Science.gov

Sample records for activated cloud droplets

  1. A parameterization of cloud droplet nucleation

    SciTech Connect

    Ghan, S.J. ); Chuang, C.; Penner, J.E. )

    1993-01-01

    Droplet nucleation is a fundamental cloud process. The number of aerosols activated to form cloud droplets influences not only the number of aerosols scavenged by clouds but also the size of the cloud droplets. Cloud droplet size influences the cloud albedo and the conversion of cloud water to precipitation. Global aerosol models are presently being developed with the intention of coupling with global atmospheric circulation models to evaluate the influence of aerosols and aerosol-cloud interactions on climate. If these and other coupled models are to address issues of aerosol-cloud interactions, the droplet nucleation process must be adequately represented. Here we introduce a droplet nucleation parametrization that offers certain advantages over the popular Twomey (1959) parameterization.

  2. Global Distribution of Cloud Droplet Number Concentration, Autoconversion Rate, and Aerosol Indirect Effect Under Diabatic Droplet Activation

    NASA Technical Reports Server (NTRS)

    Barahona, Donifan; Sotiropoulou, Rafaella; Nenes, Athanasios

    2011-01-01

    This study presents a global assessment of the sensitivity of droplet number to diabatic activation (i.e., including effects from entrainment of dry air) and its first-order tendency on indirect forcing and autoconversion. Simulations were carried out with the NASA Global Modeling Initiative (GMI) atmospheric and transport model using climatological metereorological fields derived from the former NASA Data Assimilation Office (DAO), the NASA Finite volume GCM (FVGCM) and the Goddard Institute for Space Studies version II (GISS) GCM. Cloud droplet number concentration (CDNC) is calculated using a physically based prognostic parameterization that explicitly includes entrainment effects on droplet formation. Diabatic activation results in lower CDNC, compared to adiabatic treatment of the process. The largest decrease in CDNC (by up to 75 percent) was found in the tropics and in zones of moderate CCN concentration. This leads to a global mean effective radius increase between 0.2-0.5 micrometers (up to 3.5 micrometers over the tropics), a global mean autoconversion rate increase by a factor of 1.1 to 1.7 (up to a factor of 4 in the tropics), and a 0.2-0.4 W m(exp -2) decrease in indirect forcing. The spatial patterns of entrainment effects on droplet activation tend to reduce biases in effective radius (particularly in the tropics) when compared to satellite retrievals. Considering the diabatic nature of ambient clouds, entrainment effects on CDNC need to be considered in GCM studies of the aerosol indirect effect.

  3. Use of active and passive ground based remote sensors to explore cloud droplet modifications in aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Han, Zaw Thet

    We explore the potential aerosol impact on cloud optical properties which is a strong modifier of climate forcing. Previous studies have shown that increased aerosol loading can affect the cloud optical properties such as cloud optical depth and cloud droplet effective radius in rural areas, particularly at the Atmospheric Radiation Measurement, Southern Great Plain site. In this study, we attempt to observe and quantify aerosol-cloud interaction over New York City, using a combination of passive and active radiometric sensors. In particular, we look for signatures of the Twomey indirect effect which states that the droplet size of water phase clouds will decrease with increasing aerosols. We find that under certain conditions, a strong signature is found between the cloud drop effective radius and extinction and this effect is in part due to vertical wind uptake. In demonstrating the Aerosol Cloud Interaction, we use multiple approaches. For example, we derive the integrated liquid water path using both a multiband neural network and dual channel approach and show general agreement between two methods while the DC approach seems more robust. We also find that these measurements are difficult and sensitive to the position of the aerosols relative to the cloud base. As a corollary, we explore whether near surface aerosol loading can effecting the cloud by using particulate matter (PM2.5) and find that the effects are too variable to be given any statistical weight. Finally, we explore the potential of modifying our approach to remove the noisy and difficult measurement of Raman LIDAR derived extinction with calibrated LIDAR backscatter. The results seem to show a general improvement in correlation and offer the possibility of increasing the number of cases observed.

  4. Study of Droplet Activation in Thin Clouds Using Ground-Based Raman Lidar and Ancillary Remote Sensors

    NASA Astrophysics Data System (ADS)

    Rosoldi, Marco; Madonna, Fabio; Gumà Claramunt, Pilar; Pappalardo, Gelsomina

    2016-06-01

    A methodology for the study of cloud droplet activation based on the measurements performed with ground-based multi-wavelength Raman lidars and ancillary remote sensors collected at CNR-IMAA observatory, Potenza, South Italy, is presented. The study is focused on the observation of thin warm clouds. Thin clouds are often also optically thin: this allows the cloud top detection and the full profiling of cloud layers using ground-based Raman lidar. Moreover, broken clouds are inspected to take advantage of their discontinuous structure in order to study the variability of optical properties and water vapor content in the transition from cloudy regions to cloudless regions close to the cloud boundaries. A statistical study of this variability leads to identify threshold values for the optical properties, enabling the discrimination between clouds and cloudless regions. These values can be used to evaluate and improve parameterizations of droplet activation within numerical models. A statistical study of the co-located Doppler radar moments allows to retrieve droplet size and vertical velocities close to the cloud base. First evidences of a correlation between droplet vertical velocities measured at the cloud base and the aerosol effective radius observed in the cloud-free regions of the broken clouds are found.

  5. Evaluation of a New Cloud Droplet Activation Parameterization wtih in Situ Data from CRYSTAL-FACE and CSTRIPE

    NASA Technical Reports Server (NTRS)

    Meskhidze, Nicholas; Nenes, Athanasios; Conant, William C.; Seinfeld, John H.

    2005-01-01

    The accuracy of the 2003 prognostic, physically based aerosol activation parameterization of A. Nenes and J. H. Seinfeld (NS) with modification introduced by C. Fountoukis and A. Nenes in 2005 (modified NS) is evaluated against extensive microphysical data sets collected on board the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft for cumuliform and stratiform clouds of marine and continental origin. The cumuliform cloud data were collected during NASA's Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE, Key West, Florida, July 2002), while the stratiform cloud data were gathered during Coastal Stratocumulus Imposed Perturbation Experiment (CSTRIPE, Monterey, California, July 2003). In situ data sets of aerosol size distribution, chemical composition, and updraft velocities are used as input for the NS parameterization, and the evaluation is carried out by comparing predicted cloud droplet number concentrations (CDNC) with observations. This is the first known study in which a prognostic cloud droplet activation parameterization has been evaluated against a wide range of observations. On average, predicted droplet concentration in adiabatic regions is within -20% of observations at the base of cumuliform clouds and -30% of observations at different altitudes throughout the stratiform clouds, all within experimental uncertainty. Furthermore, CDNC is well parameterized using either a single mean updraft velocity w or by weighting droplet nucleation rates with a Gaussian probability density function of w. This study suggests that for nonprecipitating warm clouds of variable microphysics, aerosol composition, and size distribution the modified NS parameterization can accurately predict cloud droplet activation and can be successfully implemented for describing the aerosol activation process in global climate models.

  6. Combined effect of glycine and sea salt on aerosol cloud droplet activation predicted by molecular dynamics simulations.

    PubMed

    Sun, Lu; Hede, Thomas; Tu, Yaoquan; Leck, Caroline; Agren, Hans

    2013-10-17

    The present study illustrates the combined effect of organic and inorganic compounds on cloud droplet nucleation and activation processes representative for the marine environment. Amino acids and sea salt are common marine cloud condensation nuclei (CCN) which act as a prerequisite for growth of cloud droplets. The chemical and physical properties of these CCN play a key role for interfacial properties such as surface tension, which is important for the optical properties of clouds and for heterogeneous reactions. However, there is a lack of detailed information and in situ measurements of surface tension of such nanosized droplets. Here we present a study of the combined effect of zwitterionic glycine (ZGLY) and sea salt in nanosized water droplets using molecular dynamics simulations, where particular emphasis is placed on the surface tension for the nanosized droplets. The critical supersaturation is estimated by the Köhler equation. It is found that dissolved sea salt interacts with ZGLY through a water bridge and weakens the hydrogen bonds among ZGLYs, which has a significant effect on both surface tension and water vapor supersaturation. Clusters of glycine mixed with sea salt deliquesce more efficiently and have higher growth factors. PMID:24063576

  7. Study of Droplet Activation in Thin Clouds Using Ground-based Raman Lidar and Ancillary Remote Sensors

    NASA Astrophysics Data System (ADS)

    Rosoldi, Marco; Madonna, Fabio; Gumà Claramunt, Pilar; Pappalardo, Gelsomina

    2015-04-01

    Studies on global climate change show that the effects of aerosol-cloud interactions (ACI) on the Earth's radiation balance and climate, also known as indirect aerosol effects, are the most uncertain among all the effects involving the atmospheric constituents and processes (Stocker et al., IPCC, 2013). Droplet activation is the most important and challenging process in the understanding of ACI. It represents the direct microphysical link between aerosols and clouds and it is probably the largest source of uncertainty in estimating indirect aerosol effects. An accurate estimation of aerosol-clouds microphysical and optical properties in proximity and within the cloud boundaries represents a good frame for the study of droplet activation. This can be obtained by using ground-based profiling remote sensing techniques. In this work, a methodology for the experimental investigation of droplet activation, based on ground-based multi-wavelength Raman lidar and Doppler radar technique, is presented. The study is focused on the observation of thin liquid water clouds, which are low or midlevel super-cooled clouds characterized by a liquid water path (LWP) lower than about 100 gm-2(Turner et al., 2007). These clouds are often optically thin, which means that ground-based Raman lidar allows the detection of the cloud top and of the cloud structure above. Broken clouds are primarily inspected to take advantage of their discontinuous structure using ground based remote sensing. Observations are performed simultaneously with multi-wavelength Raman lidars, a cloud Doppler radar and a microwave radiometer at CIAO (CNR-IMAA Atmospheric Observatory: www.ciao.imaa.cnr.it), in Potenza, Southern Italy (40.60N, 15.72E, 760 m a.s.l.). A statistical study of the variability of optical properties and humidity in the transition from cloudy regions to cloud-free regions surrounding the clouds leads to the identification of threshold values for the optical properties, enabling the

  8. Contribution to the cloud droplet effective radius parameterization

    SciTech Connect

    Pontikis, C.; Hicks, E. )

    1992-11-01

    An analytic cloud droplet effective radius expression is derived and validated by using field experiment microphysical data. This expression shows that the effective radius depends simultaneously upon the cloud liquid water content, droplet concentration and droplet spectral dispersion. It further suggests that the variability in these parameters present at all scales, due to turbulent mixing and secondary droplet activation, could limit the accuracy of the effective radius parameterizations used in climate models. 12 refs.

  9. Measurements of cloud condensation nuclei spectra within maritime cumulus cloud droplets: Implications for mixing processes

    NASA Technical Reports Server (NTRS)

    Twohy, Cynthia H.; Hudson, James G.

    1995-01-01

    In a cloud formed during adiabatic expansion, the droplet size distribution will be systematically related to the critical supersaturation of the cloud condensation nuclei (CNN), but this relationship can be complicated in entraining clouds. Useful information about cloud processes, such as mixing, can be obtained from direct measurements of the CNN involved in droplet nucleation. This was accomplished by interfacing two instruments for a series of flights in maritime cumulus clouds. One instrument, the counterflow virtual impactor, collected cloud droplets, and the nonvolatile residual nuclei of the droplets was then passed to a CCN spectrometer, which measured the critical supersaturation (S(sub c)) spectrum of the droplet nuclei. The measured S(sub c) spectra of the droplet nuclei were compared with the S(sub c) spectra of ambient aerosol particles in order to identify which CCN were actually incorporated into droplets and to determine when mixing processes were active at different cloud levels. The droplet nuclei nearly always exhibited lower median S(sub c)'s than the ambient aerosol, as expected since droplets nucleate perferentially on particles with lower critical supersaturations. Critical supersaturation spectra from nuclei of droplets near cloud base were similar to those predicted for cloud regions formed adiabatically, but spectra of droplet nuclei from middle cloud levels showed some evidence that mixing had occurred. Near cloud top, the greatest variation in the spectra of the droplet nuclei was observed, and nuclei with high S(sub c)'s were sometimes present even within relatively large droplets. This suggests that the extent of mixing increases with height in cumulus clouds and that inhomogeneous mixing may be important near cloud top. These promising initial results suggest improvements to the experimental technique that will permit more quantitative results in future experiments.

  10. An interfacial mechanism for cloud droplet formation on organic aerosols

    NASA Astrophysics Data System (ADS)

    Ruehl, Christopher R.; Davies, James F.; Wilson, Kevin R.

    2016-03-01

    Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depression by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation.

  11. An interfacial mechanism for cloud droplet formation on organic aerosols.

    PubMed

    Ruehl, Christopher R; Davies, James F; Wilson, Kevin R

    2016-03-25

    Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depression by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation. PMID:27013731

  12. Aerosol- and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN)

    NASA Astrophysics Data System (ADS)

    Reutter, P.; Su, H.; Trentmann, J.; Simmel, M.; Rose, D.; Gunthe, S. S.; Wernli, H.; Andreae, M. O.; Pöschl, U.

    2009-09-01

    We have investigated the formation of cloud droplets under pyro-convective conditions using a cloud parcel model with detailed spectral microphysics and with the κ-Köhler model approach for efficient and realistic description of the cloud condensation nucleus (CCN) activity of aerosol particles. Assuming a typical biomass burning aerosol size distribution (accumulation mode centred at 120 nm), we have calculated initial cloud droplet number concentrations (NCD) for a wide range of updraft velocities (w=0.25-20 m s-1) and aerosol particle number concentrations (NCN=200-105 cm-3) at the cloud base. Depending on the ratio between updraft velocity and particle number concentration (w/NCN), we found three distinctly different regimes of CCN activation and cloud droplet formation: (1) An aerosol-limited regime that is characterized by high w/NCN ratios (>≈10-3 m s-1 cm3), high maximum values of water vapour supersaturation (Smax>≈0.5%), and high activated fractions of aerosol particles (NCN/NCN>≈90%). In this regime NCD is directly proportional to NCN and practically independent of w. (2) An updraft-limited regime that is characterized by low w/NCN ratios (<≈10-4 m s-1 cm3), low maximum values of water vapour supersaturation (Smax<≈0.2%), and low activated fractions of aerosol particles (NCD/NCN<≈20%). In this regime NCD is directly proportional to w and practically independent of NCN. (3) An aerosol- and updraft-sensitive regime (transitional regime), which is characterized by parameter values in between the two other regimes and covers most of the conditions relevant for pyro-convection. In this regime NCD depends non-linearly on both NCN and w. In sensitivity studies we have tested the influence of aerosol particle size distribution and hygroscopicity on NCD. Within the range of effective hygroscopicity parameters that is characteristic for continental atmospheric aerosols (κ≈0.05-0.6), we found that NCD depends rather weakly on the actual value of κ

  13. Cloud condensation nuclei activity, droplet growth kinetics, and hygroscopicity of biogenic and anthropogenic secondary organic aerosol (SOA)

    NASA Astrophysics Data System (ADS)

    Zhao, D. F.; Buchholz, A.; Kortner, B.; Schlag, P.; Rubach, F.; Fuchs, H.; Kiendler-Scharr, A.; Tillmann, R.; Wahner, A.; Watne, Å. K.; Hallquist, M.; Flores, J. M.; Rudich, Y.; Kristensen, K.; Hansen, A. M. K.; Glasius, M.; Kourtchev, I.; Kalberer, M.; Mentel, Th. F.

    2016-02-01

    Interaction of biogenic volatile organic compounds (VOCs) with Anthropogenic VOC (AVOC) affects the physicochemical properties of secondary organic aerosol (SOA). We investigated cloud droplet activation (CCN activity), droplet growth kinetics, and hygroscopicity of mixed anthropogenic and biogenic SOA (ABSOA) compared to pure biogenic SOA (BSOA) and pure anthropogenic SOA (ASOA). Selected monoterpenes and aromatics were used as representative precursors of BSOA and ASOA, respectively.

    We found that BSOA, ASOA, and ABSOA had similar CCN activity despite the higher oxygen to carbon ratio (O/C) of ASOA compared to BSOA and ABSOA. For individual reaction systems, CCN activity increased with the degree of oxidation. Yet, when considering all different types of SOA together, the hygroscopicity parameter, κCCN, did not correlate with O/C. Droplet growth kinetics of BSOA, ASOA, and ABSOA were comparable to that of (NH4)2SO4, which indicates that there was no delay in the water uptake for these SOA in supersaturated conditions.

    In contrast to CCN activity, the hygroscopicity parameter from a hygroscopic tandem differential mobility analyzer (HTDMA) measurement, κHTDMA, of ASOA was distinctively higher (0.09-0.10) than that of BSOA (0.03-0.06), which was attributed to the higher degree of oxidation of ASOA. The ASOA components in mixed ABSOA enhanced aerosol hygroscopicity. Changing the ASOA fraction by adding biogenic VOC (BVOC) to ASOA or vice versa (AVOC to BSOA) changed the hygroscopicity of aerosol, in line with the change in the degree of oxidation of aerosol. However, the hygroscopicity of ABSOA cannot be described by a simple linear combination of pure BSOA and ASOA systems. This indicates that additional processes, possibly oligomerization, affected the hygroscopicity.

    Closure analysis of CCN and HTDMA data showed κHTDMA was lower than κCCN by 30-70 %. Better closure was achieved for ASOA compared to BSOA. This

  14. Cloud droplet activation of mixed organic-sulfate particles produced by the photooxidation of isoprene

    SciTech Connect

    King, Stephanie M.; Rosenoern, Thomas; Shilling, John E.; Chen, Qi; Wang, Zhe; Biskos, George; McKinney, Karena A.; Poschl, U.; Martin, Scot T.

    2010-04-27

    The cloud condensation nuclei (CCN) properties of mixed particles composed of sulfate and organic material condensed during the hydroxyl-radical-initiated photooxidation of isoprene were investigated in the continuous-flow Harvard Environmental Chamber. CCN activation curves were measured for organic particle mass loadings of 0.3 to 7.2 µg m-3, NOx concentrations from below detection limit up to 38 ppbv, particle diameters from 70 to 150 nm, and thermodenuder temperatures from 25 to 100 °C. At 25 °C, a two-component Köhler model, based on a sulfate seed internally mixed with a condensed secondary organic component and using a single set of physicochemical parameters for the organic component, was successful in describing the observed CCN activation curves. Even though the CCN properties did not change, the particle mass spectra showed that element ratios of the organic component varied across 0.53 < O:C < 0.59, 1.54 < H:C < 1.62, and 0.00 < N:C < 0.02 for isoprene-to-NO¬x concentration ratios covering 200:0 to 50:17 ppb, showing the presence of organonitrate species. We compared changes in the CCN activity following elevated temperatures in a thermodenuder relative to changes expected for effects of size alone and found that the CCN activity decreased relative to this standard, with the decrease being more pronounced in the absence of NOx. These findings suggest an important potential coupling between anthropogenic NOx pollution and CCN properties of atmospheric particles.

  15. Cloud droplet size distributions in low-level stratiform clouds

    SciTech Connect

    Miles, N.L.; Verlinde, J.; Clothiaux, E.E.

    2000-01-15

    A database of stratus cloud droplet size distribution parameters, derived from in situ data reported in the existing literature, was created, facilitating intercomparison among datasets and quantifying typical values and their variability. From the datasets, which were divided into marine and continental groups, several parameters are presented, including the total number concentration, effective diameter, mean diameter, standard deviation of the droplet diameters about the mean diameter, and liquid water content, as well as the parameters of modified gamma and lognormal distributions. In light of these results, the appropriateness of common assumptions used in remote sensing of cloud droplet size distributions is discussed. For example, vertical profiles of mean diameter, effective diameter, and liquid water content agreed qualitatively with expectations based on the current paradigm of cloud formation. Whereas parcel theory predicts that the standard deviation about the mean diameter should decrease with height, the results illustrated that the standard deviation generally increases with height. A feature common to all marine clouds was their approximately constant total number concentration profiles; however, the total number concentration profiles of continental clouds were highly variable. Without cloud condensation nuclei spectra, classification of clouds into marine and continental groups is based on indirect methods. After reclassification of four sets of measurements in the database, there was a fairly clear dichotomy between marine and continental clouds, but a great deal of variability within each classification. The relevant applications of this study lie in radiative transfer and climate issues, rather than in cloud formation and dynamics. Techniques that invert remotely sensed measurements into cloud droplet size distributions frequently rely on a priori assumptions, such as constant number concentration profiles and constant spectral width. The

  16. Continuous growth of cloud droplets in cumulus cloud

    NASA Astrophysics Data System (ADS)

    Gotoh, Toshiyuki; Suehiro, Tamotsu; Saito, Izumi

    2016-04-01

    A new method to seamlessly simulate the continuous growth of droplets advected by turbulent flow inside a cumulus cloud was developed from first principle. A cubic box ascending with a mean updraft inside a cumulus cloud was introduced and the updraft velocity was self-consistently determined in such a way that the mean turbulent velocity within the box vanished. All the degrees of freedom of the cloud droplets and turbulence fields were numerically integrated. The box ascended quickly inside the cumulus cloud due to the updraft and the mean radius of the droplets grew from 10 to 24 μm for about 10 min. The turbulent flow tended to slow down the time evolutions of the updraft velocity, the box altitude and the mean cloud droplet radius. The size distribution of the cloud droplets in the updraft case was narrower than in the absence of the updraft. It was also found that the wavenumeber spectra of the variances of the temperature and water vapor mixing ratio were nearly constant in the low wavenumber range. The future development of the new method was argued.

  17. Polarimetric Retrievals of Cloud Droplet Number Concentrations

    NASA Astrophysics Data System (ADS)

    Sinclair, K.; Cairns, B.; Hair, J. W.; Hu, Y.; Hostetler, C. A.

    2014-12-01

    Cloud droplet number concentration (CDNC) is one of the most significant microphysical properties of liquid clouds and is essential for the understanding of aerosol-cloud interaction. It impacts radiative forcing, cloud evolution, precipitation, global climate and, through observation, can be used to monitor the cloud albedo effect, or the first indirect effect. The IPCC's Fifth Assessment Report continues to consider aerosol-cloud interactions as one of the largest uncertainties in radiative forcing of climate. The SABOR experiment, which was a NASA-led ship and air campaign off the east coast of the United States during July and August of 2014, provided an opportunity for the Research Scanning Polarimeter (RSP) to develop and cross-validate a new approach of sensing CDNC with the High Spectral Resolution Lidar (HSRL). The RSP is an airborne prototype of the Aerosol Polarimetry Sensor (APS) that was on-board the Glory satellite. It is a scanning sensor that provides high-precision measurements of polarized and full-intensity radiances at multiple angles over a wide spectral range. The distinctive feature of the polarimetric technique is that it does not make any assumption of the liquid water profile within the cloud. The approach involves (1) estimating the droplet size distribution from polarized reflectance observations in the rainbow, (2) using polarized reflectance to estimate above cloud water vapor and total reflectance to find how much near infra-red light is being absorbed in clouds, (3) finding cloud physical thickness from the absorption and cloud top pressure retrievals assuming a saturated mixing ratio for water vapor and (4) determining the cloud droplet number concentration from the physical thickness and droplet size distribution retrievals. An overview of the polarimetric technique will be presented along with the results of applying the new approach to SABOR campaign data. An analysis of the algorithm's performance when compared with the HSRL

  18. Thermodynamic properties and cloud droplet activation of a series of oxo-acids

    NASA Astrophysics Data System (ADS)

    Frosch, Mia; Platt, Stephen; Zardini, Alessandro; Bilde, Merete

    2010-05-01

    Submicron sized aerosol particles in the Earth's atmosphere influence visibility, human health, and global climate (IPCC, 2007). The organic mass fraction of the atmospheric aerosol has been estimated at 20-90% of the total aerosol mass mass (Kanakidou et al., 2005). Many of the organic species found in the particle phase in the atmosphere are produced via the oxidation of biogenic hydrocarbon emissions such as terpenes and sesquiterpenes (Hallquist et al. 2009). We have investigated the thermodynamic properties of four aliphatic oxo-dicarboyxlic acids identified or thought to be present in atmospheric particulate matter: oxosuccinic acid, 2-oxoglutaric acid, 3-oxoglutaric acid, and 4-oxopimelic acid. The compounds were characterized in terms of their cloud condensation nuclei (CCN) activity, vapor pressure, density, and tendency to decarboxylate in aqueous solution. We deployed a variety of experimental techniques and instruments: a CCN counter, a Tandem Differential Mobililty Analyzer (TDMA) coupled with a laminar flow tube (Bilde, 2003), and liquid chromatography/mass spectrometry (LC/MS). Generally, the presence of the oxo functional group causes the vapor pressure of the compounds to diminish by an order of magnitude with respect to the parent dicarboxylic acid, and it tends to increase the CCN activity. Dicarboxylic acids with an oxo-group in the β-position were found to decarboxylate in aqueous solution. IPCC: Climate Change (2007): The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J (2005). Atmos

  19. Stable water isotopologue ratios in fog and cloud droplets of liquid clouds are not size-dependent

    USGS Publications Warehouse

    Spiegel, J.K.; Aemisegger, F.; Scholl, M.; Wienhold, F.G.; Collett, J.L., Jr.; Lee, T.; van Pinxteren, D.; Mertes, S.; Tilgner, A.; Herrmann, H.; Werner, Roland A.; Buchmann, N.; Eugster, W.

    2012-01-01

    In this work, we present the first observations of stable water isotopologue ratios in cloud droplets of different sizes collected simultaneously. We address the question whether the isotope ratio of droplets in a liquid cloud varies as a function of droplet size. Samples were collected from a ground intercepted cloud (= fog) during the Hill Cap Cloud Thuringia 2010 campaign (HCCT-2010) using a three-stage Caltech Active Strand Cloud water Collector (CASCC). An instrument test revealed that no artificial isotopic fractionation occurs during sample collection with the CASCC. Furthermore, we could experimentally confirm the hypothesis that the δ values of cloud droplets of the relevant droplet sizes (μm-range) were not significantly different and thus can be assumed to be in isotopic equilibrium immediately with the surrounding water vapor. However, during the dissolution period of the cloud, when the supersaturation inside the cloud decreased and the cloud began to clear, differences in isotope ratios of the different droplet sizes tended to be larger. This is likely to result from the cloud's heterogeneity, implying that larger and smaller cloud droplets have been collected at different moments in time, delivering isotope ratios from different collection times.

  20. Acid droplet generation in SRM exhaust clouds

    NASA Technical Reports Server (NTRS)

    Dingle, A. N.

    1983-01-01

    A free energy analysis is applied to the co-condensation/evaporation of H2O and HCl vapors on wettable particles in open air in order to model droplet nucleation in solid rocket motor (SRM) exhaust clouds. Formulations are defined for the free energy change, the drop radius, the saturation ratio, the total number of molecules, and the mean molecular radius in solution, as well as the molecular volume and the concentration range. The free energy release in the phase transition for the AL2O3 nuclei in the SRM exhaust is examined as a function of the HCl molefraction and nucleating particle radius, based on Titan III launch exhaust cloud conditions 90 sec after ignition. The most efficient droplet growth is determined to occur at an HCl molefraction of 0.082 and a particle radius of 0.0000013 cm, i.e. a molality of 5.355.

  1. Active droplet generation in microfluidics.

    PubMed

    Chong, Zhuang Zhi; Tan, Say Hwa; Gañán-Calvo, Alfonso M; Tor, Shu Beng; Loh, Ngiap Hiang; Nguyen, Nam-Trung

    2016-01-01

    The reliable generation of micron-sized droplets is an important process for various applications in droplet-based microfluidics. The generated droplets work as a self-contained reaction platform in droplet-based lab-on-a-chip systems. With the maturity of this platform technology, sophisticated and delicate control of the droplet generation process is needed to address increasingly complex applications. This review presents the state of the art of active droplet generation concepts, which are categorized according to the nature of the induced energy. At the liquid/liquid interface, an energy imbalance leads to instability and droplet breakup. PMID:26555381

  2. Aerosol and cloud droplet number concentrations observed in marine stratocumulus

    SciTech Connect

    Vong, R.J.; Covert, D.S.

    1995-12-01

    The relationship between measurements of cloud droplet number concentration and cloud condensation nuclei (CCN) concentration, as inferred from aerosol size spectra, was investigated at a {open_quote}clean air{close_quote}, marine site (Cheeka Peak) located near the coast of the Olympic Peninsula in Washington State. Preliminary results demonstrated that cloud droplet number increased and droplet diameter decreased as aerosol number concentration (CCN) increased. These results support predictions of a climate cooling due to any future increases in marine aerosol concentrations.

  3. Prediction of cloud droplet number in a general circulation model

    SciTech Connect

    Ghan, S.J.; Leung, L.R.

    1996-04-01

    We have applied the Colorado State University Regional Atmospheric Modeling System (RAMS) bulk cloud microphysics parameterization to the treatment of stratiform clouds in the National Center for Atmospheric Research Community Climate Model (CCM2). The RAMS predicts mass concentrations of cloud water, cloud ice, rain and snow, and number concnetration of ice. We have introduced the droplet number conservation equation to predict droplet number and it`s dependence on aerosols.

  4. Aircraft Ice Accretion Due to Large-Droplet Icing Clouds

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Studies of aircraft icing due to clouds consisting of individual droplets 10 times larger than those normally found in icing conditions are being carried out by members of the NASA Lewis Research Center's Icing Technology Branch. When encountered by an aircraft in freezing conditions, clouds consisting of large water droplets have a significantly different effect than those with normal droplets. A large-water-droplet cloud has been suggested as the cause of a commuter airplane accident in the late fall of 1994. As a result, studies of what happens to aircraft flying in these rare, but potentially very hazardous, conditions have been reemphasized.

  5. Organic films on atmospheric aerosol particles, fog droplets, cloud droplets, raindrops, and snowflakes

    NASA Astrophysics Data System (ADS)

    Gill, P. S.; Graedel, T. E.; Weschler, C. J.

    1983-05-01

    If surface-active organic molecules are present as surface films, the transfer of gases into the atmospheric water system could be impeded, evaporation could be slowed, and the aqueous chemical reactions could be influenced. The results of new measurements of the surface tension of aqueous solutions of common atmospheric organic compounds (beta-pinene, n-hexanol, eugenol, and anethole) are reported, and it is shown that the compounds produce films with properties similar to those of the better known surfactants. It is concluded that organic films are probably common on atmospheric aerosol particles and that they may occur under certain circumstances on fog droplets, cloud droplets, and snowflakes. If they are present, they will increase the lifetimes of aerosol particles, fog droplets, and cloud droplets, both by inhibiting water vapor evaporation and by reducing the efficiency with which these atmospheric components are scavenged. It is thought likely that the transport of gaseous molecules into and out of the aqueous solution will be impeded by factors of several hundred or more when organic films are present.

  6. METHANE GAS STABILIZES SUPERCOOLED ETHANE DROPLETS IN TITAN'S CLOUDS

    SciTech Connect

    Wang, Chia C.; Lang, E. Kathrin; Signorell, Ruth

    2010-03-20

    Strong evidence for ethane clouds in various regions of Titan's atmosphere has recently been found. Ethane is usually assumed to exist as ice particles in these clouds, although the possible role of liquid and supercooled liquid ethane droplets has been recognized. Here, we report on infrared spectroscopic measurements of ethane aerosols performed in the laboratory under conditions mimicking Titan's lower atmosphere. The results clearly show that liquid ethane droplets are significantly stabilized by methane gas which is ubiquitous in Titan's nitrogen atmosphere-a phenomenon that does not have a counterpart for water droplets in Earth's atmosphere. Our data imply that supercooled ethane droplets are much more abundant in Titan's clouds than previously anticipated. Possibly, these liquid droplets are even more important for cloud processes and the formation of lakes than ethane ice particles.

  7. Aerosol effect on the mobility of cloud droplets

    NASA Astrophysics Data System (ADS)

    Koren, Ilan; Altaratz, Orit; Dagan, Guy

    2015-10-01

    Cloud droplet mobility is referred to here as a measure of the droplets’ ability to move with ambient air. We claim that an important part of the aerosol effect on convective clouds is driven by changes in droplet mobility. We show that the mass-weighted average droplet terminal velocity, defined here as the ‘effective terminal velocity’ (η) and its spread ({σ }η ) serve as direct measures of this effect. Moreover, we develop analytical estimations for η and {σ }η to show that changes in the relative dispersion of η ({\\varepsilon }η ={σ }η /η ) can serve as a sensitive predictor of the onset of droplet-collection processes.

  8. Surfactants from the gas phase may promote cloud droplet formation.

    PubMed

    Sareen, Neha; Schwier, Allison N; Lathem, Terry L; Nenes, Athanasios; McNeill, V Faye

    2013-02-19

    Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8-10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas-aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere. PMID:23382211

  9. Surfactants from the gas phase may promote cloud droplet formation

    PubMed Central

    Sareen, Neha; Schwier, Allison N.; Lathem, Terry L.; Nenes, Athanasios; McNeill, V. Faye

    2013-01-01

    Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8–10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas–aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere. PMID:23382211

  10. Factors Controlling Droplet Concentration and Size Distribution in Clouds over Dominica

    NASA Astrophysics Data System (ADS)

    Russotto, R. D.; Storelvmo, T.; Smith, R. B.

    2011-12-01

    Since precipitation in convective, tropical clouds, and the impact of these clouds on Earth's radiation budget, are dependent on the concentration and size distribution of the water droplets that make up the clouds, we are interested in understanding the factors controlling the droplet concentration and size distribution in these clouds. Previous studies from field campaigns have led to contradictory conclusions, with some research pointing to updraft velocity as the most influential factor, and other studies pointing to aerosol concentration. The 2011 Dominica Experiment (DOMEX) field campaign provides a wealth of data with which to study this problem, and to test existing models of droplet activation and growth; these data include aerosol and cloud droplet concentrations and size distributions, and wind speed measurements, from research flights above and upwind of the island of Dominica, as well as precipitation data from rain gauges installed on the island. Over 17 DOMEX research flights, cloud droplet concentrations averaged over flight legs above the island were positively correlated with aerosol concentrations from legs flown upwind of the island at 305 m altitude, while cloud droplet mean diameters were negatively correlated with oversea aerosol concentrations, supporting the idea that higher aerosol concentrations (if they are water soluble aerosols, such as sea salt) result in more droplets becoming activated and not growing as large. Meanwhile, average horizontal wind speeds in the oversea legs were negatively correlated with droplet concentrations in clouds over the island, and positively correlated with the mean diameter, the opposite of what would be expected if stronger convection accompanied the higher horizontal wind speeds. The horizontal wind speeds were also negatively correlated with the aerosol concentrations, especially at very low wind speeds, suggesting that the negative impact of wind speed on droplet concentration may have been due to a

  11. Homogeneous Nucleation Rate for Highly Supercooled Cirrus Cloud Droplets.

    NASA Astrophysics Data System (ADS)

    Sassen, Kenneth; Dodd, Gregory C.

    1988-04-01

    A mixed-phase hydrometer growth model has been applied to determining the nucleation mode and rate responsible for the glaciation of a highly supercooled liquid cloud studied jointly by ground-based polarization lidar and aircraft in situ probes. The cloud droplets were detected at the base of an orographically induced cirrus cloud at temperatures between 34.3° and 37.3°C. The vertical distribution above cloud base of two independent data quantities, the aircraft-measured water and ice particle concentrations and the lidar linear depolarization ratio, have been compared to model predictions for both the homogeneous and heterogeneous drop-freezing. modes. It is concluded that, although activated ice nuclei may have contributed to the glaciation of the cloud, homogeneous nucleation was the dominant mode. Accordingly, a homogeneous nucleation rate 106 times greater than that predicted by classical theory, but 103 times less than laboratory measurements would suggest is found to be appropriate at the measured cloud temperatures.

  12. The relative dispersion of cloud droplets: its robustness with respect to key cloud properties

    NASA Astrophysics Data System (ADS)

    Tas, E.; Teller, A.; Altaratz, O.; Axisa, D.; Bruintjes, R.; Levin, Z.; Koren, I.

    2015-02-01

    Flight data measured in warm convective clouds near Istanbul in June 2008 were used to investigate the relative dispersion of cloud droplet size distribution. The relative dispersion (ϵ), defined as the ratio between the standard deviation (σ) of the cloud droplet size distribution and cloud droplet average radius (⟨r⟩), is a key factor in regional and global models. The relationship between ɛ and the clouds' microphysical and thermodynamic characteristics is examined. The results show that ɛ is constrained with average values in the range of ~0.25-0.35. ɛ is shown not to be correlated with cloud droplet concentration or liquid water content (LWC). However, ɛ variance is shown to be sensitive to droplet concentration and LWC, suggesting smaller variability of ϵ in the clouds' most adiabatic regions. A criterion for use of in situ airborne measurement data for calculations of statistical moments (used in bulk microphysical schemes), based on the evaluation of ϵ, is suggested.

  13. Anionic, Cationic, and Nonionic Surfactants in Atmospheric Aerosols from the Baltic Coast at Askö, Sweden: Implications for Cloud Droplet Activation.

    PubMed

    Gérard, Violaine; Nozière, Barbara; Baduel, Christine; Fine, Ludovic; Frossard, Amanda A; Cohen, Ronald C

    2016-03-15

    Recent analyses of atmospheric aerosols from different regions have demonstrated the ubiquitous presence of strong surfactants and evidenced surface tension values, σ, below 40 mN m(-1), suspected to enhance the cloud-forming potential of these aerosols. In this work, this approach was further improved and combined with absolute concentration measurements of aerosol surfactants by colorimetric titration. This analysis was applied to PM2.5 aerosols collected at the Baltic station of Askö, Sweden, from July to October 2010. Strong surfactants were found in all the sampled aerosols, with σ = (32-40) ± 1 mN m(-1) and concentrations of at least 27 ± 6 mM or 104 ± 21 pmol m(-3). The absolute surface tension curves and critical micelle concentrations (CMC) determined for these aerosol surfactants show that (1) surfactants are concentrated enough in atmospheric particles to strongly depress the surface tension until activation, and (2) the surface tension does not follow the Szyszkowski equation during activation but is nearly constant and minimal, which provides new insights on cloud droplet activation. In addition, both the CMCs determined and the correlation (R(2) ∼ 0.7) between aerosol surfactant concentrations and chlorophyll-a seawater concentrations suggest a marine and biological origin for these compounds. PMID:26895279

  14. Observation of Raman scattering by cloud droplets in the atmosphere.

    PubMed

    Melfi, S H; Evans, K D; Li, J; Whiteman, D; Ferrare, R; Schwemmer, G

    1997-05-20

    In a recent field campaign, the NASA Goddard Space Flight Center scanning Raman lidar measured, in the water vapor channel, Raman scattering from low-level clouds well in excess of 100% relative humidity. The excess scattering has been interpreted to be spontaneous Raman scattering by liquid water in the cloud droplets. A review of research on Raman scattering by microspheres indicates that the technique may provide a remote method to observe cloud liquid water. The clouds studied appear, from Mie scattering, to have two distinct layers with only the upper layer showing significant Raman scattering from liquid water in the droplets. PMID:18253375

  15. Predicting Cloud Droplet Number Concentration in Community Atmosphere Model (CAM)-Oslo

    SciTech Connect

    Storelvmo, Trude; Kristjansson, J. E.; Ghan, Steven J.; Kirkevag, A.; Seland, O.; Iversen, T.

    2006-12-22

    A continuity equation for cloud droplet number concentration is implemented in an extended version of the National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 2.0.1 (CAM-2.0.1). The new continuity equation for cloud droplet number concentration consists of a nucleation term and several microphysical sink terms. The nucleation term is calculated based on a parameterization of activation of cloud condensation nuclei. A sub-grid distribution of vertical velocity is used to determine the range of supersaturations found within each model grid box. This supersaturation combined with the hygroscopicity of the aerosols present will determine the number of Cloud Condensation Nuclei (CCN) activated into cloud droplets. The aerosol types considered in this study are sea salt, sulfate, black carbon, organic carbon and mineral dust. The horizontal and vertical distributions of sulfate and carbonaceous aerosols are calculated based on AEROCOM (http://nansen.ipsl.jussieu.fr/AEROCOM) sources. These are combined with the background aerosols, which are a combination of sea salt, mineral dust and sulfate dependent on soil type, wind speed and location (Arctic, Antarctic, maritime, desert or continental). The resulting aerosol size distributions are multimodal, allowing sulfate, black carbon and organic carbon to be both internally and externally mixed with the background aerosols. Microphysical sink terms for cloud droplets are obtained from a prognostic cloud water scheme, assuming a direct proportionality between loss of cloud water and loss of cloud droplets. Based on the framework described above, the cloud droplet number concentration and cloud droplet effective radius can be determined. The resulting cloud radiative forcings (CRF) can hereafter be calculated. By comparing the CRF for two different model runs, one with pre-industrial aerosol sources and the other with sources corresponding to present day, the indirect effect of aerosols can be

  16. Effects of turbulence on the collision rate of cloud droplets

    NASA Astrophysics Data System (ADS)

    Ayala, Orlando

    This dissertation concerns effects of air turbulence on the collision rate of atmospheric cloud droplets. This research was motivated by the speculation that air turbulence could enhance the collision rate thereby help transform cloud droplets to rain droplets in a short time as observed in nature. The air turbulence within clouds is assumed to be homogeneous and isotropic, and its small-scale motion (1 mm to 10 cm scales) is computationally generated by direct numerical integration of the full Navier-Stokes equations. Typical droplet and turbulence parameters of convective warm clouds are used to determine the Stokes numbers (St) and the nondimensional terminal velocities (Sv) which characterize droplet relative inertia and gravitational settling, respectively. A novel and efficient methodology for conducting direct numerical simulations (DNS) of hydrodynamically-interacting droplets in the context of cloud microphysics has been developed. This numerical approach solves the turbulent flow by the pseudo-spectral method with a large-scale forcing, and utilizes an improved superposition method to embed analytically the local, small-scale (10 mum to 1 mm) disturbance flows induced by the droplets. This hybrid representation of background turbulent air motion and the induced disturbance flows is then used to study the combined effects of hydrodynamic interactions and airflow turbulence on the motion and collisions of cloud droplets. Hybrid DNS results show that turbulence can increase the geometric collision kernel relative to the gravitational geometric kernel by as much as 42% due to enhanced radial relative motion and preferential concentration of droplets. The exact level of enhancements depends on the Taylor-microscale Reynolds number, turbulent dissipation rate, and droplet pair size ratio. One important finding is that turbulence has a relatively dominant effect on the collision process between droplets close in size as the gravitational collision mechanism

  17. The influence of clean air entrainment on the droplet effective radius of warm maritime convective clouds

    SciTech Connect

    Pontikis, C.A.; Hicks, E.M.

    1993-09-01

    The influence of clear air entrainment on the droplet effective radius of cloudy air parcels is investigated theoretically and experimentally by using data collected in 16 warm maritime tropical cumuli during the Joint Hawaii Warm Rain Project (1985). The theoretical study consists of calculations of the droplet spectrum, droplet effective radius, and liquid water content performed by an entraining cloud parcel model for different entrainment-mixing scenarios. The numerical simulation results are interpreted by means of an analytic equation of the droplet effective radius expressed as a function of both the liquid water content and the droplet concentration. In the experiment study, the behavior of the effective radius is examined at all scales as a function of the liquid water content, used as a dilution degree indicator. At a given cloud level, in the abscence of secondary droplet activation, the effective radius of the droplet spectrum of small-scale parcels (10-Hz data) is roughly independent of the liquid water content and appears unaffected by entrainment. In contrast, if secondary droplet activation occurs in diluted ascending cloud parcels, a wide range of effective radius values is observed for a given liquid water content as a result of the induced variation of the droplet concentration. Further, mean cloud pass effective radii increase with increasing mean pass liquid water contents and mean pass height above cloud base. The results limit the validity of the classical cloud effective radius parameterizations used in the radiative transfer calculations in climate models and some suggestions to improve these parameterizations are presented.

  18. Characterization of particle cloud droplet activity and composition in the free troposphere and the boundary layer during INTEX-B

    SciTech Connect

    Roberts, G. C.; Day, D. A.; Russell, Lynn M.; Dunlea, E. J.; Jimenez, J. L.; Tomlinson, Jason M.; Collins, Donald R.; Shinozuka, Y.; Clarke, A. D.

    2010-07-20

    Measurements of cloud condensation nuclei (CCN), aerosol size distributions, and submicron aerosol composition were made as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign during spring 2006. Measurements were conducted from an aircraft platform over the northeastern Pacific and western North America with a focus on how the transport and evolution of Asian pollution across the Pacific Ocean affected CCN properties. A broad range of air masses were sampled and here we focus on three distinct air mass types defined geographically: the Pacific free troposphere (FT), the marine boundary layer (MBL), and the polluted continental boundary layer in the California Central Valley (CCV). These observations add to the few observations of CCN in the FT. CCN concentrations showed a large range of concentrations between air masses, however CCN activity was similar for the MBL and CCV ({kappa} {approx} 0.2-0.25). FT air masses showed evidence of long-range transport from Asia and CCN activity was consistently higher than for the boundary layer air masses. Bulk chemical measurements predicted CCN activity reasonably well for the CCV and FT air masses. Decreasing trends in {kappa} with organic mass fraction were observed for the combination of the FT and CCV air masses and can be explained by the measured soluble inorganic chemical components. Changes in hygroscopicity associated with differences in the non-refractory organic composition were too small to be distinguished from the simultaneous changes in inorganic ion composition in the FT and MBL, although measurements for the large organic fractions (0.6-0.8) found in the CCV showed values of the organic fraction hygroscopicity consistent with other polluted regions ({kappa}{sub org} {approx} 0.1-0.2). A comparison of CCN-derived {kappa} (for particles at the critical diameter) to H-TDMA-derived {kappa} (for particles at 100 nm diameter) showed similar trends, however the CCN-derived {kappa

  19. Noncircular glories and their relationship to cloud droplet size.

    PubMed

    Laven, Philip

    2008-12-01

    The atmospheric glory caused by backscattering of sunlight from clouds usually has circular colored rings. However, glories with noncircular rings are frequently observed, especially along the edges of clouds. Noting that the angular radius of the rings of glories is a sensitive indicator of the size of the water droplets in clouds, several images of glories have been examined in an attempt to explain the formation of noncircular glories. PMID:19037347

  20. Arctic low-level boundary layer clouds: in-situ measurements and simulations of mono- and bimodal supercooled droplet size distributions at the cloud top layer

    NASA Astrophysics Data System (ADS)

    Klingebiel, M.; de Lozar, A.; Molleker, S.; Weigel, R.; Roth, A.; Schmidt, L.; Meyer, J.; Ehrlich, A.; Neuber, R.; Wendisch, M.; Borrmann, S.

    2014-06-01

    Aircraft borne optical in-situ size distribution measurements were performed within Arctic boundary layer clouds, with a special emphasis on the cloud top layer, during the VERtical Distribution of Ice in Arctic Clouds (VERDI) campaign. The observations were carried out within a joint research activity of seven German institutes to investigate Arctic boundary layer-, mixed-phase clouds in April and May 2012. An instrumented Basler BT-67 research aircraft operated out of Inuvik over the Mackenzie River delta and the Beaufort Sea in the Northwest Territories of Canada. Besides the cloud particle and hydrometeor size spectrometers the aircraft was equipped with instrumentation for aerosol, radiation and other parameters. Inside the cloud, droplet size distributions with monomodal shapes were observed for predominantly liquid-phase Arctic stratocumulus. With increasing altitude inside the cloud the droplet mean diameters grew from 10 μm to 20 μm. In the upper transition zone (i.e. adjacent to the cloud-free air aloft) changes from monomodal to bimodal droplet size distributions were observed. It is shown that droplets of both modes co-exist in the same (small) air volume and the bimodal shape of the measured size distributions cannot be explained as an observational artifact caused by accumulating two droplet populations from different air volumes. The formation of a second size mode can be explained by (a) entrainment and activation/condensation of fresh aerosol particles, or (b) by differential evaporation processes occurring with cloud droplets engulfed in different eddies. Activation of entrained particles seemed a viable possibility as a layer of dry Arctic enhanced background aerosol was detected directly above the stratus cloud might form a second mode of small cloud droplets. However, theoretical considerations and a model simulation revealed that, instead, turbulent mixing and evaporation of larger droplets most likely are the main reasons for the formation

  1. The cloud albedo-cloud droplet effective radius relationship for clean and polluted clouds from RACE and FIRE.ACE

    NASA Astrophysics Data System (ADS)

    Peng, Yiran; Lohmann, Ulrike; Leaitch, Richard; Banic, Catharine; Couture, Mark

    2002-06-01

    Twenty-eight liquid water cloud cases selected from two field studies (the Canadian Radiation, Aerosol and Cloud Experiment (RACE) and the First ISCCP Regional Experiment-Arctic Cloud Experiment (FIRE.ACE)) are analyzed with respect to the first and second indirect aerosol effects and the relationship between cloud droplet effective radius and cloud albedo for clean and polluted clouds. For the same liquid water path the polluted clouds have more and smaller cloud droplets and thus a higher cloud albedo and less drizzle size drops. The effective radius is positively correlated with cloud albedo for polluted clouds caused by the absence of drizzle size drops. Conversely effective radius is negatively correlated with cloud albedo for clean clouds.

  2. What does Reflection from Cloud Sides tell us about Vertical Distribution of Cloud Droplet Sizes?

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Martins, J. V.; Zubko, V.; Kaufman, Y. J.

    2006-01-01

    Cloud development, the onset of precipitation and the effect of aerosol on clouds depend on the structure of the cloud profiles of droplet size and phase. Aircraft measurements of cloud profiles are limited in their temporal and spatial extent. Satellites were used to observe cloud tops not cloud profiles with vertical profiles of precipitation-sized droplets anticipated from CloudSat. The recently proposed CLAIM-3D satellite mission (cloud aerosol interaction mission in 3-D) suggests to measure profiles of cloud microphysical properties by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides. Inversion of measurements from the cloud sides requires rigorous understanding of the 3-dimentional(3-D) properties of clouds. Here we discuss the reflected sunlight from the cloud sides and top at two wavelengths: one nonabsorbing to solar radiation (0.67 microns) and one with liquid water efficient absorption of solar radiation (2.1 microns). In contrast to the plane-parallel approximation, a conventional approach to all current operational retrievals, 3-D radiative transfer is used for interpreting the observed reflectances. General properties of the radiation reflected from the sides of an isolated cloud are discussed. As a proof of concept, the paper shows a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with the prescribed vertically resolved microphysics. To retrieve the information about droplet sizes, we propose to use the probability density function of the droplet size distribution and its first two moments instead of the assumption about fixed values of the droplet effective radius. The retrieval algorithm is based on the Bayesian theorem that combines prior information about cloud structure and microphysics with radiative transfer calculations.

  3. What Does Reflection from Cloud Sides Tell Us About Vertical Distribution of Cloud Droplet Sizes?

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Martins, J. Vanderlei; Zubko, Victor; Kaufman, Yoram, J.

    2005-01-01

    Cloud development, the onset of precipitation and the effect of aerosol on clouds depend on the structure of the cloud profiles of droplet size and phase. Aircraft measurements of cloud profiles are limited in their temporal and spatial extent. Satellites were used to observe cloud tops not cloud profiles with vertical profiles of precipitation-sized droplets anticipated from Cloudsat. The recently proposed CLAIM-3D satellite mission (cloud aerosol interaction mission in 3D) suggests to measure profiles of cloud microphysical properties by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides. Inversion of measurements from the cloud sides requires rigorous understanding of the 3-dimensional (3D) properties of clouds. Here we discuss the reflected sunlight from the cloud sides and top at two wavelengths: one nonabsorbing to solar radiation (0.67 micrometers) and one with liquid water efficient absorption of solar radiation (2.1 micrometers). In contrast to the plane-parallel approximation, a conventional approach to all current operational retrievals, 3D radiative transfer is used for interpreting the observed reflectances. General properties of the radiation reflected from the sides of an isolated cloud are discussed. As a proof of concept, the paper shows a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with the prescribed vertically resolved microphysics. To retrieve the information about droplet sizes, we propose to use the probability density function of the droplet size distribution and its first two moments instead of the assumption about fixed values of the droplet effective radius. The retrieval algorithm is based on the Bayesian theorem that combines prior information about cloud structure and microphysics with radiative transfer calculations.

  4. What does reflection from cloud sides tell us about vertical distribution of cloud droplets?

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Kaufman, Yoram; Martins, V.; Zubko, Victor

    2006-01-01

    In order to accurately measure the interaction of clouds with aerosols, we have to resolve the vertical distribution of cloud droplet sizes and determine the temperature of glaciation for clean and polluted clouds. Knowledge of the droplet vertical profile is also essential for understanding precipitation. So far, all existing satellites either measure cloud microphysics only at cloud top (e.g., MODIS) or give a vertical profile of precipitation sized droplets (e.g., Cloudsat). What if one measures cloud microphysical properties in the vertical by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides? This was the idea behind CLAIM-3D (A 3D - cloud aerosol interaction mission) recently proposed by NASA GSFC. This presentation will focus on the interpretation of the radiation reflected from cloud sides. In contrast to plane-parallel approximation, a conventional approach to all current operational retrievals, 3D radiative transfer will be used for interpreting the observed reflectances. As a proof of concept, we will show a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with prescribed microphysics. Instead of fixed values of the retrieved effective radii, the probability density functions of droplet size distributions will serve as possible retrievals.

  5. Quantifying compositional impacts of ambient aerosol on cloud droplet formation

    NASA Astrophysics Data System (ADS)

    Lance, Sara

    It has been historically assumed that most of the uncertainty associated with the aerosol indirect effect on climate can be attributed to the unpredictability of updrafts. In Chapter 1, we analyze the sensitivity of cloud droplet number density, to realistic variations in aerosol chemical properties and to variable updraft velocities using a 1-dimensional cloud parcel model in three important environmental cases (continental, polluted and remote marine). The results suggest that aerosol chemical variability may be as important to the aerosol indirect effect as the effect of unresolved cloud dynamics, especially in polluted environments. We next used a continuous flow streamwise thermal gradient Cloud Condensation Nuclei counter (CCNc) to study the water-uptake properties of the ambient aerosol, by exposing an aerosol sample to a controlled water vapor supersaturation and counting the resulting number of droplets. In Chapter 2, we modeled and experimentally characterized the heat transfer properties and droplet growth within the CCNc. Chapter 3 describes results from the MIRAGE field campaign, in which the CCNc and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) were deployed at a ground-based site during March, 2006. Size-resolved CCN activation spectra and growth factor distributions of the ambient aerosol in Mexico City were obtained, and an analytical technique was developed to quantify a probability distribution of solute volume fractions for the CCN in addition to the aerosol mixing-state. The CCN were shown to be much less CCN active than ammonium sulfate, with water uptake properties more consistent with low molecular weight organic compounds. The pollution outflow from Mexico City was shown to have CCN with an even lower fraction of soluble material. "Chemical Closure" was attained for the CCN, by comparing the inferred solute volume fraction with that from direct chemical measurements. A clear diurnal pattern was observed for the CCN solute

  6. Characterizing interactions between aerosols and cloud droplets in marine boundary layer clouds

    NASA Astrophysics Data System (ADS)

    Andersen, Hendrik; Cermak, Jan

    2016-04-01

    This contribution presents a method to characterize the nonlinearities of interactions between aerosols and cloud droplets in marine boundary layer clouds based on global MODIS observations. Clouds play a crucial role in the climate system as their radiative properties and precipitation patterns significantly impact the Earth's energy balance. Cloud properties are determined by environmental conditions, as cloud formation requires the availability of water vapour ("precipitable water") and condensation nuclei in sufficiently saturated conditions. The ways in which aerosols as condensation nuclei in particular influence the optical, micro- and macrophysical properties of clouds are one of the largest remaining uncertainties in climate-change research. In particular, cloud droplet size is believed to be impacted, and thereby cloud reflectivity, lifetime, and precipitation susceptibility. However, the connection between aerosols and cloud droplets is nonlinear, due to various factors and processes. The impact of aerosols on cloud properties is thought to be strongest with low aerosol loadings, whereas it saturates with high aerosol loadings. To gain understanding of the processes that govern low cloud water properties in order to increase accuracy of climate models and predictions of future changes in the climate system is thus of great importance. In this study, global Terra MODIS L3 data sets are used to characterize the nonlinearities of the interactions between aerosols and cloud droplets in marine boundary layer clouds. MODIS observations are binned in classes of aerosol loading to identify at what loading aerosol impact on cloud droplets is the strongest and at which loading it saturates. Results are connected to ERA-Interim and MACC data sets to identify connections of detected patterns to meteorology and aerosol species.

  7. Influence of Dust Composition on Cloud Droplet Formation

    SciTech Connect

    Kelly, J T; Chuang, C C; Wexler, A S

    2006-08-21

    Previous studies suggest that interactions between dust particles and clouds are significant; yet the conditions where dust particles can serve as cloud condensation nuclei (CCN) are uncertain. Since major dust components are insoluble, the CCN activity of dust strongly depends on the presence of minor components. However, many minor components measured in dust particles are overlooked in cloud modeling studies. Some of these compounds are believed to be products of heterogeneous reactions involving carbonates. In this study, we calculate Kohler curves (modified for slightly soluble substances) for dust particles containing small amounts of K{sup +}, Mg{sup 2+}, or Ca{sup 2+} compounds to estimate the conditions where reacted and unreacted dust can activate. We also use an adiabatic parcel model to evaluate the influence of dust particles on cloud properties via water competition. Based on their bulk solubilities, K{sup +} compounds, MgSO{sub 4} x 7H{sub 2}O, Mg(NO{sub 3}){sub 2} x 6H{sub 2}O, and Ca(NO{sub 3}){sub 2} x 4H{sub 2}O are classified as highly soluble substances, which enable activation of fine dust. Slightly soluble gypsum and MgSO{sub 3} x 6H{sub 2}O, which may form via heterogeneous reactions involving carbonates, enable activation of particles with diameters between about 0.6 and 2 mm under some conditions. Dust particles > 2 mm often activate regardless of their composition. Only under very specialized conditions does the addition of a dust distribution into a rising parcel containing fine (NH{sub 4}){sub 2}SO{sub 4} particles significantly reduce the total number of activated particles via water competition. Effects of dust on cloud saturation and droplet number via water competition are generally smaller than those reported previously for sea salt. Large numbers of fine dust CCN can significantly enhance the number of activated particles under certain conditions. Improved representations of dust mineralogy and reactions in global aerosol models

  8. Arctic low-level boundary layer clouds: in situ measurements and simulations of mono- and bimodal supercooled droplet size distributions at the top layer of liquid phase clouds

    NASA Astrophysics Data System (ADS)

    Klingebiel, M.; de Lozar, A.; Molleker, S.; Weigel, R.; Roth, A.; Schmidt, L.; Meyer, J.; Ehrlich, A.; Neuber, R.; Wendisch, M.; Borrmann, S.

    2015-01-01

    Aircraft borne optical in situ size distribution measurements were performed within Arctic boundary layer clouds with a special emphasis on the cloud top layer during the VERtical Distribution of Ice in Arctic clouds (VERDI) campaign in April and May 2012. An instrumented Basler BT-67 research aircraft operated out of Inuvik over the Mackenzie River delta and the Beaufort Sea in the Northwest Territories of Canada. Besides the cloud particle and hydrometeor size spectrometers the aircraft was equipped with instrumentation for aerosol, radiation and other parameters. Inside the cloud, droplet size distributions with monomodal shapes were observed for predominantly liquid-phase Arctic stratocumulus. With increasing altitude inside the cloud the droplet mean diameters grew from 10 to 20 μm. In the upper transition zone (i.e., adjacent to the cloud-free air aloft) changes from monomodal to bimodal droplet size distributions (Mode 1 with 20 μm and Mode 2 with 10 μm diameter) were observed. It is shown that droplets of both modes co-exist in the same (small) air volume and the bimodal shape of the measured size distributions cannot be explained as an observational artifact caused by accumulating data point populations from different air volumes. The formation of the second size mode can be explained by (a) entrainment and activation/condensation of fresh aerosol particles, or (b) by differential evaporation processes occurring with cloud droplets engulfed in different eddies. Activation of entrained particles seemed a viable possibility as a layer of dry Arctic enhanced background aerosol (which was detected directly above the stratus cloud) might form a second mode of small cloud droplets. However, theoretical considerations and model calculations (adopting direct numerical simulation, DNS) revealed that, instead, turbulent mixing and evaporation of larger droplets are the most likely reasons for the formation of the second droplet size mode in the uppermost region

  9. Cloud droplet nucleation and its connection to aerosol properties

    SciTech Connect

    Schwartz, S.E.

    1996-04-01

    Anthropogenic aerosols influence the earth`s radiation balance and climate directly, by scattering shortwave (solar) radiation in cloud-free conditions and indirectly, by increasing concentrations of cloud droplets thereby enhancing cloud shortwave reflectivity. These effects are thought to be significant in the context of changes in the earth radiation budget over the industrial period, exerting a radiative forcing that is of comparable magnitude to that of increased concentrations of greenhouse gases over this period but opposite in sign. However the magnitudes of both the direct and indirect aerosol effects are quite uncertain. Much of the uncertainty of the indirect effect arises from incomplete ability to describe changes in cloud properties arising from anthropogenic aerosols. This paper examines recent studies pertaining to the influence of anthropogenic aerosols on loading and properties of aerosols affecting their cloud nucleating properties and indicative of substantial anthropogenic influence on aerosol and cloud properties over the North Atlantic.

  10. Improving aerosol distributions below clouds by assimilating satellite-retrieved cloud droplet number

    PubMed Central

    Saide, Pablo E.; Carmichael, Gregory R.; Spak, Scott N.; Minnis, Patrick; Ayers, J. Kirk

    2012-01-01

    Limitations in current capabilities to constrain aerosols adversely impact atmospheric simulations. Typically, aerosol burdens within models are constrained employing satellite aerosol optical properties, which are not available under cloudy conditions. Here we set the first steps to overcome the long-standing limitation that aerosols cannot be constrained using satellite remote sensing under cloudy conditions. We introduce a unique data assimilation method that uses cloud droplet number (Nd) retrievals to improve predicted below-cloud aerosol mass and number concentrations. The assimilation, which uses an adjoint aerosol activation parameterization, improves agreement with independent Nd observations and with in situ aerosol measurements below shallow cumulus clouds. The impacts of a single assimilation on aerosol and cloud forecasts extend beyond 24 h. Unlike previous methods, this technique can directly improve predictions of near-surface fine mode aerosols responsible for human health impacts and low-cloud radiative forcing. Better constrained aerosol distributions will help improve health effects studies, atmospheric emissions estimates, and air-quality, weather, and climate predictions. PMID:22778436

  11. Variability of cloud optical depth and cloud droplet effective radius in layer clouds: Satellite based analysis

    NASA Astrophysics Data System (ADS)

    Szczodrak, Malgorzata Dorota

    1998-11-01

    Measurements made by the AVHRR (Advanced Very High Resolution Radiometer) on board of five NOAA polar orbiting satellites were used to retrieve cloud optical depth (/tau) and cloud droplet effective radius (reff) for marine boundary layer clouds over the Pacific Ocean west of California and over the Southern Ocean near Tasmania. Retrievals were obtained for 21 days of data acquired between 1987 and 1995 from which over 300 subscenes ~256 km x 256 km in size were extracted. On this spatial scale cloud fields were found to have mean τ between 8 and 32 and mean reff between 6 and 17 /mu m. The frequency distribution of τ is well approximated by a two parameter gamma distribution. The gamma distribution also provides a good fit to the observed reff distribution if the distribution is symmetric or positively skewed but fails for negatively skewed or bi-modal distributions of reff which were also observed. The retrievals show a relationship between τ and reff which is consistent with a simple 'reference' cloud model with reff~τ1/5. The proportionality constant depends on cloud droplet number concentration N and cloud subadiabaticity β through the parameter Nsat=N//sqrt[/beta]. Departures from the reference behaviour occur in scenes with spatially coherent Nsat regimes, separated by a sharp boundary. AVHRR imagery is able to separate two Nsat regimes if they differ by at least 30% in most cases. Satellite retrievals of τ and reff were compared with in situ aircraft measurement near Tasmania. The retrievals overestimated reff by 0.7 to 3.6 /mu m on different flights, in agreement with results from earlier comparison studies. The reff overestimation was found to be an offset independent of /tau. The reference cloud model and the Nsat retrieval were tested on aircraft data and yield results consistent with direct in situ measurements of N and /beta. Spectral and multifractal analyses of the spatial structure of cloud visible radiance, τ and reff fields in 34 satellite

  12. On the relationship between sulfate and cloud droplet number concentrations

    SciTech Connect

    Leaitch, W.R.; Isaac, G.A. )

    1994-01-01

    Comparisons are drawn between the aerosol cloud microphysical theory implicit in the modeling of Kaufman et al. and the cloud droplet and cloud water sulfate concentrations of Leaitch et al. for the purpose of helping to understand the effect of sulfate particle son climate through cloud modification. In terms of the range of possibilities and prospects for future climate given by Kaufman et al. for the effect of sulfur on cloud albedo, the data favor the possibility of stronger cooling. Scatter in the data makes it impossible to constrain model parameters; however, the comparisons suggest that there may not be a universal relationship, and that the uncertainties involved in trying to model this process are large.

  13. Droplet dispersion in premonsoon and monsoon clouds over Indo-Gangetic valley during CAIPEEX

    NASA Astrophysics Data System (ADS)

    Prabhakaran, T.; Patade, S.; Pandithuri, G.; Khain, A.; Axisa, D.; Pallath, P.; RS, M.; Kulkarni, J.; Goswami, B.

    2012-12-01

    The combined effect of humidity and aerosol on cloud droplet spectral width (σ) in continental monsoon clouds is a topic of significant relevance for precipitation and radiation budgets over monsoon regions. The droplet spectral width in polluted, dry premonsoon conditions and moist monsoon conditions observed near the Himalayan Foothills region during Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX) is the focus of this study. σ is small in premonsoon clouds growing over very dry boundary layers, This is attributed to numerous aerosol particles and the absence/suppression of collision-coalescence during premonsoon. For polluted and dry premonsoon clouds, spectral width is constant with height. In contrast to premonsoon clouds, spectral width in monsoon clouds increases with height irrespective of whether it is a polluted or clean. The mean radius of polluted monsoon clouds is half that of clean monsoon clouds. In monsoon clouds, both mean radius and spectral width decreased with total cloud droplet number concentrations. The spectral widths of premonsoon clouds were however independent of total droplet number concentrations, but both spectral width and mean radius decreased with small droplet (diameter <20 μm) number concentrations in the diluted part of the cloud. Observational evidence is provided for the formation of large droplets in the adiabatic regions of monsoon clouds. The number concentration of small droplets is found to decrease in the diluted cloud volumes that may be characterized by various spectral widths or mean droplet radii attributed to entrainment effects.

  14. Sensitivity of Satellite-Retrieved Cloud Properties to the Effective Variance of Cloud Droplet Size Distribution

    SciTech Connect

    Arduini, R.F.; Minnis, P.; Smith, W.L.Jr.; Ayers, J.K.; Khaiyer, M.M.; Heck, P.

    2005-03-18

    Cloud reflectance models currently used in cloud property retrievals from satellites have been developed using size distributions defined by a set of fixed effective radii with a fixed effective variance. The satellite retrievals used for the Atmospheric Radiation Measurement (ARM) program assume droplet size distributions with an effective variance value of 0.10 (Minnis et al. 1998); the International Satellite Cloud Climatology Project uses 0.15 (Rossow and Schiffer 1999); and the Moderate Resolution Imaging Spectroradiometer (MODIS) team uses 0.13 (Nakajima and King 1990). These distributions are not necessarily representative of the actual sizes present in the clouds being observed. Because the assumed distributions can affect the reflectance patterns and near-infrared absorption, even for the same droplet effective radius reff, it is desirable to use the optimal size distributions in satellite retrievals of cloud properties. Collocated observations of the same clouds from different geostationary satellites, at different viewing angles, indicate that the current models may not be optimal (Ayers et al. 2005). Similarly, hour-to-hour variations in effective radius and optical depth reveal an unexplained dependence on scattering angle. To explore this issue, this paper examines the sensitivity of the cloud reflectance at 0.65 and 3.90-{micro}m to changes in the effective variance, or the spectral dispersion, of the modeled size distributions. The effects on the scattering phase functions and on the cloud reflectances are presented, as well as some resultant effects on the retrieved cloud properties.

  15. Applying super-droplets as a compact representation of warm-rain microphysics for aerosol-cloud-aerosol interactions

    NASA Astrophysics Data System (ADS)

    Arabas, S.; Jaruga, A.; Pawlowska, H.; Grabowski, W. W.

