Science.gov

Sample records for activated coagulation factor

  1. Biological and analytical variations of 16 parameters related to coagulation screening tests and the activity of coagulation factors.

    PubMed

    Chen, Qian; Shou, Weiling; Wu, Wei; Guo, Ye; Zhang, Yujuan; Huang, Chunmei; Cui, Wei

    2015-04-01

    To accurately estimate longitudinal changes in individuals, it is important to take into consideration the biological variability of the measurement. The few studies available on the biological variations of coagulation parameters are mostly outdated. We confirmed the published results using modern, fully automated methods. Furthermore, we added data for additional coagulation parameters. At 8:00 am, 12:00 pm, and 4:00 pm on days 1, 3, and 5, venous blood was collected from 31 healthy volunteers. A total of 16 parameters related to coagulation screening tests as well as the activity of coagulation factors were analyzed; these included prothrombin time, fibrinogen (Fbg), activated partial thromboplastin time, thrombin time, international normalized ratio, prothrombin time activity, activated partial thromboplastin time ratio, fibrin(-ogen) degradation products, as well as the activity of factor II, factor V, factor VII, factor VIII, factor IX, and factor X. All intraindividual coefficients of variation (CVI) values for the parameters of the screening tests (except Fbg) were less than 5%. Conversely, the CVI values for the activity of coagulation factors were all greater than 5%. In addition, we calculated the reference change value to determine whether a significant difference exists between two test results from the same individual.

  2. Hepatocyte tissue factor activates the coagulation cascade in mice

    PubMed Central

    Sullivan, Bradley P.; Kopec, Anna K.; Joshi, Nikita; Cline, Holly; Brown, Juliette A.; Bishop, Stephanie C.; Kassel, Karen M.; Rockwell, Cheryl; Mackman, Nigel

    2013-01-01

    In this study, we characterized tissue factor (TF) expression in mouse hepatocytes (HPCs) and evaluated its role in mouse models of HPC transplantation and acetaminophen (APAP) overdose. TF expression was significantly reduced in isolated HPCs and liver homogenates from TFflox/flox/albumin-Cre mice (HPCΔTF mice) compared with TFflox/flox mice (control mice). Isolated mouse HPCs expressed low levels of TF that clotted factor VII-deficient human plasma. In addition, HPC TF initiated factor Xa generation without exogenous factor VIIa, and TF activity was increased dramatically after cell lysis. Treatment of HPCs with an inhibitory TF antibody or a cell-impermeable lysine-conjugating reagent prior to lysis substantially reduced TF activity, suggesting that TF was mainly present on the cell surface. Thrombin generation was dramatically reduced in APAP-treated HPCΔTF mice compared with APAP-treated control mice. In addition, thrombin generation was dependent on donor HPC TF expression in a model of HPC transplantation. These results suggest that mouse HPCs constitutively express cell surface TF that mediates activation of coagulation during hepatocellular injury. PMID:23305736

  3. Activation of coagulation factor XI, without detectable contact activation in dengue haemorrhagic fever.

    PubMed

    van Gorp, E C; Minnema, M C; Suharti, C; Mairuhu, A T; Brandjes, D P; ten Cate, H; Hack, C E; Meijers, J C

    2001-04-01

    A prospective cohort study was performed in 50 patients with dengue haemorrhagic fever (DHF) to determine the potential role of the contact activation system and factor XI activation (intrinsic pathway) in the coagulation disorders in DHF. To establish whether TAFI (thrombin-activatable fibrinolysis inhibitor) was involved in the severity of the coagulation disorders, the TAFI antigen and activity levels were also determined. Markers of contact activation (kallikrein--C1-inhibitor complexes), the intrinsic pathway of coagulation (factor XIa--C1-inhibitor complexes) and TAFI were measured and correlated to thrombin generation markers (thrombin--anti-thrombin complexes (TAT), prothrombin fragment 1+2 (F1+2)) and a marker for fibrinolysis [plasmin--alpha 2--anti-plasmin complexes (PAP)]. Activation of the intrinsic pathway of coagulation was clearly demonstrated by elevated levels of factor XIa--C1-inhibitor complexes, without evidence of contact activation, reflected by undetectable kallikrein--C1-inhibitor complexes. Both TAFI antigen and activity levels were decreased in all patients, which may contribute to the severity of bleeding complications in DHF because of the impaired capacity of the coagulation system to protect the fibrin clot from fibrinolysis. These findings in a human viral infection model are in accordance with earlier findings in bacterial sepsis.

  4. Coagulation factor X activates innate immunity to human species C adenovirus.

    PubMed

    Doronin, Konstantin; Flatt, Justin W; Di Paolo, Nelson C; Khare, Reeti; Kalyuzhniy, Oleksandr; Acchione, Mauro; Sumida, John P; Ohto, Umeharu; Shimizu, Toshiyuki; Akashi-Takamura, Sachiko; Miyake, Kensuke; MacDonald, James W; Bammler, Theo K; Beyer, Richard P; Farin, Frederico M; Stewart, Phoebe L; Shayakhmetov, Dmitry M

    2012-11-01

    Although coagulation factors play a role in host defense for "living fossils" such as horseshoe crabs, the role of the coagulation system in immunity in higher organisms remains unclear. We modeled the interface of human species C adenovirus (HAdv) interaction with coagulation factor X (FX) and introduced a mutation that abrogated formation of the HAdv-FX complex. In vivo genome-wide transcriptional profiling revealed that FX-binding-ablated virus failed to activate a distinct network of nuclear factor κB-dependent early-response genes that are activated by HAdv-FX complex downstream of TLR4/MyD88/TRIF/TRAF6 signaling. Our study implicates host factor "decoration" of the virus as a mechanism to trigger an innate immune sensor that responds to a misplacement of coagulation FX from the blood into intracellular macrophage compartments upon virus entry into the cell. PMID:23019612

  5. Activation of coagulation after administration of tumor necrosis factor to normal subjects.

    PubMed

    van der Poll, T; Büller, H R; ten Cate, H; Wortel, C H; Bauer, K A; van Deventer, S J; Hack, C E; Sauerwein, H P; Rosenberg, R D; ten Cate, J W

    1990-06-01

    Tumor necrosis factor has been implicated in the activation of blood coagulation in septicemia, a condition commonly associated with intravascular coagulation and disturbances of hemostasis. To evaluate the early dynamics and the route of the in vivo coagulative response to tumor necrosis factor, we performed a controlled study in six healthy men, monitoring the activation of the common and intrinsic pathways of coagulation with highly sensitive and specific radioimmunoassays. Recombinant human tumor necrosis factor, administered as an intravenous bolus injection (50 micrograms per square meter of body-surface area), induced an early and short-lived rise in circulating levels of the activation peptide of factor X, reaching maximal values after 30 to 45 minutes (mean +/- SEM increase after 45 minutes, 34.2 +/- 18.2 percent; tumor necrosis factor vs. saline, P = 0.015). This was followed by a gradual and prolonged increase in the plasma concentration of the prothrombin fragment F1+2, peaking after four to five hours (mean increase after five hours, 348.0 +/- 144.8 percent; tumor necrosis factor vs. saline, P less than 0.0001). These findings signify the formation of factor Xa (activated factor X) and the activation of prothrombin. Activation of the intrinsic pathway could not be detected by a series of measurements of the plasma levels of factor XII, prekallikrein, factor XIIa-C1 inhibitor complexes, kallikrein-C1 inhibitor complexes, and the activation peptide of factor IX. The delay between the maximal activation of factor X and that of prothrombin amounted to several hours, indicating that neutralization of factor Xa activity was slow. We conclude that a single injection of tumor necrosis factor elicits a rapid and sustained activation of the common pathway of coagulation, probably induced through the extrinsic route. Our results suggest that tumor necrosis factor could play an important part in the early activation of the hemostatic mechanism in septicemia.

  6. Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling.

    PubMed

    Le Gall, Sylvain M; Szabo, Roman; Lee, Melody; Kirchhofer, Daniel; Craik, Charles S; Bugge, Thomas H; Camerer, Eric

    2016-06-23

    The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation. PMID:27114461

  7. Coagulation factor V mediates inhibition of tissue factor signaling by activated protein C in mice.

    PubMed

    Liang, Hai Po H; Kerschen, Edward J; Basu, Sreemanti; Hernandez, Irene; Zogg, Mark; Jia, Shuang; Hessner, Martin J; Toso, Raffaella; Rezaie, Alireza R; Fernández, José A; Camire, Rodney M; Ruf, Wolfram; Griffin, John H; Weiler, Hartmut

    2015-11-19

    The key effector molecule of the natural protein C pathway, activated protein C (aPC), exerts pleiotropic effects on coagulation, fibrinolysis, and inflammation. Coagulation-independent cell signaling by aPC appears to be the predominant mechanism underlying its highly reproducible therapeutic efficacy in most animal models of injury and infection. In this study, using a mouse model of Staphylococcus aureus sepsis, we demonstrate marked disease stage-specific effects of the anticoagulant and cell signaling functions of aPC. aPC resistance of factor (f)V due to the R506Q Leiden mutation protected against detrimental anticoagulant effects of aPC therapy but also abrogated the anti-inflammatory and mortality-reducing effects of the signaling-selective 5A-aPC variant that has minimal anticoagulant function. We found that procofactor V (cleaved by aPC at R506) and protein S were necessary cofactors for the aPC-mediated inhibition of inflammatory tissue-factor signaling. The anti-inflammatory cofactor function of fV involved the same structural features that govern its cofactor function for the anticoagulant effects of aPC, yet its anti-inflammatory activities did not involve proteolysis of activated coagulation factors Va and VIIIa. These findings reveal a novel biological function and mechanism of the protein C pathway in which protein S and the aPC-cleaved form of fV are cofactors for anti-inflammatory cell signaling by aPC in the context of endotoxemia and infection.

  8. [Condition setting for the measurement of blood coagulation factor XIII activity using a fully automated blood coagulation analyzer, COAGTRON-350].

    PubMed

    Kanno, Nobuko; Kaneko, Makoto; Tanabe, Kumiko; Jyona, Masahiro; Yokota, Hiromitsu; Yatomi, Yutaka

    2012-12-01

    The automated laboratory analyzer COAGTRON-350 (Trinity Biotech) is used for routine and specific coagulation testing for the detection of fibrin formation utilizing either mechanical principles (ball method) or photo-optical principles, chromogenic kinetic enzyme analysis, and immune-turbidimetric detection systems in one benchtop unit. In this study, we demonstrated and established a parameter for the measurement of factor XIII (FXIII) activity using Berichrom FXIII reagent and the COAGTRON-350 analyzer. The usual protocol used for this reagent, based on the handling method, was slightly modified for this device. The analysis showed that fundamental study for the measurement of FXIII activity under our condition setting was favorable in terms of reproducibility, linearity, and correlation with another assays. Since FXIII is the key enzyme that plays important roles in hemostasis by stabilizing fibrin formation, the measurement of FXIII is essential for the diagnosis of bleeding disorders. Therefore, FXIII activity assessment as well as a routine coagulation testing can be conducted simultaneously with one instrument, which is useful in coagulopathy assessment.

  9. Absence of in vitro Procoagulant Activity in Immunoglobulin Preparations due to Activated Coagulation Factors

    PubMed Central

    Oviedo, Adriana E.; Bernardi, María E.; Guglielmone, Hugo A.; Vitali, María S.

    2015-01-01

    Summary Background Immunoglobulin (IG) products, including intravenous (IVIG) or subcutaneous (SCIG) immunoglobulins are considered safe and effective for medical therapy; however, a sudden and unexpected increase in thromboembolic events (TE) after administration of certain batches of IVIG products has been attributed to the presence of activated coagulation factors, mainly factor XIa. Our aims were to examine the presence of enduring procoagulant activity during the manufacturing process of IGs, with special focus on monitoring factor XIa, and to evaluate the presence of in vitro procoagulant activity attributed to coagulation factors in different lots of IVIG and SCIG. Methods Samples of different steps of IG purification, 19 lots of IVIG and 9 of SCIG were analyzed and compared with 1 commercial preparation of IVIG and 2 of SCIG, respectively. Factors II, VII, IX, XI and XIa and non-activated partial thromboplastin time (NAPTT) were assayed. Results The levels of factors II, VII, IX, X and XI were non-quantifiable once fraction II had been re-dissolved and in all analyzed lots of IVIG and SCIG. The level of factor XIa at that point was under the detection limits of the assay, and NAPTT yielded values greater than the control during the purification process. In SCIG, we detected higher concentrations of factor XIa in the commercial products, which reached values up to 5 times higher than the average amounts found in the 9 batches produced by UNC-Hemoderivados. Factor XIa in commercial IVIG reached levels slightly higher than those of the 19 batches produced by UNC-Hemoderivados. Conclusion IVIG and SCIG manufactured by UNC-Hemoderivados showed a lack of thrombogenic potential, as demonstrated not only by the laboratory data obtained in this study but also by the absence of any reports of TE registered by the post marketing pharmacovigilance department. PMID:26733772

  10. Rat prostate tumors express cancer procoagulant, an activator of coagulation factor X.

    PubMed

    Kamocka, Malgorzata; Pollard, Morris; Suckow, Mark; Mielicki, Wojciech P; Rosen, Elliot D

    2008-06-01

    Two common procoagulant activities associated with tumors are tissue factor and cancer procoagulant (CP), an activator of coagulation factor X. We have identified a convenient source of CP in transplanted Lobund-Wistar rat PA3 prostate tumors. CP activity was purified from 5 independent transplanted prostate tumors by column chromatography. The protein activated factor X in the absence of TF and factor VII. An antihuman CP antibody recognized rat CP in an ELISA and inactivated CP activity in a chromogenic assay. Lobund-Wistar prostate tumors may provide a convenient animal model useful in determining the role of CP in cancer development.

  11. Measurement of factor v activity in human plasma using a microplate coagulation assay.

    PubMed

    Tilley, Derek; Levit, Irina; Samis, John A

    2012-09-09

    In response to injury, blood coagulation is activated and results in generation of the clotting protease, thrombin. Thrombin cleaves fibrinogen to fibrin which forms an insoluble clot that stops hemorrhage. Factor V (FV) in its activated form, FVa, is a critical cofactor for the protease FXa and accelerator of thrombin generation during fibrin clot formation as part of prothrombinase (1, 2). Manual FV assays have been described (3, 4), but they are time consuming and subjective. Automated FV assays have been reported (5-7), but the analyzer and reagents are expensive and generally provide only the clot time, not the rate and extent of fibrin formation. The microplate platform is preferred for measuring enzyme-catalyzed events because of convenience, time, cost, small volume, continuous monitoring, and high-throughput (8, 9). Microplate assays have been reported for clot lysis (10), platelet aggregation (11), and coagulation Factors (12), but not for FV activity in human plasma. The goal of the method was to develop a microplate assay that measures FV activity during fibrin formation in human plasma. This novel microplate method outlines a simple, inexpensive, and rapid assay of FV activity in human plasma. The assay utilizes a kinetic microplate reader to monitor the absorbance change at 405 nm during fibrin formation in human plasma (Figure 1) (13). The assay accurately measures the time, initial rate, and extent of fibrin clot formation. It requires only μl quantities of plasma, is complete in 6 min, has high-throughput, is sensitive to 24-80 pM FV, and measures the amount of unintentionally activated (1-stage activity) and thrombin-activated FV (2-stage activity) to obtain a complete assessment of its total functional activity (2-stage activity - 1-stage activity). Disseminated intravascular coagulation (DIC) is an acquired coagulopathy that most often develops from pre-existing infections (14). DIC is associated with a poor prognosis and increases mortality

  12. Lonomia obliqua caterpillar spicules trigger human blood coagulation via activation of factor X and prothrombin.

    PubMed

    Donato, J L; Moreno, R A; Hyslop, S; Duarte, A; Antunes, E; Le Bonniec, B F; Rendu, F; de Nucci, G

    1998-03-01

    In southern Brazil, envenomation by larvae of the moth Lonomia obliqua (Walker) may result in blood clotting factor depletion, leading to disseminated intravascular coagulation with subsequent haemorrhage and acute renal failure which may prove fatal. We have examined the effect of a crude extract of spicules from these caterpillars on in vitro hemostasis. The extract alone did not aggregate platelets and had no detectable effect on purified fibrinogen, suggesting that extract induces clot formation by triggering activation of the clotting cascade. In agreement with the presence of thrombin-mediated activity, hirudin prevented clot formation. The extract was found to activate both prothrombin and factor X, suggesting that the depletion of blood clotting factors results from the steady activation of factor X and prothrombin. Heating and diisopropylfluorophosphate abolished the procoagulant activity of the extract, indicating that the active component involved is a protein that may belong to the serine protease family of enzymes. The ability of hirudin to inhibit this coagulant activity suggests that this inhibitor could be beneficial in the treatment of patients envenomed by L. obliqua caterpillars. PMID:9531036

  13. Activation loop 3 and the 170 loop interact in the active conformation of coagulation factor VIIa.

    PubMed

    Persson, Egon; Olsen, Ole H

    2009-06-01

    The initiation of blood coagulation involves tissue factor (TF)-induced allosteric activation of factor VIIa (FVIIa), which circulates in a zymogen-like state. In addition, the (most) active conformation of FVIIa presumably relies on a number of intramolecular interactions. We have characterized the role of Gly372(223) in FVIIa, which is the sole residue in activation loop 3 that is capable of forming backbone hydrogen bonds with the unusually long 170 loop and with activation loop 2, by studying the effects of replacement with Ala [G372(223)A]. G372A-FVIIa, both in the free and TF-bound form, exhibited reduced cleavage of factor X (FX) and of peptidyl substrates, and had increased K(m) values compared with wild-type FVIIa. Inhibition of G372A-FVIIa.sTF by p-aminobenzamidine was characterized by a seven-fold higher K(i) than obtained with FVIIa.sTF. Crystallographic and modelling data suggest that the most active conformation of FVIIa depends on the backbone hydrogen bond between Gly372(223) and Arg315(170C) in the 170 loop. Despite the reduced activity and inhibitor susceptibility, native and active site-inhibited G372A-FVIIa bound sTF with the same affinity as the corresponding forms of FVIIa, and burial of the N-terminus of the protease domain increased similarly upon sTF binding to G372A-FVIIa and FVIIa. Thus Gly372(223) in FVIIa appears to play a critical role in maturation of the S1 pocket and adjacent subsites, but does not appear to be of importance for TF binding and the ensuing allostery. PMID:19490111

  14. Activation of the contact system of coagulation by a monoclonal antibody directed against a neodeterminant in the heavy chain region of human coagulation factor XII (Hageman factor).

    PubMed

    Nuijens, J H; Huijbregts, C C; Eerenberg-Belmer, A J; Meijers, J C; Bouma, B N; Hack, C E

    1989-08-01

    We studied the characteristics of two monoclonal antibodies (mAbs), F1 and F3, against human coagulation factor XII (Hageman factor). Experiments with trypsin-digested 125I-factor XII revealed that the epitope for mAb F1 is located in the NH2-terminal Mr 40,100 portion of factor XII, whereas that for mAb F3 resides in the COOH-terminal Mr 30,000 portion of this protein. Factor XII in fresh plasma (single-chain factor XII) bound approximately 190 times less to mAb F1 than factor XII in dextran sulfate-activated plasma (cleaved factor XII). However, no difference in accessibility of the epitope for mAb F1 was observed between cleaved and single-chain factor XII when bound to glass. mAb F3 appeared to bind to both single-chain and cleaved factor XII in plasma as well as when bound to glass. Neither mAb F1, nor F3 affected the amidolytic activity of factor XIIa, whereas both mAb F1 and F3 inhibited factor XII-coagulant activity to about 15 and 70%, respectively, at a molar ratio of mAb to factor XII of 20 to 1. mAb F1, as well as F(ab')2 and F(ab') fragments of this antibody induced activation of the contact system in plasma, as reflected by the generation of factor XIIa. C1 inhibitor and kallikrein. C1 inhibitor complexes. Activation was induced neither upon incubation with mAb F3, nor with that of control mAbs. mAb F1-induced contact activation required the presence of factor XII, prekallikrein, and high molecular weight kininogen and, in contrast to activation by negatively charged surfaces, was not inhibited by the presence of Polybrene. Based on these results we propose that a conformational change in factor XII is a key event in the activation process of this molecule. This conformational change can be induced by binding of factor XII to a surface as well as by proteolytic cleavage. As mAb F1 can also induce this conformational change, this antibody may provide a unique tool in studies of the activation of factor XII.

  15. [Plasma blood coagulation in mammals (domestic and zoo animals). Experience with screening tests and determinations of individual factor activities].

    PubMed

    Lutze, G; Lutze, G; Kutschmann, K; Wiens, L

    2007-08-01

    Plasma coagulation in mammals shows an essentially uniform structure. Differences are in species specific composition and quantity of coagulation factors. Many of the coagulation disorders occurring in humans have been observed in other mammals. Almost all the coagulation studies performed to date have been in domestic animals. For the majority of mammalian species, e.g. zoo animals, therefore, we have either no data at all or only isolated results. The methods used for coagulation testing in veterinary medicine have not yet been standardized. The significance and informative value of the screening tests are limited in animals compared with humans. The activities of individual factors in animals are determined by coagulometric tests. The results can be determined in relation to the activity in humans with the help of a human normal plasma or in relation to the activity of the respective animal with the help of a normal plasma from the same species. The problem is the parallelity of the dilution curves used as reference curves. The coagulation factor activities given for mammals usually differ more or less markedly from those in humans.

  16. Contributions of contact activation pathways of coagulation factor XII in plasma.

    PubMed

    Chatterjee, Kaushik; Guo, Zhe; Vogler, Erwin A; Siedlecki, Christopher A

    2009-07-01

    Activation of human blood plasma coagulation by contact with hydrophilic or hydrophobic surfaces (procoagulants) is dominated by kallikrein (Kal)-mediated activation of the blood zymogen FXII (Hageman Factor). Mathematical modeling of prekallikrein (PK)-deficient platelet-poor plasma (d(PK)PPP) and PK-reconstituted d(PK)PPP (Rd(PK)PPP) coagulation shows that autoactivation of FXII (FXII-->[surface]FXII) produces no more than about 25% of the total FXIIa produced by the intrinsic pathway. Autoactivation and reciprocal-activation increase in the same proportion with procoagulant surface energy (water-wettability), whereas total amount of FXIIa produced per-unit-area procoagulant remains roughly constant for any particular procoagulant. These results suggest that procoagulant surfaces initiate the intrinsic cascade by producing a bolus of FXIIa in proportion to surface energy or surface area but play no additional role in subsequent molecular events in the cascade. Results further suggest that reciprocal-activation occurs in proportion to the amount of FXIIa produced by the initiating autoactivation step.

  17. Effects of dietary fat quality and quantity on postprandial activation of blood coagulation factor VII.

    PubMed

    Larsen, L F; Bladbjerg, E M; Jespersen, J; Marckmann, P

    1997-11-01

    Acute elevation of the coagulant activity of blood coagulation factor VII (FVIIc) is observed after consumption of high-fat meals. This elevation is caused by an increase in the concentration of activated FVII (FVIIa). In a randomized crossover study, we investigated whether saturated, monounsaturated, or polyunsaturated fats differed regarding postprandial activation of FVII. Eighteen healthy young men participated in the study. On 6 separate days each participant consumed two meals (times, 0 and 1 3/4 hours) enriched with 70 g (15 and 55 g) of either rapeseed oil, olive oil, sunflower oil, palm oil, or butter (42% of energy from fat) or isoenergetic low-fat meals (6% of energy from fat). Fasting and series of nonfasting blood samples (the last at time 8 1/2 hours) were collected. Plasma triglycerides, FVIIc, FVIIa, and free fatty acids were analyzed. There were marked effects of the fat quantity on postprandial responses of plasma triglycerides, FVII, and free fatty acids. The high-fat meals caused, in contrast to the low-fat meals, considerable increases in plasma triglycerides. Plasma levels of FVIIc and FVIIa peaks were 7% and 60% higher after consumption of high-fat meals than after consumption of low-fat meals. The five different fat qualities caused similar postprandial increases in plasma triglycerides, FVIIc, and FVIIa. These findings indicate that high-fat meals may be prothrombotic, irrespective of their fatty acid composition. The postprandial FVII activation was not associated with the plasma triglyceride or free fatty acid responses.

  18. Positive feedback loops for factor V and factor VII activation supply sensitivity to local surface tissue factor density during blood coagulation.

    PubMed

    Balandina, A N; Shibeko, A M; Kireev, D A; Novikova, A A; Shmirev, I I; Panteleev, M A; Ataullakhanov, F I

    2011-10-19

    Blood coagulation is triggered not only by surface tissue factor (TF) density but also by surface TF distribution. We investigated recognition of surface TF distribution patterns during blood coagulation and identified the underlying molecular mechanisms. For these investigations, we employed 1), an in vitro reaction-diffusion experimental model of coagulation; and 2), numerical simulations using a mathematical model of coagulation in a three-dimensional space. When TF was uniformly immobilized over the activating surface, the clotting initiation time in normal plasma increased from 4 min to >120 min, with a decrease in TF density from 100 to 0.7 pmol/m(2). In contrast, surface-immobilized fibroblasts initiated clotting within 3-7 min, independently of fibroblast quantity and despite a change in average surface TF density from 0.5 to 130 pmol/m(2). Experiments using factor V-, VII-, and VIII-deficient plasma and computer simulations demonstrated that different responses to these two TF distributions are caused by two positive feedback loops in the blood coagulation network: activation of the TF-VII complex by factor Xa, and activation of factor V by thrombin. This finding suggests a new role for these reactions: to supply sensitivity to local TF density during blood coagulation.

  19. Platelet-Derived Short-Chain Polyphosphates Enhance the Inactivation of Tissue Factor Pathway Inhibitor by Activated Coagulation Factor XI

    PubMed Central

    Puy, Cristina; Tucker, Erik I.; Ivanov, Ivan S.; Gailani, David; Smith, Stephanie A.; Morrissey, James H.; Gruber, András; McCarty, Owen J. T.

    2016-01-01

    Introduction Factor (F) XI supports both normal human hemostasis and pathological thrombosis. Activated FXI (FXIa) promotes thrombin generation by enzymatic activation of FXI, FIX, FX, and FV, and inactivation of alpha tissue factor pathway inhibitor (TFPIα), in vitro. Some of these reactions are now known to be enhanced by short-chain polyphosphates (SCP) derived from activated platelets. These SCPs act as a cofactor for the activation of FXI and FV by thrombin and FXIa, respectively. Since SCPs have been shown to inhibit the anticoagulant function of TFPIα, we herein investigated whether SCPs could serve as cofactors for the proteolytic inactivation of TFPIα by FXIa, further promoting the efficiency of the extrinsic pathway of coagulation to generate thrombin. Methods and Results Purified soluble SCP was prepared by size-fractionation of sodium polyphosphate. TFPIα proteolysis was analyzed by western blot. TFPIα activity was measured as inhibition of FX activation and activity in coagulation and chromogenic assays. SCPs significantly accelerated the rate of inactivation of TFPIα by FXIa in both purified systems and in recalcified plasma. Moreover, platelet-derived SCP accelerated the rate of inactivation of platelet-derived TFPIα by FXIa. TFPIα activity was not affected by SCP in recalcified FXI-depleted plasma. Conclusions Our data suggest that SCP is a cofactor for TFPIα inactivation by FXIa, thus, expanding the range of hemostatic FXIa substrates that may be affected by the cofactor functions of platelet-derived SCP. PMID:27764259

  20. Polyphenol compounds belonging to flavonoids inhibit activity of coagulation factor X.

    PubMed

    Bijak, Michal; Ponczek, Michal Blazej; Nowak, Pawel

    2014-04-01

    Blood coagulation consists of series of zymogens which can be converted by limited proteolysis to active enzymes leading to the generation of thrombin and conversion of fibrinogen into fibrin by this enzyme. The activated factor X (FXa) forms prothrombinase complex on phosphatidylserine containing surface which is responsible for conversion of prothrombin to thrombin. One molecule of FXa generates more than 1000 thrombin molecules. Therefore FXa is a novel target for modern anticoagulant therapy. The aim of our present study is to examine the effects of the well-known plant polyphenolic compounds on factor Xa amidolytic activity and characterization of these interactions using bioinformatic ligand docking method. We observed that only four polyphenols belonging to flavonoids group: procyanidin B2, cyanidin, quercetin and silybin, had inhibitory effect on FXa activity. Bioinformatic analyses revealed that procyanidin B2, cyanidin, quercetin and silybin bound in the S1-S4 pockets located in vicinity of the FXa active site and blocked access of substrates to Ser195. The results presented here showed that flavonoids might be potential structural bases for design of new nature-based, safe, orally bioavailable direct FXa inhibitors. PMID:24444877

  1. Kinetics of the Factor XIa catalyzed activation of human blood coagulation Factor IX

    SciTech Connect

    Walsh, P.N.; Bradford, H.; Sinha, D.; Piperno, J.R.; Tuszynski, G.P.

    1984-05-01

    The kinetics of activation of human Factor IX by human Factor XIa was studied by measuring the release of a trichloroacetic acid-soluble tritium-labeled activation peptide from Factor IX. Initial rates of trichloroacetic acid-soluble /sup 3/H-release were linear over 10-30 min of incubation of Factor IX (88 nM) with CaCl/sub 2/ (5 mM) and with pure (greater than 98%) Factor XIa (0.06-1.3 nM), which was prepared by incubating human Factor XI with bovine Factor XIIa. Release of /sup 3/H preceded the appearance of Factor IXa activity, and the percentage of /sup 3/H released remained constant when the mole fraction of /sup 3/H-labeled and unlabeled Factor IX was varied and the total Factor IX concentration remained constant. A linear correlation (r greater than 0.98, P less than 0.001) was observed between initial rates of /sup 3/H-release and the concentration of Factor XIa, measured by chromogenic assay and by radioimmunoassay and added at a Factor IX:Factor XIa molar ratio of 70-5,600. Kinetic parameters, determined by Lineweaver-Burk analysis, include K/sub m/ (0.49 microM) of about five- to sixfold higher than the plasma Factor IX concentration, which could therefore regulate the reaction. The catalytic constant (k/sub cat/) (7.7/s) is approximately 20-50 times higher than that reported by Zur and Nemerson for Factor IX activation by Factor VIIa plus tissue factor. Therefore, depending on the relative amounts of Factor XIa and Factor VIIa generated in vivo and other factors which may influence reaction rates, these kinetic parameters provide part of the information required for assessing the relative contributions of the intrinsic and extrinsic pathways to Factor IX activation, and suggest that the Factor XIa catalyzed reaction is physiologically significant.

  2. Revisiting the mechanism of coagulation factor XIII activation and regulation from a structure/functional perspective

    PubMed Central

    Gupta, Sneha; Biswas, Arijit; Akhter, Mohammad Suhail; Krettler, Christoph; Reinhart, Christoph; Dodt, Johannes; Reuter, Andreas; Philippou, Helen; Ivaskevicius, Vytautas; Oldenburg, Johannes

    2016-01-01

    The activation and regulation of coagulation Factor XIII (FXIII) protein has been the subject of active research for the past three decades. Although discrete evidence exists on various aspects of FXIII activation and regulation a combinatorial structure/functional view in this regard is lacking. In this study, we present results of a structure/function study of the functional chain of events for FXIII. Our study shows how subtle chronological submolecular changes within calcium binding sites can bring about the detailed transformation of the zymogenic FXIII to its activated form especially in the context of FXIIIA and FXIIIB subunit interactions. We demonstrate what aspects of FXIII are important for the stabilization (first calcium binding site) of its zymogenic form and the possible modes of deactivation (thrombin mediated secondary cleavage) of the activated form. Our study for the first time provides a structural outlook of the FXIIIA2B2 heterotetramer assembly, its association and dissociation. The FXIIIB subunits regulatory role in the overall process has also been elaborated upon. In summary, this study provides detailed structural insight into the mechanisms of FXIII activation and regulation that can be used as a template for the development of future highly specific therapeutic inhibitors targeting FXIII in pathological conditions like thrombosis. PMID:27453290

  3. Tissue factor pathway inhibitor dose-dependently inhibits coagulation activation without influencing the fibrinolytic and cytokine response during human endotoxemia.

    PubMed

    de Jonge, E; Dekkers, P E; Creasey, A A; Hack, C E; Paulson, S K; Karim, A; Kesecioglu, J; Levi, M; van Deventer, S J; van Der Poll, T

    2000-02-15

    Inhibition of the tissue factor pathway has been shown to attenuate the activation of coagulation and to prevent death in a gram-negative bacteremia primate model of sepsis. It has been suggested that tissue factor influences inflammatory cascades other than the coagulation system. The authors sought to determine the effects of 2 different doses of recombinant tissue factor pathway inhibitor (TFPI) on endotoxin-induced coagulant, fibrinolytic, and cytokine responses in healthy humans. Two groups, each consisting of 8 healthy men, were studied in a double-blind, randomized, placebo-controlled crossover study. Subjects were studied on 2 different occasions. They received a bolus intravenous injection of 4 ng/kg endotoxin, which was followed by a 6-hour continuous infusion of TFPI or placebo. Eight subjects received 0.05 mg/kg per hour TFPI after a bolus of 0.0125 mg/kg (low-dose group), and 8 subjects received 0.2 mg/kg per hour after a bolus of 0.05 mg/kg (high-dose group). Endotoxin injection induced the activation of coagulation, the activation and subsequent inhibition of fibrinolysis, and the release of proinflammatory and antiinflammatory cytokines. TFPI infusion induced a dose-dependent attenuation of thrombin generation, as measured by plasma F1 + 2 and thrombin-antithrombin complexes, with a complete blockade of coagulation activation after high-dose TFPI. Endotoxin-induced changes in the fibrinolytic system and cytokine levels were not altered by either low-dose or high-dose TFPI. The authors concluded that TFPI effectively and dose-dependently attenuates the endotoxin-induced coagulation activation in humans without influencing the fibrinolytic and cytokine response. (Blood. 2000;95:1124-1129)

  4. Platelet Surface-Associated Activation and Secretion-Mediated Inhibition of Coagulation Factor XII

    PubMed Central

    Zakharova, Natalia V.; Artemenko, Elena O.; Podoplelova, Nadezhda A.; Sveshnikova, Anastasia N.; Demina, Irina A.; Ataullakhanov, Fazly I.; Panteleev, Mikhail A.

    2015-01-01

    Coagulation factor XII (fXII) is important for arterial thrombosis, but its physiological activation mechanisms are unclear. In this study, we elucidated the role of platelets and platelet-derived material in fXII activation. FXII activation was only observed upon potent platelet stimulation (with thrombin, collagen-related peptide, or calcium ionophore, but not ADP) accompanied by phosphatidylserine exposure and was localised to the platelet surface. Platelets from three patients with grey platelet syndrome did not activate fXII, which suggests that platelet-associated fXII-activating material might be released from α-granules. FXII was preferentially bound by phosphotidylserine-positive platelets and annexin V abrogated platelet-dependent fXII activation; however, artificial phosphotidylserine/phosphatidylcholine microvesicles did not support fXII activation under the conditions herein. Confocal microscopy using DAPI as a poly-phosphate marker did not reveal poly-phosphates associated with an activated platelet surface. Experimental data for fXII activation indicates an auto-inhibition mechanism (ki/ka = 180 molecules/platelet). Unlike surface-associated fXII activation, platelet secretion inhibited activated fXII (fXIIa), particularly due to a released C1-inhibitor. Platelet surface-associated fXIIa formation triggered contact pathway-dependent clotting in recalcified plasma. Computer modelling suggests that fXIIa inactivation was greatly decreased in thrombi under high blood flow due to inhibitor washout. Combined, the surface-associated fXII activation and its inhibition in solution herein may be regarded as a flow-sensitive regulator that can shift the balance between surface-associated clotting and plasma-dependent inhibition, which may explain the role of fXII at high shear and why fXII is important for thrombosis but negligible in haemostasis. PMID:25688860

  5. The pro-coagulant fibrinogenolytic serine protease isoenzymes purified from Daboia russelii russelii venom coagulate the blood through factor V activation: role of glycosylation on enzymatic activity.

    PubMed

    Mukherjee, Ashis K

    2014-01-01

    Proteases from Russell's viper venom (RVV) induce a variety of toxic effects in victim. Therefore, four new RVV protease isoenzymes of molecular mass 32901.044 Da, 333631.179 Da, 333571.472 Da, and 34594.776 Da, were characterized in this study. The first 10 N-terminal residues of these serine protease isoenzymes showed significant sequence homology with N-terminal sequences of snake venom thrombin-like and factor V-activating serine proteases, which was reconfirmed by peptide mass fingerprinting analysis. These proteases were found to be different from previously reported factor V activators isolated from snake venoms. These proteases showed significantly different fibrinogenolytic, BAEE-esterase and plasma clotting activities but no fibrinolytic, TAME-esterase or amidolytic activity against the chromogenic substrate for trypsin, thrombin, plasmin and factor Xa. Their Km and Vmax values towards fibrinogen were determined in the range of 6.6 to 10.5 µM and 111.0 to 125.5 units/mg protein, respectively. On the basis of fibrinogen degradation pattern, they may be classified as A/B serine proteases isolated from snake venom. These proteases contain ∼ 42% to 44% of N-linked carbohydrates by mass whereas partially deglycosylated enzymes showed significantly less catalytic activity as compared to native enzymes. In vitro these protease isoenzymes induce blood coagulation through factor V activation, whereas in vivo they provoke dose-dependent defibrinogenation and anticoagulant activity in the mouse model. At a dose of 5 mg/kg, none of these protease isoenzymes were found to be lethal in mice or house geckos, suggesting therapeutic application of these anticoagulant peptides for the prevention of thrombosis. PMID:24520323

  6. Novel aspects of blood coagulation factor XIII. I. Structure, distribution, activation, and function

    SciTech Connect

    Muszbek, L.; Adany, R.; Mikkola, H.

    1996-10-01

    Blood coagulation factor XIII (FXIII) is a protransglutaminase that becomes activated by the concerted action of thrombin and Ca{sup 2+} in the final stage of the clotting cascade. In addition to plasma, FXIII also occurs in platelets, monocytes, and monocyte-derived macrophages. While the plasma factor is a heterotetramer consisting of paired A and B subunits (A{sub 2}B{sub 2}), its cellular counterpart lacks the B subunits and is a homodimer of potentially active A subunits (A{sub 2}). The gene coding for the A and B subunits has been localized to chromosomes 6p24-25 and 1q31-32.1, respectively. The genomic as well as the primary protein structure of both subunits has been established. Plasma FXIII circulates in association with its substrate precursor, fibrinogen. Fibrin(ogen) has an important regulatory role in the activation of plasma FXIII, for instance the proteolytic removal of activation peptide by thrombin, the dissociation of subunits A and B, and the exposure of the originally buried active site on the free A subunits. The end result of this process is the formation of an active transglutaminase, which crosslinks peptide chains through {epsilon}({gamma}-glutamyl)lysyl isopeptide bonds. The protein substrates of activated FXIII include components of the clotting-fibrinolytic system, adhesive and contractile proteins. The main physiological function of plasma FXIII is to cross-link fibrin and protect it from the fibrinolytic enzyme plasmin. The latter effect is achieved mainly by covalently linking {alpha}{sub 2} antiplasmin, the most potent physiological inhibitor of plasmin, to fibrin. Plasma FXIII seems to be involved in wound healing and tissue repair, and it is essential to maintaining pregnancy. Cellular FXIII, if exposed to the surface of the cells, might support or perhaps take over the hemostatic functions of plasma FXIII; however, its intracellular role has remained mostly unexplored. 328 refs., 4 figs.

  7. Ex vivo effects of low-dose rivaroxaban on specific coagulation assays and coagulation factor activities in patients under real life conditions.

    PubMed

    Mani, Helen; Hesse, Christian; Stratmann, Gertrud; Lindhoff-Last, Edelgard

    2013-01-01

    Global coagulation assays display variable effects at different concentrations of rivaroxaban. The aim of this study is to quantify the ex vivo effects of low-dose rivaroxaban on thrombophilia screening assays and coagulation factor activities based on the administration time, and to show how to mask possible interferences. Plasma samples from 40 patients receiving rivaroxaban 10 mg daily were investigated to measure activities of clotting factor II, V, VII, VIII, IX, XI, XII and XIII; protein C- and protein S-levels; lupus anticoagulants; anticardiolipin IgG and IgM; D-dimer, heparin-platelet factor 4 (HPF4) antibodies and screening tests for von Willebrand disease (VWD). Two hours after rivaroxaban administration, the activities of clotting factors were significantly decreased to different extents, except for factor XIII. Dilution of plasma samples resulted in neutralisation of these interferences. The chromogenic protein C activity assay was not affected by rivaroxaban. Depending on the timing of tablet intake in relation to blood sampling protein S activity was measured falsely high when a clotting assay was used. False-positive results for lupus anticoagulants were observed depending on the assay system used and the administration time of rivaroxaban. ELISA-based assays such as anticardiolipin IgG and IgM, D-dimer, HPF4-antibodies and the turbidimetric assays for VWD were not affected by rivaroxaban. Specific haemostasis clotting tests should be performed directly prior to rivaroxaban intake. Assay optimisation in the presence of rivaroxaban can be achieved by plasma dilution. Immunologic assays are not influenced by rivaroxaban, while chromogenic assays can be used, when they do not depend on factor Xa.

  8. Ribavirin-induced intracellular GTP depletion activates transcription elongation in coagulation factor VII gene expression.

    PubMed

    Suzuki, Atsuo; Miyawaki, Yuhri; Okuyama, Eriko; Murata, Moe; Ando, Yumi; Kato, Io; Takagi, Yuki; Takagi, Akira; Murate, Takashi; Saito, Hidehiko; Kojima, Tetsuhito

    2013-01-01

    Coagulation FVII (Factor VII) is a vitamin K-dependent glycoprotein synthesized in hepatocytes. It was reported previously that FVII gene (F7) expression was up-regulated by ribavirin treatment in hepatitis C virus-infected haemophilia patients; however, its precise mechanism is still unknown. In the present study, we investigated the molecular mechanism of ribavirin-induced up-regulation of F7 expression in HepG2 (human hepatoma cell line). We found that intracellular GTP depletion by ribavirin as well as other IMPDH (inosine-5'-monophosphate dehydrogenase) inhibitors, such as mycophenolic acid and 6-mercaptopurine, up-regulated F7 expression. FVII mRNA transcription was mainly enhanced by accelerated transcription elongation, which was mediated by the P-TEFb (positive-transcription elongation factor b) complex, rather than by promoter activation. Ribavirin unregulated ELL (eleven-nineteen lysine-rich leukaemia) 3 mRNA expression before F7 up-regulation. We observed that ribavirin enhanced ELL3 recruitment to F7, whereas knockdown of ELL3 diminished ribavirin-induced FVII mRNA up-regulation. Ribavirin also enhanced recruitment of CDK9 (cyclin-dependent kinase 9) and AFF4 to F7. These data suggest that ribavirin-induced intracellular GTP depletion recruits a super elongation complex containing P-TEFb, AFF4 and ELL3, to F7, and modulates FVII mRNA transcription elongation. Collectively, we have elucidated a basal mechanism for ribavirin-induced FVII mRNA up-regulation by acceleration of transcription elongation, which may be crucial in understanding its pleiotropic functions in vivo.

  9. The Role of Putative Phosphatidylserine-Interactive Residues of Tissue Factor on Its Coagulant Activity at the Cell Surface

    PubMed Central

    Ansari, Shabbir A.; Pendurthi, Usha R.; Sen, Prosenjit; Rao, L. Vijaya Mohan

    2016-01-01

    Exposure of phosphatidylserine (PS) on the outer leaflet of the cell membrane is thought to play a critical role in tissue factor (TF) decryption. Recent molecular dynamics simulation studies suggested that the TF ectodomain may directly interact with PS. To investigate the potential role of TF direct interaction with the cell surface phospholipids on basal TF activity and the enhanced TF activity following the decryption, one or all of the putative PS-interactive residues in the TF ectodomain were mutated and tested for their coagulant activity in cell systems. Out of the 9 selected TF mutants, five of them -TFS160A, TFS161A, TFS162A, TFK165A, and TFD180A- exhibited a similar TF coagulant activity to that of the wild-type TF. The specific activity of three mutants, TFK159A, TFS163A, and TFK166A, was reduced substantially. Mutation of the glycine residue at the position 164 markedly abrogated the TF coagulant activity, resulting in ~90% inhibition. Mutation of all nine lipid binding residues together did not further decrease the activity of TF compared to TFG164A. A similar fold increase in TF activity was observed in wild-type TF and all TF mutants following the treatment of THP-1 cells with either calcium ionomycin or HgCl2, two agents that are commonly used to decrypt TF. Overall, our data show that a few select TF residues that are implicated in interacting with PS contribute to the TF coagulant activity at the cell surface. However, our data also indicate that TF regions outside of the putative lipid binding region may also contribute to PS-dependent decryption of TF. PMID:27348126

  10. Neutrophil elastase cleavage of human factor IX generates an activated factor IX-like product devoid of coagulant function.

    PubMed

    Samis, J A; Kam, E; Nesheim, M E; Giles, A R

    1998-08-15

    In preliminary studies, the generation of thrombin in vivo was found to induce a 92% loss of functional activity of factor IX (F.IX) despite the detection by Western blotting of a product resembling activated F.IX (F.IXa) and a 25% increase in F.IX antigen levels (Hoogendoorn et al, Thromb Haemost 69:1127, 1993 [abstr]). These changes were associated with evidence of increased elastase availability. To study the possibility that these two observations were related, a detailed physical and functional characterization of the hydrolysis of purified human F.IX by human neutrophil elastase (HNE) was performed in vitro. An activated partial thromboplastin time (aPTT) clotting assay demonstrated that, although HNE eliminated the potential of F.IX to be activated, it only marginally reduced the F.IXa activity. Reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated that HNE treatment of F.IX generated cleavage products of 30 and 20 kD that could not be distinguished from the respective heavy and light chain peptides that were identified in parallel studies when F.IX was activated by activated bovine F.XI (F.XIa), one of its physiological activators. In addition, nonreducing SDS-PAGE demonstrated that HNE-treated F.IX formed no complexes with antithrombin III (ATIII) in the presence of heparin. Furthermore, HNE-treated F.IX was unable to (1) bind the active site probe p-aminobenzamidine; (2) hydrolyze the synthetic peptide substrate CH3SO2-Leu-Gly-Arg-p-nitroanilide; and (3) activate human factor X (F.X). In contrast to dansyl-Glu-Gly-Arg-chloromethyl ketone (dEGR)-inactivated F.IXa, HNE-treated F.IX (0.01 to 10,000 pmol/L) failed to inhibit the clotting activity of F.IXa (10 pmol/L) in the aPTT. NH2-terminal sequencing indicated that HNE cleaved human F.IX at Thr140, Thr144, Ile164, Thr172, and Val181. The cleavages at Thr140/Thr144 and at Thr172/Val181 are both very close to the normal F.XIa alpha-(Arg145) and beta-(Arg180) cleavage sites

  11. Moojenactivase, a novel pro-coagulant PIIId metalloprotease isolated from Bothrops moojeni snake venom, activates coagulation factors II and X and induces tissue factor up-regulation in leukocytes.

    PubMed

    Sartim, Marco A; Costa, Tassia R; Laure, Helen J; Espíndola, Milena S; Frantz, Fabiani G; Sorgi, Carlos A; Cintra, Adélia C O; Arantes, Eliane C; Faccioli, Lucia H; Rosa, José C; Sampaio, Suely V

    2016-05-01

    Coagulopathies following snakebite are triggered by pro-coagulant venom toxins, in which metalloproteases play a major role in envenomation-induced coagulation disorders by acting on coagulation cascade, platelet function and fibrinolysis. Considering this relevance, here we describe the isolation and biochemical characterization of moojenactivase (MooA), a metalloprotease from Bothrops moojeni snake venom, and investigate its involvement in hemostasis in vitro. MooA is a glycoprotein of 85,746.22 Da, member of the PIIId group of snake venom metalloproteases, composed of three linked disulfide-bonded chains: an N-glycosylated heavy chain, and two light chains. The venom protease induced human plasma clotting in vitro by activating on both blood coagulation factors II (prothrombin) and X, which in turn generated α-thrombin and factor Xa, respectively. Additionally, MooA induced expression of tissue factor (TF) on the membrane surface of peripheral blood mononuclear cells (PBMC), which led these cells to adopt pro-coagulant characteristics. MooA was also shown to be involved with production of the inflammatory mediators TNF-α, IL-8 and MCP-1, suggesting an association between MooA pro-inflammatory stimulation of PBMC and TF up-regulation. We also observed aggregation of washed platelets when in presence of MooA; however, the protease had no effect on fibrinolysis. Our findings show that MooA is a novel hemostatically active metalloprotease, which may lead to the development of coagulopathies during B. moojeni envenomation. Moreover, the metalloprotease may contribute to the development of new diagnostic tools and pharmacological approaches applied to hemostatic disorders. PMID:26026608

  12. Isolation and properties of a blood coagulation factor X activator from the venom of king cobra (Ophiophagus hannah).

    PubMed

    Lee, W H; Zhang, Y; Wang, W Y; Xiong, Y L; Gao, R

    1995-10-01

    A specific blood coagulation factor X activator was purified from the venom of Ophiophagus hannah by gel filtration and two steps of FPLC Mono-Q column ion-exchange chromatography. It showed a single protein band both in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and alkaline polyacrylamide gel electrophoresis. The mol. wt was estimated to be 62,000 in non-reducing conditions and 64,500 in reducing conditions by SDS-PAGE. The isoelectric point was found to be pH 5.6. The enzyme had weak amidolytic activities toward CBS 65-25, but it showed no activities on S-2266, S-2302, thrombin substrate S-2238, plasmin substrate S-2251 or factor Xa substrate S-2222. It had no arginine esterase activity toward substrate benzoylarginine ethylester (BAEE). The enzyme activated factor X in vitro and the effect was absolutely Ca2+ dependent, with a Hill coefficient of 6.83. It could not activate prothrombin nor had any effect on fibrinogen and thus appeared to act specifically on factor X. The procoagulant activity of the enzyme was almost completely inhibited by serine protease inhibitors like PMSF, TPCK and soybean trypsin inhibitor; partially inhibited by L-cysteine. Metal chelator EDTA did not inhibit its procoagulant activity. These results suggest that the factor X activator from O. hannah venom is a serine protease.

  13. Coagulation, Protease Activated Receptors and Viral Myocarditis

    PubMed Central

    Antoniak, Silvio; Mackman, Nigel

    2013-01-01

    The coagulation protease cascade plays an essential role in hemostasis. In addition, a clot contributes to host defense by limiting the spread of pathogens. Coagulation proteases induce intracellular signaling by cleavage of cell surface receptors called protease-activated receptors (PARs). These receptors allow cells to sense changes in the extracellular environment, such as infection. Viruses activate the coagulation cascade by inducing tissue factor expression and by disrupting the endothelium. Virus infection of the heart can cause myocarditis, cardiac remodeling and heart failure. Recent studies using a mouse model have shown that tissue factor, thrombin and PAR-1 signaling all positively regulate the innate immune during viral myocarditis. In contrast, PAR-2 signaling was found to inhibit interferon-β expression and the innate immune response. These observations suggest that anticoagulants may impair the innate immune response to viral infection and that inhibition of PAR-2 may be a new target to reduce viral myocarditis.. PMID:24203054

  14. Inhibition of endotoxin-induced activation of coagulation and fibrinolysis by pentoxifylline or by a monoclonal anti-tissue factor antibody in chimpanzees.

    PubMed

    Levi, M; ten Cate, H; Bauer, K A; van der Poll, T; Edgington, T S; Büller, H R; van Deventer, S J; Hack, C E; ten Cate, J W; Rosenberg, R D

    1994-01-01

    Knowledge of the pathogenetic mechanisms responsible for the activation of the coagulation system associated with endotoxemia is important for the development of improved modalities for prevention and treatment. We analyzed the appearance in plasma of TNF, IL-6, and indices of coagulation and fibrinolytic system activation in normal chimpanzees after intravenous infusion of endotoxin. Endotoxin infusion elicited reproducible and dose-dependent elevations in serum TNF and IL-6, as well as marked increases in thrombin generation in vivo as measured by immunoassays for prothrombin activation fragment F1 + 2, thrombin-antithrombin III complexes, and fibrinopeptide A. Activation of the fibrinolytic mechanism was monitored with assays for plasminogen activator activity and plasmin-alpha 2-antiplasmin complexes. To potentially intervene in the molecular pathways elicited by endotoxin, pentoxifylline, an agent that interrupts "immediate early" gene activation by monocytes, or a potent monoclonal antibody that neutralizes tissue factor-mediated initiation of coagulation, were infused shortly before endotoxin. Pentoxifylline markedly inhibited increases in the levels of TNF and IL-6, as well as the effects on coagulation and fibrinolysis. In contrast, the monoclonal antibody to tissue factor completely abrogated the augmentation in thrombin generation, but had no effect on cytokine levels or fibrinolysis. We conclude that the endotoxin-induced activation of coagulation appears to be mediated by the tissue factor-dependent pathway, the fibrinolytic response triggered by endotoxin is not dependent on the generation of thrombin, and that the release of cytokines may be important in mediating the activation of both the coagulation and the fibrinolytic mechanisms in vivo.

  15. Airway tissue factor-dependent coagulation activity in response to sulfur mustard analog 2-chloroethyl ethyl sulfide

    PubMed Central

    Rancourt, Raymond C.; Veress, Livia A.; Guo, XiaoLing; Jones, Tara N.; Hendry-Hofer, Tara B.

    2012-01-01

    Acute lung injury is a principal cause of morbidity and mortality in response to mustard gas (SM) inhalation. Obstructive, fibrin-containing airway casts have recently been reported in a rat inhalation model employing the SM analog 2-chloroethyl ethyl sulfide (CEES). The present study was designed to identify the mechanism(s) causing activation of the coagulation cascade after CEES-induced airway injury. Here we report that CEES inhalation elevates tissue factor (TF) activity and numbers of detached epithelial cells present in lavage fluid (BALF) from rats after exposure (18 h). In vitro studies using 16HBE cells, or with rat BALF, indicated that detached epithelial cells could convert factor X (FX) to the active form FXa when incubated with factor VII and could elicit rapid clotting of plasma. In addition, immunocytochemical analysis demonstrated elevated cell surface (TF) expression on CEES-exposed 16HBE cells as a function of time. However, total cell TF expression did not increase. Since membrane surfaces bearing TF are important determinants of clot initiation, anticoagulants directed against these entities were tested for ability to limit plasma clotting or FX activation capacity of BALF or culture media. Addition of tifacogin, a TF pathway inhibitor, effectively blocked either activity, demonstrating that the procoagulant actions of CEES were TF pathway dependent. Lactadherin, a protein capable of competing with clotting factors for phospholipid-binding sites, was partially effective in limiting these procoagulant actions. These findings indicate that TF pathway inhibition could be an effective strategy to prevent airway obstruction after SM or CEES inhalation. PMID:21964405

  16. Impaired Activity of Blood Coagulant Factor XIII in Patients with Necrotizing Enterocolitis.

    PubMed

    Tao, Guo-Zhong; Liu, Bo; Zhang, Rong; Liu, Gigi; Abdullah, Fizan; Harris, Mary Cay; Brandt, Mary L; Ehrenkranz, Richard A; Bowers, Corinna; Martin, Camilia R; Moss, R Lawrence; Sylvester, Karl G

    2015-01-01

    Necrotizing enterocolitis (NEC) is the most common gastrointestinal (GI) medical/surgical emergency of the newborn and a leading cause of preterm neonate morbidity and mortality. NEC is a challenge to diagnose since it often shares similar clinical features with neonatal sepsis. In the present study, plasma protein profiling was compared among NEC, sepsis and control cohorts using gel electrophoresis, immunoblot and mass spectrometry. We observed significant impairment in the formation of fibrinogen-γ dimers (FGG-dimer) in the plasma of newborns with NEC that could efficiently differentiate NEC and sepsis with a high level of sensitivity and specificity. Interestingly, the impaired FGG-dimer formation could be restored in NEC plasma by the addition of exogenous active factor XIII (FXIII). Enzymatic activity of FXIII was determined to be significantly lower in NEC subject plasma for crosslinking FGG when compared to sepsis. These findings demonstrate a potential novel biomarker and related biologic mechanism for diagnosing NEC, as well as suggest a possible therapeutic strategy. PMID:26277871

  17. Impaired Activity of Blood Coagulant Factor XIII in Patients with Necrotizing Enterocolitis.

    PubMed

    Tao, Guo-Zhong; Liu, Bo; Zhang, Rong; Liu, Gigi; Abdullah, Fizan; Harris, Mary Cay; Brandt, Mary L; Ehrenkranz, Richard A; Bowers, Corinna; Martin, Camilia R; Moss, R Lawrence; Sylvester, Karl G

    2015-08-17

    Necrotizing enterocolitis (NEC) is the most common gastrointestinal (GI) medical/surgical emergency of the newborn and a leading cause of preterm neonate morbidity and mortality. NEC is a challenge to diagnose since it often shares similar clinical features with neonatal sepsis. In the present study, plasma protein profiling was compared among NEC, sepsis and control cohorts using gel electrophoresis, immunoblot and mass spectrometry. We observed significant impairment in the formation of fibrinogen-γ dimers (FGG-dimer) in the plasma of newborns with NEC that could efficiently differentiate NEC and sepsis with a high level of sensitivity and specificity. Interestingly, the impaired FGG-dimer formation could be restored in NEC plasma by the addition of exogenous active factor XIII (FXIII). Enzymatic activity of FXIII was determined to be significantly lower in NEC subject plasma for crosslinking FGG when compared to sepsis. These findings demonstrate a potential novel biomarker and related biologic mechanism for diagnosing NEC, as well as suggest a possible therapeutic strategy.

  18. Impaired Activity of Blood Coagulant Factor XIII in Patients with Necrotizing Enterocolitis

    PubMed Central

    Tao, Guo-Zhong; Liu, Bo; Zhang, Rong; Liu, Gigi; Abdullah, Fizan; Harris, Mary Cay; Brandt, Mary L.; Ehrenkranz, Richard A.; Bowers, Corinna; Martin, Camilia R.; Moss, R. Lawrence; Sylvester, Karl G.

    2015-01-01

    Necrotizing enterocolitis (NEC) is the most common gastrointestinal (GI) medical/surgical emergency of the newborn and a leading cause of preterm neonate morbidity and mortality. NEC is a challenge to diagnose since it often shares similar clinical features with neonatal sepsis. In the present study, plasma protein profiling was compared among NEC, sepsis and control cohorts using gel electrophoresis, immunoblot and mass spectrometry. We observed significant impairment in the formation of fibrinogen-γ dimers (FGG-dimer) in the plasma of newborns with NEC that could efficiently differentiate NEC and sepsis with a high level of sensitivity and specificity. Interestingly, the impaired FGG-dimer formation could be restored in NEC plasma by the addition of exogenous active factor XIII (FXIII). Enzymatic activity of FXIII was determined to be significantly lower in NEC subject plasma for crosslinking FGG when compared to sepsis. These findings demonstrate a potential novel biomarker and related biologic mechanism for diagnosing NEC, as well as suggest a possible therapeutic strategy. PMID:26277871

  19. Activation of blood coagulation in autoimmune skin disorders.

    PubMed

    Cugno, Massimo; Tedeschi, Alberto; Crosti, Carlo; Marzano, Angelo V

    2009-09-01

    The immune system and blood coagulation are simultaneously activated in several inflammatory systemic disorders, such as lupus erythematosus, rheumatoid arthritis and inflammatory bowel diseases. Proinflammatory cytokines, such as IL-6 and TNF-alpha, induce the expression of tissue factor, the main initiator of blood coagulation. Activated proteases of coagulation in turn act on protease-activated receptors, inducing the expression of various proinflammatory cytokines. This cross-talk between inflammation and coagulation amplifies and maintains the activation of both systems. This review focuses on three skin disorders: chronic urticaria (CU), which is considered autoimmune in approximately 50% of cases, bullous pemphigoid (BP), which is the prototype of autoimmune blistering disease, and psoriasis, which is an immune-mediated dermatitis. In CU, the activation of coagulation, which is due to the involvement of eosinophils and tissue factor pathways with the generation of thrombin, has local implications by increasing dermal vascular permeability. Preliminary data indicate that anticoagulant treatment with heparin and warfarin may be effective in reducing the symptoms of this disorder. In BP, the activation of coagulation seems to have both local and systemic implications. Locally, eosinophils and thrombin participate in bulla formation and tissue damage; systemically, the activation of coagulation may explain the increased thrombotic risk observed in these patients. In psoriasis, the activation of coagulation seems to be mainly systemic, potentially contributing to the increased cardiovascular risk associated with this disease. PMID:20477646

  20. Coagulation factors in chronic liver disease.

    PubMed

    Donaldson, G W; Davies, S H; Darg, A; Richmond, J

    1969-03-01

    Coagulation studies were carried out on 30 patients with chronic liver disease. The clotting defect was complex and involved factors V, VII, IX (Christmas factor), and prothrombin. Some patients showed a significant depression of factor IX in the presence of a normal one-stage prothrombin time. Thrombotest was found to be a good indicator of factor IX deficiency in this group of patients and may be of use as an additional liver function test. The screening of patients with liver disease for surgery or liver biopsy should assess the coagulation factors involved in both intrinsic and extrinsic thromboplastin generation.

  1. [CONGENITAL DEFICIENCY OF COAGULATION FACTOR V].

    PubMed

    Kvezereli-Kopadze, M; Kvezereli-Kopadze, A; Chikovani, M

    2016-07-01

    The study was designed to investigate the 5 year old girl with rare bleeding disorder -deficiency of coagulation factor V. The diagnosis was based on detail family history, physical examination and para-clinical data analyses. The age of patient, purpura, this has been detected from early age, positive family history, non-controlled, longtime bleeding, inadequate trauma of the tongue, which did not resolve after surgery, strong hypocoagulation, which was slightly improved, after several plasma transfusions. This allowed us to suggest the existence of the congenital coagulopathy, which was confirmed by the investigation of coagulation factors - particularly the deficiency of factor V was detected. PMID:27661277

  2. Coagulation factor XII protease domain crystal structure

    PubMed Central

    Pathak, M; Wilmann, P; Awford, J; Li, C; Hamad, BK; Fischer, PM; Dreveny, I; Dekker, LV; Emsley, J

    2015-01-01

    Background Coagulation factor XII is a serine protease that is important for kinin generation and blood coagulation, cleaving the substrates plasma kallikrein and FXI. Objective To investigate FXII zymogen activation and substrate recognition by determining the crystal structure of the FXII protease domain. Methods and results A series of recombinant FXII protease constructs were characterized by measurement of cleavage of chromogenic peptide and plasma kallikrein protein substrates. This revealed that the FXII protease construct spanning the light chain has unexpectedly weak proteolytic activity compared to β-FXIIa, which has an additional nine amino acid remnant of the heavy chain present. Consistent with these data, the crystal structure of the light chain protease reveals a zymogen conformation for active site residues Gly193 and Ser195, where the oxyanion hole is absent. The Asp194 side chain salt bridge to Arg73 constitutes an atypical conformation of the 70-loop. In one crystal form, the S1 pocket loops are partially flexible, which is typical of a zymogen. In a second crystal form of the deglycosylated light chain, the S1 pocket loops are ordered, and a short α-helix in the 180-loop of the structure results in an enlarged and distorted S1 pocket with a buried conformation of Asp189, which is critical for P1 Arg substrate recognition. The FXII structures define patches of negative charge surrounding the active site cleft that may be critical for interactions with inhibitors and substrates. Conclusions These data provide the first structural basis for understanding FXII substrate recognition and zymogen activation. PMID:25604127

  3. [Current views of activating and regulatory mechanisms of blood coagulation].

    PubMed

    Osaki, Tsukasa; Ichinose, Akitada

    2014-07-01

    Coagulation factors play essential roles in not only hemostasis but also thrombosis. The coagulation reaction consists of a stepwise sequence of proteolytic reactions of the coagulation factors, and is generally divided into two pathways, a tissue factor(TF)-dependent "extrinsic pathway" and a contact factor-dependent "intrinsic pathway". The extrinsic pathway is responsible for the initiation of the clotting reaction, while the intrinsic pathway most likely amplifies it. Elevated levels of various coagulation factors such as TF, factor VIII and prothrombin have been linked to an increased thrombotic risk. To prevent thrombus formation, endothelial cells express several receptors and activators for anticoagulant factors such as antithrombin, TF-pathway inhibitor, protein C and protein S. Defects in this anticoagulant system also increase the risk of thrombosis.

  4. Contact activation of blood-plasma coagulation

    NASA Astrophysics Data System (ADS)

    Golas, Avantika

    Surface engineering of biomaterials with improved hemocompatibility is an imperative, given the widespread global need for cardiovascular devices. Research summarized in this dissertation focuses on contact activation of FXII in buffer and blood plasma frequently referred to as autoactivation. The extant theory of contact activation imparts FXII autoactivation ability to negatively charged, hydrophilic surfaces. According to this theory, contact activation of plasma involves assembly of proteins comprising an "activation complex" on activating surfaces mediated by specific chemical interactions between complex proteins and the surface. This work has made key discoveries that significantly improve our core understanding of contact activation and unravel the existing paradigm of plasma coagulation. It is shown herein that contact activation of blood factor XII (FXII, Hageman factor) in neat-buffer solution exhibits a parabolic profile when scaled as a function of silanized-glass-particle activator surface energy (measured as advancing water adhesion tension t°a=g° Iv costheta in dyne/cm, where g°Iv is water interfacial tension in dyne/cm and theta is the advancing contact angle). Nearly equal activation is observed at the extremes of activator water-wetting properties --36 < t°a < 72 dyne/cm (O° ≤ theta < 120°), falling sharply through a broad minimum within the 20 < t°a < 40 dyne/cm (55° < theta < 75°). Furthermore, contact activation of FXII in buffer solution produces an ensemble of protein fragments exhibiting either procoagulant properties in plasma (proteolysis of blood factor XI or prekallikrein), amidolytic properties (cleavage of s-2302 chromogen), or the ability to suppress autoactivation through currently unknown biochemistry. The relative proportions of these fragments depend on activator surface chemistry/energy. We have also discovered that contact activation is moderated by adsorption of plasma proteins unrelated to coagulation through an

  5. Ca2+ switches the effect of PS-containing membranes on Factor Xa from activating to inhibiting: implications for initiation of blood coagulation.

    PubMed

    Koklic, Tilen; Majumder, Rinku; Lentz, Barry R

    2014-09-15

    Calcium (Ca2+) plays a pivotal role in cellular and organismal physiology. The Ca2+ ion has an intermediate protein-binding affinity and thus it can serve as an on/off switch in the regulation of different biochemical processes. The serum level of ionized Ca2+ is regulated with normal ionized Ca2+ being in the range 1.10-1.3 mM. Hypocalcaemia (free Ca2+<1.1 mM) in critically ill patients is commonly accompanied by haemostatic abnormalities, ranging from isolated thrombocytopenia to complex defects such as disseminated intravascular coagulation, commonly thought to be due to insufficient functioning of anticoagulation pathways. A small amount of fXa (Factor Xa) produced by Factor VIIa and exposed tissue factor is key to initiating blood coagulation by producing enough thrombin to induce the later stages of coagulation. fXa must bind to PS (phosphatidylserine)-containing membranes to produce thrombin at a physiologically significant rate. In the present study, we show that overall fXa activity on PS-containing membranes is sharply regulated by a 'Ca2+ switch' centred at 1.16 mM, below which fXa is active and above which fXa forms inactive dimers on PS-exposing membranes. Our data lead to a mathematical model that predicts the variation of fXa activity as a function of both Ca2+ and membrane concentrations. Because the critical Ca2+ concentration is at the lower end of the normal plasma ionized Ca2+ concentration range, we propose a new regulatory mechanism by which local Ca2+ concentration switches fXa from an intrinsically active form to a form requiring its cofactor [fVa (Factor Va)] to achieve significant activity.

  6. Inflammation-associated activation of coagulation and immune regulation by the protein C pathway.

    PubMed

    Weiler, Hartmut

    2014-05-01

    The inflammation-induced activation of the protein C pathway provides negative feedback inhibition of coagulation and exerts coagulation-independent anti-inflammatory and cytoprotective effects. The balance between these activities of aPC modulates the outcome of diverse inflammatory diseases such as encephalitis, diabetes, and sepsis; and is affected by naturally occurring aPC-resistance of coagulation factor V Leiden.

  7. Ca2+ Switches the Effect of PS-containing Membranes on Factor Xa from Activating to Inhibiting: Implications for Initiation of Blood Coagulation

    PubMed Central

    Koklic, Tilen; Majumder, Rinku; Lentz, Barry R.

    2014-01-01

    Calcium (Ca2+) plays a pivotal role in cellular and organismal physiology. The Ca2+ ion has an intermediate protein-binding affinity, thus it can serve as an on/off switch in regulation of different biochemical processes. The serum level of ionized Ca2+ is regulated with normal ionized Ca2+ being in the range from 1.10 to 1.29 mM. Hypocalcaemia (free Ca2+ < 1.1mM) in critically ill patients is commonly accompanied by hemostatic abnormalities, ranging from isolated thrombocytopenia to complex defects such as disseminated intravascular coagulation, commonly thought to be due to insufficient functioning of anticoagulation pathways. A small amount of Factor Xa (fXa) produced by Factor VIIa and exposed tissue factor is key to initiating blood coagulation by producing enough thrombin to induce later stages of coagulation. FXa must bind to phosphatidylserine (PS)-containing membranes to produce thrombin at a physiologically significant rate. In this work, we show that overall fXa activity on PS-containing membranes is sharply regulated by a “Ca2+ switch” centered at 1.16 mM, below which fXa is active and above which fXa forms inactive dimers on PS-exposing membranes. Our data lead to a mathematical model that predicts the variation of fXa activity as a function of both calcium and membrane concentrations. Because the critical Ca2+ concentration is at the lower end of the normal plasma ionized Ca2+ concentration range, we propose a new regulatory mechanism by which local Ca2+ concentration switches fXa from an intrinsically active form to a form requiring its cofactor (fVa) to achieve significant activity. PMID:24920080

  8. Activation of blood coagulation in cancer: implications for tumour progression.

    PubMed

    Lima, Luize G; Monteiro, Robson Q

    2013-09-04

    Several studies have suggested a role for blood coagulation proteins in tumour progression. Herein, we discuss (1) the activation of the blood clotting cascade in the tumour microenvironment and its impact on primary tumour growth; (2) the intravascular activation of blood coagulation and its impact on tumour metastasis and cancer-associated thrombosis; and (3) antitumour therapies that target blood-coagulation-associated proteins. Expression levels of the clotting initiator protein TF (tissue factor) have been correlated with tumour cell aggressiveness. Simultaneous TF expression and PS (phosphatidylserine) exposure by tumour cells promote the extravascular activation of blood coagulation. The generation of blood coagulation enzymes in the tumour microenvironment may trigger the activation of PARs (protease-activated receptors). In particular, PAR1 and PAR2 have been associated with many aspects of tumour biology. The procoagulant activity of circulating tumour cells favours metastasis, whereas the release of TF-bearing MVs (microvesicles) into the circulation has been correlated with cancer-associated thrombosis. Given the role of coagulation proteins in tumour progression, it has been proposed that they could be targets for the development of new antitumour therapies.

  9. Activation of blood coagulation in cancer: implications for tumour progression

    PubMed Central

    Lima, Luize G.; Monteiro, Robson Q.

    2013-01-01

    Several studies have suggested a role for blood coagulation proteins in tumour progression. Herein, we discuss (1) the activation of the blood clotting cascade in the tumour microenvironment and its impact on primary tumour growth; (2) the intravascular activation of blood coagulation and its impact on tumour metastasis and cancer-associated thrombosis; and (3) antitumour therapies that target blood-coagulation-associated proteins. Expression levels of the clotting initiator protein TF (tissue factor) have been correlated with tumour cell aggressiveness. Simultaneous TF expression and PS (phosphatidylserine) exposure by tumour cells promote the extravascular activation of blood coagulation. The generation of blood coagulation enzymes in the tumour microenvironment may trigger the activation of PARs (protease-activated receptors). In particular, PAR1 and PAR2 have been associated with many aspects of tumour biology. The procoagulant activity of circulating tumour cells favours metastasis, whereas the release of TF-bearing MVs (microvesicles) into the circulation has been correlated with cancer-associated thrombosis. Given the role of coagulation proteins in tumour progression, it has been proposed that they could be targets for the development of new antitumour therapies. PMID:23889169

  10. More efficient reversal of dabigatran inhibition of coagulation by activated prothrombin complex concentrate or recombinant factor VIIa than by four-factor prothrombin complex concentrate.

    PubMed

    Lindahl, Tomas L; Wallstedt, Maria; Gustafsson, Kerstin M; Persson, Egon; Hillarp, Andreas

    2015-03-01

    The number of patients on antithrombotic treatment due to atrial fibrillation and venous thromboembolism is increasing fast due to an aging population. A growing proportion will be treated with novel oral anticoagulants, the first in clinical use was the direct oral thrombin inhibitor dabigatran (Pradaxa®). A small percentage of the patients on dabigatran will experience serious bleeding or be in need of urgent surgery. The aim of this study was to test the effects of different hemostatic agents in potentially reversing the anticoagulant effects in vitro in blood or platelet-rich plasma (PRP) spiked with dabigatran. Whole blood or PRP was spiked with the active substance dabigatran, 200 μg/L. We measured clotting time being induced by 1.4 pmol/L tissue factor using the instrument ReoRox2™ and initial clot growth velocity from a tissue factor covered surface using the instrument Thrombodynamics Analyzer T-2™. Dabigatran prolonged clotting time 5-fold but reduced clot growth velocity only slightly. The reversing effects of prothrombin complex concentrates (PCC), activated PCC (APCC) and recombinant activated factor VII (rFVIIa) were then tested. APCC (1.8 U/mL) reduced the prolonged clotting time by 1/3, rFVIIa (2 μg/L) only slightly (n = 10-20). The reduction was not significant using Mann-Whitney test but significant using t-test with Bonferronis' correction for multiple comparisons, whereas PCC (0.56 U/mL) had no effect on clotting time. APCC doubled initial clot growth velocity, although even more in the absence of dabigatran. In conclusion, APCC and rFVIIa, but not PCC, seem to reverse, at least partially, some effects of dabigatran on coagulation parameters. Systematic evaluation of case reports, registries and, ultimately, randomized clinical trials are needed to elucidate potential benefit for patients.

  11. Pretreatment with a 55-kDa tumor necrosis factor receptor-immunoglobulin fusion protein attenuates activation of coagulation, but not of fibrinolysis, during lethal bacteremia in baboons.

    PubMed

    van der Poll, T; Jansen, P M; Van Zee, K J; Hack, C E; Oldenburg, H A; Loetscher, H; Lesslauer, W; Lowry, S F; Moldawer, L L

    1997-07-01

    Baboons (Papio anubis) receiving a lethal intravenous infusion with live Escherichia coli were pretreated with either a 55-kDa tumor necrosis factor (TNF) receptor-IgG fusion protein (TNFR55:IgG) (n = 4, 4.6 mg/kg) or placebo (n = 4). Neutralization of TNF activity in TNFR55:IgG-treated animals was associated with a complete prevention of mortality and a strong attenuation of coagulation activation as reflected by the plasma concentrations of thrombin-antithrombin III complexes (P < .05). Activation of fibrinolysis was not influenced by TNFR55:IgG (plasma tissue-type plasminogen activator and plasmin-alpha2-antiplasmin complexes), whereas TNFR55:IgG did inhibit the release of plasminogen activator inhibitor type I (P < .05). Furthermore, TNFR55:IgG inhibited neutrophil degranulation (plasma levels of elastase-alpha1-antitrypsin complexes, P < .05) and modestly reduced release of secretory phospholipase A2. These data suggest that endogenous TNF contributes to activation of coagulation, but not to stimulation of fibrinolysis, during severe bacteremia.

  12. The effect of surface contact activation and temperature on plasma coagulation with an RNA aptamer directed against factor IXa.

    PubMed

    Krishnan, Anandi; Vogler, Erwin A; Sullenger, Bruce A; Becker, Richard C

    2013-01-01

    The anticoagulant properties of a novel RNA aptamer that binds FIXa depend collectively on the intensity of surface contact activation of human blood plasma, aptamer concentration, and its binding affinity for FIXa. Accordingly, anticoagulation efficiency of plasma containing any particular aptamer concentration is low when coagulation is strongly activated by hydrophilic surfaces compared to the anticoagulation efficiency in plasma that is weakly activated by hydrophobic surfaces. Anticoagulation efficiency is lower at hypothermic temperatures possibly because aptamer-FIXa binding decreases with decreasing temperatures. Experimental results demonstrating these trends are qualitatively interpreted in the context of a previously established model of anticoagulation efficiency of thrombin-binding DNA aptamers that exhibit anticoagulation properties similar to the FIXa aptamer. In principle, FIXa aptamer anticoagulants should be more efficient and therefore more clinically useful than thrombin-binding aptamers because aptamer binding to FIXa competes only with FX that is at much lower blood concentration than fibrinogen (FI) that competes with thrombin-binding aptamers. Our findings may have translatable relevance in the application of aptamer anticoagulants for clinical conditions in which blood is in direct contact with non-biological surfaces such as those encountered in cardiopulmonary bypass circuits. PMID:23054460

  13. Tumor necrosis factor-alpha induces activation of coagulation and fibrinolysis in baboons through an exclusive effect on the p55 receptor.

    PubMed

    van der Poll, T; Jansen, P M; Van Zee, K J; Welborn, M B; de Jong, I; Hack, C E; Loetscher, H; Lesslauer, W; Lowry, S F; Moldawer, L L

    1996-08-01

    Tumor necrosis factor-alpha (TNF-alpha) can bind to two distinct transmembrane receptors, the p55 and p75 TNF receptors. We compared the capability of two mutant TNF proteins with exclusive affinity for the p55 or p75 TNF receptor with that of wild type TNF, to activate the hemostatic mechanism in baboons. Both activation of the coagulation system, monitored by the plasma levels of thrombin-antithrombin III complexes, and activation of the fibrinolytic system (plasma levels of tissue-type plasminogen activator, and plasminogen activator inhibitor type I), were of similar magnitude after intravenous injection of wild type TNF or the TNF mutant with affinity only for the p55 receptor. Likewise, wild type TNF and the TNF p55 specific mutant were equally potent in inducing neutrophil degranulation (plasma levels of elastase-alpha 1-antitrypsin complexes). Wild type TNF tended to be a more potent inducer of secretory phospholipase A2 release than the p55 specific TNF mutant. Administration of the TNF mutant binding only to the p75 receptor did not induce any of these responses. We conclude that TNF-Induced stimulation of coagulation, fibrinolysis, neutrophil degranulation, and release of secretory phospholipase A2 are predominantly mediated by the p55 TNF receptor.

  14. A loop of coagulation factor VIIa influencing macromolecular substrate specificity.

    PubMed

    Bjelke, Jais R; Persson, Egon; Rasmussen, Hanne B; Kragelund, Birthe B; Olsen, Ole H

    2007-01-01

    Coagulation factor VIIa (FVIIa) belongs to a family of proteases being part of the stepwise, self-amplifying blood coagulation cascade. To investigate the impact of the mutation Met(298{156})Lys in FVIIa, we replaced the Gly(283{140})-Met(298{156}) loop with the corresponding loop of factor Xa. The resulting variant exhibited increased intrinsic activity, concurrent with maturation of the active site, a less accessible N-terminus, and, interestingly, an altered macromolecular substrate specificity reflected in an increased ability to cleave factor IX (FIX) and a decreased rate of FX activation compared to that of wild-type FVIIa. In complex with tissue factor, activation of FIX, but not of FX, returned to normal. Deconvolution of the loop graft in order to identify important side chain substitutions resulted in the mutant Val(158{21})Asp/Leu(287{144})Thr/Ala(294{152})Ser/Glu(296{154}) Ile/Met(298{156})Lys-FVIIa with almost the same activity and specificity profile. We conclude that a lysine residue in position 298{156} of FVIIa requires a hydrophilic environment to be fully accommodated. This position appears critical for substrate specificity among the proteases of the blood coagulation cascade due to its prominent position in the macromolecular exosite and possibly via its interaction with the corresponding position in the substrate (i.e. FIX or FX). PMID:17182039

  15. Structural Biology Of Factor VIIa/Tissue Factor Initiated Coagulation

    PubMed Central

    Vadivel, Kanagasabai; Paul Bajaj, S.

