Sample records for activated complex theory

  1. Using activity theory to study cultural complexity in medical education.

    PubMed

    Frambach, Janneke M; Driessen, Erik W; van der Vleuten, Cees P M

    2014-06-01

    There is a growing need for research on culture, cultural differences and cultural effects of globalization in medical education, but these are complex phenomena to investigate. Socio-cultural activity theory seems a useful framework to study cultural complexity, because it matches current views on culture as a dynamic process situated in a social context, and has been valued in diverse fields for yielding rich understandings of complex issues and key factors involved. This paper explains how activity theory can be used in (cross-)cultural medical education research. We discuss activity theory's theoretical background and principles, and we show how these can be applied to the cultural research practice by discussing the steps involved in a cross-cultural study that we conducted, from formulating research questions to drawing conclusions. We describe how the activity system, the unit of analysis in activity theory, can serve as an organizing principle to grasp cultural complexity. We end with reflections on the theoretical and practical use of activity theory for cultural research and note that it is not a shortcut to capture cultural complexity: it is a challenge for researchers to determine the boundaries of their study and to analyze and interpret the dynamics of the activity system.

  2. Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment

    DOE R&D Accomplishments Database

    Marcus, R. A.

    1964-01-01

    In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.

  3. Linking Complexity with Cultural Historical Activity Theory

    ERIC Educational Resources Information Center

    McMurtry, Angus

    2006-01-01

    This paper explores the similarities and differences between complexity science's and cultural-historical activity theory's understandings of human learning. Notable similarities include their emphasis on the importance of social systems or collectives in understanding human knowledge and practices, as well as their characterization of systems'…

  4. Multiconfiguration Pair-Density Functional Theory Predicts Spin-State Ordering in Iron Complexes with the Same Accuracy as Complete Active Space Second-Order Perturbation Theory at a Significantly Reduced Computational Cost.

    PubMed

    Wilbraham, Liam; Verma, Pragya; Truhlar, Donald G; Gagliardi, Laura; Ciofini, Ilaria

    2017-05-04

    The spin-state orderings in nine Fe(II) and Fe(III) complexes with ligands of diverse ligand-field strength were investigated with multiconfiguration pair-density functional theory (MC-PDFT). The performance of this method was compared to that of complete active space second-order perturbation theory (CASPT2) and Kohn-Sham density functional theory. We also investigated the dependence of CASPT2 and MC-PDFT results on the size of the active-space. MC-PDFT reproduces the CASPT2 spin-state ordering, the dependence on the ligand field strength, and the dependence on active space at a computational cost that is significantly reduced as compared to CASPT2.

  5. Analytical structure, dynamics, and coarse graining of a kinetic model of an active fluid

    NASA Astrophysics Data System (ADS)

    Gao, Tong; Betterton, Meredith D.; Jhang, An-Sheng; Shelley, Michael J.

    2017-09-01

    We analyze one of the simplest active suspensions with complex dynamics: a suspension of immotile "extensor" particles that exert active extensile dipolar stresses on the fluid in which they are immersed. This is relevant to several experimental systems, such as recently studied tripartite rods that create extensile flows by consuming a chemical fuel. We first describe the system through a Doi-Onsager kinetic theory based on microscopic modeling. This theory captures the active stresses produced by the particles that can drive hydrodynamic instabilities, as well as the steric interactions of rodlike particles that lead to nematic alignment. This active nematic system yields complex flows and disclination defect dynamics very similar to phenomenological Landau-deGennes Q -tensor theories for active nematic fluids, as well as by more complex Doi-Onsager theories for polar microtubule-motor-protein systems. We apply the quasiequilibrium Bingham closure, used to study suspensions of passive microscopic rods, to develop a nonstandard Q -tensor theory. We demonstrate through simulation that this B Q -tensor theory gives an excellent analytical and statistical accounting of the suspension's complex dynamics, at a far reduced computational cost. Finally, we apply the B Q -tensor model to study the dynamics of extensor suspensions in circular and biconcave domains. In circular domains, we reproduce previous results for systems with weak nematic alignment, but for strong alignment we find unusual dynamics with activity-controlled defect production and absorption at the boundaries of the domain. In biconcave domains, a Fredericks-like transition occurs as the width of the neck connecting the two disks is varied.