    2012-12-01

    Clouds may influence aerosol characteristics of their environment. The relevant processes include wet deposition (rainout or washout) and cloud condensation nuclei (CCN) recycling through evaporation of cloud droplets and drizzle drops. Recycled CCN physicochemical properties may be altered if the evaporated droplets go through collisional growth or irreversible chemical reactions (e.g. SO2 oxidation). The key challenge of representing these processes in a numerical cloud model stems from the need to track properties of activated CCN throughout the cloud lifecycle. Lack of such "memory" characterises the so-called bulk, multi-moment as well as bin representations of cloud microphysics. In this study we apply the particle-based scheme of Shima et al. 2009. Each modelled particle (aka super-droplet) is a numerical proxy for a multiplicity of real-world CCN, cloud, drizzle or rain particles of the same size, nucleus type,and position. Tracking cloud nucleus properties is an inherent feature of the particle-based frameworks, making them suitable for studying aerosol-cloud-aerosol interactions. The super-droplet scheme is furthermore characterized by linear scalability in the number of computational particles, and no numerical diffusion in the condensational and in the Monte-Carlo type collisional growth schemes. The presentation will focus on processing of aerosol by a drizzling stratocumulus deck. The simulations are carried out using a 2D kinematic framework and a VOCALS experiment inspired set-up (see http://www.rap.ucar.edu/~gthompsn/workshop2012/case1/).

  16. Formation and characterization of simulated small droplet icing clouds

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1986-01-01

    Two pneumatic two-fluid atomizers operating at high liquid and gas pressures produced water sprays that simulated small droplet clouds for use in studying icing effects on aircraft performance. To measure median volume diameter, MVD or D sub v.5, of small droplet water sprays, a scattered-light scanning instrument was developed. Drop size data agreed fairly well with calculated values at water and nitrogen pressures of 60 and 20 psig, respectively, and at water and nitrogen pressures of 250 and 100 psig, respectively, but not very well at intermediate values of water and nitrogen pressure. MVD data were correlated with D sub 0, W sub N, and W sub w, i.e., orifice diameter, nitrogen, and water flowrate, respectively, to give the expression for MVD in microns.

  17. Supersaturation, droplet spectra, and turbulent mixing in clouds

    NASA Technical Reports Server (NTRS)

    Gerber, H.

    1990-01-01

    Much effort has recently gone into explaining the observed broad precoalescence size distribution of droplets in cloud and fogs, because this differs from the results of condensational growth calculations which lead to much narrower distributions. A good example of droplet size-distribution broadening was observed on flight 17 (25 July) of the NRL tethered balloon during the 1987 FIRE San Nicolas Island IFO. These observations caused the interactions between cloud microphysics and turbulent mixing to be re-examined. The findings of Broadwell and Breidenthal (1982) who conducted laboratory and theoretical studies of mixing in shear flow, and those of Baker et al. (1984) who applied the earlier work to mixing in clouds, were used. Rather than looking at the 25 July case at SNI, earlier fog observations made at SUNY (6 Oct. 1982) which also indicated that shear-induced mixing was taking place, and which had a better collection of microphysical measurements including more precise supersaturation measurements and detailed vertical profiles of meteorological parameters were chosen instead.

  18. Spectral Dependence of MODIS Cloud Droplet Effective Radius Retrievals for Marine Boundary Layer Clouds

    NASA Technical Reports Server (NTRS)

    Zhang, Zhibo; Platnick, Steven E.; Ackerman, Andrew S.; Cho, Hyoun-Myoung

    2014-01-01

    Low-level warm marine boundary layer (MBL) clouds cover large regions of Earth's surface. They have a significant role in Earth's radiative energy balance and hydrological cycle. Despite the fundamental role of low-level warm water clouds in climate, our understanding of these clouds is still limited. In particular, connections between their properties (e.g. cloud fraction, cloud water path, and cloud droplet size) and environmental factors such as aerosol loading and meteorological conditions continue to be uncertain or unknown. Modeling these clouds in climate models remains a challenging problem. As a result, the influence of aerosols on these clouds in the past and future, and the potential impacts of these clouds on global warming remain open questions leading to substantial uncertainty in climate projections. To improve our understanding of these clouds, we need continuous observations of cloud properties on both a global scale and over a long enough timescale for climate studies. At present, satellite-based remote sensing is the only means of providing such observations.

  19. Near-global survey of effective droplet radii in liquid water clouds using ISCCP data

    NASA Technical Reports Server (NTRS)

    Han, Qingyan; Rossow, William B.; Lacis, Andrew B.

    1994-01-01

    A global survey of cloud particle size variations can provide crucial constraints on how cloud processes determine cloud liquid water contents and their variation with temperature, and further, may indicate the magnitude of aerosol effects on clouds. A method, based on a complete radiative transfer model for Advanced Very High Resolution Radiometer (AVHRR)-measured radiances, is described for retrieving cloud particle radii in liquid water clouds from satellite data currently available from the International Satellite Cloud Climatology Project. Results of sensitivity tests and validation studies provide error estimates. AVHRR data from NOAA-9 and NOAA-10 have been analyzed for January, April, July and October in 1987 and 1988. The results of this first survey reveal systematic continental and maritime differences and hemispheric contrasts that are indicative of the effects of associated aerosol concentration differences: cloud droplet radii in continental water clouds are about 2-3 micrometers smaller than in marine clouds, and droplet radii are about 1 micrometer smaller in marine clouds of the Northern Hemisphere than in the Southern Hemisphere. The height dependencies of cloud droplet radii in continental and marine clouds are also consistent with differences in the vertical profiles of aerosol concentration. Significant seasonal and diurnal variations of effective droplet radii are also observed, particularly at lower latitudes. Variations of the relationship between cloud optical thickness and droplet radii may indicate variations in cloud microphysical regimes.

  20. Relative spectral absorption of solar radiation by water vapor and cloud droplets

    NASA Technical Reports Server (NTRS)

    Davies, R.; Ridgway, W. L.

    1983-01-01

    A moderate (20/cm) spectral resolution model which accounts for both the highly variable spectral transmission of solar radiation through water vapor within and above cloud, as well as the more slowly varying features of absorption and anisotropic multiple scattering by the cloud droplets, is presented. Results from this model as applied to the case of a typical 1 km thick stratus cloud in a standard atmosphere, with cloud top altitude of 2 km and overhead sun, are discussed, showing the relative importance of water vapor above the cloud, water vapor within the cloud, and cloud droplets on the spectral absorption of solar radiation.

  1. Measurements of the light-absorbing material inside cloud droplets and its effect on cloud albedo

    NASA Technical Reports Server (NTRS)

    Twohy, C. H.; Clarke, A. D.; Warren, Stephen G.; Radke, L. F.; Charleson, R. J.

    1990-01-01

    Most of the measurements of light-absorbing aerosol particles made previously have been in non-cloudy air and therefore provide no insight into aerosol effects on cloud properties. Here, researchers describe an experiment designed to measure light absorption exclusively due to substances inside cloud droplets, compare the results to related light absorption measurements, and evaluate possible effects on the albedo of clouds. The results of this study validate those of Twomey and Cocks and show that the measured levels of light-absorbing material are negligible for the radiative properties of realistic clouds. For the measured clouds, which appear to have been moderately polluted, the amount of elemental carbon (EC) present was insufficient to affect albedo. Much higher contaminant levels or much larger droplets than those measured would be necessary to significantly alter the radiative properties. The effect of the concentrations of EC actually measured on the albedo of snow, however, would be much more pronounced since, in contrast to clouds, snowpacks are usually optically semi-infinite and have large particle sizes.

  2. Adaptation of a Cascade Impactor to Flight Measurement of Droplet Size in Clouds

    NASA Technical Reports Server (NTRS)

    Levine, Joseph; Kleinknecht, Kenneth S.

    1951-01-01

    A cascade impactor, an instrument for obtaining: the size distribution of droplets borne in a low-velocity air stream, was adapted for flight cloud droplet-size studies. The air containing the droplets was slowed down from flight speed by a diffuser to the inlet-air velocity of the impactor. The droplets that enter the impactor impinge on four slides coated with magnesium oxide. Each slide catches a different size range. The relation between the size of droplet impressions and the droplet size was evaluated so that the droplet-size distributions may be found from these slides. The magnesium oxide coating provides a permanent record. of the droplet impression that is not affected by droplet evaporation after the. droplets have impinged.

  3. Sensitivity Study of the Vertical Velocity Variation on Cloud Droplet Nucleation Process Using an Adiabatic Parcel Model

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Lohmann, U.; Leaitch, R. W.

    2003-12-01

    Eleven profiles through liquid water cloud obtained during RACE (Radiation, Aerosol and Cloud Experiment) and NARE (North Atlantic Regional Experiment) are used to study the sensitivity of cloud droplet nucleation to the vertical gust velocity. Selected cloud microphysical data, size-distributed aerosol properties and particle chemistry are applied in an adiabatic parcel model to predict the activated cloud droplet number concentrations (N) using the frequency distribution of the measured in-cloud vertical velocities and again using a vertical velocity characteristic of observations. The simulated adiabatic value of N obtained using the standard deviation of the vertical velocity distribution agrees with the observed maximum N (the cloud droplet number in an adiabetic core) to within 5%. If the parameterization derived by Lin et al. [1997] is applied to obtain the cloud-average N from the maximum N, the average N agrees with the observed cloud-average N to within 20%. The simulated N obtained using the full probability density function of the vertical gust velocities is one approach that has been used to represent the cloud average N. This is based on the assumption that the average N is controlled by all variations in the updraft and not by the mixing process [Leaitch et al. 1996]. The value of N obtained in this manner is found to be higher than the observed average N by a factor of two. We believe that this result is because low vertical velocities do not contribute effectively to the cloud droplet nucleation. If we neglect the lowest 45% of all vertical velocities, then the difference between the simulated average N and the observed mean N is reduced to within 13%. These results suggest that it is appropriate to use a characteristic vertical velocity to predict the cloud droplet number concentration in climate models as done by Lohmann et al. [1999], where the subgrid variation of vertical velocity is diagnosed from the turbulent kinetic energy. The frequency

  4. Climate Sensitivities due to Stratocumulus Cloud droplet number concentrations

    NASA Astrophysics Data System (ADS)

    Parkes, Ben; Stevens, Laura; Gadian, Alan; Lathman, John; Blyth, Alan

    2010-05-01

    Four experiments have been carried out using the Met Office Unified Model v6.1 (HadGEM1) to investigate the effects of albedo modification on the climate system as the amount of carbon dioxide in the atmosphere continues to rise. This work is designed to analyse and assess the "cloud whiteneing" method of geoengineering postulated in (Latham, 1990) and expanded upon by (Latham et al., 2008)(Salter et al., 2008) and (Rasch et al., 2009). Consideration will be given to the effect of the cloud modification on rainfall rates and global circulation patterns. Furthermore temperature changes in polar regions are investigated to assess the increase in polar sea ice coverage. The four experiments are a control, one with an increase in carbon dioxide by 1% per year and two potential geoengineering scenarios based on a climate with increasing carbon dioxide. The first geoengineering simulation consists of forcing clouds with a cloud droplet number concentration (CDNC) of N = 375 m-3 over three regions of low lying stratocumulus clouds. These regions are the West coasts of California, Peru and Namibia(Latham et al., 2008). The second geoenginnering simulation is based upon forcing all marine environments with a CDNC of N = 375 m-3. Starting conditions for the experiments were provided by the UK Met Office from the A1B simulation used in the 2007 Intergovernmental Panel on Climate Change report(IPCC, 2007). The geoengineering method proposed relies on the aerosol indirect effect(Twomey, 1977) and the second aerosol indirect(Albrecht, 1989) effects on clouds to increase their brightness and prolong their lifetime. The effects of a change in CDNC on a clean marine stratocumulus cloud can be investigated using data collected from the VOCALs field campaign which took place in the South Eastern Pacific in 2008. radiometry and in cloud data has been collected by several aircraft including the FAAM BAe-146 and the NCAR/NSF C-130(Allen & Abel, 2009). The albedo of the observed region

  5. Laboratory studies of collection efficiency of sub-micrometer aerosol particles by cloud droplets on a single-droplet basis

    NASA Astrophysics Data System (ADS)

    Ardon-Dryer, K.; Huang, Y.-W.; Cziczo, D. J.

    2015-08-01

    An experimental setup has been constructed to measure the collection efficiency (CE) of sub-micrometer aerosol particles by cloud droplets. Droplets of a dilute aqueous ammonium sulfate solution with an average radius of 21.6 μm fall freely into a chamber and collide with sub-micrometer polystyrene latex (PSL) sphere particles of known sizes and concentrations. Two relative humidity (RH) conditions, 15 ± 3 % and 88 ± 3 %, hereafter termed "low" and "high", respectively, were varied with different particles sizes and concentrations. After passing through the chamber, the droplets and aerosol particles were sent to the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument to determine chemical compositions on a single-droplet basis. "Coagulated droplets" (droplets that collected aerosols) had mass spectra that contained signatures from both an aerosol particle and a droplet residual. CE values range from 2.0 × 10-1 to 1.6 for the low-RH case and from 1.5 × 10-2 to 9.0 × 10-2 for the high-RH case. CE values were, within experimental uncertainty, independent of the aerosol concentrations. CE values in this study were found to be in agreement with previous experimental and theoretical studies. To our knowledge, this is the first collection experiment performed on a single-droplet basis with atmospherically relevant conditions such as droplet sizes, droplet charges and flow.

  6. Global Survey of the Relationship Between Cloud Droplet Size and Albedo Using ISCCP

    NASA Technical Reports Server (NTRS)

    Han, Qingyuan; Rossow, William B.; Chou, Joyce; Welch, Ronald M.

    1997-01-01

    Aerosols affect climate through direct and indirect effects. The direct effect of aerosols (e.g., sulfates) includes reflection of sunlight back toward space and for some aerosols (e.g., smoke particles), absorption in the atmosphere; both effects cool the Earth's surface. The indirect effect of aerosols refers to the modification of cloud microphysical properties, thereby affecting the radiation balance. Higher concentrations of Cloud Condensation Nuclei (CCN) generally produce higher concentrations of cloud droplets, which are also usually assumed to lead to decreased cloud droplet sizes. The result is an increase in cloud albedo, producing a net radiative cooling, opposite to the warming caused by greenhouse gases (Charlson et al. 1992). The change in clouds that is directly induced by an increase of aerosol concentration is an increase of cloud droplet number density, N; but is is usually assumed that cloud droplet size decreases as if the water mass density Liquid Water Content (LWC) were constant. There is actually no reason why this should be the case. Shifting the cloud droplet size distribution to more numerous smaller droplets can change the relative rates of condensational and coalescence growth, leading to different LWC (e.g., Rossow 1978). Moreover, the resulting change in cloud albedo is usually ascribed to more efficient scattering by smaller droplets, when in fact it is the increase in droplet number density (assuming constant LWC) that produces the most important change in cloud albedo: e.g., holding N constant and decreasing the droplet size would actually decrease the scattering cross-section and, thus, the albedo much more than it is increased by the increased scattering efficiency.

  7. Immersed Boundary Simulations of Active Fluid Droplets.

    PubMed

    Whitfield, Carl A; Hawkins, Rhoda J

    2016-01-01

    We present numerical simulations of active fluid droplets immersed in an external fluid in 2-dimensions using an Immersed Boundary method to simulate the fluid droplet interface as a Lagrangian mesh. We present results from two example systems, firstly an active isotropic fluid boundary consisting of particles that can bind and unbind from the interface and generate surface tension gradients through active contractility. Secondly, a droplet filled with an active polar fluid with homeotropic anchoring at the droplet interface. These two systems demonstrate spontaneous symmetry breaking and steady state dynamics resembling cell motility and division and show complex feedback mechanisms with minimal degrees of freedom. The simulations outlined here will be useful for quantifying the wide range of dynamics observable in these active systems and modelling the effects of confinement in a consistent and adaptable way. PMID:27606609

  8. Aerosol/cloud Base Droplet Size Distribution Characteristics and the Onset of Coalescence in Shallow and Deep Convective Clouds

    NASA Astrophysics Data System (ADS)

    Bruintjes, R. T.; Lawson, P.; Lance, S.; Axisa, D.; Woods, S.

    2014-12-01

    It is clear that aerosols contribute to the observed differences in cloud droplet size distributions between maritime and continental and between non-polluted and polluted convection. In addition, other factors such as cloud base temperature, boundary layer depth, thermodynamic profile (updraft speeds) that vary between land and ocean regions, could also be contributing to the observed differences or acting in concert with aerosol effects. In addition, the initial cloud droplet spectra at cloud base to a large extent determines the microphysical processes of precipitation formation (water and ice) at higher levels in the clouds and thus the vertical transport of aerosols and gases in deep convective clouds. During the 2013 NASA SEAC4RS field campaign we have collected a large amount of microphysical data in both shallow and deep convective clouds. This data will be compared to data from other field campaigns to detect specific characteristics of the cloud base droplet size distribution and relate it to onset and evolution of the coalescence process in clouds. The presentation will provide a survey of the cloud droplet size distributions at cloud base in both shallow and deep convective clouds and will relate them to environmental parameters to better understand aerosol-cloud interactions and the other parameters that play a role in the onset of coalescence in convective clouds. We will relate the airborne aerosol variations (size and concentration in different environments) to the cloud droplet size distribution. Model simulations using a detailed coalescence model will be used to obtain a better understanding of the onset of the coalescence process.

  9. The movement of water droplets in clouds around the nose of an atmospheric research aircraft

    NASA Technical Reports Server (NTRS)

    Feuillebois, P.; Scibilia, M. F.

    1983-01-01

    The dynamic interaction between droplets and the airflow around the hemispherical nose of an aircraft was evaluated. The effect of the aircraft nose on droplet sampling for cloud research is explained. The proportion of different droplet sizes and their concentration at each point around the aircraft nose were determined. In a cloud, interaction between droplets is negligible. Each particle acts, for the calculation of the forces applied to it, as if it is alone in the air. The airflow carrying the droplets, on the average, is not influenced by their presence. The trajectory of each droplet was studied separately after calculating dry airflow. Concentrations were found with a Lagrangian method, using two trajectories computed directly close to one another. Theory confirms that to within 3% experimentally measured concentrations are representative of those in a cloud.

  10. The Measurement and Parameterization of Effective Radius of Droplets in Warm Stratocumulus Clouds.

    NASA Astrophysics Data System (ADS)

    Martin, G. M.; Johnson, D. W.; Spice, A.

    1994-07-01

    Observations from the Meteorological Research Flight's Hercules C-130 aircraft of the microphysical characteristics of warm stratocumulus clouds have been analyzed to investigate the variation of the effective radius of cloud droplets in layer clouds. Results from experiments in the eastern Pacific, South Atlantic, subtropical regions of the North Atlantic, and the sea areas around the British Isles are presented. In situations where entrainment effects are small the (effective radius)3 is found to be a linear function of the (volume-averaged radius)3 in a given cloud and can thus be parameterized with respect to the liquid water content and the droplet number concentration in the cloud. However, the shape of the droplet size spectrum is very dependent on the cloud condensation nuclei (CCN) characteristics below cloud base, and the relationship between effective radius and volume-averaged radius varies between maritime air masses and continental air masses. This study also details comparisons that have been made in stratocumulus between the droplet number concentrations and (a) aerosol concentrations below cloud base in the size range 0.1 to 3.0 m and (b) CCN supersaturation spectra in the boundary layer. A parameterization relating droplet concentration and aerosol concentration is suggested. The effects of nonadiabatic processes on the parameterization of effective radius are discussed. Drizzle is found to have little effect near cloud top, but in precipitating stratocumulus clouds the parameterization breaks down near cloud base. Comparisons are made between this parameterization of effective radius and others used currently or in the past.

  11. On the Effect of Dust Particles on Global Cloud Condensation Nuclei and Cloud Droplet Number

    NASA Technical Reports Server (NTRS)

    Karydis, V. A.; Kumar, P.; Barahona, D.; Sokolik, I. N.; Nenes, A.

    2011-01-01

    Aerosol-cloud interaction studies to date consider aerosol with a substantial fraction of soluble material as the sole source of cloud condensation nuclei (CCN). Emerging evidence suggests that mineral dust can act as good CCN through water adsorption onto the surface of particles. This study provides a first assessment of the contribution of insoluble dust to global CCN and cloud droplet number concentration (CDNC). Simulations are carried out with the NASA Global Modeling Initiative chemical transport model with an online aerosol simulation, considering emissions from fossil fuel, biomass burning, marine, and dust sources. CDNC is calculated online and explicitly considers the competition of soluble and insoluble CCN for water vapor. The predicted annual average contribution of insoluble mineral dust to CCN and CDNC in cloud-forming areas is up to 40 and 23.8%, respectively. Sensitivity tests suggest that uncertainties in dust size distribution and water adsorption parameters modulate the contribution of mineral dust to CDNC by 23 and 56%, respectively. Coating of dust by hygroscopic salts during the atmospheric aging causes a twofold enhancement of the dust contribution to CCN; the aged dust, however, can substantially deplete in-cloud supersaturation during the initial stages of cloud formation and can eventually reduce CDNC. Considering the hydrophilicity from adsorption and hygroscopicity from solute is required to comprehensively capture the dust-warm cloud interactions. The framework presented here addresses this need and can be easily integrated in atmospheric models.

  12. On the effect of dust particles on global cloud condensation nuclei and cloud droplet number

    NASA Astrophysics Data System (ADS)

    Karydis, V. A.; Kumar, P.; Barahona, D.; Sokolik, I. N.; Nenes, A.

    2011-12-01

    Aerosol-cloud interaction studies to date consider aerosol with a substantial fraction of soluble material as the sole source of cloud condensation nuclei (CCN). Emerging evidence suggests that mineral dust can act as good CCN through water adsorption onto the surface of particles. This study provides a first assessment of the contribution of insoluble dust to global CCN and cloud droplet number concentration (CDNC). Simulations are carried out with the NASA Global Modeling Initiative chemical transport model with an online aerosol simulation, considering emissions from fossil fuel, biomass burning, marine, and dust sources. CDNC is calculated online and explicitly considers the competition of soluble and insoluble CCN for water vapor. The predicted annual average contribution of insoluble mineral dust to CCN and CDNC in cloud-forming areas is up to 40 and 23.8%, respectively. Sensitivity tests suggest that uncertainties in dust size distribution and water adsorption parameters modulate the contribution of mineral dust to CDNC by 23 and 56%, respectively. Coating of dust by hygroscopic salts during the atmospheric aging causes a twofold enhancement of the dust contribution to CCN; the aged dust, however, can substantially deplete in-cloud supersaturation during the initial stages of cloud formation and can eventually reduce CDNC. Considering the hydrophilicity from adsorption and hygroscopicity from solute is required to comprehensively capture the dust-warm cloud interactions. The framework presented here addresses this need and can be easily integrated in atmospheric models.

  13. Case study of the 9 April 2009 ‘brown’ cloud: Observations of usually high cloud droplet concentrations in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Delene, D. J.

    2009-12-01

    Cloud droplets nucleate on aerosol particles termed cloud condensation nuclei (CCN). It is well known that a larger number concentration of CCN results in a larger number concentration of droplets in developing cumulus clouds. However, the conditions where dust particles can serve as cloud condensation nuclei (CCN) and hence change cloud droplet concentration and precipitation formation processes is uncertain. Aircraft measurements of cloud droplet concentration between 13:20 and 13:30 UTC during the 9 April 2009 flight near Riyadh, Saudi Arabia, show total cloud droplet concentration (3-50 µm in diameter) of 800 to 1200 #/cm-3 at a altitude of 18000 ft. Typical cloud droplet concentration for this type of cloud in the Riyadh region is approximately 400 #/cm-3 and is typical of observation made between 13:00 and 13:20 UTC during the 9 April 2009 flight at 18,000 ft. Photographs of ice accumulation on the unprotected leading edge of the aircraft’s wing due to the freezing of super cooled droplets show a color changed from white during the time of low droplet number condensation to brown during the high droplet number concentration. It is hypothesized that high droplet number concentration observations were the result of ingestion of a large about of dust particles by the cloud. : Case Study of the 9 April 2009 ‘Brown’ Cloud: Observations of Usually High Cloud Droplet Concentrations in Saudi Arabia.

  14. Collisions of cloud droplets with a rain drop investigated in the Mainz vertical wind tunnel

    NASA Astrophysics Data System (ADS)

    Górska, Anna; Fugal, Jacob; Mitra, Subir; Malinowski, Szymon; Szakall, Miklos; von Blohn, Nadine; Jost, Alex; Borrmann, Stephan

    2015-04-01

    Collisions of cloud droplets with rain drops and the ensuing collection of cloud droplets are important phenomena for precipitation formation. Representation of these processes in cloud and climate models, though adequate in some cases, is based on very few actual measurements to validate these parameterisations. Therefore we apply in-line holography to observe single collisions and near-collisions of cloud droplets with a rain drop in the Mainz vertical wind tunnel. So far we have measurements in a laminar flow seeded with small droplets of diameters between 20 and 70 μm. Into the stream, a single collector drop of diameter of ~700 μm was injected and floated in a sample volume by adjusting the vertical velocity of the wind tunnel to match the terminal velocity of the drop (~3 m/s). With a collimated laser beam and a high speed camera, we recorded holograms of the drop and droplets in the sample volume, which after reconstruction allows us to determine 3D positions of the droplets and the collecting drop, their diameters and droplet size distributions. With the time-resolved particle positions, we connect droplets from one hologram with droplets in the next hologram, which occurs in the predicted area calculated on the basis of known mean flow velocity. Analysis of successive images allows us to obtain trajectories of cloud droplets and especially their tracks close to the collector drop. With the obtained time resolution we have about 4-5 point droplet tracks through which we document collisions. A collision appears when we see a droplet approaching the collector drop and the droplet does not continue past the drop. We present the experimental method, data processing procedure and collisions characteristic founded in a data series length of about 50 s, yielding around 70-100 collisions.

  15. Tiny Molten Droplets, Dusty Clouds, and Planet Formation

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2008-11-01

    Chondrules, millimeter-sized spherules that formed as rapidly-cooled molten droplets, are characteristic of chondrite meteorites. If they formed at low pressure in the solar nebula (the cloud of gas and dust surrounding the infant Sun and from which the planets formed), then they should have lost almost all their inventories of volatile elements, such as sodium, because volatile elements would have boiled off the chondrules when they were molten. Conel Alexander (Carnegie Institution of Washington) and colleagues at Carnegie, the U.S. Geological Survey (Reston), and the American Museum of Natural History (New York) show that there was little sodium loss. They measured the sodium concentrations in numerous crystals of olivine inside chondrules in the Semarkona meteorite. The results show that the variations in concentrations from the centers of crystals to their edges are consistent with crystallization in a molten droplet that was not losing sodium to the surrounding gas. These results are supported by independent measurements by Alexander Borisov (Russian Academy of Sciences, Moscow) and colleagues at the University of Hannover, Georg-August-University Goettingen, and Koln University, all in Germany. Sodium loss could have been suppressed if the gas surrounding each chondrule had a much higher pressure of sodium than that expected for the solar nebula. Such a high pressure of sodium is most easily explained if chondrules formed in a region with a high density of solids. Alexander and his co-workers argue that such dense regions could have enough mass in a small space to collapse by gravity, perhaps forming planetesimals, the first step in constructing the inner planets.

  16. The effect of anthropogenic sulfate aerosols on marine cloud droplet concentrations

    NASA Astrophysics Data System (ADS)

    Novakov, T.; Rivera-Carpio, C.; Penner, J. E.; Rogers, C. F.

    1994-04-01

    Nonseasalt sulfate (nss SO42-) mass concentrations, cloud condensation nuclei (CCN) number concentrations, and cloud droplet concentrations in warm cumulus and stratocumulus clouds were simultaneously measured in situ in marine air masses on El Yunque peak in Puerto Rico. Our results show that CNN number concentrations (measured at 0.5% supersaturation) and nss SO42- mass concentrations (in the range of ˜ 400 1700ng m-342- mass concentrations (in the range of ˜ 300 1400ng m-3). In stratocumulus clouds, a small increase in droplet concentration with nss SO42- mass concentrations in the range of ˜ 300 1100ng m-3 was observed. We attribute the low sensitivities of the droplet number concentrations to nss SO42- mass concentrations to the entrainment/mixing processes in these clouds. The magnitudes of the empirically derived sensitivities are considerably lower than those assumed in recent assessments of the effect of anthropogenic sulfate aerosols on cloud albedo.

  17. Statistical Analysis of Turbulence-Induced Fluctuations In In-Cloud Saturation Ratio and Rates of Cloud Droplet Growth

    NASA Astrophysics Data System (ADS)

    McGraw, R. L.; Luke, E. P.; Kollias, P.

    2014-12-01

    We develop methods that determine the influence of turbulence on the distribution of in-cloud water vapor saturation ratio and growth rates of cloud droplets. For this purpose, a moment-based cloud parcel model is used to translate Doppler cloud radar vertical velocity spectra and radiosonde measurements into a statistical distribution of in-cloud saturation ratio, S. Because cloud droplet growth/evaporation rates are proportional to S-1, the statistical analysis of fluctuations in S yields, among other quantities, direct information on the time correlation function of droplet growth rate. From this information a Green-Kubo relation is used to determine the diffusion coefficient for fluctuations along the coordinate of cloud droplet size, D, a key turbulence parameter used in the kinetic potential theory of drizzle formation. Measurements from the Azores, SGP, and TCAP sites are analyzed and compared. A significant finding is that the probability distribution function for fluctuations in S tends to be both highly symmetric about the equilibrium saturation ratio (S=1) and non-Gaussian. Indeed the distribution has much broader tails than the Gaussian and, for the cases we have studied, turns out to be in excellent agreement with the Voight lineshape.

  18. Remote Sensing the Vertical Profile of Cloud Droplet Effective Radius, Thermodynamic Phase, and Temperature

    NASA Technical Reports Server (NTRS)

    Martins, J. V.; Marshak, A.; Remer, L. A.; Rosenfeld, D.; Kaufman, Y. J.; Fernandez-Borda, R.; Koren, I.; Correia, A. L.; Zubko, V.; Artaxo, P.

    2011-01-01

    Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil.

  19. An Instrument Employing a Coronal Discharge for the Determination of Droplet-Size Distribution in Clouds

    NASA Technical Reports Server (NTRS)

    Brun, Rinaldo J.; Levine, Joseph; Kleinknecht, Kenneth S.

    1951-01-01

    A flight instrument that uses electric means for measuring the droplet-size distribution in above-freezing clouds has been devised and given preliminary evaluation in flight. An electric charge is placed on the droplets and they are separated aerodynamically according to their mass. Because the charge placed on the droplets is a. function of the droplet size, the size spectrum can 'be determined by measurement of the charge deposited on cylinders of several different sizes placed to intercept the charged droplets. An expression for the rate of charge acquisition by a water droplet in a field of coronal discharge is derived. The results obtained in flight with an instrument based on the method described indicate that continuous records of droplet-size spectrum variations in clouds can be obtained. The experimental instrument was used to evaluate the method and was not refined to the extent necessary for obtaining conclusive meteorological data. The desirable features of an instrument based on the method described are (i) The instrument can be used in clouds with temperatures above freezing; (2) the size and the shape of the cylinders do not change during the exposure time; (3) the readings are instantaneous and continuous; (4) the available sensitivity permits the study of variations in cloud structures of less than 200 feet in extent.

  20. The effects of van der Waals attractions on cloud droplet growth by coalescence

    NASA Technical Reports Server (NTRS)

    Rogers, Jan R.; Davis, Robert H.

    1990-01-01

    The inclusion of van der Waals attractions in the interaction between cloud droplets has been recently shown to significantly increase the collision efficiencies of the smaller droplets. In the current work, these larger values for the collision efficiencies are used in a population dynamics model of the droplet size distribution evolution with time, in hopes of at least partially resolving the long-standing paradox in cloud microphysics that predicted rates of the onset of precipitation are generally much lower than those which are observed. Evolutions of several initial cloud droplet spectra have been tracked in time. Size evolutions are compared as predicted from the use of collision efficiencies computed using two different models to allow for droplet-droplet contact: one which considers slip flow effects only, and one which considers the combined effects of van der Waals forces and slip flow. The rate at which the droplet mass density function shifts to larger droplet sizes is increased by typically 20-25 percent, when collision efficiencies which include van der Waals forces are used.

  1. A Method for Determining Cloud-Droplet Impingement on Swept Wings

    NASA Technical Reports Server (NTRS)

    Dorsch, Robert G.; Brun, Rinaldo J.

    1953-01-01

    The general effect of wing sweep on cloud-droplet trajectories about swept wings of high aspect ratio moving at subsonic speeds is discussed. A method of computing droplet trajectories about yawed cylinders and swept wings is presented, and illustrative droplet trajectories are computed. A method of extending two-dimensional calculations of droplet impingement on nonswept wings to swept wings is presented. It is shown that the extent of impingement of cloud droplets on an airfoil surface, the total rate of collection of water, and the local rate of impingement per unit area of airfoil surface can be found for a swept wing from two-dimensional data for a nonswept wing. The impingement on a swept wing is obtained from impingement data for a nonswept airfoil section which is the same as the section in the normal plane of the swept wing by calculating all dimensionless parameters with respect to flow conditions in the normal plane of the swept wing.

  2. Microphysical response of cloud droplets in a fluctuating updraft. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Harding, D. D.

    1977-01-01

    The effect of a fluctuating updraft upon a distribution of cloud droplets is examined. Computations are performed for fourteen vertical velocity patterns; each allows a closed parcel of cloud air to undergo downward as well as upward motion. Droplet solution and curvature effects are included. The classical equations for the growth rate of an individual droplet by vapor condensation relies on simplifying assumptions. Those assumptions are isolated and examined. A unique approach is presented in which all energy sources and sinks of a droplet may be considered and is termed the explicit model. It is speculated that the explicit model may enhance the growth of large droplets at greater heights. Such a model is beneficial to the studies of pollution scavenging and acid rain.

  3. Chemical consequences of the initial diffusional growth of cloud droplets - A clean marine case

    NASA Technical Reports Server (NTRS)

    Twohy, C. H.; Charlson, R. J.; Austin, P. H.

    1989-01-01

    A simple microphysical cloud parcel model and a simple representation of the background marine aerosol are used to predict the concentrations and compositions of droplets of various sizes near cloud base. The aerosol consists of an externally-mixed ammonium bisulfate accumulation mode and a sea-salt coarse particle mode. The difference in diffusional growth rates between the small and large droplets as well as the differences in composition between the two aerosol modes result in substantial differences in solute concentration and composition with size of droplets in the parcel. The chemistry of individual droplets is not, in general, representative of the bulk (volume-weighted mean) cloud water sample. These differences, calculated to occur early in the parcel's lifetime, should have important consequences for chemical reactions such as aqueous phase sulfate production.

  4. Laboratory studies of collection efficiency of sub-micrometer aerosol particles by cloud droplets on a single droplet basis

    NASA Astrophysics Data System (ADS)

    Ardon-Dryer, K.; Huang, Y.-W.; Cziczo, D. J.

    2015-03-01

    An experimental setup has been constructed to measure the Collection Efficiency (CE) of sub-micrometer aerosol particles by cloud droplets. Water droplets of a dilute aqueous ammonium sulfate solution with a radius of ~20 μm fall freely into a chamber and collide with sub-micrometer Polystyrene Latex Sphere (PSL) particles of variable size and concentrations. Two RH conditions, ~15 and ~88%, hereafter termed "Low" and "High", respectively, were varied with different particles size and concentrations. After passing through the chamber, the droplets and aerosol particles were sent to the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument to determine chemical compositions on a single particle basis. Coagulated droplets had mass spectra that contain signatures from both an aerosol particle and a droplet residual. CE values range from 5.7 × 10-3 to 4.6 × 10-2 for the Low RH and from 6.4 × 10-3 to 2.2 × 10-2 for the High RH cases. CE values were, within experimental uncertainty, independent of the aerosol concentrations. CE values in this work were found to be in agreement with previous experimental and theoretical studies. To our knowledge, this is the first coagulation experiment performed on a single droplet basis.

  5. A better understanding of POLDER's cloud droplet size retrieval: impact of cloud horizontal inhomogeneity and directional sampling

    NASA Astrophysics Data System (ADS)

    Shang, H.; Chen, L.; Bréon, F.-M.; Letu, H.; Li, S.; Wang, Z.; Su, L.

    2015-07-01

    The principles of the Polarization and Directionality of the Earth's Reflectance (POLDER) cloud droplet size retrieval requires that clouds are horizontally homogeneous. Nevertheless, the retrieval is applied by combining all measurements from an area of 150 km × 150 km to compensate for POLDER's insufficient directional sampling. Using the POLDER-like data simulated with the RT3 model, we investigate the impact of cloud horizontal inhomogeneity and directional sampling on the retrieval, and then analyze which spatial resolution is potentially accessible from the measurements. Case studies show that the sub-scale variability in droplet effective radius (CDR) can mislead both the CDR and effective variance (EV) retrievals. Nevertheless, the sub-scale variations in EV and cloud optical thickness (COT) only influence the EV retrievals and not the CDR estimate. In the directional sampling cases studied, the retrieval is accurate using limited observations and is largely independent of random noise. Several improvements have been made to the original POLDER droplet size retrieval. For example, the measurements in the primary rainbow region (137-145°) are used to ensure accurate large droplet (> 15 μm) retrievals and reduce the uncertainties caused by cloud heterogeneity. We apply the improved method using the POLDER global L1B data for June 2008, the new CDR results are compared with the operational CDRs. The comparison show that the operational CDRs tend to be underestimated for large droplets. The reason is that the cloudbow oscillations in the scattering angle region of 145-165° are weak for cloud fields with CDR > 15 μm. Lastly, a sub-scale retrieval case is analyzed, illustrating that a higher resolution, e.g., 42 km × 42 km, can be used when inverting cloud droplet size parameters from POLDER measurements.

  6. Impact of cloud horizontal inhomogeneity and directional sampling on the retrieval of cloud droplet size by the POLDER instrument

    NASA Astrophysics Data System (ADS)

    Shang, H.; Chen, L.; Bréon, F. M.; Letu, H.; Li, S.; Wang, Z.; Su, L.

    2015-11-01

    The principles of cloud droplet size retrieval via Polarization and Directionality of the Earth's Reflectance (POLDER) requires that clouds be horizontally homogeneous. The retrieval is performed by combining all measurements from an area of 150 km × 150 km to compensate for POLDER's insufficient directional sampling. Using POLDER-like data simulated with the RT3 model, we investigate the impact of cloud horizontal inhomogeneity and directional sampling on the retrieval and analyze which spatial resolution is potentially accessible from the measurements. Case studies show that the sub-grid-scale variability in droplet effective radius (CDR) can significantly reduce valid retrievals and introduce small biases to the CDR (~ 1.5 μm) and effective variance (EV) estimates. Nevertheless, the sub-grid-scale variations in EV and cloud optical thickness (COT) only influence the EV retrievals and not the CDR estimate. In the directional sampling cases studied, the retrieval using limited observations is accurate and is largely free of random noise. Several improvements have been made to the original POLDER droplet size retrieval. For example, measurements in the primary rainbow region (137-145°) are used to ensure retrievals of large droplet (> 15 μm) and to reduce the uncertainties caused by cloud heterogeneity. We apply the improved method using the POLDER global L1B data from June 2008, and the new CDR results are compared with the operational CDRs. The comparison shows that the operational CDRs tend to be underestimated for large droplets because the cloudbow oscillations in the scattering angle region of 145-165° are weak for cloud fields with CDR > 15 μm. Finally, a sub-grid-scale retrieval case demonstrates that a higher resolution, e.g., 42 km × 42 km, can be used when inverting cloud droplet size distribution parameters from POLDER measurements.

  7. POTENTIAL CONTRIBUTION OF SULFATE PRODUCTION IN CUMULUS CLOUD DROPLETS TO GROUND LEVEL PARTICLE SULFUR CONCENTRATIONS

    EPA Science Inventory

    Relationships have been examined between the presence or absence of cumulus clouds and 3rd quarter fine particle sulfur concentrations in St. Louis. An association between the presence of cumulus clouds with SO2 conversions in droplets and incrementally higher fine particle sulfu...

  8. Cloud Liquid Water, Mean Droplet Radius and Number Density Measurements Using a Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Melfi, S. Harvey

    1999-01-01

    A new technique for measuring cloud liquid water, mean droplet radius and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid micro-spheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested.

  9. Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar

    SciTech Connect

    Whiteman, David N.; Melfi, S. Harvey

    1999-12-27

    A new technique for measuring cloud liquid water, mean droplet radius, and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid microspheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested. (c) 1999 American Geophysical Union.

  10. Freezing Drizzle Formation in Stably Stratified Layer Clouds: The Role of Radiative Cooling of Cloud Droplets, Cloud Condensation Nuclei, and Ice Initiation.

    NASA Astrophysics Data System (ADS)

    Rasmussen, Roy M.; Geresdi, István; Thompson, Greg; Manning, Kevin; Karplus, Eli

    2002-02-01

    This study evaluates the role of 1) low cloud condensation nuclei (CCN) conditions and 2) preferred radiative cooling of large cloud drops as compared to small cloud drops, on cloud droplet spectral broadening and subsequent freezing drizzle formation in stably stratified layer clouds. In addition, the sensitivity of freezing drizzle formation to ice initiation is evaluated. The evaluation is performed by simulating cloud formation over a two-dimensional idealized mountain using a detailed microphysical scheme implemented into the National Center for Atmospheric Research-Pennsylvania State University Mesoscale Model version 5. The height and width of the two-dimensional mountain were designed to produce an updraft pattern with extent and magnitude similar to documented freezing drizzle cases. The results of the model simulations were compared to observations and good agreement was found.The key results of this study are 1) low CCN concentrations lead to rapid formation of freezing drizzle. This occurs due to the broad cloud droplet size distribution formed throughout the cloud in this situation, allowing for rapid broadening of the spectra to the point at which the collision-coalescence process is initiated. 2) Continental clouds can produce freezing drizzle given sufficient depth and time. 3) Radiative cooling of the cloud droplets near cloud top can be effective in broadening an initially continental droplet spectrum toward that of a maritime cloud droplet size distribution. 4) Any mechanism that only broadens the cloud droplet spectra near cloud top, such as radiative cooling, may not act over a sufficiently broad volume of the cloud to produce significant amounts of freezing drizzle. 5) Low ice-crystal concentrations (<0.08 L1) in the region of freezing drizzle formation is a necessary condition for drizzle formation (from both model and observations). 6) Ice nuclei depletion is a necessary requirement for the formation of freezing drizzle. 7) The maximum cloud

  11. Particle size distributions in Arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation

    NASA Technical Reports Server (NTRS)

    Dye, James E.; Baumgardner, D.; Gandrud, B. W.; Kawa, S. R.; Kelly, K. K.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.; Gary, B. L.

    1992-01-01

    The paper uses particle size and volume measurements obtained with the forward scattering spectrometer probe model 300 during January and February 1989 in the Airborne Arctic Stratospheric Experiment to investigate processes important in the formation and growth of polar stratospheric cloud (PSC) particles. It is suggested on the basis of comparisons of the observations with expected sulfuric acid droplet deliquescence that in the Arctic a major fraction of the sulfuric acid droplets remain liquid until temperatures at least as low as 193 K. It is proposed that homogeneous freezing of the sulfuric acid droplets might occur near 190 K and might play a role in the formation of PSCs.

  12. Droplet activation, separation, and compositional analysis: laboratory studies and atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Kohn, M.; Pekour, M. S.; Nelson, D. A.; Shilling, J. E.; Cziczo, D. J.

    2011-10-01

    Droplets produced in a cloud condensation nuclei chamber (CCNC) as a function of supersaturation have been separated from unactivated aerosol particles using counterflow virtual impaction. Residual material after droplets were evaporated was chemically analyzed with an Aerodyne Aerosol Mass Spectrometer (AMS) and the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Experiments were initially conducted to verify activation conditions for monodisperse ammonium sulfate particles and to determine the resulting droplet size distribution as a function of supersaturation. Based on the observed droplet size, the counterflow virtual impactor cut-size was set to differentiate droplets from unactivated interstitial particles. Validation experiments were then performed to verify that only droplets with sufficient size passed through the counterflow virtual impactor for subsequent analysis. A two-component external mixture of monodisperse particles was also exposed to a supersaturation which would activate one of the types (hygroscopic salts) but not the other (polystyrene latex spheres or adipic acid). The mass spectrum observed after separation indicated only the former, validating separation of droplets from unactivated particles. Results from ambient measurements using this technique and AMS analysis were inconclusive, showing little chemical differentiation between ambient aerosol and activated droplet residuals, largely due to low signal levels. When employing as single particle mass spectrometer for compositional analysis, however, we observed enhancement of sulfate in droplet residuals.

  13. Photolytic processing of secondary organic aerosols dissolved in cloud droplets.

    PubMed

    Bateman, Adam P; Nizkorodov, Sergey A; Laskin, Julia; Laskin, Alexander

    2011-07-14

    that biogenic SOA dissolved in cloud and fog droplets will undergo significant photolytic processing on a time scale of hours to days. This type of photolytic processing may account for the discrepancy between the higher values of O/C measured in the field experiments relative to the laboratory measurements on SOA in smog chambers. In addition, the direct photolysis of oligomeric compounds may be responsible for the scarcity of their observation in the field. PMID:21617794

  14. The clouds of Venus. II - An investigation of the influence of coagulation on the observed droplet size distribution

    NASA Technical Reports Server (NTRS)

    Rossow, W. B.

    1977-01-01

    An approximate numerical technique is used to investigate the influence of coagulation, sedimentation and turbulent motions on the observed droplet size distribution in the upper layers of the Venus clouds. If the cloud mass mixing ratio is less than 0.000001 at 250 K or the eddy diffusivity throughout the cloud is greater than 1,000,000 sq cm per sec, then coagulation is unimportant. In this case, the observed droplet size distribution is the initial size distribution produced by the condensation of the droplets. It is found that all cloud models with droplet formation near the cloud top (e.g., a photochemical model) must produce the observed droplet size distribution by condensation without subsequent modification by coagulation. However, neither meteoritic or surface dust can supply sufficient nucleating particles to account for the observed droplet number density. If the cloud droplets are formed near the cloud bottom, the observed droplet size distribution can be produced solely by the interaction of coagulation and dynamics; all information about the initial size distribution is lost. If droplet formation occurs near the cloud bottom, the lower atmosphere of Venus is oxidizing rather than reducing.

  15. GCM estimate of the indirect aerosol forcing using satellite-retrieved cloud droplet effective radii

    SciTech Connect

    Boucher, O.

    1995-05-01

    In a recent paper, satellite data radiances were analyzed to retrieve cloud droplet effective radii and significant interhemispheric differences for both maritime and continental clouds were reported. The mean cloud droplet radius in the Northern Hemisphere is smaller than in the Southern Hemisphere by about 0.7 {mu}m. This hemispheric contrast suggests the presence of an aerosol effect on cloud droplet size and is consistent with higher cloud condensation nuclei number concentration in the Northern Hemisphere due to anthropogenic production of aerosol precursors. In the present study, we constrain a climate model with the satellite retrievals and discuss the climate forcing that can be inferred from the observed distribution of cloud droplet radius. Based on two sets of experiments, this sensitivity study suggests that the indirect radiative forcing by anthropogenic aerosols could be about -0.6 or -1 W m{sup -2} averaged in the 0{degrees}-50{degrees}N latitude band. The uncertainty of these estimates is difficult to assess but is at least 50%. 30 refs., 3 figs., 1 tab.

  16. Comparing droplet activation parameterisations against adiabatic parcel models using a novel inverse modelling framework

    NASA Astrophysics Data System (ADS)

    Partridge, Daniel; Morales, Ricardo; Stier, Philip

    2015-04-01

    Many previous studies have compared droplet activation parameterisations against adiabatic parcel models (e.g. Ghan et al., 2001). However, these have often involved comparisons for a limited number of parameter combinations based upon certain aerosol regimes. Recent studies (Morales et al., 2014) have used wider ranges when evaluating their parameterisations, however, no study has explored the full possible multi-dimensional parameter space that would be experienced by droplet activations within a global climate model (GCM). It is important to be able to efficiently highlight regions of the entire multi-dimensional parameter space in which we can expect the largest discrepancy between parameterisation and cloud parcel models in order to ascertain which regions simulated by a GCM can be expected to be a less accurate representation of the process of cloud droplet activation. This study provides a new, efficient, inverse modelling framework for comparing droplet activation parameterisations to more complex cloud parcel models. To achieve this we couple a Markov Chain Monte Carlo algorithm (Partridge et al., 2012) to two independent adiabatic cloud parcel models and four droplet activation parameterisations. This framework is computationally faster than employing a brute force Monte Carlo simulation, and allows us to transparently highlight which parameterisation provides the closest representation across all aerosol physiochemical and meteorological environments. The parameterisations are demonstrated to perform well for a large proportion of possible parameter combinations, however, for certain key parameters; most notably the vertical velocity and accumulation mode aerosol concentration, large discrepancies are highlighted. These discrepancies correspond for parameter combinations that result in very high/low simulated values of maximum supersaturation. By identifying parameter interactions or regimes within the multi-dimensional parameter space we hope to guide

  17. Flight Camera for Photographing Cloud Droplets in Natural Suspension in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Mccullough, Stuart; Perkins, Porter J

    1951-01-01

    A camera designed for use in flight has been developed by the NACA Lewis laboratory t o photograph cloud droplets in their natural suspension in the atmosphere. A magnification of 32 times is employed to distinguish for measurement purposes all sizes of droplets greater than 5 microns in diameter. Photographs can be taken at flight speeds up to 150 miles per hour at 5-second intervals, A field area of 0.025 square inch is photographed on 7-inch-width roll film accommodating 40 exposures on an 18-foot length. Flight tests conducted in cumulus clouds have shown that approximate droplet-size distribution studies can be obtained and that a studies of the microstructure and physics of clouds can be made with the camera.

  18. On the sensitivity of droplet size relative dispersion to warm cumulus cloud evolution

    NASA Astrophysics Data System (ADS)

    Tas, E.; Koren, I.; Altaratz, O.

    2012-07-01

    Relative dispersion (ɛ), defined as the ratio between cloud droplet size distribution width (σ) and cloud droplet average radius (), is a key factor used to parameterize various cloud processes in global circulation models (GCMs) and bulk microphysical scheme models (BSMs). Recent studies indicate that the impact of aerosol loading (N) and atmospheric thermodynamic conditions on ɛ are far from fully understood. Currently, a fixed value per hydrometeor type is used in most BSMs and GCMs, which imposes significant limitations on our ability to model and predict cloud processes and their impact on the environment, on regional to global scales. In this study, we use a detailed bin microphysics single cloud model to investigate the combined impact of atmospheric thermodynamic conditions and N on ɛ, in warm cumulus clouds. As initial conditions, we used different lapse-rates combined with 8 scenarios of aerosol loading, representing very clean (N = 25 cm-3) to heavily polluted (N = 1600 cm-3) conditions. Moreover, the results are analyzed per cloud evolutionary stage according to the dominance of microphysical processes. The use of this method indicated a different pattern of ɛ at each stage. Specifically, during the mature stage fitting of ɛ to rv is relatively resilient to changes in the environmental conditions. Such findings suggest a new view of the effect of aerosols on clouds, via changes in the cloud evolution patterns and a new approach to parameterization of ɛ based on rv, which can significantly improve the prediction of cloud processes by GCMs and BSMs.

  19. Global Survey of the Relationship Between Cloud Droplet Size and Albedo Using ISCCP

    NASA Technical Reports Server (NTRS)

    Han, Qingyuan; Rossow, William B.; Chou, Joyce; Welch, Ronald M.

    1997-01-01

    The possible indirect aerosol effect on climate is examined. First, the spatial relationship is checked between cloud droplet radii and cloud albedo in different areas where aerosol concentration are known to differ significantly. Second, the temporal relationship between r(sub e) and cloud albedo is explored for each 2.5 deg x 2.5 deg grid box to reveal in which regions of the globe the variations of cloud albedo are correlated with changes in r(sub e) consistent with the indirect aerosol effect hypothesis.

  20. Experimental Assessment of Collection Efficiency of Submicron Aerosol Particles by Cloud Droplets

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Oo, K.; Brown, M. D.; Dhaniyala, S.; Cziczo, D. J.

    2012-12-01

    An experimental setup has been constructed to measure the collection efficiency of submicron aerosol particles by cloud droplets. The collection efficiency study is a prelude to studying contact nucleation, which is a potentially important ice nucleation mode that is not well-understood. This laboratory setup is a step closer to experimentally assessing the importance of contact nucleation. Water droplets with 20 micron diameter and submicron aerosol particles are brought into contact in an injector situated inside a chilled glass flow tube. The water droplets that collect aerosol particles are allowed to pass through a counterflow virtual impactor (CVI), which accepts large droplets and rejects aerosol particles that have not coagulated with the water droplets. The collected droplets are sent into the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument which performs in situ chemical analysis of a single particle. The number of aerosol particles collected by the single water droplet is quantified by calibrating the PALMS with known concentrations of aerosol particles. The water droplets contain a known amount of ammonium sulfate for identification purpose in the mass spectrometry. Preliminary results from the experiment will be discussed and compared with previous theoretical and experimental studies.

  1. Droplet activation, separation, and compositional analysis: Laboratory studies and atmospheric measurements

    SciTech Connect

    Hiranuma, Naruki; Kohn, Monika; Pekour, Mikhail S.; Nelson, Danny A.; Shilling, John E.; Cziczo, Daniel J.

    2011-01-24

    Droplets produced in a cloud condensation nucleus chamber as a function of supersaturation have been separated from unactivated aerosol particles using counterflow virtual impaction. Residual material after droplets were evaporated was chemically analyzed with an Aerodyne Aerosol Mass Spectrometer and the Particle Analysis by Laser Mass Spectrometry instrument. Experiments were initially conducted to verify activation conditions for monodisperse ammonium sulfate particles and to determine the resulting droplet size distribution as a function of supersaturation. Based on the observed droplet size, the counterflow virtual impactor cut-size was set to differentiate droplets from unactivated interstitial particles. Validation experiments were then performed to verify that only droplets with sufficient size passed through the counterflow virtual impactor for subsequent analysis. A two-component external mixture of monodisperse particles was also exposed to a supersaturation which would activate one of the types (ammonium sulfate) but not the other (polystyrene latex spheres). The mass spectrum observed after separation indicated only the former, validating separation of droplets from unactivated particles. Results from atmospheric measurements using this technique indicate that aerosol particles often activate predominantly as a function of particle size. Chemical composition is not irrelevant, however, and we observed enhancement of sulfate in droplet residuals using single particle analysis.

  2. Droplet activation, separation, and compositional analysis: laboratory studies and atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Kohn, M.; Pekour, M. S.; Nelson, D. A.; Shilling, J. E.; Cziczo, D. J.

    2011-01-01

    Droplets produced in a cloud condensation nucleus chamber as a function of supersaturation have been separated from unactivated aerosol particles using counterflow virtual impaction. Residual material after droplets were evaporated was chemically analyzed with an Aerodyne Aerosol Mass Spectrometer and the Particle Analysis by Laser Mass Spectrometry instrument. Experiments were initially conducted to verify activation conditions for monodisperse ammonium sulfate particles and to determine the resulting droplet size distribution as a function of supersaturation. Based on the observed droplet size, the counterflow virtual impactor cut-size was set to differentiate droplets from unactivated interstitial particles. Validation experiments were then performed to verify that only droplets with sufficient size passed through the counterflow virtual impactor for subsequent analysis. A two-component external mixture of monodisperse particles was also exposed to a supersaturation which would activate one of the types (ammonium sulfate) but not the other (polystyrene latex spheres). The mass spectrum observed after separation indicated only the former, validating separation of droplets from unactivated particles. Results from atmospheric measurements using this technique indicate that aerosol particles often activate predominantly as a function of particle size. Chemical composition is not irrelevant, however, and we observed enhancement of sulfate in droplet residuals using single particle analysis.

  3. Experimental Assessment of Collection Efficiency of Submicron Aerosol Particles by Cloud Droplets

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Ardon-Dryer, K.; Cziczo, D. J.

    2013-12-01

    The interplay between aerosol particles and water droplets in the atmosphere, especially in clouds, influences both aerosol and cloud properties. The major uncertainty in our understanding of climate arises in the indirect effect of aerosol and their ability to impact cloud formation and consequently alter the global radiative balance. The collision between a water droplet and aerosol particles that results in coalescence is termed 'collection' or 'coagulation'. Coagulation can lead to aerosol removal from the atmosphere or induce ice nucleation via contact freezing at temperatures below 0 C. Theoretical studies have shown that for aerosol particles smaller than 0.1 micrometers, Brownian motion is important, and for particles with diameters larger than 1 micrometer, inertial force dominates. There is a collection efficiency minimum for particles between 0.1-2 micrometers, called the 'Greenfield Gap'. Experimental efforts, however, have been limited to very large drizzle and rain drops until recently, and constrained parameters necessary to describe particle collection efficiency by cloud droplets have not been available. One reason is that laboratory setups that allow for coagulation to be observed on a single-particle basis have been lacking. Collection efficiency is also an important parameter for studying and assessing contact ice nucleation. Contact ice nucleation is currently the least understood ice nucleation mechanism and can be potentially important for mixed-phase cloud formation. The significance of experimentally assessing collection efficiency is therefore two-fold: to first understand the frequency of contacts and to then understand the fraction that lead to ice nucleation. We have constructed the MIT-Contact Freezing Chamber (MIT-CFC) to study collection efficiency of submicron aerosol particles by cloud droplets and contact freezing. A stream of 30-micron cloud droplets fall freely into the chamber and collide with aerosol particles. The outflow

  4. Scavenging in weakly electrified saturated and subsaturated clouds, treating aerosol particles and droplets as conducting spheres

    NASA Astrophysics Data System (ADS)

    Zhou, Limin; Tinsley, Brian A.; Plemmons, Abigail

    2009-09-01

    The effects of electric charge on collision rate coefficients for scavenging of aerosol particles by droplets are evaluated, as appropriate to weak electrification conditions in clouds. Variations in charges on droplets and particles in clouds are proportional to the flow of current in the global electric circuit through gradients in resistivity, which are determined by gradients in droplet concentration and humidity. We obtain the collision rate coefficients by “trajectory model” calculations for spherical aerosol particles and droplets using the exact electrical force equation, with its long-range repulsion and short-range attraction, interacting with drag, inertia, and phoretic forces. The use of the exact electric force gives rate coefficients up to a factor of two greater than previous image charge calculations for particles in the “Greenfield Gap”. Rate coefficients for scavenging by Brownian diffusion are obtained by the analytic expression for “flux model” calculations. Rate coefficients for combined effects of electric and phoretic scavenging are given, as appropriate for scavenging of droplets evaporating to residual particles while temporarily retaining the original droplet charge. For particles of radii below about 0.1 μm and with charges typical of residues of freshly evaporated droplets, the long-range repulsive electrical force reduces the collision rate coefficients below those for phoretic scavenging in subsaturated air and below the rates for Brownian scavenging. Time constants for scavenging of particles are given for selected values of droplet size, particle and droplet charges, and particle density, and the applications to observed effects in the atmosphere are discussed.

  5. Skewness of cloud droplet spectrum and an improved estimation for its relative dispersion

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Lu, Chunsong; Li, Weiliang

    2016-05-01

    The relative dispersion of the cloud droplet spectrum is a very important parameter in describing and modeling cloud microphysical processes. Based on the definition of skewness as well as theoretical and data analyses, a linear fitting relationship (α = 2.91ɛ-0.59) between skewness (α) and relative dispersion (ɛ) is established and a new method is developed to estimate the relative dispersion of the cloud droplet spectrum. The new method does not depend on any assumption of a particular distribution for the cloud droplet spectrum and has broader applicability than the previous methods. Comparisons of the three methods for the relative dispersion with the observed data supported the following conclusions. (1) The skewness of the cloud droplet spectrum is asymmetrically distributed. An assumption of zero skewness in quantifying the relative dispersion inevitably results in relatively large deviations from the observations. Errors of the estimated relative dispersion due to the omission of the skewness term are not solely related to the skewness, but rather to the product of the skewness and relative dispersion. (2) The use of the assumption that the cloud droplet spectrum takes a gamma distribution is similar to the assumption that the skewness is twice the relative dispersion. This leads to a better accuracy in estimating the relative dispersion than that with zero skewness assumption. (3) Comparisons with observations show that the new method is more accurate than the one under gamma distribution assumption and is the best among all the three methods. (4) It is believed that finding a better correlation between the skewness and the relative dispersion would further reduce the deviations for the estimated relative dispersion.

  6. Temporal evolution of stable water isotopologues in cloud droplets in a hill cap cloud in central Europe (HCCT-2010)

    USGS Publications Warehouse

    Spiegel, J.K.; Aemisegger, F.; Scholl, M.; Wienhold, F.G.; Collett, J.L., Jr.; Lee, T.; van Pinxteren, D.; Mertes, S.; Tilgner, A.; Herrmann, H.; Werner, Roland A.; Buchmann, N.; Eugster, W.

    2012-01-01

    In this work, we present the first study resolving the temporal evolution of δ2H and δ18O values in cloud droplets during 13 different cloud events. The cloud events were probed on a 937 m high mountain chain in Germany in the framework of the Hill Cap Cloud Thuringia 2010 campaign (HCCT-2010) in September and October 2010. The δ values of cloud droplets ranged from −77‰ to −15‰ (δ2H) and from −12.1‰ to −3.9‰ (δ18O) over the whole campaign. The cloud water line of the measured δ values was δ2H=7.8×δ18O+13×10−3, which is of similar slope, but with higher deuterium excess than other Central European Meteoric Water Lines. Decreasing δ values in the course of the campaign agree with seasonal trends observed in rain in central Europe. The deuterium excess was higher in clouds developing after recent precipitation revealing episodes of regional moisture recycling. The variations in δ values during one cloud event could either result from changes in meteorological conditions during condensation or from variations in the δ values of the water vapor feeding the cloud. To test which of both aspects dominated during the investigated cloud events, we modeled the variation in δ values in cloud water using a closed box model. We could show that the variation in δ values of two cloud events was mainly due to changes in local temperature conditions. For the other eleven cloud events, the variation was most likely caused by changes in the isotopic composition of the advected and entrained vapor. Frontal passages during two of the latter cloud events led to the strongest temporal changes in both δ2H (≈ 6‰ per hour) and δ18O (≈ 0.6‰ per hour). Moreover, a detailed trajectory analysis for the two longest cloud events revealed that variations in the entrained vapor were most likely related to rain out or changes in relative humidity and temperature at the moisture source region or both. This study illustrates the sensitivity of stable isotope

  7. Increase of Cloud Droplet Size with Aerosol Optical Depth: An Observational and Modeling Study

    SciTech Connect

    Yuan, Tianle; Li, Zhanqing; Zhang, Renyi; Fan, Jiwen

    2008-02-21

    Cloud droplet effective radius (DER) is generally negatively correlated with aerosol optical depth (AOD) as a proxy of cloud condensation nuclei. In this study, cases of positive correlation were found over certain portions of the world by analyzing the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products, together with a general finding that DER may increase or decrease with aerosol loading depending on environmental conditions. The slope of the correlation between DER and AOD is driven primarily by water vapor amount, which explains 70% of the variance in our study. Various potential artifacts that may cause the positive relation are investigated including water vapor swelling, partially cloudy, atmospheric dynamics, cloud three-dimensional (3-D) and surface influence effects. None seems to be the primary cause for the observed phenomenon, although a certain degree of influence exists for some of the factors. Analyses are conducted over seven regions around the world representing different types of aerosols and clouds. Only two regions show positive dependence of DER on AOD, near coasts of the Gulf of Mexico and South China Sea, which implies physical processes may at work. Using a 2-D spectral-bin microphysics Goddard Cumulus Ensemble model (GCE) which incorporated a reformulation of the Köhler theory, two possible physical mechanisms are hypothesized. They are related to the effects of slightly soluble organics (SSO) particles and giant CCNs. Model simulations show a positive correlation between DER and AOD, due to a decrease in activated aerosols with an increasing SSO content. Addition of a few giant CCNs also increases the DER. Further investigations are needed to fully understand and clarify the observed phenomenon.

  8. Two-stream Maxwellian kinetic theory of cloud droplet growth by condensation

    NASA Technical Reports Server (NTRS)

    Robinson, N. F.; Scott, W. T.

    1981-01-01

    A new growth rate formula (NGRF) is developed for the rate of growth of cloud droplets by condensation. The theory used is a modification of the Lees-Shankar theory in which the two-stream Maxwellian distribution function of Lees is used in Maxwell's method of moments to determine the transport of water vapor to and heat away from the droplet. Boundary conditions at the droplet are the usual conditions set in terms of accommodation coefficients, and the solution passes smoothly into diffusion flow in the far region. Comparisons are given between NGRF and the conventional formula showing close agreement (approximately 0.1%) for large radii with significant difference (approximately 5%) for small radii (not greater than 1 micron). Growth times for haze droplets in a Laktionov chamber are computed.

  9. Pre-Cloud Aerosol, Cloud Droplet Concentration, and Cloud Condensation Nuclei from the VAMOS Ocean-Cloud-Atmosphere Land Study (VOCALS) Field Campaign First Quarter 2010 ASR Program Metric Report

    SciTech Connect

    Kleinman, LI; Springston, SR; Daum, PH; Lee, Y-N; Sedlacek, AJ; Senum, G; Wang, J

    2011-08-31

    In this, the first of a series of Program Metric Reports, we (1) describe archived data from the DOE G-1 aircraft, (2) illustrate several relations between sub-cloud aerosol, CCN, and cloud droplets pertinent to determining the effects of pollutant sources on cloud properties, and (3) post to the data archive an Excel spreadsheet that contains cloud and corresponding sub-cloud data.

  10. Evolution of a detonation wave in a cloud of fuel droplets. II - Influence of fuel droplets

    NASA Astrophysics Data System (ADS)

    Burcat, A.; Eidelman, S.

    1980-10-01

    This is the second part of an investigation in which the whole problem of energy release in a combustible spray-gas mixture is solved. The influence of the droplet size of the spray on the parameters of the shock waves traveling in the media are delineated. The investigation was able to reveal the mechanism of shock wave reinforcement and to show the source of dynamic instabilities encountered with two-phase detonation processes.

  11. Measuring cloud droplet effective radius and liquid water content using changes in degree of linear polarization along cloud depth.

    PubMed

    Kim, Dukhyeon; Lee, Jeongsoon

    2014-06-15

    Two important parameters of liquid clouds are the cloud effective size (CES) and liquid water content (LWC). To measure these parameters, we have used two multiple scattering depolarization effects: (1) the slope of the degree of linear polarization (SLDLP) at the cloud base, and (2) the saturated degree of linear polarization (SADLP) at infinite altitude. We used Monte Carlo simulation to validate this method, with the assumption that the water cloud droplet size follows a Gamma distribution. From our calculation, we find that although the SADLP varies with both extinction coefficient (or LWC) and the CES, the SLDLP varies only with the extinction coefficient. After extracting the extinction coefficient using the SLDLP, we can easily obtain the CES using the SADLP. As a result, we found that the CES and the LWC can be extracted from the experimental parameters of SLDLP and SADLP, which can be easily measured using a single wavelength depolarization LIDAR. PMID:24978490

  12. Properties of the size-resolved and individual cloud droplets collected in western Japan during the Asian dust storm event

    NASA Astrophysics Data System (ADS)

    Ma, Chang-Jin; Tohno, Susumu; Kasahara, Mikio; Hayakawa, Shinjiro

    With the point of view of the removal mechanism of Asian dust storm particles, in order to study the physiochemical properties of clouds a field campaign was conducted in western Japan during the Asian dust storm event. The polymeric water absorbent film and collodion film replication techniques were employed in the measurements of size-fractionated precipitation cloud and individual cloud droplets, respectively. In addition, to investigate the source profiles of the elements retained in cloud samples, the original desert sand was collected. Particle-induced X-ray emission was applied for the elemental analysis of size-resolved cloud droplets and desert sand. Also for the quantification analysis of the ultra trace elements in residual particles in individual cloud droplets, the X-ray microprobe system equipped at Super Photon ring-8 GeV (SPring-8) BL-37XU was newly applied. Soil derived components like Si, Ca, and Fe show higher mass concentrations in small droplets (<6.4 μm) than in large droplets (>6.4 μm), while S and Cl dominate at droplet size larger than 20 μm. Three cloud samples have liquid water content ranging from 0.04 to 0.11 g m -3. The number size distribution of droplets collected at cloud base is monomodal with the maximum level around 15 μm. The size distribution of cloud droplets is widespread (up to 60 μm). The droplet residues mainly consisting of crustal components were successively reconstructed as elemental maps by the X-ray fluorescence (XRF) microprobe analytical technique. From these XRF elemental maps, it can be understood that crustal components are significantly distributed on and/or in the residual particles in individual cloud droplets. The plotting of enrichment factors calculated from the elemental composition of original desert sand in China not only indicates the good correlationship between elemental masses in residual particles of cloud base droplets and those of precipitation cloud, but also classify elements into soil

  13. Experimental Assessment of Collection Efficiency of Submicron Aerosol Particles by Cloud Droplets

    NASA Astrophysics Data System (ADS)

    Huang, Y. W.; Ardon-Dryer, K.; Cziczo, D. J.

