adequately with the Freundlich model. Isotherm nonlinearity increased with HA loading, suggesting increased sorption competition between HA and PCBs. Attenuation was negligible in the PCB picogram per liter to nanogram per liter range and increased at higher PCB concentrations, which points to saturation of binding sites on the charcoal. Attenuation was highest for planar congeners, which suggests an additional site blockage mechanism. These variations due to HA loading and PCB concentration can explain the variability in attenuation reported in earlier work and imply that the use of constant "attenuation factors" to adjust sorption coefficients determined for pure carbonaceous materials in order to apply them to field situations may not be warranted.

  11. Determination of waterborne {sup 222}Rn concentrations using AC canisters

    SciTech Connect

    Mancini, C.; Giannelli, G.

    1995-09-01

    A method for measuring {sup 222}Rn concentration in water using charcoal canisters is presented. {sup 222}Rn is transferred within a few minutes from water contained in a 0.720 L bottle to a charcoal canister using a portable degassing unit. In the laboratory, gamma counting is performed at least 10 h after sampling to determine waterborne {sup 222}Rn concentration. The results obtained with charcoal canisters are compared to measurements made with Marinelli beakers calibrated in a comparison with liquid scintillation counting. The efficiency of transferring dissolved {sup 222}Rn in water to activated charcoal is 99% based on measurements made using Marinelli beakers. The lower limit of detection at the 95% confidence level is approximately 1 kBq m{sup -3} for a 15 min gamma count. the system was used to measure radon concentration in mineral groundwater near Rome. 7 refs., 1 fig., 1 tab.

  12. Interaction mechanisms of organic contaminants with burned straw ash charcoal.

    PubMed

    Huang, Wenhai; Chen, Baoliang

    2010-01-01

    Black carbons (e.g., charcoal) have a great impact on the transport of organic contaminants in soil and water because of its strong affinity and ubiquity in the environment. To further elucidate their interaction mechanism, sorption of polar (p-nitrotoluene, m-dinitrobenzene and nitrobenzene) and nonpolar (naphthalene) aromatic contaminants to burned straw ash charcoal under different de-ashed treatments were investigated. The sorption isotherms fitted well with Freundlich equation, and the Freundlich N values were all around 0.31-0.38, being independent of the sorbate properties and sorbent types. After sequential removal of ashes by acid treatments (HCl and HCl-HF), both adsorption and partition were enhanced due to the enrichment of charcoal component. The separated contribution of adsorption and partition to total sorption were quantified. The effective carbon content in ash charcoal functioned as adsorption sites, partition phases, and hybrid regions with adsorption and partition were conceptualized and calculated. The hybrid regions increased obviously after de-ashed treatment. The linear relationships of Freundlich N values with the charring-temperature of charcoal or biochar (the charred byproduct in biomass pyrolysis) were observed based on the current study and the cited publications which included 15 different temperatures (100-850 degrees C), 10 kinds of precursors of charcoal/biochar, and 10 organic sorbates.

  13. Chemical analysis and potential health risks of hookah charcoal.

    PubMed

    Elsayed, Yehya; Dalibalta, Sarah; Abu-Farha, Nedal

    2016-11-01

    Hookah (waterpipe) smoking is a very common practice that has spread globally. There is growing evidence on the hazardous consequences of smoking hookah, with studies indicating that its harmful effects are comparable to cigarette smoking if not worse. Charcoal is commonly used as a heating source for hookah smoke. Although charcoal briquettes are thought to be one of the major contributors to toxicity, their composition and impact on the smoke generated remains largely unidentified. This study aims to analyze the elemental composition of five different raw synthetic and natural charcoals by using Carbon-Hydrogen-Nitrogen (CHN) analysis, inductively coupled plasma (ICP), and scanning electron microscopy coupled with energy dispersive X-Ray spectrometry (SEM-EDS). Elemental analysis showed that the raw charcoals contain heavy metals such as zinc, iron, cadmium, vanadium, aluminum, lead, chromium, manganese and cobalt at concentrations similar, if not higher than, cigarettes. In addition, thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) was used to analyze the chemical composition of the smoke produced from burning the charcoal samples. The smoke emitted from charcoal was found to be the source of numerous compounds which could be hazardous to health. A total of seven carcinogens, 39 central nervous system depressants and 31 respiratory irritants were identified.

  14. Charcoal versus LPG grilling: A carbon-footprint comparison

    SciTech Connect

    Johnson, Eric

    2009-11-15

    Undoubtedly, grilling is popular. Britons fire up their barbeques some 60 million times a year, consuming many thousands of tonnes of fuel. In milder climates consumption is even higher, and in the developing world, charcoal continues to be an essential cooking fuel. So it is worth comparing the carbon footprints of the two major grill types, charcoal and LPG, and that was the purpose of the study this paper documents. Charcoal and LPG grill systems were defined, and their carbon footprints were calculated for a base case and for some plausible variations to that base case. In the base case, the charcoal grilling footprint of 998 kg CO{sub 2}e is almost three times as large as that for LPG grilling, 349 kg CO{sub 2}e. The relationship is robust under all plausible sensitivities. The overwhelming factors are that as a fuel, LPG is dramatically more efficient than charcoal in its production and considerably more efficient in cooking. Secondary factors are: use of firelighters, which LPG does not need; LPG's use of a heavier, more complicated grill; and LPG's use of cylinders that charcoal does not need.

  15. A 45-year-old man with a lung mass and history of charcoal aspiration.

    PubMed

    Seder, David B; Christman, Robert A; Quinn, Michael O; Knauft, M Elizabeth

    2006-11-01

    A 45-year-old man was seen in consultation for evaluation of a spiculated right-lower-lobe mass that enlarged over 1 year. The patient had suffered accidental instillation of activated charcoal into the right lung via nasogastric tube 2 years prior to this consultation, with resultant respiratory failure, pneumonia, and pneumothorax. Biopsy of the mass showed anthracosis and granulomatous inflammation. A positron emission tomogram was strongly positive at the lesion, and right-lower-lobectomy with partial diaphragmatic resection was performed. On gross examination of the mass, a charcoal concretion was evident. Histologic examination showed intrinsic and surrounding granulomatous inflammation, but without tumor. The patient recovered uneventfully, and after 1 year had not experienced further complications.

  16. Penialidins A-C with strong antibacterial activities from Penicillium sp., an endophytic fungus harboring leaves of Garcinia nobilis.

    PubMed

    Jouda, Jean-Bosco; Kusari, Souvik; Lamshöft, Marc; Mouafo Talontsi, Ferdinand; Douala Meli, Clovis; Wandji, Jean; Spiteller, Michael

    2014-10-01

    Three new polyketides named penialidins A-C (1-3), along with one known compound, citromycetin (4), were isolated from an endophytic fungus, Penicillium sp., harbored in the leaves of the Cameroonian medicinal plant Garcinia nobilis. Their structures were elucidated by means of spectroscopic and spectrometric methods (NMR and HRMS(n)). The antibacterial efficacies of the new compounds (1-3) were tested against the clinically-important risk group 2 (RG2) bacterial strains of Staphylococcus aureus and Escherichia coli. The ecologically imposing strains of E. coli (RG1), Bacillus subtilis and Acinetobacter sp. BD4 were also included in the assay. Compound 3 exhibited pronounced activity against the clinically-relevant S. aureus as well as against B. subtilis comparable to that of the reference standard (streptomycin). Compound 2 was also highly-active against S. aureus. By comparing the structures of the three new compounds (1-3), it was revealed that altering the substitutions at C-10 and C-2 can significantly increase the antibacterial activity of 1.

  17. Effects of carbocisteine on altered activities of glycosidase and glycosyltransferase and expression of Muc5ac in SO2-exposed rats.

    PubMed

    Ishibashi, Yuji; Kobayashi, Fumiyoshi; Idesawa, Akira; Taniguchi, Akiyoshi; Matsuzawa, Shigeki

    2004-03-08

    Carbocisteine is a mucoregulatory drug regulating fucose and sialic acid contents in mucus glycoprotein. To investigate the mechanism of carbocisteine action, we evaluated the effects of carbocisteine on the activity of fucosidase, sialidase, fucosyltransferase and sialyltransferase, and on the expression of Muc5ac mRNA in the airway epithelium of SO(2)-exposed rats. Wistar rats were repeatedly exposed to a 300-ppm SO(2) gas for 44 days. Carbocisteine (125 and 250 mg/kg x2/day) was administered for 25 days after 20 days of SO(2) gas exposure. These enzyme activities were measured by fluorogenic substrate or glycoproteinic exogenous acceptor method. The expression levels of Muc5ac mRNA and protein were determined with real-time reverse transcriptase-polymerase chain reaction (real-time RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Carbocisteine (250 mg/kg x2/day) inhibited all the changes in these enzyme activities and the expressions of Muc5ac mRNA and protein in the lung after repeated SO(2) exposure. These findings suggest that carbocisteine may normalize fucose and sialic acid contents in mucin glycoprotein through regulation of these enzyme activities, and inhibition of both Muc5ac mRNA and protein expressions in SO(2)-exposed rats.

  18. Use of charcoals and broiler litter biochar for removal of radioactive cesium (Cs-134 plus Cs-137) from contaminated water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various charcoals (used in food processing and water treatment) and broiler litter biochar were examined for ability to adsorb water-soluble low-level radioactive cesium (ca. 200-250 Bq/kg) extracted from contaminated wheat bran. Among the materials tested, steam activated broiler litter biochar was...

  19. Identification of some factors affecting pharmaceutical active compounds (PhACs) removal in real wastewater. Case study of fungal treatment of reverse osmosis concentrate.

    PubMed

    Badia-Fabregat, Marina; Lucas, Daniel; Gros, Meritxell; Rodríguez-Mozaz, Sara; Barceló, Damià; Caminal, Glòria; Vicent, Teresa

    2015-01-01

    Many technologies are being developed for the efficient removal of micropollutants from wastewater and, among them, fungal degradation is one of the possible alternative biological treatments. In this article, some factors that might affect pharmaceutically active compounds (PhACs) removal in a fungal treatment of real wastewater were identified in batch bioreactor treating reverse osmosis concentrate (ROC) from urban wastewater treatment plant (WWTP). We found that degradation of PhACs by Trametes versicolor was enhanced by addition of external nutrients (global removal of 44%). Moreover, our results point out that high aeration might be involved in the increase in the concentration of some PhACs. In fact, conjugation and deconjugation processes (among others) affect the removal assessment of emerging contaminants when working with real concentrations in comparison to experiments with spiked samples. Moreover, factors that could affect the quantification of micropollutants at lab-scale experiments were studied.

  20. Operationalizing measurement of forest degradation: Identification and quantification of charcoal production in tropical dry forests using very high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Dons, K.; Smith-Hall, C.; Meilby, H.; Fensholt, R.

    2015-07-01

    Quantification of forest degradation in monitoring and reporting as well as in historic baselines is among the most challenging tasks in national REDD+ strategies. However, a recently introduced option is to base monitoring systems on subnational conditions such as prevalent degradation activities. In Tanzania, charcoal production is considered a major cause of forest degradation, but is challenging to quantify due to sub-canopy biomass loss, remote production sites and illegal trade. We studied two charcoal production sites in dry Miombo woodland representing open woodland conditions near human settlements and remote forest with nearly closed canopies. Supervised classification and adaptive thresholding were applied on a pansharpened QuickBird (QB) image to detect kiln burn marks (KBMs). Supervised classification showed reasonable detection accuracy in the remote forest site only, while adaptive thresholding was found acceptable at both locations. We used supervised classification and manual digitizing for KBM delineation and found acceptable delineation accuracy at both sites with RMSEs of 25-32% compared to ground measurements. Regression of charcoal production on KBM area delineated from QB resulted in R2s of 0.86-0.88 with cross-validation RMSE ranging from 2.22 to 2.29 Mg charcoal per kiln. This study demonstrates, how locally calibrated remote sensing techniques may be used to identify and delineate charcoal production sites for estimation of charcoal production and associated extraction of woody biomass.

  1. Increased Long-Flight Activity Triggered in Beet Armyworm by Larval Feeding on Diet Containing Cry1Ac Protoxin

    PubMed Central

    Jiang, Xing Fu; Chen, Jian; Zhang, Lei; Sappington, Thomas W.; Luo, Li Zhi

    2013-01-01

    Evaluating ecological safety and conducting pest risk analysis for transgenic crops are vitally important before their commercial planting. The beet armyworm, Spodoptera exigua, a long-distance migratory insect pest, is not a direct target of transgenic Cry1Ac-expressing cotton in China, but nevertheless it has recently become an important pest. Migrants leaving their natal field arrive in other appropriate habitat far away in a short time, often followed by larval outbreaks. S. exigua has low susceptibility to Cry1Ac. However, our results from laboratory experiments identified (i) sublethal effects of Cry1Ac protoxin on larval development rate, larval and pupal weight, and adult lifetime fecundity, and (ii) increased long-flight behavior triggered by Cry1Ac which may contribute to larval outbreaks elsewhere. No significant differences in larval mortality, pupation rate, adult emergence rate, longevity, pre-oviposition period, or oviposition period were observed between controls and larvae fed on artificial diet incorporating a low concentration of Cry1Ac protoxin. The negative sublethal effects on some developmental and reproductive traits and lack of effect on others suggest they do not contribute to the observed severity of S. exigua outbreaks after feeding on Cry1Ac cotton. Interestingly, the percentage of long fliers increased significantly when larvae were reared on diet containing either of two low-dose treatments of Cry1Ac, suggesting a possible increased propensity to disperse long distances triggered by Cry1Ac. We hypothesize that negative effects on development and reproduction caused by Cry1Ac in the diet are offset by increased flight propensity triggered by the poor food conditions, thereby improving the chances of escaping adverse local conditions before oviposition. Increased long-flight propensity in turn may amplify the area damaged by outbreak populations. This phenomenon might be common in other migratory insect pests receiving sublethal doses

  2. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost.

    PubMed

    Marchal, Geoffrey; Smith, Kilian E C; Rein, Arno; Winding, Anne; Trapp, Stefan; Karlson, Ulrich G

    2013-02-01

    Carbonaceous soil amendments are applied to contaminated soils and sediments to strongly sorb hydrophobic organic contaminants (HOCs) and reduce their freely dissolved concentrations. This limits biouptake and toxicity, but also biodegradation. To investigate whether HOCs sorbed to such amendments can be degraded at all, the desorption and biodegradation of low concentrations of (14)C-labelled phenanthrene (≤5 μg L(-1)) freshly sorbed to suspensions of the pure soil amendments activated carbon (AC), biochar (charcoal) and compost were compared. Firstly, the maximum abiotic desorption of phenanthrene from soil amendment suspensions in water, minimal salts medium (MSM) or tryptic soy broth (TSB) into a dominating silicone sink were measured. Highest fractions remained sorbed to AC (84±2.3%, 87±4.1%, and 53±1.2% for water, MSM and TSB, respectively), followed by charcoal (35±2.2%, 32±1.7%, and 12±0.3%, respectively) and compost (1.3±0.21%, similar for all media). Secondly, the mineralization of phenanthrene sorbed to AC, charcoal and compost by Sphingomonas sp. 10-1 (DSM 12247) was determined. In contrast to the amounts desorbed, phenanthrene mineralization was similar for all the soil amendments at about 56±11% of the initially applied radioactivity. Furthermore, HPLC analyses showed only minor amounts (<5%) of residual phenanthrene remaining in the suspensions, indicating almost complete biodegradation. Fitting the data to a coupled desorption and biodegradation model revealed that desorption did not limit biodegradation for any of the amendments, and that degradation could proceed due to the high numbers of bacteria and/or the production of biosurfactants or biofilms. Therefore, reduced desorption of phenanthrene from AC or charcoal did not inhibit its biodegradation, which implies that under the experimental conditions these amendments can reduce freely dissolved concentration without hindering biodegradation. In contrast, phenanthrene sorbed to compost

  3. Effects of charcoal kiln saunas (Jjimjilbang) on psychological states.

    PubMed

    Hayasaka, Shinya; Nakamura, Yosikazu; Kajii, Eiji; Ide, Masahiro; Shibata, Yosuke; Noda, Tatsuya; Murata, Chiyoe; Nagata, Katsutaro; Ojima, Toshiyuki

    2008-05-01

    This uncontrolled intervention study explored the effects of sauna bathing utilizing residual heat from charcoal kilns (charcoal kiln saunas) on psychological states. Forty-five volunteers (24 males and 21 females; mean age 51.9 years (S.D. 15.7) visiting a bamboo charcoal kiln in Japan participated in the study. They completed a shortened version of the Profile of Mood States (POMS) and State-Trait Anxiety Inventory (STAI) before and after charcoal kiln sauna bathing in order to determine mood and anxiety states. Six factors relating to mood were measured using the POMS: Tension-Anxiety, Depression-Dejection, Anger-Hostility, Vigor, Fatigue, and Confusion. The two anxiety concepts of state anxiety and trait anxiety were also measured. Changes in psychological states before and after sauna bathing were then determined. All mood scales and both manifest anxiety measures were improved after sauna bathing. Charcoal kiln sauna bathing appears to improve mood and decrease anxiety. It is a limitation of this study that this was a descriptive prospective and an uncontrolled intervention study. Further investigation of the improvement of trait anxiety is required.

  4. The stability and functional properties of charcoal in Ghanaian agriculture

    NASA Astrophysics Data System (ADS)

    Maxfield, Tom; Sohi, Saran

    2014-05-01

    Weathering of biochar will lead to its eventual mineralisation to CO2, but how does this happen and how quickly will the biochar break down? This study focuses on the fate of charcoal, as an analogue for biochar, over a ten year period in rural Ghana. The objectives of the work were to determine the stability of charcoal over this timeframe, the change in its functional properties and to calibrate or validate recently established approaches to age biochar artificially. The study showed that the oxygen-to-carbon ratio of charcoal surfaces generally increases over time. Gradually the oxidation penetrates the subsurface layers, causing surface layers to erode and exposing previously un-aged surfaces to degradation.

  5. Cerebral metabolic responses to 5-HT2A/C receptor activation in mice with genetically modified serotonin transporter (SERT) expression.

    PubMed

    Dawson, Neil; Ferrington, Linda; Lesch, Klaus-Peter; Kelly, Paul A T

    2011-01-01

    Variation in the human serotonin transporter gene (hSERT; 5-HTT) resulting in a life-long alteration in SERT function influences anxiety and the risk of developing affective disorders. The mechanisms underlying the influence of the hSERT gene on these phenotypes remain unclear but may involve altered 5-HT receptor function. Here we characterise the cerebral metabolic response to 5-HT(2A/C) receptor activation in two transgenic mouse models of altered SERT function, SERT knock-out (SERT KO) and hSERT over-expressing (hSERT OE) mice, to test the hypothesis that genetically mediated variability in SERT expression alters 5-HT(2A/C) function. We found that a constitutive increase in SERT expression (hSERT OE) enhanced, whereas a constitutive decrease in SERT expression (SERT KO) attenuated, 5-HT(2A/C) function. Therefore, altered 5-HT(2A/C) receptor functioning in response to hSERT gene variation may contribute to its influence on affective phenotypes.

  6. Enhancing methane production during the anaerobic digestion of crude glycerol using Japanese cedar charcoal.

    PubMed

    Watanabe, Ryoya; Tada, Chika; Baba, Yasunori; Fukuda, Yasuhiro; Nakai, Yutaka

    2013-12-01

    The use of Japanese cedar charcoal as a support material for microbial attachment could enhance methane production during anaerobic digestion of crude glycerol and wastewater sludge. Methane yield from a charcoal-containing reactor was approximately 1.6 times higher than that from a reactor without charcoal, and methane production was stable over 50 days when the loading rate was 2.17 g chemical oxygen demand (COD) L(-1) d(-1). Examination of microbial communities on the charcoal revealed the presence of Uncultured Desulfovibrio sp. clone V29 and Pelobacter seleniigenes, known as 1,3-propandiol degraders. Hydrogenotrophic methanogens were also detected in the archaeal community on the charcoal. Methanosaeta, Methanoregula, and Methanocellus were present in the charcoal-containing reactor. The concentration of propionate in the charcoal-containing reactor was also lower than that in the control reactor. These results suggest that propionate degradation was enhanced by the consumption of hydrogen by hydrogenotrophic methanogens on the charcoal.

  7. Charcoal's physical properties are key to understanding its environmental behavior

    NASA Astrophysics Data System (ADS)

    Masiello, Caroline; Brewer, Catherine; Dugan, Brandon; Liu, Zuolin; Gonnermann, Helge; Zygourakis, Kyriacos; Davies, Christian; Panzacchi, Pietro; Gao, Xiaodong; Pyle, Lacey

    2014-05-01

    Charcoal is a highly porous, low density material whose physical properties play a key role in its soil behavior and its environmental fate. In considering biochar, some of its most sought-after environmental effects are a result of its physical characteristics, not its chemical or biological properties. For example, the ability of biochar to retain soil water is widely attributed to its porosity. However, charcoal physical properties are so poorly understood that they are sometimes not characterized at all in the current literature. Here we outline a suite of basic physical properties of charcoal and the likely environmental effects of their variations, with a focus on the interactions between charcoal and water. The most basic physical property of charcoal, its particle size, likely plays a role in its ability to alter the rate of drainage in soils. Particle morphology is also relevant, affecting how particles of soil and char can pack together. Bulk densities of charcoal and soil mixtures can be used to generate a simple estimate of the efficiency of char-soil packing. Charcoal density is an additionally important property and can be measured in a number of ways. Density almost certainly controls the tendency of chars to sink or float, and to erode or remain on the land surface. However, charcoal density can vary by almost a factor of 10 depending on the measurement technique used. We discuss two simple techniques available for measuring char density and the value of information provided by each approach. Finally, we report a simple, fast technique to measure total char porosity, including all pores from nanometers to 10s of micrometers in size. Porosity is at least one of the key controls on the ability of biochar to improve plant-available water, and techniques to measure it have previously been limited to the smallest fraction of pores (N2 sorption) or have required expensive, hazardous procedures (Hg porosimetry). We show that char porosity varies primarily

  8. Can Charcoal Provide Information About Fire Effects and Fire Severity?

    NASA Astrophysics Data System (ADS)

    Belcher, Claire; Hudpsith, Victoria; Doerr, Stefan; Santin, Cristina

    2016-04-01

    Building an understanding of the impact of a wildfire is critical to the management of ecosystems. Aspects of fire severity such as the amount of soil heating, can relate to post-fire ecosystem recovery. Yet, there is no quantitative measure of this in current post-burn fire severity assessments, which are mostly qualitative ground-based visual assessments of organic matter loss, and as such can be subjective and variable between ecosystems. In order to develop a unifying fire severity assessment we explore the use of charcoal produced during a wildfire, as a tool. Charcoal has been suggested to retain some information about the nature of the fire in which it was created and one such physical property of charcoal that can be measured post-fire is its ability to reflect light when studied under oil using reflectance microscopy. The amount of light reflected varies between charcoals and is thought to be explained by the differential ordering of graphite-like phases within the char however, to what aspects of a fire's nature this alteration pertains is unknown. We have explored the formation of charcoal reflectance in 1) laboratory-based experiments using an iCone calorimeter and in 2) experimental forest scale and natural wildland fires occurring in Canada in spring 2015. In our laboratory experiments we assessed the formation and evolution of charcoal reflectance during pre-ignition heating, peak fire intensity through to the end of flaming and the transition to oxidative/smoldering heating regimes. In the prescribed and natural wildland fires we positioned the same woods used in our laboratory experiments, rigged with thermocouples in the path of oncoming fires in order to assess the resulting charcoal reflectance in response to the heating regime imposed by the fire on the samples. In this presentation we will outline our approach, findings and discuss the potential for charcoal reflectance to provide a tool in post-fire assessments seeking to determine levels of

  9. Evaluation of charcoal sorbents for helium cryopumping in fusion reactors

    SciTech Connect

    Tobin, A.G.; Sedgley, D.W.; Batzer, T.H.; Call, W.R.

    1987-01-01

    Improved methods for cryopumping helium were developed for application to fusion reactors where high helium generation rates are expected. In this study, small coconut charcoal granules were utilized as the sorbent, and braze alloys and low temperature curing cements were used as the bonding agents for attachment to a copper support structure. Problems of scale-up of the bonding agent to a 40 cm diam panel were also investigated. Our results indicate that acceptable helium pumping performance of braze bonded and cement bonded charcoals can be achieved over the range of operating conditions expected in fusion reactors.

  10. URINARY BIOMARKERS IN CHARCOAL WORKERS EXPOSED TO WOOD SMOKE IN BAHIA STATE, BRAZIL

    EPA Science Inventory

    Charcoal is an important source of energy for domestic and industrial use in many countries. In Brazil, the largest producer of charcoal in the world, approximately 350,000 workers are linked to the production and transportation of charcoal. In order to evaluate the occupationa...

  11. EMISSIONS OF AIR TOXICS FROM A SIMULATED CHARCOAL KILN EQUIPPED WITH AN AFTERBURNER

    EPA Science Inventory

    The report discusses emissions of air toxics from a simulated charcoal kiln equipped with an afterburner. A laboratory-scale simulator was constructed and tested to determine if it could be used to produce charcoal that was similar to that produced in Missouri-type charcoal kilns...

  12. Air quality index from charcoal production sites, carboxyheamoglobin and lung function among occupationally exposed charcoal workers in South Western Nigeria.

    PubMed

    Olujimi, O O; Ana, G R E E; Ogunseye, O O; Fabunmi, V T

    2016-01-01

    Charcoal production is often accompanied with gaseous and particulate emission into the atmosphere and occupationally exposed workers could be affected. This cross sectional comparative study was carried out to assess the levels of carbon monoxide (CO), carbon dioxide (CO2), sulphur dioxide (SO2), nitrogen dioxide (NO2) and particulate matter (PM2.5) generated during the phases of charcoal production and their relationship with certain biomarkers among charcoal workers (subjects) and non-charcoal workers (controls) such as carboxyhaemoglobin (COHb), forced expiratory volume in the first second of expiration (FEV1), peak expiratory flow rate (PEFR) and body mass index (BMI) in Igbo-Ora, Oyo State and Alabata, Ogun State, which are two of the major hubs of charcoal production in South Western Nigeria. Four communities in Igbo-Ora and six communities in Alabata were purposively selected and levels of pollutant gases were assessed using appropriate gas meters, PM2.5 was assessed with Thermo Scientific MIE pDR-1500, FEV1 and PEFR were measured with Piko-1 spirometer while COHb was assessed using non-invasive pulse CO-oximeter (Rad 57). Data were statistically analyzed and results were compared with recommended guidelines. The mean FEV1, PEFR, COHb and BMI for subjects and controls were 2.35 ± 0.73 and 2.69 ± 0.56, 253.72 ± 103.45 and 330.02 ± 94.61 (p < 0.01), 13.28 ± 3.91 and 8.50 ± 3.68 (p < 0.01) and 21.97 ± 2.19 and 23.36 ± 3.74 (p < 0.05) respectively. There was a statistically significant difference between actual and expected values of FEV1 (p < 0.01) and PEFR (p < 0.01) among charcoal workers. There existed a positive correlation between CO and COHb while FEV1 and PEFR correlated negatively with PM2.5. The study showed that charcoal workers are exposed to high levels of CO and PM2.5, contributing to lowered respiratory functions for FEV1 and PEFR and high levels of COHb compared to the control group. Routine respiratory and

  13. Tri (2-chloroisopropyl) phosphate--an unexpected organochlorine contaminant in some charcoal air-sampling sorbent tubes.

    PubMed

    van Netten, C; Brands, R; Park, J; Deverall, R

    1991-09-01

    Air sampling in a government building was necessary in response to reports of a cancer cluster. SKC (Eighty Four, Pa.) charcoal coconut shell-based sorbent tubes (226-01 lot 120) were recommended for this procedure. A recently purchased supply was present at the University of British Columbia and consequently was used for this particular study. Analysis of the front charcoal section showed the presence of a flame retardant, tri (2-chloroisopropyl) phosphate, which was confirmed by gas liquid chromatography (GLC) and mass spectrometry analysis. In an effort to identify the source of this fire retardant in the building, it became apparent from the analysis done on unknown field blanks that tri (2-chloroisopropyl) phosphate was a contaminant of the sorbent tubes used. Analysis of additional blank tubes identified the foam separators as the most likely source of contamination. Levels of tri (2-chloroisopropyl) phosphate in the front charcoal section ranged from 1.3 to 5.9 micrograms. The foam separator contained between 11.4 and 16.5 micrograms, and the backup charcoal section contained between 14.5 and 24.0 micrograms of tri (2-chloroisopropyl) phosphate. In addition, another flame retardant, tri (1,3 dichloro-2-propyl) phosphate was also found. Because these contaminants have long column retention times in GLC, it may not be apparent that these contaminants are present and consequently are likely to have modified the sorbent characteristics of the activated charcoal. Another batch of sorbent tubes bearing the same catalog number and lot number was purchased from the supplier; no flame retardants were found in this batch.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Paired charcoal and tree-ring records of high-frequency Holocene fire from two New Mexico bog sites

    USGS Publications Warehouse

    Allen, C.D.; Anderson, R. Scott; Jass, R.B.; Toney, J.L.; Baisan, C.H.

    2008-01-01

    Two primary methods for reconstructing paleofire occurrence include dendrochronological dating of fire scars and stand ages from live or dead trees (extending back centuries into the past) and sedimentary records of charcoal particles from lakes and bogs, providing perspectives on fire history that can extend back for many thousands of years. Studies using both proxies have become more common in regions where lakes are present and fire frequencies are low, but are rare where high-frequency surface fires dominate and sedimentary deposits are primarily bogs and wetlands. Here we investigate sedimentary and fire-scar records of fire in two small watersheds in northern New Mexico, in settings recently characterised by relatively high-frequency fire where bogs and wetlands (Chihuahuen??os Bog and Alamo Bog) are more common than lakes. Our research demonstrates that: (1) essential features of the sedimentary charcoal record can be reproduced between multiple cores within a bog deposit; (2) evidence from both fire-scarred trees and charcoal deposits documents an anomalous lack of fire since ???1900, compared with the remainder of the Holocene; (3) sedimentary charcoal records probably underestimate the recurrence of fire events at these high-frequency fire sites; and (4) the sedimentary records from these bogs are complicated by factors such as burning and oxidation of these organic deposits, diversity of vegetation patterns within watersheds, and potential bioturbation by ungulates. We consider a suite of particular challenges in developing and interpreting fire histories from bog and wetland settings in the Southwest. The identification of these issues and constraints with interpretation of sedimentary charcoal fire records does not diminish their essential utility in assessing millennial-scale patterns of fire activity in this dry part of North America. ?? IAWF 2008.

  15. Tri (2-chloroisopropyl) phosphate--an unexpected organochlorine contaminant in some charcoal air-sampling sorbent tubes

    SciTech Connect

    van Netten, C.; Brands, R.; Park, J.; Deverall, R. )

    1991-09-01

    Air sampling in a government building was necessary in response to reports of a cancer cluster. SKC (Eighty Four, Pa.) charcoal coconut shell-based sorbent tubes (226-01 lot 120) were recommended for this procedure. A recently purchased supply was present at the University of British Columbia and consequently was used for this particular study. Analysis of the front charcoal section showed the presence of a flame retardant, tri (2-chloroisopropyl) phosphate, which was confirmed by gas liquid chromatography (GLC) and mass spectrometry analysis. In an effort to identify the source of this fire retardant in the building, it became apparent from the analysis done on unknown field blanks that tri (2-chloroisopropyl) phosphate was a contaminant of the sorbent tubes used. Analysis of additional blank tubes identified the foam separators as the most likely source of contamination. Levels of tri (2-chloroisopropyl) phosphate in the front charcoal section ranged from 1.3 to 5.9 micrograms. The foam separator contained between 11.4 and 16.5 micrograms, and the backup charcoal section contained between 14.5 and 24.0 micrograms of tri (2-chloroisopropyl) phosphate. In addition, another flame retardant, tri (1,3 dichloro-2-propyl) phosphate was also found. Because these contaminants have long column retention times in GLC, it may not be apparent that these contaminants are present and consequently are likely to have modified the sorbent characteristics of the activated charcoal. Another batch of sorbent tubes bearing the same catalog number and lot number was purchased from the supplier; no flame retardants were found in this batch.

  16. Advancing our understanding of charcoal rot in soybeans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot (Macrophomina phaseolina (Tassi) Goid ) of soybean [Glycine max (L.) Merr.], is an important but commonly misidentified disease, and very few summary articles exist on this pathosystem. Research conducted over the last 10 years has improved our understanding of the environment conducive...

  17. Small Scale Charcoal Making: A Manual for Trainers.

    ERIC Educational Resources Information Center

    Karch, Ed; And Others

    This training program offers skills training in all stages of the development of technologies related to small-scale charcoal production, including the design, construction, operation, maintenance, repair, and evaluation of prototype kilns. The kiln designs are selected to be as consistent as possible with the realities of rural areas in…

  18. EMISSIONS FROM STREET VENDOR COOKING DEVICES (CHARCOAL GRILLING)

    EPA Science Inventory

    The report discusses a joint U.S./Mexican program to establish a reliable emissions inventory for street vendor cooking devices (charcoal grilling), a significant source of air pollutants in the Mexicali-Imperial Valley area of Mexico. Emissions from these devices, prevalent in t...

  19. Cytotoxicity and binding profiles of activated Cry1Ac and Cry2Ab to three insect cell lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While Cry1Ac has been known to bind with larval midgut proteins cadherin, APN (amino peptidase N), ALP (alkaline phosphatase) and ABCC2 (ATP-binding cassette transporter subfamily C2), little is known about the receptors of Cry2Ab. To provide a clue to the receptors of Cry2Ab, we tested the baselin...

  20. Muc5ac gastric mucin glycosylation is shaped by FUT2 activity and functionally impacts Helicobacter pylori binding

    PubMed Central

    Magalhães, Ana; Rossez, Yannick; Robbe-Masselot, Catherine; Maes, Emmanuel; Gomes, Joana; Shevtsova, Anna; Bugaytsova, Jeanna; Borén, Thomas; Reis, Celso A.

    2016-01-01

    The gastrointestinal tract is lined by a thick and complex layer of mucus that protects the mucosal epithelium from biochemical and mechanical aggressions. This mucus barrier confers protection against pathogens but also serves as a binding site that supports a sheltered niche of microbial adherence. The carcinogenic bacteria Helicobacter pylori colonize the stomach through binding to host glycans present in the glycocalyx of epithelial cells and extracellular mucus. The secreted MUC5AC mucin is the main component of the gastric mucus layer, and BabA-mediated binding of H. pylori to MUC5AC confers increased risk for overt disease. In this study we unraveled the O-glycosylation profile of Muc5ac from glycoengineered mice models lacking the FUT2 enzyme and therefore mimicking a non-secretor human phenotype. Our results demonstrated that the FUT2 determines the O-glycosylation pattern of Muc5ac, with Fut2 knock-out leading to a marked decrease in α1,2-fucosylated structures and increased expression of the terminal type 1 glycan structure Lewis-a. Importantly, for the first time, we structurally validated the expression of Lewis-a in murine gastric mucosa. Finally, we demonstrated that loss of mucin FUT2-mediated fucosylation impairs gastric mucosal binding of H. pylori BabA adhesin, which is a recognized feature of pathogenicity. PMID:27161092

  1. A fusion promoter created by a new insertion sequence, IS1490, activates transcription of 2,4,5-trichlorophenoxyacetic acid catabolic genes in Burkholderia cepacia AC1100.

    PubMed Central

    Hübner, A; Hendrickson, W

    1997-01-01

    Transposition and transcriptional activation by insertion sequences in Burkholderia cepacia AC1100 were investigated. Two closely related new elements, IS1413 and IS1490, were identified and characterized. These elements are not highly related to other insertion sequences identified in AC1100 or other B. cepacia isolates. Based on their structures and the sequences of the inverted terminal repeats and the putative transposase protein, the insertion elements (IS elements) are similar to IST2 of Thiobacillus ferrooxidans and several related elements. All the IS elements that have been identified in this strain are found in multiple copies (10 to 40), and they have high-level promoter activity capable of stimulating transcription from a distance up to 500 bp from a target gene. Strain AC1100 was originally isolated after prolonged selection for the ability to utilize the herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as a sole carbon source. Three IS elements are located near the first gene of the 2,4,5-T catabolic pathway, tftA. IS1490 inserted 110 bp upstream of tftA and created a fusion promoter responsible for constitutive transcription of the gene. Our results confirm the hypothesis that IS elements play a central role in transcription of 2,4,5-T genes and likely have stimulated rapid evolution of the metabolic pathway. PMID:9098071

  2. Microorganism communities and chemical characteristics in sludge-bamboo charcoal composting system.

    PubMed

    Hua, Li; Chen, Yingxu; Wu, Weixiang; Ma, Hongrui

    2011-04-01

    Microorganism communities and chemical characteristics in sludge-bamboo charcoal composting system were investigated to find the effect of bamboo charcoal on composting. According to a plate count test, abundances of bacteria, fungi and actinomycetes in the treatment with bamboo charcoal were several times higher than those in treatment without bamboo charcoal. In addition, terminal restriction fragment length polymorphism (TRFLP) analysis indicated that the bacterial community diversity in treatment with bamboo charcoal was greater than that of the control. Both results demonstrated that amendment with bamboo charcoal can increase microorganism population and microorganism community diversity in a sludge composting system. Moreover, the results of FTIR spectroscopy disclosed that aerobic composting can promote the formation of surface acid groups on bamboo charcoal. These surface acid groups may deprotonate and react with NH4+ to form stable complexes. Therefore, the increase of functional groups accompanied with greater assimilation of nitrogen by microorganisms could reduce nitrogen loss in sludge composting.

  3. Spatiotemporal patterns of tundra fires: late-Quaternary charcoal records from Alaska

    NASA Astrophysics Data System (ADS)

    Chipman, M. L.; Hudspith, V.; Higuera, P. E.; Duffy, P. A.; Kelly, R.; Oswald, W. W.; Hu, F. S.

    2015-07-01

    Anthropogenic climate change has altered many ecosystem processes in the Arctic tundra and may have resulted in unprecedented fire activity. Evaluating the significance of recent fires requires knowledge from the paleofire record because observational data in the Arctic span only several decades, much shorter than the natural fire rotation in Arctic tundra regions. Here we report results of charcoal analysis on lake sediments from four Alaskan lakes to infer the broad spatial and temporal patterns of tundra-fire occurrence over the past 35 000 years. Background charcoal accumulation rates are low in all records (range is 0-0.05 pieces cm-2 yr-1), suggesting minimal biomass burning across our study areas. Charcoal peak analysis reveals that the mean fire-return interval (FRI; years between consecutive fire events) ranged from ca. 1650 to 6050 years at our sites, and that the most recent fire events occurred from ca. 880 to 7030 years ago, except for the CE 2007 Anaktuvuk River Fire. These mean FRI estimates are longer than the fire rotation periods estimated for the past 63 years in the areas surrounding three of the four study lakes. This result suggests that the frequency of tundra burning was higher over the recent past compared to the late Quaternary in some tundra regions. However, the ranges of FRI estimates from our paleofire records overlap with the expected values based on fire-rotation-period estimates from the observational fire data, and the differences are statistically insignificant. Together with previous tundra-fire reconstructions, these data suggest that the rate of tundra burning was spatially variable and that fires were extremely rare in our study areas throughout the late Quaternary. Given the rarity of tundra burning over multiple millennia in our study areas and the pronounced effects of fire on tundra ecosystem processes such as carbon cycling, dramatic tundra ecosystem changes are expected if anthropogenic climate change leads to more

  4. Spatiotemporal patterns of tundra fires: late-Quaternary charcoal records from Alaska

    NASA Astrophysics Data System (ADS)

    Chipman, M. L.; Hudspith, V.; Higuera, P. E.; Duffy, P. A.; Kelly, R.; Oswald, W. W.; Hu, F. S.