  6. An Overview of Cultural Historical Activity Theory (CHAT) Use in Classroom Research 2000 to 2009

    ERIC Educational Resources Information Center

    Nussbaumer, Doris

    2012-01-01

    Western educational researchers have eagerly accepted activity theory (AT) also known as cultural historical activity theory (CHAT) to collect and analyze data in rich description of complex situations. As this theory is applicable to a wide variety of disciplines, this review is limited to education and specifically to qualitative studies of…

  7. Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment

    DOE R&D Accomplishments Database

    Marcus, R. A.

    1964-01-01

    In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.

  8. A Guided Inquiry Activity for Teaching Ligand Field Theory

    ERIC Educational Resources Information Center

    Johnson, Brian J.; Graham, Kate J.

    2015-01-01

    This paper will describe a guided inquiry activity for teaching ligand field theory. Previous research suggests the guided inquiry approach is highly effective for student learning. This activity familiarizes students with the key concepts of molecular orbital theory applied to coordination complexes. Students will learn to identify factors that…

  9. The Relationship between Leisure and Life Satisfaction: Application of Activity and Need Theory

    ERIC Educational Resources Information Center

    Rodriguez, Ariel; Latkova, Pavlina; Sun, Ya-Yen

    2008-01-01

    The purpose of this study was to better understand the complex relationship between leisure and life satisfaction. Components of two distinct, but potentially integrative, theoretical frameworks (i.e., activity theory and need theory) predicting the relationship between leisure and life satisfaction were tested with a sample of residents from a…

  10. Confronting Analytical Dilemmas for Understanding Complex Human Interactions in Design-Based Research from a Cultural-Historical Activity Theory (CHAT) Framework

    ERIC Educational Resources Information Center

    Yamagata-Lynch, Lisa C.

    2007-01-01

    Understanding human activity in real-world situations often involves complicated data collection, analysis, and presentation methods. This article discusses how Cultural-Historical Activity Theory (CHAT) can inform design-based research practices that focus on understanding activity in real-world situations. I provide a sample data set with…

  11. Life in the Hive: Supporting Inquiry into Complexity Within the Zone of Proximal Development

    NASA Astrophysics Data System (ADS)

    Danish, Joshua A.; Peppler, Kylie; Phelps, David; Washington, Dianna

    2011-10-01

    Research into students' understanding of complex systems typically ignores young children because of misinterpretations of young children's competencies. Furthermore, studies that do recognize young children's competencies tend to focus on what children can do in isolation. As an alternative, we propose an approach to designing for young children that is grounded in the notion of the Zone of Proximal Development (Vygotsky 1978) and leverages Activity Theory to design learning environments. In order to highlight the benefits of this approach, we describe our process for using Activity Theory to inform the design of new software and curricula in a way that is productive for young children to learn concepts that we might have previously considered to be "developmentally inappropriate". As an illuminative example, we then present a discussion of the design of the BeeSign simulation software and accompanying curriculum which specifically designed from an Activity Theory perspective to engage young children in learning about complex systems (Danish 2009a, b). Furthermore, to illustrate the benefits of this approach, we will present findings from a new study where 40 first- and second-grade students participated in the BeeSign curriculum to learn about how honeybees collect nectar from a complex systems perspective. We conclude with some practical suggestions for how such an approach to using Activity Theory for research and design might be adopted by other science educators and designers.

  12. How Does an Activity Theory Model Help to Know Better about Teaching with Electronic-Exercise-Bases?

    ERIC Educational Resources Information Center

    Abboud-Blanchard, Maha; Cazes, Claire

    2012-01-01

    The research presented in this paper relies on Activity Theory and particularly on Engestrom's model, to better understand the use of Electronic-Exercise-Bases (EEB) by mathematics teachers. This theory provides a holistic approach to illustrate the complexity of the EEB integration. The results highlight reasons and ways of using EEB and show…

  13. A Review of Computer-Based Human Behavior Representations and Their Relation to Military Simulations

    DTIC Science & Technology

    2003-08-01

    described by Emery and Trist (1960), activity theory introduced by Vygotsky in the 1930s and formalized by Leont’ev (1979) and situated cognition theory by...II-6 B. Adaptive Resonance Theory (ART) .......................................................... II-6 1. Model...II-31 G. Cognitive Complexity Theory (CCT

  14. Integrating Social Activity Theory and Critical Discourse Analysis: A Multilayered Methodological Model for Examining Knowledge Mediation in Mentoring