    2014-12-01

    The interplay between aerosol particles and water droplets in the atmosphere, especially in clouds, influences both aerosol and cloud properties. The major uncertainty in our understanding of climate arises in the indirect effect of aerosol and their ability to impact cloud formation and consequently alter the global radiative balance. The collision between a water droplet and aerosol particles that results in coalescence is termed "collection" or "coagulation". Coagulation can lead to aerosol removal from the atmosphere or induce ice nucleation via contact freezing. There is a theoretical collection efficiency minimum of particles with diameter between 0.1-2 µm, called the "Greenfield Gap". Experimental effort, however, was limited to drizzle and rain drops until recently, and has not constrained parameters that describe particle collection efficiency by cloud droplets. Collection efficiency is also an important parameter for assessing contact freezing, the least known ice nucleation mechanism today. Experimentally assessing collection efficiency can prove the existence of the "Greenfield Gap" and lay the foundation for studying contact freezing. We recently constructed the MIT-Contact Freezing Chamber (MIT-CFC) to study coagulation experimentally. A stream of 40 µm cloud droplets fall freely into the chamber and collide with aerosol particles with known size and concentration. The outflow goes through a series of dryers before entering the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument for chemical composition analysis. PALMS is a true single-particle instrument and gives information on the size and the chemical composition of each particle. Coagulated particles from the MIT-CFC have mass spectral signatures of both the aerosol particles and the droplet residuals, while the droplet residual contains no signature of the aerosol particles. To our knowledge, this is the first time coagulation has been seen on a single-particle basis. We will

  14. Effects of Image Charges on the Scavenging of Aerosol Particles by Cloud Droplets and on Droplet Charging and Possible Ice Nucleation Processes.

    NASA Astrophysics Data System (ADS)

    Tinsley, B. A.; Rohrbaugh, R. P.; Hei, M.; Beard, K. V.

    2000-07-01

    Previous calculations of the rate at which falling droplets in clouds collide with aerosols have led to the conclusion that except in thunderclouds any electrical charges on the aerosols or droplets have little effect on the collision rate. However, it had been assumed that the aerosols would have only a few elementary charges on them, whereas it is now known that at the tops of nonthunderstorm clouds the evaporating droplets may have several hundred elementary charges on them and that much of this charge remains on the residual aerosol for 5 min or so after the evaporation. Also, most previous calculations neglected image charge forces that provide strong attraction at close range even when droplet and aerosol have charges of the same sign and of comparable magnitude.The authors present numerical calculations showing that electrical effects dominate collision rates for charged evaporation aerosols. The calculations are for the size range of 0.1- to 1.0-m radius with the collision efficiency compared to that for phoretic and Brownian effects being greater by up to a factor of 30 greater for droplets from 18.6- to 106-m radius with relative humidity in the range 95%-100% and only 50 elementary charges on the aerosol. The results imply that electrical effects can be important for the scavenging of evaporation aerosol particles in the size range of the Greenfield gap.The authors call this process `electroscavenging.' Electroscavenging of charged particles, when the particles are mostly of the same sign, is a previously unrecognized droplet charging process. Electroscavenging also provides a pathway for contact ice nucleation when charged aerosol particles from evaporated charged droplets collide with supercooled droplets. Ice nucleation can occur because aerosol particles from the evaporation of cloud droplets have been found to be more effective as ice forming nuclei than other aerosol particles that have not been processed through droplets.

  15. An Oil-Stream Photomicrographic Aeroscope for Obtaining Cloud Liquid-Water Content and Droplet Size Distributions in Flight

    NASA Technical Reports Server (NTRS)

    Hacker, Paul T.

    1956-01-01

    An airborne cloud aeroscope by which droplet size, size distribution, and liquid-water content of clouds can be determined has been developed and tested in flight and in wind tunnels with water sprays. In this aeroscope the cloud droplets are continuously captured in a stream of oil, which Is then photographed by a photomicrographic camera. The droplet size and size distribution can be determined directly from the photographs. With the droplet size distribution known, the liquid-water content of the cloud can be computed from the geometry of the aeroscope, the airspeed, and the oil-flow rate. The aeroscope has the following features: Data are obtained semi-automatically, and permanent data are taken in the form of photographs. A single picture usually contains a sufficient number of droplets to establish the droplet size distribution. Cloud droplets are continuously captured in the stream of oil, but pictures are taken at Intervals. The aeroscope can be operated in icing and non-icing conditions. Because of mixing of oil in the instrument, the droplet-distribution patterns and liquid-water content values from a single picture are exponentially weighted average values over a path length of about 3/4 mile at 150 miles per hour. The liquid-water contents, volume-median diameters, and distribution patterns obtained on test flights and in the Lewis icing tunnel are similar to previously published data.

  16. Accuracy Assessments of Cloud Droplet Size Retrievals from Polarized Reflectance Measurements by the Research Scanning Polarimeter

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail Dmitrievic; Cairns, Brian; Emde, Claudia; Ackerman, Andrew S.; vanDiedenhove, Bastiaan

    2012-01-01

    We present an algorithm for the retrieval of cloud droplet size distribution parameters (effective radius and variance) from the Research Scanning Polarimeter (RSP) measurements. The RSP is an airborne prototype for the Aerosol Polarimetery Sensor (APS), which was on-board of the NASA Glory satellite. This instrument measures both polarized and total reflectance in 9 spectral channels with central wavelengths ranging from 410 to 2260 nm. The cloud droplet size retrievals use the polarized reflectance in the scattering angle range between 135deg and 165deg, where they exhibit the sharply defined structure known as the rain- or cloud-bow. The shape of the rainbow is determined mainly by the single scattering properties of cloud particles. This significantly simplifies both forward modeling and inversions, while also substantially reducing uncertainties caused by the aerosol loading and possible presence of undetected clouds nearby. In this study we present the accuracy evaluation of our algorithm based on the results of sensitivity tests performed using realistic simulated cloud radiation fields.

  17. The free radical chemistry of cloud droplets and its impact upon the composition of rain

    NASA Technical Reports Server (NTRS)

    Chameides, W. L.; Davis, D. D.

    1982-01-01

    Calculations are presented that simulate the free radical chemistries of the gas phase and aqueous phase within a warm cloud during midday. It is demonstrated that in the presence of midday solar fluxes, the heterogeneous scavenging of OH and HO2 from the gas phase by cloud droplets can represent a major source of free radicals to cloud water, provided the accommodation or sticking coefficient for these species impinging upon water droplets is not less than 0.0001. The aqueous-phase of HO2 radicals are found to be converted to H2O2 by aqueous-phase chemical reactions at a rate that suggests that this mechanism could produce a significant fraction of the H2O2 found in cloud droplets. The rapid oxidation of sulfur species dissolved in cloudwater by this free-radical-produced H2O2 as well as by aqueous-phase OH radicals could conceivably have a significant impact upon the chemical composition of rain.

  18. Evaluation of long-term surface-retrieved cloud droplet number concentration with in situ aircraft observations

    NASA Astrophysics Data System (ADS)

    Lim, Kyo-Sun Sunny; Riihimaki, Laura; Comstock, Jennifer M.; Schmid, Beat; Sivaraman, Chitra; Shi, Yan; McFarquhar, Greg M.

    2016-03-01

    A new operational retrieval of cloud droplet number concentration (ND) at cloud base has been produced from surface remote sensors at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site for 13 years from January 1998 to January 2011. The retrieval is based on surface radiometer measurements of cloud optical depth from the multifilter rotating shadow band radiometer and liquid water path from the microwave radiometer (MWR). It is only applicable for single-layered overcast warm (stratus or stratocumulus) clouds. Evaluation with in situ aircraft measurements during the extended-term aircraft field campaign, Routine ARM Aerial Facility (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO), shows that the retrieved ND robustly reproduces the primary mode of the in situ measured probability density function (PDF) but produces too wide a distribution, primarily caused by frequent high cloud droplet number concentration. Our analysis shows that the error in the MWR retrievals at low liquid water paths is one possible reason for this deficiency. Modification through the diagnosed liquid water path from the coordinate solution improves not only the PDF of the retrieved ND but also the relationship between the cloud droplet number concentration and cloud droplet effective radius. Consideration of entrainment effects rather than assuming an adiabatic cloud improves the values of the ND retrieval by reducing the magnitude of cloud droplet number concentration. Aircraft measurements and retrieval comparisons suggest that retrieving the vertical distribution of cloud droplet number concentration and effective radius is feasible with an improvement of the parameter representing the mixing effects between environment and clouds and with a better understanding of the effect of mixing degree on cloud properties.

  19. Observations of high droplet number concentrations in Southern Ocean boundary layer clouds

    NASA Astrophysics Data System (ADS)

    Chubb, T.; Huang, Y.; Jensen, J.; Campos, T.; Siems, S.; Manton, M.

    2015-09-01

    Data from the standard cloud physics payload during the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) campaigns provide a snapshot of unusual wintertime microphysical conditions in the boundary layer over the Southern Ocean. On 29 June 2011, the HIAPER sampled the boundary layer in a region of pre-frontal warm air advection between 58 and 48° S to the south of Tasmania. Cloud droplet number concentrations were consistent with climatological values in the northernmost profiles but were exceptionally high for wintertime in the Southern Ocean at 100-200 cm-3 in the southernmost profiles. Sub-micron (0.06cloud droplet concentration in the boundary layer. Instead, the gale force surface winds in this case (wind speed at 167 m above sea level was >25 m s-1) were most likely responsible for production of sea spray aerosol which influenced the microphysical properties of the boundary layer clouds. The smaller size and higher number concentration of cloud droplets is inferred to increase the albedo of these clouds, and these conditions occur regularly, and are expected to increase in frequency, over windy parts of the Southern Ocean.

  20. Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility

    NASA Astrophysics Data System (ADS)

    Blando, James D.; Turpin, Barbara J.

    This paper investigates the hypothesis that cloud and fog processes produce fine organic particulate matter in the atmosphere. The evidence provided suggests that cloud and fog processes could be important contributors to secondary organic aerosol formation, and the contribution of this formation pathway should be further investigated. This conclusion is based on the following observations: (1) many organic vapors present in the atmosphere are sorbed by suspended droplets and have been measured in cloud and fog water, (2) organics participate in aqueous-phase reactions, and (3) organic particulate matter is sometimes found in the size mode attributed to cloud processing (i.e. the droplet mode). Specific compounds identified as potential precursors include aldehydes (e.g. formaldehyde, acetaldehyde, and propionaldehyde), acetone, alcohols (e.g. methanol, ethanol, 2-propanol, and phenol), monocarboxylic acids, and organic peroxides. Carboxylic acids (e.g. diacids and oxo-acids), glyoxal, esters, organosulfur compounds, polyols, amines and amino acids are potential products of cloud and fog processing.

  1. Surface Crystallization of Cloud Droplets: Implications for Climate Change and Ozone Depletion

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Djikaev, Y. S.; Reiss, H.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    The process of supercooled liquid water crystallization into ice is still not well understood. Current experimental data on homogeneous freezing rates of ice nucleation in supercooled water droplets show considerable scatter. For example, at -33 C, the reported freezing nucleation rates vary by as much as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Until now, experimental data on the freezing of supercooled water has been analyzed under the assumption that nucleation of ice took place in the interior volume of a water droplet. Here, the same data is reanalyzed assuming that the nucleation occurred "pseudoheterogeneously" at the air (or oil)-liquid water interface of the droplet. Our analysis suggest that the scatter in the nucleation data can be explained by two main factors. First, the current assumption that nucleation occurs solely inside the volume of a water droplet is incorrect. Second, because the nucleation process most likely occurs on the surface, the rates of nuclei formation could differ vastly when oil or air interfaces are involved. Our results suggest that ice freezing in clouds may initiate on droplet surfaces and such a process can allow for low amounts of liquid water (approx. 0.002 g per cubic meters) to remain supercooled down to -40 C as observed in the atmosphere.

  2. Pollution from China increases cloud droplet number, suppresses rain over the East China Sea

    SciTech Connect

    Bennartz, Ralph; Fan, Jiwen; Rausch, J; Leung, Lai-Yung R; Heidinger, Andrew K

    2011-05-18

    Rapid economic growth over the last 30 years in China has led to a significant increase in aerosol loading, which is mainly due to the increased emissions of its precursors such as SO2 and NOx. Here we show that these changes significantly affect wintertime clouds and precipitation over the East China Sea downwind of major emission sources. Satellite observations show an increase of cloud droplet number concentration from less than 200 cm-3 in the 1980s to more than 300 cm-3 in 2005. In the same time period, precipitation frequency reported by voluntary ship observers was reduced from more than 30% to less than 20% of the time. A back trajectory analysis showed the pollution in the investigation area to originate from the Shanghai-Nanjing and Jinan industrial areas. A model sensitivity study was performed, isolating the effects of changes in emissions of the aerosol precursors SO2 and NOx on clouds and precipitation using a state-of-the-art mesocale model including chemistry and aerosol indirect effects. Similar changes in cloud droplet number concentration over the East China Sea were obtained when the current industrial emissions in China were reduced to the 1980s levels. Simulated changes in precipitation were somewhat smaller than the observed changes but still significant. Citation: Bennartz, R., J. Fan, J. Rausch, L. R. Leung, and A. K. Heidinger (2011), Pollution from China increases cloud droplet number, suppresses rain over the East China Sea, Geophys. Res. Lett., 38, L09704, doi:10.1029/ 2011GL047235.

  3. Pollution from China increases cloud droplet number, suppresses rain over the East China Sea

    NASA Astrophysics Data System (ADS)

    Bennartz, Ralf; Fan, Jiwen; Rausch, John; Leung, L. Ruby; Heidinger, Andrew K.

    2011-05-01

    Rapid economic growth over the last 30 years in China has led to a significant increase in aerosol loading, which is mainly due to the increased emissions of its precursors such as SO2 and NOx. Here we show that these changes significantly affect wintertime clouds and precipitation over the East China Sea downwind of major emission sources. Satellite observations show an increase of cloud droplet number concentration from less than 200 cm-3 in the 1980s to more than 300 cm-3 in 2005. In the same time period, precipitation frequency reported by voluntary ship observers was reduced from more than 30% to less than 20% of the time. A back trajectory analysis showed the pollution in the investigation area to originate from the Shanghai-Nanjing and Jinan industrial areas. A model sensitivity study was performed, isolating the effects of changes in emissions of the aerosol precursors SO2 and NOx on clouds and precipitation using a state-of-the-art mesocale model including chemistry and aerosol indirect effects. Similar changes in cloud droplet number concentration over the East China Sea were obtained when the current industrial emissions in China were reduced to the 1980s levels. Simulated changes in precipitation were somewhat smaller than the observed changes but still significant.

  4. Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Fuchs, C.; Järvinen, E.; Saathoff, H.; Dias, A.; El Haddad, I.; Gysel, M.; Coburn, S. C.; Tröstl, J.; Bernhammer, A.-K.; Bianchi, F.; Breitenlechner, M.; Corbin, J. C.; Craven, J.; Donahue, N. M.; Duplissy, J.; Ehrhart, S.; Frege, C.; Gordon, H.; Höppel, N.; Heinritzi, M.; Kristensen, T. B.; Molteni, U.; Nichman, L.; Pinterich, T.; Prévôt, A. S. H.; Simon, M.; Slowik, J. G.; Steiner, G.; Tomé, A.; Vogel, A. L.; Volkamer, R.; Wagner, A. C.; Wagner, R.; Wexler, A. S.; Williamson, C.; Winkler, P. M.; Yan, C.; Amorim, A.; Dommen, J.; Curtius, J.; Gallagher, M. W.; Flagan, R. C.; Hansel, A.; Kirkby, J.; Kulmala, M.; Möhler, O.; Stratmann, F.; Worsnop, D. R.; Baltensperger, U.

    2016-02-01

    The growth of aerosol due to the aqueous phase oxidation of sulfur dioxide by ozone was measured in laboratory-generated clouds created in the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). Experiments were performed at 10 and -10 °C, on acidic (sulfuric acid) and on partially to fully neutralised (ammonium sulfate) seed aerosol. Clouds were generated by performing an adiabatic expansion - pressurising the chamber to 220 hPa above atmospheric pressure, and then rapidly releasing the excess pressure, resulting in a cooling, condensation of water on the aerosol and a cloud lifetime of approximately 6 min. A model was developed to compare the observed aerosol growth with that predicted using oxidation rate constants previously measured in bulk solutions. The model captured the measured aerosol growth very well for experiments performed at 10 and -10 °C, indicating that, in contrast to some previous studies, the oxidation rates of SO2 in a dispersed aqueous system can be well represented by using accepted rate constants, based on bulk measurements. To the best of our knowledge, these are the first laboratory-based measurements of aqueous phase oxidation in a dispersed, super-cooled population of droplets. The measurements are therefore important in confirming that the extrapolation of currently accepted reaction rate constants to temperatures below 0 °C is correct.

  5. Volatility of methylglyoxal cloud SOA formed through OH radical oxidation and droplet evaporation

    NASA Astrophysics Data System (ADS)

    Ortiz-Montalvo, Diana L.; Schwier, Allison N.; Lim, Yong B.; McNeill, V. Faye; Turpin, Barbara J.

    2016-04-01

    The volatility of secondary organic aerosol (SOA) formed through cloud processing (aqueous hydroxyl radical (radOH) oxidation and droplet evaporation) of methylglyoxal (MGly) was studied. Effective vapor pressure and effective enthalpy of vaporization (ΔHvap,eff) were determined using 1) droplets containing MGly and its oxidation products, 2) a Vibrating Orifice Aerosol Generator (VOAG) system, and 3) Temperature Programmed Desorption Aerosol-Chemical Ionization Mass Spectrometry (TPD Aerosol-CIMS). Simulated in-cloud MGly oxidation (for 10-30 min) produces an organic mixture of higher and lower volatility components with an overall effective vapor pressure of (4 ± 7) × 10-7 atm at pH 3. The effective vapor pressure decreases by a factor of 2 with addition of ammonium hydroxide (pH 7). The fraction of organic material remaining in the particle-phase after drying was smaller than for similar experiments with glycolaldehyde and glyoxal SOA. The ΔHvap,eff of pyruvic acid and oxalic acid + methylglyoxal in the mixture (from TPD Aerosol-CIMS) were smaller than the theoretical enthalpies of the pure compounds and smaller than that estimated for the entire precursor/product mix after droplet evaporation. After 10-30 min of aqueous oxidation (one cloud cycle) the majority of the MGly + radOH precursor/product mix (even neutralized) will volatilize during droplet evaporation; neutralization and at least 80 min of oxidation at 10-12 M radOH (or >12 h at 10-14 M) is needed before low volatility ammonium oxalate exceeds pyruvate.

  6. Spontaneous motility of passive emulsion droplets in polar active gels.

    PubMed

    De Magistris, G; Tiribocchi, A; Whitfield, C A; Hawkins, R J; Cates, M E; Marenduzzo, D

    2014-10-21

    We study by computer simulations the dynamics of a droplet of passive, isotropic fluid, embedded in a polar active gel. The latter represents a fluid of active force dipoles, which exert either contractile or extensile stresses on their surroundings, modelling for instance a suspension of cytoskeletal filaments and molecular motors. When the polarisation of the active gel is anchored normal to the droplet at its surface, the nematic elasticity of the active gel drives the formation of a hedgehog defect; this defect then drives an active flow which propels the droplet forward. In an extensile gel, motility can occur even with tangential anchoring, which is compatible with a defect-free polarisation pattern. In this case, upon increasing activity the droplet first rotates uniformly, and then undergoes a discontinuous nonequilibrium transition into a translationally motile state, powered by bending deformations in the surrounding active medium. PMID:25156695

  7. Use of microphysical relationships to discern growth/decay mechanisms of cloud droplets with focus on Z-LWC relationships.

    SciTech Connect

    Liu,Y.; Daum, P.H.; Yum, S.S.; Wang, J.

    2008-05-01

    Cloud droplet size distributions hence the key microphysical quantities (e.g., radar reflectivity, droplet concentration, liquid water content, relative dispersion, and mean-volume radius) are determined by different physical mechanisms, including pre-cloud aerosols as CCNs, cloud updraft, and various turbulent entrainment-mixing processes. Therefore, different relationships among these microphysical properties are expected in response to these various mechanisms. The effect of turbulent entrainment-mixing processes is particularly vexing, with different entrainment-mixing processes likely leading to different microphysical relationships. Cloud radar has been widely used to infer the cloud liquid water content (L) from the measurement of radar reflectivity (Z) using a Z-L relationship. Existing Z-L expressions have been often obtained empirically, and differ substantially (Khain et al. 2008). The discrepancy among Z-L relations, which has been hindering the application of cloud radar in measuring cloud properties, likely stems from the different relationships between the relevant microphysical properties caused by different physical processes. This study first analyzes the Z-L relationship theoretically, and identify the key microphysical properties that affect this relationship, and then address the effects of various processes on the Z-L relationship by discerning the characteristics of the relationships between the relative dispersion, droplet concentration, liquid water content, and mean-volume radius calculated from in-situ measurements of cloud droplet size distributions. Effort is also made to further relate the microphysical relationships to physical processes such as turbulent entrainment-mixing.

  8. Synchronous droplets as a test bed for pulsatory active fluids

    NASA Astrophysics Data System (ADS)

    Katsikis, Georgios; Prakash, Manu

    2014-11-01

    Collective behavior in many-body systems has been studied extensively focusing on a wide range of interacting entities including: flocking animals, sedimenting particles and microfluidic droplets among others. Here, we propose an experimental platform to explore an oscillatory active fluid with synchronous ferrofluid droplets immersed in an immiscible carrier fluid in a Hele-Shaw configuration. The droplets are organized and actuated on a 2-D uniform grid through application of a precessive magnetic field. The state of our system is dependent on three parameters: the grid occupancy with fluid droplets, the grid geometry and the magnetic field. We study the long range orientational order of our system over a range of those parameters by tracking the motion of the droplets and analyzing the PIV data of the carrier fluid flow. Numerical simulations are juxtaposed with experimental data for prediction of the system's behavior.

  9. Modeling global impacts of heterogeneous loss of HO2 on cloud droplets, ice particles and aerosols

    NASA Astrophysics Data System (ADS)

    Huijnen, V.; Williams, J. E.; Flemming, J.

    2014-03-01

    The abundance and spatial variability of the hydroperoxyl radical (HO2) in the troposphere strongly affects atmospheric composition through tropospheric ozone production and associated HOx chemistry. One of the largest uncertainties in the chemical HO2 budget is its heterogeneous loss on the surface of cloud droplets, ice particles and aerosols. We quantify the importance of the heterogeneous HO2 loss at global scale using the latest recommendations on the scavenging efficiency on various surfaces. For this we included the simultaneous loss on cloud droplets and ice particles as well as aerosol in the Composition-Integrated Forecast System (C-IFS). We show that cloud surface area density (SAD) is typically an order of magnitude larger than aerosol SAD, using assimilated satellite retrievals to constrain both meteorology and global aerosol distributions. Depending on the assumed uptake coefficients, loss on liquid water droplets and ice particles accounts for ∼53-70% of the total heterogeneous loss of HO2, due to the ubiquitous presence of cloud droplets. This indicates that HO2 uptake on cloud should be included in chemistry transport models that already include uptake on aerosol. Our simulations suggest that the zonal mean mixing ratios of HO2 are reduced by ∼25% in the tropics and up to ∼50% elsewhere. The subsequent decrease in oxidative capacity leads to a global increase of the tropospheric carbon monoxide (CO) burden of up to 7%, and an increase in the ozone tropospheric lifetime of ∼6%. This increase results in an improvement in the global distribution when compared against CO surface observations over the Northern Hemisphere, although it does not fully resolve the wintertime bias in the C-IFS. There is a simultaneous increase in the high bias in C-IFS for tropospheric CO over the Southern Hemisphere, which constrains on the assumptions regarding HO2 uptake on a global scale. We show that enhanced HO2 uptake on aerosol types associated with

  10. Secondary Organic Aerosol Formation by Cloud Processing: Accretion Reactions Involving Glyoxal and Methylglyoxal in Evaporating Cloud Droplets

    NASA Astrophysics Data System (ADS)

    de Haan, D. O.; Hastings, W. P.; Corrigan, A. L.; Lee, F. E.; Hanley, S. W.

    2006-12-01

    Glyoxal and methyl glyoxal are dicarbonyl compounds found in atmospheric cloud and fog water, typically at low micromolar concentrations. These two compounds are known to form copolymers under certain industrial conditions by the nucleophilic addition of S, N and O-containing molecules. We report ambient FTIR-ATR and particle chamber data on a range of reactions between glyoxal and S, N and O-containing molecules found in cloudwater, some of which are triggered by droplet evaporation. Liquid-phase formation of adducts between glyoxal and S(IV) is seen to halt sulfur oxidation during droplet drying on the ATR crystal. Formation of glyoxal / S(VI) adducts, however, are not observed by ATR. At neutral or acidic pH, droplet evaporation triggers a reaction between glyoxal and amino acids in the residue left behind, forming imines. Glyoxal reacts under similar conditions with glycol compounds, forming cyclic acetals, but not with sugars, perhaps due to a lack of conformational freedom. Glyoxal is not observed to react with carboxylic acids, either in particle chambers or while drying on an ATR crystal.

  11. Formation of nitrogen-containing oligomers by methylglyoxal and amines in simulated evaporating cloud droplets.

    PubMed

    De Haan, David O; Hawkins, Lelia N; Kononenko, Julia A; Turley, Jacob J; Corrigan, Ashley L; Tolbert, Margaret A; Jimenez, Jose L

    2011-02-01

    Reactions of methylglyoxal with amino acids, methylamine, and ammonium sulfate can take place in aqueous aerosol and evaporating cloud droplets. These processes are simulated by drying droplets and bulk solutions of these compounds (at low millimolar and 1 M concentrations, respectively) and analyzing the residuals by scanning mobility particle sizing, nuclear magnetic resonance, aerosol mass spectrometry (AMS), and electrospray ionization MS. The results are consistent with imine (but not diimine) formation on a time scale of seconds, followed by the formation of nitrogen-containing oligomers, methylimidazole, and dimethylimidazole products on a time scale of minutes to hours. Measured elemental ratios are consistent with imidazoles and oligomers being major reaction products, while effective aerosol densities suggest extensive reactions take place within minutes. These reactions may be a source of the light-absorbing, nitrogen-containing oligomers observed in urban and biomass-burning aerosol particles. PMID:21171623

  12. Modeling study of cloud droplet nucleation and in-cloud sulfate production during the Sanitation of the Atmosphere (SANA) 2 campaign

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohong; Seidl, Winfried

    1998-01-01

    Based upon the measurements of vertical profiles of gaseous SO2, H2O2, O3, and meteorological parameters from aircraft and of the aerosol chemical composition and gaseous NH3, HNO3, and SO2 at the surface in southeastern Germany (Melpitz) during the Sanitation of the Atmosphere (SANA) 2 campaign, realistic modeling of cloud droplet nucleation and in-cloud sulfate production was performed with an explicit microphysical cloud model with size-resolved chemistry and cloud top entrainment. For the fair weather cumulus observed during the measurements, the calculated cloud droplet number concentrations could be as high as 2000 cm-3 (and precloud aerosol sulfate up to 9.1 μg m-3), indicating strong sulfur pollution at Melpitz during the campaign. The in-cloud sulfate production is within 1.5-5.0 μg m-3, depending on the initial gaseous NH3 concentration in the parcel. This result shows the necessity of gaseous NH3 vertical profile measurements. Entrainment can reduce the cloud droplet number concentration and cause the distribution of in-cloud produced sulfate to shift toward larger particle sizes. Under the cases we studied, we do not find a significant effect of cloud top gaseous H2O2 entrainment on the in-cloud sulfate production. For the adiabatic cases the departure of bulk water H2O2 from the Henry's law equilibrium is very small. When entrainment included, however, bulk water H2O2 concentrations could be clearly less than the equilibrium values, and the deficiencies are higher (>20%) for droplets larger than 10 μm radius. Our results suggest that entrainment could be one of the important factors to account for the measured H2O2 deficiency in cloud water.

  13. Desert Research Institute cloud droplet videometer measurements in support of MASTEX

    SciTech Connect

    1995-02-13

    In support of the Monterey Area Ship-Track Experiment (MASTEX) the Desert Research Institute completed modifications to an existing cloud droplet videometer and construction of a second unit for deployment on board the RV Glorita during the month of June 1994. Dr. Randolph Borys accompanied the instrumentation during the period the ship was at sea and assisted in the day-to-day experiments which were conducted on board. Unusually clear conditions and high winds contributed to the lack of opportunities to deploy the new instrument from the ship.

  14. Heterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions

    NASA Astrophysics Data System (ADS)

    Möhler, O.; Georgakopoulos, D. G.; Morris, C. E.; Benz, S.; Ebert, V.; Hunsmann, S.; Saathoff, H.; Schnaiter, M.; Wagner, R.

    2008-10-01

    The ice nucleation activities of five different Pseudomonas syringae, Pseudomonas viridiflava and Erwinia herbicola bacterial species and of Snomax™ were investigated in the temperature range between -5 and -15°C. Water suspensions of these bacteria were directly sprayed into the cloud chamber of the AIDA facility of Forschungszentrum Karlsruhe at a temperature of -5.7°C. At this temperature, about 1% of the Snomax™ cells induced immersion freezing of the spray droplets before the droplets evaporated in the cloud chamber. The living cells didn't induce any detectable immersion freezing in the spray droplets at -5.7°C. After evaporation of the spray droplets the bacterial cells remained as aerosol particles in the cloud chamber and were exposed to typical cloud formation conditions in experiments with expansion cooling to about -11°C. During these experiments, the bacterial cells first acted as cloud condensation nuclei to form cloud droplets. Then, only a minor fraction of the cells acted as heterogeneous ice nuclei either in the condensation or the immersion mode. The results indicate that the bacteria investigated in the present study are mainly ice active in the temperature range between -7 and -11°C with an ice nucleation (IN) active fraction of the order of 10-4. In agreement to previous literature results, the ice nucleation efficiency of Snomax™ cells was much larger with an IN active fraction of 0.2 at temperatures around -8°C.

  15. Assessing the size distribution of droplets in a cloud chamber from light extinction data during a transient regime

    NASA Astrophysics Data System (ADS)

    Vâjâiac, Sorin Nicolae; Filip, Valeriu; Štefan, Sabina; Boscornea, Andreea

    2014-03-01

    The paper describes a method of assessing the size distribution of fog droplets in a cloud chamber, based on measuring the time variation of the transmission of a light beam during the gravitational settling of droplets. Using a model of light extinction by floating spherical particles, the size distribution of droplets is retrieved, along with characteristic structural parameters of the fog (total droplet concentration, liquid water content and effective radius). Moreover, the time variation of the effective radius can be readily extracted from the model. The errors of the method are also estimated and fall within acceptable limits. The method proves sensitive enough to resolve various modes in the droplet distribution and to point out changes in the distribution due to diverse types of aerosol present in the chamber or to the thermal condition of the fog. It is speculated that the method can be further simplified to reach an in-situ version for real-time field measurements.

  16. Chemistry in the Venus clouds: Sulfuric acid reactions and freezing behavior of aqueous liquid droplets

    NASA Astrophysics Data System (ADS)

    Delitsky, M. L.; Baines, K. H.

    2015-11-01

    Venus has a thick cloud deck at 40-70 km altitude consisting of liquid droplets and solid particles surrounded by atmospheric gases. The liquid droplets are highly concentrated aqueous solutions of sulfuric acid ranging in concentration from 70-99 wt%. Weight percent drops off with altitude (Imamura and Hashimoto 2001). There will be uptake of atmospheric gases into the droplet solutions and the ratios of gas-phase to liquid-phase species will depend on the Henry’s Law constant for those solutions. Reactions of sulfuric acid with these gases will form products with differing solubilities. For example, uptake of HCl by H2SO4/H2O droplets yields chlorosulfonic acid, ClSO3H (Robinson et al 1998) in solution. This may eventually decompose to thionyl- or sulfuryl chlorides, which have UV absorbances. HF will also uptake, creating fluorosulfonic acid, FSO3H, which has a greater solubility than the chloro- acid. As uptake continues, there will be many dissolved species in the cloudwaters. Baines and Delitsky (2013) showed that uptake will have a maximum at ~62 km and this is very close to the reported altitude for the mystery UV absorber in the Venus atmosphere. In addition, at very strong concentrations in lower altitude clouds, sulfuric acid will form hydrates such as H2SO4.H2O and H2SO4.4H2O which will have very different freezing behavior than sulfuric acid, with much higher freezing temperatures (Carslaw et al, 1997). Using temperature data from Venus Express from Tellmann et al (2009), and changes in H2SO4 concentrations as a function of altitude (James et al 1997), we calculate that freezing out of sulfuric acid hydrates can be significant down to as low as 56 km altitude. As a result, balloons, aircraft or other probes in the Venus atmosphere may be limited to flying below certain altitudes. Any craft flying at altitudes above ~55 km may suffer icing on the wings, propellers, balloons and instruments which could cause possible detrimental effects (thermal

  17. Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Fuchs, C.; Järvinen, E.; Saathoff, H.; Dias, A.; El Haddad, I.; Gysel, M.; Coburn, S. C.; Tröstl, J.; Bernhammer, A.-K.; Bianchi, F.; Breitenlechner, M.; Corbin, J. C.; Craven, J.; Donahue, N. M.; Duplissy, J.; Ehrhart, S.; Frege, C.; Gordon, H.; Höppel, N.; Heinritzi, M.; Kristensen, T. B.; Molteni, U.; Nichman, L.; Pinterich, T.; Prévôt, A. S. H.; Simon, M.; Slowik, J. G.; Steiner, G.; Tomé, A.; Vogel, A. L.; Volkamer, R.; Wagner, A. C.; Wagner, R.; Wexler, A. S.; Williamson, C.; Winkler, P. M.; Yan, C.; Amorim, A.; Dommen, J.; Curtius, J.; Gallagher, M. W.; Flagan, R. C.; Hansel, A.; Kirkby, J.; Kulmala, M.; Möhler, O.; Stratmann, F.; Worsnop, D.; Baltensperger, U.

    2015-12-01

    The growth of aerosol due to the aqueous phase oxidation of SO2 by O3 was measured in laboratory generated clouds created in the CLOUD chamber at CERN. Experiments were performed at 10 and -10 °C, on acidic (sulphuric acid) and on partially to fully neutralised (ammonium sulphate) seed aerosol. Clouds were generated by performing an adiabatic expansion - pressurising the chamber to 220 hPa above atmospheric pressure, and then rapidly releasing the excess pressure, resulting in a cooling, condensation of water on the aerosol and a cloud lifetime of approximately 6 min. A model was developed to compare the observed aerosol growth with that predicted by oxidation rates previously measured in bulk solutions. The model captured the measured aerosol growth very well for experiments performed at 10 and -10 °C, indicating that, in contrast to some previous studies, the oxidation rates of SO2 in a dispersed aqueous system are well represented by accepted rates, based on bulk measurements. To the best of our knowledge, these are the first laboratory based measurements of aqueous phase oxidation in a dispersed, super-cooled population of droplets. The measurements are therefore important in confirming that the extrapolation of currently accepted reaction rates to temperatures below 0 °C is correct.

  18. Direct photolysis of carbonyl compounds dissolved in cloud and fog droplets

    NASA Astrophysics Data System (ADS)

    Epstein, S. A.; Tapavicza, E.; Furche, F.; Nizkorodov, S. A.

    2013-04-01

    Gas phase photolysis is an important tropospheric sink for many carbonyl compounds, however the significance of direct photolysis of carbonyl compounds dissolved in cloud and fog droplets is uncertain. We develop a theoretical approach to assess the importance of aqueous photolysis for a series of carbonyls that possess carboxyl and hydroxyl functional groups by comparison with rates of other atmospheric processes. We use computationally and experimentally derived Henry's law parameters, hydration equilibrium parameters, aqueous hydroxyl radical (OH) rate constants, and optical extinction coefficients to identify types of compounds that will not have competitive aqueous photolysis rates. We also present molecular dynamics simulations of atmospherically relevant carbonyl compounds designed to estimate gas and aqueous phase extinction coefficients. In addition, experiments designed to measure the photolysis rate of glyceraldehyde, an atmospherically relevant water soluble organic compound, reveal that aqueous quantum yields are highly molecule-specific and cannot be extrapolated from measurements of structurally similar compounds. We find that only three out of the 92 carbonyl compounds investigated, pyruvic acid, 3-oxobutanoic acid, and 3-oxopropanoic acid, may have aqueous photolysis rates that exceed the rate of oxidation by dissolved OH. For almost all carbonyl compounds lacking α, β conjugation, atmospheric removal by direct photolysis in cloud and fog droplets can be neglected.

  19. Direct photolysis of carbonyl compounds dissolved in cloud and fog~droplets

    NASA Astrophysics Data System (ADS)

    Epstein, S. A.; Tapavicza, E.; Furche, F.; Nizkorodov, S. A.

    2013-09-01

    Gas-phase photolysis is an important tropospheric sink for many carbonyl compounds; however the significance of direct photolysis of these compounds dissolved in cloud and fog droplets is uncertain. We develop a theoretical approach to assess the importance of aqueous photolysis for a series of carbonyls that possess carboxyl and hydroxyl functional groups by comparison with rates of other atmospheric processes. We use computationally and experimentally derived effective Henry's law constants, hydration equilibrium parameters, aqueous hydroxyl radical (OH) rate constants, and optical extinction coefficients to identify types of compounds that will (or will not) have competitive aqueous photolysis rates. We also present molecular dynamics simulations designed to estimate gas- and aqueous-phase extinction coefficients of unstudied atmospherically relevant compounds found in d-limonene and isoprene secondary organic aerosol. In addition, experiments designed to measure the photolysis rate of glyceraldehyde, an atmospherically relevant water-soluble organic compound, reveal that aqueous quantum yields are highly molecule-specific and cannot be extrapolated from measurements of structurally similar compounds. We find that only two out of the 92 carbonyl compounds investigated, pyruvic acid and acetoacetic acid, may have aqueous photolysis rates that exceed the rate of oxidation by dissolved OH. For almost all carbonyl compounds lacking α,β-conjugation that were investigated, atmospheric removal by direct photolysis in cloud and fog droplets can be neglected under typical atmospheric conditions.

  20. Aerosol yields and losses of aldehydes and amines from evaporating cloud droplets

    NASA Astrophysics Data System (ADS)

    de Haan, D. O.; Hawkins, L. N.; Rynaski, A. D.; Wood, S.

    2010-12-01

    In evaporating aqueous droplets, the alpha-dicarbonyl compounds glyoxal and methylglyoxal can form oligomers and partly avoid loss to the gas phase. In clouds and aerosol, amines and ammonium salts react with volatile dicarbonyls to form semi-volatile imines, imidazoles and light-absorbing oligomer compounds. Particle size measurements during droplet evaporation experiments (both polydisperse and monodisperse) show that the fast production of semivolatile products is significant. Reactions of volatile methylamine with dicarbonyl compounds increase the resulting dry aerosol volumes, but do not change the fraction of dicarbonyls lost to the gas phase. Low volatility amines and ammonium sulfate, on the other hand, have reduced dry aerosol volumes in the presence of dicarbonyl compounds. The formation of semi-volatile products in these cases causes a net loss of aerosol material as non-volatile reactants are converted into semivolatile products. Thus, while these reactions provide a means for small aldehydes and amines to be converted into secondary organic aerosol (SOA), for low volatility amine and ammonia salts already in the condensed phase, these reactions do not significantly increase SOA mass. However, in both cases these reactions may be significant sources of “brown carbon,” light-absorbing compounds that increase the radiative forcing of clouds and aerosol.

  1. Experimental calculations of droplet diffusion in a low-pressure cloud chamber.

    PubMed

    Briden, P E; Holt, P D; Simmons, J A

    1994-11-01

    A low-pressure cloud chamber was used for several years to display the tracks created by the passage of ionizing particles through vapors of interest. The spatial distributions of the ions that were formed were of special interest, but the accuracy with which these distributions could be determined was reduced by the presence of diffusion. This meant that the droplets, when photographed, had moved significantly away from the point of creation of the parent ion. In the present investigation photographs obtained by previous workers have been analyzed in an attempt to quantify the extent to which the droplets had diffused. The results suggest that the diffusion, when converted to standard density (1000 kg/m3), was independent of the pressure inside the cloud chamber and the mixture used. It could be represented by a one-dimensional root-mean-square diffusion distance whose value was calculated to be 2.42 +/- 0.04 nm. Values for the diffusion of thermalized electrons (< approximately 4 eV) before capture to form negative ions were also calculated. They appeared to lie in the range 3.5-5.0 nm, and were again independent of the pressure and nature of the mixture. The magnitude of the diffusion was large enough to mask any measurable prediffusion structure for a distance in the region of 10 nm radially around the track path of the alpha-particle and proton tracks analyzed. PMID:7938472

  2. Changes in scavenging of particles by droplets due to weak electrification in clouds

    NASA Astrophysics Data System (ADS)

    Tinsley, Brian A.; Zhou, Limin; Plemmons, Abigail

    2006-03-01

    Electrical charges on aerosol particles and droplets modify the droplet-particle collision efficiencies involved in scavenging, and the droplet-droplet and particle-particle collision efficiencies involved in coalescence of droplets and particles, even in only weakly electrified clouds and aerosol layers. This work places electrically enhanced scavenging, and the electrical inhibition of scavenging in the context of the microphysics of weakly electrified clouds. Collision efficiencies are calculated by numerical integration to obtain particle trajectories, that are determined by the complex interplay of electrical, gravitational and phoretic forces together with inertia. These modify the trajectory of a particle as it is carried by flow around the falling droplet. Conversely, the flow around the particle also modifies the trajectory of the droplet. The flows are specified analytically, using a hybrid of the Proudman-Pearson stream function for that region close to the droplet or particle, where it is accurate, merging into the exact Oseen stream function for larger distances, where that becomes accurate. The effect of the flow around the particle on the motion of the droplet was simulated using Langmuir's superposition technique on the hybrid stream functions. The treatment of inertia in the present calculations allows an extension of the scope of our previous work by a factor of 10 larger in particle size (10 3 in mass). The coverage is extended to a wide range of atmospheric conditions and particle densities. The pressures and temperatures used in the models ranged from a representation of the lower troposphere at ˜ 1 km altitude (900 hPa, 10 °C) to that of the middle stratosphere at ˜ 30 km altitude (12 hPa, - 47 °C). The particles considered range from 0.1 μm to 10 μm radius; the droplet radii range from 4 μm to 50 μm; particle densities range from 300 kg m - 3 to 2500 kg m - 3; particle charges range from 2e to 100e with droplet charges of like sign of

  3. Determining the susceptibility of cloud albedo to changes in droplet concentration with the advanced very high resolution radiometer

    SciTech Connect

    Platnick, S.; Twomey, S.

    1994-03-01

    Combustion processes that produce greenhouse gases also increase cloud condensation nuclei (CCN) concentrations, which in turn increase cloud droplet concentrations and thereby cloud albedo. A calculation of cloud susceptibility, defined in this work as the increase in albedo resulting from the addition of one cloud droplet per cubic centimeter (as cloud liquid water content remains constant), is made through the satellite remote sensing of cloud droplet radius and optical thickness. The remote technique uses spectral channels of the Advanced Very High Resolution Radiometer (AVHRR) instrument on board NOAA polar-orbiting satellites. Radiative transfer calculations of reflectance and effective surface and cloud emissivities are made for applicable sun and satellite viewing angles, including azimuth, at various radii and optical thicknesses for each AVHRR channel. Emission in channel 3 (at 3.75 {mu}m) is removed to give the reflected solar component. These calculations are used to infer the radius and optical thickness that best match the satellite measurements. An approximation for the effect of the atmosphere on the signal received by the AVHRR is included in the analysis. Marine stratus clouds, as well as being important modifiers of climate, are cleaner that continental clouds and so likely to be of higher susceptibility. Analysis of several stratus scenes, including some containing ship tracks, supports this expectation. The retrieved range of susceptibilities for all marine stratus clouds studied varied by about two orders of magnitude. This variation implies that climate studies that include possible marine stratus albedo modification from anthropogenic CCN are incomplete without accounting for existing susceptibilities. 54 refs., 10 figs., 1 tab.

  4. Electric discharges produced by clouds of charged water droplets in the presence of moving conducting object

    NASA Astrophysics Data System (ADS)

    Kostinskiy, Alexander Y.; Syssoev, Vladimir S.; Mareev, Eugene A.; Rakov, Vladimir A.; Andreev, Mikhail G.; Bogatov, Nikolai A.; Makal'sky, Leonid M.; Sukharevsky, Dmitry I.; Aleshchenko, Alexander S.; Kuznetsov, Vladimir E.; Shatalina, Maria V.

    2015-12-01

    The possibility of initiation of electric discharges by a crossbow bolt (projectile) moving in the electric field of a cloud of negatively charged water droplets has been demonstrated for the first time. Over one hundred of discharges have been produced. For each event, a high-speed video camera recorded the images of upward positive leaders developing from both the nearby grounded sphere and the projectile, followed by the return-stroke-like process. Corresponding currents were measured and integrated photos of the events were obtained. The results can help to improve our understanding of lightning initiation by airborne vehicles and by a vertical conductor rapidly extended below the thundercloud in order to trigger lightning with the rocket-and-wire technique.

  5. Optics of Water Cloud Droplets Mixed with Black-Carbon Aerosols

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Liu, Li; Cairns, Brian; Mackowski, Daniel W.

    2014-01-01

    We use the recently extended superposition T-matrix method to calculate scattering and absorption properties of micrometer-sized water droplets contaminated by black carbon. Our numerically exact results reveal that, depending on the mode of soot-water mixing, the soot specific absorption can vary by a factor exceeding 6.5. The specific absorption is maximized when the soot material is quasi-uniformly distributed throughout the droplet interior in the form of numerous small monomers. The range of mixing scenarios captured by our computations implies a wide range of remote sensing and radiation budget implications of the presence of black carbon in liquid-water clouds. We show that the popular Maxwell-Garnett effective-medium approximation can be used to calculate the optical cross sections, single-scattering albedo, and asymmetry parameter for the quasi-uniform mixing scenario, but is likely to fail in application to other mixing scenarios and in computations of the elements of the scattering matrix.

  6. Adipocyte size fluctuation, mechano-active lipid droplets and caveolae.

    PubMed

    Le Lay, Soazig; Briand, Nolwenn; Dugail, Isabelle

    2015-01-01

    Recent data indicate that cell size fluctuation, a key property in adipocyte pathophysiology primarily dependent on lipid storage, is linked to a novel function of lipid droplet organelles acting as mechano-active organelles to regulate cell membrane remodeling and caveolae dynamics. PMID:26167412

  7. Biological Ice Nucleation Activity in Cloud Water (Invited)

    NASA Astrophysics Data System (ADS)

    Delort, A.

    2013-12-01

    Ice nucleation active (INA) biological particles, in particular microorganisms, were studied in cloud water. Twelve cloud samples were collected over a period of 16 months from the puy de Dôme summit (1465 m, France) using sterile cloud droplet impactors. The samples were characterized through biological (cultures, cell counts) and physico-chemical measurements (pH, ion concentrations, carbon content...), and biological ice nuclei were investigated by droplet-freezing assays from -3°C to -13°C. The concentration of total INA particles within this temperature range typically varied from ~1 to ~100 per mL of cloud water; the concentrations of biological IN were several orders of magnitude higher than the values previously reported for precipitations. At -12°C, at least 76% of the IN were biological in origin, i.e. they were inactivated by heating at 95°C, and at temperatures above -8°C only biological material could induce ice. By culture, 44 Pseudomonas-like strains of bacteria were isolated from cloud water samples; 16% of them were found INA at the temperature of -8°C and they were identified as Pseudomonas syringae, Xanthomonas sp. and Pseudoxanthomonas sp.. Two strains induced freezing at as warm as -2°C, positioning them among the most active ice nucleators described so far. We estimated that, in average, 0.18% and more than 1%.of the bacterial cells present in clouds (~104 mL-1) are INA at the temperatures of -8°C and -12°C, respectively.

  8. Regional Biases in Droplet Activation Parameterizations: Strong Influence on Aerosol Second Indirect Effect in the Community Atmosphere Model v5.

    NASA Astrophysics Data System (ADS)

    Morales, R.; Nenes, A.

    2014-12-01

    Aerosol-cloud interactions constitute one of the most uncertain aspects of anthropogenic climate change estimates. The magnitude of these interactions as represented in climate models strongly depends on the process of aerosol activation. This process is the most direct physical link between aerosols and cloud microphysical properties. Calculation of droplet number in GCMs requires the computation of new droplet formation (i.e., droplet activation), through physically based activation parameterizations. Considerable effort has been placed in ensuring that droplet activation parameterizations have a physically consistent response to changes in aerosol number concentration. However, recent analyses using an adjoint sensitivity approach showed that parameterizations can exhibit considerable biases in their response to other aerosol properties, such as aerosol modal diameter or to the aerosol chemical composition. This is a potentially important factor in estimating aerosol indirect effects since changes in aerosol properties from pre-industrial times to present day exhibit a very strong regional signature. In this work we use the Community Atmosphere Model (CAM5) to show that the regional imprint of the changes in aerosol properties during the last century interacts with the droplet activation parameterization in a way that these biases are amplified over climatically relevant regions. Two commonly used activation routines, the CAM5 default, Abdul-Razzak and Ghan parameterization, as well as the Fountoukis and Nenes parameterization are used in this study. We further explored the impacts of Nd parameterization biases in the first and second aerosol indirect effects separately, by performing simulations were droplet number was not allowed to intervene in the precipitation initiation process. The simulations performed show that an unphysical response to changes in the diameter of accumulation mode aerosol translates into extremely high Nd concentrations over South

  9. Simultaneous retrievals of cloud optical depth and droplet concentration from solar irradiance and microwave liquid water path

    NASA Astrophysics Data System (ADS)

    Boers, Reinout

    1997-12-01

    A 20-month time series of continuous observations of microwave radiation and solar irradiance was used to estimate the cloud optical depth and droplet number concentration at the Cape Grim Baseline Air Pollution Station, Tasmania, (40°41'S, 144°41'E). The data were selected by wind directions. When the air was from "baseline" origin, i.e., it had travelled over long oceanic distances and was mostly devoid of anthropogenic influences, the retrieved droplet concentration and optical depth were lower than when the air was from "nonbaseline" i.e., continental origin. Therefore the observed variation in cloud microphysical properties reflects the difference between the natural background conditions over the Southern Ocean and continental conditions with elevated droplet counts. Under baseline conditions the retrieved cloud optical depth exhibits a weak but perceptible seasonal cycle that has been previously observed from satellite data with a minimum in the austral winter, and a maximum in the austral summer. The results demonstrate that routine retrievals of cloud microphysical properties are possible using only a pyranometer and a microwave liquid water radiometer.

  10. Continuous standalone controllable aerosol/cloud droplet dryer for atmospheric sampling

    NASA Astrophysics Data System (ADS)

    Sjogren, S.; Frank, G. P.; Berghof, M. I. A.; Martinsson, B. G.

    2012-08-01

    We describe a general-purpose dryer designed for continuous sampling of atmospheric aerosol, where a specified relative humidity (RH) of the sample flow (lower than the atmospheric humidity) is required. It is often prescribed to measure the properties of dried aerosol, for instance for monitoring networks. The specific purpose of our dryer is to dry highly charged cloud droplets (maximum diameter approximately 25 μm) with minimum losses from the droplet size distribution entering the dryer as well as on the residual dry particle size distribution exiting the dryer. This is achieved by using a straight vertical downwards path from the aerosol inlet mounted above the dryer, and removing humidity to a dry closed loop airflow on the other side of a semi-permeable GORE-TEX membrane (total area 0.134 m2). The water vapour transfer coefficient, k, was measured to 4.6 × 10-7 kg m-2 s-1% RH-1 in the laboratory and is used for design purposes. A net water vapour transfer rate of up to 1.2 × 10-6 kg s-1 was achieved in the field. This corresponds to drying a 5.7 L min-1 (0.35 m3 h-1) aerosol sample flow from 100% RH to 27% RH at 293 K (with a drying air total flow of 8.7 L min-1). The system was used outdoors from 9 May until 20 October 2010, on the mountain Brocken (51.80° N, 10.67° E, 1142 m a.s.l.) in the Harz region in central Germany. Sample air relative humidity of less than 30% was obtained 72% of the time period. The total availability of the measurement system was > 94% during these five months.

  11. Continuous stand-alone controllable aerosol/cloud droplet dryer for atmospheric sampling

    NASA Astrophysics Data System (ADS)

    Sjogren, S.; Frank, G. P.; Berghof, M. I. A.; Martinsson, B. G.

    2013-02-01

    We describe a general-purpose dryer designed for continuous sampling of atmospheric aerosol, where a specified relative humidity (RH) of the sample flow (lower than the atmospheric humidity) is required. It is often prescribed to measure the properties of dried aerosol, for instance for monitoring networks. The specific purpose of our dryer is to dry cloud droplets (maximum diameter approximately 25 μm, highly charged, up to 5 × 102 charges). One criterion is to minimise losses from the droplet size distribution entering the dryer as well as on the residual dry particle size distribution exiting the dryer. This is achieved by using a straight vertical downwards path from the aerosol inlet mounted above the dryer, and removing humidity to a dry, closed loop airflow on the other side of a semi-permeable GORE-TEX membrane (total area 0.134 m2). The water vapour transfer coefficient, k, was measured to be 4.6 × 10-7 kg m-2 s-1% RH-1 in the laboratory (temperature 294 K) and is used for design purposes. A net water vapour transfer rate of up to 1.2 × 10-6 kg s-1 was achieved in the field. This corresponds to drying a 5.7 L min-1 (0.35 m3 h-1) aerosol sample flow from 100% RH to 27% RH at 293 K (with a drying air total flow of 8.7 L min-1). The system was used outdoors from 9 May until 20 October 2010, on the mountain Brocken (51.80° N, 10.67° E, 1142 m a.s.l.) in the Harz region in central Germany. Sample air relative humidity of less than 30% was obtained 72% of the time period. The total availability of the measurement system was >94% during these five months.

  12. CFD Model of Water Droplet Transport for ISS Hygiene Activity

    NASA Technical Reports Server (NTRS)

    Son, Chang H.

    2011-01-01

    The goal of the study is to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC). Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow made possible to identify the paths of water transport. The Node 3 airflow was computed for several ventilation scenarios. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 2-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain. The probability of the droplet transport to the adjacent rack surface with electronic equipment was predicted.

  13. Clouds caused by human activities: the anthropoclouds

    NASA Astrophysics Data System (ADS)

    Mazon, Jordi; Costa, Marcel; Pino, David; Lorente, Jeroni

    2013-04-01

    The classification of clouds is based on the pioneering classification carried out by Howard (1804). In this classification, and also in the successive editions of the International Classification of Clouds published by the World Meteorological Organization (WMO, 1975, 1987) 10 basic cloud genera are included and described. In all cases, the cause that leads to the formation of clouds remains as a secondary issue. It is assumed that all of them are exclusively produced by natural mechanisms without any human intervention. However, aerosol and water vapour emissions produced by human activity may increase cloud formation having an increasing importance in the atmospheric energy budget and consequently in the earth's climate. Effectively, since the end of the Nineteenth century, human activity has been injecting large amounts of water vapour into the atmosphere, cloud condensation nuclei and hot air mainly generated in the combustion processes that under certain spatial and temporal conditions can enhance cloud formation. These anthropogenic aerosols are linked to the climate and the water cycle (Kaufman et al, 2002). The aim of this communication is to point out the anthropic origin of some clouds in the cloud classification. Several cases of the 7 basic genera cloud caused by human activities will be shown to discuss the importance of differentiating the origin of clouds in weather observations. This differentiation would improve the understanding the contribution of these clouds to climate change. To differentiate the clouds formed by human activity, we propose to use the prefix anthropo- before the scientific name (and a- before the abbreviation) in some of the 10 basic clouds defined by the International Classification of Clouds, those which could have an anthropic origin, and thus begin new data of cloud observations that could help future research to improve the effect of human activity in the troposphere.

  14. Cloud-Droplet Ingestion in Engine Inlets with Inlet Velocity Ratios of 1.0 and 0.7

    NASA Technical Reports Server (NTRS)

    Brun, Rinaldo J

    1957-01-01

    The paths of cloud droplets into two engine inlets have been calculated for a wide range of meteorological and flight conditions. The amount of water in droplet form ingested by the inlets and the amount and distribution of water impinging on the inlet walls are obtained from these droplet-trajectory calculations. In both types of inlet, a prolate ellipsoid of revolution represents either part or all of the forebody at the center of an annular inlet to an engine. The configurations can also represent a fuselage of an airplane with side ram-scoop inlets. The studies were made at an angle of attack of 0 degree. The principal difference between the two inlets studied is that the inlet-air velocity of one is 0.7 that of the other. The studies of the two velocity ratios lead to some important general concepts of water ingestion in inlets.

  15. Spontaneous Division and Motility in Active Nematic Droplets

    NASA Astrophysics Data System (ADS)

    Giomi, Luca; DeSimone, Antonio

    2014-04-01

    We investigate the mechanics of an active droplet endowed with internal nematic order and surrounded by an isotropic Newtonian fluid. Using numerical simulations we demonstrate that, due to the interplay between the active stresses and the defective geometry of the nematic director, this system exhibits two of the fundamental functions of living cells: spontaneous division and motility, by means of self-generated hydrodynamic flows. These behaviors can be selectively activated by controlling a single physical parameter, namely, an active variant of the capillary number.

  16. Investigation of Vortex Clouds and Droplet Sizes in Heated Water Spray Patterns Generated by Axisymmetric Full Cone Nozzles

    PubMed Central

    Naz, M. Y.; Sulaiman, S. A.; Ariwahjoedi, B.; Ku Shaari, Ku Zilati

    2013-01-01

    The hot water sprays are an important part of many industrial processes, where the detailed knowledge of physical phenomena involved in jet transportation, interaction, secondary breakup, evaporation, and coalescence of droplets is important to reach more efficient processes. The objective of the work was to study the water spray jet breakup dynamics, vortex cloud formation, and droplet size distribution under varying temperature and load pressure. Using a high speed camera, the spray patterns generated by axisymmetric full cone nozzles were visualized as a function water temperature and load pressure. The image analysis confirmed that the spray cone angle and width do not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The formation and decay of semitorus like vortex clouds were also noticed in spray structures generated at near water boiling point temperature. For the nozzle with smallest orifice diameter (1.19 mm), these vortex clouds were very clear at 90°C heating temperature and 1 bar water load pressure. In addition, the sauter mean diameter (SMD) of the spray droplets was also measured by using Phase Doppler Anemometry (PDA) at different locations downstream of the nozzle exit. It was noticed that SMD varies slightly w.r.t. position when measured at room temperature whereas at higher temperature values, it became almost constant at distance of 55 mm downstream of the nozzle exit. PMID:24307881

  17. Investigation of vortex clouds and droplet sizes in heated water spray patterns generated by axisymmetric full cone nozzles.

    PubMed

    Naz, M Y; Sulaiman, S A; Ariwahjoedi, B; Ku Shaari, Ku Zilati

    2013-01-01

    The hot water sprays are an important part of many industrial processes, where the detailed knowledge of physical phenomena involved in jet transportation, interaction, secondary breakup, evaporation, and coalescence of droplets is important to reach more efficient processes. The objective of the work was to study the water spray jet breakup dynamics, vortex cloud formation, and droplet size distribution under varying temperature and load pressure. Using a high speed camera, the spray patterns generated by axisymmetric full cone nozzles were visualized as a function water temperature and load pressure. The image analysis confirmed that the spray cone angle and width do not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The formation and decay of semitorus like vortex clouds were also noticed in spray structures generated at near water boiling point temperature. For the nozzle with smallest orifice diameter (1.19 mm), these vortex clouds were very clear at 90°C heating temperature and 1 bar water load pressure. In addition, the sauter mean diameter (SMD) of the spray droplets was also measured by using Phase Doppler Anemometry (PDA) at different locations downstream of the nozzle exit. It was noticed that SMD varies slightly w.r.t. position when measured at room temperature whereas at higher temperature values, it became almost constant at distance of 55 mm downstream of the nozzle exit. PMID:24307881

  18. Photooxidation of methylhydroperoxide and ethylhydroperoxide in the aqueous phase under simulated cloud droplet conditions

    NASA Astrophysics Data System (ADS)

    Monod, A.; Chevallier, E.; Durand Jolibois, R.; Doussin, J. F.; Picquet-Varrault, B.; Carlier, P.

    The photooxidation of methylhydroperoxide (MHP) and ethylhydroperoxide (EHP) was studied in the aqueous phase under simulated cloud droplet conditions. The kinetics and the reaction products of direct photolysis and OH-oxidation were studied for both compounds. The photolysis frequencies obtained were JMHP=4.5 (±1.0)×10 -5 s -1 and JEHP=3.8 (±1.0)×10 -5 s -1 for MHP and EHP respectively at 6 °C. The rate constants of OH-oxidation of MHP at 6 °C were 6.3 (±2.6)×10 8 M -1 s -1 and 5.8 (±1.9)×10 8 M -1 s -1 relative to ethanol and 2-propanol respectively, and the rate constant of OH-oxidation of EHP was 2.1 (±0.6)×10 9 M -1 s -1 relative to 2-propanol at 6 °C. The reaction products obtained were not only the corresponding aldehydes, but also the corresponding acids, and hydroxyhydroperoxides as primary reaction products. The yields for these products were sensitive to the pH value. The carbon balance was higher than 85% for all experiments, showing that most reaction products were detected. A chemical mechanism was proposed for each reaction, and the atmospheric implications were discussed.

  19. The impact of ground-based glaciogenic seeding on clouds and precipitation over mountains: A case study of a shallow orographic cloud with large supercooled droplets

    NASA Astrophysics Data System (ADS)

    Pokharel, Binod; Geerts, Bart; Jing, Xiaoqin

    2015-06-01

    This paper examines the impact of ground-based glaciogenic seeding on a shallow, lightly precipitating orographic cloud with rather large (~35 µm) supercooled droplets. The storm was observed on 22 February 2012 as part of the AgI (silver iodide) Seeding Cloud Impact Investigation experiment in Wyoming. The cloud base (top) temperature was about -5°C (-12°C). Vertical velocity data from an airborne Doppler W-band (3 mm) profiling Wyoming Cloud Radar (WCR) indicate broad ascent due to the strong wind (20 m s-1) impinging on the terrain and small pockets of intense updrafts. The large droplets, low droplet and ice particle concentrations, and strong updrafts lead to natural snow growth mainly by accretion (riming). The treated (seeded) period is compared with the preceding untreated period. The main target site, located on a mountain pass, was impacted by AgI seeding, according to a trace chemistry analysis of the falling snow. Data from three radar systems were used in the analysis of the impact of seeding on snow growth: the WCR, two Ka-band (1.2 cm) profiling Micro Rain Radars , and an X-band (3 cm) scanning polarization Doppler-on-Wheels radar. This case is complicated somewhat by a natural increase in cloud liquid water and in snow growth by riming, starting halfway during the seeding period, and continuing after seeding ended. Composite data from the centimeter-wave radar systems indicate an increase in low-level reflectivity during seeding, even after accounting for the natural trend observed in the upwind control region. A precipitation particle probe at the main target site shows an increase in concentration of both small and large hydrometeors.

  20. Estimation of cloud droplet size distribution parameters from measurements of polarized reflection by the Research Scanning Polarimeter

    NASA Astrophysics Data System (ADS)

    Alexandrov, M. D.; Cairns, B.; Hostetler, C. A.; Ferrare, R. A.

    2009-12-01

    The Research Scanning Polarimeter (RSP) is an airborne prototype for the Aerosol Polarimetry Sensor (APS), which is due to be launched in 2009 as part of the NASA Glory Project. The RSP measures both polarized and total reflectances in 9 spectral channels with center wavelengths of 410, 470, 555, 670, 865, 960, 1590, 1880 and 2250 nm. The data from actual RSP scans is aggregated into "virtual" scans, each consisting of all reflectances (at a variety of scattering angles) from a single point on the ground or at the cloud top. This aggregation can be done using the aircraft attitude data (altitude, speed, pitch and crab angles), or statistically using a procedure based on cross-correlation between subsequent scans. For our cloud droplet size retrievals we utilize the dependences on the scattering angle of the polarized reflectances in 410, 865, and 2250 nm spectral channels. Our technique is based on the fact that the polarized reflectances of clouds within the scattering angle range between 140 and 170 degrees exhibit sharply defined structure ("rainbow"), which is determined mainly by single scattering properties of the cloud particles. The latter observation significantly simplifies both forward modeling and inversions, while also eliminating uncertainties from unknown aerosol load and possible presence of undetected clouds nearby. The dependence of the rainbow signature on the cloud droplet effective radius has the form of dilation of the curve along the scattering angle axis, while increase of the effective variance results in smoothing of the curve making the extrema less pronounced. Our fitting technique has 2 steps. On the first ("digital") step we count minima and maxima in the observed rainbow signature and match these numbers (give or take one) with those from the lookup table computed for the specific scattering range. On the next ("analog") step we directly look for the best fit (up to an arbitrary multiplier) among the plausible subset of forward

  1. Lipoprotein lipase activity is required for cardiac lipid droplet production.

    PubMed

    Trent, Chad M; Yu, Shuiqing; Hu, Yunying; Skoller, Nathan; Huggins, Lesley A; Homma, Shunichi; Goldberg, Ira J

    2014-04-01

    The rodent heart accumulates TGs and lipid droplets during fasting. The sources of heart lipids could be either FFAs liberated from adipose tissue or FAs from lipoprotein-associated TGs via the action of lipoprotein lipase (LpL). Because circulating levels of FFAs increase during fasting, it has been assumed that albumin transported FFAs are the source of lipids within heart lipid droplets. We studied mice with three genetic mutations: peroxisomal proliferator-activated receptor α deficiency, cluster of differentiation 36 (CD36) deficiency, and heart-specific LpL deletion. All three genetically altered groups of mice had defective accumulation of lipid droplet TGs. Moreover, hearts from mice treated with poloxamer 407, an inhibitor of lipoprotein TG lipolysis, also failed to accumulate TGs, despite increased uptake of FFAs. TG storage did not impair maximal cardiac function as measured by stress echocardiography. Thus, LpL hydrolysis of circulating lipoproteins is required for the accumulation of lipids in the heart of fasting mice. PMID:24493834

  2. Airship measurements of aerosol size distributions, cloud droplet spectra, and trace gas concentrations in the marine boundary layers

    SciTech Connect

    Frick, G.M.; Hoppel, W.A. )

    1993-11-01

    The use of an airship as a platform to conduct atmospheric chemistry, aerosol, and cloud microphysical research is described, and results from demonstration flights made off the Oregon coast are presented. The slow speed of the airship makes it an ideal platform to do high-spatial resolution profiling both vertically and horizontally, and to measure large aerosol and cloud droplet distributions without the difficulties caused by high-speed aircraft sampling. A unique set of data obtained during the demonstration flights show the effect that processing marine boundary layer aerosol through stratus clouds has on the aerosol size distribution. Evidence of new particle formation (nucleation of particles) was also observed on about half the days on which flights were made. 11 refs., 9 figs., 1 tab.

  3. Investigation of Marine Stratocumulus Cloud-top Droplet Size Retrievals from Observations of Supernumerary Bows and Glories in Polarized Light

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Xu, F.; Garay, M. J.

    2014-12-01

    Polarimetry provides valuable constraints on atmospheric particle optical and microphysical properties. We have been using imagery acquired by the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) over liquid water clouds to retrieve cloud-top droplet size distributions from multiangular observations in polarized light. AirMSPI is an 8-band ultraviolet-visible-near infrared pushbroom camera, measuring polarization at 470, 660, and 865 nm. It is mounted on a gimbal to acquire multiangular observations over a ±67° along-track range from the NASA ER-2 high-altitude aircraft. Droplet size retrievals from AirMSPI and other multiangular polarimeters typically apply single scattering theory to the spectral and angular structure of polarized radiance in the supernumerary bows (interference fringes from internally reflected and transmitted waves that appear at scattering angles between ~140° and ~165°), using a two-parameter gamma distribution governed by droplet effective radius and variance to model the clouds. However, different values of these parameters are inferred from surface wave-involved interference fringes in polarized radiance observed within the glory region (scattering angles exceeding ~170°). Although multiple scattering can affect the magnitude of such oscillations, it does not affect their angular positions, suggesting the need to account more rigorously for details of the size distribution, vertical stratification, or other effects. Theoretical analysis of AirMSPI supernumerary bow and glory observations in polarized light is being undertaken in an attempt to reconcile the measurements in both angular domains, with the objective of retrieving more details about the cloud tops than can be inferred from supernumerary bow polarimetry alone.