    2015-02-01

    Anthropogenic climate change has altered many ecosystem processes in the Arctic tundra and may have resulted in unprecedented fire activity. Evaluating the significance of recent fires requires knowledge from the paleo-fire record because observational data in the Arctic span only several decades, much shorter than the natural fire rotation in Arctic tundra regions. Here we report results of charcoal analysis on lake sediments from four Alaskan lakes to infer the broad spatial and temporal patterns of tundra fire occurrence over the past 35 000 years. Background charcoal accumulation rates are low in all records (range = 0-0.05 pieces cm-2 year-1), suggesting minimal biomass burning across our study areas. Charcoal peak analysis reveals that the mean fire return interval (FRI; years between consecutive fire events) ranged from 1648 to 6045 years at our sites, and that the most recent fire events occurred from 882 to 7031 years ago, except for the CE 2007 Anaktuvuk River Fire. These mean FRI estimates are longer than the fire rotation periods estimated for the past 63 years in the areas surrounding three of the four study lakes. This result suggests that the frequency of tundra burning was higher over the recent past compared to the late Quaternary in some tundra regions. However, the ranges of FRI estimates from our paleo-fire records overlap with the expected values based on fire-rotation-period estimates from the observational fire data, and thus quantitative differences are not significant. Together with previous tundra-fire reconstructions, these data suggest that the rate of tundra burning was spatially variable and that fires were extremely rare in our study areas throughout the late Quaternary. Given the rarity of tundra burning over multiple millennia in our study areas and the pronounced effects of fire on tundra ecosystem processes such as carbon cycling, dramatic tundra ecosystem changes are expected if anthropogenic climate change leads to more frequent

  5. Alexandria's Eastern Harbor, Egypt: Pollen, microscopic charcoal, and the transition from natural to human-modified basin

    USGS Publications Warehouse

    Stanley, J.-D.; Bernhardt, C.E.

    2010-01-01

    Pollen and microscopic charcoal examined in Holocene sediment core samples record major environmental modifications affecting Alexandria's Eastern Harbor through time. We assess whether such changes on Egypt's coastal margin were influenced primarily by natural, or natural plus human, or primarily human factors. We focus on (1) the times when pollen assemblages and microscopic charcoal content changed in the core, (2) how they changed, and (3) why this occurred. The analysis takes into account the core's stratigraphy, regional climate variability, human history, and local archaeological record. Four pollenmicroscopic charcoal zones are identified. The earliest change occurred at ca. 6000 YBP, during Egypt's earlier Predynastic (Neolithic) period, coinciding with a lithologic break from sand to muddy sand. Pollen during this time indicates a transition to a much drier climate rather than effects of human activity. The second change in pollen occurred 3600-2900 YBP, during a period of continued aridity with no lithologic variation in this core interval. Pollen (cereal taxa, agricultural weeds, grape) and a sharp increase in microscopic charcoal indicate that human activity became prevalent at least 700 y before Alexander the Great's arrival in this region, and these results highlight the transition from a largely natural climatecontrolled environment to one influenced by both climate and anthropogenic activity. The third shift up-core in pollen assemblages is dated at ca. 2300 YBP, at the boundary between a sand and mud unit. It coincides with construction by the Ptolemies of the Heptastadion between Alexandria and Pharos Island. From this time onward, harbor sediment in the nearly enclosed catchment basin indicates a near-continuous record of dominant proximal human activity. ?? 2010 Coastal Education and Research Foundation.

  6. Charcoal-methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector

    SciTech Connect

    Headley, O.StC.; Kothdiwala, A.F.; McDoom, I.A. )

    1994-08-01

    A compound parabolic concentrating solar collector (CPC) of concentration ratio 3.9 and aperture area 2.0 m[sup 2] was used to power an intermittent solid adsorption refrigerator and ice maker using activated charcoal (carbon) as the adsorbing medium and methanol as the working fluid. The copper tube receiver of the CPC was packed with 2.5 kg of imported adsorbent 207E3, which was only utilized when the performance of activated charcoal (ACJ1, produced from local coconut shells) was found to be inferior to the imported adsorbent. Up to 1 kg of ice at an evaporator temperature of [minus]6[degrees]C was produced, with the net solar coefficient of performance (COP) being of the order of 0.02. Maximum receiver/adsorbent temperature recorded was 154[degrees]C on a day when the insolation was 26.8 MJ/m[sup [minus]2]. Temperatures in excess of 150[degrees]C are undesirable since they favour the conversion of methanol to dimethyl ether, a noncondensable gas which inhibits both condensation and adsorption. The major advantage of this system is its ability to produce ice even on overcast days (insolation [approximately] 10 MJ/m[sup [minus]2]).

  7. Modelling the combustion of charcoal in a model blast furnace

    NASA Astrophysics Data System (ADS)

    Shen, Yansong; Shiozawa, Tomo; Yu, Aibing; Austin, Peter

    2013-07-01

    The pulverized charcoal (PCH) combustion in ironmaking blast furnaces is abstracting remarkable attention due to various benefits such as lowering CO2 emission. In this study, a three-dimensional CFD model is used to simulate the flow and thermo-chemical behaviours in this process. The model is validated against the experimental results from a pilot-scale combustion test rig for a range of conditions. The typical flow and thermo-chemical phenomena is simulated. The effect of charcoal type, i.e. VM content is examined, showing that the burnout increases with VM content in a linear relationship. This model provides an effective way for designing and optimizing PCH operation in blast furnace practice.

  8. [Effects of bamboo charcoal on the growth of Trifolium repens and soil bacterial community structure].

    PubMed

    Li, Song-Hao; He, Dong-Hua; Shen, Qiu-Lan; Xu, Qiu-Fang

    2014-08-01

    The effects of addition rates (0, 3% and 9%) and particle sizes (0.05, 0.05-1.0 and 1.0-2.0 mm) of bamboo charcoal on the growth of Trifolium repens and soil microbial community structure were investigated. The results showed that bamboo charcoal addition greatly promoted the early growth of T. repens, with the 9% charcoal addition rate being slightly better than the 3% charcoal addition rate. The effects of different particle sizes of bamboo charcoal on the growth of T. repens were not different significantly. Growth promotion declined with time during 120 days after sowing, and disappeared completely after 5 months. DGGE analysis of the bacterial 16S rDNA V3 fragment indicated that bamboo charcoal altered the soil bacterial community structure. The amount and Shannon diversity index of bacteria in the bamboo charcoal addition treatments increased compared with CK. The quantitative analysis showed that the amount of bacteria in the treatment with bamboo charcoal of fine particle (D < 0.05 mm) at the 9% addition rate was significantly higher than in the other treatments. The fine bamboo charcoal had a great effect on soil bacteria amount compared with the charcoal of other sizes at the same addition rate.

  9. The impact of media reporting on the emergence of charcoal burning suicide in Taiwan.

    PubMed

    Chen, Ying-Yeh; Chen, Feng; Gunnell, David; Yip, Paul S F

    2013-01-01

    We investigated the association of the intensity of newspaper reporting of charcoal burning suicide with the incidence of such deaths in Taiwan during 1998-2002. A counting process approach was used to estimate the incidence of suicides and intensity of news reporting. Conditional Poisson generalized linear autoregressive models were performed to assess the association of the intensity of newspaper reporting of charcoal burning and non-charcoal burning suicides with the actual number of charcoal burning and non-charcoal burning suicides the following day. We found that increases in the reporting of charcoal burning suicide were associated with increases in the incidence of charcoal burning suicide on the following day, with each reported charcoal burning news item being associated with a 16% increase in next day charcoal burning suicide (p<.0001). However, the reporting of other methods of suicide was not related to their incidence. We conclude that extensive media reporting of charcoal burning suicides appears to have contributed to the rapid rise in the incidence of the novel method in Taiwan during the initial stage of the suicide epidemic. Regulating media reporting of novel suicide methods may prevent an epidemic spread of such new methods.

  10. Charcoal from a prehistoric copper mine in the Austrian Alps: dendrochronological and dendrological data, demand for wood and forest utilisation

    PubMed Central

    Pichler, Thomas; Nicolussi, Kurt; Goldenberg, Gert; Hanke, Klaus; Kovács, Kristóf; Thurner, Andrea

    2013-01-01

    During prehistory fire-setting was the most appropriate technique for exploiting ore deposits. Charcoal fragments found in the course of archaeological excavations in a small mine called Mauk E in the area of Schwaz/Brixlegg (Tyrol, Austria) are argued to be evidence for the use of this technology. Dendrochronological analyses of the charcoal samples yielded calendar dates for the mining activities showing that the exploitation of the Mauk E mine lasted approximately one decade in the late 8th century BC. Dendrological studies show that the miners utilised stem wood of spruce and fir from forests with high stand density for fire-setting and that the exploitation of the Mauk E mine had only a limited impact on the local forests. PMID:23565025

  11. Charcoal from a prehistoric copper mine in the Austrian Alps: dendrochronological and dendrological data, demand for wood and forest utilisation.

    PubMed

    Pichler, Thomas; Nicolussi, Kurt; Goldenberg, Gert; Hanke, Klaus; Kovács, Kristóf; Thurner, Andrea

    2013-02-01

    During prehistory fire-setting was the most appropriate technique for exploiting ore deposits. Charcoal fragments found in the course of archaeological excavations in a small mine called Mauk E in the area of Schwaz/Brixlegg (Tyrol, Austria) are argued to be evidence for the use of this technology. Dendrochronological analyses of the charcoal samples yielded calendar dates for the mining activities showing that the exploitation of the Mauk E mine lasted approximately one decade in the late 8th century BC. Dendrological studies show that the miners utilised stem wood of spruce and fir from forests with high stand density for fire-setting and that the exploitation of the Mauk E mine had only a limited impact on the local forests.

  12. Measurement of the axial distribution of radioactivity in the auxiliary charcoal bed of the Molten Salt Reactor Experiment at ORNL

    SciTech Connect

    Miller, L.F.; Buckner, M.; Buchanan, M.

    1999-07-01

    The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory commenced operation in 1964 and was shut down in 1969. It was fueled with {sup 233}UF{sub 4} in a carrier salt of LiF-BeF{sub 2}-ZrF{sub 4}, and it operated at 1,200 F. After it was shut down, the fuel was heated annually to 200 C to recombine fluorine (with the fuel) released due to radiation-induced reactions in the fuel salt. However, a competing reaction oxidized uranium to UF{sub 6}, which was released (along with F{sub 2}) from the fuel and trapped in one of four charcoal filters in the auxiliary charcoal bed (ACB). One of the tasks for decommissioning of the MSRE requires that at least 90% of the estimated 3 kg of {sup 233}U, and radioactive decay products, in this filter be removed, and one of the proposed methods is to vacuum the charcoal above a specified axial position in the filter. This requires that the axial distribution of activity in the filter be measured in a 60 rad/h radiation field to determine where this penetration can be made. To accomplish this, the shielded detector with a pinhole collimator, and with a laser positioning capability, was remotely translated to various axial positions to accomplish these measurements. Activities in the steel screen, and various regions of the charcoal bed, are estimated, and uncertainties in these estimates are generally {lt}1%. Results from this analysis are used for continued operational decisions for decommissioning of the MSRE.

  13. Effects of Weathering on Impregnated Charcoal Performance.

    DTIC Science & Technology

    1981-09-01

    4 A mixture of elemental iodine (0.5 wt.%) and an S" activated carbon (BC Type 177) from coconut shells was heated (6.70 C/min) in a flow of purified...Penetration of 1 3 1 ICH3 at 21°C for new (not used) Coconut Shell Commercial Carbons (impregnated) With and Without Prehumidification...Mixture of Elemental Iodine and Non-impregnated Coconut Activated Carbon . (Note: Y coordinate is logarithmic)... 87 29. Formation of Organic Iodides

  14. Removal of radioactive cesium (134Cs plus 137Cs) from low-level contaminated water by charcoal and broiler litter biochar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various charcoals (used in food processing and water treatment) and broiler litter biochar were examined for ability to adsorb water-soluble low-level radioactive cesium (ca. 200-250 Bq/kg) extracted from contaminated wheat bran. Among the materials tested, steam activated broiler litter biochar was...

  15. AcMNPV AC16 (DA26, BV/ODV-E26) regulates the levels of IE0 and IE1 and binds to both proteins via a domain located within the acidic transcriptional activation domain.

    PubMed

    Nie, Yingchao; Fang, Minggang; Theilmann, David A

    2009-03-15

    IE0 and IE1 are the primary viral regulatory proteins of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) involved in the transactivation of early genes, stimulation of late gene expression, and viral DNA replication. The protein interactions required for IE0 or IE1 to achieve these varied roles are not well defined, so to identify proteins that interact with IE0 and IE1, tandem affinity purification (TAP) and LC-MS/MS was used. Analysis of purified proteins identified AC16 (DA26, BV/ODV-E26) from TAP tagged IE0 virus infected Sf9 cells. Co-immunoprecipitation confirmed that AC16 interacts with both IE0 and IE1 and yeast 2-hybrid analysis mapped the domain required for interaction with AC16. Mutation of the AC16 binding domain enhanced BV production by viruses expressing only IE0 but had no effect if only IE1 is expressed. An ac16 deletion virus was constructed and was shown not to affect the temporal expression of IE0 and IE1; however the relative level of IE0 to IE1 was significantly increased.

  16. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans.

    PubMed

    Jaffé, Rudolf; Ding, Yan; Niggemann, Jutta; Vähätalo, Anssi V; Stubbins, Aron; Spencer, Robert G M; Campbell, John; Dittmar, Thorsten

    2013-04-19

    Global biomass burning generates 40 million to 250 million tons of charcoal every year, part of which is preserved for millennia in soils and sediments. We have quantified dissolution products of charcoal in a wide range of rivers worldwide and show that globally, a major portion of the annual charcoal production is lost from soils via dissolution and subsequent transport to the ocean. The global flux of soluble charcoal accounts to 26.5 ± 1.8 million tons per year, which is ~10% of the global riverine flux of dissolved organic carbon (DOC). We suggest that the mobilization of charcoal and DOC out of soils is mechanistically coupled. This study closes a major gap in the global charcoal budget and provides critical information in the context of geoengineering.

  17. Effect of beer marinades on formation of polycyclic aromatic hydrocarbons in charcoal-grilled pork.

    PubMed

    Viegas, Olga; Yebra-Pimentel, Iria; Martínez-Carballo, Elena; Simal-Gandara, Jesus; Ferreira, Isabel M P L V O

    2014-03-26

    The effect of marinating meat with Pilsner beer, nonalcoholic Pilsner beer, and Black beer (coded respectively PB, P0B, and BB) on the formation of polycyclic aromatic hydrocarbons (PAHs) in charcoal-grilled pork was evaluated and compared with the formation of these compounds in unmarinated meat. Antiradical activity of marinades (DPPH assay) was assayed. BB exhibited the strongest scavenging activity (68.0%), followed by P0B (36.5%) and PB (29.5%). Control and marinated meat samples contained the eight PAHs named PAH8 by the EFSA and classified as suitable indicators for carcinogenic potency of PAHs in food. BB showed the highest inhibitory effect in the formation of PAH8 (53%), followed by P0B (25%) and PB (13%). The inhibitory effect of beer marinades on PAH8 increased with the increase of their radical-scavenging activity. BB marinade was the most efficient on reduction of PAH formation, providing a proper mitigation strategy.

  18. Relationships among charcoal particles from modern lacustrine sediments and remotely sensed fire events

    NASA Astrophysics Data System (ADS)

    López-Pérez, M.; Correa-Metrio, A.

    2013-05-01

    Analysis of charcoal particles from lacustrine sediments is a useful tool to understand fire regimes through time, and their relationships with climate and vegetation. However, the extent of the relationship between charcoal particles and their origin in terms of the spatial and temporal extent of the fire events is poorly known in the tropics. Modern sediments were collected from lakes in the Yucatan Peninsula and Central Mexico, 51 and 22 lakes respectively, to analyze their charcoal concentration and its relationships with modern fire events. Number of modern fire events was derived from the public source Fire Information for Resource Management System (FIRMS) for concentric spatial rings that ranged from 1 to 30 km of radius. The association between charcoal and fires was evaluated through the construction of linear models to explain charcoal concentration as a function of the number of fires recorded. Additionally, charcoal particles were stratified according to size to determine the association between fire distance and charcoal size classes. The relationship between total charcoal concentration and fire events was stronger for central Mexico than for the Yucatan Peninsula, which is probably the result of differences in vegetation cover. The highest determination coefficients were obtained for charcoal particle sizes ranging between 0.2 and 0.8 mm2, and for fire event distances of between 0 and 15 km from the lake. Overall, the analyses presented here offer useful tools to quantitatively and spatially reconstruct past regional fire dynamics in Central Mexico and the Yucatan Peninsula.

  19. Recovery and Determination of Adsorbed Technetium on Savannah River Site Charcoal Stack Samples

    SciTech Connect

    Lahoda, Kristy G.; Engelmann, Mark D.; Farmer, Orville T.; Ballou, Nathan E.

    2008-03-01

    Experimental results are provided for the sample analyses for technetium (Tc) in charcoal samples placed in-line with a Savannah River Site (SRS) processing stack effluent stream as a part of an environmental surveillance program. The method for Tc removal from charcoal was based on that originally developed with high purity charcoal. Presented is the process that allowed for the quantitative analysis of 99Tc in SRS charcoal stack samples with and without 97Tc as a tracer. The results obtained with the method using the 97Tc tracer quantitatively confirm the results obtained with no tracer added. All samples contain 99Tc at the pg g-1 level.

  20. Charcoal morphometry for paleoecological analysis: The effects of fuel type and transportation on morphological parameters1

    PubMed Central

    Crawford, Alastair J.; Belcher, Claire M.

    2014-01-01

    • Premise of the study: Charcoal particles preserved in sediments are used as indicators of paleowildfire. Most research focuses on abundance as an indicator of fire frequency, but charcoals also convey information about the vegetation from which they are derived. One potential source of information is their morphology, which is influenced by the parent material, the nature of the fire, and subsequent transportation and burial. • Methods: We charcoalified 26 materials from a range of plant taxa, and subjected them to simulated fluvial transport by tumbling them with water and gravel. We photographed the resulting particles, and used image analysis software to measure morphological parameters. • Results: Leaf charcoal displayed a logarithmic decrease in area, and a logarithmic increase in circularity, with transportation time. Trends were less clear for stem or wood charcoal. Grass charcoal displayed significantly higher aspect ratios than other charcoal types. • Conclusions: Leaf charcoal displays more easily definable relationships between morphological parameters and degree of breakdown than stem or wood charcoal. The aspect ratios of fossil mesocharcoal can indicate the broad botanical source of an assemblage. Coupled to estimates of charcoal abundance, this will improve understanding of the variation in flammability of ancient ecosystems. PMID:25202644

  1. The effect of weathering on charcoal filter performance. 2; The effect of contaminants on the CH sub 3 I removal efficiency of TEDA charcoal

    SciTech Connect

    Wren, J.C.; Moore, C.J. )

    1991-05-01

    The effect of various contaminants, namely NO{sub 2} SO{sub 2}, 2-butanone (methyl-ethyl-ketone (MEK)), and NH{sub 3}, on the radioiodine removal efficiency of triethylenediamine (TEDA)-impregnated charcoal filters has been studied, and an attempt was made to characterize and quantify the weathering process of TEDA charcoal by these contaminants. The effects of the contaminants on the CH{sub 3}I removal efficiency of TEDA charcoal under dry and humid conditions are described. Based on our results, the efficiency of TEDA charcoal is degraded most by NO{sub 2} and SO{sub 2}, NH{sub 3} has a negligible effect, and MEK produces a mild degradation. The degree of degradation parallels the contaminant's ability to be chemisorbed on the TEDA impregnant. The combined effect of water vapor and a contaminant of the charcoal efficiency is different for each contaminant. Nitrogen dioxide absorbed under dry conditions is more effective in degrading the CH{sub 2}I removal efficiency of the charcoal that when absorbed under humid conditions. On the other hand, a completely opposite result is observed for SO{sub 2}. The MEK contaminant behaves similarly to SO{sub 2} but the effect of humidity was less significant than for SO{sub 2}. Ammonia has no effect on the efficiency of the charcoal regardless of humidity.

  2. Impact of Plasma Surface Treatment on Bamboo Charcoal/silver Nanocomposite

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Vijayalakshmi, K. A.; Karthikeyan, N.

    2016-10-01

    Bamboo charcoal (BC) accompanied silver (Ag) nanocomposite is synthesized through sol-gel method. The produced BC/Ag nanocomposite was surface modified by air and oxygen plasma treatments. Silver ions (Ag+) will serve to improve the antibacterial activity as well as the surface area of BC. Plasma treatment has improved the surface functional groups, crystalline intensity and antibacterial activity of the prepared nanocomposite. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies show that Ag nanoparticles have good agreement with BC and the particle size has a mean diameter of 20-40nm. We observe the carboxyl functional groups in Fourier transform infrared spectroscopy (FTIR) after the oxygen plasma treatment. Moreover surface area and adsorption were analyzed by using the Brunauer, Emmett and Teller (BET) surface area (SBET) and UV-Vis spectroscopy.

  3. Synthetic fusion-protein containing domains of Bt Cry1Ac and Allium sativum lectin (ASAL) conferred enhanced insecticidal activity against major lepidopteran pests.

    PubMed

    Tajne, Sunita; Boddupally, Dayakar; Sadumpati, Vijayakumar; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2014-02-10

    Different transgenic crop plants, developed with δ-endotoxins of Bacillus thuringiensis (Bt) and mannose-specific plant lectins, exhibited significant protection against chewing and sucking insects. In the present study, a synthetic gene (cry-asal) encoding the fusion-protein having 488 amino acids, comprising DI and DII domains from Bt Cry1Ac and Allium sativum agglutinin (ASAL), was cloned and expressed in Escherichia coli. Ligand blot analysis disclosed that the fusion-protein could bind to more number of receptors of brush border membrane vesicle (BBMV) proteins of Helicoverpa armigera. Artificial diet bioassays revealed that 0.025 μg/g and 0.50 μg/g of fusion-protein were sufficient to cause 100% mortality in Pectinophora gossypiella and H. armigera insects, respectively. As compared to Cry1Ac, the fusion-protein showed enhanced (8-fold and 30-fold) insecticidal activity against two major lepidopteran pests. Binding of fusion-protein to the additional receptors in the midgut cells of insects is attributable to its enhanced entomotoxic effect. The synthetic gene, first of its kind, appears promising and might serve as a potential candidate for engineering crop plants against major insect pests.

  4. Diversity in gut microflora of Helicoverpa armigera populations from different regions in relation to biological activity of Bacillus thuringiensis δ-endotoxin Cry1Ac.

    PubMed

    Paramasiva, Inakarla; Shouche, Yogesh; Kulkarni, Girish Jayant; Krishnayya, Pulipaka Venkata; Akbar, Shaik Mohammed; Sharma, Hari Chand

    2014-12-01

    Transgenic crops expressing toxin proteins from Bacillus thuringiensis (Bt) have been deployed on a large scale for management of Helicoverpa armigera. Resistance to Bt toxins has been documented in several papers, and therefore, we examined the role of midgut microflora of H. armigera in its susceptibility to Bt toxins. The susceptibility of H. armigera to Bt toxin Cry1Ac was assessed using Log-dose-Probit analysis, and the microbial communities were identified by 16S rRNA sequencing. The H. armigera populations from nine locations harbored diverse microbial communities, and had some unique bacteria, suggesting a wide geographical variation in microbial community in the midgut of the pod borer larvae. Phylotypes belonging to 32 genera were identified in the H. armigera midgut in field populations from nine locations. Bacteria belonging to Enterobacteriaceae (Order Bacillales) were present in all the populations, and these may be the common members of the H. armigera larval midgut microflora. Presence and/or absence of certain species were linked to H. armigera susceptibility to Bt toxins, but there were no clear trends across locations. Variation in susceptibility of F1 neonates of H. armigera from different locations to the Bt toxin Cry1Ac was found to be 3.4-fold. These findings support the idea that insect migut microflora may influence the biological activity of Bt toxins.

  5. Acute Kidney Injury Predicts Mortality after Charcoal Burning Suicide

    PubMed Central

    Chen, Yu-Chin; Tseng, Yi-Chia; Huang, Wen-Hung; Hsu, Ching-Wei; Weng, Cheng-Hao; Liu, Shou-Hsuan; Yang, Huang-Yu; Chen, Kuan-Hsin; Chen, Hui-Ling; Fu, Jen-Fen; Lin, Wey-Ran; Wang, I-Kuan; Yen, Tzung-Hai

    2016-01-01

    A paucity of literature exists on risk factors for mortality in charcoal burning suicide. In this observational study, we analyzed the data of 126 patients with charcoal burning suicide that seen between 2002 and 2013. Patients were grouped according to status of renal damage as acute kidney injury (N = 49) or non-acute kidney injury (N = 77). It was found that patients with acute kidney injury suffered severer complications such as respiratory failure (P = 0.002), myocardial injury (P = 0.049), hepatic injury (P < 0.001), rhabdomyolysis (P = 0.045) and out-of-hospital cardiac arrest (P = 0.028) than patients without acute kidney injury. Moreover, patients with acute kidney injury suffered longer hospitalization duration (16.9 ± 18.3 versus 10.7 ± 10.9, P = 0.002) and had higher mortality rate (8.2% versus 0%, P = 0.011) than patients without injury. In a multivariate Cox regression model, it was demonstrated that serum creatinine level (P = 0.019) and heart rate (P = 0.022) were significant risk factors for mortality. Finally, Kaplan-Meier analysis revealed that patients with acute kidney injury suffered lower cumulative survival than without injury (P = 0.016). In summary, the overall mortality rate of charcoal burning suicide population was 3.2%, and acute kidney injury was a powerful predictor of mortality. Further studies are warranted. PMID:27430168

  6. Detection of hidden pre-industrial charcoal kilns by high-resolution LIDAR

    NASA Astrophysics Data System (ADS)

    Raab, Thomas; Raab, Alexandra; Nicolay, Alexander; Takla, Melanie; Rösler, Horst; Bönisch, Eberhard

    2013-04-01

    Over the last decade, systematic archaeological excavations in the open-cast mine Jänschwalde (Brandenburg, Germany) have revealed one of the largest, archaeologically excavated pre-industrial charcoal production area in Central Europe. Many of the charcoal kiln relics are easy to detect by survey as they lie close to the surface and charcoal pieces hint on their existence. In the excavations the remains of the charcoal kilns are distinct, black circles in the light-coloured sands. To date, in the former Königlich-Taubendorfer Forst c. 800 remains of charcoal hearths have been excavated and documented by archaeologists in an area of about 20 km2. Further c. 300 charcoal hearths are prospected by survey. Unfortunately, the spatial information about the charcoal kiln sites in Lower Lusatia (and elsewhere) is incomplete since we only have data from the archaeological excavation and prospection in the directly affected mining district. To fill this gap, we decided to test the applicability of Airborne Laser Scanning (ALS) data for charcoal kiln prospection. The particularly improved quality of the recent high-resolution light detection and ranging (LIDAR) data enabled the computer-aided detection of charcoal kilns and their evaluation using a geographical information system (GIS). Following data processing, the charcoal kilns are visible as buttons-like shapes in the shaded-relief maps (SRM). The characteristic shapes arise because the kiln plates are some centimetres to decimetres higher than the ditches around them. Numerous ground checks confirmed the applicability of the prospection by ALS data. But, we also assume that c. 10% of the charcoal kilns remain unidentified. A 26.6 km2 study area in the Tauerscher Forst, a forest about 10 km northwest of the open-cast mine Jänschwalde, was selected for prospection using a 1 m resolution ALS data set from the year 2011. Today, the area is forested with pine, and no archaeological excavation has been carried out so far

  7. A synthesis of parameters related to the binding of neutral organic compounds to charcoal.

    PubMed

    Hale, Sarah E; Arp, Hans Peter H; Kupryianchyk, Darya; Cornelissen, Gerard

    2016-02-01

    The sorption strength of neutral organic compounds to charcoal, also called biochar was reviewed and related to charcoal and compound properties. From 29 studies, 507 individual Freundlich sorption coefficients were compiled that covered the sorption strength of 107 organic contaminants. These sorption coefficients were converted into charcoal-water distribution coefficients (K(D)) at aqueous concentrations of 1 ng/L, 1 µg/L and 1 mg/L. Reported log K(D) values at 1 µg/L varied from 0.38 to 8.25 across all data. Variation was also observed within the compound classes; pesticides, herbicides and insecticides, PAHs, phthalates, halogenated organics, small organics, alcohols and PCBs. Five commonly reported variables; charcoal production temperature T, surface area SA, H/C and O/C ratios and organic compound octanol-water partitioning coefficient, were correlated with KD values using single and multiple-parameter linear regressions. The sorption strength of organic compounds to charcoals increased with increasing charcoal production temperature T, charcoal SA and organic pollutant octanol-water partitioning coefficient and decreased with increasing charcoal O/C ratio and charcoal H/C ratio. T was found to be correlated with SA (r(2) = 0.66) and O/C (r(2) = 0.50), particularly for charcoals produced from wood feedstocks (r(2) = 0.73 and 0.80, respectively). The resulting regression: log K(D)=(0.18 ± 0.06) log K(ow) + (5.74 ± 1.40) log T + (0.85 ± 0.15) log SA + (1.60 ± 0.29) log OC + (-0.89 ± 0.20) log HC + (-13.20 ± 3.69), r(2) = 0.60, root mean squared error = 0.95, n = 151 was obtained for all variables. This information can be used as an initial screening to identify charcoals for contaminated soil and sediment remediation.

  8. Spatial analysis of charcoal kiln remains in the former royal forest district Tauer (Lower Lusatia, North German Lowlands)

    NASA Astrophysics Data System (ADS)

    Raab, Alexandra; Schneider, Anna; Bonhage, Alexander; Takla, Melanie; Hirsch, Florian; Müller, Frank; Rösler, Horst; Heußner, Karl-Uwe

    2016-04-01

    Archaeological excavations have revealed more than thousand charcoal kiln remains (CKRs) in the prefield of the active opencast lignite mine Jänschwalde, situated about 150 km SE of Berlin (SE Brandenburg, Germany). The charcoal was mainly produced for the ironwork Peitz nearby, which operated from the 16th to the mid-19th centuries. In a first approach, to estimate the dimension of the charcoal production, CKRs were mapped on shaded-relief maps (SRMs) derived from high-resolution LiDAR data (Raab et al. 2015). Subsequently, for a selected test area, identified CKRs on the SRMs were compared with archaeologically excavated CKRs in the field. This survey showed a considerably number of falsely detected sites. Therefore, the data was critically re-evaluated using additional relief visualisations. Further, we extended the CKR mapping to areas which are not archaeologically investigated. The study area, the former royal forest district Tauer, consists of two separate areas: the Tauersche Heide (c. 96 km2 area) N of Peitz and the area Jänschwalde (c. 32 km2 area) NE of Peitz. The study area is characterized by a flat topography. Different former and current anthropogenic uses (e.g., military training, solar power plant, forestry measures) have affected the study area, resulting in extensive disturbances of the terrain surface. The revised CKR abundance in the study area Jänschwalde was considerably smaller than the numbers produced by our first approach. Further, the CKR mapping revealed, that a total record of the CKRs is not possible for various reasons. Despite these limitations, a solid database can be provided for a much larger area than before. Basic statistic parameters of the CKR diameters and all comparative statistical tests were calculated using SPSS. To detect underlying spatial relationships in the CKR site distribution, we applied the Getis-Ord Gi* statistic, a method to test for local spatial autocorrelation between neighbouring sites. The test is

  9. Effects of changing hydraulic and organic loading rates on pollutant reduction in bark, charcoal and sand filters treating greywater.

    PubMed

    Dalahmeh, Sahar S; Pell, Mikael; Hylander, Lars D; Lalander, Cecilia; Vinnerås, Björn; Jönsson, Håkan

    2014-01-01

    Greywater flows and concentrations vary greatly, thus evaluation and prediction of the response of on-site treatment filters to variable loading regimes is challenging. The performance of 0.6 m × 0.2 m (height × diameter) filters of bark, activated charcoal and sand in reduction of biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total nitrogen (Tot-N) and total phosphorus (Tot-P) under variable loading regimes was investigated and modelled. During seven runs, the filters were fed with synthetic greywater at hydraulic loading rates (HLR) of 32-128 L m(-2) day(-1) and organic loading rates (OLR) of 13-76 g BOD5 m(-2) day(-1). Based on the changes in HLR and OLR, the reduction in pollutants was modelled using multiple linear regression. The models showed that increasing the HLR from 32 to 128 L m(-2) day(-1) decreased COD reduction in the bark filters from 74 to 40%, but increased COD reduction in the charcoal and sand filters from 76 to 90% and 65 to 83%, respectively. Moreover, the models showed that increasing the OLR from 13 to 76 g BOD5 m(-2) day(-1) enhanced the pollutant reduction in all filters except for Tot-P in the bark filters, which decreased slightly from 81 to 73%. Decreasing the HLR from 128 to 32 L m(-2) day(-1) enhanced the pollutant reduction in all filters, but decreasing the OLR from 76 to 14 g BOD5 m(-2) day(-1) detached biofilm and decreased the Tot-N and Tot-P reduction in the bark and sand filters. Overall, the bark filters had the capacity to treat high OLR, while the charcoal filters had the capacity to treat high HLR and high OLR. Both bark and charcoal filters had higher capacity than sand filters in dealing with high and variable loads. Bark seems to be an attractive substitute for sand filters in settings short in water and its effluent would be valuable for irrigation, while charcoal filters should be an attractive alternative for settings both rich and short in water supply and when

  10. Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope

    PubMed Central

    González, José María; Navarro-Puche, Ana; Casar, Berta; Crespo, Piero; Andrés, Vicente

    2008-01-01

    Sequestration of c-Fos at the nuclear envelope (NE) through interaction with A-type lamins suppresses AP-1–dependent transcription. We show here that c-Fos accumulation within the extraction-resistant nuclear fraction (ERNF) and its interaction with lamin A are reduced and enhanced by gain-of and loss-of ERK1/2 activity, respectively. Moreover, hindering ERK1/2-dependent phosphorylation of c-Fos attenuates its release from the ERNF induced by serum and promotes its interaction with lamin A. Accordingly, serum stimulation rapidly releases preexisting c-Fos from the NE via ERK1/2-dependent phosphorylation, leading to a fast activation of AP-1 before de novo c-Fos synthesis. Moreover, lamin A–null cells exhibit increased AP-1 activity and reduced levels of c-Fos phosphorylation. We also find that active ERK1/2 interacts with lamin A and colocalizes with c-Fos and A-type lamins at the NE. Thus, NE-bound ERK1/2 functions as a molecular switch for rapid mitogen-dependent AP-1 activation through phosphorylation-induced release of preexisting c-Fos from its inhibitory interaction with lamin A/C. PMID:19015316

  11. Effect of charcoal amendment on adsorption, leaching and degradation of isoproturon in soils.

    PubMed

    Si, Youbin; Wang, Midao; Tian, Chao; Zhou, Jing; Zhou, Dongmei

    2011-04-01

    The effects of charcoal amendment on adsorption, leaching and degradation of the herbicide isoproturon in soils were studied under laboratory conditions. The adsorption data all fitted well with the Freundlich empirical equation. It was found that the adsorption of isoproturon in soils increased with the rate of charcoal amended (correlation coefficient r=0.957**, P<0.01). The amount of isoproturon in leachate decreased with the increase of the amount of charcoal addition to soil column, while the retention of isoproturon in soils increased with an increase in the charcoal content of soil samples. Biodegradation was still the most significant mechanism for isoproturon dissipation from soil. Charcoal amendment greatly reduced the biodegradation of isoproturon in soils. The half-lives of isoproturon degradation (DT(50)) in soils greatly extended when the rate of added charcoal increased from 0 to 50 g kg(-1) (for Paddy soil, DT(50) values increased from 54.6 to 71.4 days; for Alfisol, DT(50) from 16.0 to 136 days; and for Vertisol, DT(50) from 15.2 to 107 days). The degradation rate of isoproturon in soils was significantly negatively correlated with the amount of added charcoal. This research suggests that charcoal amendment may be an effective management practice for reducing pesticide leaching and enhancing its persistence in soils.

  12. Digital image processing applications in the ignition and combustion of char/coal particles

    SciTech Connect

    Annamalai, K.; Kharbat, E.; Goplakrishnan, C.

    1992-12-01

    Digital image processing, is employed in this remarch study in order to visually investigate the ignition and combustion characteristics of isolated char/coal particles as well as the effect of interactivecombustion in two-particle char/coal arrays. Preliminary experiments are conducted on miniature isolated candles as well as two-candle arrays.

  13. Carbon Sequestration and Fertility after Centennial Time Scale Incorporation of Charcoal into Soil

    PubMed Central

    Criscuoli, Irene; Alberti, Giorgio; Baronti, Silvia; Favilli, Filippo; Martinez, Cristina; Calzolari, Costanza; Pusceddu, Emanuela; Rumpel, Cornelia; Viola, Roberto; Miglietta, Franco

    2014-01-01

    The addition of pyrogenic carbon (C) in the soil is considered a potential strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil physico-chemical properties by studying a series of abandoned charcoal hearths in the Eastern Alps of Italy established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of pyrogenic C present in the hearths (23.3±4.7 kg C m−2) with the estimated amount of charcoal that was left on the soil after the carbonization (29.3±5.1 kg C m−2). After taking into account uncertainty associated with parameters’ estimation, we were able to conclude that 80±21% of the C originally added to the soil via charcoal can still be found there and that charcoal has an overall Mean Residence Time of 650±139 years, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an overall change in the physical properties (hydrophobicity and bulk density) of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. We caution, however, that our site-specific results should not be generalized without further study. PMID:24614647

  14. URINARY MUTAGENICITY IN CHARCOAL WORKERS: A CROSS-SECTIONAL STUDY IN NORTHEASTERN BRAZIL

    EPA Science Inventory

    Urinary Mutagenicity in charcoal workers: a cross-sectional study in northeastern Brazil

    Charcoal production by wood carbonization is an ancient process that has changed little since the Bronze Age. Its production in large scale is necessary to sustain some steel and pig...

  15. Water adsorption on charcoal: New approach in experimental studies and data representation

    SciTech Connect

    Geynisman, M.; Walker, R.

    1991-08-01

    The experimental apparatus was built to study the H{sub 2}O adsorption on charcoal at very low concentrations and collect the data in the form of isosteres. Experimental method is discussed and the global three-dimensional fit is constructed to predict the post-regeneration conditions of charcoal absorbers. 11 refs.