    ERIC Educational Resources Information Center

    Becher, Ayelet; Orland-Barak, Lily

    2016-01-01

    This study suggests an integrative qualitative methodological framework for capturing complexity in mentoring activity. Specifically, the model examines how historical developments of a discipline direct mentors' mediation of professional knowledge through the language that they use. The model integrates social activity theory and a framework of…

  15. An Application of Generalizability Theory and Many-Facet Rasch Measurement Using a Complex Problem-Solving Skills Assessment

    ERIC Educational Resources Information Center

    Smith, Jr., Everett V.; Kulikowich, Jonna M.

    2004-01-01

    This study describes the use of generalizability theory (GT) and many-facet Rasch measurement (MFRM) to evaluate psychometric properties of responses obtained from an assessment designed to measure complex problem-solving skills. The assessment revolved around the school activity of kickball. The task required of each student was to decide on a…

  16. Planning in Higher Education and Chaos Theory: A Model, a Method.

    ERIC Educational Resources Information Center

    Cutright, Marc

    This paper proposes a model, based on chaos theory, that explores strategic planning in higher education. It notes that chaos theory was first developed in the physical sciences to explain how apparently random activity was, in fact, complexity patterned. The paper goes on to describe how chaos theory has subsequently been applied to the social…

  17. Activity Theory, Complexity and Sports Coaching: An Epistemology for a Discipline

    ERIC Educational Resources Information Center

    Jones, Robyn L.; Edwards, Christian; Filho, I. A. Tuim Viotto

    2016-01-01

    The aim of this article is twofold. First, it is to advance the case for activity theory (AT) as a credible and alternative lens to view and research sports coaching. Second, it is to position this assertion within the wider debate about the epistemology of coaching. Following a framing introduction, a more comprehensive review of the development…

  18. Improving the first hyperpolarizability of anthracene through interaction with HX molecules (Xdbnd F, Cl, Br): A theoretical study

    NASA Astrophysics Data System (ADS)

    Abdolmaleki, Ahmad; Dadsetani, Mehrdad; Zabardasti, Abedin

    2018-05-01

    The variations in nonlinear optical activity (NLO) of anthracene (C14H10) was investigated via intermolecular interactions between C14H10 and HX molecules (Xdbnd F, Cl and Br) using B3LYP-D3 method at 6-311++G(d,p) basis set. The stabilization of those complexes was investigated via vibrational analysis, quantum theory of atoms in molecules, molecular electrostatic potential, natural bond orbitals and symmetry-adapted perturbation theory (SAPT) analysis. Furthermore, the optical spectra and the first hyperpolarizabilities of C14H10⋯HX complexes were computed. The adsorption of hydrogen halide through C14H10⋯HX complex formation, didn't change much the linear optical activities of C14H10 molecule, but the magnitude of the first hyperpolarizability of the C14H10⋯HX complexes to be as much as that of urea.

  19. Complex, Dynamic Systems: A New Transdisciplinary Theme for Applied Linguistics?

    ERIC Educational Resources Information Center

    Larsen-Freeman, Diane

    2012-01-01

    In this plenary address, I suggest that Complexity Theory has the potential to contribute a transdisciplinary theme to applied linguistics. Transdisciplinary themes supersede disciplines and spur new kinds of creative activity (Halliday 2001 [1990]). Investigating complex systems requires researchers to pay attention to system dynamics. Since…

  20. Learning to manage complexity through simulation: students' challenges and possible strategies.

    PubMed

    Gormley, Gerard J; Fenwick, Tara

    2016-06-01

    Many have called for medical students to learn how to manage complexity in healthcare. This study examines the nuances of students' challenges in coping with a complex simulation learning activity, using concepts from complexity theory, and suggests strategies to help them better understand and manage complexity.Wearing video glasses, participants took part in a simulation ward-based exercise that incorporated characteristics of complexity. Video footage was used to elicit interviews, which were transcribed. Using complexity theory as a theoretical lens, an iterative approach was taken to identify the challenges that participants faced and possible coping strategies using both interview transcripts and video footage.Students' challenges in coping with clinical complexity included being: a) unprepared for 'diving in', b) caught in an escalating system, c) captured by the patient, and d) unable to assert boundaries of acceptable practice.Many characteristics of complexity can be recreated in a ward-based simulation learning activity, affording learners an embodied and immersive experience of these complexity challenges. Possible strategies for managing complexity themes include: a) taking time to size up the system, b) attuning to what emerges, c) reducing complexity, d) boundary practices, and e) working with uncertainty. This study signals pedagogical opportunities for recognizing and dealing with complexity.