    2012-01-01

    Factor VII (FVII) consists of an N-terminal gamma-carboxyglutamic acid domain followed by two epidermal growth factor-like (EGF1 and EGF2) domains and the C-terminal protease domain. Activation of FVII results in a two-chain FVIIa molecule consisting of a light chain (Gla-EGF1-EGF2 domains) and a heavy chain (protease domain) held together by a single disulfide bond. During coagulation, the complex of tissue factor (TF, a transmembrane glycoprotein) and FVIIa activates factor IX (FIX) and factor X (FX). FVIIa is structurally “zymogen-like” and when bound to TF, it is more “active enzyme-like.” FIX and FX share structural homology with FVII. Three structural biology aspects of FVIIa/TF are presented in this review. One, regions in soluble TF (sTF) that interact with FVIIa as well as mapping of Ca2+, Mg2+, Na+ and Zn2+ sites in FVIIa and their functions; two, modeled interactive regions of Gla and EGF1 domains of FXa and FIXa with FVIIa/sTF; and three, incompletely formed oxyanion hole in FVIIa/sTF and its induction by substrate/inhibitor. Finally, an overview of the recognition elements in TF pathway inhibitor is provided. PMID:22652793

  16. Hysteresis-like binding of coagulation factors X/Xa to procoagulant activated platelets and phospholipids results from multistep association and membrane-dependent multimerization.

    PubMed

    Podoplelova, Nadezhda A; Sveshnikova, Anastasia N; Kurasawa, James H; Sarafanov, Andrey G; Chambost, Herve; Vasil'ev, Sergey A; Demina, Irina A; Ataullakhanov, Fazly I; Alessi, Marie-Christine; Panteleev, Mikhail A

    2016-06-01

    Binding of coagulation factors X (fX) and Xa (fXa) to activated platelets is required for the formation of membrane-dependent enzymatic complexes of intrinsic tenase and prothrombinase. We carried out an in-depth characterization of fX/fXa binding to phospholipids and gel-filtered, thrombin-activated platelets. Flow cytometry, surface plasmon resonance, and computational modeling were used to investigate interactions of fX/fXa with the membranes. Confocal microscopy was employed to study fXa binding to platelet thrombi formed in flowing whole blood under arterial conditions. Binding of fX/fXa to either vesicles or procoagulant platelets did not follow a traditional one-step reversible binding model. Their dissociation was a two-step process resulting in a plateau that was up to 10-fold greater than the saturation value observed in the association experiments. Computational modeling and experimental evidence suggested that this was caused by a combination of two-step association (mainly for fX) and multimerization on the membrane (mainly for fXa). Importantly, fX formed multimers with fXa, thereby improving its retention. The same binding/dissociation hysteresis was observed for annexin V known to form trimers on the membranes. Experiments with platelets from gray syndrome patients showed that alpha-granular factor Va provided an additional high-affinity binding site for fXa that did not affect the hysteresis. Confocal microscopy observation of fXa binding to platelet thrombi in a flow chamber and its wash-out confirmed that this phenomenon persisted under physiologically relevant conditions. This suggests its possible role of "locking" coagulation factors on the membrane and preventing their inhibition in plasma and removal from thrombi by flow.

  17. Sequential coagulation factor VIIa domain binding to tissue factor

    SciTech Connect

    Oesterlund, Maria; Persson, Egon; Freskgard, Per-Ola . E-mail: msv@ifm.liu.se

    2005-12-02

    Vessel wall tissue factor (TF) is exposed to blood upon vascular damage which enables association with factor VIIa (FVIIa). This leads to initiation of the blood coagulation cascade through localization and allosteric induction of FVIIa procoagulant activity. To examine the docking pathway of the FVIIa-TF complex, various residues in the extracellular part of TF (sTF) that are known to interact with FVIIa were replaced with cysteines labelled with a fluorescent probe. By using stopped-flow fluorescence kinetic measurements in combination with surface plasmon resonance analysis, we studied the association of the resulting sTF variants with FVIIa. We found the docking trajectory to be a sequence of events in which the protease domain of FVIIa initiates contact with sTF. Thereafter, the two proteins are tethered via the first epidermal growth factor-like and finally the {gamma}-carboxyglutamic acid (Gla) domain. The two labelled sTF residues interacting with the protease domain of FVIIa bind or become eventually ordered at different rates, revealing kinetic details pertinent to the allosteric activation of FVIIa by sTF. Moreover, when the Gla domain of FVIIa is removed the difference in the rate of association for the remaining domains is much more pronounced.

  18. Sulfated Low Molecular Weight Lignins, Allosteric Inhibitors of Coagulation Proteinases via the Heparin Binding Site, Significantly Alter the Active Site of Thrombin and Factor Xa Compared to Heparin

    PubMed Central

    Henry, Brian L.; Desai, Umesh R.

    2014-01-01

    Sulfated low molecular weight lignins (LMWLs) have been found to bind in the heparin binding sites of coagulation proteinases. LMWLs represent a library of diverse non-carbohydrate, aromatic molecules which are structures different from heparin, but still potently inhibit thrombin and factor Xa. To better understand their mechanism of action, we studied the effects of three sulfated LMWLs (CDSO3, FDSO3, and SDSO3) on the active sites of thrombin and factor Xa. LMWLs were found to uniformly inhibit the catalytic activity of thrombin and factor Xa, regardless of the substrate used. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of each chromogenic substrate decreases significantly in the presence of sulfated LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. These studies indicate that LMWLs inhibit thrombin and factor Xa through allosteric disruption of the catalytic apparatus, specifically through the catalytic step. As opposed to heparin, LMWLs significantly alter the binding of the active site fluorescent ligand p-aminobenzamidine. LMWLs also had a greater effect on the molecular orientation of fluorescein-labeled His 57 than heparin. The molecular geometry surrounding the most important catalytic amino acid, Ser 195, was significantly altered by the binding of LMWLs while heparin had no measurable effect on Ser 195. These results further advance the concept of sulfated LMWLs as heparin mimics and will aid the design of anticoagulants based on their novel scaffold. PMID:25242245

  19. Sulfated low molecular weight lignins, allosteric inhibitors of coagulation proteinases via the heparin binding site, significantly alter the active site of thrombin and factor xa compared to heparin.

    PubMed

    Henry, Brian L; Desai, Umesh R

    2014-11-01

    Sulfated low molecular weight lignins (LMWLs) have been found to bind in the heparin binding sites of coagulation proteinases. LMWLs represent a library of diverse non-carbohydrate, aromatic molecules which are structures different from heparin, but still potently inhibit thrombin and factor Xa. To better understand their mechanism of action, we studied the effects of three sulfated LMWLs (CDSO3, FDSO3, and SDSO3) on the active sites of thrombin and factor Xa. LMWLs were found to uniformly inhibit the catalytic activity of thrombin and factor Xa, regardless of the substrate used. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of each chromogenic substrate decreases significantly in the presence of sulfated LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. These studies indicate that LMWLs inhibit thrombin and factor Xa through allosteric disruption of the catalytic apparatus, specifically through the catalytic step. As opposed to heparin, LMWLs significantly alter the binding of the active site fluorescent ligand p-aminobenzamidine. LMWLs also had a greater effect on the molecular orientation of fluorescein-labeled His 57 than heparin. The molecular geometry surrounding the most important catalytic amino acid, Ser 195, was significantly altered by the binding of LMWLs while heparin had no measurable effect on Ser 195. These results further advance the concept of sulfated LMWLs as heparin mimics and will aid the design of anticoagulants based on their novel scaffold. PMID:25242245

  20. Inhibitors of propagation of coagulation: factors V and X

    PubMed Central

    Toschi, Vincenzo; Lettino, Maddalena

    2011-01-01

    Cardiovascular diseases are still the most important cause of morbidity and mortality in western countries and antithrombotic treatment is nowadays widely used. Drugs able to reduce coagulation activation are the treatment of choice for a number of arterial and/or venous thromboembolic conditions. Some of the drugs currently used for this purpose, such as heparins (UFH or LMWH) and VKA, have limitations consisting of a narrow therapeutic window and an unpredictable response with the need of laboratory monitoring in order to assess their efficacy and safety. These drawbacks have stimulated an active research aimed to develop new drugs able to act on single factors involved in the coagulation network, with predictable response. Intense experimental and clinical work on new drugs has focused on synthetic agents, which could preferably be administered orally and at fixed doses. The most advanced clinical development with new anticoagulants has been achieved for those inhibiting FXa and some of them, like fondaparinux, are already currently used in clinical practice. Other agents, such as rivaroxaban, apixaban, otamixaban and edoxaban are under development and have already been studied or are currently under investigation in large scale phase III clinical trials for prevention and treatment of venous thromboembolism, atrial fibrillation and acute coronary syndromes. Some of them have proved to be more effective than conventional therapy. Data on some agents inhibiting FVa are still preliminary and some of these drugs have so far been considered only in patients with disseminated intravascular coagulation secondary to sepsis. PMID:21545479

  1. Tissue Factor, Blood Coagulation, and Beyond: An Overview

    PubMed Central

    Chu, Arthur J.

    2011-01-01

    Emerging evidence shows a broad spectrum of biological functions of tissue factor (TF). TF classical role in initiating the extrinsic blood coagulation and its direct thrombotic action in close relation to cardiovascular risks have long been established. TF overexpression/hypercoagulability often observed in many clinical conditions certainly expands its role in proinflammation, diabetes, obesity, cardiovascular diseases, angiogenesis, tumor metastasis, wound repairs, embryonic development, cell adhesion/migration, innate immunity, infection, pregnancy loss, and many others. This paper broadly covers seminal observations to discuss TF pathogenic roles in relation to diverse disease development or manifestation. Biochemically, extracellular TF signaling interfaced through protease-activated receptors (PARs) elicits cellular activation and inflammatory responses. TF diverse biological roles are associated with either coagulation-dependent or noncoagulation-mediated actions. Apparently, TF hypercoagulability refuels a coagulation-inflammation-thrombosis circuit in “autocrine” or “paracrine” fashions, which triggers a wide spectrum of pathophysiology. Accordingly, TF suppression, anticoagulation, PAR blockade, or general anti-inflammation offers an array of therapeutical benefits for easing diverse pathological conditions. PMID:21941675

  2. Plasmin-induced procoagulant effects in the blood coagulation: a crucial role of coagulation factors V and VIII.

    PubMed

    Ogiwara, Kenichi; Nogami, Keiji; Nishiya, Katsumi; Shima, Midori

    2010-09-01

    Plasminogen activators provide effective treatment for patients with acute myocardial infarction. However, paradoxical elevation of thrombin activity associated with failure of clot lysis and recurrent thrombosis has been reported. Generation of thrombin in these circumstances appears to be owing to plasmin (Plm)-induced activation of factor (F) XII. Plm catalyzes proteolysis of several coagulant factors, but the roles of these factors on Plm-mediated procoagulant activity remain to be determined. Recently developed global coagulation assays were used in this investigation. Rotational thromboelastometry using whole blood, clot waveform analysis and thrombin generation tests using plasma, showed that Plm (> or =125 nmol/l) shortened the clotting times in similar dose-dependent manners. In particular, the thrombin generation test, which was unaffected by products of fibrinolysis, revealed the enhanced coagulation with an approximately two-fold increase of peak level of thrombin generation. Studies using alpha2-antiplasmin-deficient plasma revealed that much lower dose of Plm (> or =16 nmol/l) actually contributed to enhancing thrombin generation. The shortening of clotting time could be observed even in the presence of corn trypsin inhibitor, supporting that Plm exerted the procoagulant activity independently of FXII. In addition, using specific coagulation-deficient plasmas, the clot waveform analysis showed that Plm did not shorten the clotting time in only FV-deficient or FVIII-deficient plasma in prothrombin time-based or activated partial thromboplastin time-based assay, respectively. Our results indicated that Plm did possess procoagulant activity in the blood coagulation, and this effect was likely attributed by multicoagulation factors, dependent on FV and/or FVIII.

  3. Functional role of residue 193 (chymotrypsin numbering) in serine proteases: influence of side chain length and beta-branching on the catalytic activity of blood coagulation factor XIa.

    PubMed

    Schmidt, Amy E; Sun, Mao-fu; Ogawa, Taketoshi; Bajaj, S Paul; Gailani, David

    2008-02-01

    In serine proteases, Gly193 (chymotrypsin numbering) is conserved with rare exception. Mutants of blood coagulation proteases have been reported with Glu, Ala, Arg or Val substitutions for Gly193. To further understand the role of Gly193 in protease activity, we replaced it with Ala or Val in coagulation factor XIa (FXIa). For comparison to the reported FXIa Glu193 mutant, we prepared FXIa with Asp (short side chain) or Lys (opposite charge) substitutions. Binding of p-aminobenzamidine (pAB) and diisopropylfluorphosphate (DFP) were impaired 1.6-36-fold and 35-478-fold, respectively, indicating distortion of, or altered accessibility to, the S1 and oxyanion-binding sites. Val or Asp substitutions caused the most impairment. Salt bridge formation between the amino terminus of the mature protease moiety at Ile16 and Asp194, essential for catalysis, was impaired 1.4-4-fold. Mutations reduced catalytic efficiency of tripeptide substrate hydrolysis 6-280-fold, with Val or Asp causing the most impairment. Further studies were directed toward macromolecular interactions with the FXIa mutants. kcat for factor IX activation was reduced 8-fold for Ala and 400-1100-fold for other mutants, while binding of the inhibitors antithrombin and amyloid beta-precursor protein Kunitz domain (APPI) was impaired 13-2300-fold and 22-27000-fold, respectively. The data indicate that beta-branching of the side chain of residue 193 is deleterious for interactions with pAB, DFP and amidolytic substrates, situations where no S2'-P2' interactions are involved. When an S2'-P2' interaction is involved (factor IX, antithrombin, APPI), beta-branching and increased side chain length are detrimental. Molecular models indicate that the mutants have impaired S2' binding sites and that beta-branching causes steric conflicts with the FXIa 140-loop, which could perturb the local tertiary structure of the protease domain. In conclusion, enzyme activity is impaired in FXIa when Gly193 is replaced by a non

  4. Interleukin 12 induces activation of fibrinolysis and coagulation in humans.

    PubMed

    Portielje, J E; Kruit, W H; Eerenberg, A J; Schuler, M; Sparreboom, A; Lamers, C H; Bolhuis, R L; Stoter, G; Huber, C; Hack, C

    2001-02-01

    Interleukin 12 (IL-12) has potential efficacy in malignant, infectious and allergic diseases. Its side-effects include activation of coagulation and fibrinolysis, as documented in chimpanzees. We assessed the coagulative and fibrinolytic response in 18 patients with renal cell carcinoma after subcutaneous injection of 0.5 microg/kg recombinant human IL-12. IL-12 induced a fibrinolytic response in 17 patients (94%): plasmin-alpha2-anti-plasmin complexes (PAPc) increased from 11.8 +/- 6.6 nmol/l (mean +/- SD) to a maximum of 18.8 +/- 7.4 nmol/l at 72 h. Baseline levels of tissue plasminogen activator (tPA) and plasminogen-activator inhibitor-I (PAI) were elevated in eight and 14 patients respectively. tPA increased from 12.6 +/- 5.2 ng/ml to a maximum of 19.0 +/- 6.7 ng/ml at 72 h. PAI decreased from 111 +/- 69 ng/ml to a minimum of 65 +/- 53 ng/ml at 8 h, thereafter remaining below baseline. Elevation of PAPc correlated with elevation of tPA and reduction of PAI. A coagulative response occurred in nine patients (50%): thrombin-anti-thrombin III complexes increased from 29 +/- 53 ng/ml to a maximum of 460 +/- 322 ng/ml at 12 h. Patients with and without a coagulative response had similar levels of recombinant human IL-12, interferon-gamma or tumour necrosis factor-alpha. We conclude that IL-12 can activate both fibrinolysis and coagulation in a significant proportion of patients with cancer. The time-frame and sequence of these activation processes differ from those known for other cytokines.

  5. Helical organization of blood coagulation factor VIII on lipid nanotubes.

    PubMed

    Miller, Jaimy; Dalm, Daniela; Koyfman, Alexey Y; Grushin, Kirill; Stoilova-McPhie, Svetla

    2014-01-01

    Cryo-electron microscopy (Cryo-EM)(1) is a powerful approach to investigate the functional structure of proteins and complexes in a hydrated state and membrane environment(2). Coagulation Factor VIII (FVIII)(3) is a multi-domain blood plasma glycoprotein. Defect or deficiency of FVIII is the cause for Hemophilia type A - a severe bleeding disorder. Upon proteolytic activation, FVIII binds to the serine protease Factor IXa on the negatively charged platelet membrane, which is critical for normal blood clotting(4). Despite the pivotal role FVIII plays in coagulation, structural information for its membrane-bound state is incomplete(5). Recombinant FVIII concentrate is the most effective drug against Hemophilia type A and commercially available FVIII can be expressed as human or porcine, both forming functional complexes with human Factor IXa(6,7). In this study we present a combination of Cryo-electron microscopy (Cryo-EM), lipid nanotechnology and structure analysis applied to resolve the membrane-bound structure of two highly homologous FVIII forms: human and porcine. The methodology developed in our laboratory to helically organize the two functional recombinant FVIII forms on negatively charged lipid nanotubes (LNT) is described. The representative results demonstrate that our approach is sufficiently sensitive to define the differences in the helical organization between the two highly homologous in sequence (86% sequence identity) proteins. Detailed protocols for the helical organization, Cryo-EM and electron tomography (ET) data acquisition are given. The two-dimensional (2D) and three-dimensional (3D) structure analysis applied to obtain the 3D reconstructions of human and porcine FVIII-LNT is discussed. The presented human and porcine FVIII-LNT structures show the potential of the proposed methodology to calculate the functional, membrane-bound organization of blood coagulation Factor VIII at high resolution.

  6. Helical Organization of Blood Coagulation Factor VIII on Lipid Nanotubes

    PubMed Central

    Koyfman, Alexey Y.; Grushin, Kirill; Stoilova-McPhie, Svetla

    2014-01-01

    Cryo-electron microscopy (Cryo-EM)1 is a powerful approach to investigate the functional structure of proteins and complexes in a hydrated state and membrane environment2. Coagulation Factor VIII (FVIII)3 is a multi-domain blood plasma glycoprotein. Defect or deficiency of FVIII is the cause for Hemophilia type A - a severe bleeding disorder. Upon proteolytic activation, FVIII binds to the serine protease Factor IXa on the negatively charged platelet membrane, which is critical for normal blood clotting4. Despite the pivotal role FVIII plays in coagulation, structural information for its membrane-bound state is incomplete5. Recombinant FVIII concentrate is the most effective drug against Hemophilia type A and commercially available FVIII can be expressed as human or porcine, both forming functional complexes with human Factor IXa6,7. In this study we present a combination of Cryo-electron microscopy (Cryo-EM), lipid nanotechnology and structure analysis applied to resolve the membrane-bound structure of two highly homologous FVIII forms: human and porcine. The methodology developed in our laboratory to helically organize the two functional recombinant FVIII forms on negatively charged lipid nanotubes (LNT) is described. The representative results demonstrate that our approach is sufficiently sensitive to define the differences in the helical organization between the two highly homologous in sequence (86% sequence identity) proteins. Detailed protocols for the helical organization, Cryo-EM and electron tomography (ET) data acquisition are given. The two-dimensional (2D) and three-dimensional (3D) structure analysis applied to obtain the 3D reconstructions of human and porcine FVIII-LNT is discussed. The presented human and porcine FVIII-LNT structures show the potential of the proposed methodology to calculate the functional, membrane-bound organization of blood coagulation Factor VIII at high resolution. PMID:24961276

  7. Bloodcurdling movies and measures of coagulation: Fear Factor crossover trial

    PubMed Central

    Nemeth, Banne; Scheres, Luuk J J; Lijfering, Willem M

    2015-01-01

    Objective To assess whether, as has been hypothesised since medieval times, acute fear can curdle blood. Design Crossover trial. Setting Main meeting room of Leiden University’s Department of Clinical Epidemiology, the Netherlands, converted to a makeshift cinema. Participants 24 healthy volunteers aged ≤30 years recruited among students, alumni, and employees of the Leiden University Medical Center: 14 were assigned to watch a frightening (horror) movie followed by a non-threatening (educational) movie and 10 to watch the movies in reverse order. The movies were viewed more than a week apart at the same time of day and both lasted approximately 90 minutes. Main outcome measures The primary outcome measures were markers, or “fear factors” of coagulation activity: blood coagulant factor VIII, D-dimer, thrombin-antithrombin complexes, and prothrombin fragments 1+2. The secondary outcome was participant reported fear experienced during each movie using a visual analogue fear scale. Results All participants completed the study. The horror movie was perceived to be more frightening than the educational movie on a visual analogue fear scale (mean difference 5.4, 95% confidence interval 4.7 to 6.1). The difference in factor VIII levels before and after watching the movies was higher for the horror movie than for the educational movie (mean difference of differences 11.1 IU/dL (111 IU/L), 95% confidence interval 1.2 to 21.0 IU/dL). The effect of either movie on levels of thrombin-antithrombin complexes, D-dimer, and prothrombin fragments 1+2 did not differ. Conclusion Frightening (in this case, horror) movies are associated with an increase of blood coagulant factor VIII without actual thrombin formation in young and healthy adults. Trial registration ClinicalTrials.gov NCT02601053. PMID:26673787

  8. Prevalence of coagulation factor XIII and plasminogen activator inhibitor-1 gene polymorphisms among Egyptian women suffering from unexplained primary recurrent miscarriage.

    PubMed

    Elmahgoub, Iman Rifaat; Afify, Reham Abdelaleem; Abdel Aal, Asmaa Ahmed; El-Sherbiny, Walid Sayed

    2014-06-01

    Recurrent miscarriage (RM) is an obstetric challenge. Polymorphisms of factor XIII (FXIII) and plasminogen activator inhibitor-1 (PAI-1) may cause an imbalance between coagulation and fibrinolysis that can end in RM. The aim of the work was to determine the prevalence of FXIII Val34Leu and PAI-1 4G/5G gene polymorphisms in Egyptian women presenting with unexplained primary first trimester RM. Genotyping of 120 unexplained primary first trimester RM patients and 130 healthy controls by polymerase chain reaction (PCR) amplification of target genes followed by the allele-specific restriction enzyme digestion (RFLP technique). Among the cases, 67.5% of individuals had wild-type FXIII; 21.7% were heterozygous and 10.8% were homozygous for the FXIII Val34Leu polymorphism. Among controls, the proportions were 89.2%, 8.5% and 2.3% respectively. In addition, comparison between the two groups regarding Leu and 4G allele frequencies showed statistically significant differences (P values=0.0001 and 0.027 respectively). RM is more frequent in women with combined polymorphisms than in women with a single gene polymorphism (RR=3.91; OR=4.51; 95% CI=1.79-11.38; P=0.002). FXIII Val34Leu and PAI-1 4G/5G polymorphisms are prevalent in Egyptian women, with unexplained primary first trimester RM and combined polymorphisms statistically increasing the risk.

  9. Activation of coagulation and angiogenesis in cancer: immunohistochemical localization in situ of clotting proteins and vascular endothelial growth factor in human cancer.

    PubMed Central

    Shoji, M.; Hancock, W. W.; Abe, K.; Micko, C.; Casper, K. A.; Baine, R. M.; Wilcox, J. N.; Danave, I.; Dillehay, D. L.; Matthews, E.; Contrino, J.; Morrissey, J. H.; Gordon, S.; Edgington, T. S.; Kudryk, B.; Kreutzer, D. L.; Rickles, F. R.

    1998-01-01

    Thrombin-catalyzed, cross-linked fibrin (XLF) formation is a characteristic histopathological finding in many human and experimental tumors and is thought to be of importance in the local host defense response. Although the pathogenesis of tumor-associated fibrin deposition is not entirely clear, several tumor procoagulants have been described as likely primary stimuli for the generation of thrombin (and XLF) in the tumor microenvironment (TME). In a previous study of a variety of human tumors we have shown that tissue factor (TF) is the major procoagulant. However, the relative contribution to fibrin deposition in the TME of tumor cell TF and host cell TF (eg, macrophage-derived) was not established. In addition, recent evidence has implicated TF in the regulation of the synthesis of the pro-angiogenic factor vascular endothelial growth factor (VEGF) by tumor cells. In the current study we used in situ techniques to determine the cellular localization of XLF, TF, VEGF, and an alternative tumor procoagulant, so-called cancer procoagulant (CP), a cysteine protease that activates clotting factor X. In lung cancer we have found XLF localized predominantly to the surface of tumor-associated macrophages, as well as to some endothelial cells and perivascular fibroblasts in the stromal area of the tumors co-distributed with TF at the interface of the tumor and host cells. Cancer pro-coagulant was localized to tumor cells in several cases but not in conjunction with the deposition of XLF. TF and VEGF were co-localized in both lung cancer and breast cancer cells by in situ hybridization and immunohistochemical staining. Furthermore, a strong relationship was found between the synthesis of TF and VEGF levels in human breast cancer cell lines (r2 = 0.84; P < 0.0001). Taken together, these data are consistent with a highly complex interaction between tumor cells, macrophages, and endothelial cells in the TME leading to fibrin formation and tumor angiogenesis. Images Figure 1

  10. Proteolytic processing of human coagulation factor IX by plasmin.

    PubMed

    Samis, J A; Ramsey, G D; Walker, J B; Nesheim, M E; Giles, A R

    2000-02-01

    Previous studies have shown that thrombin generation in vivo caused a 92% decrease in factor IX (F.IX) activity and the appearance of a cleavage product after immunoblotting that comigrated with activated F.IX (F.IXa). Under these conditions, the fibrinolytic system was clearly activated, suggesting plasmin may have altered F.IX. Thus, the effect(s) of plasmin on human F.IX was determined in vitro. Plasmin (50 nM) decreased the 1-stage clotting activity of F.IX (4 microM) by 80% and the activity of F.IXa (4 microM) by 50% after 30 minutes at 37 degrees C. Plasmin hydrolysis of F.IX yields products of 45, 30, 20, and 14 kd on reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 2 products of 52 and 14 kd under nonreducing conditions. Plasmin-treated F.IX did not bind the active site probe, p-aminobenzamidine, or form an SDS-stable complex with antithrombin. It only marginally activated human factor X in the presence of phospholipid and activated factor VIII. Although dansyl-Glu-Gly-Arg-chloromethyl ketone inactivated-F. IXa inhibited the clotting activity of F.IXa, plasmin-treated F.IX did not. Plasmin cleaves F.IX after Lys43, Arg145, Arg180, Lys316, and Arg318, but F.IXa is not appreciably generated despite cleavage at the 2 normal activation sites (Arg145 and Arg180). Tissue plasminogen activator-catalyzed lysis of fibrin formed in human plasma results in generation of the 45- and 30-kd fragments of F.IX and decreased F.IX clotting activity. Collectively, the results suggest that plasmin is able to down-regulate coagulation by inactivating F.IX. PMID:10648407

  11. The Organophosphate Paraoxon and Its Antidote Obidoxime Inhibit Thrombin Activity and Affect Coagulation In Vitro

    PubMed Central

    Golderman, Valery; Shavit-Stein, Efrat; Tamarin, Ilia; Rosman, Yossi; Shrot, Shai; Rosenberg, Nurit

    2016-01-01

    Organophosphates (OPs) are potentially able to affect serine proteases by reacting with their active site. The potential effects of OPs on coagulation factors such as thrombin and on coagulation tests have been only partially characterized and potential interactions with OPs antidotes such as oximes and muscarinic blockers have not been addressed. In the current study, we investigated the in vitro interactions between coagulation, thrombin, the OP paraoxon, and its antidotes obidoxime and atropine. The effects of these substances on thrombin activity were measured in a fluorescent substrate and on coagulation by standard tests. Both paraoxon and obidoxime but not atropine significantly inhibited thrombin activity, and prolonged prothrombin time, thrombin time, and partial thromboplastin time. When paraoxon and obidoxime were combined, a significant synergistic effect was found on both thrombin activity and coagulation tests. In conclusion, paraoxon and obidoxime affect thrombin activity and consequently alter the function of the coagulation system. Similar interactions may be clinically relevant for coagulation pathways in the blood and possibly in the brain. PMID:27689805

  12. Detection of activation of the contact system of coagulation in vitro and in vivo: quantitation of activated Hageman factor-C-1-inhibitor and kallikrein-C-1-inhibitor complexes by specific radioimmunoassays.

    PubMed

    Nuijens, J H; Huijbregts, C C; Cohen, M; Navis, G O; de Vries, A; Eerenberg, A J; Bakker, J C; Hack, C E

    1987-08-01

    Radioimmunoassays (RIAs) for the detection of C-1-inhibitor (C-1-Inh) complexed to either kallikrein or activated Hageman factor (factor XIIa) are described. Kallikrein-C-1-Inh or factor XIIa-C-1-Inh complexes were bound to Sepharose to which monospecific antibodies against (pre)kallikrein or factor XII, respectively, were coupled. Bound complexes were subsequently detected by an incubation with affinity purified 125I-labeled antibodies against C-1-Inh. These RIAs were used to detect activation of the contact system of coagulation in vitro and in vivo. Addition of dextran sulfate (DXS) (20 micrograms/ml) to fresh plasma resulted at 37 degrees C in the rapid generation of amidolytic kallikrein activity, which was maximal after 1 to 2 min of incubation and subsequently decreased within a few minutes. The generation of kallikrein activity coincided with the appearance of both kallikrein-C-1-Inh and factor XIIa-C-1-Inh complexes. However, in contrast to kallikrein activity, both types of complexes remained detectable in the incubation mixtures during the incubation period. Experiments with purified kallikrein. C-1-Inh and partly purified beta-factor XIIa, and activation experiments in plasmas deficient in either factor XII or prekallikrein, demonstrated the specificity of both RIAs. The minimal amount of DXS that resulted in the generation of measurable amounts of both types of complexes in plasma was 2-3 micrograms per ml. Similar experiments with kaolin showed that with limiting amounts of activator (1-2 mg/ml), only kallikrein-C-1-Inh complexes were detected in plasma. When larger amounts of kaolin were added to plasma, factor XIIa-C-1-Inh complexes were additionally detected in plasma.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Abnormal factor VIII coagulant antigen in patients with renal dysfunction and in those with disseminated intravascular coagulation.

    PubMed Central

    Weinstein, M J; Chute, L E; Schmitt, G W; Hamburger, R H; Bauer, K A; Troll, J H; Janson, P; Deykin, D

    1985-01-01

    Factor VIII antigen (VIII:CAg) exhibits molecular weight heterogeneity in normal plasma. We have compared the relative quantities of VIII:CAg forms present in normal individuals (n = 22) with VIII:CAg forms in renal dysfunction patients (n = 19) and in patients with disseminated intravascular coagulation (DIC; n = 7). In normal plasma, the predominant VIII: CAg form, detectable by sodium dodecyl sulfate polyacrylamide gel electrophoresis, was of molecular weight 2.4 X 10(5), with minor forms ranging from 8 X 10(4) to 2.6 X 10(5) D. A high proportion of VIII:CAg in renal dysfunction patients, in contrast, was of 1 X 10(5) mol wt. The patients' high 1 X 10(5) mol wt VIII: CAg level correlated with increased concentrations of serum creatinine, F1+2 (a polypeptide released upon prothrombin activation), and with von Willebrand factor. Despite the high proportion of the 1 X 10(5) mol wt VIII:CAg form, which suggests VIII:CAg proteolysis, the ratio of Factor VIII coagulant activity to total VIII:CAg concentration was normal in renal dysfunction patients. These results could be simulated in vitro by thrombin treatment of normal plasma, which yielded similar VIII:CAg gel patterns and Factor VIII coagulant activity to antigen ratios. DIC patients with high F1+2 levels but no evidence of renal dysfunction had an VIII:CAg gel pattern distinct from renal dysfunction patients. DIC patients had elevated concentrations of both the 1 X 10(5) and 8 X 10(4) mol wt VIII:CAg forms. We conclude that an increase in a particular VIII:CAg form correlates with the severity of renal dysfunction. The antigen abnormality may be the result of VIII:CAg proteolysis by a thrombinlike enzyme and/or prolonged retention of proteolyzed VIII:CAg fragments. Images PMID:3932466

  14. The role of factor XI in coagulation: a matter of revision.

    PubMed

    Minnema, M C; Ten Cate, H; Hack, C E

    1999-01-01

    In 1991 it was demonstrated that, besides factor XII, thrombin is capable of activating factor XI in vitro. Thrombin-dependent activation of factor XI is an integral part of the revised theoretical model of coagulation in which coagulation is initiated by the extrinsic pathway and maintained by thrombin-induced activation of clotting factors V, VIII, and XI. In this review, special interest is given to the new role of factor XI in coagulation, with emphasise on data supporting the concept of thrombin-mediated factor XI activation in vivo. Furthermore, activation of factor XI in human disease, especially atherosclerotic disease, measured by newly developed immunologic assays, is discussed. The relation of factor XI to fibrinolysis through activation of the carboxypeptidase, thrombin-activatable fibrinolysis inhibitor (TAFI) by thrombin provides an explanation for the bleeding tendency observed in factor XI-deficient patients. The probable link with factor XI-mediated TAFI activation may have clinical and therapeutic consequences and deserves further study.

  15. Removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from water by coagulation: mechanisms and influencing factors.

    PubMed

    Bao, Yueping; Niu, Junfeng; Xu, Zesheng; Gao, Ding; Shi, Jianghong; Sun, Xiaomin; Huang, Qingguo

    2014-11-15

    In this study, alum (Al2(SO4)3⋅18H2O), ferric chloride (FeCl3⋅6H2O) and polyaluminium chloride (PACl) were used to remove perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from water. The influencing factors, including pH and natural organic matter (NOM), were investigated. A positive correlation was found between the size of the flocs and the removal efficiency of PFOX (X=S and A). The removal ratios of PFOS and PFOA were 32% and ∼12%, respectively, when 50 mg/L of FeCl3⋅6H2O was added as the coagulant at the initial pH. Coagulation achieved high removal ratios for PFOX under acidic conditions (∼47.6% and 94.7% for PFOA and PFOS at pH 4, respectively). In addition, increasing NOM concentrations decreased the removal rates of PFOX because of the existence of competitive adsorption between NOM molecules and PFOX on the surface of the coagulants and flocs. The combination of adsorption by powdered activated carbon (PAC) and coagulation increased the removal ratios up to >90% for PFOX at the initial concentration of 1mg/L, implying that the adsorption enhanced coagulation. Meantime, the experiments with natural water showed that coagulation is a feasible method to remove PFOS and PFOA from surface water. PMID:25168583

  16. Removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from water by coagulation: mechanisms and influencing factors.

    PubMed

    Bao, Yueping; Niu, Junfeng; Xu, Zesheng; Gao, Ding; Shi, Jianghong; Sun, Xiaomin; Huang, Qingguo

    2014-11-15

    In this study, alum (Al2(SO4)3⋅18H2O), ferric chloride (FeCl3⋅6H2O) and polyaluminium chloride (PACl) were used to remove perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from water. The influencing factors, including pH and natural organic matter (NOM), were investigated. A positive correlation was found between the size of the flocs and the removal efficiency of PFOX (X=S and A). The removal ratios of PFOS and PFOA were 32% and ∼12%, respectively, when 50 mg/L of FeCl3⋅6H2O was added as the coagulant at the initial pH. Coagulation achieved high removal ratios for PFOX under acidic conditions (∼47.6% and 94.7% for PFOA and PFOS at pH 4, respectively). In addition, increasing NOM concentrations decreased the removal rates of PFOX because of the existence of competitive adsorption between NOM molecules and PFOX on the surface of the coagulants and flocs. The combination of adsorption by powdered activated carbon (PAC) and coagulation increased the removal ratios up to >90% for PFOX at the initial concentration of 1mg/L, implying that the adsorption enhanced coagulation. Meantime, the experiments with natural water showed that coagulation is a feasible method to remove PFOS and PFOA from surface water.

  17. [Roles of coagulation pathway and factor Xa in chronic kidney disease (CKD)].

    PubMed

    Ono, Takahiko

    2012-01-01

    Considering that fibrin deposition is observed in glomerulonephritis as well as in diabetic nephropathy, we performed studies to clarify the roles of the coagulation pathway and the active type of coagulation factor X (factor Xa) in the development of chronic kidney disease (CKD) using animal models. Factor Xa activates various cell types through protease-activated receptor 2 (PAR2). Several in vitro studies have demonstrated that PAR2 can mediate factor Xa signaling, but not thrombin signaling. Coagulation processes proceed together with the extracellular matrix (ECM) accumulation through factor V expression in rat Thy-1 nephritis. DX-9065a, a factor Xa inhibitor, suppresses this type of glomerulonephritis. The factor Xa inhibitor danaparoid ameliorated proteinuria, cellular proliferation, and fibrin deposition in lipopolysaccharide (LPS)-triggered activation of High IgA (HIGA) strain of ddY mice. Another factor Xa inhibitor, fondaparinux, suppressed urinary protein, glomerular hypertrophy, and connective tissue growth factor (CTGF), and ECM protein deposition together with angiogenesis in diabetic db/db mice. Finally, in the model of peritoneal fibrosis, fondaparinux treatment decreased the thickness of submesothelial fibrotic tissue and angiogenesis. In consideration of the results to potential human therapy, factor Xa regulation may be promising for the treatment of the aggravation in glomerulonephritis and of the early phase of diabetic nephropathy. In the near future, novel factor Xa inhibitors with the characteristics of oral administration and biliary elimination may appear in the clinical use for treatment of cardiovascular diseases. PMID:22465921

  18. Utilization Patterns of Coagulation Factor Consumption for Patients with Hemophilia.

    PubMed

    Lee, Soo Ok; Yu, Su-Yeon

    2016-01-01

    Hemophilia is a serious rare disease that requires continuous management and treatment for which the medicine is costly at the annual average of 100 million KRW for an individual. The aim of this study was to investigate trends in the utilization of coagulation factor (CF) used for hemophilia treatment using the National Health Insurance database from 2010 to 2013 in Korea and compare the utilization of CF with other countries. The consumption of CF per capita (IU) in Korea was not more than other countries with similar income to Korea. However, CF usage per patient IU was higher because the prevalence rate of hemophilia in Korea was lower than in other countries while the number of serious patients was much more. Therefore, it is difficult to say that the consumption of hemophilia medicine in Korea is higher than that in other countries. The consumption and cost of hemophilia medicine in Korea is likely to increase due to the increased utilization of expensive bypassing agents and the widespread use of prophylaxis for severe hemophilia. Even during the research period, it increased slightly and other countries show a similar trend. Thus, hemophilia patient management should accompany active monitoring on the health and cost outcomes of pharmaceutical treatment in the future. This study is expected to contribute to further insight into drug policies for other countries that face similar challenges with high price pharmaceuticals.

  19. Utilization Patterns of Coagulation Factor Consumption for Patients with Hemophilia.

    PubMed

    Lee, Soo Ok; Yu, Su-Yeon

    2016-01-01

    Hemophilia is a serious rare disease that requires continuous management and treatment for which the medicine is costly at the annual average of 100 million KRW for an individual. The aim of this study was to investigate trends in the utilization of coagulation factor (CF) used for hemophilia treatment using the National Health Insurance database from 2010 to 2013 in Korea and compare the utilization of CF with other countries. The consumption of CF per capita (IU) in Korea was not more than other countries with similar income to Korea. However, CF usage per patient IU was higher because the prevalence rate of hemophilia in Korea was lower than in other countries while the number of serious patients was much more. Therefore, it is difficult to say that the consumption of hemophilia medicine in Korea is higher than that in other countries. The consumption and cost of hemophilia medicine in Korea is likely to increase due to the increased utilization of expensive bypassing agents and the widespread use of prophylaxis for severe hemophilia. Even during the research period, it increased slightly and other countries show a similar trend. Thus, hemophilia patient management should accompany active monitoring on the health and cost outcomes of pharmaceutical treatment in the future. This study is expected to contribute to further insight into drug policies for other countries that face similar challenges with high price pharmaceuticals. PMID:26770035

  20. The polyphosphate–factor XII pathway drives coagulation in prostate cancer-associated thrombosis

    PubMed Central

    Nickel, Katrin F.; Ronquist, Göran; Langer, Florian; Labberton, Linda; Fuchs, Tobias A.; Bokemeyer, Carsten; Sauter, Guido; Graefen, Markus; Mackman, Nigel; Stavrou, Evi X.; Ronquist, Gunnar

    2015-01-01

    Cancer is a leading cause of thrombosis. We identify a new procoagulant mechanism that contributes to thromboembolism in prostate cancer and allows for safe anticoagulation therapy development. Prostate cancer-mediated procoagulant activity was reduced in plasma in the absence of factor XII or its substrate of the intrinsic coagulation pathway factor XI. Prostate cancer cells and secreted prostasomes expose long chain polyphosphate on their surface that colocalized with active factor XII and initiated coagulation in a factor XII-dependent manner. Polyphosphate content correlated with the procoagulant activity of prostasomes. Inherited deficiency in factor XI or XII or high-molecular-weight kininogen, but not plasma kallikrein, protected mice from prostasome-induced lethal pulmonary embolism. Targeting polyphosphate or factor XII conferred resistance to prostate cancer-driven thrombosis in mice, without increasing bleeding. Inhibition of factor XII with recombinant 3F7 antibody reduced the increased prostasome-mediated procoagulant activity in patient plasma. The data illustrate a critical role for polyphosphate/factor XII-triggered coagulation in prostate cancer-associated thrombosis with implications for anticoagulation without therapy-associated bleeding in malignancies. PMID:26153520

  1. Congenital combined deficiency of coagulation factors: a study of seven patients.

    PubMed

    Naderi, Majid; Tabibian, Shadi; Hosseini, Maryam Sadat; Alizadeh, Shaban; Hosseini, Soudabeh; Shamsizadeh, Morteza; Dorgalaleh, Akbar

    2015-01-01

    Combined deficiency of coagulation factors is considered as an extremely rare bleeding disorder (RBD) inherited in an autosomal recessive pattern. This disorder is more likely to occur in regions with a high rate of consanguineous marriages or in restricted communities. Sistan and Baluchistan, a province in southeast of Iran with a high rate of consanguinity, is a clear model of such regions with a very high prevalence of recessively inherited disorders. The aim of this study was to report the frequency of combined factor deficiency in this province. This descriptive study was conducted on 358 patients with RBD. Demographic information and medical history of each patient were recorded, and the patients were examined by a physician. Routine screening tests were carried out for all patients, and further coagulation tests including coagulation factor activity and antigen assays were subsequently performed for all suspected patients. Among 358 patients, four were found to be affected with combined factor (F)V and FVIII deficiency (F5F8D). In addition, one patient with combined deficiency of FVII-FXIII, one with combined FVII-FX and one with combined FVIII-FIX deficiency were identified. In Sistan and Baluchistan Province, coinheritance of recessively inherited disorders like combined coagulation factor deficiencies was surprisingly higher than expected.

  2. Quality control in the development of coagulation factor concentrates.

    PubMed

    Snape, T J

    1987-01-01

    Limitation of process change is a major factor contributing to assurance of quality in pharmaceutical manufacturing. This is particularly true in the manufacture of coagulation factor concentrates, for which presumptive testing for poorly defined product characteristics is an integral feature of finished product quality control. The development of new or modified preparations requires that this comfortable position be abandoned, and that the effect on finished product characteristics of changes to individual process steps (and components) be assessed. The degree of confidence in the safety and efficacy of the new product will be determined by, amongst other things, the complexity of the process alteration and the extent to which the results of finished product tests can be considered predictive. The introduction of a heat-treatment step for inactivation of potential viral contaminants in coagulation factor concentrates presents a significant challenge in both respects, quite independent of any consideration of assessment of the effectiveness of the viral inactivation step. These interactions are illustrated by some of the problems encountered with terminal dry heat-treatment (72 h. at 80 degrees C) of factor VIII and prothrombin complex concentrates manufactured by the Blood Products Laboratory.

  3. TREATMENT OF LANDFILL LEACHATE BY COUPLING COAGULATION-FLOCCULATION OR OZONATION TO GRANULAR ACTIVATED CARBON ADSORPTION.

    PubMed

    Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim; Demeestere, Kristof; Van Hulle, Stijn W H

    2015-01-01

    A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate prior to granular activated carbon (GAC) adsorption. The efficiency of the pre treatment techniques is evaluated using COD and UVA254 measurements. For coagulation- flocculation, different chemicals are compared and optimal dosages are determined. After this, iron (III) chloride is selected for subsequent adsorption studies due to its high percentage of COD and UVA254 removal and good sludge settle-ability. Our finding show that ozonation as a single treatment is effective in reducing COD in landfill leachate by 66% compared to coagulation flocculation (33%). Meanwhile, coagulation performs better in UVA254 reduction than ozonation. Subsequent GAC adsorption of ozonated effluent, coagulated effluent and untreated leachate resulted in 77%, 53% and 8% total COD removal respectively (after 6 bed volumes). The effect of the pre-treatment techniques on GAC adsorption properties is evaluated experimentally and mathematically using Thomas and Yoon-Nelson models. Mathematical modelling of the experimental GAC adsorption data shows that ozonation increases the adsorption capacity and break through time with a factor of 2.5 compared to coagulation-flocculation. PMID:26630756

  4. TREATMENT OF LANDFILL LEACHATE BY COUPLING COAGULATION-FLOCCULATION OR OZONATION TO GRANULAR ACTIVATED CARBON ADSORPTION.

    PubMed

    Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim; Demeestere, Kristof; Van Hulle, Stijn W H

    2015-01-01

    A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate prior to granular activated carbon (GAC) adsorption. The efficiency of the pre treatment techniques is evaluated using COD and UVA254 measurements. For coagulation- flocculation, different chemicals are compared and optimal dosages are determined. After this, iron (III) chloride is selected for subsequent adsorption studies due to its high percentage of COD and UVA254 removal and good sludge settle-ability. Our finding show that ozonation as a single treatment is effective in reducing COD in landfill leachate by 66% compared to coagulation flocculation (33%). Meanwhile, coagulation performs better in UVA254 reduction than ozonation. Subsequent GAC adsorption of ozonated effluent, coagulated effluent and untreated leachate resulted in 77%, 53% and 8% total COD removal respectively (after 6 bed volumes). The effect of the pre-treatment techniques on GAC adsorption properties is evaluated experimentally and mathematically using Thomas and Yoon-Nelson models. Mathematical modelling of the experimental GAC adsorption data shows that ozonation increases the adsorption capacity and break through time with a factor of 2.5 compared to coagulation-flocculation.

  5. Influence of natural coagulants on isoflavones and antioxidant activity of tofu.

    PubMed

    Rekha, C R; Vijayalakshmi, G

    2010-08-01

    Tofu (instead of preparing using synthetic coagulant) was prepared using coagulants of plant origin (Citrus limonum, Garcinia indica, Tamarindus indica, Phyllanthus acidus and Passiflora edulis). Total crude protein and fat contents were highest in tofu prepared using G. indica and T. indica (72.5% dbw) compared to synthetic coagulant. Tofu prepared with natural coagulants had signifi cantly higher antioxidant activity compared to synthetic coagulant. Bioconversion of isoflavone glucosides (daidzin and genistin) into their corresponding bioactive aglycones (daidzein and genistein) was observed in tofu. The difference between glucosides and aglycones contents in soy milk was significant but there was not much difference in tofu coagulated with synthetic and natural coagulants.

  6. Combined deficiency of coagulation factors V and VIII: an update.

    PubMed

    Zheng, Chunlei; Zhang, Bin

    2013-09-01

    Combined deficiency of factor V (FV) and FVIII (F5F8D) is an autosomal recessive bleeding disorder characterized by simultaneous decreases of both coagulation factors. This review summarizes recent reports on the clinical presentations, treatments, and molecular mechanism of F5F8D. Genetic studies identified LMAN1 and MCFD2 as causative genes for this disorder, revealing a previously unknown intracellular transport pathway shared by the two important blood coagulation factors. LMAN1 and MCFD2 form a Ca2+-dependent cargo receptor complex that functions in the transport of FV/FVIII from the endoplasmic reticulum (ER) to the Golgi. Disrupting the LMAN1-MCFD2 receptor, complex formation is the primary molecular defect of missense mutations leading to F5F8D. The EF-hand domains of MCFD2 are necessary and sufficient for the interactions with both LMAN1 and FV/FVIII. Similarly, the carbohydrate recognition domain of LMAN1 contains distinct and separable binding sites for both MCFD2 and FV/FVIII. Therefore, FV and FVIII likely carry duel sorting signals that are separately recognized by LMAN1 and MCFD2 and necessary for the efficient ER-to-Golgi transport. FV and FVIII likely bind LMAN1 through the high-mannose N-linked glycans under the higher Ca2+ conditions in the ER and dissociate in the lower Ca2+ environment of the ER-Golgi intermediate compartment. PMID:23852824

  7. Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting.

    PubMed

    Podoplelova, Nadezhda A; Sveshnikova, Anastasia N; Kotova, Yana N; Eckly, Anita; Receveur, Nicolas; Nechipurenko, Dmitry Yu; Obydennyi, Sergey I; Kireev, Igor I; Gachet, Christian; Ataullakhanov, Fazly I; Mangin, Pierre H; Panteleev, Mikhail A

    2016-09-29

    Binding of coagulation factors to phosphatidylserine (PS)-exposing procoagulant-activated platelets followed by formation of the membrane-dependent enzyme complexes is critical for blood coagulation. Procoagulant platelets formed upon strong platelet stimulation, usually with thrombin plus collagen, are large "balloons" with a small (∼1 μm radius) "cap"-like convex region that is enriched with adhesive proteins. Spatial distribution of blood coagulation factors on the surface of procoagulant platelets was investigated using confocal microscopy. All of them, including factors IXa (FIXa), FXa/FX, FVa, FVIII, prothrombin, and PS-sensitive marker Annexin V were distributed nonhomogeneously: they were primarily localized in the "cap," where their mean concentration was by at least an order of magnitude, higher than on the "balloon." Assembly of intrinsic tenase on liposomes with various PS densities while keeping the PS content constant demonstrated that such enrichment can accelerate this reaction by 2 orders of magnitude. The mechanisms of such acceleration were investigated using a 3-dimensional computer simulation model of intrinsic tenase based on these data. Transmission electron microscopy and focal ion beam-scanning electron microscopy with Annexin V immunogold-labeling revealed a complex organization of the "caps." In platelet thrombi formed in whole blood on collagen under arterial shear conditions, ubiquitous "caps" with increased Annexin V, FX, and FXa binding were observed, indicating relevance of this mechanism for surface-attached platelets under physiological flow. These results reveal an essential heterogeneity in the surface distribution of major coagulation factors on the surface of procoagulant platelets and suggest its importance in promoting membrane-dependent coagulation reactions.

  8. Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting.

    PubMed

    Podoplelova, Nadezhda A; Sveshnikova, Anastasia N; Kotova, Yana N; Eckly, Anita; Receveur, Nicolas; Nechipurenko, Dmitry Yu; Obydennyi, Sergey I; Kireev, Igor I; Gachet, Christian; Ataullakhanov, Fazly I; Mangin, Pierre H; Panteleev, Mikhail A

    2016-09-29

    Binding of coagulation factors to phosphatidylserine (PS)-exposing procoagulant-activated platelets followed by formation of the membrane-dependent enzyme complexes is critical for blood coagulation. Procoagulant platelets formed upon strong platelet stimulation, usually with thrombin plus collagen, are large "balloons" with a small (∼1 μm radius) "cap"-like convex region that is enriched with adhesive proteins. Spatial distribution of blood coagulation factors on the surface of procoagulant platelets was investigated using confocal microscopy. All of them, including factors IXa (FIXa), FXa/FX, FVa, FVIII, prothrombin, and PS-sensitive marker Annexin V were distributed nonhomogeneously: they were primarily localized in the "cap," where their mean concentration was by at least an order of magnitude, higher than on the "balloon." Assembly of intrinsic tenase on liposomes with various PS densities while keeping the PS content constant demonstrated that such enrichment can accelerate this reaction by 2 orders of magnitude. The mechanisms of such acceleration were investigated using a 3-dimensional computer simulation model of intrinsic tenase based on these data. Transmission electron microscopy and focal ion beam-scanning electron microscopy with Annexin V immunogold-labeling revealed a complex organization of the "caps." In platelet thrombi formed in whole blood on collagen under arterial shear conditions, ubiquitous "caps" with increased Annexin V, FX, and FXa binding were observed, indicating relevance of this mechanism for surface-attached platelets under physiological flow. These results reveal an essential heterogeneity in the surface distribution of major coagulation factors on the surface of procoagulant platelets and suggest its importance in promoting membrane-dependent coagulation reactions. PMID:27432876

  9. Coagulation activation in sickle cell trait: an exploratory study.

    PubMed

    Amin, Chirag; Adam, Soheir; Mooberry, Micah J; Kutlar, Abdullah; Kutlar, Ferdane; Esserman, Denise; Brittain, Julia E; Ataga, Kenneth I; Chang, Jen-Yea; Wolberg, Alisa S; Key, Nigel S

    2015-11-01

    Recent epidemiologic data suggest that sickle cell trait (HbAS; AS) is a risk factor for venous thromboembolism. We conducted an exploratory study of healthy subjects with AS under baseline conditions to determine whether a chronic basal hyperactivation of coagulation exists, and if so, what mechanism(s) contribute to this state. Eighteen healthy AS individuals were compared to 22 African-American controls with a normal haemoglobin profile (HbAA; AA) and 17 patients with sickle cell disease (HbSS; SS). Plasma thrombin-antithrombin complexes and D-dimer levels were elevated in AS relative to AA patients (P = 0·0385 and P = 0·017, respectively), and as expected, were much higher in SSversusAA (P < 0·0001 for both). Thrombin generation in platelet poor plasma was indistinguishable between AA and AS subjects, whereas a paradoxical decrease in endogenous thrombin potential was observed in SS (P ≤ 0·0001). Whole blood tissue factor was elevated in SS compared to AA (P = 0·005), but did not differ between AA and AS. Plasma microparticle tissue factor activity was non-significantly elevated in AS (P = 0·051), but was clearly elevated in SS patients (P = 0·004) when compared to AA controls. Further studies in larger cohorts of subjects with sickle cell trait are needed to confirm the results of this preliminary investigation.

  10. Sepsis-induced coagulation in the baboon lung is associated with decreased tissue factor pathway inhibitor.

    PubMed

    Tang, Haiwang; Ivanciu, Lacramioara; Popescu, Narcis; Peer, Glenn; Hack, Erik; Lupu, Cristina; Taylor, Fletcher B; Lupu, Florea

    2007-09-01

    Increased tissue factor (TF)-dependent procoagulant activity in sepsis may be partly due to decreased expression or function of tissue factor pathway inhibitor (TFPI). To test this hypothesis, baboons were infused with live Escherichia coli and sacrificed after 2, 8, or 24 hours. Confocal and electron microscopy revealed increased leukocyte infiltration and fibrin deposition in the intravascular and interstitial compartments. Large amounts of TF were detected by immunostaining in leukocytes and platelet-rich microthrombi. TF induction was documented by quantitative reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, and coagulation assays. Lung-associated TFPI antigen and mRNA decreased during sepsis, and TFPI activity diminished abruptly at 2 hours. Blocking antibodies against TFPI increased fibrin deposition in septic baboon lungs, suggesting that TF-dependent coagulation might be aggravated by reduced endothelial TFPI. Decreased TFPI activity coincided with the release of tissue plasminogen activator and the peak of plasmin generation, suggesting that TFPI could undergo proteolytic inactivation by plasmin. Enhanced plasmin produced in septic baboons by infusion of blocking antibodies against plasminogen activator inhibitor-1 led to decreased lung-associated TFPI and unforeseen massive fibrin deposition. We conclude that activation of TF-driven coagulation not adequately countered by TFPI may underlie the widespread thrombotic complications of sepsis.

  11. Coagulation-induced shedding of platelet glycoprotein VI mediated by factor Xa.

    PubMed

    Al-Tamimi, Mohammad; Grigoriadis, George; Tran, Huy; Paul, Eldho; Servadei, Patricia; Berndt, Michael C; Gardiner, Elizabeth E; Andrews, Robert K

    2011-04-01

    This study evaluated shedding of the platelet collagen receptor, glycoprotein VI (GPVI) in human plasma. Collagen or other ligands induce metalloproteinase-mediated GPVI ectodomain shedding, generating approximately 55-kDa soluble GPVI (sGPVI) and approximately 10-kDa platelet-associated fragments. In the absence of GPVI ligands, coagulation of platelet-rich plasma from healthy persons induced GPVI shedding, independent of added tissue factor, but inhibitable by metalloproteinase inhibitor, GM6001. Factor Xa (FXa) common to intrinsic and tissue factor-mediated coagulation pathways was critical for sGPVI release because (1) shedding was strongly blocked by the FXa-selective inhibitor rivaroxaban but not FIIa (thrombin) inhibitors dabigatran or hirudin; (2) Russell viper venom that directly activates FX generated sGPVI, with complete inhibition by enoxaparin (inhibits FXa and FIIa) but not hirudin; (3) impaired GPVI shedding during coagulation of washed platelets resuspended in FX-depleted plasma was restored by adding purified FX; and (4) purified FXa induced GM6001-inhibitable GPVI shedding from washed platelets. In 29 patients with disseminated intravascular coagulation, mean plasma sGPVI was 53.9 ng/mL (95% confidence interval, 39.9-72.8 ng/mL) compared with 12.5 ng/mL (95% confidence interval, 9.0-17.3 ng/mL) in thrombocytopenic controls (n = 36, P < .0001), and 14.6 ng/mL (95% confidence interval, 7.9-27.1 ng/mL) in healthy subjects (n = 25, P = .002). In conclusion, coagulation-induced GPVI shedding via FXa down-regulates GPVI under procoagulant conditions. FXa inhibitors have an unexpected role in preventing GPVI down-regulation.

  12. Coagulation-induced shedding of platelet glycoprotein VI mediated by factor Xa.

    PubMed

    Al-Tamimi, Mohammad; Grigoriadis, George; Tran, Huy; Paul, Eldho; Servadei, Patricia; Berndt, Michael C; Gardiner, Elizabeth E; Andrews, Robert K

    2011-04-01

    This study evaluated shedding of the platelet collagen receptor, glycoprotein VI (GPVI) in human plasma. Collagen or other ligands induce metalloproteinase-mediated GPVI ectodomain shedding, generating approximately 55-kDa soluble GPVI (sGPVI) and approximately 10-kDa platelet-associated fragments. In the absence of GPVI ligands, coagulation of platelet-rich plasma from healthy persons induced GPVI shedding, independent of added tissue factor, but inhibitable by metalloproteinase inhibitor, GM6001. Factor Xa (FXa) common to intrinsic and tissue factor-mediated coagulation pathways was critical for sGPVI release because (1) shedding was strongly blocked by the FXa-selective inhibitor rivaroxaban but not FIIa (thrombin) inhibitors dabigatran or hirudin; (2) Russell viper venom that directly activates FX generated sGPVI, with complete inhibition by enoxaparin (inhibits FXa and FIIa) but not hirudin; (3) impaired GPVI shedding during coagulation of washed platelets resuspended in FX-depleted plasma was restored by adding purified FX; and (4) purified FXa induced GM6001-inhibitable GPVI shedding from washed platelets. In 29 patients with disseminated intravascular coagulation, mean plasma sGPVI was 53.9 ng/mL (95% confidence interval, 39.9-72.8 ng/mL) compared with 12.5 ng/mL (95% confidence interval, 9.0-17.3 ng/mL) in thrombocytopenic controls (n = 36, P < .0001), and 14.6 ng/mL (95% confidence interval, 7.9-27.1 ng/mL) in healthy subjects (n = 25, P = .002). In conclusion, coagulation-induced GPVI shedding via FXa down-regulates GPVI under procoagulant conditions. FXa inhibitors have an unexpected role in preventing GPVI down-regulation. PMID:21252089

  13. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells

    PubMed Central

    Göbel, Kerstin; Pankratz, Susann; Asaridou, Chloi-Magdalini; Herrmann, Alexander M.; Bittner, Stefan; Merker, Monika; Ruck, Tobias; Glumm, Sarah; Langhauser, Friederike; Kraft, Peter; Krug, Thorsten F.; Breuer, Johanna; Herold, Martin; Gross, Catharina C.; Beckmann, Denise; Korb-Pap, Adelheid; Schuhmann, Michael K.; Kuerten, Stefanie; Mitroulis, Ioannis; Ruppert, Clemens; Nolte, Marc W.; Panousis, Con; Klotz, Luisa; Kehrel, Beate; Korn, Thomas; Langer, Harald F.; Pap, Thomas; Nieswandt, Bernhard; Wiendl, Heinz; Chavakis, Triantafyllos; Kleinschnitz, Christoph; Meuth, Sven G.

    2016-01-01

    Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. PMID:27188843

  14. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells.

    PubMed

    Göbel, Kerstin; Pankratz, Susann; Asaridou, Chloi-Magdalini; Herrmann, Alexander M; Bittner, Stefan; Merker, Monika; Ruck, Tobias; Glumm, Sarah; Langhauser, Friederike; Kraft, Peter; Krug, Thorsten F; Breuer, Johanna; Herold, Martin; Gross, Catharina C; Beckmann, Denise; Korb-Pap, Adelheid; Schuhmann, Michael K; Kuerten, Stefanie; Mitroulis, Ioannis; Ruppert, Clemens; Nolte, Marc W; Panousis, Con; Klotz, Luisa; Kehrel, Beate; Korn, Thomas; Langer, Harald F; Pap, Thomas; Nieswandt, Bernhard; Wiendl, Heinz; Chavakis, Triantafyllos; Kleinschnitz, Christoph; Meuth, Sven G

    2016-05-18

    Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein-kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders.

  15. SV-IV Peptide1–16 reduces coagulant power in normal Factor V and Factor V Leiden

    PubMed Central

    Di Micco, Biagio; Lepretti, Marilena; Rota, Lidia; Quaglia, Ilaria; Ferrazzi, Paola; Di Micco, Gianluca; Di Micco, Pierpaolo

    2007-01-01

    Native Factor V is an anticoagulant, but when activated by thrombin, Factor X or platelet proteases, it becomes a procoagulant. Due to these double properties, Factor V plays a crucial role in the regulation of coagulation/anticoagulation balance. Factor V Leiden (FVL) disorder may lead to thrombophilia. Whether a reduction in the activation of Factor V or Factor V Leiden may correct the disposition to thrombophilia is unknown. Therefore we tested SV-IV Peptide 1–16 (i.e. a peptide derived by seminal protein vescicle number IV, SV-IV) to assess its capacity to inhibit the procoagulant activity of normal clotting factor V or Factor V Leiden (FVL). We found that SV-IV protein has potent anti-inflammatory and immunomodulatory properties and also exerts procoagulant activity. In the present work we show that the SV-IV Peptide 1–16, incubated with plasma containing normal Factor V or FVL plasma for 5 minutes reduces the procoagulant capacity of both substances. This is an anticoagulant effect whereas SV-IV protein is a procoagulant. This activity is effective both in terms of the coagulation tests, where coagulation times are increased, and in terms of biochemical tests conducted with purified molecules, where Factor X activation is reduced. Peptide 1–16 was, in the pure molecule system, first incubated for 5 minutes with purified Factor V then it was added to the mix of phosphatidylserine, Ca2+, Factor X and its chromogenic molecule Chromozym X. We observed a more than 50% reduction in lysis of chromogenic molecule Chromozym X by Factor Xa, compared to the sample without Peptide 1–16. Such reduction in Chromozym X lysis, is explained with the reduced activation of Factor X by partial inactivation of Factor V by Peptide 1–16. Thus our study demonstrates that Peptide 1–16 reduces the coagulation capacity of Factor V and Factor V Leiden in vitro, and, in turn, causes factor X reduced activation. PMID:18154667

  16. Studies on a family with combined functional deficiencies of vitamin K-dependent coagulation factors.

    PubMed Central

    Goldsmith, G H; Pence, R E; Ratnoff, O D; Adelstein, D J; Furie, B

    1982-01-01

    Two siblings with m ild hemorrhagic symptoms had combined functional deficiencies of vitamin K-dependent clotting factors. Prothrombin (0.18-0.20 U/ml) and Stuart factor (Factor X, 0.18-0.20 U/ml) and Stuart factor (Factor X, 0.18-0.20 U/ml) were most severely affected. Antigenic amounts of affected coagulation factors were normal and normal generation of thrombin activity occurred in the patients' plasmas after treatment with nonophysiologic activators that do not require calcium for prothrombin activation. Hepatobilary disease, malabsorptive disorders, and plasma warfarin were not present. Both parents had normal levels of all coagulation factors. The patients' plasmas contained prothrombin that reacted both with antibody directed against des-gamma-carboxyprothrombin and native prothrombin. Crossed immunoelectrophoresis of patients' plasmas and studies of partially purified patient prothrombin suggested the presence of a relatively homogeneous species of dysfunctional prothrombin, distinct from the heterologous species found in the plasma of warfarin-treated persons. These studies are most consistent with a posttranslational defect in hepatic carboxylation of vitamin K-dependent factors. This kindred uniquely possesses an autosomal recessive disorder of vitamin K-dependent factor formation that causes production of an apparently homogeneous species of dysfunctional prothrombin; the functional deficiencies in clotting factors are totally corrected by oral or parenteral administration of vitamin K1. Images PMID:7085873

  17. Measurement of Blood Coagulation Factor Synthesis in Cultures of Human Hepatocytes.

    PubMed

    Heinz, Stefan; Braspenning, Joris

    2015-01-01

    An important function of the liver is the synthesis and secretion of blood coagulation factors. Within the liver, hepatocytes are involved in the synthesis of most blood coagulation factors, such as fibrinogen, prothrombin, factor V, VII, IX, X, XI, XII, as well as protein C and S, and antithrombin, whereas liver sinusoidal endothelial cells produce factor VIII and von Willebrand factor. Here, we describe methods for the detection and quantification of most blood coagulation factors in hepatocytes in vitro. Hepatocyte cultures indeed provide a valuable tool to study blood coagulation factors. In addition, the generation and expansion of hepatocytes or hepatocyte-like cells may be used in future for cell-based therapies of liver diseases, including blood coagulation factor deficiencies.

  18. Coagulation factor Xa drives tumor cells into apoptosis through BH3-only protein Bim up-regulation

    SciTech Connect

    Borensztajn, Keren S. . E-mail: K.S.Borensztajn@amc.uva.nl; Bijlsma, Maarten F.; Groot, Angelique P.; Brueggemann, Lois W.; Versteeg, Henri H.; Reitsma, Pieter H.; Peppelenbosch, Maikel P.; Spek, C. Arnold

    2007-07-15

    Coagulation Factor (F)Xa is a serine protease that plays a crucial role during blood coagulation by converting prothrombin into active thrombin. Recently, however, it emerged that besides this role in coagulation, FXa induces intracellular signaling leading to different cellular effects. Here, we show that coagulation factor (F)Xa drives tumor cells of epithelial origin, but not endothelial cells or monocytes, into apoptosis, whereas it even enhances fibroblast survival. FXa signals through the protease activated receptor (PAR)-1 to activate extracellular-signal regulated kinase (ERK) 1/2 and p38. This activation is associated with phosphorylation of the transcription factor CREB, and in tumor cells with up-regulation of the BH3-only pro-apoptotic protein Bim, leading to caspase-3 cleavage, the main hallmark of apoptosis. Transfection of tumor cells with dominant negative forms of CREB or siRNA for either PAR-1, Bim, ERK1 and/or p38 inhibited the pro-apoptotic effect of FXa. In fibroblasts, FXa-induced PAR-1 activation leads to down-regulation of Bim and pre-treatment with PAR-1 or Bim siRNA abolishes proliferation. We thus provide evidence that beyond its role in blood coagulation, FXa plays a key role in cellular processes in which Bim is the central player in determining cell survival.

  19. Physiological levels of blood coagulation factors IX and X control coagulation kinetics in an in vitro model of circulating tissue factor

    NASA Astrophysics Data System (ADS)

    Tormoen, Garth W.; Khader, Ayesha; Gruber, András; McCarty, Owen J. T.

    2013-06-01

    Thrombosis significantly contributes to cancer morbidity and mortality. The mechanism behind thrombosis in cancer may be circulating tissue factor (TF), as levels of circulating TF are associated with thrombosis. However, circulating TF antigen level alone has failed to predict thrombosis in patients with cancer. We hypothesize that coagulation factor levels regulate the kinetics of circulating TF-induced thrombosis. Coagulation kinetics were measured as a function of individual coagulation factor levels and TF particle concentration. Clotting times increased when pooled plasma was mixed at or above a ratio of 4:6 with PBS. Clotting times increased when pooled plasma was mixed at or above a ratio of 8:2 with factor VII-depleted plasma, 7:3 with factor IX- or factor X-depleted plasmas, or 2:8 with factor II-, V- or VIII-depleted plasmas. Addition of coagulation factors VII, X, IX, V and II to depleted plasmas shortened clotting and enzyme initiation times, and increased enzyme generation rates in a concentration-dependent manner. Only additions of factors IX and X from low-normal to high-normal levels shortened clotting times and increased enzyme generation rates. Our results demonstrate that coagulation kinetics for TF particles are controlled by factor IX and X levels within the normal physiological range. We hypothesize that individual patient factor IX and X levels may be prognostic for susceptibility to circulating TF-induced thrombosis.

  20. Physiological levels of blood coagulation factors IX and X control coagulation kinetics in an in vitro model of circulating tissue factor

    PubMed Central

    Tormoen, Garth W.; Khader, Ayesha; Gruber, András; McCarty, Owen J.T.

    2013-01-01

    Thrombosis significantly contributes to cancer morbidity and mortality. The mechanism behind thrombosis in cancer may be circulating tissue factor (TF), as levels of circulating TF are associated with thrombosis. However, circulating TF antigen level alone has failed to predict thrombosis in patients with cancer. We hypothesize that coagulation factor levels regulate the kinetics of circulating TF-induced thrombosis. Coagulation kinetics were measured as a function of individual coagulation factor levels and TF particle concentration. Clotting times increased when pooled plasma was mixed at or above a ratio of 4:6 with PBS. Clotting times increased when pooled plasma was mixed at or above a ratio of 8:2 with factor VII-depleted plasma, 7:3 with factor IX- or factor X-depleted plasmas, or 2:8 with factor II-, V- or VIII-depleted plasmas. Addition of coagulation factors VII, X, IX, V and II to depleted plasmas shortened clotting and enzyme initiation times, and increased enzyme generation rates in a concentration-dependent manner. Only additions of factors IX and X from low-normal to high-normal levels shortened clotting times and increased enzyme generation rates. Our results demonstrate that coagulation kinetics for TF particles are controlled by factor IX and X levels within the normal physiological range. We hypothesize that individual patient factor IX and X levels may be prognostic for susceptibility to circulating TF-induced thrombosis. PMID:23585459

  1. Computational study of coagulation factor VIIa's affinity for phospholipid membranes.

    PubMed

    Taboureau, Olivier; Olsen, Ole Hvilsted

    2007-02-01

    The interaction between the gamma-carboxyglutamic acid-rich domain of coagulation factor VIIa (FVIIa), a vitamin-K-dependent enzyme, and phospholipid membranes plays a major role in initiation of blood coagulation. However, despite a high sequence and structural similarity to the Gla domain of other vitamin-K-dependent enzymes with a high membrane affinity, its affinity for negatively charged phospholipids is poor. A few amino acid differences are responsible for this observation. Based on the X-ray structure of lysophosphatidylserine (lysoPS) bound to the Gla domain of bovine prothrombin (Prth), models of the Gla domain of wildtype FVIIa and mutated FVIIa Gla domains in complex with lysoPS were built. Molecular dynamics (MD) and steered molecular dynamics (SMD) simulations on the complexes were applied to investigate the significant difference in the binding affinity. The MD simulation approach provides a structural and dynamic support to the role of P10Q and K32E mutations in the improvement of the membrane contact. Hence, rotation of the Gly11 main chain generated during the MD simulation results in a hydrogen bond with Q10 side chain as well as the appearance of a hydrogen bond between E32 and Q10 forcing the loop harbouring Arg9 and Arg15 to shrink and thereby enhances the accessibility of the phospholipids to the calcium ions. Furthermore, the application of the SMD simulation method to dissociate C6-lysoPS from a series of Gla domain models exhibits a ranking of the rupture force that can be useful in the interpretation of the PS interaction with Gla domains. Finally, adiabatic mapping of Gla6 residue in FVIIa with or without insertion of Tyr4 confirms the critical role of the insertion on the conformation of the side chain Gla6 in FVIIa and the corresponding Gla7 in Prth. PMID:17131117

  2. Coagulation activation by MC28 fibrosarcoma cells facilitates lung tumor formation.

    PubMed

    Amirkhosravi, M; Francis, J L

    1995-01-01

    Tumor cells interact with the hemostatic system in various ways and may thus influence malignant growth and spread. MC28 fibrosarcoma cells possess a potent procoagulant activity (PCA) and form lung tumors following intravenous injection. The aim of this work was to study the relationship between PCA, intravascular coagulation and lung seeding in the MC28 model. MC28 cells were injected into control, warfarinized and heparinized hooded Lister rats. Coagulation changes were monitored by thromboelastography (TEG) and Sonoclot analysis (SA), lung fibrin formation by light and electron microscopy, tumor seeding by macroscopic counting and tumor cell and platelet deposition in the lungs by radiolabelling. PCA was measured by chromogenic assay. MC28 PCA was characterized as a tissue factor-factor VIIa complex that probably arose during cell culture or disaggregation of solid tumors. Injection of tumor cells caused marked coagulopathy and was rapidly (within 30 min) followed by fibrin deposition in the lungs and accumulation of radiolabelled platelets. Heparin and warfarin significantly reduced lung seeding (p < 0.001) and reduced retention of radiolabelled tumor cells in the pulmonary circulation (p < 0.01). Inhibition of cellular PCA by prior treatment with concanavalin A markedly reduced intravascular coagulation and lung seeding. We conclude that MC28 cells cause intravascular coagulation as a direct result of their procoagulant activity. The data suggest that tumor cells form complexes with platelets and fibrin which are retained in the lungs long enough for extravasation and seeding to occur.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Coagulation activation by MC28 fibrosarcoma cells facilitates lung tumor formation.

    PubMed

    Amirkhosravi, M; Francis, J L

    1995-01-01

    Tumor cells interact with the hemostatic system in various ways and may thus influence malignant growth and spread. MC28 fibrosarcoma cells possess a potent procoagulant activity (PCA) and form lung tumors following intravenous injection. The aim of this work was to study the relationship between PCA, intravascular coagulation and lung seeding in the MC28 model. MC28 cells were injected into control, warfarinized and heparinized hooded Lister rats. Coagulation changes were monitored by thromboelastography (TEG) and Sonoclot analysis (SA), lung fibrin formation by light and electron microscopy, tumor seeding by macroscopic counting and tumor cell and platelet deposition in the lungs by radiolabelling. PCA was measured by chromogenic assay. MC28 PCA was characterized as a tissue factor-factor VIIa complex that probably arose during cell culture or disaggregation of solid tumors. Injection of tumor cells caused marked coagulopathy and was rapidly (within 30 min) followed by fibrin deposition in the lungs and accumulation of radiolabelled platelets. Heparin and warfarin significantly reduced lung seeding (p < 0.001) and reduced retention of radiolabelled tumor cells in the pulmonary circulation (p < 0.01). Inhibition of cellular PCA by prior treatment with concanavalin A markedly reduced intravascular coagulation and lung seeding. We conclude that MC28 cells cause intravascular coagulation as a direct result of their procoagulant activity. The data suggest that tumor cells form complexes with platelets and fibrin which are retained in the lungs long enough for extravasation and seeding to occur.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7740497

  4. Na+ site in blood coagulation factor IXa: effect on catalysis and factor VIIIa binding.

    PubMed

    Schmidt, Amy E; Stewart, Jonathan E; Mathur, Akash; Krishnaswamy, Sriram; Bajaj, S Paul

    2005-07-01

    During blood coagulation, factor IXa (FIXa) activates factor X (FX) requiring Ca2+, phospholipid, and factor VIIIa (FVIIIa). The serine protease domain of FIXa contains a Ca2+ site and is predicted to contain a Na+ site. Comparative homology analysis revealed that Na+ in FIXa coordinates to the carbonyl groups of residues 184A, 185, 221A, and 224 (chymotrypsin numbering). Kinetic data obtained at several concentrations of Na+ and Ca2+ with increasing concentrations of a synthetic substrate (CH3-SO2-d-Leu-Gly-Arg-p-nitroanilide) were fit globally, assuming rapid equilibrium conditions. Occupancy by Na+ increased the affinity of FIXa for the synthetic substrate, whereas occupancy by Ca2+ decreased this affinity but increased k(cat) dramatically. Thus, Na+-FIXa-Ca2+ is catalytically more active than free FIXa. FIXa(Y225P), a Na+ site mutant, was severely impaired in Na+ potentiation of its catalytic activity and in binding to p-aminobenzamidine (S1 site probe) validating that substrate binding in FIXa is linked positively to Na+ binding. Moreover, the rate of carbamylation of NH2 of Val16, which forms a salt-bridge with Asp194 in serine proteases, was faster for FIXa(Y225P) and addition of Ca2+ overcame this impairment only partially. Further studies were aimed at delineating the role of the FIXa Na+ site in macromolecular catalysis. In the presence of Ca2+ and phospholipid, with or without saturating FVIIIa, FIXa(Y225P) activated FX with similar K(m) but threefold reduced k(cat). Further, interaction of FVIIIa:FIXa(Y225P) was impaired fourfold. Our previous data revealed that Ca2+ binding to the protease domain increases the affinity of FIXa for FVIIIa approximately 15-fold. The present data indicate that occupancy of the Na+ site further increases the affinity of FIXa for FVIIIa fourfold and k(cat) threefold. Thus, in the presence of Ca2+, phospholipid, and FVIIIa, binding of Na+ to FIXa increases its biologic activity by approximately 12-fold, implicating its role

  5. Factor B Is the Second Lipopolysaccharide-binding Protease Zymogen in the Horseshoe Crab Coagulation Cascade.

    PubMed

    Kobayashi, Yuki; Takahashi, Toshiaki; Shibata, Toshio; Ikeda, Shunsuke; Koshiba, Takumi; Mizumura, Hikaru; Oda, Toshio; Kawabata, Shun-ichiro

    2015-07-31

    Factor B is a serine-protease zymogen in the horseshoe crab coagulation cascade, and it is the primary substrate for activated factor C, the LPS-responsive initiator of the cascade. Factor C is autocatalytically activated to α-factor C on LPS and is artificially converted to β-factor C, another activated form, by chymotrypsin. It is not known, however, whether LPS is required for the activation of factor B. Here we found that wild-type factor B expressed in HEK293S cells is activated by α-factor C, but not by β-factor C, in an LPS-dependent manner and that β-factor C loses the LPS binding activity of factor C through additional cleavage by chymotrypsin within the N-terminal LPS-binding region. Surface plasmon resonance and quartz crystal microbalance analyses revealed that wild-type factor B binds to LPS with high affinity comparable with that of factor C, demonstrating that factor B is the second LPS-binding zymogen in the cascade. An LPS-binding site of wild-type factor B was found in the N-terminal clip domain, and the activation rate of a clip domain deletion mutant was considerably slower than that of wild-type factor B. Moreover, in the presence of LPS, Triton X-100 inhibited the activation of wild-type factor B by α-factor C. We conclude that the clip domain of factor B has an important role in localizing factor B to the surface of Gram-negative bacteria or LPS released from bacteria to initiate effective proteolytic activation by α-factor C. PMID:26109069

  6. Factor B Is the Second Lipopolysaccharide-binding Protease Zymogen in the Horseshoe Crab Coagulation Cascade.

    PubMed

    Kobayashi, Yuki; Takahashi, Toshiaki; Shibata, Toshio; Ikeda, Shunsuke; Koshiba, Takumi; Mizumura, Hikaru; Oda, Toshio; Kawabata, Shun-ichiro

    2015-07-31

    Factor B is a serine-protease zymogen in the horseshoe crab coagulation cascade, and it is the primary substrate for activated factor C, the LPS-responsive initiator of the cascade. Factor C is autocatalytically activated to α-factor C on LPS and is artificially converted to β-factor C, another activated form, by chymotrypsin. It is not known, however, whether LPS is required for the activation of factor B. Here we found that wild-type factor B expressed in HEK293S cells is activated by α-factor C, but not by β-factor C, in an LPS-dependent manner and that β-factor C loses the LPS binding activity of factor C through additional cleavage by chymotrypsin within the N-terminal LPS-binding region. Surface plasmon resonance and quartz crystal microbalance analyses revealed that wild-type factor B binds to LPS with high affinity comparable with that of factor C, demonstrating that factor B is the second LPS-binding zymogen in the cascade. An LPS-binding site of wild-type factor B was found in the N-terminal clip domain, and the activation rate of a clip domain deletion mutant was considerably slower than that of wild-type factor B. Moreover, in the presence of LPS, Triton X-100 inhibited the activation of wild-type factor B by α-factor C. We conclude that the clip domain of factor B has an important role in localizing factor B to the surface of Gram-negative bacteria or LPS released from bacteria to initiate effective proteolytic activation by α-factor C.