  16. The effect of weathering on charcoal filter performance. 1; The adsorption and desorption behavior of contaminants

    SciTech Connect

    Wren, J.C.; Moore, C.J. )

    1991-05-01

    This paper reports on triethylenediamine (TEDA) impregnated charcoals, used in nuclear reactors to safeguard against the release of airborne radioiodine, which show high efficiency under various reactor operation and accident conditions when the are new. However, during normal operation, charcoal filters are continuously degraded (or weathered) due to the adsorption of moisture and other air contaminants. The effect of weathering on the efficiency of charcoal for removing radioiodine is of great interest. The results of a study on the adsorption behavior of various contaminants NO{sub 2}, SO{sub 2} 2-butanone (methyl-ethyl ketone (MEK)) and NH{sub 3} on TEDA charcoal are presented. This study is an attempt to characterize and quantify the weathering process of TEDA charcoal by these contaminants. The adsorption and desorption of characteristics of these contaminants range from completely irreversible (NO{sub 2}) to completely reversible (NH{sub 3}). The effect of absorbed water (or humidity) on absorption is different for each contaminant. Absorbed water increases the absorption rate and capacity of TEDA charcoal for NO{sub 2}. However, it appears that SO{sub 2} is absorbed as H{sub 2}SO{sub 4} on the wet charcoal. Absorbed water slightly reduces the adsorption capacity of the charcoal for MEK, but does not affect the absorption of NH{sub 3}.

  17. Potassium and Phosphorus Have No Effects on Severity of Charcoal Rot of Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of potassium (K) and phosphorus (P) fertilizers on charcoal rot of soybean [Glycine max (L.) Merr.] are unknown. Therefore, the severity of charcoal rot was studied at five levels of K (0, 37, 75, 111 and 149 kg K ha-1) and a level that was equal to the recommended fertilizer applicatio...

  18. Potassium and Phosphorus effects on disease severity of charcoal rot of soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of potassium (K) and phosphorus (P) fertilizers on charcoal rot of soybean [Glycine max (L.) Merr.] are unknown. Therefore, the severity of charcoal rot was studied at five levels of K (0, 37, 75, 111 and 149 kg K ha-1) and a level that was equal to the recommended fertilizer applicatio...

  19. Rapid spread of suicide by charcoal burning from 2007 to 2011 in Korea.

    PubMed

    Lee, Ah-Rong; Ahn, Myung Hee; Lee, Tae Yeop; Park, Subin; Hong, Jin Pyo

    2014-11-30

    Despite rapid increase of suicide by charcoal burning within 5 years, little is known about the characteristics of charcoal burning suicide in Korea. This study aimed to examine the trends and risk factors in the spread of suicide using this method. We identified an association between media reporting of suicide by charcoal burning and its incidence. Data on suicide from 2007 to 2011 were obtained from the Korean National Statistical Office. Cross-correlation analysis was used. Increasing incidence of suicide by charcoal burning was correlated with higher education levels, male sex, and the latter half of the year. Victims of charcoal burning suicide were more likely to be young, male, single, highly educated, professional, urban-based, and to die between October and December. Internet reports of suicide via charcoal burning tended to precede the increased incidence of suicide using this method, but only during the early period of the suicide epidemic. Our findings suggest that one episode of heavy media coverage of a novel method, such as charcoal burning, is sufficient to increase the prevalence of suicide by that method even after media coverage decreases. These findings are expected to contribute to the prevention of increasing rates of suicide by charcoal burning.

  20. ESTIMATION OF EMISSIONS FROM CHARCOAL LIGHTER FLUID AND REVIEW OF ALTERNATIVES

    EPA Science Inventory

    The report gives results of an evaluation of emissions of volatile organic compounds (VOCs) from charcoal lighter fluid, a consumer product consisting entirely of volatile constituents. An estimated 46,250 tons (42,000 Mg) of charcoal lighter fluid is used in the U.S. each year. ...

  1. Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil.

    PubMed

    Criscuoli, Irene; Alberti, Giorgio; Baronti, Silvia; Favilli, Filippo; Martinez, Cristina; Calzolari, Costanza; Pusceddu, Emanuela; Rumpel, Cornelia; Viola, Roberto; Miglietta, Franco

    2014-01-01

    The addition of pyrogenic carbon (C) in the soil is considered a potential strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil physico-chemical properties by studying a series of abandoned charcoal hearths in the Eastern Alps of Italy established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of pyrogenic C present in the hearths (23.3±4.7 kg C m(-2)) with the estimated amount of charcoal that was left on the soil after the carbonization (29.3±5.1 kg C m(-2)). After taking into account uncertainty associated with parameters' estimation, we were able to conclude that 80±21% of the C originally added to the soil via charcoal can still be found there and that charcoal has an overall Mean Residence Time of 650±139 years, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an overall change in the physical properties (hydrophobicity and bulk density) of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. We caution, however, that our site-specific results should not be generalized without further study.

  2. Experimental Research of Pyrolysis Gases Cracking on Surface of Charcoal

    NASA Astrophysics Data System (ADS)

    Kosov, Valentin; Kosov, Vladimir; Zaichenko, Victor

    For several years, in the Joint Institute for High Temperatures of Russian Academy of Sciences, two-stage technology of biomass processing has been developing [1]. The technology is based on pyrolysis of biomass as the first stage. The second stage is high-temperature conversion of liquid fraction of the pyrolysis on the surface of porous charcoal matrix. Synthesis gas consisted of carbon monoxide and hydrogen is the main products of the technology. This gas is proposed to be used as fuel for gas-engine power plant. For practical implementation of the technology it is important to know the size of hot char filter for full cracking of the pyrolysis gases on the surface of charcoal. Theoretical determination of the cracking parameters of the pyrolysis gases on the surface of coal is extremely difficult because the pyrolysis gases include tars, whose composition and structure is complicated and depends on the type of initial biomass. It is also necessary to know the surface area of the char used in the filter, which is also a difficult task. Experimental determination of the hot char filter parameters is presented. It is shown that proposed experimental method can be used for different types of biomass.

  3. The antidepressant-like activity of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one involves serotonergic 5-HT(1A) and 5-HT(2A/C) receptors activation.

    PubMed

    Pytka, Karolina; Walczak, Maria; Kij, Agnieszka; Rapacz, Anna; Siwek, Agata; Kazek, Grzegorz; Olczyk, Adrian; Gałuszka, Adam; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara

    2015-10-05

    Xanthone derivatives have been shown to posses many biological properties. Some of them act within the central nervous system and show neuroprotective or antidepressant-like properties. Taking this into account we investigated antidepressant-like activity in mice and the possible mechanism of action of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one (HBK-11) - a new xanthone derivative. We demonstrated that HBK-11 produced antidepressant-like effects in the forced swim test and tail suspension test, comparable to that of venlafaxine. The combined treatment with sub-effective doses of HBK-11 and fluoxetine (but not reboxetine or bupropion) significantly reduced the immobility in the forced swim test. Moreover, the antidepressant-like activity of HBK-11 in the aforementioned test was blocked by p-chlorophenylalanine, and significantly reduced by serotonergic 5HT1A receptor antagonist - WAY-1006335 and 5HT2A/C receptor antagonist - ritanserin. As none of the above treatments influenced the spontaneous locomotor activity, it can be concluded that HBK-11 mediates its activity through a serotonergic system, and its antidepressant-like effect involves 5HT1A and 5HT2A/C receptor activation. Furthermore, at antidepressant-like doses HBK-11 did not cause the mice to display locomotor deficits in rotarod or chimney tests. Considering the pharmacokinetic profile, HBK-11 demonstrated rapid absorption after i.p. administration, high clearance value, short terminal half-life, very high volume of distribution and incomplete bioavailability. The compound studied had good penetration into the brain tissue of mice. Since studied xanthone derivative seems to present interesting, untypical mechanism of antidepressant-like action i.e. 5HT2A/C receptor activation, it may have a potential in the treatment of depressive disorders, and surely requires further studies.

  4. Comparison of two methods for high purity germanium detector efficiency calibration for charcoal canister radon measurement.

    PubMed

    Nikolic, J; Pantelic, G; Zivanovic, M; Rajacic, M; Todorovic, D

    2014-11-01

    The charcoal canister method of radon measurement according to US Environment Protection Agency protocol 520/5-87-005 is widely used for screening. This method is based on radon adsorption on coal and measurement of gamma radiation of radon daughters. For the purpose of gamma spectrometry, appropriate efficiency calibration of the measuring system must be performed. The most usual method of calibration is using standard canister, a sealed canister with the same matrix and geometry as the canisters used for measurements, but with the known activity of radon. In the absence of standard canister, a different method of efficiency calibration has to be implemented. This study presents the results of efficiency calibration using the EFFTRAN efficiency transfer software. Efficiency was calculated using a soil matrix cylindrical secondary reference material as a starting point. Calculated efficiency is then compared with the one obtained using standard canister and applied to a realistic measurement in order to evaluate the results of the efficiency transfer.

  5. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal.

    PubMed

    Mizuta, Kei; Matsumoto, Toshitatsu; Hatate, Yasuo; Nishihara, Keiichi; Nakanishi, Tomoki

    2004-12-01

    The adsorption effectiveness of bamboo powder charcoal (BPC); made from the residual of Moso bamboo manufacturing; in removing nitrate-nitrogen from water has been investigated. Commercial activated carbon (CAC) was also used to compare the effectiveness of adsorption in removal of nitrate-nitrogen. The adsorption effectiveness of BPC was higher than that of CAC; regardless of the concentration of nitrate-nitrogen; in the range of 0-10 mg/l. The effect of temperature on adsorption by BPC and CAC in the range of 10-20 degrees C was also investigated. From the results, it was found that the temperature dependency of the adsorption effectiveness of BPC was weaker than that of CAC. This fact indicates that BPC can be an attractive option for the in situ treatment by adsorption of nitrate-nitrogen-contaminated underground and surface water.

  6. Use of charcoal haemoperfusion in the management of severely poisoned patients.

    PubMed Central

    Vale, J A; Rees, A J; Widdop, B; Goulding, R

    1975-01-01

    The clinical use of uncoated charcoal haemoperfusion systems, despite their efficacy, has hitherto been prevented by the occurrence of a number of adverse effects including charcoal embolism and marked thrombocytopenia. Charcoal coated with a synthetic hydrogel overcomes many of the disadvantages associated with the use of uncoated material in that there is a much reduced thrombocytopenia and no evidence of charcoal embolism. Six patients, severely poisoned as a result of overdoses of either a barbiturate or glutethimide, were haemoperfused using such a system. Four made complete recoveries, and the two patients who died had both suffered cardiorespiratory arrests before perfusion. In contrast to haemodialysis charcoal haemoperfusion is simple to initiate, less expensive in terms of manpower and equipment, and gives superior clearance data for all barbiturates and glutethimide. We believe that this technique may have a significant role to play in the management of the severely poisoned patient. Images FIG. 2 PMID:1120248

  7. Baking sunflower hulls within an aluminum envelope in a common laboratory oven yields charcoal

    PubMed Central

    Arnal, Pablo Maximiliano

    2015-01-01

    Charcoals have been widely used by scientist to research the removal of contaminants from water and air. One key feature of charcoal is that it keeps macropores from the parent material – though anisotropically contracted – and can even develop meso- and micropores. However, the controlled thermochemical conversion of biomass into charcoal at laboratory scale normally requires special setups which involve either vacuum or inert gas. Those setups may not be affordable in research groups or educational institutions where the research of charcoals would be highly welcome. In this work, I propose a simple and effective method to steer the thermochemical process that converts sunflower hulls (SFH) into charcoal with basic laboratory resources. The carbonization method: • Place SFH in an airtight aluminum envelope. • Thermally treat SFH within the envelope in a common laboratory oven. • Open the envelope to obtain the carbonized sunflower hulls. PMID:26150989

  8. Baking sunflower hulls within an aluminum envelope in a common laboratory oven yields charcoal.

    PubMed

    Arnal, Pablo Maximiliano

    2015-01-01

    Charcoals have been widely used by scientist to research the removal of contaminants from water and air. One key feature of charcoal is that it keeps macropores from the parent material - though anisotropically contracted - and can even develop meso- and micropores. However, the controlled thermochemical conversion of biomass into charcoal at laboratory scale normally requires special setups which involve either vacuum or inert gas. Those setups may not be affordable in research groups or educational institutions where the research of charcoals would be highly welcome. In this work, I propose a simple and effective method to steer the thermochemical process that converts sunflower hulls (SFH) into charcoal with basic laboratory resources. The carbonization method: •Place SFH in an airtight aluminum envelope.•Thermally treat SFH within the envelope in a common laboratory oven.•Open the envelope to obtain the carbonized sunflower hulls.

  9. Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production.

    NASA Astrophysics Data System (ADS)

    Heitkötter, Julian; Marschner, Bernd

    2015-04-01

    particles, extractable DOC was lower and less aromatic than in the adjacent control soil, likely due to strong sorption of dissolved organic matter (DOM) onto charcoal particles. We suggest that higher sorption of DOM onto the surface of biochar in the control soil provided additional acid functional groups and thus increased the surface charge to a greater extent than in the DOC poorer kiln soil. Hence, biochars incubated in the kiln soil showed less changes in CEC and surface acidity. Higher availability of DOM in the control soil could also stimulate microbial activity to a larger extent, resulting in higher oxidation rates of biochars incubated in the control soil.

  10. Production of Charcoals from Cultural Waste of Mushroom and Soybean Hull

    NASA Astrophysics Data System (ADS)

    Inoue, Yoshiki; Miyamoto, Kazumichi; Machida, Hiroshi; Sasaki, Takeru; Horikoshi, Kenichi; Okamoto, Masashi

    In order to utilize cultural waste of mushroom and soybean hull as coke, conversion from dry cultural waste of mushroom (DCWM) and soybean hull (SH) into charcoal by carbonization at 400-800°C, and conversion from them into formed charcoal were investigated. The thermogravimetry tendency of DCWM was intermediate between xylan and lignin, and that of SH was intermediate between cellulose and xylan. Carbonization of DCWM and SH led to make charcoal with high carbon content and higher heating value than raw material. Regarding charcoal carbonized at 800°C, carbon contents of DCWM and SH were 56 and 72%, higher heating values of them were 20.59 and 25.52 MJ/kg, respectively. It was affected by high ash content of DCWM and SH, that carbon contents and higher heating values of these charcoals were lower than coke. On utilization charcoal of DCWM and SH as coke, a preventative method must be taken regarding lower heating value of these than coke. By hot-press forming at 160°C 98MPa from charcoal carbonized at 250°C of DCWM or SH, these charcoal pellets could be produced. And by carbonization at 300-800°C of the pellet formed at 70°C 98MPa from DCWM, carbonized pellet could be produced. In the same manner for producing carbonized pellet of DCWM, the carbonized pellet of SH could be produced, but maximum temperature of carbonization was about 400°C, from the phenomena that puff occur on the pellet in the process of carbonization of it at 500°C. From these results, it is considered effective for increasing energy density of biomass, to convert from raw material into charcoal or formed charcoal.

  11. Towards an improvement of carbon accounting for wildfires: incorporation of charcoal production into carbon emission models

    NASA Astrophysics Data System (ADS)

    Doerr, Stefan H.; Santin, Cristina; de Groot, Bill

    2015-04-01

    Every year fires release to the atmosphere the equivalent to 20-30% of the carbon (C) emissions from fossil fuel consumption, with future emissions from wildfires expected to increase under a warming climate. Critically, however, part of the biomass C affected by fire is not emitted during burning, but converted into charcoal, which is very resistant to environmental degradation and, thus, contributes to long-term C sequestration. The magnitude of charcoal production from wildfires as a long-term C sink remains essentially unknown and, to the date, charcoal production has not been included in wildfire emission and C budget models. Here we present complete inventories of charcoal production in two fuel-rich, but otherwise very different ecosystems: i) a boreal conifer forest (experimental stand-replacing crown fire; Canada, 2012) and a dry eucalyptus forest (high-intensity fuel reduction burn; Australia 2014). Our data show that, when considering all the fuel components and quantifying all the charcoal produced from each (i.e. bark, dead wood debris, fine fuels), the overall amount of charcoal produced is significant: up to a third of the biomass C affected by fire. These findings indicate that charcoal production from wildfires could represent a major and currently unaccounted error in the estimation of the effects of wildfires in the global C balance. We suggest an initial approach to include charcoal production in C emission models, by using our case study of a boreal forest fire and the Canadian Fire Effects Model (CanFIRE). We also provide recommendations of how a 'conversion factor' for charcoal production could be relatively easily estimated when emission factors for different types of fuels and fire conditions are experimentally obtained. Ultimately, this presentation is a call for integrative collaboration between the fire emission modelling community and the charcoal community to work together towards the improvement of C accounting for wildfires.

  12. Towards an inventory of historic charcoal production fields in Brandenburg, Germany

    NASA Astrophysics Data System (ADS)

    Schneider, Anna; Takla, Melanie; Raab, Alexandra; Raab, Thomas; Bonhage, Alexander; Hirsch, Florian; Rösler, Horst

    2015-04-01

    The historic production of charcoal is an important component of the late Holocene fire history for many landscapes. Charcoal production can have numerous effects on ecosystems, e.g., through changes in forest area and structure, or through the effects of pyrolysis, charcoal and ash addition to soils. To assess such effects, it is necessary to understand the spatial extent and patterns of historic charcoal production, which has so far hardly been approached for the Northern European Lowlands. In the forefield of the open-cast mine Jänschwalde (north of Cottbus, Germany), archaeological excavations have revealed one of the largest charcoal production fields described so far. For this area, we applied and evaluated different methods for mapping the spatial distribution of charcoal kiln remains. Based on our results from this exceptionally well-described charcoal production field, we attempted to detect and map other large occurrences of charcoal kiln remains in the state of Brandenburg. For the mine forefield, archaeological excavations provide certain and exact information on kiln site location and geometry. Using airborne laser scanning elevation models, the mapping of kiln sites could be extended to areas beyond the mine forefield, using a manual digitization for thorough mapping in forest areas north of Cottbus, and an automated mapping approach for detection of kiln sites for additional areas in Brandenburg. Potential areas of large-scale production were identified in a GIS-based analysis of environmental and historic data. By manual digitization from Shaded Relief Maps, more than 5000 kiln sites in an area of 32 km2 were detected in the Jänschwalde mine forefield. First results of mapping for larger areas indicate similar densities, but smaller diameters of kiln sites in other charcoal production fields; and show that charcoal production is a so far underestimated component of the land use history in many parts of the Northern European Lowlands.

  13. Suppression of piriform cortex activity in rat by corticotropin-releasing factor 1 and serotonin 2A/C receptors.

    PubMed

    Narla, Chakravarthi; Dunn, Henry A; Ferguson, Stephen S G; Poulter, Michael O

    2015-01-01

    The piriform cortex (PC) is richly innervated by corticotropin-releasing factor (CRF) and serotonin (5-HT) containing axons arising from central amygdala and Raphe nucleus. CRFR1 and 5-HT2A/2CRs have been shown to interact in manner where CRFR activation subsequently potentiates the activity of 5-HT2A/2CRs. The purpose of this study was to determine how the activation of CRFR1 and/or 5-HT2Rs modulates PC activity at both the circuit and cellular level. Voltage sensitive dye imaging showed that CRF acting through CRFR1 dampened activation of the Layer II of PC and interneurons of endopiriform nucleus. Application of the selective 5-HT2A/CR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) following CRFR1 activation potentiated this effect. Blocking the interaction between CRFR1 and 5-HT2R with a Tat-CRFR1-CT peptide abolished this potentiation. Application of forskolin did not mimic CRFR1 activity but instead blocked it, while a protein kinase A antagonist had no effect. However, activation and antagonism of protein kinase C (PKC) either mimicked or blocked CRF modulation, respectively. DOI had no effect when applied alone indicating that the prior activation of CRFR1 receptors was critical for DOI to show significant effects similar to CRF. Patch clamp recordings showed that both CRF and DOI reduced the synaptic responsiveness of Layer II pyramidal neurons. CRF had highly variable effects on interneurons within Layer III, both increasing and decreasing their excitability, but DOI had no effect on the excitability of this group of neurons. These data show that CRF and 5-HT, acting through both CRFR1 and 5-HT2A/CRs, reduce the activation of the PC. This modulation may be an important blunting mechanism of stressor behaviors mediated through the olfactory cortex.

  14. Autocrine Acetylcholine, Induced by IL-17A via NFκB and ERK1/2 Pathway Activation, Promotes MUC5AC and IL-8 Synthesis in Bronchial Epithelial Cells

    PubMed Central

    Montalbano, Angela Marina; Albano, Giusy Daniela; Bonanno, Anna; Riccobono, Loredana; Di Sano, Caterina; Ferraro, Maria; Siena, Liboria; Anzalone, Giulia; Gagliardo, Rosalia; Pieper, Michael Paul; Gjomarkaj, Mark; Profita, Mirella

    2016-01-01

    IL-17A is overexpressed in the lung during acute neutrophilic inflammation. Acetylcholine (ACh) increases IL-8 and Muc5AC production in airway epithelial cells. We aimed to characterize the involvement of nonneuronal components of cholinergic system on IL-8 and Muc5AC production in bronchial epithelial cells stimulated with IL-17A. Bronchial epithelial cells were stimulated with recombinant human IL-17A (rhIL-17A) to evaluate the ChAT expression, the ACh binding and production, the IL-8 release, and the Muc5AC production. Furthermore, the effectiveness of PD098,059 (inhibitor of MAPKK activation), Bay11-7082 (inhibitor of IkBα phosphorylation), Hemicholinium-3 (HCh-3) (choline uptake blocker), and Tiotropium bromide (Spiriva®) (anticholinergic drug) was tested in our in vitro model. We showed that rhIL-17A increased the expression of ChAT, the levels of ACh binding and production, and the IL-8 and Muc5AC production in stimulated bronchial epithelial cells compared with untreated cells. The pretreatment of the cells with PD098,059 and Bay11-7082 decreased the ChAT expression and the ACh production/binding, while HCh-3 and Tiotropium decreased the IL-8 and Muc5AC synthesis in bronchial epithelial cells stimulated with rhIL-17A. IL-17A is involved in the IL-8 and Muc5AC production promoting, via NFκB and ERK1/2 pathway activation, the synthesis of ChAT, and the related activity of autocrine ACh in bronchial epithelial cells. PMID:27298519

  15. ACS: ALMA Common Software

    NASA Astrophysics Data System (ADS)

    Chiozzi, Gianluca; Šekoranja, Matej

    2013-02-01

    ALMA Common Software (ACS) provides a software infrastructure common to all ALMA partners and consists of a documented collection of common patterns and components which implement those patterns. The heart of ACS is based on a distributed Component-Container model, with ACS Components implemented as CORBA objects in any of the supported programming languages. ACS provides common CORBA-based services such as logging, error and alarm management, configuration database and lifecycle management. Although designed for ALMA, ACS can and is being used in other control systems and distributed software projects, since it implements proven design patterns using state of the art, reliable technology. It also allows, through the use of well-known standard constructs and components, that other team members whom are not authors of ACS easily understand the architecture of software modules, making maintenance affordable even on a very large project.

  16. [Caring for families of charcoal-burning suicide patients].

    PubMed

    Pien, Feng-Chen; Feng, Hsin-Pei; Tzeng, Wen-Chii

    2013-12-01

    Charcoal-burning is the second major cause of suicide death in Taiwan. Predicting the variable damage and sequelae in this suicide mode is difficult due to the rapid combination of carbon monoxide with red blood cells. Delayed neuropsychological sequelae (DNS) may result in significantly extended recovery times, causing additional stress to the family. Nurses may help increase family understanding and support and guide family members to more positive intra-family interactions, shared perspectives on the recovery process, and resource seeking behavior by depicting subsequent family life and helping the entire family develop coping strategies those allow all members to effect cognitive, emotional and behavioral change. This result may help families of attempted suicide individuals recover successfully.

  17. Soil quality in a cropland soil treated with wood ash containing charcoal

    NASA Astrophysics Data System (ADS)

    Omil, Beatriz; Balboa, Miguel A.; Fonturbel, M. Teresa; Gartzia-Bengoetxea, Nahia; Arias-González, Ander; Vega, Jose A.; Merino, Agustin

    2014-05-01

    The strategy of the European Union "Europe 2020" states that by 2020, 20% of final energy consumption must come from renewables. In this scenario, there is an increasing use of biomass utilization for energy production. Indeed, it is expected that the production of wood-ash will increase in coming years. Wood ash, a mixture of ash and charcoal, generated as a by-product of biomass combustion in power plants, can be applied to soil to improve the soil quality and crop production. Since the residue contains significant content of charcoal, the application of mixed wood ash may also improve the SOM content and soil quality in the long term, in soils degraded as a consequence of intensive management. The objective of this study was asses the changes in SOM quality and soil properties in a degraded soils treated with wood ash containing charcoal. The study was carried out in a field devoted to cereal crops during the last decades. The soil was acidic (pH 4.5) with a low SOC content (3 %) and fine texture. The experiment was based on a randomised block design with four replicates. Each block included the following four treatments: Control, 16 Mg fly wood ash ha-1, 16 Mg mixed wood ash ha-1 (16 Mg) and 32 Mg mixed wood ash ha-1 (32 Mg). The application was carried out once. The ash used in the study was obtained from a thermal power plant and was mainly derived from the combustion of Pinus radiata bark and branches. The wood ash is highly alkaline (pH= 10), contains 10 % of highly condensed black carbon (atomic H/C ratio < 0.5 and T50 en DSC= 500 ºC). The evolution of SOM properties were monitored over three years by solid state 13C CPMAS NMR and Differential Scanning Calorimetry (DSC). These techniques were applied in bulk samples and aggregates of different sizes. The changes in microbial activity were studied by analysis of microbial biomass C and basal respiration. The soil bacterial community was studied by the Biolog method. Several physical properties, such soil

  18. Criticality safety study of the MSRE auxiliary charcoal bed

    SciTech Connect

    Hollenbach, D.F.; Hopper, C.M.

    1996-09-01

    The Molten Salt Reactor Experiment (MSRE) was operated from June 1965 to December 1969. The objective of the experiment was to investigate the practicality of developing a power reactor consisting of a graphite lattice with circulating molten uranium salt as fuel for application in central power stations. When the experiment was terminated in 1969, approximately 4710 kg of salt containing approximately 36.3 kg of uranium, 675 g of plutonium, and various fission products were transferred to two fuel drain tanks (FDTs). The almost 30.5 kg of Uranium 233 in the salt is the primary fissile constituent, but about 0.93 kg of Uranium 235 is also present. In April 1994, a gas sample from the MSRE off-gas system (OGS) indicated that uranium had migrated from the FDTs into the OGS. Further investigation revealed a likely accumulation of approximately 2.6 kg of uranium in the auxiliary charcoal bed (ACB), which is located in the concrete-lined charcoal bed cell (CBC) below ground level outside the MSRE building. The nuclear criticality safety (NCS) situation was further complicated by the CBC being filled with water up to the overflow pipe, which completely submerged the ACB. Thus there was not only an increased risk of criticality because of water reflection in the ACB, but also because of potential moderation in the ACB in case of water inleakage. Leakage into the ACB would result in a direct path for water between the CBC and the OGS or FDTs, thus increasing the risk of criticality in these areas. When uranium was discovered in the ACB, a number of steps, detailed in this report, were immediately taken to try to understand and ameliorate the situation. After all the actions were completed, a validation of the results obtained for the ACB was performed.

  19. The impact of charcoal production on forest degradation: a case study in Tete, Mozambique

    NASA Astrophysics Data System (ADS)

    Sedano, F.; Silva, J. A.; Machoco, R.; Meque, C. H.; Sitoe, A.; Ribeiro, N.; Anderson, K.; Ombe, Z. A.; Baule, S. H.; Tucker, C. J.

    2016-09-01

    Charcoal production for urban energy consumption is a main driver of forest degradation in sub Saharan Africa. Urban growth projections for the continent suggest that the relevance of this process will increase in the coming decades. Forest degradation associated to charcoal production is difficult to monitor and commonly overlooked and underrepresented in forest cover change and carbon emission estimates. We use a multitemporal dataset of very high-resolution remote sensing images to map kiln locations in a representative study area of tropical woodlands in central Mozambique. The resulting maps provided a characterization of the spatial extent and temporal dynamics of charcoal production. Using an indirect approach we combine kiln maps and field information on charcoal making to describe the magnitude and intensity of forest degradation linked to charcoal production, including aboveground biomass and carbon emissions. Our findings reveal that forest degradation associated to charcoal production in the study area is largely independent from deforestation driven by agricultural expansion and that its impact on forest cover change is in the same order of magnitude as deforestation. Our work illustrates the feasibility of using estimates of urban charcoal consumption to establish a link between urban energy demands and forest degradation. This kind of approach has potential to reduce uncertainties in forest cover change and carbon emission assessments in sub-Saharan Africa.

  20. Visualization of the Charcoal Agar Resazurin Assay for Semi-quantitative, Medium-throughput Enumeration of Mycobacteria

    PubMed Central

    Gold, Ben; Lopez Quezada, Landys; Glasheen, Jou; Ballinger, Elaine; Somersan-Karakaya, Selin; Warrier, Thulasi; Nathan, Carl

    2016-01-01

    There is an urgent need to discover and progress anti-infectives that shorten the duration of tuberculosis (TB) treatment. Mycobacterium tuberculosis, the etiological agent of TB, is refractory to rapid and lasting chemotherapy due to the presence of bacilli exhibiting phenotypic drug resistance. The charcoal agar resazurin assay (CARA) was developed as a tool to characterize active molecules discovered by high-throughput screening campaigns against replicating and non-replicating M. tuberculosis. Inclusion of activated charcoal in bacteriologic agar medium helps mitigate the impact of compound carry-over, and eliminates the requirement to pre-dilute cells prior to spotting on CARA microplates. After a 7-10 day incubation period at 37 °C, the reduction of resazurin by mycobacterial microcolonies growing on the surface of CARA microplate wells permits semi-quantitative assessment of bacterial numbers via fluorometry. The CARA detects approximately a 2-3 log10 difference in bacterial numbers and predicts a minimal bactericidal concentration leading to ≥99% bacterial kill (MBC≥99). The CARA helps determine whether a molecule is active on bacilli that are replicating, non-replicating, or both. Pilot experiments using the CARA facilitate the identification of which concentration of test agent and time of compound exposure require further evaluation by colony forming unit (CFU) assays. In addition, the CARA can predict if replicating actives are bactericidal or bacteriostatic. PMID:28060290

  1. Charcoal addition to soils in NE England: a carbon sink with environmental co-benefits?

    PubMed

    Bell, M J; Worrall, F

    2011-04-01

    Interest in the application of biochar (charcoal produced during the pyrolysis of biomass) to agricultural land is increasing across the world, recognised as a potential way to capture and store atmospheric carbon. Its interest is heightened by its potential co-benefits for soil quality and fertility. The majority of research has however been undertaken in tropical rather than temperate regions. This study assessed the potential for lump-wood charcoal addition (as a substitute for biochar) to soil types which are typically under arable and forest land-use in North East England. The study was undertaken over a 28 week period and found: i) No significant difference in net ecosystem respiration (NER) between soils containing charcoal and those without, other than in week 1 of the trial. ii) A significantly higher dissolved organic carbon (DOC) flux from soils containing large amounts of charcoal than from those untreated, when planted with ryegrass. iii) That when increased respiration or DOC loss did occur, neither was sufficiently large to alter the carbon sink benefits of charcoal application. iv) That charcoal incorporation resulted in a significantly lower nitrate flux in soil leachate from mineral soils. v) That charcoal incorporation caused significant increases in soil pH, from 6.98 to 7.22 on bare arable soils when 87,500 kg charcoal/ha was applied. Consideration of both the carbon sink and environmental benefits observed here suggests that charcoal application to temperate soils typical of North East England should be considered as a method of carbon sequestration. Before large scale land application is encouraged, further large scale trials should be undertaken to confirm the positive results of this research.

  2. Relative efficacy of separation of "free" and "bound" (3',5'-3H) pteroylglutamate by charcoal coated with various materials.

    PubMed

    Zettner, A; Duly, P E

    1975-12-01

    We studied the effectiveness with which various charcoal preparations separate free [3H]pteroylglutamate from that complexed with milk folate binder. We tested, in various concentrations, uncoated charcoals and charcoals coated with dextrans of various molecular weights, or with albumin, hemoglubin, or polyvinylpyrrolidone with an average molecular weight of 40 000. Althouth there was some distinction between the "bound" and "free" fractions with all charcoals, those treated with dextrans of average molecular weights of 43 500 or 70 000, or with polyvinylpyrrolidone gave the best separation over a greater range of charcoal concentration. Uncoated charcoal and charcoals coated with albumin, hemoglobin, or dextran T10 (average molecular weight, 10 500) were least effective.

  3. Black carbon quantification in charcoal-enriched soils by differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Hardy, Brieuc; Cornelis, Jean-Thomas; Leifeld, Jens

    2015-04-01

    Black carbon (BC), the solid residue of the incomplete combustion of biomass and fossil fuels, is ubiquitous in soil and sediments, fulfilling several environmental services such as long-term carbon storage. BC is a particularly important terrestrial carbon pool due to its large residence time compared to thermally unaltered organic matter, which is largely attributed to its aromatic structure. However, BC refers to a wide range of pyrogenic products from partly charred biomass to highly condensed soot, with a degree of aromaticity and aromatic condensation varying to a large extend across the BC continuum. As a result, BC quantification largely depends on operational definitions, with the extraction efficiency of each method varying across the entire BC range. In our study, we investigated the adequacy of differential scanning calorimetry (DSC) for the quantification of BC in charcoal-enriched soils collected in the topsoil of pre-industrial charcoal kilns in forest and cropland of Wallonia, Belgium, where charcoal residues are mixed to uncharred soil organic matter (SOM). We compared the results to the fraction of the total organic carbon (TOC) resisting to K2Cr2O7 oxidation, another simple method often used for BC measurement. In our soils, DSC clearly discriminates SOM from chars. SOM is less thermally stable than charcoal and shows a peak maximum around 295°C. In forest and agricultural charcoal-enriched soils, three peaks were attributed to the thermal degradation of BC at 395, 458 and 523°C and 367, 420 and 502 °C, respectively. In cropland, the amount of BC calculated from the DSC peaks is closely related (slope of the linear regression = 0.985, R²=0.914) to the extra organic carbon content measured at charcoal kiln sites relative to the charcoal-unaffected adjacent soils, which is a positive indicator of the suitability of DSC for charcoal quantification in soil. The first BC peak, which may correspond to highly degraded charcoal, contributes to a

  4. Investigation on fixed bed column performance of fluoride adsorption by sugarcane charcoal.

    PubMed

    Mondal, N K; Bhaumik, R; Roy, P; Das, B; Datta, J K

    2013-11-01

    The present study explores the potentiality of sugarcane charcoal for fluoride removal from synthetic fluoride solution. Column adsorption experiments with respect to variation of flow rate, pH, initial concentration, and column depths were carried out. Sugarcane charcoal exhibited almost consistent scavenging capacity at various bed depths with a flow rate 4.34 ml min(-1). Maximum adsorption capacity of sugarcane charcoal was recorded 7.33 mg g(-1). The adsorption studies were simulated using Thomas and Bed depth service time model. Both the models consistently predict its characteristic parameters and describe the breakthrough profiles in the whole range of sorption process.

  5. Novel phthalide compounds from Sparassis crispa (Hanabiratake), Hanabiratakelide A-C, exhibiting anti-cancer related activity.

    PubMed

    Yoshikawa, Kazuko; Kokudo, Naoki; Hashimoto, Toshihiro; Yamamoto, Kyosuke; Inose, Toshiaki; Kimura, Takashi

    2010-01-01

    Sparassis crispa (SC), known as Hanabiratake in Japanese, is an edible mushroom with various medicinal properties. We isolated 3 novel phthalides, designated hanabiratakelide A (1), B (2), and C (3), from the SC fruit body. In this investigation, 3 known phthalides (4-6), ubiquinone-9, and 2 known unsaturated fatty acids were also isolated. Their structures were elucidated primarily through extensive NMR experiments. The isolated compounds 1-6 were tested for their anti-oxidant activity. The in vitro superoxide dismutase-like activity of the 3 hanabiratakelides was stronger than that of vitamin C. The compounds also exerted inhibitory effects on lipopolysaccharide-stimulated nitric oxide and prostaglandin E2 production by a murine macrophage cell line, RAW264. In addition, the growth of the colon cancer cell lines Caco-2 and colon-26 was significantly inhibited by treatment with the 3 hanabiratakelides. In vivo, the frequency of azoxymethane-induced aberrant crypt foci was reduced in SC-fed F344/N rats compared to rats fed a standard diet. In conclusion, 3 novel phthalides, hanabiratakelides, derived from SC were shown to possess anti-oxidant, anti-inflammatory, and anti-tumor activity.

  6. Forestry and charcoal burning in the vicinity of the ironwork Peitz (South Brandenburg, Germany) - What do we know from historical and archaeological data?

    NASA Astrophysics Data System (ADS)

    Takla, Melanie; Frank, Müller; Horst, Rösler; Raab, Alexandra; Raab, Thomas

    2014-05-01

    The former royal forest districts around Peitz (South Brandenburg, Germany) were used to produce charcoal for the ironwork Peitz (1554 to 1856). More than 800 archaeologically excavated ground plans of charcoal kilns give evidence of the burning activity in the study area "Jänschwalde Heide" which is only a small part of the whole forest district. The study area in the apron of the active lignite mine Jänschwalde comprises the royal forest "Jänschwalder Heide" and the surrounding community forests. Our study approach combines archaeological research, a GIS-based approach (historical maps, airborne laser scanning (ALS) data, etc.) and archival studies. The charcoal kilns have been registered since 1990 and since 2005 they are systematically excavated and documented. First dendrochronological data reach from the 17th to the 19th century confirming charcoal burning during the operation period of the iron work. Moreover 5000 additional kilns were identified and digitized from Shaded Relief Maps (SRM) created from ALS data (resolution 1p m-2; height accuracy +- 15 cm). A kiln field of such a dimension has not been documented and investigated for the North German Lowlands so far. It raises the question about the effects of charcoal burning on the forests and the landscape during the last three hundred years. Here we present the evaluation of the kiln data with regard to their size, frequency and spatial distribution. Besides the large number, the kilns have also large diameters (modal value 17 m, mean 12,5 m). Outside the boundaries of the royal forest the kilns are smaller and they were probably used to produce charcoal for local handcraft. These findings are compared to historical records from the first forest inventories (18th/19th century) like forest age and area, with historical forest laws and wood consumption data of the iron work. There is growing evidence that despite of the large extent of the kiln field the wood reserves in the forest districts about 1800

  7. Measurement and calculation of the sound absorption coefficient of pine wood charcoal

    NASA Astrophysics Data System (ADS)

    Suh, Jae Gap; Baik, Kyung min; Kim, Yong Tae; Jung, Sung Soo

    2013-10-01

    Although charcoal has been widely utilized for physical therapy and as a deodorant, water purifier, etc. due to its porous features, research on its role as a sound-absorbing material is rarely found. Thus, the sound absorption coefficients of pine wood charcoal were measured using an impedance tube and were compared with the theoretical predictions in the frequency range of 500˜ 5000 Hz. The theory developed in the current study only considers the lowest possible mode propagating along the air channels of the charcoal and shows good agreements with the measurements. As the frequency is increased, the sound absorption coefficients of pine wood charcoals also increase, but are lower than those of other commonly-used sound-absorbing materials.