  1. Representations of Complexity: How Nature Appears in Our Theories

    PubMed Central

    2013-01-01

    In science we study processes in the material world. The way these processes operate can be discovered by conducting experiments that activate them, and findings from such experiments can lead to functional complexity theories of how the material processes work. The results of a good functional theory will agree with experimental measurements, but the theory may not incorporate in its algorithmic workings a representation of the material processes themselves. Nevertheless, the algorithmic operation of a good functional theory may be said to make contact with material reality by incorporating the emergent computations the material processes carry out. These points are illustrated in the experimental analysis of behavior by considering an evolutionary theory of behavior dynamics, the algorithmic operation of which does not correspond to material features of the physical world, but the functional output of which agrees quantitatively and qualitatively with findings from a large body of research with live organisms. PMID:28018044

  2. Applying an Activity Theory Lens to Designing Instruction for Learning about the Structure, Behavior, and Function of a Honeybee System

    ERIC Educational Resources Information Center

    Danish, Joshua A.

    2014-01-01

    This article reports on a study in which activity theory was used to design, implement, and analyze a 10-week curriculum unit about how honeybees collect nectar with a particular focus on complex systems concepts. Students (n = 42) in a multi-year kindergarten and 1st-grade classroom participated in this study as part of their 10 regular classroom…

  3. Constructivist Approach to Teacher Education: An Integrative Model for Reflective Teaching

    ERIC Educational Resources Information Center

    Vijaya Kumari, S. N.

    2014-01-01

    The theory of constructivism states that learning is non-linear, recursive, continuous, complex and relational--Despite the difficulty of deducing constructivist pedagogy from constructivist theories, there are models and common elements to consider in planning new program. Reflective activities are a common feature of all the programs of…

  4. Synthesis, structural and biochemical activity studies of a new hexadentate Schiff base ligand and its Cu(II), Ni(II), and Co(II) complexes

    NASA Astrophysics Data System (ADS)

    Ekmekcioglu, Pinar; Karabocek, Nevin; Karabocek, Serdar; Emirik, Mustafa

    2015-11-01

    A new Schiff base ligand (H2L) and its metal complexes have been prepared and characterized by elemental analysis, magnetic moment and spectral studies. The comparative in-vitro antimicrobial activities against various pathogens with reference to known antibiotics activity under the standard control of different concentrations revealed that the metal complexes (6-8) showed enhanced antimicrobial activities in general as compared to free ligand. As an exception, the free ligand showed better activity against Trichoderma. The antifungal activity experiments were performed in triplicate. The order of biochemical activity for metal complexes were observed as in the following. CuL > CoL > NiL, which is exactly same as the order of stability constants of these complexes. Additionally, we performed DFT and TD-DFT calculation for free ligand and Cu(II) complex to support the experimental data. The geometries of the Cu(II) complex have been optimized using the B3LYP level of theory. The theoretical calculations confirm that the copper (II) center exhibits a distorted square pyramidal geometry which is favored by experimental results.

  5. “Theory of Food” as a Neurocognitive Adaptation

    PubMed Central

    Allen, John S.

    2011-01-01

    Human adult cognition emerges over the course of development via the interaction of multiple critical neurocognitive networks. These networks evolved in response to various selection pressures, many of which were modified or intensified by the intellectual, technological, and socio-cultural environments that arose in connection with the evolution of genus Homo. Networks related to language and theory of mind clearly play an important role in adult cognition. Given the critical importance of food to both basic survival and cultural interaction, a “theory of food” (analogous to theory of mind) may represent another complex network essential for normal cognition. I propose that theory of food evolved as an internal, cognitive representation of our diets in our minds. Like other complex cognitive abilities, it relies on complex and overlapping dedicated neural networks that develop in childhood under familial and cultural influences. Normative diets are analogous to first languages in that they are acquired without overt teaching; they are also difficult to change or modify once a critical period in development is passed. Theory of food suggests that cognitive activities related to food may be cognitive enhancers, which could have implications for maintaining healthy brain function in aging. PMID:22262561

  6. "Theory of food" as a neurocognitive adaptation.