  4. Homogeneous condensation - Freezing nucleation rate measurements for small water droplets in an expansion cloud chamber

    NASA Technical Reports Server (NTRS)

    Hagen, D. E.; Anderson, R. J.; Kassner, J. L., Jr.

    1981-01-01

    Experimental data on ice nucleation, presented in an earlier paper, are analyzed to yield information about the homogeneous nucleation rate of ice from supercooled liquid and the heights of energy barriers to that nucleation. The experiment consisted of using an expansion cloud chamber to nucleate from the vapor a cloud of supercooled pure water drops and the observation of the fraction of drops which subsequently froze. The analysis employed standard classical homogeneous nucleation theory. The data are used to extract the first experimental measurement (albeit indirect) of the activation energy for the transfer of a water molecule across the liquid-ice interface at temperatures near -40 C. The results provide further evidence that the local liquid structure becomes more icelike as the temperature is lowered.

  5. The collision efficiency of cloud droplets in a non-continuum gas

    NASA Astrophysics Data System (ADS)

    Roy, Anubhab; Koch, Donald

    2015-11-01

    The collision efficiency of bidisperse drops in a non-continuum gas is determined, subject to the coupled driving forces of differential sedimentation and turbulent shear. A major source of uncertainty in predicting precipitation formation comes from the absence of reliable theoretical predictions for the collision efficiency. Since coalescence requires molecular contact between two drops, it is sensitive to the non-continuum gas flows and van der Waals (vdW) attractions occurring between colliding drops. As two drops interact, the disturbances to the velocity and pressure of the gas induced by the particle motion retard their rate of approach. An especially important aspect of the hydrodynamic interactions between drops (radii a1 and a2) is the lubrication interaction that occurs when the drop separation r is such that h = r -a1-a2 << 1. At such small separations, the relative velocity wr of the drops along their line-of centers induces a very large O(wr/ h) force. Since the forces driving this relative motion remain finite, wr will vanish as h --> 0. This leads to a prediction that the collision efficiency would be zero if one considered the interaction of two drops in a continuum gas in the absence of attractive colloidal forces. Therefore, it is clearly essential to include an accurate description of all the relevant near field interactions to accurately predict the true collision efficiency. We will treat the coupled sedimentation and turbulent shear effects governing cloud droplets, treated independently in previous works. We show that it is the non-continuum effects rather than vdW that primarily allows finite collision efficiency for drop sizes a>5 μm at atmospheric conditions.

  6. Heterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions

    NASA Astrophysics Data System (ADS)

    Möhler, O.; Georgakopoulos, D. G.; Morris, C. E.; Benz, S.; Ebert, V.; Hunsmann, S.; Saathoff, H.; Schnaiter, M.; Wagner, R.

    2008-04-01

    The ice nucleation activities of five different Pseudomonas syringae, Pseudomonas viridiflava and Erwinia herbicola bacterial species and of SnomaxTM were investigated in the temperature range between -5 and -15°C. Water suspensions of these bacteria were directly spray into the cloud chamber of the AIDA facility of Forschungszentrum Karlsruhe at a temperature of -5.7°. At this temperature, about 1% of the SnomaxTM cells induced freezing of the spray droplets before they evaporated in the cloud chamber. The other suspensions of living cells didn't induce any measurable ice concentration during spray formation at -5.7°. The remaining aerosol was exposed to typical cloud activation conditions in subsequent experiments with expansion cooling to about -11°C. During these experiments, the bacterial cells first acted as cloud condensation nuclei to form cloud droplets and then eventually acted as ice nuclei to freeze the droplets. The results indicate that the bacteria investigated in the present study are mainly ice active in the temperature range between -7 and -11°C with an INA fraction of the order of 10-4. The ice nucleation efficiency of SnomaxTM cells was much larger with an INA fraction of 0.2 at temperatures around -8°C.

  7. Cloud microphysical relationships in California marine stratus

    SciTech Connect

    Hudson, J.G.; Svensson, G.

    1995-12-01

    Cloud microphysical measurements off the southern California coast are presented and compared with in situ airborne measurements of cloud condensation nuclei (CCN) spectra. Large-scale variations in cloud droplet concentrations were due to CCN variations, some medium-scale variations may be a result of the conversion of droplets to drops by coalescence, while small-scale variations were due to different proportions of the CCN spectra being activated because of variations in updraft velocity at cloud base. This latter internal mixing process produces an inverse relationship between droplet concentration and mean size and an increase in droplet spectral width with mean droplet size. Drizzle drop concentrations are strongly associated with lower droplet concentrations, larger droplets, and greater droplet spectral width. 29 refs., 9 figs., 3 tabs.

  8. Mixed-layer models and large-eddy simulations of stratocumulus-topped marine boundary layers: Their nonlinear dynamics and sensitivity to cloud droplet concentration

    NASA Astrophysics Data System (ADS)

    Uchida, Junya

    Due to their high albedo and weak greenhouse effects, low stratiform clouds have a strong tendency to cool the earth and are an important factor in predicting global climate. However, they are difficult to accurately simulate in global climate models, leading to large disparities between the responses of leading global climate models to increased greenhouse gases and aerosols. Marine subtropical stratocumulus-topped boundary layers that persist over cool ocean waters such as off the coast of California or Chile are particularly challenging due to a strong and sharp capping inversion that is difficult for the grids of numerical models to resolve, as well as the clouds themselves being thin, radiatively active, and sometimes drizzling. We use a simple model problem to look at effects of aerosols on the properties of stratocumulus cloud-topped boundary layer, which can help us better understand the effect of human-generated aerosols on climate. We compare simulations with two models, a simple Mixed-Layer Model (MLM) and a much more complex and computationally intensive Large-Eddy Simulations (LES). Our model problem is idealized from an observed case, Research Flight 1 of the Second Dynamics and Chemistry of Marine Stratocumulus Experiment (DYCOMS-II) 300 km southwest of San Diego. Simulations with different values of cloud droplet condensations are run to steady state and compared to each other. The MLM is a 3-variable autonomous system of ordinary differential equations which we study using phase plane analysis. This leads to the idea of a one-dimensional slow manifold and multiple long-term evolutions depending on the initial boundary layer depth, which prove to be very helpful in understanding the LES as well as the MLM. For high droplet concentrations, the LES displays two slow manifolds leading into two stable steady states, a well-mixed stratocumulus layer and a decoupled boundary layer with thin, broken cloud. This is the first time that an LES of boundary

  9. Effects of Nonsphericity on the Behavior of Lorenz-Mie Resonances in Scattering Characteristics of Liquid-Cloud Droplets

    NASA Technical Reports Server (NTRS)

    Dlugach, Janna M.; Mishchenko, Michael I.

    2014-01-01

    By using the results of highly accurate T-matrix computations for randomly oriented oblate and prolate spheroids and Chebyshev particles with varying degrees of asphericity, we analyze the effects of a deviation of water-droplet shapes from that of a perfect sphere on the behavior of Lorenz-Mie morphology-dependent resonances of various widths. We demonstrate that the positions and profiles of the resonances can change significantly with increasing asphericity. The absolute degree of asphericity required to suppress a Lorenz-Mie resonance is approximately proportional to the resonance width. Our results imply that numerical averaging of scattering characteristics of real cloud droplets over sizes may rely on a significantly coarser size-parameter resolution than that required for ideal, perfectly spherical particles.

  10. Effects of nonsphericity on the behavior of Lorenz-Mie resonances in scattering characteristics of liquid-cloud droplets

    NASA Astrophysics Data System (ADS)

    Dlugach, Janna M.; Mishchenko, Michael I.

    2014-10-01

    By using the results of highly accurate T-matrix computations for randomly oriented oblate and prolate spheroids and Chebyshev particles with varying degrees of asphericity, we analyze the effects of a deviation of water-droplet shapes from that of a perfect sphere on the behavior of Lorenz-Mie morphology-dependent resonances of various widths. We demonstrate that the positions and profiles of the resonances can change significantly with increasing asphericity. The absolute degree of asphericity required to suppress a Lorenz-Mie resonance is approximately proportional to the resonance width. Our results imply that numerical averaging of scattering characteristics of real cloud droplets over sizes may rely on a significantly coarser size-parameter resolution than that required for ideal, perfectly spherical particles.

  11. Clouds as habitat and seeders of active bacteria

    NASA Astrophysics Data System (ADS)

    Sattler, Birgit; Puxbaum, Hans; Limbeck, Andreas; Psenner, Roland

    2002-02-01

    Transformation of organic and inorganic material in the atmosphere has been presumed to be caused by physical and chemical processes in the gas phase and in aerosol particles. Here we show that bacterial metabolism can play a measurable role in the production and transformation of organic carbon in cloud droplets collected at high altitudes, even at temperatures at or well below 0 degree(s)C. Although bacterial abundance and biomass in cloud water is low, compared to other oligotrophic aquatic environments, growth and carbon production rates per cell are approximately as high as in aquatic ecosystems. We hypothesize that microorganisms could play a crucial role in the transformation of airborne organic matter and the chemical composition of snow and rain. It has been recognized, the microbes can act as cloud condensation nuclei but we consider the impact on the global climate as low. With an increasing trend in cloudiness cloud systems can be seen as an ecosystem for active microbes with a seeding effort both for aquatic and terrestrial realms. Furthermore, air currents can distribute microbes over long distances to remote areas e.g. like ice caps and snow fields.

  12. A Solar Reflectance Method for Retrieving Cloud Optical Thickness and Droplet Size Over Snow and Ice Surfaces

    NASA Technical Reports Server (NTRS)

    Platnick, S.; Li, J. Y.; King, M. D.; Gerber, H.; Hobbs, P. V.

    1999-01-01

    Cloud optical thickness and effective radius retrievals from solar reflectance measurements are traditionally implemented using a combination of spectral channels that are absorbing and non-absorbing for water particles. Reflectances in non-absorbing channels (e.g., 0.67, 0.86, 1.2 micron spectral window bands) are largely dependent on cloud optical thickness, while longer wavelength absorbing channels (1.6, 2. 1, and 3.7 micron window bands) provide cloud particle size information. Cloud retrievals over ice and snow surfaces present serious difficulties. At the shorter wavelengths, ice is bright and highly variable, both characteristics acting to significantly increase cloud retrieval uncertainty. In contrast, reflectances at the longer wavelengths are relatively small and may be comparable to that of dark open water. A modification to the traditional cloud retrieval technique is devised. The new algorithm uses only a combination of absorbing spectral channels for which the snow/ice albedo is relatively small. Using this approach, retrievals have been made with the MODIS Airborne Simulator (MAS) imager flown aboard the NASA ER-2 from May - June 1998 during the Arctic FIRE-ACE field deployment. Data from several coordinated ER-2 and University of Washington CV-580 in situ aircraft observations of liquid water stratus clouds are examined. MAS retrievals of optical thickness, droplet effective radius, and liquid water path are shown to be in good agreement with the in situ measurements. The initial success of the technique has implications for future operational satellite cloud retrieval algorithms in polar and wintertime regions.

  13. A method to determine true air temperature fluctuations in clouds with liquid water fraction and estimate water droplet effect on the calculations of the spectral structure of turbulent heat fluxes in cumulus clouds based on aircraft data

    NASA Astrophysics Data System (ADS)

    Strunin, Alexander M.; Zhivoglotov, Dmitriy N.

    2014-03-01

    Liquid water droplets could distort aircraft temperature measurements in clouds, leading to errors in calculated heat fluxes and incorrect flux distribution pattern. The estimation of cloud droplet effect on the readings of the high-frequency aircraft thermometer employed at the Central Aerological Observatory (CAO) was based on an experimental study of the sensor in a wind tunnel, using an air flow containing liquid water droplets. Simultaneously, calculations of the distribution of speed and temperature in a flow through the sensitive element of the sensor were fulfilled. This permitted estimating the coefficient of water content effect on temperature readings. Another way of estimating cloud droplet effect was based on the analysis of data obtained during aircraft observations of cumulus clouds in a tropical zone (Cuba Island). As a result, a method of correcting air temperature and recovering true air temperature fluctuations inside clouds was developed. This method has provided consistent patterns of heat flux distribution in a cumulus area. Analysis of the results of aircraft observations of cumulus clouds with temperature correction fulfilled has permitted investigation of the spectral structure of the fields of air temperature and heat fluxes to be performed in cumulus zones based on wavelet transformation. It is shown that mesoscale eddies (over 500 m in length) were the main factor of heat exchange between a cloud and the ambient space. The role of turbulence only consisted in mixing inside the cloud.

  14. Droplet size spectra and water-vapor concentration of laboratory water clouds: inversion of Fourier transform infrared (500-5000 cm(-1)) optical-depth measurement.

    PubMed

    Arnott, W P; Schmitt, C; Liu, Y; Hallett, J

    1997-07-20

    Infrared extinction optical depth (500-5000 cm(-1)) has been measured with a Fourier transform infrared spectrometer for clouds produced with an ultrasonic nebulizer. Direct measurement of the cloud droplet size spectra agree with size spectra retrieved from inversion of the extinction measurements. Both indicate that the range of droplet sizes is 1-14 mum. The retrieval was accomplished with an iterative algorithm that simultaneously obtains water-vapor concentration. The basis set of droplet extinction functions are computed once by using numerical integration of the Lorenz-Mie theory over narrow size bins, and a measured water-vapor extinction curve was used. Extinction and size spectra are measured and computed for both steady-state and dissipating clouds. It is demonstrated that anomalous diffraction theory produces relatively poor droplet size and synthetic extinction spectra and that extinction measurements are helpful in assessing the validity of various theories. Calculations of cloud liquid-water content from retrieved size distributions agree with a parameterization based on optical-depth measurements at a wave number of 906 cm(-1) for clouds that satisfy the size spectral range assumptions of the parameterization. Significance of droplet and vapor contribution to the total optical depth is used to evaluate the reliability of spectral inversions. PMID:18259335

  15. Bringing Clouds into Our Lab! - The Influence of Turbulence on the Early Stage Rain Droplets

    NASA Astrophysics Data System (ADS)

    Yavuz, Mehmet Altug; Kunnen, Rudie; Heijst, Gertjan; Clercx, Herman

    2015-11-01

    We are investigating a droplet-laden flow in an air-filled turbulence chamber, forced by speaker-driven air jets. The speakers are running in a random manner; yet they allow us to control and define the statistics of the turbulence. We study the motion of droplets with tunable size (Stokes numbers ~ 0.13 - 9) in a turbulent flow, mimicking the early stages of raindrop formation. 3D Particle Tracking Velocimetry (PTV) together with Laser Induced Fluorescence (LIF) methods are chosen as the experimental method to track the droplets and collect data for statistical analysis. Thereby it is possible to study the spatial distribution of the droplets in turbulence using the so-called Radial Distribution Function (RDF), a statistical measure to quantify the clustering of particles. Additionally, 3D-PTV technique allows us to measure velocity statistics of the droplets and the influence of the turbulence on droplet trajectories, both individually and collectively. In this contribution, we will present the clustering probability quantified by the RDF for different Stokes numbers. We will explain the physics underlying the influence of turbulence on droplet cluster behavior. This study supported by FOM/NWO Netherlands.

  16. Characterizing the Retrieval of Cloud Optical Thickness and Droplet Effective Radius to Overlying Aerosols Using a General Inverse Theory Approach

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Pilewskie, P.; Schmidt, S.

    2013-12-01

    The upwelling shortwave irradiance measured by the airborne Solar Spectral Flux Radiometer (SSFR) flying above a cloud and aerosol layer is influenced by the properties of the cloud and aerosol particles below, just as would the radiance measured from satellite. Unlike satellite measurements, those from aircraft provide the unique capability to fly a lower-level leg above the cloud, yet below the aerosol layer, to characterize the extinction of the aerosol layer and account for its impact on the measured cloud albedo. Previous work [Coddington et al., 2010] capitalized on this opportunity to test the effects of aerosol particles (or more appropriately, the effects of neglecting aerosols in forward modeling calculations) on cloud retrievals using data obtained during the Intercontinental Chemical Transport Experiment/Intercontinental Transport and Chemical Transformation of anthropogenic pollution (INTEX-A/ITCT) study. This work showed aerosols can cause a systematic bias in the cloud retrieval and that such a bias would need to be distinguished from a true aerosol indirect effect (i.e. the brightening of a cloud due to aerosol effects on cloud microphysics) as theorized by Haywood et al., [2004]. The effects of aerosols on clouds are typically neglected in forward modeling calculations because their pervasiveness, variable microphysical properties, loading, and lifetimes makes forward modeling calculations under all possible combinations completely impractical. Using a general inverse theory technique, which propagates separate contributions from measurement and forward modeling errors into probability distributions of retrieved cloud optical thickness and droplet effective radius, we have demonstrated how the aerosol presence can be introduced as a spectral systematic error in the distributions of the forward modeling solutions. The resultant uncertainty and bias in cloud properties induced by the aerosols is identified by the shape and peak of the posteriori

  17. Atmospheric Aerosols: Cloud Condensation Nucleus Activity of Selected Organic Molecules

    NASA Astrophysics Data System (ADS)

    Rosenorn, T.; Henning, S.; Hartz, K. H.; Kiss, G.; Pandis, S.; Bilde, M.

    2005-12-01

    Gas/particle partitioning of vapors in the atmosphere plays a major role in both climate through micro meteorology and in the physical and chemical processes of a single particle. This work has focused on the cloud droplet activation of a number of pure and mixed compounds. The means used to investigate these processes have been the University of Copenhagen cloud condensation nucleus counter setup and the Carnegie Mellon University CCNC setup. The importance of correct water activity modeling has been addressed and it has been pointed out that the molecular mass is an important parameter to consider when choosing model compounds for cloud activation models. It was shown that both traditional Kohler theory and Kohler theory modified to account for limited solubility reproduce measurements of soluble compounds well. For less soluble compounds it is necessary to use Kohler theory modified to account for limited solubility. It was also shown that this works for mixtures of compounds containing both inorganic salts and dicarboxylic acids. It has also been shown that particle phase and humidity history is important for activation behavior of particles consisting of two slightly soluble organic substances (succinic and adipic acid) and a soluble salt (NaCl). Model parameters for terpene oxidation product cloud activation have been derived. These are based on two sets of average parameters covering monoterpene oxidation products and sesquiterpene oxidation products. All parameters except the solubility were estimated and an effective solubility was calculated as the fitting parameter. The average solubility of the model compound found for mono terpene oxidation products is similar to those of sodium chloride and ammonium sulfate; however the higher molecular weight leads to a slightly higher activation diameter at fixed supersaturation. On a molar basis the monoterpene oxidation products show a 1.5 times higher effective solubility than the sesquiterpene oxidation products.

  18. Performance of the Phase Doppler Particle Analyzer icing cloud droplet sizing probe in the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Rudoff, R. C.; Bachalo, E. J.; Bachalo, W. D.; Oldenburg, J. R.

    1992-01-01

    The design, development, and testing of an icing cloud droplet sizing probe based upon the Phase Doppler Particle Analyzer (PDPA) are discussed. This probe is an in-situ laser interferometry based single particle measuring device capable of determining size distributions. The probe is designed for use in harsh environments such as icing tunnels and natural icing clouds. From the measured size distribution, Median Volume Diameter (MVD) and Liquid Water Content (LWC) may be determined. Both the theory of measurement and the mechanical aspects of the probe design and development are discussed. The MVD results from the probe are compared to an existing calibration based upon different instruments in a series of tests in the NASA Lewis Icing Research Tunnel. Agreement between the PDPA probe and the existing calibration is close for MVDs between 15 to 30 microns, but the PDPA results are considerably smaller for MVDs under 15 microns.

  19. Sensitivity of the Grid-point Atmospheric Model of IAP LASG (GAMIL1.1.0) climate simulations to cloud droplet effective radius and liquid water path

    NASA Astrophysics Data System (ADS)

    Li, Lijuan; Wang, Yuqing; Wang, Bin; Zhou, Tianjun

    2008-07-01

    This paper documents a study to examine the sensitivity to cloud droplet effective radius and liquid water path and the alleviation the energy imbalance at the top of the atmosphere and at the surface in the latest version of the Grid-point Atmospheric Model of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP) (GAMIL1.1.0). Considerable negative biases in all flux components, and thus an energy imbalance, are found in GAMIL1.1.0. In order to alleviate the energy imbalance, two modifications, namely an increase in cloud droplet effective radius and a decrease in cloud liquid water path, have been made to the cloud properties used in GAMIL. With the increased cloud droplet effective radius, the single scattering albedo of clouds is reduced, and thus the reflection of solar radiation into space by clouds is reduced and the net solar radiation flux at the top of the atmosphere is increased. With the reduced cloud optical depth, the net surface shortwave radiation flux is increased, causing a net warming over the land surface. This results in an increase in both sensible and latent heat fluxes over the land regions, which is largely balanced by the increased terrestrial radiation fluxes. Consequently, the energy balance at the top of atmosphere and at the surface is achieved with energy flux components consistent with available satellite observations.

  20. ARF1 activation dissociates ADRP from lipid droplets to promote HCV assembly.

    PubMed

    Zhang, Na; Yin, Peiqi; Zhou, Liya; Li, Hongyan; Zhang, Leiliang

    2016-06-17

    Lipid droplets are the place for HCV assembly and ADRP is an abundant lipid droplets-associated protein. However, little is known about the mechanisms how ADRP is involved in HCV life cycle. Here we demonstrate that activation of ARF1 dissociates ADRP from lipid droplets. A constitute active form of ARF1 (ARF1Q71I) promotes HCV assembly. We found that ADRP plays a positive role in HCV replication and a negative role in HCV assembly. Overexpression of ADRP increases the size of lipid droplets, while silencing ADRP reduces the size of lipid droplets. These findings provide new insight into the role of lipid droplets proteins in life cycle of HCV. PMID:27157138

  1. Single cell multiplexed assay for proteolytic activity using droplet microfluidics.

    PubMed

    Ng, Ee Xien; Miller, Miles A; Jing, Tengyang; Chen, Chia-Hung

    2016-07-15

    Cellular enzymes interact in a post-translationally regulated fashion to govern individual cell behaviors, yet current platform technologies are limited in their ability to measure multiple enzyme activities simultaneously in single cells. Here, we developed multi-color Förster resonance energy transfer (FRET)-based enzymatic substrates and use them in a microfluidics platform to simultaneously measure multiple specific protease activities from water-in-oil droplets that contain single cells. By integrating the microfluidic platform with a computational analytical method, Proteolytic Activity Matrix Analysis (PrAMA), we are able to infer six different protease activity signals from individual cells in a high throughput manner (~100 cells/experimental run). We characterized protease activity profiles at single cell resolution for several cancer cell lines including breast cancer cell line MDA-MB-231, lung cancer cell line PC-9, and leukemia cell line K-562 using both live-cell and in-situ cell lysis assay formats, with special focus on metalloproteinases important in metastasis. The ability to measure multiple proteases secreted from or expressed in individual cells allows us to characterize cell heterogeneity and has potential applications including systems biology, pharmacology, cancer diagnosis and stem cell biology. PMID:26995287

  2. Active surfaces: Ferrofluid-impregnated surfaces for active manipulation of droplets

    NASA Astrophysics Data System (ADS)

    Khalil, Karim; Mahmoudi, Seyed Reza; Abu-Dheir, Numan; Varanasi, Kripa

    2014-11-01

    Droplet manipulation and mobility on non-wetting surfaces is of practical importance for diverse applications ranging from micro-fluidic devices, anti-icing, dropwise condensation, and biomedical devices. The use of active external fields has been explored via electric, acoustic, and vibrational, yet moving highly conductive and viscous fluids remains a challenge. Magnetic fields have been used for droplet manipulation; however, usually, the fluid is functionalized to be magnetic, and requires enormous fields of superconducting magnets when transitioning to diamagnetic materials such as water. Here we present a class of active surfaces by stably impregnating active fluids such as ferrofluids into a textured surface. Droplets on such ferrofluid-impregnated surfaces have extremely low hysteresis and high mobility such that they can be propelled by applying relatively low magnetic fields. Our surface is able to manipulate a variety of materials including diamagnetic, conductive and highly viscous fluids, and additionally solid particles.

  3. Active surfaces: Ferrofluid-impregnated surfaces for active manipulation of droplets

    NASA Astrophysics Data System (ADS)

    Khalil, Karim S.; Mahmoudi, Seyed Reza; Abu-dheir, Numan; Varanasi, Kripa K.

    2014-07-01

    Droplet manipulation and mobility on non-wetting surfaces is of practical importance for diverse applications ranging from micro-fluidic devices, anti-icing, dropwise condensation, and biomedical devices. The use of active external fields has been explored via electric, acoustic, and vibrational, yet moving highly conductive and viscous fluids remains a challenge. Magnetic fields have been used for droplet manipulation; however, usually, the fluid is functionalized to be magnetic, and requires enormous fields of superconducting magnets when transitioning to diamagnetic materials such as water. Here we present a class of active surfaces by stably impregnating active fluids such as ferrofluids into a textured surface. Droplets on such ferrofluid-impregnated surfaces have extremely low hysteresis and high mobility such that they can be propelled by applying relatively low magnetic fields. Our surface is able to manipulate a variety of materials including diamagnetic, conductive and highly viscous fluids, and additionally solid particles.

  4. Experimental evidence supporting the insensitivity of cloud droplet formation to the mass accommodation coefficient for condensation of water vapor to liquid water

    NASA Astrophysics Data System (ADS)

    Langridge, Justin M.; Richardson, Mathews S.; Lack, Daniel A.; Murphy, Daniel M.

    2016-06-01

    The mass accommodation coefficient for uptake of water vapor to liquid water, αM, has been constrained using photoacoustic measurements of aqueous absorbing aerosol. Measurements performed over a range of relative humidities and pressures were compared to detailed model calculations treating coupled heat and mass transfer occurring during photoacoustic laser heating cycles. The strengths and weaknesses of this technique are very different to those for droplet growth/evaporation experiments that have typically been applied to these measurements, making this a useful complement to existing studies. Our measurements provide robust evidence that αM is greater than 0.1 for all humidities tested and greater than 0.3 for data obtained at relative humidities greater than 88% where the aerosol surface was most like pure water. These values of αM are above the threshold at which kinetic limitations are expected to impact the activation and growth of aerosol particles in warm cloud formation.

  5. The Spectral Signature of Mixed-Phase Clouds Composed of Non-Spherical Ice Crystals and Spherical Liquid Droplets in the Terrestrial Window Region

    SciTech Connect

    Yang, P.; Wei, H.- L.; Bryan, B. A.; Huang, H.- L.; Heymsfield, Andrew J.; Hu, Yong X.; Gao, B.- C.; Turner, David D.

    2003-06-01

    An outstanding problem facing the cloud modeling and remote sensing community is to improve satellite-derived cloud microphysical and macrophysical properties when a single cloud layer exists within a temperature range for which a combination of water and ice particles may be present. This is typically known as a ''mixed-phase'' cloud condition, and is prevalent when the cloud-top temperature lies between -40C and 0C. In this paper, we report on a sensitivity study of the spectral signature of mixed-phase clouds in the infrared terrestrial window (8-13 um). Mixed clouds are assumed to be a vertically uniform cloud layer composed of a mixture of pristine hexagonal crystals and spherical water droplets. Unlike the conventional approach that derives the bulk scattering properties of the mixed-phase clouds by a linear weighting of the contributions of ice and water components, the bulk single-scattering properties of mixed-phase clouds are formulated on the basis of fundamental physics. With the aid of a line-by-line radiative transfer model and a discrete ordinates radiative transfer (DISORT) computational program, we investigate the high-resolution spectral signature, expressed in terms of brightness temperature, of mixed-phase clouds with various effective sizes, ice fraction ratios, and optical thicknesses. Small particles are found to have a significant impact on the infrared spectral signature of mixed-phase clouds when the size discrepancy between the ice and water particles is large. Furthermore, the simulation results show that the infrared radiative spectrum associated with cirrus clouds can be quite different from their mixed-phase counterparts even if only a small amount of water droplets exist in the mixed-phase cloud layer.

  6. CCN Activity, Hygroscopicity, and Droplet Activation Kinetics of Secondary Organic Aerosol Resulting from the 2010 Gulf Oil Spill

    NASA Astrophysics Data System (ADS)

    Moore, R.; Lathem, T. L.; Cerully, K.; Bahreini, R.; Brock, C. A.; Langridge, J. M.; Middlebrook, A. M.; Nenes, A.; Calnex Science Team

    2010-12-01

    We present an analysis of the hygroscopicity and droplet activation kinetics of cloud condensation nuclei (CCN) sampled onboard the National Oceanic and Atmospheric Administration WP-3D aircraft downwind of the Deepwater Horizon oil spill site on June 8th and 10th, 2010. This set of measurements provides a unique case study for assessing in-situ the impact of fresh, hydrocarbonlike aerosols, which are expected to be formed via gas-to-particle conversion of the semi-volatile vapors released from oil evaporation. Similar hydrocarbon-rich aerosols constitute an important local emissions source in urban areas, but often coexist as an external/partially-internal mixture with more-oxidized, aged organic and sulfate aerosol. The DWH site provides the means to study the hygroscopic properties of these less-oxidized organic aerosols above a cleaner environmental background typical of marine environments in order to better discern their contribution to CCN activity and droplet growth. Measurements were performed with a Droplet Measurement Technologies Streamwise, Thermal-Gradient CCN counter, operating both as a counter (s=0.3%) and as a spectrometer (s=0.2-0.6%) using the newly-developed Scanning Flow CCN Analysis (SFCA) technique [1]. The instrument measures both the number concentration of particles able to nucleate droplets and also their resulting droplet sizes. The measured size information combined with a comprehensive computational fluid dynamics instrument model enables us to determine the rate of water uptake onto the particles and parameterize it in terms of an effective mass transfer coefficient [2], a key parameter needed to predict the number of activated droplets in ambient clouds. Non-refractory aerosol chemical composition was measured with an Aerodyne compact time-of-flight aerosol mass spectrometer. It was observed that the aerosols sampled downwind of the site on both days were composed predominantly of organics with a low degree of oxidation and low

  7. Droplet activation of wet particles: development of the Wet CCN approach

    NASA Astrophysics Data System (ADS)

    Nakao, S.; Suda, S. R.; Camp, M.; Petters, M. D.; Kreidenweis, S. M.

    2014-07-01

    Relationships between critical supersaturation required for activation and particle dry diameter have been the primary means for experimentally characterizing cloud condensation nuclei (CCN) activity; however, use of the dry diameter inherently limits the application to cases where the dry diameter can be used to accurately estimate solute volume. This study challenges the requirement and proposes a new experimental approach, Wet CCN, for studying CCN activity without the need for a drying step. The new approach directly measures the subsaturated portion of the Köhler curves. The experimental setup consists of a humidity-controlled differential mobility analyzer and a CCN counter; wet diameter equilibrated at known relative humidity is used to characterize CCN activity instead of the dry diameter. The experimental approach was validated against ammonium sulfate, glucose, and nonspherical ammonium oxalate monohydrate. Further, the approach was applied to a mixture of nonspherical iodine oxide particles. The Wet CCN approach successfully determined the hygroscopicity of nonspherical particles by collapsing them into spherical, deliquesced droplets. We further show that the Wet CCN approach offers unique insights into the physical and chemical impacts of the aqueous phase on CCN activity; a potential application is to investigate the impact of evaporation/co-condensation of water-soluble semivolatile species on CCN activity.

  8. Droplet activation of wet particles: development of the Wet CCN approach

    NASA Astrophysics Data System (ADS)

    Nakao, S.; Suda, S. R.; Camp, M.; Petters, M. D.; Kreidenweis, S. M.

    2014-01-01

    Relationships between critical supersaturation required for activation and particle dry diameter have been the primary means for experimentally characterizing cloud condensation nuclei (CCN) activity; however, use of the dry diameter inherently limits the application to cases where the dry diameter can be used to accurately estimate solute volume. This study challenges the requirement and proposes a new experimental approach, Wet CCN, for studying CCN activity without the need for a drying step. The new approach directly measures Köhler curves under sub-saturated conditions. The experimental setup consists of a humidity-controlled differential mobility analyzer and a CCN counter; wet diameter equilibrated at known relative humidity is used to characterize CCN activity instead of the dry diameter. The experimental approach was validated against ammonium sulfate, glucose and non-spherical ammonium oxalate monohydrate. Further, the approach was applied to a mixture of non-spherical iodine oxide particles. The Wet CCN approach successfully determined the hygroscopicity of non-spherical particles by collapsing them into spherical, deliquesced droplets. We further show that the Wet CCN approach offers unique insights to the physical and chemical impacts of the aqueous phase on CCN activity; a potential application is to investigate the impact of evaporation/co-condensation of water-soluble semi-volatile species on CCN activity.

  9. Cloud Droplet Size and Liquid Water Path Retrievals From Zenith Radiance Measurements: Examples From the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network

    NASA Technical Reports Server (NTRS)

    Chiu, J. C.; Marshak, A.; Huang, C.-H.; Varnai, T.; Hogan, R. J.; Giles, D. M.; Holben, B. N.; Knyazikhin, Y.; O'Connor, E. J.; Wiscombe, W. J.

    2012-01-01

    The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Network (AERONET) routinely monitor clouds using zenith radiances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a water-absorbing wavelength (i.e. 1640 nm) with a nonwater-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g/sq m and horizontal resolution of 201m, the retrieval method underestimates the mean effective radius by 0.8 m, with a root-mean-squared error of 1.7 m and a relative deviation of 13 %. For actual observations with a liquid water path less than 450 gm.2 at the ARM Oklahoma site during 2007-2008, our 1.5 min-averaged retrievals are generally larger by around 1 m than those from combined ground-based cloud radar and microwave radiometer at a 5min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 m and the relative deviation of 22% are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11% with satellite observations and have a negative bias of 1 m. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.

  10. Hygroscopic growth and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated

    NASA Astrophysics Data System (ADS)

    Henning, S.; Ziese, M.; Kiselev, A.; Saathoff, H.; Möhler, O.; Mentel, T. F.; Buchholz, A.; Spindler, C.; Michaud, V.; Monier, M.; Sellegri, K.; Stratmann, F.

    2011-10-01

    The hygroscopic growth and droplet activation of uncoated soot particles and such coated with succinic acid and sulfuric acid were investigated during the IN-11 campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility. A GFG-1000 soot generator applying nitrogen, respectively argon as carrier gas and a miniCAST soot generator were utilized to generate soot particles. Different organic carbon (OC) to black carbon (BC) ratios were adjusted for the CAST-soot by varying the fuel to air ratio. The hygroscopic growth was investigated by means of the mobile Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile) and two different Hygroscopicity Tandem Differential Mobility Analyzers (HTDMA, VHTDMA). Two Cloud Condensation Nucleus Counter (CCNC) were applied to measure the activation of the particles. For the untreated soot particles neither hygroscopic growth nor activation was observed, with exception of a partial activation of GFG-soot generated with argon as carrier gas. Coatings of succinic acid lead to a detectable hygroscopic growth of GFG-soot and enhanced the activated fraction of GFG- (carrier gas: argon) and CAST-soot, whereas no hygroscopic growth of the coated CAST-soot was found. Sulfuric acid coatings lead to an OC-content dependent hygroscopic growth of CAST-soot. Such a dependence was not observed for activation measurements. Coating with sulfuric acid decreased the amount of Polycyclic Aromatic Hydrocarbons (PAH), which were detected by AMS-measurements in the CAST-soot, and increased the amount of substances with lower molecular weight than the initial PAHs. We assume, that these reaction products increased the hygroscopicity of the coated particles in addition to the coating substance itself.

  11. Hygroscopic growth and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated

    NASA Astrophysics Data System (ADS)

    Henning, S.; Ziese, M.; Kiselev, A.; Saathoff, H.; Möhler, O.; Mentel, T. F.; Buchholz, A.; Spindler, C.; Michaud, V.; Monier, M.; Sellegri, K.; Stratmann, F.

    2012-05-01

    The hygroscopic growth and droplet activation of uncoated soot particles and such coated with succinic acid and sulfuric acid were investigated during the IN-11 campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility. A GFG-1000 soot generator applying either nitrogen or argon as carrier gas and a miniCAST soot generator were utilized to generate soot particles. Different organic carbon (OC) to black carbon (BC) ratios were adjusted for the CAST-soot by varying the fuel to air ratio. The hygroscopic growth was investigated by means of the mobile Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile) and two different Hygroscopicity Tandem Differential Mobility Analyzers (HTDMA, VHTDMA). Two Cloud Condensation Nucleus Counter (CCNC) were applied to measure the activation of the particles. For the untreated soot particles neither hygroscopic growth nor activation was observed at a supersaturation of 1%, with exception of a partial activation of GFG-soot generated with argon as carrier gas. Coatings of succinic acid lead to a detectable hygroscopic growth of GFG-soot and enhanced the activated fraction of GFG- (carrier gas: argon) and CAST-soot, whereas no hygroscopic growth of the coated CAST-soot was found. Sulfuric acid coatings led to an OC-content dependent hygroscopic growth of CAST-soot. Such a dependence was not observed for activation measurements. Coating with sulfuric acid decreased the amount of Polycyclic Aromatic Hydrocarbons (PAH), which were detected by AMS-measurements in the CAST-soot, and increased the amount of substances with lower molecular weight than the initial PAHs. We assume that these reaction products increased the hygroscopicity of the coated particles in addition to the coating substance itself.

  12. Chemical and physical influences on aerosol activation in liquid clouds: a study based on observations from the Jungfraujoch, Switzerland

    SciTech Connect

    Hoyle, Christopher R.; Webster, Clare S.; Rieder, Harald E.; Nenes, Athanasios; Hammer, Emanuel; Herrmann, Erik; Gysel, Martin; Bukowiecki, Nicolas; Weingartner, Ernest; Steinbacher, Martin; Baltensperger, Urs

    2016-01-01

    A simple statistical model to predict the number of aerosols which activate to form cloud droplets in warm clouds has been established, based on regression analysis of data from four summertime Cloud and Aerosol Characterisation Experiments (CLACE) at the high-altitude site Jungfraujoch (JFJ). It is shown that 79 % of the observed variance in droplet numbers can be represented by a model accounting only for the number of potential cloud condensation nuclei (defined as number of particles larger than 80 nm in diameter), while the mean errors in the model representation may be reduced by the addition of further explanatory variables, such as the mixing ratios of O3, CO, and the height of the measurements above cloud base. The statistical model has a similar ability to represent the observed droplet numbers in each of the individual years, as well as for the two predominant local wind directions at the JFJ (northwest and southeast). Given the central European location of the JFJ, with air masses in summer being representative of the free troposphere with regular boundary layer in-mixing via convection, we expect that this statistical model is generally applicable to warm clouds under conditions where droplet formation is aerosol limited (i.e. at relatively high updraught velocities and/or relatively low aerosol number concentrations). A comparison between the statistical model and an established microphysical parametrization shows good agreement between the two and supports the conclusion that cloud droplet formation at the JFJ is predominantly controlled by the number concentration of aerosol particles.

  13. Chemical and physical influences on aerosol activation in liquid clouds: a study based on observations from the Jungfraujoch, Switzerland

    NASA Astrophysics Data System (ADS)

    Hoyle, Christopher R.; Webster, Clare S.; Rieder, Harald E.; Nenes, Athanasios; Hammer, Emanuel; Herrmann, Erik; Gysel, Martin; Bukowiecki, Nicolas; Weingartner, Ernest; Steinbacher, Martin; Baltensperger, Urs

    2016-03-01

    A simple statistical model to predict the number of aerosols which activate to form cloud droplets in warm clouds has been established, based on regression analysis of data from four summertime Cloud and Aerosol Characterisation Experiments (CLACE) at the high-altitude site Jungfraujoch (JFJ). It is shown that 79 % of the observed variance in droplet numbers can be represented by a model accounting only for the number of potential cloud condensation nuclei (defined as number of particles larger than 80 nm in diameter), while the mean errors in the model representation may be reduced by the addition of further explanatory variables, such as the mixing ratios of O3, CO, and the height of the measurements above cloud base. The statistical model has a similar ability to represent the observed droplet numbers in each of the individual years, as well as for the two predominant local wind directions at the JFJ (northwest and southeast). Given the central European location of the JFJ, with air masses in summer being representative of the free troposphere with regular boundary layer in-mixing via convection, we expect that this statistical model is generally applicable to warm clouds under conditions where droplet formation is aerosol limited (i.e. at relatively high updraught velocities and/or relatively low aerosol number concentrations). A comparison between the statistical model and an established microphysical parametrization shows good agreement between the two and supports the conclusion that cloud droplet formation at the JFJ is predominantly controlled by the number concentration of aerosol particles.

  14. Chemical and physical influences on aerosol activation in liquid clouds: a study based on observations from the Jungfraujoch, Switzerland

    DOE PAGESBeta

    Hoyle, Christopher R.; Webster, Clare S.; Rieder, Harald E.; Nenes, Athanasios; Hammer, Emanuel; Herrmann, Erik; Gysel, Martin; Bukowiecki, Nicolas; Weingartner, Ernest; Steinbacher, Martin; et al

    2016-03-29

    In this study, a simple statistical model to predict the number of aerosols which activate to form cloud droplets in warm clouds has been established, based on regression analysis of data from four summertime Cloud and Aerosol Characterisation Experiments (CLACE) at the high-altitude site Jungfraujoch (JFJ). It is shown that 79 % of the observed variance in droplet numbers can be represented by a model accounting only for the number of potential cloud condensation nuclei (defined as number of particles larger than 80 nm in diameter), while the mean errors in the model representation may be reduced by the additionmore » of further explanatory variables, such as the mixing ratios of O3, CO, and the height of the measurements above cloud base. The statistical model has a similar ability to represent the observed droplet numbers in each of the individual years, as well as for the two predominant local wind directions at the JFJ (northwest and southeast). Given the central European location of the JFJ, with air masses in summer being representative of the free troposphere with regular boundary layer in-mixing via convection, we expect that this statistical model is generally applicable to warm clouds under conditions where droplet formation is aerosol limited (i.e. at relatively high updraught velocities and/or relatively low aerosol number concentrations). Finally, a comparison between the statistical model and an established microphysical parametrization shows good agreement between the two and supports the conclusion that cloud droplet formation at the JFJ is predominantly controlled by the number concentration of aerosol particles.« less

  15. Kinetics of nitrosamine and amine reactions with NO3 radical and ozone related to aqueous particle and cloud droplet chemistry

    NASA Astrophysics Data System (ADS)

    Weller, Christian; Herrmann, Hartmut

    2015-01-01

    Aqueous phase reactivity experiments with the amines dimethylamine (DMA), diethanolamine (DEA) and pyrrolidine (PYL) and their corresponding nitrosamines nitrosodimethylamine (NDMA), nitrosodiethanolamine (NDEA) and nitrosopyrrolidine (NPYL) have been performed. NO3 radical reaction rate coefficients for DMA, DEA and PYL were measured for the first time and are 3.7 × 105, 8.2 × 105 and 8.7 × 105 M-1 s-1, respectively. Rate coefficients for NO3 + NDMA, NDEA and NPYL are 1.2 × 108, 2.3 × 108 and 2.4 × 108 M-1 s-1. Compared to OH radical rate coefficients for reactions with amines, the NO3 radical will most likely not be an important oxidant but it is a potential nighttime oxidant for nitrosamines in cloud droplets or deliquescent particles. Ozone is unreactive towards amines and nitrosamines and upper limits of rate coefficients suggest that aqueous ozone reactions are not important in atmospheric waters.

  16. Modeling the impact of iron-carboxylate photochemistry on radical budget and carboxylate degradation in cloud droplets and particles.

    PubMed

    Weller, Christian; Tilgner, Andreas; Bräuer, Peter; Herrmann, Hartmut

    2014-05-20

    To quantify the effects of an advanced iron photochemistry scheme, the chemical aqueous-phase radical mechanism (CAPRAM 3.0i) has been updated with several new Fe(III)-carboxylate complex photolysis reactions. Newly introduced ligands are malonate, succinate, tartrate, tartronate, pyruvate, and glyoxalate. Model simulations show that more than 50% of the total Fe(III) is coordinated by oxalate and up to 20% of total Fe(III) is bound in the newly implemented 1:1 complexes with tartronate, malonate, and pyruvate. Up to 20% of the total Fe(III) is found in hydroxo and sulfato complexes. The fraction of [Fe(oxalate)2](-) and [Fe(pyruvate)](2+) is significantly higher during nighttime than during daytime, which points toward a strong influence of photochemistry on these species. Fe(III) complex photolysis is an important additional sink for tartronate, pyruvate, and oxalate, with a complex photolysis contribution to overall degradation of 46, 40, and 99%, respectively, compared to all possible sink reactions with atmospheric aqueous-phase radicals, such as (•)OH, NO3(•), and SO4(•) (-). Simulated aerosol particles have a much lower liquid water content than cloud droplets, thus leading to high concentrations of species and, consequently, an enhancement of the photolysis sink reactions in the aerosol particles. The simulations showed that Fe(III) photochemistry should not be neglected when considering the fate of carboxylic acids, which constitute a major part of aqueous secondary organic aerosol (aqSOA) in tropospheric cloud droplets and aqueous particles. Failure to consider this loss pathway has the potential to result in a significant overestimate of aqSOA production. PMID:24678692

  17. The radio wave as a source of free energy for the synthesis of organic molecules into the droplets of thunderstorm cloud

    NASA Astrophysics Data System (ADS)

    Gusev, Victor

    This paper advances the hypothesis stating that low-molecular-weight organic compounds, precursors of living cell components, may be synthesized from inorganic oxides in the presence of alternating electromagnetic field as an energy source. This synthesis can be implemented in the water droplets hovering in a thunderstorm cloud of the Earth or another planet prebiotic atmosphere. A stroke of lightning is known to excite a broad spectrum of electromagnetic waves. These, in turn, can excite the Langmuir vibrations of protons in water droplets. The molecular mechanism of this process has been described in detail [1, 2]. For the convenience of simulation, we will consider the ideal case, namely, that the Langmuir proton vibrations possess, on average, a spherical symmetry. This idealization does not contradict the physics of the process: since the object is spherically symmetrical, the geometry of stationary vibration processes taking place in this object should also possess a spherical symmetry. We will assume that the form of the Langmuir vibrations is represented by periodic thickening and thinning of protons in the central area of the droplet. We will discuss processes in droplets whose radius Ro=510-5 cm, which corresponds to the average microbe size. The activation energies of most homogeneous chemical reactions fall in the 1-3 eV range; therefore, in the central area with the radius R=Ro/2, the energy of protons is sufficient both for activating the reactions and for the synthesis itself to proceed. The calculations carried out in [1, 2] allow one to estimate the required amplitude E 700 V/m) and frequency 6109 Hz) for an electromagnetic wave able to excite the Langmuir vibrations of protons with an energy of about 3 eV. The time spent for the whole process of synthesis of primary organic matter is much shorter than geological periods; under conditions formulated above, this time is only 1 s. An advantage of this model is the possibility of its real

  18. Chemical characterization of individual particles and residuals of cloud droplets and ice crystals collected on board research aircraft in the ISDAC 2008 study

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Moffet, R. C.; Glen, A.; Laskin, A.; Gilles, M. K.; Liu, P.; MacDonald, A. M.; Strapp, J. W.; McFarquhar, G. M.

    2013-06-01

    Ambient particles and the dry residuals of mixed-phase cloud droplets and ice crystals were collected during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) near Barrow, Alaska, in spring of 2008. The collected particles were analyzed using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy to identify physico-chemical properties that differentiate cloud-nucleating particles from the total aerosol population. A wide range of individually mixed components was identified in the ambient particles and residuals including organic carbon compounds, inorganics, carbonates, and black carbon. Our results show that cloud droplet residuals differ from the ambient particles in both size and composition, suggesting that both properties may impact the cloud-nucleating ability of aerosols in mixed-phase clouds. The percentage of residual particles which contained carbonates (47%) was almost four times higher than those in ambient samples. Residual populations were also enhanced in sea salt and black carbon and reduced in organic compounds relative to the ambient particles. Further, our measurements suggest that chemical processing of aerosols may improve their cloud-nucleating ability. Comparison of results for various time periods within ISDAC suggests that the number and composition of cloud-nucleating particles over Alaska can be influenced by episodic events bringing aerosols from both the local vicinity and as far away as Siberia.

  19. Estimation of Droplet Size and Liquid Water Content Using Radar and Lidar: Marine Cumulus Clouds

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J. Vivek; Jensen, Jorgen; Ellis, Scott; Morley, Bruce; Tsai, Peisang; Spuler, Scott; Ghate, Virendra; Schwartz, Christian

    2016-04-01

    During the Cloud Systems Evolution in the Trades (CSET) field campaign airborne measurements from the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Cloud Radar (HCR) and the High Spectral Resolution Lidar (HSRL) were made in the North Pacific. In addition, in situ observations of cloud and aerosols size distributions and radiation were also collected. The HCR operated at a frequency of 94 GHz (3 mm wavelength) and collected observations at high temporal (0.5 sec) and range (30 m) resolution. The capability of HCR is enhanced by the coordination with the HSRL that made high temporal and range resolution observations of calibrated backscatter and extinction. The lidar, designed and built by the University of Wisconsin. The radar and lidar are designed to fly on the NCAR Gulfstream V HIAPER aircraft. The remote and in situ measurements collected during CSET offer opportunities for evaluating the engineering performance of the instruments and developing cloud microphysical scientific products. The coincident HCR and HSRL measurements are analyzed for assess their utility to characterize cloud boundaries, estimate liquid water content (LWC) and mean particle size. Retrievals of LWC and mean particle sizes from remote radar and lidar measurements will be compared with those from the in situ instruments.

  20. Remote sensing of cloud droplet size distributions in DC3 with the UMBC-LACO Rainbow Polarimetric Imager (RPI)

    NASA Astrophysics Data System (ADS)

    Buczkowski, S.; Martins, J.; Fernandez-Borda, R.; Cieslak, D.; Hall, J.

    2013-12-01

    The UMBC Rainbow Polarimetric Imager is a small form factor VIS imaging polarimeter suitable for use on a number of platforms. An optical system based on a Phillips prism with three Bayer filter color detectors, each detecting a separate polarization state, allows simultaneous detection of polarization and spectral information. A Mueller matrix-like calibration scheme corrects for polarization artifacts in the optical train and allows retrieval of the polarization state of incoming light to better than 0.5%. Coupled with wide field of view optics (~90°), RPI can capture images of cloudbows over a wide range of aircraft headings and solar zenith angles for retrieval of cloud droplet size distribution (DSD) parameters. In May-June 2012, RPI was flown in a nadir port on the NASA DC-8 during the DC3 field campaign. We will show examples of cloudbow DSD parameter retrievals from the campaign to demonstrate the efficacy of such a system to terrestrial atmospheric remote sensing. RPI image from DC3 06/15/2012 flight. Left panel is raw image from the RPI 90° camera. Middle panel is Stokes 'q' parameter retrieved from full three camera dataset. Right panel is a horizontal cut in 'q' through the glory. Both middle and right panels clearly show cloudbow features which can be fit to infer cloud DSD parameters.

  1. A multi-model assessment of the impact of sea spray geoengineering on cloud droplet number

    NASA Astrophysics Data System (ADS)

    Pringle, K. J.; Carslaw, K. S.; Fan, T.; Mann, G. W.; Hill, A.; Stier, P.; Zhang, K.; Tost, H.

    2012-12-01

    Artificially increasing the albedo of marine boundary layer clouds by the mechanical emission of sea spray aerosol has been proposed as a geoengineering technique to slow the warming caused by anthropogenic greenhouse gases. A previous global model study (Korhonen et al., 2010) found that only modest increases (< 20%) and sometimes even decreases in cloud drop number (CDN) concentrations would result from emission scenarios calculated using a windspeed dependent geoengineering flux parameterisation. Here we extend that work to examine the conditions under which decreases in CDN can occur, and use three independent global models to quantify maximum achievable CDN changes. We find that decreases in CDN can occur when at least three of the following conditions are met: the injected particle number is < 100 cm-3, the injected diameter is > 250-300 nm, the background aerosol loading is large (≥ 150 cm-3) and the in-cloud updraught velocity is low (< 0.2 m s-1). With lower background loadings and/or increased updraught velocity, significant increases in CDN can be achieved. None of the global models predict a decrease in CDN as a result of geoengineering, although there is considerable diversity in the calculated efficiency of geoengineering, which arises from the diversity in the simulated marine aerosol distributions. All three models show a small dependence of geoengineering efficiency on the injected particle size and the geometric standard deviation of the injected mode. However, the achievability of significant cloud drop enhancements is strongly dependent on the cloud updraught speed. With an updraught speed of 0.1 m s-1 a global mean CDN of 375 cm-3 (previously estimated to cancel the forcing caused by CO2 doubling) is achievable in only about 50% of grid boxes which have > 50% cloud cover, irrespective of the amount of aerosol injected. But at stronger updraft speeds (0.2 m s-1), higher values of CDN are achievable due to the elevated in-cloud supersaturations

  2. Use of rotating pinholes and reticles for calibration of cloud droplet instrumentation

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.; Hirleman, E. Dan

    1991-01-01

    Calibration devices for the Forward Scattering Spectrometer Probe (FSSP) and the Optical Array Probe (OAP) were developed. The device used with the FSSP is a rotating pinhole calibrator. It utilizes light diffracted by a pinhole of a known diameter to simulate scattered light from a water droplet. This device can be used to calibrate the FSSP, measure the FSSP's optical collection angles and for instrument alignment and troubleshooting. The device used with the OAP is a rotating reticle calibrator. Chrome disks of a known diameter on the reticle are used for calibration of the OAP and for determining the OAP's response to out-of-focus particles in the probe volume.

  3. Activated instability of homogeneous droplet nucleation and growth.

    PubMed

    Uline, Mark J; Corti, David S

    2008-12-21

    For the pure-component supercooled Lennard-Jones vapor, the free energy of forming a droplet with a given particle number and volume is calculated using density-functional theory. In contrast to what was noted in previous studies, the free energy surface beyond the pseudosaddle point no longer exhibits a valley but rather channels the nuclei toward a locus of instabilities, initiating an unstable growth phase. Similar to a previous study of bubble formation in superheated liquids [M. J. Uline and D. S. Corti, Phys. Rev. Lett. 99, 076102 (2007)], a new picture of homogeneous droplet nucleation and growth emerges. PMID:19102538

  4. Impingement of Cloud Droplets on 36.5-Percent-Thick Joukowski Airfoil at Zero Angle of Attack and Discussion of Use as Cloud Measuring Instrument in Dye-Tracer Technique

    NASA Technical Reports Server (NTRS)

    Brun, R. J.; Vogt, Dorothea E.

    1957-01-01

    The trajectories of droplets i n the air flowing past a 36.5-percent-thick Joukowski airfoil at zero angle of attack were determined. The amount of water i n droplet form impinging on the airfoil, the area of droplet impingement, and the rate of droplet impingement per unit area on the airfoil surface were calculated from the trajectories and cover a large range of flight and atmospheric conditions. With the detailed impingement information available, the 36.5-percent-thick Joukowski airfoil can serve the dual purpose of use as the principal element in instruments for making measurements in clouds and of a basic shape for estimating impingement on a thick streamlined body. Methods and examples are presented for illustrating some limitations when the airfoil is used as the principal element in the dye-tracer technique.

  5. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets.

    PubMed

    Knopf, Daniel A; Alpert, Peter A

    2013-01-01

    Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, a(w), which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humidity (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, J(het), to be uniquely expressed by T and a(w), a result we term the a(w) based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, J(het), frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log10(J(het)) values for the various IN types derived exclusively by Tand a(w), provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Lastly, we demonstrate that ABIFM can

  6. The composition of ternary N2/CH4/C2H6 cloud droplets under Titan conditions: Monte Carlo simulations and experiment

    NASA Astrophysics Data System (ADS)

    Luckhaus, David; Firanescu, George; Kathrin Lang, E.; Patey, Grenfell N.; Signorell, Ruth

    2013-08-01

    Molecular-level Monte Carlo simulations are performed to validate equation of state approaches for the description of the N2/CH4/C2H6 vapour-liquid equilibria under conditions relevant to Titan's lower atmosphere. The Monte Carlo simulations confirm the validity of the equation of state approaches, so that both provide a reliable description of the unknown composition of cloud droplets in this region of Titan's atmosphere. Furthermore, the models are compared with experimental data from laboratory studies of aerosol droplets that contain N2, CH4 and C2H6. Good agreement is also found here.

  7. Cloud Processed CCN Affect Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Noble, S. R., Jr.; Tabor, S. S.

    2015-12-01

    Variations in the bimodality/monomodality of CCN spectra (Hudson et al. 2015) exert opposite effects on cloud microphysics in two aircraft field projects. The figure shows two examples, droplet concentration, Nc, and drizzle liquid water content, Ld, against classification of CCN spectral modality. Low ratings go to balanced separated bimodal spectra, high ratings go to single mode spectra, strictly monomodal 8. Intermediate ratings go merged modes, e.g., one mode a shoulder of another. Bimodality is caused by mass or hygroscopicity increases that go only to CCN that made activated cloud droplets. In the Ice in Clouds Experiment-Tropical (ICE-T) small cumuli with lower Nc, greater droplet mean diameters, MD, effective radii, re, spectral widths, σ, cloud liquid water contents, Lc, and Ld were closer to more bimodal (lower modal ratings) below cloud CCN spectra whereas clouds with higher Nc, smaller MD, re, σ, and Ld were closer to more monomodal CCN (higher modal ratings). In polluted stratus clouds of the MArine Stratus/Stratocumulus Experiment (MASE) clouds that had greater Nc, and smaller MD, re, σ, Lc, and Ld were closer to more bimodal CCN spectra whereas clouds with lower Nc, and greater MD, re, σ, Lc, and Ld were closer to more monomodal CCN. These relationships are opposite because the dominant ICE-T cloud processing was coalescence whereas chemical transformations (e.g., SO2 to SO4) were dominant in MASE. Coalescence reduces Nc and thus also CCN concentrations (NCCN) when droplets evaporate. In subsequent clouds the reduced competition increases MD and σ, which further enhance coalescence and drizzle. Chemical transformations do not change Nc but added sulfate enhances droplet and CCN solubility. Thus, lower critical supersaturation (S) CCN can produce more cloud droplets in subsequent cloud cycles, especially for the low W and effective S of stratus. The increased competition reduces MD, re, and σ, which inhibit coalescence and thus reduce drizzle

  8. A numerical simulation of the effect of the number concentration of cloud droplets on Typhoon Chanchu

    NASA Astrophysics Data System (ADS)

    Lin, Wenshi; Xu, Suishan; Sui, C.-H.

    2011-09-01

    In recent years, an increase in the number of anthropogenic aerosol particles has raised the global mean content of aerosol particles in the atmosphere from that of preindustrial times. The indirect effects of aerosols on weather and climate cannot be ignored. In this paper, the fifth generation Pennsylvania State University (PSU)-National Center of Atmospheric Research (NCAR) Nonhydrostatic Mesoscale Model (MM5) is used to simulate Typhoon Chanchu (international designation: 0601), which affected the northwest Pacific. Simulations are conducted in three two-way nested domains with Mercator map projection. The horizontal grid resolutions of the three domains are 27, 9, and 3 km. A period of 60 h is simulated. Surface and rawinsonde conventional observation data and ocean wind data are additionally incorporated into the initialization data. A control (CTL) experiment is run to produce a reasonable forecast. We change the parameter of the cloud condensation nuclei (CCN) concentration (CNP) in the Reisner-2 scheme of the CTL experiment (the default value is 100 cm-3) to conduct two sensitivity experiments. They are the very clean marine (VCM) CNP experiment (CNP = 25 cm-3) and the severe contamination (SC) CNP experiment (CNP = 1,000 cm-3). We investigate the effects of the CNP on Typhoon Chanchu by comparing and analyzing the simulation results of the three experiments in terms of the track, intensity, precipitation, vertical structure, and microphysical processes. The main results show that Typhoon Chanchu slightly weakens as the CNP increases. Increasing the CCN to 1,000 cm-3 results in less graupel, rainwater, and cloud ice but more cloud water. However, the mixing ratio of snow does not distinctly change as the CNP changes. Increasing the CCN leads a rapid decrease in the autoconversion of cloud water to rainwater. There is no autoconversion of cloud water to rainwater in a seriously polluted continental air mass. As the CNP increases, there is more condensation

  9. Swimming Droplets

    NASA Astrophysics Data System (ADS)

    Maass, Corinna C.; Krüger, Carsten; Herminghaus, Stephan; Bahr, Christian

    2016-03-01

    Swimming droplets are artificial microswimmers based on liquid droplets that show self-propelled motion when immersed in a second liquid. These systems are of tremendous interest as experimental models for the study of collective dynamics far from thermal equilibrium. For biological systems, such as bacterial colonies, plankton, or fish swarms, swimming droplets can provide a vital link between simulations and real life. We review the experimental systems and discuss the mechanisms of self-propulsion. Most systems are based on surfactant-stabilized droplets, the surfactant layer of which is modified in a way that leads to a steady Marangoni stress resulting in an autonomous motion of the droplet. The modification of the surfactant layer is caused either by the advection of a chemical reactant or by a solubilization process. Some types of swimming droplets possess a very simple design and long active periods, rendering them promising model systems for future studies of collective behavior.

  10. New method to quantify volatile organic compounds (VOCs) in cloud droplets sampled at the puy de Dôme research station.

    NASA Astrophysics Data System (ADS)

    Colomb, A.; Fleuret, J.; Gaimoz, C.; Deguillaume, L.

    2012-04-01

    In recent years several studies have focused on the health and environmental effects of atmospheric pollution, and especially on the emissions of volatile organic compounds (VOCs). In cloud droplets, chemical reactions in the liquid phase modify the amount of radicals which drive the oxidizing power of the atmosphere. The objective of this project was to identify and quantify VOCs in cloud water samples at the puy de Dôme research site using a combination of stir bar sorptive extraction (SBSE)-thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS). Experimental studies were carried out at the puy de Dôme (PDD) Station (48°N, 2°E; 1465 m a.s.l.), in the Massif Central Region (France). It is a strategic point from which to observe warm and mixed clouds that are present 30% of the time on an annual basis. Clouds are frequently formed at the top of the site either during advection of frontal systems or by orographic rise of moist air. The station is in the free troposphere a large fraction of the time and air masses are usually exempt from the influence of local pollution. Non-precipitating cloud droplets are sampled using a single-stage cloud collector. Cloud droplets larger than 7 µm (cut-off diameter) are collected by impaction onto a rectangular plate at a flow rate of approximately 86 m3 h-1. This work has established a functional procedure to allow the quantitative extraction of 80 VOCs in cloud water. The method has been optimized to determine the best repeatability and detection limit for most of the compounds (hydrophobic and hydrophilic). According to SBSE theory, at equilibrium the distribution coefficients of the analytes between the aqueous matrix and coated film of the stir bar (PDMS) are correlated with the corresponding octanol-water partitioning coefficients (Kpdms/w vs Ko/w). Hydrophobic compounds, characterized by a high octanol-water distribution coefficient (Kow), are extracted from water by SBSE with a high recovery. However

  11. Droplet spectral broadening in marine stratus

    SciTech Connect

    Hudson, J.G.; Yum, Seong Soo

    1997-11-15

    Broadening of the cloud droplet (diameter < 50 {mu}m) spectrum with increased droplet size was found to depend on the vertical profiles of cloud water. Clouds with liquid water profiles resembling adiabatic conditions displayed constant spectral widths. Other clouds displayed broader droplet spectra and increasing broadness with mean droplet sizes. Less than adiabatic cloud liquid water profiles may be accounted for by conversion to drops (diameter > 50 {mu}m, i.e., drizzle). Broad droplet spectra were most closely associated with drizzle drops. Both the concentration, C and slope, k, of the cloud condensation nuclei (CCN) spectra were theoretically found to affect droplet spectral width. For individual cloud parcels a higher C and lower k each contributed to broader droplet spectra. When mixing among cloud parcels with different updrafts was considered, the predictions deviated especially at larger mean droplet diameters. Variations in updraft velocity result in differences in droplet concentrations and mean droplet sizes. The predictions for this internal mixing process showed greater droplet spectral widths for CCN spectra with higher k, especially at the larger mean droplet diameters. Instead of the individual parcel predictions of narrower droplet spectra at larger mean droplet sizes, internal mixing predicted increasing droplet spectral width with increasing mean droplet size. These predictions are consistent with the observations. First, when only cloud parcels with small mean droplet diameters (< 1 {mu}m) were considered, the polluted clouds that formed on CCN with higher C and lower k displayed broader droplet spectra than clean clouds. Cloud parcels with large mean droplet diameters (>12 {mu}m) and large {sigma} were observed only in clean conditions where k was high. Increasing droplet spectral width with mean droplet diameter (especially > 12 {mu}m) is typical of many observations here and elsewhere.

  12. Chemical and physical influences on aerosol activation in liquid clouds: an empirical study based on observations from the Jungfraujoch, Switzerland

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Webster, C. S.; Rieder, H. E.; Hammer, E.; Gysel, M.; Bukowiecki, N.; Weingartner, E.; Steinbacher, M.; Baltensperger, U.

    2015-06-01

    A simple empirical model to predict the number of aerosols which activate to form cloud droplets in a warm, free tropospheric cloud has been established, based on data from four summertime Cloud and Aerosol Characterisation Experiments (CLACE) campaigns at the Jungfraujoch (JFJ). It is shown that 76% of the observed variance in droplet numbers can be represented by a model accounting only for the number of potential CCN (defined as number of particles larger than 90 nm in diameter), while the mean errors in the model representation may be reduced by the addition of further explanatory variables, such as the mixing ratios of O3, CO and the height of the measurements above cloud base. The model has similar ability to represent the observed droplet numbers in each of the individual years, as well as for the two predominant local wind directions at the JFJ (north west and south east). Given the central European location of the JFJ, with air masses in summer being representative of the free troposphere with regular boundary layer in-mixing via convection, we expect that this model is applicable to warm, free tropospheric clouds over the European continent.

  13. Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon

    NASA Astrophysics Data System (ADS)

    van Pinxteren, Dominik; Wadinga Fomba, Khanneh; Mertes, Stephan; Müller, Konrad; Spindler, Gerald; Schneider, Johannes; Lee, Taehyoung; Collett, Jeffrey L.; Herrmann, Hartmut

    2016-03-01

    Cloud water samples were taken in September/October 2010 at Mt. Schmücke in a rural, forested area in Germany during the Lagrange-type Hill Cap Cloud Thuringia 2010 (HCCT-2010) cloud experiment. Besides bulk collectors, a three-stage and a five-stage collector were applied and samples were analysed for inorganic ions (SO42-,NO3-, NH4+, Cl-, Na+, Mg2+, Ca2+, K+), H2O2 (aq), S(IV), and dissolved organic carbon (DOC). Campaign volume-weighted mean concentrations were 191, 142, and 39 µmol L-1 for ammonium, nitrate, and sulfate respectively, between 4 and 27 µmol L-1 for minor ions, 5.4 µmol L-1 for H2O2 (aq), 1.9 µmol L-1 for S(IV), and 3.9 mgC L-1 for DOC. The concentrations compare well to more recent European cloud water data from similar sites. On a mass basis, organic material (as DOC × 1.8) contributed 20-40 % (event means) to total solute concentrations and was found to have non-negligible impact on cloud water acidity. Relative standard deviations of major ions were 60-66 % for solute concentrations and 52-80 % for cloud water loadings (CWLs). The similar variability of solute concentrations and CWLs together with the results of back-trajectory analysis and principal component analysis, suggests that concentrations in incoming air masses (i.e. air mass history), rather than cloud liquid water content (LWC), were the main factor controlling bulk solute concentrations for the cloud studied. Droplet effective radius was found to be a somewhat better predictor for cloud water total ionic content (TIC) than LWC, even though no single explanatory variable can fully describe TIC (or solute concentration) variations in a simple functional relation due to the complex processes involved. Bulk concentrations typically agreed within a factor of 2 with co-located measurements of residual particle concentrations sampled by a counterflow virtual impactor (CVI) and analysed by an aerosol mass spectrometer (AMS), with the deviations being mainly caused by systematic

  14. Water droplets and ice retrievals in volcanic clouds using multispectral TIR satellite data. Correction procedure for SO2 estimation

    NASA Astrophysics Data System (ADS)

    Corradini, Stefano; Guerrieri, Lorenzo; Merucci, Luca; Pugnaghi, Sergio; Salerno, Giuseppe

    2015-04-01

    Among ash and gases, the volcanic clouds generated from several 2011-2014 Etna (Italy) lava fountains, were characterized by the huge presence of water droplets (wd) and/or ice. In some cases the wd/ice presence totally masked the ash signal and always significantly influenced the SO2 retrievals. Here the MODIS multispectral measurements are used to retrieve the volcanic wd and ice particles by means of two different techniques based on BTD (Brightness Temperature Difference) algorithm and VPR (Volcanic Plume Removal) approach. As test case the MODIS-Aqua images collected on Etna volcano the 10 April 2011 at 12:30 UTC and the 12 August 2011 at 11:15 UTC have been considered. Similarly to volcanic ashes, the wd/ice particles reduce the top of atmosphere radiance in the entire TIR spectral range, including the channels used for the SO2 retrieval. The net effect is a significant SO2 overestimation. Here two procedures for the correction of the wd/ice influence on SO2 retrieval are proposed. The results obtained from the MODIS 10 April 2011 MODIS image have been compared with the measurements collected by the FLAME ground-based network of DOAS instruments deployed on Mt. Etna.