  8. Research of morphology structure and properties of bamboo charcoal acrylic fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjiu; Feng, Aifen

    2015-07-01

    In order to understand the properties of bamboo charcoal acrylic fiber, the tensile properties, friction properties and hygroscopicity of it, the bamboo charcoal acrylic fiber and the ordinary acrylic fiber were tested, compared and analyzed. The burning behaviors of the two kinds of fibers were observed by burning test, and their cross-sectional and longitudinal morphology was observed with scanning electron microscope (SEM). The SEM pictures showed that there are the uneven sizes of microspores on the surface of bamboo charcoal acrylic fiber and in it. It was found that the friction coefficients of the bamboo charcoal acrylic fiber are smaller and its tensile and moisture absorption are better than those of the ordinary acrylic fiber. However, there are no obvious differences of the burning behaviors between the two fibers.

  9. Combustion efficiency and hydrocarbon emissions from charcoal production kilns in the tropics

    SciTech Connect

    Ward, D.E.; Hao, W.M.; Babbitt, R.E.

    1995-12-01

    Charcoal is one of the major energy resources in tropical countries. We investigate the combustion processes in charcoal production kilns in Zambia and Brazil. The Zambian kilns were made of earth and there was sufficient air for combustion inside the kilns. The Brazilian kilns were made of bricks which limited the available oxygen. The combustion efficiency and the concentrations of CO{sub 2}, CO, CH{sub 4}, C{sub 2}-C{sub 6} alkanes and alkenes, and aromatic compounds produced were monitored throughout the combustion processes. The contributions of charcoal production processes to the atmospheric sources of these gases were estimated. The strategies for improving charcoal yield and reducing emissions of carbon-containing compounds are discussed.

  10. Desulphurization characteristics of bamboo charcoal from sulfur solution.

    PubMed

    Ge, Shengbo; Liu, Zhenling; Li, Rende; Furuta, Yuzo; Peng, Wanxi

    2017-01-01

    Sulfur powder and sulfur dioxide (SO2) often floated in air, produced acid rain and algal blooms, and could cause diseases. Bamboo charcoal could have adsorption and filtration properties. In order to figure out the optimal adsorption condition and the intrinsic change of the bamboo charcoal, five chemicals were adsorbed by bamboo charcoal and were analyzed by FT-IR. Fe2(SO4)3's, Na2SO4's, Na2S2O8's, S's, and Na2SO3's optimal adsorption condition was the concentration of 19 g/1000 g and stir time of 20 min, 21 g/1000 g and stir time of 60 min, 7 g/1000 g and stir time of 120 min, 11 g/1000 g and stir time of 120 min, 21 g/1000 g and stir time of 60 min, respectively. FT-IR spectra showed that for FT-IR spectra of Fe2(SO4)3, the transmissivity of the peaks at 3435 cm(-1) and 2925 cm(-1) achieved the maximum for 60 min and the concentration was 19 g/1000 g, the transmissivity of the peaks at 1630 cm(-1), 1060 cm(-1) and 660 cm(-1) achieved the maximum for 60 min and the concentration was 7 g/1000 g. For FT-IR spectra of Na2SO4, the transmissivity of the peaks at 1630 cm(-1), 1060 cm(-1) and 660 cm(-1) achieved the maximum for 20 min and the concentration was 13 g/1000 g. For FT-IR spectra of Na2S2O8, the transmissivity of the peaks at 3435 cm(-1), 2925 cm(-1), 1630 cm(-1) and 1060 cm(-1) achieved the maximum for 120 min and the concentration was 19 g/1000 g. For FT-IR spectra of S, the transmissivity of the peaks at 3435 cm(-1), 2925 cm(-1), 1630 cm(-1) and 1060 cm(-1) achieved the maximum for 20 min and the concentration was 11 g/1000 g, 17 g/1000 g and 21 g/1000 g. For FT-IR spectra of Na2SO3, the transmissivity of the peaks at 3435 cm(-1) achieved the maximum for 120 min and the concentration was 5 g/1000 g, the transmissivity of the peaks at 2925 cm(-1), 1630 cm(-1) and 1060 cm(-1) achieved the maximum for 120 min and the concentration was 11 g/1000 g. In these states, the number of the transmissivity of

  11. Salts of the iodine oxyacids in the impregnation of adsorbent charcoal for trapping radioactive methyliodide

    DOEpatents

    Deitz, Victor R.; Blachly, Charles H.

    1977-04-05

    Radioactive iodine and radioactive methyliodide can be more than 99.7 per cent removed from the air stream of a nuclear reactor by passing the air stream through a 2-inch thick filter which is made up of impregnated charcoal prepared by contacting the charcoal with a solution containing KOH, iodine or an iodide, and an oxyacid, followed by contacting with a solution containing a tertiary amine.

  12. Enhanced photocatalytic degradation and adsorption of methylene blue via TiO2 nanocrystals supported on graphene-like bamboo charcoal

    NASA Astrophysics Data System (ADS)

    Wu, Fangjun; Liu, Wei; Qiu, Jielong; Li, Jinzhen; Zhou, Wuyi; Fang, Yueping; Zhang, Shuting; Li, Xin

    2015-12-01

    In this study, a novel efficient photocatalytic nanomaterial, TiO2 nanocrystals supported on graphene-like bamboo charcoal, has been successfully synthesized via a facile multi-step process. The structural and optical properties of the as-prepared samples were characterized by different techniques, such as X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis absorption spectroscopy, photoluminescence spectra (PL), Raman spectra and nitrogen adsorption-desorption isotherms. The photocatalytic activities under sunlight were evaluated by the degradation of methylene blue (MB). The results indicated that the ternary hybrid photocatalysts exhibited much higher photocatalytic activities toward the degradation of MB than the pure TiO2 under UV light irradiation. Moreover, the optimum weight content of graphene-like bamboo charcoal in composite photocatalysts was 6 wt% for achieving the maximum photocatalytic degradation rate. The apparent rate constant of the best sample (0.0509 min-1) was about 3 times greater than that of the commercial P25 (0.0170 min-1). The adsorption and degradation kinetics of MB can be described by the pseudo-first-order model and apparent first-order kinetics model, respectively. The highly enhanced photocatalytic performance was attributed to the synergetic effect of graphene-like carbon and bamboo charcoal, which lead to the promoted charge separation and reduction reaction of oxygen, and enhanced adsorption capacities of MB, respectively. The composite photocatalysts displayed a high photochemical stability under repeated irradiation. This work may provide new insights and understanding on the graphene-like bamboo charcoal as an excellent support for photocatalyst nanoparticles to enhance their visible-light photocatalytic activity.

  13. Chemical and Isotopic Thresholds in Charring: Implications for the Interpretation of Charcoal Mass and Isotopic Data.

    PubMed

    Pyle, Lacey A; Hockaday, William C; Boutton, Thomas; Zygourakis, Kyriacos; Kinney, Timothy J; Masiello, Caroline A

    2015-12-15

    Charcoal plays a significant role in the long-term carbon cycle, and its use as a soil amendment is promoted as a C sequestration strategy (biochar). One challenge in this research area is understanding the heterogeneity of charcoal properties. Although the maximum reaction temperature is often used as a gauge of pyrolysis conditions, pyrolysis duration also changes charcoal physicochemical qualities. Here, we introduce a formal definition of charring intensity (CI) to more accurately characterize pyrolysis, and we document variation in charcoal chemical properties with variation in CI. We find two types of responses to CI: either linear or threshold relationships. Mass yield decreases linearly with CI, while a threshold exists across which % C, % N, and δ(15)N exhibit large changes. This CI threshold co-occurs with an increase in charcoal aromaticity. C isotopes do not change from original biomass values, supporting the use of charcoal δ(13)C signatures to infer paleoecological conditions. Fractionation of N isotopes indicates that fire may be enriching soils in (15)N through pyrolytic N isotope fractionation. This influx of "black N" could have a significant impact on soil N isotopes, which we show theoretically using a simple mass-balance model.

  14. Estimation of emissions from charcoal lighter fluid and review of alternatives. Final report

    SciTech Connect

    Campbell, D.L.; Stockton, M.B.

    1990-01-01

    The report gives results of an evaluation of emissions of volatile organic compounds (VOCs) from charcoal lighter fluid, a consumer product consisting entirely of volatile constituents. An estimated 46,250 tons (42,000 Mg) of charcoal lighter fluid is used in the U.S. each year. VOCs contribute to the formation of ozone; therefore, the ozone nonattainment issue has focused attention on VOCs emitted from many sources. VOCs are emitted when charcoal lighter fluid is used, but these emissions are difficult to quantify. Evaporative VOC losses occur from the lighter fluid prior to ignition, and combustion VOC losses occur from burning lighter-fluid-soaked charcoal briquettes. This study evaluates tests conducted to date on charcoal lighter fluid emissions. The information is most complete for evaporative VOC losses. The estimates vary greatly, however, based on the length of time between application of the lighter fluid and ignition. The limited tests conducted to date have not distinguished lighter fluid from charcoal-briquette combustion emissions.

  15. Activation of histamine H4 receptor inhibits TNFα/IMD-0354-induced apoptosis in human salivary NS-SV-AC cells.

    PubMed

    Stegajev, Vasili; Kouri, Vesa-Petteri; Salem, Abdelhakim; Rozov, Stanislav; Stark, Holger; Nordström, Dan C E; Konttinen, Yrjö T

    2014-12-01

    Apoptosis is involved in the pathogenesis of Sjögren's syndrome (SS), an autoimmune disease affecting exocrine glands. Our recent studies revealed diminished histamine H4 receptor (H₄R) expression and impaired histamine transport in the salivary gland epithelial cells in SS. The aim was now to test if nanomolar histamine and high-affinity H₄R signaling affect apoptosis of human salivary gland epithelial cell. Simian virus 40-immortalized acinar NS-SV-AC cells were cultured in serum-free keratinocyte medium ± histamine H₄R agonist HST-10. Expression and internalization of H₄R were studied by immunofluorescence staining ± clathrin inhibitor methyl-β-cyclodextrin (MβCD). Apoptosis induced using tumor necrosis factor-α with nuclear factor-κB inhibitor IMD-0354 was studied using phase contrast microscopy, Western blot, flow cytometry and polymerase chain reaction (qRT-PCR). HST-10-stimulated H₄R internalization was inhibited by MβCD. Western blotting revealed diminished phosphorylated c-Jun N-terminal kinase JNK, but unchanged levels of phosphorylated extracellular signal regulated kinase pERK1/2 in H₄R-stimulated samples compared to controls. qRT-PCR showed up-regulated expression of anti-apoptotic B cell lymphoma-extra large/Bcl-xL mRNAs and proteins, whereas pro-apoptotic Bcl-2-associated X protein/BAX remained unchanged in H4R-stimulated samples. H₄R stimulation diminished cleavage of PARP and flow cytometry showed significant dose-dependent inhibitory effect of H₄R stimulation on apoptosis. As far as we know this is the first study showing inhibitory effect of H₄R activation on apoptosis of human salivary gland cells. Diminished H₄R-mediated activation may contribute to loss of immune tolerance in autoimmune diseases and in SS in particular.

  16. An in vitro experiment on the interaction of charcoal or wheat bran with 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol and its glucuronide.

    PubMed

    Skopp, Gisela; Mikus, Gerd

    2013-11-01

    The rather long yet variable terminal half-lives and detection times since last use of urinary cannabinoids may partly be attributed to their enterohepatic circulation which generally can be interrupted or restricted by chemical adsorbents. Therefore, an in vitro experiment was performed to study the adsorption/binding of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH) and its glucuronide to activated charcoal and wheat bran; remaining concentrations were determined by liquid chromatography/tandem mass spectrometry. Adsorption/binding of 1,000 ng/mL of free or conjugated THC-COOH was complete using as little as 5 mg of charcoal whereas adsorption/binding to wheat bran increased with increasing amounts. Taking of remedies affecting enterohepatic recycling of THC-COOH and its glucuronide may challenge interpretation of cannabinoid concentrations used to detect or assess frequency of drug use or the time since last drug consumption.

  17. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  18. Modeling polychlorinated biphenyl mass transfer after amendment of contaminated sediment with activated carbon

    SciTech Connect

    David Werner; Upal Ghosh; Richard G. Luthy

    2006-07-01

    The sorption kinetics and concentration of polychlorinated biphenyls (PCBs) in historically polluted sediment is modeled to assess a remediation strategy based on in situ PCB sequestration by mixing with activated carbon (AC). The authors extend their evaluation of a model based on intraparticle diffusion by including a biomimetic semipermeable membrane device (SPMD) and a first-order degradation rate for the aqueous phase. The model predictions are compared with the previously reported experimental PCB concentrations in the bulk water phase and in SPMDs. The simulated scenarios comprise a marine and a freshwater sediment, four PCB congeners, two AC grain sizes, four doses of AC, and comparison with laboratory experiments. The modeling approach distinguishes between two different sediment particles types: a light-density fraction representing carbonaceous particles such as charcoal, coal, coke, cenospheres, or wood, and a heavy-density fraction representing the mineral phase with coatings of organic matter. A third particle type in the numerical model is AC. The model qualitatively reproduces the observed shifts in the PCB distribution during repartitioning after AC amendment but overestimates the overall effect of the treatment in reducing aqueous and SPMD concentrations of PCBs by a factor of 2-6. For the AC application in sediment, competitive sorption of the various solutes apparently requires a reduction by a factor of 16 of the literature values for the AC-water partitioning coefficient measured in pure aqueous systems. With this correction, model results and measurements agree within a factor of 3. After AC amendment is homogeneously mixed into the sediment and then left undisturbed, aqueous PCB concentrations tend toward the same reduction after 5 years. 19 refs., 5 figs., 4 tabs.

  19. An enhanced anaerobic membrane bioreactor treating bamboo industry wastewater by bamboo charcoal addition: Performance and microbial community analysis.

    PubMed

    Xia, Tian; Gao, Xinyi; Wang, Caiqin; Xu, Xiangyang; Zhu, Liang

    2016-11-01

    In this study, two anaerobic membrane bioreactors (AnMBRs) were operated for 150days to treat bamboo industry wastewater (BIWW), and one of them was enhanced with bamboo charcoal (B-AnMBR). During the steady period, average chemical oxygen demand (COD) removal efficiencies of 94.5±2.9% and 89.1±3.1% were achieved in B-AnMBR and AnMBR, respectively. The addition of bamboo charcoal (BC) increased the amount of biomass and improved the performance of the systems. A higher biogas production and methane yield were also observed in B-AnMBR. Regarding the issue of membrane fouling, BC lowered the soluble microbial product (SMP) content by approximately 62.73mg/L and decreased the membrane resistance, thereby mitigating membrane fouling. Analysis of the microbial communities demonstrated that BC increased the microbial diversity and promoted the activity of Methanosaeta, Methanospirillum, and Methanobacterium, which are dominant in methane production.

  20. Influence of beer marinades on the reduction of carcinogenic heterocyclic aromatic amines in charcoal-grilled pork meat.

    PubMed

    Viegas, Olga; Moreira, Patrícia S; Ferreira, Isabel M P L V O

    2015-01-01

    The effect of beer marinades on the formation of heterocyclic aromatic amines (HAs) was examined in charcoal-grilled pork. Pilsner, non-alcoholic pilsner and black beers (coded respectively as PB, P0B and BB) were assayed and unmarinated samples cooked under similar conditions provided reference HAs levels. Two thermic (PhIP and 4,8-DiMeIQx) and three pyrolytic HAs (Trp-P-1, AαC, MeAαC) were quantified in unmarinated meat samples. Marinating meat in beer resulted in a significant decrease of PhIP, Trp-P-1 and AαC (p < 0.05). 4,8-DiMeIQx formation was inhibited only by BB marinade. No significant effect was observed on MeAαC formation. All beers reduced total HA formation in charcoal-grilled pork, black beer being the most efficient with a level of 90% inhibition. A strong positive correlation was observed between the inhibitory effect of beer on total HA formation and their antioxidant activity. Beer marinades mitigate the impact of consumption of well-done grilled pork meat reducing the formation of cooking carcinogens.

  1. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  2. Chemical changes in soil charcoal of differing ages inferred from DRIFT spectra

    NASA Astrophysics Data System (ADS)

    Hobley, E. U.; Willgoose, G. R.; Frisia, S.; Jacobsen, G.

    2012-04-01

    Visible charcoal fragments were manually isolated from a sandy soil from the Southern Highlands of NSW, Australia, at depths of 0 - 30 cm and 30 - 60 cm. In the topsoil, the charcoal had a radiocarbon age of 85 ± 35 years BP, whereas the charcoal from the 30 - 60 cm layer was radiocarbon dated at 2540 ± 35 years BP. Diffuse reflectance FTIR (DRIFT) spectra of the charcoal reveal differences in both the number of peaks detected and their magnitudes. In the IR region 750 - 3800 cm-1, the charcoal from the lower depth had less peaks (140) than that of the topsoil (217). In the 1400 - 1600 cm-1 region, generally attributed to aromatics, the peaks were larger and more numerous (22 peaks) in the 0 - 30 cm sample than those of the 30 - 60 cm depth (14 peaks). The C-H stretch of alkenes and aromatics (3000 - 3100 cm-1) was similar at both depths, but the peak generally associated with the C-H stretch of alkanes (methyl and methylene groups) at 2850 - 3000 cm-1 was smaller in 30 - 60 cm depth than in the topsoil. In contrast to the reduction in aromatic and alkane signatures, oxidised forms were more pronounced in the older, deeper charcoal. Peaks associated with the free hydroxyl O-H stretch (alcohols and phenols) at 3640 - 3610 cm-1, carboxylic acids (910 - 950 cm-1), aliphatic O-H (alcohols) (1050 - 1150 cm-1) and cellulose-like structures (1020 cm-1), which contain a large number of uncondensed, oxidised rings, were larger in the charcoal from 30 - 60 cm than in that from the topsoil. Our results confirm that charcoal is highly persistent in soils, being retained for millennia. Aromatic structures are present in both younger and older charcoal, but decay leads to a reduction in the number and area of peaks detected at 1400 - 1600 cm-1, indicating less aromaticity. Alkane C-H also decreases with aging, probably attributable to its preferential degradation by soil microbes compared with condensed aromatic structures. Concurrent with diminished aromatic and alkane

  3. Synthesis of tritium labeled Ac-(Nle/sup 4/, D-Phe/sup 7/)-. cap alpha. -MSH/sub 4-11/-NH/sub 2/: a superpotent melanotropin with prolonged biological activity

    SciTech Connect

    Wilkes, B.D.; Hruby, V.J.; Yamamura, H.I.; Akiyama, K.; Castrucci, A.M. de; Hadley, M.E.; Andrews, J.R.; Wan, Y.P.

    1984-03-05

    Ac-(Nle/sup 4/, D-Phe/sup 7/)-..cap alpha..-MSH/sub 4-11/-NH/sub 2/ an octapeptide, is a melanotropin analogue (Ac-Nle-Glu-His-D-Phe-Arg-Trp-Gly-Lys-NH/sub 2/), which is a superpotent agonist of frog and lizard skin melanocytes and mouse S 91 (Cloudman) melanoma cells. This melanotropin possesses ultraprolonged activity on melanocytes, both in vitro and in vivo, and the peptide is resistant to inactivation by serum enzymes. The tritium-labeled congener was prepared by direct incorporation of (/sup 3/H)-labeled norleucine into the peptide. The melanotropic activity of the labeled peptide is identical to the unlabeled analogue. This labeled peptide should be useful for studies on the localization and characterization of melanotropin receptors.

  4. Resistance mechanisms to toxin-mediated charcoal rot infection in maturity group III soybean: role of seed phenol lignin soflavones sugars and seed minerals in charcoal rot resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot is a disease caused by the fungus Macrophomina phaseolina (Tassi) Goid, and thought to infect the plants through roots by a toxin-mediated mechanism, resulting in yield loss and poor seed quality, especially under drought conditions. The mechanism by which this infection occurs is not y...

  5. An Ac transposon system based on maize chromosome 4S for isolating long-distance-transposed Ac tags in the maize genome.

    PubMed

    Wang, Fei; Li, Zhaoying; Fan, Jun; Li, Pengfei; Hu, Wei; Wang, Gang; Xu, Zhengkai; Song, Rentao

    2010-12-01

    Transposon tagging is an important tool for gene isolation and functional studies. In maize, several transposon-tagging systems have been developed, mostly using Activator/Dissociation (Ac/Ds) and Mutator systems. Here, we establish another Ac-based transposon system with the donor Ac tightly linked with sugary1 (su1) on maize chromosome 4S. Newly transposed Ac (tr-Acs) were detected based on a negative dosage effect, and long-distance-transposed Ac events were identified and isolated from the donor Ac by a simple backcross scheme. In this study, we identified 208 independent long-distance-transposed Ac lines. Thirty-one flanking sequences of these tr-Acs were isolated and localized in the maize genome. As found in previous studies, the tr-Acs preferentially inserted into genic sequences. The distribution of tr-Acs is not random. In our study, the tr-Acs preferentially transposed into chromosomes 1, 2, 9 and 10. We discuss the preferential distribution of tr-Acs from Ac systems. Our system is complementary to two other Ac-based regional-mutagenesis systems in maize, and the combined use of these systems will achieve an even and high-density distribution of Ac elements throughout the maize genome for functional-genomics studies.

  6. Performance of McRAS-AC in the GEOS-5 AGCM: Part 1, Aerosol-Activated Cloud Microphysics, Precipitation, Radiative Effects, and Circulation

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Lee, D.; Oreopoulos, L.; Barahona, D.; Nenes, A.; Suarez, M. J.

    2012-01-01

    A revised version of the Microphysics of clouds with Relaxed Arakawa-Schubert and Aerosol-Cloud interaction (McRAS-AC), including, among others, the Barahona and Nenes ice nucleation parameterization, is implemented in the GEOS-5 AGCM. Various fields from a 10-year long integration of the AGCM with McRAS-AC were compared with their counterparts from an integration of the baseline GEOS-5 AGCM, and with satellite data as observations. Generally using McRAS-AC reduced biases in cloud fields and cloud radiative effects are much better over most of the regions of the Earth. Two weaknesses are identified in the McRAS-AC runs, namely, too few cloud particles around 40S-60S, and too high cloud water path during northern hemisphere summer over the Gulf Stream and North Pacific. Sensitivity analyses showed that these biases potentially originated from biases in the aerosol input. The first bias is largely eliminated in a sensitivity test using 50% smaller aerosol particles, while the second bias is much reduced when interactive aerosol chemistry was turned on. The main drawback of McRAS-AC is dearth of low-level marine stratus clouds, probably due to lack of dry-convection, not yet implemented into the cloud scheme. Despite these biases, McRAS-AC does simulate realistic clouds and their optical properties that can improve with better aerosol-input and thereby has the potential to be a valuable tool for climate modeling research because of its aerosol indirect effect simulation capabilities involving prediction of cloud particle number concentration and effective particle size for both convective and stratiform clouds is quite realistic.

  7. Utilization of unpeeled cassava (Manihot esculenta Crantz) root meal supplemented with or without charcoal by broiler chickens.

    PubMed

    Oso, A O; Akapo, O; Sanwo, K A; Bamgbose, A M

    2014-06-01

    A 42-day feeding trial was conducted using 480-day-old, male Marshall broilers to study the utilization of unpeeled cassava root meal (UCRM) supplemented with or without 6 g/kg charcoal. The experimental design was laid out in a 3 × 2 factorial arrangement of treatments having three inclusion levels of UCRM (0, 100 and 200 g/kg) with or without 6 g/kg charcoal supplementation. Each treatment consisted of 80 birds replicated eight times with 10 birds per replicate. Main effect of inclusion level of UCRM and supplementation of charcoal showed reduced (p < 0.05) final live weight, weight gain, feed intake and apparent crude protein digestibility of the birds with increasing inclusion levels of UCRM. Birds fed diets supplemented with charcoal showed higher (p < 0.05) final live weight, weight gain and feed intake than birds fed diets without charcoal. Supplementation of charcoal in diet containing 100 g/kg UCRM resulted in improved (p < 0.05) weight gain when compared with birds fed similar diet but not supplemented with charcoal. Broilers fed diet containing no UCRM but supplemented with charcoal had the highest overall (p < 0.05) final live weight and weight gain, while birds fed diet containing 200 g/kg UCRM supplemented with charcoal recorded the poorest (p < 0.05) final live weight and weight gain. Serum glutamate oxaloacetate transaminase (SGOT) and serum thiocyanate concentration increased (p < 0.05) with increasing dietary inclusion levels of UCRM. Dietary supplementation of charcoal resulted in increased (p < 0.05) concentration of serum glucose and cholesterol and reduced (p < 0.05) SGOT concentration. Birds fed diets containing UCRM had high (p < 0.05) serum thiocyanate concentration irrespective of dietary supplementation or not with 6 g/kg charcoal. In conclusion, supplementation of diet containing up to 100 g/kg UCRM with 6 g/kg charcoal showed improved weight gain without any deleterious effect on serum metabolites.

  8. Effect of charcoal-containing cigarette filters on gas phase volatile organic compounds in mainstream cigarette smoke.

    PubMed

    Polzin, G M; Zhang, L; Hearn, B A; Tavakoli, A D; Vaughan, C; Ding, Y S; Ashley, D L; Watson, C H

    2008-09-01

    Of the chemicals identified to date in mainstream cigarette smoke with known toxicological properties, the volatile organic compounds (VOCs) are considered the most hazardous group owing to their high abundance and toxicity. In this research we evaluate a recently introduced line of cigarettes that contain charcoal in their filters. The amount of charcoal in these filters ranged from 45 mg to 180 mg and were either dispersed among the filter material or contained in a small cavity in the filter segment. Charcoal has long been used for removing VOCs from both water and air. Our findings indicate that these cigarettes reduce machine generated mainstream smoke deliveries of a wide range of VOCs compared to a similar, non-charcoal filtered, cigarette. However, this reduction is dependent not only on the amount of charcoal present but also on the volume of smoke being drawn through the filter. While a brand with 45 mg charcoal reduces VOC delivery under ISO smoking conditions, charcoal saturation and breakthrough occur under more intense smoking conditions. Breakthrough is minimised for brands with the most charcoal. Overall, the brands with the most charcoal are effective at reducing VOC deliveries under even intense smoking conditions.

  9. Charcoal dispersion and deposition in boreal lakes from 3 years of monitoring: Differences between local and regional fires

    NASA Astrophysics Data System (ADS)

    Oris, France; Ali, Adam A.; Asselin, Hugo; Paradis, Laure; Bergeron, Yves; Finsinger, Walter

    2014-10-01

    To evaluate the influence of long-distance transport of charcoal particles on the detection of local wildfires from lake sediment sequences, we tracked three consecutive years of charcoal deposition into traps set within seven boreal lakes in northeastern Canada. Peaks in macroscopic charcoal accumulation (>150 µm) were linked to both local (inside the watershed) and regional wildfires. However, regional fires were characterized by higher proportions of small particles (<0.1 mm2) in charcoal assemblages. We conclude that the analysis of particle size distribution is useful to discriminate "true" local fires from regional wildfires.

  10. Charcoal-induced granuloma that mimicked a nodal metastasis on ultrasonography and FDG-PET/CT after neck dissection.

    PubMed

    Choi, Jin Woo; Moon, Won-Jin; Choi, Nami; Roh, Hong Gee; Kim, Mi Young; Kim, Na Ra; Moon, Sung Gyu; Chung, Hyun Woo; Lim, So Dug; Yang, Jung-Hyun

    2015-01-01

    Charcoal can be used for preoperative localization of metastatic lymph nodes in the neck. Charcoal remains stable without causing foreign body reactions during as hort period. However, foreign body reactions may develop if charcoal is left in situ for more than 6 months. We reported a case of charcoal granuloma mimicking local recurrence on fluorodeoxyglucose-positron emission tomography/computed tomography and ultrasonography in a 47-year-old woman who had cervical lymph node dissection due to metastatic invasive ductal carcinoma of the breast.

  11. Research on dye wastewater decoloration by pulse discharge plasma combined with charcoal derived from spent tea leaves.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Pei, Shuzhao; Liang, Dongli; Hu, Shibin

    2016-07-01

    Pulsed discharge plasma (PDP) combined with charcoal (PDP-charcoal) was employed to treat dye wastewater, with methyl orange (MO) as the model pollutant. The charcoal was prepared using spent tea leaves and was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, and Boehm titration to investigate the adsorption and catalytic characteristics before and after adsorption and PDP treatment. The prepared charcoal exhibited a high MO adsorption capacity, and the adsorption process followed the pseudo-second-order kinetic model and the Freundlich model. The MO decoloration efficiency reached 69.8 % within 7.5 min of treatment in the PDP-charcoal system, whereas values of 29.2 and 25.9 % were achieved in individual PDP and charcoal systems, respectively. The addition of n-butanol and H2PO4 (-) presented inhibitive effects on MO decoloration in the PDP system. However, these effects were much weaker in the PDP-charcoal system. In addition, the effects of charcoal on O3 and H2O2 formation were evaluated, and the results showed that both the O3 and H2O2 concentrations decreased in the presence of charcoal. The MO decomposition intermediates were analyzed using UV-Vis spectrometry and GC-MS. 1,4-Benzoquinone, 4-nitrophenol, 4-hydroxyaniline, and N,N'-dimethylaniline were detected. A possible pathway for MO decomposition in this system was proposed.

  12. Open charcoal chamber method for mass measurements of radon exhalation rate from soil surface.

    PubMed

    Tsapalov, Andrey; Kovler, Konstantin; Miklyaev, Peter

    2016-08-01

    Radon exhalation rate from the soil surface can serve as an important criterion in the evaluation of radon hazard of the land. Recently published international standard ISO 11665-7 (2012) is based on the accumulation of radon gas in a closed container. At the same time since 1998 in Russia, as a part of engineering and environmental studies for the construction, radon flux measurements are made using an open charcoal chamber for a sampling duration of 3-5 h. This method has a well-defined metrological justification and was tested in both favorable and unfavorable conditions. The article describes the characteristics of the method, as well as the means of sampling and measurement of the activity of radon absorbed. The results of the metrological study suggest that regardless of the sampling conditions (weather, the mechanism and rate of radon transport in the soil, soil properties and conditions), uncertainty of method does not exceed 20%, while the combined standard uncertainty of radon exhalation rate measured from the soil surface does not exceed 30%. The results of the daily measurements of radon exhalation rate from the soil surface at the experimental site during one year are reported.

  13. Chemical recalcitrance of biochar and wildfire charcoal: how similar are they?

    NASA Astrophysics Data System (ADS)

    Santin, Cristina; Doerr, Stefan H.; Merino, Agustin

    2016-04-01

    The enhanced chemical resistance to biological degradation of pyrogenic materials, either produced during wildfires (charcoal) or by man (biochar), makes them long-term carbon sinks once incorporated in soils. In spite of their fundamental similarities, studies comparing the chemical recalcitrance of biochar and wildfire charcoal are scarce because analogous materials for accurate comparison are not easily available. Using solid-state 13C cross polarization-magic angle spinning nuclear magnetic resonance spectroscopy we characterized the chemical recalcitrance of pyrogenic materials generated from the same unburnt feedstooks (litter and dead wood from Pinus banksiana): (a) charcoal from a high-intensity wildfire and (b) biochar obtained by slow pyrolysis [3 treatments: 2 h at 350, 500 and 650°C]. For quantification, the spectra were divided into four regions representing different chemical environments of the 13C nucleus: alkyl C (0-45 ppm), O-alkyl C (45-110 ppm), olefinic and aromatic C(110-160 ppm), and carbonyl C (160-210 ppm). As an indicator of chemical recalcitrance, the degree of aromaticity (%) was calculated as follow: aromatic-C ∗ 100 / (alkyl C+ O alkyl-C + aromatic-C). The pyrogenic materials derived from wood show higher degrees of aromaticity (68 to 88%) than pyrogenic material derived from litter (40 to 88%). When comparing biochar and wildfire charcoal, biochars produced at 500 and 650°C always have higher degrees of aromaticity than wildfire charcoals, irrespective of the original feedstock. Wildfire charcoals always show a more heterogeneous chemical composition, with alkyl and O-alkyl compounds present even in charcoal generated at very high temperatures (temperatures up to 950 °C were recorded on the litter surface during the wildfire). However, biochars produced at 500 and 650 °C are mostly aromatic, and only the biochars produced at 350 °C show partial contribution of alkyl-C compounds. Our results suggest that biochar-type pyrogenic

  14. A protease-activated receptor 2 agonist (AC-264613) suppresses interferon regulatory factor 5 and decreases interleukin-12p40 production by lipopolysaccharide-stimulated macrophages: Role of p53.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2016-06-01

    The transcription factor interferon regulatory factor 5 (IRF5) has a key role in the production of interleukin (IL)-12 by macrophages. IRF5 is also a central mediator of toll-like receptor signaling and is a direct target of p53. Activation of protease-activated receptor 2 (PAR-2) upregulates p53 and suppresses apoptosis. This study investigated the influence of human neutrophil elastase (HNE) and PAR-2 agonists on expression of IRF5 and IL-12p40 by macrophages stimulated with lipopolysaccharide. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent macrophages showed upregulation of IRF5 expression, while HNE reduced expression of p53 and IRF5 in a concentration-dependent manner. HNE also caused a concentration-dependent decrease of IRF5 in macrophages transfected with small interfering RNA to silence p53, while silencing of β-arrestin 2 blunted the reduction of p53 or IRF5 by HNE. Incubation of macrophages with a PAR-2 agonist, AC-264613, caused a decrease of IRF5 expression and also significantly reduced p53 protein expression. HNE upregulated the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6) and caused transactivation of TLR4, while AC-264613 did not promote TLR4 transactivation. In conclusion, the PAR-2 agonist AC-264613 attenuated IRF5-associated IL-12p40 production by macrophages.

  15. The pH-dependent adsorption of tributyltin to charcoals and soot.

    PubMed

    Fang, Liping; Borggaard, Ole K; Marcussen, Helle; Holm, Peter E; Bruun Hansen, Hans Christian

    2010-12-01

    Widespread use of tributyltin (TBT) poses a serious environmental problem. Adsorption by black carbon (BC) may strongly affect its behavior. The adsorption of TBT to well characterized soot and two charcoals with specific surface area in the range of 62-111m(2)g(-1) have been investigated with main focus on pH effects. The charcoals but not soot possess acidic functional groups. TBT adsorption reaches maximum at pH 6-7 for charcoals, and at pH>6 for soot. Soot has between 1.5 and 15 times higher adsorption density (0.09-1.77μmolm(-2)) than charcoals, but charcoals show up to 17 times higher sorption affinities than soot. TBT adsorption is successfully described by a new pH-dependent dual Langmuir model considering electrostatic and hydrophobic adsorption, and pH effects on TBT speciation and BC surface charge. It is inferred that strong sorption of the TBTOH species to BC may affect TBT toxicity.

  16. Preoperative colonic lesion localization with charcoal nanoparticle tattooing for laparoscopic colorectal surgery.

    PubMed

    Wang, Wen; Wang, Rong; Wang, Yu; Yu, Li; Li, Dazhou; Huang, Sheng; Ma, Jun; Lin, Nan; Yang, Weijin; Chen, Xin; Liu, Bin; Lv, Ren; Liao, Lianming

    2013-12-01

    The efficiency and safety of charcoal nanoparticle tattooing in localizing unpalpable colonic small lesions for later laparoscopy is described. Twenty six patients were enrolled for this prospective study. Tumor sites were localized with charcoal nanoparticles during colonoscopy for later laparoscopic colorectal operations. In all patients, the entire colon was examined preoperatively by colonoscopy and 0.5 ml (5 mg) of charcoal nanoparticle was injected submucosally near lesions or polypectomy sites. During laparoscopic colorectal operations for these biopsy-proven tumors, tumors were easily identified. The mean resection margin was 3.13 +/- 2.01 cm. The mean length of resected intestinal segment was 12.69 +/- 4.39 cm. No tumor was found at the resection line as indicated by postoperative pathological examination. Most importantly, no wrong segment was resected. Thus we show that easy identification of tumor can be achieved by preoperative tattooing with charcoal nanoparticles. Further studies regarding the long-term tattooing of tumor with charcoal nanoparticles are warranted.

  17. Charcoal suspension tattoo: new tool for the localization of malignant laterocervical lymph nodes.

    PubMed

    Tirelli, Giancarlo; Cova, M A; Zanconati, F; Makuc, E; Bonazza, D; Tofanelli, M; Di Lenarda, R; Gardenal, N

    2016-11-01

    We present a retrospective study to evaluate safety and effectiveness of ultrasound (US)-guided tattooing with charcoal of suspicious laterocervical lymph nodes. When an open biopsy of a laterocervical lymph node is needed, the choice of the lymph node to excise and examine is fundamental to avoid rebiopsy. Surgeons tend to choose the most surgical approachable enlarged lymph node that does not always correspond to the one with worst echographic aspect. We present 16 cases of patients with laterocervical adenopathy with inconclusive or non-adequate results at fine needle aspiration cytology addressed to open biopsy. Those patients underwent US-guided preoperative injection of a charcoal suspension inside the lymph node to excise to mark it, and then excisional biopsy was performed. Sixteen marked lesions (100 %) were detected intraoperatively and dissected. The injected charcoal was detected intraoperatively in all cases. In 14 patients (87, 5 %) it was inside the lesion; in two cases (12, 5 %), the charcoal suspension was found in the tissues above the lesion. The procedure was well tolerated in all cases. No major procedure-related complications were encountered. US-guided charcoal tattooing is a new, safe, well-tolerated, and easy-to-perform technique for the marking of US suspicious laterocervical lymph nodes. This preliminary study shows a high technical success rate (76 %) and high percentage of intraoperative detection of marked lesions (100 %) with a low rate of complications.

  18. Tailoring the characteristics of carbonized wood charcoal by using different heating rates

    NASA Astrophysics Data System (ADS)

    Kwon, Gu-Joong; Kim, Dae-Young; Oh, Choong-Hyeon; Park, Byung-Ho; Kang, Joo-Hyon

    2014-05-01

    This study examined the characteristics of charcoals generated from White Lauan ( Pentacmecontorta) and Punah ( Tetrameristaglabra) by using different carbonization temperatures and heating rates. The scanning electron micrographs showed vestured pits in the White Lauan and raphide crystals in Punah as their respective anatomical characteristics. A slower heating rate resulted in a lower temperature to obtain the same amount of weight loss, regardless of the species being tested. A greater charcoal yield was obtained at a higher heating rate. The specific surface area was smaller in the charcoal produced at a higher carbonization temperature, but the heating rate had little effected. For both wood species, the axial compressive strength of the charcoal increased as the carbonization temperature was increased. The X-ray diffractograms of White Lauan and Punah woods heated at 1200°C indicated thermal decomposition of the crystal structure of cellulose, but no appreciable structural changes occurred under the tested heating rate conditions. Overall, the heating rate affected the charcoal yield but not the specific surface area, compressive strength, and crystal structure.