    PubMed

    Allen, John S

    2012-01-01

    Human adult cognition emerges over the course of development via the interaction of multiple critical neurocognitive networks. These networks evolved in response to various selection pressures, many of which were modified or intensified by the intellectual, technological, and sociocultural environments that arose in connection with the evolution of genus Homo. Networks related to language and theory of mind clearly play an important role in adult cognition. Given the critical importance of food to both basic survival and cultural interaction, a "theory of food" (analogous to theory of mind) may represent another complex network essential for normal cognition. I propose that theory of food evolved as an internal, cognitive representation of our diets in our minds. Like other complex cognitive abilities, it relies on complex and overlapping dedicated neural networks that develop in childhood under familial and cultural influences. Normative diets are analogous to first languages in that they are acquired without overt teaching; they are also difficult to change or modify once a critical period in development is passed. Theory of food suggests that cognitive activities related to food may be cognitive enhancers, which could have implications for maintaining healthy brain function in aging. Copyright © 2012 Wiley Periodicals, Inc.

  7. Collective learning modeling based on the kinetic theory of active particles

    NASA Astrophysics Data System (ADS)

    Burini, D.; De Lillo, S.; Gibelli, L.

    2016-03-01

    This paper proposes a systems approach to the theory of perception and learning in populations composed of many living entities. Starting from a phenomenological description of these processes, a mathematical structure is derived which is deemed to incorporate their complexity features. The modeling is based on a generalization of kinetic theory methods where interactions are described by theoretical tools of game theory. As an application, the proposed approach is used to model the learning processes that take place in a classroom.

  8. Spectroscopic, structure and antimicrobial activity of new Y(III) and Zr(IV) ciprofloxacin

    NASA Astrophysics Data System (ADS)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.; Zordok, Wael A.; El-Didamony, Akram M.

    2011-02-01

    The preparation and characterization of the new solid complexes [Y(CIP) 2(H 2O) 2]Cl 3·10H 2O and [ZrO(CIP) 2Cl]Cl·15H 2O formed in the reaction of ciprofloxacin (CIP) with YCl 3 and ZrOCl 2·8H 2O in ethanol and methanol, respectively, at room temperature were reported. The isolated complexes have been characterized with elemental analysis, IR spectroscopy, conductance measurements, UV-vis and 1H NMR spectroscopic methods and thermal analyses. The results support the formation of the complexes and indicate that ciprofloxacin reacts as a bidentate ligand bound to the metal ion through the pyridone oxygen and one carboxylato oxygen. The activation energies, E*; entropies, Δ S*; enthalpies, Δ H*; Gibbs free energies, Δ G*, of the thermal decomposition reactions have been derived from thermogravimetric (TGA) and differential thermogravimetric (DTG) curves, using Coats-Redfern and Horowitz-Metzeger methods. The proposed structure of the two complexes was detected by using the density functional theory (DFT) at the B3LYP/CEP-31G level of theory. The ligand as well as their metal complexes was also evaluated for their antibacterial activity against several bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) and antifungal screening was studied against two species ( Penicillium ( P. rotatum) and Trichoderma ( T. sp.)). This study showed that the metal complexes are more antibacterial as compared to free ligand and no antifungal activity observed for ligand and their complexes.

  9. Melatonin charge transfer complex with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone: Molecular structure, DFT studies, thermal analyses, evaluation of biological activity and utility for determination of melatonin in pure and dosage forms

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Hamed, Maher M.; Zaki, Nadia G.; Abdou, Mohamed M.; Mohamed, Marwa El-Badry; Abdallah, Abanoub Mosaad

    2017-07-01

    A simple, accurate and fast spectrophotometric method for the quantitative determination of melatonin (ML) drug in its pure and pharmaceutical forms was developed based on the formation of its charge transfer complex with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as an electron acceptor. The different conditions for this method were optimized accurately. The Lambert-Beer's law was found to be valid over the concentration range of 4-100 μg mL- 1 ML. The solid form of the CT complex was structurally characterized by means of different spectral methods. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations were carried out. The different quantum chemical parameters of the CT complex were calculated. Thermal properties of the CT complex and its kinetic thermodynamic parameters were studied, as well as its antimicrobial and antifungal activities were investigated. Molecular docking studies were performed to predict the binding modes of the CT complex components towards E. coli bacterial RNA and the receptor of breast cancer mutant oxidoreductase.