  15. Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon

    NASA Astrophysics Data System (ADS)

    van Pinxteren, D.; Fomba, K. W.; Mertes, S.; Müller, K.; Spindler, G.; Schneider, J.; Lee, T.; Collett, J.; Herrmann, H.

    2015-09-01

    Cloud water samples were taken in September/October 2010 at Mt. Schmücke in a rural, forested area in Germany during the Lagrange-type Hill Cap Cloud Thuringia 2010 (HCCT-2010) cloud experiment. Besides bulk collectors, a 3-stage and a 5-stage collector were applied and samples were analysed for inorganic ions (SO42-, NO3-, NH4+, Cl-, Na+, Mg2+, Ca2+, K+), H2O2 (aq), S(IV), and dissolved organic carbon (DOC). Campaign volume-weighted mean concentrations were 191, 142, and 39 μmol L-1 for ammonium, nitrate, and sulfate, respectively, between 4 and 27 μmol L-1 for minor ions, 5.4 μmol L-1 for H2O2 (aq), 1.9 μmol L-1 for S(IV), and 3.9 mgC L-1 for DOC. The concentrations compare well to more recent European cloud water data from similar sites. On a mass basis, organic material (as DOC · 1.8) contributed 20-40 % (event means) to total solute concentrations and was found to have non-negligible impact on cloud water acidity. Relative standard deviations of major ions were 60-66 % for solute concentrations and 52-80 % for cloud water loadings (CWLs). Contrary to some earlier suggestions, the similar variability of solute concentrations and CWLs together with the results of back trajectory analysis and principal component analysis, suggests that concentrations in incoming air masses (i.e. air mass history), rather than cloud liquid water content (LWC) was the main factor controlling bulk solute concentrations at Mt. Schmücke. Droplet effective radius was found to be a somewhat better predictor for cloud water total ionic content (TIC) than LWC, even though no single explanatory variable can fully describe TIC (or solute concentration) variations in a simple functional relation due to the complex processes involved. Bulk concentrations typically agreed within a factor of 2 with co-located measurements of residual particle concentrations sampled by a counterflow virtual impactor (CV) and analysed by an aerosol mass spectrometer (AMS), with the deviations being mainly

  16. Active Brownian motion of emulsion droplets: Coarsening dynamics at the interface and rotational diffusion.

    PubMed

    Schmitt, M; Stark, H

    2016-08-01

    A micron-sized droplet of bromine water immersed in a surfactant-laden oil phase can swim (S. Thutupalli, R. Seemann, S. Herminghaus, New J. Phys. 13 073021 (2011). The bromine reacts with the surfactant at the droplet interface and generates a surfactant mixture. It can spontaneously phase-separate due to solutocapillary Marangoni flow, which propels the droplet. We model the system by a diffusion-advection-reaction equation for the mixture order parameter at the interface including thermal noise and couple it to fluid flow. Going beyond previous work, we illustrate the coarsening dynamics of the surfactant mixture towards phase separation in the axisymmetric swimming state. Coarsening proceeds in two steps: an initially slow growth of domain size followed by a nearly ballistic regime. On larger time scales thermal fluctuations in the local surfactant composition initiates random changes in the swimming direction and the droplet performs a persistent random walk, as observed in experiments. Numerical solutions show that the rotational correlation time scales with the square of the inverse noise strength. We confirm this scaling by a perturbation theory for the fluctuations in the mixture order parameter and thereby identify the active emulsion droplet as an active Brownian particle. PMID:27562831

  17. Synergistic Use of Passive and Active Data for Cloud Process Studies: Examples from the A-Train Constellation

    NASA Astrophysics Data System (ADS)

    Luo, Z. J.

    2013-05-01

    Clouds play a critical role in regulating the energy budget and water cycle of our planet. Developing a global observation and understanding of clouds requires space-borne remote sensing systems. Through internationally coordinated efforts, various observation systems and cloud products have been developed over the past 30 years. An especially fruitful area involves the synergy between passive and active sensing. Since a number of textbooks and review articles have been published on the remote sensing techniques of these systems, we do not intend to repeat them. Rather, the focus of this paper is on the application side, that is, we illustrate how synergistic use of passive and active observations can be employed to study cloud microphysical and dynamical processes using examples from recent studies that utilized the A-Train data, including a short study of warm cloud droplet growth mechanisms using CloudSat, MODIS and AMSR-E, and a series of studies of tropical convective dynamics using CloudSat and MODIS. Compared to cloud retrieval algorithm development, synergistic use of passive and active data for cloud process studies is a relatively new area. Strictly speaking, it may not be proper to classify it as an "area" because there is no clear roadmap to guide its development, nor any well defined envelop to contain it. Most such studies appear ad hoc in nature and almost always have a certain innovative touch that defies any rigid a priori framework. Yet, it is through these novel studies that cloud processes are systematically investigated from a global perspective. Conclusions drawn from them can thus be generalized that will help evaluate and improve cloud parameterizations in global climate models. It is our hope that more of this kind of studies will blossom out in the future. Finally, from a satellite mission development perspective, these applications will feed back to the design of the observation systems so that guidance can be provided to help define the

  18. T Cell Dynamic Activation and Functional Analysis in Nanoliter Droplet Microarray

    PubMed Central

    Sarkar, Saheli; Motwani, Vinny; Sabhachandani, Pooja; Cohen, Noa; Konry, Tania

    2015-01-01

    Objective Characterization of the heterogeneity in immune reactions requires assessing dynamic single cell responses as well as interactions between the various immune cell subsets. Maturation and activation of effector cells is regulated by cell contact-dependent and soluble factor-mediated paracrine signalling. Currently there are few methods available that allow dynamic investigation of both processes simultaneously without physically constraining non-adherent cells and eliminating crosstalk from neighboring cell pairs. We describe here a microfluidic droplet microarray platform that permits rapid functional analysis of single cell responses and co-encapsulation of heterotypic cell pairs, thereby allowing us to evaluate the dynamic activation state of primary T cells. Methods The microfluidic droplet platform enables generation and docking of monodisperse nanoliter volume (0.523 nl) droplets, with the capacity of monitoring a thousand droplets per experiment. Single human T cells were encapsulated in droplets and stimulated on-chip with the calcium ionophore ionomycin. T cells were also co-encapsulated with dendritic cells activated by ovalbumin peptide, followed by dynamic calcium signal monitoring. Results Ionomycin-stimulated cells depicted fluctuation in calcium signalling compared to control. Both cell populations demonstrated marked heterogeneity in responses. Calcium signalling was observed in T cells immediately following contact with DCs, suggesting an early activation signal. T cells further showed non-contact mediated increase in calcium level, although this response was delayed compared to contact-mediated signals. Conclusions Our results suggest that this nanoliter droplet array-based microfluidic platform is a promising technique for assessment of heterogeneity in various types of cellular responses, detection of early/delayed signalling events and live cell phenotyping of immune cells. PMID:26613065

  19. Droplet Number Concentration Value-Added Product

    SciTech Connect

    Riihimaki, L.; McFarlane, S.; Sivaraman, C.

    2014-06-01

    The ndrop_mfrsr value-added product (VAP) provides an estimate of the cloud droplet number concentration of overcast water clouds retrieved from cloud optical depth from the multi-filter rotating shadowband radiometer (MFRSR) instrument and liquid water path (LWP) retrieved from the microwave radiometer (MWR). When cloud layer information is available from vertically pointing lidar and radars in the Active Remote Sensing of Clouds (ARSCL) product, the VAP also provides estimates of the adiabatic LWP and an adiabatic parameter (beta) that indicates how divergent the LWP is from the adiabatic case. quality control (QC) flags (qc_drop_number_conc), an uncertainty estimate (drop_number_conc_toterr), and a cloud layer type flag (cloud_base_type) are useful indicators of the quality and accuracy of any given value of the retrieval. Examples of these major input and output variables are given in sample plots in section 6.0.

  20. Wideband acoustic activation and detection of droplet vaporization events using a capacitive micromachined ultrasonic transducer.

    PubMed

    Novell, Anthony; Arena, Christopher B; Oralkan, Omer; Dayton, Paul A

    2016-06-01

    An ongoing challenge exists in understanding and optimizing the acoustic droplet vaporization (ADV) process to enhance contrast agent effectiveness for biomedical applications. Acoustic signatures from vaporization events can be identified and differentiated from microbubble or tissue signals based on their frequency content. The present study exploited the wide bandwidth of a 128-element capacitive micromachined ultrasonic transducer (CMUT) array for activation (8 MHz) and real-time imaging (1 MHz) of ADV events from droplets circulating in a tube. Compared to a commercial piezoelectric probe, the CMUT array provides a substantial increase of the contrast-to-noise ratio. PMID:27369143

  1. Activation of bacterial channel MscL in mechanically stimulated droplet interface bilayers

    PubMed Central

    Najem, Joseph S.; Dunlap, Myles D.; Rowe, Ian D.; Freeman, Eric C.; Grant, John W.; Sukharev, Sergei; Leo, Donald J.

    2015-01-01

    MscL, a stretch-activated channel, saves bacteria experiencing hypo-osmotic shocks from lysis. Its high conductance and controllable activation makes it a strong candidate to serve as a transducer in stimuli-responsive biomolecular materials. Droplet interface bilayers (DIBs), flexible insulating scaffolds for such materials, can be used as a new platform for incorporation and activation of MscL. Here, we report the first reconstitution and activation of the low-threshold V23T mutant of MscL in a DIB as a response to axial compressions of the droplets. Gating occurs near maximum compression of both droplets where tension in the membrane is maximal. The observed 0.1–3 nS conductance levels correspond to the V23T-MscL sub-conductive and fully open states recorded in native bacterial membranes or liposomes. Geometrical analysis of droplets during compression indicates that both contact angle and total area of the water-oil interfaces contribute to the generation of tension in the bilayer. The measured expansion of the interfaces by 2.5% is predicted to generate a 4–6 mN/m tension in the bilayer, just sufficient for gating. This work clarifies the principles of interconversion between bulk and surface forces in the DIB, facilitates the measurements of fundamental membrane properties, and improves our understanding of MscL response to membrane tension. PMID:26348441

  2. Sources and evolution of cloud-active aerosol in California's Sierra Nevada Mountains

    NASA Astrophysics Data System (ADS)

    Roberts, G. C.; Corrigan, C.; Noblitt, S.; Creamean, J.; Collins, D. B.; Cahill, J. F.; Prather, K. A.; Collett, J. L.; Henry, C.

    2011-12-01

    To assess the sources of cloud-active aerosol and their influence on the hydrological cycle in California, the CalWater Experiment took place in winter 2011 in the foothills of the Sierra Nevada Mountains. During this experiment, we coupled the capabilities of demonstrated miniaturized instrumentation - cloud condensation nuclei (CCN), water condensation nuclei (WCN) and microchip capillary electrophoresis (MCE) - to provide direct chemical measurements of cloud active aerosols. Ion concentrations of CCN droplets attribute the anthropogenic, marine and secondary organic contributions to cloud-active aerosols. Detailed spectra from an Aerosol-Time-of-Flight Mass Spectrometer provide additional information on the sources of aerosol. Storm fronts and changes in atmospheric boundary layer brought aerosol and anions associated with Central Valley pollution to the field site with CCN concentrations reaching several thousand cm-3. Hygroscopicity parameters indicate aging of the organic fraction during aerosol transport from the Central Valley to the mountains. Otherwise, CCN concentrations were low when high pressure systems prevented boundary layer development and intrusion of the Central Valley pollution to the site. MCE results show that nitrates and sulfates comprise most of the fraction of the aerosol anion mass (PM1). During the passage of storm fronts, which transported pollution from the Central Valley upslope, nitrate concentrations peaked at several μ g m-3. Low supersaturation CCN concentrations coincide with increases in aerosol nitrate, which suggests that nitrate has a role in cloud formation of giant CCN and, furthermore, in precipitation processes in the Sierra Nevada. CCN spectra show large variations depending on the aerosol sources and sometimes exhibit bi-modal distributions with minima at 0.3% Sc -- similar to the so-called 'Hoppel minima' associated to number size distributions. During these bi-modal events, sulfate also increases supporting the

  3. Observation of a new class of electric discharges within artificial clouds of charged water droplets and its implication for lightning initiation within thunderclouds

    NASA Astrophysics Data System (ADS)

    Kostinskiy, Alexander Yu.; Syssoev, Vladimir S.; Bogatov, Nikolay A.; Mareev, Evgeny A.; Andreev, Mikhail G.; Makalsky, Leonid M.; Sukharevsky, Dmitry I.; Rakov, Vladimir A.

    2015-10-01

    We have observed unusual plasma formations (UPFs) in artificial clouds of charged water droplets using a high-speed infrared camera operating in conjunction with a high-speed visible-range camera. Inferred plasma parameters were close to those of long-spark leaders observed in the same experiments, while the channel morphology was distinctly different from that of leaders, so that UPFs can be viewed as a new type of in-cloud discharge. These formations can occur in the absence of spark leaders and appear to be manifestations of collective processes building, essentially from scratch, a complex hierarchical network of interacting channels at different stages of development (some of which are hot and live for milliseconds). We believe that the phenomenon should commonly occur in thunderclouds and might give insights on the missing link in the still poorly understood lightning initiation process.

  4. Identification and quantification of ice nucleation active microorganisms by digital droplet PCR (ddPCR)

    NASA Astrophysics Data System (ADS)

    Linden, Martin; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Several bioaerosol types, including bacteria, fungi, pollen and lichen, have been identified as sources of biological ice nucleators (IN) which induce ice formation already at temperatures as high as -10 °C or above. Accordingly, they potentially contribute widely to environmental ice nucleation in the atmosphere and are of great interest in the study of natural heterogenous ice nucleation processes. Ice nucleation active microorganisms have been found and studied among bacteria (Proteobacteria) and fungi (phyla Basidiomycota and Ascomycota). The mechanisms enabling the microorganisms to ice nucleation are subject to ongoing research. While it has been demonstrated that whole cells can act as ice nucleators in the case of bacteria due to the presence of specific membrane proteins, cell-free ice nucleation active particles seem to be responsible for this phenomenon in fungi and lichen. The identification and quantification of these ice nucleation active microorganisms and their IN in atmospheric samples is crucial to understand their contribution to the pool of atmospheric IN. This is not a trivial task since the respective microorganisms are often prevalent in lowest concentrations and a variety of states, be it viable cells, spores or cell debris from dead cells. Molecular biology provides tools to identify and quantify ice nucleation active microorganisms independent of their state by detecting genetic markers specific for the organism of interest. Those methods are not without their drawbacks in terms of sample material concentration required or reliable standardization. Digital Droplet Polymerase Chain Reaction (ddPCR) was chosen for our demands as a more elegant, quick and specific method in the investigation of ice nucleation active microorganisms in atmospheric samples. The advantages of ddPCR lie in the simultaneous detection and quantification of genetic markers and their original copy numbers in a sample. This is facilitated by the fractionation of the

  5. Instabilities and boundary effects in a droplet of active polar liquid crystal

    NASA Astrophysics Data System (ADS)

    Whitfield, Carl; Hawkins, Rhoda

    2015-03-01

    Using the active gel theoretical framework, we have performed analytical calculations and numerical simulations of a droplet of active polar liquid crystal at low Reynolds number. This system is a simplified model of a cytoskeletal network that generates internal stresses by converting chemical energy (in the form of ATP) into mechanical work via molecular motors. A physical understanding of these systems can give an insight into the complex and varied dynamics of eukaryotic cell migration and division. We perform a linear stability analysis on the system by separating the behaviour into two limits. One where the internal polarisation is dominated by the shape of the boundary and one where it is deformed by the activity. We find that the two regimes show different instability thresholds for the activity parameter suggesting interesting behaviour both in and between these limits. We also simulate the system numerically and find the resulting steady state of the droplet for a range of parameters between these two limits.

  6. Dense Clouds near the Central Engine of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Sivron, R.; Tsuruta, S

    1993-01-01

    A model is presented which assumes the existence of cold dense clouds near the central engine of Active Galactic Nuclei (AGNs). The effects of such clouds on the observed spectrum are explored. It is shown that this model is consistent with the complicated observed spectra and variability behavior of most extensively studied Seyfert nuclei. The results are compared with other proposed models. The existing observational evidence appears to support the "cloud-model."

  7. Cloud supersaturations from CCN spectra Hoppel minima

    NASA Astrophysics Data System (ADS)

    Hudson, James G.; Noble, Stephen; Tabor, Samantha

    2015-04-01

    High-resolution cloud condensation nucleus (CCN) spectral measurements in two aircraft field projects, Marine Stratus/Stratocumulus Experiment (MASE) and Ice in Clouds Experiment-Tropical (ICE-T), often showed bimodality that had previously been observed in submicrometer aerosol size distributions obtained by differential mobility analyzers. However, a great deal of spectral shape variability from very bimodal to very monomodal was observed in close proximity. Cloud supersaturation (S) estimates based on critical S, Sc, at minimal CCN concentrations between two modes (Hoppel minima) were ascertained for 63% of 325 measured spectra. These cloud S were lower than effective S (Seff) determined by comparing ambient CCN spectra with nearby cloud droplet concentrations (Nc). Averages for the polluted MASE stratus were 0.15 and 0.23% and for the cumulus clouds of ICE-T 0.44 and 1.03%. This cloud S disagreement between the two methods might in part be due to the fact that Hoppel minima include the effects of cloud processing, which push CCN spectra toward lower S. Furthermore, there is less cloud processing by the smaller cloud droplets, which might be related to smaller droplets evaporating more readily. Significantly lower concentrations within the more bimodal spectra compared with the monomodal spectra indicated active physical processes: Brownian capture of interstitial CCN and droplet coalescence. Chemical cloud processing also contributed to bimodality, especially in MASE.

  8. Stability of narrow emission line clouds in active galactic nuclei

    SciTech Connect

    Mathews, W.G.; Veilleux, S.

    1989-01-01

    The effects of the lateral flow and Rayleigh-Taylor instabilities on clouds in the narrow-line region of active galaxies are considered using cloud densities and velocities based on observations. A simplified model for the lateral flow instability governed only by overpressures is discussed. The associated radiative acceleration is considered, and parameters describing the narrow-line region and the central nonstellar continuum are presented. It is shown that many otherwise acceptable narrow-line clouds are unstable to lateral flows, particularly if their column depths are small. It is argued that the most likely narrow-line clouds have column densities of about 10 to the 23rd/sq cm and that these clouds are accelerated by winds in the intercloud medium. Arguments are made against models in which narrow-line clouds move inward. 22 references.

  9. Entrainment, Drizzle, and the Indirect Effect in Stratiform Clouds

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew

    2005-01-01

    Activation of some fraction of increased concentrations of sub-micron soluble aerosol particles lead to enhanced cloud droplet concentrations and hence smaller droplets, increasing their total cross sectional area and thus reflecting solar radiation more efficiently (the Twomey, or first indirect, effect). However, because of competition during condensational growth, droplet distributions tend to broaden as numbers increase, reducing the sensitivity of cloud albedo to droplet concentration on the order of 10%. Also, smaller droplets less effectively produce drizzle through collisions and coalescence, and it is widely expected (and found in large-scale models) that decreased precipitation leads to clouds with more cloud water on average (the so-called cloud lifetime, or second indirect, effect). Much of the uncertainty regarding the overall indirect aerosol effect stems from inadequate understanding of such changes in cloud water. Detailed simulations based on FIRE-I, ASTEX, and DYCOMS-II conditions show that suppression of precipitation from increased droplet concentrations leads to increased cloud water only when sufficient precipitation reaches the surface, a condition favored when the overlying air is-humid or droplet concentrations are very low. Otherwise, aerosol induced suppression of precipitation enhances entrainment of overlying dry air, thereby reducing cloud water and diminishing the indirect climate forcing.

  10. How faceted liquid droplets grow tails: from surface topology to active motion

    NASA Astrophysics Data System (ADS)

    Sloutskin, Eli

    Among all possible shapes of a volume V, a sphere has the smallest surface area A. Therefore, liquid droplets are spherical, minimizing their interfacial energy γA for a given interfacial tension γ > 0 . This talk will demonstrate that liquid oil (alkane) droplets in water, stabilized by a common surfactant can be temperature-tuned to adopt icosahedral and other faceted shapes, above the bulk melting temperature of the oil. Although emulsions have been studied for centuries no faceted liquid droplets have ever been reported. The formation of an icosahedral shape is attributed to the interplay between γ and the elastic properties of the interfacial monomolecular layer, which crystallizes here 10-15K above bulk melting, leaving the droplet's bulk liquid. The icosahedral symmetry is dictated by twelve five-fold topological defects, forming within the hexagonally-packed interfacial crystalline monolayer. Moreover, we demonstrate that upon further cooling this `interfacial freezing' effect makes γ transiently switch its sign, leading to a spontaneous splitting of droplets and an active growth of their surface area, reminiscent of the classical spontaneous emulsification, yet driven by completely different physics. The observed phenomena allow deeper insights to be gained into the fundamentals of molecular elasticity and open new vitas for a wide range of novel nanotechnological applications, from self-assembly of complex shapes to new delivery strategies in bio-medicine. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research and to the Kahn Foundation for the purchase of equipment.

  11. Meteorological and aerosol effects on marine cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Corrigan, C. E.; Roberts, G. C.; Hawkins, L. N.; Schroder, J. C.; Bertram, A. K.; Zhao, R.; Lee, A. K. Y.; Lin, J. J.; Nenes, A.; Wang, Z.; Wonaschütz, A.; Sorooshian, A.; Noone, K. J.; Jonsson, H.; Toom, D.; Macdonald, A. M.; Leaitch, W. R.; Seinfeld, J. H.

    2016-04-01

    Meteorology and microphysics affect cloud formation, cloud droplet distributions, and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets studies provided measurements in six case studies of cloud thermodynamic properties, initial particle number distribution and composition, and cloud drop distribution. In this study, we use simulations from a chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce observed cloud droplet distributions of the case studies. Four cases had subadiabatic lapse rates, resulting in fewer activated droplets, lower liquid water content, and higher cloud base height than an adiabatic lapse rate. A weighted ensemble of simulations that reflect measured variation in updraft velocity and cloud base height was used to reproduce observed droplet distributions. Simulations show that organic hygroscopicity in internally mixed cases causes small effects on cloud reflectivity (CR) (<0.01), except for cargo ship and smoke plumes, which increased CR by 0.02 and 0.07, respectively, owing to their high organic mass fraction. Organic hygroscopicity had larger effects on droplet concentrations for cases with higher aerosol concentrations near the critical diameter (namely, polluted cases with a modal peak near 0.1 µm). Differences in simulated droplet spectral widths (k) caused larger differences in CR than organic hygroscopicity in cases with organic mass fractions of 60% or less for the cases shown. Finally, simulations from a numerical parameterization of cloud droplet activation suitable for general circulation models compared well with the ACP model, except under high organic mass fraction.

  12. The activity of MscL in asymmetric droplet interface bilayers

    NASA Astrophysics Data System (ADS)

    Najem, Joseph; Sukharev, Sergei; Leo, Donald

    The ability to host and activate MscL, a large-conductance channel and osmolyte release valve, in a droplet interface bilayer (DIB) has been demonstrated. In previous work, the V23T mutant of MscL produced a reliable activation when axial compression is applied to the droplets supporting the lipid bilayer. Near maximal compression, the aqueous droplets deform and the resulting increase in surface area leads to an increase in tension in the water-lipid-oil interface. This increase in tension is the product of the relative change in the droplet surface area and the elastic modulus of the DPhPC monolayer (120 mN/m). However, a relatively high potential (~100 mV) is also needed to be applied in order to activate the channels. Here, we use two different types of lipids to form asymmetric DIBs. As a result of an asymmetric interface, a transmembrane potential is created across the membrane (~130 mV) due to the difference in the dipole potentials of both lipids. When MscL channels are incorporated in the bilayer, they are activated upon mechanical stimulation, without the need to apply a high external potential. We also observed that the channels became more susceptible to gating upon the application of a negative potential, compared to when a positive potential is applied, proving their sensitivity to voltage polarity. We would like to acknowledge the financial support provided by the Air Force Office of Scientific Research Basic Research Initiative Grant FA9550-12-1-0464.

  13. In situ measurement of cloud condensation nuclei activation of black carbon particles in dependence of their mixing state

    NASA Astrophysics Data System (ADS)

    Gysel, M.; Laborde, M.; Bukowiecki, N.; Juranyi, Z.; Hammer, E.; Zieger, P.; Baltensperger, U.; Weingartner, E.

    2012-12-01

    Black carbon (BC) emitted from combustion sources is the major absorbing component of atmospheric aerosols. The Earth's climate can be influenced by BC particles in several ways, e.g. through absorption of solar radiation or through decreasing the surface albedo of glaciers due to deposited BC particles. Cloud droplets only form on cloud condensation nuclei (CCN). The CCN activation behaviour of BC particles is important for their atmospheric life cycle as wet removal is an important sink. Several laboratory and field studies have shown that BC is less hygroscopic and less CCN active than inorganic or water-soluble organic aerosol components. The goal of this study was to investigate the CCN activation behaviour of BC-containing particles in dependence of their mixing state and compared to non-BC containing particles. In situ measurements of the cloud droplet activation behaviour of aerosol particles were done in winter 2010 at the high-alpine research station Jungfraujoch (3580 m asl), Switzerland. Two different inlets were employed during cloud episodes to selectively collect the interstitial aerosol (all particles that did not form cloud droplets) as well as the total aerosol (interstitial aerosol plus cloud droplet residuals). Both types of aerosol samples were characterized using a Single Particle Soot Photometer (SP2), providing quantitative measurement of BC mass in individual particles as well as information on the mixing state of BC, and further aerosol measurement techniques. Outdoor measurements of microphysical cloud properties were also available. Comparison of the aerosol samples from the interstitial and total inlets makes it possible to determine the properties of the CCN active aerosol as opposed to the interstitial aerosol. The analysis of several cloud events revealed that coated BC particles are more readily activated to CCN compared to uncoated BC particles with equal BC mass. This can actually be expected even for non-hygroscopic coatings due

  14. The dynamic surface tension of atmospheric aerosol surfactants reveals new aspects of cloud activation

    PubMed Central

    Nozière, Barbara; Baduel, Christine; Jaffrezo, Jean-Luc

    2014-01-01

    The activation of aerosol particles into cloud droplets in the Earth’s atmosphere is both a key process for the climate budget and a main source of uncertainty. Its investigation is facing major experimental challenges, as no technique can measure the main driving parameters, the Raoult’s term and surface tension, σ, for sub-micron atmospheric particles. In addition, the surfactant fraction of atmospheric aerosols could not be isolated until recently. Here we present the first dynamic investigation of the total surfactant fraction of atmospheric aerosols, evidencing adsorption barriers that limit their gradient (partitioning) in particles and should enhance their cloud-forming efficiency compared with current models. The results also show that the equilibration time of surfactants in sub-micron atmospheric particles should be beyond the detection of most on-line instruments. Such instrumental and theoretical shortcomings would be consistent with atmospheric and laboratory observations and could have limited the understanding of cloud activation until now. PMID:24566451

  15. Skew photonic Doppler velocimetry to investigate the expansion of a cloud of droplets created by micro-spalling of laser shock-melted metal foils

    SciTech Connect

    Loison, D.; Resseguier, T. de; Dragon, A.; Mercier, P.; Benier, J.; Deloison, G.; Lescoute, E.; Sollier, A.

    2012-12-01

    Dynamic fragmentation in the liquid state after shock-induced melting, usually referred to as micro-spallation, is an issue of great interest for both basic and applied sciences. Recent efforts have been devoted to the characterization of the resulting ejecta, which consist in a cloud of fine molten droplets. Major difficulties arise from the loss of free surface reflectivity at shock breakout and from the wide distribution of particle velocities within this cloud. We present laser shock experiments on tin and aluminium, to pressures ranging from about 70 to 160 GPa, with complementary diagnostics including a photonic Doppler velocimeter set at a small tilt angle from the normal to the free surface, which enables probing the whole cloud of ejecta. The records are roughly consistent with a one-dimensional theoretical description accounting for laser shock loading, wave propagation, phase transformations, and fragmentation. The main discrepancies between measured and calculated velocity profiles are discussed in terms of edge effects evidenced by transverse shadowgraphy.

  16. DISCOVERY OF 5000 ACTIVE GALACTIC NUCLEI BEHIND THE MAGELLANIC CLOUDS

    SciTech Connect

    Kozlowski, Szymon; Kochanek, Christopher S. E-mail: ckochanek@astronomy.ohio-state.edu

    2009-08-10

    We show that using mid-IR color selection to find active galactic nuclei (AGNs) is as effective in dense stellar fields such as the Magellanic Clouds as it is in extragalactic fields with low stellar densities using comparisons between the Spitzer Deep Wide Field Survey data for the NOAO Deep Wide Field Survey Boeotes region and the SAGE Survey of the Large Magellanic Cloud. We use this to build high-purity catalogs of {approx}5000 AGN candidates behind the Magellanic Clouds. Once confirmed, these quasars will expand the available astrometric reference sources for the Clouds and the numbers of quasars with densely sampled, long-term (>decade) monitoring light curves by well over an order of magnitude and potentially identify sufficiently bright quasars for absorption line studies of the interstellar medium of the Clouds.

  17. Cloud condensation nucleus activity comparison of dry- and wet-generated mineral dust aerosol: the significance of soluble material

    NASA Astrophysics Data System (ADS)

    Garimella, S.; Huang, Y.-w.; Seewald, J. S.; Cziczo, D. J.

    2013-11-01

    This study examines the interaction of clay mineral particles and water vapor to determine the conditions required for cloud droplet formation. Droplet formation conditions are investigated for three clay minerals: illite, sodium-rich montmorillonite, and Arizona Test Dust. Using wet and dry particle generation coupled to a differential mobility analyzer (DMA) and cloud condensation nuclei counter, the critical activation of the clay mineral particles as cloud condensation nuclei is characterized. Electron microscopy (EM) is used to determine non-sphericity in particle shape. EM is also used to determine particle surface area and account for transmission of multiply charged particles by the DMA. Single particle mass spectrometry and ion chromatography are used to investigate soluble material in wet-generated samples and demonstrate that wet and dry generation yield compositionally different particles. Activation results are analyzed in the context of both κ-Köhler theory and Frenkel, Halsey, and Hill (FHH) adsorption activation theory. This study has two main results: (1) κ-Köhler is a suitable framework, less complex than FHH theory, to describe clay mineral nucleation activity despite apparent differences in κ with respect to size. For dry-generated particles the size dependence is likely an artifact of the shape of the size distribution: there is a sharp drop-off in particle concentration at ~300 nm, and a large fraction of particles classified with a mobility diameter less than ~300 nm are actually multiply charged, resulting in a much lower critical supersaturation for droplet activation than expected. For wet-generated particles, deviation from κ-Köhler theory is likely a result of the dissolution and redistribution of soluble material. (2) Wet-generation is found to be unsuitable for simulating the lofting of fresh dry dust because it changes the size-dependent critical supersaturations by fractionating and re-partitioning soluble material.

  18. CFD Lagrangian Modeling of Water Droplet Transport for ISS Hygiene Activity Application

    NASA Technical Reports Server (NTRS)

    Son, Chang H.

    2013-01-01

    The goal of this study was to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC) installed in Node 3. Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow enable identifying the paths of water transport. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 5-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain.

  19. Chemical Characterization of Individual Particles and Residuals of Cloud Droplets and Ice Crystals Collected On Board Research Aircraft in the ISDAC 2008 Study

    SciTech Connect

    Hiranuma, Naruki; Brooks, Sarah D.; Moffet, Ryan C.; Glen, Andrew; Laskin, Alexander; Gilles, Marry K.; Liu, Peter; MacDonald, A. M.; Strapp, J. Walter; McFarquhar, Greg

    2013-06-24

    Although it has been shown that size of atmospheric particles has a direct correlation with their ability to act as cloud droplet and ice nuclei, the influence of composition of freshly emitted and aged particles in nucleation processes is poorly understood. In this work we combine data from field measurements of ice nucleation with chemical imaging of the sampled particles to link aerosol composition with ice nucleation ability. Field measurements and sampling were conducted during the Indirect and Semidirect Aerosols Campaign (ISDAC) over Barrow, Alaska, in the springtime of 2008. In-situ ice nucleation measurements were conducted using a Continuous Flow Diffusion Chamber (CFDC). Measured number concentrations of ice nuclei (IN) varied from frequent values of 0.01 per liter to more than 10 per liter. Residuals of airborne droplets and ice crystals were collected through a counterflow virtual impactor (CVI). The compositions of individual atmospheric particles and the residuals were studied using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis (CCSEM/EDX) and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy (STXM/NEXAFS). Chemical analysis of cloud particle residuals collected during an episode of high ice nucleation suggests that both size and composition may influence aerosol's ability to act as IN. The STXM/NEXAFS chemical composition maps of individual residuals have characteristic structures of either inorganic or black carbon cores coated by organic materials. In a separate flight, particle samples from a biomass burning plume were collected. Although it has previously been suggested that episodes of biomass burning contribute to increased numbers of highly effective ice nuclei, in this episode we observed that only a small fraction were effective ice nuclei. Most of the particles from the biomass plume episode were smaller in size and were composed of

  20. Numerical Analysis Using WRF-SBM for the Cloud Microphysical Structures in the C3VP Field Campaign: Impacts of Supercooled Droplets and Resultant Riming on Snow Microphysics

    NASA Technical Reports Server (NTRS)

    Iguchi, Takamichi; Matsui, Toshihisa; Shi, Jainn J.; Tao, Wei-Kuo; Khain, Alexander P.; Hao, Arthur; Cifelli, Robert; Heymsfield, Andrew; Tokay, Ali

    2012-01-01

    Two distinct snowfall events are observed over the region near the Great Lakes during 19-23 January 2007 under the intensive measurement campaign of the Canadian CloudSat/CALIPSO validation project (C3VP). These events are numerically investigated using the Weather Research and Forecasting model coupled with a spectral bin microphysics (WRF-SBM) scheme that allows a smooth calculation of riming process by predicting the rimed mass fraction on snow aggregates. The fundamental structures of the observed two snowfall systems are distinctly characterized by a localized intense lake-effect snowstorm in one case and a widely distributed moderate snowfall by the synoptic-scale system in another case. Furthermore, the observed microphysical structures are distinguished by differences in bulk density of solid-phase particles, which are probably linked to the presence or absence of supercooled droplets. The WRF-SBM coupled with Goddard Satellite Data Simulator Unit (G-SDSU) has successfully simulated these distinctive structures in the three-dimensional weather prediction run with a horizontal resolution of 1 km. In particular, riming on snow aggregates by supercooled droplets is considered to be of importance in reproducing the specialized microphysical structures in the case studies. Additional sensitivity tests for the lake-effect snowstorm case are conducted utilizing different planetary boundary layer (PBL) models or the same SBM but without the riming process. The PBL process has a large impact on determining the cloud microphysical structure of the lake-effect snowstorm as well as the surface precipitation pattern, whereas the riming process has little influence on the surface precipitation because of the small height of the system.

  1. Alterations of Cloud Microphysics Due to Cloud Processed CCN

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Tabor, S. S.; Noble, S. R., Jr.

    2015-12-01

    High-resolution CCN spectra have revealed bimodality (Hudson et al. 2015) similar to aerosol size spectra (e.g., Hoppel et al. 1985). Bimodality is caused by chemical and physical cloud processes that increase mass or hygroscopicity of only CCN that produced activated cloud droplets. Bimodality is categorized by relative CCN concentrations (NCCN) within the two modes, Nu-Np; i.e., NCCN within the higher critical supersaturation, Sc, mode that did not undergo cloud processing minus NCCN within the lower Sc mode that was cloud processed. Lower, especially negative, Nu-Np designates greater processing. The table shows regressions between Nu-Np and characteristics of clouds nearest the CCN measurements. ICE-T MASE parameter R SL R SL Nc 0.17 93.24 -0.26 98.65 MD -0.31 99.69 0.33 99.78 σ -0.27 99.04 0.48 100.00 Ld -0.31 99.61 0.38 99.96 Table. Correlation coefficients, R, and one-tailed significance levels in percent, SL, for Nu-Np with microphysics of the clouds closest to each CCN measurement, 75 ICE-T and 74 MASE cases. Nc is cloud droplet concentration, MD is cloud droplet mean diameter, σ is standard deviation of cloud droplet spectra, Ldis drizzle drop LWC. Two aircraft field campaigns, Ice in Clouds Experiment-Tropical (ICE-T) and Marine Stratus/Stratocumulus Experiment (MASE) show opposite R signs because coalescence dominated cloud processing in low altitude ICE-T cumuli whereas chemical transformations predominated in MASE low altitude polluted stratus. Coalescence reduces Nc and NCCN, which thus increases MD, and σ, which promote Ld. Chemical transformations, e.g., SO2 to SO4, increase CCN hygroscopicity, thus reducing Sc, but not affecting Nc or NCCN. Lower Sc CCN are capable of producing greater Nc in subsequent cloud cycles, which leads to lower MD and σ which reduce Ld (figure). These observations are consistent with cloud droplet growth models for the higher vertical wind (W) of cumuli and lower W of stratus. Coalescence thus reduces the indirect

  2. Effects of Cloud-Processed CCN on Warm Clouds

    NASA Astrophysics Data System (ADS)

    Noble, S. R., Jr.; Hudson, J. G.

    2014-12-01

    Cloud condensation nuclei (CCN) distributions are transformed by in-cloud processing. This can be chemical: aqueous oxidation; or physical: Brownian scavenging, collision and coalescence. Droplet evaporation then leaves behind the cloud-processed CCN. Chemical processing increases CCN size (lower critical supersaturation; Sc) but does not change CCN concentration (NCCN) (Feingold and Kreidenweis, 2000). Physical processing leads to an increase in size (lower Sc) and decrease of NCCN. These processes are especially important in stratus clouds that cover large areas and persist for long periods. Modified CCN in turn modify cloud droplet spectra. Both chemical and physical processing were observed during the 2005 MArine Stratus/stratocumulus Experiment (MASE) field campaign. Higher concentrations of SO4 and NO3 anions with lower SO2 and O3 were associated with bimodal CCN spectra whereas monomodal spectra had lower SO4 and NO3 and higher SO2 and O3. These are consistent with chemical processing. Two nearby MASE CCN spectra, one bimodal and one monomodal were input to an adiabatic cloud droplet growth model. Model runs at various updrafts (W) show that the low Sc cloud processed mode of the bimodal CCN spectrum augmented droplet activation creating higher cloud droplet concentrations (Nc) for low W characteristic of stratus clouds (Fig. 1a, black). Higher NCCN at low Sc (black data) also increased condensation competition and thus reduced cloud effective S (Seff) (Fig.1b). This increases W importance for determining Nc (Hudson and Noble, 2014). These high NCCN at low Sc and lower Seff of the bimodal CCN spectrum reduce droplet mean diameter (MD; Fig. 1c) and broaden droplet distributions (sigma; Fig. 1d). Increased Nc and decreased MD of chemical processing seems to augment the indirect aerosol effect (IAE) whereas inherently decreased Nc and increased MD of coalescence processing reduces IAE. CCN cloud-processing alters cloud microphysics (Nc, Seff, MD, and sigma

  3. Quantitative telomerase enzyme activity determination using droplet digital PCR with single cell resolution

    PubMed Central

    Ludlow, Andrew T.; Robin, Jerome D.; Sayed, Mohammed; Litterst, Claudia M.; Shelton, Dawne N.; Shay, Jerry W.; Wright, Woodring E.

    2014-01-01

    The telomere repeat amplification protocol (TRAP) for the human reverse transcriptase, telomerase, is a PCR-based assay developed two decades ago and is still used for routine determination of telomerase activity. The TRAP assay can only reproducibly detect ∼2-fold differences and is only quantitative when compared to internal standards and reference cell lines. The method generally involves laborious radioactive gel electrophoresis and is not conducive to high-throughput analyzes. Recently droplet digital PCR (ddPCR) technologies have become available that allow for absolute quantification of input deoxyribonucleic acid molecules following PCR. We describe the reproducibility and provide several examples of a droplet digital TRAP (ddTRAP) assay for telomerase activity, including quantitation of telomerase activity in single cells, telomerase activity across several common telomerase positive cancer cells lines and in human primary peripheral blood mononuclear cells following mitogen stimulation. Adaptation of the TRAP assay to digital format allows accurate and reproducible quantification of the number of telomerase-extended products (i.e. telomerase activity; 57.8 ± 7.5) in a single HeLa cell. The tools developed in this study allow changes in telomerase enzyme activity to be monitored on a single cell basis and may have utility in designing novel therapeutic approaches that target telomerase. PMID:24861623

  4. Microphysical processing of aerosol particles in orographic clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-08-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO). The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen (WBF) process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases

  5. Droplet Growth Kinetics in Various Environments

    NASA Astrophysics Data System (ADS)

    Raatikainen, T. E.; Lathem, T. L.; Moore, R.; Lin, J. J.; Cerully, K. M.; Padro, L.; Lance, S.; Cozic, J.; Anderson, B. E.; Nenes, A.

    2012-12-01

    for various instrument settings and also in the case of high CCN concentrations when water vapor depletion decreases supersaturation and droplet size (Lathem and Nenes, Aerosol Sci. Tech., 45, 604-615, 2011). The model also accounts for aerosol hygroscopicity and size distribution variations, which can have significant effects on the droplet size. We have examined cloud droplet activation and growth kinetics by analyzing several DMT CCN counter data sets collected from various environments including boreal forests, arctic areas, fresh and aged biomass burning plumes, and polluted and biogenically influenced urban areas (Raatikainen et al., In preparation, 2012). Model simulations show that the variations in observed droplet size are caused by water vapor depletion effects, changes in dry particle size distributions and hygroscopicity, and changes in instrument supersaturation profiles. This means that fast droplet growth kinetics with water uptake coefficient close to 0.2 is prevalent at least for the studied environments.

  6. CLOUD CONDENSATION NUCLEI MEASUREMENTS WITHIN CLOUDS

    EPA Science Inventory

    Measurements of the spectra of cloud condensation nuclei (CCN) within and near the boundaries of clouds are presented. Some of the in-cloud measurements excluded the nuclei within cloud droplets (interstitial CCN) while others included all nuclei inside the cloud (total CCN). The...

  7. Patterning droplets with durotaxis

    PubMed Central

    Style, Robert W.; Che, Yonglu; Park, Su Ji; Weon, Byung Mook; Je, Jung Ho; Hyland, Callen; German, Guy K.; Power, Michael P.; Wilen, Larry A.; Wettlaufer, John S.; Dufresne, Eric R.

    2013-01-01

    Numerous cell types have shown a remarkable ability to detect and move along gradients in stiffness of an underlying substrate—a process known as durotaxis. The mechanisms underlying durotaxis are still unresolved, but generally believed to involve active sensing and locomotion. Here, we show that simple liquid droplets also undergo durotaxis. By modulating substrate stiffness, we obtain fine control of droplet position on soft, flat substrates. Unlike other control mechanisms, droplet durotaxis works without imposing chemical, thermal, electrical, or topographical gradients. We show that droplet durotaxis can be used to create large-scale droplet patterns and is potentially useful for many applications, such as microfluidics, thermal control, and microfabrication. PMID:23798415

  8. An Active Poroelastic Model for Mechanochemical Patterns in Protoplasmic Droplets of Physarum polycephalum

    PubMed Central

    Radszuweit, Markus; Engel, Harald; Bär, Markus

    2014-01-01

    Motivated by recent experimental studies, we derive and analyze a two-dimensional model for the contraction patterns observed in protoplasmic droplets of Physarum polycephalum. The model couples a description of an active poroelastic two-phase medium with equations describing the spatiotemporal dynamics of the intracellular free calcium concentration. The poroelastic medium is assumed to consist of an active viscoelastic solid representing the cytoskeleton and a viscous fluid describing the cytosol. The equations for the poroelastic medium are obtained from continuum force balance and include the relevant mechanical fields and an incompressibility condition for the two-phase medium. The reaction-diffusion equations for the calcium dynamics in the protoplasm of Physarum are extended by advective transport due to the flow of the cytosol generated by mechanical stress. Moreover, we assume that the active tension in the solid cytoskeleton is regulated by the calcium concentration in the fluid phase at the same location, which introduces a mechanochemical coupling. A linear stability analysis of the homogeneous state without deformation and cytosolic flows exhibits an oscillatory Turing instability for a large enough mechanochemical coupling strength. Numerical simulations of the model equations reproduce a large variety of wave patterns, including traveling and standing waves, turbulent patterns, rotating spirals and antiphase oscillations in line with experimental observations of contraction patterns in the protoplasmic droplets. PMID:24927427

  9. An active poroelastic model for mechanochemical patterns in protoplasmic droplets of Physarum polycephalum.

    PubMed

    Radszuweit, Markus; Engel, Harald; Bär, Markus

    2014-01-01

    Motivated by recent experimental studies, we derive and analyze a two-dimensional model for the contraction patterns observed in protoplasmic droplets of Physarum polycephalum. The model couples a description of an active poroelastic two-phase medium with equations describing the spatiotemporal dynamics of the intracellular free calcium concentration. The poroelastic medium is assumed to consist of an active viscoelastic solid representing the cytoskeleton and a viscous fluid describing the cytosol. The equations for the poroelastic medium are obtained from continuum force balance and include the relevant mechanical fields and an incompressibility condition for the two-phase medium. The reaction-diffusion equations for the calcium dynamics in the protoplasm of Physarum are extended by advective transport due to the flow of the cytosol generated by mechanical stress. Moreover, we assume that the active tension in the solid cytoskeleton is regulated by the calcium concentration in the fluid phase at the same location, which introduces a mechanochemical coupling. A linear stability analysis of the homogeneous state without deformation and cytosolic flows exhibits an oscillatory Turing instability for a large enough mechanochemical coupling strength. Numerical simulations of the model equations reproduce a large variety of wave patterns, including traveling and standing waves, turbulent patterns, rotating spirals and antiphase oscillations in line with experimental observations of contraction patterns in the protoplasmic droplets. PMID:24927427

  10. Effects of Cloud Horizontal Inhomogeneity and Drizzle on Remote Sensing of Cloud Droplet Effective Radius: Case Studies Based on Large-eddy Simulations

    NASA Technical Reports Server (NTRS)

    Zhang, Zhibo; Ackerman, Andrew S.; Feingold, Graham; Platnick, Steven; Pincus, Robert; Xue, Huiwen

    2012-01-01

    This study investigates effects of drizzle and cloud horizontal inhomogeneity on cloud effective radius (re) retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS). In order to identify the relative importance of various factors, we developed a MODIS cloud property retrieval simulator based on the combination of large-eddy simulations (LES) and radiative transfer computations. The case studies based on synthetic LES cloud fields indicate that at high spatial resolution (100 m) 3-D radiative transfer effects, such as illumination and shadowing, can induce significant differences between retrievals ofre based on reflectance at 2.1 m (re,2.1) and 3.7 m (re,3.7). It is also found that 3-D effects tend to have stronger impact onre,2.1 than re,3.7, leading to positive difference between the two (re,3.72.1) from illumination and negative re,3.72.1from shadowing. The cancellation of opposing 3-D effects leads to overall reasonable agreement betweenre,2.1 and re,3.7 at high spatial resolution as far as domain averages are concerned. At resolutions similar to MODIS, however, re,2.1 is systematically larger than re,3.7when averaged over the LES domain, with the difference exhibiting a threshold-like dependence on bothre,2.1and an index of the sub-pixel variability in reflectance (H), consistent with MODIS observations. In the LES cases studied, drizzle does not strongly impact reretrievals at either wavelength. It is also found that opposing 3-D radiative transfer effects partly cancel each other when cloud reflectance is aggregated from high spatial resolution to MODIS resolution, resulting in a weaker net impact of 3-D radiative effects onre retrievals. The large difference at MODIS resolution between re,3.7 and re,2.1 for highly inhomogeneous pixels with H 0.4 can be largely attributed to what we refer to as the plane-parallelrebias, which is attributable to the impact of sub-pixel level horizontal variability of cloud optical thickness onre retrievals

  11. Antiatherogenic activity of fungal beauveriolides, inhibitors of lipid droplet accumulation in macrophages

    PubMed Central

    Namatame, Ichiji; Tomoda, Hiroshi; Ishibashi, Shun; Ōmura, Satoshi

    2004-01-01

    Beauveriolides I and III, isolated from the culture broth of fungal Beauveria sp. FO-6979, showed potent inhibitory activity of lipid droplet accumulation in primary mouse peritoneal macrophages. The cellular molecular target of this inhibitory activity was studied in macrophages. Beauveriolides I and III strongly inhibited the cholesteryl ester (CE) synthesis with IC50 values of 0.78 and 0.41 μM, respectively, without showing significant effects on the triacylglycerol and phospholipid synthesis. Furthermore, lysosomal cholesterol metabolism to CE in macrophages was inhibited by the compounds, indicating that the inhibition site lies within steps between cholesterol departure from the lysosome and CE synthesis in the endoplasmic reticulum. Therefore, acyl-CoA:cholesterol acyltransferase (ACAT) activity in the membrane fractions prepared from mouse macrophages was studied, resulting in a dose-dependent inhibition by beauveriolides I and III with IC50 values of 6.0 and 5.5 μM, respectively. Thus, we showed that the beauveriolides inhibit macrophage ACAT activity specifically, resulting in blockage of the CE synthesis, leading to a reduction of lipid droplets in macrophages. ACAT activity in the membrane fractions prepared from mouse liver and Caco-2 cells was also inhibited, indicating that the beauveriolides block both ACAT-1 and -2. Moreover, beauveriolides I and III exert antiatherogenic activity in both low-density lipoprotein receptor- and apolipoprotein E-knockout mice without any side effects such as diarrhea or cytotoxicity to adrenal tissues as observed for many synthetic ACAT inhibitors. Beauveriolides I and III are the first microbial cyclodepsipeptides having an in vivo antiatherosclerotic effect and show promise as potential lead compounds for antiatherosclerotic agents. PMID:14718664

  12. Antiatherogenic activity of fungal beauveriolides, inhibitors of lipid droplet accumulation in macrophages.

    PubMed

    Namatame, Ichiji; Tomoda, Hiroshi; Ishibashi, Shun; Omura, Satoshi

    2004-01-20

    Beauveriolides I and III, isolated from the culture broth of fungal Beauveria sp. FO-6979, showed potent inhibitory activity of lipid droplet accumulation in primary mouse peritoneal macrophages. The cellular molecular target of this inhibitory activity was studied in macrophages. Beauveriolides I and III strongly inhibited the cholesteryl ester (CE) synthesis with IC(50) values of 0.78 and 0.41 microM, respectively, without showing significant effects on the triacylglycerol and phospholipid synthesis. Furthermore, lysosomal cholesterol metabolism to CE in macrophages was inhibited by the compounds, indicating that the inhibition site lies within steps between cholesterol departure from the lysosome and CE synthesis in the endoplasmic reticulum. Therefore, acyl-CoA:cholesterol acyltransferase (ACAT) activity in the membrane fractions prepared from mouse macrophages was studied, resulting in a dose-dependent inhibition by beauveriolides I and III with IC(50) values of 6.0 and 5.5 microM, respectively. Thus, we showed that the beauveriolides inhibit macrophage ACAT activity specifically, resulting in blockage of the CE synthesis, leading to a reduction of lipid droplets in macrophages. ACAT activity in the membrane fractions prepared from mouse liver and Caco-2 cells was also inhibited, indicating that the beauveriolides block both ACAT-1 and -2. Moreover, beauveriolides I and III exert antiatherogenic activity in both low-density lipoprotein receptor- and apolipoprotein E-knockout mice without any side effects such as diarrhea or cytotoxicity to adrenal tissues as observed for many synthetic ACAT inhibitors. Beauveriolides I and III are the first microbial cyclodepsipeptides having an in vivo antiatherosclerotic effect and show promise as potential lead compounds for antiatherosclerotic agents. PMID:14718664

  13. Biological contribution to ice nucleation active particles in clouds at the puy de Dôme atmospheric station, France

    NASA Astrophysics Data System (ADS)

    Amato, Pierre; Joly, Muriel; Deguillaume, Laurent; Delort, Anne-Marie

    2015-04-01

    The distribution, abundance and nature of ice nucleation active particles in the atmosphere are major sources of uncertainty in the prediction of cloud coverage, precipitation patterns and climate. Some biological ice nuclei (IN) induce freezing at temperatures at which most other atmospheric particles exhibit no detectable activity (> -10°C), but their actual contribution to the pool of IN in clouds remains poorly known. In order to help elucidating this, cloud water was collected aseptically from the summit of Puy de Dome (1465m a.s.l., France) within contrasted meteorological and physico-chemical situations. Total and biological (i.e. heat-sensitive) IN were quantified by droplet-freezing assay between -5°C and -14°C. We observed that freezing was systematically induced by biological material, between -6°C and -8°C in 92{%} of the samples. Its removal by heat treatment consistently led to a decrease of the onset freezing temperature, by 3°C or more in most samples. At -10°C, 0 to 220 biological IN mL-1 of cloud water were measured (i.e. 0 to 22 m-3 of cloud air), and these represented 65{%} to 100{%} of the total IN. Based on back-trajectories and on physico-chemical analyses, the high variability observed resulted probably from a source effect, with IN originating mostly from continental sources. Bacteria concentration in the air at altitude relevant for clouds typically ranges from ˜102 to ˜105 cells m-3. Assuming that biological IN measured in cloud water samples at -8°C were all bacteria, ice nucleation active bacteria represented at maximum 0.6{%} of the total bacteria cells present (3.1{%} at -12°C). These results should help elucidating the role of biological and bacterial IN on cloud microphysics and their impact on precipitation at local scale. References: Joly, M., Amato, P., Deguillaume, L., Monier, M., Hoose, C., and Delort A-M (2014). Quantification of ice nuclei active at near 0°C temperatures in low altitude clouds at the puy de Dome

  14. Droplet organelles?

    PubMed

    Courchaine, Edward M; Lu, Alice; Neugebauer, Karla M

    2016-08-01

    Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid-liquid phase separation (LLPS) process may drive their formation, possibly justifying the unifying term "droplet organelle". A veritable deluge of recent publications points to the importance of low-complexity proteins and RNA in determining the physical properties of phase-separated structures. Many of the proteins linked to such structures are implicated in human diseases, such as amyotrophic lateral sclerosis (ALS). We provide an overview of the organizational principles that characterize putative "droplet organelles" in healthy and diseased cells, connecting protein biochemistry with cell physiology. PMID:27357569

  15. The clouds are hazes of Venus

    NASA Technical Reports Server (NTRS)

    Esposito, L. W.; Knollenberg, R. G.; Marov, M. IA.; Toon, O. B.; Turco, R. P.

    1983-01-01

    Pioneer Venus and Venera probe data for the clouds of Venus are considered. These clouds consist of a main cloud deck at 45-70 km altitude, with thinner hazes above and below, although the microphysical properties of the main cloud are further subdivided into upper, middle and lower cloud levels. Much of the cloud exhibits a multimodal particle size distribution, with the mode most visible from the earth being H2SO4 droplets having 2-3 micron diameters. Despite variations, the vertical structure of the clouds indicates persistent features at sites separated by years and by great distances. The clouds are more strongly affected by radiation than by latent heat release, and the small particle size and weak convective activity observed are incompatible with lightning of cloud origin.

  16. Sensitivity estimations for cloud droplet formation in the vicinity of the high-alpine research station Jungfraujoch (3580 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Hammer, E.; Bukowiecki, N.; Luo, B. P.; Lohmann, U.; Marcolli, C.; Weingartner, E.; Baltensperger, U.; Hoyle, C. R.

    2015-09-01

    Aerosol radiative forcing estimates suffer from large uncertainties as a result of insufficient understanding of aerosol-cloud interactions. The main source of these uncertainties is dynamical processes such as turbulence and entrainment but also key aerosol parameters such as aerosol number concentration and size distribution, and to a much lesser extent, the composition. From June to August 2011 a Cloud and Aerosol Characterization Experiment (CLACE2011) was performed at the high-alpine research station Jungfraujoch (Switzerland, 3580 m a.s.l.) focusing on the activation of aerosol to form liquid-phase clouds (in the cloud base temperature range of -8 to 5 °C). With a box model the sensitivity of the effective peak supersaturation (SSpeak), an important parameter for cloud activation, to key aerosol and dynamical parameters was investigated. The updraft velocity, which defines the cooling rate of an air parcel, was found to have the greatest influence on SSpeak. Small-scale variations in the cooling rate with large amplitudes can significantly alter CCN activation. Thus, an accurate knowledge of the air parcel history is required to estimate SSpeak. The results show that the cloud base updraft velocities estimated from the horizontal wind measurements made at the Jungfraujoch can be divided by a factor of approximately 4 to get the updraft velocity required for the model to reproduce the observed SSpeak. The aerosol number concentration and hygroscopic properties were found to be less important than the aerosol size in determining SSpeak. Furthermore turbulence is found to have a maximum influence when SSpeak is between approximately 0.2 and 0.4 %. Simulating the small-scale fluctuations with several amplitudes, frequencies and phases, revealed that independently of the amplitude, the effect of the frequency on SSpeak shows a maximum at 0.46 Hz (median over all phases) and at higher frequencies, the maximum SSpeak decreases again.

  17. AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation

    PubMed Central

    Herms, Albert; Bosch, Marta; Reddy, Babu J.N.; Schieber, Nicole L.; Fajardo, Alba; Rupérez, Celia; Fernández-Vidal, Andrea; Ferguson, Charles; Rentero, Carles; Tebar, Francesc; Enrich, Carlos; Parton, Robert G.; Gross, Steven P.; Pol, Albert

    2015-01-01

    Lipid droplets (LDs) are intracellular organelles that provide fatty acids (FAs) to cellular processes including synthesis of membranes and production of metabolic energy. While known to move bidirectionally along microtubules (MTs), the role of LD motion and whether it facilitates interaction with other organelles are unclear. Here we show that during nutrient starvation, LDs and mitochondria relocate on detyrosinated MT from the cell centre to adopt a dispersed distribution. In the cell periphery, LD–mitochondria interactions increase and LDs efficiently supply FAs for mitochondrial beta-oxidation. This cellular adaptation requires the activation of the energy sensor AMPK, which in response to starvation simultaneously increases LD motion, reorganizes the network of detyrosinated MTs and activates mitochondria. In conclusion, we describe the existence of a specialized cellular network connecting the cellular energetic status and MT dynamics to coordinate the functioning of LDs and mitochondria during nutrient scarcity. PMID:26013497

  18. Cloud properties during active and break spells of the West African summer monsoon from CloudSat-CALIPSO measurements

    NASA Astrophysics Data System (ADS)

    Efon, E.; Lenouo, A.; Monkam, D.; Manatsa, D.

    2016-07-01

    High resolution of daily rainfall dataset from the Tropical Rainfall Measuring Mission (TRMM) was used to identify active and break cloud formation periods. The clouds were characterized based on CloudSat-CALIPSO satellite images over West Africa during the summer monsoon during the period 2006-2010. The active and break periods are defined as the periods during the peak monsoon months of June to August when the normalized anomaly of rainfall over the monsoon core zone is greater than 0.9 or less than -0.9 respectively, provided the criteria is satisfied for at least three consecutive days. It is found that about 90% of the break period and 66.7% of the active spells lasted 3-4 days. Active spells lasting duration of about a week were observed while no break spell had such a long span. Cloud macrophysical (cloud base height (CBH), cloud top height (CTH) and cloud geometric depth (∆H), microphysical (cloud liquid water content, (LWC), liquid number concentration (LNC), liquid effective radius, ice water content (IWC), ice number concentration (INC) and ice effective radius) and radiative (heating rate properties) over South Central West Africa (5-15°N; 15°W-10°E) during the active and break spells were also analyzed. High-level clouds are more predominant during the break periods compared to the active periods. Active spells have lower INC compared to the break spells. Liquid water clouds are observed to have more radiative forcing during the active than break periods while ice phase clouds bring more cooling effect during the break spells compared to the active spells.

  19. Strong evidence of surface tension reduction in microscopic aqueous droplets

    NASA Astrophysics Data System (ADS)

    Ruehl, C. R.; Chuang, P. Y.; Nenes, A.; Cappa, C. D.; Kolesar, K. R.; Goldstein, A. H.

    2012-12-01

    The ability of airborne particles to take up water may be enhanced by surface-active components, but the importance of this effect is controversial because direct measurement of the surface tension of microscopic droplets has not been possible. Here we infer droplet surface tension from water uptake measurements of mixed organic-inorganic particles at relative humidities just below saturation (99.3-99.9%). The surface tension of droplets formed on particles composed of NaCl and α-pinene ozonolysis products was reduced by 50-75%, but only when enough organic material was present to form a film on the droplet surface at least 0.8 nm thick. This study suggests that if atmospheric particles are predominantly (≳80%) composed of surface-active material, their influence on cloud properties and thus climate could be enhanced, and their atmospheric lifetimes could be reduced.

  20. Climate Effects of Cloud Modified CCN-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    Noble, S. R., Jr.; Hudson, J. G.

    2015-12-01

    Cloud condensation nuclei (CCN) play an important role in the climate system through the indirect aerosol effect (IAE). IAE is one of the least understood aspects of the climate system as many cloud processes are complicated. Many studies of aerosol-cloud interaction involve CCN interaction with cloud droplet concentrations (Nc), cloud microphysics, and radiative properties. However, fewer studies investigate how cloud processes modify CCN. Upon evaporation from non-precipitating clouds, CCN distributions develop bimodal shaped distributions (Hoppel et al. 1986). Activated CCN participate in cloud processing that is either chemical: aqueous oxidation; or physical: Brownian scavenging, collision and coalescence. Chemical processing does not change CCN concentration (NCCN) but reduces critical supersaturations (Sc; larger size) (Feingold and Kreidenweis, 2000) while physical processing reduces NCCN and Sc. These processes create the minima in the bimodal CCN distributions (Hudson et al., 2015). Updraft velocity (W) and NCCN are major factors on how these modified CCN distributions affect clouds. Panel a shows two nearby CCN distributions in the MArine Stratus/stratocumulus Experiment (MASE), which have similar concentrations, but the bimodal one (red) has been modified by cloud processing. In a simplified cloud droplet model, the modified CCN then produces higher Nc (panel b) and smaller droplet mean diameters (MD; panel c) when compared to the unmodified CCN (black) for W lower than 50 cm/s. The better CCN (lower Sc) increase competition among droplets reducing MD and droplet distribution spread (σ) which acts to reduce drizzle. Competition is created by limited available condensate due to lower S created by the low W (<50 cm/s) typical of stratus. The increased Nc of the modified CCN in stratus then increases IAE in the climate system. At higher W (>50 cm/s) typical of cumuli, Ncis reduced and MD is increased from the modified CCN distribution (panels b & c). Here

  1. Models to support active sensing of biological aerosol clouds

    NASA Astrophysics Data System (ADS)

    Brown, Andrea M.; Kalter, Jeffrey M.; Corson, Elizabeth C.; Chaudhry, Zahra; Boggs, Nathan T.; Brown, David M.; Thomas, Michael E.; Carter, Christopher C.

    2013-05-01

    Elastic backscatter LIght Detection And Ranging (LIDAR) is a promising approach for stand-off detection of biological aerosol clouds. Comprehensive models that explain the scattering behavior from the aerosol cloud are needed to understand and predict the scattering signatures of biological aerosols under varying atmospheric conditions and against different aerosol backgrounds. Elastic signatures are dependent on many parameters of the aerosol cloud, with two major components being the size distribution and refractive index of the aerosols. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) has been in a unique position to measure the size distributions of released biological simulant clouds using a wide assortment of aerosol characterization systems that are available on the commercial market. In conjunction with the size distribution measurements, JHU/APL has also been making a dedicated effort to properly measure the refractive indices of the released materials using a thin-film absorption technique and laboratory characterization of the released materials. Intimate knowledge of the size distributions and refractive indices of the biological aerosols provides JHU/APL with powerful tools to build elastic scattering models, with the purpose of understanding, and ultimately, predicting the active signatures of biological clouds.

  2. Vibration-Induced Droplet Atomization

    NASA Technical Reports Server (NTRS)

    Smith, M. K.; James, A.; Vukasinovic, B.; Glezer, A.

    1999-01-01

    Thermal management is critical to a number of technologies used in a microgravity environment and in Earth-based systems. Examples include electronic cooling, power generation systems, metal forming and extrusion, and HVAC (heating, venting, and air conditioning) systems. One technique that can deliver the large heat fluxes required for many of these technologies is two-phase heat transfer. This type of heat transfer is seen in the boiling or evaporation of a liquid and in the condensation of a vapor. Such processes provide very large heat fluxes with small temperature differences. Our research program is directed toward the development of a new, two-phase heat transfer cell for use in a microgravity environment. In this paper, we consider the main technology used in this cell, a novel technique for the atomization of a liquid called vibration-induced droplet atomization. In this process, a small liquid droplet is placed on a thin metal diaphragm that is made to vibrate by an attached piezoelectric transducer. The vibration induces capillary waves on the free surface of the droplet that grow in amplitude and then begin to eject small secondary droplets from the wave crests. In some situations, this ejection process develops so rapidly that the entire droplet seems to burst into a small cloud of atomized droplets that move away from the diaphragm at speeds of up to 50 cm/s. By incorporating this process into a heat transfer cell, the active atomization and transport of the small liquid droplets could provide a large heat flux capability for the device. Experimental results are presented that document the behavior of the diaphragm and the droplet during the course of a typical bursting event. In addition, a simple mathematical model is presented that qualitatively reproduces all of the essential features we have seen in a burst event. From these two investigations, we have shown that delayed droplet bursting results when the system passes through a resonance

  3. Toward the assessment of the role of cloud turbulence in warm-rain processes

    NASA Astrophysics Data System (ADS)

    Grabowski, W. W.; Wyszogrodzki, A.; Wang, L.-P.; Ayala, O.

    2012-04-01

    Cloud turbulence has been argued to play a significant role in the development of precipitation through the warm-rain (collision/coalescence) processes. In recent years, we developed collision kernels that include effects of cloud turbulence on collisions between cloud droplets. The kernels apply the theoretical model of the turbulent droplet collisions verified by direct numerical simulation (DNS) of droplet-laden turbulent flows. The impact of cloud turbulence on the collision efficiency was also included and it was assessed using a novel DNS methodology that includes hydrodynamic interactions between droplets carried by the turbulent flow. In general, the turbulent collision kernel depends on the characteristics of the small-scale turbulence, the turbulent dissipation rate in particular. We quantified the impact of turbulent collisions in simulations with increasingly complex setups, from the evolution of the initial droplet spectrum with collision/coalescence alone; through rising adiabatic parcel simulations that included droplet activation, diffusional growth and growth by collision/coalescence; and in idealized rising thermal simulations mimicking processes within a single cloud. The latter simulations show that cloud turbulence not only leads to earlier rain formation, but can also result in higher precipitation efficiency of a single cloud. The next logical step is to apply the new kernel in realistic cloud field simulations to include feedbacks between clouds and their environment. Such simulations are underway and will be discussed at the conference.

  4. Impedance spectroscopy of micro-Droplets reveals activation of Bacterial Mechanosensitive Channels in Hypotonic Solutions

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Aida; Alam, Muhammad A.