  19. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  20. Highly stable rice-straw-derived charcoal in 3700-year-old ancient paddy soil: evidence for an effective pathway toward carbon sequestration.

    PubMed

    Wu, Mengxiong; Yang, Min; Han, Xingguo; Zhong, Ting; Zheng, Yunfei; Ding, Pin; Wu, Weixiang

    2016-01-01

    Recalcitrant charcoal application is predicted to decelerate global warming through creating a long-term carbon sink in soil. Although many studies have showed high stability of charcoal derived from woody materials, few have focused on the dynamics of straw-derived charcoal in natural environment on a long timescale to evaluate its potential for agricultural carbon sequestration. Here, we examined straw-derived charcoal in an ancient paddy soil dated from ~3700 calendar year before present (cal. year BP). Analytical results showed that soil organic matter consisted of more than 25% of charcoal in charcoal-rich layer. Similarities in morphology and molecular structure between the ancient and the fresh rice-straw-derived charcoal indicated that ancient charcoal was derived from rice straw. The lower carbon content, higher oxygen content, and obvious carbonyl of the ancient charcoal compared with fresh rice straw charcoal implied that oxidation occurred in the scale of thousands years. However, the dominant aromatic C of ancient charcoal indicated that rice-straw-derived charcoal was highly stable in the buried paddy soil due to its intrinsic chemical structures and the physical protection of ancient paddy wetland. Therefore, it may suggest that straw charcoal application is a potential pathway for C sequestration considering its longevity.

  1. ACS CCDs daily monitor

    NASA Astrophysics Data System (ADS)

    Sirianni, Marco

    2006-07-01

    This program consists of a set of basic tests to monitor, the read noise, thedevelopment of hot pixels and test for any source of noise in ACS CCDdetectors. The files, biases and dark will be used to create referencefiles for science calibration. This programme will be for the entire lifetime of ACS.For cycle 15 the program will cover 18 months 12.1.06->05.31.08and it has been divied into three different proposal each covering six months.The three poroposal are 11041-11042-11043.

  2. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  3. Characterization of coal and charcoal by alpha-particle and gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Carrasco Lourtau, A. M.; Rubio Montero, M. P.; Jurado Vargas, M.

    2015-11-01

    Although coal and charcoal have similar physical and chemical characteristics, there are several crystallographic procedures used to distinguish and characterize them. But if the matrix is crushed, there is no standard procedure to distinguish coal from charcoal. In this work, a procedure to characterize coal and charcoal samples based on the radioactive content is proposed. The first assay is by gamma-ray spectrometry, which allows a part of the radioactive content to be determined rapidly and non-destructively. Then, alpha-particle spectrometry is applied to assay the content of those radionuclides which are difficult to determine precisely by gamma-ray spectrometry. This second technique requires prior chemical purification of the carbon sample in order to separate the corresponding radionuclides of interest.

  4. Emissions from street vendor cooking devices (charcoal grilling). Final report, January 1998--March 1999

    SciTech Connect

    Lee, S.Y.

    1999-06-01

    The report discusses a joint US/Mexican program to establish a reliable emissions inventory for street vendor cooking devices (charcoal grilling), a significant source of air pollutants in the Mexicali-Imperial Valley area of Mexico. Emissions from these devices, prevalent in the streets of Mexicali, Mexico, were investigated experimentally by measuring levels of particulate matter, particle size distributions, volatile and semivolatile organic compounds, aldehydes, and oxides of nitrogen and sulfur, emitted when meat is cooked on a grill over a charcoal fire. To investigate the emission rate, both beef and chicken were tested. Furthermore, both meats were marinated with a mixture similar to that used by the street vendors. Some tests were conducted with non-marinated beef for comparison. Two blank runs were performed sampling charcoal fires without meat. Finally, a simple control device, normally used in an exhaust fan to trap grease over a kitchen stove, was evaluated for its effectiveness in reducing emissions.

  5. Emissions of air toxics from a simulated charcoal kiln. Final report, October 1997--September 1998

    SciTech Connect

    Lemieux, P.M.

    1999-06-01

    The report gives results of experiments in a laboratory-scale charcoal kiln simulator to evaluate emissions of hazardous air pollutants from the production of charcoal in Missouri-type kilns. Fixed combustion gases were measured using continuous monitors. In addition, other pollutants, including methanol, volatile organic compounds, semivolatile organic compounds, and particle emission rates and size distributions were measured using various techniques. Emissions of all pollutants are reported in units of grams emitted per unit mass of initial wood converted to charcoal. Two burn conditions--slow and fast--were examined. High levels of methanol, benzene, and fine particulate were emitted in all tests. The estimated emissions from the fast burn conditions were significantly higher than those from the slow burn conditions.

  6. A means to make open-face charcoal detectors respond correctly to varying concentration radon fields

    SciTech Connect

    Distenfeld, C.H.

    1995-12-31

    Ronca-Battista and D. Gray 87, outlined the poor response of open-face charcoal detectors to varying concentration radon fields. At worst, for two day exposures with open-face charcoal canisters, their Table 4 indicated a 75% under-response for radon concentrations that were 10 times higher during the first day of two, 10:1. TCS has made similar measurements with open-faced and diffusion barrier detectors in 20:1, 1:20, and 1:1 fields. For the worst case 20:1, measurements indicate TCS two day open-face canisters under respond by 50%, while the Cohen and TCS diffusion barrier devices under responded by about 37%. The reasons for the under response are radon diffusion out of the charcoal due to the forces of lower concentration during the second half of the exposure, and uncompensated radioactive decay of radon gas.

  7. An improved sup 222 Rn canister using a two-stage charcoal system

    SciTech Connect

    Scarpitta, S.C.; Harley, N.H. )

    1991-02-01

    A prototype for an improved passive {sup 222}Rn canister (R-Canister) was designed and compared to conventional charcoal canisters for its adsorptive and desorptive characteristics following exposures to {sup 222}Rn at 23{degrees}C in the presence of water vapor. The R-Canister, containing a two-stage charcoal system, minimizes the adverse effects of water vapor by maintaining the amount of adsorbed water vapor in the primary Rn adsorbent below the break-point of the charcoal. This is achieved by the placement of a desiccant charcoal cartridge 6 cm above the primary Rn adsorbent. The optimal bed depth of the primary adsorbent, determined from a diffusion study, was found to be 2.3 cm. The measured value for the effective diffusion coefficient of RN in a peat-based charcoal at 15% humidity and 25{degrees}C is 7.97 x 10(-10) m2 s-1. Exposures to 70% humidity for 7 d increased the buildup time-constant of Rn in the R-Canisters by 33% as compared to R-Canisters exposed to 15% humidity. At relative humidities ranging from 15-70%, the {sup 222}Rn buildup time-constant of the R-Canister ranged from 43-94 h, whereas the desorption time-constant ranged from 46-64 h. Typical buildup time-constants and desorption time-constants for conventional fully-opened charcoal canisters currently in field use ranged from 30-43 h and 17-29 h, respectively, over the same range of humidities.

  8. Soil stratigraphy of charcoal kiln remains (CKR) in the Litchfield Hills, CT, USA

    NASA Astrophysics Data System (ADS)

    Raab, Thomas; Hirsch, Florian; Ouimet, Will; Dethier, David

    2016-04-01

    Charcoal kiln relicts (CKRs) are small anthropogenic landforms that are often found in historic mining areas. CKRs have not been a big research topic yet but mainly were studied as by-products of archaeological excavations. In the last years newly available and very accurate Digital Elevation Models (DEMs) based on high-resolution Airborne Laser Scanning (ALS) data have been used to identify these archaeological remains. In addition, findings of several thousands CKRs in the North German Lowland have increased the awareness that historical charcoal production may significantly contribute to Late Holocene landscape change. Besides the archaeological aspect of CKRs, potential impacts of charcoal burning on the ecology of modern soil landscapes and ecosystem processes must be considered. A relatively high density of CKRs is found in the Litchfield Hills nearby the town of West Cornwall, Litchfield County, CT, USA. The CKRs are especially well preserved on slopes of the tributary valleys of the Housatonic River and form little, circular ramparts with diameters normally less than ten meters. First, rough field surveys in Litchfield County in spring 2015 have suggested differences between soils inside and outside the CKR. Soils on the CKR seem to have relatively deep humus-rich and charcoal containing topsoils whereas the topsoils outside the CKR appear typically thinner and less rich in humus. More thorough investigations have been started in autumn 2015 to prove the hypothesis that properties, distribution and development of soils are controlled by archaeological remains of historical charcoal burning. We present preliminary results from our field studies conducted in October 2015. The stratigraphy and the extent of the 26 CKRs were studied using a sedimentological-pedological approach by coring and trenching. Our results indicate that in Litchfield County the CKRs were used twice and in quick succession. Before the second reuse, the rim of the platform was stabilized

  9. In Situ NDA Conformation Measurements Performed at Auxiliary Charcoal Bed and Other Main Charcoal Beds After Uranium Removal from Molten Salt Reactor Experiment ACB at Oak Ridge National Laboratory

    SciTech Connect

    Haghighi, M. H.; Kring, C. T.; McGehee, J. T.; Jugan, M. R.; Chapman, J.; Meyer, K. E.

    2002-02-26

    The Molten Salt Reactor Experiment (MSRE) site is located in Tennessee, on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). The MSRE was run by Oak Ridge National Laboratory (ORNL) to demonstrate the desirable features of the molten-salt concept in a practical reactor that could be operated safely and reliably. It introduced the idea of a homogeneous reactor using fuel salt media and graphite moderation for power and breeder reactors. The MSRE reactor and associated components are located in cells beneath the floor in the high-bay area of Building 7503. The reactor was operated from June 1965 to December 1969. When the reactor was shut down, fuel salt was drained from the reactor circuit to two drain tanks. A ''clean'' salt was then circulated through the reactor as a decontamination measure and drained to a third drain tank. When operations ceased, the fuel and flush salts were allowed to cool and solidify in the drain tanks. At shutdown, the MSRE facility complex was placed in a surveillance and maintenance program. Beginning in 1987, it was discovered that gaseous uranium (U-233/U-232) hexafluoride (UF6) had moved throughout the MSRE process systems. The UF6 had been generated when radiolysis in the fluorine salts caused the individual constituents to dissociate to their component atoms, including free fluorine. Some of the free fluorine combined with uranium fluorides (UF4) in the salt to produce UF6. UF6 is gaseous at slightly above ambient temperatures; thus, periodic heating of the fuel salts (which was intended to remedy the radiolysis problems) and simple diffusion had allowed the UF6 to move out of the salt and into the process systems of MSRE. One of the systems that UF6 migrated into due to this process was the offgas system which is vented to the MSRE main charcoal beds and MSRE auxiliary charcoal bed (ACB). Recently, the majority of the uranium laden-charcoal material residing within the ACB was safely and successfully removed using

  10. Naegleria fowleri induces MUC5AC and pro-inflammatory cytokines in human epithelial cells via ROS production and EGFR activation.

    PubMed

    Cervantes-Sandoval, Isaac; Serrano-Luna, José de Jesús; Meza-Cervantez, Patricia; Arroyo, Rossana; Tsutsumi, Víctor; Shibayama, Mineko

    2009-11-01

    Naegleria fowleri is an amoeboflagellate responsible for the fatal central nervous system (CNS) disease primary amoebic meningoencephalitis (PAM). This amoeba gains access to the CNS by invading the olfactory mucosa and crossing the cribriform plate. Studies using a mouse model of infection have shown that the host secretes mucus during the very early stages of infection, and this event is followed by an infiltration of neutrophils into the nasal cavity. In this study, we investigated the role of N. fowleri trophozoites in inducing the expression and secretion of airway mucin and pro-inflammatory mediators. Using the human mucoepidermal cell line NCI-H292, we demonstrated that N. fowleri induced the expression of the MUC5AC gene and protein and the pro-inflammatory mediators interleukin-8 (IL-8) and interleukin-1 beta (IL-1 beta), but not tumour necrosis factor-alpha or chemokine c-c motif ligand 11 (eotaxin). Since the production of reactive oxygen species (ROS) is a common phenomenon involved in the signalling pathways of these molecules, we analysed if trophozoites were capable of causing ROS production in NCI-H292 cells by detecting oxidation of the fluorescent probe 2,7-dichlorofluorescein diacetate. NCI-H292 cells generated ROS after 15-30 min of trophozoite stimulation. Furthermore, the expression of MUC5AC, IL-8 and IL-1 beta was inhibited in the presence of the ROS scavenger DMSO. In addition, the use of an epidermal growth factor receptor inhibitor decreased the expression of MUC5AC and IL-8, but not IL-1 beta. We conclude that N. fowleri induces the expression of some host innate defence mechanisms, such as mucin secretion (MUC5AC) and local inflammation (IL-8 and IL-1 beta) in respiratory epithelial cells via ROS production and suggest that these innate immune mechanisms probably prevent most PAM infections.

  11. AC/DC converter

    NASA Astrophysics Data System (ADS)

    Jain, Praveen K.

    1992-08-01

    In a system such as a 20 kHz space station primary electrical power distribution system, power conversion from AC to DC is required. Some of the basic requirements for this conversion are high efficiency, light weight and small volume, regulated output voltage, close to unity input power factor, distortionless input current, soft-starting, low electromagnetic interference, and high reliability. An AC-to-DC converter is disclosed which satisfies the main design objectives of such converters for use in space. The converter of the invention comprises an input transformer, a resonant network, a current controller, a diode rectifier, and an output filter. The input transformer is for connection to a single phase, high frequency, sinusoidal waveform AC voltage source and provides a matching voltage isolating from the AC source. The resonant network converts this voltage to a sinusoidal, high frequency bidirectional current output, which is received by the current controller to provide the desired output current. The diode rectifier is connected in parallel with the current controller to convert the bidirectional current into a unidirectional current output. The output filter is connected to the rectifier to provide an essentially ripple-free, substantially constant voltage DC output.

  12. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  13. USE OF POWDERED COCONUT CHARCOAL AS A TOXICITY IDENTIFICATION AND EVALUATION MANIPULATION FOR ORGANIC TOXICANTS IN MARINE SEDIMENTS

    EPA Science Inventory

    We report on a procedure using powdered coconut charcoal to sequester organic contaminants and reduce toxicity in sediments as part of a series of toxicity identification and evaluation (TIE) methods. Powdered coconut charcoal (PCC) was effective in reducing the toxicity of endos...

  14. What Does Psychological Autopsy Study Tell Us about Charcoal Burning Suicide--A New and Contagious Method in Asia?

    ERIC Educational Resources Information Center

    Chan, Sandra S. M.; Chiu, Helen F. K.; Chen, Eric Y. H.; Chan, Wincy S. C.; Wong, Paul W. C.; Chan, Cecilia L. W.; Law, Y. W.; Yip, Paul S. F.

    2009-01-01

    Charcoal burning suicides in Hong Kong between 2002-2004 in the 15 to 59-year-old age group were investigated using the psychological autopsy method. The psychopathological profiles of charcoal burning suicides (N = 53) were compared against "other suicides" (N = 97). The two groups did not differ significantly in the prevalence of…

  15. Research on Bamboo Charcoal Bonded Grinding Wheel and Its Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Li, Wei; Xu, Minjie; Zhan, Fangyong; Jin, Mingsheng

    2014-08-01

    In this paper, a new type of grinding wheel and its manufacturing production process are introduced. The new BCB (Bamboo Charcoal Bond) grinding wheel was made of bamboo charcoal, phenolic resin and abrasive powder with higher press and temperature. To investigate its mechanical features, such as Rockwell hardness, resistance to abrasion, and resistance to pressure, some experiments on three BCB samples with different Resin weight ratios 20%, 25%, 30%, were carried out. The results showed that the BCB sample with proper moulding process and Resin weight ratio had better performance.

  16. Chemical and biological characterization of emissions from small residential stoves burning wood and charcoal

    SciTech Connect

    Ramdahl, T.; Alfheim, I.; Rustad, S.; Olsen, T.

    1982-01-01

    Emissions from a small residential wood stove and a newly developed residential stove burning charcoal have been characterized by chemical analysis and mutagenicity testing (Ames Salmonella test). For wood burning the samples were taken under normal and starved air conditions burning birch and spruce separately. The burning conditions in the stove seemed to influence the emissions to a larger extent than the type of wood. The emissions of aldehydes, benzene and polycyclic aromatic hydrocarbons from the charcoal-burning stove are lower by a factor of 25-1000 as compared to the wood stove. The mutagenicity of the emissions showed a similar trend.

  17. The charcoal trap: Miombo forests and the energy needs of people

    PubMed Central

    2011-01-01

    Background This study evaluates the carbon dioxide and other greenhouse gas fluxes to the atmosphere resulting from charcoal production in Zambia. It combines new biomass and flux data from a study, that was conducted in a miombo woodland within the Kataba Forest Reserve in the Western Province of Zambia, with data from other studies. Results The measurements at Kataba compared protected area (3 plots) with a highly disturbed plot outside the forest reserve and showed considerably reduced biomass after logging for charcoal production. The average aboveground biomass content of the reserve (Plots 2-4) was around 150 t ha-1, while the disturbed plot only contained 24 t ha-1. Soil carbon was not reduced significantly in the disturbed plot. Two years of eddy covariance measurements resulted in net ecosystem exchange values of -17 ± 31 g C m-2 y-1, in the first and 90 ± 16 g C m-2 in the second year. Thus, on the basis of these two years of measurement, there is no evidence that the miombo woodland at Kataba represents a present-day carbon sink. At the country level, it is likely that deforestation for charcoal production currently leads to a per capita emission rate of 2 - 3 t CO2 y-1. This is due to poor forest regeneration, although the resilience of miombo woodlands is high. Better post-harvest management could change this situation. Conclusions We argue that protection of miombo woodlands has to account for the energy demands of the population. The production at national scale that we estimated converts into 10,000 - 15,000 GWh y-1 of energy in the charcoal. The term "Charcoal Trap" we introduce, describes the fact that this energy supply has to be substituted when woodlands are protected. One possible solution, a shift in energy supply from charcoal to electricity, would reduce the pressure of forests but requires high investments into grid and power generation. Since Zambia currently cannot generate this money by itself, the country will remain locked in the

  18. The performance of charcoal-based radon detection under time-varying radon conditions: Experimental and theoretical results

    SciTech Connect

    Sextro, R.G.; Lee, D.D.

    1988-10-01

    Radon adsorption by charcoal is a widely used technique for measuring indoor radon concentration, particularly when short-term results are desired. There are several different devices available, ranging from permeable envelopes filled with charcoal and open-face charcoal-filled canisters to devices incorporating diffusion limiting features to reduce losses of radon due to desorption. However, the integration characteristics of these samplers are not well understood, particularly under conditions of highly varying radon concentrations. A model for predicting the response of various types of charcoal based detectors to time-variant radon concentrations has been developed; the model predictions compare well with results from chamber experiments. Both the experimental and theoretical results have also been compared with integrated continuous-sampling measurements. The implications of these comparisons for use of charcoal for screening measurements is discussed. 5 refs., 4 figs., 2 tabs.

  19. What does psychological autopsy study tell us about charcoal burning suicide--a new and contagious method in Asia?

    PubMed

    Chan, Sandra S M; Chiu, Helen F K; Chen, Eric Y H; Chan, Wincy S C; Wong, Paul W C; Chan, Cecilia L W; Law, Y W; Yip, Paul S F

    2009-12-01

    Charcoal burning suicides in Hong Kong between 2002-2004 in the 15 to 59-year-old age group were investigated using the psychological autopsy method. The psychopathological profiles of charcoal burning suicides (N = 53) were compared against "other suicides" (N = 97). The two groups did not differ significantly in the prevalence of DSM-IV axis I diagnoses with the exception of schizophrenic spectrum disorder which was less frequently associated with charcoal burning suicides. Score on "neuroticism" in the NEO-five Factor Inventory (NEO-FFI) was significantly higher in victims of charcoal burning suicide. There was also a trend toward higher score on "conscientiousness" in the NEO-FFI among charcoal burners than victims of other suicide.

  20. Eastern Andean environmental and climate synthesis for the last 2000 years BP from terrestrial pollen and charcoal records of Patagonia

    NASA Astrophysics Data System (ADS)

    Sottile, G. D.; Echeverria, M. E.; Mancini, M. V.; Bianchi, M. M.; Marcos, M. A.; Bamonte, F. P.

    2015-06-01

    The Southern Hemisphere Westerly Winds (SWW) constitute an important zonal circulation system that dominates the dynamics of Southern Hemisphere mid-latitude climate. Little is known about climatic changes in the Southern South America in comparison to the Northern Hemisphere due to the low density of proxy records, and adequate chronology and sampling resolution to address environmental changes of the last 2000 years. Since 2009, new pollen and charcoal records from bog and lakes in northern and southern Patagonia at the east side of the Andes have been published with an adequate calibration of pollen assemblages related to modern vegetation and ecological behaviour. In this work we improve the chronological control of some eastern Andean previously published sequences and integrate pollen and charcoal dataset available east of the Andes to interpret possible environmental and SWW variability at centennial time scales. Through the analysis of modern and past hydric balance dynamics we compare these scenarios with other western Andean SWW sensitive proxy records for the last 2000 years. Due to the distinct precipitation regimes that exist between Northern (40-45° S) and Southern Patagonia (48-52° S) pollen sites locations, shifts on latitudinal and strength of the SWW results in large changes on hydric availability on forest and steppe communities. Therefore, we can interpret fossil pollen dataset as changes on paleohydric balance at every single site by the construction of paleohydric indices and comparison to charcoal records during the last 2000 cal yrs BP. Our composite pollen-based Northern and Southern Patagonia indices can be interpreted as changes in latitudinal variation and intensity of the SWW respectively. Dataset integration suggest poleward SWW between 2000 and 750 cal yrs BP and northward-weaker SWW during the Little Ice Age (750-200 cal yrs BP). These SWW variations are synchronous to Patagonian fire activity major shifts. We found an in phase

  1. Six centuries of anthropogenic forest change on a Polynesian high island: Archaeological charcoal records from the Marquesas Islands

    NASA Astrophysics Data System (ADS)

    Huebert, Jennifer M.; Allen, Melinda S.

    2016-04-01

    It is widely recognised that Polynesian settlers developed central Pacific islands into productive economic landscapes, but the character and tempo of these transformations are poorly understood. Archaeological wood charcoal assemblages are uniquely suited to inform on landscape change, especially when the principal food crops were arboreal. We use a large archaeological charcoal collection, drawn from numerous geographically and functionally varied contexts, to develop a multi-scalar vegetation history of Marquesas Islands' lowland forests. Our aims were to: 1) reveal historical patterns of plant biogeography, including introductions by Polynesian settlers; 2) detail the nature and timing of anthropogenic impacts on native Marquesan forests; and 3) track the emergence of economically productive arboreal landscapes. A collection of 6510 fragments identified to 59 taxa inform on a ∼600-year sequence of human activities. The earliest samples indicate rich forests were encountered by human colonists, comprised of a mix of dicotyledonous hardwood species and woody monocots. These included members of two now-extinct Sapotaceae genera, Planchonella and cf. Sideroxylon, along with Allophylus, a Sapindaceae apparently extirpated from Nuku Hiva. Two important coastal trees, Calophyllum inophyllum and Thespesia populnea, also appear to be indigenous. Polynesian impacts were rapid and widespread, irrevocably altering the indigenous vegetation and disrupting native ecosystems. Samples from later occupations document on-going modifications to lowland vegetation communities. This included inter-valley variability in the timing of transformations and the development of mosaic formations, comprised of native forest interspersed with areas of cultivation and habitation. By 1650 CE, low and mid-elevation vegetation was extensively remodelled, as anthropogenic forests of Artocarpus altilis (breadfruit), Inocarpus fagifer (Tahitian chestnut), and other economic species became widely

  2. ACS Committee on Professional Training 1986 Annual Report.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1987

    1987-01-01

    Presents data on the number of bachelor's, master's, and Ph.D. degrees in chemistry from institutions whose programs are approved by the American Chemical Society (ACS). Reviews the programs and activities endorsed by the ACS Board of Directors in April, 1986. (ML)

  3. Precursors of Short GRBs Registered by SPI-ACS/INTEGRAL

    NASA Astrophysics Data System (ADS)

    Minaev, P.; Pozanenko, A.

    2016-10-01

    We have searched for precursors in light curves of short gamma-ray bursts registered by SPI-ACS/INTEGRAL in 2002-2014. The portion of short bursts with precursor activity will be less than 0.4% from all short bursts registered by SPI-ACS.

  4. Antagonistic potential of fluorescent pseudomonads and control of charcoal rot of chickpea caused by Macrophomina phaseolina.

    PubMed

    Kumar, Vinod; Kumar, Anuj; Kharwar, R N

    2007-01-01

    The effectiveness of plant growth promoting rhizobacteria especially Pseudomonas fluorescens isolates were tested against charcoal rot of chickpea both in green house as well as in field conditions. Most of the isolates reduced charcoal rot disease and promoted plant growth in green house. A marked increase in shoot and root length was observed in P. fluorescens treated plants. Among all the P. fluorescens isolates Pf4-99, was found most effective in the improvement of chickpea crop in green house as well as in field. Pf4-99 effectively promoted plant growth and produced indole acetic acid in culture medium. This isolate also inhibited the mycelial growth of the M. phaseolina under in vitro conditions and reduced the disease severity Potential isolate (Pf4-99) also significantly increased the biomass of the chickpea plants, shoot length, root length and protein content of the chickpea seeds. A part from these, the total number of seeds per plant and their weight were also enhanced. The colonization of Pf4-99 reduced the incidence of seed mycoflora by which indirectly enhanced the seed germination and vigour index of seedlings. The observations revealed that isolate Pf4-99 is quite effective to reduce the charcoal rot disease both in field and greenhouse, and also increases seed yields significantly Therefore, this isolate appears to be an efficient biocontrol agent against charcoal rot disease as well as yield increasing rhizobacterium.

  5. Reconstructions of biomass burning from sediment-charcoal records to improve data-model comparisons

    NASA Astrophysics Data System (ADS)

    Marlon, Jennifer R.; Kelly, Ryan; Daniau, Anne-Laure; Vannière, Boris; Power, Mitchell J.; Bartlein, Patrick; Higuera, Philip; Blarquez, Olivier; Brewer, Simon; Brücher, Tim; Feurdean, Angelica; Gil Romera, Graciela; Iglesias, Virginia; Yoshi Maezumi, S.; Magi, Brian; Mustaphi, Colin J. Courtney; Zhihai, Tonishtan

    2016-06-01

    The location, timing, spatial extent, and frequency of wildfires are changing rapidly in many parts of the world, producing substantial impacts on ecosystems, people, and potentially climate. Paleofire records based on charcoal accumulation in sediments enable modern changes in biomass burning to be considered in their long-term context. Paleofire records also provide insights into the causes and impacts of past wildfires and emissions when analyzed in conjunction with other paleoenvironmental data and with fire models. Here we present new 1000-year and 22 000-year trends and gridded biomass burning reconstructions based on the Global Charcoal Database version 3 (GCDv3), which includes 736 charcoal records (57 more than in version 2). The new gridded reconstructions reveal the spatial patterns underlying the temporal trends in the data, allowing insights into likely controls on biomass burning at regional to global scales. In the most recent few decades, biomass burning has sharply increased in both hemispheres but especially in the north, where charcoal fluxes are now higher than at any other time during the past 22 000 years. We also discuss methodological issues relevant to data-model comparisons and identify areas for future research. Spatially gridded versions of the global data set from GCDv3 are provided to facilitate comparison with and validation of global fire simulations.

  6. Pyrolysis of blended animal manures to produce combustible gas and value-added charcoal adsorbent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blended swine solids, chicken litter, and rye grass were pyrolyzed using a skid-mounted sytem. Produced gas composition was analyzed for major hydrocarbons and S-containing compounds. Charcoal was analyzed for its surface functional groups, contact angles, HHV, and total element contents. Some of th...

  7. 40 CFR 454.10 - Applicability; description of the manufacture of char and charcoal briquets subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Applicability; description of the manufacture of char and charcoal briquets subcategory. 454.10 Section 454.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) GUM AND WOOD...

  8. 40 CFR 454.10 - Applicability; description of the manufacture of char and charcoal briquets subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Applicability; description of the manufacture of char and charcoal briquets subcategory. 454.10 Section 454.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GUM AND WOOD...

  9. 40 CFR 454.10 - Applicability; description of the manufacture of char and charcoal briquets subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the manufacture of char and charcoal briquets subcategory. 454.10 Section 454.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) GUM AND WOOD...

  10. 40 CFR 454.10 - Applicability; description of the manufacture of char and charcoal briquets subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the manufacture of char and charcoal briquets subcategory. 454.10 Section 454.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GUM AND WOOD...

  11. 40 CFR 454.10 - Applicability; description of the manufacture of char and charcoal briquets subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the manufacture of char and charcoal briquets subcategory. 454.10 Section 454.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) GUM AND WOOD...

  12. Reconstructions of biomass burning from sediment charcoal records to improve data-model comparisons

    NASA Astrophysics Data System (ADS)

    Marlon, J. R.; Kelly, R.; Daniau, A.-L.; Vannière, B.; Power, M. J.; Bartlein, P.; Higuera, P.; Blarquez, O.; Brewer, S.; Brücher, T.; Feurdean, A.; Gil-Romera, G.; Iglesias, V.; Maezumi, S. Y.; Magi, B.; Mustaphi, C. J. C.; Zhihai, T.

    2015-11-01

    The location, timing, spatial extent, and frequency of wildfires are changing rapidly in many parts of the world, producing substantial impacts on ecosystems, people, and potentially climate. Paleofire records based on charcoal accumulation in sediments enable modern changes in biomass burning to be considered in their long-term context. Paleofire records also provide insights into the causes and impacts of past wildfires and emissions when analyzed in conjunction with other paleoenvironmental data and with fire models. Here we present new 1000 year and 22 000 year trends and gridded biomass burning reconstructions based on the Global Charcoal Database version 3, which includes 736 charcoal records (57 more than in version 2). The new gridded reconstructions reveal the spatial patterns underlying the temporal trends in the data, allowing insights into likely controls on biomass burning at regional to global scales. In the most recent few decades, biomass burning has sharply increased in both hemispheres, but especially in the north, where charcoal fluxes are now higher than at any other time during the past 22 000 {years}. We also discuss methodological issues relevant to data-model comparisons, and identify areas for future research. Spatially gridded versions of the global dataset from GCDv3 are provided to facilitate comparison with and validation of global fire simulations.

  13. 4. Photocopied June 1978 R.H. ROBERTSON, PENCIL AND CHARCOAL SKETCH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photocopied June 1978 R.H. ROBERTSON, PENCIL AND CHARCOAL SKETCH, LAKE HENDERSON, FROM TAHAWUS CLUB BOAT DOCK. CA. 1914. SOURCE: ARTHUR CROCKER, PRESIDENT OF THE TAHAWUS CLUB. - Adirondack Iron & Steel Company, New Furnace, Hudson River, Tahawus, Essex County, NY

  14. Design and Operating Criteria for Fluorine Disposal by Reaction with Charcoal

    NASA Technical Reports Server (NTRS)

    Schmidt, Harold W.

    1959-01-01

    Experiments with the charcoal-fluorine reaction for the disposal of fluorine have shown generally that this method is effective over a wide range of conditions. Pure fluorine or fluorine diluted with nitrogen to concentrations as low as 0.3 percent fluorine may be disposed of efficiently within the rate limitation. Maximum feed rates have been established and are inversely proportional to the charcoal-bed particle diameter. Moisture content in the charcoal had no appreciable effect on the disposal efficiency after the reaction zone was established and the moisture was driven off by the heat of reaction. There was no evidence of bed poisoning resulting from continued use. Design parameters may be based on the stoichiometric requirements plus sufficient excess charcoal to maintain desired efficiency toward the end of a disposal operation. The length of time a given reactor may be used continuously is limited by the rate of fluorine input and the resistance of the system to heat and fluorine attack. Refractory-lined reactors have been in routine field use at the Lewis Research Center for over a year and have given satisfactory service over a wide range of conditions.

  15. An Integrative Suicide Prevention Program for Visitor Charcoal Burning Suicide and Suicide Pact

    ERIC Educational Resources Information Center

    Wong, Paul W. C.; Liu, Patricia M. Y.; Chan, Wincy S. C.; Law, Y. W.; Law, Steven C. K.; Fu, King-Wa; Li, Hana S. H.; Tso, M. K.; Beautrais, Annette L.; Yip, Paul S. F.

    2009-01-01

    An integrative suicide prevention program was implemented to tackle an outbreak of visitor charcoal burning suicides in Cheung Chau, an island in Hong Kong, in 2002. This study evaluated the effectiveness of the program. The numbers of visitor suicides reduced from 37 deaths in the 51 months prior to program implementation to 6 deaths in the 42…

  16. The Charcoal Trap: Miombo Woddlands and the Energy Demands of People

    NASA Astrophysics Data System (ADS)

    Kutsch, W. L.; Merbold, L.; Mukelabai, M. M.

    2012-04-01

    Miombo woodlands cover the transition zone between dry open savannas and moist forests in Southern Africa. They cover about 2.7 million km2 in southern Africa and provide many ecosystem services that support rural life, including medical products, wild foods, construction timber and fuel. In Zambia, as in many of its neighbouring countries, miombo woodlands are currently experiencing accelerating degradation and clearing, mostly with charcoal production as the initial driver. Domestic energy needs in the growing urban areas are largely satisfied by charcoal, which is less energy-efficient fuel on a tree-to-table basis than the firewood that is used in rural areas, but has a higher energy density and is thus cheaper to transport. This study uses data from inventories and from eddy covariance measurements of carbon exchange to characterize the impact of charcoal production on miombo woodlands. We address the following questions: (i) how much carbon is lost at local as well as at national scale and (ii) does forest degradation result in the loss of a carbon sink? On the basis of our data we (iii) estimate the per capita emissions through deforestation and forest degradation in Zambia and relate it to fossil fuel emissions. Furthermore, (iv) a rough estimate of the energy that is provided by charcoal production to private households at a national level is calculated and (v) options for alternative energy supply to private households are discussed.

  17. Rainfall Reconstruction Using Wood Charcoal from Two Archaeological Sites in South Africa

    NASA Astrophysics Data System (ADS)

    February, Ed C.

    1994-07-01

    Major components of most southern African archaeological sites are stone, bone, and charcoal. A new technique for climate reconstruction utilizes measurements of vessel size and frequency in the cross-sectional xylem anatomy of archaeological charcoal from Collingham Shelter and Mhlwazini Cave in the Natal Drakensberg. Previous wood anatomical studies have shown that links exist among vessel diameter, vessel frequency and climate. The present study demonstrates that in relation to rainfall, vessel diameter in the species Protea caffra and Protea roupelliae correlated positively, whereas vessel frequency correlated negatively. In P. roupelliae, mean vessel diameter increases from 46 to 62 μm along a rainfall gradient ranging from 760 to 1665 mm. The significant correlations between rainfall and tangential vessel diameter for a charred sample of P. roupelliae suggest that such measures on an archaeological charcoal sample may be used to reconstruct rainfall patterns through time. Using nine assemblages of archaeological charcoal, generalized patterns of wetter and drier periods can be postulated. Comparison with contemporary values indicates that at 200 and 2400 yr B.P. the area near the archaeological sites was wetter than at present. A dry phase occurred between 1300 and 300 yr B.P. Values for the contemporary wood sample are the lowest observed, indicating that present conditions are much drier than those at any time within the last ca. 2000 yr. Dating resolution however, is insufficient to allow more-detailed interpretation of rainfall conditions over the past 2000 yr.

  18. Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil

    NASA Astrophysics Data System (ADS)

    Criscuoli, Irene; Alberti, Giorgio; Baronti, Silvia; Favilli, Filippo; Martinez, Cristina; Calzolari, Costanza; Pusceddu, Emanuela; Rumpel, Cornelia; Viola, Roberto; Miglietta, Franco

    2014-05-01

    The addition of pyrogenic carbon (C) in the soil is considered a sustainable strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil chemico-physical properties by studying a series of abandoned charcoal hearths in the Eastern Alps established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of C present in the hearths with the estimated amount of charcoal that was left on the soil after the carbonization. Approximately 80% of the C originally added to the soil via charcoal can still be found today, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an improvement in the physical properties (hydrophobicity and bulk density) of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. Then, we focused on the morphological and physical characterization of several fragments, using scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Such study enabled the identification of peculiar morphological features of tracheids, which were tentatively associated to a differential oxidation of the structures that were created during carbonization from lignine and cellulose. In order to assess the effect of soil-aging we compared the old-biochar with a modern one obtained from the same feedstock and with similar carbonization process. XRD and XRF analysis were performed on both old and modern biochar, in order to study the multiphase crystalline structure and chemical elements found. We observed mineralization and a fossilization of old biochar samples respect to the modern ones, with accumulation of several mineral oxides and a substantial presence of

  19. Characterization and genesis interpretation of charcoal-bearing concretions from the early Eocene Ione Formation, CA

    NASA Astrophysics Data System (ADS)

    Bair, D.; Aburto, F.

    2013-12-01

    Charcoal core concretions have been discovered in the kaolinitic soil horizons of the Ione formation (early Eocene epoch ~52Ma BP). It is thought that the Ione Formation in the Ione Basin was deposited in delta and estuarine waters that were subsequently exhumed and exposed to a warmer, humid, tropical-like environment during the early Eocene. The formation of concretions is indicative of seasonal dryness, and the charcoal cores are evidence of wildfires and of the existence of a forest ecosystem. The mineral outer shells of the concretions have been characterized by powder X-ray diffraction, Electron Microprobe and Laser Ablation Quadruple Mass Spectrometry (LA-ICP-MS). Micro-computed tomography (MCT) scans indicate that these concretions have at least three distinct shells and a inner core with fragments of charcoal without apparent internal organization. The outer shell is mainly composed of a layered mix of kaolinite, quartz, goethite, hematite and birnessite. Some pyrite and jarosite have also been found, which could indicate that goethite may be post-depositional and a product of the bacteria-mediated oxidation of pyrite. The central shell has a similar composition, but with a higher content of iron oxyhydroxides and jarosite. The inner cores of the concretions are mainly composed of a mixture of kaolinite and quartz which correspond to the layer in which the concretions were found. The concretion cores contain loose charcoal fragments in a unsolidified kaolinite matrix. The charcoal fragments have been characterized by Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), C/N isotope analysis, and Synchrotron radiation FTIR (SR-FTIR). Analysis of the ATR-FTIR spectra showed significant absorbance peaks at wavenumbers that coincided with the chemical functionality of other wood biochars. Charcoal from different concretions display (n =12) extremely similar spectra which suggest that they were originated from similar species and

  20. A method for removing copper from charcoal of waste wood using an electrical current.

    PubMed

    Goto, S; Xiong, J F; Nakajima, D; Inaba, K; Ohata, M; Yoshizawa, S; Yajima, H; Sakai, S

    2007-08-01

    The reclamation of resources from wastes, through such activities as recycling various kinds of wastes and finding more ways to use them, is an important part of changing to a sustainable society. It is also important to ensure the safety of products by, for example, removing hazardous substances from recycled items. Wood is a type of demolition waste. The reuse and recycling of wood from demolition have not progressed much. To increase the number of ways of using wood wastes we have examined methods of making carbonized materials from them and using these carbonized materials to control indoor air pollution (Shibano et al., 2002). Research currently underway on ensuring the safety of recycled items includes investigating the behavior and other characteristics of hazardous substances that are, or may very well be, found in recycled items. It is known that the smoke arising from the process of carbonizing wood wastes is mutagenic. However, such mutagenic components become smoke and separate from carbonized materials, and, especially at temperatures of 800 degrees C and higher, they hardly remain in carbonized materials at all (Nakajima et al., 2003, 2004). In the carbonization of wood wastes containing hazardous metals such as CCA (Cr, Cu, As)-treated wood, substances that readily vaporize separate from the carbonized materials. One cannot expect, however, the same removal effect on metals that vaporize with difficulty, such as Cu, making it likely that they remain in the carbonized material (Takahashi et al., 2004). To examine methods of removing hazardous metals which may well remain in carbonized wood wastes, we investigated the removal and recovery of copper from charcoal with a high copper content by applying electricity (direct current) to it.