  7. Factor B Is the Second Lipopolysaccharide-binding Protease Zymogen in the Horseshoe Crab Coagulation Cascade*

    PubMed Central

    Kobayashi, Yuki; Takahashi, Toshiaki; Shibata, Toshio; Ikeda, Shunsuke; Koshiba, Takumi; Mizumura, Hikaru; Oda, Toshio; Kawabata, Shun-ichiro

    2015-01-01

    Factor B is a serine-protease zymogen in the horseshoe crab coagulation cascade, and it is the primary substrate for activated factor C, the LPS-responsive initiator of the cascade. Factor C is autocatalytically activated to α-factor C on LPS and is artificially converted to β-factor C, another activated form, by chymotrypsin. It is not known, however, whether LPS is required for the activation of factor B. Here we found that wild-type factor B expressed in HEK293S cells is activated by α-factor C, but not by β-factor C, in an LPS-dependent manner and that β-factor C loses the LPS binding activity of factor C through additional cleavage by chymotrypsin within the N-terminal LPS-binding region. Surface plasmon resonance and quartz crystal microbalance analyses revealed that wild-type factor B binds to LPS with high affinity comparable with that of factor C, demonstrating that factor B is the second LPS-binding zymogen in the cascade. An LPS-binding site of wild-type factor B was found in the N-terminal clip domain, and the activation rate of a clip domain deletion mutant was considerably slower than that of wild-type factor B. Moreover, in the presence of LPS, Triton X-100 inhibited the activation of wild-type factor B by α-factor C. We conclude that the clip domain of factor B has an important role in localizing factor B to the surface of Gram-negative bacteria or LPS released from bacteria to initiate effective proteolytic activation by α-factor C. PMID:26109069

  8. Effect of carryover of clot activators on coagulation tests during phlebotomy.

    PubMed

    Fukugawa, Yoko; Ohnishi, Hiroaki; Ishii, Takahiro; Tanouchi, Ayako; Sano, Junko; Miyawaki, Haruko; Kishino, Tomonori; Ohtsuka, Kouki; Yoshino, Hideaki; Watanabe, Takashi

    2012-06-01

    We investigated the effect of clot activators carried over from the serum tube on major coagulation tests during phlebotomy. First, blood specimens from 30 normal subjects were mixed with small amounts of fluid containing clot activators, and their effects on various coagulation tests were determined. Only the value of fibrin monomer complex displayed a remarkable change when thrombin-containing fluid was added to the blood specimens. Subsequently, 100 paired blood specimens (taken from 75 healthy volunteers and 25 patients taking warfarin) were collected in coagulation tubes before and after the serum tube using standard phlebotomy procedures. Various coagulation tests were performed to determine the effect of contamination of thrombin-containing blood on coagulation parameters. Differences between the 2 tubes were minimal but significant for some of the coagulation tests. Therefore, we conclude that the effect of clot activators in the serum tube on coagulation tests is minimal when standard phlebotomy procedures are used.

  9. Activation of Blood Coagulation in Two Prototypic Autoimmune Skin Diseases: A Possible Link with Thrombotic Risk.

    PubMed

    Cugno, Massimo; Tedeschi, Alberto; Borghi, Alessandro; Bucciarelli, Paolo; Asero, Riccardo; Venegoni, Luigia; Griffini, Samantha; Grovetti, Elena; Berti, Emilio; Marzano, Angelo Valerio

    2015-01-01

    Coagulation activation has been demonstrated in two prototypic autoimmune skin diseases, chronic autoimmune urticaria and bullous pemphigoid, but only the latter is associated with increased thrombotic risk. Two markers of coagulation activation (prothrombin fragment F1+2 and fibrin fragment D-dimer) were measured by immunoenzymatic methods in plasma samples from 30 patients with active chronic autoimmune urticaria, positive for autologous serum skin test, 30 patients with active bullous pemphigoid and 30 healthy subjects. In skin biopsies, tissue factor expression was evaluated by both immunohistochemistry and in situ hybridization. F1+2 and D-dimer levels were higher in active chronic autoimmune urticaria (276.5±89.8 pmol/L and 5.56±4.40 nmol/L, respectively) than in controls (145.2±38.0 pmol/L and 1.06±0.25 nmol/L; P=0.029 and P=0.011) and were much higher in active bullous pemphigoid (691.7±318.7 pmol/L and 15.24±9.09 nmol/L, respectively) (P<0.0001). Tissue factor positivity was evident in skin biopsies of both disorders with higher intensity in bullous pemphigoid. F1+2 and D-dimer, during remission, were markedly reduced in both disorders. These findings support the involvement of coagulation activation in the pathophysiology of both diseases. The strong systemic activation of coagulation in bullous pemphigoid may contribute to increase the thrombotic risk and provides the rationale for clinical trials on anticoagulant treatments in this disease.

  10. Protein corona changes mediated by surface modification of amorphous silica nanoparticles suppress acute toxicity and activation of intrinsic coagulation cascade in mice

    NASA Astrophysics Data System (ADS)

    Yoshida, Tokuyuki; Yoshioka, Yasuo; Morishita, Yuki; Aoyama, Michihiko; Tochigi, Saeko; Hirai, Toshiro; Tanaka, Kota; Nagano, Kazuya; Kamada, Haruhiko; Tsunoda, Shin-ichi; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Higashisaka, Kazuma; Tsutsumi, Yasuo

    2015-06-01

    Recently, nanomaterial-mediated biological effects have been shown to be governed by the interaction of nanomaterials with some kinds of proteins in biological fluids, and the physical characteristics of the nanomaterials determine the extent and type of their interactions with proteins. Here, we examined the relationships between the surface properties of amorphous silica nanoparticles with diameters of 70 nm (nSP70), their interactions with some proteins in biological fluids, and their toxicity in mice after intravenous administration. The surface modification of nSP70 with amino groups (nSP70-N) prevented acute lethality and abnormal activation of the coagulation cascade found in the nSP70-treated group of mice. Since our previous study showed that coagulation factor XII played a role in the nSP70-mediated abnormal activation of the coagulation cascade, we examined the interaction of nSP70 and nSP70-N with coagulation factor XII. Coagulation factor XII bonded to the surface of nSP70 to a greater extent than that observed for nSP70-N, and consequently more activation of coagulation factor XII was observed for nSP70 than for nSP70-N. Collectively, our results suggest that controlling the interaction of nSP70 with blood coagulation factor XII by modifying the surface properties would help to inhibit the nSP70-mediated abnormal activation of the blood coagulation cascade.

  11. Coagulation factor Xa inhibition: biological background and rationale.

    PubMed

    Leadley, R J

    2001-06-01

    Ischemic heart disease and cerebrovascular disease are the leading causes of death in the world. Surprisingly, these diseases are treated by relatively antiquated drugs. However, due to our improved understanding of the underlying pathology of these diseases, and a number of technological advances in tools for drug discovery and chemical optimization, an exciting new wave of antithrombotic compounds is beginning to emerge in clinical trials. These agents, referred to as direct coagulation factor Xa inhibitors, appear to provide an enhanced risk-benefit margin compared to conventional therapy. Preclinical and early clinical data gathered over the past few years suggests that direct fXa inhibitors will provide the necessary advancements in efficacy, safety, and ease of use required to displace conventional therapy. Whether or not these agents will succeed will be determined as this class of agents advances through clinical trials in the near future. This review describes some of the key studies that sparked an interest in fXa as a therapeutic target, highlighting the findings that provided important rationale for continuing the development of potent and selective direct fXa inhibitors.

  12. Coagulant and anticoagulant activities in Jatropha curcas latex.

    PubMed

    Osoniyi, Omolaja; Onajobi, Funmi

    2003-11-01

    Jatropha curcas Linn. (Euphorbiaceae), a medicinal plant commonly grown in the Tropics, is traditionally used as a haemostatic. Investigation of the coagulant activity of the latex of Jatropha curcas showed that whole latex significantly (P<0.01) reduced the clotting time of human blood. Diluted latex, however, prolonged the clotting time: at high dilutions, the blood did not clot at all. This indicates that Jatropha curcas latex possesses both procoagulant and anticoagulant activities. Prothrombin time (PT) and activated partial thromboplastin time (APTT) tests on plasma confirm these observations. Solvent partitioning of the latex with ethyl acetate and butanol led to a partial separation of the two opposing activities: at low concentrations, the ethyl acetate fraction exhibited a procoagulant activity, while the butanol fraction had the highest anticoagulant activity. The residual aqueous fraction had no significant effect on the clotting time of blood and the PT but slightly prolonged the APTT.

  13. An investigation of the coagulant activity of the venom of the saw-scaled viper (Echis carinatus) from Saudi Arabia.

    PubMed

    Kamiguti, A S; Theakston, R D; Tomy, S C

    1988-10-01

    Unlike the venom of Echis carinatus from India, Pakistan, Nigeria, Kenya, Iran and Oman, Saudi Arabian E. carinatus venom is a poor activator of prothrombin. However, it possesses similar defibrinogenating activity to the other venoms. This is because the venom from Saudi Arabian snakes contains a calcium-dependent factor X activator. It is suggested that in future studies of the coagulant activity of venoms, the determination of plasma coagulant activity should be carried out in the presence of added calcium ions. This applies particularly to those venoms which do not act on plasma or fibrinogen, but which do cause in vivo defibrinogenation. PMID:3257079

  14. Effects of dimethylformamide (DMF) on coagulation and platelet activity

    SciTech Connect

    Imbriani, M.; Ghittori, S.; Prestinoni, A.; Longoni, P.; Cascone, G.; Gamba, G.

    1986-03-01

    The effects of dimethylformamide (DMF) on hemostatic functions, especially on platelet activity, were examined both in vitro and in vivo in 15 workers exposed to DMF (27 mg/m3, median value). Twenty-eight control subjects who were not exposed to DMF, but comparable for age, anthropometric data, and smoking habits, were also studied. Workers exposed to DMF showed a decrease in the number of platelets and had longer coagulation times, probably due to a change caused by DMF on the membrane receptor of platelets and on the phospholipid components of the clotting system.

  15. Activation of the intrinsic pathway of coagulation in children with meningococcal septic shock.

    PubMed

    Wuillemin, W A; Fijnvandraat, K; Derkx, B H; Peters, M; Vreede, W; ten Cate, H; Hack, C E

    1995-12-01

    Meningococcal septic shock (MSS) is complicated by activation of coagulation, fibrinolytic, and complement systems. We studied the contact system of the intrinsic pathway of coagulation in thirteen children with MSS. Activation was assessed upon admittance to the intensive care unit and 48 h thereafter, based on the measurement of factor XII- (FXII), prekallikrein- and factor XI (FXI) antigen levels, as well as on the detection of FXIa-FXIa inhibitor, FXIIa-C1-inhibitor, and kallikrein-C1-inhibitor complexes, respectively. Levels of FXII, prekallikrein and FXI were reduced to about 50% in all patients on admission, and were significantly higher 48 h later. FXIIa-C1-inhibitor complexes were elevated in 7 patients, and kallikrein-C1-inhibitor complexes in 2 patients. FXIa-alpha 1-antitrypsin complexes were elevated in all patients, FXIa-C1-inhibitor complexes in nine, and FXIa-antithrombin III complexes in one patient. We conclude that patients with MSS have activation of the contact system, which may contribute to activation of coagulation, and thus to morbidity and mortality.

  16. Refreezing previously thawed fresh-frozen plasma. Stability of coagulation factors V and VIII:C.

    PubMed

    Dzik, W H; Riibner, M A; Linehan, S K

    1989-09-01

    With the growth in autologous blood programs and the increased scrutiny of the indications for transfusion of fresh-frozen plasma (FFP), an increase has been seen in the number of occasions on which FFP was requested and thawed but then not transfused. The coagulation properties of FFP units that were refrozen and then rethawed were therefore studied. Fifty-eight units of plasma were studied, with each experimental unit of FFP paired with an identical control unit. Experimental units were frozen, stored at -65 degrees C, thawed, stored at 1 to 6 degrees C for various periods of time up to 24 hours, and then refrozen, stored at -65 degrees C, rethawed, and stored again in the refrigerator for up to 24 hours. Control units were frozen once at the time the experimental units were first frozen and thawed once at the time of the second thaw of the experimental units. Aliquots of plasma were sampled periodically and were later batch-tested for prothrombin time (PT), activated partial thromboplastin time (aPTT), and factor V and VIII:C activity. The results of coagulation testing of the twice-frozen plasmas were always within the normal range. There was a slight but statistically valid prolongation of the PT and aPTT and a decrease in the factor V and VIII:C levels for twice-frozen plasma compared with control plasma. The greatest decline occurred in the level of factor VIII:C. The measured deterioration in coagulation of twice-frozen FFP is unlikely to be of clinical importance. Refreezing FFP may eventually prove useful for rare donor, autologous, and massive transfusion programs.

  17. Inflammation and the coagulation system in tuberculosis: Tissue Factor leads the dance.

    PubMed

    Caccamo, Nadia; Dieli, Francesco

    2016-02-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, drives the formation of granulomas, structures in which both immune cells and the bacterial pathogen cohabit. The most abundant cells in granulomas are macrophages, which contribute as both cells with bactericidal activity and as targets for M. tuberculosis infection and proliferation during the entire course of infection. The mechanisms and factors involved in the regulation and control of macrophage microenvironment-specific polarization and plasticity are not well understood, as some granulomas are able to control bacteria growth and others fail to do so, permitting bacterial spread. In this issue of the European Journal of Immunology, Venkatasubramanian et al. [Eur. J. Immunol. 2016. 46: 464-479] show that mice lacking the tissue factor gene in myeloid cells have augmented M. tuberculosis growth and increased inflammation in the lungs. This suggests that tissue factor, an initiator of coagulation, is important for the generation of fibrin, which supports granuloma formation. This article demonstrates for the first time the involvement of tissue factor in inducing effective immunity against M. tuberculosis, and sheds new lights on the complex interplay between host inflammatory response, the coagulation system, and the control of M. tuberculosis infection. PMID:26763085

  18. The role of cytokines in activation of coagulation and fibrinolysis in dengue shock syndrome.

    PubMed

    Suharti, Catharina; van Gorp, Eric C M; Setiati, Tatty E; Dolmans, Wil M V; Djokomoeljanto, Robert J; Hack, C Erik; ten, Cate Hugo; van der Meer, Jos W M

    2002-01-01

    In a prospective clinical study of 50 patients with Dengue Shock Syndrome (DSS), we investigated the association of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), IL-1 receptor antagonist (IL-1Ra), and IL-6 with activation markers of coagulation (F1+2 and TATc) and fibrinolysis (t-PA, PAPc, and D-dimer). We found that TNF-alpha, IL-1beta and Il-1Ra, but not IL-6, concentrations were elevated in the circulation during the early stage of infection and at discharge from hospital. TNF-alpha was significantly associated with D-dimer, an activation marker of fibrinolysis (p < 0.003), but not with activation markers of coagulation. IL-1beta was significantly associated with t-PA (p < 0.03). IL-1Ra was significantly associated with F1+2, TATc (p < 0.04 and p < 0.02, respectively), whereas IL-6 was significantly associated with both, activation markers of coagulation (F1+2; p < 0.03) and fibrinolysis (PAPc; p = 0.002). Our data are in line with studies in bacterial sepsis. In severe dengue virus infection the same cytokines are involved in the onset and regulation of hemostasis.

  19. Physiotherapy, rehabilitation and sports in countries with limited replacement coagulation factor supply.

    PubMed

    Buzzard, B M

    2007-09-01

    It is well documented that physiotherapy and rehabilitation benefit people with haemophilia by strengthening the key muscle groups and protecting joints from the adverse effects of repeated haemorrhages. Rehabilitation, in conjunction with the availability of replacement coagulation factor products, has revolutionized approaches to the management of patients with haemophilia in developed countries and has led to a substantial decrease in both the morbidity and mortality rates among the haemophilic population. Modern treatment approaches have also enabled persons with haemophilia to participate in sporting activities along with their peers; however, these improvements in care have not been achieved in developing nations, where health-care resources and facilities are scarce and the supply of coagulation factor products is limited. This article attempts to address the following questions about the management of haemophilic patients in developing countries: Can physiotherapy, rehabilitation and sports prevent disabilities and preserve independence? Is participation in sports activities possible in developing countries? Do countries differ with regard to guidelines for participation in sports? Should we be encouraging participation in sports or allowing patients with haemophilia to do as they choose?

  20. Dimeric Organization of Blood Coagulation Factor VIII bound to Lipid Nanotubes.

    PubMed

    Dalm, Daniela; Galaz-Montoya, Jesus G; Miller, Jaimy L; Grushin, Kirill; Villalobos, Alex; Koyfman, Alexey Y; Schmid, Michael F; Stoilova-McPhie, Svetla

    2015-01-01

    Membrane-bound Factor VIII (FVIII) has a critical function in blood coagulation as the pro-cofactor to the serine-protease Factor IXa (FIXa) in the FVIIIa-FIXa complex assembled on the activated platelet membrane. Defects or deficiency of FVIII cause Hemophilia A, a mild to severe bleeding disorder. Despite existing crystal structures for FVIII, its membrane-bound organization has not been resolved. Here we present the dimeric FVIII membrane-bound structure when bound to lipid nanotubes, as determined by cryo-electron microscopy. By combining the structural information obtained from helical reconstruction and single particle subtomogram averaging at intermediate resolution (15-20 Å), we show unambiguously that FVIII forms dimers on lipid nanotubes. We also demonstrate that the organization of the FVIII membrane-bound domains is consistently different from the crystal structure in solution. The presented results are a critical step towards understanding the mechanism of the FVIIIa-FIXa complex assembly on the activated platelet surface in the propagation phase of blood coagulation.

  1. Dimeric Organization of Blood Coagulation Factor VIII bound to Lipid Nanotubes

    PubMed Central

    Dalm, Daniela; Galaz-Montoya, Jesus G.; Miller, Jaimy L.; Grushin, Kirill; Villalobos, Alex; Koyfman, Alexey Y.; Schmid, Michael F.; Stoilova-McPhie, Svetla

    2015-01-01

    Membrane-bound Factor VIII (FVIII) has a critical function in blood coagulation as the pro-cofactor to the serine-protease Factor IXa (FIXa) in the FVIIIa-FIXa complex assembled on the activated platelet membrane. Defects or deficiency of FVIII cause Hemophilia A, a mild to severe bleeding disorder. Despite existing crystal structures for FVIII, its membrane-bound organization has not been resolved. Here we present the dimeric FVIII membrane-bound structure when bound to lipid nanotubes, as determined by cryo-electron microscopy. By combining the structural information obtained from helical reconstruction and single particle subtomogram averaging at intermediate resolution (15-20 Å), we show unambiguously that FVIII forms dimers on lipid nanotubes. We also demonstrate that the organization of the FVIII membrane-bound domains is consistently different from the crystal structure in solution. The presented results are a critical step towards understanding the mechanism of the FVIIIa-FIXa complex assembly on the activated platelet surface in the propagation phase of blood coagulation. PMID:26082135

  2. Coagulation activity and white thrombus formation in the microminipig.

    PubMed

    Miura, Naoki; Kawaguchi, Hiroaki; Nagasato, Tomoka; Yamada, Tomonobu; Ito, Takashi; Izumi, Hiroyuki; Shameshima, Hisayo; Miyoshi, Noriaki; Tanimoto, Akihide; Maruyama, Ikuro

    2013-01-01

    Swine are becoming increasingly attractive as animal models for clinical research and the recently developed Microminipig (MMPig) has emerged as a possible experimental animal model. In this study, we demonstrated age-dependent changes in hematological parameters and coagulation activity in healthy MMPigs (58 male and 67 females, aged 0-34 months), and investigated white thrombus formation (WTF) using an in vitro microchip flow-chamber system (four males and four females, aged 22-23 months). There was no clear sex or age-dependent differences in any hematological parameters. While activated partial thromboplastin time (APTT) was shorter than prothrombin time (PT), with APTT:PT of 0.88:1, microchip flow-chamber system analysis showed that WTF time was shorter than that in humans, suggesting a possible thrombotic tendency in the MMPig. These results could be useful to life science researchers in the use of the MMPig as an experimental model animal for thrombus formation. PMID:23606691

  3. Scaling of cluster growth for coagulating active particles.

    PubMed

    Cremer, Peet; Löwen, Hartmut

    2014-02-01

    Cluster growth in a coagulating system of active particles (such as microswimmers in a solvent) is studied by theory and simulation. In contrast to passive systems, the net velocity of a cluster can have various scalings dependent on the propulsion mechanism and alignment of individual particles. Additionally, the persistence length of the cluster trajectory typically increases with size. As a consequence, a growing cluster collects neighboring particles in a very efficient way and thus amplifies its growth further. This results in unusual large growth exponents for the scaling of the cluster size with time and, for certain conditions, even leads to "explosive" cluster growth where the cluster becomes macroscopic in a finite amount of time.

  4. Disseminated intravascular coagulation in sepsis.

    PubMed

    Zeerleder, Sacha; Hack, C Erik; Wuillemin, Walter A

    2005-10-01

    Disseminated intravascular coagulation is a frequent complication of sepsis. Coagulation activation, inhibition of fibrinolysis, and consumption of coagulation inhibitors lead to a procoagulant state resulting in inadequate fibrin removal and fibrin deposition in the microvasculature. As a consequence, microvascular thrombosis contributes to promotion of organ dysfunction. Recently, three randomized, double-blind, placebo-controlled trials investigated the efficacy of antithrombin, activated protein C (APC), and tissue factor pathway inhibitor, respectively, in sepsis patients. A significant reduction in mortality was demonstrated in the APC trial. In this article, we first discuss the physiology of coagulation and fibrinolysis activation. Then, the pathophysiology of coagulation activation, consumption of coagulation inhibitors, and the inhibition of fibrinolysis leading to a procoagulant state are described in more detail. Moreover, therapeutic concepts as well as the three randomized, double-blind, placebo-controlled studies are discussed.

  5. Staphylococcal superantigen-like protein 10 (SSL10) inhibits blood coagulation by binding to prothrombin and factor Xa via their γ-carboxyglutamic acid (Gla) domain.

    PubMed

    Itoh, Saotomo; Yokoyama, Ryosuke; Kamoshida, Go; Fujiwara, Toshinobu; Okada, Hiromi; Takii, Takemasa; Tsuji, Tsutomu; Fujii, Satoshi; Hashizume, Hideki; Onozaki, Kikuo

    2013-07-26

    The staphylococcal superantigen-like protein (SSL) family is composed of 14 exoproteins sharing structural similarity with superantigens but no superantigenic activity. Target proteins of four SSLs have been identified to be involved in host immune responses. However, the counterparts of other SSLs have been functionally uncharacterized. In this study, we have identified porcine plasma prothrombin as SSL10-binding protein by affinity purification using SSL10-conjugated Sepharose. The resin recovered the prodomain of prothrombin (fragment 1 + 2) as well as factor Xa in pull-down analysis. The equilibrium dissociation constant between SSL10 and prothrombin was 1.36 × 10(-7) M in surface plasmon resonance analysis. On the other hand, the resin failed to recover γ-carboxyglutamic acid (Gla) domain-less coagulation factors and prothrombin from warfarin-treated mice, suggesting that the Gla domain of the coagulation factors is essential for the interaction. SSL10 prolonged plasma clotting induced by the addition of Ca(2+) and factor Xa. SSL10 did not affect the protease activity of thrombin but inhibited the generation of thrombin activity in recalcified plasma. S. aureus produces coagulase that non-enzymatically activates prothrombin. SSL10 attenuated clotting induced by coagulase, but the inhibitory effect was weaker than that on physiological clotting, and SSL10 did not inhibit protease activity of staphylothrombin, the complex of prothrombin with coagulase. These results indicate that SSL10 inhibits blood coagulation by interfering with activation of coagulation cascade via binding to the Gla domain of coagulation factor but not by directly inhibiting thrombin activity. This is the first finding that the bacterial protein inhibits blood coagulation via targeting the Gla domain of coagulation factors.

  6. EPCR-dependent PAR2 activation by the blood coagulation initiation complex regulates LPS-triggered interferon responses in mice.

    PubMed

    Liang, Hai Po H; Kerschen, Edward J; Hernandez, Irene; Basu, Sreemanti; Zogg, Mark; Botros, Fady; Jia, Shuang; Hessner, Martin J; Griffin, John H; Ruf, Wolfram; Weiler, Hartmut

    2015-04-30

    Infection and inflammation are invariably associated with activation of the blood coagulation mechanism, secondary to the inflammation-induced expression of the coagulation initiator tissue factor (TF) on innate immune cells. By investigating the role of cell-surface receptors for coagulation factors in mouse endotoxemia, we found that the protein C receptor (ProcR; EPCR) was required for the normal in vivo and in vitro induction of lipopolysaccharide (LPS)-regulated gene expression. In cultured bone marrow-derived myeloid cells and in monocytic RAW264.7 cells, the LPS-induced expression of functionally active TF, assembly of the ternary TF-VIIa-Xa initiation complex of blood coagulation, and the EPCR-dependent activation of protease-activated receptor 2 (PAR2) by the ternary TF-VIIa-Xa complex were required for the normal LPS induction of messenger RNAs encoding the TLR3/4 signaling adaptor protein Pellino-1 and the transcription factor interferon regulatory factor 8. In response to in vivo challenge with LPS, mice lacking EPCR or PAR2 failed to fully initiate an interferon-regulated gene expression program that included the Irf8 target genes Lif, Iigp1, Gbp2, Gbp3, and Gbp6. The inflammation-induced expression of TF and crosstalk with EPCR, PAR2, and TLR4 therefore appear necessary for the normal evolution of interferon-regulated host responses.

  7. Assessment of coagulation disorders and cancer procoagulant activity in patients with myelodysplastic syndromes.

    PubMed

    Chojnowski, K; Treliński, J; Wawrzyniak, E; Sobolewska, M; Mielicki, W

    2002-01-01

    Hemostatic disorders mainly due to thrombocytopenia represent an important clinical problem in patients with myelodysplastic syndromes (MDS). Much less is known about the possible coagulation abnormalities. Thirty patients with MDS were studied. Activity of cancer procoagulant (CP), concentrations of activation markers of coagulation and fibrinolysis such as thrombin-antithrombin complexes (TAT), prothrombin fragment 1+2 (F1+2) and D-dimers (DD) as well as standard coagulation tests were determined. Coagulation abnormalities concerned mainly patients with RAEB and RAEB-t. In this group the mean values of TATand F1+2 concentrations were significantly higher than in control indicating chronic coagulation activation similar to that observed in acute leukemias. CP activity in MDS patients did not differ from the control group.

  8. Effects of Rivaroxaban on Platelet Activation and Platelet–Coagulation Pathway Interaction

    PubMed Central

    Heitmeier, Stefan; Laux, Volker

    2015-01-01

    Introduction: Activation of coagulation and platelets is closely linked, and arterial thrombosis involves coagulation activation as well as platelet activation and aggregation. In these studies, we investigated the possible synergistic effects of rivaroxaban in combination with antiplatelet agents on thrombin generation and platelet aggregation in vitro and on arterial thrombosis and hemostasis in rat models. Materials and Methods: Thrombin generation was measured by the Calibrated Automated Thrombogram method (0.5 pmol/L tissue factor) using human platelet-rich plasma (PRP) spiked with rivaroxaban (15, 30, or 60 ng/mL), ticagrelor (1.0 µg/mL), and acetylsalicylic acid (ASA; 100 µg/mL). Tissue factor-induced platelet aggregation was measured in PRP spiked with rivaroxaban (15 or 30 ng/mL), ticagrelor (1 or 3 µg/mL), or a combination of these. An arteriovenous (AV) shunt model in rats was used to determine the effects of rivaroxaban (0.01, 0.03, or 0.1 mg/kg), clopidogrel (1 mg/kg), ASA (3 mg/kg), and combinations on arterial thrombosis. Results: Rivaroxaban inhibited thrombin generation in a concentration-dependent manner and the effect was enhanced with ticagrelor and ticagrelor plus ASA. Rivaroxaban and ticagrelor also concentration-dependently inhibited tissue factor-induced platelet aggregation, and their combination increased the inhibition synergistically. In the AV shunt model, rivaroxaban dose-dependently reduced thrombus formation. Combining subefficacious or weakly efficacious doses of rivaroxaban with ASA or ASA plus clopidogrel increased the antithrombotic effect. Conclusion: These data indicate that the combination of rivaroxaban with single or dual antiplatelet agents works synergistically to reduce platelet activation, which may in turn lead to the delayed/reduced formation of coagulation complexes and vice versa, thereby enhancing antithrombotic potency. PMID:25848131

  9. Fat emulsion infusion potentiates coagulation activation during human endotoxemia.

    PubMed

    van der Poll, T; Coyle, S M; Levi, M; Boermeester, M A; Braxton, C C; Jansen, P M; Hack, C E; Lowry, S F

    1996-01-01

    Intravenous fat emulsions are frequently given to malnourished patients who are prone to suffer from infectious complications. As injection of low dose endotoxin represents a model to study the human response to acute infection, we sought to determine the effect of lipid emulsion infusion on endotoxin-induced activation of the hemostatic mechanism in man. Ten healthy men received a bolus intravenous injection of endotoxin (lot EC-5; 20 U/kg) midway through a 4-h infusion (125 ml/h) of either dextrose 5% (n = 5) or Intralipid 20% (n = 5). Lipid infusion potentiated endotoxin-induced coagulation activation, as indicated by higher plasma levels of the prothrombin fragment F1 + 2 and of thrombin-antithrombin III complexes (both p < 0.05 for the difference between groups). However, lipid infusion did not influence the fibrinolytic response to intravenous endotoxin, as reflected by similar increases in the levels of tissue-type plasminogen activator and plasmin-alpha 2-antiplasmin complexes in both groups. Endotoxin-induced appearance of plasminogen activator inhibitor type I was enhanced by lipid infusion (p < 0.05). These data suggest that fat emulsion infusion may enhance the tendency towards thrombotic complications in patients with infections.

  10. The Massive Bleeding after the Operation of Hip Joint Surgery with the Acquired Haemorrhagic Coagulation Factor XIII(13) Deficiency: Two Case Reports.

    PubMed

    Kanda, Akio; Kaneko, Kazuo; Obayashi, Osamu; Mogami, Atsuhiko

    2013-01-01

    Two women, aged 81 and 61, became haemorrhagic after surgery. Their previous surgeries were uneventful with no unexpected bleeding observed. Blood tests prior to the current surgeries indicated normal values including those related to coagulation. There were no problems with the current surgeries prior to leaving the operating room. At 3 hours after the surgery, the 81-year-old patient had an outflow of the drain at 1290 grams and her blood pressure decreased. She had disseminated intravascular coagulation (DIC). The 61-year-old woman had repeated haemorrhages after her current surgery for a long time. Their abnormal haemorrhages were caused by a deficiency of coagulation factor XIII(13). The mechanism of haemorrhagic coagulation factor XIII(13) deficiency is not understood, and it is a rare disorder. The only diagnostic method to detect this disorder is to measure factor XIII(13) activity in the blood. In this paper, we used Arabic and Roman numerals at the same time to avoid confusion of coagulation factor XIII(13) with coagulation factor VIII(8) that causes hemophilia A. PMID:23533879

  11. [Influencing factors and mechanism of arsenic removal during the aluminum coagulation process].

    PubMed

    Chen, Gui-Xia; Hu, Cheng-Zhi; Zhu, Ling-Feng; Tong, Hua-Qing

    2013-04-01

    Aluminum coagulants are widely used in arsenic (As) removal during the drinking water treatment process. Aluminium chloride (AlCl3) and polyaluminium chloride (PACl) which contains high content of Al13 were used as coagulants. The effects of aluminum species, pH, humic acid (HA) and coexisting anions on arsenic removal were investigated. Results showed that AlCl3 and PACl were almost ineffective in As(II) removal while the As(V) removal efficiency reached almost 100%. pH was an important influencing factor on the arsenic removal efficiency, because pH influenced the distribution of aluminum species during the coagulation process. The efficiency of arsenic removal by aluminum coagulants was positively correlated with the content of Al13 species. HA and some coexisting anions showed negative impact on arsenic removal because of the competitive adsorption. The negative influence of HA was more pronounced at low coagulant dosages. PO4(3-) and F(-) showed marked influence during arsenic removal, but there was no obvious influence when SiO3(2-), CO3(2-) and SO4(2-) coexisted. The present study would be helpful to direct arsenic removal by enhanced coagulation during the drinking water treatment.

  12. Short communication: Factors affecting coagulation properties of Mediterranean buffalo milk.

    PubMed

    Cecchinato, A; Penasa, M; Gotet, C Cipolat; De Marchi, M; Bittante, G

    2012-04-01

    The aim of this study was to investigate sources of variation of milk coagulation properties (MCP) of buffalo cows. Individual milk samples were collected from 200 animals in 5 herds located in northern Italy from January to March 2010. Rennet coagulation time (RCT, min) and curd firmness after 30 min from rennet addition (a(30), mm) were measured using the Formagraph instrument (Foss Electric, Hillerød, Denmark). In addition to MCP, information on milk yield, fat, protein, and casein contents, pH, and somatic cell count (SCC) was available. Sources of variation of RCT and a(30) were investigated using a linear model that included fixed effects of herd, days in milk (DIM), parity, fat content, casein content (only for a(30)), and pH. The coefficient of determination was 51% for RCT and 48% for a(30). The most important sources of variation of MCP were the herd and pH effects, followed by DIM and fat content for RCT, and casein content for a(30). The relevance of acidity in explaining the variation of both RCT and a(30), and of casein content in explaining that of a(30), confirmed previous studies on dairy cows. Although future research is needed to investigate the effect of these sources of variation on cheese yield, findings from the present study suggest that casein content and acidity may be used as indicator traits to improve technological properties of buffalo milk. PMID:22459819

  13. In vitro carboxylation of a blood coagulation factor IX precursor produced by recombinant-DNA technology.

    PubMed

    Soute, B A; Balland, A; Faure, T; de la Salle, H; Vermeer, C

    1989-04-25

    Blood coagulation factor IX (Christmas factor) is a plasma protein which is required for normal haemostasis. A functional deficiency of factor IX results in haemophilia B, a bleeding disorder which is generally treated by infusions of factor IX concentrates prepared from pooled human plasma. The use of human blood products is connected with the risk of transmitting viral agents responsible for diseases such as hepatitis B and AIDS. Recombinant DNA techniques may provide the means to produce the required proteins without exposing the patients to these risks and at lower costs. One of the problems which has to be overcome before recombinant factor IX can be used for therapeutical purposes is related to the vitamin K-dependent carboxylation of its 12 NH2-terminal glutamate residues. In cell cultures this carboxylation, which is required to render the protein its procoagulant activity, is far from complete, especially at high expression levels. In this paper we describe the in vitro carboxylation of non and/or partly carboxylated recombinant factor IX produced by transformed Chinese hamster ovary cells. The identity of the newly formed Gla residues was verified and it could be demonstrated that all carboxyl groups had been incorporated into the recombinant factor IX.

  14. Elimination of interleukin 6 attenuates coagulation activation in experimental endotoxemia in chimpanzees.

    PubMed

    van der Poll, T; Levi, M; Hack, C E; ten Cate, H; van Deventer, S J; Eerenberg, A J; de Groot, E R; Jansen, J; Gallati, H; Büller, H R

    1994-04-01

    The role of interleukin 6 (IL-6) in the toxic sequelae of sepsis is controversial. To assess the part of IL-6 in inflammatory responses to endotoxin, we investigated eight chimpanzees after either a bolus intravenous injection of Escherichia coli endotoxin (n = 4; 4 ng/kg) or after the same dose of endotoxin with a simultaneous bolus intravenous injection of an anti-IL-6 mAb (30 mg; n = 4). Anti-IL-6 did not affect the induction of the cytokine network (tumor necrosis factor [TNF], soluble TNF receptors types I and II, and IL-8) by endotoxin, nor did it influence the occurrence of a neutrophilic leukocytosis and neutrophil degranulation, as monitored by the measurement of elastase-alpha 1-antitrypsin complexes. In contrast, anti-IL-6 markedly attenuated endotoxin-induced activation of coagulation, monitored with the plasma levels of the prothrombin fragment F1+2 and thrombin-antithrombin III complexes, whereas activation of fibrinolysis, determined with the plasma concentrations of plasmin-alpha 2-antiplasmin complexes, remained unaltered. We conclude that IL-6 does not have a feedback effect on the release of other cytokines after injection of endotoxin, and that it is not involved in endotoxin-induced neutrophilia or neutrophil degranulation. IL-6 is, however, an important intermediate factor in activation of coagulation in low grade endotoxemia in chimpanzees.

  15. Tissue factor is induced by interleukin-33 in human endothelial cells: a new link between coagulation and inflammation.

    PubMed

    Stojkovic, Stefan; Kaun, Christoph; Basilio, Jose; Rauscher, Sabine; Hell, Lena; Krychtiuk, Konstantin A; Bonstingl, Cornelia; de Martin, Rainer; Gröger, Marion; Ay, Cihan; Holnthoner, Wolfgang; Eppel, Wolfgang; Neumayer, Christoph; Huk, Ihor; Huber, Kurt; Demyanets, Svitlana; Wojta, Johann

    2016-01-01

    Tissue factor (TF) is the primary trigger of coagulation. Elevated levels of TF are found in atherosclerotic plaques, and TF leads to thrombus formation when released upon plaque rupture. Interleukin (IL)-33 was previously shown to induce angiogenesis and inflammatory activation of endothelial cells (ECs). Here, we investigated the impact of IL-33 on TF in human ECs, as a possible new link between inflammation and coagulation. IL-33 induced TF mRNA and protein in human umbilical vein ECs and coronary artery ECs. IL-33-induced TF expression was ST2- and NF-κB-dependent, but IL-1-independent. IL-33 also increased cell surface TF activity in ECs and TF activity in ECs-derived microparticles. IL-33-treated ECs reduced coagulation time of whole blood and plasma but not of factor VII-deficient plasma. In human carotid atherosclerotic plaques (n = 57), TF mRNA positively correlated with IL-33 mRNA expression (r = 0.691, p < 0.001). In this tissue, IL-33 and TF protein was detected in ECs and smooth muscle cells by immunofluorescence. Furthermore, IL-33 and TF protein co-localized at the site of clot formation within microvessels in plaques of patients with symptomatic carotid stenosis. Through induction of TF in ECs, IL-33 could enhance their thrombotic capacity and thereby might impact on thrombus formation in the setting of atherosclerosis. PMID:27142573

  16. Tissue factor is induced by interleukin-33 in human endothelial cells: a new link between coagulation and inflammation

    PubMed Central

    Stojkovic, Stefan; Kaun, Christoph; Basilio, Jose; Rauscher, Sabine; Hell, Lena; Krychtiuk, Konstantin A.; Bonstingl, Cornelia; de Martin, Rainer; Gröger, Marion; Ay, Cihan; Holnthoner, Wolfgang; Eppel, Wolfgang; Neumayer, Christoph; Huk, Ihor; Huber, Kurt; Demyanets, Svitlana; Wojta, Johann

    2016-01-01

    Tissue factor (TF) is the primary trigger of coagulation. Elevated levels of TF are found in atherosclerotic plaques, and TF leads to thrombus formation when released upon plaque rupture. Interleukin (IL)-33 was previously shown to induce angiogenesis and inflammatory activation of endothelial cells (ECs). Here, we investigated the impact of IL-33 on TF in human ECs, as a possible new link between inflammation and coagulation. IL-33 induced TF mRNA and protein in human umbilical vein ECs and coronary artery ECs. IL-33-induced TF expression was ST2- and NF-κB-dependent, but IL-1-independent. IL-33 also increased cell surface TF activity in ECs and TF activity in ECs-derived microparticles. IL-33-treated ECs reduced coagulation time of whole blood and plasma but not of factor VII-deficient plasma. In human carotid atherosclerotic plaques (n = 57), TF mRNA positively correlated with IL-33 mRNA expression (r = 0.691, p < 0.001). In this tissue, IL-33 and TF protein was detected in ECs and smooth muscle cells by immunofluorescence. Furthermore, IL-33 and TF protein co-localized at the site of clot formation within microvessels in plaques of patients with symptomatic carotid stenosis. Through induction of TF in ECs, IL-33 could enhance their thrombotic capacity and thereby might impact on thrombus formation in the setting of atherosclerosis. PMID:27142573

  17. The effects of perioperatively administered crystalloids and colloids on concentrations of molecular markers of activated coagulation and fibrinolysis.

    PubMed

    Fries, Dietmar; Streif, Werner; Margreiter, Josef; Klingler, Anton; Kühbacher, Gabriele; Schobersberger, Wolfgang; Wirleitner, Barbara; Innerhofer, Petra

    2004-04-01

    To explore whether intravenous administration of routinely used crystalloid or colloid solutions differently affects the coagulation system, we investigated orthopaedic patients. Since crystalloid solutions might cause hypercoagulability, we here present our results on molecular markers of coagulation and fibrinolysis. Patients undergoing knee replacement surgery randomly received isovolemic amounts of lactated Ringer's solution, 6% hydroxyethyl starch 200/0.5 or 4% modified gelatine. Arterial blood samples for determination of specific molecular markers of activated coagulation (thrombin/antithrombin complex, D-dimer, prothrombin fragment F1 + 2), fibrinolysis (plasmin/alpha 2-antiplasmin complex, tissue plasminogen activator, plasminogen activator inhibitor-1), and concentrations of coagulation factor XIII were obtained at baseline, before tourniquet release, at the end of surgery and 2 h after operation. During the observation period, thrombin/antithrombin complex increased from 4.8 to 54.7 microg/l, D-dimer increased from 0.3 to 6.0 mg/ml, prothrombin fragment F1 + 2 increased from 1.7 to 5.9 nmol/l, tissue plasminogen activator decreased from 7.3 to 6.7 ng/ml, plasminogen activator inhibitor-1 increased from 68.4 to 71.0 ng/ml, plasmin/alpha 2-antiplasmin complex increased from 281.5 to 884 microg/l and factor XIII decreased from 89.0 to 58.5%. All parameters changed significantly but without any detectable difference in the response profile between the groups receiving different intravenous fluids. During knee replacement surgery a pronounced activation of the coagulation/fibrinolytic system was observed, regardless of whether patients received crystalloid or colloid fluids. Thus, these results cannot confirm the hypothesis that crystalloid fluids per se cause hypercoagulability in vivo.

  18. [Dependence of haemostasis system response from initial blood coagulation activity under total joints replacement].

    PubMed

    Antropova, I P; Iushkov, B G

    2012-03-01

    Effect of the initial state of the plasma hemostasis on the hemocoagulation changes after the total arthroplasty surgery was studied in 100 patients with osteoarthritis. Indicators of coagulation, fibrinolysis, and physiological anticoagulants were determined before and after completion of the surgery, at days 1, 3, 7, and 13-14 postoperatively. Increased coagulation activity befor surgery enhanced blood clotting within three days after the surgery. Enhanced consumption of physiological anticoagulants reduced the ability to recover their level a week after arthroplasty. The raised activity of the fibrinolysis inhibitor retained the effect during three postoperative days. Initial abnormalities in plasma hemostasis enhance blood coagulation dysfunction caused by surgical intervention on the large joints.

  19. Activation of the contact system of coagulation does not contribute to the hemostatic imbalance in hypertriglyceridemia.

    PubMed

    Minnema, M C; Wittekoek, M E; Schoonenboom, N; Kastelein, J J; Hack, C E; ten Cate, H

    1999-10-01

    In vitro, triglyceride-rich lipoproteins may act as a surface to initiate the contact system of coagulation. Therefore, we studied the activation of factor XII (FXII), prekallikrein, and FXI and the generation of thrombin in 52 hypertriglyceridemic patients before and after 12 weeks of triglyceride-lowering treatment with gemfibrozil or n-3 polyunsaturated fatty acids. Thrombin generation was assessed by measuring the levels of prothrombin fragment F1+2 and thrombin-antithrombin (TAT) complexes. Contact activation was assessed by measuring FXIIa, kallikrein, and FXIa in complex with their major inhibitor, C1 inhibitor, and FXIa was also determined as part of a complex with alpha(1)-antitrypsin. Triglyceride and cholesterol levels decreased equally in both treatment groups. In the gemfibrozil group, there was a significant decrease in F1+2, while TAT complexes did not change. FXIIa- and kallikrein-C1 inhibitor complexes were elevated in 13% and 9% of the patients before treatment, respectively, and no changes were observed on triglyceride-lowering therapy. Also, no significant changes in regard to FXIa-C1 inhibitor and FXIa-alpha(1)-antitrypsin complexes were seen. FXIa-alpha(1)-antitrypsin complexes were present in 70% of the patients before therapy and were positively correlated with the level of TAT complexes. In conclusion, we did not detect an effect on activation markers of the contact coagulation system in hypertriglyceridemic patients after triglyceride-lowering therapy. Therefore, contact activation is not likely to contribute to the hypercoagulability seen in these patients.

  20. Coagulation studies.

    PubMed

    Hazelzet, J A; Hack, C E; de Groot, R

    2001-01-01

    Disseminated intravascular coagulation (DIC) is a complex acquired, coagulopathy resulting from excessive thrombin formation. Abnormal tissue factor (TF) expression is a major mechanism initiating DIC in many disorders, including obstetric complications, sepsis, cancer, and trauma. Numerous laboratory tests are available to monitor DIC, but most patients can be adequately managed using only routine hemostasis screening tests, and assays for fibrinogen and D-dimers. Treatment of DIC should focus on reversing the underlying disorder that initiated the coagulopathy. Novel treatments are being investigated for the treatment of DIC; many of these experimental modalities target the excessive TF activity that characterizes DIC.

  1. Expression of Functional Human Coagulation Factor XIII A-domain in Plant Cell Suspensions and Whole Plants

    SciTech Connect

    Gao, Johnway; Hooker, Brian S.; Anderson, Daniel B.

    2004-09-01

    Coagulation factor XIII, a zymogen present in blood as a tetramer (A2B2) of A- and B-domains, is one of the components of many ''wound sealants'' which are proposed for use or currently in use as effective hemostatic agents, sealants and tissue adhesives in surgery. After activation by ?-thrombin cleavage, coagulation factor XIII A-domain, a transglutaminase, is formed and catalyzes the covalent crosslinking of the ?- and ?-chains of linear fibrin to form homopolymers, which can quickly stop bleeding. We have successfully expressed the A-domain of factor XIII in both plant cell cultures and whole plants. Transgenic plant cell culture allows a rapid method for testing production feasibility while expression in whole plants demonstrates an economic production system for recombinant human plasma-based proteins. The expressed factor XIII A-domain had a similar size as that of human plasma-derived factor XIII. Crude plant extract containing recombinant factor XIII A-domain showed transglutaminase activity with monodansylcadaverine and casein as substrates and crosslinking activity in the presence of linear fibrin. The expression of factor XIII A-domain was not affected by plant leaf position.

  2. Interference of iron as a coagulant on MIB removal by powdered activated carbon adsorption for low turbidity waters.

    PubMed

    Seckler, Ferreira Filho Sidney; Margarida, Marchetto; Rosemeire, Alves Laganaro

    2013-08-01

    Powered activated carbon (PAC) is widely used in water treatment plants to minimize odors in drinking water. This study investigated the removal of 2-methylisoborneol (MIB) by PAC adsorption, combined with coagulation using iron as a coagulant. The adsorption and coagulation process were studied through different case scenarios of jar tests. The analysis evaluated the effect of PAC dosing in the liquid phase immediately before or after the coagulant addition. Ferric sulphate was used as the coagulant with dosages from 10 to 30 mg/L, and PAC dosages varied from 10 to 40 mg/L. The highest MIB removal efficiency (about 70%) was achieved without the coagulant addition and with the highest PAC dosage (40 mg/L). Lower MIB removal efficiencies were observed in the presence of coagulant, showing a clear interference of the iron precipitate or coagulant in the adsorption process. The degree of interference of the coagulation process in the MIB removal was proportional to the ratio of ferric hydroxide mass to the PAC mass. For both cases of PAC dosing, upstream and downstream of the coagulant injection point, the MIB removal efficiency was similar. However, MIB removal efficiency was 15% lower when compared with experiments without the coagulant application. This interference in the MIB adsorption occurs potentially because the coagulant coats the surface of the carbon and interferes with the MIB coming in contact with the carbon's surface and pores. This constraint requires an increase of the PAC dosage to provide the same efficiency observed without coagulation. PMID:24520695

  3. Thromboplastin immobilized on polystyrene surface exhibits kinetic characteristics close to those for the native protein and activates in vitro blood coagulation similarly to thromboplastin on fibroblasts.

    PubMed

    Fadeeva, O A; Panteleev, M A; Karamzin, S S; Balandina, A N; Smirnov, I V; Ataullakhanov, F I

    2010-06-01

    A method for transmembrane protein thromboplastin (tissue factor) immobilization on polystyrene surface is described. Tissue factor is the main activating factor launching the blood coagulation process. It is a cofactor of factor VIIa, the first protease in the cascade of coagulation reactions. The proposed method preserves kinetic characteristics specific for native tissue factor on the fibroblast surface. The kinetics of binding to factor VIIa and enzymic activity of the formed complex follow Michaelis-Menten kinetics, which is also characteristic of native complex. A small difference is that dissociation constant for tissue factor immobilized on polystyrene surface exceeds 2.7-fold that for native factor. The proposed technique of immobilization provides for protein density on the activating surface corresponding to the tissue factor density on the fibroblast surface. The immobilized tissue factor can be used to activate blood coagulation in methods simulating spatial dynamics of in vitro clot growth. Investigation in this direction will make it possible to register both hypo- and hypercoagulation states of the system. This approach is advantageous over traditional methods of estimation of the coagulation system conditions, which mainly register only hypocoagulation. Investigation of the storage time has shown that activators containing immobilized tissue factor can be stored and used during for at least 100 days in the method studying spatial dynamics of fibrin clot formation.

  4. Simple and rapid methods for purification and characterization of active coagulants from the seeds of Vigna unguiculata and Parkinsonia aculeata.

    PubMed

    Marobhe, N J; Dalhammar, G; Gunaratna, K R

    2007-06-01

    The coagulating properties of aqueous crude extracts and purified proteins of Vigna unguiculata and Parkinsonia aculeata seeds, which are traditional water coagulants in rural areas of Tanzania, were studied. The coagulation activity assays were done using one millilitre (ml) of kaolin water samples. Coagulating proteins were purified in two-step ion exchange chromatography. The properties of coagulant protein were compared with Moringa oleifera. Coagulating components eluted by 0.6 M NaCl in both coagulants are cationic proteins that have the molecular mass of about 6 kDa, which is very similar to that of M. oleifera. The proteins of V. unguiculata and P. aculeata eluted by 0.3 M NaCl also harbour coagulation activity but proteins eluted with 0.6 M NaCl have higher activity. The dosage for coagulation using purified proteins of both coagulants is about 5 to 10 times lower than that of crude seed extracts. The optimum floc settling time of water treated by crude seed extracts and purified proteins ranged between two and two and half hours. Coagulating proteins of both coagulants eluted by 0.6 M NaCl are thermoresistant and retained coagulation activity of 87% to 92% after boiling for two hours at 80 degrees C and one hour at 95 degrees C. Thermotolerant proteins of V. unguiculata eluted by 0.6 M NaCl and P. aculeata have wider pH range of 5.5 to 8.5 for coagulation activity than those of M. oleifera proteins. The present investigation reveals the possibility of using purified natural coagulants for water treatment to produce safe drinking water.

  5. Interpreting coagulation assays.

    PubMed

    Green, David

    2010-09-01

    The interpretation of coagulation assays requires knowledge of the principal clotting pathways. The activated partial thromboplastin time is sensitive to all hemostatic factors except FVII, whereas the prothrombin time reflects levels of prothrombin and FV, FVII, and FX. Using the two tests in concert is helpful in identifying hemophilia, the coagulopathy of liver disease, and disseminated intravascular coagulation. In addition, the activated partial thromboplastin time and prothrombin time are used for monitoring anticoagulant therapy with heparin and warfarin, respectively. Measurement of D-dimer is informative in patients suspected of having thrombotic disorders and determining the risk of thrombosis recurrence. Mixing tests distinguish clotting factor deficiencies from circulating anticoagulants such as heparin, the lupus anticoagulant, and antibodies directed against specific clotting factors. The modified Bethesda assay detects and provides an indication of the strength of FVIII inhibitors. However, interpreting the results of coagulation assays is not always straightforward, and expert consultation is occasionally required to resolve difficult clinical situations. PMID:20855988

  6. Collaborative study for the establishment of replacement batches for human coagulation factor IX concentrate reference standards.

    PubMed

    Gray, E; Pickering, W; Hockley, J; Rigsby, P; Weinstein, M; Terao, E; Buchheit, K-H

    2008-12-01

    The European Pharmacopoeia (Ph. Eur.) Biological Reference Preparation (BRP) batch 1, the World Health Organisation (WHO) 3rd International Standard, Human (IS, 96/854) and the FDA Standard for human blood coagulation Factor IX concentrate have been available since 1996, following their establishment by a common collaborative study. Due to dwindling stocks of all three standards, a new WHO-EDQM-FDA tri-partite collaborative study was launched to establish replacement batches. Thirty laboratories from fourteen countries took part in the collaborative study to assign potency values to candidate preparations. Three candidates, one of recombinant and two of human plasma-derived origins, were assayed against the 3rd IS for Blood Coagulation Factor IX, Concentrate, Human (96/854). The 3rd IS for Blood Coagulation Factors II, VII, IX and X, Plasma, Human (99/826) was also included to evaluate the relationship between the factor IX plasma and concentrate unitage. Thirty-two sets of clotting assay results and two sets of chromogenic assay data were analysed. There was a significant difference in potency estimates by these two methods for the recombinant candidate (sample B) and the plasma IS (sample P). Similar potency values were obtained for the plasma derived products (monoclonal antibody- and chromatography-purified factor IX, samples C and D) by clotting and chromogenic assays. For the clotting assays, intra-laboratory variability (GCV) was found to range from 0.5 - 21.7%, with the GCV for the majority of laboratories being less than 10%. Good inter-laboratory agreement, with the majority of the GCV being less than 10% (GCV range = 4.7 - 10.6 %) was also obtained. The mean potency values estimated by the clotting assay using plasma as pre-diluent (as directed by the Ph. Eur. general chapter method) did not differ from values obtained using buffer. Taking into account the preliminary stability data, the intra- and inter-laboratory variability, and the differences

  7. Serial changes in the coagulation system following clotting factor concentrate infusion.

    PubMed

    Preston, F E; Winfield, D A; Malia, R G; Blackburn, E K

    1975-11-15

    Various parameters of the coagulation system have been monitored in patients with Christmas disease following the infusion of clotting factor concentrates. Significant reduction of clotting factor VIII and serum antithrombin III were observed in each of the five studies, whilst the plasma fibrinogen level fell in four subjects. The induced abnormalities were shortlived and there were no clinical sequelae. Further studies are required to assess the effects of similar concentrates in patients with liver disease.

  8. Monocyte tissue factor–dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin

    PubMed Central

    Owens, A. Phillip; Passam, Freda H.; Antoniak, Silvio; Marshall, Stephanie M.; McDaniel, Allison L.; Rudel, Lawrence; Williams, Julie C.; Hubbard, Brian K.; Dutton, Julie-Ann; Wang, Jianguo; Tobias, Peter S.; Curtiss, Linda K.; Daugherty, Alan; Kirchhofer, Daniel; Luyendyk, James P.; Moriarty, Patrick M.; Nagarajan, Shanmugam; Furie, Barbara C.; Furie, Bruce; Johns, Douglas G.; Temel, Ryan E.; Mackman, Nigel

    2012-01-01

    Hypercholesterolemia is a major risk factor for atherosclerosis. It also is associated with platelet hyperactivity, which increases morbidity and mortality from cardiovascular disease. However, the mechanisms by which hypercholesterolemia produces a procoagulant state remain undefined. Atherosclerosis is associated with accumulation of oxidized lipoproteins within atherosclerotic lesions. Small quantities of oxidized lipoproteins are also present in the circulation of patients with coronary artery disease. We therefore hypothesized that hypercholesterolemia leads to elevated levels of oxidized LDL (oxLDL) in plasma and that this induces expression of the procoagulant protein tissue factor (TF) in monocytes. In support of this hypothesis, we report here that oxLDL induced TF expression in human monocytic cells and monocytes. In addition, patients with familial hypercholesterolemia had elevated levels of plasma microparticle (MP) TF activity. Furthermore, a high-fat diet induced a time-dependent increase in plasma MP TF activity and activation of coagulation in both LDL receptor–deficient mice and African green monkeys. Genetic deficiency of TF in bone marrow cells reduced coagulation in hypercholesterolemic mice, consistent with a major role for monocyte-derived TF in the activation of coagulation. Similarly, a deficiency of either TLR4 or TLR6 reduced levels of MP TF activity. Simvastatin treatment of hypercholesterolemic mice and monkeys reduced oxLDL, monocyte TF expression, MP TF activity, activation of coagulation, and inflammation, without affecting total cholesterol levels. Our results suggest that the prothrombotic state associated with hypercholesterolemia is caused by oxLDL-mediated induction of TF expression in monocytes via engagement of a TLR4/TLR6 complex. PMID:22214850

  9. Effect of nano-scale curvature on the intrinsic blood coagulation system.

    PubMed

    Kushida, Takashi; Saha, Krishnendu; Subramani, Chandramouleeswaran; Nandwana, Vikas; Rotello, Vincent M

    2014-11-01

    The intrinsic coagulation activity of silica nanoparticles strongly depends on their surface curvature. Nanoparticles with higher surface curvature do not denature blood coagulation factor XII on its surface, providing a coagulation 'silent' surface, while nanoparticles with lower surface curvature show denaturation and concomitant coagulation.

  10. Inhibition of leukocyte-endothelial cell interactions and inflammation by peptides from a bacterial adhesin which mimic coagulation factor X.

    PubMed Central

    Rozdzinski, E; Sandros, J; van der Flier, M; Young, A; Spellerberg, B; Bhattacharyya, C; Straub, J; Musso, G; Putney, S; Starzyk, R

    1995-01-01

    Factor X (factor ten) of the coagulation cascade binds to the integrin CD11b/CD18 during inflammation, initiating procoagulant activity on the surface of leukocytes (Altieri, D.C., O.R. Etingin, D.S. Fair, T.K. Brunk, J.E. Geltosky, D.P. Hajjar, and T. S. Edgington. 1991. Science [Wash.DC]. 254:1200-1202). Filamentous hemagglutinin (FHA), an adhesin of Bordetella pertussis also binds to the CD11b/CD18 integrin (Relman D., E. Tuomanen, S. Falkow, D.T. Golenbock, K. Saukkonen, and S.D. Wright. 1990. Cell. 61:1375-1382). FHA and the CD11b/CD18 binding loops of Factor X share amino acid sequence similarity. FHA peptides similar to Factor X binding loops inhibited 125I-Factor X binding to human neutrophils and prolonged clotting time. In addition, ETKEVDG and its Factor X analogue prevented transendothelial migration of leukocytes in vitro and reduced leukocytosis and blood brain barrier disruption in vivo. Interference with leukocyte migration by a coagulation-based peptide suggests a novel strategy for antiinflammatory therapy. PMID:7883955

  11. The relevance of coagulation factor X protection of adenoviruses in human sera

    PubMed Central

    Duffy, M R; Doszpoly, A; Turner, G; Nicklin, S A; Baker, A H

    2016-01-01

    Intravenous delivery of adenoviruses is the optimal route for many gene therapy applications. Once in the blood, coagulation factor X (FX) binds to the adenovirus capsid and protects the virion from natural antibody and classical complement-mediated neutralisation in mice. However, to date, no studies have examined the relevance of this FX/viral immune protective mechanism in human samples. In this study, we assessed the effects of blocking FX on adenovirus type 5 (Ad5) activity in the presence of human serum. FX prevented human IgM binding directly to the virus. In individual human sera samples (n=25), approximately half of those screened inhibited adenovirus transduction only when the Ad5–FX interaction was blocked, demonstrating that FX protected the virus from neutralising components in a large proportion of human sera. In contrast, the remainder of sera tested had no inhibitory effects on Ad5 transduction and FX armament was not required for effective gene transfer. In human sera in which FX had a protective role, Ad5 induced lower levels of complement activation in the presence of FX. We therefore demonstrate for the first time the importance of Ad–FX protection in human samples and highlight subject variability and species-specific differences as key considerations for adenoviral gene therapy. PMID:27014840

  12. Defective glycosylation of coagulation factor XII underlies hereditary angioedema type III

    PubMed Central

    Björkqvist, Jenny; de Maat, Steven; Lewandrowski, Urs; Di Gennaro, Antonio; Oschatz, Chris; Schönig, Kai; Nöthen, Markus M.; Drouet, Christian; Braley, Hal; Nolte, Marc W.; Sickmann, Albert; Panousis, Con; Maas, Coen; Renné, Thomas

    2015-01-01

    Hereditary angioedema type III (HAEIII) is a rare inherited swelling disorder that is associated with point mutations in the gene encoding the plasma protease factor XII (FXII). Here, we demonstrate that HAEIII-associated mutant FXII, derived either from HAEIII patients or recombinantly produced, is defective in mucin-type Thr309-linked glycosylation. Loss of glycosylation led to increased contact-mediated autoactivation of zymogen FXII, resulting in excessive activation of the bradykinin-forming kallikrein-kinin pathway. In contrast, both FXII-driven coagulation and the ability of C1-esterase inhibitor to bind and inhibit activated FXII were not affected by the mutation. Intravital laser-scanning microscopy revealed that, compared with control animals, both F12–/– mice reconstituted with recombinant mutant forms of FXII and humanized HAEIII mouse models with inducible liver-specific expression of Thr309Lys-mutated FXII exhibited increased contact-driven microvascular leakage. An FXII-neutralizing antibody abolished bradykinin generation in HAEIII patient plasma and blunted edema in HAEIII mice. Together, the results of this study characterize the mechanism of HAEIII and establish FXII inhibition as a potential therapeutic strategy to interfere with excessive vascular leakage in HAEIII and potentially alleviate edema due to other causes. PMID:26193639

  13. Production of functional coagulation factor VIII from iPSCs using a lentiviral vector.

    PubMed

    Kashiwakura, Y; Ohmori, T; Mimuro, J; Madoiwa, S; Inoue, M; Hasegawa, M; Ozawa, K; Sakata, Y

    2014-01-01

    The use of induced pluripotent stem cells (iPSCs) as an autologous cell source has shed new light on cell replacement therapy with respect to the treatment of numerous hereditary disorders. We focused on the use of iPSCs for cell-based therapy of haemophilia. We generated iPSCs from mesenchymal stem cells that had been isolated from C57BL/6 mice. The mouse iPSCs were generated through the induction of four transcription factor genes Oct3/4, Klf-4, Sox-2 and c-Myc. The derived iPSCs released functional coagulation factor VIII (FVIII) following transduction with a simian immunodeficiency virus vector. The subcutaneous transplantation of iPSCs expressing FVIII into nude mice resulted in teratoma formation, and significantly increased plasma levels of FVIII. The plasma concentration of FVIII was at levels appropriate for human therapy at 2-4 weeks post transplantation. Our data suggest that iPSCs could be an attractive and prospective autologous cell source for the production of coagulation factor, and that engineered iPSCs expressing coagulation factor might provide a cell-based therapeutic strategy appropriate for haemophilia.

  14. Point of Care and Factor Concentrate-Based Coagulation Algorithms

    PubMed Central

    Theusinger, Oliver M.; Stein, Philipp; Levy, Jerrold H.

    2015-01-01

    In the last years it has become evident that the use of blood products should be reduced whenever possible. There is increasing evidence regarding serious adverse events, including higher mortality and morbidity, related to transfusions. The use of point of care (POC) devices integrated in algorithms is one of the important mechanisms to limit blood product exposure. Any type of algorithm, especially the POC-based ones, allows goal-directed transfusions of blood products and even better targeted factor concentrate substitutions. Different types of algorithms in different surgical settings (cardiac surgery, trauma, liver surgery etc.) have been established with growing interest in their use as they offer objective therapy for management and reduction of blood product use. The use of POC devices with evidence-based algorithms is important in the bleeding patient independent of its origin (traumatic vs. surgical). The use of factor concentrates compared to the classical blood products can be cost-saving, beneficial for the patient, and in agreement with the WHO-requested standard of care. The empiric and uncontrolled use of blood products such as fresh frozen plasma, red blood cells, and platelets without POC monitoring should no longer be followed with regard to actual evidence in literature. Furthermore, the use of factor concentrates may provide better outcomes and potential for cost saving. PMID:26019707

  15. Enhanced specificity of immunoblotting using radiolabeled antigen overlay: studies of blood coagulation factor XII and prekallikrein in plasma

    SciTech Connect

    Laemmle, B.; Berrettini, M.; Griffin, J.H.

    1986-01-01

    Immunoblotting of blood coagulation Factor XII and plasma prekallikrein in whole plasma was performed using radiolabeled antigen for detection. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis of plasma and transfer to nitrocellulose sheets, the blots were first reacted with polyclonal goat anti-Factor XII or anti-prekallikrein antisera and then with /sup 125/I-Factor XII or /sup 125/I-prekallikrein, respectively. A major advantage of using radiolabeled antigen rather than radiolabeled secondary antibody was enhanced specificity of immunodetection of these antigens in plasma. This procedure was sensitive to approx.0.3 ng of either Factor XII or prekallikrein antigen and was useful for detection of Factor XII cleavage fragments in contact activated plasma. Radiolabeled antigen overlay may improve the specificity of immunoblotting of trace antigens in any complex mixtures.

  16. Influence of red algal sulfated polysaccharides on blood coagulation and platelets activation in vitro.

    PubMed

    Sokolova, Ekaterina V; Byankina, Anna O; Kalitnik, Alexandra A; Kim, Yong H; Bogdanovich, Larisa N; Solov'eva, Tamara F; Yermak, Irina M

    2014-05-01

    The influence of sulfated polysaccharides (λ-, κ-, and κ/β-carrageenan and porphyran) - on platelet activation was studied. Carrageenans were much weaker inhibitors of a coagulation process than heparin, while porphyran had not that effect. Results of the aPTT and PT assays suppose that carrageenans affected mostly intrinsic pathway of coagulation, while their effect on the extrinsic pathway is extremely low (λ and κ/β) or absent (κ, LMW derivative of κ-carrageenan). λ-Carrageenan was the most potent anticoagulant agent in TT, aPTT, PT, and anti-factor Xa activity. This sample was also the strongest inhibitor of collagen-induced platelet aggregation in PRP. Generally, the correlation of anticoagulant and antithrombotic action in PRP is preserved for carrageenans but not for heparin. Carrageenans and porphyran affected platelet adhesion to collagen by influencing glycoprotein VI. Low molecular weight κ-carrageenan had a similar effect on platelet adhesion mediated with both major collagen receptors: integrin α2 β1 and glycoprotein VI as native polysaccharide had. Carrageenans resulted in activation of platelets under platelet adhesion mediated by integrin αIIb β3 with less degree than heparin. The least sulfated κ/β-carrageenan that possessed an inhibiting effect on thrombin- and collagen-induced aggregation of washed platelets and on the PT test but it had no significant effect on TT was the weakest promoter of integrin αIIb β3 mediated platelet activation. In summary, our study showed that the polysaccharide action was complex, since it depended on its molecular mass, sulfation degree, and monosaccharide contents (3,6-anhydrogalactose).

  17. Comparison of the level of residual coagulant activity in different cheese varieties.

    PubMed

    Bansal, Nidhi; Fox, Patrick F; McSweeney, Paul L H

    2009-08-01

    The coagulant retained in cheese curd is a major contributor to proteolysis during ripening. The objective of this study was to quantify residual coagulant in 9 cheese varieties by measuring its activity on a synthetic heptapeptide (Pro-Thr-Glu-Phe-[NO2-Phe]-Arg-Leu) assayed using reversed-phase HPLC. The level of residual coagulant activity was highest in Camembert cheese, probably due to its low pH at whey drainage and the high moisture content of the cheese, followed in order by Feta=Port du Salut=Cheddar>Gouda>Emmental=Parmigiano Reggiano=low-moisture part-skim Mozzarella=Mozzarella di Bufala Campana. The high cooking temperature (50-54 degrees C) used during the manufacture of Emmental and Parmigiano Reggiano cheeses and the cooking and stretching step in hot water during the manufacture of Mozzarella cheese may be the reasons for the lowest residual coagulant activity in these cheeses. The level of residual coagulant activity was higher in Feta cheese made from milk concentrated by ultrafiltration than in conventional Feta.

  18. The structures of the carbohydrate moieties of bovine blood coagulation factor IX (Christmas factor).

    PubMed

    Mizuochi, T; Taniguchi, T; Fujikawa, K; Titani, K; Kobata, A

    1983-05-25

    Bovine blood coagulation factor IX (Christmas factor) contains four asparagine-linked sugar chains in one molecule. The sugar chains were quantitatively liberated as radioactive oligosaccharides from the polypeptide moiety by hydrazinolysis followed by N-acetylation and NaB3H4 reduction. The structures of these sugar chains were determined by sequential exoglycosidase digestion in combination with methylation analysis. Bovine factor IX contained two unique penta- and tetrasialyl triantennary sugar chains with the structures shown below in addition to tetra-, tri-, and disialyl biantennary sugar chains of Sia alpha 2 leads to 3 Gal beta 1 leads 3(Sia alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[Sia alpha 2 leads to 3Gal beta 1 leads to 3(Sia alpha 2 leads to 6)GlcNac beta 1 leads to 2Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc, Sia alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[Sia alpha 2 leads to 3Gal beta 1 leads to 3(Sia alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc, and Sia alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6(Sia alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 3)Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc and their partially desialized forms.

  19. Coagulation in patients with severe sepsis.

    PubMed

    Levi, Marcel; Poll, Tom van der

    2015-02-01

    In the majority of patients with severe sepsis, systemic activation of coagulation is present. Increasing evidence points to an extensive cross-talk between coagulation and inflammation that may play an important role in the pathogenesis of sepsis. Inflammation not only leads to activation of coagulation, but coagulation also considerably affects inflammatory activity. Molecular pathways that contribute to inflammation-induced activation of coagulation have been precisely identified. Proinflammatory cytokines and other mediators are capable of activating the coagulation system and downregulating important physiological anticoagulant pathways. Activation of the coagulation system and ensuing thrombin generation is dependent on expression of tissue factor on activated mononuclear cells and endothelial cells, and is insufficiently counteracted by TFPI. Simultaneously, endothelial-bound anticoagulant mechanism, in particular the protein C system, is shutoff by proinflammatory cytokines. In addition, fibrin removal is severely inhibited, because of inactivation of the fibrinolytic system, caused by an upregulation of its main inhibitor, plasminogen activator inhibitor type 1 (PAI-1). Increased fibrin formation and impaired removal lead to (micro)vascular thrombosis, which may result in tissue ischemia and subsequent organ damage. The cornerstone of the management of coagulation in sepsis is the specific and vigorous treatment of the underlying disorder. Strategies aimed at the inhibition of coagulation activation may theoretically be justified and have been found beneficial in experimental and initial clinical studies. Heparin may be an effective anticoagulant approach and alternative strategies comprise restoration of physiological anticoagulant pathways. PMID:25590524

  20. Complete treatment of olive pomace leachate by coagulation, activated-carbon adsorption and electrochemical oxidation.

    PubMed

    Mavros, Michael; Xekoukoulotakis, Nikolaos P; Mantzavinos, Dionissios; Diamadopoulos, Evan

    2008-06-01

    A battery scheme comprising sequential alum coagulation, activated-carbon adsorption and electrochemical oxidation over boron-doped diamond electrodes to mineralize a leachate from olive pomace processing is demonstrated. The effect of coagulant and adsorbent concentration on treatment efficiency was assessed in the range 0.1-50 mM Al(3+) and 2.5-50 g/L activated-carbon and optimal conditions were established. Coagulation at 7.5mM Al(3+) resulted in substantial solids and color removal (i.e. 80% and 93%, respectively). This was accompanied by only 30% chemical oxygen demand (COD) reduction (initial COD was about 3,500 mg/L). The latter increased to 80% though when coagulation was coupled with adsorption at 25 g/L activated carbon. Electrochemical oxidation of the original effluent for 360 min led to 63% and 82% COD reduction at 10 and 20A current intensity, respectively. When this process was tested as a polishing stage following coagulation and adsorption, overall COD removal reached values of 92% and 97%, respectively. The final effluent was also colorless and solids free. However, the treated effluent still exhibited ecotoxicity possibly due to the formation of ecotoxic oxidation products. PMID:18396309

  1. Effect of high pressures on the enzymatic activity of commercial milk protein coagulants

    NASA Astrophysics Data System (ADS)

    Wiśniewska, Krystyna; Reps, Arnold; Jankowska, Agnieszka

    2014-04-01

    This study was aimed at determining the effect of high pressures in the range of 100-1000 MPa/15 min, applied in 100 MPa increments, on the coagulating and proteolytic activity of commercial coagulants produced with genetic engineering methods: Maxiren, Chymogen, Chymax and of a natural rennin preparation, Hala. The coagulating activity of Hala preparation differed compared with the other preparations, due to greater resistance to high pressures, especially in the range of 500-600 MPa. The preparations produced with genetic engineering methods lost their capability for milk protein coagulation by 500 MPa. Pressurization at 200 MPa contributed to their reduced capability for casein macroproteolysis. In contrast, an increase in Chymax, Chymogen, Maxiren and Hala preparations' hydrolytic capability for the macroproteolysis of isoelectric casein was observed upon pressure treatment at 100 and 400 MPa and for microproteolysis after pressure treatment at 200 MPa. Storage (48 h/5°C) of the pressurized preparations had an insignificant effect on their coagulating and proteolytic activities.

  2. Comparative pharmacokinetics of factor VIII and recombinant factor IX: for which coagulation factors should half-life change with age?

    PubMed

    Björkman, S

    2013-11-01

    The half-life of factor VIII (FVIII) increases with the age of the patient, while studies on recombinant factor IX (rFIX) and factor VIIa (rFVIIa) have not demonstrated corresponding age-related changes. The purpose of this analysis was to relate the changes in FVIII and rFIX pharmacokinetics (PK) with age to developmental changes in body size and fluid volumes and explain why the elimination half-life of FVIII, but not of rFIX, would change with age, and to consider how the findings could be applied prospectively to other coagulation factors. Published PK data for FVIII from 186 patients aged 1-74 years and for rFIX from 56 patients aged 4-56 years were used. The relationships of FVIII and rFIX clearance (CL) with body weight could be described by allometric expressions. Relative changes in CL with age or weight were similar for FVIII and rFIX. The age-related change in volume of distribution at steady state (V(ss)) of rFIX was parallel to the change in CL in the children while for FVIII the change was much less pronounced. Elimination half-life was clearly age-dependent for FVIII while only a very weak trend could be seen for rFIX. Limited data suggest that rFVIIa in this respect resembles rFIX, with parallel changes in CL and V(ss) producing insignificant change in half-life. To what extent the elimination half-life of a coagulation factor would show a correlation with age can in principle be predicted from the characteristics of its CL and distribution.

  3. A comparative study of tissue factor and kaolin on blood coagulation assays using rotational thromboelastometry and thromboelastography.

    PubMed

    Peng, Henry T; Grodecki, Richard; Rizoli, Sandro; Shek, Pang N

    2016-01-01

    Rotational thromboelastometry (ROTEM) and thromboelastography (TEG) have been increasingly used to diagnose acute coagulopathy and guide blood transfusion. The tests are routinely performed using different triggering activators such as tissue factor and kaolin, which activate different pathways yielding different results. To optimize the global blood coagulation assays using ROTEM and TEG, we conducted a comparative study on the activation methods employing tissue factor and kaolin at different concentrations as well as standard reagents as recommended by the manufacturer of each device. Key parameter values were obtained at various assay conditions to evaluate and compare coagulation and fibrinolysis profiles of citrated whole blood collected from healthy volunteers. It was found that tissue factor reduced ROTEM clotting time and TEG R, and increased ROTEM clot formation time and TEG K in a concentration-dependent manner. In addition, tissue factor affected ROTEM alpha angle, and maximum clot firmness, especially in the absence of kaolin activation, whereas both ROTEM and TEG clot lysis (LI30, CL30, and LY30) remained unaffected. Moreover, kaolin reduced ROTEM clotting time and TEG R and K, but to a lesser extent than tissue factor, in-tem and ex-tem. Correlations in all corresponding parameters between ROTEM and TEG were observed, when the same activators were used in the assays compared with lesser correlations between standard kaolin TEG and ROTEM (INTEM/EXTEM). The two types of viscoelastic point-of-care devices provide different results, depending on the triggering reagent used to perform the assay. Optimal assay condition was obtained to reduce assay time and improve assay accuracy.

  4. A comparative treatment of stabilized landfill leachate: coagulation and activated carbon adsorption vs. electrochemical oxidation.

    PubMed

    Papastavrou, Chrystalla; Mantzavinos, Dionissios; Diamadopoulos, Evan

    2009-12-14

    This work investigated the treatment of a landfill leachate that had previously undergone biological treatment. Two treatment schemes were compared: the first one involved coagulation followed by activated carbon adsorption, whilst the second was electrochemical treatment. Coagulation with alum resulted in a 50% removal of chemical oxygen demand (COD). The optimum aluminium dose was 3 mM Al3+. Activated carbon adsorption of stabilized leachate that had been previously treated by coagulation resulted in an overall 80% removal of COD. However, a significant part of the organic matter (corresponding to 170 mg/L) was non-adsorbable. Electrochemical oxidation over a boron-doped diamond electrode led to about 90% COD removal in 240 min with the resulting stream having a COD content as low as 50 mg/L. An increase in current intensity from 15 A to 21 A had no practical effect on the overall COD removal, which followed first-order kinetics. PMID:20183999

  5. In vitro reversal of supratherapeutic rivaroxaban levels with coagulation factor concentrates

    PubMed Central

    Körber, Mareike K.; Langer, Elisabeth; Kaufner, Lutz; Sander, Michael; von Heymann, Christian

    2016-01-01

    Background A bleeding patient undergoing therapy with new oral anticoagulants is every clinician’s nightmare as no specific reversal agent is available yet. This in vitro study investigated the effect of prothrombin complex concentrate (PCC), recombinant activated factor VII (rFVIIa) and activated prothrombin complex concentrate (aPCC) on supratherapeutic rivaroxaban concentrations using standard laboratory parameters (prothrombin time [PT], activated partial thromboplastin time [aPTT] and PT ratio) and thromboelastometry (clotting time [CT]). Materials and methods Blood samples from 10 healthy volunteers were collected and spiked with a supratherapeutic dose of rivaroxaban. Afterwards PCC, rFVIIa and aPCC were added in two doses. The laboratory parameters were measured and thromboelastometry was performed. Results The addition of the reversal agents had the following statistically significant effects (all p<0.01): +25 IU/kg PCC: CT −15 s, aPTT +5 s; +50 IU/kg PCC: aPTT +11 s; +90 μg rFVIIa: CT −141 s; +25 IU/kg aPCC: CT −142 s, aPTT −9 s, PT ratio +14%, PT −10.5 s; +50 IU/kg aPCC: CT −118 s, aPTT −7 s, PT ratio +17%, PT −12.2 s. Discussion rFVIIa and aPCC, but not PCC, appear to shorten coagulation times significantly in standard laboratory and thromboelastometry assays. These results need confirmation through evaluation of these agents in the clinical setting. PMID:27177413

  6. Lowering blood glucose during hip surgery does not influence coagulation activation

    PubMed Central

    Sechterberger, Marjolein K.; Hermanides, Jeroen; Poolman, Rudolf W.; Kal, Jasper E.; Meijers, Joost C.M.; Hoekstra, Joost B.L.; Hans DeVries, J.