    Rapid detection of bacterial pathogens is of great importance in healthcare, food safety, environmental monitoring, and homeland security. Most bacterial detection platforms rely on binary fission (i.e. cell growth) to reach a threshold cell population that can be resolved by the sensing method. Since cell division depends on the bacteria type, the detection time of such methods can vary from hours to days. In contrast, in this work, we show that bacteria cells can be detected within minutes by relying on activation of specific protein channels, i.e. mechanosensitive channels (MS channels). When cells are exposed to hypotonic solutions, MS channels allow efflux of solutes to the external solution which leads to release the excessive membrane tension. Release of the cytoplasmic solutes, in turn, results in increase of the electrical conductance measured by droplet-based impedance sensing. The approach can be an effective technique for fast, pre-screening of bacterial contamination at ultra-low concentration.

  5. Chemical Speciation of Sulfur in Marine Cloud Droplets and Particles: Analysis of Individual Particles from Marine Boundary Layer over the California Current

    SciTech Connect

    William R. Wiley Environmental Sciences Laboratory, Pacific Northwest National Laboratory; Gilles, Mary K; Hopkins, Rebecca J.; Desyaterik, Yury; Tivanski, Alexei V.; Zaveri, Rahul A.; Berkowitz, Carl M.; Tyliszczak, Tolek; Gilles, Mary K.; Laskin, Alexander

    2008-03-12

    Detailed chemical speciation of the dry residue particles from individual cloud droplets and interstitial aerosol collected during the Marine Stratus Experiment (MASE) was performed using a combination of complementary microanalysis techniques. Techniques include computer controlled scanning electron microscopy with energy dispersed analysis of X-rays (CCSEM/EDX), time-of-flight secondary ionization mass spectrometry (TOF-SIMS), and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Samples were collected at the ground site located in Point Reyes National Seashore, approximately 1 km from the coast. This manuscript focuses on the analysis of individual particles sampled from air masses that originated over the open ocean and then passed through the area of the California current located along the northern California coast. Based on composition, morphology, and chemical bonding information, two externally mixed, distinct classes of sulfur containing particles were identified: chemically modified (aged) sea salt particles and secondary formed sulfate particles. The results indicate substantial heterogeneous replacement of chloride by methanesulfonate (CH3SO3-) and non-sea salt sulfate (nss-SO42-) in sea-salt particles with characteristic ratios of nss-S/Na>0.10 and CH3SO3-/nss-SO42->0.6.

  6. Human serum activates CIDEB-mediated lipid droplet enlargement in hepatoma cells

    SciTech Connect

    Singaravelu, Ragunath; Lyn, Rodney K.; Srinivasan, Prashanth; Delcorde, Julie; Steenbergen, Rineke H.; Tyrrell, D. Lorne; Pezacki, John P.

    2013-11-15

    Highlights: •Human serum induced differentiation of hepatoma cells increases cellular lipid droplet (LD) size. •The observed increase in LD size correlates with increased PGC-1α and CIDEB expression. •Induction of CIDEB expression correlates with rescue of VLDL secretion and loss of ADRP. •siRNA knockdown of CIDEB impairs the human serum mediated increase in LD size. •This system represents a cost-efficient model to study CIDEB’s role in lipid biology. -- Abstract: Human hepatocytes constitutively express the lipid droplet (LD) associated protein cell death-inducing DFFA-like effector B (CIDEB). CIDEB mediates LD fusion, as well as very-low-density lipoprotein (VLDL) maturation. However, there are limited cell culture models readily available to study CIDEB’s role in these biological processes, as hepatoma cell lines express negligible levels of CIDEB. Recent work has highlighted the ability of human serum to differentiate hepatoma cells. Herein, we demonstrate that culturing Huh7.5 cells in media supplemented with human serum activates CIDEB expression. This activation occurs through the induced expression of PGC-1α, a positive transcriptional regulator of CIDEB. Coherent anti-Stokes Raman scattering (CARS) microscopy revealed a correlation between CIDEB levels and LD size in human serum treated Huh7.5 cells. Human serum treatment also resulted in a rapid decrease in the levels of adipose differentiation-related protein (ADRP). Furthermore, individual overexpression of CIDEB was sufficient to down-regulate ADRP protein levels. siRNA knockdown of CIDEB revealed that the human serum mediated increase in LD size was CIDEB-dependent. Overall, our work highlights CIDEB’s role in LD fusion, and presents a new model system to study the PGC-1α/CIDEB pathway’s role in LD dynamics and the VLDL pathway.

  7. Influence of different microphysical schemes on the prediction of dissolution of nonreactive gases by cloud droplets and raindrops

    SciTech Connect

    Huret, N.; Chaumerliac, N.; Isaka, H.; Nickerson, E.C. |

    1994-09-01

    Three microphysical formulations are closely compared to evaluate their impact upon gas scavenging and wet deposition processes. They range from a classical bulk approach to a fully spectral representation, including an intermediate semispectral parameterization. Detailed comparisons among the microphysical rates provided by these three parameterizations are performed with special emphasis on evaporation rate calculations. This comparative study is carried out in the context of a mountain wave simulation. Major differences are essentially found in the contrasted spreading of the microphysical fields on the downwind side of the mountain. A detailed chemical module including the dissolution of the species and their transfer between phases (air, cloud, and rain) is coupled with the three microphysical parameterizations in the framework of the dynamical mesoscale model. An assessment of the accuracy of each scheme is then proposed by comparing their ability to represent the drop size dependency of chemical wet processes. The impact of evaporation (partial versus total) upon the partition of species between gas and aqueous phases is also studied in detail.

  8. On the efficient acceleration of clouds in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Waters, Tim; Proga, Daniel

    2016-07-01

    In the broad line region of active galactic nuclei (AGN), acceleration occurs naturally when a cloud condenses out of the hot confining medium due to the increase in line opacity as the cloud cools. However, acceleration by radiation pressure is not very efficient when the flux is time-independent, unless the flow is 1D. Here, we explore how acceleration is affected by a time-varying flux, as AGN are known to be highly variable. If the period of flux oscillations is longer than the thermal time-scale, we expect the gas to cool during the low flux state, and therefore line opacity should quickly increase. The cloud will receive a small kick due to the increased radiation force. We perform hydrodynamical simulations using ATHENA to confirm this effect and quantify its importance. We find that despite the flow becoming turbulent in 2D due to hydrodynamic instabilities, a 20 per cent modulation of the flux leads to a net increase in acceleration - by more than a factor of 2 - in both 1D and 2D. We show that this acceleration is sufficient to produce the observed line widths, although we only consider optically thin clouds. We discuss the implications of our results for photoionization modelling and reverberation mapping.

  9. Cloud condensation nucleation activities of calcium carbonate and its atmospheric ageing products.

    PubMed

    Tang, M J; Whitehead, J; Davidson, N M; Pope, F D; Alfarra, M R; McFiggans, G; Kalberer, M

    2015-12-28

    Aerosol particles can serve as cloud condensation nuclei (CCN) to form cloud droplets, and its composition is a main factor governing whether an aerosol particle is an effective CCN. Pure mineral dust particles are poor CCN; however, changes in chemical composition of mineral dust aerosol particles, due to heterogeneous reactions with reactive trace gases in the troposphere, can modify their CCN properties. In this study we investigated the CCN activities of CaCO3 (as a surrogate for mineral dust) and its six atmospheric ageing products: Ca(NO3)2, CaCl2, CaSO4, Ca(CH3SO3)2, Ca(HCOO)2, and Ca(CH3COO)2. CaCO3 has a very low CCN activity with a hygroscopicity parameter (κ) of 0.001-0.003. The CCN activities of its potential atmospheric ageing products are significantly higher. For example, we determined that Ca(NO3)2, CaCl2 and Ca(HCOO)2 have κ values of ∼0.50, similar to that of (NH4)2SO4. Ca(CH3COO)2 has slightly lower CCN activity with a κ value of ∼0.40, and the κ value of CaSO4 is around 0.02. We further show that exposure of CaCO3 particles to N2O5 at 0% relative humidity (RH) significantly enhances their CCN activity, with κ values increasing to around 0.02-0.04. Within the experimental uncertainties, it appears that the variation in exposure to N2O5 from ∼550 to 15,000 ppbv s does not change the CCN activities of aged CaCO3 particles. This observation indicates that the CaCO3 surface may be already saturated at the shortest exposure. We also discussed the atmospheric implications of our study, and suggested that the rate of change in CCN activities of mineral dust particles in the troposphere is important to determine their roles in cloud formation. PMID:26578034

  10. Cloud condensation nucleus activity comparison of dry- and wet-generated mineral dust aerosol: the significance of soluble material

    NASA Astrophysics Data System (ADS)

    Garimella, S.; Huang, Y.-W.; Seewald, J. S.; Cziczo, D. J.

    2014-06-01

    This study examines the interaction of clay mineral particles and water vapor for determining the conditions required for cloud droplet formation. Droplet formation conditions are investigated for two common clay minerals, illite and sodium-rich montmorillonite, and an industrially derived sample, Arizona Test Dust. Using wet and dry particle generation coupled to a differential mobility analyzer (DMA) and cloud condensation nuclei counter, the critical activation of the clay mineral particles as cloud condensation nuclei is characterized. Electron microscopy (EM) is used in order to determine non-sphericity in particle shape. It is also used in order to determine particle surface area and account for transmission of multiply charged particles by the DMA. Single particle mass spectrometry and ion chromatography are used to investigate soluble material in wet-generated samples and demonstrate that wet and dry generation yield compositionally different particles. Activation results are analyzed in the context of both κ-Köhler theory (κ-KT) and Frenkel-Halsey-Hill (FHH) adsorption activation theory. This study has two main results: (1) κ-KT is the suitable framework to describe clay mineral nucleation activity. Apparent differences in κ with respect to size arise from an artifact introduced by improper size-selection methodology. For dust particles with mobility sizes larger than ~300 nm, i.e., ones that are within an atmospherically relevant size range, both κ-KT and FHH theory yield similar critical supersaturations. However, the former requires a single hygroscopicity parameter instead of the two adjustable parameters required by the latter. For dry-generated particles, the size dependence of κ is likely an artifact of the shape of the size distribution: there is a sharp drop-off in particle concentration at ~300 nm, and a large fraction of particles classified with a mobility diameter less than ~300 nm are actually multiply charged, resulting in a much

  11. Statistical study of global cloud microphysics using A-Train satellites

    NASA Astrophysics Data System (ADS)

    Zeng, S.; Trepte, C. R.; Winker, D. M.; Riedi, J.; Hu, Y.

    2012-12-01

    Observations from A-train provide valuable new information on the vertical structure of clouds and their properties over the globe. Advanced cloud retrievals have been developed using combined measurements using active remote sensing instruments from CALIPSO (lidar) and CloudSat (radar) and passive visible and infrared sensors from MODIS, PARASOL, and CALIPSO to provide improved estimates of cloud extinction coefficients, cloud liquid/ice water content, cloud droplet number concentrations and other water cloud physical properties. One of the surprise discoveries from these new and innovative A-Train cloud retrievals is that the droplet number concentrations for water clouds over the open ocean are very low (around 20 per cc) in contrast to values closer to 100 per cc used in many weather and climate models. These lower droplet concentrations can have profound implications on the ability to form clouds in the marine boundary layer and their precipitation rates. In this study, we will introduce the basic concept of cloud droplet number concentration retrievals using CALIPSO and A-train measurements, evaluate their uncertainties, and present new global statistics of on the their distribution and temporal variation. We will also explore examples of possible aerosol/cloud interactions using these observations together with back-trajectory analysis.

  12. Mixing state and compositional effects on CCN activity and droplet growth kinetics of size-resolved CCN in an urban environment

    NASA Astrophysics Data System (ADS)

    Padró, L. T.; Moore, R. H.; Zhang, X.; Rastogi, N.; Weber, R. J.; Nenes, A.

    2012-11-01

    Aerosol composition and mixing state near anthropogenic sources can be highly variable and can challenge predictions of cloud condensation nuclei (CCN). The impacts of chemical composition on CCN activation kinetics is also an important, but largely unknown, aspect of cloud droplet formation. Towards this, we present in-situ size-resolved CCN measurements carried out during the 2008 summertime August Mini Intensive Gas and Aerosol Study (AMIGAS) campaign in Atlanta, GA. Aerosol chemical composition was measured by two particle-into-liquid samplers measuring water-soluble inorganic ions and total water-soluble organic carbon. Size-resolved CCN data were collected using the Scanning Mobility CCN Analysis (SMCA) method and were used to obtain characteristic aerosol hygroscopicity distributions, whose breadth reflects the aerosol compositional variability and mixing state. Knowledge of aerosol mixing state is important for accurate predictions of CCN concentrations and that the influence of an externally-mixed, CCN-active aerosol fraction varies with size from 31% for particle diameters less than 40 nm to 93% for accumulation mode aerosol during the day. Assuming size-dependent aerosol mixing state and size-invariant chemical composition decreases the average CCN concentration overprediction (for all but one mixing state and chemical composition scenario considered) from over 190-240% to less than 20%. CCN activity is parameterized using a single hygroscopicity parameter, κ, which averages to 0.16 ± 0.07 for 80 nm particles and exhibits considerable variability (from 0.03 to 0.48) throughout the study period. Particles in the 60-100 nm range exhibited similar hygroscopicity, with a κ range for 60 nm between 0.06-0.076 (mean of 0.18 ± 0.09). Smaller particles (40 nm) had on average greater κ, with a range of 0.20-0.92 (mean of 0.3 ± 0.12). Analysis of the droplet activation kinetics of the aerosol sampled suggests that most of the CCN activate as rapidly as

  13. Global aerosol effects on convective clouds

    NASA Astrophysics Data System (ADS)

    Wagner, Till; Stier, Philip

    2013-04-01

    Atmospheric aerosols affect cloud properties, and thereby the radiation balance of the planet and the water cycle. The influence of aerosols on clouds is dominated by increase of cloud droplet and ice crystal numbers (CDNC/ICNC) due to enhanced aerosols acting as cloud condensation and ice nuclei. In deep convective clouds this increase in CDNC/ICNC is hypothesised to increase precipitation because of cloud invigoration through enhanced freezing and associated increased latent heat release caused by delayed warm rain formation. Satellite studies robustly show an increase of cloud top height (CTH) and precipitation with increasing aerosol optical depth (AOD, as proxy for aerosol amount). To represent aerosol effects and study their influence on convective clouds in the global climate aerosol model ECHAM-HAM, we substitute the standard convection parameterisation, which uses one mean convective cloud for each grid column, with the convective cloud field model (CCFM), which simulates a spectrum of convective clouds, each with distinct values of radius, mixing ratios, vertical velocity, height and en/detrainment. Aerosol activation and droplet nucleation in convective updrafts at cloud base is the primary driver for microphysical aerosol effects. To produce realistic estimates for vertical velocity at cloud base we use an entraining dry parcel sub cloud model which is triggered by perturbations of sensible and latent heat at the surface. Aerosol activation at cloud base is modelled with a mechanistic, Köhler theory based, scheme, which couples the aerosols to the convective microphysics. Comparison of relationships between CTH and AOD, and precipitation and AOD produced by this novel model and satellite based estimates show general agreement. Through model experiments and analysis of the model cloud processes we are able to investigate the main drivers for the relationship between CTH / precipitation and AOD.

  14. Fingerprinting the Clouds

    NASA Astrophysics Data System (ADS)

    Orellana, M. V.; Caballero, J.; Lee, A. M.; Matrai, P. A.; Leck, C.; Madan, A.; Collins, H.

    2012-12-01

    Marine microgels play an important role in regulating ocean-basin-scale biogeochemical dynamics. We have found them in surface waters, in airborne aerosol, fog, and cloud water in the high Arctic (north of 80oN). Microgels dominated the available cloud condensation nuclei number population during the summer season. These microgels have unique physicochemical characteristics and originate from the ice algae and/or phytoplankton in the surface water. We have sequenced the genomic material found in the microgels from the sea surface and cloud waters with next-generation sequencing technology. The sequence analysis and annotation, show a high abundance of proteins of microbial and diatom origin, including a high number of proteins from different taxonomical origin associated with antifreeze functions. Our results have implications not only for cloud droplet activation but also for ice nucleation.

  15. Shear-driven redistribution of surfactant affects enzyme activity in well-mixed femtoliter droplets

    SciTech Connect

    Collier, Pat

    2009-01-01

    We developed a microfluidic platform for splitting well-mixed, femtoliter-volume droplets from larger water-in-oil plugs, where the sizes of the daughter droplets were not limited by channel width. These droplets were separated from mother plugs at a microfabricated T-junction, which enabled the study of how increased confinement affected enzyme kinetics in droplets 4-10 {mu}m in diameter. Initial rates for enzyme catalysis in the mother plugs and the largest daughter drops were close to the average bulk rate, while the rates in smaller droplets decreased linearly with increasing surface to volume ratio. Rates in the smallest droplets decreased by a factor of 4 compared to the bulk rate. Traditional methods for detecting nonspecific adsorption at the water-oil interface were unable to detect evidence of enzyme adsorption, including pendant drop tensiometry, laser scanning confocal microscopy of drops containing labeled proteins in microemulsions, and epifluorescence microscopy of plugs and drops generated on-chip. We propose the slowing of enzyme reaction kinetics in the smaller droplets was the result of increased adsorption and inactivation of enzymes at the water-oil interface arising from transient interfacial shear stresses imparted on the daughter droplets as they split from the mother plugs and passed through the constricted opening of the T-junction. Such stresses are known to modulate the interfacial area and density of surfactant molecules that can passivate the interface. Bright field images of the splitting processes at the junction indicate that these stresses scaled with increasing surface to volume ratios of the droplets but were relatively insensitive to the average flow rate of plugs upstream of the junction.

  16. Worldwide data sets constrain the water vapor uptake coefficient in cloud formation

    PubMed Central

    Raatikainen, Tomi; Nenes, Athanasios; Seinfeld, John H.; Morales, Ricardo; Moore, Richard H.; Lathem, Terry L.; Lance, Sara; Padró, Luz T.; Lin, Jack J.; Cerully, Kate M.; Bougiatioti, Aikaterini; Cozic, Julie; Ruehl, Christopher R.; Chuang, Patrick Y.; Anderson, Bruce E.; Flagan, Richard C.; Jonsson, Haflidi; Mihalopoulos, Nikos; Smith, James N.

    2013-01-01

    Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought. PMID:23431189

  17. Chemical Speciation of Sulfur in Marine Cloud Droplets and Particles: Analysis of Individual Particles from the Marine Boundary Layer Over the California Current

    SciTech Connect

    Hopkins, Rebecca J; Desyaterik, Yury; Tivanski, Alexei V; Zaveri, Rahul A; Berkowitz, Carl M; Tyliszczak, T; Gilles, Marry K; Laskin, Alexander

    2008-02-27

    Detailed chemical speciation of the dry residue particles from individual cloud droplets and interstitial aerosol collected during the Marine Stratus Experiment (MASE) was performed using a complementary combination of microanalysis techniques. Techniques include computer controlled scanning electron microscopy with energy dispersed analysis of X-rays (CCSEM/EDX), time-of-flight secondary ionization mass spectrometry (TOFSIMS), and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Samples were collected at the ground site located in Point Reyes National Seashore, approximately 1 km from the coast. This manuscript focuses on the analysis of individual particles sampled from an air mass that originated over the open ocean and then passed through the area of the California current located along the northern California coast. Based on composition, morphology, and chemical bonding information, two externally mixed, distinct classes of sulfur containing particles were identified: chemically modified (aged) sea salt particles and secondary formed sulfate particles. The results indicate substantial heterogeneous replacement of chloride by methanesulfonate (CH3SO3-) and non-sea salt sulfate (nss-SO42-) in sea-salt particles with the characteristic ratios of CH3SO3-/nss-SO42-> 0.6. Although this value seems too high for a mid-latitude site, our model calculations suggest that high CH3SO3-/nss-SO42- ratios are expected during the early stages of dimethyl sulfide (DMS) oxidation when CH3SO3H forms more rapidly than H2SO4.

  18. Characterization of residuals from ice particles and droplets sampled in mid-latitude natural and aviation-influenced cirrus and in tropical deep convective cloud systems during ML-CIRRUS and ACRIDICON

    NASA Astrophysics Data System (ADS)

    Mertes, Stephan; Kästner, Udo; Schulz, Christiane; Klimach, Thomas; Krüger, Mira; Schneider, Johannes

    2015-04-01

    Airborne sampling of cloud particles inside different cirrus cloud types and inside deep convective clouds was conducted during the HALO missions ML-CIRRUS over Europe in March/April 2014 and ACRIDICON over Amazonia in September 2014. ML-CIRRUS aims at the investigation of the for-mation, evolution, microphysical state and radiative effects of different natural and aviation-induced cirrus clouds in the mid-latitudes. The main objectives of ACRIDICON are the microphysical vertical profiling, vertical aerosol transport and the cloud processing of aerosol particles (compari-son in- and outflow) of tropical deep convective cloud systems in clean and polluted air masses and over forested and deforested regions. The hydrometeors (drops and ice particles) are sampled by a counterflow virtual impactor (CVI) which has to be installed in the front part of the upper fuselage of the HALO aircraft. Such an intake position implies a size dependent abundance of cloud particles with respect to ambient conditions that was studied by particle trajectory simulations (Katrin Witte, HALO Technical Note 2008-003-A). On the other hand, this sampling location avoids that large ice crystals which could potentially bias the cloud particle sampling by shattering and break-up at the inlet shroud and tip enter the inlet. Both aspects as well as the flight conditions of HALO were taken into account for an optimized CVI design for HALO (HALO-CVI). Interstitial particles are pre-segregated and the condensed phase is evaporated/sublimated by the CVI, such that the residuals from cloud droplets and ice particles (CDR and IPR) can be microphysically and chemically analyzed by respective aerosol sensors located in the cabin. Although an even more comprehensive characterization of CDR and IPR was carried out, we like to report on the following measurements of certain aerosol properties. Particle number concentra-tion and size distribution are measured by a condensation particle counter (CPC) and an

  19. Factors influencing the microphysics and radiative properties of liquid-dominated Arctic clouds: insight from observations of aerosol and clouds during ISDAC

    SciTech Connect

    Earle, Michael; Liu, Peter S.; Strapp, J. Walter; Zelenyuk, Alla; Imre, D.; McFarquhar, Greg; Shantz, Nicole C.; Leaitch, W. R.

    2011-11-04

    Aircraft measurements during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 are used to investigate aerosol indirect effects in Arctic clouds. Two aerosol-cloud regimes are considered in this analysis: single-layer stratocumulus cloud with below-cloud aerosol concentrations (N{sub a}) below 300 cm{sup -3} on April 8 and April 26-27 (clean cases); and inhomogeneous layered cloud with N{sub a} > 500 cm{sup -3} below cloud base on April 19-20, concurrent with a biomass burning episode (polluted cases). Vertical profiles through cloud in each regime are used to determine average cloud microphysical and optical properties. Positive correlations between the cloud droplet effective radius (Re) and cloud optical depth ({tau}) are observed for both clean and polluted cases, which are characteristic of optically-thin, non-precipitating clouds. Average Re values for each case are {approx} 6.2 {mu}m, despite significantly higher droplet number concentrations (Nd) in the polluted cases. The apparent independence of Re and Nd simplifies the description of indirect effects, such that {tau} and the cloud albedo (A) can be described by relatively simple functions of the cloud liquid water path. Adiabatic cloud parcel model simulations show that the marked differences in Na between the regimes account largely for differences in droplet activation, but that the properties of precursor aerosol also play a role, particularly for polluted cases where competition for vapour amongst the more numerous particles limits activation to larger and/or more hygroscopic particles. The similarity of Re for clean and polluted cases is attributed to compensating droplet growth processes for different initial droplet size distributions.

  20. Ice nucleation active particles are efficiently removed by precipitating clouds

    PubMed Central

    Stopelli, Emiliano; Conen, Franz; Morris, Cindy E.; Herrmann, Erik; Bukowiecki, Nicolas; Alewell, Christine

    2015-01-01

    Ice nucleation in cold clouds is a decisive step in the formation of rain and snow. Observations and modelling suggest that variations in the concentrations of ice nucleating particles (INPs) affect timing, location and amount of precipitation. A quantitative description of the abundance and variability of INPs is crucial to assess and predict their influence on precipitation. Here we used the hydrological indicator δ18O to derive the fraction of water vapour lost from precipitating clouds and correlated it with the abundance of INPs in freshly fallen snow. Results show that the number of INPs active at temperatures ≥ −10 °C (INPs−10) halves for every 10% of vapour lost through precipitation. Particles of similar size (>0.5 μm) halve in number for only every 20% of vapour lost, suggesting effective microphysical processing of INPs during precipitation. We show that INPs active at moderate supercooling are rapidly depleted by precipitating clouds, limiting their impact on subsequent rainfall development in time and space. PMID:26553559

  1. Aerosol Impacts on Microphysical and Radiative Properties of Stratocumulus Clouds in the Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Toohey, D. W.; Andrejczuk, M.; Anderson, J. R.; Adams, A.; Lytle, M.; George, R.; Wood, R.; Zuidema, P.; Leon, D.

    2011-12-01

    The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, cloud droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties along an E-W track from near the Chilean coast to remote areas offshore. Mean statistics from seven flights were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. The effect extends ~800 to 1000 km from shore. The additional particles are mainly sulfates from anthropogenic sources. Liquid water content and drizzle concentration tended to increase with distance from shore, but exhibited much greater variability. Analysis of the droplet residual measurements showed that not only were there more residual nuclei near shore, but that they tended to be larger than those offshore. Single particle analysis over a broad particle size range was used to reveal types and sources of CCN, which were primarily sulfates near shore. Differences in the size distribution of droplet residual particles and ambient aerosol particles were observed due to the preferential activation of large aerosol particles. By progressively excluding small droplets from the CVI sample, we were able to show that the larger drops, which initiate drizzle, contain the largest aerosol particles. However, the scavenging efficiency is not sharp as expected from a simple parcel activation model. A wide range of

  2. Theory of droplet. Part 1: Renormalized laws of droplet vaporization in non-dilute sprays

    NASA Technical Reports Server (NTRS)

    Chiu, H. H.

    1989-01-01

    The vaporization of a droplet, interacting with its neighbors in a non-dilute spray environment is examined as well as a vaporization scaling law established on the basis of a recently developed theory of renormalized droplet. The interacting droplet consists of a centrally located droplet and its vapor bubble which is surrounded by a cloud of droplets. The distribution of the droplets and the size of the cloud are characterized by a pair-distribution function. The vaporization of a droplet is retarded by the collective thermal quenching, the vapor concentration accumulated in the outer sphere, and by the limited percolative passages for mass, momentum and energy fluxes. The retardation is scaled by the local collective interaction parameters (group combustion number of renormalized droplet, droplet spacing, renormalization number and local ambient conditions). The numerical results of a selected case study reveal that the vaporization correction factor falls from unity monotonically as the group combustion number increases, and saturation is likely to occur when the group combustion number reaches 35 to 40 with interdroplet spacing of 7.5 diameters and an environment temperature of 500 K. The scaling law suggests that dense sprays can be classified into: (1) a diffusively dense cloud characterized by uniform thermal quenching in the cloud; (2) a stratified dense cloud characterized by a radial stratification in temperature by the differential thermal quenching of the cloud; or (3) a sharply dense cloud marked by fine structure in the quasi-droplet cloud and the corresponding variation in the correction factor due to the variation in the topological structure of the cloud characterized by a pair-distribution function of quasi-droplets.

  3. Modulation Effect of Peroxisome Proliferator-Activated Receptor Agonists on Lipid Droplet Proteins in Liver.

    PubMed

    Zhu, Yun-Xia; Zhang, Ming-Liang; Zhong, Yuan; Wang, Chen; Jia, Wei-Ping

    2016-01-01

    Peroxisome proliferator-activated receptor (PPAR) agonists are used for treating hyperglycemia and type 2 diabetes. However, the mechanism of action of these agonists is still under investigation. The lipid droplet-associated proteins FSP27/CIDEC and LSDP5, regulated directly by PPARγ and PPARα, are associated with hepatic steatosis and insulin sensitivity. Here, we evaluated the expression levels of FSP27/CIDEC and LSDP5 and the regulation of these proteins by consumption of a high-fat diet (HFD) or administration of PPAR agonists. Mice with diet-induced obesity were treated with the PPARγ or PPARα agonist, pioglitazone or fenofibrate, respectively. Liver tissues from db/db diabetic mice and human were also collected. Interestingly, FSP27/CIEDC was expressed in mouse and human livers and was upregulated in obese C57BL/6J mice. Fenofibrate treatment decreased hepatic triglyceride (TG) content and FSP27/CIDEC protein expression in mice fed an HFD diet. In mice, LSDP5 was not detected, even in the context of insulin resistance or treatment with PPAR agonists. However, LSDP5 was highly expressed in humans, with elevated expression observed in the fatty liver. We concluded that fenofibrate greatly decreased hepatic TG content and FSP27/CIDEC protein expression in mice fed an HFD, suggesting a potential regulatory role for fenofibrate in the amelioration of hepatic steatosis. PMID:26770990

  4. Efficient laboratory evolution of computationally designed enzymes with low starting activities using fluorescence-activated droplet sorting.

    PubMed

    Obexer, Richard; Pott, Moritz; Zeymer, Cathleen; Griffiths, Andrew D; Hilvert, Donald

    2016-09-01

    De novo biocatalysts with non-natural functionality are accessible by computational enzyme design. The catalytic activities obtained for the initial designs are usually low, but can be optimized significantly by directed evolution. Nevertheless, rate accelerations approaching the level of natural enzymes can only be achieved over many rounds of tedious and time-consuming laboratory evolution. In this work, we show that microfluidic-based screening using fluorescence-activated droplet sorting (FADS) is ideally suited for efficient optimization of designed enzymes with low starting activity, essentially straight out of the computer. We chose the designed retro-aldolase RA95.0, which had been previously evolved by conventional microtiter plate screening, as an example and reoptimized it using the microfluidic-based assay. Our results show that FADS is sufficiently sensitive to detect enzyme activities as low as kcat/Km = 0.5 M(-1)s(-1) The ultra-high throughput of this system makes screening of large mutant libraries possible in which clusters of up to five residues are randomized simultaneously. Thus, combinations of beneficial mutations can be identified directly, leading to large jumps in catalytic activity of up to 80-fold within a single round of evolution. By exploring several evolutionary trajectories in parallel, we identify alternative active site arrangements that exhibit comparably enhanced efficiency but opposite enantioselectivity. PMID:27542390

  5. Dancing Droplets

    NASA Astrophysics Data System (ADS)

    Cira, Nate; Prakash, Manu

    2013-11-01

    Inspired by the observation of intricate and beautifully dynamic patterns generated by food coloring on corona treated glass slides, we have investigated the behavior of propylene glycol and water droplets on clean glass surfaces. These droplets exhibit a range of interesting behaviors including long distance attraction or repulsion, and chasing/fleeing upon contact. We present explanations for each of these behaviors, and propose a detailed model for the long distance interactions based on vapor facilitated coupling. Finally we use our understanding to create several novel devices which: passively sort droplets by surface tension, spontaneously align droplets, drive droplets in circles, and cause droplets to bounce on a vertical surface. The simplicity of this system lends it particularly well to application as a toy model for physical systems with force fields and biological systems such as chemotaxis and motility.

  6. Determining the chemical composition of cloud condensation nuclei

    SciTech Connect

    Williams, A.L.; Rothert, J.E.; McClure, K.E. ); Alofs, D.J.; Hagen, D.E.; White, D.R.; Hopkins, A.R.; Trueblood, M.B. . Cloud and Aerosol Science Lab.)

    1992-02-01

    This second progress report describes the status of the project one and one-half years after the start. The goal of the project is to develop the instrumentation to collect cloud condensation nuclei (CCN) in sufficient amounts to determine their chemical composition, and to survey the CCN composition in different climates through a series of field measurements. Our approach to CCN collection is to first form droplets on the nuclei under simulated cloud humidity conditions, which is the only known method of identifying CCN from the background aerosol. Under cloud chamber conditions, the droplets formed become larger than the surrounding aerosol, and can then be removed by inertial impaction. The residue of the evaporated droplets represents the sample to be chemically analyzed. Two size functions of CCN particles are collected by first forming droplets on the large particles are collected by first forming droplets on the large CCN in a haze chamber at 100% relative humidity, and then activating the remaining CCN at 1% supersaturation in a cloud chamber. The experimental apparatus is a serious flow arrangement consisting of an impactor to remove the large aerosol particles, a haze chamber to form droplets on the remaining larger CCN, another impactor to remove the haze droplets containing the larger CCN particles for chemical analysis, a continuous flow diffusion (CFD) cloud chamber to form droplets on the remaining smaller CCN, and a third impactor to remove the droplets for the small CCN sample. Progress is documented here on the development of each of the major components of the flow system. Chemical results are reported on tests to determine suitable wicking material for the different plates. Results of computer modeling of various impactor flows are discussed.

  7. An improved approach for measuring immersion freezing in large droplets over a wide temperature range.

    PubMed

    Tobo, Yutaka

    2016-01-01

    Immersion freezing (ice nucleation by particles immersed in supercooled water) is a key process for forming ice in mixed-phase clouds. Immersion freezing experiments with particles in microliter-sized (millimeter-sized) water droplets are often applied to detecting very small numbers of ice nucleating particles (INPs). However, the application of such large droplets remains confined to the detection of INPs active at temperatures much higher than the homogeneous freezing limit, because of artifacts related to freezing of water droplets without added INPs at temperatures of -25 °C or higher on a supporting substrate. Here I report a method for measuring immersion freezing in super-microliter-sized droplets over a wide temperature range. To reduce possible artifacts, droplets are pipetted onto a thin layer of Vaseline and cooled in a clean booth. In the Cryogenic Refrigerator Applied to Freezing Test (CRAFT) system, freezing of pure (Milli-Q) water droplets are limited at temperatures above -30 °C. An intercomparison of various techniques for immersion freezing experiments with reference particles (Snomax and illite NX) demonstrates that despite the use of relatively large droplets, the CRAFT setup allows for evaluating the immersion freezing activity of the particles over almost the entire temperature range (about -30 °C to 0 °C) relevant for mixed-phase cloud formation. PMID:27596247

  8. An improved approach for measuring immersion freezing in large droplets over a wide temperature range

    PubMed Central

    Tobo, Yutaka

    2016-01-01

    Immersion freezing (ice nucleation by particles immersed in supercooled water) is a key process for forming ice in mixed-phase clouds. Immersion freezing experiments with particles in microliter-sized (millimeter-sized) water droplets are often applied to detecting very small numbers of ice nucleating particles (INPs). However, the application of such large droplets remains confined to the detection of INPs active at temperatures much higher than the homogeneous freezing limit, because of artifacts related to freezing of water droplets without added INPs at temperatures of −25 °C or higher on a supporting substrate. Here I report a method for measuring immersion freezing in super-microliter-sized droplets over a wide temperature range. To reduce possible artifacts, droplets are pipetted onto a thin layer of Vaseline and cooled in a clean booth. In the Cryogenic Refrigerator Applied to Freezing Test (CRAFT) system, freezing of pure (Milli-Q) water droplets are limited at temperatures above −30 °C. An intercomparison of various techniques for immersion freezing experiments with reference particles (Snomax and illite NX) demonstrates that despite the use of relatively large droplets, the CRAFT setup allows for evaluating the immersion freezing activity of the particles over almost the entire temperature range (about −30 °C to 0 °C) relevant for mixed-phase cloud formation. PMID:27596247

  9. Simulation of Airborne Microbial Droplet Transport

    PubMed Central

    Lighthart, Bruce; Kim, Jinwon

    1989-01-01

    The framework for a simulation model which describes the dispersion of individual droplets of water containing viable microbes is presented. The model accounts for physical, chemical, biological, and measured meteorological parameters of each droplet at each of many short time steps. Repeating the modeling process for many droplets will simulate a cloud of droplets. The model is compared with the Tulelake, Calif., release in 1988 and found to show very similar patterns of deposition within 30 m (the maximum observation distance of the source. A hypothesis for the survival sequence in the microbe-containing droplets is discussed. PMID:16348015

  10. Droplet Number Concentration Value Added Product

    2015-08-06

    Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration (Nd) will increase and droplet size will decrease, for a given liquid water path. This will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation; however, the magnitude and variability of these processes under different environmental conditions is still uncertain.McComiskey et al. (2009) have implemented a method, based onBoers andmore » Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloud interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions. In order to provide data sets for studying aerosol-cloud interactions, the McComiskey et al. (2009) method was implemented as the Droplet Number Concentration (NDROP) value-added product (VAP).« less

  11. Two-moment bulk stratiform cloud microphysics in the grid-point atmospheric model of IAP LASG (GAMIL)

    NASA Astrophysics Data System (ADS)

    Shi, Xiangjun; Wang, Bin; Liu, Xiaohong; Wang, Minghuai

    2013-05-01

    A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LASG (GAMIL) as an effort to enhance the model's capability to simulate aerosol indirect effects. Unlike the previous one-moment cloud microphysics scheme, the new scheme produces a reasonable representation of cloud particle size and number concentration. This scheme captures the observed spatial variations in cloud droplet number concentrations. Simulated ice crystal number concentrations in cirrus clouds qualitatively agree with in situ observations. The longwave and shortwave cloud forcings are in better agreement with observations. Sensitivity tests show that the column cloud droplet number concentrations calculated from two different droplet activation parameterizations are similar. However, ice crystal number concentration in mixed-phased clouds is sensitive to different heterogeneous ice nucleation formulations. The simulation with high ice crystal number concentration in mixed-phase clouds has less liquid water path and weaker cloud forcing. Furthermore, ice crystal number concentration in cirrus clouds is sensitive to different ice nucleation parameterizations. Sensitivity tests also suggest that the impact of pre-existing ice crystals on homogeneous freezing in old clouds should be taken into account.

  12. Two-moment Bulk Stratiform Cloud Microphysics in the Grid-point Atmospheric Model of IAP LASG (GAMIL)

    SciTech Connect

    Shi, Xiangjun; Wang, Bin; Liu, Xiaohong; Wang, Minghuai

    2013-05-01

    A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LASG (GAMIL) as an effort to enhance the model capability for studying aerosol indirect effects. Unlike the previous one-moment cloud microphysics scheme, the new scheme produces reasonable representation of cloud particle size and number concentration. This scheme captures the observed spatial variations in cloud droplet number concentrations. Simulated ice crystal number concentrations in cirrus clouds qualitatively agree with in-situ observations. The longwave and shortwave cloud forcing are in better agreement with observations. Sensitivity tests show that the column cloud droplet number concentrations calculated from two different droplet activation parameterizations are similar. However, ice crystal number concentration in mixed-phased clouds is sensitive to different heterogeneous freezing formulations. The simulation with high ice crystal number concentration in mixed-phase clouds has less liquid water path and weaker cloud forcing. Furthermore, ice crystal number concentration in cirrus clouds is sensitive to different ice nucleation parameterizations. Sensitivity tests also suggest that impact of pre-existing ice crystals on homogeneous freezing in old clouds should be taken into account.

  13. Cloud Chamber Activities for the High School Classroom.

    ERIC Educational Resources Information Center

    Perry, John Timothy; Sankey, Mary Ann

    1995-01-01

    Presents the idea that cloud chambers can be used by students as an experimental tool enabling them to conduct their own investigations on radiation. Provides detail regarding the construction of a cloud chamber and suggestions for student assignments that involve the cloud chamber. (DDR)

  14. Lipid droplets in activated mast cells - a significant source of triglyceride-derived arachidonic acid for eicosanoid production.

    PubMed

    Dichlberger, Andrea; Schlager, Stefanie; Kovanen, Petri T; Schneider, Wolfgang J

    2016-08-15

    Mast cells are potent effectors of immune reactions and key players in various inflammatory diseases such as atherosclerosis, asthma, and rheumatoid arthritis. The cellular defense response of mast cells represents a unique and powerful system, where external signals can trigger cell activation resulting in a stimulus-specific and highly coordinated release of a plethora of bioactive mediators. The arsenal of mediators encompasses preformed molecules stored in cytoplasmic secretory granules, as well as newly synthesized proteinaceous and lipid mediators. The release of mediators occurs in strict chronological order and requires proper coordination between the endomembrane system and various enzymatic machineries. For the generation of lipid mediators, cytoplasmic lipid droplets have been shown to function as a major intracellular pool of arachidonic acid, the precursor for eicosanoid biosynthesis. Recent studies have revealed that not only phospholipids in mast cell membranes, but also triglycerides in mast cell lipid droplets are a substrate source for eicosanoid formation. The present review summarizes current knowledge about mast cell lipid droplet biology, and discusses expansions and challenges of traditional mechanistic models for eicosanoid production. PMID:26164793

  15. Influence of droplet size on the antioxidant activity of rosemary extract loaded oil-in-water emulsions in mixed systems.

    PubMed

    Erdmann, Martin E; Zeeb, Benjamin; Salminen, Hanna; Gibis, Monika; Lautenschlaeger, Ralf; Weiss, Jochen

    2015-03-01

    The influence of droplet size on the antioxidant activity of oil-in-water emulsions loaded with rosemary extract in mixed emulsion systems was investigated. Firstly, differently sized hexadecane-in-water model emulsions (10% (w/w) hexadecane, 2% (w/w) Tween 80, pH 5 or 7) containing 4000 ppm rosemary extract in the oil phase or without added antioxidant were prepared using a high shear blender and/or high-pressure homogenizer. Secondly, emulsions were mixed with fish oil-in-water emulsions (10% (w/w) fish oil, 2% (w/w) Tween 80, pH 5 or 7) at a mixing ratio of 1 : 1. Optical microscopy and static light scattering measurements indicated that emulsions were physically stable for 21 days, except for the slight aggregation of emulsions with a mean droplet size d₄₃ of 4500 nm. The droplet size of hexadecane-in-water emulsions containing rosemary extract had no influence on the formation of lipid hydroperoxides at pH 5 and 7. Significantly lower concentrations of propanal were observed for the emulsions loaded with rosemary extract with a mean droplet size d₄₃ of 4500 nm from day 12 to 16 at pH 7. Finally, hexadecane-in-water emulsions containing rosemary extract significantly retarded lipid oxidation of fish oil-in-water emulsions in mixed systems, but no differences in antioxidant efficacy between the differently sized emulsions were observed at pH 5. PMID:25586114

  16. Magnetic Cloud Polarity and Geomagnetic Activities over Three Solar Cycles

    NASA Astrophysics Data System (ADS)

    Li, Y.; Luhmann, J.

    2006-12-01

    Interplanetary coronal mass ejections (ICMEs) that show fluxrope magnetic structures are named magnetic clouds (MCs). Majority of the MCs exhibit bipolar signature in their north-south component (Bz) in IMF measurements. The Bz component of a bipolar cloud is either NS (north first then turning south as the MC traverses the spacecraft) or SN. Studies show that the occurrence of these two types of MCs has some solar cycle dependence. However it appears to be a complex relationship as the switch between the two types of MCs is not concurrent with either the solar polar reversal or the time of the sunspot minimum when the new cycle sunspots start to appear. In this paper, we use ACE solar wind and IMF observations to obtain the most updated MC signatures and their temporal variation. In combination with our previously published results, we analyze MC polarity variations over the three solar cycles of 21, 22 and 23. Interpretations in terms of their solar sources will be attempted. On the other hand, the geomagnetic activities over the same solar cycles will be studied using geomagnetic indices. The geoeffectiveness of the MC will be evaluated in the aid of Dst indices.

  17. Assessment of aerosol-cloud interactions during southern African biomass burning activity, employing cloud parameterizations

    NASA Astrophysics Data System (ADS)

    Wiston, Modise; McFiggans, Gordon; Schultz, David

    2015-04-01

    In this study, we perform a simulation of the spatial distributions of particle and gas concentrations from a significantly large source of pollution event during a dry season in southern Africa and their interactions with cloud processes. Specific focus is on the extent to which cloud-aerosol interactions are affected by various inputs (i.e. emissions) and parameterizations and feedback mechanisms in a coupled mesoscale chemistry-meteorology model -herein Weather Research and Forecasting model with chemistry (WRF-Chem). The southern African dry season (May-Sep) is characterised by biomass burning (BB) type of pollution. During this period, BB particles are frequently observed over the subcontinent, at the same time a persistent deck of stratocumulus covers the south West African coast, favouring long-range transport over the Atlantic Ocean of aerosols above clouds. While anthropogenic pollutants tend to spread more over the entire domain, biomass pollutants are concentrated around the burning areas, especially the savannah and tropical rainforest of the Congo Basin. BB is linked to agricultural practice at latitudes south of 10° N. During an intense burning event, there is a clear signal of strong interactions of aerosols and cloud microphysics. These species interfere with the radiative budget, and directly affect the amount of solar radiation reflected and scattered back to space and partly absorbed by the atmosphere. Aerosols also affect cloud microphysics by acting as cloud condensation nuclei (CCN), modifying precipitation pattern and the cloud albedo. Key area is to understand the role of pollution on convective cloud processes and its impacts on cloud dynamics. The hypothesis is that an environment of potentially high pollution enables the probability of interactions between co-located aerosols and cloud layers. To investigate this hypothesis, we outline an approach to integrate three elements: i) focusing on regime(s) where there are strong indications of

  18. Aerosol-cloud interactions studied with the chemistry-climate model EMAC

    NASA Astrophysics Data System (ADS)

    Chang, D. Y.; Tost, H.; Steil, B.; Lelieveld, J.

    2014-08-01

    This study uses the EMAC atmospheric chemistry-climate model to simulate cloud properties and estimate cloud radiative effects induced by aerosols. We have tested two prognostic cloud droplet nucleation parameterizations, i.e., the standard STN (osmotic coefficient model) and hybrid (HYB, replacing the osmotic coefficient by the κ hygroscopicity parameter) schemes to calculate aerosol hygroscopicity and critical supersaturation, and consider aerosol-cloud feedbacks with a focus on warm clouds. Both prognostic schemes (STN and HYB) account for aerosol number, size and composition effects on droplet nucleation, and are tested in combination with two different cloud cover parameterizations, i.e., a relative humidity threshold and a statistical cloud cover scheme (RH-CLC and ST-CLC). The use of either STN and HYB leads to very different cloud radiative effects, particularly over the continents. The STN scheme predicts highly effective CCN activation in warm clouds and hazes/fogs near the surface. The enhanced CCN activity increases the cloud albedo effect of aerosols and cools the Earth's surface. The cooler surface enhances the hydrostatic stability of the lower continental troposphere and thereby reduces convection and convective precipitation. In contrast, the HYB simulations calculate lower, more realistic CCN activation and consequent cloud albedo effect, leading to relatively stronger convection and high cloud formation. The enhanced high clouds increase greenhouse warming and moderate the cooling effect of the low clouds. With respect to the cloud radiative effects, the statistical ST-CLC scheme shows much higher sensitivity to aerosol-cloud coupling for all continental regions than the RH-CLC threshold scheme, most pronounced for low clouds but also for high clouds. Simulations of the short wave cloud radiative effect at the top of the atmosphere in ST-CLC are a factor of 2-8 more sensitive to aerosol coupling than the RH-CLC configurations. The long wave

  19. Cloud microstructure studies

    NASA Technical Reports Server (NTRS)

    Blau, H. H., Jr.; Fowler, M. G.; Chang, D. T.; Ryan, R. T.

    1972-01-01

    Over two thousand individual cloud droplet size distributions were measured with an optical cloud particle spectrometer flown on the NASA Convair 990 aircraft. Representative droplet spectra and liquid water content, L (gm/cu m) were obtained for oceanic stratiform and cumuliform clouds. For non-precipitating clouds, values of L range from 0.1 gm/cu m to 0.5 gm/cu m; with precipitation, L is often greater than 1 gm/cu m. Measurements were also made in a newly formed contrail and in cirrus clouds.

  20. Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation

    PubMed Central

    Lee, Dong-Wook; Jin, Min-Ho; Lee, Young-Joo; Park, Ju-Hyoung; Lee, Chun-Boo; Park, Jong-Soo

    2016-01-01

    The development of green synthesis methods for supported noble metal catalysts remains important challenges to improve their sustainability. Here we first synthesized carbon-supported Pd catalysts in a green Leidenfrost droplet reactor without reducing agents, high-temperature calcination and reduction procedures. When the aqueous solution containing Pd nitrate precursor, carbon support, and water is dripped on a hot plate, vapor layer is formed between a solution droplet and hot surface, which allow the solution droplet to be levitated on the hot surface (Leidenfrost phenomena). Subsequently, Pd nanoparticles can be prepared without reducing agents in a weakly basic droplet reactor created by the Leidenfrost phenomena, and then the as-prepared Pd nanoparticles are loaded on carbon supports during boiling down the droplet on hot surface. Compared to conventional incipient wetness and chemical synthetic methods, the Leidenfrost droplet reactor does not need energy-consuming, time-consuming, and environmentally unfriendly procedures, which leads to much shorter synthesis time, lower carbon dioxide emission, and more ecofriendly process in comparison with conventional synthesis methods. Moreover, the catalysts synthesized in the Leidenfrost droplet reactor provided much better catalytic activity for room-temperature formic acid decomposition than those prepared by the incipient wetness method. PMID:27198855

  1. Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Wook; Jin, Min-Ho; Lee, Young-Joo; Park, Ju-Hyoung; Lee, Chun-Boo; Park, Jong-Soo

    2016-05-01

    The development of green synthesis methods for supported noble metal catalysts remains important challenges to improve their sustainability. Here we first synthesized carbon-supported Pd catalysts in a green Leidenfrost droplet reactor without reducing agents, high-temperature calcination and reduction procedures. When the aqueous solution containing Pd nitrate precursor, carbon support, and water is dripped on a hot plate, vapor layer is formed between a solution droplet and hot surface, which allow the solution droplet to be levitated on the hot surface (Leidenfrost phenomena). Subsequently, Pd nanoparticles can be prepared without reducing agents in a weakly basic droplet reactor created by the Leidenfrost phenomena, and then the as-prepared Pd nanoparticles are loaded on carbon supports during boiling down the droplet on hot surface. Compared to conventional incipient wetness and chemical synthetic methods, the Leidenfrost droplet reactor does not need energy-consuming, time-consuming, and environmentally unfriendly procedures, which leads to much shorter synthesis time, lower carbon dioxide emission, and more ecofriendly process in comparison with conventional synthesis methods. Moreover, the catalysts synthesized in the Leidenfrost droplet reactor provided much better catalytic activity for room-temperature formic acid decomposition than those prepared by the incipient wetness method.

  2. Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation.

    PubMed

    Lee, Dong-Wook; Jin, Min-Ho; Lee, Young-Joo; Park, Ju-Hyoung; Lee, Chun-Boo; Park, Jong-Soo

    2016-01-01

    The development of green synthesis methods for supported noble metal catalysts remains important challenges to improve their sustainability. Here we first synthesized carbon-supported Pd catalysts in a green Leidenfrost droplet reactor without reducing agents, high-temperature calcination and reduction procedures. When the aqueous solution containing Pd nitrate precursor, carbon support, and water is dripped on a hot plate, vapor layer is formed between a solution droplet and hot surface, which allow the solution droplet to be levitated on the hot surface (Leidenfrost phenomena). Subsequently, Pd nanoparticles can be prepared without reducing agents in a weakly basic droplet reactor created by the Leidenfrost phenomena, and then the as-prepared Pd nanoparticles are loaded on carbon supports during boiling down the droplet on hot surface. Compared to conventional incipient wetness and chemical synthetic methods, the Leidenfrost droplet reactor does not need energy-consuming, time-consuming, and environmentally unfriendly procedures, which leads to much shorter synthesis time, lower carbon dioxide emission, and more ecofriendly process in comparison with conventional synthesis methods. Moreover, the catalysts synthesized in the Leidenfrost droplet reactor provided much better catalytic activity for room-temperature formic acid decomposition than those prepared by the incipient wetness method. PMID:27198855

  3. Droplet activation properties of organic aerosols observed at an urban site during CalNex-LA

    SciTech Connect

    Mei, Fan; Hayes, Patrick L.; Ortega, Amber; Taylor, Jonathan W.; Allan, James D.; Gilman, Jessica; Kuster, William; de Gouw, Joost; Jimenez, Jose L.; Wang, Jian

    2013-04-11

    Size-resolved cloud condensation nuclei (CCN) spectra and aerosol chemical composition were characterized at an urban supersite in Pasadena, California, from 15 May to 4 June 2010, during the CalNex campaign. The derived hygroscopicity (κCCN) of CCN-active particles with diameter between 97 and 165 nm ranged from 0.05 to 0.4. Diurnal variation showed a slight decrease of κCCN from 8:00 to 16:00 (from 0.24 to 0.20), which is attributed to increasing organics volume fraction resulted from secondary organic aerosol (SOA) formation. The derived hygroscopicity distribution and maximum activated fraction of the size selected particles were examined as functions of photochemical age. The result indicates that condensation of secondary species (e.g., SOA and sulfate) quickly converted hydrophobic particles to hydrophilic ones, and during daytime, nearly every particle became a CCN at ~0.4% in just a few hours. Based on κCCN and aerosol chemical composition, the organic hygroscopicity (κorg) was derived, and ranged from 0.05 to 0.23 with an average value of 0.13, consistent with the results from earlier studies. The derived κorg generally increased with the organic oxidation level, and most of the variation in κorg could be explained by the variation of the organic O : C atomic ratio alone. The least squares fit of the data yielded κorg = (0.83 ± 0.06) × (O:C) + (-0.19 ± 0.02). Compared to previous results based on CCN measurements of laboratory generated aerosols, κorg derived from measurements during the CalNex campaign exhibited stronger increase with O : C atomic ratio and therefore substantially higher values for organics with average O : C greater than 0.5.

  4. Splashing Droplets

    NASA Technical Reports Server (NTRS)

    VanderWal, Randall L.; Kizito, John Patrick; Berger, Gordon M.; Iwan, J.; Alexander, D.; Tryggvason, Gretar

    2002-01-01

    Current data on droplet breakup is scarce for the sizes and velocities typical of practical applications such as in spray combustion processes and coating processes. While much more representative of practical applications, the small spatial scales and rapid time-scales prevent detailed measurement of the internal fluid dynamics and liquid property gradients produced by impinging upon surfaces. Realized through the extended spatial and temporal scales afforded by a microgravity environment, an improved understanding of drop breakup dynamics is sought to understand and ultimately control the impingement dynamics of droplets upon surfaces in practical situations. The primary objective of this research will be to mark the onset of different 'splashing modes' and to determine their temperature, pressure and angle dependence for impinging droplets representative of practical fluids. In addition, we are modeling the evolution of droplets that do not initially splash but rather undergo a 'fingering' evolution observed on the spreading fluid front and the transformation of these fingers into splashed products. An example of our experimental data is presented below. These images are of Isopar V impacting a mirror-polished surface. They were acquired using a high-speed camera at 1000 frames per second. They show the spreading of a single droplet after impact and ensuing finger instabilities. Normal gravity experimental data such as this will guide low gravity measurements in the 2.2 second drop tower and KC-135 aircraft as available. Presently we are in the process of comparing the experimental data of droplet shape evolution to numerical models, which can also capture the internal fluid dynamics and liquid property gradients such as produced by impingement upon a heated surface. To-date isothermal numerical data has been modeled using direct numerical simulations of representative splashing droplets. The data obtained so far indicates that the present model describes well

  5. Splashing Droplets

    NASA Astrophysics Data System (ADS)

    VanderWal, Randall L.; Kizito, John Patrick; Berger, Gordon M.; Iwan, J.; Alexander, D.; Tryggvason, Gretar

    2002-11-01

    Current data on droplet breakup is scarce for the sizes and velocities typical of practical applications such as in spray combustion processes and coating processes. While much more representative of practical applications, the small spatial scales and rapid time-scales prevent detailed measurement of the internal fluid dynamics and liquid property gradients produced by impinging upon surfaces. Realized through the extended spatial and temporal scales afforded by a microgravity environment, an improved understanding of drop breakup dynamics is sought to understand and ultimately control the impingement dynamics of droplets upon surfaces in practical situations. The primary objective of this research will be to mark the onset of different 'splashing modes' and to determine their temperature, pressure and angle dependence for impinging droplets representative of practical fluids. In addition, we are modeling the evolution of droplets that do not initially splash but rather undergo a 'fingering' evolution observed on the spreading fluid front and the transformation of these fingers into splashed products. An example of our experimental data is presented below. These images are of Isopar V impacting a mirror-polished surface. They were acquired using a high-speed camera at 1000 frames per second. They show the spreading of a single droplet after impact and ensuing finger instabilities. Normal gravity experimental data such as this will guide low gravity measurements in the 2.2 second drop tower and KC-135 aircraft as available. Presently we are in the process of comparing the experimental data of droplet shape evolution to numerical models, which can also capture the internal fluid dynamics and liquid property gradients such as produced by impingement upon a heated surface. To-date isothermal numerical data has been modeled using direct numerical simulations of representative splashing droplets. The data obtained so far indicates that the present model describes well

  6. Conditions for super-adiabatic droplet growth after entrainment mixing

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Shaw, Raymond; Xue, Huiwen

    2016-07-01

    Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixed parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the "super-adiabatic" growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision-coalescence in warm clouds.

  7. Conditions for super-adiabatic droplet growth after entrainment mixing

    DOE PAGESBeta

    Yang, Fan; Shaw, Raymond; Xue, Huiwen

    2016-07-29

    Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixedmore » parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the “super-adiabatic” growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision–coalescence in warm clouds.« less

  8. Effects of aerosol sources and chemical compositions on cloud drop sizes and glaciation temperatures

    NASA Astrophysics Data System (ADS)

    Zipori, Assaf; Rosenfeld, Daniel; Tirosh, Ofir; Teutsch, Nadya; Erel, Yigal

    2015-09-01

    The effect of aerosols on cloud properties, such as its droplet sizes and its glaciation temperatures, depends on their compositions and concentrations. In order to examine these effects, we collected rain samples in northern Israel during five winters (2008-2011 and 2013) and determined their chemical composition, which was later used to identify the aerosols' sources. By combining the chemical data with satellite-retrieved cloud properties, we linked the aerosol types, sources, and concentrations with the cloud glaciation temperatures (Tg). The presence of dust increased Tg from -26°C to -12°C already at relatively low dust concentrations. This result is in agreement with the conventional wisdom that desert dust serves as good ice nuclei (INs). With higher dust concentrations, Tg saturated at -12°C, even though cloud droplet sizes decreased as a result of the cloud condensation nucleating (CCN) activity of the dust. Marine air masses also encouraged freezing, but in this case, freezing was enhanced by the larger cloud droplet sizes in the air masses (caused by low CCN concentrations) and not by IN concentrations or by aerosol type. An increased fraction of anthropogenic aerosols in marine air masses caused a decrease in Tg, indicating that these aerosols served as poor IN. Anthropogenic aerosols reduced cloud droplet sizes, which further decreased Tg. Our results could be useful in climate models for aerosol-cloud interactions, as we investigated the effects of aerosols of different sources on cloud properties. Such parameterization can simplify these models substantially.

  9. Entrainment, Drizzle, and Cloud Albedo

    NASA Technical Reports Server (NTRS)

    Ackerman, A. S.; Kirkpatrick, J. P.; Stevens, D. E.; Toon, O. B.

    2004-01-01

    Increased aerosol and hence droplet concentrations in polluted clouds are expected to inhibit precipitation and thereby increase cloud water, leading to more reflective clouds that partially offset global warming. Yet polluted clouds are not generally observed to hold more water. Much of the uncertainty regarding the indirect aerosol effect stems from inadequate understanding of such changes in cloud water. Detailed simulations show that the relative humidity of air overlying stratocumulus is a leading factor determining whether cloud water increases or decreases when precipitation is suppressed. When the overlying air is dry, cloud water can decrease as droplet concentrations increase.

  10. Impurity Extraction by Droplets

    NASA Technical Reports Server (NTRS)

    Morrison, G.; Kincaid, J. M.

    1985-01-01

    The goals are to model and to measure the phase equilibrium properties of a finely divided fluid containing a large number of chemically similar species. The objective is to develop an accurate, usable model for such phenomena as pollutant extraction of rain clouds, industrial separation in spray towers, and separation in emulsions. The project was designed as a hierarchy of complementary theoretical and experimental steps. A theory was developed to describe the segregation of complex impurities at the interface of a solvent. This phenomenon is important in phase behavior when a large fraction of molecules in a material are near an interface, the situation in a finely divided material. The theory will be modified to account for the effect of surface curvature on the surface tension. The study of mixtures differs from pure fluids not only because of the surface effects but also because composition differences between the droplet and the surrounding vapor can stabilize a droplet with respect to a bulk phase.

  11. Droplet Growth

    NASA Astrophysics Data System (ADS)

    Marder, Michael Paolo

    When a mixture of two materials, such as aluminum and tin, or alcohol and water, is cooled below a certain temperature, the two components begin to separate. If one component is dilute in the other, it may separate out in the form of small spheres, and these will begin to enlarge, depleting the supersaturated material around them. If the dynamics is sufficiently slow, thermodynamics gives one considerable information about how the droplets grow. Two types of experiment have explored this behavior and given puzzling results. Nucleation experiments measure the rate at which droplets initially appear from a seemingly homogeneous mixture. Near the critical point in binary liquids, experiments conducted in the 1960's and early 1970's showed that nucleation was vastly slower than theory seemed to predict. The resolution of this problem arises by considering in detail the dynamics of growing droplets and comparing it with what experiments actually measure. Here will be presented a more detailed comparison of theory and experiment than has before been completed, obtaining satisfactory agreement with no free parameters needed. A second type of experiment measures droplet size distributions after long times. In the late stage, droplets compete with each other for material, a few growing at the expense of others. A theory first proposed by Lifshitz and Slyozov claims that this distribution, properly scaled, should be universal, and independent of properties of materials. Yet experimental measurements consistently find distributions that are more broad and squat than the theory would predict. Satisfactory agreement with experiment can be achieved by considering two points. First, one must study the complete time development of droplet size distributions, to understand when the asymptotic regime obtains. Second, droplet size distributions are spread by correlations between droplets. If one finds a small droplet, it is small because large droplets nearby are competing with it

  12. Maze Solving by Chemotactic Droplets

    SciTech Connect

    Lagzi, Istvan; Soh, Siowling; Wesson, Paul J.; Browne, Kevin P.; Grzybowski, Bartosz A.

    2010-01-11

    Droplets emitting surface-active chemicals exhibit chemotaxis toward low-pH regions. Such droplets are self-propelled and navigate through a complex maze to seek a source of acid placed at one of the maze’s exits. In doing so, the droplets find the shortest path through the maze. Chemotaxis and maze solving are due to an interplay between acid/base chemistry and surface tension effects.

  13. Ulysses observations of electron and proton components in a magnetic cloud and related wave activity

    NASA Technical Reports Server (NTRS)

    Osherovich, V. A.; Fainberg, J.; Stone, R. G.; MacDowall, R. J.; Phillips, J. L.; Balogh, A.

    1995-01-01

    In addition to a smooth rotation of the magnetic field vector, magnetic clouds have a low proton temperature T(sub p). Their expansion in the solar wind leads to depletion and therefore the ion component cools down. It has been shown recently that the electron component in magnetic clouds behaves differently: when the cloud expands, electron temperature Te anti correlates with density and therefore Te increases in the cloud, creating favorable conditions for the rise of ion-acoustic waves. For the magnetic cloud observed by Ulysses on June 10 - 12, 1993 at 4.64 AU at S 32.5 deg, we present observations for both electron and proton components and related plasma wave activity. Our results confirm the anti correlation between T(sub e) and electron density and also exhibit a high ratio of T(sub e)/T(sub P) in the cloud. Since Landau damping is not effective for T(sub e)/T(sub p) much greater than 1, Doppler shifted ion acoustic waves are expected in the cloud. Calculation of ion acoustic wave frequencies in the cloud and comparison with observed wave activity confirm this expectation. As in our previous work, we show that the electron component in the cloud obeys a polytropic law with gamma is less than 1 (gamma approximately equals 0.3-0.4). The dynamics of the magnetic cloud are determined to a large degree by the dominating electron pressure.

  14. Droplet microactuator system

    NASA Technical Reports Server (NTRS)

    Pamula, Vamsee K. (Inventor); Srinivasan, Vijay (Inventor); Pollack, Michael G. (Inventor); Eckhardt, Allen E. (Inventor); Paik, Philip Y. (Inventor)

    2010-01-01

    The present invention relates to a droplet microactuator system. According to one embodiment, the droplet microactuator system includes: (a) a droplet microactuator configured to conduct droplet operations; (b) a magnetic field source arranged to immobilize magnetically responsive beads in a droplet during droplet operations; (c) a sensor configured in a sensing relationship with the droplet microactuator, such that the sensor is capable of sensing a signal from and/or a property of one or more droplets on the droplet microactuator; and (d) one or more processors electronically coupled to the droplet microactuator and programmed to control electrowetting-mediated droplet operations on the droplet actuator and process electronic signals from the sensor.

  15. Mesoscale Modeling of Springtime Arctic Mixed-Phase Stratiform Clouds Using a New Two-Moment Bulk Microphysics Scheme.

    NASA Astrophysics Data System (ADS)

    Morrison, H.; Pinto, J. O.

    2005-10-01

    A new two-moment bulk microphysics scheme is implemented into the polar version of the fifth-generation Pennsylvania State University NCAR Mesoscale Model (MM5) to simulate arctic mixed-phase boundary layer stratiform clouds observed during Surface Heat Budget of the Arctic (SHEBA) First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) Arctic Cloud Experiment (ACE). The microphysics scheme predicts the number concentrations and mixing ratios of four hydrometeor species (cloud droplets, small ice, rain, snow) and includes detailed treatments of droplet activation and ice nucleation from a prescribed distribution of aerosol obtained from observations. The model is able to reproduce many features of the observed mixed-phase cloud, including a near-adiabatic liquid water content profile located near the top of a well-mixed boundary layer, droplet number concentrations of about 200 250 cm-3 that were distributed fairly uniformly through the depth of the cloud, and continuous light snow falling from the cloud base to the surface. The impacts of droplet and ice nucleation, radiative transfer, turbulence, large-scale dynamics, and vertical resolution on the simulated mixed-phase stratiform cloud are examined. The cloud layer is largely self-maintained through strong cloud-top radiative cooling that exceeds 40 K day-1. It persists through extended periods of downward large-scale motion that tend to thin the layer and reduce water contents. Droplet activation rates are highest near cloud base, associated with subgrid vertical motion that is diagnosed from the predicted turbulence kinetic energy. A sensitivity test neglecting subgrid vertical velocity produces only weak activation and small droplet number concentrations (<90 cm-3). These results highlight the importance of parameterizing the impact of subgrid vertical velocity to generate local supersaturation for aerosol-droplet closure. The primary ice nucleation mode in the simulated

  16. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    NASA Astrophysics Data System (ADS)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  17. Mechanisms for indirect effects from aerosol pollution on mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Phillips, Vaughan

    2015-04-01

    Aerosol pollution can have various effects on mixed-phase clouds. They can alter coalescence and raindrop-freezing for droplet activation by CCN aerosols. They can alter aggregation of ice crystals and snow formation. This can alter the lifetime of mixed-phase clouds, as well as the reflectivity for solar radiation. Simulations of observed cases of mixed-phase clouds have been performed to examine the mechanisms for effects from aerosol pollution on them. Such mechanisms are discussed in the presentation.

  18. A Study of Large Droplet Ice Accretions in the NASA-Lewis IRT at Near-Freezing Conditions

    NASA Technical Reports Server (NTRS)

    Miller, Dean R.; Addy, Harold E. , Jr.; Ide, Robert F.

    1996-01-01

    This report documents the results of an experimental study on large droplet ice accretions which was conducted in the NASA-Lewis Icing Research Tunnel (IRT) with a full-scale 77.25 inch chord Twin-Otter wing section. This study was intended to: (1) document the existing capability of the IRT to produce a large droplet icing cloud, and (2) study the effect of various parameters on large droplet ice accretions. Results are presented from a study of the IRT's capability to produce large droplets with MVD of 99 and 160 microns. The effect of the initial water droplet temperature on the resultant ice accretion was studied for different initial spray bar air and water temperatures. The initial spray bar water temperature was found to have no discernible effect upon the large droplet ice accretions. Also, analytical and experimental results suggest that the water droplet temperature is very nearly the same as the tunnel ambient temperature, thus providing a realistic simulation of the large droplet natural icing condition. The effect of temperature, droplet size, airspeed, angle-of attack, flap setting and de-icer boot cycling time on ice accretion was studied, and will be discussed in this report. It was found that, in almost all of the cases studied, an ice ridge formed immediately aft of the active portion of the de-icer boot. This ridge was irregular in shape, varied in location, and was in some cases discontinuous due to aerodynamic shedding.