  1. Endocrine Response Phenotypes Are Altered by Charcoal-Stripped Serum Variability.

    PubMed

    Sikora, Matthew J; Johnson, Michael D; Lee, Adrian V; Oesterreich, Steffi

    2016-10-01

    Charcoal-stripped bovine serum (CSS) is a critical reagent in the study of steroid hormones. However, CSS has high lot-to-lot variability, including residual growth factor and steroid hormone content. Assessing and reporting this variability is challenging but may affect experimental outcomes and data reproducibility. We hypothesized that CSS lot variability would affect endocrine response phenotypes in breast cancer cells, and we tested the effects of five individual CSS lots on endocrine response in MCF-7 and MDA MB 134VI (MM134) cells. Based on the effects of antiestrogens on MCF-7 cell proliferation, we defined CSS lots as having complete vs partial hormone deprivation. In partial deprivation CSS, the absolute effects of residual estrogens on cell proliferation were modest, but these effects masked the partial agonist activity of 4-hydroxytamoxifen in MM134 cells. Importantly, this effectively reversed the interpretation of tamoxifen-resistance in MM134 cells. Variable effects of CSS lots on endocrine resistance phenotypes were also observed in MCF-7 cells. In this context, we observed that partial vs complete deprivation CSS allowed for the development of unique early endocrine resistance phenotypes that correlated with the presence or absence of residual estrogenic hormones. We evaluated the methods of CSS preparation and identified factors contributing to the extent of hormone deprivation. Our observations suggest that CSS lot-to-lot variability has substantial effects on endocrine response phenotypes and that this ubiquitous factor in study methodology may confound reproducibility. Renewed vigilance in testing and reporting CSS phenotypes will greatly aid in interpreting and reproducing endocrine response and resistance data by the community.

  2. Combining charcoal sediment and molecular markers to infer a Holocene fire history in the Maya lowlands of Petén, Guatemala

    NASA Astrophysics Data System (ADS)

    Kirchgeorg, Torben; Schüpbach, Simon; Colombaroli, Daniele; Beffa, Giorgia; Radaelli, Marta; Kehrwald, Natalie; Barbante, Carlo

    2015-04-01

    Holocene vegetation changes in the Maya Lowlands during the Holocene are a result of changing climate conditions, solely anthropogenic activities, or interactions of both factors. As a consequence, it is difficult to assess how tropical ecosystems will cope with projected changes in precipitation and land-use intensification over the next decades. We investigated the role of fire during the Holocene by combining different proxies. We distinguished between three different morphotypes (grass, wood and leaves) in macroscopic charcoal. We also determined the molecular fire proxies levoglucosan, mannosan and galactosan. Combining these different fire proxies allows a more robust understanding of the complex history of fire regimes at different spatial scales during the Holocene. Comparing the two biomass burning proxies may help increase our understanding about advantages and limitations of molecular markers as proxies for past fire reconstruction in lake sediments. In order to infer changes in past biomass burning, we analysed a lake sediment core from Lake Petén Itzá, Guatemala (17°00'N, 89°50'W, 110 m above sea level), and compared our results with millennial-scale vegetation and climate change data available in this area. Some differences were observed between the two records and we assumed that while macroscopic charcoal represents a local fire signal, the molecular fire proxies records seem to be influenced by regional to supra-regional fire or low temperature fires. During the Holocene we detected three periods of high fire activity: 9500-6000 cal yr BP, 3800 cal yr BP and 2700 cal yr BP. We attributed the first maximum (9500-6000 cal yr BP) to only climate conditions, which corresponds with observations from previous studies in this region. The fast decrease in the relative abundance of woody charcoal to grass charcoal at the 3800 cal yr BP fire maximum may result from human activity, but we cannot exclude that this shift was related to climate conditions

  3. Apple MdACS6 Regulates Ethylene Biosynthesis During Fruit Development Involving Ethylene-Responsive Factor.

    PubMed

    Li, Tong; Tan, Dongmei; Liu, Zhi; Jiang, Zhongyu; Wei, Yun; Zhang, Lichao; Li, Xinyue; Yuan, Hui; Wang, Aide

    2015-10-01

    Ethylene biosynthesis in plants involves different 1-aminocyclopropane-1-carboxylic acid synthase (ACS) genes. The regulation of each ACS gene during fruit development is unclear. Here, we characterized another apple (Malus×domestica) ACS gene, MdACS6. The transcript of MdACS6 was observed not only in fruits but also in other tissues. During fruit development, MdACS6 was initiated at a much earlier stage, whereas MdACS3a and MdACS1 began to be expressed at 35 d before harvest and immediateley after harvest, respectively. Moreover, the enzyme activity of MdACS6 was significantly lower than that of MdACS3a and MdACS1, accounting for the low ethylene biosynthesis in young fruits. Overexpression of MdACS6 (MdACS6-OE) by transient assay in apple showed enhanced ethylene production, and MdACS3a was induced in MdACS6-OE fruits but not in control fruits. In MdACS6 apple fruits silenced by the virus-induced gene silencing (VIGS) system (MdACS6-AN), neither ethylene production nor MdACS3a transcript was detectable. In order to explore the mechanism through which MdACS3a was induced in MdACS6-OE fruits, we investigated the expression of apple ethylene-responsive factor (ERF) genes. The results showed that the expression of MdERF2 was induced in MdACS6-OE fruits and inhibited in MdACS6-AN fruits. Yeast one-hybrid assay showed that MdERF2 protein could bind to the promoter of MdACS3a. Moreover, down-regulation of MdERF2 in apple flesh callus led to a decrease of MdACS3a expression, demonstrating the regulation of MdERF2 on MdACS3a. The mechanism through which MdACS6 regulates the action of MdACS3a was discussed.

  4. The Preparation and Reduction Behavior of Charcoal Composite Iron Oxide Pellets

    NASA Astrophysics Data System (ADS)

    Konishi, Hirokazu; Usui, Tateo; Harada, Takeshi

    In the energy conversion, biomass has novel advantage, i.e., no CO2 emission, because of carbon neutral. Charcoal composite iron oxide pellets were proposed to decrease CO2 emission for the ironmaking. These pellets were promising to decrease the initial temperature for reduction reaction of carbon composite iron ore agglomerate under a rising temperature condition, such as in a blast furnace shaft. In order to obtain charcoal, Japanese cedar and cypress were carbonized from room temperature to maximum carbonization temperature (TC, max = 1273 K) at a heating rate of 200 K/h, and kept at TC, max until arrival time of 6 h. Reducing gases of CO and CH4 started releasing from relatively low temperature (500 K). In the total gas volume of carbonization, H2 gas of Japanese cedar was more than that of Japanese cypress. These woods have more CO gas volume than Newcastle blend coal has. The obtained charcoal was mixed with reagent grade hematite in the mass ratio of one to four. Then, a small amount of Bentonite was added to the mixture as a binder, and the charcoal composite iron oxide pellets were prepared and reduced at 1273, 1373 and 1473 K in nitrogen gas atmosphere. It was conirmed by the generated gas analysis during reduction reaction that charcoal composite iron oxide pellets had higher reducibility than char composite pellets using Newcastle blend coal. From the XRD analysis of the reduced pellets, it was found that the original Fe2O3 was almost reduced to Fe for 60 min at 1273 K, 20 min at 1373 K and 5~15 min at 1473 K.

  5. The Charcoal Trap: Miombo woodlands versus the energy needs of people

    NASA Astrophysics Data System (ADS)

    Merbold, Lutz; Maurice, Muchinda; Mukufute M, Mukelabai; J, Scholes Robert; Waldemar, Ziegler; L, Kutsch Werner

    2010-05-01

    Miombo woodlands cover the transition zone between the dry open savannas and the moist forests in Southern Africa and occupy the vast area of 2.7 Mio km2. These ecosystems are highly disturbed by deforestation, mostly for charcoal production. Charcoal has become the largest source to satisfy urban energy demands. Even though when charcoal is a less energy-efficient fuel compared to firewood but by having higher energy densities and thus being cheaper to transport. Over the last decades, charcoal production has become a full-time employment for migrant workers, resulting in very different and no longer sustainable deforestation patterns. Strategies to reduce the pressure on the miombo woodlands have to take aspects of employment and energy demand into account. The objectives of the study were to examine above- and belowground carbon losses from an intact miombo woodland (protected forest reserve) in comparison to a highly disturbed surrounding area due to charcoal production. Detection of changes in carbon concentrations and stocks were made possible by applying biomass- and soil inventories as well as the eddy-covariance method. These local results were up-scaled to countrywide estimates of carbon lost to the atmosphere by deforestation in addition to carbon losses fossil fuel combustion. The results show, that in the worst case scenario which does not assume any regeneration, a developing country as Zambia, can easily emit as much carbon per capita as a developed Western world country such as France, when deforestation is included in the national inventory (up to 9.1 t of CO2 per capita). However, regeneration is very probably when post-harvest disturbance is low. Further studies on miombo regeneration are highly demanded.

  6. Chemical and Isotopic Thresholds in Charring: Implications for the Interpretation of Charcoal Mass and Isotopic Data

    NASA Astrophysics Data System (ADS)

    Pyle, L.; Hockaday, W. C.; Boutton, T. W.; Zygourakis, K.; Kinney, T.; Masiello, C. A.

    2014-12-01

    Charcoal plays a significant role in the long-term carbon cycle and its use as a soil amendment is becoming a viable carbon sequestration strategy (biochar). One challenge in this research area has been comparing results between studies in part due to the diversity of lab and field production conditions. Although the highest treatment temperature (HTT) is often used to describe pyrolysis conditions, several studies have shown that length of time at the highest temperature can also cause changes to the physicochemical qualities of charcoal and ignoring this effect may introduce inter-comparison problems. Addressing this issue becomes especially important in the discussion of optimizing biochar for soil remediation and carbon sequestration, and in discussions of charcoal use in reconstructing past fire regimes, as increasing time at temperature may cause changes in charcoal properties similar to the changes caused by increasing HTT. Here we introduce a formal definition of charring intensity (CI) to more accurately characterize pyrolysis, and we document variation in this property with pyrolysis temperature and reaction duration. We found two types of responses to CI: either a linear or a threshold relationship. We show that a threshold exists where %C, %N and δ15N begin exhibiting large changes, and this CI threshold co-occurred with an increase in charcoal aromaticity. Mass yield decreased linearly with charring intensity and carbon isotopes did not change from original biomass values in our controlled laboratory experiments. Analysis of these data shows that pyrolysis parameters should be defined in the literature as a combination of temperature and duration conditions, and that biomass that has undergone pyrolysis may be influencing soil organic nitrogen. Additionally, the lack of alteration in carbon isotopes across our matrix supports the efficacy of using pyrolyzed material for archaeological reconstructions.

  7. Deletion of Ac-NMePhe(1) from [NMePhe(1) ]arodyn under acidic conditions, part 2: effects of substitutions on pharmacological activity.

    PubMed

    Fang, Wei-Jie; Bennett, Marco A; Murray, Thomas F; Aldrich, Jane V

    2011-01-01

    Arodyn (Ac[Phe¹,²,³,Arg⁴,D-Ala⁸]Dyn A(1-11)NH₂) is an acetylated dynorphin A (Dyn A) analog that is a potent and selective κ opioid receptor antagonist (Bennett et al., J Med Chem 2002, 45, 5617), and its analog [NMePhe¹]arodyn shows even higher affinity and selectivity for κ opioid receptors (Bennett et al., J Pept Res 2005, 65, 322). However, the latter compound is prone to deletion of the Ac-NMePhe moiety from the N-terminus of the peptide during acidic cleavage as described in the accompanying paper. Several stable analogs of [NMePhe¹]arodyn and [NMePhe¹,Trp³]arodyn where the acetyl group was substituted with a heteroatom-containing group were evaluated for their opioid receptor affinity, selectivity, and efficacy. Methoxycarbonyl derivatives exhibited the highest κ opioid receptor affinity among the analogs. Additional [CH₃OCO-NMePhe¹]arodyn analogs where position 3 was substituted with other aromatic or nonaromatic residues were also evaluated for κ receptor affinity, selectivity, and efficacy. [CH₃OCO-NMePhe¹]arodyn has similar κ opioid receptor affinity as [NMePhe¹]arodyn, retains high κ opioid receptor selectivity, and is a potent κ opioid receptor antagonist.

  8. Does Management Matter?: Using MISR to Assess the Effects of Charcoal Production and Management on Woodland Regeneration

    NASA Astrophysics Data System (ADS)

    Wurster, K.

    2008-12-01

    In much of Sub-Saharan Africa, more than 75 percent of a rapidly growing urban population depends on charcoal as their primary source of energy for cooking. The high demand for charcoal has led many to believe that charcoal harvesting catalyzes widespread deforestation. The Senegalese government and international donors have initiated projects within protected areas to combat deforestation and created land management plans to sustainably harvest charcoal. To date, the effects of forest management techniques on forest sustainability are still in question. This research uses a multiphase approach integrating satellite analysis with field surveys to assess the effect of varying forest management strategies on forest regeneration and sustainability after charcoal harvesting. Phase I involved testing the Multiangle Imaging SpectroRadiometer (MISR) satellites capability in detecting structural changes in vegetative cover caused by charcoal harvesting and production. Analysis of the MISR derived k(red) parameter showed MISR can consistently differentiate between forest cover types and successfully differentiates between sites at pre- and post-charcoal harvest stages. Phase II conducted forestry and social surveys comparing and contrasting local effects of land management, land use, and charcoal production on forest regeneration. Phase III uses the local surveys to validate and train the regional remote sensing data to assess the effectiveness of land management in promoting forest regeneration and sustainability after charcoal harvesting. Combining detailed local knowledge with the regional capabilities of MISR provide valuable insight into the factors that control woodland regeneration and sustainability. Preliminary results from phases II and III indicate that both field and remotely sensed variations in forest cover, tree regeneration, and land use change does not vary when compared against land management type. Final results will provide managers with additional

  9. Charcoal records reveal past occurrences of disturbances in the forests of the Kisangani region, Democratic Republic of the Congo

    NASA Astrophysics Data System (ADS)

    Tshibamba Mukendi, John; Hubau, Wannes; Ntahobavuka, Honorine; Boyemba Bosela, Faustin; De Cannière, Charles; Beeckman, Hans

    2014-05-01

    Past disturbances have modified local density, structure and floristic composition of Central African rainforests. As such, these perturbations represent a driving force for forest dynamics and they were presumably at the origin of present-day forest mosaics. One of the most prominent disturbances within the forest is fire, leaving behind charcoal as a witness of past forest dynamics. Quantification and identification of ancient charcoal fragments found in soil layers (= pedoanthracology) allows a detailed reconstruction of forest history, including the possible occurrence of past perturbations. The primary objective of this study is to present palaeoenvironmental evidence for the existence of past disturbances in the forests of the Kisangani region (Democratic Republic of the Congo) using a pedoanthracological approach. We quantified and identified charcoal fragments from pedoanthracological excavations in the Yangambi, Yoko, Masako and Kole forest regions. Charcoal sampling was conducted in pit intervals of 10 cm, whereby pottery fragments were also registered and quantified. Floristic identifications were conducted using former protocols based on wood anatomy, which is largely preserved after charcoalification. 14 excavations were conducted and charcoal was found in most pit intervals. Specifically, 52 out of 56 sampled intervals from the Yangambi forest contained charcoal, along with 47 pit intervals from the Yoko forest reserve, 34 pit intervals from the Masako forest and 16 from the Kole forest. Highest specific anthracomasses were recorded in Yoko (167 mg charcoal per kg soil), followed by Yangambi (133 mg/kg), Masako (71,89 mg/kg) and finally Kole (42,4 mg/kg). Charcoal identifications point at a manifest presence of the family of Fabaceae (Caesalpinioideae). This family is characteristic for the tropical humid rainforest. The presence of charcoal fragments from these taxa, associated with pottery sherds on different depths within the profiles, suggests

  10. Macro-Particle Charcoal C Content following Prescribed Burning in a Mixed-Conifer Forest, Sierra Nevada, California

    PubMed Central

    Wiechmann, Morgan L.; Hurteau, Matthew D.; Kaye, Jason P.; Miesel, Jessica R.

    2015-01-01

    Fire suppression and changing climate have resulted in increased large wildfire frequency and severity in the western United States, causing carbon cycle impacts. Forest thinning and prescribed burning reduce high-severity fire risk, but require removal of biomass and emissions of carbon from burning. During each fire a fraction of the burning vegetation and soil organic matter is converted into charcoal, a relatively stable carbon form. We sought to quantify the effects of pre-fire fuel load and type on charcoal carbon produced by biomass combusted in a prescribed burn under different thinning treatments and to identify more easily measured predictors of charcoal carbon mass in a historically frequent-fire mixed-conifer forest. We hypothesized that charcoal carbon produced from coarse woody debris (CWD) during prescribed burning would be greater than that produced from fine woody debris (FWD). We visually quantified post-treatment charcoal carbon content in the O-horizon and the A-horizon beneath CWD (> 30 cm diameter) and up to 60 cm from CWD that was present prior to treatment. We found no difference in the size of charcoal carbon pools from CWD (treatment means ranged from 0.3–2.0 g m-2 of A-horizon and 0.0–1.7 g m-2 of O-horizon charcoal) and FWD (treatment means ranged from 0.2–1.7 g m-2 of A-horizon and 0.0–1.5 g m-2 of O-horizon charcoal). We also compared treatments and found that the burn-only, understory-thin and burn, and overstory-thin and burn treatments had significantly more charcoal carbon than the control. Charcoal carbon represented 0.29% of total ecosystem carbon. We found that char mass on CWD was an important predictor of charcoal carbon mass, but only explained 18–35% of the variation. Our results help improve our understanding of the effects forest restoration treatments have on ecosystem carbon by providing additional information about charcoal carbon content. PMID:26258533

  11. Macro-particle charcoal C content following prescribed burning in a mixed-conifer forest, Sierra Nevada, California.

    PubMed

    Wiechmann, Morgan L; Hurteau, Matthew D; Kaye, Jason P; Miesel, Jessica R

    2015-01-01

    Fire suppression and changing climate have resulted in increased large wildfire frequency and severity in the western United States, causing carbon cycle impacts. Forest thinning and prescribed burning reduce high-severity fire risk, but require removal of biomass and emissions of carbon from burning. During each fire a fraction of the burning vegetation and soil organic matter is converted into charcoal, a relatively stable carbon form. We sought to quantify the effects of pre-fire fuel load and type on charcoal carbon produced by biomass combusted in a prescribed burn under different thinning treatments and to identify more easily measured predictors of charcoal carbon mass in a historically frequent-fire mixed-conifer forest. We hypothesized that charcoal carbon produced from coarse woody debris (CWD) during prescribed burning would be greater than that produced from fine woody debris (FWD). We visually quantified post-treatment charcoal carbon content in the O-horizon and the A-horizon beneath CWD (> 30 cm diameter) and up to 60 cm from CWD that was present prior to treatment. We found no difference in the size of charcoal carbon pools from CWD (treatment means ranged from 0.3-2.0 g m-2 of A-horizon and 0.0-1.7 g m-2 of O-horizon charcoal) and FWD (treatment means ranged from 0.2-1.7 g m-2 of A-horizon and 0.0-1.5 g m-2 of O-horizon charcoal). We also compared treatments and found that the burn-only, understory-thin and burn, and overstory-thin and burn treatments had significantly more charcoal carbon than the control. Charcoal carbon represented 0.29% of total ecosystem carbon. We found that char mass on CWD was an important predictor of charcoal carbon mass, but only explained 18-35% of the variation. Our results help improve our understanding of the effects forest restoration treatments have on ecosystem carbon by providing additional information about charcoal carbon content.

  12. Development of a hardware-based AC microgrid for AC stability assessment

    NASA Astrophysics Data System (ADS)

    Swanson, Robert R.

    As more power electronic-based devices enable the development of high-bandwidth AC microgrids, the topic of microgrid power distribution stability has become of increased interest. Recently, researchers have proposed a relatively straightforward method to assess the stability of AC systems based upon the time-constants of sources, the net bus capacitance, and the rate limits of sources. In this research, a focus has been to develop a hardware test system to evaluate AC system stability. As a first step, a time domain model of a two converter microgrid was established in which a three phase inverter acts as a power source and an active rectifier serves as an adjustable constant power AC load. The constant power load can be utilized to create rapid power flow transients to the generating system. As a second step, the inverter and active rectifier were designed using a Smart Power Module IGBT for switching and an embedded microcontroller as a processor for algorithm implementation. The inverter and active rectifier were designed to operate simultaneously using a synchronization signal to ensure each respective local controller operates in a common reference frame. Finally, the physical system was created and initial testing performed to validate the hardware functionality as a variable amplitude and variable frequency AC system.

  13. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  14. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  15. AC Optimal Power Flow

    SciTech Connect

    2016-10-04

    In this work, we have implemented and developed the simulation software to implement the mathematical model of an AC Optimal Power Flow (OPF) problem. The objective function is to minimize the total cost of generation subject to constraints of node power balance (both real and reactive) and line power flow limits (MW, MVAr, and MVA). We have currently implemented the polar coordinate version of the problem. In the present work, we have used the optimization solver, Knitro (proprietary and not included in this software) to solve the problem and we have kept option for both the native numerical derivative evaluation (working satisfactorily now) as well as for analytical formulas corresponding to the derivatives being provided to Knitro (currently, in the debugging stage). Since the AC OPF is a highly non-convex optimization problem, we have also kept the option for a multistart solution. All of these can be decided by the user during run-time in an interactive manner. The software has been developed in C++ programming language, running with GCC compiler on a Linux machine. We have tested for satisfactory results against Matpower for the IEEE 14 bus system.

  16. Identification of /sup 233/Ac

    SciTech Connect

    Chu, Y.Y.; Zhou, M.L.

    1983-09-01

    We report in this paper identification of the new isotope /sup 233/Ac. Uranium targets were irradiated with 28 GeV protons; after rapid retrieval of the target and separation of actinium from thorium, /sup 233/Ac was allowed to decay into the known /sup 233/Th daughter. Exhaustive chemical purification was employed to permit the identification of /sup 233/Th via its characteristic ..gamma.. radiations. The half-life derived for /sup 233/Ac from several experiments is 2.3 +- 0.3 min. The production cross section for /sup 233/Ac is 100 ..mu..b.

  17. Evaluation of the Effects of Lime-bassanite-charcoal Amendment on the Immobilization of Cadmium in Contaminated Soil.

    PubMed

    Huang, Shunhong; Yang, Yi; Li, Qian; Su, Zhen; Yuan, Cuiyu; Ouyang, Kun

    2017-03-01

    The effects of amendments, such as lime, bassanite, sodium phosphate, steel slag and charcoal, and their compounds on the immobilization of cadmium (Cd) are investigated. The lime-bassanite-charcoal compound shows the best remediation performance compared to other agents in conducted experiments. The optimum condition for lime-bassanite-charcoal application in contaminated soil is lime-bassanite-charcoal with a mass ratio of 1:1/3:2/3, a dose of 2% of the soil weight, and a liquid-to-solid ratio of 35%-40%; additionally, the agents should be added before water addition. The highest Cd removal rate was 58.94% (±1.19%) with a ∆pH of 0.23, which is much higher than the rates reported in previous studies. The compound amendment was used in a field experiment, demonstrating a Cd removal efficiency of 48.78% (±4.23), further confirming its effectiveness.

  18. Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan.

    PubMed

    Zhang, Hangjun; Zhu, Guoying; Jia, Xiuying; Ding, Ying; Zhang, Mi; Gao, Qing; Hu, Ciming; Xu, Shuying

    2011-01-01

    A new kind of low-cost syntactic adsorbent from bamboo charcoal and chitosan was developed for the removal of microcystin-LR from drinking water. Removal efficiency was higher for the syntactic adsorbent when the amount of bamboo charcoal was increased. The optimum dose ratio of bamboo charcoal to chitosan was 6:4, and the optimum amount was 15 mg/L; equilibrium time was 6 hr. The adsorption isotherm was non-linear and could be simulated by the Freundlich model (R2 = 0.9337). Adsorption efficiency was strongly affected by pH and natural organic matter (NOM). Removal efficiency was 16% higher at pH 3 than at pH 9. Efficiency rate was reduced by 15% with 25 mg/L NOM (UV254 = 0.089 cm(-1)) in drinking water. This study demonstrated that the bamboo charcoal modified with chitosan can effectively remove microcystin-LR from drinking water.

  19. Anthropogenic Charcoal Deposits: Analogues for the Long-Term Functioning and Stability of Biochar in European Soils?

    NASA Astrophysics Data System (ADS)

    Mugford, Ian; Street-Perrot, Alayne; Santín, Cristina; Denman, Huw

    2014-05-01

    Anthropogenic charcoal deposits, characterised by thick charcoal-rich soil horizons, offer an invaluable Late Quaternary record of pyrogenic carbon (PyC) additions to soils. A traditional source of archaeological, anthracological and palaeoecological data, the potential contribution of anthropogenic charcoal deposits to soil science and assessment of carbon (C) sequestration is often overlooked. If addition of biochar to soils is to form a key component of a low-C economy, crucial questions must be addressed relating to its longevity and behaviour in the soil environment. With rare exceptions, previous studies have focussed on short-term incubation experiments and field or pot trials, often neglecting important natural soil and environmental processes. This study addresses these issues by comparing the physicochemical properties of European anthropogenic charcoal-rich deposits, with 14C ages ranging from > 43 ka to Modern, to native soils (nearby control sites). We will present results from a study of 23 charcoal-rich soil cores, collected from a 'Pre-historic' ditch mound, a Bronze Age burnt mound, a Roman furnace, and post-mediaeval and Modern Meilers, situated along a climatic gradient from Mediterranean (Southern Italy) to Humid Temperate (South Wales). The ability of charcoal to alter fertility and retain plant-available nutrients was assessed by measuring soil cation- exchange capacity. Retention of refractory C by the charcoal deposits was evaluated from their total organic C (TOC) contents, atomic H:C and O:C ratios, and residues after acid- dichromate oxidation. Picked charcoal fragments were also compared with modern biochars and biomass using: 1) their thermogravimetric recalcitrance (R50) indices (Harvey et al. 2012); and 2) attenuated total reflectance (ATR) FT-IR data, to gauge the development of functional groups linked to the long-term oxidation of the particle surfaces. Radiocarbon dating was used to assess the ages of the deposits. Our study

  20. Degradation of organic matter from black shales and charcoal by the wood-rotting fungus Schizophyllum commune and release of DOC and heavy metals in the aqueous phase.

    PubMed

    Wengel, Marcus; Kothe, Erika; Schmidt, Christian M; Heide, Klaus; Gleixner, Gerd

    2006-08-15

    that the degradation of persistent carbon sources, such as charcoal and black shale, is accelerated by fungal activity. Consequently, the associated release of heavy metals is also accelerated by the fungus. Main products of the biological degradation processes were organic heavy metal complexes which can enter the environment.

  1. NMR-based estimates of the molecular dimensions in wildfire charcoal: Implications for predictions of biochar residence time

    NASA Astrophysics Data System (ADS)

    Hockaday, William; Kane, Evan; Huang, Rixiang; Von Bargen, Justin; Davis, Rebecca; Ohlson, Mikael

    2014-05-01

    The thermochemical conversion of biomass to energy and fuels generates charcoal as a co-product. Charcoals derived from sustainable biomass sources—biochars—are an inherently stable form of carbon, relatively long residence times in the environment. Biochars can have potentially beneficial properties as soil fertility amendments, which has further stimulated research on the use of biochars for soil carbon sequestration as a climate change mitigation strategy. However, it is challenging to assess the long-term stability of biochar carbon using laboratory or field incubations because these are comprised of short-term observations. In this study, we make use of ancient charcoals from the boreal forests of Alaska and Scandanavia. We have deliberately selected charcoals from organic soil horizons, as to investigate the inherent biological and chemical stability of charcoal C without the protective influence of soil minerals. We use 14C radiocarbon dating to determine the age of the charcoals, differential scanning calorimetry to assess thermal stability, and solid-state 13C NMR to assess the chemical structure. Specifically, we employ C-H dipolar-dephasing NMR experiments to estimate the relative abundance and molecular dimensions of condensed aromatic domains and aliphatic structures. We test the hypothesis that the environmental stability, as determined by apparent 14C age and thermal stability, is related to the extent of ring condensation in the charcoal structure. Preliminary results suggest that the dimension of the condensed aromatic ring clusters may be an important molecular parameter to include in algorithms used to model/predict the residence time of charcoal and biochar C in soil.

  2. Biofiltration of xylene using wood charcoal as the biofilter media under transient and high loading conditions.

    PubMed

    Singh, Kiran; Giri, B S; Sahi, Amrita; Geed, S R; Kureel, M K; Singh, Sanjay; Dubey, S K; Rai, B N; Kumar, Surendra; Upadhyay, S N; Singh, R S

    2017-02-21

    The main objective of this study was to evaluate the performance of wood charcoal as biofilter media under transient and high loading condition. Biofiltration of xylene was investigated for 150days in a laboratory scale unit packed with wood charcoal and inoculated with mixed microbial culture at the xylene loading rates ranged from 12 to 553gm(-3)h(-1). The kinetic analysis of the xylene revealed absence of substrate inhibition and possibility of achieving higher elimination under optimum condition. The pH, temperature, pressure drop and CO2 production rate were regularly monitored during the experiments. Throughout experimental period, the removal efficiency (RE) was found to be in the range of 65-98.7% and the maximum elimination capacity (EC) was 405.7gm(-3)h(-1). Molecular characterization results show Bacillus sp. as dominating microbial group in the biofilm.

  3. Synthesis and characterization of porous, mixed phase, wrinkled, few layer graphene like nanocarbon from charcoal

    NASA Astrophysics Data System (ADS)

    Manoj, B.

    2015-12-01

    A technique to synthesis wrinkled graphene like nano carbon (GNC) from charcoal is reported in the current study. The charcoal produced by thermal decomposition and is intercalated by Hummers method. It is separated by centrifugation and sonication to get few layer graphene sheets. The structural and chemical changes of the nanostructure is elucidated by Raman spectroscopy, TEM, SEM-EDS and XPS. Raman spectra revealed the existence of highly graphitized amorphous carbon, which is confirmed by the appearance of five peaks in the deconvoluted first order Raman spectra. The SEM analysis reveals the formation of large area graphene sheets with nano-porous structure in it. The TEM/SAED analysis exhibits the presence of short range few layer graphene.

  4. Hybrid mode-locked fiber ring laser using graphene and charcoal nanoparticles as saturable absorbers

    NASA Astrophysics Data System (ADS)

    Hu, Hongyu; Zhang, Xiang; Li, Wenbo; Dutta, Niloy K.

    2016-05-01

    A fiber ring laser which implements hybrid mode locking technique has been proposed and experimentally demonstrated to generate pulse train at 20 GHz repetition rate with ultrashort pulse width. Graphene and charcoal nano-particles acting as passive mode lockers are inserted into a rational harmonic mode-locked fiber laser to improve the performance. With graphene saturable absorbers, the pulse duration is shortened from 5.3 ps to 2.8 ps, and with charcoal nano-particles, it is shortened to 3.2 ps. The RF spectra show that supermode noise can be removed in the presence of the saturable absorbers. Numerical simulation of the pulse transmission has also been carried out, which shows good agreement with the experimental results.

  5. Investigation on cotton stalk and bamboo sawdust carbonization for barbecue charcoal preparation.

    PubMed

    Xiong, Shaowu; Zhang, Shouyu; Wu, Qiaomei; Guo, Xi; Dong, Aixia; Chen, Chuan

    2014-01-01

    In the paper, biochar preparation from cotton stalk and bamboo sawdust by carbonization process was addressed. The physical and chemical properties and combustion characteristics of the biochar prepared using a tubular fixed bed were investigated. The combustion character index (S), the ignition temperature (Ti) and burnout temperature (Tf) were used to evaluate the combustion characteristics of the biochars. The results indicate that the yield and the volatile yield of the biochar decrease and the fixed carbon yield increases with the increase of the carbonization temperature. The ignition temperature and burnout temperature of the biochar increase and the value of S decreases when the carbonization temperature increases. The biochar produced from cotton stalk shows better combustion characteristics than the bamboo sawdust biochar does. Compared with commercial barbecue charcoal, the cotton stalk biochar produced under 600 °C can be utilized as barbecue charcoal.

  6. Workers' postural conditions in the charcoal production proccess based on vertical metallic cylynders.

    PubMed

    Maia, Ivana Márcia Oliveira; Francisco, Antonio Carlos de

    2012-01-01

    Considering the importance of posture to the workers' health in the production of charcoal, this paper presents an ergonomic research based on a biomechanical focus that aims to evaluate the posture adopted by these workers on the production of charcoal in vertical metallic cylinders. Thus, it was verified the incidence of pain and/or musculoskeletal injuries to these workers. Also, it was evaluated the weight carried by them and the positions taken in their daily tasks. Applying the Ergonomic Analysis of Labor, the data collection was done by directly observing the workers, registering images, by interviews, and posture analysis based on the OWAS method. The main results of the research show that there are postures with risks in the four levels of musculoskeletal injuries classified by OWAS, concluding that the method is imperative for ergonomic recommendations for minimization or eradication of suffering injury and worker's postural constraints.

  7. Anatomy Of Archaeological Wood Charcoals From Yenibademli Mound (Imbros), Western Turkey

    NASA Astrophysics Data System (ADS)

    Yaman, B.

    In this study, the qualitative and quantitative anatomy of six wood charcoals from an early Bronze Age settlement in the island Imbros (Gökçeada) were presented. Taxonomic identification on the basis of wood anatomy showed that two of them belong to the genus Quercus (section Ilex and cf Quercus), and four of them belong to the genus Pinus. Any fireplace is absent at the location of wood charcoals in G9 plan square. It appears that the woody branches on the horizontal roof of the building fell down to the floor after a big fire. It is most likely that the woody genera identified in the study were used for roof construction.

  8. Performance of Charcoal Cookstoves for Haiti, Part 2: Results from the Controlled Cooking Test

    SciTech Connect

    Lask, Kathleen; Jones, Jennifer; Booker, Kayje; Ceballos, Cristina; Yang, Nina; Gadgil, Ashok

    2011-11-30

    Five charcoal cookstoves were tested using a Controlled Cooking Test (CCT) developed from cooking practices in Haiti. Cookstoves were tested for total burn time, specific fuel consumption, and emissions of carbon monoxide (CO), carbon dioxide (CO2), and the ratio of carbon monoxide to carbon dioxide (CO/CO2). These results are presented in this report along with LBNL testers’ observations regarding the usability of the stoves.

  9. Organic Substitutes for Charcoal in ’Black Powder’ Type Pyrotechnic Formulations

    DTIC Science & Technology

    1984-07-01

    5.1 percent. Some samples were inhibited with a coat of cyanoacrylate -based glue . The difference in burn rate between an inhibited and non...30 percent of the weight of wood before pyrolysis.9 James E. Rose, "Black Powder - A Modern Commentary," Proceedings of the 10th Symposium on...1954. 6 The conditions for the pyrolysis of wood required to make a good black-powder charcoal are stringent but not severe. Thermal analysis has

  10. Exposure to carbonyl compounds in charcoal production plants in Bahia, Brazil.

    PubMed

    de Carvalho, Albertinho B; Kato, Mina; Rezende, Mariângela M; de P Pereira, Pedro Afonso; de Andrade, Jaílson B

    2013-03-01

    Studies have investigated the exposure levels of carbonyl compounds (CC) in the indoor and outdoor air of homes, vehicles, workplaces, urban and industrial areas, and rural sites. However, an investigation of these emissions and occupational exposure to CC in charcoal production facilities has not been previously conducted. The objective of this study was to measure the atmospheric concentrations of several CC to assess the exposure of workers of two charcoal plants located north of Salvador, Bahia, Brazil. Stationary and personal samples were collected using Sep-Pak® C18 cartridges that were coated with a 0.2 % acidic solution of 2,4-dinitrophenylhydrazine. The quantification of the resulting 2,4-dinitrophenylhydrazone derivatives was conducted using a high-performance liquid chromatography system with UV detection. In the personal samples, the concentrations of formaldehyde, acetaldehyde, propanone, furfural, and C4 isomers (n-butanal-isobutanal-butanone) ranged from 12 to 139, 38 to 165, 136 to 483, 39 to 114, and 63 to 132 μg m(-3), respectively. In the stationary samples, the concentrations of these CC ranged from 20 to 160, 111 to 284, 328 to 644, 70 to 163, and 100 to 176 μg m(-3), respectively. When compared to the occupational exposure limits for 8 h, the concentrations of formaldehyde were often greater than the levels recommended by the American National Institute for Occupational Safety and Health, which indicates a health risk for charcoal workers. These results are the first reported concerning the occupational exposure to CC in charcoal plants.

  11. Soil charcoal as long-term pyrogenic carbon storage in Amazonian seasonal forests.

    PubMed

    Turcios, Maryory M; Jaramillo, Margarita M A; do Vale, José F; Fearnside, Philip M; Barbosa, Reinaldo Imbrozio

    2016-01-01

    Forest fires (paleo + modern) have caused charcoal particles to accumulate in the soil vertical profile in Amazonia. This forest compartment is a long-term carbon reservoir with an important role in global carbon balance. Estimates of stocks remain uncertain in forests that have not been altered by deforestation but that have been impacted by understory fires and selective logging. We estimated the stock of pyrogenic carbon derived from charcoal accumulated in the soil profile of seasonal forest fragments impacted by fire and selective logging in the northern portion of Brazilian Amazonia. Sixty-nine soil cores to 1-m depth were collected in 12 forest fragments of different sizes. Charcoal stocks averaged 3.45 ± 2.17 Mg ha(-1) (2.24 ± 1.41 Mg C ha(-1) ). Pyrogenic carbon was not directly related to the size of the forest fragments. This carbon is equivalent to 1.40% (0.25% to 4.04%) of the carbon stocked in aboveground live tree biomass in these fragments. The vertical distribution of pyrogenic carbon indicates an exponential model, where the 0-30 cm depth range has 60% of the total stored. The total area of Brazil's Amazonian seasonal forests and ecotones not altered by deforestation implies 65-286 Tg of pyrogenic carbon accumulated along the soil vertical profile. This is 1.2-2.3 times the total amount of residual pyrogenic carbon formed by biomass burning worldwide in 1 year. Our analysis suggests that the accumulated charcoal in the soil vertical profile in Amazonian forests is a substantial pyrogenic carbon pool that needs to be considered in global carbon models.