    2015-01-01

    Background Hyperglycaemia during and after hip surgery is associated with coagulation activation and an increased risk of venous thromboembolism. Whether lowering of glucose levels during hip surgery diminishes coagulation activation is unknown. We investigated the efficacy of the human GLP-1 analogue liraglutide to lower glucose during and after hip surgery and studied its influence on coagulation activation. Methods A total of 37 obese subjects who underwent hip surgery were randomized to subcutaneous liraglutide or placebo for 4 consecutive days, starting one day prior to surgery. Glucose levels and coagulation indices at three fixed time-points (pre-operative, 2 h post-operative and 3 days post-operative) were measured. Results Liraglutide reduced glucose at day three post-surgery (median glucose (IQR) liraglutide 5.5 (5.2–5.7) vs. placebo 5.8 (5.5–6.2); difference 0.3 mmol/L, P = 0.04). Changes in 6 out of 8 coagulation indices studied did not differ between the two groups. Only D-dimer levels were significantly lower in the liraglutide group at day three post-surgery and FVIII levels were significantly higher in the liraglutide group 2 h post-surgery. Conclusion Although the human GLP-1 analogue liraglutide moderately reduced post-operative blood glucose levels in non-diabetic and prediabetic obese patients undergoing elective hip surgery, no changes were observed with respect to coagulation activation. PMID:26675337

  7. Breeding of transgenic cattle for human coagulation factor IX by a combination of lentiviral system and cloning.

    PubMed

    Monzani, P S; Sangalli, J R; De Bem, T H C; Bressan, F F; Fantinato-Neto, P; Pimentel, J R V; Birgel-Junior, E H; Fontes, A M; Covas, D T; Meirelles, F V

    2013-02-28

    Recombinant coagulation factor IX must be produced in mammalian cells because FIX synthesis involves translational modifications. Human cell culture-based expression of human coagulation factor IX (hFIX) is expensive, and large-scale production capacity is limited. Transgenic animals may greatly increase the yield of therapeutic proteins and reduce costs. In this study, we used a lentiviral system to obtain transgenic cells and somatic cell nuclear transfer (SCNT) to produce transgenic animals. Lentiviral vectors carrying hFIX driven by 3 bovine β-casein promoters were constructed. Bovine epithelial mammary cells were transduced by lentivirus, selected with blasticidin, plated on extracellular matrix, and induced by lactogenic hormones; promoter activity was evaluated by quantitative PCR. Transcriptional activity of the 5.335-kb promoter was 6-fold higher than the 3.392- and 4.279-kb promoters, which did not significantly differ. Transgenic bovine fibroblasts were transduced with lentivirus carrying the 5.335-kb promoter and used as donor cells for SCNT. Cloned transgenic embryo production yielded development rates of 28.4%, similar to previous reports on cloned non-transgenic embryos. The embryos were transferred to recipient cows (N = 21) and 2 births of cloned transgenic cattle were obtained. These results suggest combination of the lentiviral system and cloning may be a good strategy for production of transgenic cattle.

  8. Inhibitors of propagation of coagulation (factors VIII, IX and XI): a review of current therapeutic practice

    PubMed Central

    Franchini, Massimo; Mannucci, Pier Mannuccio

    2011-01-01

    The management of patients with congenital haemophilia who develop alloantibodies against factors of the propagation phase of blood coagulation, commonly known as inhibitors, is the most important challenge facing haemophilia caregivers at present, as this complication not only compromises the efficacy of replacement therapy but also consumes an enormous amount of economic resources. Development of inhibitors further complicates the clinical course of severe haemophilia, with a prevalence of up to 30% in patients with haemophilia A (factor VIII deficiency) and up to 5% in those with haemophilia B (factor IX deficiency) and haemophilia C (factor XI deficiency). While the short-term goal of treatment of patients who develop alloantibodies is the control of bleeding, the eradication of the inhibitor is the main long-term goal. The management of severe bleeding episodes and the eradication of the autoantibody are also the mainstays of treatment of patients with acquired haemophilia, a rare but life-threatening haemorrhagic condition characterized by the development of inhibitory autoantibodies against coagulation factor VIII. The most recent options available for treating patients with congenital haemophilia complicated by inhibitors and acquired haemophilia because of autoantibodies against factor VIII are summarized in this review article. PMID:21204915

  9. Inherited disorders of blood coagulation.

    PubMed

    Lippi, Giuseppe; Franchini, Massimo; Montagnana, Martina; Favaloro, Emmanuel J

    2012-08-01

    Hemostasis is traditionally defined as a physiological response to blood vessel injury and bleeding, which entails a co-ordinated process involving the blood vessel, platelets, and blood clotting proteins (i.e. coagulation factors). Hemostasis can be divided into primary and secondary components. The former rapidly initiates after endothelial damage and is characterized by vascular contraction, platelet adhesion, and formation of a soft aggregate plug. The latter is initiated following the release of tissue factor and involves a complex sequence of events known as the blood coagulation cascade, encompassing serial steps where each coagulation factor activates another in a chain reaction that culminates in the conversion of fibrinogen to fibrin. Patients carrying abnormalities of the coagulation cascade (i.e. deficiencies of coagulation factors) have an increased bleeding tendency, where the clinical severity is mostly dependent upon the type and the plasma level of the factor affected. These disorders also impose a heavy medical and economic burden on individual patients and society in general. The aim of this article is to provide a general overview on the pathophysiology, clinics, diagnostics, and therapy of inherited disorders of coagulation factors.

  10. Impact of experimental haemodilution on platelet function, thrombin generation and clot firmness: effects of different coagulation factor concentrates

    PubMed Central

    Caballo, Carolina; Escolar, Gines; Diaz-Ricart, Maribel; Lopez-Vílchez, Irene; Lozano, Miguel; Cid, Joan; Pino, Marcos; Beltrán, Joan; Basora, Misericordia; Pereira, Arturo; Galan, Ana M.

    2013-01-01

    Background Haemodilution during resuscitation after massive haemorrhage may worsen the coagulopathy and perpetuate bleeding. Materials and methods Blood samples from healthy donors were diluted (30 and-60%) using crystalloids (saline, Ringer’s lactate, PlasmalyteTM) or colloids (6% hydroxyethylstarch [HES130/0.4], 5% human albumin, and gelatin). The effects of haemodilution on platelet adhesion (Impact R), thrombin generation (TG), and thromboelastometry (TEM) parameters were analysed as were the effects of fibrinogen, prothrombin complex concentrates (PCC), activated recombinant factor VII (FVIIa), and cryoprecipates on haemodilution. Results Platelet interactions was already significantly reduced at 30% haemodilution. Platelet reactivity was not improved by addition of any of the concentrates tested. A decrease in TG and marked alterations of TEM parameters were noted at 60% haemodilution. HES130/0.4 was the expander with the most deleterious action. TG was significantly enhanced by PCC whereas rFVIIa only caused a mild acceleration of TG initiation. Fibrinogen restored the alterations of TEM parameters caused by haemodilution including those caused by HES 130/0.4. Cryoprecipitates significantly improved the alterations caused by haemodilution on TG and TEM parameters; the effects on TG disappeared after ultracentrifugation of the cryoprecipitates. Discussion The haemostatic alterations caused by haemodilution are multifactorial and affect both blood cells and coagulation. In our in vitro approach, HES 130/0.4 had the most deleterious effect on haemostasis parameters. Coagulation factor concentrates did not improve platelet interactions in the Impact R, but did have favourable effects on coagulation parameters measured by TG and TEM. Fibrinogen notably improved TEM parameters without increasing thrombin generation, suggesting that this concentrate may help to preserve blood clotting abilities during haemodilution without enhancing the prothrombotic risk. PMID

  11. Synergistic effect of biological activated carbon and enhanced coagulation in secondary wastewater effluent treatment.

    PubMed

    Aryal, A; Sathasivan, A; Vigneswaran, S

    2012-01-01

    The use of secondary wastewater effluent (SWWE) is an essential strategy for making better use of limited water resources. However, a wide range of organic compounds eventually renders them unsuitable for recycling. In water treatment processes, biologically activated carbon (BAC) is adopted after physicochemical treatment. However, the effectiveness of such combination for SWWE remains poorly understood. This study investigates the effectiveness of various combinations: BAC/enhanced coagulation (EC) or EC/BAC, especially in terms of dissolved organic carbon (DOC) removal. The results showed that distinct advantage could be obtained by adopting BAC/EC combination rather than EC/BAC, as microbes in BAC not only remove non-coagulable compounds but also synergize the removal efficiency by releasing some coagulable humic substances.

  12. Quartz crystal microbalance-with dissipation monitoring (QCM-D) for real time measurements of blood coagulation density and immune complement activation on artificial surfaces.

    PubMed

    Andersson, Marcus; Andersson, Jonas; Sellborn, Anders; Berglin, Mattias; Nilsson, Bo; Elwing, Hans

    2005-07-15

    A recently developed variant of quartz crystal microbalance (QCM) called QCM-with dissipation monitoring (QCM-D) allows simultaneous and simple measurements of changes in adsorbed mass as well as the viscoelastic property (D-factor) of deposited protein layers on the sensor surface. We have taken the QCM-D technology a step further and demonstrated its advantages in the study of protein assembly as a consequence of surface induced immune complement activation, or contact activated blood coagulation. In the present study we have continued our QCM-D investigations of surface assembly of fibrin clot formation and complement activation and incubated differently modified quartz sensor surfaces in blood plasma and sera. Polymer surfaces used were spin-coated polyethylene, poly(ethylene terephtalate), poly(methylmetacrylate) and poly(dimethylsiloxane). Also used were sputtered titanium and heparin grafted surfaces. In this investigation we found that we could describe the surface induced coagulation with four independent parameters: (1) Time of onset of coagulation, (2) fibrin deposition rate, (3) total frequency shift at stable plateau, and (4) fibrin clot density. The most important finding was that the blood plasma clot density can be assessed with the use of D determinations and that the clot density varied significantly with the chemical composition of the surface. However, the D-factor did not give any new analytical information about the possible complement activation mechanisms. Nevertheless, the QCM-D was found to be a reliable tool for the analysis of surface induced complement activation. We also compared the QCM-D technique with traditional enzyme immuno assay (EIA) measurements of soluble products from the surface activation of the complement and coagulation systems. We found that the results from EIA and QCM-D measurements corresponded well for the complement activation but not for the coagulation, probably due to the biological complexity of the coagulation

  13. The Eph Tyrosine Kinase Receptors EphB2 and EphA2 Are Novel Proteolytic Substrates of Tissue Factor/Coagulation Factor VIIa*

    PubMed Central

    Eriksson, Oskar; Ramström, Margareta; Hörnaeus, Katarina; Bergquist, Jonas; Mokhtari, Dariush; Siegbahn, Agneta

    2014-01-01

    Tissue factor (TF) binds the serine protease factor VIIa (FVIIa) to form a proteolytically active complex that can trigger coagulation or activate cell signaling. Here we addressed the involvement of tyrosine kinase receptors (RTKs) in TF/FVIIa signaling by antibody array analysis and subsequently found that EphB2 and EphA2 of the Eph RTK family were cleaved in their ectodomains by TF/FVIIa. We used N-terminal Edman sequencing and LC-MS/MS analysis to characterize the cleaved Eph isoforms and identified a key arginine residue at the cleavage site, in agreement with the tryptic serine protease activity of FVIIa. Protease-activated receptor 2 (PAR2) signaling and downstream coagulation activity was non-essential in this context, in further support of a direct cleavage by TF/FVIIa. EphB2 was cleaved by FVIIa concentrations in the subnanomolar range in a number of TF expressing cell types, indicating that the active cellular pool of TF was involved. FVIIa caused potentiation of cell repulsion by the EphB2 ligand ephrin-B1, demonstrating a novel proteolytical event to control Eph-mediated cell segregation. These results define Eph RTKs as novel proteolytical targets of TF/FVIIa and provide new insights into how TF/FVIIa regulates cellular functions independently of PAR2. PMID:25281742

  14. Antibodies against oxidized phospholipids in laboratory tests exploring lupus anti-coagulant activity

    PubMed Central

    Rolla, R; Vidali, M; Serino, R; Pergolini, P; Albano, E; Bellomo, G

    2007-01-01

    Lupus anti-coagulants (LA) are a variety of anti-phospholipid antibodies characterized by their capacity to interfere with phospholipid-dependent coagulation assays. LA are increasingly recognized as important predictors of thrombosis. However, the antigen specificity of LA is still poorly characterized. Growing evidence indicates that oxidized phospholipids are among the targets of anti-phospholipid antibodies. This prompted us to investigate the role of IgG directed against different oxidized phospholipids in 164 subjects without clotting factor defects that were tested for the presence of LA using a LA-sensitive activate partial thromboplastin time (aPTT-FSL) and a screening/confirmation assay based on diluted Russell's viper venom test (dRVVT-PL). The response to aPTT-FSL was significantly (P < 0·0005) associated with high titres of IgG against oxidized phosphatidylserine, phosphatidylethanolamine and phosphatidylinositol, whereas positivity to dRVVT-PL was associated with the elevation of IgG against oxidized phosphatidylserine, phosphatidylcholine, phosphatidylethanolamine (P < 0·0005) and phosphatidylinositol (P < 0·01). No difference in reactivity against oxidized cardiolipin was evident between the different groups. Positivity to the dRVVT-PL test was also associated significantly (P < 0·005) with the elevation of anti-cardiolipin and anti-β2-glycoprotein-1 IgG. However, stepwise logistic regression demonstrated that IgG recognizing oxidized phosphatidylethanolamine and oxidized phosphatidylcholine were the only independent predictors of the response to dRVVT-PL assay, while IgG recognizing oxidized phosphatidylethanolamine and oxidized phosphatidylinositol were independent predictors of the response to aPTT-FSL test. In conclusion, autoantibodies against defined oxidized phospholipids are independent predictors of LA detection by aPTT-FSL or dRVVT-PL assays and might contribute to the variability often observed in the responses to the functional

  15. Comparison of amino acid sequence of bovine coagulation Factor IX (Christmas Factor) with that of other vitamin K-dependent plasma proteins.

    PubMed

    Katayama, K; Ericsson, L H; Enfield, D L; Walsh, K A; Neurath, H; Davie, E W; Titani, K

    1979-10-01

    The amino acid sequence of bovine blood coagulation Factor IX (Christmas Factor) is presented and compared with the sequences of other vitamin K-dependent plasma proteins and pancreatic trypsinogen. The 416-residue sequence of Factor IX was determined largely by automated Edman degradation of two large segments, containing 181 and 235 residues, isolated after activating Factor IX with a protease from Russell's viper venom. Subfragments of the two segments were produced by enzymatic digestion and by chemical cleavage of methionyl, tryptophyl, and asparaginyl-glycyl bonds. Comparison of the amino acid sequences of Factor IX, Factor X, and Protein C demonstrates that they are homologous throughout. Their homology with prothrombin, however, is restricted to the amino-terminal region, which is rich in gamma-carboxyglutamic acid, and the carboxyl-terminal region, which represents the catalytic domain of these proteins and corresponds to that of pancreatic serine proteases.

  16. Activation of the complement, coagulation, fibrinolytic and kallikrein-kinin systems during attacks of hereditary angioedema.

    PubMed

    Nielsen, E W; Johansen, H T; Høgåsen, K; Wuillemin, W; Hack, C E; Mollnes, T E

    1996-08-01

    Five patients with hereditary angioedema (HAE) were studied during attacks and remission as were healthy controls. The high levels of C1/C1-INH complexes, low C4 and high ratio C4 activation products (C4bc)/C4 also differed significantly during remission compared to controls. During attacks C4bc/C4 increased (922-2007; P = 0.022, remission versus attacks, median values throughout), C2 and CH50 dropped (111-31%; P = 0.043 and 110-36%; P = 0.016, respectively), TCC (C5b-9) increased (0.88-1.23 AU/ml; P = 0.028). Cleavage of HK increased to be almost complete during attacks (20-90%; P = 0.009). While factor XIa/serpin-complexes did not increase, a more than twofold rise in thrombin/antithrombin-complexes (0.20-0.50 microgram/l; P = 0.009) and in plasmin/alpha-2-antiplasmin-complexes (7.3-17 nmol/l; P = 0.028) was observed. For the first time cascade activation in HAE was studied simultaneously, and corroborates that attacks lead to activation of the kallikrein-kinin system, fibrinolysis and early part of the classical complement pathway. In addition, the authors present novel data of terminal complement and coagulation activation, the latter apparently not via FXIa.

  17. Colloidal Confinement of Polyphosphate on Gold Nanoparticles Robustly Activates the Contact Pathway of Blood Coagulation.

    PubMed

    Szymusiak, Magdalena; Donovan, Alexander J; Smith, Stephanie A; Ransom, Ross; Shen, Hao; Kalkowski, Joseph; Morrissey, James H; Liu, Ying

    2016-01-20

    Platelet-sized polyphosphate (polyP) was functionalized on the surface of gold nanoparticles (GNPs) via a facile conjugation scheme entailing EDAC (N-(3-(dimethylamino)propyl)-N'-ethylcarbodiimide hydrochloride)-catalyzed phosphoramidation of the terminal phosphate of polyP to cystamine. Subsequent reduction of the disulfide moiety allowed for anchoring to the colloidal surface. The ability of the synthesized polyP-GNPs to initiate the contact pathway of clotting in human pooled normal plasma (PNP) was then assayed by quantifying changes in viscous, mechanical, and optical properties upon coagulation. It is revealed that the polyP-GNPs are markedly superior contact activators compared to molecularly dissolved, platelet-sized polyP (of equivalent polymer chain length). Moreover, the particles' capacity to mobilize Factor XII (FXII) and its coactivating proteins appear to be identical to very-long-chain polyP typically found in bacteria. These data imply that nanolocalization of anionic procoagulants on colloidal surfaces, achieved through covalent anchoring, may yield a robust contact surface with the ability to sufficiently cluster active clotting factors together above their threshold concentrations to cease bleeding. The polyP-GNPs therefore serve as a promising foundation in the development of a nanoparticle hemostat to treat a range of hemorrhagic scenarios. PMID:26624923

  18. Pharmacogenetic typing for oral anti-coagulant response among factor V Leiden mutation carriers

    PubMed Central

    Nahar, Risha; Saxena, Renu; Deb, Roumi; Verma, Ishwar C.

    2012-01-01

    CONTEXT: Factor V Leiden mutation is the most common inherited predisposition for hypercoagulability and thereby a common genetic cause for initiation of oral anti-coagulation therapy. There is a dearth of knowledge of coumarin response profile in such thrombophilic population. AIMS: The current pilot study aims to estimate coumarin sensitivity in an Indian cohort with an inherited thrombophilia risk factor (Factor V Leiden mutation carriers) based on the observed frequency of CYP2C9 *2, *3 and VKORC1-1639G >A genotype combinations. SETTINGS AND DESIGN: A retrospective study carried out in a tertiary health care center in India. MATERIALS AND METHODS: Carriers of FVL mutation were genotyped for CYP2C9 (*2, F*3) and VKORC1 (-1639G >A) variants by PCR-RFLP technique. STATISTICAL ANALYSIS USED: Chi-square test to analyze difference in expected and observed genotype frequency. RESULTS: Sixty-one (n = 61) unrelated carriers of FVL mutation were observed in the 13 years study period. The allele frequency of CYP2C9 *2, CYP2C9 *3, and VKORC1-1639A in this cohort was 0.06, 0.11, and 0.16, respectively. Six (9.7%) individuals had two of the three variant alleles (heterozygous or homozygous), and 28 (45.9%) were heterozygous for at least one polymorphism. CONCLUSIONS: Pre-prescription genotyping for coumarin drugs, if introduced in Indians with inherited thrombophilia (in whom oral anti-coagulant therapy may be necessary), is likely to identify 9.7% (hypersensitive) subjects in whom the optimum anti-coagulation may be achieved with reduced dosages, 44.3% (normal sensitivity) who may require higher dose and also 55.6% (hyper and moderate sensitivity) subjects who are likely to experience bleeding episodes. PMID:23716941

  19. The Coagulation Factor XIIa Inhibitor rHA-Infestin-4 Improves Outcome after Cerebral Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Krupka, Jennifer; May, Frauke; Weimer, Thomas; Pragst, Ingo; Kleinschnitz, Christoph; Stoll, Guido; Panousis, Con; Dickneite, Gerhard; Nolte, Marc W.

    2016-01-01

    Background and Purpose Ischemic stroke provokes severe brain damage and remains a predominant disease in industrialized countries. The coagulation factor XII (FXII)-driven contact activation system plays a central, but not yet fully defined pathogenic role in stroke development. Here, we investigated the efficacy of the FXIIa inhibitor rHA-Infestin-4 in a rat model of ischemic stroke using both a prophylactic and a therapeutic approach. Methods For prophylactic treatment, animals were treated intravenously with 100 mg/kg rHA-Infestin-4 or an equal volume of saline 15 min prior to transient middle cerebral artery occlusion (tMCAO) of 90 min. For therapeutic treatment, 100 mg/kg rHA-Infestin-4, or an equal volume of saline, was administered directly after the start of reperfusion. At 24 h after tMCAO, rats were tested for neurological deficits and blood was drawn for coagulation assays. Finally, brains were removed and analyzed for infarct area and edema formation. Results Within prophylactic rHA-Infestin-4 treatment, infarct areas and brain edema formation were reduced accompanied by better neurological scores and survival compared to controls. Following therapeutic treatment, neurological outcome and survival were still improved although overall effects were less pronounced compared to prophylaxis. Conclusions With regard to the central role of the FXII-driven contact activation system in ischemic stroke, inhibition of FXIIa may represent a new and promising treatment approach to prevent cerebral ischemia/reperfusion injury. PMID:26815580

  20. Accumulation of functional recombinant human coagulation factor IX in transgenic soybean seeds.

    PubMed

    Cunha, Nicolau B; Murad, André M; Ramos, Gustavo L; Maranhão, Andréia Q; Brígido, Marcelo M; Araújo, Ana Cláudia G; Lacorte, Cristiano; Aragão, Francisco J L; Covas, Dimas T; Fontes, Aparecida M; Souza, Gustavo H M F; Vianna, Giovanni R; Rech, Elíbio L

    2011-08-01

    The seed-based production of recombinant proteins is an efficient strategy to achieve the accumulation, correct folding, and increased stability of these recombinant proteins. Among potential plant molecular farming systems, soybean [Glycine max (L.) Merrill] is a viable option for the production of recombinant proteins due to its high protein content, known regulatory sequences, efficient gene transfer protocols, and a scalable production system under greenhouse conditions. We report here the expression and stable accumulation of human coagulation factor IX (hFIX) in transgenic soybean seeds. A biolistic process was utilised to co-introduce a plasmid carrying the hFIX gene under the transcriptional control of the α' subunit of a β-conglycinin seed-specific promoter and an α-Coixin signal peptide in soybean embryonic axes from mature seeds. The 56-kDa hFIX protein was expressed in the transgenic seeds at levels of up to 0.23% (0.8 g kg(-1) seed) of the total soluble seed protein as determined by an enzyme-linked immunosorbent assay (ELISA) and western blot. Ultrastructural immunocytochemistry assays indicated that the recombinant hFIX in seed cotyledonary cells was efficiently directed to protein storage vacuoles. Mass spectrometry characterisation confirmed the presence of the hFIX recombinant protein sequence. Protein extracts from transgenic seeds showed a blood-clotting activity of up to 1.4% of normal plasma. Our results demonstrate the correct processing and stable accumulation of functional hFIX in soybean seeds stored for 6 years under room temperature conditions (22 ± 2°C).

  1. Effect of nano-scale curvature on the intrinsic blood coagulation system

    NASA Astrophysics Data System (ADS)

    Kushida, Takashi; Saha, Krishnendu; Subramani, Chandramouleeswaran; Nandwana, Vikas; Rotello, Vincent M.

    2014-11-01

    The intrinsic coagulation activity of silica nanoparticles strongly depends on their surface curvature. Nanoparticles with higher surface curvature do not denature blood coagulation factor XII on its surface, providing a coagulation `silent' surface, while nanoparticles with lower surface curvature show denaturation and concomitant coagulation.The intrinsic coagulation activity of silica nanoparticles strongly depends on their surface curvature. Nanoparticles with higher surface curvature do not denature blood coagulation factor XII on its surface, providing a coagulation `silent' surface, while nanoparticles with lower surface curvature show denaturation and concomitant coagulation. Electronic supplementary information (ESI) available: Physical properties and scanning electron micrographs (SEM) of silica NPs, intrinsic coagulation activity after 3 h. See DOI: 10.1039/c4nr04128c

  2. Relationship between circulating tumor cells, blood coagulation, and urokinase-plasminogen-activator system in early breast cancer patients.

    PubMed

    Mego, Michal; Karaba, Marian; Minarik, Gabriel; Benca, Juraj; Sedlácková, Tatiana; Tothova, Lubomira; Vlkova, Barbora; Cierna, Zuzana; Janega, Pavol; Luha, Jan; Gronesova, Paulina; Pindak, Daniel; Fridrichova, Ivana; Celec, Peter; Reuben, James M; Cristofanilli, Massimo; Mardiak, Jozef

    2015-01-01

    Cancer is a risk factor for venous thromboembolism (VTE) and plasma d-dimer (DD) and tissue factor (TF) are established VTE associated markers. Circulating tumor cells (CTCs) are associated with the risk of VTE in metastatic breast cancer. This study aimed to correlate CTCs, blood coagulation and the urokinase plasminogen activator (uPA) system in primary breast cancer (PBC) patients. This prospective study included 116 PBC patients treated by primary surgery. CTCs were detected by quantitative RT-PCR assay for expression of epithelial (CK19) or epithelial-mesenchymal transition (EMT) genes (TWIST1, SNAIL1, SLUG, ZEB1, FOXC2). Plasma DD, TF, uPA system proteins were detected by enzyme-linked immunosorbent assays, while expressions of uPA system in surgical specimens were evaluated by immunohistochemistry. CTCs were detected in 27.6% patients. Patients with CTCs had a significantly higher mean plasma DD (ng/mL) than those of patients without CTCs (632.4 versus 365.4, p = 0.000004). There was no association between plasma TF and CTCs. Epithelial CTCs exhibit higher expression of uPA system genes compared to EMT_CTCs. Patients with CTCs had higher plasma uPA proteins than those of patients without CTCs; there was no correlation between tissue expression of uPA system, CTCs, DD or TF levels. In multivariate analysis CTCs and patients age were independent factors associated with plasma DD. We found association between plasma DD and CTCs indicating a potential role for activation of the coagulation cascade in the early metastatic process. CTCs could be directly involved in coagulation activation or increased CTCs could be marker of aggressive disease and increased VTE risk.

  3. Activation patterns of coagulation and fibrinolysis in baboons following infusion with lethal or sublethal dose of Escherichia coli.

    PubMed

    de Boer, J P; Creasy, A A; Chang, A; Roem, D; Brouwer, M C; Eerenberg, A J; Hack, C E; Taylor, F B

    1993-01-01

    Administration of low doses endotoxin or tumor necrosis factor (TNF) in human experimental models for sepsis results in transient activation of both coagulation and fibrinolysis and subsequent inhibition of the fibrinolytic system by plasminogen activator inhibitor type 1 (PAI-1). We have investigated in a baboon model for sepsis, whether administration of a lethal or sublethal dose of living E. coli could induce similar activation patterns. Levels of thrombin-antithrombin III (TAT) complexes increased significantly to zeniths of 425 and 33 times the baseline values at t+360 in the lethal and sublethal group, respectively. Activation of fibrinolysis, as reflected by plasmin-alpha 2 antiplasmin (PAP) complexes, in the sublethal group was maximal at t+60 and was increasingly inhibited thereafter in spite of a sustained increase of tissue type plasminogen activator (t-PA) levels. In the lethal group PAP complexes increased to a zenith of 38 times the baseline values at t+240. PAI-1 levels increased to 15 times the baseline values at t+360 in the sublethal group, whereas in the lethal group they increased almost linearly to 20 times the baseline values at t+360. Despite high levels of PAI-1, effective inhibition of the fibrinolysis was not established until at T+240 in the lethal group. The difference in activation patterns of both mediator systems in the sublethal and lethal group of baboons indicate that extensive activation of coagulation contributes to the lethal complications in sepsis.

  4. Coagulation Factor Concentrates Fail to Restore Alterations in Fibrin Formation Caused by Rivaroxaban or Dabigatran in Studies With Flowing Blood From Treated Healthy Volunteers.

    PubMed

    Arellano-Rodrigo, Eduardo; Lopez-Vilchez, Irene; Galan, Ana M; Molina, Patricia; Reverter, Joan Carles; Carné, Xavier; Villalta, Jaume; Tassies, Dolors; Lozano, Miguel; Díaz-Ricart, Maribel; Escolar, Gines

    2015-10-01

    We evaluated the hemostatic alterations in blood from healthy individuals treated for 5 days with direct oral anticoagulants (DOACs) rivaroxaban (20 mg/d) or dabigatran (150 mg/12 h) in a single-blind clinical trial with crossover assignment (NCT01478282). We assessed the potential of prothrombin complex concentrates, activated prothrombin complex concentrates, or recombinant activated factor VII, when added ex vivo, to reverse the alterations caused by these DOACs. Blood was drawn at maximum plasma concentration after the last dose of each DOAC, and modifications in coagulation biomarkers were evaluated using a series of tests performed under steady conditions including routine coagulation, thrombin generation, and thromboelastometry assays. Additional studies in standardized flow devices were applied to evaluate alterations on platelet deposition and fibrin formation on damaged vascular surfaces exposed to flowing blood. Both DOACs caused important modifications of all coagulation biomarkers and significantly reduced fibrin formation in flow studies. Alterations in biomarkers observed in steady laboratory tests were normalized and occasionally overcompensated by procoagulant strategies. In contrast, reductions in fibrin formation observed in studies with flowing blood were improved, although never completely restored to baseline levels. Effects of dabigatran in flow studies appeared more resistant to reversal strategies than those of rivaroxaban. Inconsistencies between results of coagulation studies in steady or flowing assays not only raise concerns about the adequacy of the earlier tests to predict the restoration of the coagulopathy induced by DOACs but also suggest limitations of nonspecific procoagulant strategies to control severe coagulopathy in patients inadvertently overexposed these agents.

  5. Coagulation Factor Concentrates Fail to Restore Alterations in Fibrin Formation Caused by Rivaroxaban or Dabigatran in Studies With Flowing Blood From Treated Healthy Volunteers.

    PubMed

    Arellano-Rodrigo, Eduardo; Lopez-Vilchez, Irene; Galan, Ana M; Molina, Patricia; Reverter, Joan Carles; Carné, Xavier; Villalta, Jaume; Tassies, Dolors; Lozano, Miguel; Díaz-Ricart, Maribel; Escolar, Gines

    2015-10-01

    We evaluated the hemostatic alterations in blood from healthy individuals treated for 5 days with direct oral anticoagulants (DOACs) rivaroxaban (20 mg/d) or dabigatran (150 mg/12 h) in a single-blind clinical trial with crossover assignment (NCT01478282). We assessed the potential of prothrombin complex concentrates, activated prothrombin complex concentrates, or recombinant activated factor VII, when added ex vivo, to reverse the alterations caused by these DOACs. Blood was drawn at maximum plasma concentration after the last dose of each DOAC, and modifications in coagulation biomarkers were evaluated using a series of tests performed under steady conditions including routine coagulation, thrombin generation, and thromboelastometry assays. Additional studies in standardized flow devices were applied to evaluate alterations on platelet deposition and fibrin formation on damaged vascular surfaces exposed to flowing blood. Both DOACs caused important modifications of all coagulation biomarkers and significantly reduced fibrin formation in flow studies. Alterations in biomarkers observed in steady laboratory tests were normalized and occasionally overcompensated by procoagulant strategies. In contrast, reductions in fibrin formation observed in studies with flowing blood were improved, although never completely restored to baseline levels. Effects of dabigatran in flow studies appeared more resistant to reversal strategies than those of rivaroxaban. Inconsistencies between results of coagulation studies in steady or flowing assays not only raise concerns about the adequacy of the earlier tests to predict the restoration of the coagulopathy induced by DOACs but also suggest limitations of nonspecific procoagulant strategies to control severe coagulopathy in patients inadvertently overexposed these agents. PMID:26364029

  6. Blood Coagulation Induced by Iranian Saw-Scaled Viper (Echis Carinatus) Venom: Identification, Purification and Characterization of a Prothrombin Activator

    PubMed Central

    Babaie, Mahdi; Salmanizadeh, Hossein; Zolfagharian, Hossein

    2013-01-01

    Objective(s): Echis carinatus is one of the venomous snakes in Iran. The venom of Iranian Echis carinatus is a rich source of protein with various factors affecting the plasma protein and blood coagulation factor. Some of these proteins exhibit types of enzymatic activities. However, other items are proteins with no enzymatic activity. Materials and Methods: In order to study the mechanism and effect of the venom on human plasma proteins, the present study has evaluated the effect of crude venom and all fractions. A procoagulant factor (prothrombin activator) was isolated from the venom of the Iranian snake Echis carinatus with a combination of gel filtration (Sephadex G-75), ion-exchange chromatography (DEAE- Sepharose) and reverse phase HPLC. Furthermore, proteolytic activity of the crude venom and all fractions on blood coagulation factors such as prothrombin time (PT) was studied. Results: In the present study, the PT test was reduced from 13.4 s to 8.6 s when human plasma was treated with crude venom (concentraion of venom was 1 mg/ml). The purified procoagulant factor revealed a single protein band in SDS polyacrylamide electrophoresis under reducing conditions and its molecular weight was estimated at about 65 kDa. A single-band protein showed fragment patterns similar to those generated by the group A prothrombin activators, which convert prothrombin into meizothrombin independent of the prothrombinase complex. Conclusion: This study showed that the fraction which separated from Iranian snake Echis carinatus venom can be a prothrombin activators. It can be concluded that this fraction is a procoagulant factor. PMID:24494066

  7. Coagulant and anticoagulant activities of Bothrops lanceolatus (Fer de lance) venom.

    PubMed

    Lôbo de Araújo, A; Kamiguti, A; Bon, C

    2001-01-01

    Bothrops lanceolatus venom contains caseinolytic, phospholipase, esterase and haemorrhagic activities. We have investigated the coagulant and anticoagulant actions of B. lanceolatus venom on human citrated plasma and on purified plasma components. Although B. lanceolatus venom up to 50 microg/ml was unable to clot citrated plasma, at concentrations > or = 5 microg/ml the venom dose-dependently clotted purified human fibrinogen, indicating the presence of a thrombin-like enzyme. Human plasma (final concentration > or = 12.5%) dose-dependently inhibited the venom-induced fibrinogen clotting. This finding suggested that endogenous plasma protease inhibitors can affect the venom's action on fibrinogen. To investigate this possibility, B. lanceolatus venom was incubated with different plasma protease inhibitors and the activity on fibrinogen tested. alpha(2)-Macroglobulin and alpha(1)-antitrypsin did not interfere with the coagulant activity of the venom whereas the antithrombin-III/heparin complex partially inhibited this activity. A non-toxic, acidic phospholipase A(2) purified from B. lanceolatus venom prolonged the activated partial thromboplastin time in human plasma from 39.7+/-0.5 s (control with saline) to 60.2+/-0.9 s with 50 microg of PLA(2) (p<0.001), suggesting an anticoagulant activity associated with this enzyme. This anticoagulant activity may account for some of the effects of the venom on blood coagulation. PMID:10978756

  8. Interleukin-2 induces activation of coagulation and fibrinolysis: resemblance to the changes seen during experimental endotoxaemia.

    PubMed

    Baars, J W; de Boer, J P; Wagstaff, J; Roem, D; Eerenberg-Belmer, A J; Nauta, J; Pinedo, H M; Hack, C E

    1992-10-01

    The administration of Interleukin-2 (IL-2) causes the release or generation of other cytokines such as tumour necrosis factor (TNF) which, by disturbing the anticoagulant properties of the endothelium, may induce a procoagulant state in patients receiving this drug. We therefore evaluated the effects of IL-2 on coagulation and fibrinolysis in 14 patients receiving 12 or 18 x 10(6) IU/m2/d of IL-2 given as a 15 min infusion for 5 d. Blood samples were drawn at short intervals after the first IL-2 infusion. The parameters were analysed by way of analysis for repeated measures (F tests rather than t tests). During the first day, thrombin-antithrombin (TAT) complexes started to increase 2 h after the IL-2 infusion, reaching peak levels at 4 h (n = 14; 11.2 +/- 6.4 micrograms/l v 49.8 +/- 49.2 micrograms/l, P < 0.01). Plasma alpha 2 antiplasmin (PAP) complexes showed a similar pattern rising from a mean baseline value of 17.5 +/- 7.6 nmol/l to 66.8 +/- 47.7 nmol at 4 h (P < 0.01). In four patients the peak of PAP preceeded that of TAT. Tissue plasminogen activator (tPA) rose from a mean baseline value of 4.9 +/- 3.7 micrograms/l to 26.3 +/- 13.5 micrograms/l at 4 h (P < 0.01). Plasminogen-activator-inhibitor-1 (PAI-1) levels increased from 59 +/- 35 micrograms/l to 113 +/- 39 micrograms/l at 6 h (P < 0.01). tPA PAI-1 complexes increased from 0.15 +/- 0.07 to 0.69 +/- 0.21 nmol/l at 6 h (P < 0.01). Our study indicates that IL-2 activates the coagulation and fibrinolytic systems in vivo. The changes resemble the perturbations observed after endotoxin/TNF administration. These abnormalities may play a role in the side-effects induced by IL-2 therapy.

  9. Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay.

    PubMed

    Zhu, Shu; Diamond, Scott L

    2014-12-01

    Generation of active Factor XII (FXIIa) triggers blood clotting on artificial surfaces and may also enhance intravascular thrombosis. We developed a patterned kaolin (0 to 0.3 pg/μm(2))/type 1 collagen fibril surface for controlled microfluidic clotting assays. Perfusion of whole blood (treated only with a low level of 4 μg/mL of the XIIa inhibitor, corn trypsin inhibitor) drove platelet deposition followed by fibrin formation. At venous wall shear rate (100 s(-1)), kaolin accelerated onset of fibrin formation by ~100 sec when compared to collagen alone (250 sec vs. 350 sec), with little effect on platelet deposition. Even with kaolin present, arterial wall shear rate (1000 s(-1)) delayed and suppressed fibrin formation compared to venous wall shear rate. A comparison of surfaces for extrinsic activation (tissue factor TF/collagen) versus contact activation (kaolin/collagen) that each generated equal platelet deposition at 100 s(-1) revealed: (1) TF surfaces promoted much faster fibrin onset (at 100 sec) and more endpoint fibrin at 600 sec at either 100 s(-1) or 1000 s(-1), and (2) kaolin and TF surfaces had a similar sensitivity for reduced fibrin deposition at 1000 s(-1) (compared to fibrin formed at 100 s(-1)) despite differing coagulation triggers. Anti-platelet drugs inhibiting P2Y1, P2Y12, cyclooxygenase-1 or activating IP-receptor or guanylate cyclase reduced platelet and fibrin deposition on kaolin/collagen. Since FXIIa or FXIa inhibition may offer safe antithrombotic therapy, especially for biomaterial thrombosis, these defined collagen/kaolin surfaces may prove useful in drug screening tests or in clinical diagnostic assays of blood under flow conditions.

  10. Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay

    PubMed Central

    Zhu, Shu; Diamond, Scott L.

    2014-01-01

    Generation of active Factor XII (FXIIa) triggers blood clotting on artificial surfaces and may also enhance intravascular thrombosis. We developed a patterned kaolin (0 to 0.3 pg/μm2)/type 1 collagen fibril surface for controlled microfluidic clotting assays. Perfusion of whole blood (treated only with a low level of 4 μg/mL of the XIIa inhibitor, corn trypsin inhibitor) drove platelet deposition followed by fibrin formation. At venous wall shear rate (100 s−1), kaolin accelerated onset of fibrin formation by ~100 sec when compared to collagen alone (250 sec vs. 350 sec), with little effect on platelet deposition. Even with kaolin present, arterial wall shear rate (1000 s−1) delayed and suppressed fibrin formation compared to venous wall shear rate. A comparison of surfaces for extrinsic activation (tissue factor TF/collagen) versus contact activation (kaolin/collagen) that each generated equal platelet deposition at 100 s−1 revealed: (1) TF surfaces promoted much faster fibrin onset (at 100 sec) and more endpoint fibrin at 600 sec at either 100 s−1 or 1000 s−1, and (2) kaolin and TF surfaces had a similar sensitivity for reduced fibrin deposition at 1000 s−1 (compared to fibrin formed at 100 s−1) despite differing coagulation triggers. Anti-platelet drugs inhibiting P2Y1, P2Y12, cyclooxygenase-1 or activating IP-receptor or guanylate cyclase reduced platelet and fibrin deposition on kaolin/collagen. Since FXIIa or FXIa inhibition may offer safe antithrombotic therapy, especially for biomaterial thrombosis, these defined collagen/kaolin surfaces may prove useful in drug screening tests or in clinical diagnostic assays of blood under flow conditions. PMID:25303860

  11. Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay.

    PubMed

    Zhu, Shu; Diamond, Scott L

    2014-12-01

    Generation of active Factor XII (FXIIa) triggers blood clotting on artificial surfaces and may also enhance intravascular thrombosis. We developed a patterned kaolin (0 to 0.3 pg/μm(2))/type 1 collagen fibril surface for controlled microfluidic clotting assays. Perfusion of whole blood (treated only with a low level of 4 μg/mL of the XIIa inhibitor, corn trypsin inhibitor) drove platelet deposition followed by fibrin formation. At venous wall shear rate (100 s(-1)), kaolin accelerated onset of fibrin formation by ~100 sec when compared to collagen alone (250 sec vs. 350 sec), with little effect on platelet deposition. Even with kaolin present, arterial wall shear rate (1000 s(-1)) delayed and suppressed fibrin formation compared to venous wall shear rate. A comparison of surfaces for extrinsic activation (tissue factor TF/collagen) versus contact activation (kaolin/collagen) that each generated equal platelet deposition at 100 s(-1) revealed: (1) TF surfaces promoted much faster fibrin onset (at 100 sec) and more endpoint fibrin at 600 sec at either 100 s(-1) or 1000 s(-1), and (2) kaolin and TF surfaces had a similar sensitivity for reduced fibrin deposition at 1000 s(-1) (compared to fibrin formed at 100 s(-1)) despite differing coagulation triggers. Anti-platelet drugs inhibiting P2Y1, P2Y12, cyclooxygenase-1 or activating IP-receptor or guanylate cyclase reduced platelet and fibrin deposition on kaolin/collagen. Since FXIIa or FXIa inhibition may offer safe antithrombotic therapy, especially for biomaterial thrombosis, these defined collagen/kaolin surfaces may prove useful in drug screening tests or in clinical diagnostic assays of blood under flow conditions. PMID:25303860

  12. Plasmin and coagulant activities in a minicurd model system: Study of technological parameters.

    PubMed

    Vélez, M A; Perotti, M C; Candioti, M C; Bergamini, C V; Hynes, E R

    2016-09-01

    The effect of scalding temperature of the curd, the inclusion of a washing step, and the pH at whey drainage on plasmin and coagulant activities were assessed in a minicurd model of young hard cooked cheese. The variables were tested as follows: draining pH was assayed at 3 levels (4.6, 5.6, and 6.4), curd scalding temperature was tested at 50 and 56°C, and washing of the curd was examined at 2 levels (no washing step, and the replacement of the whey by water). Increase in pH at whey drainage and washing of the curd had a positive effect on plasmin activity, which was also evidenced by compatible changes in soluble peptide profiles. No effect of increased cooking temperature was found on plasmin activity. Plasminogen activation was not verified in any treatment. As for coagulant, lower pH values at whey drainage and a decrease in curd cooking temperature increased its activity; washing of the curd showed no influence on coagulant residual activity. These results were consistent with proteolysis described by peptide profiles, electrophoresis, and soluble nitrogen fractions.

  13. Plasmin and coagulant activities in a minicurd model system: Study of technological parameters.

    PubMed

    Vélez, M A; Perotti, M C; Candioti, M C; Bergamini, C V; Hynes, E R

    2016-09-01

    The effect of scalding temperature of the curd, the inclusion of a washing step, and the pH at whey drainage on plasmin and coagulant activities were assessed in a minicurd model of young hard cooked cheese. The variables were tested as follows: draining pH was assayed at 3 levels (4.6, 5.6, and 6.4), curd scalding temperature was tested at 50 and 56°C, and washing of the curd was examined at 2 levels (no washing step, and the replacement of the whey by water). Increase in pH at whey drainage and washing of the curd had a positive effect on plasmin activity, which was also evidenced by compatible changes in soluble peptide profiles. No effect of increased cooking temperature was found on plasmin activity. Plasminogen activation was not verified in any treatment. As for coagulant, lower pH values at whey drainage and a decrease in curd cooking temperature increased its activity; washing of the curd showed no influence on coagulant residual activity. These results were consistent with proteolysis described by peptide profiles, electrophoresis, and soluble nitrogen fractions. PMID:27423946

  14. Long-term activation of the pro-coagulant response after neoadjuvant chemoradiation and major cancer surgery

    PubMed Central

    Byrne, M; Reynolds, J V; O'Donnell, J S; Keogan, M; White, B; Byrne, M; Murphy, S; Maher, S G; Pidgeon, G P

    2009-01-01

    Background: The association between cancer, major surgery and venous thromboembolism (VTE) is well established. Multimodal therapy is increasingly being used as standard treatment for localised gastrointestinal cancer. The aim of this study was to examine the markers of pro-coagulation response and VTE risk in an exemplar multimodal model of pre-operative combination chemotherapy and radiation therapy, followed by complex cancer surgery. Methods: Consecutive patients (n=36) with localised oesophageal cancer were studied at baseline after the first and second cycles of chemoradiation, and on post-operative days 1–28, and at 3, 6 and 9 months. Factors regulating the pro- and anti-coagulant response, as well as pro-inflammatory markers including NFκB activation in peripheral blood mononuclear cells, were examined. All patients received enoxaparin 40 mg s.c. postoperatively up to discharge, and underwent pulmonary CT-pulmonary angiography and venography on day 10 postoperatively. Results: Four (11%) non-fatal thromboembolic events were documented, all after hospital discharge. Neoadjuvant therapy before surgery activated factor VIII (FVIII) and pro-inflammatory NFκB, and increased D-dimers, pro-thrombin fragment 1+2 (F1+2) and the thrombin-anti-thrombin complex (TAT). Surgery significantly (P<0.05) increased pro-thrombin time (PT), activated partial thromboplastin time, fibrinogen, D-dimers, TAT, F1+2 and FVIII up to 6 months. Conclusion: These data highlight the linked pro-coagulant and immunoinflammatory pathways in the multimodal management of oesophageal cancer, and suggest that the duration of current standard thromboprophylaxis regimens warrants further study. PMID:19953092

  15. Thrombomodulin/activated protein C system in septic disseminated intravascular coagulation.

    PubMed

    Ikezoe, Takayuki

    2015-01-01

    The thrombomodulin (TM)/activated protein C (APC) system plays an important role in maintaining the homeostasis of thrombosis and hemostasis and maintaining vascular integrity in vivo. TM expressed on vascular endothelium binds to thrombin, forming a 1:1 complex and acts as an anticoagulant. In addition, the thrombin-TM complex activates protein C to produce APC, which inactivates factors VIIIa and Va in the presence of protein S, thereby inhibiting further thrombin formation. Intriguingly, APC possesses anti-inflammatory as well as cytoprotective activities. Moreover, the extracellular domain of TM also possesses APC-independent anti-inflammatory and cytoprotective activities. Of note, the TM/APC system is compromised in disseminated intravascular coagulation (DIC) caused by sepsis due to various mechanisms, including cleavage of cell-surface TM by exaggerated cytokines and proteases produced by activated inflammatory cells. Thus, it is reasonable to assume that reconstitution of the TM/APC system by recombinant proteins would alleviate sepsis and DIC. On the basis of the success of the Protein C Worldwide Evaluation in Severe Sepsis (PROWESS) trial, the FDA approved the use of recombinant human APC (rhAPC) for severe sepsis patients in 2002. However, subsequent clinical trials failed to show clinical benefits for rhAPC, and an increased incidence of hemorrhage-related adverse events was noted, which prompted the industry to withdraw rhAPC from the market. On the other hand, recombinant human soluble TM (rTM) has been used for treatment of individuals with DIC since 2008 in Japan, and a phase III clinical trial evaluating the efficacy of rTM in severe sepsis patients with coagulopathy is now ongoing in the USA, South America, Asia, Australia, European Union, and other countries. This review article discusses the molecular mechanisms by which the TM/APC system produces anticoagulant as well as anti-inflammatory and cytoprotective activities in septic DIC patients.

  16. Moringa oleifera Lam.: Protease activity against blood coagulation cascade

    PubMed Central

    Satish, A; Sairam, Sudha; Ahmed, Faiyaz; Urooj, Asna

    2012-01-01

    Background: The present study evaluated the protease activity of aqueous extracts of Moringa oleifera (Moringaceae) leaf (MOL) and root (MOR). Materials and Methods: Protease activity was assayed using casein, human plasma clot and human fibrinogen as substrates. Results: Caseinolytic activity of MOL was significantly higher (P ≤ 0.05) than that of MOR. Similar observations were found in case of human plasma clot hydrolyzing activity, wherein MOL caused significantly higher (P ≤ 0.05) plasma clot hydrolysis than MOR. Zymographic techniques were used to detect proteolytic enzymes following electrophoretic separation in gels. Further, both the extracts exhibited significant procoagulant activity as reflected by a significant decrease (P ≤ 0.05) in recalcification time, accompanied by fibrinogenolytic and fibrinolytic activities; clotting time was decreased from 180 ± 10 sec to 119 ± 8 sec and 143 ± 10 sec by MOL and MOR, respectively, at a concentration of 2.5 mg/mL. Fibrinogenolytic (human fibrinogen) and fibrinolytic activity (human plasma clot) was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), plate method and colorimetric method. Zymographic profile indicated that both the extracts exerted their procoagulant activity by selectively hydrolyzing Aα and Bβ subunits of fibrinogen to form fibrin clot, thereby exhibiting fibrinogenolytic activity. However, prolonged incubation resulted in degradation of the formed fibrin clot, suggesting fibrinolytic like activity. Conclusions: These findings support the traditional usage of M. oleifera extracts for wound healing. PMID:22224061

  17. Erythrocyte-derived microparticles supporting activated protein C-mediated regulation of blood coagulation.

    PubMed

    Koshiar, Ruzica Livaja; Somajo, Sofia; Norström, Eva; Dahlbäck, Björn

    2014-01-01

    Elevated levels of erythrocyte-derived microparticles are present in the circulation in medical conditions affecting the red blood cells. Erythrocyte-derived microparticles expose phosphatidylserine thus providing a suitable surface for procoagulant reactions leading to thrombin formation via the tenase and prothrombinase complexes. Patients with elevated levels of circulating erythrocyte-derived microparticles have increased thrombin generation in vivo. The aim of the present study was to investigate whether erythrocyte-derived microparticles are able to support the anticoagulant reactions of the protein C system. Erythrocyte-derived microparticles were isolated using ultracentrifugation after incubation of freshly prepared erythrocytes with the ionophore A23187 or from outdated erythrocyte concentrates, the different microparticles preparations yielding similar results. According to flow cytometry analysis, the microparticles exposed phoshatidylserine and bound lactadherin, annexin V, and protein S, which is a cofactor to activated protein C. The microparticles were able to assemble the tenase and prothrombinase complexes and to stimulate the formation of thrombin in plasma-based thrombin generation assay both in presence and absence of added tissue factor. The addition of activated protein C in the thrombin generation assay inhibited thrombin generation in a dose-dependent fashion. The anticoagulant effect of activated protein C in the thrombin generation assay was inhibited by a monoclonal antibody that prevents binding of protein S to microparticles and also attenuated by anti-TFPI antibodies. In the presence of erythrocyte-derived microparticles, activated protein C inhibited tenase and prothrombinase by degrading the cofactors FVIIIa and FVa, respectively. Protein S stimulated the Arg306-cleavage in FVa, whereas efficient inhibition of FVIIIa depended on the synergistic cofactor activity of protein S and FV. In summary, the erythrocyte-derived microparticle

  18. Thrombin generation and fibrin clot formation under hypothermic conditions: an in vitro evaluation of tissue factor initiated whole blood coagulation

    PubMed Central

    Whelihan, Matthew F.; Kiankhooy, Armin; Brummel-Ziedins, Kathleen

    2015-01-01

    Background Despite trauma-induced hypothermic coagulopathy being familiar in the clinical setting, empirical experimentation concerning this phenomenon is lacking. In this study we investigated the effects of hypothermia on thrombin generation, clot formation and global hemostatic functions in an in vitro environment using a whole blood model and thromboelastography (TEG) which can recapitulate hypothermia. Methods Blood was collected from healthy individuals through venipuncture and treated with corn trypsin inhibitor, to block the contact pathway. Coagulation was initiated with 5pM tissue factor at temperatures 37°C, 32°C, and 27°C. Reactions were quenched over time with soluble and insoluble components of each time point analyzed for thrombin generation, fibrinogen consumption, factor (f)XIII activation and fibrin deposition. Global coagulation potential was evaluated through TEG. Results Data showed that thrombin generation in samples at 37°C and 32°C had comparable rates while 27°C had a much lower rate (39.2 ± 1.1 and 43 ± 2.4 nM/min vs 28.6 ± 4.4 nM/min, respectively). Fibrinogen consumption and fXIII activation were highest at 37°C followed by 32°C and 27°C (13.8 ± 2.9 percent/min vs 7.8 ± 1.8 percent/min, respectively). Fibrin formation as seen through clot weights also followed this trend. TEG data showed clot formation was fastest in samples at 37°C and lowest at 27°C. Maximum clot strength was similar for each temperature. Also, percent lysis of clots was highest at 37°C followed by 32°C and then 27°C. Conclusions Induced hypothermic conditions directly affect the rate of thrombin generation and clot formation while global clot stability remains intact. PMID:24331944

  19. Activation of human factor IX (Christmas factor).

    PubMed

    Di Scipio, R G; Kurachi, K; Davie, E W

    1978-06-01

    Human Factor IX (Christmas factor) is a single-chain plasma glycoprotein (mol wt 57,000) that participates in the middle phase of the intrinsic pathway of blood coagulation. It is present in plasma as a zymogen and is converted to a serine protease, Factor IXabeta, by Factor XIa (activated plasma thromboplastin antecedent) in the presence of calcium ions. In the activation reaction, two internal peptide bonds are hydrolyzed in Factor IX. These cleavages occur at a specific arginyl-alanine peptide bond and a specific arginyl-valine peptide bond. This results in the release of an activation peptide (mol wt approximately equal to 11,000) from the internal region of the precursor molecule and the generation of Factor IXabeta (mol wt approximately equal to 46,000). Factor IXabeta is composed of a light chain (mol wt approximately equal to 18,000) and a heavy chain (mol wt approximately equal to 28,000), and these chains are held together by a disulfide bond(s). The light chain originates from the amino terminal portion of the precursor molecule and has an amino terminal sequence of Tyr-Asn-Ser-Gly-Lys. The heavy chain originates from the carboxyl terminal region of the precursor molecule and contains an amino terminal sequence of Val-Val-Gly-Gly-Glu. The heavy chain of Factor IXabeta also contains the active site sequence of Phe-Cys-Ala-Gly-Phe-His-Glu-Gly-Arg-Asp-Ser-Cys-Gln-Gly-Asp-SER-Gly-Gly-Pro. The active site serine residue is shown in capital letters. Factor IX is also converted to Factor IXaalpha by a protease from Russell's viper venom. This activation reaction, however, occurs in a single step and involves only the cleavage of the internal arginyl-valine peptide bond. Human Factor IXabeta was inhibited by human antithrombin III by the formation of a one-to-one complex of enzyme and inhibitor. In this reaction, the inhibitor was tightly bound to the heavy chain of the enzyme. These data indicate that the mechanism of activation of human Factor IX and its

  20. Advances in Oral Coagulants

    PubMed Central

    2013-01-01

    This article reviews current and future treatment practices concerning oral anticoagulants. In the second decade of the 21st millennium clinicians can finally treat thrombotic disease with long-awaited new oral anticoagulant medications. In addition, improvements have been made in managing warfarin, the traditional but far from obsolete medication. The first part of this review will cover current advances with warfarin treatment. The second portion will discuss specific active coagulation factor inhibitors, the new oral anticoagulants.

  1. Impacts of coagulation on the adsorption of organic micropollutants onto powdered activated carbon in treated domestic wastewater.

    PubMed

    Altmann, Johannes; Zietzschmann, Frederik; Geiling, Eva-Linde; Ruhl, Aki Sebastian; Sperlich, Alexander; Jekel, Martin

    2015-04-01

    The application of powdered activated carbon (PAC) as an advanced wastewater treatment step for the removal of organic micropollutants (OMP) necessitates complete separation of the PAC particles, e.g. by coagulation. In this study, potential positive or negative indirect or direct effects of coagulation on the adsorption of OMPs onto PAC in treated wastewater were investigated. Although the concentration of dissolved organic matter (DOM) was significantly reduced by coagulation, the selective removal of mainly larger DOM components such as biopolymers and humic substances did not improve subsequent OMP adsorption onto PAC, demonstrating that coagulation has minor effects on DOM constituents that are relevant for direct competition or pore blocking. The combination of coagulation and adsorption yielded the sum of the individual removals, as adsorption predominantly affected smaller compounds. While the formation of flocs led to visible incorporation of PAC particles, no significant mass transfer limitations impeded the OMP adsorption. As a result, the dosing sequence of coagulant and PAC is not critical for efficient adsorption of OMPs onto PAC. The relationships between adsorptive OMP removal and corresponding reduction of UV absorption at 254 nm (UVA254) as a promising surrogate correlation for the real-time monitoring and PAC adjustment were affected by coagulation, leading to individual correlations depending on the water composition. Correcting for UVA254 reduction by coagulation produces adsorptive UVA254 removal, which correlates highly with OMP removal for different WWTP effluents and varying coagulant doses and can be applied in combined adsorption/coagulation processes to predict OMP removal and control PAC dosing.

  2. Impacts of coagulation on the adsorption of organic micropollutants onto powdered activated carbon in treated domestic wastewater.

    PubMed

    Altmann, Johannes; Zietzschmann, Frederik; Geiling, Eva-Linde; Ruhl, Aki Sebastian; Sperlich, Alexander; Jekel, Martin

    2015-04-01

    The application of powdered activated carbon (PAC) as an advanced wastewater treatment step for the removal of organic micropollutants (OMP) necessitates complete separation of the PAC particles, e.g. by coagulation. In this study, potential positive or negative indirect or direct effects of coagulation on the adsorption of OMPs onto PAC in treated wastewater were investigated. Although the concentration of dissolved organic matter (DOM) was significantly reduced by coagulation, the selective removal of mainly larger DOM components such as biopolymers and humic substances did not improve subsequent OMP adsorption onto PAC, demonstrating that coagulation has minor effects on DOM constituents that are relevant for direct competition or pore blocking. The combination of coagulation and adsorption yielded the sum of the individual removals, as adsorption predominantly affected smaller compounds. While the formation of flocs led to visible incorporation of PAC particles, no significant mass transfer limitations impeded the OMP adsorption. As a result, the dosing sequence of coagulant and PAC is not critical for efficient adsorption of OMPs onto PAC. The relationships between adsorptive OMP removal and corresponding reduction of UV absorption at 254 nm (UVA254) as a promising surrogate correlation for the real-time monitoring and PAC adjustment were affected by coagulation, leading to individual correlations depending on the water composition. Correcting for UVA254 reduction by coagulation produces adsorptive UVA254 removal, which correlates highly with OMP removal for different WWTP effluents and varying coagulant doses and can be applied in combined adsorption/coagulation processes to predict OMP removal and control PAC dosing. PMID:25582393

  3. Blood coagulation in falciparum malaria--a review.

    PubMed

    Ghosh, Kanjaksha; Shetty, Shrimati

    2008-03-01

    Falciparum malaria infection influences blood coagulation by various interacting pathobiological mechanisms, the most important being the overwhelming response of the host to sepsis resulting in a cytokine storm. In addition, the parasite infects the red cells leading to changes in the red cell phospholipid composition which supports blood coagulation. Red cells infected with Plasmodium falciparum also adhere to deeper tissue capillary endothelium leading to profound damage to endothelial cells leading to further activation. This results in widespread consumption of platelets and activation of blood coagulation which at times culminates in a clinically and pathologically detectable disseminated intravascular coagulation (DIC). Monocyte-macrophage system also gets activated in this infection compounding the hypercoagulable state. Heavy parasitaemia leading to occlusion of hepatic microcirculation leads to abnormalities in synthesis and secretion of coagulation factors and their inhibitors. Drugs used in the treatment for falciparum malaria can cause thrombocytopaenia, bone marrow suppression and haemolytic anaemia, all of which can interfere indirectly with blood coagulation. Microparticle formation from platelets, red cells and macrophages also causes widespread activation of blood coagulation, and this recently observed mechanism is the focus of intense research in many other inflammatory and neoplastic conditions where there is activation of blood coagulation system. Thus, in severe falciparum malaria, there is activation of blood coagulation system along with thrombocytopaenia, even before widespread DIC and coagulation failure occur.

  4. Plasminogen activator and plasminogen activator inhibitor I release during experimental endotoxaemia in chimpanzees: effect of interventions in the cytokine and coagulation cascades.

    PubMed

    Biemond, B J; Levi, M; Ten Cate, H; Van der Poll, T; Büller, H R; Hack, C E; Ten Cate, J W

    1995-05-01

    1. Disseminated intravascular coagulation frequently accompanies Gram-negative sepsis and may contribute to widespread deposition of microthrombi. Besides the endotoxin-induced activation of coagulation, an important role for the fibrinolytic system has been postulated. The precise mechanisms underlying these fibrinolytic changes during endotoxaemia are not known but have been suggested to be mediated directly by cytokines or secondary to thrombin generation. 2. In the present study we have delineated in detail the fibrinolytic response to a bolus injection of endotoxin in non-human primates and analysed the contribution of cytokines and thrombin generation to the endotoxin-induced release of tissue-type plasminogen activator and plasminogen activator inhibitor 1. Chimpanzees received a bolus injection of endotoxin alone or in combination with blocking monoclonal antibodies directed against tumour necrosis factor or interleukin 6 or in combination with pentoxifylline. Furthermore, to assess the effect of coagulation activation on the activation of fibrinolysis, another group of chimpanzees received endotoxin in combination with either anti-tissue factor antibodies or recombinant hirudin. 3. Infusion of endotoxin induced a rapid increase in plasminogen activator activity and tissue-type plasminogen activator antigen levels and subsequent plasmin generation, reaching peak levels 2h after endotoxin administration. Plasminogen activator inhibitor 1 levels remained constant for the first 2 h, after which time a steep increase was observed. Plasminogen activator activity and plasmin generation decreased simultaneously with the rise in plasminogen activator inhibitor 1 levels. Fibrinolytic activity remained suppressed during the remainder of the study owing to sustained increased levels of plasminogen activator inhibitor 1. The administration of pentoxifylline strongly attenuated the release of tissue-type plasminogen activator and plasminogen activator inhibitor 1

  5. The activated coagulation time of whole blood as a routine pre-operative sceening test.

    PubMed

    Hattersley, P G

    1971-05-01

    Patients with disorders of hemostasis who undergo surgical procedures are in danger of hemorrhage. While the careful medical history remains the most sensitive test of a bleeding tendency, some such patients can give no suggestive history. In three patients with coagulopathy-one with mild classical hemophilia, one with Christmas disease, and one with warfarin toxicity-the abnormality was missed by routine preoperative history but promptly detected by the routine preoperative use of the activated coagulation time (act). Either this test or the activated partial thromboplastin time should be included in the routine preoperative work-up, along with appropriate additional tests of the hemostatic mechanism.

  6. Characterization of a human coagulation factor Xa-binding site on Viperidae snake venom phospholipases A2 by affinity binding studies and molecular bioinformatics

    PubMed Central

    Faure, Grazyna; Gowda, Veerabasappa T; Maroun, Rachid C

    2007-01-01

    Background The snake venom group IIA secreted phospholipases A2 (SVPLA2), present in the Viperidae snake family exhibit a wide range of toxic and pharmacological effects. They exert their different functions by catalyzing the hydrolysis of phospholipids (PL) at the membrane/water interface and by highly specific direct binding to: (i) presynaptic membrane-bound or intracellular receptors; (ii) natural PLA2-inhibitors from snake serum; and (iii) coagulation factors present in human blood. Results Using surface plasmon resonance (SPR) protein-protein interaction measurements and an in vitro biological test of inhibition of prothrombinase activity, we identify a number of Viperidae venom SVPLA2s that inhibit blood coagulation through direct binding to human blood coagulation factor Xa (FXa) via a non-catalytic, PL-independent mechanism. We classify the SVPLA2s in four groups, depending on the strength of their binding. Molecular electrostatic potentials calculated at the surface of 3D homology-modeling models show a correlation with inhibition of prothrombinase activity. In addition, molecular docking simulations between SVPLA2 and FXa guided by the experimental data identify the potential FXa binding site on the SVPLA2s. This site is composed of the following regions: helices A and B, the Ca2+ loop, the helix C-β-wing loop, and the C-terminal fragment. Some of the SVPLA2 binding site residues belong also to the interfacial binding site (IBS). The interface in FXa involves both, the light and heavy chains. Conclusion We have experimentally identified several strong FXa-binding SVPLA2s that disrupt the function of the coagulation cascade by interacting with FXa by the non-catalytic PL-independent mechanism. By theoretical methods we mapped the interaction sites on both, the SVPLA2s and FXa. Our findings may lead to the design of novel, non-competitive FXa inhibitors. PMID:18062812

  7. Structural and functional influences of coagulation factor XIII subunit B heterozygous missense mutants

    PubMed Central

    Thomas, Anne; Biswas, Arijit; Ivaskevicius, Vytautas; Oldenburg, Johannes

    2015-01-01

    The coagulation factor XIII(FXIII) is a plasma circulating heterotetrameric protransglutaminase that acts at the end of the coagulation cascade by covalently cross-linking preformed fibrin clots (to themselves and to fibrinolytic inhibitors) in order to stabilize them against fibrinolysis. It circulates in the plasma as a heterotetramer composed of two homomeric catalytic Factor XIIIA2 (FXIIIA2) and two homomeric protective/carrier Factor XIIIB2 subunit (FXIIIB2). Congenital deficiency of FXIII is of two types: severe homozygous/compound heterozygous FXIII deficiency which results in severe bleeding symptoms and mild heterozygous FXIII deficiency which is associated with mild bleeding (only upon trauma) or an asymptomatic phenotype. Defects in the F13B gene (Factor XIIIB subunit) occur more frequently in mild FXIII deficiency patients than in severe FXIII deficiency. We had recently reported secretion-related defects for seven previously reported F13B missense mutations. In the present study we further analyze the underlying molecular pathological mechanisms as well as the heterozygous expression phenotype for these mutations using a combination of in vitro heterologous expression (in HEK293T cells) and confocal microscopy. In combination with the in vitro work we have also performed an in silico solvated molecular dynamic simulation study on previously reported FXIIIB subunit sushi domain homology models in order to predict the putative structure-functional impact of these mutations. We were able to categorize the mutations into the following functional groups that: (1) affect antigenic stability as well as binding to FXIIIA subunit, that is, Cys5Arg, Cys316Phe, and Pro428Ser (2) affect binding to FXIIIA subunit with little or no influence on antigenic stability, that is, Ile81Asn and Val401Gln c) influence neither aspects and are most likely causality linked polymorphisms or functional polymorphisms, that is, Leu116Phe and Val217Ile. The Cys5Arg mutation was the

  8. Structural and functional influences of coagulation factor XIII subunit B heterozygous missense mutants.

    PubMed

    Thomas, Anne; Biswas, Arijit; Ivaskevicius, Vytautas; Oldenburg, Johannes

    2015-07-01

    The coagulation factor XIII(FXIII) is a plasma circulating heterotetrameric protransglutaminase that acts at the end of the coagulation cascade by covalently cross-linking preformed fibrin clots (to themselves and to fibrinolytic inhibitors) in order to stabilize them against fibrinolysis. It circulates in the plasma as a heterotetramer composed of two homomeric catalytic Factor XIIIA2 (FXIIIA2) and two homomeric protective/carrier Factor XIIIB2 subunit (FXIIIB2). Congenital deficiency of FXIII is of two types: severe homozygous/compound heterozygous FXIII deficiency which results in severe bleeding symptoms and mild heterozygous FXIII deficiency which is associated with mild bleeding (only upon trauma) or an asymptomatic phenotype. Defects in the F13B gene (Factor XIIIB subunit) occur more frequently in mild FXIII deficiency patients than in severe FXIII deficiency. We had recently reported secretion-related defects for seven previously reported F13B missense mutations. In the present study we further analyze the underlying molecular pathological mechanisms as well as the heterozygous expression phenotype for these mutations using a combination of in vitro heterologous expression (in HEK293T cells) and confocal microscopy. In combination with the in vitro work we have also performed an in silico solvated molecular dynamic simulation study on previously reported FXIIIB subunit sushi domain homology models in order to predict the putative structure-functional impact of these mutations. We were able to categorize the mutations into the following functional groups that: (1) affect antigenic stability as well as binding to FXIIIA subunit, that is, Cys5Arg, Cys316Phe, and Pro428Ser (2) affect binding to FXIIIA subunit with little or no influence on antigenic stability, that is, Ile81Asn and Val401Gln c) influence neither aspects and are most likely causality linked polymorphisms or functional polymorphisms, that is, Leu116Phe and Val217Ile. The Cys5Arg mutation was the

  9. Extending the pharmacokinetic half-life of coagulation factors by fusion to recombinant albumin.

    PubMed

    Metzner, H J; Pipe, S W; Weimer, T; Schulte, S

    2013-11-01

    The prophylactic treatment of haemophilia B and the management of haemophilia A or B with inhibitors demand frequent administrations of coagulation factors due to the suboptimal half-lives of the products commercially available and currently in use, e.g. recombinant factor IX (rFIX) and recombinant factor VIIa (rFVIIa), respectively. The extension of the half-lives of rFIX and rFVIIa could allow for longer intervals between infusions and could thereby improve adherence and clinical outcomes and may improve quality of life. Albumin fusion is one of a number of different techniques currently being examined to prolong the half-life of rFIX and rFVIIa. Results from a phase I clinical trial demonstrated that the recombinant fusion protein linking FIX to albumin (rIX-FP) has a five-times longer half-life than rFIX, and preclinical studies with the recombinant fusion protein linking FVIIa to albumin (rVIIa-FP) suggest that rVIIa-FP possesses a significantly extended half-life versus rFVIIa. In this review, we describe albumin fusion technology and examine the recent progress in the development of rIX-FP and rVIIa-FP.

  10. Prothrombin activation fragment 1 + 2 as a marker of coagulation activation in cord blood collection for banking.

    PubMed

    Juutistenaho, S; Vahtera, E; Aranko, K; Kekomäki, R

    2010-08-01

    There have been efforts to increase the quality of cord blood (CB) collections aimed at banking and transplantation. Yet, the effect of CB collection techniques on haemostatic activation is scarcely studied, despite the unique nature of the neonatal haemostatic system. The aim of this study was to explore coagulation system and platelet (PLT) activation during CB collection at a national CB bank. At three time points over a 9-year period (in 1998, 2000 and 2006), CB collections were assessed to evaluate the collection process during bank setup and changes in procedures. Thrombin generation and PLT activation were assessed with prothrombin activation fragment 1 + 2 (F1 + 2) and PLT factor 4 (PF4), respectively. The median F1 + 2 level was 2.8 nmol L(-1) in 1998 (n = 11), 0.7 nmol L(-1) in 2000 (n = 10) and 0.7 nmol L(-1) in 2006 (n = 6), the decrease being statistically significant (1998 vs 2000, P < 0.001; 1998 vs 2006, P = 0.01). The median PF4 level was 117 IU mL(-1) in 1998 and 104 IU mL(-1) in 2000. PF4 was not measured in 2006. The level of F1 + 2 correlated with that of PF4 (n = 21; Spearman's Rho = 0.59, P = 0.006). Haemostatic activation, assessed as a part of CB bank process control, decreased from the first to the subsequent sample series. F1 + 2 may be a candidate for quality control in CB banking; however, further studies are needed to optimise the analyses and to assess the effect of haemostatic activation on CB quality. PMID:20345383

  11. Blood coagulation as an intrinsic pathway for proinflammation: a mini review.

    PubMed

    Chu, Arthur J

    2010-03-01

    Blood coagulation could be recognized as intrinsic inflammation. The coagulant mediators (FVIIa, FXa, thrombin (FIIa), FXIIa) and fibrin(ogen) activate cellular signaling, eliciting the production of cytokines, chemokines, growth factors, and other proinflammatory mediators. Hypercoagulability with elevated coagulant mediators would certainly trigger hyper-inflammatory state not to mention about the direct hypercoagulable actions on thrombosis, and platelet and complement activations, all of which contribute to inflammatory events. Furthermore, anticoagulant's anti-inflammatory effects readily reinforce the proposal that blood coagulation results in inflammation. The observations on protease activated receptor (PAR) activation and PAR antagonists modulating inflammation are also in line with the concept of coagulation-dependent inflammation.

  12. Hevea latex lectin binding protein in C-serum as an anti-latex coagulating factor and its role in a proposed new model for latex coagulation.

    PubMed

    Wititsuwannakul, Rapepun; Pasitkul, Piyaporn; Jewtragoon, Pattavuth; Wititsuwannakul, Dhirayos

    2008-02-01

    A distinct protein specifically recognized by its strong interaction with Hevea latex lectin (HLL) was detected in the aqueous C-serum fraction of centrifuged fresh latex. This C-serum lectin binding protein (CS-HLLBP) exhibited strong inhibition of HLL-induced hemagglutination. The CS-HLLBP was purified to homogeneity by a protocol that included ammonium sulfate fractionation, size exclusion and ion exchange chromatography. The purified CS-HLLBP had a specific HI titer of 0.23microg ml(-1). Its M(r)s analyzed by SDS-PAGE was ca. 40kDa and that by gel filtration was ca. 204kDa. It has a pI value of 4.7, an optimum activity between pH 6 and10 and was heat stable up to 50 degrees C. The HI activity of CS-HLLBP was abolished upon treatment with chitinase. The CS-HLLBP inhibited HLL-induced rubber particle aggregation in a dose dependent manner. A highly positive correlation between CS-HLLBP activity and rubber yield per tapping was found. The correlations for fresh latex (r=0.98, P<0.01) and dry rubber (r=0.95, P<0.01) were both highly significant. This indicated that the CS-HLLBP might be used as a reliable marker for the mass screening of young seedlings to identify and select clones with potential to be superior producers of rubber. A latex anti-coagulating role of the CS-HLLBP is proposed. The findings described in this 3 paper series have been used to propose a new model of rubber latex coagulation that logically describes roles for the newly characterized latex lectin and the two lectin binding proteins. PMID:17983633

  13. The first report on coagulation and phospholipase A2 activities of Persian Gulf lionfish, Pterois russelli, an Iranian venomous fish.

    PubMed

    Memar, Bahareh; Jamili, Shahla; Shahbazzadeh, Delavar; Bagheri, Kamran Pooshang

    2016-04-01

    Pterois russelli is a venomous fish belonging to scorpionidae family. Regarding to high significance value for tracing potential therapeutic molecules and special agents from venomous marine creatures, the present study was aimed to characterization of the Persian Gulf lionfish venom. Proteolytic, phospholipase, hemolytic, coagulation, edematogenic and dermonecrotic activities were determined for extracted venom. The LD50 of P. russelli venom was determined by intravenous injection in white Balb/c mice. Phospholipase A2 activity was recorded at 20 μg of total venom. Coagulation activity on human plasma was shown by Prothrombin Time (PT) and activated Partial Thromboplastin Time (APTT) assays and coagulation visualized after 7 and 14 s respectively for 60 μg of crude venom. LD50 was calculated as 10.5 mg/kg. SDS-PAGE revealed the presence of major and minor protein bands between 6 and 205 kDa. Different amounts of crude venom ranged from 1.87 to 30 μg showed proteolytic activity on casein. The highest edematic activity was detected at 20 μg. Our findings showed that the edematic activity was dose dependent and persisted for 48 h after injection. The crude venom did not induce dermonecrotic activity on rabbit skin and showed no hemolytic activity on human, mouse and rabbit erythrocytes. This is the first report for phospholipase A2 and coagulation activity in venomous fish and venomous marine animals respectively. Proteolytic activity of P. russelli venom is in accordance with the other genara of scorpionidae family. According to venom activity on intrinsic and extrinsic coagulation pathways, lionfish venom would be contained an interesting pharmaceutical agent. This study is pending to further characterization of phospholipase A2, coagulation, and protease activities and also in vivo activity on animal model of surface and internal bleeding.

  14. Coagulation-driven platelet activation reduces cholestatic liver injury and fibrosis in mice

    PubMed Central

    Joshi, N.; Kopec, A. K.; O’Brien, K. M.; Towery, K. L.; Cline-Fedewa, H.; Williams, K.J.; Copple, B. L.; Flick, M. J.; Luyendyk, J. P.

    2014-01-01

    Summary Background The coagulation cascade has been shown to participate in chronic liver injury and fibrosis, but the contribution of various thrombin targets, such as protease activated receptors (PARs) and fibrin(ogen), has not been fully described. Emerging evidence suggests that in some experimental settings of chronic liver injury, platelets can promote liver repair and inhibit liver fibrosis. However, the precise mechanisms linking coagulation and platelet function to hepatic tissue changes following injury remain poorly defined. Objectives To determine the role of PAR-4, a key thrombin receptor on mouse platelets, and fibrin(ogen) engagement of the platelet αIIbβ3 integrin in a model of cholestatic liver injury and fibrosis. Methods Biliary and hepatic injury was characterized following 4 week administration of the bile duct toxicant α-naphthylisothiocyanate (ANIT) (0.025%) in PAR-4-deficient mice (PAR-4−/− mice), mice expressing a mutant form of fibrin(ogen) incapable of binding integrin αIIbβ3 (FibγΔ5), and wild-type mice. Results Elevated plasma thrombin-antithrombin and serotonin levels, hepatic fibrin deposition and platelet accumulation in liver accompanied hepatocellular injury and fibrosis in ANIT-treated wild-type mice. PAR-4 deficiency reduced plasma serotonin levels, increased serum bile acid concentration, and exacerbated ANIT-induced hepatocellular injury and peribiliary fibrosis. Compared to PAR-4-deficient mice, ANIT-treated FibγΔ5 mice displayed more widespread hepatocellular necrosis accompanied by marked inflammation, robust fibroblast activation and extensive liver fibrosis. Conclusions Collectively, the results indicate that PAR-4 and fibrin-αIIbβ3 integrin engagement, pathways coupling coagulation to platelet activation, each exert hepatoprotective effects during chronic cholestasis. PMID:25353084

  15. Novel coagulation factor concentrates: issues relating to their clinical implementation and pharmacokinetic assessment for optimal prophylaxis in haemophilia patients.