  10. Melatonin charge transfer complex with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone: Molecular structure, DFT studies, thermal analyses, evaluation of biological activity and utility for determination of melatonin in pure and dosage forms.

    PubMed

    Mohamed, Gehad G; Hamed, Maher M; Zaki, Nadia G; Abdou, Mohamed M; Mohamed, Marwa El-Badry; Abdallah, Abanoub Mosaad

    2017-07-05

    A simple, accurate and fast spectrophotometric method for the quantitative determination of melatonin (ML) drug in its pure and pharmaceutical forms was developed based on the formation of its charge transfer complex with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as an electron acceptor. The different conditions for this method were optimized accurately. The Lambert-Beer's law was found to be valid over the concentration range of 4-100μgmL -1 ML. The solid form of the CT complex was structurally characterized by means of different spectral methods. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations were carried out. The different quantum chemical parameters of the CT complex were calculated. Thermal properties of the CT complex and its kinetic thermodynamic parameters were studied, as well as its antimicrobial and antifungal activities were investigated. Molecular docking studies were performed to predict the binding modes of the CT complex components towards E. coli bacterial RNA and the receptor of breast cancer mutant oxidoreductase. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Modeling Conditional Probabilities in Complex Educational Assessments. CSE Technical Report.

    ERIC Educational Resources Information Center

    Mislevy, Robert J.; Almond, Russell; Dibello, Lou; Jenkins, Frank; Steinberg, Linda; Yan, Duanli; Senturk, Deniz

    An active area in psychometric research is coordinated task design and statistical analysis built around cognitive models. Compared with classical test theory and item response theory, there is often less information from observed data about the measurement-model parameters. On the other hand, there is more information from the grounding…

  12. Water-assisted dehalogenation of thionyl chloride in the presence of water molecules.

    PubMed

    Yeung, Chi Shun; Ng, Ping Leung; Guan, Xiangguo; Phillips, David Lee

    2010-04-01

    A second-order Møller-Plesset perturbation theory (MP2) and density functional theory (DFT) investigation of the dehalogenation reactions of thionyl chloride is reported, in which water molecules (up to seven) were explicitly involved in the reaction complex. The dehalogenation processes of thionyl chloride were found to be dramatically catalyzed by water molecules. The reaction rate became significantly faster as more water molecules became involved in the reaction complex. The dehalogenation processes can be reasonably simulated by the gas-phase water cluster models, which reveals that water molecules can help to solvate the thionyl chloride molecules and activate the release of the Cl(-) leaving group. The computed activation energies were used to compare the calculations to available experimental data.

  13. Prospects of a mathematical theory of human behavior in complex man-machine systems tasks. [time sharing computer analogy of automobile driving

    NASA Technical Reports Server (NTRS)

    Johannsen, G.; Rouse, W. B.

    1978-01-01

    A hierarchy of human activities is derived by analyzing automobile driving in general terms. A structural description leads to a block diagram and a time-sharing computer analogy. The range of applicability of existing mathematical models is considered with respect to the hierarchy of human activities in actual complex tasks. Other mathematical tools so far not often applied to man machine systems are also discussed. The mathematical descriptions at least briefly considered here include utility, estimation, control, queueing, and fuzzy set theory as well as artificial intelligence techniques. Some thoughts are given as to how these methods might be integrated and how further work might be pursued.

  14. Control of C-H Bond Activation by Mo-Oxo Complexes: pKa or Bond Dissociation Free Energy (BDFE)?

    PubMed

    Nazemi, Azadeh; Cundari, Thomas R

    2017-10-16

    A density functional theory (DFT) study (BMK/6-31+G(d)) was initiated to investigate the activation of benzylic carbon-hydrogen bonds by a molybdenum-oxo complex with a potentially redox noninnocent supporting ligand-a simple mimic of the active species of the enzyme ethylbenzene dehydrogenase (EBDH)-through deprotonation (C-H bond heterolysis) or hydrogen atom abstraction (C-H bond homolysis) routes. Activation free-energy barriers for neutral and anionic Mo-oxo complexes were high, but lower for anionic complexes than neutral complexes. Interesting trends as a function of substituents were observed that indicated significant H δ+ character in the transition states (TS), which was further supported by the preference for [2 + 2] addition over HAA for most complexes. Hence, it was hypothesized that C-H activation by these EBDH mimics is controlled more by the pK a than by the bond dissociation free energy of the C-H bond being activated. Therefore, the results suggest promising pathways for designing more efficient and selective catalysts for hydrocarbon oxidation based on EBDH active-site mimics.