  19. The effect of dispersed Petrobaltic oil droplet size on photosynthetically active radiation in marine environment.

    PubMed

    Haule, Kamila; Freda, Włodzimierz

    2016-04-01

    Oil pollution in seawater, primarily visible on sea surface, becomes dispersed as an effect of wave mixing as well as chemical dispersant treatment, and forms spherical oil droplets. In this study, we examined the influence of oil droplet size of highly dispersed Petrobaltic crude on the underwater visible light flux and the inherent optical properties (IOPs) of seawater, including absorption, scattering, backscattering and attenuation coefficients. On the basis of measured data and Mie theory, we calculated the IOPs of dispersed Petrobaltic crude oil in constant concentration, but different log-normal size distributions. We also performed a radiative transfer analysis, in order to evaluate the influence on the downwelling irradiance Ed, remote sensing reflectance Rrs and diffuse reflectance R, using in situ data from the Baltic Sea. We found that during dispersion, there occurs a boundary size distribution characterized by a peak diameter d0  = 0.3 μm causing a maximum E d increase of 40% within 0.5-m depth, and the maximum Ed decrease of 100% at depths below 5 m. Moreover, we showed that the impact of size distribution on the "blue to green" ratios of Rrs and R varies from 24% increase to 27% decrease at the same crude oil concentration. PMID:26635218

  20. Yeast Droplets

    NASA Astrophysics Data System (ADS)

    Nguyen, Baochi; Upadhyaya, Arpita; van Oudenaarden, Alexander; Brenner, Michael

    2002-11-01

    It is well known that the Young's law and surface tension govern the shape of liquid droplets on solid surfaces. Here we address through experiments and theory the shape of growing aggregates of yeast on agar substrates, and assess whether these ideas still hold. Experiments are carried out on Baker's yeast, with different levels of expressions of an adhesive protein governing cell-cell and cell-substrate adhesion. Changing either the agar concentration or the expression of this protein modifies the local contact angle of a yeast droplet. When the colony is small, the shape is a spherical cap with the contact angle obeying Young's law. However, above a critical volume this structure is unstable, and the droplet becomes nonspherical. We present a theoretical model where this instability is caused by bulk elastic effects. The model predicts that the transition depends on both volume and contact angle, in a manner quantitatively consistent with our experiments.

  1. Deposition of trace substances via cloud droplets in the Atlantic Rain Forest of the Serra Do Mar, São Paulo State, SE Brazil

    NASA Astrophysics Data System (ADS)

    Vautz, W.; Pahl, S.; Pilger, H.; Schilling, M.; Klockow, D.

    The Atlantic Rain Forest of the Serra do Mar close to Cubatão, São Paulo State, SE Brazil, is severely affected by the emissions of a big industrial complex. Measurements of trace substance concentrations in air as well as in rain were carried out over a period of 6 years to investigate the interrelation of pollution and vegetation damage. Due to the local atmospheric circulation, orographic clouds occur very frequently at the top of the Serra do Mar, where vegetation damage also is very high. Therefore, additional information was required about trace substance deposition via cloud water. During three field experiments, various samples of cloud water and of the interstitial aerosol were taken by help of a sampling device especially modified for this purpose, and were analysed for the major anions and cations (hydrogen ions, ammonium, chloride, sodium, nitrate and sulphate). The trace substance concentrations found in cloud water were in the same range as for polluted sites in Europe. Over all samples, about 90-100% of the trace substances—both gaseous and particulate matter—found in the atmosphere before a cloud event were found in the cloud water. A resistance model using meteorological input data (wind speed, atmospheric liquid water content) was adapted to the characteristics of the Atlantic Rain Forest to estimate the cloud water deposition to vegetation. The results from cloud water analyses and from modelled cloud water deposition were combined to investigate the ion deposition to the vegetation. A rough estimate of the annual deposition showed, that the deposition via rain is in the order of one magnitude (factor 6-40) higher than that via cloud. The high amount of water deposition via precipitation overcompensates the higher trace substance concentrations in cloud water. Furthermore the trace substance deposition to vegetation via cloud water in the Atlantic Rain Forest is in the order of one magnitude lower than for typical German spruce forests due

  2. Organic aerosol effects on fog droplet spectra

    NASA Astrophysics Data System (ADS)

    Ming, Yi; Russell, Lynn M.

    2004-05-01

    Organic aerosol alters cloud and fog properties through surface tension and solubility effects. This study characterizes the role of organic compounds in affecting fog droplet number concentration by initializing and comparing detailed particle microphysical simulations with two field campaigns in the Po Valley. The size distribution and chemical composition of aerosol were based on the measurements made in the Po Valley Fog Experiments in 1989 and 1998-1999. Two types of aerosol with different hygroscopicity were considered: the less hygroscopic particles, composed mainly of organic compounds, and the more hygroscopic particles, composed mainly of inorganic salts. The organic fraction of aerosol mass was explicitly modeled as a mixture of seven soluble compounds [, 2001] by employing a functional group-based thermodynamic model [, 2002]. Condensable gases in the vapor phase included nitric acid, sulfuric acid, and ammonia. The maximum supersaturation in the simulation is 0.030% and is comparable to the calculation by [1992] inferred from measured residual particle fractions. The minimum activation diameters of the less and more hygroscopic particles are 0.49 μm and 0.40 μm, respectively. The predicted residual particle fractions are in agreement with measurements. The organic components of aerosol account for 34% of the droplet residual particle mass and change the average droplet number concentration by -10-6%, depending on the lowering of droplet surface tension and the interactions among dissolving ions. The hygroscopic growth of particles due to the presence of water-soluble organic compounds enhances the condensation of nitric acid and ammonia due to the increased surface area, resulting in a 9% increase in the average droplet number concentration. Assuming ideal behavior of aqueous solutions of water-soluble organic compounds overestimates the hygroscopic growth of particles and increases droplet numbers by 6%. The results are sensitive to microphysical

  3. The first Martian year of cloud activity from Mars Science Laboratory (sol 0-800)

    NASA Astrophysics Data System (ADS)

    Kloos, Jacob L.; Moores, John E.; Lemmon, Mark; Kass, David; Francis, Raymond; de la Torre Juárez, Manuel; Zorzano, María-Paz; Martín-Torres, F. Javier

    2016-03-01

    Using images from the Navigation Cameras onboard the Mars Science Laboratory rover Curiosity, atmospheric movies were created to monitor the cloud activity over Gale Crater. Over the course of the first 800 sols of the mission, 133 Zenith Movies and 152 Supra-Horizon Movies were acquired which use a mean frame subtraction technique to observe tenuous cloud movement. Moores et al. (2015a) reported on the first 360 sols of observations, representing LS = 150°-5°, and found that movies up to LS = 184° showed visible cloud features with good contrast while subsequent movies were relatively featureless. With the extension of the observations to a full Martian year, more pronounced seasonal changes were observed. Within the Zenith Movie data set, clouds are observed primarily during LS = 3°-170°, when the solar flux is diminished and the aphelion cloud belt is present at equatorial latitudes. Clouds observed in the Supra-Horizon Movie data set also exhibit seasonality, with clouds predominantly observed during LS = 72°-108°. The seasonal occurrence of clouds detected in the atmospheric movies is well correlated with orbital observations of water-ice clouds at similar times from the MCS and MARCI instruments on the MRO spacecraft. The observed clouds are tenuous and on average only make up a few-hundredths of an optical depth, although more opaque clouds are observed in some of the movies. Additionally, estimates of the phase function calculated using water-ice opacity retrievals from MCS are provided to show how Martian clouds scatter sunlight, and thus provide insight into the types of ice crystals that comprise the clouds.

  4. Cell Model of In-cloud Scavenging of Highly Soluble Gases

    NASA Astrophysics Data System (ADS)

    Baklanov, A.; Elperin, T.; Fominykh, A.; Krasovitov, B.

    2012-04-01

    active gas in a gaseous phase and for the total concentration in the liquid phase for the case of the hydrogen peroxide and nitric acid absorption by cloud droplets. The developed cell model of in-cloud scavenging of highly soluble gases or parameterizations based on its results can be easily integrated into online coupled meteorology-chemistry or climate-chemistry models, where the cloud processes and chemical transformation of atmospheric pollutants are considered together with two-way interactions.

  5. AMP-Activated Kinase Regulates Lipid Droplet Localization and Stability of Adipose Triglyceride Lipase in C. elegans Dauer Larvae

    PubMed Central

    Xie, Meng; Roy, Richard

    2015-01-01

    Animals have developed diverse mechanisms to adapt to their changing environment. Like many organisms the free-living nematode C. elegans can alternate between a reproductive mode or a diapause-like "dauer" stage during larval development to circumvent harsh environmental conditions. The master metabolic regulator AMP-activated protein kinase (AMPK) is critical for survival during the dauer stage, where it phosphorylates adipose triglyceride lipase (ATGL-1) at multiple sites to block lipid hydrolysis and ultimately protect the cellular triglyceride-based energy depot from rapid depletion. However, how the AMPK-mediated phosphorylation affects the function of ATGL-1 has not been characterised at the molecular level. Here we show that AMPK phosphorylation leads to the generation of 14-3-3 binding sites on ATGL-1, which are recognized by the C. elegans 14-3-3 protein orthologue PAR-5. Physical interaction of ATGL-1 with PAR-5 results in sequestration of ATGL-1 away from the lipid droplets and eventual proteasome-mediated degradation. In addition, we also show that the major AMPK phosphorylation site on ATGL-1, Ser 303, is required for both modification of its lipid droplet localization and its degradation. Our data provide mechanistic insight as to how AMPK functions to enhance survival through its ability to protect the accumulated triglyceride deposits from rapid hydrolysis to preserve the energy stores during periods of extended environmental duress. PMID:26098762

  6. Modular droplet actuator drive

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G. (Inventor); Paik, Philip (Inventor)

    2011-01-01

    A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.

  7. Determining the chemical composition of cloud condensation nuclei. Second progress report

    SciTech Connect

    Williams, A.L.; Rothert, J.E.; McClure, K.E.; Alofs, D.J.; Hagen, D.E.; White, D.R.; Hopkins, A.R.; Trueblood, M.B.

    1992-02-01

    This second progress report describes the status of the project one and one-half years after the start. The goal of the project is to develop the instrumentation to collect cloud condensation nuclei (CCN) in sufficient amounts to determine their chemical composition, and to survey the CCN composition in different climates through a series of field measurements. Our approach to CCN collection is to first form droplets on the nuclei under simulated cloud humidity conditions, which is the only known method of identifying CCN from the background aerosol. Under cloud chamber conditions, the droplets formed become larger than the surrounding aerosol, and can then be removed by inertial impaction. The residue of the evaporated droplets represents the sample to be chemically analyzed. Two size functions of CCN particles are collected by first forming droplets on the large particles are collected by first forming droplets on the large CCN in a haze chamber at 100% relative humidity, and then activating the remaining CCN at 1% supersaturation in a cloud chamber. The experimental apparatus is a serious flow arrangement consisting of an impactor to remove the large aerosol particles, a haze chamber to form droplets on the remaining larger CCN, another impactor to remove the haze droplets containing the larger CCN particles for chemical analysis, a continuous flow diffusion (CFD) cloud chamber to form droplets on the remaining smaller CCN, and a third impactor to remove the droplets for the small CCN sample. Progress is documented here on the development of each of the major components of the flow system. Chemical results are reported on tests to determine suitable wicking material for the different plates. Results of computer modeling of various impactor flows are discussed.

  8. Microphysical fundamentals governing cirrus cloud growth: Modeling studies

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Dodd, Gregory C.; Starr, David

    1990-01-01

    For application to Global Climate Models, large scale numerical models of cirrus cloud formation and maintenance need to be refined to more reliably simulate the effects and feedbacks of high level clouds. A key aspect is how ice crystal growth is initiated in cirrus, which has started a cloud microphysical controversy between camps either believing that heterogeneous or homogeneous drop freezing is predominantly responsible for cold cirrus ice crystal nucleation. In view of convincing evidence for the existence of highly supercooled cloud droplets in the middle and upper troposphere, however, it is concluded that active ice nuclei are rather scarce at cirrus cloud altitudes, and so a new understanding of cirrus cloud formation is needed. This understanding is sought through an examination of cirrus cloud growth models.

  9. Response of Simulated Mixed-Phase Arctic Stratus Clouds to Slowly Activated Ice Nuclei

    NASA Astrophysics Data System (ADS)

    Fridlind, A. M.; Avramov, A.; Ackerman, A. S.; Alpert, P. A.; Knopf, D. A.

    2014-12-01

    Supercooled mixed-phase cloud decks are common in the Arctic, often persisting for days. Individual ice crystals in such clouds have relatively short lifetimes, typically an hour or less. Thus new ice crystals must be generated continuously in such long-lived cloud layers. Field campaigns investigating the microphysics of the simplest such clouds—unseeded single-layer cases in coupled or decoupled boundary layers—have aimed to measure the background ice nuclei (IN) required to initiate ice formation processes, specifically by measuring the concentration of IN above cloud top that are active at water saturation at cloud-top temperature. In previous detailed simulations of observed case studies, we demonstrated that if all ambient IN are assumed to be activated rapidly, and if there is no surface source of IN over pack ice or efficient multiplication process in the absence of riming, as commonly assumed, then overlying IN concentrations must exceed those of in-cloud ice crystals by a factor of order 10-100 or more, generally much higher than measured. However, under such conditions, entrainment and rapid activation quickly achieve a long-lived quasi-steady cloud microphysical state in simulations that seems consistent with that commonly observed. These previous studies made the assumption that all relevant IN have a lifetime of roughly one second at water saturation under cloud-top conditions, using a singular ice nucleation scheme. Here we investigate the behavior of the same cloud systems in the presence of IN with longer activation time scales, including those only available in the contact mode and those with a wider range of lifetimes under in-cloud conditions. We make a range of assumptions about IN properties to constrain ice nucleation schemes to the degree possible using field data. When ice crystals are primarily sustained by slowly activated IN, we find that the relative depletion rate of the boundary-layer reservoir of IN impacts the degree of quasi

  10. Effects of Droplet-Vitrification Cryopreservation Based on Physiological and Antioxidant Enzyme Activities of Brassidium Shooting Star Orchid

    PubMed Central

    Rahmah, Safrina; Ahmad Mubbarakh, Safiah; Soo Ping, Khor

    2015-01-01

    Protocorm-like bodies (PLBs) of Brassidium Shooting Star orchid were successfully cryopreserved using droplet-vitrification method. Vitrification based cryopreservation protocol is comprised of preculture, osmoprotection, cryoprotection, cooling, rewarming, and growth recovery and each and every step contributes to the achievement of successful cryopreservation. In order to reveal the lethal and nonlethal damage produced by cryopreservation, histological observation, scanning electron microscopy (SEM), and biochemical analysis were carried out in both cryopreserved and noncryopreserved PLBs of Brassidium Shooting Star orchid comparing with the control PLBs stock culture. Histological and scanning electron microscopy analyses displayed structural changes in cryopreserved PLBs due to the impact of cryoinjury during exposure to liquid nitrogen. Total soluble protein significantly increased throughout the dehydration process and the highest value was achieved when PLBs were stored in liquid nitrogen. Ascorbate peroxidase (APX) and catalase (CAT) showed the highest enzyme activities in both dehydration and cryostorage treatments indicating that stress level of PLBs was high during these stages. PMID:25861687

  11. Effects of droplet-vitrification cryopreservation based on physiological and antioxidant enzyme activities of Brassidium shooting star orchid.

    PubMed

    Rahmah, Safrina; Ahmad Mubbarakh, Safiah; Soo Ping, Khor; Subramaniam, Sreeramanan

    2015-01-01

    Protocorm-like bodies (PLBs) of Brassidium Shooting Star orchid were successfully cryopreserved using droplet-vitrification method. Vitrification based cryopreservation protocol is comprised of preculture, osmoprotection, cryoprotection, cooling, rewarming, and growth recovery and each and every step contributes to the achievement of successful cryopreservation. In order to reveal the lethal and nonlethal damage produced by cryopreservation, histological observation, scanning electron microscopy (SEM), and biochemical analysis were carried out in both cryopreserved and noncryopreserved PLBs of Brassidium Shooting Star orchid comparing with the control PLBs stock culture. Histological and scanning electron microscopy analyses displayed structural changes in cryopreserved PLBs due to the impact of cryoinjury during exposure to liquid nitrogen. Total soluble protein significantly increased throughout the dehydration process and the highest value was achieved when PLBs were stored in liquid nitrogen. Ascorbate peroxidase (APX) and catalase (CAT) showed the highest enzyme activities in both dehydration and cryostorage treatments indicating that stress level of PLBs was high during these stages. PMID:25861687

  12. Entrainment and mixing mechanism in monsoon clouds

    NASA Astrophysics Data System (ADS)

    Bera, Sudarsan; Prabhakaran, Thara; Pandithurai, Govindan; Brenguier, Jean-Louis

    2015-04-01

    Entrainment and consequent mixing impacts the cloud microphysical parameters and droplet size distribution (DSD) significantly which are very important for cloud radiative properties and the mechanism for first rain drop formation. The entrainment and mixing mechanisms are investigated in this study using in situ observations in warm cumulus clouds over monsoon region. Entrainment is discussed in the framework of the homogeneous and inhomogeneous mixing concepts and their effects on cloud droplet size distribution, number concentration, liquid water content and mean radius are described. The degree of homogeneity increases with droplet number concentration and adiabatic fraction, indicating homogeneous type mixing in the cloud core where dilution is less. Inhomogeneous mixing is found to be a dominating process at cloud edges where dilution is significant. Cloud droplet size distribution (DSD) is found to shift towards lower sizes during a homogeneous mixing event in the cloud core whereas spectral width of DSD decreases due to inhomogeneous mixing at cloud edges. Droplet size spectra suggests that largest droplets are mainly formed in the less diluted cloud core while diluted cloud edges have relatively smaller droplets, so that raindrop formation occurs mainly in the core of the cloud. The origin of the entrained parcels in deep cumulus clouds is investigated using conservative thermodynamical parameters. The entrained parcels originate from a level close to the observation level or slightly below through lateral edges. Cloud edges are significantly diluted due to entrainment of sub-saturated environmental air which can penetrate several hundred meters inside the cloud before it gets mixed completely with the cloud mass. Less diluted parcels inside the cloud core originates from a level much below the cloud base height. Penetrating downdraft from cloud top is seldom observed at the observation level and strong downdrafts may be attributed to in-cloud oscillation

  13. Oxygen reduction reaction in a droplet on graphite: direct evidence that the edge is more active than the basal plane.

    PubMed

    Shen, Anli; Zou, Yuqin; Wang, Qiang; Dryfe, Robert A W; Huang, Xiaobing; Dou, Shuo; Dai, Liming; Wang, Shuangyin

    2014-09-26

    Carbon-based metal-free electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium have been extensively investigated with the aim of replacing the commercially available, but precious platinum-based catalysts. For the proper design of carbon-based metal-free electrocatalysts for the ORR, it would be interesting to identify the active sites of the electrocatalyst. The ORR was now studied with an air-saturated electrolyte solution droplet (diameter ca. 15 μm), which was deposited at a specified position either on the edge or on the basal plane of highly oriented pyrolytic graphite. Electrochemical measurements suggest that the edge carbon atoms are more active than the basal-plane ones for the ORR. This provides a direct way to identify the active sites of carbon materials for the ORR. Ball-milled graphite and carbon nanotubes with more exposed edges were also prepared and showed significantly enhanced ORR activity. DFT calculations elucidated the mechanism by which the charged edge carbon atoms result in the higher ORR activity. PMID:25124986

  14. The effects of irradiation on cloud evolution in active galactic nuclei

    SciTech Connect

    Proga, Daniel; Smith, Daniel; Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.

    2014-01-01

    We report on the first phase of a study of cloud irradiation. We study irradiation by means of numerical, two-dimensional, time-dependent radiation hydrodynamic simulations of a strongly irradiated cloud. We adopt a very simple treatment of the opacity, neglect photoionization and gravity, and focus instead on assessing the role of the type and magnitude of the opacity on the cloud evolution. Our main result is that even relatively dense clouds that are radiatively heated (i.e., with significant absorption opacity) do not move as a whole; instead, they undergo very rapid and major evolution in shape, size, and physical properties. In particular, the cloud and its remnants become optically thin in less than 1 sound-crossing time and before they can travel a significant distance (a few initial-cloud radii). We also find that a cloud can be accelerated as a whole under quite extreme conditions, i.e., the opacity must be dominated by scattering. However, the acceleration due to the radiation force is relatively small, and unless the cloud is optically thin, it quickly undergoes changes in size and shape. We discuss implications for the modeling and interpretation of the broad-line regions of active galactic nuclei.

  15. Quantification of ice nuclei active at near 0 °C temperatures in low-altitude clouds at the Puy de Dôme atmospheric station

    NASA Astrophysics Data System (ADS)

    Joly, M.; Amato, P.; Deguillaume, L.; Monier, M.; Hoose, C.; Delort, A.-M.

    2014-08-01

    The distribution, abundance and nature of ice nucleation active particles in the atmosphere are major sources of uncertainty in the prediction of cloud coverage, precipitation patterns and climate. Some biological ice nuclei (IN) induce freezing at temperatures at which most other atmospheric particles exhibit no detectable activity (> -10 °C). Their actual contribution to the pool of IN in clouds remains poorly known, but numerical studies have suggested a probable significance of biological IN in atmospheric processes. In this study, cloud water was collected aseptically from the summit of Puy de Dôme (1465 m a.s.l., France) within contrasted meteorological and physico-chemical situations. Total and biological (i.e. heat-sensitive) IN were quantified by droplet-freezing assay between -5 °C and -14 °C. We observed that freezing was systematically induced by biological material, between -6 °C and -8 °C in 92% of the samples. Its removal by heat treatment consistently led to a decrease of the onset freezing temperature, by 3 °C or more in most samples. At -10 °C, 0 to ~ 220 biological IN mL-1 of cloud water were measured (i.e. 0 to ~ 22 m-3 of cloud air based on cloud liquid water content estimates), and these represented 65% to 100% of the total IN. Based on back-trajectories and on physico-chemical analyses, the high variability observed resulted probably from a source effect, with IN originating mostly from continental sources. Assuming that biological IN were all bacteria, at maximum 0.6% of the bacterial cells present in cloud water samples could have acted as IN at -8 °C, 1.5% at -10 °C, and 3.1% at -12 °C. The data set generated here will help elucidate the role of biological and bacterial IN on cloud microphysics by numeric modelling, and their impact on precipitation at local scale.

  16. EDITORIAL: Focus on Cloud Physics FOCUS ON CLOUD PHYSICS

    NASA Astrophysics Data System (ADS)

    Falkovich, Gregory; Malinowski, Szymon P.

    2008-07-01

    Cloud physics has for a long time been an important segment of atmospheric science. It is common knowledge that clouds are crucial for our understanding of weather and climate. Clouds are also interesting by themselves (not to mention that they are beautiful). Complexity is hidden behind the common picture of these beautiful and interesting objects. The typical school textbook definition that a cloud is 'a set of droplets or particles suspended in the atmosphere' is not adequate. Clouds are complicated phenomena in which dynamics, turbulence, microphysics, thermodynamics and radiative transfer interact on a wide range of scales, from sub-micron to kilometres. Some of these interactions are subtle and others are more straightforward. Large and small-scale motions lead to activation of cloud condensation nuclei, condensational growth and collisions; small changes in composition and concentration of atmospheric aerosol lead to significant differences in radiative properties of the clouds and influence rainfall formation. It is justified to look at a cloud as a composite, nonlinear system which involves many interactions and feedback. This system is actively linked into a web of atmospheric, oceanic and even cosmic interactions. Due to the complexity of the cloud system, present-day descriptions of clouds suffer from simplifications, inadequate parameterizations, and omissions. Sometimes the most fundamental physics hidden behind these simplifications and parameterizations is not known, and a wide scope of view can sometimes prevent a 'microscopic', deep insight into the detail. Only the expertise offered by scientists focused on particular elementary processes involved in this complicated pattern of interactions allows us to shape elements of the puzzle from which a general picture of clouds can be created. To be useful, every element of the puzzle must be shaped precisely. This often creates problems in communication between the sciences responsible for shaping

  17. EDITORIAL: Focus on Cloud Physics FOCUS ON CLOUD PHYSICS

    NASA Astrophysics Data System (ADS)

    Falkovich, Gregory; Malinowski, Szymon P.

    2008-07-01

    Cloud physics has for a long time been an important segment of atmospheric science. It is common knowledge that clouds are crucial for our understanding of weather and climate. Clouds are also interesting by themselves (not to mention that they are beautiful). Complexity is hidden behind the common picture of these beautiful and interesting objects. The typical school textbook definition that a cloud is 'a set of droplets or particles suspended in the atmosphere' is not adequate. Clouds are complicated phenomena in which dynamics, turbulence, microphysics, thermodynamics and radiative transfer interact on a wide range of scales, from sub-micron to kilometres. Some of these interactions are subtle and others are more straightforward. Large and small-scale motions lead to activation of cloud condensation nuclei, condensational growth and collisions; small changes in composition and concentration of atmospheric aerosol lead to significant differences in radiative properties of the clouds and influence rainfall formation. It is justified to look at a cloud as a composite, nonlinear system which involves many interactions and feedback. This system is actively linked into a web of atmospheric, oceanic and even cosmic interactions. Due to the complexity of the cloud system, present-day descriptions of clouds suffer from simplifications, inadequate parameterizations, and omissions. Sometimes the most fundamental physics hidden behind these simplifications and parameterizations is not known, and a wide scope of view can sometimes prevent a 'microscopic', deep insight into the detail. Only the expertise offered by scientists focused on particular elementary processes involved in this complicated pattern of interactions allows us to shape elements of the puzzle from which a general picture of clouds can be created. To be useful, every element of the puzzle must be shaped precisely. This often creates problems in communication between the sciences responsible for shaping

  18. Reversible, voltage-activated formation of biomimetic membranes between triblock copolymer-coated aqueous droplets in good solvents.

    PubMed

    Tamaddoni, Nima; Taylor, Graham; Hepburn, Trevor; Michael Kilbey, S; Sarles, Stephen A

    2016-06-21

    Biomimetic membranes assembled from block copolymers attract considerable interest because they exhibit greater stability and longetivity compared to lipid bilayers, and some enable the reconstitution of functional transmembrane biomolecules. Yet to-date, block copolymer membranes have not been achieved using the droplet interface bilayer (DIB) method, which uniquely allows assembling single- and multi-membrane networks between water droplets in oil. Herein, we investigate the formation of poly(ethylene oxide)-b-poly(dimethyl siloxane)-b-poly(ethylene oxide) triblock copolymer-stabilized interfaces (CSIs) between polymer-coated aqueous droplets in solutions comprising combinations of decane, hexadecane and AR20 silicone oil. We demonstrate that triblock-coated droplets do not spontaneously adhere in these oils because all are thermodynamically good solvents for the hydrophobic PDMS middle block. However, thinned planar membranes are reversibly formed at the interface between droplets upon the application of a sufficient transmembrane voltage, which removes excess solvent from between droplets through electrocompression. At applied voltages above the threshold required to initiate membrane thinning, electrowetting causes the area of the CSI between droplets to increase while thickness remains constant; the CSI electrowetting response is similar to that encountered with lipid-based DIBs. In combination, these results reveal that stable membranes can be assembled in a manner that is completely reversible when an external pressure is used to overcome a barrier to adhesion caused by solvent-chain interactions, and they demonstrate new capability for connecting and disconnecting aqueous droplets via polymer-stabilized membranes. PMID:27174295

  19. Stratus Cloud Supersaturations

    NASA Astrophysics Data System (ADS)

    Noble, S.; Hudson, J. G.; Jha, V.

    2009-12-01

    Extensive aircraft measurements of cloud microphysics and complete CCN spectra from 15 flights in central California stratus clouds are presented. Cloud droplet and CCN concentrations varied over an order of magnitude in this July-August, 2008 POST project. Correlation coefficients (R) between CCN and average total cloud droplet concentrations within parcels with specific minimal liquid water contents (LWC) are shown in the table. For most LWC thresholds R is greatest for CCN concentrations at rather high supersaturations (S); i.e., 1%. The highest R for the 0.1 gm-3 are for the 300’ altitude CCN measurements but the number of cases is very small. The 0.5 g-3 R values are higher at lower S but the number of cases is also very small. The high cloud S implied by most R values goes against conventional wisdom that low stratus cloud updraft velocities limit cloud S to < 0.3%. On the other hand average droplet concentrations for most LWC thresholds match best the CCN concentrations at 0.2-0.3% S, which is more in keeping with conventional wisdom. However, these average droplet concentrations were probably reduced from adiabatic values by entrainment, which would suggest higher initial cloud S. Yum and Hudson (2002, Tellus) did report S > 1% in some maritime clouds. Further research is ongoing with this data set to substantiate stratus cloud S values. If stratus cloud S is determined to be higher than previous estimates this would imply that a much larger subset of particles (even smaller sizes) influence cloud microphysics and this would have important climate implications. As has recently been reported for small cumulus clouds (Hudson et al. 2009 JGR and Hudson and Noble 2009 GRL) negative R values were found for CCN with larger cloud droplets and drizzle drop concentrations. Correlation coefficients (R) between average droplet and CCN concentrations. 1st row (1 min)is for CCN measurements in ascents or descents closest to cloud base. 2nd row is for CCN averaged in

  20. Cloud Dynamical Controls on Climate Forcing by Aerosol-Cloud Interactions: New Insights from Observations, High-Resolution Models, and Parameterizations

    NASA Astrophysics Data System (ADS)

    Donner, Leo

    2016-04-01

    At frequently observed, low updraft speeds, cloud droplet and ice crystal number concentrations are controlled mostly by cloud-scale vertical velocities and not aerosol number concentrations. Reducing uncertainty in estimates of climate forcing by aerosol-cloud interactions will require taking account of these thermodynamically limited cloud regimes in global climate models. The scales of the relevant cloud dynamics are often well-below resolved scales in climate and numerical weather prediction models, ranging to tens of meters at large-eddy scale for stratocumulus clouds. Observations of vertical velocities from cloud radars in field programs and at fixed observational sites are providing a basis for evaluating new classes of parameterizations for convective and non-convective clouds that include probability distribution functions (PDFs) for vertical velocity, which can be used to drive physically based representations of droplet and crystal activation. High-resolution cloud models with detailed treatments of aerosol and microphysical processes can also be evaluated using these observations. Vertical velocities in both high-resolution models and parameterizations currently show discrepancies from observations while capturing qualitative features. Improved treatments of microphysical and turbulence processes in high-resolution cloud models hold promise for improving agreement with observations, while a wide range of advances in parameterization are possible paths to improvement for simulating sub-grid vertical velocities and aerosol-cloud interactions.

  1. Global circulation as the main source of cloud activity on Titan

    USGS Publications Warehouse

    Rodriguez, S.; Le, Mouelic S.; Rannou, P.; Tobie, G.; Baines, K.H.; Barnes, J.W.; Griffith, C.A.; Hirtzig, M.; Pitman, K.M.; Sotin, C.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2009-01-01

    Clouds on Titan result from the condensation of methane and ethane and, as on other planets, are primarily structured by circulation of the atmosphere. At present, cloud activity mainly occurs in the southern (summer) hemisphere, arising near the pole and at mid-latitudes from cumulus updrafts triggered by surface heating and/or local methane sources, and at the north (winter) pole, resulting from the subsidence and condensation of ethane-rich air into the colder troposphere. General circulation models predict that this distribution should change with the seasons on a 15-year timescale, and that clouds should develop under certain circumstances at temperate latitudes (40??) in the winter hemisphere. The models, however, have hitherto been poorly constrained and their long-term predictions have not yet been observationally verified. Here we report that the global spatial cloud coverage on Titan is in general agreement with the models, confirming that cloud activity is mainly controlled by the global circulation. The non-detection of clouds at latitude 40??N and the persistence of the southern clouds while the southern summer is ending are, however, both contrary to predictions. This suggests that Titans equator-to-pole thermal contrast is overestimated in the models and that its atmosphere responds to the seasonal forcing with a greater inertia than expected. ?? 2009 Macmillan Publishers Limited. All rights reserved.

  2. Oscillations and uniaxial mechanochemical waves in a model of an active poroelastic medium: Application to deformation patterns in protoplasmic droplets of Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Alonso, Sergio; Strachauer, Ulrike; Radszuweit, Markus; Bär, Markus; Hauser, Marcus J. B.

    2016-04-01

    Self-organization in cells often manifests itself in oscillations and waves. Here, we address deformation waves in protoplasmic droplets of the plasmodial slime mould Physarum polycephalum by modelling and experiments. In particular, we extend a one-dimensional model that considered the cell as a poroelastic medium, where active tension caused mechanochemical waves that were regulated by an inhibitor (Radszuweit et al., 2013). Our extension consists of a simple, qualitative chemical reaction-diffusion model (Brusselator) that describes the regulation of the inhibitor by another biochemical species. The biochemical reaction enhances the formation of mechanochemical waves if the reaction rates and input concentrations are near or inside an oscillatory regime. The period of the waves is found to be controlled by the characteristic oscillation period, whereas their wavelength is set by mechanical parameters. The model also allows for a systematic study of the chemical activity at the onset of mechanochemical waves. We also present examples for pattern formation in protoplasmic droplets of Physarum polycephalum including global oscillations where the central region of the droplets is in antiphase to the boundary zone, as well as travelling and standing wave-like uniaxial patterns. Finally, we apply our model to reproduce these experimental results by identifying the active tension inhibitor with the intracellular calcium concentration in the Physarum droplets and by using parameter values from mechanical experiments, respectively knowledge about the properties of calcium oscillations in Physarum. The simulation results are then found to be in good agreement with the experimental observations.

  3. Titan's cloud seasonal activity from winter to spring with Cassini/VIMS

    USGS Publications Warehouse

    Rodriguez, S.; Le, Mouelic S.; Rannou, P.; Sotin, C.; Brown, R.H.; Barnes, J.W.; Griffith, C.A.; Burgalat, J.; Baines, K.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2011-01-01

    Since Saturn orbital insertion in July 2004, the Cassini orbiter has been observing Titan throughout most of the northern winter season (October 2002-August 2009) and the beginning of spring, allowing a detailed monitoring of Titan's cloud coverage at high spatial resolution with close flybys on a monthly basis. This study reports on the analysis of all the near-infrared images of Titan's clouds acquired by the Visual and Infrared Mapping Spectrometer (VIMS) during 67 targeted flybys of Titan between July 2004 and April 2010.The VIMS observations show numerous sporadic clouds at southern high and mid-latitudes, rare clouds in the equatorial region, and reveal a long-lived cloud cap above the north pole, ubiquitous poleward of 60??N. These observations allow us to follow the evolution of the cloud coverage during almost a 6-year period including the equinox, and greatly help to further constrain global circulation models (GCMs). After 4. years of regular outbursts observed by Cassini between 2004 and 2008, southern polar cloud activity started declining, and completely ceased 1. year before spring equinox. The extensive cloud system over the north pole, stable between 2004 and 2008, progressively fractionated and vanished as Titan entered into northern spring. At southern mid-latitudes, clouds were continuously observed throughout the VIMS observing period, even after equinox, in a latitude band between 30??S and 60??S. During the whole period of observation, only a dozen clouds were observed closer to the equator, though they were slightly more frequent as equinox approached. We also investigated the distribution of clouds with longitude. We found that southern polar clouds, before disappearing in mid-2008, were systematically concentrated in the leading hemisphere of Titan, in particular above and to the east of Ontario Lacus, the largest reservoir of hydrocarbons in the area. Clouds are also non-homogeneously distributed with longitude at southern mid

  4. Interaction between electrically charged droplets in microgravity

    NASA Astrophysics Data System (ADS)

    Brandenbourger, Martin; Caps, Herve; Hardouin, Jerome; Vitry, Youen; Boigelot, Bernard; Dorbolo, Stephane; Grasp Team; Beams Collaboration

    2015-11-01

    The past ten years, electrically charged droplets have been studied tremendously for their applications in industry (electrospray, electrowetting,...). However, charged droplets are also present in nature. Indeed, it has been shown that the droplets falling from thunderclouds possess an excess of electric charges. Moreover, some research groups try to use the electrical interaction between drops in order to control the coalescence between cloud droplets and control rain generation. The common way to study this kind of system is to make hypothesis on the interaction between two charged drops. Then, these hypothesis are extended to a system of thousands of charged droplets. Thanks to microgravity conditions, we were able to study the interaction between two electrically charged droplets. In practice, the charged droplets were propelled one in front of the other at low speed (less than 1 m/s). The droplets trajectory is studied for various charges and volumes. The repulsion between two charged drops is correctly fitted by a simple Coulomb repulsion law. In the case of attractive interactions, we discuss the collisions observed as a function of the droplets speed, volume and electric charges. Thanks to FNRS for financial support.

  5. Cloud and radiation mission with active and passive sensing from the space station

    SciTech Connect

    Spinhirne, James D.

    1999-01-22

    A cloud and aerosol radiative forcing and physical process study involving active laser and radar profiling with a combination of passive radiometric sounders and imagers would use the space station as an observation platform. The objectives are to observe the full three dimensional cloud and aerosol structure and the associated physical parameters leading to a complete measurement of radiation forcing processes. The instruments would include specialized radar and lidar for cloud and aerosol profiling, visible, infrared and microwave imaging radiometers with comprehensive channels for cloud and aerosol observation and specialized sounders. The low altitude, available power and servicing capability of the space station are significant advantages for the active sensors and multiple passive instruments.

  6. Aqueous phase oxidation of SO2 by O3 measured at the CERN CLOUD chamber

    NASA Astrophysics Data System (ADS)

    Hoyle, Christopher; Fuchs, Claudia; Gysel, Martin; Troestl, Jasmin; El Haddad, Imad; Frege, Carla; Dommen, Josef; Dias, Antonio; Jaervinen, Emma; Moehler, Ottmar; Baltensperger, Urs

    2015-04-01

    Measurements of aerosol growth due to the oxidation of SO2 by O3 in cloud droplets at temperatures of 10° C and -10° C are presented. Although this reaction has been well studied in bulk solutions at temperatures above 0° C, this is, to the best of our knowledge, the first time the reaction rate has been studied in laboratory formed, super-cooled cloud droplets. These experiments were made possible by utilising the adiabatic expansion system in the 27 m3 CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN. Experiments were performed on both acidic (sulphuric acid) and neutral (ammonium sulphate) seed aerosol. During 6 minute cloud cycles, droplets of approximately 10μm diameter were formed, and the growth of the aerosol due to the uptake and oxidation of SO2 was measured with a scanning mobility particle sizer (SMPS). A microphysical model was developed to simulate the cloud droplet activation and growth as well as the aqueous phase chemistry. The ability of the model to accurately represent the observed aerosol growth is assessed, and the implications for the extrapolation of the SO2+O3oxidation rates to sub-zero temperatures are discussed.

  7. Soot agglomeration in isolated, free droplet combustion

    NASA Technical Reports Server (NTRS)

    Choi, M. Y.; Dryer, F. L.; Green, G. J.; Sangiovanni, J. J.

    1993-01-01

    Under the conditions of an isolated, free droplet experiment, hollow, carbonaceous structures, called soot spheres, were observed to form during the atmospheric pressure, low Reynolds number combustion of 1-methylnaphthalene. These structures which are agglomerates composed of smaller spheroidal units result from both thermophoretic effects induced by the envelope flame surrounding each drop and aerodynamic effects caused by changes in the relative gas/drop velocities. A chemically reacting flow model was used to analyze the process of sootshell formation during microgravity droplet combustion. The time-dependent temperature and gas property field surrounding the droplet was determined, and the soot cloud location for microgravity combustion of n-heptane droplets was predicted. Experiments showed that the sooting propensity of n-alkane fuel droplets can be varied through diluent substitution, oxygen-index variations, and ambient pressure reductions.

  8. DARK MATTER AS AN ACTIVE GRAVITATIONAL AGENT IN CLOUD COMPLEXES

    SciTech Connect

    Suarez-Madrigal, Andres; Ballesteros-Paredes, Javier; Colin, Pedro; D'Alessio, Paola

    2012-04-01

    We study the effect that the dark matter background (DMB) has on the gravitational energy content and, in general, on the star formation efficiency (SFE) of a molecular cloud (MC). We first analyze the effect that a dark matter halo, described by the Navarro-Frenk-White density profile, has on the energy budget of a spherical, homogeneous cloud located at different distances from the halo center. We found that MCs located in the innermost regions of a massive galaxy can feel a contraction force greater than their self-gravity due to the incorporation of the potential of the galaxy's dark matter halo. We also calculated analytically the gravitational perturbation that an MC produces over a uniform DMB (uniform at the scales of an MC) and how this perturbation will affect the evolution of the MC itself. The study shows that the star formation in an MC will be considerably enhanced if the cloud is located in a dense and low velocity dark matter environment. We confirm our results by measuring the SFE in numerical simulations of the formation and evolution of MCs within different DMBs. Our study indicates that there are situations where the dark matter's gravitational contribution to the evolution of the MCs should not be neglected.

  9. Ice Formation and Growth in Orographically-Enhanced Mixed-Phase Clouds

    NASA Astrophysics Data System (ADS)

    David, Robert; Lowenthal, Douglas; Gannet Hallar, A.; McCubbin, Ian; Avallone, Linnea; Mace, Gerald; Wang, Zhien

    2015-04-01

    The formation and evolution of ice in mixed-phase clouds continues to be an active area of research due to the complex interactions between vapor, liquid and ice. Orographically-enhanced clouds are commonly mixed-phase during winter. An airborne study, the Colorado Airborne Mixed-Phase Cloud Study (CAMPS), and a ground-based field campaign, the Storm Peak Lab (SPL) Cloud Property Validation Experiment (StormVEx) were conducted in the Park Range of the Colorado Rockies. The CAMPS study utilized the University of Wyoming King Air (UWKA) to provide airborne cloud microphysical and meteorological data on 29 flights totaling 98 flight hours over the Park Range from December 15, 2010 to February 28, 2011. The UWKA was equipped with instruments that measured both cloud droplet and ice crystal size distributions, liquid water content, total water content (vapor, liquid, and ice), and 3-dimensional wind speed and direction. The Wyoming Cloud Radar and Lidar were also deployed during the campaign. These measurements are used to characterize cloud structure upwind and above the Park Range. StormVEx measured temperature, and cloud droplet and ice crystal size distributions at SPL. The observations from SPL are used to determine mountain top cloud microphysical properties at elevations lower than the UWKA was able to sample in-situ. Comparisons showed that cloud microphysics aloft and at the surface were consistent with respect to snow growth processes. Small ice crystal concentrations were routinely higher at the surface and a relationship between small ice crystal concentrations, large cloud droplet concentrations and temperature was observed, suggesting liquid-dependent ice nucleation near cloud base. Terrain flow effects on cloud microphysics and structure are considered.

  10. Droplet interface bilayer reconstitution and activity measurement of the mechanosensitive channel of large conductance from Escherichia coli

    PubMed Central

    Barriga, Hanna M. G.; Booth, Paula; Haylock, Stuart; Bazin, Richard; Templer, Richard H.; Ces, Oscar

    2014-01-01

    Droplet interface bilayers (DIBs) provide an exciting new platform for the study of membrane proteins in stable bilayers of controlled composition. To date, the successful reconstitution and activity measurement of membrane proteins in DIBs has relied on the use of the synthetic lipid 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC). We report the functional reconstitution of the mechanosensitive channel of large conductance (MscL) into DIBs composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), a lipid of significantly greater biological relevance than DPhPC. MscL functionality has been demonstrated using a fluorescence-based assay, showing that dye flow occurs across the DIB when MscL is gated by the cysteine reactive chemical 2-(trimethylammonium)ethyl methane thiosulfonate bromide (MTSET). MscL has already been the subject of a number of studies investigating its interaction with the membrane. We propose that this method will pave the way for future MscL studies looking in detail at the effects of controlled composition or membrane asymmetry on MscL activity using biologically relevant lipids and will also be applicable to other lipid–protein systems, paving the way for the study of membrane proteins in DIBs with biologically relevant lipids. PMID:25008079

  11. Remote observations of eruptive clouds and surface thermal activity during the 2009 eruption of Redoubt volcano

    NASA Astrophysics Data System (ADS)

    Webley, P. W.; Lopez, T. M.; Ekstrand, A. L.; Dean, K. G.; Rinkleff, P.; Dehn, J.; Cahill, C. F.; Wessels, R. L.; Bailey, J. E.; Izbekov, P.; Worden, A.

    2013-06-01

    Volcanoes often erupt explosively and generate a variety of hazards including volcanic ash clouds and gaseous plumes. These clouds and plumes are a significant hazard to the aviation industry and the ground features can be a major hazard to local communities. Here, we provide a chronology of the 2009 Redoubt Volcano eruption using frequent, low spatial resolution thermal infrared (TIR), mid-infrared (MIR) and ultraviolet (UV) satellite remote sensing data. The first explosion of the 2009 eruption of Redoubt Volcano occurred on March 15, 2009 (UTC) and was followed by a series of magmatic explosive events starting on March 23 (UTC). From March 23-April 4 2009, satellites imaged at least 19 separate explosive events that sent ash clouds up to 18 km above sea level (ASL) that dispersed ash across the Cook Inlet region. In this manuscript, we provide an overview of the ash clouds and plumes from the 19 explosive events, detailing their cloud-top heights and discussing the variations in infrared absorption signals. We show that the timing of the TIR data relative to the event end time was critical for inferring the TIR derived height and true cloud top height. The ash clouds were high in water content, likely in the form of ice, which masked the negative TIR brightness temperature difference (BTD) signal typically used for volcanic ash detection. The analysis shown here illustrates the utility of remote sensing data during volcanic crises to measure critical real-time parameters, such as cloud-top heights, changes in ground-based thermal activity, and plume/cloud location.

  12. Fast clearance of lipid droplets through MAP1S-activated autophagy suppresses clear cell renal cell carcinomas and promotes patient survival

    PubMed Central

    Liu, Xian-De; Yue, Fei; Li, Wenjiao; Li, Xun; He, Yongzhong; Jiang, Xianhan; Huang, Hai; Chen, Qi; Jonasch, Eric; Liu, Leyuan

    2016-01-01

    Clear cell renal cell carcinoma (ccRCC) is composed of cells whose cytoplasm filled with lipid droplets, subcellular organelles coated with adipocyte differentiation-related protein (ADFP) for the storage of triacylglycerol converted from excess free fatty acids. Mammalian cells primarily use the autophagy-lysosome system to degrade misfolded/aggregated proteins and dysfunctional organelles such as lipid droplets. MAP1S (originally named C19ORF5) is an autophagy activator and promotes the biogenesis and degradation of autophagosomes. Previously, we reported that MAP1S suppresses hepatocellular carcinogenesis in a mouse model and promoted the survival of patients with prostate adenocarcinomas by increasing the degradation of aggregated proteins and dysfunctional mitochondria. Here we show that a suppression of MAP1S in renal cells causes an impairment of autophagic clearance of lipid droplets. In contrast, an overexpression of MAP1S causes an activation of autophagy flux and a reduction of lipid droplets so less DNA double strand breakage is induced. The levels of MAP1S in normal renal cells are dramatically higher than those in the ccRCC tissues and cell lines derived from renal cell carcinomas. High levels of MAP1S are associated with a reduced malignancy and metastasis of ccRCC and predict a better survival of ccRCC patients. Therefore, autophagy defects in the degradation of lipid droplets triggered by the MAP1S deficiency may enhance the initiation and development of ccRCC and reduce the survival of ccRCC patients. PMID:26701856

  13. Droplets, Bubbles and Ultrasound Interactions.

    PubMed

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics. PMID:26486337

  14. Droplet resonator based optofluidic microlasers

    NASA Astrophysics Data System (ADS)

    Kiraz, Alper; Jonáš, Alexandr; Aas, Mehdi; Karadag, Yasin; Brzobohatý, Oto; Ježek, Jan; Pilát, Zdeněk.; Zemánek, Pavel; Anand, Suman; McGloin, David

    2014-03-01

    We introduce tunable optofluidic microlasers based on active optical resonant cavities formed by optically stretched, dye-doped emulsion droplets confined in a dual-beam optical trap. To achieve tunable dye lasing, optically pumped droplets of oil dispersed in water are stretched by light in the dual-beam trap. Subsequently, resonant path lengths of whispering gallery modes (WGMs) propagating in the droplet are modified, leading to shifts in the microlaser emission wavelengths. We also report lasing in airborne, Rhodamine B-doped glycerolwater droplets which were localized using optical tweezers. While being trapped near the focal point of an infrared laser, the droplets were pumped with a Q-switched green laser. Furthermore, biological lasing in droplets supported by a superhydrophobic surface is demonstrated using a solution of Venus variant of the yellow fluorescent protein or E. Coli bacterial cells expressing stably the Venus protein. Our results may lead to new ways of probing airborne particles, exploiting the high sensitivity of stimulated emission to small perturbations in the droplet laser cavity and the gain medium.

  15. Next generation aerosol-cloud microphysics for advanced high-resolution climate predictions

    SciTech Connect

    Bennartz, Ralf; Hamilton, Kevin P; Phillips, Vaughan T.J.; Wang, Yuqing; Brenguier, Jean-Louis

    2013-01-14

    The three top-level project goals are: -We proposed to develop, test, and run a new, physically based, scale-independent microphysical scheme for those cloud processes that most strongly affect greenhouse gas scenarios, i.e. warm cloud microphysics. In particular, we propsed to address cloud droplet activation, autoconversion, and accretion. -The new, unified scheme was proposed to be derived and tested using the University of Hawaii's IPRC Regional Atmospheric Model (iRAM). -The impact of the new parameterizations on climate change scenarios will be studied. In particular, the sensitivity of cloud response to climate forcing from increased greenhouse gas concentrations will be assessed.

  16. Elemental composition of aerosols in fourteen experiments of the Cloud Condensation Nuclei Workshop

    NASA Technical Reports Server (NTRS)

    Mach, W. H.; Hucek, R. R.

    1981-01-01

    Aeosols were collected with two Ci impactors and analyzed with proton induced X-ray emission (PIXE) for chemical composition and to detect if contamination was present. One of the impactors sampled the generated aerosols; the other impactor sampled droplets from a diffusion cloud chamber. The purpose of the experiments was to test the feasibility of a study of the transfer of chemical elements from the fine particle sizes to the coarse particle sizes, after CCN are activated and cloud droplets are formed. The data indicated that sulfur-containing aerosols did exhibit the expected transfer.

  17. Individual aerosol particles in ambient and updraft conditions below convective cloud bases in the Oman mountain region

    NASA Astrophysics Data System (ADS)

    Semeniuk, T. A.; Bruintjes, R. T.; Salazar, V.; Breed, D. W.; Jensen, T. L.; Buseck, P. R.

    2014-03-01

    An airborne study of cloud microphysics provided an opportunity to collect aerosol particles in ambient and updraft conditions of natural convection systems for transmission electron microscopy (TEM). Particles were collected simultaneously on lacey carbon and calcium-coated carbon (Ca-C) TEM grids, providing information on particle morphology and chemistry and a unique record of the particle's physical state on impact. In total, 22 particle categories were identified, including single, coated, aggregate, and droplet types. The fine fraction comprised up to 90% mixed cation sulfate (MCS) droplets, while the coarse fraction comprised up to 80% mineral-containing aggregates. Insoluble (dry), partially soluble (wet), and fully soluble particles (droplets) were recorded on Ca-C grids. Dry particles were typically silicate grains; wet particles were mineral aggregates with chloride, nitrate, or sulfate components; and droplets were mainly aqueous NaCl and MCS. Higher numbers of droplets were present in updrafts (80% relative humidity (RH)) compared with ambient conditions (60% RH), and almost all particles activated at cloud base (100% RH). Greatest changes in size and shape were observed in NaCl-containing aggregates (>0.3 µm diameter) along updraft trajectories. Their abundance was associated with high numbers of cloud condensation nuclei (CCN) and cloud droplets, as well as large droplet sizes in updrafts. Thus, compositional dependence was observed in activation behavior recorded for coarse and fine fractions. Soluble salts from local pollution and natural sources clearly affected aerosol-cloud interactions, enhancing the spectrum of particles forming CCN and by forming giant CCN from aggregates, thus, making cloud seeding with hygroscopic flares ineffective in this region.

  18. Aerosol processing in mixed-phase clouds in ECHAM5-HAM: Model description and comparison to observations

    NASA Astrophysics Data System (ADS)

    Hoose, C.; Lohmann, U.; Stier, P.; Verheggen, B.; Weingartner, E.

    2008-04-01

    The global aerosol-climate model ECHAM5-HAM has been extended by an explicit treatment of cloud-borne particles. Two additional modes for in-droplet and in-crystal particles are introduced, which are coupled to the number of cloud droplet and ice crystal concentrations simulated by the ECHAM5 double-moment cloud microphysics scheme. Transfer, production, and removal of cloud-borne aerosol number and mass by cloud droplet activation, collision scavenging, aqueous-phase sulfate production, freezing, melting, evaporation, sublimation, and precipitation formation are taken into account. The model performance is demonstrated and validated with observations of the evolution of total and interstitial aerosol concentrations and size distributions during three different mixed-phase cloud events at the alpine high-altitude research station Jungfraujoch (Switzerland). Although the single-column simulations cannot be compared one-to-one with the observations, the governing processes in the evolution of the cloud and aerosol parameters are captured qualitatively well. High scavenged fractions are found during the presence of liquid water, while the release of particles during the Bergeron-Findeisen process results in low scavenged fractions after cloud glaciation. The observed coexistence of liquid and ice, which might be related to cloud heterogeneity at subgrid scales, can only be simulated in the model when assuming nonequilibrium conditions.

  19. Polarization of clouds

    NASA Astrophysics Data System (ADS)

    Goloub, Philippe; Herman, Maurice; Parol, Frederic

    1995-12-01

    This paper reports the main results concerning polarization by clouds derived from POLDER (polarization and directionality of earth's reflectances) airborne version. These results tend to confirm the high information content in the polarization (phase, altimetry). The preliminary results of EUCREX'94 (European Cloud Radiation Experiment) evidenced the drastically different polarized signatures for ice crystals and water droplets. Here we report systematic and statistically significative observations over the whole EUCREX data set. The results show that the cirrus exhibit their own signature. Preliminary observations performed during CLEOPATRA'91 (Cloud Experiment Ober Pfaffenhofen And Transport) and EUCREX'94 campaigns have shown the feasibility of cloud altimetry using spectral information (443 nm and 865 nm) of the polarized light over liquid water droplets clouds. Altimetry technique has been generalized on ASTEX-SOFIA'92 and EUCREX'94 data sets. All these results are presented and discussed in this paper.

  20. Polar Stratospheric Cloud evolution and chlorine activation measured by CALIPSO and MLS, and modelled by ATLAS

    NASA Astrophysics Data System (ADS)

    Nakajima, H.; Wohltmann, I.; Wegner, T.; Takeda, M.; Pitts, M. C.; Poole, L. R.; Lehmann, R.; Santee, M. L.; Rex, M.

    2015-08-01

    We examined observations of polar stratospheric clouds (PSCs) by CALIPSO and of HCl, ClO and HNO3 by MLS along air mass trajectories to investigate the dependence of the inferred PSC composition on the temperature history of the air parcels, and the dependence of the level of chlorine activation on PSC composition. Several case studies based on individual trajectories from the Arctic winter 2009/10 were conducted, with the trajectories chosen such that the first processing of the air mass by PSCs in this winter occurred on the trajectory. Transitions of PSC composition classes were observed to be highly dependent on the temperature history. In cases of a gradual temperature decrease, nitric acid trihydrate (NAT) and super-cooled ternary solution (STS) mixture clouds were observed. In cases of rapid temperature decrease, STS clouds were first observed, followed by NAT/STS mixture clouds. When temperatures dropped below the frost point, ice clouds formed, and then transformed into NAT/STS mixture clouds when temperature increased above the frost point. The threshold temperature for rapid chlorine activation on PSCs is approximately 4 K below the NAT existence temperature, TNAT. Furthermore, simulations of the ATLAS chemistry and transport box model along the trajectories were used to corroborate the measurements and show good agreement with the observations. Rapid chlorine activation was observed when an airmass encountered PSCs. The observed and modelled dependence of the rate of chlorine activation on the PSC composition class was small. Usually, chlorine activation was limited by the amount of available ClONO2. Where ClONO2 was not the limiting factor, a large dependence on temperature was evident.

  1. Passive and Active Detection of Clouds: Comparisons between MODIS and GLAS Observations

    NASA Technical Reports Server (NTRS)

    Mahesh, Ashwin; Gray, Mark A.; Palm, Stephen P.; Hart, William D.; Spinhirne, James D.

    2003-01-01

    The Geoscience Laser Altimeter System (GLAS), launched on board the Ice, Cloud and Land Elevation Satellite in January 2003 provides space-borne laser observations of atmospheric layers. GLAS provides opportunities to validate passive observations of the atmosphere for the first time from space with an active optical instrument. Data from the Moderate Resolution Imaging Spectrometer aboard the Aqua satellite is examined along with GLAS observations of cloud layers. In more than three-quarters of the cases, MODIS scene identification from spectral radiances agrees with GLAS. Disagreement between the two platforms is most significant over snow-covered surfaces in the northern hemisphere. Daytime clouds detected by GLAS are also more easily seen in the MODIS data as well, compared to observations made at night. These comparisons illustrate the capabilities of active remote sensing to validate and assess passive measurements, and also to complement them in studies of atmospheric layers.

  2. Droplet Vaporization In A Levitating Acoustic Field

    NASA Technical Reports Server (NTRS)

    Ruff, G. A.; Liu, S.; Ciobanescu, I.

    2003-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. While the low-gravity test facility is being completed, tests have been conducted in 1-g to characterize the effect of the acoustic field on the vaporization of single and multiple droplets. This is important because in the combustion experiment, the droplets will be formed and

  3. Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds.

    PubMed

    Vaïtilingom, Mickael; Deguillaume, Laurent; Vinatier, Virginie; Sancelme, Martine; Amato, Pierre; Chaumerliac, Nadine; Delort, Anne-Marie

    2013-01-01

    Within cloud water, microorganisms are metabolically active and, thus, are expected to contribute to the atmospheric chemistry. This article investigates the interactions between microorganisms and the reactive oxygenated species that are present in cloud water because these chemical compounds drive the oxidant capacity of the cloud system. Real cloud water samples with contrasting features (marine, continental, and urban) were taken from the puy de Dôme mountain (France). The samples exhibited a high microbial biodiversity and complex chemical composition. The media were incubated in the dark and subjected to UV radiation in specifically designed photo-bioreactors. The concentrations of H(2)O(2), organic compounds, and the ATP/ADP ratio were monitored during the incubation period. The microorganisms remained metabolically active in the presence of ()OH radicals that were photo-produced from H(2)O(2). This oxidant and major carbon compounds (formaldehyde and carboxylic acids) were biodegraded by the endogenous microflora. This work suggests that microorganisms could play a double role in atmospheric chemistry; first, they could directly metabolize organic carbon species, and second, they could reduce the available source of radicals through their oxidative metabolism. Consequently, molecules such as H(2)O(2) would no longer be available for photochemical or other chemical reactions, which would decrease the cloud oxidant capacity. PMID:23263871

  4. Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds

    NASA Astrophysics Data System (ADS)

    Vaïtilingom, Mickael; Deguillaume, Laurent; Vinatier, Virginie; Sancelme, Martine; Amato, Pierre; Chaumerliac, Nadine; Delort, Anne-Marie

    2013-01-01

    Within cloud water, microorganisms are metabolically active and, thus, are expected to contribute to the atmospheric chemistry. This article investigates the interactions between microorganisms and the reactive oxygenated species that are present in cloud water because these chemical compounds drive the oxidant capacity of the cloud system. Real cloud water samples with contrasting features (marine, continental, and urban) were taken from the puy de Dôme mountain (France). The samples exhibited a high microbial biodiversity and complex chemical composition. The media were incubated in the dark and subjected to UV radiation in specifically designed photo-bioreactors. The concentrations of H2O2, organic compounds, and the ATP/ADP ratio were monitored during the incubation period. The microorganisms remained metabolically active in the presence of ●OH radicals that were photo-produced from H2O2. This oxidant and major carbon compounds (formaldehyde and carboxylic acids) were biodegraded by the endogenous microflora. This work suggests that microorganisms could play a double role in atmospheric chemistry; first, they could directly metabolize organic carbon species, and second, they could reduce the available source of radicals through their oxidative metabolism. Consequently, molecules such as H2O2 would no longer be available for photochemical or other chemical reactions, which would decrease the cloud oxidant capacity.

  5. Polar stratospheric cloud evolution and chlorine activation measured by CALIPSO and MLS, and modeled by ATLAS

    NASA Astrophysics Data System (ADS)

    Nakajima, Hideaki; Wohltmann, Ingo; Wegner, Tobias; Takeda, Masanori; Pitts, Michael C.; Poole, Lamont R.; Lehmann, Ralph; Santee, Michelle L.; Rex, Markus

    2016-03-01

    We examined observations of polar stratospheric clouds (PSCs) by CALIPSO, and of HCl and ClO by MLS along air mass trajectories, to investigate the dependence of the inferred PSC composition on the temperature history of the air parcels and the dependence of the level of chlorine activation on PSC composition. Several case studies based on individual trajectories from the Arctic winter 2009/2010 were conducted, with the trajectories chosen such that the first processing of the air mass by PSCs in this winter occurred on the trajectory. Transitions of PSC composition classes were observed to be highly dependent on the temperature history. In cases of a gradual temperature decrease, nitric acid trihydrate (NAT) and super-cooled ternary solution (STS) mixture clouds were observed. In cases of rapid temperature decrease, STS clouds were first observed, followed by NAT/STS mixture clouds. When temperatures dropped below the frost point, ice clouds formed and then transformed into NAT/STS mixture clouds when temperature increased above the frost point. The threshold temperature for rapid chlorine activation on PSCs is approximately 4 K below the NAT existence temperature, TNAT. Furthermore, simulations of the ATLAS chemistry and transport box model along the trajectories were used to corroborate the measurements and show good agreement with the observations. Rapid chlorine activation was observed when an air mass encountered PSCs. Usually, chlorine activation was limited by the amount of available ClONO2. Where ClONO2 was not the limiting factor, a large dependence on temperature was evident.

  6. Application of active spaceborne remote sensing for understanding biases between passive cloud water path retrievals

    NASA Astrophysics Data System (ADS)

    Lebsock, Matthew; Su, Hui

    2014-07-01

    Bias between the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) version 2 and the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 5.1 cloud liquid water path (Wc) products are explored with the aid of coincident active observations from the CloudSat radar and the CALIPSO lidar. In terms of detection, the active observations provide precise separation of cloudy from clear sky and precipitating from nonprecipitating clouds. In addition, they offer a unique quantification of precipitation water path (Wp) in warm clouds. They also provide an independent quantification of Wc that is based on an accurate surface reference technique, which is an independent arbiter between the two passive approaches. The results herein establish the potential for CloudSat and CALIPSO to provide an independent assessment of bias between the conventional passive remote sensing methods from reflected solar and emitted microwave radiation. After applying a common data filter to the observations to account for sampling biases, AMSR-E is biased high relative to MODIS in the global mean by 26.4 gm-2. The RMS difference in the regional patterns is 32.4 gm-2, which highlights a large geographical dependence in the bias which is related to the tropical transitions from stratocumulus to cumulus cloud regimes. The contributions of four potential sources for this bias are investigated by exploiting the active observations: (1) bias in MODIS related to solar zenith angle dependence accounts for -2.3 gm-2, (2) bias in MODIS due to undersampling of cloud edges accounts for 4.2 gm-2, (3) a wind speed and water vapor-dependent "clear-sky biase" in the AMSR-E retrieval accounts for 6.3 gm-2, and (4) evidence suggests that much of the remaining 18 gm-2 bias is related to the assumed partitioning of the observed emission signal between cloud and precipitation water in the AMSR-E retrieval. This is most evident through the correlations between the regional mean patterns of Wp and the Wc

  7. Using Active Satellite Observations to Characterize Uncertatinty in Long Term Satellite Cloud Liquid Water Path Climatologies

    NASA Astrophysics Data System (ADS)

    Lebsock, M. D.

    2014-12-01

    Bias between the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) version 2 and the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 5.1 cloud liquid water path (Wc)products are explored with the aid of coincident active observations from the CloudSat radar and the CALIPSO lidar. In terms of detection, the active observations provide precise separation of cloudy from clear sky and precipitating from nonprecipitating clouds. In addition, they offer a unique quantification of precipitation water path (Wp) in warm clouds. They also provide an independent quantification of Wc that isbased on an accurate surface reference technique, which is an independent arbiter between the two passive approaches. The results herein establish the potential for CloudSat and CALIPSO to provide an independent assessment of bias between the conventional passive remote sensing methods from reflected solar and emitted microwave radiation. After applying a common data filter to the observations to account for sampling biases, AMSR-E is biased high relative to MODIS in the global mean by 26.4gm2. The RMS difference in the regional patterns is 32.4gm2, which highlights a large geographical dependence in the bias which is related to the tropical transitions from stratocumulus to cumulus cloud regimes. The contributions of four potential sources for this bias are investigated by exploiting the active observations: (1)bias in MODIS related to solar zenith angle dependence accounts for 2.3gm2, (2) bias in MODIS due to undersampling of cloud edges accounts for 4.2gm2, (3) a wind speed and water vapor-dependent "clear-sky bias" in the AMSR-E retrieval accounts for 6.3gm2, and (4) evidence suggests that much of the remaining 18gm2 bias is related to the assumed partitioning of the observed emission signal between cloud and precipitation water in the AMSR-E retrieval. This is most evident through the correlations between the regional mean patterns of Wp and the Wc bias within the

  8. Droplet Charging Effects in the Space Environment

    SciTech Connect

    Joslyn, Thomas B.; Ketsdever, Andrew D.

    2011-05-20

    Several applications exist for transiting liquid droplets through the near-Earth space environment. Numerical results are presented for the charging of liquid droplets of trimethyl pentaphenyl siloxane (DC705) in three different plasma environments: ionosphere, auroral, and geosynchronous Earth orbit (GEO). Nominal and high geomagnetic activity cases are investigated. In general, high levels of droplet charging (>100 V) exist only in GEO during periods of high geomagnetic or solar activity. An experiment was conducted to assess the charging of silicon-oil droplets due to photoemission. The photoemission yield in the 120-200 nm wavelength range was found to be approximately 0.06.

  9. Electropermanent magnet actuation for droplet ferromicrofluidics

    PubMed Central

    Padovani, José I.; Jeffrey, Stefanie S.; Howe, Roger T.

    2016-01-01

    Droplet actuation is an essential mechanism for droplet-based microfluidic systems. On-demand electromagnetic actuation is used in a ferrofluid-based microfluidic system for water droplet displacement. Electropermanent magnets (EPMs) are used to induce 50 mT magnetic fields in a ferrofluid filled microchannel with gradients up to 6.4 × 104 kA/m2. Short 50 µs current pulses activate the electropermanent magnets and generate negative magnetophoretic forces that range from 10 to 70 nN on 40 to 80 µm water-in-ferrofluid droplets. Maximum droplet displacement velocities of up to 300 µm/s are obtained under flow and no-flow conditions. Electropermanent magnet-activated droplet sorting under continuous flow is demonstrated using a split-junction microfluidic design. PMID:27583301

  10. Cloud Coverage Enhancement and Nocturnal Drizzle Suppression in Stratocumulus by Aerosols

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew S.; Toon, Owen B.; Stevens, David E.; Coakley, James A., Jr.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Recent satellite observations of ship tracks surprisingly indicate that cloud water decreases with increasing droplet concentrations. However, we find by analyzing detailed simulations of stratocumulus that the reported trend is likely an artifact of sampling, only overcast clouds. The simulations instead show cloud coverage increasing with droplet concentrations, accounting for 25% of cloud albedo increase at moderate droplet concentrations. Our simulations also show that increases in cloud water from drizzle suppression (by increasing droplet concentrations) are favored only at night or at extremely low droplet concentrations, suggesting that the indirect aerosol forcing is overestimated in climate change projections by many general circulation models.