    PubMed

    Ljung, R; Auerswald, G; Benson, G; Jetter, A; Jiménez-Yuste, V; Lambert, T; Morfini, M; Remor, E; Sørensen, B; Salek, S Z

    2013-07-01

    Prophylaxis is considered the optimal treatment regimen for patients with severe haemophilia, and may be especially important in the prevention of joint disease. Novel coagulation factor concentrates with prolonged half-lives promise to improve patient treatment by enabling prophylaxis with less frequent dosing. With the call to individualize therapy in haemophilia, there is growing awareness of the need to use pharmacokinetic (PK) assessments to tailor prophylaxis. However, for new factor concentrates, it is not yet known which PK values will be most informative for optimizing prophylaxis. This topic was explored at the Eighth Zurich Haemophilia Forum. On the basis of our clinical experience and a discussion of the literature, we report key issues relating to the PK assessment of new coagulation factors and include suggestions on the implementation of PK data to optimize therapy. As both inter- and intra-individual variability in factor half-life have been reported, we suggest that frequent PK assessments should be conducted. However, to diminish the burden of more frequent sampling, sparser sampling strategies and the use of population modelling should be considered. Guidelines on how to assay new factor concentrates, and which PK parameters should be measured, are needed. Concerns were raised regarding the possibility of breakthrough bleeding, and current thinking on how to prevent breakthrough bleeding may no longer be appropriate. Finally, as treatment adherence may be more important to ensure that a therapeutic level of a new coagulation factor concentrate is maintained, behavioural techniques could be implemented to help to improve treatment adherence.

  16. Vascular repair utilising immobilised heparin conjugate for protection against early activation of inflammation and coagulation.

    PubMed

    Nordling, Sofia; Hong, Jaan; Fromell, Karin; Edin, Fredrik; Brännström, Johan; Larsson, Rolf; Nilsson, Bo; Magnusson, Peetra U

    2015-06-01

    Ischaemia-reperfusion injury (IRI) poses a major challenge in many thrombotic conditions and in whole organ transplantation. Activation of the endothelial cells and shedding of the protective vascular glycocalyx during IRI increase the risk of innate immune activation, cell infiltration and severe thrombus formation, promoting damage to the tissue. Here, we present a novel one-step strategy to protect the vasculature by immobilisation of a unique multi-arm heparin conjugate to the endothelium. Applying a new in vitro blood endothelial cell chamber model, the heparin conjugate was found to bind not only to primary human endothelial cells but also directly to the collagen to which the cells adhered. Incubation of hypoxic endothelial cells with freshly drawn human blood in the blood chambers elicited coagulation activation reflected by thrombin anti-thrombin formation and binding of platelets and neutrophils. Immobilisation of the heparin conjugate to the hypoxic endothelial cells created a protective coating, leading to a significant reduction of the recruitment of blood cells and coagulation activation compared to untreated hypoxic endothelial cells. This novel approach of immobilising multi-arm heparin conjugates on the endothelial cells and collagen of the basement membrane ensures to protect the endothelium against IRI in thrombotic disorders and in transplantation.

  17. Disseminated intravascular coagulation.

    PubMed

    Gando, Satoshi; Levi, Marcel; Toh, Cheng-Hock

    2016-01-01

    Disseminated intravascular coagulation (DIC) is an acquired syndrome characterized by widespread intravascular activation of coagulation that can be caused by infectious insults (such as sepsis) and non-infectious insults (such as trauma). The main pathophysiological mechanisms of DIC are inflammatory cytokine-initiated activation of tissue factor-dependent coagulation, insufficient control of anticoagulant pathways and plasminogen activator inhibitor 1-mediated suppression of fibrinolysis. Together, these changes give rise to endothelial dysfunction and microvascular thrombosis, which can cause organ dysfunction and seriously affect patient prognosis. Recent observations have pointed to an important role for extracellular DNA and DNA-binding proteins, such as histones, in the pathogenesis of DIC. The International Society on Thrombosis and Haemostasis (ISTH) established a DIC diagnostic scoring system consisting of global haemostatic test parameters. This scoring system has now been well validated in diverse clinical settings. The theoretical cornerstone of DIC management is the specific and vigorous treatment of the underlying conditions, and DIC should be simultaneously managed to improve patient outcomes. The ISTH guidance for the treatment of DIC recommends treatment strategies that are based on current evidence. In this Primer, we provide an updated overview of the pathophysiology, diagnosis and management of DIC and discuss the future directions of basic and clinical research in this field. PMID:27250996

  18. Early markers of blood coagulation and fibrinolysis activation in Argentine hemorrhagic fever.

    PubMed

    Heller, M V; Marta, R F; Sturk, A; Maiztegui, J I; Hack, C E; Cate, J W; Molinas, F C

    1995-03-01

    Junin virus, an arenaviridae, is the etiological agent of Argentine hemorrhagic fever. In addition to thrombocytopenia, patients present several alterations in both the blood coagulation and the fibrinolytic system, but diffuse intravascular coagulation could not be demonstrated. To investigate further the activation status of the two systems, levels of thrombin-antithrombin complexes (TAT), prothrombin fragment 1 + 2, protein C, total and free protein S, C4bBP, antithrombin III, t-PA, PAI-1 and D-dimer were measured. Fourteen patients with a confirmed diagnosis of Argentine hemorrhagic fever were included in the study, 2 were severe, 3 moderate and 9 mild clinical cases, but hemorrhages were slight throughout. Blood samples were collected for 6 consecutive days on admission and on remission. At admission TAT and F1 + 2 levels were increased in 13/14 patients, reaching 0.33 nM (0.06-0.87) and 2.16 nM (0.96-6.5), respectively. PC was low in 4 cases, fPS in 6 and tPS in 2, whereas C4bBP and ATIII values were within normal range. t-PA and D-dimer levels were high in 11/14 patients, reaching 20 ng/ml (2.7-106) and 1660 ng/ml (877-3780) respectively, while PAI-1 was considerably increased in the 2 severe cases and normal in the remainder. These results suggest low level though persistent process of blood coagulation and fibrinolysis activation in this viral hemorrhagic disease. We believe these abnormalities may lead to the well described bleeding manifestations in these patients.

  19. Polystyrene nanoparticles affecting blood coagulation.

    PubMed

    Oslakovic, Cecilia; Cedervall, Tommy; Linse, Sara; Dahlbäck, Björn

    2012-08-01

    The association of nanoparticles (NPs) with blood coagulation proteins may influence the natural balance between pro- and anticoagulant pathways. We investigated whether polystyrene NPs, when added to human plasma, affected the generation of thrombin in plasma. Amine-modified NPs were found to decrease the thrombin formation due to binding of factors VII and IX to the NPs, which resulted in depletion of the respective protein in solution. In contrast, carboxyl-modified NPs were able to act as a surface for activation of the intrinsic pathway of blood coagulation in plasma. These results highlight the influence of NPs on a biologically important pathway.

  20. Fresh frozen plasma in the pediatric age group and in congenital coagulation factor deficiency.

    PubMed

    Muntean, Wolfgang

    2002-10-31

    Generally, the rules of good practice in transfusion medicine apply also to the pediatric age group. However, the frequency of specific diseases that might necessitate the administration of fresh frozen plasma (FFP) differs from that in adults. Physiologic differences to the later age exist in the neonatal period and in young infants, especially with respect to the hemostatic system, that must be recognized when considering administration of FFP. The plasma levels of many procoagulant factors and important anticoagulants are lower in neonates than in other age groups. Despite these findings, healthy neonates show no easy bruising, no increased bleeding during surgery, and excellent wound healing. The same discrepancy obtains between in vitro and clinical findings with primary hemostasis in neonates. The good primary hemostasis in neonates despite poor in vitro platelet function seems to be due mainly to a very high von Willebrand factor and the presence of more high-multimeric subunits of von Willebrand factor than later in life. We must assume that these particular plasma levels of procoagulant and anticoagulant proteins are essential for the correct function of neonatal hemostasis. Evidence that the hemostatic system of neonates works best with physiologic concentrations of procoagulants and anticoagulants can also be inferred from studies where the administration of clotting factor concentrates gave poor results.Since healthy neonates and young infants have excellent hemostasis, there is absolutely no indication to 'correct' these values to adult's norms prior to invasive procedures by administering FFP. Indications for FFP, met more frequently in the pediatric age group than later in life, are exchange transfusion and extracorporeal membrane oxygenation. Indications applying equally to adults are other extracorporeal life support systems, disseminated intravascular coagulation, hepatic coagulopathy, and 'complex unclear coagulopathies'. In congenital clotting

  1. A comparative study on the efficiency of ozonation and coagulation-flocculation as pretreatment to activated carbon adsorption of biologically stabilized landfill leachate.

    PubMed

    Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim T M; Demeestere, Kristof; Van Hulle, Stijn W H

    2015-09-01

    The present work investigates the potential of coagulation-flocculation and ozonation to pretreat biologically stabilized landfill leachate before granular activated carbon (GAC) adsorption. Both iron (III) chloride (FeCl3) and polyaluminium chloride (PACl) are investigated as coagulants. Better organic matter removal is observed when leachate was treated with FeCl3. At a dose of 1mg FeCl3/mg CODo (CODo: initial COD content), the COD and α254 removal was 66% and 88%, respectively. Dosing 1mg PACl/mg CODo resulted in 44% COD and 72% α254 removal. The settle-ability of sludge generated by PACl leveled off at 252mL/g, while a better settle-ability of 154mL/g was obtained for FeCl3 after dosing 1mg coagulant/mg CODo. For ozonation, the percentage of COD and α254 removal increased as the initial COD concentration decreased. Respectively 44% COD and 77% α254 removal was observed at 112mg COD/L compared to 5% COD and 26% α254 removal at 1846mg COD/L. Subsequent activated carbon adsorption of ozonated, coagulated and untreated leachate resulted in 77%, 53% and 8% total COD removal after treatment of 6 bed volumes. Clearly showing the benefit of treating the leachate before GAC adsorption. Mathematical modeling of the experimental GAC adsorption data with Thomas and Yoon-Nelson models show that ozonation increases the adsorption capacity and breakthrough time of GAC by a factor of 2.5 compared to coagulation-flocculation.

  2. Cryo-electron microscopy of coagulation Factor VIII bound to lipid nanotubes

    SciTech Connect

    Parmenter, Christopher D.J.; Cane, Matthew C.; Zhang Rui; Stoilova-McPhie, Svetla

    2008-02-08

    Factor VIII (FVIII) is a key protein in blood coagulation, deficiency or malfunction of which causes Haemophilia A. The sole cure for this condition is intravenous administration of FVIII, whose membrane-bound structure we have studied by Cryo-electron microscopy and image analysis. Self-assembled lipid nanotubes were optimised to bind FVIII at close to native conditions. The tubes diameter was constant at 30 nm and the lipid bilayer resolved. The FVIII molecules were well defined, forming an 8.5 nm thick outer layer, and appeared to reach the hydrophobic core of the bilayer. The two known FVIII atomic models were superimposed with the averaged 2D protein densities. The insertion of the FVIII within the membrane was evaluated, reaffirming that the membrane-binding C2 or C1-C2 domain(s) fully penetrate the outer leaflet of the lipid layer. The presented results lay the basis for new models of the FVIII overall orientation and membrane-binding mechanism.

  3. Laboratory assessment of factor VIII inhibitor titer: the North American Specialized Coagulation Laboratory Association experience.

    PubMed

    Peerschke, Ellinor I B; Castellone, Donna D; Ledford-Kraemer, Marlies; Van Cott, Elizabeth M; Meijer, Piet

    2009-04-01

    Quantification of inhibitory antibodies against infused factor VIII (FVIII) has an important role in the management of patients with hemophilia A. This article summarizes results from the largest North American FVIII inhibitor proficiency testing challenge conducted to date. Test samples, 4 negative and 4 positive (1-3 Bethesda units [BU]/mL), were distributed by the ECAT Foundation in conjunction with the North American Specialized Coagulation Laboratory Association and analyzed by 38 to 42 laboratories in 2006 and 2007. Whereas laboratories were able to distinguish between the absence and presence of low-titer FVIII inhibitors, the intralaboratory coefficient of variation was high (30%-42%) for inhibitor-positive samples, and the definition of lower detection limits of the assay was variable (0-1 BU/mL). Most laboratories performed the Bethesda assay with commercially supplied buffered normal pooled plasma in a 1:1 mix with patient plasma. These data provide information for the development of consensus guidelines to improve FVIII inhibitor quantification.

  4. A novel DFP tripeptide motif interacts with the coagulation factor XI apple 2 domain

    PubMed Central

    Wong, Szu S.; Østergaard, Søren; Hall, Gareth; Li, Chan; Williams, Philip M.; Stennicke, Henning

    2016-01-01

    Factor XI (FXI) is the zymogen of FXIa, which cleaves FIX in the intrinsic pathway of coagulation. FXI is known to exist as a dimer and interacts with multiple proteins via its 4 apple domains in the “saucer section” of the enzyme; however, to date, no complex crystal structure has been described. To investigate protein interactions of FXI, a large random peptide library consisting of 106 to 107 peptides was screened for FXI binding, which identified a series of FXI binding motifs containing the signature Asp-Phe-Pro (DFP) tripeptide. Motifs containing this core tripeptide were found in diverse proteins, including the known ligand high-molecular-weight kininogen (HK), as well as the extracellular matrix proteins laminin and collagen V. To define the binding site on FXI, we determined the crystal structure of FXI in complex with the HK-derived peptide NPISDFPDT. This revealed the location of the DFP peptide bound to the FXI apple 2 domain, and central to the interaction, the DFP phenylalanine side-chain inserts into a major hydrophobic pocket in the apple 2 domain and the isoleucine occupies a flanking minor pocket. Two further structures of FXI in complex with the laminin-derived peptide EFPDFP and a DFP peptide from the random screen demonstrated binding in the same pocket, although in a slightly different conformation, thus revealing some flexibility in the molecular interactions of the FXI apple 2 domain. PMID:27006387

  5. Levels of acarboxy prothrombin (PIVKA-II) and coagulation factors in warfarin-treated patients.

    PubMed

    Umeki, S; Umeki, Y

    1990-04-01

    PIVKA-II (protein induced by vitamin K absence or antagonists-II) was determined and compared with other coagulation factors in normal subjects and patients treated with the anticoagulant warfarin. In 18 (60%) of 30 patients treated with warfarin, PIVKA-II values were 1 microgram/ml or more, although they were less than 1 microgram/ml in all 39 normal subjects (100%). In patients treated with warfarin, values of prothrombin time and partial thromboplastin time were significantly higher than those in normal subjects. However, values of hepaplastintest (normotest) and thrombotest in the patients were greatly lower than those in normal subjects. There were no significant differences between bleeding time or plasma fibrinogen values in the patients and normal subjects. The values of PIVKA-II were inversely correlated (P less than 0.01) with those of hepaplastintest and thrombotest. The measurement of PIVKA-II in the plasma should be useful in detecting vitamin K-deficient status among haemorrhagic disorders.

  6. Removal of humic and tannic acids by adsorption-coagulation combined systems with activated biochar.

    PubMed

    Jung, Chanil; Phal, Narong; Oh, Jeill; Chu, Kyoung Hoon; Jang, Min; Yoon, Yeomin

    2015-12-30

    Despite recent interest in transforming biomass into bio-oil and syngas, there is inadequate information on the compatibility of byproducts (e.g., biochar) with agriculture and water purification infrastructures. A pyrolysis at 300°C yields efficient production of biochar, and its physicochemical properties can be improved by chemical activation, resulting in a suitable adsorbent for the removal of natural organic matter (NOM), including hydrophobic and hydrophilic substances, such as humic acids (HA) and tannic acids (TA), respectively. In this study, the adsorption affinities of different HA and TA combinations in NOM solutions were evaluated, and higher adsorption affinity of TA onto activated biochar (AB) produced in the laboratory was observed due to its superior chemisorption tendencies and size-exclusion effects compared with that of HA, whereas hydrophobic interactions between adsorbent and adsorbate were deficient. Assessment of the AB role in an adsorption-coagulation hybrid system as nuclei for coagulation in the presence of aluminum sulfate (alum) showed a synergistic effect in a HA-dominated NOM solution. An AB-alum hybrid system with a high proportion of HA in the NOM solution may be applicable as an end-of-pipe solution.

  7. Low ADAMTS-13 activity during hemorrhagic events with disseminated intravascular coagulation.

    PubMed

    Chinen, Yoshiaki; Kuroda, Junya; Ohshiro, Muneo; Shimura, Yuji; Mizutani, Shinsuke; Nagoshi, Hisao; Sasaki, Nana; Nakayama, Ryuko; Kiyota, Miki; Yamamoto-Sugitani, Mio; Kobayashi, Tsutomu; Matsumoto, Yosuke; Horiike, Shigeo; Taniwaki, Masafumi

    2013-04-01

    Disseminated intravascular coagulation (DIC) is a life-threatening complication, and its control is essential for therapeutic success. Recombinant human soluble thrombomodulin alfa (rTM) is a novel therapeutic agent for DIC. The efficacy of rTM in the treatment of DIC is reportedly superior to that of conventional anti-DIC treatments, such as unfractionated heparin or low molecular weight heparin, but hemorrhagic events occasionally interfere with the therapeutic benefits of rTM. We assessed the clinical features of 20 consecutive patients who were given rTM for DIC associated with various hematologic disorders. Eight patients achieved remission of both primary disease and DIC, eight died due to progression of the primary disease, and four died of various hemorrhagic complications. Assessment of 16 biomarkers for coagulation showed that the four patients who died of hemorrhagic complications despite remission of their primary disease showed lower ADAMTS-13 (a disintegrin and metalloproteinase with a thrombospondin Type 1 motif, member 13) plasma activity than other patients (P = 0.016). The optimal cut-off level of ADAMTS-13 for predicting risk of hemorrhagic complications was 42 % (P = 0.007). Plasma ADAMTS-13 activity determined at diagnosis of DIC may help predict the risk of hemorrhagic events during and/or following DIC treatment with hematologic disorders.

  8. Removal of humic and tannic acids by adsorption-coagulation combined systems with activated biochar.

    PubMed

    Jung, Chanil; Phal, Narong; Oh, Jeill; Chu, Kyoung Hoon; Jang, Min; Yoon, Yeomin

    2015-12-30

    Despite recent interest in transforming biomass into bio-oil and syngas, there is inadequate information on the compatibility of byproducts (e.g., biochar) with agriculture and water purification infrastructures. A pyrolysis at 300°C yields efficient production of biochar, and its physicochemical properties can be improved by chemical activation, resulting in a suitable adsorbent for the removal of natural organic matter (NOM), including hydrophobic and hydrophilic substances, such as humic acids (HA) and tannic acids (TA), respectively. In this study, the adsorption affinities of different HA and TA combinations in NOM solutions were evaluated, and higher adsorption affinity of TA onto activated biochar (AB) produced in the laboratory was observed due to its superior chemisorption tendencies and size-exclusion effects compared with that of HA, whereas hydrophobic interactions between adsorbent and adsorbate were deficient. Assessment of the AB role in an adsorption-coagulation hybrid system as nuclei for coagulation in the presence of aluminum sulfate (alum) showed a synergistic effect in a HA-dominated NOM solution. An AB-alum hybrid system with a high proportion of HA in the NOM solution may be applicable as an end-of-pipe solution. PMID:26340547

  9. [The pathogenesis of subclinical laminitis in dairy cattle: studies of the hoof status, rumen status and blood coagulation factors].

    PubMed

    Brandejsky, F; Stanek, C; Schuh, M

    1994-02-01

    In 50 dairy cows of the breed "Braunvieh" (36 heifers, 14 cows) of one herd the claw score was recorded over a period of 2 months before parturition until 6 months after parturition. The claw scores were correlated with the clinical findings, the ruminal function and the blood coagulation factors calcium-thromboplastin (TPZ), partial thromboplastin time (PTT), thrombin time (TZ) and antithrombin III (AT III) evaluated one day and one week after calving. The claw score increased from the first to the second examination, remaining on the same level in the postpartal period. No correlation between the claw scores and the ruminal function was evident. In comparison with a control group, TPZ and PTT were found higher one day and one week after parturition in the experimental group. Blood coagulation factors and claw scores were found uncorrelated.

  10. Surface-loop residue Lys316 in blood coagulation Factor IX is a major determinant for Factor X but not antithrombin recognition.

    PubMed

    Kolkman, J A; Mertens, K

    2000-09-15

    The active site of activated Factor IX (FIXa) and related blood-coagulation enzymes is surrounded by a number of highly variable surface loops, which contribute to the characteristic substrate specificity of each individual enzyme. FIX residue Lys(316) is located in one of these loops and mutation of this residue to Glu is associated with haemophilia B. In the present study we investigated the functional role of Lys(316) in human FIXa by analysing the purified and activated FIX mutants FIXa-K316E and FIXa-K316A. FIXa-K316E was indistinguishable from normal FIXa in binding the competitive active-site inhibitor p-aminobenzamidine. In addition, substitution of Glu for Lys(316) had no significant effect on the reactivity towards various synthetic tripeptide substrates. Inhibition by the macromolecular inhibitor antithrombin was only slightly reduced for both FIXa mutants (less than 2-fold). In contrast, proteolytic activity of FIXa-K316E towards the natural substrate Factor X (FX) was virtually lacking, while the Lys(316) to Ala mutation resulted in a more than 10-fold reduction in FX activation. Thus residue Lys(316) plays a key role in FIXa activity towards FX. The requirement for Lys at position 316 for FX activation was also evident in the presence of the cofactor activated Factor VIII, although to a lesser extent than in its absence. These data demonstrate that Lys(316) specifically determines the reactivity of FIXa towards its natural substrate FX, but not to synthetic peptide substrates or antithrombin. PMID:10970782

  11. Christmas factor: dosage compensation and the production of blood coagulation factor IX.

    PubMed

    FROTA-PESSOA, O; GOMES, E L; CALICCHIO, T R

    1963-01-25

    The amount of factor IX (Christmas factor) for different genotypic classes was determined by means of a variant of the thromboplastin generation test. The mean value for females heterozygous for the Christmas gene was about half the mean values for normal males and for normal homozygous females; means for the latter two groups were about equal. This dosage compensation is interpreted as evidence in support of Lyon's hypothesis, according to which one X chromosome is inactive in mammalian females.

  12. Platelets and coagulation in infection

    PubMed Central

    Davis, Rachelle P; Miller-Dorey, Sarah; Jenne, Craig N

    2016-01-01

    Disseminated intravascular coagulation (DIC) is a frequent complication in sepsis that is associated with worse outcomes and higher mortality in patients. In addition to the uncontrolled generation of thrombi throughout the patient's vasculature, DIC often consumes large quantities of clotting factors leaving the patient susceptible to hemorrhaging. Owing to these complications, patients often receive anticoagulants to treat the uncontrolled clotting, often with mixed outcomes. This lack of success with the current array of anticoagulants can be partly explained by the fact that during sepsis clotting is often initiated by the immune system. Systemic inflammation has the capacity to activate and amplify coagulation and, as such, potential therapies for the treatment of sepsis-associated DIC need to address the interaction between inflammation and coagulation. Recent studies have suggested that platelets and neutrophil extracellular traps (NETs) are the key mediators of infection-induced coagulation. This review explores current anticoagulant therapies and discusses the development of future therapies to target platelet and NET-mediated coagulation. PMID:27525062

  13. [New oral anticoagulants - influence on coagulation tests].

    PubMed

    Simeon, L; Nagler, M; Wuillemin, W A

    2014-01-01

    The new oral anticoagulants (NOACs) represent alternative antithrombotic agents for prophylaxis and therapy of thromboembolic diseases. They act either by inhibition of the clotting factor Xa or IIa (thrombin). As a consequence, they influence several coagulation assays (for example prothrombin time, activated partial thromboplastin time). Because of the short half-life of these new agents, these changes show great variations in the course of 24 hours. Furthermore, there are significant differences of laboratory results depending on the used reagents. We explain the influence of apixaban, rivaroxaban (factor Xa inhibitors) and dabigatran (thrombin inhibitor) on the most commonly used coagulation assays. Besides we show that this influence depends on the way of action of the drug as well as on the principle of the coagulation assay. Being aware of this relationships helps to interpret the results of coagulation assays under influence of NOACs correctly.

  14. Systemic heparinization during peripheral vascular surgery: thromboelastographic, activated coagulation time, and heparin titration monitoring.

    PubMed

    Martin, P; Greenstein, D; Gupta, N K; Walker, D R; Kester, R C

    1994-04-01

    Fifteen patients (9 male, 6 female) undergoing peripheral vascular surgery were monitored during surgery for evidence of subclinical anticoagulation using the activated coagulation time (ACT), thromboelastography (TEG), and heparin titration monitoring. Assessments were made at 30-minute intervals before and after the occlusion clamp. Mean (+/- SD) ACT values preoperatively were 111 (17) seconds, and 10 minutes after 5,000 IU of heparin, the ACT was 264 (57) seconds (P < 0.001). Intraoperatively, there was a significant decline in ACT values at 30 minutes (ACT 228 [50] sec, P < 0.005) and 60 minutes (200 [46] sec, P < 0.001) postheparin. No significant difference in ACT was observed between samples drawn distally and proximally to the clamp. TEG profiles were abolished in all patients immediately following heparinization. However, in 2 patients nearly complete return of the TEG coagulation profile was observed prior to the termination of the procedure and was associated with ACT values less than 160 seconds. The heparin device was unable to accurately monitor heparin elimination at these low doses. Variability of patient response to heparinization necessitates the use of intraoperative monitoring of anticoagulation during peripheral vascular surgery.

  15. Ovarian cancer, the coagulation pathway, and inflammation

    PubMed Central

    Wang, Xipeng; Wang, Ena; Kavanagh, John J; Freedman, Ralph S

    2005-01-01

    Epithelial ovarian cancer (EOC) represents the most frequent cause of death in the United States from a cancer involving the female genital tract. Contributing to the overall poor outcome in EOC patients, are the metastases to the peritoneum and stroma that are common in this cancer. In one study, cDNA microarray analysis was performed on fresh tissue to profile gene expression in patients with EOC. This study showed a number of genes with significantly altered expression in the pelvic peritoneum and stroma, and in the vicinity of EOC implants. These genes included those encoding coagulation factors and regulatory proteins in the coagulation cascade and genes encoding proteins associated with inflammatory responses. In addition to promoting the formation of blood clots, coagulation factors exhibit many other biologic functions as well as tumorigenic functions, the later including tumor cell proliferation, angiogenesis, invasion, and metastasis. Coagulation pathway proteins involved in tumorigenesis consist of factor II (thrombin), thrombin receptor (protease-activated receptors), factor III (tissue factor), factor VII, factor X and factor I (fibrinogen), and fibrin and factor XIII. In a recent study we conducted, we found that factor XII, factor XI, and several coagulation regulatory proteins, including heparin cofactor-II and epithelial protein C receptor (EPCR), were also upregulated in the peritoneum of EOC. In this review, we summarize evidence in support of a role for these factors in promoting tumor cell progression and the formation of ascites. We also discuss the different roles of coagulation factor pathways in the tumor and peritumoral microenvironments as they relate to angiogenesis, proliferation, invasion, and metastasis. . Since inflammatory responses are another characteristic of the peritoneum in EOC, we also discuss the linkage between the coagulation cascade and the cytokines/chemokines involved in inflammation. Interleukin-8, which is considered

  16. Ovarian cancer, the coagulation pathway, and inflammation.

    PubMed

    Wang, Xipeng; Wang, Ena; Kavanagh, John J; Freedman, Ralph S

    2005-06-21

    Epithelial ovarian cancer (EOC) represents the most frequent cause of death in the United States from a cancer involving the female genital tract. Contributing to the overall poor outcome in EOC patients, are the metastases to the peritoneum and stroma that are common in this cancer. In one study, cDNA microarray analysis was performed on fresh tissue to profile gene expression in patients with EOC. This study showed a number of genes with significantly altered expression in the pelvic peritoneum and stroma, and in the vicinity of EOC implants. These genes included those encoding coagulation factors and regulatory proteins in the coagulation cascade and genes encoding proteins associated with inflammatory responses. In addition to promoting the formation of blood clots, coagulation factors exhibit many other biologic functions as well as tumorigenic functions, the later including tumor cell proliferation, angiogenesis, invasion, and metastasis. Coagulation pathway proteins involved in tumorigenesis consist of factor II (thrombin), thrombin receptor (protease-activated receptors), factor III (tissue factor), factor VII, factor X and factor I (fibrinogen), and fibrin and factor XIII. In a recent study we conducted, we found that factor XII, factor XI, and several coagulation regulatory proteins, including heparin cofactor-II and epithelial protein C receptor (EPCR), were also upregulated in the peritoneum of EOC. In this review, we summarize evidence in support of a role for these factors in promoting tumor cell progression and the formation of ascites. We also discuss the different roles of coagulation factor pathways in the tumor and peritumoral microenvironments as they relate to angiogenesis, proliferation, invasion, and metastasis. Since inflammatory responses are another characteristic of the peritoneum in EOC, we also discuss the linkage between the coagulation cascade and the cytokines/chemokines involved in inflammation. Interleukin-8, which is considered an

  17. Coagulation factor V Leiden mutation in sudden fatal pulmonary embolism and in a general northern European population sample.

    PubMed

    Kuismanen, K; Savontaus, M L; Kozlov, A; Vuorio, A F; Sajantila, A

    1999-12-01

    The R506Q point mutation in the gene coding for coagulation factor V (Leiden mutation) is the major underlying defect in resistance to activated protein C (APC), which predisposes to venous thrombosis. The risk of deep vein thrombosis is clearly elevated in carriers of the mutation, but the risk for pulmonary embolism has not been demonstrated to be as high. The aim of our study was to determine the frequency of the Leiden mutation in an autopsy series of sudden fatal pulmonary embolism cases. PCR and subsequent restriction enzyme digestion were applied for genotyping 164 cases of pulmonary embolism. According to our data, the allele frequency of the Leiden mutation is not higher in sudden fatal pulmonary embolism cases (0.8%, 95% CI 0-1.9%) than in the general Finnish population (1.5%, 95% CI 0-3.3%). In addition to the 97 Finns, we determined the frequency of the Leiden mutation in 255 individuals from the neighbouring populations (Saami, Komi, and Karelians from Russia and Estonians), and found the Saami to have the highest frequency of the Leiden mutation (6.3%, 95% CI 3.2-9.2) in the general northern European population sample studied here.

  18. Tissue factor activation: is disulfide bond switching a regulatory mechanism?

    PubMed Central

    Ghosh, Samit; Mandal, Samir K.

    2007-01-01

    A majority of tissue factor (TF) on cell surfaces exists in a cryptic form (ie, coagulation function inactive) but retains its functionality in cell signaling. Recent studies have suggested that cryptic TF contains unpaired cysteine thiols and that activation involves the formation of the disulfide bond Cys186-Cys 209 and that protein disulfide isomerase (PDI) regulates TF coagulant and signaling activities by targeting this disulfide bond. This study was carried out to investigate the validity of this novel concept. Although treatment of MDA 231 tumor cells, fibroblasts, and stimulated endothelial cells with the oxidizing agent HgCl2 markedly increased the cell-surface TF coagulant activity, the increase is associated with increased anionic phospholipids at the cell surface. Annexin V, which binds to anionic phospholipids, attenuated the increased TF coagulant activity. It is noteworthy that treatment of cells with reducing agents also increased the cell surface TF activity. No evidence was found for either detectable expression of PDI at the cell surface or association of TF with PDI. Furthermore, reduction of PDI with the gene silencing had no effect on either TF coagulant or cell signaling functions. Overall, the present data undermine the recently proposed hypothesis that PDI-mediated disulfide exchange plays a role in regulating TF procoagulant and cell signaling functions. PMID:17726162

  19. In silico designing of hyper-glycosylated analogs for the human coagulation factor IX.

    PubMed

    Ghasemi, Fahimeh; Zomorodipour, Alireza; Karkhane, Ali Asghar; Khorramizadeh, M Reza

    2016-07-01

    N-glycosylation is a process during which a glycan moiety attaches to the asparagine residue in the N-glycosylation consensus sequence (Asn-Xxx-Ser/Thr), where Xxx can be any amino acid except proline. Introduction of a new N-glycosylation site into a protein backbone leads to its hyper-glycosylation, and may improve the protein properties such as solubility, folding, stability, and secretion. Glyco-engineering is an approach to facilitate the hyper-glycosylation of recombinant proteins by application of the site-directed mutagenesis methods. In this regard, selection of a suitable location on the surface of a protein for introduction of a new N-glycosylation site is a main concern. In this work, a computational approach was conducted to select suitable location(s) for introducing new N-glycosylation sites into the human coagulation factor IX (hFIX). With this aim, the first 45 residues of mature hFIX were explored to find out suitable positions for introducing either Asn or Ser/Thr residues, to create new N-glycosylation site(s). Our exploration lead to detection of five potential positions, for hyper-glycosylation. For each suggested position, an analog was defined and subjected for N-glycosylation efficiency prediction. After generation of three-dimensional structures, by homology-based modeling, the five designed analogs were examined by molecular dynamic (MD) simulations, to predict their stability levels and probable structural distortions caused by amino acid substitutions, relative to the native counterpart. Three out of five suggested analogs, namely; E15T, K22N, and R37N, reached equilibration state with relatively constant Root Mean Square Deviation values. Additional analysis on the data obtained during MD simulations, lead us to conclude that, R37N is the only qualified analog with the most similar structure and dynamic behavior to that of the native counterpart, to be considered for further experimental investigations. PMID:27356208

  20. Requirements for Receptor Engagement during Infection by Adenovirus Complexed with Blood Coagulation Factor X

    PubMed Central

    Bradshaw, Angela C.; Parker, Alan L.; Duffy, Margaret R.; Coughlan, Lynda; van Rooijen, Nico; Kähäri, Veli-Matti; Nicklin, Stuart A.; Baker, Andrew H.

    2010-01-01

    Human adenoviruses from multiple species bind to coagulation factor X (FX), yet the importance of this interaction in adenovirus dissemination is unknown. Upon contact with blood, vectors based on adenovirus serotype 5 (Ad5) binds to FX via the hexon protein with nanomolar affinity, leading to selective uptake of the complex into the liver and spleen. The Ad5:FX complex putatively targets heparan sulfate proteoglycans (HSPGs). The aim of this study was to elucidate the specific requirements for Ad5:FX-mediated cellular uptake in this high-affinity pathway, specifically the HSPG receptor requirements as well as the role of penton base-mediated integrin engagement in subsequent internalisation. Removal of HS sidechains by enzymatic digestion or competition with highly-sulfated heparins/heparan sulfates significantly decreased FX-mediated Ad5 cell binding in vitro and ex vivo. Removal of N-linked and, in particular, O-linked sulfate groups significantly attenuated the inhibitory capabilities of heparin, while the chemical inhibition of endogenous HSPG sulfation dose-dependently reduced FX-mediated Ad5 cellular uptake. Unlike native heparin, modified heparins lacking O- or N-linked sulfate groups were unable to inhibit Ad5 accumulation in the liver 1h after intravascular administration of adenovirus. Similar results were observed in vitro using Ad5 vectors possessing mutations ablating CAR- and/or αv integrin binding, demonstrating that attachment of the Ad5:FX complex to the cell surface involves HSPG sulfation. Interestingly, Ad5 vectors ablated for αv integrin binding showed markedly delayed cell entry, highlighting the need for an efficient post-attachment internalisation signal for optimal Ad5 uptake and transport following surface binding mediated through FX. This study therefore integrates the established model of αv integrin-dependent adenoviral infection with the high-affinity FX-mediated pathway. This has important implications for mechanisms that define

  1. Evaluation of the treatment of reverse osmosis concentrates from municipal wastewater reclamation by coagulation and granular activated carbon adsorption.

    PubMed

    Sun, Ying-Xue; Yang, Zhe; Ye, Tao; Shi, Na; Tian, Yuan

    2016-07-01

    Reverse osmosis concentrate (ROC) from municipal wastewater reclamation reverse osmosis (mWRRO) contains elevated concentrations of contaminants which pose potential risks to aquatic environment. The treatment of ROC from an mWRRO using granular activated carbon (GAC) combined pretreatment of coagulation was optimized and evaluated. Among the three coagulants tested, ferric chloride (FeCl3) presented relatively higher DOC removal efficiency than polyaluminium chloride and lime at the same dosage and coagulation conditions. The removal efficiency of DOC, genotoxicity, and antiestrogenic activity concentration of the ROC could achieve 16.9, 18.9, and 39.7 %, respectively, by FeCl3 coagulation (with FeCl3 dosage of 180.22 mg/L), which can hardly reduce UV254 and genotoxicity normalized by DOC of the DOM with MW <5 kDa. However, the post-GAC adsorption column (with filtration velocity of 5.7 m/h, breakthrough point adsorption capacity of 0.22 mg DOC/g GAC) exhibited excellent removal efficiency on the dominant DOM fraction of MW <5 kDa in the ROC. The removal efficiency of DOC, UV254, and TDS in the ROC was up to 91.8, 96, and 76.5 %, respectively, by the FeCl3 coagulation and post-GAC adsorption. Also, the DOM with both genotoxicity and antiestrogenic activity were completely eliminated by the GAC adsorption. The results suggest that GAC adsorption combined pretreatment of FeCl3 coagulation as an efficient method to control organics, genotoxicity, and antiestrogenic activity in the ROC from mWRRO system. PMID:27032632

  2. Evaluation of the treatment of reverse osmosis concentrates from municipal wastewater reclamation by coagulation and granular activated carbon adsorption.

    PubMed

    Sun, Ying-Xue; Yang, Zhe; Ye, Tao; Shi, Na; Tian, Yuan

    2016-07-01

    Reverse osmosis concentrate (ROC) from municipal wastewater reclamation reverse osmosis (mWRRO) contains elevated concentrations of contaminants which pose potential risks to aquatic environment. The treatment of ROC from an mWRRO using granular activated carbon (GAC) combined pretreatment of coagulation was optimized and evaluated. Among the three coagulants tested, ferric chloride (FeCl3) presented relatively higher DOC removal efficiency than polyaluminium chloride and lime at the same dosage and coagulation conditions. The removal efficiency of DOC, genotoxicity, and antiestrogenic activity concentration of the ROC could achieve 16.9, 18.9, and 39.7 %, respectively, by FeCl3 coagulation (with FeCl3 dosage of 180.22 mg/L), which can hardly reduce UV254 and genotoxicity normalized by DOC of the DOM with MW <5 kDa. However, the post-GAC adsorption column (with filtration velocity of 5.7 m/h, breakthrough point adsorption capacity of 0.22 mg DOC/g GAC) exhibited excellent removal efficiency on the dominant DOM fraction of MW <5 kDa in the ROC. The removal efficiency of DOC, UV254, and TDS in the ROC was up to 91.8, 96, and 76.5 %, respectively, by the FeCl3 coagulation and post-GAC adsorption. Also, the DOM with both genotoxicity and antiestrogenic activity were completely eliminated by the GAC adsorption. The results suggest that GAC adsorption combined pretreatment of FeCl3 coagulation as an efficient method to control organics, genotoxicity, and antiestrogenic activity in the ROC from mWRRO system.

  3. Long-Acting Recombinant Fusion Protein Linking Coagulation Factor IX with Albumin (rIX-FP) in Children

    PubMed Central

    Chambost, Hervé; Male, Christoph; Lambert, Thierry; Halimeh, Susan; Chernova, Tatiana; Mancuso, Maria Elisa; Curtin, Julie; Voigt, Christine; Li, Yanyan; Jacobs, Iris; Santagostino, Elena

    2016-01-01

    Summary A global phase 3 study evaluated the pharmacokinetics, efficacy and safety of a recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in 27 previously treated male children (1–11 years) with severe and moderately severe haemophilia B (factor IX [FIX] activity ≤2 IU/dl). All patients received routine prophylaxis once every seven days for up to 77 weeks, and treated any bleeding episodes on-demand. The mean terminal half-life of rIX-FP was 91.4 hours (h), 4.3-fold longer than previous FIX treatment and clearance was 1.11 ml/h/kg, 6.4-fold slower than previous FIX treatment. The median (Q1, Q3) annualised spontaneous bleeding rate was 0.00 (0.00, 0.91) and was similar between the <6 years and ≥6 years age groups, with a weekly median prophylactic dose of 46 IU/kg. In addition, patients maintained a median trough level of 13.4 IU/dl FIX activity on weekly prophylaxis. Overall, 97.2% of bleeding episodes were successfully treated with one or two injections of rIX-FP (95% CI: 92% to 99%), 88.7% with one injection, and 96% of the treatments were rated effective (excellent or good) by the Investigator. No patient developed FIX inhibitors and no safety concerns were identified. These results indicate that rIX-FP is safe and effective for preventing and treating bleeding episodes in children with haemophilia B with weekly prophylaxis. Routine prophylaxis with rIX-FP at treatment intervals of up to 14 days are currently being investigated in children with severe and moderately severe haemophilia B. Clinicaltrials.gov (NCT01662531) PMID:27583313

  4. Integrated membrane systems incorporating coagulation, activated carbon and ultrafiltration for the removal of toxic cyanobacterial metabolites from Anabaena circinalis.

    PubMed

    Dixon, M B; Richard, Y; Ho, L; Chow, C W K; O'Neill, B K; Newcombe, G

    2011-01-01

    The use of integrated membrane systems (a train of treatment processes incorporating one or more membranes) is increasing globally as the technology is very effective for the production of high quality drinking water. In this investigation a laboratory scale integrated membrane system (IMS) featuring coagulation, powdered activated carbon (PAC) and ultrafiltration (UF) was investigated for the removal of an Australian strain of the cyanobacteria Anabaena circinalis and the cyanotoxin it produced. Three coagulants were compared, aluminium chlorohydrate (ACH), aluminium sulphate (alum) and an engineered aluminium coagulant referred to as high performance aluminium chlorohydrate (HPAC). PAC (Acticarb PS1000) was tested to determine adsorption of extracellular saxitoxin. Removal of A. circinalis cells was 100% by UF alone and the removal of cells prior to the membrane by coagulation reduced fouling attributed to algogenic organic material. Alum was the least efficient coagulant for removal of cells while ACH and HPAC were similar. Saxitoxin removal reached a maximum of 80% using ACH and PAC. The UF-IMS was challenged using a natural bloom of A. circinalis that occurred in the Myponga Reservoir in South Australia. PMID:21508543

  5. The Association of Coagulation Factor V (Leiden) and Factor II (Prothrombin) Mutations With Stroke

    PubMed Central

    Pirhoushiaran, Maryam; Ghasemi, Mohammad Reza; Hami, Javad; Zargari, Peyman; Sasan Nezhad, Payam; Azarpazhooh, Mahmood Reza; Sadr Nabavi, Ariane

    2014-01-01

    Background: Epidemiological studies indicate that over the past forty years, the stroke incidence rates has increased. Factors V and II mutations are established genetic-variant risk factors for venous thrombosis; however, their contribution to stroke is a controversial issue. Objectives: This study aimed to investigate the potential association of FV and FII mutations with stroke in an Iranian population. Patients and Methods: The study population consisted of 153 patients of different stroke subtypes (except cryptogenic strokes), admitted to Ghaem Hospital, Mashhad, Iran. The control group included 153 age- and sex-matched subjects without a history of cerebrovascular or neurologic diseases. Mutations of FV and FII were determined by using a TaqMan SNP Genotyping technique. The chi-square and Exact Fisher tests were used to analyze the baseline characteristics. Results were as follows: The calculated P-value for sex and diabetes mellitus were 0.907 and 1.000, respectively. The case and control groups were also matched in low density lipoprotein (P = 0.816), high density lipoprotein (P = 0.323), triglyceride (P = 0.846), and total cholesterol (P = 0.079). Results: Analysis of the FV showed that none of the study subjects were AA homozygous for this mutation and only 6 heterozygous subjects were detected in the case and control groups. Regarding FII variants, none of the study subjects were AG heterozygous and only 1 AA homozygous was detected in the control group. Conclusions: The prevalence of both FV and FII variants are population based. Iran is an ethnically diverse country. Therefore, for a comprehensive analysis of a potential association of FV and/or FII mutations with stroke among Iranian population, epidemiological studies could be conducted among different ethnic groups. PMID:25763204

  6. [Perioperative management of coagulation and fibrinolytic activity in endosaccular embolization of cerebral aneurysms].

    PubMed

    Nakahara, I; Taki, W; Tanaka, M; Sadatou, A; Matsumoto, K; Kikuchi, H

    1994-05-01

    Endosaccular embolization is an innovative and effective treatment for surgically formidable cerebral aneurysms. Platinum microcoils are soft, easily fit to complex configuration of aneurysms, highly thrombogenic, so that suitable for this purpose. Recently developed Guglielmi detachable coils have more advantages in terms of retrievability and electrothrombotic effect. However, distal migration of intraaneurysmal thrombus produces thromboembolism in normal cerebral arteries, leading to neurological deficits. Three cases are presented in which thromboembolic complications occurred during or after embolization of cerebral aneurysms with platinum microcoils. Emergent fibrinolytic treatment resolved neurological deficits in each case without any other complications. From these lessons, a protocol of intra- and postoperative anticoagulation and antiplatelet therapy is presented. In conclusion, perioperative management of fibrinolytic and coagulation activity is extremely important in preventing thromboembolic complication and obtaining successful result.

  7. Evaluation of the metal binding sites in a recombinant coagulation factor VIII identifies two sites with unique metal binding properties.

    PubMed

    Svensson, Lars Anders; Thim, Lars; Olsen, Ole Hvilsted; Nicolaisen, Else Marie

    2013-06-01

    Coagulation factor VIII is a glycosylated, non-covalent heterodimer consisting of a heavy chain (A1-A2-B domains) and a light chain (A3-C1-C2 domains). The association of the chains, and the stability and function of the dimer depend on the presence of metal ions. We applied X-ray fluorescence, X-ray crystallographic structure determination with anomalous signals at different wavelengths, and colorimetric measurements to evaluate the metal binding sites in a recombinant factor VIII molecule, turoctocog alfa. We identified a metal binding site in domain A3 dominated by Cu(+) binding and a site in domain A1 dominated by Zn(2+) binding.

  8. Management of cancer-associated disseminated intravascular coagulation.

    PubMed

    Levi, Marcel

    2016-04-01

    Cancer may be complicated by the occurrence of disseminated intravascular coagulation (DIC). DIC is characterized by a widespread and intravascular activation of coagulation (leading to intravascular fibrin deposition) and simultaneous consumption of coagulation factors and platelets (potentially resulting in bleeding). Clinically, DIC in cancer has in general a less fulminant presentation than the types of DIC complicating sepsis and trauma. A more gradual, but also more chronic, systemic activation of coagulation can proceed subclinically. Eventually this process may lead to exhaustion of platelets and coagulation factors and bleeding (for example at the site of the tumor) may be the first clinical symptom indicating the presence of DIC. In some cases, the clinical presentation of DIC in cancer may be reminiscent of thrombotic microangiopathies, which is understandable in view of the role of endothelium in both conditions. The therapeutic cornerstone of DIC is treatment of the underlying disorder but supportive treatment, specifically aimed at the hemostatic system may be required. PMID:27067981

  9. Hydroxyurea increases plasma concentrations of microparticles and reduces coagulation activation and fibrinolysis in patients with sickle cell anemia.

    PubMed

    Brunetta, Denise Menezes; De Santis, Gil Cunha; Silva-Pinto, Ana Cristina; Oliveira de Oliveira, Luciana Correa; Covas, Dimas Tadeu

    2015-01-01

    Microparticles (MPs) are present in healthy subjects and their concentration increases in patients at high risk of thrombosis. We evaluated 10 patients with sickle cell anemia (SCA) treated with hydroxyurea (HU) and 13 SCA patients without this treatment. MP concentrations were determined by flow cytometry. Coagulation was evaluated using the thrombin-antithrombin complex (TAT) and D-dimers. Total MP concentrations were increased in the HU-treated group (265 × 10(6)/ml vs. 67.45 × 10(6)/ml; p = 0.0026), as well as MPs derived from RBC (67.83 × 10(6)/ml vs. 26.31 × 10(6)/ml; p = 0.05), monocytes (51.31 × 10(6)/ml vs. 9.03 × 10(6)/ml; p = 0.0084), monocytes with tissue factor (TF) expression (2.27 × 10(6)/ml vs. 0.27 × 10(6)/ml; p = 0.0058), endothelium (49.42 × 10(6)/ml vs. 7.23 × 10(6)/ml; p = 0.007) and endothelium with TF (1.42 × 10(6)/ml vs. 0.26 × 10(6)/ml; p = 0.0043). Furthermore, the concentrations of TAT (7.56 vs. 10.98 µg/l; p = 0.014) and D-dimers (0.65 vs. 1.29 µg/ml; p = 0.007) were reduced with HU. The MP elevation may suggest a direct cytotoxic effect of HU. Another explanation is a cell surface increase secondary to a megaloblastic process, resulting in increased vesicle release. In our opinion, the known benefits of HU on SCA patients, along with the reduction in coagulation activation, surpass its potential detrimental effect on MPs. Future studies should elucidate the role of MPs and demonstrate their significance in different contexts. PMID:25472687

  10. In vitro and in vivo evaluation of blood coagulation activation of polyvinyl alcohol hydrogel plus dextran-based vascular grafts.

    PubMed

    Alexandre, Nuno; Costa, Elísio; Coimbra, Susana; Silva, Alice; Lopes, Ascensão; Rodrigues, Miguel; Santos, Marta; Maurício, Ana Colette; Santos, José Domingos; Luís, Ana Lúcia

    2015-04-01

    Polyvinyl alcohol hydrogel (PVA) is a water-soluble synthetic polymer that is commonly used in biomedical applications including vascular grafting. It was argued that the copolymerization of PVA with dextran (Dx) can result in improvement of blood-biomaterial interactions. The focus of this experimental study was to assess that interaction through an in vivo and in vitro evaluation of the coagulation system activation. The thrombogenicity of the copolymer was determined by quantification of platelet adhesion through the lactate dehydrogenase assay, determination of whole blood clotting time, and by quantification of platelet activation by flow cytometry. The thrombin-antithrombin complex blood levels were also determined. The obtained results for the in vitro assays suggested a non-thrombogenic profile for PVA/Dx. Additionally in vivo coagulation and hematological parameters were determined in an animal model after PVA/Dx vascular graft implantation. For coagulation homeostasis assessment, the intrinsic and extrinsic pathway's activation was determined by measuring prothrombin time (PT) and activated partial thromboplastin time (aPTT). Other markers of coagulation and inflammation activation including d-dimers, interleukin-6, and C-reactive protein were also assessed. The PVA/Dx copolymer tended to inhibit platelet adhesion/activation process and the contact activation process for coagulation. These results were also confirmed with the in vivo experiments where the measurements for APTT, interleukin-6, and C-reactive protein parameters were normal considering the species normal range of values. The response to those events is an indicator of the in vitro and in vivo hemocompatibility of PVA/Dx and it allows us to select this biomaterial for further preclinical trials in vascular reconstruction.

  11. Heparins with reduced anti-coagulant activity reduce myocardial reperfusion injury.

    PubMed

    Barry, William H; Kennedy, Thomas P

    2011-05-01

    Heparin which is desulfated at the 2-O and 3-O positions (ODSH) has reduced anti-coagulant properties, and reduced interaction with heparin antibodies. Because of the reduced anti-coagulant effect, ODSH can be safely administered to animals and humans intravenously at doses up to 20 mg/kg, resulting in a serum concentration of up to 250µg/ml. Administration of ODSH causes a 35% reduction in infarct size in dogs and pigs subjected to coronary artery occlusion and reperfusion when given 5 min before reperfusion. ODSH has anti-inflamatory effects, manifest as a decrease in neutrophil infiltration into ischemic tissue at high doses, but this effect does not entirely account for the reduction in infarct size. ODSH decreases Na(+) and Ca(2+) loading in isolated cardiac myocytes subjected to simulated ischemia. This effect appears due to an ODSH-induced reduction in an enhanced Na(+) influx via the Na channel in the membrane of cardiac myocyes caused by oxygen radicals generated during ischemia and reperfusion. Reduction in Na(+) influx decreases Ca(2+) loading by reducing Ca2(+) influx via Na/Ca exchange, thus reducing Ca(2+) - dependent reperfusion injury. ODSH does not appear to interact with antibodies to the heparin/platelet factor 4 complex, and does not cause heparin-induced thrombocytopenia. Because of these therapeutic and safety considerations, ODSH would appear to be a promising heparin derivative for prevention of reperfusion injury in humans undergoing thrombolytic or catheter-based reperfusion for acute myocardial infarction. The review article discussed the use of heparin and the discussion of some of the important patents, including: US6489311; US7478358; PCTUS2008070836 and PCTUS2009037836.

  12. Minimum wound size for clotting: flowing blood coagulates on a single collagen fiber presenting tissue factor and von Willebrand factor.

    PubMed

    Zhu, Shu; Tomaiuolo, Maurizio; Diamond, Scott L

    2016-08-01

    It is unknown if a lower size limit exists for human blood coagulation under flow over physiological vessel wall triggers as small as a single collagen fiber. Prior determinations of the smallest sized surface stimuli necessary for clotting of human blood, defined as the patch size threshold, have not deployed whole blood, hemodynamic flow, and platelet adhesive stimuli. For whole blood perfused in microfluidic devices, we report that steady venous flow (wall shear rate, 100 s(-1)) was sufficient to drive platelet deposition on 20 micron long zones of collagen fibers or on a single fiber. With tissue factor (TF)-coated collagen, flowing blood generated robust platelet deposits, platelet-localized thrombin, and fibrin on a single collagen fiber, thus demonstrating the absence of a physiological patch size threshold under venous flow. In contrast, at arterial wall shear rate (1000 s(-1)) with TF present, essentially no platelet or fibrin deposition occurred on 20 micron collagen zones or on a single collagen fiber, demonstrating a patch threshold, which was overcome by pre-coating the collagen with von Willebrand factor (vWF). For venous flows, human blood can clot on one of the smallest biological units of a single collagen fiber presenting TF. For arterial flows, vWF together with TF allows human blood to generate thrombin and fibrin on a patch stimulus as limited as a single collagen fiber. vWF-dependent platelet adhesion represents a particle-based sensing mechanism of micron-scale stimuli that then allows amplification of the molecular components of TF-driven thrombin and fibrin production under arterial flow. PMID:27339024

  13. Minimum wound size for clotting: flowing blood coagulates on a single collagen fiber presenting tissue factor and von Willebrand factor.

    PubMed

    Zhu, Shu; Tomaiuolo, Maurizio; Diamond, Scott L

    2016-08-01

    It is unknown if a lower size limit exists for human blood coagulation under flow over physiological vessel wall triggers as small as a single collagen fiber. Prior determinations of the smallest sized surface stimuli necessary for clotting of human blood, defined as the patch size threshold, have not deployed whole blood, hemodynamic flow, and platelet adhesive stimuli. For whole blood perfused in microfluidic devices, we report that steady venous flow (wall shear rate, 100 s(-1)) was sufficient to drive platelet deposition on 20 micron long zones of collagen fibers or on a single fiber. With tissue factor (TF)-coated collagen, flowing blood generated robust platelet deposits, platelet-localized thrombin, and fibrin on a single collagen fiber, thus demonstrating the absence of a physiological patch size threshold under venous flow. In contrast, at arterial wall shear rate (1000 s(-1)) with TF present, essentially no platelet or fibrin deposition occurred on 20 micron collagen zones or on a single collagen fiber, demonstrating a patch threshold, which was overcome by pre-coating the collagen with von Willebrand factor (vWF). For venous flows, human blood can clot on one of the smallest biological units of a single collagen fiber presenting TF. For arterial flows, vWF together with TF allows human blood to generate thrombin and fibrin on a patch stimulus as limited as a single collagen fiber. vWF-dependent platelet adhesion represents a particle-based sensing mechanism of micron-scale stimuli that then allows amplification of the molecular components of TF-driven thrombin and fibrin production under arterial flow.

  14. Optimizing the industrial wastewater pretreatment by activated carbon and coagulation: effects of hydrophobicity/hydrophilicity and molecular weights of dissolved organics.

    PubMed

    Khan, M Hammad; Ha, Dong-Hwan; Jung, Jinyoung

    2013-01-01

    This study addresses industrial wastewater treatment to remove dissolved organic compounds (DOC) using Fenton and coagulation processes, followed by granular activated carbon (GAC), and powdered activated carbon (PAC) as a pretreatment before reverse osmosis (RO). The effects of the hydrophobic / hydrophilic fractions and the molecular weights (MW) of the organics on DOC removal were tested and used to optimize the combination process. The raw wastewater (RWW) had a dominant hydrophobic fraction, as determined by polymeric resins Amberlite XAD-4. High performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS) results showed that MW of organics were 256, 172, 258, 146, 392, 321, 182, 373, 276, 365, 409 and 453 in increasing order of hydrophobicity. GAC had higher adsorption capacity and was more selective for hydrophobic DOC removal than PAC. The removal efficiency of DOC by PAC and GAC was decreased after Fenton treatment, which decreased the hydrophobic fraction. Coagulation with ferric chloride efficiently removed the non-ionic hydrophilic and anionic hydrophilic organics. The coagulant doses selected as a pretreatment before GAC were 2.1 and 15.5 mg Fe(III)/mg DOC. The effluent total organic carbon (TOC) trends were correlated with the hydrophobic and hydrophilic fractions by using a rapid small-scale column test (RSSCT) for GAC breakthrough with a scale down factor of 5. GAC preferentially adsorbed the hydrophobic and the cationic hydrophilic organics. The effluent TOC trend could be divided into four stages: maximum adsorption, hydrophobic stage, exhaustion, and biological. The TOC removal after the exhaustion stage was almost equal to the hydrophilic fraction of TOC. Therefore these results demonstrated that the combination of coagulation and GAC adsorption was a highly efficient process for reducing DOC.

  15. Optimizing the industrial wastewater pretreatment by activated carbon and coagulation: effects of hydrophobicity/hydrophilicity and molecular weights of dissolved organics.

    PubMed

    Khan, M Hammad; Ha, Dong-Hwan; Jung, Jinyoung

    2013-01-01

    This study addresses industrial wastewater treatment to remove dissolved organic compounds (DOC) using Fenton and coagulation processes, followed by granular activated carbon (GAC), and powdered activated carbon (PAC) as a pretreatment before reverse osmosis (RO). The effects of the hydrophobic / hydrophilic fractions and the molecular weights (MW) of the organics on DOC removal were tested and used to optimize the combination process. The raw wastewater (RWW) had a dominant hydrophobic fraction, as determined by polymeric resins Amberlite XAD-4. High performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS) results showed that MW of organics were 256, 172, 258, 146, 392, 321, 182, 373, 276, 365, 409 and 453 in increasing order of hydrophobicity. GAC had higher adsorption capacity and was more selective for hydrophobic DOC removal than PAC. The removal efficiency of DOC by PAC and GAC was decreased after Fenton treatment, which decreased the hydrophobic fraction. Coagulation with ferric chloride efficiently removed the non-ionic hydrophilic and anionic hydrophilic organics. The coagulant doses selected as a pretreatment before GAC were 2.1 and 15.5 mg Fe(III)/mg DOC. The effluent total organic carbon (TOC) trends were correlated with the hydrophobic and hydrophilic fractions by using a rapid small-scale column test (RSSCT) for GAC breakthrough with a scale down factor of 5. GAC preferentially adsorbed the hydrophobic and the cationic hydrophilic organics. The effluent TOC trend could be divided into four stages: maximum adsorption, hydrophobic stage, exhaustion, and biological. The TOC removal after the exhaustion stage was almost equal to the hydrophilic fraction of TOC. Therefore these results demonstrated that the combination of coagulation and GAC adsorption was a highly efficient process for reducing DOC. PMID:23383639

  16. Spatial localization of bacteria controls coagulation of human blood by 'quorum acting'.

    PubMed

    Kastrup, Christian J; Boedicker, James Q; Pomerantsev, Andrei P; Moayeri, Mahtab; Bian, Yao; Pompano, Rebecca R; Kline, Timothy R; Sylvestre, Patricia; Shen, Feng; Leppla, Stephen H; Tang, Wei-Jen; Ismagilov, Rustem F

    2008-12-01

    Blood coagulation often accompanies bacterial infections and sepsis and is generally accepted as a consequence of immune responses. Though many bacterial species can directly activate individual coagulation factors, they have not been shown to directly initiate the coagulation cascade that precedes clot formation. Here we demonstrated, using microfluidics and surface patterning, that the spatial localization of bacteria substantially affects coagulation of human and mouse blood and plasma. Bacillus cereus and Bacillus anthracis, the anthrax-causing pathogen, directly initiated coagulation of blood in minutes when bacterial cells were clustered. Coagulation of human blood by B. anthracis required secreted zinc metalloprotease InhA1, which activated prothrombin and factor X directly (not via factor XII or tissue factor pathways). We refer to this mechanism as 'quorum acting' to distinguish it from quorum sensing--it does not require a change in gene expression, it can be rapid and it can be independent of bacterium-to-bacterium communication.

  17. Combining Coagulation/MIEX with Biological Activated Carbon Treatment to Control Organic Fouling in the Microfiltration of Secondary Effluent

    PubMed Central

    Pramanik, Biplob Kumar; Roddick, Felicity A.; Fan, Linhua

    2016-01-01

    Coagulation, magnetic ion exchange resin (MIEX) and biological activated carbon (BAC) were examined at lab scale as standalone, and sequential pre-treatments for controlling the organic fouling of a microfiltration membrane by biologically treated secondary effluent (BTSE) using a multi-cycle approach. MIEX gave slightly greater enhancement in flux than coagulation due to greater removal of high molecular weight (MW) humic substances, although it was unable to remove high MW biopolymers. BAC treatment was considerably more effective for improving the flux than coagulation or MIEX. This was due to the biodegradation of biopolymers and/or their adsorption by the biofilm, and adsorption of humic substances by the activated carbon, as indicated by size exclusion chromatography. Coagulation or MIEX followed by BAC treatment further reduced the problematic foulants and significantly improved the flux performance. The unified membrane fouling index showed that the reduction of membrane fouling by standalone BAC treatment was 42%. This improved to 65%, 70%, and 93% for alum, ferric chloride and MIEX pre-treatment, respectively, when followed by BAC treatment. This study showed the potential of sequential MIEX and BAC pre-treatment for controlling organic fouling and thus enhancing the performance of microfiltration in the reclamation of BTSE. PMID:27483327

  18. Combining Coagulation/MIEX with Biological Activated Carbon Treatment to Control Organic Fouling in the Microfiltration of Secondary Effluent.

    PubMed

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2016-01-01

    Coagulation, magnetic ion exchange resin (MIEX) and biological activated carbon (BAC) were examined at lab scale as standalone, and sequential pre-treatments for controlling the organic fouling of a microfiltration membrane by biologically treated secondary effluent (BTSE) using a multi-cycle approach. MIEX gave slightly greater enhancement in flux than coagulation due to greater removal of high molecular weight (MW) humic substances, although it was unable to remove high MW biopolymers. BAC treatment was considerably more effective for improving the flux than coagulation or MIEX. This was due to the biodegradation of biopolymers and/or their adsorption by the biofilm, and adsorption of humic substances by the activated carbon, as indicated by size exclusion chromatography. Coagulation or MIEX followed by BAC treatment further reduced the problematic foulants and significantly improved the flux performance. The unified membrane fouling index showed that the reduction of membrane fouling by standalone BAC treatment was 42%. This improved to 65%, 70%, and 93% for alum, ferric chloride and MIEX pre-treatment, respectively, when followed by BAC treatment. This study showed the potential of sequential MIEX and BAC pre-treatment for controlling organic fouling and thus enhancing the performance of microfiltration in the reclamation of BTSE. PMID:27483327

  19. Combining Coagulation/MIEX with Biological Activated Carbon Treatment to Control Organic Fouling in the Microfiltration of Secondary Effluent.

    PubMed

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2016-07-30

    Coagulation, magnetic ion exchange resin (MIEX) and biological activated carbon (BAC) were examined at lab scale as standalone, and sequential pre-treatments for controlling the organic fouling of a microfiltration membrane by biologically treated secondary effluent (BTSE) using a multi-cycle approach. MIEX gave slightly greater enhancement in flux than coagulation due to greater removal of high molecular weight (MW) humic substances, although it was unable to remove high MW biopolymers. BAC treatment was considerably more effective for improving the flux than coagulation or MIEX. This was due to the biodegradation of biopolymers and/or their adsorption by the biofilm, and adsorption of humic substances by the activated carbon, as indicated by size exclusion chromatography. Coagulation or MIEX followed by BAC treatment further reduced the problematic foulants and significantly improved the flux performance. The unified membrane fouling index showed that the reduction of membrane fouling by standalone BAC treatment was 42%. This improved to 65%, 70%, and 93% for alum, ferric chloride and MIEX pre-treatment, respectively, when followed by BAC treatment. This study showed the potential of sequential MIEX and BAC pre-treatment for controlling organic fouling and thus enhancing the performance of microfiltration in the reclamation of BTSE.

  20. Positive selection during the evolution of the blood coagulation factors in the context of their disease-causing mutations.

    PubMed

    Rallapalli, Pavithra M; Orengo, Christine A; Studer, Romain A; Perkins, Stephen J

    2014-11-01

    Blood coagulation occurs through a cascade of enzymes and cofactors that produces a fibrin clot, while otherwise maintaining hemostasis. The 11 human coagulation factors (FG, FII-FXIII) have been identified across all vertebrates, suggesting that they emerged with the first vertebrates around 500 Ma. Human FVIII, FIX, and FXI are associated with thousands of disease-causing mutations. Here, we evaluated the strength of selective pressures on the 14 genes coding for the 11 factors during vertebrate evolution, and compared these with human mutations in FVIII, FIX, and FXI. Positive selection was identified for fibrinogen (FG), FIII, FVIII, FIX, and FX in the mammalian Primates and Laurasiatheria and the Sauropsida (reptiles and birds). This showed that the coagulation system in vertebrates was under strong selective pressures, perhaps to adapt against blood-invading pathogens. The comparison of these results with disease-causing mutations reported in FVIII, FIX, and FXI showed that the number of disease-causing mutations, and the probability of positive selection were inversely related to each other. It was concluded that when a site was under positive selection, it was less likely to be associated with disease-causing mutations. In contrast, sites under negative selection were more likely to be associated with disease-causing mutations and be destabilizing. A residue-by-residue comparison of the FVIII, FIX, and FXI sequence alignments confirmed this. This improved understanding of evolutionary changes in FVIII, FIX, and FXI provided greater insight into disease-causing mutations, and better assessments of the codon sites that may be mutated in applications of gene therapy.

  1. Positive Selection during the Evolution of the Blood Coagulation Factors in the Context of Their Disease-Causing Mutations

    PubMed Central

    Rallapalli, Pavithra M.; Orengo, Christine A.; Studer, Romain A.; Perkins, Stephen J.

    2014-01-01

    Blood coagulation occurs through a cascade of enzymes and cofactors that produces a fibrin clot, while otherwise maintaining hemostasis. The 11 human coagulation factors (FG, FII–FXIII) have been identified across all vertebrates, suggesting that they emerged with the first vertebrates around 500 Ma. Human FVIII, FIX, and FXI are associated with thousands of disease-causing mutations. Here, we evaluated the strength of selective pressures on the 14 genes coding for the 11 factors during vertebrate evolution, and compared these with human mutations in FVIII, FIX, and FXI. Positive selection was identified for fibrinogen (FG), FIII, FVIII, FIX, and FX in the mammalian Primates and Laurasiatheria and the Sauropsida (reptiles and birds). This showed that the coagulation system in vertebrates was under strong selective pressures, perhaps to adapt against blood-invading pathogens. The comparison of these results with disease-causing mutations reported in FVIII, FIX, and FXI showed that the number of disease-causing mutations, and the probability of positive selection were inversely related to each other. It was concluded that when a site was under positive selection, it was less likely to be associated with disease-causing mutations. In contrast, sites under negative selection were more likely to be associated with disease-causing mutations and be destabilizing. A residue-by-residue comparison of the FVIII, FIX, and FXI sequence alignments confirmed this. This improved understanding of evolutionary changes in FVIII, FIX, and FXI provided greater insight into disease-causing mutations, and better assessments of the codon sites that may be mutated in applications of gene therapy. PMID:25158795

  2. Activation of factor X by rat hepatocytes

    SciTech Connect

    Willingham, A.K.; Matschiner, J.T.

    1986-05-01

    Synthesis and secretion of blood coagulation factor X was studied in hepatocytes prepared by perfusion of rat livers with collagenase. Hepatocytes were incubated in the presence of vitamin K and /sup 3/H-leucine for up to 4h at 37/sup 0/C. Factor X was isolated from the incubation medium by immunochemical techniques and analyzed by SDS-PAGE. The recovered /sup 3/H-labeled proteins migrated, after reduction of disulfides, as two polypeptide chains with apparent molecular weights (M/sub r/) of approximately 42,000 and 22,000 representing the heavy and light chains of factor X respectively. The apparent M/sub r/ of the heavy chain was about 10,000 daltons lighter than seen with the heavy chain of factor X isolated from rat plasma and was more characteristic of the heavy chain of factor Xa. When the levels of factor X secreted by hepatocytes were determined by clotting assays, activity was present as factor Xa. Also, when purified plasma factor X was added to incubations of hepatocytes (>95% parenchymal cells) the added factor X was rapidly converted to factor Xa. Plasma membranes prepared from isolated hepatocytes or from liver homogenates contained an enzyme that converted factor X to factor Xa in a calcium dependent reaction. The physiological significance of a factor X activating enzyme on hepatocyte plasma membranes is not clear.

  3. A coagulation-powdered activated carbon-ultrafiltration--multiple barrier approach for removing toxins from two Australian cyanobacterial blooms.

    PubMed

    Dixon, Mike B; Richard, Yann; Ho, Lionel; Chow, Christopher W K; O'Neill, Brian K; Newcombe, Gayle

    2011-02-28

    Cyanobacteria are a major problem for the world wide water industry as they can produce metabolites toxic to humans in addition to taste and odour compounds that make drinking water aesthetically displeasing. Removal of cyanobacterial toxins from drinking water is important to avoid serious illness in consumers. This objective can be confidently achieved through the application of the multiple barrier approach to drinking water quality and safety. In this study the use of a multiple barrier approach incorporating coagulation, powdered activated carbon (PAC) and ultrafiltration (UF) was investigated for the removal of intracellular and extracellular cyanobacterial toxins from two naturally occurring blooms in South Australia. Also investigated was the impact of these treatments on the UF flux. In this multibarrier approach, coagulation was used to remove the cells and thus the intracellular toxin while PAC was used for extracellular toxin adsorption and finally the UF was used for floc, PAC and cell removal. Cyanobacterial cells were completely removed using the UF membrane alone and when used in conjunction with coagulation. Extracellular toxins were removed to varying degrees by PAC addition. UF flux deteriorated dramatically during a trial with a very high cell concentration; however, the flux was improved by coagulation and PAC addition. PMID:21227576

  4. Antimicrobial activity of fibrinogen and fibrinogen-derived peptides--a novel link between coagulation and innate immunity.

    PubMed

    Påhlman, L I; Mörgelin, M; Kasetty, G; Olin, A I; Schmidtchen, A; Herwald, H

    2013-05-01

    Fibrinogen is a key player in the blood coagulation system, and is upon activation with thrombin converted into fibrin that subsequently forms a fibrin clot. In the present study, we investigated the role of fibrinogen in the early innate immune response. Here we show that the viability of fibrinogen-binding bacteria is affected in human plasma activated with thrombin. Moreover, we found that the peptide fragment GHR28 released from the β-chain of fibrinogen has antimicrobial activity against bacteria that bind fibrinogen to their surface, whereas non-binding strains are unaffected. Notably, bacterial killing was detected in Group A Streptococcus bacteria entrapped in a fibrin clot, suggesting that fibrinogen and coagulation is involved in the early innate immune system to quickly wall off and neutralise invading pathogens.

  5. Extrinsic blood coagulation pathway and risk factors for thrombotic events in patients with essential thrombocythemia.

    PubMed

    Stankowska, Katarzyna; Gadomska, Grażyna; Boinska, Joanna; Michalska, Małgorzata; Bartoszewska-Kubiak, Alicja; Rość, Danuta

    2016-05-31

    INTRODUCTION    The clinical course of essential thrombocythemia (ET) is varied, and some patients do not exhibit any clinical signs of the disease at the time of diagnosis. The most frequent complications that occur during the course of ET are hemostasis abnormalities manifesting as hemorrhagic or thrombotic events. The mechanism of thrombotic events in patients with ET is complex and not fully understood. OBJECTIVES    The aim of the study was to evaluate the concentration and activity of tissue factor (TF) and tissue factor pathway inhibitor (TFPI), depending on the most important risk factors of thrombotic complications (age >60 years, history of thrombotic episodes, presence or absence of the JAK2 V617F mutation, and increased leukocyte count). PATIENTS AND METHODS    The study group included 113 patients with diagnosed ET, and the control group, 30 healthy volunteers matched for age and sex. The concentration and activity of TF and TFPI were measured using enzyme-linked immunosorbent assays. RESULTS    Patients with ET had a significantly higher activity and concentration of TF and increased activity of TFPI, as compared with controls. The analysis of the studied parameters in relation to risk factors revealed that patients with ET with a history of thrombotic events had a significantly higher concentration of TF, and patients with the JAK2 V617F mutation had a lower TFPI activity, as compared with patients without the mutation. CONCLUSIONS    Our study showed that in patients with ET who have a history of thrombosis or the JAK2 V617F mutation, the enhanced risk of thrombosis may result from an increased TF concentration or decreased TFPI activity. PMID:27243342

  6. International reference standards in coagulation.

    PubMed

    Raut, Sanj; Hubbard, Anthony R

    2010-07-01

    Measurement of coagulation factor activity using absolute physico-chemical techniques is not possible and estimation therefore relies on comparative bioassay relative to a reference standard with a known or assigned potency. However the inherent variability of locally prepared and calibrated reference standards can give rise to poor agreement between laboratories and methods. Harmonisation of measurement between laboratories at the international level relies on the availability of a common source of calibration for local reference standards and this is provided by the World Health Organization (WHO) International Standards which define the International Unit for the analyte. This article describes the principles, practices and problems of biological standardisation and the development and use of reference standards for assays of coagulation factors, with particular emphasis on WHO International Standards for both concentrates and plasma.

  7. Diagnosis and treatment of disseminated intravascular coagulation.

    PubMed

    Levi, M

    2014-06-01

    Disseminated intravascular coagulation (DIC) is a condition in which systemic activation of coagulation without a specific localization occurs, resulting in extensive formation of intravascular fibrin, particularly in small and midsize vessels. Disseminated intravascular coagulation may lead to several altered coagulation parameters, including a low platelet count, abnormal global clotting assays, low levels of physiological anticoagulant proteases, or increased fibrin degradation products. Also, more complex assays for activation of coagulation factors or pathways may indicate involvement of these molecules in DIC. None of these tests alone, however, can accurately ascertain or rebuff a diagnosis of DIC. Nonetheless, a combination of readily available routine assays may be instrumental in establishing a diagnosis of DIC and can also be useful to point to a subset of patients with DIC that may need definite, often costly, interventions in the hemostatic system. Current insights on relevant etiological pathways that may contribute to the occurrence of DIC have led to innovative therapeutic and adjunctive approaches to patient with DIC. Management options directed at the amelioration of hemostatic activation may tentatively be indicated and were found to be advantageous in experimental and clinical investigations. These treatments encompass elimination of tissue factor-mediated thrombin generation or restitution of normal anticoagulant function.

  8. Coagulation Changes during Presyncope and Recovery

    PubMed Central

    Cvirn, Gerhard; Schlagenhauf, Axel; Leschnik, Bettina; Koestenberger, Martin; Roessler, Andreas; Jantscher, Andreas; Vrecko, Karoline; Juergens, Guenther; Hinghofer-Szalkay, Helmut; Goswami, Nandu

    2012-01-01

    Orthostatic stress activates the coagulation system. The extent of coagulation activation with full orthostatic load leading to presyncope is unknown. We examined in 7 healthy males whether presyncope, using a combination of head up tilt (HUT) and lower body negative pressure (LBNP), leads to coagulation changes as well as in the return to baseline during recovery. Coagulation responses (whole blood thrombelastometry, whole blood platelet aggregation, endogenous thrombin potential, markers of endothelial activation and thrombin generation), blood cell counts and plasma mass density (for volume changes) were measured before, during, and 20 min after the orthostatic stress. Maximum orthostatic load led to a 25% plasma volume loss. Blood cell counts, prothrombin levels, thrombin peak, endogenous thrombin potential, and tissue factor pathway inhibitor levels increased during the protocol, commensurable with hemoconcentration. The markers of endothelial activation (tissue factor, tissue plasminogen activator), and thrombin generation (F1+2, prothrombin fragments 1 and 2, and TAT, thrombin-antithrombin complex) increased to an extent far beyond the hemoconcentration effect. During recovery, the markers of endothelial activation returned to initial supine values, but F1+2 and TAT remained elevated, suggestive of increased coagulability. Our findings of increased coagulability at 20 min of recovery from presyncope may have greater clinical significance than short-term procoagulant changes observed during standing. While our experiments were conducted in healthy subjects, the observed hypercoagulability during graded orthostatic challenge, at presyncope and in recovery may be an important risk factor particularly for patients already at high risk for thromboembolic events (e.g. those with coronary heart disease, atherosclerosis or hypertensives). PMID:22876309

  9. [Incidental finding of pathological coagulation parameters].

    PubMed

    Luxembourg, B; Lindhoff-Last, E

    2014-10-01

    Pathological coagulation parameters may reflect life-threatening hemorrhagic or thromboembolic diseases but may also be a laboratory result without any clinical significance, result from in vitro phenomena or preanalytical errors. This article gives an overview of potential pitfalls in coagulation diagnostics, lists the differential diagnoses of pathological coagulation parameters and describes further steps in the diagnostic approach to clarify pathological results. The focus lies on coagulation parameters that are frequently determined in routine clinical investigations, e.g. platelet count, prothrombin time, activated partial thromboplastin time (aPTT) and fibrinogen. Besides heparin, fondaparinux, danaparoid, and vitamin K antagonists, direct factor Xa inhibitors and direct thrombin inhibitors are nowadays available for therapeutic anticoagulation. This article gives an overview of the influence of anticoagulants on coagulation parameters which depends on the dose, the time of the last administration, as well as the method used for the determination of coagulation parameters. Moreover, common reasons for elevation of the fibrin degradation product D-dimer are presented. The clinical utility of D-dimer assays is limited by their poor specificity. Elevated D-dimer concentrations can be found in various diseases and also under normal physiological circumstances (e.g. in the elderly). Thus, the most useful clinical application of D-dimer is evidence of normal values to essentially rule out venous thromboembolism. PMID:25190093

  10. Distinct Roles of Ser-764 and Lys-773 at the N Terminus of von Willebrand Factor in Complex Assembly with Coagulation Factor VIII*

    PubMed Central

    Castro-Núñez, Lydia; Bloem, Esther; Boon-Spijker, Mariëtte G.; van der Zwaan, Carmen; van den Biggelaar, Maartje; Mertens, Koen; Meijer, Alexander B.