  15. Graph Theory at the Service of Electroencephalograms.

    PubMed

    Iakovidou, Nantia D

    2017-04-01

    The brain is one of the largest and most complex organs in the human body and EEG is a noninvasive electrophysiological monitoring method that is used to record the electrical activity of the brain. Lately, the functional connectivity in human brain has been regarded and studied as a complex network using EEG signals. This means that the brain is studied as a connected system where nodes, or units, represent different specialized brain regions and links, or connections, represent communication pathways between the nodes. Graph theory and theory of complex networks provide a variety of measures, methods, and tools that can be useful to efficiently model, analyze, and study EEG networks. This article is addressed to computer scientists who wish to be acquainted and deal with the study of EEG data and also to neuroscientists who would like to become familiar with graph theoretic approaches and tools to analyze EEG data.

  16. Complexity theory and physical unification: From microscopic to oscopic level

    NASA Astrophysics Data System (ADS)

    Pavlos, G. P.; Iliopoulos, A. C.; Karakatsanis, L. P.; Tsoutsouras, V. G.; Pavlos, E. G.

    During the last two decades, low dimensional chaotic or self-organized criticality (SOC) processes have been observed by our group in many different physical systems such as space plasmas, the solar or the magnetospheric dynamics, the atmosphere, earthquakes, the brain activity as well as in informational systems. All these systems are complex systems living far from equilibrium with strong self-organization and phase transition character. The theoretical interpretation of these natural phenomena needs a deeper insight into the fundamentals of complexity theory. In this study, we try to give a synoptic description of complexity theory both at the microscopic and at the oscopic level of the physical reality. Also, we propose that the self-organization observed oscopically is a phenomenon that reveals the strong unifying character of the complex dynamics which includes thermodynamical and dynamical characteristics in all levels of the physical reality. From this point of view, oscopical deterministic and stochastic processes are closely related to the microscopical chaos and self-organization. In this study the scientific work of scientists such as Wilson, Nicolis, Prigogine, Hooft, Nottale, El Naschie, Castro, Tsallis, Chang and others is used for the development of a unified physical comprehension of complex dynamics from the microscopic to the oscopic level.

  17. A novel copper (II) complex containing a tetradentate Schiff base: Synthesis, spectroscopy, crystal structure, DFT study, biological activity and preparation of its nano-sized metal oxide

    NASA Astrophysics Data System (ADS)

    Tohidiyan, Zeinab; Sheikhshoaie, Iran; Khaleghi, Mouj; Mague, Joel T.

    2017-04-01

    A new nano-sized copper (II) complex, [Cu(L)] with a tetra dentate Schiff base ligand, 2-((E)-(2-(E-5- bromo-2-hydroxybezenylideneamino) methyl)-4-bromophenol [H2L] was prepared by the reaction between of Cu (CH3COO)2·2H2O and (H2L) ligand with the ratio of 1:1, at the present of triethylamine by sonochemical method. The structure of [Cu (L)] complex was determined by FT-IR, UV-Vis, FESEM and molar conductivity. The structure of [Cu (L)] complex was characterized by single crystal X-ray diffraction. The geometry of [Cu (L)] complex was optimized using density functional theory (DFT) method with the B3LYP/6-31(d) level of theory. The calculated bond lengths and bond angles are in good agreement with the X-ray data. This complex was used as a novel precursor for preparing of CuO nano particles by the thermal decomposition method. The antibacterial activities of [H2L] ligand, nano-sized [Cu (L)] complex and nano-sized CuO have been screened against various strains of bacteria. According to the results, nano-sized CuO can be considered as an appropriate antibiotic agent.

  18. Participation Structures as a Mediational Means: Learning Balinese Gamelan in the United States through Intent Participation, Mediated Discourse, and Distributed Cognition

    ERIC Educational Resources Information Center

    Jocuns, Andrew

    2009-01-01

    Participation has presented a complex unit of analysis for interactional sociolinguistics. In this study I add another dimension to participation by considering recent theories related to sociocultural activity theory--mediated discourse analysis and distributed cognition. Drawing on examples from "maguru panggul", the traditional…

  19. Density functional perturbational orbital theory of spin polarization in electronic systems. II. Transition metal dimer complexes.