  11. Lipid droplet binding thalidomide analogs activate endoplasmic reticulum stress and suppress hepatocellular carcinoma in a chemically induced transgenic mouse model

    PubMed Central

    2013-01-01

    Background Hepatocellular carcinoma (HCC) is the most frequent and aggressive primary tumor of the liver and it has limited treatment options. Results In this study, we report the in vitro and in vivo effects of two novel amino-trifluoro-phtalimide analogs, Ac-915 and Ac-2010. Both compounds bind lipid droplets and endoplasmic reticulum membrane, and interact with several proteins with chaperone functions (HSP60, HSP70, HSP90, and protein disulfide isomerase) as determined by affinity chromatography and resonant waveguide optical biosensor technology. Both compounds inhibited protein disulfide isomerase activity and induced cell death of different HCC cells at sub or low micromolar ranges detected by classical biochemical end-point assay as well as with real-time label-free measurements. Besides cell proliferation inhibiton, analogs also inhibited cell migration even at 250 nM. Relative biodistribution of the analogs was analysed in native tissue sections of different organs after administration of drugs, and by using fluorescent confocal microscopy based on the inherent blue fluorescence of the compounds. The analogs mainly accumulated in the liver. The effects of Ac-915 and Ac-2010 were also demonstrated on the advanced stages of hepatocarcinogenesis in a transgenic mouse model of N-nitrosodiethylamine (DEN)-induced HCC. Significantly less tumor development was found in the livers of the Ac-915- or Ac-2010-treated groups compared with control mice, characterized by less liver tumor incidence, fewer tumors and smaller tumor size. Conclusion These results imply that these amino-trifluoro-phthalimide analogs could serve potent clinical candidates against HCC alone or in combination with dietary polyunsaturated fatty acids. PMID:24268070

  12. Aerosol cloud processing with the global model ECHAM5-HAM-SALSA

    NASA Astrophysics Data System (ADS)

    Bergman, T.; Korhonen, H.; Zubair, M.; Romakkaniemi, S.; Lehtinen, K.; Kokkola, H.

    2012-04-01

    Atmospheric aerosols and their interactions with clouds constitute the largest uncertainty in the radiative forcing of the Earth's atmosphere. Increasing aerosol number concentrations increases the cloud droplet concentration and droplet surface and hence the cloud albedo. This mechanism is called the aerosol indirect effect on climate. Understanding the changes in cloud droplet number concentrations and size by anthropogenic aerosols are the key factors in the study of future climate change. Therefore the aerosols' formation and growth from nanoparticles to cloud condensation nuclei (CCN) must be described accurately. The formation and growth of aerosols are shown to be described more accurately with sectional representations than with bulk (total aerosol mass only), modal (lognormal modes describing mass and number size distribution) or moment (processes tied to different moments of particle number size distribution) approaches. Recently the sectional aerosol models have been implemented to global climate models. However, the resolution of sectional models must be optimised to reduce the computational cost. We have implemented the sectional aerosol model SALSA in ECHAM5-HAM. SALSA describes the aerosol population with 20 size sections. The dynamics are optimised for large scale applications and the model includes an improved moving center sectional method. The particulate mass consists of five compounds: sulphate, organic carbon, black carbon, sea salt and dust. The aerosol processing has been studied extensively and there are many numerical models used to predict CCN number concentrations. However, due to computational limitations many of them are not suitable for utilisation in global climate models. Therefore in most global climate studies on aerosol activation to CCN is examined using cloud activation parameterisations. We study the aerosol cloud processing and its affect on transport of aerosols using Abdul-Razzak-Ghan aerosol cloud activation

  13. CLOUD PARAMETERIZATIONS, CLOUD PHYSICS, AND THEIR CONNECTIONS: AN OVERVIEW.

    SciTech Connect

    LIU,Y.; DAUM,P.H.; CHAI,S.K.; LIU,F.

    2002-02-12

    This paper consists of three parts. The first part is concerned with the parameterization of cloud microphysics in climate models. We demonstrate the crucial importance of spectral dispersion of the cloud droplet size distribution in determining radiative properties of clouds (e.g., effective radius), and underline the necessity of specifying spectral dispersion in the parameterization of cloud microphysics. It is argued that the inclusion of spectral dispersion makes the issue of cloud parameterization essentially equivalent to that of the droplet size distribution function, bringing cloud parameterization to the forefront of cloud physics. The second part is concerned with theoretical investigations into the spectral shape of droplet size distributions in cloud physics. After briefly reviewing the mainstream theories (including entrainment and mixing theories, and stochastic theories), we discuss their deficiencies and the need for a paradigm shift from reductionist approaches to systems approaches. A systems theory that has recently been formulated by utilizing ideas from statistical physics and information theory is discussed, along with the major results derived from it. It is shown that the systems formalism not only easily explains many puzzles that have been frustrating the mainstream theories, but also reveals such new phenomena as scale-dependence of cloud droplet size distributions. The third part is concerned with the potential applications of the systems theory to the specification of spectral dispersion in terms of predictable variables and scale-dependence under different fluctuating environments.

  14. Insight into instabilities in burning droplets

    NASA Astrophysics Data System (ADS)

    Miglani, Ankur; Basu, Saptarshi; Kumar, Ranganathan

    2014-03-01

    The complex multiscale physics of nano-particle laden functional droplets in a reacting environment is of fundamental and applied significance for a wide variety of applications ranging from thermal sprays to pharmaceutics to modern day combustors using new brands of bio-fuels. Formation of homogenous nucleated bubbles at the superheat limit inside vaporizing droplets (with or without nanoparticles) represents an unstable system. Here we show that self-induced boiling in burning functional pendant droplets can produce severe volumetric shape oscillations. Internal pressure build-up due to ebullition activity ejects bubbles from the droplet domain causing undulations on the droplet surface and oscillations in bulk. Through experiments, we establish that the degree of droplet deformation depends on the frequency and intensity of these bubble expulsion events. In a distinct regime of single isolated bubble residing in the droplet, however, pre-ejection transient time is identified by Darrieus-Landau evaporative instability, where bubble-droplet system behaves as a synchronized driver-driven system with bulk bubble-shape oscillations being imposed on the droplet. The agglomeration of nanophase additives modulates the flow structures within the droplet and also influences the bubble inception and growth leading to different levels of instabilities.

  15. Self-arraying of charged levitating droplets.

    PubMed

    Kauffmann, Paul; Nussbaumer, Jérémie; Masse, Alain; Jeandey, Christian; Grateau, Henri; Pham, Pascale; Reyne, Gilbert; Haguet, Vincent

    2011-06-01

    Diamagnetic levitation of water droplets in air is a promising phenomenon to achieve contactless manipulation of chemical or biochemical samples. This noncontact handling technique prevents contaminations of samples as well as provides measurements of interaction forces between levitating reactors. Under a nonuniform magnetic field, diamagnetic bodies such as water droplets experience a repulsive force which may lead to diamagnetic levitation of a single or few micro-objects. The levitation of several repulsively charged picoliter droplets was successfully performed in a ~1 mm(2) adjustable flat magnetic well provided by a centimeter-sized cylindrical permanent magnet structure. Each droplet position results from the balance between the centripetal diamagnetic force and the repulsive Coulombian forces. Levitating water droplets self-organize into satellite patterns or thin clouds, according to their charge and size. Small triangular lattices of identical droplets reproduce magneto-Wigner crystals. Repulsive forces and inner charges can be measured in the piconewton and the femtocoulomb ranges, respectively. Evolution of interaction forces is accurately followed up over time during droplet evaporation. PMID:21500859

  16. Instrumental neutron activation analysis data for cloud-water particulate samples, Mount Bamboo, Taiwan

    USGS Publications Warehouse

    Lin, Neng-Huei; Sheu, Guey-Rong; Wetherbee, Gregory A.; Debey, Timothy M.

    2013-01-01

    Cloud water was sampled on Mount Bamboo in northern Taiwan during March 22-24, 2002. Cloud-water samples were filtered using 0.45-micron filters to remove particulate material from the water samples. Filtered particulates were analyzed by instrumental neutron activation analysis (INAA) at the U.S. Geological Survey National Reactor Facility in Denver, Colorado, in February 2012. INAA elemental composition data for the particulate materials are presented. These data complement analyses of the aqueous portion of the cloud-water samples, which were performed earlier by the Department of Atmospheric Sciences, National Central University, Taiwan. The data are intended for evaluation of atmospheric transport processes and air-pollution sources in Southeast Asia.

  17. Quantifying Amount and Variability of Cloud Water Inputs Using Active-Strand Collector, Ceilometer, Dewpoint, and Photographic Measurements

    NASA Astrophysics Data System (ADS)

    Scholl, M. A.; Bassiouni, M.; Murphy, S. F.; Gonzalez, G.; Van Beusekom, A. E.; Torres-Sanchez, A.; Estrada-Ruiz, C.

    2015-12-01

    Cloud water associated with orographic processes contributes to soil moisture and streamflow, suppresses transpiration, and moderates drought in tropical mountain forests. It is difficult to quantify, yet may be vulnerable to changes in amount and frequency due to warming climate. Cloud immersion is characterized and monitored as part of the ecohydrology research of the USGS Water, Energy and Biogeochemical Budgets (WEBB) program and the Luquillo Critical Zone Observatory (CZO). Stable-isotope studies indicated cloud water may contribute significantly to headwater streamflow, and measurements with an active-strand collector yielded estimates of overnight cloud water deposition rates on Pico del Este (1050 m); but cloud liquid water content and spatial and temporal variability are not well understood. At five sites spanning the lifting condensation level to ridge-top (600-1000 m) in the Luquillo Mountains, cloud immersion conditions are monitored using time-lapse photography and temperature/ relative humidity (T/RH) sensors. A ceilometer, installed at 99 m on the windward slope on 4/29/2013, provides longer-term data to understand variation in cloud base altitude and to detect changes that may occur with warming climate. The cloud-zone sites range from tropical wet forest (mixed species) to rain forest (sierra palm) to elfin cloud forest. T/RH sensors indicated foggy conditions when temperature < dewpoint, but they are not sensitive to varying water content in the cloud. Images were processed to determine frequency and duration of immersion and estimates of optical density of cloud. Spatial heterogeneity in cloud immersion is assessed by comparing ceilometer measurements to the images. These complementary data sets provide quantification of spatial and temporal patterns of cloud immersion, and areal estimates of cloud water deposition will be made to determine importance in the water budget.

  18. A new laboratory facility to study gas-aerosol-cloud interactions in a turbulent environment: The Π Chamber

    NASA Astrophysics Data System (ADS)

    Niedermeier, Dennis; Cantrell, Will; Chang, Kelken; Ciochetto, David; Bench, Jim; Shaw, Raymond

    2015-04-01

    A detailed understanding of interactions of aerosols, cloud droplets/ice crystals, and trace gases within the turbulent atmosphere is of prime importance for an accurate understanding of Earth's climate system. But despite extensive research activity during the last decades these interactions are still poorly understood and ill quantified. For example: Every cloud droplet in Earth's atmosphere (~1025) was catalyzed by a preexisting aerosol particle. While every cloud droplet began as an aerosol particle, not every aerosol particle becomes a cloud droplet. The particle to droplet transformation, known as activation, requires that the particle be exposed to some critical concentration of water vapor, which differs for different combinations of particle size and chemical composition. Similarly, the formation of ice particles in the atmosphere is often catalyzed by aerosol particles, either activated or not. Even in the simplest scenarios it is challenging to gain a full understanding of the aerosol activation and ice nucleation processes, but at least two other factors contribute greatly to the complexity observed in the atmosphere. First, aerosols and cloud particles are not static entities, but are continuously interacting with their chemical environment, and therefore changing in their properties. Second, clouds are ubiquitously turbulent, and therefore thermodynamic and compositional variables, such as water vapor or trace gas concentration, fluctuate in space and time. Indeed, the coupling between turbulence and microphysical processes is recognized as one of the major research challenges in cloud physics today. We have developed a multiphase, turbulent reaction chamber - called the Π Chamber because of the internal volume of 3.14 m3 (with cylindical wall installed) - designed to address the open issues outlined above. It is capable of pressures ranging from sea level to ~60 mbar, and can sustain temperatures of +55 to -55

  19. Real-time monitoring of glucose-6-phosphate dehydrogenase activity using liquid droplet arrays and its application to human plasma samples.

    PubMed

    Jung, Se-Hui; Ji, Su-Hyun; Han, Eun-Taek; Park, Won Sun; Hong, Seok-Ho; Kim, Young-Myeong; Ha, Kwon-Soo

    2016-05-15

    Glucose-6-phosphate dehydrogenase (G6PD) regulates nicotinamide adenine dinucleotide phosphate (NADPH) levels and is related to the pathogenesis of various diseases, including G6PD deficiency, type 2 diabetes, aldosterone-induced endothelial dysfunction, and cancer. Therefore, a highly sensitive array-based assay for determining quantitative G6PD activity is required. Here, we developed an on-chip G6PD activity assay using liquid droplet fluorescence arrays. Quantitative G6PD activity was determined by calculating reduced resorufin concentrations in liquid droplets. The limit of detection (LOD) of this assay was 0.162 mU/ml (2.89 pM), which is much more sensitive than previous assays. We used our activity assay to determine kinetic parameters, including Michaelis-Menten constants (Km) and maximum rates of enzymatic reaction (Vmax) for NADP(+) and G6P, and half-maximal inhibitory concentrations (IC50). We successfully applied this new assay to determine G6PD activity in human plasma from normal healthy individuals (n=30) and patients with inflammation (n=30). The inflammatory group showed much higher G6PD activities than did the normal group (p<0.001), with a high area under the curve value of 0.939. Therefore, this new activity assay has the potential to be used for diagnosis of G6PD-associated diseases and utilizing kinetic studies. PMID:26802575

  20. A new droplet generator

    NASA Technical Reports Server (NTRS)

    Slack, W. E.

    1982-01-01

    A new droplet generator is described. A loud speaker driven extractor needle was immersed in a pendant drop. Pulsing the speaker extracted the needle forming a fluid ligament which will decay into a droplet. The droplets were sized by stroboscopic photographs. The droplet's size was changed by varying the amplitude of the speaker pulses and the extractor needle diameter. The mechanism of droplet formation is discussed and photographs of ligament decay are presented. The droplet generator worked well on both oil and water based pesticide formulations. Current applications and results are discussed.

  1. A new droplet generator

    NASA Astrophysics Data System (ADS)

    Slack, W. E.

    1982-03-01

    A new droplet generator is described. A loud speaker driven extractor needle was immersed in a pendant drop. Pulsing the speaker extracted the needle forming a fluid ligament which will decay into a droplet. The droplets were sized by stroboscopic photographs. The droplet's size was changed by varying the amplitude of the speaker pulses and the extractor needle diameter. The mechanism of droplet formation is discussed and photographs of ligament decay are presented. The droplet generator worked well on both oil and water based pesticide formulations. Current applications and results are discussed.

  2. Estimating Cloud Cover

    ERIC Educational Resources Information Center

    Moseley, Christine

    2007-01-01

    The purpose of this activity was to help students understand the percentage of cloud cover and make more accurate cloud cover observations. Students estimated the percentage of cloud cover represented by simulated clouds and assigned a cloud cover classification to those simulations. (Contains 2 notes and 3 tables.)

  3. Assessment to CCN impacts on stratocumulus cloud development by LES model simulations

    NASA Astrophysics Data System (ADS)

    Song, K.; Yum, S.; Park, S. K.

    2006-12-01

    Since stratocumulus clouds cover about 25 % of the entire global ocean, it is necessary to identify the potentially significant impact of these clouds on climate. Anthropogenic and natural aerosol serve as a source of CCN. Due to the increase of human activities anthropogenic aerosol distributions vary with time and place. Radiative properties of stratocumulus clouds formed on these anthropogenic CCN also vary since increased CCN increase the concentration of cloud droplets and induce changes in liquid water content resulting from feedbacks involving precipitation and entrainment. This study investigates the CCN impacts (3 cases: extreme continental, continental and maritime) on stratocumulus clouds development using the Cooperative Institute for Mesoscale Meteorological Studies (CIMMS) large eddy simulation (LES) model with size-resolving microphysics and attempts to understand how turbulence interacts with cloud microphysics. Initial extreme continental CCN spectrum is taken from the recent measurement on the west coast of the Korean Peninsula. Initial continental and maritime CCN spectra are selected from aircraft measurement over the Atlantic ocean. The cumulative CCN concentrations at 1 % supersaturation are 5292, 1023 and 163 cm-3 for extreme continental, continental and maritime, respectively. Preliminary results show that, cloud droplet number concentration was higher and mean diameter of cloud droplets, cloud liquid water content and drizzle liquid water content were smaller when CCN concentrations were higher. For maritime case, precipitation started after 75 minutes and lasted until the end of the run at 6 hours, while for continental case there was no drizzle reaching the surface for the whole 6 hours. Detailed feature of stratocumulus cloud evolution will be discussed at the meeting focusing on the decoupling processes of the stratus topped boundary layer and the water vapor sources at the surface in the daytime by the shortwave heating of the cloud

  4. ARM Evaluation Product : Droplet Number Concentration Value-Added Product

    SciTech Connect

    Riihimaki, Laura

    2014-05-15

    Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration, Nd, will increase and droplet size decrease, for a given liquid water path (Twomey 1977), which will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation. However, the magnitude and variability of these processes under different environmental conditions is still uncertain. McComiskey et al. (2009) have implemented a method, based on Boers and Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloud interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions.

  5. Cloud — Aerosol interaction during lightning activity over land and ocean: Precipitation pattern assessment

    NASA Astrophysics Data System (ADS)

    Pal, Jayanti; Chaudhuri, Sutapa; Chowdhury, Arumita Roy; Bandyopadhyay, Tanuka

    2016-06-01

    The present study attempts to identify the land - ocean contrast in cloud - aerosol relation during lightning and non-lightning days and its effect on subsequent precipitation pattern. The thermal hypothesis in view of Convective Available Potential Energy (CAPE) behind the land - ocean contrast is observed to be insignificant in the present study region. The result shows that the lightning activities are significantly and positively correlated with aerosols over both land and ocean in case of low aerosol loading whereas for high aerosol loading the correlation is significant but, only over land. The study attempts to comprehend the mechanism through which the aerosol and lightning interact using the concept of aerosol indirect effect that includes the study of cloud effective radius, cloud fraction and precipitation rate. The result shows that the increase in lightning activity over ocean might have been caused due to the first aerosol indirect effect, while over land the aerosol indirect effect might have been suppressed due to lightning. Thus, depending on the region and relation between cloud parameters it is observed that the precipitation rate decreases (increases) over ocean during lightning (non-lightning) days. On the other hand during non-lightning days, the precipitation rate decreases over land.

  6. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect

    Wang, Zhien

    2006-01-04

    The project is concerned with the characterization of cloud macrophysical and microphysical properties by combining radar, lidar, and radiometer measurements available from the U.S. Department of Energy's ARM Climate Research Facility (ACRF). To facilitate the production of integrated cloud product by applying different algorithms to the ARM data streams, an advanced cloud classification algorithm was developed to classified clouds into eight types at the SGP site based on ground-based active and passive measurements. Cloud type then can be used as a guidance to select an optimal retrieval algorithm for cloud microphysical property retrieval. The ultimate goal of the effort is to develop an operational cloud classification algorithm for ARM data streams. The vision 1 IDL code of the cloud classification algorithm based on the SGP ACRF site observations was delivered to the ARM cloud translator during 2004 ARM science team meeting. Another goal of the project is to study midlevel clouds, especially mixed-phase clouds, by developing new retrieval algorithms using integrated observations at the ACRF sites. Mixed-phase clouds play a particular role in the Arctic climate system. A multiple remote sensor based algorithm, which can provide ice water content and effective size profiles, liquid water path, and layer-mean effective radius of water droplet, was developed to study arctic mixed-phase clouds. The algorithm is applied to long-term ARM observations at the NSA ACRF site. Based on these retrieval results, we are studying seasonal and interannual variations of arctic mixed-phase cloud macro- and micro-physical properties.

  7. Mechanisms of droplet combustion

    NASA Technical Reports Server (NTRS)

    Law, C. K.

    1982-01-01

    The fundamental physico-chemical mechanisms governing droplet vaporization and combustion are discussed. Specific topics include governing equations and simplifications, the classical d(2)-Law solution and its subsequent modification, finite-rate kinetics and the flame structure, droplet dynamics, near- and super-critical combustion, combustion of multicomponent fuel blends/emulsions/suspensions, and droplet interaction. Potential research topics are suggested.

  8. Synthesis of Pt-Ni Octahedra in Continuous-Flow Droplet Reactors for the Scalable Production of Highly Active Catalysts toward Oxygen Reduction.

    PubMed

    Niu, Guangda; Zhou, Ming; Yang, Xuan; Park, Jinho; Lu, Ning; Wang, Jinguo; Kim, Moon J; Wang, Liduo; Xia, Younan

    2016-06-01

    A number of groups have reported the syntheses of nanosized Pt-Ni octahedra with remarkable activities toward the oxygen reduction reaction (ORR), a process key to the operation of proton-exchange membrane fuel cells. However, the throughputs of those batch-based syntheses are typically limited to a scale of 5-25 mg Pt per batch, which is far below the amount needed for commercial evaluation. Here we report the use of droplet reactors for the continuous and scalable production of Pt-Ni octahedra with high activities toward ORR. In a typical synthesis, Pt(acac)2, Ni(acac)2, and W(CO)6 were dissolved in a mixture of oleylamine, oleic acid, and benzyl ether, and then pumped into a polytetrafluoroethylene tube. When the solution entered the reaction zone at a temperature held in the range of 170-230 °C, W(CO)6 quickly decomposed to generate CO gas, naturally separating the reaction solution into discrete, uniform droplets. Each droplet then served as a reactor for the nucleation and growth of Pt-Ni octahedra whose size and composition could be controlled by changing the composition of the solvent and/or adjusting the amount of Ni(acac)2 added into the reaction solution. For a catalyst based on Pt2.4Ni octahedra of 9 nm in edge length, it showed an ORR mass activity of 2.67 A mgPt(-1) at 0.9 V, representing an 11-fold improvement over a state-of-the-art commercial Pt/C catalyst (0.24 A mgPt(-1)). PMID:27135156

  9. Hygroscopic properties and cloud condensation nuclei activation of limonene-derived organosulfates and their mixtures with ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Hansen, A. M. K.; Hong, J.; Raatikainen, T.; Kristensen, K.; Ylisirniö, A.; Virtanen, A.; Petäjä, T.; Glasius, M.; Prisle, N. L.

    2015-06-01

    Even though organosulfates have been observed as constituents of atmospheric aerosols in a wide range of environments spanning from the subtropics to the high Arctic, their hygroscopic properties have not been investigated prior to this study. Here, limonene-derived organosulfates with a molecular weight of 250 Da (L-OS 250) were synthesized and used for simultaneous measurements with a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) and a Cloud Condensation Nuclei Counter (CCNC) to determine the hygroscopicity parameter, κ, for pure L-OS 250 and mixtures of L-OS 250 with ammonium sulfate (AS) over a wide range of humidity conditions. The κ values derived from measurements with H-TDMA decreased with increasing particle dry size for all chemical compositions investigated, indicating size dependency and/or surface effects. For pure L-OS 250, κ was found to increase with increasing relative humidity, indicating dilution/solubility effects to be significant. Discrepancies in κ between the sub- and supersaturated measurements were observed for L-OS 250, whereas κ of AS and mixed L-OS 250/AS were similar. This discrepancy was primarily ascribed to limited dissolution of L-OS 250 at subsaturated conditions. In general, hygroscopic growth factor, critical activation diameter and κ for the mixed L-OS 250/AS particles converged towards the values of pure AS for mixtures with ≥ 20 % w/w AS. Surface tension measurements of bulk aqueous L-OS 250/AS solutions showed that L-OS 250 was indeed surface active, as expected from its molecular structure, decreasing the surface tension of solutions with 24 % from the pure water-value at a L-OS 250 concentration of 0.0025 mol L-1. Based on these surface tension measurements, we present the first concentration-dependent parametrisation of surface tension for aqueous L-OS 250, which was implemented to different process-level models of L-OS 250 hygroscopicity and CCN activation. The values of κ obtained from the

  10. Characteristics of cloud-to-ground lightning activity in hailstorms over Yunnan province

    NASA Astrophysics Data System (ADS)

    Xie, Yiran; Wu, Jian; Liu, Xuetao; Zhang, Tengfei; Xie, Yinjian; Xu, Yinjie; Zhao, Deming

    2015-12-01

    The characteristics of cloud-to-ground (CG) lightning for nine hailstorms in Yunnan province of China are analyzed statistically. It is determined that the hailstorms were found to present dominant negative CG lightning flashes at any given stage. One specific hailstorm occurring on July 16, 2006, is analyzed in detail by using the data from a CG lightning location network and Doppler radar. This severe hailstorm, which exhibited strong vertical development with cloud tops reaching 15.9 km, produced hailstones as large as 15 mm and had a lifespan of 3 h and 12 min. The total CG lightning within the hailstorm showed high levels of activity with flash rates of up to 79 fl/5 min. The analysis of the storm cell's lifecycle shows similar trends between the CG lightning flash rates and radar-derived parameters. Cloud-to-ground flashes tended to initiate within the cloud region with reflectivity of more than 30 dBZ at the -10 °C isotherm height. A distinct increase in CG flash rate is shown during the rapid development stages of hailstorms. The CG lightning jump pattern appears to be an effective tool for short-term forecasting of possible occurrences of severe weather.

  11. Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol.

    PubMed

    Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping

    2016-01-01

    Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus. PMID:27138171

  12. Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol

    NASA Astrophysics Data System (ADS)

    Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping

    2016-05-01

    Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus.

  13. Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol

    PubMed Central

    Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping

    2016-01-01

    Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus. PMID:27138171

  14. Ice Formation in Arctic Mixed-Phase Clouds: Insights from a 3-D Cloud-Resolving Model with Size-Resolved Aerosol and Cloud Microphysics

    SciTech Connect

    Fan, Jiwen; Ovtchinnikov, Mikhail; Comstock, Jennifer M.; McFarlane, Sally A.; Khain, Alexander

    2009-02-27

    The single-layer mixed-phase clouds observed during the Atmospheric Radiation Measurement (ARM) program’s Mixed-Phase Arctic Cloud Experiment (MPACE) are simulated with a 3-dimensional cloud-resolving model the System for Atmospheric Modeling (SAM) coupled with an explicit bin microphysics scheme and a radar-lidar simulator. Two possible ice enhancement mechanisms – activation of droplet evaporation residues by condensation-followed-by-freezing and droplet freezing by contact freezing inside-out, are scrutinized by extensive comparisons with aircraft and radar and lidar measurements. The locations of ice initiation associated with each mechanism and the role of ice nuclei (IN) in the evolution of mixed-phase clouds are mainly addressed. Simulations with either mechanism agree well with the in-situ and remote sensing measurements on ice microphysical properties but liquid water content is slightly underpredicted. These two mechanisms give very similar cloud microphysical, macrophysical, dynamical, and radiative properties, although the ice nucleation properties (rate, frequency and location) are completely different. Ice nucleation from activation of evaporation nuclei is most efficient near cloud top areas concentrated on the edges of updrafts, while ice initiation from the drop freezing process has no significant location preference (occurs anywhere that droplet evaporation is significant). Both enhanced nucleation mechanisms contribute dramatically to ice formation with ice particle concentration of 10-15 times higher relative to the simulation without either of them. The contribution of ice nuclei (IN) recycling from ice particle evaporation to IN and ice particle concentration is found to be very significant in this case. Cloud can be very sensitive to IN initially and form a nonquilibrium transition condition, but become much less sensitive as cloud evolves to a steady mixed-phase condition. The parameterization of Meyers et al. [1992] with the observed

  15. Cloud-based simulations on Google Exacycle reveal ligand-modulation of GPCR activation pathways

    PubMed Central

    Bowman, Gregory R.; Konerding, David E.; Belov, Dan; Altman, Russ B.; Pande, Vijay S.

    2014-01-01

    Simulations can provide tremendous insight into atomistic details of biological mechanisms, but micro- to milliseconds timescales are historically only accessible on dedicated supercomputers. We demonstrate that cloud computing is a viable alternative, bringing long-timescale processes within reach of a broader community. We used Google's Exacycle cloud computing platform to simulate 2 milliseconds of dynamics of the β2 adrenergic receptor — a major drug target G protein-coupled receptor (GPCR). Markov state models aggregate independent simulations into a single statistical model that is validated by previous computational and experimental results. Moreover, our models provide an atomistic description of the activation of a GPCR, revealing multiple activation pathways. Agonists and inverse agonists interact differentially with these pathways, with profound implications for drug design PMID:24345941

  16. Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways

    NASA Astrophysics Data System (ADS)

    Kohlhoff, Kai J.; Shukla, Diwakar; Lawrenz, Morgan; Bowman, Gregory R.; Konerding, David E.; Belov, Dan; Altman, Russ B.; Pande, Vijay S.

    2014-01-01

    Simulations can provide tremendous insight into the atomistic details of biological mechanisms, but micro- to millisecond timescales are historically only accessible on dedicated supercomputers. We demonstrate that cloud computing is a viable alternative that brings long-timescale processes within reach of a broader community. We used Google's Exacycle cloud-computing platform to simulate two milliseconds of dynamics of a major drug target, the G-protein-coupled receptor β2AR. Markov state models aggregate independent simulations into a single statistical model that is validated by previous computational and experimental results. Moreover, our models provide an atomistic description of the activation of a G-protein-coupled receptor and reveal multiple activation pathways. Agonists and inverse agonists interact differentially with these pathways, with profound implications for drug design.

  17. Cloud Properties and Radiative Heating Rates for TWP

    SciTech Connect

    Comstock, Jennifer

    2013-11-07

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  18. Effects of Aerosols on Cloud Albedo: Evaluation of Twomey's Parameterization of Cloud Susceptibility Using Measurements of Ship Tracks.

    NASA Astrophysics Data System (ADS)

    Ackerman, Andrew S.; Toon, Owen B.; Taylor, Jonathan P.; Johnson, Doug W.; Hobbs, Peter V.; Ferek, Ronald J.

    2000-08-01

    Airborne measurements from the Meteorological Research Flight's Hercules C-130 and the University of Washington's Convair C-131A during the Monterey Area Ship Track field project are used to evaluate Twomey's analytic expression for cloud susceptibility, which describes the sensitivity of cloud albedo to changes in droplet concentrations. This expression incorporates assumptions about cloud physics, such as the independence of the cloud liquid water content and the width of the droplet size distribution on droplet concentrations. Averaged over all 69 ship track penetrations, cloud liquid water content decreased slightly and the droplet size distributions broadened from the ambient values. For the 17 cases for which albedos were measured during overflights, Twomey's parameterization represents the trend of albedo changes with droplet concentrations remarkably well, passing through the midpoints of the considerable spread in the data. The fortuitous agreement results from compensating changes in cloud properties. Together with the albedo changes, the changes in cloud liquid water content and droplet size distributions imply that cloud thickness usually increased in the ship tracks. Such an increase was observed on the occasions that changes in cloud thickness were recorded (in the Sanko Peace ship track during very clean ambient conditions). Unfortunately systematic measurements of cloud thickness were not made for most of the ship tracks observed. The greatest outlier in the data corresponds to measurements made under horizontally inhomogeneous ambient conditions; possible explanations for its divergence include an increase in cloud thickness or an error in matching above-cloud albedo measurements with in-cloud microphysics measurements.

  19. Enhanced cold cloud clearing by pulsed CO(2) lasers.

    PubMed

    Waggoner, A P; Radke, L F

    1989-08-01

    We report that clearing a channel in clouds consisting of ice crystals requires much lower laser energy input to the channel than that required to clear a channel in droplet clouds. This result depends on the difference in water vapor saturation concentrations over liquid water and ice. A channel cleared in ice particle clouds will be resistant to recondensation that rapidly obscures the channel in droplet clouds. We model the conditions in which recondensation will obscure the channel in liquid and ice water droplet clouds. PMID:20555649

  20. Optical and electrical characteristics of in-cloud discharge activity and downward leaders in positive cloud-to-ground lightning flashes

    NASA Astrophysics Data System (ADS)

    Kong, Xiangzhen; Zhao, Yang; Zhang, Tong; Wang, Huaibin

    2015-06-01

    The characteristics of five downward positive cloud-to-ground (CG) flashes were analyzed based on images from a high-speed video camera and electric field (E-field) changes from slow antenna and fast antenna systems. The flashes persisted for 740 ms to 1250 ms. The luminous durations of the leaders ranged from 4 ms to 24 ms. The average 2-D development speeds of the positive leaders ranged from 0.3 × 105 m/s to 2.0 × 105 m/s. The propagation speeds of the positive leaders increased as they approached the ground. Approximately 53.9% of the 89 observed positive CG flashes exhibited isolated monopolar pulses during the leader propagation and immediately prior to the return stroke. The average time interval between adjacent leader pulses was 15 μs according to the E-field changes. Most leaders of positive CG flashes (approximately 67.4%) began in the presence of prolonged and intense in-cloud discharge (IC) activity that ranged from 100 ms to 973 ms. A cloud discharge may be conducive to the formation of positive CG flashes. Generally, a higher occurrence of positive CG flashes corresponded to a higher occurrence of cloud flash, which suggests that positive CG flash can be initiated by a cloud discharge. Four positive CG flashes exhibited one return stroke, and only one flash had two strokes.

  1. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE PAGESBeta

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-02-16

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer cloud using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulusmore » under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the northeast Pacific. Here, retrieved cloud water path agrees well with independent 3-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.« less

  2. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE PAGESBeta

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-07-02

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievalsmore » using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m-2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m-2.« less

  3. Hygroscopic properties and cloud condensation nuclei activation of limonene-derived organosulfates and their mixtures with ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Hansen, A. M. K.; Hong, J.; Raatikainen, T.; Kristensen, K.; Ylisirniö, A.; Virtanen, A.; Petäjä, T.; Glasius, M.; Prisle, N. L.

    2015-12-01

    Organosulfates have been observed as constituents of atmospheric aerosols in a wide range of environments; however their hygroscopic properties remain uncharacterised. Here, limonene-derived organosulfates with a molecular weight of 250 Da (L-OS 250) were synthesised and used for simultaneous measurements with a hygroscopicity tandem differential mobility analyser (H-TDMA) and a cloud condensation nuclei counter (CCNC) to determine the hygroscopicity parameter, κ, for pure L-OS 250 and mixtures of L-OS 250 with ammonium sulfate (AS) over a wide range of humidity conditions. The κ values derived from measurements with H-TDMA decreased with increasing particle dry diameter for all chemical compositions investigated, indicating that κH-TDMA depends on particle diameter and/or surface effects; however, it is not clear if this trend is statistically significant. For pure L-OS 250, κ was found to increase with increasing relative humidity, indicating dilution/solubility effects to be significant. Discrepancies in κ between the sub- and supersaturated measurements were observed for L-OS 250, whereas κ of AS and mixed L-OS 250/AS were similar. This discrepancy was primarily ascribed to limited dissolution of L-OS 250 at subsaturated conditions. In general, hygroscopic growth factor, critical particle diameter and κ for the mixed L-OS 250/AS particles converged towards the values of pure AS for mixtures with ≥ 20 % w / w AS. Surface tension measurements of bulk aqueous L-OS 250/AS solutions showed that L-OS 250 was indeed surface active, as expected from its molecular structure, decreasing the surface tension of solutions with 24 % from the pure water value at a L-OS 250 concentration of 0.0025 mol L-1. Based on these surface tension measurements, we present the first concentration-dependent parametrisation of surface tension for aqueous L-OS 250, which was implemented to different process-level models of L-OS 250 hygroscopicity and CCN activation. The values of κ

  4. Small GTPase Rab40c associates with lipid droplets and modulates the biogenesis of lipid droplets.

    PubMed

    Tan, Ran; Wang, Weijie; Wang, Shicong; Wang, Zhen; Sun, Lixiang; He, Wei; Fan, Rong; Zhou, Yunhe; Xu, Xiaohui; Hong, Wanjin; Wang, Tuanlao

    2013-01-01

    The subcellular location and cell biological function of small GTPase Rab40c in mammalian cells have not been investigated in detail. In this study, we demonstrated that the exogenously expressed GFP-Rab40c associates with lipid droplets marked by neutral lipid specific dye Oil red or Nile red, but not with the Golgi or endosomal markers. Further examination demonstrated that Rab40c is also associated with ERGIC-53 containing structures, especially under the serum starvation condition. Rab40c is increasingly recruited to the surface of lipid droplets during lipid droplets formation and maturation in HepG2 cells. Rab40c knockdown moderately decreases the size of lipid droplets, suggesting that Rab40c is involved in the biogenesis of lipid droplets. Stimulation for adipocyte differentiation increases the expression of Rab40c in 3T3-L1 cells. Rab40c interacts with TIP47, and is appositionally associated with TIP47-labeled lipid droplets. In addition, over-expression of Rab40c causes the clustering of lipid droplets independent of its GTPase activity, but completely dependent of the intact SOCS box domain of Rab40c. In addition, Rab40c displayed self-interaction as well as interaction with TIP47 and the SOCS box is essential for its ability to induce clustering of lipid droplets. Our results suggest that Rab40c is a novel Rab protein associated with lipid droplets, and is likely involved in modulating the biogenesis of lipid droplets. PMID:23638186

  5. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Zhang, X.; Gong, S.

    2015-12-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under CMA chemical weather modeling system GRAPES/CUACE. Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) is fed online interactively into a two-moment cloud scheme (WDM6) and a convective parameterization to drive the cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred. The results show that interactive aerosols with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content and cloud droplet number concentrations while decrease the mean diameter of cloud droplets with varying magnitudes of the changes in each case and region. These interactive micro-physical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24% to 48% enhancements of TS scoring for 6-h precipitation in almost all regions. The interactive aerosols with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3°C.

  6. Natural Aerosols Explain Seasonal and Spatial Patterns of Southern Ocean Cloud Albedo

    SciTech Connect

    McCoy, Daniel; Burrows, Susannah M.; Wood, R.; Grosvenor, Daniel P.; Elliott, Scott; Ma, Po-Lun; Rasch, Philip J.; Hartmann, Dennis L.

    2015-07-17

    Small particles called aerosols act as nucleation sites for cloud drop formation, affecting clouds and cloud properties – ultimately influencing the cloud dynamics, lifetime, water path and areal extent that determine the reflectivity (albedo) of clouds. The concentration Nd of droplets in clouds that influences planetary albedo is sensitive to the availability of aerosol particles on which the droplets form. Natural aerosol concentrations not only affect cloud properties themselves, but also modulate the sensitivity of clouds to changes in anthropogenic aerosols. Here, it is shown that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more than half of the spatiotemporal variability in satellite-observed Nd. Enhanced Nd over regions of high biological activity is found to be driven primarily by high concentrations of sulfate aerosol at lower Southern Ocean latitudes (35-45°S) and by organic matter in sea spray aerosol at higher latitudes (45-55°S). Biogenic sources are estimated to increase the summertime mean reflected solar radiation in excess of 10 W m-2 over parts of the Southern Ocean, which is comparable to the annual mean increases expected from anthropogenic aerosols over heavily polluted regions of the Northern Hemisphere.

  7. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Zhang, X.; Gong, S.; Wang, Y.; Xue, M.

    2015-06-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under CMA chemical weather modeling system GRAPES/CUACE. Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) is fed online interactively into a two-moment cloud scheme (WDM6) and a convective parameterization to drive the cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred. The results show that interactive aerosols with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content and cloud droplet number concentrations while decrease the mean diameter of cloud droplets with varying magnitudes of the changes in each case and region. These interactive micro-physical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48% enhancements of TS scoring for 6 h precipitation in almost all regions. The interactive aerosols with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  8. Expression of the bitter receptor T2R38 in pancreatic cancer: localization in lipid droplets and activation by a bacteria-derived quorum-sensing molecule

    PubMed Central

    Gaida, Matthias M.; Mayer, Christine; Dapunt, Ulrike; Stegmaier, Sabine; Schirmacher, Peter; Wabnitz, Guido H.; Hänsch, G. Maria

    2016-01-01

    T2R38 belongs to the family of bitter receptors and was initially detected in cells of the oral cavity. We now describe expression of T2R38 in tumor cells in patients with pancreatic cancer and in tumor-derived cell lines. T2R38 is localized predominantly intracellular in association with lipid droplets, particularly with the lipid droplet membrane. The receptor can be activated by the bona fide ligand for T2R38, phenylthiourea (PTU), and by N-acetyl-dodecanoyl homoserine (AHL-12), a quorum sensing molecule of Pseudomonas aeruginosa, the latter is the only known natural ligand for T2R38. In response to PTU or AHL-12, key transcription factors are activated including phosphorylation of the MAP kinases p38 and ERK1/2, and upregulation of NFATc1. Moreover, we found increased expression of the multi-drug resistance protein 1 (also known as ABCB1), a transmembrane transporter molecule, participating in shuttling of a plethora of drugs, such as chemotherapeutics or antibiotics. In conclusion, our data indicate a new, additional function of the taste receptor T2R38 beyond sensing ‘bitter’. Moreover, because T2R38 can be stimulated by a bacteria-derived signaling molecule the receptor could link microbiota and cancer. PMID:26862855

  9. Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber

    NASA Astrophysics Data System (ADS)

    Amato, P.; Joly, M.; Schaupp, C.; Attard, E.; Möhler, O.; Morris, C. E.; Brunet, Y.; Delort, A.-M.

    2015-06-01

    The residence time of bacterial cells in the atmosphere is predictable by numerical models. However, estimations of their aerial dispersion as living entities are limited by a lack of information concerning survival rates and behavior in relation to atmospheric water. Here we investigate the viability and ice nucleation (IN) activity of typical atmospheric ice nucleation active bacteria (Pseudomonas syringae and P. fluorescens) when airborne in a cloud simulation chamber (AIDA, Karlsruhe, Germany). Cell suspensions were sprayed into the chamber and aerosol samples were collected by impingement at designated times over a total duration of up to 18 h, and at some occasions after dissipation of a cloud formed by depressurization. Aerosol concentration was monitored simultaneously by online instruments. The cultivability of airborne cells decreased exponentially over time with a half-life time of 250 ± 30 min (about 3.5 to 4.5 h). In contrast, IN activity remained unchanged for several hours after aerosolization, demonstrating that IN activity was maintained after cell death. Interestingly, the relative abundance of IN active cells still airborne in the chamber was strongly decreased after cloud formation and dissipation. This illustrates the preferential precipitation of IN active cells by wet processes. Our results indicate that from 106 cells aerosolized from a surface, one would survive the average duration of its atmospheric journey estimated at 3.4 days. Statistically, this corresponds to the emission of 1 cell that achieves dissemination every ~ 33 min m-2 of cultivated crops fields, a strong source of airborne bacteria. Based on the observed survival rates, depending on wind speed, the trajectory endpoint could be situated several hundreds to thousands of kilometers from the emission source. These results should improve the representation of the aerial dissemination of bacteria in numeric models.

  10. Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber

    NASA Astrophysics Data System (ADS)

    Amato, P.; Joly, M.; Schaupp, C.; Attard, E.; Möhler, O.; Morris, C. E.; Brunet, Y..; Delort, A.-M.

    2015-02-01

    The residence time of bacterial cells in the atmosphere is predictable by numerical models. However, estimations of their aerial dispersion as living entities are limited by lacks of information concerning survival rates and behavior in relation to atmospheric water. Here we investigate the viability and ice nucleation (IN) activity of typical atmospheric ice nucleation active bacteria (Pseudomonas syringae and P. fluorescens) when airborne in a cloud simulation chamber (AIDA, Karlsruhe, Germany). Cell suspensions were sprayed into the chamber and aerosol samples were collected by impingement at designated times over a total duration of up to 18 h, and at some occasions after dissipation of a cloud formed by depressurization. Aerosol concentration was monitored simultaneously by online instruments. The cultivability of airborne cells decreased exponentially over time with a half-life time of 250 ± 30 min (about 3.5 to 4.5 h). In contrast, IN activity remained unchanged for several hours after aerosolization, demonstrating that IN activity was maintained after cell death. Interestingly, the relative abundance of IN active cells still airborne in the chamber was strongly decreased after cloud formation and dissipation. This illustrates the preferential precipitation of IN active cells by wet processes. Our results indicate that from 106 = cells aerosolized from a surface, one would survive the average duration of its atmospheric journey estimated at 3.4 days. Statistically, this corresponds to the emission of 1 cell that achieves dissemination every ~33 min per m2 of cultivated crops fields, a strong source of airborne bacteria. Based on the observed survival rates, depending on wind speed, the trajectory endpoint could be situated several hundreds to thousands of kilometers from the emission source. These results should improve the representation of the aerial dissemination of bacteria in numeric models.

  11. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid-liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  12. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGESBeta

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  13. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGESBeta

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Kohler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. Furthermore, the model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  14. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2015-09-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. The model combines Köhler theory with semi-empirical group contribution methods to estimate molar volumes, activity coefficients and liquid-liquid phase boundaries to predict the effective hygroscopicity parameter, kappa. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of two. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging testbeds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger scale models.

  15. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    SciTech Connect

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  16. Supercritical droplet gasification experiments with forced convection

    NASA Technical Reports Server (NTRS)

    Litchford, Ron; Parigger, Chris; Jeng, San-Mou

    1992-01-01

    Preliminary results of a comprehensive experimental program are presented which offer the first direct observations of suspended n-heptane droplet gasifications in pure nitrogen with forced convection without the interference to optical probing associated with a flame. Measurements show attainment of a wet-bulb temperature until reduced pressures exceed about 1.0 under supercritical gas temperatures. Thereafter, temperature measurements indicate fully transient heat-up through the critical temperature. The surface is found to regress in a continuous manner with the measured temperature approaching the critical value at the end of the droplet lifetime under supercritical conditions with very mild level of convection. At increased level of convection for the same ambient conditions, similar sized droplets will undergo significant deformation during the gasification process until partially convected away as a dense vapor cloud as the critical temperature is approached.

  17. Liquid crystal Janus emulsion droplets: preparation, tumbling, and swimming.

    PubMed

    Jeong, Joonwoo; Gross, Adam; Wei, Wei-Shao; Tu, Fuquan; Lee, Daeyeon; Collings, Peter J; Yodh, A G

    2015-09-14

    This study introduces liquid crystal (LC) Janus droplets. We describe a process for the preparation of these droplets, which consist of nematic LC and polymer compartments. The process employs solvent-induced phase separation in emulsion droplets generated by microfluidics. The droplet morphology was systematically investigated and demonstrated to be sensitive to the surfactant concentration in the background phase, the compartment volume ratio, and the possible coalescence of multiple Janus droplets. Interestingly, the combination of a polymer and an anisotropic LC introduces new functionalities into Janus droplets, and these properties lead to unusual dynamical behaviors. The different densities and solubilities of the two compartments produce gravity-induced alignment, tumbling, and directional self-propelled motion of Janus droplets. LC Janus droplets with remarkable optical properties and dynamical behaviors thus offer new avenues for applications of Janus colloids and active soft matter. PMID:26171829

  18. Comparing the cloud vertical structure derived from several methods based on measured atmospheric profiles and active surface measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.

    2013-06-01

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds in a changing climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 125 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The overall agreement for the methods ranges between 44-88%; four methods produce total agreements around 85%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, which could be useful in atmospheric modeling. The total agreement, even when using low resolution profiles, can be improved up to 91% if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  19. Aerosol Processing in Mixed-Phase Clouds in ECHAM5-HAM: Comparison of Single-Column Model Simulations to Observations

    NASA Astrophysics Data System (ADS)

    Hoose, C.; Lohmann, U.; Stier, P.; Verheggen, B.; Weingartner, E.; Herich, H.

    2007-12-01

    The global aerosol-climate model ECHAM5-HAM (Stier et al., 2005) has been extended by an explicit treatment of cloud-borne particles. Two additional modes for in-droplet and in-crystal particles are introduced, which are coupled to the number of cloud droplet and ice crystal concentrations simulated by the ECHAM5 double-moment cloud microphysics scheme (Lohmann et al., 2007). Transfer, production and removal of cloud-borne aerosol number and mass by cloud droplet activation, collision scavenging, aqueous-phase sulfate production, freezing, melting, evaporation, sublimation and precipitation formation are taken into account. The model performance is demonstrated and validated with observations of the evolution of total and interstitial aerosol concentrations and size distributions during three different mixed-phase cloud events at the alpine high-altitude research station Jungfraujoch (Switzerland) (Verheggen et al, 2007). Although the single-column simulations can not be compared one-to-one with the observations, the governing processes in the evolution of the cloud and aerosol parameters are captured qualitatively well. High scavenged fractions are found during the presence of liquid water, while the release of particles during the Bergeron-Findeisen process results in low scavenged fractions after cloud glaciation. The observed coexistence of liquid and ice, which might be related to cloud heterogeneity at subgrid scales, can only be simulated in the model when forcing non-equilibrium conditions. References: U. Lohmann et al., Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM, Atmos. Chem. Phys. 7, 3425-3446 (2007) P. Stier et al., The aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys. 5, 1125-1156 (2005) B. Verheggen et al., Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds, Accepted for publication in J. Geophys. Res. (2007)

  20. Preparatory studies of zero-g cloud drop coalescence experiment

    NASA Technical Reports Server (NTRS)

    Telford, J. W.; Keck, T. S.

    1979-01-01

    Experiments to be performed in a weightless environment in order to study collision and coalescence processes of cloud droplets are described. Rain formation in warm clouds, formation of larger cloud drops, ice and water collision processes, and precipitation in supercooled clouds are among the topics covered.

  1. Final Scientific/Technical Report Grant title: Use of ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes and Aerosol-Cloud Interaction This is a collaborative project with the NASA GSFC project of Dr. A. Marshak and W. Wiscombe (PIs). This report covers BU activities from February 2011 to June 2011 and BU "no-cost extension" activities from June 2011 to June 2012. This report summarizes results that complement a final technical report submitted by the PIs in 2011.

    SciTech Connect

    Knyazikhin, Y

    2012-09-10

    Main results are summarized for work in these areas: spectrally-invariant approximation within atmospheric radiative transfer; spectral invariance of single scattering albedo for water droplets and ice crystals at weakly absorbing wavelengths; seasonal changes in leaf area of Amazon forests from leaf flushing and abscission; and Cloud droplet size and liquid water path retrievals from zenith radiance measurements.

  2. Raman lidar observations of cloud liquid water.

    PubMed

    Rizi, Vincenzo; Iarlori, Marco; Rocci, Giuseppe; Visconti, Guido

    2004-12-10

    We report the design and the performances of a Raman lidar for long-term monitoring of tropospheric aerosol backscattering and extinction coefficients, water vapor mixing ratio, and cloud liquid water. We focus on the system's capabilities of detecting Raman backscattering from cloud liquid water. After describing the system components, along with the current limitations and options for improvement, we report examples of observations in the case of low-level cumulus clouds. The measurements of the cloud liquid water content, as well as the estimations of the cloud droplet effective radii and number densities, obtained by combining the extinction coefficient and cloud water content within the clouds, are critically discussed. PMID:15617280

  3. How coalescing droplets jump.

    PubMed

    Enright, Ryan; Miljkovic, Nenad; Sprittles, James; Nolan, Kevin; Mitchell, Robert; Wang, Evelyn N

    2014-10-28

    Surface engineering at the nanoscale is a rapidly developing field that promises to impact a range of applications including energy production, water desalination, self-cleaning and anti-icing surfaces, thermal management of electronics, microfluidic platforms, and environmental pollution control. As the area advances, more detailed insights of dynamic wetting interactions on these surfaces are needed. In particular, the coalescence of two or more droplets on ultra-low adhesion surfaces leads to droplet jumping. Here we show, through detailed measurements of jumping droplets during water condensation coupled with numerical simulations of binary droplet coalescence, that this process is fundamentally inefficient with only a small fraction of the available excess surface energy (≲ 6%) convertible into translational kinetic energy. These findings clarify the role of internal fluid dynamics during the jumping droplet coalescence process and underpin the development of systems that can harness jumping droplets for a wide range of applications. PMID:25171210

  4. Integrating Cloud Processes in the Community Atmosphere Model, Version 5.

    SciTech Connect

    Park, S.; Bretherton, Christopher S.; Rasch, Philip J.

    2014-09-15

    This paper provides a description on the parameterizations of global cloud system in CAM5. Compared to the previous versions, CAM5 cloud parameterization has the following unique characteristics: (1) a transparent cloud macrophysical structure that has horizontally non-overlapped deep cumulus, shallow cumulus and stratus in each grid layer, each of which has own cloud fraction, mass and number concentrations of cloud liquid droplets and ice crystals, (2) stratus-radiation-turbulence interaction that allows CAM5 to simulate marine stratocumulus solely from grid-mean RH without relying on the stability-based empirical empty stratus, (3) prognostic treatment of the number concentrations of stratus liquid droplets and ice crystals with activated aerosols and detrained in-cumulus condensates as the main sources and evaporation-sedimentation-precipitation of stratus condensate as the main sinks, and (4) radiatively active cumulus. By imposing consistency between diagnosed stratus fraction and prognosed stratus condensate, CAM5 is free from empty or highly-dense stratus at the end of stratus macrophysics. CAM5 also prognoses mass and number concentrations of various aerosol species. Thanks to the aerosol activation and the parameterizations of the radiation and stratiform precipitation production as a function of the droplet size, CAM5 simulates various aerosol indirect effects associated with stratus as well as direct effects, i.e., aerosol controls both the radiative and hydrological budgets. Detailed analysis of various simulations revealed that CAM5 is much better than CAM3/4 in the global performance as well as the physical formulation. However, several problems were also identifed, which can be attributed to inappropriate regional tuning, inconsistency between various physics parameterizations, and incomplete model physics. Continuous efforts are going on to further improve CAM5.

  5. Droplet transport system and methods

    NASA Technical Reports Server (NTRS)

    Neitzel, G. Paul (Inventor)

    2010-01-01

    Embodiments of droplet transport systems and methods are disclosed for levitating and transporting single or encapsulated droplets using thermocapillary convection. One method embodiment, among others comprises providing a droplet of a first liquid; and applying thermocapillary convection to the droplet to levitate and move the droplet.

  6. Sensitivity of aerosol concentrations and cloud properties to nucleation and secondary organic distribution in ECHAM5-HAM global circulation model

    NASA Astrophysics Data System (ADS)

    Makkonen, R.; Asmi, A.; Korhonen, H.; Kokkola, H.; Järvenoja, S.; Räisänen, P.; Lehtinen, K. E. J.; Laaksonen, A.; Kerminen, V.-M.; Järvinen, H.; Lohmann, U.; Feichter, J.; Kulmala, M.

    2008-06-01

    The global aerosol-climate model ECHAM5-HAM was modified to improve the representation of new particle formation in the boundary layer. Activation-type nucleation mechanism was introduced to produce observed nucleation rates in lower troposphere. A simple and computationally efficient model for biogenic secondary organic aerosol (BSOA) formation was implemented. We studied the sensitivity of aerosol and cloud droplet number concentrations (CDNC) to these additions. Activation-type nucleation significantly increases aerosol number concentrations in the boundary layer. Increased particle number concentrations have a significant effect also on cloud droplet number concentrations and therefore on cloud properties. We performed calculations with activation nucleation coefficient values of 2×10-7 s-1, 2×10-6 s-1 and 2×10-5 s-1 to evaluate the sensitivity to this parameter. For BSOA we have used yields of 0.025, 0.07 and 0.15 to estimate the amount of monoterpene oxidation products available for condensation. The dynamic SOA scheme induces large regional changes to size distribution of organic carbon, and therefore affects particle optical properties and cloud droplet number concentrations locally. Comparison with satellite observation shows that activation-type nucleation significantly decreases the differences between observed and modeled values of cloud top CDNC.

  7. Water droplets also swim!

    NASA Astrophysics Data System (ADS)

    van der Linden, Marjolein; Izri, Ziane; Michelin, Sébastien; Dauchot, Olivier

    2015-03-01

    Recently there has been a surge of interest in producing artificial swimmers. One possible path is to produce self-propelling droplets in a liquid phase. The self-propulsion often relies on complex mechanisms at the droplet interface, involving chemical reactions and the adsorption-desorption kinetics of the surfactant. Here, we report the spontaneous swimming of droplets in a very simple system: water droplets immersed in an oil-surfactant medium. The swimmers consist of pure water, with no additional chemical species inside: water droplets also swim! The swimming is very robust: the droplets are able to transport cargo such as large colloids, salt crystals, and even cells. In this talk we discuss the origin of the spontaneous motion. Water from the droplet is solubilized by the reverse micellar solution, creating a concentration gradient of swollen reverse micelles around each droplet. By generalizing a recently proposed instability mechanism, we explain how spontaneous motion emerges in this system at sufficiently large Péclet number. Our water droplets in an oil-surfactant medium constitute the first experimental realization of spontaneous motion of isotropic particles driven by this instability mechanism.

  8. Prebiotic chemistry in clouds

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Marshall, John; Shen, Thomas

    1991-01-01

    The chemical evolution hypothesis of Woese (1979), according to which prebiotic reactions occurred rapidly in droplets in giant atmospheric reflux columns was criticized by Scherer (1985). This paper proposes a mechanism for prebiotic chemistry in clouds that answers Scherer's concerns and supports Woese's hypothesis. According to this mechanism, rapid prebiotic chemical evolution was facilitated on the primordial earth by cycles of condensation and evaporation of cloud drops containing clay condensation nuclei and nonvolatile monomers. For example, amino acids supplied by, or synthesized during entry of meteorites, comets, and interplanetary dust, would have been scavenged by cloud drops containing clay condensation nuclei and would be polymerized within cloud systems during cycles of condensation, freezing, melting, and evaporation of cloud drops.

  9. Observational and simulated cloud microphysical features of rain formation in the mixed phase clouds observed during CAIPEEX

    NASA Astrophysics Data System (ADS)

    Patade, Sachin; Shete, Sonali; Malap, Neelam; Kulkarni, Gayatri; Prabha, T. V.

    2016-03-01

    Cloud microphysical observations of rain formation in mixed phase monsoon clouds (from 10 to - 9 °C) using instrumented aircraft during Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) are presented. The drop size and particle size distributions are broader in the mixed phase region, indicating efficient growth of liquid as well as ice phase. Aircraft observations noticed higher ice particle concentrations in Hallet-Mossop zone (- 3 to - 8 °C) with existence of smaller and larger cloud droplets, rimed needles columns, and graupel particles. Observations strongly suggested the active presence of Hallet-Mossop (1974) process in this cloud. The higher correlations found between slope and intercept parameters of exponential size distributions can be attributed to the efficient secondary ice production as well as to the aggregation growth of ice particles. Large Eddy Simulation (LES) of these clouds are compared with observed cloud microphysical properties, also illustrated the important role of Hallet-Mossop (HM) process and its link with warm rain and graupel formation. The raindrop freezing plays a crucial role in graupel formation in early stage of ice development. The observed mean values of microphysical parameters including liquid water content, ice water content, ice number concentrations, and reflectivity showed good agreement with model simulations. Primary ice nuclei have only a minor role in the total ice mass in these clouds.

  10. 3D Spray Droplet Distributions in Sneezes

    NASA Astrophysics Data System (ADS)

    Techet, Alexandra; Scharfman, Barry; Bourouiba, Lydia

    2015-11-01

    3D spray droplet clouds generated during human sneezing are investigated using the Synthetic Aperture Feature Extraction (SAFE) method, which relies on light field imaging (LFI) and synthetic aperture (SA) refocusing computational photographic techniques. An array of nine high-speed cameras are used to image sneeze droplets and tracked the droplets in 3D space and time (3D + T). An additional high-speed camera is utilized to track the motion of the head during sneezing. In the SAFE method, the raw images recorded by each camera in the array are preprocessed and binarized, simplifying post processing after image refocusing and enabling the extraction of feature sizes and positions in 3D + T. These binary images are refocused using either additive or multiplicative methods, combined with thresholding. Sneeze droplet centroids, radii, distributions and trajectories are determined and compared with existing data. The reconstructed 3D droplet centroids and radii enable a more complete understanding of the physical extent and fluid dynamics of sneeze ejecta. These measurements are important for understanding the infectious disease transmission potential of sneezes in various indoor environments.

  11. Tactic, reactive, and functional droplets outside of equilibrium.

    PubMed

    Lach, Sławomir; Yoon, Seok Min; Grzybowski, Bartosz A

    2016-08-22

    Under non-equilibrium conditions, liquid droplets coupled to their environment by sustained flows of matter and/or energy can become "active" systems capable of various life-like functions. When "fueled" by even simple chemical reactions, such droplets can become tactic and can perform "intelligent" tasks such as maze solving. With more complex chemistries, droplets can support basic forms of metabolism, grow, self-replicate, and exhibit evolutionary changes akin to biological cells. There are also first exciting examples of active droplets connected into larger, tissue-like systems supporting droplet-to-droplet communication, and giving rise to collective material properties. As practical applications of droplets also begin to appear (e.g., in single-cell diagnostics, new methods of electricity generation, optofluidics, or sensors), it appears timely to review and systematize progress in this highly interdisciplinary area of chemical research, and also think about the avenues (and the roadblocks) for future work. PMID:27293207

  12. Online educative activities for solar ultraviolet radiation based on measurements of cloud amount and solar exposures.

    PubMed

    Parisi, A V; Downs, N; Turner, J; Amar, A

    2016-09-01

    A set of online activities for children and the community that are based on an integrated real-time solar UV and cloud measurement system are described. These activities use the functionality of the internet to provide an educative tool for school children and the public on the influence of cloud and the angle of the sun above the horizon on the global erythemal UV or sunburning UV, the diffuse erythemal UV, the global UVA (320-400nm) and the vitamin D effective UV. Additionally, the units of UV exposure and UV irradiance are investigated, along with the meaning and calculation of the UV index (UVI). This research will help ensure that children and the general public are better informed about sun safety by improving their personal understanding of the daily and the atmospheric factors that influence solar UV radiation and the solar UV exposures of the various wavebands in the natural environment. The activities may correct common misconceptions of children and the public about UV irradiances and exposure, utilising the widespread reach of the internet to increase the public's awareness of the factors influencing UV irradiances and exposures in order to provide clear information for minimizing UV exposure, while maintaining healthy, outdoor lifestyles. PMID:27450297

  13. A path towards uncertainty assignment in an operational cloud-phase algorithm from ARM vertically pointing active sensors

    DOE PAGESBeta

    Riihimaki, Laura D.; Comstock, Jennifer M.; Anderson, Kevin K.; Holmes, Aimee; Luke, Edward

    2016-06-10

    Knowledge of cloud phase (liquid, ice, mixed, etc.) is necessary to describe the radiative impact of clouds and their lifetimes, but is a property that is difficult to simulate correctly in climate models. One step towards improving those simulations is to make observations of cloud phase with sufficient accuracy to help constrain model representations of cloud processes. In this study, we outline a methodology using a basic Bayesian classifier to estimate the probabilities of cloud-phase class from Atmospheric Radiation Measurement (ARM) vertically pointing active remote sensors. The advantage of this method over previous ones is that it provides uncertainty informationmore » on the phase classification. We also test the value of including higher moments of the cloud radar Doppler spectrum than are traditionally used operationally. Using training data of known phase from the Mixed-Phase Arctic Cloud Experiment (M-PACE) field campaign, we demonstrate a proof of concept for how the method can be used to train an algorithm that identifies ice, liquid, mixed phase, and snow. Over 95 % of data are identified correctly for pure ice and liquid cases used in this study. Mixed-phase and snow cases are more problematic to identify correctly. When lidar data are not available, including additional information from the Doppler spectrum provides substantial improvement to the algorithm. This is a first step towards an operational algorithm and can be expanded to include additional categories such as drizzle with additional training data.« less

  14. A path towards uncertainty assignment in an operational cloud-phase algorithm from ARM vertically pointing active sensors

    NASA Astrophysics Data System (ADS)

    Riihimaki, Laura D.; Comstock, Jennifer M.; Anderson, Kevin K.; Holmes, Aimee; Luke, Edward

    2016-06-01

    Knowledge of cloud phase (liquid, ice, mixed, etc.) is necessary to describe the radiative impact of clouds and their lifetimes, but is a property that is difficult to simulate correctly in climate models. One step towards improving those simulations is to make observations of cloud phase with sufficient accuracy to help constrain model representations of cloud processes. In this study, we outline a methodology using a basic Bayesian classifier to estimate the probabilities of cloud-phase class from Atmospheric Radiation Measurement (ARM) vertically pointing active remote sensors. The advantage of this method over previous ones is that it provides uncertainty information on the phase classification. We also test the value of including higher moments of the cloud radar Doppler spectrum than are traditionally used operationally. Using training data of known phase from the Mixed-Phase Arctic Cloud Experiment (M-PACE) field campaign, we demonstrate a proof of concept for how the method can be used to train an algorithm that identifies ice, liquid, mixed phase, and snow. Over 95 % of data are identified correctly for pure ice and liquid cases used in this study. Mixed-phase and snow cases are more problematic to identify correctly. When lidar data are not available, including additional information from the Doppler spectrum provides substantial improvement to the algorithm. This is a first step towards an operational algorithm and can be expanded to include additional categories such as drizzle with additional training data.

  15. The development of ice in a cumulus cloud over southwest England

    NASA Astrophysics Data System (ADS)

    Huang, Yahui; Blyth, Alan M.; Brown, Philip R. A.; Choularton, Tom W.; Connolly, Paul; Gadian, Alan M.; Jones, Hazel; Latham, John; Cui, Zhiqiang; Carslaw, Ken

    2008-10-01

    An experiment involving the FAAM BAe 146 aircraft, called the ICE and Precipitation Initiation in Cumulus (ICEPIC) project, was conducted in order to measure the microphysical properties of UK summertime cumulus clouds. A line of clouds was penetrated near the ascending tops. Higher concentrations of ice particles than expected from activation on typical ice nuclei using the Meyers formula were observed at relatively high temperatures (T>-10 °C). The observations of numerous ice particles and the coexistence of both small and large cloud droplets, pristine ice columns and graupel pellets within the temperature zone of -3 to -9 °C strongly suggested the Hallett-Mossop (HM) process of splintering during riming. Agreement between the calculated and observed rates of splinter production supported this suggestion. The Model of Aerosols and Chemistry in Convective Clouds (MAC3) was utilized to establish a quantitative understanding of the observed development of glaciation of this cloud. The results of the model confirmed the important role of the HM process. They also showed that the warm rain process was fundamental to the production of graupel in the cloud studied, and hence the HM ice particles. A sensitivity test with double the concentration of aerosol particles showed that the concentration of supercooled raindrops decreased as expected, which resulted in fewer graupel particles and a smaller quantity of precipitation, which was delayed by about 5 min. However, the production rate of secondary ice particles generated by the HM process increased due to the increased concentration of small cloud droplets.

  16. Photopolymerization Of Levitated Droplets

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan; Rhim, Won-Kyu; Hyson, Michael T.; Chang, Manchium

    1989-01-01

    Experimental containerless process combines two established techniques to make variety of polymeric microspheres. In single step, electrostatically-levitated monomer droplets polymerized by ultraviolet light. Faster than multiple-step emulsion polymerization process used to make microspheres. Droplets suspended in cylindrical quadrupole electrostatic levitator. Alternating electrostatic field produces dynamic potential along axis. Process enables tailoring of microspheres for medical, scientific, and industrial applications.

  17. Droplet Combustion Experiment (DCE)

    NASA Technical Reports Server (NTRS)

    Haggard, John B., Jr.; Nayagan, Vedha; Dryer, Frederick L.; Williams, Forman A.

    1998-01-01

    The first space-based experiments were performed on the combustion of free, individual liquid fuel droplets in oxidizing atmospheres. The fuel was heptane, with initial droplet diameters ranging about from 1 mm to 4 mm. The atmospheres were mixtures of helium and oxygen, at pressures of 1.00, 0.50 and 0.25 bar, with oxygen mole fractions between 20% and 40%, as well as normal Spacelab cabin air. The temperatures of the atmospheres and of the initial liquid fuel were nominally 300 K. A total of 44 droplets were burned successfully on the two flights, 8 on the shortened STS-83 mission and 36 on STS-94. The results spanned the full range of heptane droplet combustion behavior, from radiative flame extinction at larger droplet diameters in the more dilute atmospheres to diffusive extinction in the less dilute atmospheres, with the droplet disappearing prior to flame extinction at the highest oxygen concentrations. Quasisteady histories of droplet diameters were observed along with unsteady histories of flame diameters. New and detailed information was obtained on burning rates, flame characteristics and soot behavior. The results have motivated new computational and theoretical investigations of droplet combustion, improving knowledge of the chemical kinetics, fluid mechanics and heat and mass transfer processes involved in burning liquid fuels.

  18. Freezing of stratospheric aerosol droplets

    NASA Astrophysics Data System (ADS)

    Luo, Beiping; Peter, Thomas; Crutzen, Paul

    Theoretical calculations are presented for homogeneous and heterogeneous freezing of sulfuric acid droplets under stratospheric conditions, based on classical nucleation theory. In contrast to previous results it is shown that a prominent candidate for freezing, sulfuric acid tetrahydrate (SAT ≡ H2SO4·4H2O), does not freeze homogeneously. The theoretical results limit the homogeneous freezing rate at 200 K to much less than 1 cm-3s-1, a value that may be estimated from bulk phase laboratory experiments. This suggests that the experimental value is likely to be a measure of heterogeneous, not homogeneous nucleation. Thus, under statospheric conditions, freezing of SAT can only occur in the presence of suitable nuclei; however, even for heterogeneous nucleation experimental results impose strong constraints. Since a nitric acid trihydrate (NAT) embryo probably needs a solid body fo