  12. Combining charcoal and elemental black carbon analysis in sedimentary archives: Implications for past fire regimes, the pyrogenic carbon cycle, and the human-climate interactions

    NASA Astrophysics Data System (ADS)

    Thevenon, Florian; Williamson, David; Bard, Edouard; Anselmetti, Flavio S.; Beaufort, Luc; Cachier, Hélène

    2010-07-01

    This paper addresses the quantification of combustion-derived products in oceanic and continental sediments by optical and chemical approaches, and the interest of combining such methods for reconstructing past biomass burning activity and the pyrogenic carbon cycle. In such context, the dark particles > 0.2 µm 2 remaining after the partial digestion of organic matter are optically counted by automated image analysis and defined as charcoal, while the elemental carbon remaining after thermal and chemical oxidative treatments is quantified as black carbon (BC). The obtained pyrogenic carbon records from three sediment core-based case studies, (i) the Late Pleistocene equatorial Pacific Ocean, (ii) the mid-Holocene European Lake Lucerne, and (iii) the Late Holocene African Lake Masoko, are interpreted as proxy records of regional transportation mechanisms and biomass burning activities. The results show that the burial of dark carbon-rich particles in the 360 kyr-long record from the west equatorial Pacific is controlled by the combination of sea-level changes and low-latitude atmospheric circulation patterns (summer monsoon dynamics). However, the three fold increases in charcoal and BC sediment influxes between 53-43 and 12-10 kyr BP suggest that major shifts in fire activity occur synchronously with human colonization in the Indo/Pacific region. The coarse charcoal distribution from a 7.2 kyr record from Lake Lucerne in Switzerland closely matches the regional timing of major technical, land-use, and socio-economic changes during the Neolithic (between ca. 5.7 and 5.2 kyr BP and 4.9-4.5 kyr BP), the Bronze and Iron Ages (at ca. 3.3 and 2.4 kyr BP, respectively), and the industrialization (after AD 1838), pointing to the key impact of human activities on the sources, transportation processes and reservoirs of refractory carbon during the Holocene. In the tropical Masoko maar lake in Tanzania, where charcoal and BC records are highly sensitive to the local climate

  13. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  14. Digital ac monitor

    DOEpatents

    Hart, G.W.; Kern, E.C. Jr.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer. 24 figs.

  15. Cooling Floor AC Systems

    NASA Astrophysics Data System (ADS)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  16. Development and characterization of charcoal filled glass-composite materials made from SLS waste glass

    NASA Astrophysics Data System (ADS)

    Mustafa, Zaleha; Ismail, Mohd Ikwan; Juoi, Jariah Mohd; Shamsudin, Zurina; Rosli, Zulkifli M.; Fadzullah, Siti Hajar Sheikh Md; Othman, Radzali

    2015-07-01

    Glass-composite materials were prepared from the soda lime silicate (SLS) waste glass, ball clay and charcoal powder at various carbon content, of 1wt. % C, 5wt.% C and 10 wt.% C, fired to temperature of 850 °C as an alternative method for land site disposal method as well as effort for recycling waster glass. The effect of charcoal powder on the porosity, water absorption and hardness properties were studied. Phase analysis studies revealed the present of quartz (ICDD: 00001-0649, 2θ = 25.6° and 35.6°), cristobalite (ICDD 00004-0379, 2θ = 22.0° and 38.4°) and wollastonite (ICDD 00002-0689, 2θ = 30.1° and 26.9°). The results showed that the composite prepared from the mixture of 84 wt.% SLS, 1 wt.% of charcoal and 15 wt.% ball clay containing average pore size of 10 µm has projected optimized physical and mechanical properties. It is observed this batch has projected lowest water absorption percentage of 0.76 %, lowest porosity percentage of 1.76 %, highest 4.6 GPa for Vickers Microhardness.

  17. Mineral composition and charcoal determine the bacterial community structure in artificial soils.

    PubMed

    Ding, Guo-Chun; Pronk, Geertje Johanna; Babin, Doreen; Heuer, Holger; Heister, Katja; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2013-10-01

    To study the influence of the clay minerals montmorillonite (M) and illite (I), the metal oxides ferrihydrite (F) and aluminum hydroxide (A), and charcoal (C) on soil bacterial communities, seven artificial soils with identical texture provided by quartz (Q) were mixed with sterilized manure as organic carbon source before adding a microbial inoculant derived from a Cambisol. Bacterial communities established in artificial soils after 90 days of incubation were compared by DGGE analysis of bacterial and taxon-specific 16S rRNA gene amplicons. The bacterial community structure of charcoal-containing soils highly differed from the other soils at all taxonomic levels studied. Effects of montmorillonite and illite were observed for Bacteria and Betaproteobacteria, but not for Actinobacteria or Alphaproteobacteria. A weak influence of metal oxides on Betaproteobacteria was found. Barcoded pyrosequencing of 16S rRNA gene amplicons done for QM, QI, QIF, and QMC revealed a high bacterial diversity in the artificial soils. The composition of the artificial soils was different from the inoculant, and the structure of the bacterial communities established in QMC soil was most different from the other soils, suggesting that charcoal provided distinct microenvironments and biogeochemical interfaces formed. Several populations with discriminative relative abundance between artificial soils were identified.

  18. Briquetting of charcoal from sugar-cane bagasse fly ash (scbfa) as an alternative fuel.

    PubMed

    Teixeira, S R; Pena, A F V; Miguel, A G

    2010-05-01

    Brazil is the largest worldwide producer of alcohol and sugar from sugar-cane and has an extensive alternative program for car fuel which is unique. The objective of this work is to offer one management option of a solid residue produced by this industrial segment. The pressed sugar-cane bagasse is burned to produce steam and electricity by cogeneration. The combustion yields both bottom and fly ashes which contain high amounts of silicon oxide as a major component. Fly ash which contains a high volume (>30% by weight) of charcoal was used in this work. The ash was sieved to separate the thick charcoal from inorganic materials which are concentrated in the thinner fraction. The briquettes were hand pressed using charcoal mixed with a binder (starch) obtained from cassava flour (a tropical root). The results (density, mechanical resistance) obtained with 8% by weight of starch binder are presented here. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to characterize the ashes and the briquettes. The results show that sugar-cane bagasse fly ash (SCBFA) can be used to produce briquettes with an average density of 1.12gcm(-3) and an average calorific value of 25,551kJ/kg.

  19. BOLD signal effects of transcranial alternating current stimulation (tACS) in the alpha range: A concurrent tACS-fMRI study.

    PubMed

    Vosskuhl, Johannes; Huster, René J; Herrmann, Christoph S

    2016-10-15

    Many studies have proven transcranial alternating current stimulation (tACS) to manipulate brain activity. Until now it is not known, however, how these manipulations in brain activity are represented in brain metabolism or how spatially specific these changes are. Alpha-tACS has been shown to enhance the amplitude of the individual alpha frequency (IAF) and a negative correlation between alpha amplitude and occipital BOLD signal was reported in numerous EEG/fMRI experiments. Thus, alpha-tACS was chosen to test the effects of tACS on the BOLD signal. A reduction thereof was expected during alpha-tACS which shows the spatial extent of tACS effects beyond modeling studies. Three groups of subjects were measured in an MRI scanner, receiving tACS at either their IAF (N=11), 1Hz (control; N=12) or sham (i.e., no stimulation - a second control; N=11) while responding to a visual vigilance task. Stimulation was administered in an interleaved pattern of tACS-on runs and tACS-free baseline periods. The BOLD signal was analyzed in response to tACS-onset during resting state and in response to seldom target stimuli. Alpha-tACS at 1.0mA reduced the task-related BOLD response to visual targets in the occipital cortex as compared to tACS-free baseline periods. The deactivation was strongest in an area where the BOLD signal was shown to correlate negatively with alpha amplitude. A direct effect of tACS on resting state BOLD signal levels could not be shown. Our findings suggest that tACS-related changes in BOLD activity occur only as a modulation of an existing BOLD response.

  20. Automated ac galvanomagnetic measurement system

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Espy, P. N.

    1985-01-01

    An automated, ac galvanomagnetic measurement system is described. Hall or van der Pauw measurements in the temperature range 10-300 K can be made at a preselected magnetic field without operator attendance. Procedures to validate sample installation and correct operation of other system functions, such as magnetic field and thermometry, are included. Advantages of ac measurements are discussed.

  1. Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133.

    PubMed

    Shmelkov, Sergey V; Jun, Lin; St Clair, Ryan; McGarrigle, Deirdre; Derderian, Christopher A; Usenko, Jaroslav K; Costa, Carla; Zhang, Fan; Guo, Xinzheng; Rafii, Shahin

    2004-03-15

    AC133 is a member of a novel family of cell surface proteins with 5 transmembrane domains. The function of AC133 is unknown. Although AC133 mRNA is detected in different tissues, its expression in the hematopoietic system is restricted to CD34+ stem cells. AC133 is also expressed on stem cells of other tissues, including endothelial progenitor cells. However, despite the potential importance of AC133 to the field of stem cell biology, nothing is known about the transcriptional regulation of AC133 expression. In this report we showed that the human AC133 gene has at least 9 distinctive 5'-untranslated region (UTR) exons, resulting in the formation of at least 7 alternatively spliced 5'-UTR isoforms of AC133 mRNA, which are expressed in a tissue-dependent manner. We found that transcription of these AC133 isoforms is controlled by 5 alternative promoters, and we demonstrated their activity on AC133-expressing cell lines using a luciferase reporter system. We also showed that in vitro methylation of 2 of these AC133 promoters completely suppresses their activity, suggesting that methylation plays a role in their regulation. Identification of tissue-specific AC133 promoters may provide a novel method to isolate tissue-specific stem and progenitor cells.

  2. Antiapoptotic activity of Akt is down-regulated by Ca2+ in myocardiac H9c2 cells. Evidence of Ca(2+)-dependent regulation of protein phosphatase 2Ac.

    PubMed

    Yasuoka, Chie; Ihara, Yoshito; Ikeda, Satoshi; Miyahara, Yoshiyuki; Kondo, Takahito; Kohno, Shigeru

    2004-12-03

    Cell survival signaling of the Akt/protein kinase B pathway was influenced by a change in the cytoplasmic free calcium concentration ([Ca2+]i) for over 2 h via the regulation of a Ser/Thr phosphatase, protein phosphatase 2Ac (PP2Ac), in rat myocardiac H9c2 cells. Akt was down-regulated when [Ca2+]i was elevated by thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, but was up-regulated when it was suppressed by 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl)ester (BAPTA-AM), a cell permeable Ca2+ chelator. The inactivation of Akt was well correlated with the susceptibility to oxidant-induced apoptosis in H9c2 cells. To investigate the mechanism of the Ca(2+)-dependent regulation of Akt via the regulation of PP2A, we examined the transcriptional regulation of PP2Acalpha in H9c2 cells with Ca2+ modulators. Transcription of the PP2Acalpha gene was increased by thapsigargin but decreased by BAPTA-AM. The promoter activity was examined and the cAMP response element (CRE) was found responsible for the Ca(2+)-dependent regulation of PP2Acalpha. Furthermore, phosphorylation of CRE-binding protein increased with thapsigargin but decreased with BAPTA-AM. A long term change of [Ca2+]i regulates PP2Acalpha gene transcription via CRE, resulting in a change in the activation status of Akt leading to an altered susceptibility to apoptosis.

  3. Comparison between measurements of black carbon, charcoal and associated nutrients in western Amazonan soils

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. R.; McMichael, C.; Hanlon, C.; Bush, M. B.

    2011-12-01

    To construct fire and climate history and human occupation records from soils and lake sediment profiles, climatologists and anthropologists have traditionally measured charcoal abundances by microscopic image analysis. In contrast, geochemists have developed methods of black carbon (BC) quantification using chemical extraction. We compared charcoal (>0.5 mm particle size) versus BC (measured via the CTO-340 method of Kuhlbusch, 1995) in multiple soil profiles from four western Amazon regions with evidence of pre-Columbian occupation. A secondary goal of this project was to understand the relative influence of climate and humans in the fire and ecological history of the Amazon. BC concentration in soils of the Amazon varied widely from an average of 0.5 mg g 1 in cores around Lake Gentry (southeastern Peru) to 5.5 mg g 1 around Lake Ayauchi (southeastern Ecuador), corresponding to the evidence of greater land use around the latter. Surprising, BC concentrations in habitation horizon soils at Quistococha, near Iquitos, Peru were similar to Lake Gentry, averaging about 0.6 mg g 1. However, BC as a percent of soil organic carbon (SOC) was much more uniform with an average of 12.0, 13.3, 14.6, and 13.0% in Quistococha, Gentry, Ayauchi, and Los Amigos (central-eastern Peru) soils, respectively, suggesting that the same processes that concentrate SOC also concentrate BC. BC may act to protect SOC via sorption or produce SOC via microbial community enhancement. These findings also show that BC is not regionally enriched as it might be were climate to be a predominant factor in BC production, and seem to track land use more closely. Charcoal and BC concentrations were linearly correlated in only about half the soil profiles and neither BC nor charcoal were consistently correlated with chemical anthropogenic indicators such as P or Ca within soil profiles or specific regions. However, there was a statistical covariance between each of these parameters suggesting that each

  4. Adsorption characteristics of sulfur powder by bamboo charcoal to restrain sulfur allergies.

    PubMed

    Peng, Wanxi; Ge, Shengbo; Liu, Zhenling; Furuta, Yuzo

    2017-01-01

    Exposures to particulate matter with a diameter of 2.5 μm or less (PM2.5) may influence the risk of birth defects and make you allergic, which causes serious harm to human health. Bamboo charcoal can adsorb harmful substances,that was of benefitto people's health. In order to figure out the optimal adsorbtion condition and the intrinsic change of bamboo charcoal, five chemicals were adsorbed by bamboo charcoal and were analyzed by FT-IR. The optimal blast time was 80 min of Na2SO3, 100 min of Na2S2O8, 20 min of Na2SO4, 120 min of Fe2(SO4)3 and 60 min or 100 min of S. FT-IR spectra showed that bamboo charcoal had five characteristic peaks of S-S stretch, H2O stretch, O-H stretch, C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 O stretch or CC stretch, and NO2 stretch at 3850 cm(-1), 3740 cm(-1), 3430 cm(-1), 1630 cm(-1) and 1530 cm(-1), respectively. For Na2SO3, the peaks at 3850 cm(-1), 3740 cm(-1), 3430 cm(-1), 1630 cm(-1) and 1530 cm(-1) achieved the maximum at 20 min. For Na2S2O8, the peaks at 3850 cm(-1), 3740 cm(-1), 3430 cm(-1) and 1530 cm(-1) achieved the maximum at 40 min. For Na2SO4, the peaks at 3850 cm(-1), 3740 cm(-1) and 1530 cm(-1) achieved the maximum at 40 min. For Fe2(SO4)3, the peaks at 3850 cm(-1), 3740 cm(-1), 1630 cm(-1) and 1530 cm(-1) achieved the maximum at 120 min. For S, the peaks at 3850 cm(-1) and 3740 cm(-1) achieved the maximum at 40 min, the peaks at 1630 cm(-1) and 1530 cm(-1) achieved the maximum at 40 min. It proved that bamboo charcoal could remove sulfur powder from air to restrain sulfur allergies.

  5. Nitric oxide production by necrotrophic pathogen Macrophomina phaseolina and the host plant in charcoal rot disease of jute: complexity of the interplay between necrotroph-host plant interactions.

    PubMed

    Sarkar, Tuhin Subhra; Biswas, Pranjal; Ghosh, Subrata Kumar; Ghosh, Sanjay

    2014-01-01

    M. phaseolina, a global devastating necrotrophic fungal pathogen causes charcoal rot disease in more than 500 host plants. With the aim of understanding the plant-necrotrophic pathogen interaction associated with charcoal rot disease of jute, biochemical approach was attempted to study cellular nitric oxide production under diseased condition. This is the first report on M. phaseolina infection in Corchorus capsularis (jute) plants which resulted in elevated nitric oxide, reactive nitrogen species and S nitrosothiols production in infected tissues. Time dependent nitric oxide production was also assessed with 4-Amino-5-Methylamino-2',7'-Difluorofluorescein Diacetate using single leaf experiment both in presence of M. phaseolina and xylanases obtained from fungal secretome. Cellular redox status and redox active enzymes were also assessed during plant fungal interaction. Interestingly, M. phaseolina was found to produce nitric oxide which was detected in vitro inside the mycelium and in the surrounding medium. Addition of mammalian nitric oxide synthase inhibitor could block the nitric oxide production in M. phaseolina. Bioinformatics analysis revealed nitric oxide synthase like sequence with conserved amino acid sequences in M. phaseolina genome sequence. In conclusion, the production of nitric oxide and reactive nitrogen species may have important physiological significance in necrotrophic host pathogen interaction.

  6. Three phase AC motor controller

    DOEpatents

    Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.

    1984-03-20

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  7. Anti-listeria activity of poly(lactic acid)/sawdust particle biocomposite film impregnated with pediocin PA-1/AcH and its use in raw sliced pork.

    PubMed

    Woraprayote, Weerapong; Kingcha, Yutthana; Amonphanpokin, Pannawit; Kruenate, Jittiporn; Zendo, Takeshi; Sonomoto, Kenji; Benjakul, Soottawat; Visessanguan, Wonnop

    2013-10-15

    A novel poly(lactic acid) (PLA)/sawdust particle (SP) biocomposite film with anti-listeria activity was developed by incorporation of pediocin PA-1/AcH (Ped) using diffusion coating method. Sawdust particle played an important role in embedding pediocin into the hydrophobic PLA film. The anti-listeria activity of the PLA/SP biocomposite film incorporated with Ped (PLA/SP+Ped) was detected, while no activity against the tested pathogen was observed for the control PLA films (without SP and/or Ped). Dry-heat treatment of film before coating with Ped resulted in the highest Ped adsorption (11.63 ± 3.07 μg protein/cm(2)) and the highest anti-listeria activity. A model study of PLA/SP+Ped as a food-contact antimicrobial packaging on raw sliced pork suggests a potential inhibition of Listeria monocytogenes (99% of total listerial population) on raw sliced pork during the chilled storage. This study supports the feasibility of using PLA/SP+Ped film to reduce the initial load of L. monocytogenes on the surface of raw pork.

  8. Layoff Handling Still Lags ACS Standards.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1981

    1981-01-01

    Reviews termination procedures of professional chemists and the compliance of these terminations to the American Chemical Society's (ACS's) Professional Employment Guidelines. Provides the ACS guidelines. (DS)

  9. Toxicity and uptake of TRI- and dibutyltin in Daphnia magna in the absence and presence of nano-charcoal.

    PubMed

    Fang, Liping; Borggaard, Ole K; Holm, Peter E; Hansen, Hans Christian Bruun; Cedergreen, Nina

    2011-11-01

    Butyltins (BTs), such as tributyltin (TBT) and dibutyltin (DBT), are toxic to aquatic organisms, but the presence of the strong adsorbent, black carbon (BC), can markedly influence BT toxicity and uptake in organisms. In the present study, the acute toxicity and uptake of TBT and DBT in the crustacean, Daphnia magna, were investigated with and without addition of nano-charcoal at different pHs and water hardnesses. The results showed that the toxicity of TBT and DBT increased by lowering the pH from 8 to 6. This reflects a relatively higher toxicity of cationic BT species than of the neutral species. At pH 6, by enhancing the water hardness of the media from 0.6 to 2.5 mM, the toxicity of TBT and DBT consistently decreased due to competitive binding of bivalent cations (Mg²⁺, Ca²⁺) to biotic ligands of D. magna. Furthermore, the toxicity of TBT to D. magna significantly decreased in the presence of nano-charcoal compared with experiments without nano-charcoal at pH 6 and 8, while no significant decrease in toxicity of DBT was observed in the presence of nano-charcoal. This can be attributed to the insignificant decrease of free DBT concentration in the presence of nano-charcoal compared with that for TBT. Conversely, it was observed that more TBT and DBT were taken up in D. magna in the presence of nano-charcoal due to the uptake of TBT or DBT associated with nano-charcoal by Daphnia in gut systems, as seen by light microscopy. This indicated that only free nonadsorbed BTs were toxic to D. magna, at least during short periods of exposure.

  10. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  11. Cold-active DnaK of an Antarctic psychrotroph Shewanella sp. Ac10 supporting the growth of dnaK-null mutant of Escherichia coli at cold temperatures.

    PubMed

    Yoshimune, Kazuaki; Galkin, Andrey; Kulakova, Ljudmila; Yoshimura, Tohru; Esaki, Nobuyoshi

    2005-04-01

    Shewanella sp. Ac10 is a psychrotrophic bacterium isolated from the Antarctica that actively grows at such low temperatures as 0 degrees C. Immunoblot analyses showed that a heat-shock protein DnaK is inducibly formed by the bacterium at 24 degrees C, which is much lower than the temperatures causing heat shock in mesophiles such as Escherichia coli. We found that the Shewanella DnaK (SheDnaK) shows much higher ATPase activity at low temperatures than the DnaK of E. coli (EcoDnaK): a characteristic of a cold-active enzyme. The recombinant SheDnaK gene supported neither the growth of a dnaK-null mutant of E. coli at 43 degrees C nor lambda phage propagation at an even lower temperature, 30 degrees C. However, the recombinant SheDnaK gene enabled the E. coli mutant to grow at 15 degrees C. This is the first report of a DnaK supporting the growth of a dnaK-null mutant at low temperatures.

  12. Bcl-2△21 and Ac-DEVD-CHO Inhibit Death of Wheat Microspores

    PubMed Central

    Sinha, Rakesh K.; Pospíšil, Pavel; Maheshwari, Priti; Eudes, François

    2016-01-01

    Microspore cell death and low green plant production efficiency are an integral obstacle in the development of doubled haploid production in wheat. The aim of the current study was to determine the effect of anti-apoptotic recombinant human B-cell lymphoma-2 (Bcl-2△21) and caspase-3-inhibitor (Ac-DEVD-CHO) in microspore cell death in bread wheat cultivars AC Fielder and AC Andrew. Induction medium containing Bcl-2△21 and Ac-DEVD-CHO yielded a significantly higher number of viable microspores, embryo-like structures and total green plants in wheat cultivars AC Fielder and AC Andrew. Total peroxidase activity was lower in Bcl-2△21 treated microspore cultures at 96 h of treatment compared to control and Ac-DEVD-CHO. Electron paramagnetic resonance study of total microspore protein showed a different scavenging activity for Bcl-2△21 and Ac-DEVD-CHO. Bcl-2△21 scavenged approximately 50% hydroxyl radical (HO•) formed, whereas Ac-DEVD-CHO scavenged approximately 20% of HO•. Conversely, reduced caspase-3-like activities were detected in the presence of Bcl-2△21 and Ac-DEVD-CHO, supporting the involvement of Bcl-2△21 and Ac-DEVD-CHO in increasing microspore viability by reducing oxidative stress and caspase-3-like activity. Our results indicate that Bcl-2△21 and Ac-DEVD-CHO protects cells from cell death following different pathways. Bcl-2△21 prevents cell damage by detoxifying HO• and suppressing caspase-3-like activity, while Ac-DEVD-CHO inhibits the cell death pathways by modulating caspase-like activity. PMID:28082995

  13. Bcl-2△21 and Ac-DEVD-CHO Inhibit Death of Wheat Microspores.

    PubMed

    Sinha, Rakesh K; Pospíšil, Pavel; Maheshwari, Priti; Eudes, François

    2016-01-01

    Microspore cell death and low green plant production efficiency are an integral obstacle in the development of doubled haploid production in wheat. The aim of the current study was to determine the effect of anti-apoptotic recombinant human B-cell lymphoma-2 (Bcl-2△21) and caspase-3-inhibitor (Ac-DEVD-CHO) in microspore cell death in bread wheat cultivars AC Fielder and AC Andrew. Induction medium containing Bcl-2△21 and Ac-DEVD-CHO yielded a significantly higher number of viable microspores, embryo-like structures and total green plants in wheat cultivars AC Fielder and AC Andrew. Total peroxidase activity was lower in Bcl-2△21 treated microspore cultures at 96 h of treatment compared to control and Ac-DEVD-CHO. Electron paramagnetic resonance study of total microspore protein showed a different scavenging activity for Bcl-2△21 and Ac-DEVD-CHO. Bcl-2△21 scavenged approximately 50% hydroxyl radical (HO(•)) formed, whereas Ac-DEVD-CHO scavenged approximately 20% of HO(•). Conversely, reduced caspase-3-like activities were detected in the presence of Bcl-2△21 and Ac-DEVD-CHO, supporting the involvement of Bcl-2△21 and Ac-DEVD-CHO in increasing microspore viability by reducing oxidative stress and caspase-3-like activity. Our results indicate that Bcl-2△21 and Ac-DEVD-CHO protects cells from cell death following different pathways. Bcl-2△21 prevents cell damage by detoxifying HO(•) and suppressing caspase-3-like activity, while Ac-DEVD-CHO inhibits the cell death pathways by modulating caspase-like activity.

  14. Invited award contribution for ACS Award in Inorganic Chemistry. Geometric and electronic structure contributions to function in bioinorganic chemistry: active sites in non-heme iron enzymes.

    PubMed

    Solomon, E I

    2001-07-16

    Spectroscopy has played a major role in the definition of structure/function correlations in bioinorganic chemistry. The importance of spectroscopy combined with electronic structure calculations is clearly demonstrated by the non-heme iron enzymes. Many members of this large class of enzymes activate dioxygen using a ferrous active site that has generally been difficult to study with most spectroscopic methods. A new spectroscopic methodology has been developed utilizing variable temperature, variable field magnetic circular dichroism, which enables one to obtain detailed insight into the geometric and electronic structure of the non-heme ferrous active site and probe its reaction mechanism on a molecular level. This spectroscopic methodology is presented and applied to a number of key mononuclear non-heme iron enzymes leading to a general mechanistic strategy for O2 activation. These studies are then extended to consider the new features present in the binuclear non-heme iron enzymes and applied to understand (1) the mechanism of the two electron/coupled proton transfer to dioxygen binding to a single iron center in hemerythrin and (2) structure/function correlations over the oxygen-activating enzymes stearoyl-ACP Delta9-desaturase, ribonucleotide reductase, and methane monooxygenase. Electronic structure/reactivity correlations for O2 activation by non-heme relative to heme iron enzymes will also be developed.

  15. Identifying past fire regimes throughout the Holocene in Ireland using new and established methods of charcoal analysis

    NASA Astrophysics Data System (ADS)

    Hawthorne, Donna; Mitchell, Fraser J. G.

    2016-04-01

    Globally, in recent years there has been an increase in the scale, intensity and level of destruction caused by wildfires. This can be seen in Ireland where significant changes in vegetation, land use, agriculture and policy, have promoted an increase in fires in the Irish landscape. This study looks at wildfire throughout the Holocene and draws on lacustrine charcoal records from seven study sites spread across Ireland, to reconstruct the past fire regimes recorded at each site. This work utilises new and accepted methods of fire history reconstruction to provide a recommended analytical procedure for statistical charcoal analysis. Digital charcoal counting was used and fire regime reconstructions carried out via the CharAnalysis programme. To verify this record new techniques are employed; an Ensemble-Member strategy to remove the objectivity associated with parameter selection, a Signal to Noise Index to determine if the charcoal record is appropriate for peak detection, and a charcoal peak screening procedure to validate the identified fire events based on bootstrapped samples. This analysis represents the first study of its kind in Ireland, examining the past record of fire on a multi-site and paleoecological timescale, and will provide a baseline level of data which can be built on in the future when the frequency and intensity of fire is predicted to increase.

  16. Toward a "molecular thermometer" to estimate the charring temperature of wildland charcoals derived from different biomass sources.

    PubMed

    Schneider, Maximilian P W; Pyle, Lacey A; Clark, Kenneth L; Hockaday, William C; Masiello, Caroline A; Schmidt, Michael W I

    2013-10-15

    The maximum temperature experienced by biomass during combustion has a strong effect on chemical properties of the resulting charcoal, such as sorption capacity (water and nonpolar materials) and microbial degradability. However, information about the formation temperature of natural charcoal can be difficult to obtain in ecosystems that are not instrumented prior to fires. Benzene polycarboxylic acids (BPCA) are molecular markers specific for pyrogenic carbon (PyC) which can provide information on the degree of aromatic condensation in charcoals. Here we apply the BPCA molecular marker method to a set of 10 charcoals produced during an experimental fire in a Pitch pine-scrub oak forest from litter and bark of pitch pine and inkberry plants in the Pinelands National Reserve in New Jersey, USA. We deployed temperature-sensitive crayons throughout the burn site, which recorded the maximum air temperature and made comparisons to the degree of thermal alteration recorded by BPCA molecular markers. Our results show an increase of the degree of aromatic condensation with monitored temperatures for bark biomass, while for needles no clear trend could be observed. For leaf-derived charcoals at increasing monitored fire temperatures, decreasing degree of aromatic condensation was obtained. This suggests that molecular markers can be used to roughly estimate the maximum fire temperatures experienced by bark and wood materials, but not based on leaf- and needle-derived materials. Possible applications include verifying declared pyrolysis temperatures of biochars and evaluating ecosystem fire temperature postburn.

  17. Utilization of recycled charcoal as a thermal source and adsorbent for the treatment of PCDD/Fs contaminated sediment.

    PubMed

    Zhao, Long; Hou, Hong; Iwasaki, Kanae; Terada, Akihiko; Hosomi, Masaaki

    2012-07-30

    A novel heat treatment process in which charcoal was used as both a thermal source and an adsorbent was investigated as a low-cost method for removal of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from solids. Three laboratory scale experiments involving various ratios of charcoal to contaminated sediment and air superficial velocities were performed. The results indicated that the total and toxic equivalency quantities (TEQ) concentrations of PCDD/Fs decreased significantly in the treated sediment of all runs with removal efficiencies greater than 96% and 90%, which resulted in residual concentrations below the Japanese standard limit of 0.15ng-TEQg(-1). The charcoal/contaminated sediment ratio and air superficial velocity were determinant factors controlling the PCDD/Fs concentrations and homologue profiles in effluent. As the air superficial velocity increased and charcoal/contaminated sediment ratio decreased, more PCDD/Fs were released from the sediment as fly ash, making them less likely to remain in the treated sediment. These phenomena were likely a result of the vapor pressure of PCDD/Fs, contact time with effluent gas and amount of PCDD/Fs adsorbed by charcoal. The developed process would promise an alternative to a conventional remediation process for PCDD/Fs contaminated solids.

  18. Comparative radiocarbon dating of lignite, pottery, and charcoal samples from Babeldaob Island, Republic of Palau

    SciTech Connect

    Anderson, A.; Chappell, J.; Clark, G.; Phear, S.

    2005-07-01

    It is difficult to construct archaeological chronologies for Babeldaob, the main island of Palau (western Micronesia), because the saprolitic clays of the dominant terraced-hill sites and associated ceramic sherds often contain old carbon that originated in lignites. This has implications, as well, for chronologies of sedimentary sequences. Comparative analysis of the dating problem using lignite, pottery, and charcoal samples indicates that, in fact, there are both old and young sources of potential contamination. It is concluded that radiocarbon samples from Babeldaob need to be tested for appropriate carbon content rather than relying solely upon material identification.

  19. Does temperature of charcoal creation affect subsequent mineralization of soil carbon and nitrogen?

    NASA Astrophysics Data System (ADS)

    Pelletier-Bergeron, S.; Bradley, R.; Munson, A. D.

    2012-04-01

    Forest fire is the most common form of natural disturbance of boreal forest ecosystems and has primordial influence on successional processes. This may be due in part to the pre-disturbance vegetation development stage and species composition, but these successional pathways could also vary with differences in fire behavior and consequently in fire intensity, defined as the energy released during various phases of a fire. Fire intensity may also affect soil C and N cycling by affecting the quality of the charcoal that is produced. For example, the porosity of coal tends to increase with increasing temperature at which it is produced Higher porosity would logically increase the surface area to which dissolved soil molecules, such as tannins and other phenolics, may be adsorbed. We report on a microcosm study in which mineral and organic soils were jointly incubated for eight weeks with a full factorial array of treatments that included the addition of Kalmia tannins, protein, and wood charcoal produced at five different temperatures. A fourth experimental factor comprised the physical arrangement of the material (stratified vs. mixed), designed to simulate the effect of soil scarification after fire and salvage harvest. We examined the effects of these treatments on soil C and N mineralisation and soil microbial biomass. The furnace temperature at which the charcoal was produced had a significant effect on its physico-chemical properties; increasing furnace temperatures corresponded to a significant increase in % C (P<0.001), and a significant decrease in %O (P<0.001) and %H (P<0.001). Temperature also had significant impacts on microporosity (surface area and volume). Temperature of production had no effect (P=0.1355) on soil microbial biomass. We observed a linear decreasing trend (P<0.001) in qCO2 with increasing temperature of production, which was mainly reflected in a decline in basal respiration. Finally, we found a significant interaction (P=0.010) between

  20. Phosphor-in-glass for high-powered remote-type white AC-LED.

    PubMed

    Lin, Hang; Wang, Bo; Xu, Ju; Zhang, Rui; Chen, Hui; Yu, Yunlong; Wang, Yuansheng

    2014-12-10

    The high-powered alternating current (AC) light-emitting diode (LED) (AC-LED), featuring low cost, high energy utilization efficiency, and long service life, will become a new economic growth point in the field of semiconductor lighting. However, flicker of AC-LED in the AC cycles is not healthy for human eyes, and therefore need to be restrained. Herein we report an innovation of persistent "phosphor-in-glass" (PiG) for the remote-type AC-LED, whose afterglow can be efficiently activated by the blue light. It is experimentally demonstrated that the afterglow decay of PiG in the microsecond range can partly compensate the AC time gap. Moreover, the substitution of inorganic glass for organic resins or silicones as the encapsulants would bring out several technological benefits to AC-LED, such as good heat-dissipation, low glare, and excellent physical/chemical stability.

  1. Instituto para la Promocion de la Cultura Civica, A.C.: Mission; Philosophy; Goals and Objectives; Challenge and Commitment; Activities; Publications and Essays; Presence in the Mass Media.

    ERIC Educational Resources Information Center

    Instituto para la Promocion de la Cultura Civica. Mexico City (Mexico).

    The report discusses the activities of the Instituto para la Promocion de la Culture Civica (ICC), a non-partisan, not-for-profit Mexican nongovernmental organization (NGO) that has as its mission: to promote the advancement of a civic culture understood as a system of values, ideas, traits of character, dispositions, inclinations, attitudes,…

  2. Differential Roles of AC2 and AC4 of Cassava Geminiviruses in Mediating Synergism and Suppression of Posttranscriptional Gene Silencing

    PubMed Central

    Vanitharani, Ramachandran; Chellappan, Padmanabhan; Pita, Justin S.; Fauquet, Claude M.

    2004-01-01

    Posttranscriptional gene silencing (PTGS) in plants is a natural defense mechanism against virus infection. In mixed infections, virus synergism is proposed to result from suppression of the host defense mechanism by the viruses. Synergistic severe mosaic disease caused by simultaneous infection with isolates of the Cameroon strain of African cassava mosaic virus (ACMV-[CM]) and East African cassava mosaic Cameroon virus (EACMCV) in cassava and tobacco is characterized by a dramatic increase in symptom severity and a severalfold increase in viral-DNA accumulation by both viruses compared to that in singly infected plants. Here, we report that synergism between ACMV-[CM] and EACMCV is a two-way process, as the presence of the DNA-A component of ACMV-[CM] or EACMCV in trans enhanced the accumulation of viral DNA of EACMCV and ACMV-[CM], respectively, in tobacco BY-2 protoplasts. Furthermore, transient expression of ACMV-[CM] AC4 driven by the Cauliflower mosaic virus 35S promoter (p35S-AC4) enhanced EACMCV DNA accumulation by ∼8-fold in protoplasts, while p35S-AC2 of EACMCV enhanced ACMV-[CM] DNA accumulation, also by ∼8-fold. An Agrobacterium-based leaf infiltration assay determined that ACMV-[CM] AC4 and EACMCV AC2, the putative synergistic genes, were able to suppress PTGS induced by green fluorescent protein (GFP) and eliminated the short interfering RNAs associated with PTGS, with a correlated increase in GFP mRNA accumulation. In addition, we have identified AC4 of Sri Lankan cassava mosaic virus and AC2 of Indian cassava mosaic virus as suppressors of PTGS, indicating that geminiviruses evolved differently in regard to interaction with the host. The specific and different roles played by these AC2 and AC4 proteins of cassava geminiviruses in regulating anti-PTGS activity and their relation to synergism are discussed. PMID:15308741

  3. Radiocarbon dating of charcoal and bone collagen associated with early pottery at Yuchanyan Cave, Hunan Province, China

    PubMed Central

    Boaretto, Elisabetta; Wu, Xiaohong; Yuan, Jiarong; Bar-Yosef, Ofer; Chu, Vikki; Pan, Yan; Liu, Kexin; Cohen, David; Jiao, Tianlong; Li, Shuicheng; Gu, Haibin; Goldberg, Paul; Weiner, Steve

    2009-01-01

    Yuchanyan Cave in Daoxian County, Hunan Province (People's Republic of China), yielded fragmentary remains of 2 or more ceramic vessels, in addition to large amounts of ash, a rich animal bone assemblage, cobble and flake artifacts, bone tools, and shell tools. The artifacts indicate that the cave was a Late Paleolithic foragers' camp. Here we report on the radiocarbon ages of the sediments based on analyses of charcoal and bone collagen. The best-preserved charcoal and bone samples were identified by prescreening in the field and laboratory. The dates range from around 21,000 to 13,800 cal BP. We show that the age of the ancient pottery ranges between 18,300 and 15,430 cal BP. Charcoal and bone collagen samples located above and below one of the fragments produced dates of around 18,000. These ceramic potsherds therefore provide some of the earliest evidence for pottery making in China. PMID:19487667

  4. Radiocarbon dating of charcoal and bone collagen associated with early pottery at Yuchanyan Cave, Hunan Province, China.

    PubMed

    Boaretto, Elisabetta; Wu, Xiaohong; Yuan, Jiarong; Bar-Yosef, Ofer; Chu, Vikki; Pan, Yan; Liu, Kexin; Cohen, David; Jiao, Tianlong; Li, Shuicheng; Gu, Haibin; Goldberg, Paul; Weiner, Steve

    2009-06-16

    Yuchanyan Cave in Daoxian County, Hunan Province (People's Republic of China), yielded fragmentary remains of 2 or more ceramic vessels, in addition to large amounts of ash, a rich animal bone assemblage, cobble and flake artifacts, bone tools, and shell tools. The artifacts indicate that the cave was a Late Paleolithic foragers' camp. Here we report on the radiocarbon ages of the sediments based on analyses of charcoal and bone collagen. The best-preserved charcoal and bone samples were identified by prescreening in the field and laboratory. The dates range from around 21,000 to 13,800 cal BP. We show that the age of the ancient pottery ranges between 18,300 and 15,430 cal BP. Charcoal and bone collagen samples located above and below one of the fragments produced dates of around 18,000. These ceramic potsherds therefore provide some of the earliest evidence for pottery making in China.