    2013-01-01

    Complex formation between coagulation factor VIII (FVIII) and von Willebrand factor (VWF) is of critical importance to protect FVIII from rapid in vivo clearance and degradation. We have now employed a chemical footprinting approach to identify regions on VWF involved in FVIII binding. To this end, lysine amino acid residues of VWF were chemically modified in the presence of FVIII or activated FVIII, which does not bind VWF. Nano-LC-MS analysis showed that the lysine residues of almost all identified VWF peptides were not differentially modified upon incubation of VWF with FVIII or activated FVIII. However, Lys-773 of peptide Ser-766–Leu-774 was protected from chemical modification in the presence of FVIII. In addition, peptide Ser-764–Arg-782, which comprises the first 19 amino acid residues of mature VWF, showed a differential modification of both Lys-773 and the α-amino group of Ser-764. To verify the role of Lys-773 and the N-terminal Ser-764 in FVIII binding, we employed VWF variants in which either Lys-773 or Ser-764 was replaced with Ala. Surface plasmon resonance analysis and competition studies revealed that VWF(K773A) exhibited reduced binding to FVIII and the FVIII light chain, which harbors the VWF-binding site. In contrast, VWF(S764A) revealed more effective binding to FVIII and the FVIII light chain compared with WT VWF. The results of our study show that the N terminus of VWF is critical for the interaction with FVIII and that Ser-764 and Lys-773 have opposite roles in the binding mechanism. PMID:23168412

  11. Distinct roles of Ser-764 and Lys-773 at the N terminus of von Willebrand factor in complex assembly with coagulation factor VIII.

    PubMed

    Castro-Núñez, Lydia; Bloem, Esther; Boon-Spijker, Mariëtte G; van der Zwaan, Carmen; van den Biggelaar, Maartje; Mertens, Koen; Meijer, Alexander B

    2013-01-01

    Complex formation between coagulation factor VIII (FVIII) and von Willebrand factor (VWF) is of critical importance to protect FVIII from rapid in vivo clearance and degradation. We have now employed a chemical footprinting approach to identify regions on VWF involved in FVIII binding. To this end, lysine amino acid residues of VWF were chemically modified in the presence of FVIII or activated FVIII, which does not bind VWF. Nano-LC-MS analysis showed that the lysine residues of almost all identified VWF peptides were not differentially modified upon incubation of VWF with FVIII or activated FVIII. However, Lys-773 of peptide Ser-766-Leu-774 was protected from chemical modification in the presence of FVIII. In addition, peptide Ser-764-Arg-782, which comprises the first 19 amino acid residues of mature VWF, showed a differential modification of both Lys-773 and the α-amino group of Ser-764. To verify the role of Lys-773 and the N-terminal Ser-764 in FVIII binding, we employed VWF variants in which either Lys-773 or Ser-764 was replaced with Ala. Surface plasmon resonance analysis and competition studies revealed that VWF(K773A) exhibited reduced binding to FVIII and the FVIII light chain, which harbors the VWF-binding site. In contrast, VWF(S764A) revealed more effective binding to FVIII and the FVIII light chain compared with WT VWF. The results of our study show that the N terminus of VWF is critical for the interaction with FVIII and that Ser-764 and Lys-773 have opposite roles in the binding mechanism. PMID:23168412

  12. Use of Plasma for Acquired Coagulation Factor Deficiencies in Critical Care.

    PubMed

    Shah, Akshay; McKechnie, Stuart; Stanworth, Simon

    2016-03-01

    Coagulopathy in critically ill patients is common and often multifactorial. Fresh frozen plasma (FFP) is commonly used to correct this either prophylactically or therapeutically. FFP usage is mainly guided by laboratory tests of coagulation, which have been shown to have poor predictive values for bleeding. Viscoelastic tests are an attractive option to guide hemostatic therapy, but require rigorous evaluation. The past few years have seen a gradual reduction in national use of FFP potentially due to an increased awareness of risks such as transfusion-related acute lung injury, patient blood management strategies to reduce transfusion in general, and increased awareness of the lack of high-quality evidence available to support FFP use. Within critical care, FFP is administered before invasive procedures/surgery, to treat major traumatic and nontraumatic hemorrhage, disseminated intravascular coagulation, and for urgent warfarin reversal if first-line agents, such as prothrombin complex concentrate (PCC) are not available. Alternative agents such as fibrinogen concentrate and PCC need further evaluation through large-scale clinical trials.

  13. A short contemporary history of disseminated intravascular coagulation.

    PubMed

    Levi, Marcel; van der Poll, Tom

    2014-11-01

    Disseminated intravascular coagulation (DIC) is a syndrome characterized by systemic intravascular activation of coagulation, leading to a widespread deposition of fibrin in the circulation. There is ample experimental and pathological evidence that the fibrin deposition contributes to multiple organ failure. The massive and ongoing activation of coagulation may result in depletion of platelets and coagulation factors, which may cause bleeding (consumption coagulopathy). The syndrome of DIC is well known in the medical literature for centuries, although a more precise description of the underlying mechanisms had to await the 20th century. Initial ideas on a role of the contact activation system as the primary trigger for the systemic activation of coagulation as well as a presumed hyperfibrinolytic response in DIC have been found to be misconceptions. Experimental and clinical evidence now indicate that the initiation of coagulation in DIC is caused by tissue factor expression, which in combination with downregulated physiological anticoagulant pathways and impaired fibrinolysis leads to widespread fibrin deposition. In addition, an extensive bidirectional interaction between coagulation and inflammation may further contribute to the pathogenesis of DIC.

  14. Inhibition of coagulation, fibrinolysis, and endothelial cell activation by a p38 mitogen-activated protein kinase inhibitor during human endotoxemia.

    PubMed

    Branger, Judith; van den Blink, Bernt; Weijer, Sebastiaan; Gupta, Abhya; van Deventer, Sander J H; Hack, C Erik; Peppelenbosch, Maikel P; van der Poll, Tom

    2003-06-01

    P38 mitogen-activated protein kinase (MAPK) is an important component of intracellular signaling cascades that initiate various inflammatory cellular responses. To determine the role of p38 MAPK in the procoagulant response to lipopolysaccharide (LPS), 24 healthy subjects were exposed to an intravenous dose of LPS (4 ng/kg), preceded 3 hours earlier by orally administered 600 or 50 mg BIRB 796 BS (a specific p38 MAPK inhibitor), or placebo. The 600-mg dose of BIRB 796 BS strongly inhibited LPS-induced coagulation activation, as measured by plasma concentrations of the prothrombin fragment F1 + 2. BIRB 796 BS also dose dependently attenuated the activation and subsequent inhibition of the fibrinolytic system (plasma tissue-type plasminogen activator, plasmin-alpha2-antiplasmin complexes, and plasminogen activator inhibitor type 1) and endothelial cell activation (plasma soluble E-selectin and von Willebrand factor). Activation of p38 MAPK plays an important role in the procoagulant and endothelial cell response after in vivo exposure to LPS.

  15. The coagulation system and its function in early immune defense.

    PubMed

    van der Poll, Tom; Herwald, Heiko

    2014-10-01

    Blood coagulation has a Janus-faced role in infectious diseases. When systemically activated, it can cause serious complications associated with high morbidity and mortality. However, coagulation is also part of the innate immune system and its local activation has been found to play an important role in the early host response to infection. Though the latter aspect has been less investigated, phylogenetic studies have shown that many factors involved in coagulation have ancestral origins which are often combined with anti-microbial features. This review gives a general overview about the most recent advances in this area of research also referred to as immunothrombosis.

  16. Potentiation of thrombin generation in hemophilia A plasma by coagulation factor VIII and characterization of antibody-specific inhibition.

    PubMed

    Doshi, Bhavya S; Gangadharan, Bagirath; Doering, Christopher B; Meeks, Shannon L

    2012-01-01

    Development of inhibitory antibodies to coagulation factor VIII (fVIII) is the primary obstacle to the treatment of hemophilia A in the developed world. This adverse reaction occurs in 20-30% of persons with severe hemophilia A treated with fVIII-replacement products and is characterized by the development of a humoral and neutralizing immune response to fVIII. Patients with inhibitory anti-fVIII antibodies are treated with bypassing agents including recombinant factor VIIa (rfVIIa). However, some patients display poor hemostatic response to bypass therapy and improved treatment options are needed. Recently, we demonstrated that fVIII inhibitors display widely variable kinetics of inhibition that correlate with their respective target epitopes. Thus, it was hypothesized that for antibodies that display slow rates of inhibition, supplementation of rfVIIa with fVIII would result in improved thrombin generation and be predictive of clinical responses to this novel treatment regimen. In order to test this hypothesis, 10 murine monoclonal antibodies (MAbs) with non-overlapping epitopes spanning fVIII, differential inhibition titers, and inhibition kinetics were studied using a thrombin generation assay. Of the 3 MAbs with high inhibitory titers, only the one with fast and complete (classically defined as "type I") kinetics displayed significant inhibition of thrombin generation with no improvement upon supplementation of rfVIIa with fVIII. The other two MAbs that displayed incomplete (classically defined as "type II") inhibition did not suppress the potentiation of thrombin generation by fVIII. All antibodies that did not completely inhibit fVIII activity demonstrated potentiation of thrombin generation by the addition of fVIII as compared to rfVIIa alone. In conclusion, fVIII alone or in combination with rfVIIa corrects the thrombin generation defect produced by the majority of anti-fVIII MAbs better than single agent rfVIIa. Therefore, combined fVIII/rfVIIa therapy

  17. The effect of substrate molecular mobility on surface induced immune complement activation and blood plasma coagulation.

    PubMed

    Berglin, Mattias; Andersson, Marcus; Sellborn, Anders; Elwing, Hans

    2004-08-01

    Changing the length of the alkyl ester side chain in poly(alkyl methacrylates) provides a unique opportunity to systematically vary the mobility of the polymer chains, or in other words vary the glass transition temperature (T(g)), without greatly affect the solid surface energy (gamma(s)) of the polymer. A series of poly(alkyl methacrylate) coatings was therefore analysed with regard to the human immune complement (IC) activation and the surface associated blood plasma coagulation cascade (CC) properties. For the IC and CC measurements we used a quartz crystal microbalance (QCM) where we modified the chemistry of the sensor surface by applying 10-30 nm thick poly(alkyl methacrylate) coatings. The surface energy was calculated from water contact angles and small differences between the coatings were observed. The surface chemistry of the coatings, as determined with X-ray photoelectron spectroscopy (XPS), showed no deviation from expected compositions. Tapping mode atomic force microscopy (TM-AFM) measurements revealed that all coatings displayed similar morphology and the roughness was in the range of 0.7-0.9 nm. Increased polymer mobility correlated with a decrease in IC activation, measured as a decreased C3c deposition at the surface. The surface induced CC, measured as fibrin clot formation at the surface, was different between the different coatings but no correlation with molecular mobility was observed. Thus, the molecular mobility of the polymer chains had a major effect on both the IC and the CC and it seems that different aspects of the chemistry of the solid surface regulate activation of the IC and the CC.

  18. Monopolar active accessories can be connected to Covidien ForceTriad electrosurgical generators incorrectly, disabling coagulation mode.

    PubMed

    2011-03-01

    The monopolar output receptacle on the Covidien ForceTriad electrosurgical generator is designed in such a way that users can unknowingly connect active accessories in the wrong orientation, disabling the system's coagulation function. The manufacturer is developing labeling for ForceTriad production units that depicts the proper orientation in which to connect the accessory during setup. Covidien is currently considering how it will address units already in the field.

  19. High Pressure Homogenization of Porcine Pepsin Protease: Effects on Enzyme Activity, Stability, Milk Coagulation Profile and Gel Development.

    PubMed

    Leite Júnior, Bruno Ricardo de Castro; Tribst, Alline Artigiani Lima; Cristianini, Marcelo

    2015-01-01

    This study investigated the effect of high pressure homogenization (HPH) (up to 190 MPa) on porcine pepsin (proteolytic and milk-clotting activities), and the consequences of using the processed enzyme in milk coagulation and gel formation (rheological profile, proteolysis, syneresis, and microstructure). Although the proteolytic activity (PA) was not altered immediately after the HPH process, it reduced during enzyme storage, with a 5% decrease after 60 days of storage for samples obtained with the enzyme processed at 50, 100 and 150 MPa. HPH increased the milk-clotting activity (MCA) of the enzyme processed at 150 MPa, being 15% higher than the MCA of non-processed samples after 60 days of storage. The enzyme processed at 150 MPa produced faster aggregation and a more consistent milk gel (G' value 92% higher after 90 minutes) when compared with the non-processed enzyme. In addition, the gels produced with the enzyme processed at 150 MPa showed greater syneresis after 40 minutes of coagulation (forming a more compact protein network) and lower porosity (evidenced by confocal microscopy). These effects on the milk gel can be associated with the increment in MCA and reduction in PA caused by the effects of HPH on pepsin during storage. According to the results, HPH stands out as a process capable of changing the proteolytic characteristics of porcine pepsin, with improvements on the milk coagulation step and gel characteristics. Therefore, the porcine pepsin submitted to HPH process can be a suitable alternative for the production of cheese.

  20. High Pressure Homogenization of Porcine Pepsin Protease: Effects on Enzyme Activity, Stability, Milk Coagulation Profile and Gel Development

    PubMed Central

    Leite Júnior, Bruno Ricardo de Castro; Tribst, Alline Artigiani Lima; Cristianini, Marcelo

    2015-01-01

    This study investigated the effect of high pressure homogenization (HPH) (up to 190 MPa) on porcine pepsin (proteolytic and milk-clotting activities), and the consequences of using the processed enzyme in milk coagulation and gel formation (rheological profile, proteolysis, syneresis, and microstructure). Although the proteolytic activity (PA) was not altered immediately after the HPH process, it reduced during enzyme storage, with a 5% decrease after 60 days of storage for samples obtained with the enzyme processed at 50, 100 and 150 MPa. HPH increased the milk-clotting activity (MCA) of the enzyme processed at 150 MPa, being 15% higher than the MCA of non-processed samples after 60 days of storage. The enzyme processed at 150 MPa produced faster aggregation and a more consistent milk gel (G’ value 92% higher after 90 minutes) when compared with the non-processed enzyme. In addition, the gels produced with the enzyme processed at 150 MPa showed greater syneresis after 40 minutes of coagulation (forming a more compact protein network) and lower porosity (evidenced by confocal microscopy). These effects on the milk gel can be associated with the increment in MCA and reduction in PA caused by the effects of HPH on pepsin during storage. According to the results, HPH stands out as a process capable of changing the proteolytic characteristics of porcine pepsin, with improvements on the milk coagulation step and gel characteristics. Therefore, the porcine pepsin submitted to HPH process can be a suitable alternative for the production of cheese. PMID:25938823

  1. Disseminated intravascular coagulation in burn injury.

    PubMed

    Lippi, Giuseppe; Ippolito, Luigi; Cervellin, Gianfranco

    2010-06-01

    Disseminated intravascular coagulation (DIC) is a complex and multifaceted disorder characterized by the activation of coagulation and fibrinolytic pathways, consumption of coagulation factors, and depletion of coagulation regulatory proteins. The introduction into the circulation of cellular debris characterized by strong thromboplastic activity due to tissue factor exposition or release (in or from burned tissues), which can thereby activate extrinsic pathway of coagulation system and trigger massive thrombin generation when present in sufficient concentration, represents the most plausible biological explanation to support the development of intravascular coagulation in patients with burn injury. Severe burns left untreated might also lead to an immunological and inflammatory response (activation of the complement cascade), which can amplify fibrinolysis and blood clotting. Overall, the real prevalence of DIC in patients with burns is as yet unclear. Postmortem, retrospective, and even longitudinal investigations are in fact biased by several factors, such as the objective difficulty to establish whether DIC might have occurred as a primary complication of burns or rather as a consequence of other superimposed pathologies (e.g., sepsis, multiple organ failure), the different diagnostic criteria for assessing DIC, and the heterogeneity of the patient samples studied. Nevertheless, the current scientific evidence is consistent with the hypothesis that biochemical changes suggestive for DIC (hypercoagulability, hypo- and hyperfibrinolysis) are commonplace in patients with burn trauma, and their severity increases exponentially with the severity of injury. Overt DIC seems to occur especially in critically ill burn patients or in those with severe burns (up to third degree) and large involvement of body surface area, in whom an appropriate therapy might be effective to prevent the otherwise fulminant course. Although early prophylaxis with antithrombin concentrates

  2. Tissue factor activity under flow.

    PubMed

    Diamond, Scott L

    2010-04-01

    Coagulation processes under flow conditions are fundamentally different when compared to whole blood clotting in a tube. Due to red blood cell migration toward the center of the vessel, platelet concentrations are elevated several-fold in the plasma layer near the wall or thrombus. Evaluation of platelet function, coagulation proteases, and pharmacological agents can utilize closed systems of constant volume that lack flow (eg. intracellular calcium measurement, automated calibrated thrombography) or include flow (eg. aggregometry or cone-and-plate viscometry). However, these laboratory approaches fail to recreate the fact that intravascular thrombosis is an open system where blood is continually flowing over a thrombotic site. In open systems, the rapid accumulation of platelets at a surface leads to platelet concentrations greatly exceeding those found in whole blood and the delivery/removal of species by convection may impact the efficacy of pharmacological agents. During a clotting event under flow, platelets can accumulate via adhesion receptors to concentrations that are 10 to 50-fold higher than that of platelet-rich plasma. Using controlled in vitro perfusions of whole blood, it is possible to determine the critical level of surface tissue factor needed to trigger full scale coagulation on collagen. Such in vitro perfusion systems also allow a determination of the potency of anti-platelet agents as a function of wall shear rate.

  3. Whole blood coagulation and platelet activation in the athlete: A comparison of marathon, triathlon and long distance cycling

    PubMed Central

    2010-01-01

    Introduction Serious thrombembolic events occur in otherwise healthy marathon athletes during competition. We tested the hypothesis that during heavy endurance sports coagulation and platelets are activated depending on the type of endurance sport with respect to its running fraction. Materials and Methods 68 healthy athletes participating in marathon (MAR, running 42 km, n = 24), triathlon (TRI, swimming 2.5 km + cycling 90 km + running 21 km, n = 22), and long distance cycling (CYC, 151 km, n = 22) were included in the study. Blood samples were taken before and immediately after completion of competition to perform rotational thrombelastometry. We assessed coagulation time (CT), maximum clot firmness (MCF) after intrinsically activation and fibrin polymerization (FIBTEM). Furthermore, platelet aggregation was tested after activation with ADP and thrombin activating peptide 6 (TRAP) by using multiple platelet function analyzer. Results Complete data sets were obtained in 58 athletes (MAR: n = 20, TRI: n = 19, CYC: n = 19). CT significantly decreased in all groups (MAR -9.9%, TRI -8.3%, CYC -7.4%) without differences between groups. In parallel, MCF (MAR +7.4%, TRI +6.1%, CYC +8.3%) and fibrin polymerization (MAR +14.7%, TRI +6.1%, CYC +8.3%) were significantly increased in all groups. However, platelets were only activated during MAR and TRI as indicated by increased AUC during TRAP-activation (MAR +15.8%) and increased AUC during ADP-activation in MAR (+50.3%) and TRI (+57.5%). Discussion While coagulation is activated during physical activity irrespective of type we observed significant platelet activation only during marathon and to a lesser extent during triathlon. We speculate that prolonged running may increase platelet activity, possibly, due to mechanical alteration. Thus, particularly prolonged running may increase the risk of thrombembolic incidents in running athletes. PMID:20452885

  4. [Pitfall in coagulation tests].

    PubMed

    Gähler, Anita; Wuillemin, Walter A

    2013-08-01

    Coagulation assays are prone to pre-analytical problems and results may be influenced by varying clinical and pharmaceutical aspects. Particularly anticoagulants interact with coagulation testing in many ways. Thromboplastin time will be prolonged dose-dependently in patients taking vitamin K antagonists; moreover the new oral anticoagulants have been shown to have variable impact on the results of the thromboplastin time as well as on other coagulation tests, depending on the mechanism of action of these new drugs as well as on the mechanism of the coagulation test. When measuring anti-Xa activity it should be realised that all drugs with anti-Xa activity will influence the result, which means not only heparins but also the new anti-Xa inhibitors. Respective calibration curves are an indispensable condition to provide the clinician with valuable results. On the other hand this implies that the laboratory knows which anticoagulant is given to the patient. This is an example among others that clinical aspects are important to know for proper interpretation of the results of coagulation testing. Other examples are e. g. bleeding disorders, actual bleeding status or thromboembolic events. Several cases are discussed which exemplify possible pitfalls in the interpretation of coagulation testing.

  5. Overview of the coagulation system

    PubMed Central

    Palta, Sanjeev; Saroa, Richa; Palta, Anshu

    2014-01-01

    Coagulation is a dynamic process and the understanding of the blood coagulation system has evolved over the recent years in anaesthetic practice. Although the traditional classification of the coagulation system into extrinsic and intrinsic pathway is still valid, the newer insights into coagulation provide more authentic description of the same. Normal coagulation pathway represents a balance between the pro coagulant pathway that is responsible for clot formation and the mechanisms that inhibit the same beyond the injury site. Imbalance of the coagulation system may occur in the perioperative period or during critical illness, which may be secondary to numerous factors leading to a tendency of either thrombosis or bleeding. A systematic search of literature on PubMed with MeSH terms ‘coagulation system, haemostasis and anaesthesia revealed twenty eight related clinical trials and review articles in last 10 years. Since the balance of the coagulation system may tilt towards bleeding and thrombosis in many situations, it is mandatory for the clinicians to understand physiologic basis of haemostasis in order to diagnose and manage the abnormalities of the coagulation process and to interpret the diagnostic tests done for the same. PMID:25535411

  6. Long-term Exposure to Air Pollution and Markers of Inflammation, Coagulation, and Endothelial Activation

    PubMed Central

    Hajat, Anjum; Allison, Matthew; Diez-Roux, Ana V.; Jenny, Nancy Swords; Jorgensen, Neal W.; Szpiro, Adam A.; Vedal, Sverre; Kaufman, Joel D.

    2015-01-01

    Background Air pollution is associated with cardiovascular disease, and systemic inflammation may mediate this effect. We assessed associations between long- and short-term concentrations of air pollution and markers of inflammation, coagulation, and endothelial activation. Methods We studied participants from the Multi-Ethnic Study of Atherosclerosis from 2000 to 2012 with repeat measures of serum C-reactive protein (CRP), interleukin-6 (IL-6), fibrinogen, D-dimer, soluble E-selectin, and soluble Intercellular Adhesion Molecule-1. Annual average concentrations of ambient fine particulate matter (PM2.5), individual-level ambient PM2.5 (integrating indoor concentrations and time–location data), oxides of nitrogen (NOx), nitrogen dioxide (NO2), and black carbon were evaluated. Short-term concentrations of PM2.5 reflected the day of blood draw, day prior, and averages of prior 2-, 3-, 4-, and 5-day periods. Random-effects models were used for long-term exposures and fixed effects for short-term exposures. The sample size was between 9,000 and 10,000 observations for CRP, IL-6, fibrinogen, and D-dimer; approximately 2,100 for E-selectin; and 3,300 for soluble Intercellular Adhesion Molecule-1. Results After controlling for confounders, 5 µg/m3 increase in long-term ambient PM2.5 was associated with 6% higher IL-6 (95% confidence interval = 2%, 9%), and 40 parts per billion increase in long-term NOx was associated with 7% (95% confidence interval = 2%, 13%) higher level of D-dimer. PM2.5 measured at day of blood draw was associated with CRP, fibrinogen, and E-selectin. There were no other positive associations between blood markers and short- or long-term air pollution. Conclusions These data are consistent with the hypothesis that long-term exposure to air pollution is related to some markers of inflammation and fibrinolysis. PMID:25710246

  7. Activation of blood coagulation and the activity of cancer procoagulant (EC 3.4.22.26) in breast cancer patients.

    PubMed

    Mielicki, W P; Tenderenda, M; Rutkowski, P; Chojnowski, K

    1999-11-01

    The activity of cancer procoagulant (CP), prothrombin time (PT), activated partial thromboplastin time (APTT), the concentration of thrombin-antithrombin complexes (TAT) and the concentration of fibrinogen were analysed in blood of breast cancer patients scheduled for surgery. The serum level of CP activity was dependent on the stage of the disease. The CP activity was increased in 72% of patients with an early stage of cancer and in only 20% of patients with an advanced stage of the disease when compared to the baseline level for non-cancer controls. In all patients PT remained at normal levels (80-120%). There was no significant change in APTT (27-39 s) in early stage cancer patients. Only one patient with advanced cancer had APTT shortened to 23 s. Also one advanced stage patient had significantly elevated level of TAT (14.96 microg/l); in all other patients the concentration of TAT remained at normal levels (1-4.1 microg/l). Forty-four percent of early stage cancer patients and 22% of advanced cancer patients had an elevated level of fibrinogen (Fg) ( > 350 mg%). However, there was no correlation between the level of Fg and the CP activity (P > 0.05). The data suggest that: (1) serum CP activity increases at the early stage of breast cancer and decreases down to the normal level in the advanced stage of the disease; (2) there is no evidence of blood clotting activation in the early stage breast cancer patients; and (3) CP does not facilitate the activation of coagulation in the breast cancer patients or the level of such activation is below the sensitivity of assays used in the experiment.

  8. Safety of plasma-derived protein C for treating disseminated intravascular coagulation in adult patients with active cancer.

    PubMed

    Malato, Alessandra; Saccullo, Giorgia; Coco, Lucio Lo; Caracciolo, Clementina; Raso, Simona; Santoro, Marco; Zammit, Valentina; Siragusa, Sergio

    2012-02-01

    Cancer-related disseminated intravascular coagulation (DIC) is a life-threatening condition for which no effective treatment is currently available. Protein C (PC), a modulator of coagulation as well as the inflammatory system, has been successfully tested (in its activated recombinant form [a-rPC]) in sepsis-related coagulopathy, but with an increased risk for major bleeding. Plasma-derived PC (pd-PC) is more suitable than a-rPC in patients at high risk from bleeding due to its self-limiting process. We carried out a single-arm study evaluating the role of pd-PC in adult cancer patients with overt DIC. Over a period of 3 years, we treated 19 patients with overt DIC and a PC plasma concentration <50%; all received PC concentrate (Ceprotin(®), Baxter) for 72 hr in adjusted doses to restore normal PC values (70-120%). Blood coagulation, haematological tests, and the DIC score were recorded after 12, 24, 48 hr, 7 and 10 days, while clinical outcomes (bleeding, thrombosis and mortality) were recorded up to 28 days. Within 48 hr of starting pd-PC therapy, laboratory tests as well as the DIC score improved in all patients. At 28-days follow-up, no bleeding or thrombosis was observed. This is the first study to investigate the use of pd- PC for treatment of cancer-related overt DIC.

  9. Factor XIa induced activation of the intrinsic cascade in vivo.

    PubMed

    ten Cate, H; Biemond, B J; Levi, M; Wuillemin, W A; Bauer, K A; Barzegar, S; Buller, H R; Hack, C E; ten Cate, J W; Rosenberg, R D

    1996-03-01

    Coagulation factor XI is a glycoprotein of the contact factor system. Its deficiency is associated with a highly variable bleeding tendency, thus a role in relation to hemostasis appears to exist. However, the importance of factor XI for stimulating intrinsic coagulation in vivo has not yet been determined. To study the procoagulant effects of human factor XIa in vivo, we infused the purified enzyme into normal chimpanzees (100 micrograms) in the absence or presence of the thrombin inhibitor rec-hirudin (1.0 mg/kg loading dose plus 0.3 mg/kg body wt continuous infusion). Factor XIa elicited an immediate activation of factors IX, X, and prothrombin, as measured by their respective activation fragments. However, whereas the activation of factors IX and X was immediate and shortlasting, (peak increments of 6- and 1.4-fold of baseline at 5 minutes after injection), the conversion of prothrombin gradually increased, reaching a summit of 6-fold baseline values after 60 min, and remaining elevated during the course of the experiments. Thrombin-antithrombin complexes also remained elevated during the study period. In the presence of hirudin, the initial activation of factors IX, X, and prothrombin was unchanged, however the further increment in prothrombin fragment F1 + 2 was markedly inhibited. These results demonstrate that factor XIa is a potential agonist of the intrinsic cascade in vivo, which activity is enhanced in the presence of thrombin.

  10. The M358R variant of α(1)-proteinase inhibitor inhibits coagulation factor VIIa.

    PubMed

    Sheffield, William P; Bhakta, Varsha

    2016-02-12

    The naturally occurring M358R mutation of the plasma serpin α1-proteinase inhibitor (API) changes both its cleavable reactive centre bond to Arg-Ser and the efficacy with which it inhibits different proteases, reducing the rate of inhibition of neutrophil elastase, and enhancing that of thrombin, factor XIa, and kallikrein, by several orders of magnitude. Although another plasma serpin with an Arg-Ser reactive centre, antithrombin (AT), has been shown to inhibit factor VIIa (FVIIa), no published data are available with respect to FVIIa inhibition by API M358R. Recombinant bacterially-expressed API M358R and plasma-derived AT were therefore compared using gel-based and kinetic assays of FVIIa integrity and activity. Under pseudo-first order conditions of excess serpin over protease, both AT and API M358R formed denaturation-resistant inhibitory complexes with FVIIa in reactions accelerated by TF; AT, but not API M358R, also required heparin for maximal activity. The second order rate constant for heparin-independent API M358R-mediated FVIIa inhibition was determined to be 7.8 ± 0.8 × 10(2) M(-1)sec(-1). We conclude that API M358R inhibits FVIIa by forming inhibitory complexes of the serpin type more rapidly than AT in the absence of heparin. The likely 20-fold excess of API M358R over AT in patient plasma during inflammation raises the possibility that it could contribute to the hemorrhagic tendencies manifested by rare individuals expressing this mutant serpin. PMID:26797521

  11. Activity of Tissue Factor in Microparticles Produced in vitro by Endothelial Cells, Monocytes, Granulocytes, and Platelets.

    PubMed

    Khaspekova, S G; Antonova, O A; Shustova, O N; Yakushkin, V V; Golubeva, N V; Titaeva, E V; Dobrovolsky, A B; Mazurov, A V

    2016-02-01

    Activity of tissue factor (TF) in membrane microparticles (MPs) produced in vitro by endothelial cells (ECs), monocytes, THP-1 monocytic cells, granulocytes, and platelets was investigated. ECs were isolated from human umbilical vein, and monocytes, granulocytes, and platelets - from the blood of healthy donors. ECs, monocytes, and THP-1 cells were activated by bacterial lipopolysaccharide, granulocytes - by lipopolysaccharide or phorbol myristate acetate, and platelets - by SFLLRN, thrombin receptor-activating peptide. MPs were sedimented from the culture medium or supernatant of activated cells at 20,000g for 30 min. Coagulation activity of MPs was analyzed in a modified recalcification assay by assessing their effects on coagulation of donor plasma depleted of endogenous MPs (by centrifuging at 20,000g for 90 min). MPs from all cell types accelerated plasma coagulation. Antibodies blocking TF activity prolonged coagulation lag-phase in the presence of MPs from ECs, monocytes, and THP-1 cells (by 2.7-, 2.0-, and 1.8-fold, respectively), but did not influence coagulation in the presence of MPs from granulocytes and platelets. In accordance with these data, TF activity measured by its ability to activate factor X was found in MPs from ECs, monocytes, and THP-1 cells, but not in MPs from granulocytes and platelets. The data obtained indicate that active TF is present in MPs produced in vitro by ECs, monocytes, and THP-1 cells, but not in MPs derived from granulocytes and platelets. PMID:27260391

  12. Optical factors determined by the T-matrix method in turbidity measurement of absolute coagulation rate constants.

    PubMed

    Xu, Shenghua; Liu, Jie; Sun, Zhiwei

    2006-12-01

    Turbidity measurement for the absolute coagulation rate constants of suspensions has been extensively adopted because of its simplicity and easy implementation. A key factor in deriving the rate constant from experimental data is how to theoretically evaluate the so-called optical factor involved in calculating the extinction cross section of doublets formed during aggregation. In a previous paper, we have shown that compared with other theoretical approaches, the T-matrix method provides a robust solution to this problem and is effective in extending the applicability range of the turbidity methodology, as well as increasing measurement accuracy. This paper will provide a more comprehensive discussion of the physical insight for using the T-matrix method in turbidity measurement and associated technical details. In particular, the importance of ensuring the correct value for the refractive indices for colloidal particles and the surrounding medium used in the calculation is addressed, because the indices generally vary with the wavelength of the incident light. The comparison of calculated results with experiments shows that the T-matrix method can correctly calculate optical factors even for large particles, whereas other existing theories cannot. In addition, the data of the optical factor calculated by the T-matrix method for a range of particle radii and incident light wavelengths are listed.

  13. Effects of calcium signaling on coagulation factor VIIa-induced proliferation and migration of the SW620 colon cancer cell line.

    PubMed

    Wu, Ying; Wang, Jing; Zhou, Hong; Yu, Xiaoyan; Hu, Lichao; Meng, Fanlu; Jiang, Shuanghong

    2014-12-01

    Tissue factor (TF)/VIIa/protease‑activated receptor 2 (PAR2) has been shown to trigger the ERK1/2 signaling pathway. This was shown to be closely associated with the proliferation and migration of SW620 colon cancer cells; however, the detailed mechanisms remain unclear. The aim of the present study was to elucidate the effects of calcium signaling on the proliferation and migration of SW620 cells induced by coagulation factor VIIa. The results demonstrated that VIIa and PAR2 agonist PAR2‑AP increased [Ca2+]i in SW620 cells. In addition, VIIa‑and PAR2‑AP‑induced ERK1/2 activation was inhibited by thapsigargin (TG)‑induced depletion of intracellular Ca2+ stores and EGTA‑mediated removal of extracellular Ca2+. It was also identified that VIIa and PAR2‑AP‑induced proliferation and migration of SW620 cells was modulated by EGTA and TG. Taken together, the present results indicate that VIIa triggers calcium signaling in SW620 cells, in a TF‑dependent manner, which is critical for VIIa‑induced ERK1/2 activation in SW620 cells. These results suggested that calcium signaling had a vital role in the proliferation and migration of SW620 cells.

  14. The effects of danaparoid, dalteparin and heparin on tissue factor-induced experimental disseminated intravascular coagulation and bleeding time in the rat.

    PubMed

    Miyake, Y; Yokota, K; Fujishima, Y; Sukamoto, T

    2001-07-01

    Danaparoid and heparin, on the basis of anti-activated factor X (anti-FXa) activity, were equipotent in accelerating the rate of interaction of FXa and antithrombin III. In rat tissue factor-induced disseminated intravascular coagulation (DIC) models, an intravenous administration of danaparoid inhibited the decrease in plasma fibrinogen and platelet counts and the increase in serum fibrinogen degradation products. Expressed on the basis of anti-FXa activity, these effects were comparable with those of dalteparin and heparin. In rat mesenteric small artery and vein, less bleeding was observed after intravenous administration of danaparoid than after dalteparin or heparin. Danaparoid did not affect adenosine diphosphate- or collagen-induced platelet aggregation, and showed weaker inhibitory effects on aggregation induced by thrombin, or collagen + thrombin, than did dalteparin or heparin. These findings suggest that danaparoid may be useful for the prevention of DIC and has less tendency to cause bleeding than dalteparin or heparin, probably as a result of its weaker ability to inhibit platelet aggregation. PMID:11505077

  15. In vitro secretion deficits are common among human coagulation factor XIII subunit B missense mutants: correlations with patient phenotypes and molecular models.

    PubMed

    Biswas, Arijit; Thomas, Anne; Bevans, Carville G; Ivaskevicius, Vytautas; Oldenburg, Johannes

    2013-11-01

    Coagulation factor XIII (FXIII) proenzyme circulates in plasma as a heterotetramer composed of two each of A and B subunits. Upon activation, the B subunits dissociate from the A subunit dimer, which gains transglutaminase activity to cross-link preformed fibrin clots increasing mechanical strength and resistance to degradation. The B subunits are thought to possess a carrier/protective function before FXIII activation. Mutations in either A or B subunits are associated with pathological patient phenotypes characterized by mild to severe bleeding. In vitro expression of FXIII B subunit (FXIIIB) missense variants in HEK293T cells revealed impaired secretion for all seven variants studied. To investigate the likely molecular environments of the missense residues, we created molecular models of individual FXIIIB Sushi domains using phylogenetically similar complement factor H Sushi domain structural templates. Assessment of the local molecular environments for the models suggested surface or buried positions for each mutant residue and possible pathological mechanisms. The in vitro expression system and in silico analytical methods and models we developed can be used to further investigate the molecular basis of FXIIIB mutation pathologies. PMID:23913518

  16. Activation of coagulation and fibrinolysis following OKT3 administration to renal transplant recipients: association with distinct mediators.

    PubMed

    Raasveld, M H; Hack, C E; ten Berge, I J

    1992-09-01

    Treatment with OKT3 induces cytokine release and activates the complement system. Since both phenomena may affect coagulation and fibrinolysis we studied these systems in 8 renal transplant recipients during OKT3 treatment. In 8 of 9 patients a similar pattern was observed: plasma thrombin-antithrombin-III-complex, tissue-type plasminogen-activator and plasmin-alpha 2-antiplasmin-complex levels were increased as compared to pretreatment levels (p less than 0.05) at 15 min after the first OKT3 dose and reached peak values at 1 h. No significant changes were observed upon subsequent OKT3 administrations or in a control group of 8 patients. In one patient upon the first OKT3 administration only complement activation, and no cytokine release was observed, whereas plasma thrombin-antithrombin-III-complex, tissue-type plasminogen-activator and plasmin-alpha 2-antiplasmin-complex levels increased only at 15 min. In conclusion, we demonstrate a biphasic activation of coagulation and fibrinolysis upon the first OKT3 dose; the initial phase seems to be associated with complement activation, the later phase with cytokine release.

  17. Evaluation of optical coherence tomography for the measurement of the effects of activators and anticoagulants on the blood coagulation in vitro.

    PubMed

    Xu, Xiangqun; Geng, Jinhai; Liu, Gangjun; Chen, Zhongping

    2013-08-01

    Optical properties of human blood during coagulation were studied using optical coherence tomography (OCT) and the parameter of clotting time derived from the 1/e light penetration depth (d(1/e)) versus time was developed in our previous work. In this study, in order to know if a new OCT test can characterize the blood-coagulation process under different treatments in vitro, the effects of two different activators (calcium ions and thrombin) and anticoagulants, i.e., acetylsalicylic acid (ASA, a well-known drug aspirin) and melagatran (a direct thrombin inhibitor), at various concentrations are evaluated. A swept-source OCT system with a 1300 nm center wavelength is used for detecting the blood-coagulation process in vitro under a static condition. A dynamic study of d1/e reveals a typical behavior due to coagulation induced by both calcium ions and thrombin, and the clotting time is concentration-dependent. Dose-dependent ASA and melagatran prolong the clotting times. ASA and melagatran have different effects on blood coagulation. As expected, melagatran is much more effective than ASA in anticoagulation by the OCT measurements. The OCT assay appears to be a simple method for the measurement of blood coagulation to assess the effects of activators and anticoagulants, which can be used for activator and anticoagulant screening.

  18. [Regulation of Membrane-Dependent Reactions of Blood Coagulation].

    PubMed

    Podoplelova, N A; Kotova, Y N; Lipets, E N; Ataullakhanov, F I; Panteleev, M A

    2015-01-01

    All major coagulation reactions do not occurs in blood plasma itself, these processes are actually two-dimensional reactions localized to thephospholipid membranes. Almost all blood cells, lipoproteins, and microparticles provide assembly of protein complexes. A central role among them are played by platelets and platelet-derived microparticles. On their membranes occurs the most important coagulation reactions such as activation of prothrombin by prothrombin complex, activation of factor X by complexes intrinsic and extrinsic tenase. This reactions are important for processes activation of the contact path coagulation, activation factor XI by thrombin, appearance of enzymatic activity of factor VIIa etc. This review is focused on the membrane-dependent reactions, here are discussed mechanisms and regulation these reactions and the possible prospects of the study.

  19. Recombinant epidermal growth factor-like domain-1 from coagulation factor VII functionalized iron oxide nanoparticles for targeted glioma magnetic resonance imaging

    PubMed Central

    Liu, Heng; Chen, Xiao; Xue, Wei; Chu, Chengchao; Liu, Yu; Tong, Haipeng; Du, Xuesong; Xie, Tian; Liu, Gang; Zhang, Weiguo

    2016-01-01

    The highly infiltrative and invasive nature of glioma cells often leads to blurred tumor margins, resulting in incomplete tumor resection and tumor recurrence. Accurate detection and precise delineation of glioma help in preoperative delineation, surgical planning and survival prediction. In this study, recombinant epidermal growth factor-like domain-1, derived from human coagulation factor VII, was conjugated to iron oxide nanoparticles (IONPs) for targeted glioma magnetic resonance (MR) imaging. The synthesized EGF1-EGFP-IONPs exhibited excellent targeting ability toward tissue factor (TF)-positive U87MG cells and human umbilical vein endothelial cells in vitro, and demonstrated persistent and efficient MR contrast enhancement up to 12 h for preclinical glioma models with high targeting specificity in vivo. They hold great potential for clinical translation and developing targeted theranostics against brain glioma. PMID:27785017

  20. Coagulating activity of the blood, vascular wall, and myocardium under hypodynamia conditions

    NASA Technical Reports Server (NTRS)

    Petrovskiy, B. V. (Editor); Chazov, E. I. (Editor); Andreyev, S. V. (Editor)

    1980-01-01

    In order to study the effects of hypodynamia on the coagulating properties of the blood, vascular wall, and myocardium, chinchilla rabbits were kept for varying periods in special cages which restricted their movements. At the end of the experiment, blood samples were taken and the animals were sacrificed. Preparations were made from the myocardium venae cavae, and layers of the aorta. Two resultant interrelated and mutually conditioned syndromes were discovered: thrombohemorrhagic in the blood and hemorrago-thrombotic in the tissues.

  1. [Coagulation disorders in the intensive care station].

    PubMed

    Hart, C; Spannagl, M

    2014-05-01

    Coagulation disorders are frequently encountered in the intensive care unit (ICU) and are challenging due to a variety of potential etiologies. Critically ill patients with coagulation abnormalities may present with an increased risk of bleeding, show coagulation activation resulting in thromboembolism, or have no specific symptoms. Hemostatic abnormalities observed in ICU patients range from isolated thrombocytopenia or prolonged global clotting tests to complex and life-threatening coagulation defects. Successful management of coagulation disorders requires prompt and accurate identification of the underlying cause. This review describes the most frequently occurring diagnoses found in intensive care patients with thrombocytopenia and coagulation test abnormalities and summarizes appropriate diagnostic interventions and current approaches to differential diagnosis.

  2. Interactions of PLGA nanoparticles with blood components: protein adsorption, coagulation, activation of the complement system and hemolysis studies

    NASA Astrophysics Data System (ADS)

    Fornaguera, Cristina; Calderó, Gabriela; Mitjans, Montserrat; Vinardell, Maria Pilar; Solans, Conxita; Vauthier, Christine

    2015-03-01

    The intravenous administration of poly(lactic-co-glycolic) acid (PLGA) nanoparticles has been widely reported as a promising alternative for delivery of drugs to specific cells. However, studies on their interaction with diverse blood components using different techniques are still lacking. Therefore, in the present work, the interaction of PLGA nanoparticles with blood components was described using different complementary techniques. The influence of different encapsulated compounds/functionalizing agents on these interactions was also reported. It is worth noting that all these techniques can be simply performed, without the need for highly sophisticated apparatus or skills. Moreover, their transference to industries and application of quality control could be easily performed. Serum albumin was adsorbed onto all types of tested nanoparticles. The saturation concentration was dependent on the nanoparticle size. In contrast, fibrinogen aggregation was dependent on nanoparticle surface charge. The complement activation was also influenced by the nanoparticle functionalization; the presence of a functionalizing agent increased complement activation, while the addition of an encapsulated compound only caused a slight increase. None of the nanoparticles influenced the coagulation cascade at low concentrations. However, at high concentrations, cationized nanoparticles did activate the coagulation cascade. Interactions of nanoparticles with erythrocytes did not reveal any hemolysis. Interactions of PLGA nanoparticles with blood proteins depended both on the nanoparticle properties and the protein studied. Independent of their loading/surface functionalization, PLGA nanoparticles did not influence the coagulation cascade and did not induce hemolysis of erythrocytes; they could be defined as safe concerning induction of embolization and cell lysis.The intravenous administration of poly(lactic-co-glycolic) acid (PLGA) nanoparticles has been widely reported as a promising

  3. Activated Factor X Induces Endothelial Cell Senescence Through IGFBP-5

    PubMed Central

    Sanada, Fumihiro; Taniyama, Yoshiaki; Muratsu, Jun; Otsu, Rei; Iwabayashi, Masaaki; Carracedo, Miguel; Rakugi, Hiromi; Morishita, Ryuichi

    2016-01-01

    Uncontrolled coagulation contributes to the pathophysiology of several chronic inflammatory diseases. In these conditions, senescent cells are often observed and is involved in the generation of inflammation. The coincidence of hyper-coagulation, cell senescence, and inflammation suggests the existence of a common underlying mechanism. Recent evidence indicates that activated coagulation factor X (FXa) plays a role in the processes beyond blood coagulation. This non-hematologic function entails the mediation of inflammation and tissue remodeling. We therefore tested the hypothesis that FXa induces cell senescence resulting in tissue inflammation and impaired tissue regeneration. Human umbilical vein endothelial cells were stimulated with FXa for 14 days. The proliferation of cells treated with FXa was significantly smaller, and the fraction of senescence-associated β-galactosidase-positive cells was increased as compared to the control group. RT-qPCR array revealed that FXa increased the expression of IGFBP-5, EGR-1, p53, and p16INK4a. Inhibition of FXa by a direct FXa inhibitor, rivaroxaban, or IGFBP-5 by siRNA decreased FXa-induced cell senescence, restoring cell proliferation. Moreover, in an ischemic hind limb mouse model, FXa inhibited neovascularization by endothelial progenitor cell. However, rivaroxaban significantly restored FXa-induced impaired angiogenesis. In summary, FXa induced endothelial cell senescence through IGFBP-5, resulting in impaired angiogenesis. PMID:27752126

  4. A comparative study of coagulation, granular- and powdered-activated carbon for the removal of perfluorooctane sulfonate and perfluorooctanoate in drinking water treatment.

    PubMed

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah

    2015-01-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are persistent organic pollutants in the environment and their occurrence causes toxicological effects on humans. We examined different conventional coagulant treatments such as alum, ferric chloride and polyaluminium chloride in removing these compounds. These were then compared with a natural coagulant (Moringa oleifera). We also investigated the powdered-activated carbon (PAC) and granular-activated carbon (GAC) for removing these compounds. At an initial dose of 5 mg/L, polyaluminium chloride led to a higher reduction of PFOS/PFOA compared with alum which in turn was higher than ferric. The removal efficiency increased with the increase in coagulant dose and decrease in pH. M. oleifera was very effective in reducing PFOS and PFOA than conventional coagulants, with a reduction efficiencies of 65% and 72%, respectively, at a dose of 30 mg/L. Both PAC and GAC were very effective in reducing these compounds than coagulations. PAC led to a higher reduction in PFOS and PFOA than GAC due to its greater surface area and shorter internal diffusion distances. The addition of PAC (10 min contact time) with coagulation (at 5 mg/L dosage) significantly increased the removal efficiency, and the maximum removal efficiency was for M. oleifera with 98% and 94% for PFOS and PFOA, respectively. The reduction efficiency of PFOS/PFOA was reduced with the increase in dissolved organic concentration due to the adsorption competition between organic molecules and PFOS/PFOA. PMID:25860623

  5. A comparative study of coagulation, granular- and powdered-activated carbon for the removal of perfluorooctane sulfonate and perfluorooctanoate in drinking water treatment.

    PubMed

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah

    2015-01-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are persistent organic pollutants in the environment and their occurrence causes toxicological effects on humans. We examined different conventional coagulant treatments such as alum, ferric chloride and polyaluminium chloride in removing these compounds. These were then compared with a natural coagulant (Moringa oleifera). We also investigated the powdered-activated carbon (PAC) and granular-activated carbon (GAC) for removing these compounds. At an initial dose of 5 mg/L, polyaluminium chloride led to a higher reduction of PFOS/PFOA compared with alum which in turn was higher than ferric. The removal efficiency increased with the increase in coagulant dose and decrease in pH. M. oleifera was very effective in reducing PFOS and PFOA than conventional coagulants, with a reduction efficiencies of 65% and 72%, respectively, at a dose of 30 mg/L. Both PAC and GAC were very effective in reducing these compounds than coagulations. PAC led to a higher reduction in PFOS and PFOA than GAC due to its greater surface area and shorter internal diffusion distances. The addition of PAC (10 min contact time) with coagulation (at 5 mg/L dosage) significantly increased the removal efficiency, and the maximum removal efficiency was for M. oleifera with 98% and 94% for PFOS and PFOA, respectively. The reduction efficiency of PFOS/PFOA was reduced with the increase in dissolved organic concentration due to the adsorption competition between organic molecules and PFOS/PFOA.

  6. Laboratory testing in disseminated intravascular coagulation.

    PubMed

    Favaloro, Emmanuel J

    2010-06-01

    The diagnosis of disseminated intravascular coagulation (DIC) relies on clinical signs and symptoms, identification of the underlying disease, the results of laboratory testing, and differentiation from other pathologies. The clinical features mainly depend on the underlying cause of the DIC. The laboratory diagnosis of DIC uses a combination of tests because no single test result alone can firmly establish or rule out the diagnosis. Global tests of hemostasis may initially provide evidence of coagulation activation and later in the process provide evidence of consumption of coagulation factors, but their individual diagnostic efficiency is limited. Fibrinolytic markers, in particular D-dimer, are reflective of activation of both coagulation and fibrinolysis, so that a normal finding can be useful for ruling-out DIC. Decreased levels of the natural anticoagulants (in particular, antithrombin and protein C) are frequently observed in patients with DIC, but their measurement is not normally incorporated into standard diagnostic algorithms. New tests are being explored for utility in DIC, and some additional tests may be useful on a case-by-case basis, depending on the proposed cause of the DIC or their local availability. For example, clot waveform analysis is useful but currently limited to a single instrument. Also, procalcitonin is an inflammatory biomarker that may be useful within the context of septic DIC, and activated factor X clotting time is an emerging test of procoagulant phospholipids that also seems to hold promise in DIC.

  7. Establishment of reference intervals for von Willebrand factor antigen and eight coagulation factors in a Korean population following the Clinical and Laboratory Standards Institute guidelines.

    PubMed

    Jang, Ja-Hyun; Seo, Ja-Young; Bang, Sung-Hwan; Park, In-Ae; Kim, Hee-Jin; Kim, Sun-Hee

    2010-04-01

    Establishment of reference intervals for coagulation molecules is important but is costly and sometimes not feasible. Since reference intervals from manufacturers or the literature are mostly out of date or involved Western populations, the authors determined reference intervals for VWF: Ag and eight factors in a Korean population. VWF: Ag, factor VIII (FVIII), FII, FV, FVII, FIX, FX, FXI, and FXII were determined in Korean individuals visiting for routine checkup following the CLSI (Clinical and Laboratory Standards Institute) guidelines. Reagents by Diagnostica Stago were used on the STA Compact Analyzer (Diagnostica Stago). Exclusion criteria were medical history or laboratory findings that could affect the factor levels. Influence of demographic factors was analyzed. Mean +/- 2 x SD or central 95 percentile was used, as appropriate. We obtained data from 266 adults for VWF: Ag, 371 adults for FVIII, and minimum 136 adults for the rest. Reference interval for VWF was 51-176% (52-155% in blood group O and 71-186% for non-O). Reference interval for FVIII was 64-197% (55-150% in O and 77-205% in non-O). Reference interval for FII was 77-121%, FV 81-160%, FVII 68-149%, FIX 67-154%, FX 69-126%, FXI 59-138%, and FXII 48-177%. The medians of VWF: Ag, FVIII, and FIX were significantly higher in the elderly group (> or =60 years). We established local reference intervals for VWF: Ag and eight coagulation factors in a Korean population according to the CLSI guidelines. Significantly, different reference intervals were obtained in blood group O vs. non-O for VWF: Ag and FVIII. The reference intervals obtained in this study could be adopted in other clinical laboratories after appropriate validation.

  8. Heparanase procoagulant activity, factor Xa, and plasminogen activator inhibitor 1 are increased in shift work female nurses.

    PubMed

    Nadir, Yona; Saharov, Gleb; Hoffman, Ron; Keren-Politansky, Anat; Tzoran, Inna; Brenner, Benjamin; Shochat, Tamar

    2015-07-01

    Epidemiologic studies indicate on an increased risk of cardiovascular disease and cancer in shift workers, although the underlying mechanism is obscure. Heparanase directly enhances tissue factor (TF) activity leading to increased factor Xa production and subsequent activation of the coagulation system. In the present study, a comparison of coagulation markers among healthy shift working (SW) vs. healthy daytime working (DW) female nurses was performed. Thirty SW and 30 DW female nurses were enrolled. For each of the 60 participants, blood was drawn between 7:00 and 8:00 a.m. and at least 8 h after the last work shift. Plasma was studied for coagulation marker that included TF/heparanase procoagulant activity, TF activity, heparanase procoagulant activity, heparanase level, factor Xa level, plasminogen activator inhibitor 1 (PAI-1), plasminogen, α2-antiplasmin, fibrinogen, global protein C, von Willebrand factor, and D-dimer by chromogenic assays and enzyme-linked immunosorbent assays (ELISAs). Sleep quality was assessed by self-report according to the Pittsburgh Sleep Quality Index. The heparanase procoagulant activity increased by 2-fold and the TF/heparanase procoagulant activity increased by 1.5-fold in SW nurses compared to DW nurses (P < 0.05). Factor Xa levels and PAI-1 levels were significantly higher among SW nurses compared to the DW group (22 vs. 18 ng/ml, P < 0.05, and 32 vs. 22 ng/ml, P < 0.005, respectively). No significant differences were found in the other tested coagulation markers between the study groups. Heparanase procoagulant activity, factor Xa level, and PAI-1 level were significantly higher in SW nurses compared to the DW group. These alterations of blood coagulation activation may potentially contribute to cardiovascular and cancer morbidity.

  9. Endovascular treatment of chronic cerebro spinal venous insufficiency in patients with multiple sclerosis modifies circulating markers of endothelial dysfunction and coagulation activation: a prospective study.

    PubMed

    Napolitano, Mariasanta; Bruno, Aldo; Mastrangelo, Diego; De Vizia, Marcella; Bernardo, Benedetto; Rosa, Buonagura; De Lucia, Domenico

    2014-10-01

    We performed a monocentric observational prospective study to evaluate coagulation activation and endothelial dysfunction parameters in patients with multiple sclerosis undergoing endovascular treatment for cerebro-spinal-venous insufficiency. Between February 2011 and July 2012, 144 endovascular procedures in 110 patients with multiple sclerosis and chronical cerebro-spinal venous insufficiency were performed and they were prospectively analyzed. Each patient was included in the study according to previously published criteria, assessed by the investigators before enrollment. Endothelial dysfunction and coagulation activation parameters were determined before the procedure and during follow-up at 1, 3, 6, 9, 12, 15 and 18 months after treatment, respectively. After the endovascular procedure, patients were treated with standard therapies, with the addition of mesoglycan. Fifty-five percent of patients experienced a favorable outcome of multiple sclerosis within 1 month after treatment, 25% regressed in the following 3 months, 24.9% did not experience any benefit. In only 0.1% patients, acute recurrence was observed and it was treated with high-dose immunosuppressive therapy. No major complications were observed. Coagulation activation and endothelial dysfunction parameters were shown to be reduced at 1 month and stable up to 12-month follow-up, and they were furthermore associated with a good clinical outcome. Endovascular procedures performed by a qualified staff are well tolerated; they can be associated with other currently adopted treatments. Correlations between inflammation, coagulation activation and neurodegenerative disorders are here supported by the observed variations in plasma levels of markers of coagulation activation and endothelial dysfunction.

  10. Losac, the First Hemolin that Exhibits Procogulant Activity through Selective Factor X Proteolytic Activation*

    PubMed Central

    Alvarez-Flores, Miryam Paola; Furlin, Daniel; Ramos, Oscar H. P.; Balan, Andrea; Konno, Katsuhiro; Chudzinski-Tavassi, Ana Marisa

    2011-01-01

    Envenoming by the contact of human skin with Lonomia obliqua caterpillars promotes a hemorrhagic syndrome characterized by a consumptive coagulopathy. Losac (Lonomia obliqua Stuart factor activator) is a component of the bristle of L. obliqua that is probably partially responsible for the observed syndrome because it activates factor X and is recognized by an effective antilonomic serum. Here we unveil the proteolytic activity of Losac and demonstrate the feasibility of its recombinant production. On the other hand, Losac has no homology to known proteases, but it can be inhibited by PMSF, a serine protease inhibitor. Instead, it shows closer homology to members of the hemolin family of proteins, a group of cell adhesion molecules. The recombinant protein (rLosac) shortened the coagulation time of normal and deficient plasmas, whereas it was ineffective in factor X-deficient plasma unless reconstituted with this protein. rLosac was able to activate factor X in a dose- and time-dependent manner but not γ-carboxyglutamic acid domainless factor X. Moreover, phospholipids and calcium ions increased rLosac activity. Also, rLosac had no effect on fibrin or fibrinogen, indicating its specificity for blood coagulation activation. Linear double reciprocal plots indicate that rLosac follows a Michaelis-Menten kinetics. Cleavage of factor X by rLosac resulted in fragments that are compatible with those generated by RVV-X (a well known factor X activator). Together, our results validate Losac as the first protein from the hemolin family exhibiting procoagulant activity through selective proteolysis on coagulation factor X. PMID:21177860

  11. Effects on coagulation and fibrinolysis induced by influenza in mice with a reduced capacity to generate activated protein C and a deficiency in plasminogen activator inhibitor type 1.

    PubMed

    Keller, Tymen T; van der Sluijs, Koen F; de Kruif, Martijn D; Gerdes, Victor E A; Meijers, Joost C M; Florquin, Sandrine; van der Poll, Tom; van Gorp, Eric C M; Brandjes, Dees P M; Büller, Harry R; Levi, Marcel

    2006-11-24

    Influenza infections increase the risk of diseases associated with a prothrombotic state, such as venous thrombosis and atherothrombotic diseases. However, it is unclear whether influenza leads to a prothrombotic state in vivo. To determine whether influenza activates coagulation, we measured coagulation and fibrinolysis in influenza-infected C57BL/6 mice. We found that influenza increased thrombin generation, fibrin deposition, and fibrinolysis. In addition, we used various anti- and prothrombotic models to study pathways involved in the influenza-induced prothrombotic state. A reduced capacity to generate activated protein C in TM(pro/pro) mice increased thrombin generation and fibrinolysis, whereas treatment with heparin decreased thrombin generation in influenza-infected C57Bl/6 mice. Thrombin generation was not changed in hyperfibrinolytic mice, deficient in plasminogen activator inhibitor type-1 (PAI-1(-/-)); however, increased fibrin degradation was seen. Treatment with tranexamic acid reduced fibrinolysis, but thrombin generation was unchanged. We conclude that influenza infection generates thrombin, increased by reduced levels of protein C and decreased by heparin. The fibrinolytic system appears not to be important for thrombin generation. These findings suggest that influenza leads to a prothrombotic state by coagulation activation. Heparin treatment reduces the influenza induced prothrombotic state. PMID:17068293

  12. Heparanase—A Link between Coagulation, Angiogenesis, and Cancer

    PubMed Central

    Nadir, Yona; Brenner, Benjamin

    2012-01-01

    Heparanase that was cloned from and is abundant in the placenta is implicated in cell invasion, tumor metastasis, and angiogenesis. Recently we have demonstrated that heparanase may also affect the hemostatic system in a non-enzymatic manner. Heparanase was shown to up-regulate tissue factor (TF) expression and interact with tissue factor pathway inhibitor (TFPI) on the cell surface, leading to dissociation of TFPI from the cell membrane of endothelial and tumor cells, resulting in increased cell surface coagulation activity. More recently, we have shown that heparanase directly enhances TF activity, resulting in increased factor Xa production and activation of the coagulation system. Data indicate increased levels and possible involvement of heparanase in vascular complications in pregnancy. Taking into account the prometastatic and proangiogenic functions of heparanase, overexpression in human malignancies, and abundance in platelets and placenta, its involvement in the coagulation machinery is an intriguing novel arena for further research. PMID:23908827

  13. [Modern coagulation management reduces the transfusion rate of allogenic blood products].

    PubMed

    Weber, Christian Friedrich

    2012-06-01

    Evaluating the patient's individual bleeding history with a standardized questionnaire, using "point-of-care" - methods for coagulation analyses and providing autologous transfusion techniques are preconditions of a modern coagulation management. Therapy of coagulopathic patients should be based on structured hemotherapy algorithms. Surgical haemostasis and the maintenance of the basic conditions for haemostasis are elementary requirements for an effective therapy. In cases of diffuse bleeding, early antifibrinolytic therapy should be considered. Coagulation factor deficiencies should be corrected "goal-directed" using coagulation factor concentrates. Transfusion of fresh frozen plasma is only indicated in the clinical setting of massive transfusions. DDAVP and transfusion of platelet concentrates are options to optimize primary haemostasis. In cases of on-going bleeding, recombinant activated coagulation factor VII represents an option for "ultima-ratio" therapy.

  14. Systems biology of coagulation initiation: kinetics of thrombin generation in resting and activated human blood.

    PubMed

    Chatterjee, Manash S; Denney, William S; Jing, Huiyan; Diamond, Scott L

    2010-09-30

    Blood function defines bleeding and clotting risks and dictates approaches for clinical intervention. Independent of adding exogenous tissue factor (TF), human blood treated in vitro with corn trypsin inhibitor (CTI, to block Factor XIIa) will generate thrombin after an initiation time (T(i)) of 1 to 2 hours (depending on donor), while activation of platelets with the GPVI-activator convulxin reduces T(i) to ∼20 minutes. Since current kinetic models fail to generate thrombin in the absence of added TF, we implemented a Platelet-Plasma ODE model accounting for: the Hockin-Mann protease reaction network, thrombin-dependent display of platelet phosphatidylserine, VIIa function on activated platelets, XIIa and XIa generation and function, competitive thrombin substrates (fluorogenic detector and fibrinogen), and thrombin consumption during fibrin polymerization. The kinetic model consisting of 76 ordinary differential equations (76 species, 57 reactions, 105 kinetic parameters) predicted the clotting of resting and convulxin-activated human blood as well as predicted T(i) of human blood under 50 different initial conditions that titrated increasing levels of TF, Xa, Va, XIa, IXa, and VIIa. Experiments with combined anti-XI and anti-XII antibodies prevented thrombin production, demonstrating that a leak of XIIa past saturating amounts of CTI (and not "blood-borne TF" alone) was responsible for in vitro initiation without added TF. Clotting was not blocked by antibodies used individually against TF, VII/VIIa, P-selectin, GPIb, protein disulfide isomerase, cathepsin G, nor blocked by the ribosome inhibitor puromycin, the Clk1 kinase inhibitor Tg003, or inhibited VIIa (VIIai). This is the first model to predict the observed behavior of CTI-treated human blood, either resting or stimulated with platelet activators. CTI-treated human blood will clot in vitro due to the combined activity of XIIa and XIa, a process enhanced by platelet activators and which proceeds in the

  15. Low cost industrial production of coagulation factor IX bioencapsulated in lettuce cells for oral tolerance induction in hemophilia B.

    PubMed

    Su, Jin; Zhu, Liqing; Sherman, Alexandra; Wang, Xiaomei; Lin, Shina; Kamesh, Aditya; Norikane, Joey H; Streatfield, Stephen J; Herzog, Roland W; Daniell, Henry

    2015-11-01

    Antibodies (inhibitors) developed by hemophilia B patients against coagulation factor IX (FIX) are challenging to eliminate because of anaphylaxis or nephrotic syndrome after continued infusion. To address this urgent unmet medical need, FIX fused with a transmucosal carrier (CTB) was produced in a commercial lettuce (Simpson Elite) cultivar using species specific chloroplast vectors regulated by endogenous psbA sequences. CTB-FIX (∼1 mg/g) in lyophilized cells was stable with proper folding, disulfide bonds and pentamer assembly when stored ∼2 years at ambient temperature. Feeding lettuce cells to hemophilia B mice delivered CTB-FIX efficiently to the gut immune system, induced LAP(+) regulatory T cells and suppressed inhibitor/IgE formation and anaphylaxis against FIX. Lyophilized cells enabled 10-fold dose escalation studies and successful induction of oral tolerance was observed in all tested doses. Induction of tolerance in such a broad dose range should enable oral delivery to patients of different age groups and diverse genetic background. Using Fraunhofer cGMP hydroponic system, ∼870 kg fresh or 43.5 kg dry weight can be harvested per 1000 ft(2) per annum yielding 24,000-36,000 doses for 20-kg pediatric patients, enabling first commercial development of an oral drug, addressing prohibitively expensive purification, cold storage/transportation and short shelf life of current protein drugs.

  16. Targeting of the Human Coagulation Factor IX Gene at rDNA Locus of Human Embryonic Stem Cells

    PubMed Central

    Yang, Junlin; Xue, Jinfeng; Hu, Youjin; Feng, Mai; Niu, Wenbin; Yang, Qiurui; Lei, Ming; Xia, Jiahui; Wu, Lingqian; Liang, Desheng

    2012-01-01

    Background Genetic modification is a prerequisite to realizing the full potential of human embryonic stem cells (hESCs) in human genetic research and regenerative medicine. Unfortunately, the random integration methods that have been the primary techniques used keep creating problems, and the primary alternative method, gene targeting, has been effective in manipulating mouse embryonic stem cells (mESCs) but poorly in hESCs. Methodology/Principal Findings Human ribosomal DNA (rDNA) repeats are clustered on the short arm of acrocentric chromosomes. They consist of approximately 400 copies of the 45S pre-RNA (rRNA) gene per haploid. In the present study, we targeted a physiological gene, human coagulation factor IX, into the rDNA locus of hESCs via homologous recombination. The relative gene targeting efficiency (>50%) and homologous recombination frequency (>10−5) were more than 10-fold higher than those of loci targeted in previous reports. Meanwhile, the targeted clones retained both a normal karyotype and the main characteristics of ES cells. The transgene was found to be stably and ectopically expressed in targeted hESCs. Conclusion/Significance This is the first targeting of a human physiological gene at a defined locus on the hESC genome. Our findings indicate that the rDNA locus may serve as an ideal harbor for transgenes in hESCs. PMID:22615895

  17. Low cost industrial production of coagulation factor IX bioencapsulated in lettuce cells for oral tolerance induction in hemophilia B.

    PubMed

    Su, Jin; Zhu, Liqing; Sherman, Alexandra; Wang, Xiaomei; Lin, Shina; Kamesh, Aditya; Norikane, Joey H; Streatfield, Stephen J; Herzog, Roland W; Daniell, Henry

    2015-11-01

    Antibodies (inhibitors) developed by hemophilia B patients against coagulation factor IX (FIX) are challenging to eliminate because of anaphylaxis or nephrotic syndrome after continued infusion. To address this urgent unmet medical need, FIX fused with a transmucosal carrier (CTB) was produced in a commercial lettuce (Simpson Elite) cultivar using species specific chloroplast vectors regulated by endogenous psbA sequences. CTB-FIX (∼1 mg/g) in lyophilized cells was stable with proper folding, disulfide bonds and pentamer assembly when stored ∼2 years at ambient temperature. Feeding lettuce cells to hemophilia B mice delivered CTB-FIX efficiently to the gut immune system, induced LAP(+) regulatory T cells and suppressed inhibitor/IgE formation and anaphylaxis against FIX. Lyophilized cells enabled 10-fold dose escalation studies and successful induction of oral tolerance was observed in all tested doses. Induction of tolerance in such a broad dose range should enable oral delivery to patients of different age groups and diverse genetic background. Using Fraunhofer cGMP hydroponic system, ∼870 kg fresh or 43.5 kg dry weight can be harvested per 1000 ft(2) per annum yielding 24,000-36,000 doses for 20-kg pediatric patients, enabling first commercial development of an oral drug, addressing prohibitively expensive purification, cold storage/transportation and short shelf life of current protein drugs. PMID:26302233

  18. [Proteins influencing the blood coagulation].

    PubMed

    Alberio, Lorenzo

    2011-11-01

    This review describes some natural proteins, which can be employed, either as factor concentrates derived from human plasma or as recombinant drug, to modulate the coagulation system. I will address some biochemical characteristics and the physiological role of von Willebrand factor, the coagulation factors of the extrinsic and intrinsic pathways, and the physiological anticoagulant protein C. In addition, I will detail the pharmacological compounds, which are available for influencing or substituting the coagulation proteins: desmopressin (DDAVP), single coagulation factor concentrates, prothrombin complex concentrates, and protein C concentrate. In particular, I will address some treatment topics of general medical interest, such as the treatment of massive bleeding, the correction of the coagulopathy induced by vitamin K-antagonists in patients with cerebral haemorrhage, and of the coagulopathy of meningococcemia. Finally, I will describe some properties and practical clinical applications of the recombinant anticoagulans lepirudin and bivalirudin, which are derived from hirudin, the natural anticoagulant of the medical leech.

  19. In vitro/in vivo effect of Citrus limon (L. Burm. f.) juice on blood parameters, coagulation and anticoagulation factors in rabbits.

    PubMed

    Riaz, Azra; Khan, Rafeeq Alam; Mirza, Talat; Mustansir, Tazeen; Ahmed, Mansoor

    2014-07-01

    The genus Citrus of the family Rutaceae includes many species e.g. Citrus indica, Citrus aurantifolia and Citrus limon, among which Citrus limon L. Burm. f. has been reported to have highest antimicrobial activity. It is used as antidote against certain venom, due to its platelet inhibitory effect and also reported to have hypocholesterolemic effect. However its anticoagulant and thrombolytic effect were not been investigated, hence a prospective in-vitro/in-vivo study was designed to determine the effect of Citrus limon on blood parameters, coagulation and anticoagulation factors. In-vitro tests revealed highly significant increase in thrombin time and activated partial thromboplastin time by Citrus limon, whereas fibrinogen concentration was significantly reduced in comparison to control, however prothrombin time was not affected significantly. In-vivo testing of Citrus limon was done at three different doses i.e. 0.2ml/kg, 0.4ml/kg and 0.6ml/kg in healthy rabbits. Significant changes were observed in hematological parameters such as erythrocytes, hemoglobin and mean corpuscular hemoglobin concentration. Bleeding time and thrombin time was significantly prolonged and there was increase in protein C and thrombin antithrombin complex levels. These results may be due to inactivation of thrombin because it significantly decreases fibrinogen concentration and inhibit platelet aggregation. Citrus limon showed maximal anticoagulant effect at 0.4ml/kg, which suggest that Citrus limon possesses an anti-thrombin component and could prevent thrombosis playing a cardio protective role.

  20. Factor V activation and inactivation by venom proteases.

    PubMed

    Rosing, J; Govers-Riemslag, J W; Yukelson, L; Tans, G

    2001-01-01

    Blood coagulation factor V is a single-chain glycoprotein with M(r) = 330,000 which plays an important role in the procoagulant and anticoagulant pathways. Thrombin activates factor V into factor Va, a two-chain molecule which is composed of a heavy (M(r) = 105,000) and a light chain (M(r) = 71,000/74,000). Factor Va accelerates factor Xa-catalysed prothrombin activation more than 1,000-fold and under physiological conditions the cofactor activity of factor Va in prothrombin activation is down-regulated by activated protein C. Factor V can also be activated by a wide variety of snake venoms (e.g. from Vipera species, Naja naja oxiana, Bothrops atrox) and by proteases present in the bristles of a South American caterpillar (Lonomia achelous). Some venoms, notably of Vipera lebetina turanica and Lonomia achelous, contain proteases that are able to inactivate factor V or factor Va. Venom factor V activators are excellent tools in studying the structure-function relationship of factor V(a) and they are also used in diagnostic tests for quantification of plasma factor V levels and for the screening of defects in the protein C pathway. In this review, the structural and functional properties of animal venom factor V activators and inactivators is described. PMID:11910191

  1. Chromogenic assay of human coagulation factor VIII: statistical comparison of 2 working dilution procedures.

    PubMed

    Alonso, C; Gonzalez, A; Frutos, G

    2005-08-01

    The effect of 2 different practices for preparation of working dilutions in the chromogenic substrate method for potency assay of factor VIII was evaluated. In this study the potency of several concentrate materials was shown to be statistically equivalent, whether performing the assay with independent or serial working dilutions.

  2. Coagulation disorders in septic shock.

    PubMed

    Thijs, L G; de Boer, J P; de Groot, M C; Hack, C E

    1993-01-01

    Abnormalities in coagulation and fibrinolysis are frequently observed in septic shock. The most pronounced clinical manifestation is disseminated intravascular coagulation. Recent studies in human volunteers and animal models have clarified the early dynamics and route of activation of both coagulation and fibrinolytic pathways. In healthy subjects subjected to a low dose of either endotoxin or TNF an imbalance in the procoagulant and the fibrinolytic mechanisms is apparent, resulting in a procoagulant state. Also in patients with septic shock a dynamic process of coagulation and fibrinolysis is ongoing with evidence of impaired fibrinolysis. These abnormalities have prognostic significance; the extent of disturbances of coagulation and fibrinolysis is related to the development of multiple organ failure and death.

  3. Confirmation of warfarin resistance of naturally occurring VKORC1 variants by coexpression with coagulation factor IX and in silico protein modelling

    PubMed Central

    2014-01-01

    Background VKORC1 has been identified some years ago as the gene encoding vitamin K epoxide reductase (VKOR) – the target protein for coumarin derivates like warfarin or phenprocoumon. Resistance against warfarin and other coumarin-type anticoagulants has been frequently reported over the last 50 years in rodents due to problems in pest control as well as in thrombophilic patients showing variable response to anticoagulant treatment. Many different mutations have already been detected in the VKORC1 gene leading to warfarin resistance in rats, mice and in humans. Since the conventional in vitro dithiothreitol (DTT)-driven VKOR enzymatic assay often did not reflect the in vivo status concerning warfarin resistance, we recently developed a cell culture-based method for coexpression of VKORC1 with coagulation factor IX and subsequent measurement of secreted FIX in order to test warfarin inhibition in wild-type and mutated VKORC1. Results In the present study, we coexpressed wild-type factor IX with 12 different VKORC1 variants which were previously detected in warfarin resistant rats and mice. The results show that amino acid substitutions in VKORC1 maintain VKOR activity and are associated with warfarin resistance. When we projected in silico the amino acid substitutions onto the published three-dimensional model of the bacterial VKOR enzyme, the predicted effects matched well the catalytic mechanism proposed for the bacterial enzyme. Conclusions The established cell-based system for coexpression of VKORC1 and factor IX uses FIX activity as an indicator of carboxylation efficiency. This system reflects the warfarin resistance status of VKORC1 mutations from anticoagulant resistant rodents more closely than the traditional DTT-driven enzyme assay. All mutations studied were also predicted to be involved in the reaction mechanism. PMID:24491178

  4. Bacteria under stress by complement and coagulation.

    PubMed

    Berends, Evelien T M; Kuipers, Annemarie; Ravesloot, Marietta M; Urbanus, Rolf T; Rooijakkers, Suzan H M

    2014-11-01

    The complement and coagulation systems are two related protein cascades in plasma that serve important roles in host defense and hemostasis, respectively. Complement activation on bacteria supports cellular immune responses and leads to direct killing of bacteria via assembly of the Membrane Attack Complex (MAC). Recent studies have indicated that the coagulation system also contributes to mammalian innate defense since coagulation factors can entrap bacteria inside clots and generate small antibacterial peptides. In this review, we will provide detailed insights into the molecular interplay between these protein cascades and bacteria. We take a closer look at how these pathways are activated on bacterial surfaces and discuss the mechanisms by which they directly cause stress to bacterial cells. The poorly understood mechanism for bacterial killing by the MAC will be reevaluated in light of recent structural insights. Finally, we highlight the strategies used by pathogenic bacteria to modulate these protein networks. Overall, these insights will contribute to a better understanding of the host defense roles of complement and coagulation against bacteria.

  5. Structure-based design of inhibitors of coagulation factor XIa with novel P1 moieties.

    PubMed

    Pinto, Donald J P; Smallheer, Joanne M; Corte, James R; Austin, Erin J D; Wang, Cailan; Fang, Tianan; Smith, Leon M; Rossi, Karen A; Rendina, Alan R; Bozarth, Jeffrey M; Zhang, Ge; Wei, Anzhi; Ramamurthy, Vidhyashankar; Sheriff, Steven; Myers, Joseph E; Morin, Paul E; Luettgen, Joseph M; Seiffert, Dietmar A; Quan, Mimi L; Wexler, Ruth R

    2015-04-01

    Compound 2 was previously identified as a potent inhibitor of factor XIa lacking oral bioavailability. A structure-based approach was used to design analogs of 2 with novel P1 moieties with good selectivity profiles and oral bioavailability. Further optimization of the P1 group led to the identification of a 4-chlorophenyltetrazole P1 analog, which when combined with further modifications to the linker and P2' group provided compound 32 with FXIa Ki=6.7 nM and modest oral exposure in dogs.

  6. Kinetics of Factor X activation by the membrane-bound complex of Factor IXa and Factor VIIIa.

    PubMed

    Panteleev, Mikhail A; Saenko, Evgueni L; Ananyeva, Natalya M; Ataullakhanov, Fazoil I

    2004-08-01

    Intrinsic tenase consists of activated Factors IX (IXa) and VIII (VIIIa) assembled on a negatively charged phospholipid surface. In vivo, this surface is mainly provided by activated platelets. In vitro, phosphatidylcholine/phosphatidylserine vesicles are often used to mimic natural pro-coagulant membranes. In the present study, we developed a quantitative mathematical model of Factor X activation by intrinsic tenase. We considered two situations, when complex assembly occurs on either the membrane of phospholipid vesicles or the surface of activated platelets. On the basis of existing experimental evidence, the following mechanism for the complex assembly on activated platelets was suggested: (i) Factors IXa, VIIIa and X bind to their specific platelet receptors; (ii) bound factors form complexes on the membrane: platelet-bound Factor VIIIa provides a high-affinity site for Factor X and platelet-bound Factor IXa provides a high-affinity site for Factor VIIIa; (iii) the enzyme-cofactor-substrate complex is assembled. This mechanism allowed the explanation of co-operative effects in the binding of Factors IXa, VIIIa and X to platelets. The model was reduced to obtain a single equation for the Factor X activation rate as a function of concentrations of Factors IXa, VIIIa, X and phospholipids (or platelets). The equation had a Michaelis-Menten form, where apparent V(max) and K(m) were functions of the factors' concentrations and the internal kinetic constants of the system. The equation obtained can be used in both experimental studies of intrinsic tenase and mathematical modelling of the coagulation cascade. The approach of the present study can be applied to research of other membrane-dependent enzymic reactions.

  7. Endoscopic hemostasis by injection therapy and electro-hydro-coagulation in high-risk patients with active gastroduodenal bleeding ulcer.

    PubMed

    Boix, J; Planas, R; Humbert, P; Fabrega, C; Villagrasa, M

    1987-11-01

    For the purpose of arresting hemorrhage from bleeding gastric or duodenal ulcers we developed, in 28 high-risk patients, a new method of endoscopic local injection of epinephrine (1:10,000) followed by electro-hydro monopolar coagulation and injection of Polidocanol (1%). Nine patients had signs of shock at the time of admission. The average blood requirements were 3.9 units in the first 24 hours. All patients had important factors militating against surgery, namely age and serious primary disease. In 26 out of 28 patients (92.8%) hemostasis was accomplished during endoscopy. Three patients (10.7%) rebled within the first 36 hours, requiring emergency surgery. Thus definitive hemostasis was achieved in 23 patients (82.1%). There were no complications as a result of endoscopic treatment.

  8. Using a Systems Pharmacology Model of the Blood Coagulation Network to Predict the Effects of Various Therapies on Biomarkers.