  5. Evaluation of methods used to desorb the constituents adsorbed on the charcoal contained in automotive evaporative canisters. Part 1

    SciTech Connect

    Dropkin, D.

    1990-02-01

    The study evaluates current extraction methods for analyzing charcoal canisters which are used to control evaporative emissions in automobiles. The initial phase of the study investigated various extraction procedures and solvents, including carbon disulfide, methanol, cyclohexane, methylene chloride, and a mixture containing carbon disulfide and 12% acetone. The solvents were used in the soxhlet extraction of evaporative hydrocarbons adsorbed on the charcoal of the canister. In another procedure the charcoal was subjected to ultrasonication with carbon disulfide as the extraction solvent. The various sample extracts were analyzed for detailed hydrocarbon by gas chromatography and results of the procedures were compared. The difference between the results of the soxhlet extractions in the study and those in the previous study was that there had been a significant increase in the quantity of aromatics measured. The differences in the procedures for sample introduction into the GC was determined to result in fewer measurable hydrocarbons in the prior study.

  6. Characterization and Palaeoecological Significance of Archaeological Charcoal Assemblages during Late and Post-Glacial Phases in Southern France

    NASA Astrophysics Data System (ADS)

    Heinz, Christine; Thiébault, Stéphanie

    1998-07-01

    Archaeological sites at Abeurador and Font-Juvénal have produced extensive charcoal-rich horizons. The results of the charcoal analysis, based on the identification of woody species from anatomical features, contribute to the elaboration of plain phases within the development of vegetation in southern France. They are presented here in a new diagram and are interpreted as four major vegetation phases from 11,000 14C yr B.P. to the recent past. In order to interpret the palaeoecological significance of the charcoal assemblages we have used multivariate analysis. The data base consists of 42 taxa and 48 archaeological levels. The division into four vegetation phases based on analytical interpretation is complemented by the more synthetic interpretation based on correspondence factor analysis (CFA). The results reveal the patterns of the vegetation history over the last 11 millennia, each being characterized by a key plant species.

  7. Concentration of trace elements, technogenic magnetic particles and charcoal in peat profiles as an evidence of thousands years of ore exploitation

    NASA Astrophysics Data System (ADS)

    Mendakiewicz, Maria; Magiera, Tadeusz; Szuszkiewicz, Marcin; Chróst, Leszek; Szopa, Sebastian

    2014-05-01

    The aim of the research is the geochemical and magnetic characteristic of peat bog profiles covered with a thin layer of fluvioglacial deposits appearing in the valley of the upper Brynica river (Upper Silesia, Poland). The research was supported with radiometric dating. The upper part of the Brynica basin has been the area of human activities since the Mesolithic through the Neolithic up to now, including intensive mining-smelting activities connected with the exploitation of Fe, Pb and Ag. In order to determine the geochemical composition a method of X-ray fluorescence (EDXRF) was used. The study revealed a high concentration of such chemical elements as Ag (at a depth of 15, 70, 80 and 95 cm), Cu (at a depth of 15 and 55 cm) as well as Pb and Sn (at a depth of 15 cm). The chemical pollution corresponds to the presence of technogenic magnetic particles (TMPs) in the peat bog profiles. The TMPs occur mainly in the form of iron and hydroxides of ferro- and ferrimagnetic properties and they come into existence during different high temperature technological processes. Their presence in the peat bog profiles as well as corresponding pollution together with charcoal suggest application of fire techniques to acquire metals from ore a few thousand years ago. MS2 Bartington meter with MS2B sensor was used to detect the TMPs and the age of the pollution was determined by the application of the radiocarbon method (C-14). The radiometric research was carried out in peat bog samples taken from the most polluted horizons and in charcoal particles separated from the profiles. The results of the dating indicate the highest concentration of pollution in peat bog profiles for the periods of 500 AD and 1200, 5500 as well as 9500 BC. The connection of geochemical and magnetic analyses used in the research appeared as an effective methods to detect and interpretation a trace evidence of human activities from a many thousand years in the past.

  8. Resistance to toxin-mediated fungal infection: role of lignins, isoflavones, other seed phenolics, sugars and boron in the mechanism of resistance to charcoal rot disease in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to investigate the combined effects of charcoal rot and drought on total seed phenol, isoflavones, sugars, and boron in susceptible (S) and moderately resistant (MR) soybean genotypes to charcoal rot pathogen. A field experiment was conducted for two years under ir...

  9. Cryogenic adsorption of low-concentration hydrogen on charcoal, 5A molecular sieve, sodalite, ZSM-5 and Wessalith DAY

    SciTech Connect

    Willms, R.S.

    1993-12-01

    The separation of low-concentration hydrogen isotopes from helium is a processing step that is required for ceramic lithium breeding blanket processing. Cryogenic adsorption is one method of effecting this separation. In this study live adsorbents were considered for this purpose: charcoal, 5A molecular sieve, UOP S-115, ZSM-5 and Wessalith DAY. The first two adsorbents exhibit good equilibrium loadings and are shown to be quite effective at adsorbing low-concentration hydrogen isotopes. The latter three adsorbents display considerably lower equilibrium loadings. This study concludes that by using either charcoal or 5A molecular sieve, cryogenic adsorption would be an effective means of separating hydrogen isotopes from helium.

  10. Analysis of Japanese Articles about Suicides Involving Charcoal Burning or Hydrogen Sulfide Gas

    PubMed Central

    Nabeshima, Yoshihiro; Onozuka, Daisuke; Kitazono, Takanari; Hagihara, Akihito

    2016-01-01

    It is well known that certain types of media reports about suicide can result in imitative suicides. In the last two decades, Japan has experienced two suicide epidemics and the subsequent excessive media coverage of these events. However, the quality of the media suicide reports has yet to be evaluated in terms of the guidelines for media suicide coverage. Thus, the present study analyzed Japanese newspaper articles (n = 4007) on suicides by charcoal burning or hydrogen sulfide gas between 11 February 2003 and 13 March 2010. The suicide reports were evaluated in terms of the extent to which they conformed to the suicide reporting guidelines. The mean violation scores were 3.06 (±0.7) for all articles, 3.2 (±0.8) for articles about suicide by charcoal burning, and 2.9 (±0.7) for articles about suicide by hydrogen sulfide (p < 0.001). With the exception of not following several recommendations, newspaper articles about suicide have improved in quality, as defined by the recommendations for media suicide coverage. To prevent imitative suicides based on media suicide reports, individuals in the media should try not to report suicide methods and to make attempts to report the poor condition of suicide survivors. PMID:27754453

  11. Analysis of Japanese Articles about Suicides Involving Charcoal Burning or Hydrogen Sulfide Gas.

    PubMed

    Nabeshima, Yoshihiro; Onozuka, Daisuke; Kitazono, Takanari; Hagihara, Akihito

    2016-10-15

    It is well known that certain types of media reports about suicide can result in imitative suicides. In the last two decades, Japan has experienced two suicide epidemics and the subsequent excessive media coverage of these events. However, the quality of the media suicide reports has yet to be evaluated in terms of the guidelines for media suicide coverage. Thus, the present study analyzed Japanese newspaper articles (n = 4007) on suicides by charcoal burning or hydrogen sulfide gas between 11 February 2003 and 13 March 2010. The suicide reports were evaluated in terms of the extent to which they conformed to the suicide reporting guidelines. The mean violation scores were 3.06 (±0.7) for all articles, 3.2 (±0.8) for articles about suicide by charcoal burning, and 2.9 (±0.7) for articles about suicide by hydrogen sulfide (p < 0.001). With the exception of not following several recommendations, newspaper articles about suicide have improved in quality, as defined by the recommendations for media suicide coverage. To prevent imitative suicides based on media suicide reports, individuals in the media should try not to report suicide methods and to make attempts to report the poor condition of suicide survivors.

  12. Experimental and numerical study of steam gasification of a single charcoal particle

    SciTech Connect

    Mermoud, F.; Van de Steene, L.; Salvador, S.; Dirion, J.L.

    2006-04-15

    The present work deals with a study coupling experiments and modeling of charcoal gasification by steam at large particle scale. A reliable set of experiments was first established using a specially developed 'macro-TG' apparatus where a particle was suspended and continuously weighed during its gasification. The main control parameters of a fixed-bed process were modified separately: steam gasification of beech charcoal spheres of different diameters (10 to 30 mm) was studied at different temperatures (830 to 1030{sup o}C), different steam partial pressures (0.1 to 0.4 atm H{sub 2}O), and different gas velocities around the particle (0.09 to 0.30 m/s). Simulations with the particle model were performed for each case. Confrontations with experimental data indicate that the model predictions are both qualitatively and quantitatively satisfactory, with an accuracy of 7%, until 60% of conversion, despite the fact that the phenomena of reactive surface evolution and particle fracturing are not well understood. Anisotropy and peripheral fragmentation make the end of the process difficult to simulate. Finally, an analysis of the thermochemical situation is proposed: it is demonstrated that the usual homogeneous or shrinking core particle models are not satisfying and that only the assumption of thermal equilibrium between the particle and the surrounding gas is valid for a model at bed scale. (author)

  13. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    PubMed

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field.

  14. Using Charcoal as Base Material Reduces Mosquito Coil Emissions of Toxins

    PubMed Central

    Zhang, Lin; Jiang, Zhikuan; Tong, Jian; Wang, Zhongcai; Han, Zhaojiu; Zhang, Junfeng (Jim)

    2009-01-01

    Mosquito coils are used to prevent mosquito exposures indoors by ~ 2 billion people worldwide. However, the smoldering of organic matters used as base materials of mosquito coils emits particulate and gaseous toxic compounds. A previous study indicates that emission rates of toxic compounds depend on types of base materials and can be high enough to generate room concentrations markedly higher than health based standards or references. The objective of the present study is to evaluate a new type of mosquito coil that uses charcoal powder as base material and to compare its emission rates with those of several current-market brands and several brands tested in the previous study. Results show that the charcoal-based coil had emission rates of PM2.5 mass, total particle number, PAHs, and aldehydes, substantially (up to 10 times) lower than other tested conventional mosquito coils. Results also show that particles freshly generated from burning mosquito coils were all fine and mostly ultrafine in size. This paper presents emission rates for PM2.5 mass, total particle number, gas-phase and particle-phase PAHs, 14 aldehydes and acetone, and 10 volatile hydrocarbons. These data, along with emission rates presented in the previous study are useful for estimating indoor concentrations of toxic compounds generated from mosquito coil uses. PMID:20409195

  15. Pseudomelanosis ilei associated with ingestion of charcoal: case report and review of literature.

    PubMed

    Kim, Juhyung; Hwang, Jin Ki; Choi, Woo Seok; Lee, Beom Jae; Park, Jong-Jae; Kim, Jae Seon; Bak, Young-Tae; Kim, Insun

    2010-01-01

    Melanosis or pseudomelanosis of the gastrointestinal tract refers to an accumulation of pigment deposits in the gastrointestinal mucosa. Pigmentation can affect the entire gastrointestinal tract. Melanosis of the colon is not uncommon, but black pigmentation of the small intestine is extremely rare. We report a case of pseudomelanosis of the terminal ileum in a 52-year-old woman who had ingested a tablespoon of charcoal powder daily for 2 years. Numerous small and medium-sized irregular grayish black pigmentations mostly on the background of geographic light grayish discolored mucosa and some on the normal-looking mucosa were seen on the terminal ileum. The finding was similar to a cut surface of a dragon fruit and we named the lesion 'dragon fruit ileum'. Follow up endoscopy 10 months later revealed no significant change in the pigmentation. We could not search any English literature on this lesion. However, we could find three cases from two papers from Korea describing similar lesions after chronic charcoal ingestion and the papers were reviewed with a report of our case.

  16. Observational study on factors related to health-promoting community activity development in primary care (frAC Project): a study protocol

    PubMed Central

    Ripoll, Joana; Ruiz-Giménez, Juan Luís; Montaner Gomis, Isabel; Benedé Azagra, Carmen Belén; Elizalde Soto, Lázaro; Vidal, Mª Clara; Bauzà Amengual, M de Lluc; Planas Juan, Trinidad; Maria Pérez Mariano, Damiana; Llull Sarralde, Micaela; Bajo Viñas, Rosa; Jordan Martin, Matilde; Solano Villarubia, Carmen; Rodriguez Bajo, Maria; Cordoba Victoria, Manuela; Badia Capdevila, Marta; Serrano Ferrandez, Elena; Bosom Diumenjo, Maria; Zabaleta del Olmo, Nieves; Bolívar-Ribas, Bonaventura; Antoñanzas Lombarte, Angel; Bregel Cotaina, Samantha; Calvo Tocado, Ana; Olivan Blázquez, Barbara; Magallón Botaya, Rosa; Marín Palacios, Pilar; Echauri Ozcoidi, Margarita; Perez-Jarauta, Mª Jose; Ramos, Maria

    2012-01-01

    Introduction According to Spanish health regulations, primary care professionals have the responsibility to carry out health-promoting community activities (CAs). However, in practice, their implementation is not as widespread as it should be. The aims of this study were to identify factors within the team, the community and the professionals that influence the development of these activities and to describe the community interventions in progress. Methods and analysis This study is an observational analytical retrospective study. The information will be collected from five Spanish regions: Catalonia, Madrid, the Balearic Islands, Navarra and Aragón. The authors will contact primary care teams (PCTs) and identify the CAs from the previous year. The research team will conduct a peer review whether the inclusion criteria are met. In the health centres where CAs are implemented, the authors will select professionals carrying them out and randomly select an identical number of professionals not doing these activities. In the centres where no CA is implemented, three professionals will be randomly selected. The selected professionals will complete the questionnaires for individual-level variables. Information about the registered population and the PCTs will be collected through questionnaires and secondary sources. Outcomes Variables will be collected from the community, the PCTs, the individual professionals and CAs. Analysis A descriptive analysis of all the variables will be carried out, along with a bivariate and a logistic regression analysis, with CAs being the primary outcome. Ethics and dissemination This study has been approved by the Research Ethics Committee of the Jordi Gol y Gurina Foundation in Barcelona and area 11 in Madrid. The questionnaire distributed to the professionals will be anonymous. PMID:22586288

  17. NONLINEAR DIAGNOSTICS USING AC DIPOLES.

    SciTech Connect

    PEGGS,S.

    1999-03-29

    There are three goals in the accurate nonlinear diagnosis of a storage ring. First, the beam must be moved to amplitudes many times the natural beam size. Second, strong and long lasting signals must be generated. Third, the measurement technique should be non-destructive. Conventionally, a single turn kick moves the beam to large amplitudes, and turn-by-turn data are recorded from multiple beam position monitors (BPMs) [1-6]. Unfortunately, tune spread across the beam causes the center of charge beam signal to ''decohere'' on a time scale often less than 100 turns. Filamentation also permanently destroys the beam emittance (in a hadron ring). Thus, the ''strong single turn kick'' technique successfully achieves only one out of the three goals. AC dipole techniques can achieve all three. Adiabatically excited AC dipoles slowly move the beam out to large amplitudes. The coherent signals then recorded last arbitrarily long. The beam maintains its original emittance if the AC dipoles are also turned off adiabatically, ready for further use. The AGS already uses an RF dipole to accelerate polarized proton beams through depolarizing resonances with minimal polarization loss [7]. Similar AC dipoles will be installed in the horizontal and vertical planes of both rings in RHIC [8]. The RHIC AC dipoles will also be used as spin flippers, and to measure linear optical functions [9].

  18. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    SciTech Connect

    Muchir, Antoine; Wu, Wei; Sera, Fusako; Homma, Shunichi; Worman, Howard J.

    2014-10-03

    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna{sup H222P/H222P} mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna{sup H222P/H222P} mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna{sup H222P/H222P} mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna{sup H222P/H222P} mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left

  19. Former charcoal kiln sites where forest was cleared for cultivation: a case study of old biochar in cropland

    NASA Astrophysics Data System (ADS)

    Hardy, Brieuc; Dufey, Joseph E.; Cornelis, Jean-Thomas

    2014-05-01

    The use of biochar as a soil amendment is being increasingly investigated as a win-win solution for mitigating the anthropic CO2 emissions and improving soil fertility. However, data on the long term impact of chars on soil properties are scarce, although they are crucial for better understanding the implications of large scale application of highly persistent biochars to soil. In Wallonia (Belgium), old charcoal kilns are found in most of the area that was forested in the late 18th century. Since then, a non-negligible part of the forest has been cleared for cultivation. Today, old charcoal-making platforms can be seen on bare soils as circular or elliptic black spots due to charcoal enrichment. In order to assess the long-term (>200 years) effects of biochar on soil chemical properties, seventeen kiln sites were chosen in several cropland areas of Wallonia on loessic luvisols (14) and loamy cambisols (3). Composite samples were taken in the ploughing layer (0 - 25 cm) and the underlying horizon (35 - 50 cm) in and out the kiln sites. The pH, total carbon (C) and nitrogen (N) contents, oxidizable carbon (CW&B), available phosphorus (Pav), cation exchange capacity at pH 7 (CEC), exchangeable cations content (Ca++, Mg++, K+, Na+) and loss on ignition at 550°C (LI550) were measured. In order to assess the impact of cultivation on charcoal aging, we also sampled four kiln sites on loessic luvisols under forest. Here, we show that charcoal, diluted laterally by successive tillage, acts as a carbon surplus in the topsoil layer of the black spots. The charcoal-enriched horizon is characterized by higher CEC, C/N and C/LI550 ratio compared to the reference soil. Cultivation of former forest soils accelerates charcoal aging, likely due to a combined effect of mechanical (tillage splits charcoal fragments in smaller pieces and increases soil aeration) and biological actions (promoted by improved trophic conditions due to application of amendments and fertilizers over many

  20. Complement C5a-C5aR interaction enhances MAPK signaling pathway activities to mediate renal injury in trichloroethylene sensitized BALB/c mice.

    PubMed

    Zhang, Jia-xiang; Zha, Wan-sheng; Ye, Liang-ping; Wang, Feng; Wang, Hui; Shen, Tong; Wu, Chang-hao; Zhu, Qi-xing

    2016-02-01

    We have previously shown complement activation as a possible mechanism for trichloroethylene (TCE) sensitization, leading to multi-organ damage including the kidneys. In particular, excessive deposition of C5 and C5b-9-the membrane attack complex, which can generate significant tissue damage, was observed in the kidney tissue after TCE sensitization. The present study tested the hypothesis that anaphylatoxin C5a binding to its receptor C5aR mediates renal injury in TCE-sensitized BALB/c mice. BALB/c mice were sensitized through skin challenge with TCE, with or without pretreatment by the C5aR antagonist W54011. Kidney histopathology and the renal functional test were performed to assess renal injury, and immunohistochemistry and fluorescent labeling were carried out to assess C5a and C5aR expressions. TCE sensitization up-regulated C5a and C5aR expressions in kidney tissue, generated inflammatory infiltration, renal tubule damage, glomerular hypercellularity and impaired renal function. Antagonist pretreatment blocked C5a binding to C5aR and attenuated TCE-induced tissue damage and renal dysfunction. TCE sensitization also caused the deposition of major pro-inflammatory cytokines IL-2, TNF-α and IFN-γ in the kidney tissue (P < 0.05); this was accompanied by increased expression of P-p38, P-ERK and P-JNK proteins (P < 0.05). Pretreatment with the C5aR antagonist attenuated the increase of expression of P-p38, P-ERK and P-JNK proteins (P < 0.05) and also consistently reduced the TCE sensitization-induced increase of IL-2, TNF-α and IFN-γ (P < 0.05). These data identify C5a binding to C5aR, MAP kinase activation, and inflammatory cytokine release as a novel mechanism for complement-mediated renal injury by sensitization with TCE or other environmental chemicals.

  1. Only small changes in soil organic carbon and charcoal concentrations found one year after experimental slash-and-burn in a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Eckmeier, E.; Gerlach, R.; Skjemstad, J. O.; Ehrmann, O.; Schmidt, M. W. I.

    2007-02-01

    Anthropogenic fires affected the temperate deciduous forests of Central Europe over millennia. Biomass burning releases carbon to the atmosphere and produces charcoal, which potentially contributes to the stable soil carbon pools and is an important archive of environmental history. The fate of charcoal in soils of temperate deciduous forests, i.e. the processes of charcoal incorporation and transportation, and the effects on soil organic matter are still not clear. In a long-term experimental burning site, we investigated the effects of slash-and-burn and determined soil organic carbon, charcoal carbon and nitrogen concentrations and the soil lightness of colour (L*) in the topmost soil material (0-1, 1-2.5 and 2.5-5 cm depths) before, immediately after the fire and one year after burning. The main results are that (i) only few charcoal particles from the forest floor were incorporated into the soil matrix by soil mixing animals. In 0-1 cm and during one year, the charcoal C concentrations increased only by 0.4 g kg-1 and the proportion of charcoal C to SOC concentrations increased from 2.8 to 3.4%; (ii) the SOC concentrations did not show any significant differences; (iii) soil lightness significantly decreased in the topmost soil layer and correlated with the concentrations of charcoal C (r=-0.87**) and SOC (r=-0.94**) in samples 0-5 cm. We concluded that the soil colour depends on the proportion of aromatic charcoal carbon in total organic matter and that Holocene burning could have influenced soil charcoal concentrations and soil colour.

  2. 2,4-D adsorption to biochars: effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data.

    PubMed

    Kearns, J P; Wellborn, L S; Summers, R S; Knappe, D R U

    2014-10-01

    Batch isotherm experiments were conducted with chars to study adsorption of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Chars generated from corncobs, bamboo and wood chips in a laboratory pyrolyzer at 400-700 °C were compared with traditional kiln charcoals collected from villages in S/SE Asia and with activated carbons (ACs). 2,4-D uptake by laboratory chars obtained from bamboo and wood chips after 14 h of pyrolysis at 700 °C, from wood chips after 96 h of pyrolysis at 600 °C, and one of the field-collected chars (basudha) was comparable to ACs. H:C and O:C ratios declined with pyrolysis temperature and duration while surface area increased to >500 m(2)/g. Increasing pyrolysis intensity by increasing temperature and/or duration of heating was found to positively influence adsorption capacity yield (mg(2,4-D/g(feedstock))) over the range of conditions studied. Economic analysis showed that high temperature chars can be a cost-effective alternative to ACs for water treatment applications.

  3. Concurrent Electroencephalography Recording During Transcranial Alternating Current Stimulation (tACS).

    PubMed

    Fehér, Kristoffer D; Morishima, Yosuke

    2016-01-22

    Oscillatory brain activities are considered to reflect the basis of rhythmic changes in transmission efficacy across brain networks and are assumed to integrate cognitive neural processes. Transcranial alternating current stimulation (tACS) holds the promise to elucidate the causal link between specific frequencies of oscillatory brain activity and cognitive processes. Simultaneous electroencephalography (EEG) recording during tACS would offer an opportunity to directly explore immediate neurophysiological effects of tACS. However, it is not trivial to measure EEG signals during tACS, as tACS creates a huge artifact in EEG data. Here we explain how to set up concurrent tACS-EEG experiments. Two necessary considerations for successful EEG recording while applying tACS are highlighted. First, bridging of the tACS and EEG electrodes via leaking EEG gel immediately saturates the EEG amplifier. To avoid bridging via gel, the viscosity of the EEG gel is the most important parameter. The EEG gel must be viscous to avoid bridging, but at the same time sufficiently fluid to create contact between the tACS electrode and the scalp. Second, due to the large amplitude of the tACS artifact, it is important to consider using an EEG system with a high resolution analog-to-digital (A/D) converter. In particular, the magnitude of the tACS artifact can exceed 100 mV at the vicinity of a stimulation electrode when 1 mA tACS is applied. The resolution of the A/D converter is of importance to measure good quality EEG data from the vicinity of the stimulation site. By following these guidelines for the procedures and technical considerations, successful concurrent EEG recording during tACS will be realized.

  4. CCD ACS Postflash Calibration

    NASA Astrophysics Data System (ADS)

    Chiaberge, Marco

    2011-10-01

    This activity provides a set of CCD FLASH exposure reference images for each current level/shutter-side combination, for the FLASH LED on the instrument side currently in use {one LED per instrument side}. It also tests linearity by exploring a wide range of flash "on" times and current settings. Short-term repeatability is also tested at the shortest FLASH exposure times that are expected to be used {2.0 sec, LOW LED current setting}.

  5. Quantification of Aridity Changes During the Late Holocene From the Carbon Isotope Composition of Fossil Charcoal

    NASA Astrophysics Data System (ADS)

    Voltas, J.; Ferrio, P.; Espinar, C.

    2006-12-01

    Climate dynamics during the Holocene can be characterized by a variety of proxies that provide information at a different scale and accuracy. In seasonally dry climates, the carbon isotope composition of tree-rings has been related to variables such as rainfall or evaporative demand. Extensive tree-ring records, however, are not always available owing to factors such as human-induced deforestation or harsh conditions for most long-lived trees to thrive. An illustrative example concerns the Mediterranean region. In this work, we aim to show that the original climate signal of wood δ13C is preserved in fossil charcoal (recovered from archaeological sites), and thus can be used to quantify past changes in water availability. We present two case studies on climate reconstruction at the temporal and spatial dimensions from Eastern Spain. We first describe, for a restricted area, the evolution of aridity during the last 4000 years using charcoals ranging from the Bronze Age (ca. 2100 BCE) to the Modern Age (XVIII ca. CE) (1). Further, we characterize, for a larger region, the transition between Bronze and Iron Ages, the so called Cold Iron Age Epoch (ca. 700-500 BCE), using remains from a set of contemporary sites (2). Climatic inferences were obtained after calibration of quantitative models predicting rainfall from wood δ13C. For case (1), charcoals of Mediterranean trees (Aleppo pine, several oaks, mastic) were analysed for δ13C. We found similar trends for the time course of changes in this parameter regardless of the species. Estimated rainfall in the past was 25% to 40% higher than present, with phases of greater water availability (1500-900 BCE; 300 BCE-300 CE) alternating with drier periods (900-300 BCE; 900-1100 CE). For case (2), we combined data from Aleppo pine and Holm oak, which exhibit differential responses to changes in climate seasonality, to provide information on intra-annual rainfall dynamics. The divergence in δ13C between pines and oaks can be

  6. Volatile compounds and odor preferences of ground beef added with garlic and red wine, and irradiated with charcoal pack

    NASA Astrophysics Data System (ADS)

    Lee, Kyung Haeng; Yun, Hyejeong; Lee, Ju Woon; Ahn, Dong Uk; Lee, Eun Joo; Jo, Cheorun

    2012-08-01

    Irradiation is the most efficient non-thermal technology for improving hygienic quality and extending the shelf-life of food products. One of the adverse effects of food irradiation, however, is off-flavor production, which significantly affects the sensory preferences for certain foods. In this study, garlic (5%, w/w) and red wine (1:1, w/w) were added to ground beef to increase the radiation sensitivity of pathogens and improve meat odor/flavor. Samples were irradiated at 0 or 5 kGy in the presence of charcoal pack. SPME-GC-MS analysis was performed to measure the changes in the volatile compounds and sensory characteristics of the samples. The amount of total volatile compounds produced from ground beef was greater when the sample was irradiated. When garlic and red wine were added to the ground beef, the amount of volatile compounds significantly increased, and the amount of volatile compounds increased even further after irradiation. However, when the samples were irradiated with charcoal pack, the amount of volatile compounds decreased significantly. Sensory evaluation indicated that charcoal pack significantly increased the odor preferences for both irradiated and non-irradiated ground beef added with garlic. These results indicated that addition of charcoal pack to ground beef could reduce off-odor problems induced by irradiation, and this effect was consistent even when certain additives such as garlic and red wine were added.

  7. Adsorption of mono- and di-butyltin by a wheat charcoal: pH effects and modeling.

    PubMed

    Fang, Liping; Borggaard, Ole K; Christensen, Jan H; Holm, Peter E; Hansen, Hans Christian Bruun

    2012-10-01

    Understanding adsorption processes of butyltins (BTs) such as monobutyltin (MBT) and dibutyltin (DBT) by black carbons is important for the evaluation of BT exposure risks to organisms and humans. However, relevant knowledge is scarce. In this study, the acidity constants pK(a,1)=2.3, pK(a,2)=3.5 and pK(a,3)=5.9 for MBT and pK(a,1)=3.0 and pK(a,2)=5.1 for DBT are estimated via potentiometric titration. Additionally, adsorption isotherms of BTs to a wheat charcoal were determined. The adsorption behavior was observed to be pH-dependent due to BT speciation and the pH-dependent surface charge of the charcoal. MBT adsorption to the charcoal decreases with increasing pH from 4 to 8, while the highest adsorption occurs at pH 6 for DBT. Adsorption of the BTs is successfully described in the pH range of 3-10 by using a newly developed pH-dependent Dual Langmuir model. The model has the potential to predict the interaction of BT species with charcoal, which can contribute to the risk assessments of BTs in the environment.

  8. Carbon emissions due to deforestation for the production of charcoal used in Brazil’s steel industry

    NASA Astrophysics Data System (ADS)

    Sonter, Laura J.; Barrett, Damian J.; Moran, Chris J.; Soares-Filho, Britaldo S.

    2015-04-01

    Steel produced using coal generates 7% of global anthropogenic CO2 emissions annually. Opportunities exist to substitute this coal with carbon-neutral charcoal sourced from plantation forests to mitigate project-scale emissions and obtain certified emission reduction credits under the Kyoto Protocol’s Clean Development Mechanism. This mitigation strategy has been implemented in Brazil and is one mechanism among many used globally to reduce anthropogenic CO2 emissions; however, its potential adverse impacts have been overlooked to date. Here, we report that total CO2 emitted from Brazilian steel production doubled (91 to 182 MtCO2) and specific emissions increased (3.3 to 5.2 MtCO2 per Mt steel) between 2000 and 2007, even though the proportion of coal used declined. Infrastructure upgrades and a national plantation shortage increased industry reliance on charcoal sourced from native forests, which emits up to nine times more CO2 per tonne of steel than coal. Preventing use of native forest charcoal could have avoided 79% of the CO2 emitted from steel production between 2000 and 2007; however, doing so by increasing plantation charcoal supply is limited by socio-economic costs and risks further indirect deforestation pressures and emissions. Effective climate change mitigation in Brazil’s steel industry must therefore minimize all direct and indirect carbon emissions generated from steel manufacture.

  9. Greenhouse evaluation of commercial soybean cultivars adapted to the northern United States for resistance to charcoal rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty (30) and sixty-seven (67) commercially available soybean (Glycine max (L.) Merr) cultivars from Wisconsin (Maturity group (MG) I-II) and Indiana (MG II-III), respectively, were evaluated for charcoal rot (CR; Macrophomina phaseolina (Tassi) Goid) resistance using a cut-stem greenhouse assay. ...

  10. Effect of anaerobic soil disinfestation and mustard seed meal for control of charcoal rot in California strawberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anaerobic soil disinfestation (ASD) and mustard seed meal (MSM) appear to be promising non-fumigant alternatives for soilborne disease control. However studies of their effect on charcoal rot caused by Macrophomina phaseolina in California strawberry are limited. ASD with rice bran 20 t ha-1 (ASD-RB...

  11. Registration of DT99-16864 soybean germplasm line with moderate resistance to charcoal rot [Macrophomina phaseolina (Tassi) Goid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot, caused by Macrophomina phaseolina (Tassi) Goidanich, is a disease that is a world-wide problem in soybean production for which no highly resistant cultivars are currently available. Soybean germplasm line DT99-16864, a maturity group V line, was developed by the U.S. Department of Ag...

  12. GREENHOUSE GASES FROM SMALL-SCALE COMBUSTION DEVICES IN DEVELOPING COUNTRIES, CHARCOAL-MAKING KILNS IN THAILAND

    EPA Science Inventory

    The report gives results of measurements of airborne emissions, during typical operating conditions, from charcoal-making kilns commonly used in the developing world. The kilns tested were of five types: brick beehive, mud beehive, earth mound, rice husk mound, and single (oil) d...

  13. [HPLC combined with PCA technology for analysis of five gingerol compounds in different processing degrees of ginger charcoal].

    PubMed

    Yu, Jiang-yong; Chen, Qiu-fang; Lu, Guo-yong

    2015-11-01

    To establish a new method for simultaneously determining the content of five gingerol compounds in different processing degrees of ginger charcoal and PCA principal component analysis was conducted for analysis. Samples were analyzed on Ultimate TM XB-C18 column (4.6 mm x 250 mm, 5 μm) , with acetonitrile (A) -0.1% phosphoric acid solution (B) as mobile phase for gradient elution. Detection wavelength was set at 280 nm. The flow rate was 0.6 mL x min(-1) and the column temperature was 30 degrees C. The five compounds were separated well and showed good linearity (r ≥ 0.999 7) within the concentration ranges tested. The average value for recoveries was between 98.86% - 101.5% (RSD 1.4% - 2.9%). The contents of five compounds showed difference among different processing degrees of ginger charcoal. Zingiberone had the highest content in the standard carbon, and the content of gingerol was decreased as the deepening of processing degree. Different processing degrees of ginger charcoal were classified into three groups with PCA, and provided scientific basis for establishing the quality standards of ginger charcoal.

  14. Dating a Small Impact Crater: An Age of Kaali Crater (Estonia) Based on Charcoal Emplaced Within Proximal Ejecta

    NASA Astrophysics Data System (ADS)

    Losiak, A.; Wild, E. M.; Geppert, W. D.; Huber, M. S.; Jõeleht, A.; Kriiska, A.; Kulkov, A.; Paavel, K.; Pirkovic, I.; Plado, J.; Steier, P.; Välja, R.; Wilk, J.; Wisniowski, T.; Zanetti, M.

    2015-09-01

    The Kaali crater was formed shortly after (tpq) 1530-1455 BC (3237 ± 10 14C yr BP). This age is based on dating charcoal within the ejecta blanket that makes it directly related to the impact, and not susceptible to potential reservoir effects.

  15. ACS from development to operations

    NASA Astrophysics Data System (ADS)

    Caproni, Alessandro; Colomer, Pau; Jeram, Bogdan; Sommer, Heiko; Chiozzi, Gianluca; Mañas, Miguel M.

    2016-08-01

    The ALMA Common Software (ACS), provides the infrastructure of the distributed software system of ALMA and other projects. ACS, built on top of CORBA and Data Distribution Service (DDS) middleware, is based on a Component- Container paradigm and hides the complexity of the middleware allowing the developer to focus on domain specific issues. The transition of the ALMA observatory from construction to operations brings with it that ACS effort focuses primarily on scalability, stability and robustness rather than on new features. The transition came together with a shorter release cycle and a more extensive testing. For scalability, the most problematic area has been the CORBA notification service, used to implement the publisher subscriber pattern because of the asynchronous nature of the paradigm: a lot of effort has been spent to improve its stability and recovery from run time errors. The original bulk data mechanism, implemented using the CORBA Audio/Video Streaming Service, showed its limitations and has been replaced with a more performant and scalable DDS implementation. Operational needs showed soon the difference between releases cycles for Online software (i.e. used during observations) and Offline software, which requires much more frequent releases. This paper attempts to describe the impact the transition from construction to operations had on ACS, the solution adopted so far and a look into future evolution.

  16. Simple Equipment for Imaging AC.

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Anayama, Takayuki

    2003-01-01

    Presents an effective way to demonstrate the difference between direct current and alternating current using red and green LEDs. Describes how to make a tool that shows how an AC voltage changes with time using the afterimage effect of the LEDs. (Author/NB)

  17. Stable isotope analysis of archaeological oak charcoal from eastern Anatolia as a marker of mid-Holocene climate change.

    PubMed

    Masi, A; Sadori, L; Baneschi, I; Siani, A M; Zanchetta, G

    2013-01-01

    Comparison between modern trees and archaeological charred wood is an under-explored method to study climate change, which may help to infer past environmental changes. The stable carbon content of deciduous oak charcoals was analysed for five periods covering more than a 1000 years (3350-2000 BC) at the site of Arslantepe, Turkey, together with modern deciduous oak specimens from five rare arboreal patches still present in the area (17-64 km from the site). In studies of past climate change it is difficult to distinguish human-induced changes from independent variations, such as the impact of past populations on the landscape and their relationship with climate changes in the mid-Holocene. Archaeology can evaluate climate signals preserved in fossil plants in light of past human life. This paper will contribute to understanding environmental changes that can be attributed to climate variation and those linked to human activities. We compared (13) C/(12) C of modern and fossil oaks in order to correlate the (13) C-content to environmental features of Arslantepe, both today and between 3350 and 2000 BC. At present, this area is semi-arid. The results show important similarities to palaeoenvironmental records for the rest of the Near East. The climate trend can be divided in three main phases: instability phase from ca. 3200 to 2900 BC; a phase of relative stability (until 2350 BC); and a final increase in aridity. The comparison of Δ(13) C values between fossil and modern plants shows that present climate is more arid than that between the end of the fourth and the whole third millennium BC.

  18. Factors affecting the adsorption of xenon on activated carbon

    SciTech Connect

    Underhill, D.W.; DiCello, D.C.; Scaglia, L.A.; Watson, J.A.

    1986-08-01

    The presence of water vapor was found to interfere strongly with the dynamic adsorption of /sup 133/Xe on coconut-base activated charcoal. The percent loss in the xenon adsorption coefficient was similar to values reported earlier for the adsorption of krypton on humidified charcoal. Attempts to increase the adsorption of xenon by (a) using a petroleum-based adsorbent with an extremely high surface area and (b) by impregnation of the adsorbent with iodine were not successful.

  19. Radiocarbon Ages of Soils and Charcoal in Late Wisconsinan Loess, South-Central Nebraska

    NASA Astrophysics Data System (ADS)

    May, David W.; Holen, Steven R.

    1993-01-01

    The Farmdale Soil occurs below late Wisconsinan loess throughout the U.S. Midwest. At the La Sena site in the central Great Plains, humates in the Farmdale Interstadial Soil have a corrected age of 21,000 yr B.P. Humates in a buried Bt horizon and a bulk sample of overlying loess 2.5 m above the Farmdale Interstadial Soil have ages of 17,000 and 19,000 yr B.P., respectively. In the Republican River Valley Picea (spruce) charcoal is common in the lower meter of Peoria loess. Near Bloomington, Nebraska, humates from burned organic matter only 60 cm above the base of Peoria loess have a corrected age of ca. 19,000 yr B.P.

  20. Catalytic oxidation of dye waste water by biomass charcoal loaded multiple rare earth composite material

    NASA Astrophysics Data System (ADS)

    Suriga; CHEN, Liping

    2017-01-01

    The main purpose of this study is to investigate the individual effect as well as the interactions of different influencing factors like catalyst dosage, aeration rate, temperature and pH on the removal of methylene blue (MB) using biomass charcoal loaded multiple rare earth composite material. Design-Expert 7.0 was used to design testing program and establish response surface model. The result showed that among the factors, catalyst dosage played the most important role, then pH value, aeration rate and tempe