    PubMed

    Nayak, S; Lee, D; Patel-Hett, S; Pittman, D D; Martin, S W; Heatherington, A C; Vicini, P; Hua, F

    2015-07-01

    A number of therapeutics have been developed or are under development aiming to modulate the coagulation network to treat various diseases. We used a systems model to better understand the effect of modulating various components on blood coagulation. A computational model of the coagulation network was built to match in-house in vitro thrombin generation and activated Partial Thromboplastin Time (aPTT) data with various concentrations of recombinant factor VIIa (FVIIa) or factor Xa added to normal human plasma or factor VIII-deficient plasma. Sensitivity analysis applied to the model revealed that lag time, peak thrombin concentration, area under the curve (AUC) of the thrombin generation profile, and aPTT show different sensitivity to changes in coagulation factors' concentrations and type of plasma used (normal or factor VIII-deficient). We also used the model to explore how variability in concentrations of the proteins in coagulation network can impact the response to FVIIa treatment.

  9. Impact of coagulation as a pre-treatment for UVC/H2O2-biological activated carbon treatment of a municipal wastewater reverse osmosis concentrate.

    PubMed

    Umar, Muhammad; Roddick, Felicity; Fan, Linhua

    2016-01-01

    After coagulation of high salinity reverse osmosis concentrate (ROC) with either alum or ferric chloride followed by UVC/H2O2 treatment, biological activated carbon (BAC) was investigated for the removal of DOC. BAC treatment mainly removed low molecular weight (LMW) neutral molecules indicating that biodegradation was the predominant mechanism of organic matter removal. Coagulation with ferric chloride gave greater DOC reductions than alum both as a stand-alone treatment and after the sequence of UVC/H2O2 and BAC treatment. However, overall reduction after the sequence of coagulation, UVC/H2O2 and BAC treatment was only marginally greater for ferric chloride (68%) than for alum (62%). Trihalomethane formation potential and N-Nitrosodimethylamine concentration decreased markedly after UVC/H2O2 treatment. UVC/H2O2 treatment of the ROC led to the generation of extreme toxicity according to the Microtox assay, but no toxicity was observed after BAC, demonstrating its advantage for enabling safe disposal of the treated ROC. Implementation of coagulation as a pre-treatment and BAC as a post-treatment markedly reduced (6-8 times) the electrical energy dose (EED) required for the UVC/H2O2 process. The sequence of coagulation, UVC/H2O2 and BAC treatment was demonstrated as a potential process for the removal of organic matter from high salinity municipal ROC.

  10. Impact of coagulation as a pre-treatment for UVC/H2O2-biological activated carbon treatment of a municipal wastewater reverse osmosis concentrate.

    PubMed

    Umar, Muhammad; Roddick, Felicity; Fan, Linhua

    2016-01-01

    After coagulation of high salinity reverse osmosis concentrate (ROC) with either alum or ferric chloride followed by UVC/H2O2 treatment, biological activated carbon (BAC) was investigated for the removal of DOC. BAC treatment mainly removed low molecular weight (LMW) neutral molecules indicating that biodegradation was the predominant mechanism of organic matter removal. Coagulation with ferric chloride gave greater DOC reductions than alum both as a stand-alone treatment and after the sequence of UVC/H2O2 and BAC treatment. However, overall reduction after the sequence of coagulation, UVC/H2O2 and BAC treatment was only marginally greater for ferric chloride (68%) than for alum (62%). Trihalomethane formation potential and N-Nitrosodimethylamine concentration decreased markedly after UVC/H2O2 treatment. UVC/H2O2 treatment of the ROC led to the generation of extreme toxicity according to the Microtox assay, but no toxicity was observed after BAC, demonstrating its advantage for enabling safe disposal of the treated ROC. Implementation of coagulation as a pre-treatment and BAC as a post-treatment markedly reduced (6-8 times) the electrical energy dose (EED) required for the UVC/H2O2 process. The sequence of coagulation, UVC/H2O2 and BAC treatment was demonstrated as a potential process for the removal of organic matter from high salinity municipal ROC. PMID:26454666

  11. Serum Proteome Signature of Radiation Response: Upregulation of Inflammation-Related Factors and Downregulation of Apolipoproteins and Coagulation Factors in Cancer Patients Treated With Radiation Therapy—A Pilot Study

    SciTech Connect

    Widlak, Piotr; Jelonek, Karol; Wojakowska, Anna; Pietrowska, Monika; Polanska, Joanna; Marczak, Łukasz; Miszczyk, Leszek; Składowski, Krzysztof

    2015-08-01

    Purpose: Ionizing radiation affects the proteome of irradiated cells and tissue, yet data concerning changes induced during radiation therapy (RT) in human blood are fragmentary and inconclusive. We aimed to identify features of serum proteome and associated processes involved in response to partial body irradiation during cancer treatment. Methods and Materials: Twenty patients with head and neck squamous cell cancer (HNSCC) and 20 patients with prostate cancer received definitive intensity modulated RT. Blood samples were collected before RT, just after RT, and 1 month after the end of RT. Complete serum proteome was analyzed in individual samples, using a shotgun liquid chromatography-tandem mass spectrometry approach which allowed identification of approximately 450 proteins. Approximately 100 unique proteins were quantified in all samples after exclusion of immunoglobulins, and statistical significance of differences among consecutive samples was assessed. Processes associated with quantified proteins and their functional interactions were predicted using gene ontology tools. Results: RT-induced changes were marked in the HNSCC patient group: 22 upregulated and 33 downregulated proteins were detected in post-RT sera. Most of the changes reversed during follow-up, yet levels of some proteins remained affected 1 month after the end of RT. RT-upregulated proteins were associated with acute phase, inflammatory response, and complement activation. RT-downregulated proteins were associated with transport and metabolism of lipids (plasma apolipoproteins) and blood coagulation. RT-induced changes were much weaker in prostate cancer patients, which corresponded to differences in acute radiation toxicity observed in both groups. Nevertheless, general patterns of RT-induced sera proteome changes were similar in both of the groups of cancer patients. Conclusions: In this pilot study, we proposed to identify a molecular signature of radiation response, based on specific

  12. Involvement of coagulation and hemostasis in inflammatory bowel diseases.

    PubMed

    Stadnicki, Antoni

    2012-09-01

    Inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis (UC) are idiopathic, intestinal and systemic inflammatory disorders which are immunologically mediated with the activation of plasma proteolytic cascades. The activation of coagulation in IBD is related to the activity and colonic extension of the disease, but may still be persistent in a quiescent stage. Factor XIII seems to be as much a coagulation factor as a connective tissue factor which may contribute to intestinal healing. Fibrinolytic capacity is reduced in systemic circulation of IBD patients. Platelets activation is a feature of IBD which contributes to a pathogenic inflammatory sequel. There is evidence that coagulation activation may in turn mediate and amplify inflammatory cascades in IBD, especially via activating PARs related pathways. The etiology of thromboembolism in IBD seems to be multifactorial but is largely attributable to the coagulation activation and platelet aggregation during systemic inflammation. Thromboembolic (TE) complications in both Crohn's disease and UC appear to have at least 3-4 fold increased risk of developing compared to control patients. Currently, no single TE laboratory marker has a predictive value, but a recently developed endogenous thrombin potential test may have a potentially predicative value in IBD. At present, no interaction between IBD and inherited factors of thrombophilia has been found. An efficacy of heparin treatment in UC is still controversial, although heparin is safe in UC flare. Prophylactic anticoagulation against TE is currently not fully defined, however, high - risk patients should be considered for using a moderate dose of heparin. PMID:22272910

  13. 76 FR 14413 - Risk Mitigation Strategies To Address Potential Procoagulant Activity in Immune Globulin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... proteins that can co-purify with IGIV; (4) partitioning of coagulation factors during IGIV purification; (5) the role of activated Coagulation Factor XIa in IGIV-associated thrombosis; (6) test methods...

  14. Long-acting recombinant coagulation factor IX albumin fusion protein (rIX-FP) in hemophilia B: results of a phase 3 trial

    PubMed Central

    Martinowitz, Uri; Lissitchkov, Toshko; Pan-Petesch, Brigitte; Hanabusa, Hideji; Oldenburg, Johannes; Boggio, Lisa; Negrier, Claude; Pabinger, Ingrid; von Depka Prondzinski, Mario; Altisent, Carmen; Castaman, Giancarlo; Yamamoto, Koji; Álvarez-Roman, Maria-Teresa; Voigt, Christine; Blackman, Nicole; Jacobs, Iris

    2016-01-01

    A global phase 3 study evaluated the pharmacokinetics, efficacy, and safety of recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in 63 previously treated male patients (12-61 years) with severe hemophilia B (factor IX [FIX] activity ≤2%). The study included 2 groups: group 1 patients received routine prophylaxis once every 7 days for 26 weeks, followed by either 7-, 10-, or 14-day prophylaxis regimen for a mean of 50, 38, or 51 weeks, respectively; group 2 patients received on-demand treatment of bleeding episodes for 26 weeks and then switched to a 7-day prophylaxis regimen for a mean of 45 weeks. The mean terminal half-life of rIX-FP was 102 hours, 4.3-fold longer than previous FIX treatment. Patients maintained a mean trough of 20 and 12 IU/dL FIX activity on prophylaxis with rIX-FP 40 IU/kg weekly and 75 IU/kg every 2 weeks, respectively. There was 100% reduction in median annualized spontaneous bleeding rate (AsBR) and 100% resolution of target joints when subjects switched from on-demand to prophylaxis treatment with rIX-FP (P < .0001). The median AsBR was 0.00 for all prophylaxis regimens. Overall, 98.6% of bleeding episodes were treated successfully, including 93.6% that were treated with a single injection. No patient developed an inhibitor, and no safety concerns were identified. These results indicate rIX-FP is safe and effective for preventing and treating bleeding episodes in patients with hemophilia B at dosing regimens of 40 IU/kg weekly and 75 IU/kg every 2 weeks. This trial was registered at www.clinicaltrials.gov as #NCT0101496274. PMID:26755710

  15. Long-acting recombinant coagulation factor IX albumin fusion protein (rIX-FP) in hemophilia B: results of a phase 3 trial.

    PubMed

    Santagostino, Elena; Martinowitz, Uri; Lissitchkov, Toshko; Pan-Petesch, Brigitte; Hanabusa, Hideji; Oldenburg, Johannes; Boggio, Lisa; Negrier, Claude; Pabinger, Ingrid; von Depka Prondzinski, Mario; Altisent, Carmen; Castaman, Giancarlo; Yamamoto, Koji; Álvarez-Roman, Maria-Teresa; Voigt, Christine; Blackman, Nicole; Jacobs, Iris

    2016-04-01

    A global phase 3 study evaluated the pharmacokinetics, efficacy, and safety of recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in 63 previously treated male patients (12-61 years) with severe hemophilia B (factor IX [FIX] activity ≤2%). The study included 2 groups: group 1 patients received routine prophylaxis once every 7 days for 26 weeks, followed by either 7-, 10-, or 14-day prophylaxis regimen for a mean of 50, 38, or 51 weeks, respectively; group 2 patients received on-demand treatment of bleeding episodes for 26 weeks and then switched to a 7-day prophylaxis regimen for a mean of 45 weeks. The mean terminal half-life of rIX-FP was 102 hours, 4.3-fold longer than previous FIX treatment. Patients maintained a mean trough of 20 and 12 IU/dL FIX activity on prophylaxis with rIX-FP 40 IU/kg weekly and 75 IU/kg every 2 weeks, respectively. There was 100% reduction in median annualized spontaneous bleeding rate (AsBR) and 100% resolution of target joints when subjects switched from on-demand to prophylaxis treatment with rIX-FP (P< .0001). The median AsBR was 0.00 for all prophylaxis regimens. Overall, 98.6% of bleeding episodes were treated successfully, including 93.6% that were treated with a single injection. No patient developed an inhibitor, and no safety concerns were identified. These results indicate rIX-FP is safe and effective for preventing and treating bleeding episodes in patients with hemophilia B at dosing regimens of 40 IU/kg weekly and 75 IU/kg every 2 weeks. This trial was registered at www.clinicaltrials.gov as #NCT0101496274.

  16. Chronic urticaria and coagulation: pathophysiological and clinical aspects.

    PubMed

    Tedeschi, A; Kolkhir, P; Asero, R; Pogorelov, D; Olisova, O; Kochergin, N; Cugno, M

    2014-06-01

    Chronic urticaria (CU) is a widespread skin disease, characterized by the recurrence of transient wheals and itch for more than 6 weeks. Besides autoimmune mechanisms, coagulation factors, in particular tissue factor and thrombin, might also participate in the disease pathophysiology. Tissue factor expressed by eosinophils can induce activation of blood coagulation generating thrombin which in turn can increase vascular permeability both directly, acting on endothelial cells, and indirectly, inducing degranulation of mast cells with release of histamine, as demonstrated in experimental models. D-dimer, a fibrin degradation product, generated following activation of the coagulation cascade and fibrinolysis, has been found to be increased during urticaria exacerbations; moreover, it has been proposed as a biomarker of severity and resistance to H1-antihistamines in CU patients. The possible role of coagulation in CU is also supported by case reports, case series and a small controlled study showing the efficacy of anticoagulant therapy in this disease. The purpose of this review was to summarize the available data on the possible contribution of coagulation to the pathophysiology of CU focusing on clinical aspects and possible future therapeutic developments. PMID:24673528

  17. Coagulation inhibitors in inflammation.

    PubMed

    Esmon, C T

    2005-04-01

    Coagulation is triggered by inflammatory mediators in a number of ways. However, to prevent unwanted clot formation, several natural anticoagulant mechanisms exist, such as the antithrombin-heparin mechanism, the tissue factor pathway inhibitor mechanism and the protein C anticoagulant pathway. This review examines the ways in which these pathways are down-regulated by inflammation, thus limiting clot formation and decreasing the natural anti-inflammatory mechanisms that these pathways possess. PMID:15787615

  18. Complement-Coagulation Cross-Talk: A Potential Mediator of the Physiological Activation of Complement by Low pH

    PubMed Central

    Kenawy, Hany Ibrahim; Boral, Ismet; Bevington, Alan

    2015-01-01

    The complement system is a major constituent of the innate immune system. It not only bridges innate and adaptive arms of the immune system but also links the immune system with the coagulation system. Current understanding of the role of complement has extended far beyond fighting of infections, and now encompasses maintenance of homeostasis, tissue regeneration, and pathophysiology of multiple diseases. It has been known for many years that complement activation is strongly pH sensitive, but only relatively recently has the physiological significance of this been appreciated. Most complement assays are carried out at the physiological pH 7.4. However, pH in some extracellular compartments, for example, renal tubular fluid in parts of the tubule, and extracellular fluid at inflammation loci, is sufficiently acidic to activate complement. The exact molecular mechanism of this activation is still unclear, but possible cross-talk between the contact system (intrinsic pathway) and complement may exist at low pH with subsequent complement activation. The current article reviews the published data on the effect of pH on the contact system and complement activity, the nature of the pH sensor molecules, and the clinical implications of these effects. Of particular interest is chronic kidney disease (CKD) accompanied by metabolic acidosis, in which therapeutic alkalinization of urine has been shown significantly to reduce tubular complement activation products, an effect, which may have important implications for slowing progression of CKD. PMID:25999953

  19. Coagulation effect on the activity size distributions of long lived radon progeny aerosols and its application to atmospheric residence time estimation techniques.

    PubMed

    Anand, S; Mayya, Y S

    2015-03-01

    The long lived naturally occurring radon progeny species in the atmosphere, namely (210)Pb, (210)Bi and (210)Po, have been used as important tracers for understanding the atmospheric mixing processes and estimating aerosol residence times. Several observations in the past have shown that the activity size distribution of these species peaks at larger particle sizes as compared to the short lived radon progeny species - an effect that has been attributed to the process of coagulation of the background aerosols to which they are attached. To address this issue, a mathematical equation is derived for the activity-size distribution of tracer species by formulating a generalized distribution function for the number of tracer atoms present in coagulating background particles in the presence of radioactive decay and removal. A set of these equations is numerically solved for the progeny chain using Fuchs coagulation kernel combined with a realistic steady-state aerosol size spectrum that includes nucleation, accumulation and coarse mode components. The important findings are: (i) larger shifts in the modal sizes of (210)Pb and (210)Po at higher aerosol concentrations such as that found in certain Asian urban regions (ii) enrichment of tracer specific activity on particles as compared to that predicted by pure attachment laws (iii) sharp decline of daughter-to-parent activity ratios for decreasing particle sizes. The implication of the results to size-fractionated residence time estimation techniques is highlighted. A coagulation corrected graphical approach is presented for estimating the residence times from the size-segregated activity ratios of (210)Bi and (210)Po with respect to (210)Pb. The discrepancy between the residence times predicted by conventional formula and the coagulation corrected approach for specified activity ratios increases at higher atmospheric aerosol number concentrations (>10(10) #/m(3)) for smaller sizes (<1 μm). The results are further

  20. Coagulation effect on the activity size distributions of long lived radon progeny aerosols and its application to atmospheric residence time estimation techniques.

    PubMed

    Anand, S; Mayya, Y S

    2015-03-01

    The long lived naturally occurring radon progeny species in the atmosphere, namely (210)Pb, (210)Bi and (210)Po, have been used as important tracers for understanding the atmospheric mixing processes and estimating aerosol residence times. Several observations in the past have shown that the activity size distribution of these species peaks at larger particle sizes as compared to the short lived radon progeny species - an effect that has been attributed to the process of coagulation of the background aerosols to which they are attached. To address this issue, a mathematical equation is derived for the activity-size distribution of tracer species by formulating a generalized distribution function for the number of tracer atoms present in coagulating background particles in the presence of radioactive decay and removal. A set of these equations is numerically solved for the progeny chain using Fuchs coagulation kernel combined with a realistic steady-state aerosol size spectrum that includes nucleation, accumulation and coarse mode components. The important findings are: (i) larger shifts in the modal sizes of (210)Pb and (210)Po at higher aerosol concentrations such as that found in certain Asian urban regions (ii) enrichment of tracer specific activity on particles as compared to that predicted by pure attachment laws (iii) sharp decline of daughter-to-parent activity ratios for decreasing particle sizes. The implication of the results to size-fractionated residence time estimation techniques is highlighted. A coagulation corrected graphical approach is presented for estimating the residence times from the size-segregated activity ratios of (210)Bi and (210)Po with respect to (210)Pb. The discrepancy between the residence times predicted by conventional formula and the coagulation corrected approach for specified activity ratios increases at higher atmospheric aerosol number concentrations (>10(10) #/m(3)) for smaller sizes (<1 μm). The results are further

  1. Using a Systems Pharmacology Model of the Blood Coagulation Network to Predict the Effects of Various Therapies on Biomarkers

    PubMed Central

    Nayak, S; Lee, D; Patel-Hett, S; Pittman, DD; Martin, SW; Heatherington, AC; Vicini, P; Hua, F

    2015-01-01

    A number of therapeutics have been developed or are under development aiming to modulate the coagulation network to treat various diseases. We used a systems model to better understand the effect of modulating various components on blood coagulation. A computational model of the coagulation network was built to match in-house in vitro thrombin generation and activated Partial Thromboplastin Time (aPTT) data with various concentrations of recombinant factor VIIa (FVIIa) or factor Xa added to normal human plasma or factor VIII-deficient plasma. Sensitivity analysis applied to the model revealed that lag time, peak thrombin concentration, area under the curve (AUC) of the thrombin generation profile, and aPTT show different sensitivity to changes in coagulation factors’ concentrations and type of plasma used (normal or factor VIII-deficient). We also used the model to explore how variability in concentrations of the proteins in coagulation network can impact the response to FVIIa treatment. PMID:26312163

  2. Preliminary assessment of Hedychium coronarium essential oil on fibrinogenolytic and coagulant activity induced by Bothrops and Lachesis snake venoms

    PubMed Central

    2014-01-01

    Background The search for new inhibitors of snake venom toxins is essential to complement or even replace traditional antivenom therapy, especially in relation to compounds that neutralize the local effects of envenomations. Besides their possible use as alternative to traditional antivenom therapy, some plant species possess bioactive secondary metabolites including essential oils, which can be extracted from weeds that are considered substantial problems for agriculture, such as Hedychium coronarium. Methods The essential oils of leaves and rhizomes from H. coronarium were extracted by hydrodistillation, and their potential inhibitory effects on the coagulant and fibrinogenolytic activities induced by the venoms of Lachesis muta, Bothrops atrox and Bothrops moojeni were analyzed. Citrated human plasma was used to evaluate the clotting time whereas changes in fibrinogen molecules were visualized by electrophoresis in polyacrylamide gel. The experimental design used for testing coagulation inhibition was randomized in a 3 × 2 factorial arrangement (concentration × essential oils), with three replications. The essential oils were compared since they were extracted from different organs of the same botanical species, H. coronarium. Results The results suggest that the oils interact with venom proteases and plasma constituents, since all oils evaluated, when previously incubated with venoms, were able to inhibit the clotting effect, with less inhibition when oils and plasma were preincubated prior to the addition of venoms. Conclusions Thus, after extensive characterization of their pharmacological and toxicological effects, the essential oils can be used as an alternative to complement serum therapy, especially considering that these plant metabolites generally do not require specific formulations and may be used topically immediately after extraction. PMID:26413083

  3. Coagulation Factors Test

    MedlinePlus

    Advertisement Proceeds from website advertising help sustain Lab Tests Online. AACC is a not-for-profit organization ... for trustworthy health information. Verify Compliance . Produced by Advertisement

  4. Asthma and coagulation.

    PubMed

    de Boer, J Daan; Majoor, Christof J; van 't Veer, Cornelis; Bel, Elisabeth H D; van der Poll, Tom

    2012-04-01

    Asthma is a chronic airway disease characterized by paroxysmal airflow obstruction evoked by irritative stimuli on a background of allergic lung inflammation. Currently, there is no cure for asthma, only symptomatic treatment. In recent years, our understanding of the involvement of coagulation and anticoagulant pathways, the fibrinolytic system, and platelets in the pathophysiology of asthma has increased considerably. Asthma is associated with a procoagulant state in the bronchoalveolar space, further aggravated by impaired local activities of the anticoagulant protein C system and fibrinolysis. Protease-activated receptors have been implicated as the molecular link between coagulation and allergic inflammation in asthma. This review summarizes current knowledge of the impact of the disturbed hemostatic balance in the lungs on asthma severity and manifestations and identifies new possible targets for asthma treatment.

  5. Coagulation in Liver Disease.

    PubMed

    Hoffman, Maureane

    2015-07-01

    The liver plays a key role in hemostasis as the site of synthesis of many of the proteins involved in the coagulation, antithrombotic and fibrinolytic systems that interact to both establish hemostasis, and preventing thrombosis. The common laboratory tests, prothrombin time (PT) and activated partial thromboplastin time (aPTT), evolved from studies of plasma clotting in test tubes. Such studies laid the basis for the coagulation cascade model of hemostasis. However, thought has evolved to place a greater emphasis on the active roles of cells in localizing and regulating hemostasis. The PT and aPTT do not reflect the roles of cellular elements in hemostasis, nor do they reflect the crucial roles of antithrombotic and fibrinolytic systems. Thus, though the PT may indeed reflect the synthetic capacity of the liver, it does not accurately reflect the risk of bleeding or thrombosis in patients with liver failure.

  6. Asthma and coagulation.

    PubMed

    de Boer, J Daan; Majoor, Christof J; van 't Veer, Cornelis; Bel, Elisabeth H D; van der Poll, Tom

    2012-04-01

    Asthma is a chronic airway disease characterized by paroxysmal airflow obstruction evoked by irritative stimuli on a background of allergic lung inflammation. Currently, there is no cure for asthma, only symptomatic treatment. In recent years, our understanding of the involvement of coagulation and anticoagulant pathways, the fibrinolytic system, and platelets in the pathophysiology of asthma has increased considerably. Asthma is associated with a procoagulant state in the bronchoalveolar space, further aggravated by impaired local activities of the anticoagulant protein C system and fibrinolysis. Protease-activated receptors have been implicated as the molecular link between coagulation and allergic inflammation in asthma. This review summarizes current knowledge of the impact of the disturbed hemostatic balance in the lungs on asthma severity and manifestations and identifies new possible targets for asthma treatment. PMID:22262775

  7. Thymoquinone Modulates Blood Coagulation in Vitro via Its Effects on Inflammatory and Coagulation Pathways

    PubMed Central

    Muralidharan-Chari, Vandhana; Kim, Jaehan; Abuawad, Ahlam; Naeem, Mubeena; Cui, Huadong; Mousa, Shaker A.

    2016-01-01

    Thymoquinone (THQ) is a major component of black seeds. Given that both THQ and black seeds exhibit anti-cancer and anti-inflammatory activities, we hypothesized that THQ will affect cancer-associated thrombosis (CAT), which is primarily triggered by tissue factor (TF) and inflammation. The effect of both black seed-extracted and purchased (“pure”) THQ on normal blood coagulation was tested with in vitro thromboelastography (TEG) and activated partial thromboplastin time (aPTT) coagulation assays. The effect of pure THQ on CAT was tested with aPTT assay using pancreatic cancer cell lines that are either positive or negative for TF, and with TEG assay using lipopolysaccharide as an inflammatory trigger. Additionally, the direct effect of THQ on the inactivation of factors IIa and Xa was assessed. Since TNF-α facilitates crosstalk between inflammation and thrombosis by triggering the NF-κB pathway, we tested THQ’s ability to interfere with this communication with a luciferase assay. Both extracted and pure THQ had minimal effects on normal blood coagulation. Pure THQ reversed CAT initiated by both TF and inflammation to basal levels (p < 0.001). Mechanistically, while THQ had minimal to no effect on factor IIa and Xa inactivation, it strongly reduced the effects of TNF-α on NF-κB elements (p < 0.001). THQ has a minimal effect on basal coagulation and can reverse CAT in vitro, possibly by interfering with the crosstalk between inflammation and coagulation. This study suggests the utility of THQ as a preventative anticoagulant and/or as a supplement to existing chemotherapies and anticoagulant therapies. PMID:27043539

  8. Thymoquinone Modulates Blood Coagulation in Vitro via Its Effects on Inflammatory and Coagulation Pathways.

    PubMed

    Muralidharan-Chari, Vandhana; Kim, Jaehan; Abuawad, Ahlam; Naeem, Mubeena; Cui, Huadong; Mousa, Shaker A

    2016-01-01

    Thymoquinone (THQ) is a major component of black seeds. Given that both THQ and black seeds exhibit anti-cancer and anti-inflammatory activities, we hypothesized that THQ will affect cancer-associated thrombosis (CAT), which is primarily triggered by tissue factor (TF) and inflammation. The effect of both black seed-extracted and purchased ("pure") THQ on normal blood coagulation was tested with in vitro thromboelastography (TEG) and activated partial thromboplastin time (aPTT) coagulation assays. The effect of pure THQ on CAT was tested with aPTT assay using pancreatic cancer cell lines that are either positive or negative for TF, and with TEG assay using lipopolysaccharide as an inflammatory trigger. Additionally, the direct effect of THQ on the inactivation of factors IIa and Xa was assessed. Since TNF-α facilitates crosstalk between inflammation and thrombosis by triggering the NF-κB pathway, we tested THQ's ability to interfere with this communication with a luciferase assay. Both extracted and pure THQ had minimal effects on normal blood coagulation. Pure THQ reversed CAT initiated by both TF and inflammation to basal levels (p < 0.001). Mechanistically, while THQ had minimal to no effect on factor IIa and Xa inactivation, it strongly reduced the effects of TNF-α on NF-κB elements (p < 0.001). THQ has a minimal effect on basal coagulation and can reverse CAT in vitro, possibly by interfering with the crosstalk between inflammation and coagulation. This study suggests the utility of THQ as a preventative anticoagulant and/or as a supplement to existing chemotherapies and anticoagulant therapies. PMID:27043539

  9. Disorders of coagulation in pregnancy.

    PubMed

    Katz, D; Beilin, Y

    2015-12-01

    The process of haemostasis is complex and is further complicated in the parturient because of the physiological changes of pregnancy. Understanding these changes and the impact that they have on the safety profile of the anaesthetic options for labour and delivery is crucial to any anaesthetist caring for the parturient. This article analyses current theories on coagulation and reviews the physiological changes to coagulation that occur during pregnancy and the best methods with which to evaluate coagulation. Finally, we examine some of the more common disorders of coagulation that occur during pregnancy, including von Willebrand disease, common factor deficiencies, platelet disorders, the parturient on anticoagulants, and the more rare acute fatty liver of pregnancy, with a focus on their implications for neuraxial anaesthesia.

  10. Structural role of Gly(193) in serine proteases: investigations of a G555E (GLY193 in chymotrypsin) mutant of blood coagulation factor XI.

    PubMed

    Schmidt, Amy E; Ogawa, Taketoshi; Gailani, David; Bajaj, S Paul

    2004-07-01

    In serine proteases, Gly(193) is highly conserved with few exceptions. A patient with inherited deficiency of the coagulation serine protease factor XI (FXI) was reported to be homozygous for a Gly(555) --> Glu substitution. Gly(555) in FXI corresponds to Gly(193) in chymotrypsin, which is the numbering system used subsequently. To investigate the abnormality in FXI(G193E), we expressed and purified recombinant FXIa(G193E), activated it to FXIa(G193E), and compared its activity to wild type-activated FXI (FXIa(WT)). FXIa(G193E) activated FIX with approximately 300-fold reduced k(cat) and similar K(m), and hydrolyzed synthetic substrate with approximately 10-fold reduced K(m) and modestly reduced k(cat). Binding of antithrombin and the amyloid beta-precursor protein Kunitz domain inhibitor (APPI) to FXIa(G193E) was impaired approximately 8000- and approximately 100000-fold, respectively. FXIa(G193E) inhibition by diisopropyl fluoro-phosphate was approximately 30-fold slower and affinity for p-aminobenzamidine (S1 site probe) was 6-fold weaker than for FXIa(WT). The rate of carbamylation of NH(2)-Ile(16), which forms a salt bridge with Asp(194) in active serine proteases, was 4-fold faster for FXIa(G193E). These data indicate that the unoccupied active site of FXIa(G193E) is incompletely formed, and the amide N of Glu(193) may not point toward the oxyanion hole. Inclusion of saturating amounts of p-aminobenzamidine resulted in comparable rates of carbamylation for FXIa(WT) and FXIa(G193E), suggesting that the occupied active site has near normal conformation. Thus, binding of small synthetic substrates or inhibitors provides sufficient energy to allow the amide N of Glu(193) to point correctly toward the oxyanion hole. Homology modeling also indicates that the inability of FXIa(G193E) to bind antithrombin/APPI or activate FIX is caused, in part, by impaired accessibility of the S2' site because of a steric clash with Glu(193). Such arguments will apply to other

  11. Levels of prolactin in relation to coagulation factors and risk of venous thrombosis. Results of a large population-based case-control study (MEGA-study).

    PubMed

    Stuijver, Danka J F; Debeij, Jan; van Zaane, Bregje; Dekkers, Olaf M; Smit, Jan W A; Büller, Harry R; Rosendaal, Frits R; Gerdes, Victor E A; Cannegieter, Suzanne C

    2012-09-01

    The pituitary hormone prolactin is thought to influence coagulation. We aimed to study the relation between prolactin levels, coagulation factors and risk of venous thrombosis (VT). We used data from a large population based case-control study into aetiology of first VT (MEGA-study). Prolactin levels were determined in 2,068 patients with VT and 2,785 age- and sex matched control subjects. The relation between levels of coagulation factors and prolactin was studied among the controls. In addition, odds ratios (OR) and 95% confidence intervals (95%CI) were calculated for the risk of VT for different cut-off points of prolactin levels based on percentiles determined in the controls. Restricted analysis was performed among cases in whom blood was sampled within six months after VT. We found a rise in factor VIII and von Willebrand factor with increasing levels of prolactin in the controls. An increased risk of VT was observed when blood was sampled within six months after thrombosis (OR 2.9, 95%CI 1.1-8.1) for prolactin levels above the 99th percentile (42.6 μg/l) relative to levels between the 20th to 80th percentile. When blood was sampled more than six months after VT no clear association could be observed (OR 1.3, 95%CI 0.7-2.3). In conclusion, we found a modest association between prolactin and symptomatic venous thromboembolism, particularly when blood was sampled close to the event. This may be explained by a causal relation or by prolactin being a marker of stress due to the thrombotic event.

  12. Blood coagulation and metabolic profiles in middle-aged male and female ob/ob mice.

    PubMed

    Ohkura, Naoki; Oishi, Katsutaka; Atsumi, Gen-ichi

    2015-07-01

    Obese and diabetic states in humans are associated with an increased incidence of thrombotic diseases caused by various coagulation abnormalities. Genetically obese ob/ob mice produce metabolic abnormalities similar to those associated with type 2 diabetes. However, little is known about their coagulation features or sex differences. The present study aimed to determine the effects of obese and diabetic complications on blood coagulation and vascular diseases by exploring correlations between blood coagulation and metabolic profiles in middle-aged male and female ob/ob mice. Plasma levels of plasminogen activator inhibitor 1 (PAI-1) were significantly increased, whereas those that of platelet factor-4 (PF-4) was slightly, but significantly increased in male and female ob/ob mice compared with lean counterparts. Prothrombin time (PT) was significantly shortened in female ob/ob mice and activated partial thrombin time (APTT) significantly differed between male and female ob/ob mice. Plasma levels of antithrombin (AT) were significantly increased in male and female ob/ob mice. None of the other coagulation and fibrinolytic factors examined significantly differed between ob/ob mice and lean counterparts. On the contrary, factors such as body weight and cholesterol levels significantly differed between ob/ob and lean mice, whereas glucose, fructosamine and insulin levels significantly differed only in one sex of each strain. These results provided fundamental information about blood coagulation and metabolic features for exploring the function of altered blood coagulation states in ob/ob mice.

  13. Markers of inflammation, activation of blood platelets and coagulation disorders in inflammatory bowel diseases.

    PubMed

    Matowicka-Karna, Joanna

    2016-04-13

    Inflammatory bowel disease (IBD) includes ulcerative colitis and Crohn's disease. It is a group of chronic disorders characterized by inflammation of the gastrointestinal track with unknown etiology. Currently applied biomarkers include CRP, ESR, pANCA, ASCA, and fecal calprotectin. The etiopathogenesis of IBD is multifactorial. In patients with IBD in inflamed alimentary tract mucosa the number of recruited monocytes and activated macrophages which are source of cytokines. In IBD, the exacerbation is accompanied by thrombocytosis. Platelets play a crucial role in the hemostasis and inflammatory response. Selectins, which regulates the hemostasis and inflammatory response, stimulates the secretion of many inflammatory mediators such as β-thromboglobuline, CD40L, fibrinogen, IL-1β, platelet factor-4. In the course of IBD the following changes are observed: an increase in the number of platelets (reactive thrombocytosis), PDW and PCT, reduction in MPV, increased production and excretion of granular content products (P-selectin, GP53, β-TG, PF-4, vWF, fibrinolytic inhibitors).

  14. Extrahepatic sources of factor VIII potentially contribute to the coagulation cascade correcting the bleeding phenotype of mice with hemophilia A.

    PubMed

    Zanolini, Diego; Merlin, Simone; Feola, Maria; Ranaldo, Gabriella; Amoruso, Angela; Gaidano, Gianluca; Zaffaroni, Mauro; Ferrero, Alessandro; Brunelleschi, Sandra; Valente, Guido; Gupta, Sanjeev; Prat, Maria; Follenzi, Antonia

    2015-07-01

    A large fraction of factor VIII in blood originates from liver sinusoidal endothelial cells although extrahepatic sources also contribute to plasma factor VIII levels. Identification of cell-types other than endothelial cells with the capacity to synthesize and release factor VIII will be helpful for therapeutic approaches in hemophilia A. Recent cell therapy and bone marrow transplantation studies indicated that Küpffer cells, monocytes and mesenchymal stromal cells could synthesize factor VIII in sufficient amount to ameliorate the bleeding phenotype in hemophilic mice. To further establish the role of blood cells in expressing factor VIII, we studied various types of mouse and human hematopoietic cells. We identified factor VIII in cells isolated from peripheral and cord blood, as well as bone marrow. Co-staining for cell type-specific markers verified that factor VIII was expressed in monocytes, macrophages and megakaryocytes. We additionally verified that factor VIII was expressed in liver sinusoidal endothelial cells and endothelial cells elsewhere, e.g., in the spleen, lungs and kidneys. Factor VIII was well expressed in sinusoidal endothelial cells and Küpffer cells isolated from human liver, whereas by comparison isolated human hepatocytes expressed factor VIII at very low levels. After transplantation of CD34(+) human cord blood cells into NOD/SCIDγNull-hemophilia A mice, fluorescence activated cell sorting of peripheral blood showed >40% donor cells engrafted in the majority of mice. In these animals, plasma factor VIII activity 12 weeks after cell transplantation was up to 5% and nine of 12 mice survived after a tail clip-assay. In conclusion, hematopoietic cells, in addition to endothelial cells, express and secrete factor VIII: this information should offer further opportunities for understanding mechanisms of factor VIII synthesis and replenishment.

  15. Extrahepatic sources of factor VIII potentially contribute to the coagulation cascade correcting the bleeding phenotype of mice with hemophilia A.

    PubMed

    Zanolini, Diego; Merlin, Simone; Feola, Maria; Ranaldo, Gabriella; Amoruso, Angela; Gaidano, Gianluca; Zaffaroni, Mauro; Ferrero, Alessandro; Brunelleschi, Sandra; Valente, Guido; Gupta, Sanjeev; Prat, Maria; Follenzi, Antonia

    2015-07-01

    A large fraction of factor VIII in blood originates from liver sinusoidal endothelial cells although extrahepatic sources also contribute to plasma factor VIII levels. Identification of cell-types other than endothelial cells with the capacity to synthesize and release factor VIII will be helpful for therapeutic approaches in hemophilia A. Recent cell therapy and bone marrow transplantation studies indicated that Küpffer cells, monocytes and mesenchymal stromal cells could synthesize factor VIII in sufficient amount to ameliorate the bleeding phenotype in hemophilic mice. To further establish the role of blood cells in expressing factor VIII, we studied various types of mouse and human hematopoietic cells. We identified factor VIII in cells isolated from peripheral and cord blood, as well as bone marrow. Co-staining for cell type-specific markers verified that factor VIII was expressed in monocytes, macrophages and megakaryocytes. We additionally verified that factor VIII was expressed in liver sinusoidal endothelial cells and endothelial cells elsewhere, e.g., in the spleen, lungs and kidneys. Factor VIII was well expressed in sinusoidal endothelial cells and Küpffer cells isolated from human liver, whereas by comparison isolated human hepatocytes expressed factor VIII at very low levels. After transplantation of CD34(+) human cord blood cells into NOD/SCIDγNull-hemophilia A mice, fluorescence activated cell sorting of peripheral blood showed >40% donor cells engrafted in the majority of mice. In these animals, plasma factor VIII activity 12 weeks after cell transplantation was up to 5% and nine of 12 mice survived after a tail clip-assay. In conclusion, hematopoietic cells, in addition to endothelial cells, express and secrete factor VIII: this information should offer further opportunities for understanding mechanisms of factor VIII synthesis and replenishment. PMID:25911555

  16. Toward a better understanding of coagulation for dissolved organic nitrogen using polymeric zinc-iron-phosphate coagulant.

    PubMed

    Zhu, Guocheng; Wang, Qian; Yin, Jun; Li, Zhongwu; Zhang, Peng; Ren, Bozhi; Fan, Gongduan; Wan, Peng

    2016-09-01

    The increase of agricultural related activities and the lack of effective waste control has led to an increase of organic nitrogen in water. The development of coagulants to effectively remove dissolved organic nitrogen (DON) is a high priority in the water treatment industry. We developed a polymeric zinc-iron-phosphate (ZnFeP) coagulant and investigated its coagulation effect on DON removal. Optimum coagulant for coagulation for DON and TDN removals was characterized by the dense convex-concave packing structure differing from other zinc-based coagulant, polycrystalline structure and high content colloidal species, which could account up to 87% of the total colloidal species. Coagulation experiments showed the DON removal rate to vary greatly depending on principal components and their interaction with metals, phosphate and hydroxyl. DON removal efficiency increased with the increase of colloidal species. The coagulation was also dependent on coagulant dosage and water quality parameters: Coagulation efficiency increased with coagulant dosage in the investigated range of 1-16 mg/l, and a pH of 6 was found to be superior for the coagulation. DON removal efficiency was also higher than and linearly correlated with total dissolved nitrogen (TDN) removal, which implies that an effective coagulation for TDN is also effective for DON. The findings in this study indicate that coagulation of DON is largely influenced by coagulant composition and species. We also found the removal of DON by our newly developed polymeric ZnFeP coagulant to be effective. PMID:27192355

  17. Principles of dielectric blood coagulometry as a comprehensive coagulation test.

    PubMed

    Hayashi, Yoshihito; Brun, Marc-Aurèle; Machida, Kenzo; Nagasawa, Masayuki

    2015-10-01

    Dielectric blood coagulometry (DBCM) is intended to support hemostasis management by providing comprehensive information on blood coagulation from automated, time-dependent measurements of whole blood dielectric spectra. We discuss the relationship between the series of blood coagulation reactions, especially the aggregation and deformation of erythrocytes, and the dielectric response with the help of clot structure electron microscope observations. Dielectric response to the spontaneous coagulation after recalcification presented three distinct phases that correspond to (P1) rouleau formation before the onset of clotting, (P2) erythrocyte aggregation and reconstitution of aggregates accompanying early fibrin formation, and (P3) erythrocyte shape transformation and/or structure changes within aggregates after the stable fibrin network is formed and platelet contraction occurs. Disappearance of the second phase was observed upon addition of tissue factor and ellagic acid for activation of extrinsic and intrinsic pathways, respectively, which is attributable to accelerated thrombin generation. A series of control experiments revealed that the amplitude and/or quickness of dielectric response reflect platelet function, fibrin polymerization, fibrinolysis activity, and heparin activity. Therefore, DBCM sensitively measures blood coagulation via erythrocytes aggregation and shape changes and their impact on the dielectric permittivity, making possible the development of the battery of assays needed for comprehensive coagulation testing.

  18. Principles of dielectric blood coagulometry as a comprehensive coagulation test.

    PubMed

    Hayashi, Yoshihito; Brun, Marc-Aurèle; Machida, Kenzo; Nagasawa, Masayuki

    2015-10-01

    Dielectric blood coagulometry (DBCM) is intended to support hemostasis management by providing comprehensive information on blood coagulation from automated, time-dependent measurements of whole blood dielectric spectra. We discuss the relationship between the series of blood coagulation reactions, especially the aggregation and deformation of erythrocytes, and the dielectric response with the help of clot structure electron microscope observations. Dielectric response to the spontaneous coagulation after recalcification presented three distinct phases that correspond to (P1) rouleau formation before the onset of clotting, (P2) erythrocyte aggregation and reconstitution of aggregates accompanying early fibrin formation, and (P3) erythrocyte shape transformation and/or structure changes within aggregates after the stable fibrin network is formed and platelet contraction occurs. Disappearance of the second phase was observed upon addition of tissue factor and ellagic acid for activation of extrinsic and intrinsic pathways, respectively, which is attributable to accelerated thrombin generation. A series of control experiments revealed that the amplitude and/or quickness of dielectric response reflect platelet function, fibrin polymerization, fibrinolysis activity, and heparin activity. Therefore, DBCM sensitively measures blood coagulation via erythrocytes aggregation and shape changes and their impact on the dielectric permittivity, making possible the development of the battery of assays needed for comprehensive coagulation testing. PMID:26368847

  19. Coagulation activation after discontinuation of VTE treatment with different oral anticoagulants and impact on 12-month clinical outcomes.

    PubMed

    Beyer-Westendorf, Jan; Gehrisch, Siegmund; Stange, Thoralf; Tittl, Luise; Siegert, Gabriele; Weiss, Norbert

    2015-08-01

    Increasing D-dimer (DD) levels after discontinuation of vitamin K antagonist (VKA) therapy indicate an increased risk of recurrence of venous thromboembolism (VTE). However, after discontinuation of direct-acting non-VKA oral anticoagulants (DOACs or NOACs) the extent of coagulation activation and its clinical impact is unknown. Blood samples were collected from consenting patients with proximal VTE at the end of anticoagulation treatment with apixaban (n=37), dabigatran (n=17), rivaroxaban (n=9) or VKA (n=184) and 4weeks later. DD, prothrombin fragments F1+2 (F1+2) and thrombin-antithrombin complexes (TAT) were measured. All patients underwent follow-up at 12months to establish recurrent VTE or death from any cause. Irrespective of the treatment, DD and F1+2 but not TAT demonstrated a similar increase between baseline and week 4. At 12months, 18 patients (7.3%) had recurrent VTE and two (0.8%) had died. For all patients and subgroups of VKA and DOAC, positive likelihood ratios were numerically higher for baseline values but only TAT values at 4weeks were found to be related to a small increase of outcome event likelihood (2.6; 95%CI 1.23-5.50), which was driven by VKA patients (3.1; 95%CI 1.32-7.30) and not by DOAC patients (2.27; 95%CI 0.52-9.95). For all parameters, negative likelihood ratios were not predictive. In logistic regression analysis, only ΔTAT (optimal cut-off >178% from baseline demonstrated a significant risk increase for VTE/death (odds ratio 3.76; 95% confidence interval 1.46-9.68; p=0.006). In conclusion, the concept of testing coagulation activation parameters may also be transferred to VTE patients at the end of DOAC therapy. For patients with an increase of TAT levels within 4weeks after treatment discontinuation (>178% from baseline) is associated with an increased risk for VTE recurrence or death at 12months.

  20. Structural Features and Anti-coagulant Activity of the Sulphated Polysaccharide SPS-CF from a Green Alga Capsosiphon fulvescens.

    PubMed

    Synytsya, Andriy; Choi, Doo Jin; Pohl, Radek; Na, Ye Seul; Capek, Peter; Lattová, Erika; Taubner, Tomáš; Choi, Ji Won; Lee, Chang Won; Park, Jae Kweon; Kim, Woo Jung; Kim, Sung Min; Lee, Jisun; Park, Yong Il

    2015-12-01

    Previously, we reported that the sulphated polysaccharides (SPS)-CF, a water-soluble polysaccharide isolated and purified from Korean green alga Maesaengi (Capsosiphon fulvescens, Chlorophyta), is a glucuronogalactomannan based mainly on the monosaccharide composition determined by high-performance liquid chromatography (HPLC) analysis after 1-phenyl-3-methyl-5-pyrazolone (PMP) labelling of sugars in the acid (trifluoroacetic acid (TFA)) hydrolyzates of SPS-CF, which showed mannose (55.4 mol %), galactose (25.3 mol %) and glucuronic acid (16.3 mol %) as major sugars (Na et al., Int Immunopharmacol 10:364-370, 2010). However, the results of the present study re-performed for monosaccharide composition of this polysaccharide using, in addition to HPLC of PMP-labelled sugars, other separation methods, i.e. high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), gas chromatography with flame ionising detection (GC-FID) and thin-layer chromatography (TLC), clearly demonstrated that the most prominent neutral monosaccharides of SPS-CF are xylose (38.6-49.4 mol %) and rhamnose (39.6-45 mol %), while mannose and galactose are present at a much lesser extent or in negligible amount. These extensive monosaccharide analyses, correlation nuclear magnetic resonance (NMR), electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) measurements confirmed the sulphated glucuronorhamnoxylan (ulvan) type of SPS-CF polysaccharide, whose backbone is composed of alternating sequence of 4-linked L-rhamnose-3-sulphate and D-xylose residues (ulvobiose U3s) carrying monomeric D-glucuronic acid or D-glucuronic acid-3-sulphate on O-2 of some L-rhamnose-3-sulphate units as the side chains. The SPS-CF exhibited significant in vitro anti-coagulant activity by which the activated partial thromboplastin time (aPTT) and thrombin time (TT) were significantly prolonged. The results of this

  1. A structural locus for coagulation factor XIIIA (F13A) is located distal to the HLA region on chromosome 6p in man.

    PubMed

    Olaisen, B; Gedde-Dahl, T; Teisberg, P; Thorsby, E; Siverts, A; Jonassen, R; Wilhelmy, M C

    1985-01-01

    Linkage between the locus for coagulation factor XIIIA (F13A) and HLA-region genes has been revealed during a linkage study between F13A and approximately 40 other polymorphic marker genes. In males, the maximum lod score between F13A and HLA-region genes (HLA-A, -C, -B, -DR; C4A, -B; Bf; and/or C2) is 7.60 at theta 1 = .18. To GLO, the maximum lod score is 2.37 at theta 1 = .19; to PGM3, .22 at theta 1 = .35. Female data indicate a clear sex difference in recombination frequency between F13A and HLA. The present findings, in combination with earlier knowledge of PGM3/GLO/HLA localization and gene distances, show that F13A is distal to HLA on the short arm of chromosome 6 in man. It is thus likely that by including FXIIIA typing in linkage studies, the whole male 6p is within mapping distance of highly polymorphic, classical marker genes. Earlier findings that the Hageman factor gene (F12) is located in the same chromosomal region may indicate the presence of a coagulation factor gene cluster in this region.

  2. A structural locus for coagulation factor XIIIA (F13A) is located distal to the HLA region on chromosome 6p in man.

    PubMed Central

    Olaisen, B; Gedde-Dahl, T; Teisberg, P; Thorsby, E; Siverts, A; Jonassen, R; Wilhelmy, M C

    1985-01-01

    Linkage between the locus for coagulation factor XIIIA (F13A) and HLA-region genes has been revealed during a linkage study between F13A and approximately 40 other polymorphic marker genes. In males, the maximum lod score between F13A and HLA-region genes (HLA-A, -C, -B, -DR; C4A, -B; Bf; and/or C2) is 7.60 at theta 1 = .18. To GLO, the maximum lod score is 2.37 at theta 1 = .19; to PGM3, .22 at theta 1 = .35. Female data indicate a clear sex difference in recombination frequency between F13A and HLA. The present findings, in combination with earlier knowledge of PGM3/GLO/HLA localization and gene distances, show that F13A is distal to HLA on the short arm of chromosome 6 in man. It is thus likely that by including FXIIIA typing in linkage studies, the whole male 6p is within mapping distance of highly polymorphic, classical marker genes. Earlier findings that the Hageman factor gene (F12) is located in the same chromosomal region may indicate the presence of a coagulation factor gene cluster in this region. Images Fig. 1 PMID:2858156

  3. [Samples in Coagulation Test].

    PubMed

    Komiyama, Yutaka

    2015-12-01

    An understanding and ability to develop a strategy to prevent pre-analytical errors of laboratory tests in the hemostasis area are two of the most important skills of medical technologists and related doctors. Recently, the working group for standardization of sampling in coagulation tests is working towards a consensus. This article reviews a summary of the consensus: (1) The anticoagulant for coagulation tests is 3.13-3.2% sodium citrate at a ratio of 1:9 to whole blood and the accuracy of the ratio is within 10%. (2) Blood sampling is achieved with the use of a 21-23G needle and coagulation. Blood sampling can be achieved by both a syringe and vacuum tube system. After taking blood, laboratory tests such as of the prothrombin time (PT) and activated partial thromboplastin time (APTT) should be completed within one hour and the storage temperature should be at room temperature, not ice-cold conditions. 3) To prepare a plasma sample, citrated blood is centrifuged at 1,500 x g for 15 min at room temperature to minimize the remaining platelets in plasma (below 10,000/microL at least).

  4. Activation and Coagulation Biomarkers are Independent Predictors for the Development of Opportunistic Disease in Patients with HIV Infection

    PubMed Central

    Rodger, Alison J; Fox, Zoe; Lundgren, Jens D; Kuller, Lew; Boesecke, Christoph; Gey, Daniela; Skoutelis, Athanassios; Goetz, Matthew Bidwell; Phillips, Andrew N

    2010-01-01

    Background Activation and coagulation biomarkers were measured within the SMART trial. Their associations with opportunistic disease (OD) in HIV-positive patients were examined. Methods Inflammatory (high-sensitivity C-reactive protein [hsCRP], interleukin-6 [IL-6], amyloid-A, and amyloid-P) and coagulation (D-dimer and prothrombin-fragment 1+2) markers were determined. Conditional logistic regression analyses were used to assess associations between these biomarkers and risk of OD. Results The 91 patients who developed an OD were matched to 182 controls. Patients with hsCRP≥5 μg/mL at baseline had a 3.5 (95%CI: 1.5-8.1) higher odds of OD versus those with hsCRP<1 μg/ml, Ptrend=0.003, and patients with IL-6≥3 pg/mL at baseline had a 2.4 (95%CI: 1.0-5.4) higher odds of OD versus those with IL-6<1.5 pg/mL, Ptrend=0.02. No other baseline biomarkers predicted development of an OD. Latest hsCRP (OR: 7.6 (95%CI: 2.0-28.5) for those with hsCRP≥5 μg/mL versus hsCRP<1 μg/mL, Ptrend=0.002), latest amyloid-A (OR: 3.8 (95%CI: 1.1-13.4) for those with amyloid-A ≥6 mg/L versus amyloid-A <2 mg/L, Ptrend=0.03) and latest IL-6 (OR 2.4 (95%CI: 0.7-8.8) for those with IL-6≥3 pg/mL versus IL-6<1.5 pg/mL, Ptrend=0.04) were also associated with developing an OD. Conclusions Higher IL-6 and hsCRP independently predicted development of OD. These biomarkers could provide additional prognostic information for predicting risk of OD. PMID:19678756

  5. Fibrinogen blocks the autoactivation and thrombin-mediated activation of factor XI on dextran sulfate.

    PubMed Central

    Scott, C F; Colman, R W

    1992-01-01

    The intrinsic pathway of blood coagulation is activated when factor XIa, one of the three contact-system enzymes, is generated and then activates factor IX. Factor XI has been shown to be efficiently activated in vitro by surface-bound factor XIIa after factor XI is transported to the surface by its cofactor, high molecular weight kininogen (HK). However, individuals lacking any of the three contact-system proteins--namely, factor XII, prekallikrein, and HK--do not suffer from bleeding abnormalities. This mystery has led several investigators to search for an "alternate" activation pathway for factor XI. Recently, factor XI has been reported to be autoactivated on the soluble "surface" dextran sulfate, and thrombin was shown to accelerate the autoactivation. However, it was also reported that HK, the cofactor for factor XIIa-mediated activation of factor XI, actually diminishes the thrombin-catalyzed activation rate of factor XI. Nonetheless, it was suggested that thrombin was a more efficient activator than factor XIIa. In this report we investigated the effect of fibrinogen, the major coagulation protein in plasma, on the activation rate of factor XI. Fibrinogen, the preferred substrate for thrombin in plasma, virtually prevented autoactivation of factor XI as well as the thrombin-mediated activation of factor XI, while having no effect on factor XIIa-catalyzed activation. HK dramatically curtailed the autoactivation of factor XI in addition to the thrombin-mediated activation. These data indicate that factor XI would not be autoactivated in a plasma environment, and thrombin would, therefore, be unlikely to potentiate the activation. We believe that the "missing pathway" for factor XI activation remains an enigma that warrants further investigation. PMID:1454798

  6. Poly-2-methoxyethylacrylate-coated bypass circuits reduce activation of coagulation system and inflammatory response in congenital cardiac surgery.

    PubMed

    Suzuki, Yasuyuki; Daitoku, Kazuyuki; Minakawa, Masahito; Fukui, Kozo; Fukuda, Ikuo

    2008-01-01

    Surface-coated cardiopulmonary bypass (CPB) has been shown to have excellent biocompatibility during cardiac surgery in adults, but there have been only a few reports demonstrating the efficacy of this coating for congenital cardiac surgery. We tested the efficacy of poly-2-methoxyethylacrylate (PMEA) coating for CPB circuits in congenital cardiac surgery. Eleven operative cases of ventricular septal defect were studied: group C (control: no coating, n = 5) and group P (PMEA coating, n = 6). The platelet count and beta-thromboglobulin (beta TG), fibrinogen (FBG), thrombin-antithrombin complex (TAT), and neutrophil elastase levels were measured during the operation. Postoperative chest tube drainage was analyzed and the surface of the artificial lung was observed with an electron microscope. Elevation of TAT and neutrophil elastase was suppressed in group P (P < 0.05). Observation of the artificial lung surface using an electron microscope clearly revealed fewer blood cells were adherent to the surface in group P. The FBG level and postoperative bleeding were relatively lower in group P, but there were no significant differences between groups. The platelet count and beta TG level were the same in both groups. We concluded that the PMEA-coated circuit reduces activation of the coagulation system and the inflammatory reaction in pediatric cardiac surgery.

  7. Removal of Trace Pharmaceuticals from Water using coagulation and powdered activated carbon as pretreatment to ultrafiltration membrane system.

    PubMed

    Sheng, Chenguang; Nnanna, A G Agwu; Liu, Yanghe; Vargo, John D

    2016-04-15

    In this study, the efficacy of water treatment technologies: ultra-filtration (UF), powdered activated carbon (PAC), coagulation (COA) and a combination of these technologies (PAC/UF and COA/UF) to remove target pharmaceuticals (Acetaminophen, Bezafibrate, Caffeine, Carbamazepine, Cotinine, Diclofenac, Gemfibrozil, Ibuprofen, Metoprolol, Naproxen, Sulfadimethoxine, Sulfamethazine, Sulfamethoxazole, Sulfathiazole, Triclosan and Trimethoprim) was investigated. Samples of wastewater from municipal WWTPs were analyzed using direct aqueous injection High Performance Liquid Chromatography with Tandem Quadrupole Mass Spectrometric (LC/MS/MS) detection. On concentration basis, results showed an average removal efficiency of 29%, 50%, and 7%, respectively, for the UF, PAC dosage of 50ppm, and COA dosage of 10ppm. When PAC dosage of 100ppm was used as pretreatment to the combined PAC and UF in-line membrane system, a 90.3% removal efficiency was achieved. The removal efficiency of UF in tandem with COA was 33%, an increase of 4% compared with the single UF treatment. The adsorption effect of PAC combined with the physical separation process of UF revealed the best treatment strategy for removing pharmaceutical contaminant from water. PMID:26867086

  8. Fibrinogen Vicenza and Genova II: two new cases of congenital dysfibrinogenemia with isolated defect of fibrin monomer polymerization and inhibitory activity on normal coagulation.

    PubMed

    Rodeghiero, F; Castaman, G C; Dal Belin Peruffo, A; Dini, E; Galletti, A; Barone, E; Gastaldi, G

    1987-06-01

    Two new cases of congenital dysfibrinogenemia are presented in which defective fibrin monomer polymerization and inhibitory activity on normal coagulation were observed. They have been tentatively called fibrinogen Vicenza and Genova II. The first was discovered in a family with mild bleeding diathesis, the second in an asymptomatic family. In almost all reported cases of fibrinogens with defective fibrin monomer polymerization, additional functional or structural defects have been detected. In our cases, on the contrary, detailed investigations failed to show any other abnormality. Fibrinogen Genova II is apparently identical to fibrinogen Baltimore IV, whereas fibrinogen Vicenza is similar to fibrinogen Troyes and Genova I, but also exerts an evident inhibitory activity on normal coagulation and differs from fibrinogen Genova II and Baltimore IV showing a different kinetic pattern of fibrin monomer polymerization.

  9. Depinning as a coagulation process

    NASA Astrophysics Data System (ADS)

    İşeri, M.; Kaspar, D.; Mungan, M.

    2016-08-01

    We consider a one-dimensional model that describes the depinning of an elastic string of particles in a strongly pinning, phase-disordered periodic environment under a slowly increasing force. The evolution towards depinning occurs by the triggering of avalanches in regions of activity which are at first isolated, but later grow and merge. For large system sizes the dynamically critical behavior is dominated by the coagulation of these active regions. Our analysis and numerical simulations show that the evolution of the sizes of active regions is well described by a Smoluchowski coagulation equation, allowing us to predict correlation lengths and avalanche sizes in terms of certain moments of the size distribution.

  10. [Monitoring of blood coagulation in perioperative care].

    PubMed

    Ishii, Hisanari

    2012-01-01

    Coagulation disorders often occur perioperatively and monitoring of blood coagulation should be fast and adequate to treat these disorders to protect patients from massive bleeding. Control of hemostasis is one of the main issues in major surgeries. Coagulation test results from a central laboratory may delay making such a perioperative decision. Recently, point-of-care monitoring (POCM), which is able to examine coagulation disorder in an operation theater with short waiting time, has become important. Both prothrombin time (PT) and activated clotting time (ACT) are very useful and popular, but also criticized because they can be monitored only until fibrin formation. On the other hand, viscoelastic monitorings of whole blood, are able to estimate fibrin formation, clot fixation, platelet function and fibrinolysis. In this review article, among variable perioperative POCMs of blood coagulation, three thromboelastographic monitorings, such as TEG ROTEM, and Sonoclot as well as PT and ACT, are described along with their utilities and limits to examine perioperative coagulation.

  11. The Intrinsic Pathway of Coagulation as a Target for Antithrombotic Therapy.

    PubMed

    Wheeler, Allison P; Gailani, David

    2016-10-01

    Plasma coagulation in the activated partial thromboplastin time assay is initiated by sequential activation of coagulation factors XII, XI, and IX. While this series of proteolytic reactions is not an accurate model for hemostasis in vivo, there is mounting evidence that factor XI and factor XII contribute to thrombosis, and that inhibiting them can produce an antithrombotic effect with a small effect on hemostasis. This article discusses the contributions of components of the intrinsic pathway to thrombosis in animal models and humans, and results of early clinical trials of drugs targeting factors IX, XI, and XII. PMID:27637310

  12. Discrepancy between tissue factor activity and tissue factor expression in endotoxin-induced monocytes is associated with apoptosis and necrosis.

    PubMed

    Henriksson, Carola E; Klingenberg, Olav; Ovstebø, Reidun; Joø, Gun-Britt; Westvik, Ase-Brit; Kierulf, Peter

    2005-12-01

    Tissue factor (TF), the main initiator of blood coagulation, contributes to the manifestation of disseminated intravascular coagulation following septic shock in meningococcal infection. Since a direct relationship between disease severity and lipopolysaccharide (LPS) concentration in the circulation has been shown, we hypothesized that the procoagulant and cytotoxic effects of endotoxin also in vitro were related to its concentration. In vitro studies, however, have frequently used much higher LPS concentrations than those observed in clinical samples. Using elutriation-purified human monocytes, we observed that LPS up to 1000 ng/ml exerted a concentration-dependent increase in TF activity (tenase activity, fibrin formation in plasma). Although there was a dose-dependent increase in TF activity, there was not a concomitant increase in TF expression at LPS concentrations above 1 ng/ml (flow cytometry, Western blotting, TF mRNA). Flow cytometry revealed that this discrepancy between TF activity and TF expression at endotoxin concentrations above 1 ng/ml, coincided with an LPS dose-dependent increase in cell surface phosphatidylserine (PS), considered to promote coagulation. The increased PS expression was associated with an increased number of 7-AAD-positive cells indicating cell death. We conclude that enhancement of monocyte procoagulant activity in vitro by high concentrations of LPS may result from increased PS exposure due to apoptosis and necrosis. Therefore, the LPS concentrations used to examine monocyte procoagulant activity in vitro, should be carefully chosen.

  13. Coagulation tests show significant differences in patients with breast cancer.

    PubMed

    Tas, Faruk; Kilic, Leyla; Duranyildiz, Derya

    2014-06-01

    Activated coagulation and fibrinolytic system in cancer patients is associated with tumor stroma formation and metastasis in different cancer types. The aim of this study is to explore the correlation of blood coagulation assays for various clinicopathologic factors in breast cancer patients. A total of 123 female breast cancer patients were enrolled into the study. All the patients were treatment naïve. Pretreatment blood coagulation tests including PT, APTT, PTA, INR, D-dimer, fibrinogen levels, and platelet counts were evaluated. Median age of diagnosis was 51 years old (range 26-82). Twenty-two percent of the group consisted of metastatic breast cancer patients. The plasma level of all coagulation tests revealed statistically significant difference between patient and control group except for PT (p<0.001 for all variables except for PT; p=0.08). Elderly age (>50 years) was associated with higher D-dimer levels (p=0.003). Metastatic patients exhibited significantly higher D-dimer values when compared with early breast cancer patients (p=0.049). Advanced tumor stage (T3 and T4) was associated with higher INR (p=0.05) and lower PTA (p=0.025). In conclusion, coagulation tests show significant differences in patients with breast cancer.

  14. Molecular intercommunication between the complement and coagulation systems.

    PubMed

    Amara, Umme; Flierl, Michael A; Rittirsch, Daniel; Klos, Andreas; Chen, Hui; Acker, Barbara; Brückner, Uwe B; Nilsson, Bo; Gebhard, Florian; Lambris, John D; Huber-Lang, Markus

    2010-11-01

    The complement system as well as the coagulation system has fundamental clinical implications in the context of life-threatening tissue injury and inflammation. Associations between both cascades have been proposed, but the precise molecular mechanisms remain unknown. The current study reports multiple links for various factors of the coagulation and fibrinolysis cascades with the central complement components C3 and C5 in vitro and ex vivo. Thrombin, human coagulation factors (F) XIa, Xa, and IXa, and plasmin were all found to effectively cleave C3 and C5. Mass spectrometric analyses identified the cleavage products as C3a and C5a, displaying identical molecular weights as the native anaphylatoxins C3a and C5a. Cleavage products also exhibited robust chemoattraction of human mast cells and neutrophils, respectively. Enzymatic activity for C3 cleavage by the investigated clotting and fibrinolysis factors is defined in the following order: FXa > plasmin > thrombin > FIXa > FXIa > control. Furthermore, FXa-induced cleavage of C3 was significantly suppressed in the presence of the selective FXa inhibitors fondaparinux and enoxaparin in a concentration-dependent manner. Addition of FXa to human serum or plasma activated complement ex vivo, represented by the generation of C3a, C5a, and the terminal complement complex, and decreased complement hemolytic serum activity that defines exact serum concentration that results in complement-mediated lysis of 50% of sensitized sheep erythrocytes. Furthermore, in plasma from patients with multiple injuries (n = 12), a very early appearance and correlation of coagulation (thrombin-antithrombin complexes) and the complement activation product C5a was found. The present data suggest that coagulation/fibrinolysis proteases may act as natural C3 and C5 convertases, generating biologically active anaphylatoxins, linking both cascades via multiple direct interactions in terms of a complex serine protease system.

  15. Coagulation and Autoimmunity in Scleroderma Interstitial Lung Disease

    PubMed Central

    Ludwicka-Bradley, Anna; Silver, Richard M.; Bogatkevich, Galina S.

    2010-01-01

    Objectives Interstitial lung disease in systemic sclerosis (SSc-ILD) is often an irreversible and progressive fibrosing process that now is the leading cause of scleroderma-related deaths. In this review we present our current understanding of the role played by coagulation and particularly by thrombin in autoimmune-mediated tissue injury and fibrosis, mainly as it relates to SSc-ILD. Methods We used PubMed to search for articles published up to October 2010 for keywords referring to autoimmunity, coagulation, pulmonary fibrosis, and scleroderma. Results SSc-ILD is an autoimmune disease associated with lymphocyte activation and release of various cytokines and growth factors. The production of autoantibodies is a central feature in SSc. Activation of the coagulation cascade with release of thrombin is 1 of the earliest events following tissue injury. Thrombin contributes to autoimmune responses by activating of pathogenic Th2 lymphocyte profile in SSc. Thrombin also modulates tissue repair responses, stimulates transformation of epithelial cells, endothelial cells, and fibroblasts into myofibroblast phenotype, and induces secretion of several pro-immune and profibrotic factors, which serve as antigens for pathogenic autoantibodies production in SSc-ILD. Conclusions The identification of links between autoimmunity and coagulation would provide new insights into the pathogenesis of pulmonary fibrosis associated with autoimmune diseases and further acknowledge the importance of thrombin in the development of SSc-ILD. PMID:21168185

  16. Activated platelet–T-cell conjugates in peripheral blood of patients with HIV infection: coupling coagulation/inflammation and T cells

    PubMed Central

    Green, Samantha A.; Smith, Mindy; Hasley, Rebecca B.; Stephany, David; Harned, Adam; Nagashima, Kunio; Abdullah, Shahed; Pittaluga, Stefania; Imamichi, Tomozumi; Qin, Jing; Rupert, Adam; Ober, Alex; Lane, H. Clifford; Catalfamo, Marta

    2015-01-01

    Background: Despite successfully suppressed viremia by treatment, patients with high levels of biomarkers of coagulation/inflammation are at an increased risk of developing non-AIDS defining serious illnesses such as cardiovascular diseases. Thus, there is a relationship between persistent immune activation and coagulation/inflammation, although the mechanisms are poorly understood. Platelets play an important role in this process. Although interactions between platelets and elements of the innate immune system, such as monocytes, are well described, little is known about the interaction between platelets and the adaptive immune system. Design: We investigated the interaction of a component of the coagulation system, platelets, and the adaptive immune system T cells. Methods: Healthy controls and combination antiretroviral therapy (cART)-treated HIV-infected patients with viral loads of less than 40 copies/ml for more than 15 months were analysed for platelet–T-cell conjugate formation. Results: Platelets can form conjugates with T cells and were preferentially seen in CD4+ and CD8+ T-cell subsets with more differentiated phenotypes [memory, memory/effector and terminal effector memory (TEM)]. Compared with healthy controls, these conjugates in patients with HIV infection were more frequent, more often composed of activated platelets (CD42b+CD62P+), and were significantly associated with the D-dimer serum levels. Conclusion: These data support a model in which platelet–T-cell conjugates may play a critical role in the fast recruitment of antigen-experienced T cells to the place of injury. This mechanism can contribute in maintaining a state of coagulation/inflammation observed in these patients contributing to the pathology of the disease. PMID:26002800

  17. Evaluation of cytotoxicity and inflammatory activity of wastewater collected from a textile factory before and after treatment by coagulation-flocculation methods.

    PubMed

    Makene, Vedastus W; Tijani, Jimoh O; Petrik, Leslie F; Pool, Edmund J

    2016-08-01

    Effective treatment of textile effluent prior to discharge is necessary in order to avert the associated adverse health impacts on human and aquatic life. In the present investigation, coagulation/flocculation processes were evaluated for the effectiveness of the individual treatment. Effectiveness of the treatment was evaluated based on the physicochemical characteristics. The quality of the pre-treated and post-flocculation treated effluent was further evaluated by determination of cytotoxicity and inflammatory activity using RAW264.7 cell cultures. Cytotoxicity was determined using WST-1 assay. Nitric oxide (NO) and interleukin 6 (IL-6) were used as biomarkers of inflammation. NO was determined in cell culture supernatant using the Griess reaction assay. The IL-6 secretion was determined using double antibody sandwich enzyme linked immunoassay (DAS ELISA). Cytotoxicity results show that raw effluent reduced the cell viability significantly (P < 0.001) compared to the negative control. All effluent samples treated by coagulation/flocculation processes at 1 in 100 dilutions had no cytotoxic effects on RAW264.7 cells. The results on inflammatory activities show that the raw effluent and effluent treated with 1.6 g/L of Fe-Mn oxide induced significantly (P < 0.001) higher NO production than the negative control. The inflammatory results further show that the raw effluent induced significantly (P < 0.001) higher production of IL-6 than the negative control. Among the coagulants/flocculants evaluated Al2(SO4)3.14H2O at a dosage of 1.6 g/L was the most effective to remove both toxic and inflammatory pollutants. In conclusion, the inflammatory responses in RAW264.7 cells can be used as sensitive biomarkers for monitoring the effectiveness of coagulation/flocculation processes used for textile effluent treatment.

  18. Evaluation of cytotoxicity and inflammatory activity of wastewater collected from a textile factory before and after treatment by coagulation-flocculation methods.

    PubMed

    Makene, Vedastus W; Tijani, Jimoh O; Petrik, Leslie F; Pool, Edmund J

    2016-08-01

    Effective treatment of textile effluent prior to discharge is necessary in order to avert the associated adverse health impacts on human and aquatic life. In the present investigation, coagulation/flocculation processes were evaluated for the effectiveness of the individual treatment. Effectiveness of the treatment was evaluated based on the physicochemical characteristics. The quality of the pre-treated and post-flocculation treated effluent was further evaluated by determination of cytotoxicity and inflammatory activity using RAW264.7 cell cultures. Cytotoxicity was determined using WST-1 assay. Nitric oxide (NO) and interleukin 6 (IL-6) were used as biomarkers of inflammation. NO was determined in cell culture supernatant using the Griess reaction assay. The IL-6 secretion was determined using double antibody sandwich enzyme linked immunoassay (DAS ELISA). Cytotoxicity results show that raw effluent reduced the cell viability significantly (P < 0.001) compared to the negative control. All effluent samples treated by coagulation/flocculation processes at 1 in 100 dilutions had no cytotoxic effects on RAW264.7 cells. The results on inflammatory activities show that the raw effluent and effluent treated with 1.6 g/L of Fe-Mn oxide induced significantly (P < 0.001) higher NO production than the negative control. The inflammatory results further show that the raw effluent induced significantly (P < 0.001) higher production of IL-6 than the negative control. Among the coagulants/flocculants evaluated Al2(SO4)3.14H2O at a dosage of 1.6 g/L was the most effective to remove both toxic and inflammatory pollutants. In conclusion, the inflammatory responses in RAW264.7 cells can be used as sensitive biomarkers for monitoring the effectiveness of coagulation/flocculation processes used for textile effluent treatment. PMID:27418078

  19. Do Biomarkers of Inflammation, Monocyte Activation, and Altered Coagulation Explain Excess Mortality Between HIV Infected and Uninfected People?

    PubMed Central

    Tate, Janet P.; Chang, Chung-Chou H.; Butt, Adeel A.; Gerschenson, Mariana; Gibert, Cynthia L.; Leaf, David; Rimland, David; Rodriguez-Barradas, Maria C.; Budoff, Matthew J.; Samet, Jeffrey H.; Kuller, Lewis H.; Deeks, Steven G.; Crothers, Kristina; Tracy, Russell P.; Crane, Heidi M.; Sajadi, Mohammad M.; Tindle, Hilary A.; Justice, Amy C.; Freiberg, Matthew S.

    2016-01-01

    Background: HIV infection and biomarkers of inflammation [measured by interleukin-6 (IL-6)], monocyte activation [soluble CD14 (sCD14)], and coagulation (D-dimer) are associated with morbidity and mortality. We hypothesized that these immunologic processes mediate (explain) some of the excess risk of mortality among HIV infected (HIV+) versus uninfected people independently of comorbid diseases. Methods: Among 2350 (1521 HIV+) participants from the Veterans Aging Cohort Study Biomarker Cohort (VACS BC), we investigated whether the association between HIV and mortality was altered by adjustment for IL-6, sCD14, and D-dimer, accounting for confounders. Participants were followed from date of blood draw for biomarker assays (baseline) until death or July 25, 2013. Analyses included ordered logistic regression and Cox Proportional Hazards regression. Results: During 6.9 years (median), 414 deaths occurred. The proportional odds of being in a higher quartile of IL-6, sCD14, or D-dimer were 2–3 fold higher for viremic HIV+ versus uninfected people. Mortality rates were higher among HIV+ compared with uninfected people [incidence rate ratio (95% CI): 1.31 (1.06 to 1.62)]. Mortality risk increased with increasing quartiles of IL-6, sCD14, and D-dimer regardless of HIV status. Adjustment for IL-6, sCD14, and D-dimer partially attenuated mortality risk among HIV+ people with unsuppressed viremia (HIV-1 RNA ≥10,000 copies per milliliter) compared with uninfected people—hazard ratio (95% CI) decreased from 2.18 (1.60 to 2.99) to 2.00 (1.45 to 2.76). Conclusions: HIV infection is associated with elevated IL-6, sCD14, and D-dimer, which are in turn associated with mortality. Baseline measures of these biomarkers partially mediate excess mortality risk among HIV+ versus uninfected people. PMID:26885807

  20. Ontogenetic variation of metalloproteinases and plasma coagulant activity in venoms of wild Bothrops atrox specimens from Amazonian rain forest.

    PubMed

    López-Lozano, Jorge Luis; de Sousa, Marcelo Valle; Ricart, Carlos André O; Chávez-Olortegui, Carlos; Flores Sanchez, Eladio; Muniz, Emiro G; Bührnheim, Paulo F; Morhy, Lauro

    2002-07-01

    A comparative study of venoms from juvenile, sub-adult and adult wild Bothrops atrox specimens captured in Manaus region (Brazil) was performed. All venoms tested had acidic pH (5.5) and the human plasma coagulant activity was higher in venoms from juvenile and sub-adult specimens than in adults. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that the most intense bands in adult venoms corresponded to polypeptides of 23 and 50kDa. The 23kDa protein was not detected in juvenile venoms. The 23 and 50kDa proteins were purified by two steps of reversed phase-HPLC followed by size exclusion HPLC. Partial amino acid sequence of the 23kDa protein showed homology to metalloproteinases from other snake venoms. Electrospray ionization mass spectrometric analysis (ESI-MS) showed that the 23kDa band contained at least three isoforms of 23030, 23300 and 23645Da. The 50kDa polypeptide was N-terminally blocked for Edman degradation and presented molecular masses ranging from 46.8 to 49.4kDa by ESI-MS. Both proteins were detected by anti-mutalysin II antibodies in immunoblotting assay indicating that they belong to the metalloproteinase family. Immunoblotting analysis also showed that the 23kDa band increased in intensity from juvenile to adult specimens.SDS-PAGE analysis of juvenile and adult venoms following autoproteolysis in pH 7.4 suggested that endogenous venom metalloproteinases can digest the 50kDa metalloproteinase, originating a new protein band of 27kDa. It was also demonstrated in juvenile venoms that the 23kDa band was not the result of proteolytic processing of the 50kDa metalloproteinase. PMID:12076654

  1. Ontogenetic variation of metalloproteinases and plasma coagulant activity in venoms of wild Bothrops atrox specimens from Amazonian rain forest.

    PubMed

    López-Lozano, Jorge Luis; de Sousa, Marcelo Valle; Ricart, Carlos André O; Chávez-Olortegui, Carlos; Flores Sanchez, Eladio; Muniz, Emiro G; Bührnheim, Paulo F; Morhy, Lauro

    2002-07-01

    A comparative study of venoms from juvenile, sub-adult and adult wild Bothrops atrox specimens captured in Manaus region (Brazil) was performed. All venoms tested had acidic pH (5.5) and the human plasma coagulant activity was higher in venoms from juvenile and sub-adult specimens than in adults. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that the most intense bands in adult venoms corresponded to polypeptides of 23 and 50kDa. The 23kDa protein was not detected in juvenile venoms. The 23 and 50kDa proteins were purified by two steps of reversed phase-HPLC followed by size exclusion HPLC. Partial amino acid sequence of the 23kDa protein showed homology to metalloproteinases from other snake venoms. Electrospray ionization mass spectrometric analysis (ESI-MS) showed that the 23kDa band contained at least three isoforms of 23030, 23300 and 23645Da. The 50kDa polypeptide was N-terminally blocked for Edman degradation and presented molecular masses ranging from 46.8 to 49.4kDa by ESI-MS. Both proteins were detected by anti-mutalysin II antibodies in immunoblotting assay indicating that they belong to the metalloproteinase family. Immunoblotting analysis also showed that the 23kDa band increased in intensity from juvenile to adult specimens.SDS-PAGE analysis of juvenile and adult venoms following autoproteolysis in pH 7.4 suggested that endogenous venom metalloproteinases can digest the 50kDa metalloproteinase, originating a new protein band of 27kDa. It was also demonstrated in juvenile venoms that the 23kDa band was not the result of proteolytic processing of the 50kDa metalloproteinase.

  2. Patient preference and ease of use for different coagulation factor VIII reconstitution device scenarios: a cross-sectional survey in five European countries

    PubMed Central

    Cimino, Ernesto; Linari, Silvia; Malerba, Mara; Halimeh, Susan; Biondo, Francesca; Westfeld, Martina

    2014-01-01

    Introduction Hemophilia A treatment involves replacing the deficient coagulation factor VIII. This process may involve multiple steps that might create a barrier to adherence. A new dual-chamber syringe (DCS; FuseNGo®) was recently introduced with the aim of simplifying reconstitution. Aim This study aimed to identify factors associated with adult patients’ preferences for different coagulation factor VIII reconstitution systems and to test ease of use and patient preference for the DCS. Methods A cross-sectional survey of adults with hemophilia A in five European countries was conducted; a subset of subjects also participated in a practical testing session of the DCS. Results Among the 299 survey participants, the device scenario requiring the least equipment and reconstitution steps (the DCS) received a median preference rating of 71 out of 100 (0 being “the least desirable” and 100 “the most desirable” rating). This was significantly higher than the other scenarios (the next highest achieved a median of 50 points; P<0.001). Participants would be more likely to use this device prophylactically (P<0.001). Among the 98 participants who tested the DCS, 57% preferred this device over their current device, 26% preferred their current device, and 17% had no preference. The DCS was rated as easier to use than current treatment devices (median score 9/10 versus 7/10 for current treatment, P=0.001). Conclusion The survey indicates that the prefilled DCS, FuseNGo®, requiring the least equipment and fewest reconstitution steps, was preferred by patients and was the device most likely to be used prophylactically; the practical device testing supports these results. PMID:25525348

  3. Comparison of human coagulation factor VIII expression directed by cytomegalovirus and mammary gland-specific promoters in HC11 cells and transgenic mice.

    PubMed

    Wang, Qing; Hao, Siguo; Ma, Liyuan; Zhang, Wenhao; Wan, Jiangbo; Deng, Xiaohui

    2015-10-01

    Hemophilia A is an inherited X-linked recessive bleeding disorder caused by coagulant factor VIII (FVIII) deficiency. The conventional treatment involves the administration of recombinant human FVIII (rhFVIII) preparations. In this study, the mammary gland 'bioreactor' is designed to specifically and efficiently express a foreign protein hFVIII in the mammary glands of transgenic mice. We constructed a P1A3-hFVIIIBD vector directed by the mammary gland-specific P1A3 promoter, and transiently transfected HC11 cells and mouse mammary glands with P1A3-hFVIIIBD or CMV-hFVIIIBD vectors directed by a ubiquitous cytomegalovirus (CMV) promoter, respectively. We also generated P1A3-hFVIIIBD and CMV-hFVIIIBD transgenic mice by microinjection, respectively. Our data indicated that both vectors effectively expressed hFVIIIBD in HC11 cells at the transcription level, and hFVIIIBD protein was efficiently expressed in mouse milk after the injection of the hFVIIIBD vectors into mouse mammary glands during lactation. In both CMV-hFVIIIBD and P1A3-hFVIIIBD transgenic mice, hFVIIIBD proteins were efficiently expressed in the mammary glands at the mRNA and protein levels. No significant difference was observed in hFVIIIBD levels between the CMV-hFVIIIBD and P1A3-hFVIIIBD transgenic mice (P > 0.05). However, the activity of hFVIII in CMV-directed transgenic mice was slightly higher than that in P1A3-directed transgenic mice (P < 0.05). While hFVIIIBD was present in multiple organs in CMV-hFVIIIBD mice, P1A3-hFVIIIBD mice showed negligible hFVIIIBD expression in organs other than the mammary glands. This study demonstrated that the mammary gland-specific P1A3-hFVIIIBD vector was more suitable for the generation of hFVIIIBD mammary gland bioreactor.

  4. Monocytes can be induced by lipopolysaccharide-triggered T lymphocytes to express functional factor VII/VIIa protease activity

    PubMed Central

    1984-01-01

    In the present study we demonstrate that human monocytes can be induced by the model stimulus, lipopolysaccharide (LPS), to produce and assemble on their surface functional Factor VII/VIIa. This protease was not induced in relatively purified monocytes alone following exposure to LPS; but was induced in the presence of Leu-3a positive helper/inducer T cells. The Factor VII/VIIa protease activity represented 35-40% of the potential initiating activity for the extrinsic coagulation pathway and was demonstrated using functional coagulation assays, as well as in amidolytic assays for the activation of Factor X. This activity of cell-bound Factor VII/VIIa appeared to involve a tight adduct of calcium. The identity of the Factor X- activating protease as Factor VII/VIIa was confirmed by the capacity of antibody specific for Factor VII/VIIa to neutralize the cell-bound protease. Further propagation of the extrinsic pathway following generation of Factor Xa required addition of exogenous Factor Va. These results expand the repertoire of proteases that have been identified with appropriately triggered cells of the monocyte/macrophage series, and suggest that initiation and propagation of the extrinsic coagulation protease network on induced monocytes involves not only expression of the initiating cofactor molecule, tissue factor, but also production of Factor VII and its organization into the molecular assembly. Thus, in the absence of exogenous Factor VII/VIIa a directly proteolytic effector cell can be generated. Further molecular assembly of the extrinsic pathway on the monocyte surface sequentially expands the proteolytic capacity of this response. The synthesis and assembly of the extrinsic activation complex by the monocyte and its derived progeny, the macrophage, provides a mechanism by which coagulation is initiated under T cell instruction at sites of immunologic responses. PMID:6368733

  5. A cross-reactive material positive variant of coagulation factor XI (FXIP520L) with a catalytic defect.

    PubMed

    Gailani, D; Schmidt, A; Sun, M-F; Bolton-Maggs, P H; Bajaj, S P

    2007-04-01

    Inherited deficiency of the trypsin-like protease factor (F) XI is associated with a mild to moderate bleeding diathesis. In most cases, FXI protein is reduced in plasma, and examples of dysfunctional circulating FXI variants are rare. We characterized the defect in one such variant with a proline to leucine substitution at residue 520. FXI Pro520 corresponds to chymotrypsin Pro161, and is conserved in most members of the chymotrypsin protease family. Recombinant FXI containing this substitution will be referred to as FXI(P161L). k(cat) for cleavage of chromogenic substrates and for activation of the natural FXIa substrate FIX is approximately 3-fold lower for activated FXI(P161L) (FXIa(P161L)) than for wild-type FXIa (FXIa(WT)), consistent with an abnormal protease active site. Inhibition of FXIa(P161L) by diisopropyl fluorophosphate is 2.4-fold slower than for FXIa(WT), suggesting distortion of the protease oxyanion hole. Binding to p-aminobenzamidine, a probe for the integrity of the S1 substrate-binding site, was similar for FXIa(WT) and FXIa(P161L). Rates of carbamylation of Ile16 were also similar for FXIa(WT) and FXIa(P161L), indicating that the critical salt bridge between Ile16 and Asp194 forms normally during protease activation. Cumulatively, the data demonstrate that Pro161 is required for normal active site oxyanion hole conformation in FXIa. Examination of the FXIa crystal structure and modeling studies indicate that Pro161 forms several hydrophobic contacts with adjacent amino acids that stabilize active site conformation. Leucine can be incorporated at position 161 in FXIa, but would not form the extensive stabilizing network of hydrophobic interactions formed by Pro161. PMID:17229051

  6. The dirty side of the intrinsic pathway of coagulation.

    PubMed

    Cooley, Brian C

    2016-09-01

    Whereas the extrinsic pathway of coagulation seals off bleeding at the cut tissue edges, it is proposed that the intrinsic pathway exploits the dirt from the skin surface to generate an outer coagulum of the oozing blood. Activated Factor XII (FXIIa) in this outer cap generates Factor XIa, which triggers clotting, and kallikrein that feeds back to form more FXIIa to promote the process. This dirty-wound hypothesis of coagulation function by the intrinsic pathway is supported by the use of dirt-based compounds in activated partial thromboplastin time assays as well as the evolutionary record where marine life that do not have skin-adherent dirt lack Factor XII, including marine mammals that have returned to sea life. PMID:27373598

  7. Fibrinolysis in disseminated intravascular coagulation.

    PubMed

    Hack, C E

    2001-12-01

    Studies in experimental models for sepsis, the most common cause of disseminated intravascular coagulation (DIC), have put forward the concept of a procoagulant state that is characterized by thrombin generation exceeding that of plasmin. Convincing evidence indicates that this imbalance between coagulation and fibrinolysis is due to increased levels of plasminogen activator inhibitor type 1 (PAI-1). Levels of this fibrinolysis inhibitor indeed correlate with outcome and severity of multiple organ failure in patients with sepsis, as well as in patients with DIC from other causes. Hence we suggest that PAI-1 constitutes an important target for therapy in patients with DIC.

  8. Disseminated intravascular coagulation in meningococcal sepsis. Case 7.

    PubMed

    Zeerleder, S; Zürcher Zenklusen, R; Hack, C E; Wuillemin, W A

    2003-08-01

    We report on a man (age: 49 years), who died from severe meningococcal sepsis with disseminated intravascular coagulation (DIC), multiple organ dysfunction syndrome and extended skin necrosis. We discuss in detail the pathophysiology of the activation of coagulation and fibrinolysis during sepsis. The article discusses new therapeutic concepts in the treatment of disseminated intravascular coagulation in meningococcal sepsis, too.

  9. Acquired coagulation inhibitor-associated bleeding disorders: an update.

    PubMed

    Franchini, Massimo; Veneri, Dino

    2005-12-01

    Acquired blood coagulation inhibitors are circulating immunoglobulins that neutralize the activity of a specific coagulation protein or accelerate its clearance from the plasma, thus causing a bleeding tendency. In this review, we focus on the nonhemophilic inhibitors of coagulation, i.e. the autoantibodies occurring in individuals without a pre-existent coagulation defect, reporting the most recent advances in the pathophysiology, diagnosis and treatment of these rare acquired bleeding disorders.

  10. Derangements of coagulation and fibrinolysis in critically ill patients with sepsis and septic shock.

    PubMed

    Vervloet, M G; Thijs, L G; Hack, C E

    1998-01-01

    In patients with sepsis and septic shock, both coagulation and fibrinolysis are activated frequently leading to the syndrome of diffuse intravascular coagulation (DIC). The different mechanisms leading to abnormalities in coagulation and fibrinolysis are discussed in detail. The coagulation and fibrinolytic system appear to be influenced by the septic process largely independently, leading to a procoagulant imbalance between these systems. Coagulation is initiated by mediator-induced expression of tissue factor and is associated with consumption of the natural coagulation inhibitors antithrombin III, protein C, and protein S. As a result, high plasma levels of thrombin-antithrombin complex (TAT) can be found. The effects on fibrinolysis are dominated by (highly) increased levels of plasminogen activator inhibitor type 1 (PAI-1), leading to inadequate fibrinolysis. Although levels of plasminogen activator antigen are increased, its activity is almost completely inhibited by PAI-1. The resulting effects predispose to a procoagulant state, with widespread fibrin deposition, which may be an important mechanism contributing to multiple organ failure. A thorough understanding of the pathophysiological mechanisms underlying the DIC-syndrome is a prerequisite for a rational approach and future therapy for this severe complication of sepsis.

  11. Bradykinin: Inflammatory Product of the Coagulation System.

    PubMed

    Hofman, Zonne; de Maat, Steven; Hack, C Erik; Maas, Coen

    2016-10-01

    Episodic and recurrent local cutaneous or mucosal swelling are key features of angioedema. The vasoactive agents histamine and bradykinin are highly implicated as mediators of these swelling attacks. It is challenging to assess the contribution of bradykinin to the clinical expression of angioedema, as accurate biomarkers for the generation of this vasoactive peptide are still lacking. In this review, we will describe the mechanisms that are responsible for bradykinin production in hereditary angioedema (HAE) and the central role that the coagulation factor XII (FXII) plays in it. Evidently, several plasma parameters of coagulation change during attacks of HAE and may prove valuable biomarkers for disease activity. We propose that these changes are secondary to vascular leakage, rather than a direct consequence of FXII activation. Furthermore, biomarkers for fibrinolytic system activation (i.e. plasminogen activation) also change during attacks of HAE. These changes may reflect triggering of the bradykinin-forming mechanisms by plasmin. Finally, multiple lines of evidence suggest that neutrophil activation and mast-cell activation are functionally linked to bradykinin production. We put forward the paradigm that FXII functions as a 'sensor molecule' to detect conditions that require bradykinin release via crosstalk with cell-derived enzymes. Understanding the mechanisms that drive bradykinin generation may help to identify angioedema patients that have bradykinin-mediated disease and could benefit from a targeted treatment. PMID:27122021

  12. Bradykinin: Inflammatory Product of the Coagulation System.

    PubMed

    Hofman, Zonne; de Maat, Steven; Hack, C Erik; Maas, Coen

    2016-10-01

    Episodic and recurrent local cutaneous or mucosal swelling are key features of angioedema. The vasoactive agents histamine and bradykinin are highly implicated as mediators of these swelling attacks. It is challenging to assess the contribution of bradykinin to the clinical expression of angioedema, as accurate biomarkers for the generation of this vasoactive peptide are still lacking. In this review, we will describe the mechanisms that are responsible for bradykinin production in hereditary angioedema (HAE) and the central role that the coagulation factor XII (FXII) plays in it. Evidently, several plasma parameters of coagulation change during attacks of HAE and may prove valuable biomarkers for disease activity. We propose that these changes are secondary to vascular leakage, rather than a direct consequence of FXII activation. Furthermore, biomarkers for fibrinolytic system activation (i.e. plasminogen activation) also change during attacks of HAE. These changes may reflect triggering of the bradykinin-forming mechanisms by plasmin. Finally, multiple lines of evidence suggest that neutrophil activation and mast-cell activation are functionally linked to bradykinin production. We put forward the paradigm that FXII functions as a 'sensor molecule' to detect conditions that require bradykinin release via crosstalk with cell-derived enzymes. Understanding the mechanisms that drive bradykinin generation may help to identify angioedema patients that have bradykinin-mediated disease and could benefit from a targeted treatment.

  13. Textile wastewater purification through natural coagulants

    NASA Astrophysics Data System (ADS)

    Beltrán-Heredia, J.; Sánchez-Martín, J.; Rodríguez-Sánchez, M. T.

    2011-09-01

    A new coagulant obtained through polymerization of Acacia mearnsii de Wild tannin extract has been characterized in the removal of two dangerous dye pollutants: Alizarin Violet 3R and Palatine Fast Black WAN. This coagulant is lab-synthesized according to the etherification of tannins with glycidyltrimethylammonium chloride and formaldehyde and its performance in dye removal in terms of efficiency was high. Reasonably low coagulant dosages (ca. 50 mg L-1) reaches high capacity levels (around 0.8 for Alizarin Violet 3R and 1.6 for Palatine Fast Black WAN mg dye mg-1 of coagulant) and pH and temperature are not extremely affecting variables. The systems coagulant dyes were successfully modeled by applying the Langmuir hypothesis. q max and b parameters were obtained with an adjusted correlation factor ( r 2) above 0.8.

  14. Surface-mediated enzymatic reactions: simulations of tissue factor activation of factor X on a lipid surface.

    PubMed Central

    Gentry, R; Ye, L; Nemerson, Y

    1995-01-01

    Blood coagulation proceeds via reactions in which zymogen coagulation factors are activated to proteases. An essential step is the activation of factor X by a complex of tissue factor and factor VIIa. This complex usually is studied using phospholipid vesicles into which tissue factor is inserted. Because factor X exists free in solution and bound to the lipid-surface, it is difficult to establish experimentally the kinetic contribution of surfaces. We therefore developed a stochastic model to simulate such reactions and generate initial velocity data from which Michaelis-Menten parameters are estimated. Simulated Km values decrease slightly when substrate binding to lipid is increased and by a factor of four when the rates of surface diffusion are increased to that of fluid phase-diffusion. Simulations with various size planar surfaces established an enzyme capture radius of 32-64 nm. Simulations with different modes of enzyme-substrate complex assembly show that if the true substrate is lipid-bound, under certain conditions, the true Kcat is not measured; rather, the product "leaving rate" from the complex is the rate-limiting step that is measured as substrate is taken to infinity. This model is applicable to any surface-bound enzyme reaction. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:8527649

  15. Aberrant coagulation causes a hyper-inflammatory response in severe influenza pneumonia

    PubMed Central

    Yang, Yan; Tang, Hong

    2016-01-01

    Influenza A virus (IAV) infects the respiratory tract in humans and causes significant morbidity and mortality worldwide each year. Aggressive inflammation, known as a cytokine storm, is thought to cause most of the damage in the lungs during IAV infection. Dysfunctional coagulation is a common complication in pathogenic influenza, manifested by lung endothelial activation, vascular leak, disseminated intravascular coagulation and pulmonary microembolism. Importantly, emerging evidence shows that an uncontrolled coagulation system, including both the cellular (endothelial cells and platelets) and protein (coagulation factors, anticoagulants and fibrinolysis proteases) components, contributes to the pathogenesis of influenza by augmenting viral replication and immune pathogenesis. In this review, we focus on the underlying mechanisms of the dysfunctional coagulatory response in the pathogenesis of IAV. PMID:27041635

  16. Plasma levels of plasminogen activator inhibitor type 1, factor VIII, prothrombin activation fragment 1+2, anticardiolipin, and antiprothrombin antibodies are risk factors for thrombosis in hemodialysis patients.

    PubMed

    Molino, Daniela; De Santo, Natale G; Marotta, Rosa; Anastasio, Pietro; Mosavat, Mahrokh; De Lucia, Domenico

    2004-09-01

    Patients with end-stage renal disease are prone to hemorrhagic complications and simultaneously are at risk for a variety of thrombotic complications such as thrombosis of dialysis blood access, the subclavian vein, coronary arteries, cerebral vessel, and retinal veins, as well as priapism. The study was devised for the following purposes: (1) to identify the markers of thrombophilia in hemodialyzed patients, (2) to establish a role for antiphospholipid antibodies in thrombosis of the vascular access, (3) to characterize phospholipid antibodies in hemodialysis patients, and (4) to study the effects of dialysis on coagulation cascade. A group of 20 hemodialysis patients with no thrombotic complications (NTC) and 20 hemodialysis patients with thrombotic complications (TC) were studied along with 400 volunteer blood donors. Patients with systemic lupus erythematosus and those with nephrotic syndrome were excluded. All patients underwent a screening prothrombin time, activated partial thromboplastin time, fibrinogen (Fg), coagulation factors of the intrinsic and extrinsic pathways, antithrombin III (AT-III), protein C (PC), protein S (PS), resistance to activated protein C, prothrombin activation fragment 1+2 (F1+2), plasminogen, tissue type plasminogen activator (t-PA), plasminogen tissue activator inhibitor type-1 (PAI-1), anticardiolipin antibodies type M and G (ACA-IgM and ACA-IgG), lupus anticoagulant antibodies, and antiprothrombin antibodies type M and G (aPT-IgM and aPT-IgG). The study showed that PAI-1, F 1+2, factor VIII, ACA-IgM, and aPT-IgM levels were increased significantly over controls both in TC and NTC, however, they could distinguish patients with thrombotic complications from those without, being increased maximally in the former group. The novelty of the study is represented by the significant aPT increase that was observed in non-systemic lupus erythematosus hemodialysis patients, and particularly in those with thrombotic events. In addition

  17. Role of adipose tissue in haemostasis, coagulation and fibrinolysis.

    PubMed

    Faber, D R; de Groot, Ph G; Visseren, F L J

    2009-09-01

    Obesity is associated with an increased incidence of insulin resistance (IR), type 2 diabetes mellitus and cardiovascular diseases. The increased risk for cardiovascular diseases could partly be caused by a prothrombotic state that exists because of abdominal obesity. Adipose tissue induces thrombocyte activation by the production of adipose tissue-derived hormones, often called adipokines, of which some such as leptin and adiponectin have been shown to directly interfere with platelet function. Increased adipose tissue mass induces IR and systemic low-grade inflammation, also affecting platelet function. It has been demonstrated that adipose tissue directly impairs fibrinolysis by the production of plasminogen activator inhibitor-1 and possibly thrombin-activatable fibrinolysis inhibitor. Adipose tissue may contribute to enhanced coagulation by direct tissue factor production, but hypercoagulability is likely to be primarily caused by affecting hepatic synthesis of the coagulation factors fibrinogen, factor VII, factor VIII and tissue factor, by releasing free fatty acids and pro-inflammatory cytokines (tumour necrosis factor-alpha, interleukin-1beta and interleukin-6) into the portal circulation and by inducing hepatic IR. Adipose tissue dysfunction could thus play a causal role in the prothrombotic state observed in obesity, by directly and indirectly affecting haemostasis, coagulation and fibrinolysis. PMID:19460118

  18. Factor Xa stimulates fibroblast procollagen production, proliferation, and calcium signaling via PAR{sub 1} activation

    SciTech Connect

    Blanc-Brude, Olivier P. . E-mail: olivier.blanc-brude@larib.inserm.fr; Archer, Fabienne; Leoni, Patricia; Derian, Claudia; Bolsover, Steven; Laurent, Geoffrey J.; Chambers, Rachel C.

    2005-03-10

    Fibroblast proliferation and procollagen production are central features of tissue repair and fibrosis. In addition to its role in blood clotting, the coagulation cascade proteinase thrombin can contribute to tissue repair by stimulating fibroblasts via proteolytic activation of proteinase-activated receptor-1 (PAR{sub 1}). During hemostasis, the coagulation cascade proteinase factor X is converted into factor Xa. We have previously shown that factor Xa upregulates fibroblast proliferation via production of autocrine PDGF. In this study, we further examined the effects of factor Xa on fibroblast function and aimed to identify its signaling receptor. We showed that factor Xa stimulates procollagen promoter activity and protein production by human and mouse fibroblasts. This effect was independent of PDGF and thrombin production, but dependent on factor Xa proteolytic activity. We also showed that PAR{sub 1}-deficient mouse fibroblasts did not upregulate procollagen production, mobilize cytosolic calcium, or proliferate in response to factor Xa. Desensitization techniques and PAR{sub 1}-specific agonists and inhibitors were used to demonstrate that PAR{sub 1} mediates factor Xa signaling in human fibroblasts. This is the first report that factor Xa stimulates extracellular matrix production. In contrast with endothelial cells and vascular smooth muscle cells, fibroblasts appear to be the only cell type in which the effects of factor Xa are mediated mainly via PAR{sub 1} and not PAR{sub 2}. These findings are critical for our understanding of tissue repair and fibrotic mechanisms, and for the design of novel approaches to inhibit the profibrotic effects of the coagulation cascade without compromising blood hemostasis.

  19. Tissue Factor Pathway Inhibitor: Multiple Anticoagulant Activities for a Single Protein.

    PubMed

    Mast, Alan E

    2016-01-01

    Tissue factor (TF) pathway inhibitor (TFPI) is an anticoagulant protein that inhibits early phases of the procoagulant response. Alternatively spliced isoforms of TFPI are differentially expressed by endothelial cells and human platelets and plasma. The TFPIβ isoform localizes to the endothelium surface where it is a potent inhibitor of TF-factor VIIa complexes that initiate blood coagulation. The TFPIα isoform is present in platelets. TFPIα contains a stretch of 9 amino acids nearly identical to those found in the B-domain of factor V that are well conserved in mammals. These amino acids provide exosite binding to activated factor V, which allows for TFPIα to inhibit prothrombinase during the initiation phase of blood coagulation. Endogenous inhibition at this point in the coagulation cascade was only recently recognized and has provided a biochemical rationale to explain the pathophysiological mechanisms underlying several clinical disorders. These include the east Texas bleeding disorder that is caused by production of an altered form of factor V with high affinity for TFPI and a paradoxical procoagulant effect of heparins. In addition, these findings have led to ideas for pharmacological targeting of TFPI that may reduce bleeding in hemophilia patients.

  20. Aestivation induces changes in transcription and translation of coagulation factor II and fibrinogen gamma chain in the liver of the African lungfish Protopterus annectens.

    PubMed

    Hiong, Kum C; Tan, Xiang R; Boo, Mel V; Wong, Wai P; Chew, Shit F; Ip, Yuen K

    2015-12-01

    This study aimed to sequence and characterize two pro-coagulant genes, coagulation factor II (f2) and fibrinogen gamma chain (fgg), from the liver of the African lungfish Protopterus annectens, and to determine their hepatic mRNA expression levels during three phases of aestivation. The protein abundance of F2 and Fgg in the liver and plasma was determined by immunoblotting. The results indicated that F2 and Fgg of P. annectens were phylogenetically closer to those of amphibians than those of teleosts. Three days of aestivation resulted in an up-regulation in the hepatic fgg mRNA expression level, while 6 days of aestivation led to a significant increase (3-fold) in the protein abundance of Fgg in the plasma. Hence, there could be an increase in the blood-clotting ability in P. annectens during the induction phase of aestivation. By contrast, the blood-clotting ability in P. annectens might be reduced in response to decreased blood flow and increased possibility of thrombosis during the maintenance phase of aestivation, as 6 months of aestivation led to significant decreases in mRNA expression levels of f2 and fgg in the liver. There could also be a decrease in the export of F2 and Fgg from the liver to the plasma so as to avert thrombosis. Three to 6 days after arousal from 6 months of aestivation, the protein abundance of F2 and Fgg recovered partially in the plasma of P. annectens; a complete recovery of the transcription and translation of f2/F2 in the liver might occur only after refeeding.

  1. Effect of Chronic Blood Transfusion on Biomarkers of Coagulation Activation and Thrombin Generation in Sickle Cell Patients at Risk for Stroke

    PubMed Central

    Hyacinth, Hyacinth I.; Adams, Robert J.; Greenberg, Charles S.; Voeks, Jenifer H.; Hill, Allyson; Hibbert, Jacqueline M.; Gee, Beatrice E.

    2015-01-01

    Hypercoagulability in sickle cell disease (SCD) is associated with multiple SCD phenotypes, association with stroke risk has not been well described. We hypothesized that serum levels of biomarkers of coagulation activation correlate with high transcranial Doppler ultrasound velocity and decreases with blood transfusion therapy in SCD patients. Stored serum samples from subjects in the Stroke Prevention in Sickle Cell Anemia (STOP) trial were analyzed using ELISA and protein multiplexing techniques. 40 subjects from each treatment arm (Standard Care [SC] and Transfusion [Tx]) at three time points—baseline, study exit and one year post-trial and 10 each of age matched children with SCD but normal TCD (SNTCD) and with normal hemoglobin (HbAA) were analyzed. At baseline, median vWF, TAT and D-dimer levels were significantly higher among STOP subjects than either HbAA or SNTCD. At study exit, median hemoglobin level was significantly higher while median TCD velocity was significantly lower in Tx compared to SC subjects. Median vWF (409.6 vs. 542.9 μg/ml), TAT (24.8 vs. 40.0 ng/ml) and D-dimer (9.2 vs. 19.1 μg/ml) levels were also significantly lower in the Tx compared to the SC group at study exit. Blood levels of biomarkers coagulation activation/thrombin generation correlated positively with TCD velocity and negatively with number of blood transfusions. Biomarkers of coagulation activation/thrombin generation were significantly elevated in children with SCD, at high risk for stroke. Reduction in levels of these biomarkers correlated with reduction in stroke risk (lower TCD velocity), indicating a possible role for hypercoagulation in SCD associated stroke. PMID:26305570

  2. Influence of Blood Lipids on Global Coagulation Test Results

    PubMed Central

    Kim, Jung-Ah; Kim, Ji-Eun; Song, Sang Hoon

    2015-01-01

    Background High levels of blood lipids have been associated with high levels of coagulation factors. We investigated whether blood lipids influence the results of global coagulation tests, including prothrombin time (PT), activated partial thromboplastin time (aPTT), and thrombin generation assay (TGA). Methods PT, aPTT, and TGA, along with procoagulant and anticoagulant factors, were measured in 488 normal individuals. Vitamin K status was assessed with prothrombin-induced by vitamin K absence-II (PIVKA-II). Results The procoagulant factors II, VII, IX, X, and XI and anticoagulant factors protein C and protein S showed significant correlations with triglyceride, and the procoagulant factors II, V, VII, IX, X, XI, and XII and anticoagulant factors antithrombin and protein C correlated with total cholesterol. There were no correlations of blood lipid levels with PIVKA-II levels. Subjects with high triglyceride levels (≥200 mg/dL) showed shorter PT values than those with lower triglyceride levels. However, aPTT value was not changed in terms of blood lipid levels. In both 1 and 5 pM tissue factor-induced TGAs, subjects in the high-triglyceride or high-cholesterol groups (≥240 mg/dL) had high levels of lag time, time-to-peak, and endogenous thrombin potential. Total cholesterol was a significant determinant of PT and TGA values. Conclusion High blood lipids were related with increased coagulation activity in a normal population. Our findings are expected to help interpret the global coagulation test results in individuals with high lipid levels. PMID:25553275

  3. Effects of Al-coagulant sludge characteristics on the efficiency of coagulants recovery by acidification.

    PubMed

    Chen, Yi-Jui; Wang, Wen-May; Wei, Ming-Jun; Chen, Jiann-Long; He, Ju-Liang; Chiang, Kung-Yuh; Wu, Chih-Chao

    2012-12-01

    This study evaluated the effects of Al-coagulant sludge characteristics on the efficiency ofcoagulant recovery by acidification with H2SO4. Two sludge characteristics were studied: types of coagulant and textures of the suspended solid in raw water. The coagulant types are aluminium sulphate and polyaluminium chloride (PACl); the textures of the suspended solid are sand-based and clay-based. Efficiency of aluminium recovery at a pH of 2 was compared for different sludges obtained from water treatment plants in Taiwan. The results showed that efficiency of aluminium recovery from sludge containing clayey particles was higher than that from sludge containing sandy particles. As for the effect of coagulant types, the aluminium recovery efficiency for sludge using PACl ranged between 77% and 100%, whereas it ranged between 65% and 72% for sludge using aluminium sulphate as the coagulant. This means using PACl as the coagulant could result in higher recovery efficiency of coagulant and be beneficial for water treatment plants where renewable materials and waste reduction as the factors for making decisions regarding plant operations. However, other metals, such as manganese, could be released with aluminium during the acidification process and limit the use of the recovered coagulants. It is suggested that the recovered coagulants be used in wastewater treatment processes.

  4. Coagulation abnormalities in the cirrhotic patient.

    PubMed

    Muciño-Bermejo, Jimena; Carrillo-Esper, Raúl; Uribe, Misael; Méndez-Sánchez, Nahum

    2013-01-01

    The clotting process is a dynamic array of multiple processes which can be described in four phases: platelet plug initiation and formation, clotting process propagation by the coagulation cascade, clotting termination by antithrombotic mechanisms and clot removal by fibrinolysis. The liver plays a central role in each of these phases of clotting process, as it synthesizes the majority of coagulation factors and proteins involved in fibrinolysis as well as thrombopoeitin, which is responsible for platelet production from megakaryocytes. Many pathological processes associated with cirrhosis, such as portal hypertension and endothelial dysfunction, as well as co-morbid conditions, may also alter the coagulation process. Consequently, patients with liver disease have a disturbed balance of procoagulant and anti-coagulant factors which deviates from the normal coagulation cascade. This situation poses an additional problem in the diagnostic and therapeutic approach to this group of patients, since traditional coagulation test may not be reliable for assessing bleeding or thrombotic risk and traditional transfusional strategies may not be applicable in cirrhotic patients. In this article, we review the pathophysiological bases of coagulation abnormalities, in cirrhotic patients, the diagnostic therapeutic strategies to be followed and its impact on the clinical outcome in the cirrhotic patient.

  5. Transfusion and coagulation management in liver transplantation

    PubMed Central

    Clevenger, Ben; Mallett, Susan V

    2014-01-01

    There is wide variation in the management of coagulation and blood transfusion practice in liver transplantation. The use of blood products intraoperatively is declining and transfusion free transplantations take place ever more frequently. Allogenic blood products have been shown to increase morbidity and mortality. Primary haemostasis, coagulation and fibrinolysis are altered by liver disease. This, combined with intraoperative disturbances of coagulation, increases the risk of bleeding. Meanwhile, the rebalancing of coagulation homeostasis can put patients at risk of hypercoagulability and thrombosis. The application of the principles of patient blood management to transplantation can reduce the risk of transfusion. This includes: preoperative recognition and treatment of anaemia, reduction of perioperative blood loss and the use of restrictive haemoglobin based transfusion triggers. The use of point of care coagulation monitoring using whole blood viscoelastic testing provides a picture of the complete coagulation process by which to guide and direct coagulation management. Pharmacological methods to reduce blood loss include the use of anti-fibrinolytic drugs to reduce fibrinolysis, and rarely, the use of recombinant factor VIIa. Factor concentrates are increasingly used; fibrinogen concentrates to improve clot strength and stability, and prothrombin complex concentrates to improve thrombin generation. Non-pharmacological methods to reduce blood loss include surgical utilisation of the piggyback technique and maintenance of a low central venous pressure. The use of intraoperative cell salvage and normovolaemic haemodilution reduces allogenic blood transfusion. Further research into methods of decreasing blood loss and alternatives to blood transfusion remains necessary to continue to improve outcomes after transplantation. PMID:24876736

  6. Preparation of factor VII concentrate using CNBr-activated Sepharose 4B immunoaffinity chromatography

    PubMed Central

    Mousavi Hosseini, Kamran; Nasiri, Saleh

    2015-01-01

    Background: Factor VII concentrates are used in patients with congenital or acquired factor VII deficiency or treatment of hemophilia patients with inhibitors. In this research, immunoaffinity chromatography was used to purify factor VII from prothrombin complex (Prothrombin- Proconvertin-Stuart Factor-Antihemophilic Factor B or PPSB) which contains coagulation factors II, VII, IX and X. The aim of this study was to improve purity, safety and tolerability as a highly purified factor VII concentrate. Methods: PPSB was prepared using DEAE-Sephadex and was used as the starting material for purification of coagulation factor VII. Prothrombin complex was treated by solvent/detergent at 24°C for 6 h with constant stirring. The mixture of PPSB in the PBS buffer was filtered and then chromatographed using CNBr-activated Sepharose 4B coupled with specific antibody. Factors II, IX, VII, X and VIIa were assayed on the fractions. Fractions of 48-50 were pooled and lyophilized as a factor VII concentrate. Agarose gel electrophoresis was performed and Tween 80 was measured in the factor VII concentrate. Results: Specific activity of factor VII concentrate increased from 0.16 to 55.6 with a purificationfold of 347.5 and the amount of activated factor VII (FVIIa) was found higher than PPSB (4.4-fold). Results of electrophoresis on agarose gel indicated higher purity of Factor VII compared to PPSB; these finding revealed that factor VII migrated as alpha-2 proteins. In order to improve viral safety, solvent-detergent treatment was applied prior to further purification and nearly complete elimination of tween 80 (2 μg/ml). Conclusion: It was concluded that immuonoaffinity chromatography using CNBr-activated Sepharose 4B can be a suitable choice for large-scale production of factor VII concentrate with higher purity, safety and activated factor VII. PMID:26034723

  7. Conformational change path between closed and open forms of C2 domain of coagulation factor V on a two-dimensional free-energy surface

    NASA Astrophysics Data System (ADS)

    Wu, Sangwook; Lee, Chang Jun; Pedersen, Lee G.

    2009-04-01

    We test a hypothesis that the closed form of the C2 domain of coagulation factor V is more stable than the open form in an aqueous environment using a two-dimensional free-energy calculation with a simple dielectric solvent model. Our result shows that while the free-energy difference between two forms is small, favoring the closed form, a two-dimensional free-energy surface (FES) reveals that a transition state (1.53 kcal/mol) exists between the two conformations. By mapping the one-dimensional order parameter ΔQ onto the two-dimensional FES, we search the conformational change path with the highest Boltzmann weighting factor between the closed and open form of the factor V C2 domain. The predicted transition path from the closed to open form is not that of simple side chain movements, but instead concerted movements of several loops. We also present a one-dimensional free-energy profile using a collective order parameter, which in a coarse manner locates the energy barriers found on the two-dimensional FES.

  8. Silica Nanoparticles Effects on Blood Coagulation Proteins and Platelets

    PubMed Central

    Gryshchuk, Volodymyr; Galagan, Natalya

    2016-01-01

    Interaction of nanoparticles with the blood coagulation is important prior to their using as the drug carriers or therapeutic agents. The aim of present work was studying of the primary effects of silica nanoparticles (SiNPs) on haemostasis in vitro. We studied the effect of SiNPs on blood coagulation directly estimating the activation of prothrombin and factor X and to verify any possible effect of SiNPs on human platelets. It was shown that SiNPs shortened coagulation time in APTT and PT tests and increased the activation of factor X induced by RVV possibly due to the sorption of intrinsic pathway factors on their surface. SiNPs inhibited the aggregation of platelet rich plasma induced by ADP but in the same time partially activated platelets as it was shown using flow cytometry. The possibility of SiNPs usage in nanomedicine is strongly dependant on their final concentration in bloodstream and the size of the particles that are used. However SiNPs are extremely promising as the haemostatic agents for preventing the blood loss after damage. PMID:26881078

  9. Blood coagulation and platelet adhesion on polyaniline films.

    PubMed

    Humpolíček, Petr; Kuceková, Zdenka; Kašpárková, Věra; Pelková, Jana; Modic, Martina; Junkar, Ita; Trchová, Miroslava; Bober, Patrycja; Stejskal, Jaroslav; Lehocký, Marián

    2015-09-01

    Polyaniline is a promising conducting polymer with still increasing application potential in biomedicine. Its surface modification can be an efficient way how to introduce desired functional groups and to control its properties while keeping the bulk characteristics of the material unchanged. The purpose of the study was to synthetize thin films of pristine conducting polyaniline hydrochloride, non-conducting polyaniline base and polyaniline modified with poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA) and investigate chosen parameters of their hemocompatibility. The modification was performed either by introduction of PAMPSA during the synthesis or by reprotonation of polyaniline base. The polyaniline hydrochloride and polyaniline base had no impact on blood coagulation and platelet adhesion. By contrast, the polyaniline reprotonated with PAMPSA completely hindered coagulation thanks to its interaction with coagulation factors Xa, Va and IIa. The significantly lower platelets adhesion was also found on this surface. Moreover, this film maintains its conductivity at pH of 6, which is an improvement in comparison with standard polyaniline hydrochloride losing most of its conductivity at pH of 4. Polyaniline film with PAMPSA introduced during synthesis had an impact on platelet adhesion but not on coagulation. The combined conductivity, anticoagulation activity, low platelet adhesion and improved conductivity at pH closer to physiological, open up new possibilities for application of polyaniline reprotonated by PAMPSA in blood-contacting devices, such as catheters or blood vessel grafts.

  10. Blood coagulation and platelet adhesion on polyaniline films.

    PubMed

    Humpolíček, Petr; Kuceková, Zdenka; Kašpárková, Věra; Pelková, Jana; Modic, Martina; Junkar, Ita; Trchová, Miroslava; Bober, Patrycja; Stejskal, Jaroslav; Lehocký, Marián

    2015-09-01

    Polyaniline is a promising conducting polymer with still increasing application potential in biomedicine. Its surface modification can be an efficient way how to introduce desired functional groups and to control its properties while keeping the bulk characteristics of the material unchanged. The purpose of the study was to synthetize thin films of pristine conducting polyaniline hydrochloride, non-conducting polyaniline base and polyaniline modified with poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA) and investigate chosen parameters of their hemocompatibility. The modification was performed either by introduction of PAMPSA during the synthesis or by reprotonation of polyaniline base. The polyaniline hydrochloride and polyaniline base had no impact on blood coagulation and platelet adhesion. By contrast, the polyaniline reprotonated with PAMPSA completely hindered coagulation thanks to its interaction with coagulation factors Xa, Va and IIa. The significantly lower platelets adhesion was also found on this surface. Moreover, this film maintains its conductivity at pH of 6, which is an improvement in comparison with standard polyaniline hydrochloride losing most of its conductivity at pH of 4. Polyaniline film with PAMPSA introduced during synthesis had an impact on platelet adhesion but not on coagulation. The combined conductivity, anticoagulation activity, low platelet adhesion and improved conductivity at pH closer to physiological, open up new possibilities for application of polyaniline reprotonated by PAMPSA in blood-contacting devices, such as catheters or blood vessel grafts. PMID:26119372

  11. The site of activation of factor X by cancer procoagulant.

    PubMed

    Gordon, S G; Mourad, A M

    1991-12-01

    Cancer procoagulant (CP) is a cysteine proteinase found in a variety of malignant cells and tissues and in human amnion-chorion tissue. It initiates coagulation by activating factor X. However, the amino acid sequence of the substrate protein that determines the cleavage site of cysteine proteinases is different from that of the serine proteinases that normally activate factor X, such as factor IXa, VIIa and Russell's Viper Venom (RVV). Therefore, it was of interest to determine the site of cleavage of human factor X by CP. Purified CP was incubated with purified factor X and the reaction mixture was electrophoresed on a 10% Tris-tricine SDS-PAGE gel. The proteins were electroeluted on to a polyvinylidene difluoride (PVDF) membrane, and stained with Coomassie blue. The heavy chain of activated factor X was cut out of the PVDF membrane and sequenced with an Applied Biosystems 477A with on-line HPLC. The primary cleavage sequence was Asp-Ala-Ala-Asp-Leu-Asp-Pro-; two other secondary sequences Ser-Ile-Thr-Trp-Lys-Pro- and Glu-Asn-Pro-Phe-Asp-Leu were found. The penultimate amino acid on the carbonyl side of the hydrolysed amide bond plays a critical role for the recognition of the cleavage site of cysteine proteinases. These data indicate that the penultimate amino acid for the primary cleavage site of factor X by CP is proline-20 and for the secondary sites, proline-13 and proline-28. This is in contrast to arginine-52 that determines the specificity of the cleavage by normal serine proteinase activation.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Impact of nonsynonymous mutations of factor X on the functions of factor X and anticoagulant activity of edoxaban.

    PubMed

    Noguchi, Kengo; Morishima, Yoshiyuki; Takahashi, Shinichi; Ishihara, Hiroaki; Shibano, Toshiro; Murata, Mitsuru

    2015-03-01

    Edoxaban is an oral direct factor Xa (FXa) inhibitor and its efficacy as an oral anticoagulant is less subject to drug-food and drug-drug interaction than existing vitamin K antagonists. Although this profile of edoxaban suggests it is well suited for clinical use, it is not clear whether genetic variations of factor X influence the activity of edoxaban. Our aim was to investigate a possible impact of single-nucleotide polymorphisms (SNPs) in the factor X gene on the functions of factor X and the activity of edoxaban. Two nonsynonymous SNPs within mature factor X, Ala152Thr and Gly192Arg, were selected as possible candidates that might affect the functions of FXa and the activity of edoxaban. We measured catalytic activities of wild type and mutant FXas in a chromogenic assay using S-2222 and coagulation times including prothrombin time (PT) and activated partial thrombin time (aPTT) of plasma-containing recombinant FXs in the presence and absence of edoxaban. Michaelis-Menten kinetic parameters of FXas, Km and Vmax values, PT and aPTT were not influenced by either mutation indicating these mutations do not affect the FXa catalytic and coagulation activities. The Ki values of edoxaban for the FXas and the concentrations of edoxaban required to double PT and aPTT were not different between wild type and mutated FXas indicating that both mutations have little impact on the activity of edoxaban. In conclusion, these data suggest that edoxaban has little interpatient variability stemming from SNPs in the factor X gene. PMID:24911450

  13. Active tissue factor and activated factor XI in circulating blood of patients with systolic heart failure due to ischemic cardiomyopathy

    PubMed Central

    Zabczyk, Michał; Butenas, Saulius; Palka, Ilona; Nessler, Jadwiga; Undas, Anetta

    2011-01-01

    INTRODUCTION Elevated clotting factors and thrombin generation have been reported to occur in patients with heart failure (HF). Circulating activated factor XI (FXIa) and active tissue factor (TF) can be detected in acute coronary syndromes and stable angina. OBJECTIVES We investigated circulating FXIa and active TF and their associations in patients with systolic HF due to ischemic cardiomyopathy. PATIENTS AND METHODS In an observational study, we assessed 53 consecutive patients, aged below 75 years, with stable HF associated with documented coronary artery disease (CAD). Atrial fibrillation (LA), recent thromboembolic events, and current anticoagulant therapy were the exclusion criteria. Plasma TF and FXIa activity was determined in clotting assays by measuring the response to inhibitory monoclonal antibodies. RESULTS Coagulant TF activity was detected in 20 patients (37.7%), and FXIa in 22 patients (41.5%). Patients with detectable TF activity and/or FXIa were younger, had a history of myocardial infarction more frequently, significantly higher F1+2 prothrombin fragments, larger LA and right ventricular diastolic diameter, and higher right ventricular systolic pressure than the remaining subjects (P ≤0.01 for all). Circulating FXIa was positively correlated with F1+2 levels (r = 0.69; P <0.001). CONCLUSIONS Circulating active TF and FXIa occurred in about 40% of patients with systolic HF due to ischemic cardiomyopathy. The presence of these factors was associated with enhanced thrombin formation. Associations between both factors and LA diameter and right ventricular parameters might suggest that TF and FXIa predispose to thromboembolic complications of HF. PMID:20864906

  14. Perioperative coagulation management--fresh frozen plasma.

    PubMed

    Kor, Daryl J; Stubbs, James R; Gajic, Ognjen

    2010-03-01

    Clinical studies support the use of perioperative fresh frozen plasma (FFP) in patients who are actively bleeding with multiple coagulation factor deficiencies and for the prevention of dilutional coagulopathy in patients with major trauma and/or massive haemorrhage. In these settings, current FFP dosing recommendations may be inadequate. However, a substantial proportion of FFP is transfused in non-bleeding patients with mild elevations in coagulation screening tests. This practice is not supported by the literature, is unlikely to be of benefit and unnecessarily exposes patients to the risks of FFP. The role of FFP in reversing the effects of warfarin anticoagulation is dependent on the clinical context and availability of alternative agents. Although FFP is commonly transfused in patients with liver disease, this practice needs broad reconsideration. Adverse effects of FFP include febrile and allergic reactions, transfusion-associated circulatory overload and transfusion-related acute lung injury. The latter is the most serious complication, being less common with the preferential use of non-alloimmunised, male-donor predominant plasma. FP24 and thawed plasma are alternatives to FFP with similar indications for administration. Both provide an opportunity for increasing the safe plasma donor pool. Although prothrombin complex concentrates and factor VIIa may be used as alternatives to FFP in a variety of specific clinical contexts, additional study is needed.

  15. Histidine-rich glycoprotein binds DNA and RNA and attenuates their capacity to activate the intrinsic coagulation pathway.

    PubMed

    Vu, Trang T; Leslie, Beverly A; Stafford, Alan R; Zhou, Ji; Fredenburgh, James C; Weitz, Jeffrey I

    2016-01-01

    When triggered by factor (F) XII and nucleic acids, we showed that thrombosis in HRG-deficient mice is accelerated compared with that in wild-type mice. In this study, we set out to identify the mechanisms by which nucleic acids promote contact activation, and to determine whether HRG attenuates their effects. DNA or RNA addition to human plasma enhances thrombin generation via the intrinsic pathway and shortens the clotting time. Their effect on the clotting time is seven- to 14-fold greater in HRG-deficient plasma than in control plasma. Investigations into the mechanisms of activation reveal that nucleic acids a) promote FXII activation in the presence of prekallikrein- and high molecular weight kininogen (HK), and b) enhance thrombin-mediated FXI activation by 10- to 12-fold. Surface plasmon resonance studies show that DNA and RNA bind FXII, FXIIa, HK, FXI, FXIa and thrombin with high affinity. HRG attenuates DNA- and RNA-mediated FXII activation, and FXI activation by FXIIa or by thrombin, suggesting that HRG down regulates the capacity of DNA and RNA to activate the intrinsic pathway. Therefore, HRG attenuates the procoagulant activity of nucleic acids at multiple levels.

  16. A comparison of coagulation factor replacement with and without prednisolone in the treatment of haematuria in haemophilia and Christmas disease.

    PubMed

    Rizza, C R; Kernoff, P B; Matthews, J M; McLennan, C R; Rainsford, S G

    1977-02-28

    A double-blind controlled study was carried out to investigate the effectiveness of treatment with factor VIII or factor IX concentrate and a reducing dose of prednisolone in contolling haematuria in patients with haemophilia and Christmas disease. 41 episodes of haematuria were studied in 30 different patients. No appreciable benefit was observed in the treated, as compared with the control group and this is at variance with the results of the few studies reported elsewhere.

  17. Coagulation Changes During Graded Orhostatic Stress and Recovery

    NASA Astrophysics Data System (ADS)

    Goswami, Nandu; Cvirn, Gerhard; Schlagenhauf, Aaxel; Leschnik, Bettina; Koestenberger, Martin; Roessler, Andreas; Jantscher, Andreas; Waha, James Elvis; Wolf, Sabine; Vrecko, Karoline; Juergens, Guenther; Hinghofer-Szalkay, Helmut

    2013-02-01

    Background: Orthostatic stress has been introduced as a novel paradigm for activating the coagulation system. We examined whether graded orthostatic stress (using head up tilt, HUT + lower body negative pressure, LBNP) until presyncope leads to anti / pro-coagulatory changes and how rapidly they return to baseline during recovery. Methodology: Eight male subjects were enrolled in this study. Presyncopal runs were carried out using HUT + LBNP. At minute zero, the tilt table was brought from 0° (supine) to 70 ° head-up position for 4 min, after which pressure in the LBNP chamber was reduced to -15, -30, and -45 mm Hg every 4 min. At presyncope, the subjects were returned to supine position. Coagulatory responses and plasma mass density (for volume changes) were measured before, during and 20 min after the orthostatic stress. Whole blood coagulation was examined by means of thrombelastometry. Platelet aggregation in whole blood was examined by using impedance aggregometry. Thrombin generation parameters, prothrombin levels, and markers of endothelial activation were measured in plasma samples. Results: At presyncope, plasma volume was 20 % below the initial supine value. Blood cell counts, prothrombin levels, thrombin peak, endogenous thrombin potential (ETP), and tissue factor pathway inhibitor (TFPI) levels increased during the protocol, commensurate with hemoconcentration. The markers of endothelial activation (tissue factor, TF, tissue plasminogen activator, t-PA) and the markers of thrombin generation (Prothrombin fragments 1 and 2, F1+2, and thrombin-antithrombin complex, TAT) increased significantly. During recovery, all the coagulation parameters returned to initial supine values except F1 +2 and TAT. Conclusion: Head-up tilt/LBNP leads to activation of the coagulation system. Some of the markers of thrombin formation are still at higher than supine levels during recovery.

  18. The removal of anionic surfactants from water in coagulation process.

    PubMed

    Kaleta, Jadwiga; Elektorowicz, Maria

    2013-01-01

    This paper presents the results of a laboratory study on the effectiveness of the coagulation process in removing surfactants from water. The application of traditional coagulants (aluminium sulfate and iron chlorides) has not brought satisfactory results, the reduction in anionic surfactant (AS) content reached 7.6% and 10%, respectively. Adding cationic polyelectrolyte (Zetag-50) increased the removal efficiency to 24%. Coagulation using a polyelectrolyte alone proved to be more efficient, the reduction in surfactant content fluctuated at a level of about 50%. Complete surfactant removal was obtained when powdered activated carbon was added 5 minutes before the basic coagulant to the coagulation process. The efficiency of surfactant coagulation also increased after the application of powdered clinoptilolite, but to a smaller degree. Then the removal of AS was found to be improved by dosing powdered clinoptilolite simultaneously or with short delay after the addition of the basic coagulant. PMID:23837351

  19. Powdered activated carbon coupled with enhanced coagulation for natural organic matter removal and disinfection by-product control: application in a Western Australian water treatment plant.

    PubMed

    Kristiana, Ina; Joll, Cynthia; Heitz, Anna

    2011-04-01

    The removal of organic precursors of disinfection by-products (DBPs), i.e. natural organic matter (NOM), prior to disinfection and distribution is considered as the most effective approach to minimise the formation of DBPs. This study investigated the impact of the addition of powdered activated carbon (PAC) to an enhanced coagulation treatment process at an existing water treatment plant on the efficiency of NOM removal, the disinfection behaviour of the treated water, and the water quality in the distribution system. This is the first comprehensive assessment of the efficacy of plant-scale application of PAC combined with enhanced coagulation on an Australian source water. As a result of the PAC addition, the removal of NOM improved by 70%, which led to a significant reduction (80-95%) in the formation of DBPs. The water quality in the distribution system also improved, indicated by lower concentrations of DBPs in the distribution system and better maintenance of disinfectant residual at the extremities of the distribution system. The efficacy of the PAC treatment for NOM removal was shown to be a function of the characteristics of the NOM and the quality of the source water, as well as the PAC dose. PAC treatment did not have the capacity to remove bromide ion, resulting in the formation of more brominated DBPs. Since brominated DBPs have been found to be more toxic than their chlorinated analogues, their preferential formation upon PAC addition must be considered, especially in source waters containing high concentrations of bromide. PMID:21353285

  20. Comparison of the rates of joint arthroplasty in patients with severe factor VIII and IX deficiency: an index of different clinical severity of the 2 coagulation disorders.

    PubMed

    Tagariello, Giuseppe; Iorio, Alfonso; Santagostino, Elena; Morfini, Massimo; Bisson, Ruggero; Innocenti, Massimo; Mancuso, Maria Elisa; Mazzucconi, Maria Gabriella; Pasta, Gian Luigi; Radossi, Paolo; Rodorigo, Giuseppina; Santoro, Cristina; Sartori, Roberto; Scaraggi, Antonio; Solimeno, Luigi Pier; Mannucci, Pier Mannuccio

    2009-07-23

    Data from the Italian Hemophilia Centres were collected to perform a retrospective survey of joint arthroplasty in patients with severe hemophilia. Twenty-nine of 49 hemophilia centers reported that 328 of the 347 operations were carried out in 253 patients with severe hemophilia A (HA) and 19 in 15 patients with severe hemophilia B (HB). When results were normalized to the whole Italian hemophilia population (1770 severe HA and 319 severe HB), patients with HA had a 3-fold higher risk of undergoing joint arthroplasty (odds ratio [OR], 3.38; 95% confidence interval [CI], 1.97-5.77; P < .001). These results were confirmed after adjustment for age, HIV, hepatitis C virus (HCV), and inhibitor in a Cox regression model (HR, 2.65; 95% CI, 1.62-4.33; P < .001). The survival analysis of time to joint arthroplasty in the subset of patients with severe HA was not affected by the severity of factor VIII (FVIII) gene mutations. A systematic review of literature articles reporting joint arthroplasties in HA and HB showed that the proportion of HA patients who had undergone arthroplasties was higher than that of HB patients, in agreement with the findings in our Italian cohort. These data suggest that the 2 inherited coagulation disorders have a different severity of clinical phenotype.

  1. The coagulation characteristics of humic acid by using acid-soluble chitosan, water-soluble chitosan, and chitosan coagulant mixtures.

    PubMed

    Chen, Chih-Yu; Wu, Chung-Yu; Chung, Ying-Chien

    2015-01-01

    Chitosan is a potential substitute for traditional aluminium salts in water treatment systems. This study compared the characteristics of humic acid (HA) removal by using acid-soluble chitosan, water-soluble chitosan, and coagulant mixtures of chitosan with aluminium sulphate (alum) or polyaluminium chloride (PACl). In addition, we evaluated their respective coagulation efficiencies at various coagulant concentrations, pH values, turbidities, and hardness levels. Furthermore, we determined the size and settling velocity of flocs formed by these coagulants to identify the major factors affecting HA coagulation. The coagulation efficiency of acid- and water-soluble chitosan for 15 mg/l of HA was 74.4% and 87.5%, respectively. The optimal coagulation range of water-soluble chitosan (9-20 mg/l) was broader than that of acid-soluble chitosan (4-8 mg/l). Notably, acid-soluble chitosan/PACl and water-soluble chitosan/alum coagulant mixtures exhibited a higher coagulation efficiency for HA than for PACl or alum alone. Furthermore, these coagulant mixtures yielded an acceptable floc settling velocity and savings in both installation and operational expenses. Based on these results, we confidently assert that coagulant mixtures with a 1:1 mass ratio of acid-soluble chitosan/PACl and water-soluble chitosan/alum provide a substantially more cost-effective alternative to using chitosan alone for removing HA from water. PMID:25362971

  2. Cell-based laboratory evaluation of coagulation activation by antineoplastic drugs for the treatment of lymphoid tumors

    PubMed Central

    Tsunaka, Misae; Arai, Reina; Ohashi, Ayaka; Koyama, Takatoshi

    2016-01-01

    Objectives: Combining vorinostat, L-asparaginase, and doxorubicin (Dox) led to improved response rates in the treatment of lymphoid tumors. However, deep-vein thrombosis has been noted as one of the most serious side effects with these drugs, and how these regimens cause deep-vein thrombosis is unclear. Methods: We investigated the procoagulant effects of vorinostat, L-asparaginase, and doxorubicin in lymphoid tumors, focusing on tissue factor, phosphatidylserine, and antithrombin. The human vascular endothelial cell line EAhy926 as well as the lymphoid neoplastic cell lines HUT78 (cutaneous T-cell lymphoma), Molt4 (acute T-lymphoblastic leukemia), and Ramos (Burkitt lymphoma) were employed to investigate these procoagulant effects. Results: Vorinostat, L-asparaginase, and doxorubicin induced exposure of phosphatidylserine and procoagulant activity on the surface of lymphoid tumor cells. Vorinostat and doxorubicin also induced phosphatidylserine exposure and increased procoagulant activity on EAhy926 cells. Expression of tissue factor antigen was induced by doxorubicin on the surface of each type of cells, whereas expression of tissue factor mRNA was unchanged. Secretion of antithrombin from HepG2 cells was reduced only by L-asparaginase. Conclusion: These data suggest that vorinostat and doxorubicin may induce procoagulant activity in vessels through apoptosis of tumor cells and through phosphatidylserine exposure and/or tissue factor expression on vascular endothelial cells. L-asparaginase may induce a thrombophilic state by reducing the secretion of anticoagulant proteins such as antithrombin. The laboratory methods described here could be useful to evaluate the procoagulant effects of antineoplastic drugs. PMID:27504186

  3. Hemorrhagic, coagulant and fibrino(geno)lytic activities of crude venom and fractions from mapanare (Bothrops colombiensis) snakes.

    PubMed

    Girón, María E; Salazar, Ana M; Aguilar, Irma; Pérez, John C; Sánchez, Elda E; Arocha-Piñango, Carmen L; Rodríguez-Acosta, Alexis; Guerrero, Belsy

    2008-01-01

    Bothrops colombiensis venom from two similar geographical locations were tested for their hemostatic functions and characterized by gel-filtration chromatography and SDS-PAGE electrophoresis. The snakes were from Caucagua and El Guapo towns of the Venezuelan state of Miranda. Fibrino(geno)lytic, procoagulant, hemorrhagic, lethal activities, gel-filtration chromatography and SDS-PAGE profiles were analyzed and compared for both venoms. The highest hemorrhagic activity of 5.3 mug was seen in El Guapo venom while Caucagua venom had the lowest LD(50) of 5.8 mg/kg. Both venoms presented similar thrombin-like activity. El Guapo showed a factor Xa-like activity two times higher than Caucagua. Differences were observed in kallikrein-like and t-PA activities, being highest in El Guapo. Caucagua venom showed the maximum fibrin lysis. Both crude venom runs on Sephadex G-100 chromatography gave fraction SII with the high fibrinolytic activity. Proteases presented in SII fractions and eluted from Benzamidine-Sepharose (not bound to the column) provoked a fast degradation of fibrinogen alpha chains and a slower degradation of beta chains, which could possibly be due to a higher content of alpha fibrinogenases in these venoms. The fibrinogenolytic activity was decreased by metalloprotease inhibitors. The results suggested that metalloproteases in SII fractions were responsible for the fibrinolytic activity. The analysis of samples for fibrin-zymography of SII fractions showed an active band with a molecular mass of approximately 30 kDa. These results reiterate the importance of using pools of venoms for antivenom immunization, to facilitate the neutralization of the maximum potential number of toxins.

  4. Altered coagulability: an aid to selective breast biopsy.

    PubMed Central

    Spillert, C. R.; Passannante, M. R.; Salzer-Pagan, J. E.; Lazaro, E. J.

    1993-01-01

    Difficulty in discriminating nonadvanced breast cancer from benign breast disease results in many cancer negative biopsies. Development of a test to better differentiate between these two entities to reduce the number of cancer negative biopsies was the purpose of this blind study. The clue that prompted the development of this test resides in the state of hypercoagulability in cancer. Hypercoagulability can be measured by assessing tissue factor-mediated altered coagulability. The amount of tissue factor release is contingent on prior activation of the monocyte (the only blood cell that generates tissue factor) in vivo. PMID:8478968

  5. Factor XI Deficiency Alters the Cytokine Response and Activation of Contact Proteases during Polymicrobial Sepsis in Mice

    PubMed Central

    Bane, Charles E.; Ivanov, Ivan; Matafonov, Anton; Boyd, Kelli L.; Cheng, Qiufang; Sherwood, Edward R.; Tucker, Erik I.; Smiley, Stephen T.; McCarty, Owen J. T.; Gruber, Andras; Gailani, David

    2016-01-01

    Sepsis, a systemic inflammatory response to infection, is often accompanied by abnormalities of blood coagulation. Prior work with a mouse model of sepsis induced by cecal ligation and puncture (CLP) suggested that the protease factor XIa contributed to disseminated intravascular coagulation (DIC) and to the cytokine response during sepsis. We investigated the importance of factor XI to cytokine and coagulation responses during the first 24 hours after CLP. Compared to wild type littermates, factor XI-deficient (FXI-/-) mice had a survival advantage after CLP, with smaller increases in plasma levels of TNF-α and IL-10 and delayed IL-1β and IL-6 responses. Plasma levels of serum amyloid P, an acute phase protein, were increased in wild type mice 24 hours post-CLP, but not in FXI-/- mice, supporting the impression of a reduced inflammatory response in the absence of factor XI. Surprisingly, there was little evidence of DIC in mice of either genotype. Plasma levels of the contact factors factor XII and prekallikrein were reduced in WT mice after CLP, consistent with induction of contact activation. However, factor XII and PK levels were not reduced in FXI-/- animals, indicating factor XI deficiency blunted contact activation. Intravenous infusion of polyphosphate into WT mice also induced changes in factor XII, but had much less effect in FXI deficient mice. In vitro analysis revealed that factor XIa activates factor XII, and that this reaction is enhanced by polyanions such polyphosphate and nucleic acids. These data suggest that factor XI deficiency confers a survival advantage in the CLP sepsis model by altering the cytokine response to infection and blunting activation of the contact (kallikrein-kinin) system. The findings support the hypothesis that factor XI functions as a bidirectional interface between contact activation and thrombin generation, allowing the two processes to influence each other. PMID:27046148

  6. Factor XI Deficiency Alters the Cytokine Response and Activation of Contact Proteases during Polymicrobial Sepsis in Mice.

    PubMed

    Bane, Charles E; Ivanov, Ivan; Matafonov, Anton; Boyd, Kelli L; Cheng, Qiufang; Sherwood, Edward R; Tucker, Erik I; Smiley, Stephen T; McCarty, Owen J T; Gruber, Andras; Gailani, David

    2016-01-01

    Sepsis, a systemic inflammatory response to infection, is often accompanied by abnormalities of blood coagulation. Prior work with a mouse model of sepsis induced by cecal ligation and puncture (CLP) suggested that the protease factor XIa contributed to disseminated intravascular coagulation (DIC) and to the cytokine response during sepsis. We investigated the importance of factor XI to cytokine and coagulation responses during the first 24 hours after CLP. Compared to wild type littermates, factor XI-deficient (FXI-/-) mice had a survival advantage after CLP, with smaller increases in plasma levels of TNF-α and IL-10 and delayed IL-1β and IL-6 responses. Plasma levels of serum amyloid P, an acute phase protein, were increased in wild type mice 24 hours post-CLP, but not in FXI-/- mice, supporting the impression of a reduced inflammatory response in the absence of factor XI. Surprisingly, there was little evidence of DIC in mice of either genotype. Plasma levels of the contact factors factor XII and prekallikrein were reduced in WT mice after CLP, consistent with induction of contact activation. However, factor XII and PK levels were not reduced in FXI-/- animals, indicating factor XI deficiency blunted contact activation. Intravenous infusion of polyphosphate into WT mice also induced changes in factor XII, but had much less effect in FXI deficient mice. In vitro analysis revealed that factor XIa activates factor XII, and that this reaction is enhanced by polyanions such polyphosphate and nucleic acids. These data suggest that factor XI deficiency confers a survival advantage in the CLP sepsis model by altering the cytokine response to infection and blunting activation of the contact (kallikrein-kinin) system. The findings support the hypothesis that factor XI functions as a bidirectional interface between contact activation and thrombin generation, allowing the two processes to influence each other. PMID:27046148

  7. Dust coagulation in ISM

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Tielens, Alexander G. G. M.; Hollenbach, David

    1989-01-01

    Coagulation is an important mechanism in the growth of interstellar and interplanetary dust particles. The microphysics of the coagulation process was theoretically analyzed as a function of the physical properties of the coagulating grains, i.e., their size, relative velocities, temperature, elastic properties, and the van der Waal interaction. Numerical calculations of collisions between linear chains provide the wave energy in individual particles and the spectrum of the mechanical vibrations set up in colliding particles. Sticking probabilities are then calculated using simple estimates for elastic deformation energies and for the attenuation of the wave energy due to absorption and scattering processes.

  8. Fitzgerald factor (high molecular weight kininogen) clotting activity in human plasma in health and disease in various animal plasmas.

    PubMed

    Saito, H; Goldsmith, G; Waldmann, R

    1976-12-01

    Fitzgerald factor (high molecular weight kininogen) is an agent in normal human plasma that corrects the impaired in vitro surface-mediated plasma reactions of blood coagulation, fibrinolysis, and kinin generation observed in Fitzgerald trait plasma. To assess the possible pathophysiologic role of Fitzgerald factor, its titer was measured by a functional clot-promoting assay. Mean +/- SD in 42 normal adults was 0.99+/-0.25 units/ml, one unit being the activity in 1 ml of normal pooled plasma. No difference in titer was noted between normal men and women, during pregnancy, or after physical exercise. Fitzgerald factor activity was significantly reduced in the plasmas of eight patients with advanced hepatic cirrhosis (0.40+/-0.09 units/ml) and of ten patients with disseminated intravascular coagulation (0.60+/-0.30 units/ml), but was normal in plasmas of patients with other congenital clotting factor deficiencies, nephrotic syndrome, rheumatoid arthritis, systemic lupus erythematosus, or sarcoidosis, or under treatment with warfarin. The plasmas of 21 mammalian species tested appeared to contain Fitzgerald factor activity, but those of two avian, two repitilian, and one amphibian species did not correct the coagulant defect in Fitzgerald trait plasmas. PMID:1000085

  9. Hyperprolactinemia during antipsychotics treatment increases the level of coagulation markers

    PubMed Central

    Ishioka, Masamichi; Yasui-Furukori, Norio; Sugawara, Norio; Furukori, Hanako; Kudo, Shuhei; Nakamura, Kazuhiko

    2015-01-01

    Objective The strong association between psychiatric patients who receive antipsychotics and the incidence of venous thromboembolism (VTE) is known. Although previous reports suggest that hyperprolactinemia often increases markers of activated coagulation, few studies have examined the direct relationship between the prolactin level elevated by antipsychotics and activated markers of activated coagulation. Method The participants included 182 patients with schizophrenia (male =89, female =93) who received antipsychotic treatments for at least 3 months. Markers of VTE (D-dimer, fibrin/fibrinogen degradation products, and thrombin–antithrombin complex) and serum prolactin concentrations were measured. Results Prolactin levels were significantly correlated with the logarithmic transformation of the D-dimer (r=0.320, P=0.002) and fibrin/fibrinogen degradation product levels (r=0.236, P=0.026) but not of the thrombin–antithrombin complex level (r=0.117, ns) among men. However, no correlations were found between the VTE markers and prolactin levels among women. These results were confirmed using multiple regression analyses that included demographic factors and antipsychotic dosages. Conclusion The current study indicates that hyperprolactinemia is associated with an increase in markers of activated coagulation among men receiving antipsychotics. This finding clinically implies that monitoring and modulating prolactin levels among men are important to decrease the risk of VTE. PMID:25750528

  10. Alternative pathways of thromboplastin-dependent activation of human factor X in plasma

    SciTech Connect

    Marlar, R.A.; Griffin, J.H.

    1981-01-01

    To determine the interrelationships of the major coagulation pathways, the activation of 3H-labeled factor X in normal and various deficient human plasmas was evaluated when clotting was triggered by dilute rabbit or human thromboplastin. Various dilutions of thromboplastin and calcium were added to plasma samples containing 3H-factor X, and the time course of factor X activation was determined. At a 1/250 dilution of rabbit brain thromboplastin, the rate of factor X activation in plasmas deficient in factor VIII or factor IX was 10% of the activation rate of normal plasma or of factor XI deficient plasma. Reconstitution of the deficient plasmas with factors VIII or IX, respectively, reconstituted normal factor X activation. Similar results were obtained when various dilutions of human thromboplastin replaced the rabbit thromboplastin. From these plasma experiments, it is inferred that the dilute thromboplastin-dependent activation of factor X requires factors VII, IX, and VIII. An alternative extrinsic pathway that involves factors IX and VIII may be the physiologic extrinsic pathway and hence help to explain the consistent clinical observations of bleeding diatheses in patients deficient in factors IX or VIII.

  11. Human Full-Length Coagulation Factor X and a GLA Domain-Derived 40-mer Polypeptide Bind to Different Regions of the Adenovirus Serotype 5 Hexon Capsomer

    PubMed Central

    Sumarheni, Sudir; Hong, Saw See; Josserand, Véronique; Coll, Jean-Luc; Boulanger, Pierre; Schoehn, Guy

    2014-01-01

    Abstract The interaction of human adenovirus (HAdV)-C5 and many other adenoviruses with blood coagulation factors (e.g., human factor X, FX) involves the binding of their GLA domain to the hexon capsomers, resulting in high levels of hepatotropism and potential hepatotoxicity. In this study, we tested the possibility of preventing these undesirable effects by using a GLA-mimicking peptide as a competitor. An FX GLA domain-derived, 40-mer polypeptide carrying 12 carboxyglutamate residues was synthesized (GLAmim). Surface plasmon resistance (SPR) analysis showed that GLAmim reacted with free and capsid-embedded hexon with a nanomolar affinity. Unexpectedly, GLAmim failed to compete with FX for hexon binding, and instead significantly increased the formation of FX–hexon or FX–adenovirion complexes. This observation was confirmed by in vitro cell transduction experiments using HAdV-C5-Luciferase vector (HAdV5-Luc), as preincubation of HAdV5-Luc with GLAmim before FX addition resulted in a higher transgene expression compared with FX alone. HAdV-C5 virions complexed with GLAmim were analyzed by cryoelectron microscopy. Image reconstruction demonstrated the bona fide hexon–GLAmim interaction, as for the full-length FX, although with considerable differences in stoichiometry and relative location on the hexon capsomer. Three extra densities were found at the periphery of each hexon, whereas one single FX molecule occupied the central cavity of the hexon trimeric capsomer. A refined analysis indicated that each extra density is found at the expected location of one highly variable loop 1 of the hexon, involved in scavenger receptor recognition. HAdV5-Luc complexed with a bifunctional GLAmimRGD peptide showed a lesser hepatotropism, compared with control HAdV5-Luc alone, and efficiently targeted αβ-integrin-overexpressing tumor cells in an in vivo mouse tumor model. Collectively, our findings open new perspectives in the design of adenoviral vectors for biotherapy

  12. Epistatic and pleiotropic effects of polymorphisms in the fibrinogen and coagulation factor XIII genes on plasma fibrinogen concentration, fibrin gel structure and risk of myocardial infarction.

    PubMed

    Mannila, Maria Nastase; Eriksson, Per; Ericsson, Carl-Göran; Hamsten, Anders; Silveira, Angela

    2006-03-01

    An intricate interplay between the genes encoding fibrinogen gamma (FGG), alpha (FGA) and beta (FGB), coagulation factor XIII (F13A1) and interleukin 6 (IL6) and environmental factors is likely to influence plasma fibrinogen concentration, fibrin clot structure and risk of myocardial infarction (MI). In the present study, the potential contribution of SNPs harboured in the fibrinogen, IL6 and F13A1 genes to these biochemical and clinical phenotypes was examined. A database and biobank based on 387 survivors of a first MI and population-based controls were used. Sixty controls were selected according to FGG 9340T > C [rs1049636] genotype for studies on fibrin clot structure using the liquid permeation method. The multifactor dimensionality reduction method was used for interaction analyses. We here report that the FGA 2224G > A [rs2070011] SNP (9.2%), plasma fibrinogen concentration (13.1%) and age (8.1%) appeared as independent determinants of fibrin gel porosity. The FGA 2224G > A SNP modulated the relation between plasma fibrinogen concentration and fibrin clot porosity. The FGG-FGA*4 haplotype, composed of the minor FGG 9340C and FGA 2224A alleles, had similar effects, supporting its reported protective role in relation to MI. Significant epistasis on plasma fibrinogen concentration was detected between the FGA 2224G > A and F13A1 Val34Leu [rs5985] SNPs (p < 0.001). The FGG 9340T > C and FGB 1038G > A [rs1800791] SNPs appeared to interact on MI risk, explaining the association of FGG-FGB haplotypes with MI in the absence of effects of individual SNPs. Thus, epistatic and pleiotropic effects of polymorphisms contribute to the variation in plasma fibrinogen concentration, fibrin clot structure and risk of MI.

  13. Interconnections between autophagy and the coagulation cascade in hepatocellular carcinoma

    PubMed Central

    Chen, K-D; Wang, C-C; Tsai, M-C; Wu, C-H; Yang, H-J; Chen, L-Y; Nakano, T; Goto, S; Huang, K-T; Hu, T-H; Chen, C-L; Lin, C-C

    2014-01-01

    Autophagy has an important role in tumor biology of hepatocellular carcinoma (HCC). Recent studies demonstrated that tissue factor (TF) combined with coagulation factor VII (FVII) has a pathological role by activating a G-protein-coupled receptor called protease-activated receptor 2 (PAR2) for tumor growth. The present study aimed to investigate the interactions of autophagy and the coagulation cascade in HCC. Seventy HCC patients who underwent curative liver resection were recruited. Immunohistochemical staining and western blotting were performed to determine TF, FVII, PAR2 and light chain 3 (LC3A/B) expressions in tumors and their contiguous normal regions. We found that the levels of autophagic marker LC3A/B-II and coagulation proteins (TF, FVII and PAR2) were inversely correlated in human HCC tissues. Treatments with TF, FVII or PAR2 agonist downregulated LC3A/B-II with an increased level of mTOR in Hep3B cells; in contrast, knockdown of TF, FVII or PAR2 increased LC3A/B. Furthermore, mTOR silencing restored the impaired expression of LC3A/B-II in TF-, FVII- or PAR2-treated Hep3B cells and activated autophagy. Last, as an in vivo correlate, we administered TF, FVII or PAR2 agonist in a NOD/severe combined immunodeficiency xenograft model and showed decreased LC3A/B protein levels in HepG2 tumors with treatments. Overall, our present study demonstrated that TF, FVII and PAR2 regulated autophagy mainly via mTOR signaling. The interaction of coagulation and autophagic pathways may provide potential targets for further therapeutic application in HCC. PMID:24853422

  14. Treatment of Disseminated Intravascular Coagulation.

    PubMed

    Makruasi, Nisa

    2015-11-01

    Disseminated intravascular coagulation (DIC) is a syndrome characterized by systemic activation of blood coagulation, generation of thrombin, and leading to disturbance of the microvasculature. In this article, definition and diagnostic criteria of DIC depend on the International Society of Thrombosis and Haemostasis (ISTH). There is no gold standard for diagnosis of DIC, only low quality evidence is used in general practice. Many diagnostic tests and repeated measurement are required. For the treatment of DIC, there is no good quality evidence. The most important treatment for DIC is the specific treatment of the conditions associated DIC. Platelets and/or plasma transfusion may be also necessary if indicated. Nevertheless, there is no gold standard for diagnosis and treatment of DIC, we use only low quality evidence in general practice.

  15. Prehospital coagulation monitoring of resuscitation with point-of-care devices.

    PubMed

    Schött, Ulf

    2014-05-01

    A variety of point-of-care monitors for the measurement of hematocrit, hemoglobin, blood gas with electrolytes, and lactate can be used also in the prehospital setting for optimizing and individualizing trauma resuscitation. Point-of-care coagulation testing with activated prothrombin test, prothrombin test, and activated coagulation/clotting time tests is available for prehospital use. Although robust, battery driven, and easy to handle, many devices lack documentation for use in prehospital care. Some of the devices correspond poorly to corresponding laboratory analyses in acute trauma coagulopathy and at lower hematocrits. In trauma, viscoelastic tests such as rotational thromboelastometry and thromboelastography can rapidly detect acute trauma coagulopathy and give an overall dynamic picture of the hemostatic system and the interaction between its different components: coagulation activation, fibrin polymerization, fibrin platelet interactions within the clot, and fibrinolysis. Rotational thromboelastometry is shock resistant and has the potential to be used outside the hospital setting to guide individualized coagulation factor and blood component therapies. Sonoclot and Rheorox are two small viscoelastic instruments with one-channel options, but with less documentation. The point-of-care market for coagulation tests is quickly expanding, and new devices are introduced all the time. Still they should be better adopted to prehospital conditions, small, robust, battery charged, and rapid and use small sample volumes and whole blood.

  16. The Mechanisms of Coagulation.

    ERIC Educational Resources Information Center

    Kurtz, Richard; Jesty, Jolyon

    1994-01-01

    Several topics such as heart disease, strokes, biochemical reactions, blood components, and genetics can be related to blood clotting. Introduces a simple, safe and inexpensive hands-on demonstration using bovine (cattle) blood plasma of normal and abnormal coagulation. (ZWH)

  17. Disseminated intravascular coagulation (DIC)

    MedlinePlus

    Levi M. Disseminated intravascular coagulation. In: Hoffman R, Benz EJ Jr, Silberstein LE, et al, eds. Hematology: Basic Principles and Practice . 6th ed. Philadelphia, PA: Elsevier Saunders; 2013:chap ...

  18. The role of carrier number on the procoagulant activity of tissue factor in blood and plasma

    NASA Astrophysics Data System (ADS)

    Tormoen, G. W.; Rugonyi, S.; Gruber, A.; McCarty, O. J. T.

    2011-12-01

    Tissue factor (TF) is a transmembrane glycoprotein cofactor of activated blood coagulation factor VII (FVIIa) that is required for hemostatic thrombin generation at sites of blood vessel injury. Membrane-associated TF detected in circulating blood of healthy subjects, referred to as intravascular or circulating TF has been shown to contribute to experimental thrombus propagation at sites of localized vessel injury. Certain disease states, such as metastatic cancer, are associated with increased levels of intravascular TF and an elevated risk of venous thromboembolism. However, the physiological relevance of circulating TF to hemostasis or thrombosis, as well as cancer metastasis, is ill-defined. This study was designed to assess whether the spatial separation of intravascular TF carriers in blood, demonstrated with TF-inducible human monocytic cell line U937 or TF-coated polymer microspheres, affected procoagulant activity and hence thrombogenic potential. Experiments were performed to characterize the effects of TF-carrier number on the kinetics of clot formation in both open and closed systems. The procoagulant activity of TF carriers was found to correlate with spatial separation in both closed, well-mixed systems and open, flowing systems. TF carriers enhanced the amidolytic activity of FVIIa toward the chromogenic substrate, S-2366, as a function of carrier count. These results suggest that TF-initiated coagulation by circulating TF is kinetically limited by mass transport of TF-dependent coagulation factors to the TF-bearing surface, a constraint that may be unique to circulating TF. Spatial separation of circulating TF carriers is therefore a critical determinant of the procoagulant activity of circulating TF.

  19. Essential role of platelet activation via protease activated receptor 4 in tissue factor-initiated inflammation

    PubMed Central

    Busso, Nathalie; Chobaz-Péclat, Veronique; Hamilton, Justin; Spee, Pieter; Wagtmann, Nicolai; So, A