    PubMed

    Seo, Dong-Kyun

    2007-11-14

    We present a theoretical scheme for a semiquantitative analysis of electronic structures of magnetic transition metal dimer complexes within spin density functional theory (DFT). Based on the spin polarization perturbational orbital theory [D.-K. Seo, J. Chem. Phys. 125, 154105 (2006)], explicit spin-dependent expressions of the spin orbital energies and coefficients are derived, which allows to understand how spin orbitals form and change their energies and shapes when two magnetic sites are coupled either ferromagnetically or antiferromagnetically. Upon employment of the concept of magnetic orbitals in the active-electron approximation, a general mathematical formula is obtained for the magnetic coupling constant J from the analytical expression for the electronic energy difference between low-spin broken-symmetry and high-spin states. The origin of the potential exchange and kinetic exchange terms based on the one-electron picture is also elucidated. In addition, we provide a general account of the DFT analysis of the magnetic exchange interactions in compounds for which the active-electron approximation is not appropriate.

  20. Collective learning modeling based on the kinetic theory of active particles.

    PubMed

    Burini, D; De Lillo, S; Gibelli, L

    2016-03-01

    This paper proposes a systems approach to the theory of perception and learning in populations composed of many living entities. Starting from a phenomenological description of these processes, a mathematical structure is derived which is deemed to incorporate their complexity features. The modeling is based on a generalization of kinetic theory methods where interactions are described by theoretical tools of game theory. As an application, the proposed approach is used to model the learning processes that take place in a classroom. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Complexity in Student Writing: The Relationship between the Task and Vocabulary Uptake

    ERIC Educational Resources Information Center

    Wolsey, Thomas D.

    2010-01-01

    Cognitive flexibility theory posits that some tasks or cognitive activities resist oversimplification, a lens through which the present study is cast. High school writing tasks that promote complex thinking may also promote increased uptake of academic vocabulary. The study described in this article demonstrates how essential questions and other…

  2. Complex systems as lenses on learning and teaching

    NASA Astrophysics Data System (ADS)

    Hurford, Andrew C.

    From metaphors to mathematized models, the complexity sciences are changing the ways disciplines view their worlds, and ideas borrowed from complexity are increasingly being used to structure conversations and guide research on teaching and learning. The purpose of this corpus of research is to further those conversations and to extend complex systems ideas, theories, and modeling to curricula and to research on learning and teaching. A review of the literatures of learning and of complexity science and a discussion of the intersections between those disciplines are provided. The work reported represents an evolving model of learning qua complex system and that evolution is the result of iterative cycles of design research. One of the signatures of complex systems is the presence of scale invariance and this line of research furnishes empirical evidence of scale invariant behaviors in the activity of learners engaged in participatory simulations. The offered discussion of possible causes for these behaviors and chaotic phase transitions in human learning favors real-time optimization of decision-making as the means for producing such behaviors. Beyond theoretical development and modeling, this work includes the development of teaching activities intended to introduce pre-service mathematics and science teachers to complex systems. While some of the learning goals for this activity focused on the introduction of complex systems as a content area, we also used complex systems to frame perspectives on learning. Results of scoring rubrics and interview responses from students illustrate attributes of the proposed model of complex systems learning and also how these pre-service teachers made sense of the ideas. Correlations between established theories of learning and a complex adaptive systems model of learning are established and made explicit, and a means for using complex systems ideas for designing instruction is offered. It is a fundamental assumption of this research and researcher that complex systems ideas and understandings can be appropriated from more complexity-developed disciplines and put to use modeling and building increasingly productive understandings of learning and teaching.

  3. Using complexity theory to develop a student-directed interprofessional learning activity for 1220 healthcare students.

    PubMed

    Jorm, Christine; Nisbet, Gillian; Roberts, Chris; Gordon, Christopher; Gentilcore, Stacey; Chen, Timothy F

    2016-08-08

    More and better interprofessional practice is predicated to be necessary to deliver good care to the patients of the future. However, universities struggle to create authentic learning activities that enable students to experience the dynamic interprofessional interactions common in healthcare and that can accommodate large interprofessional student cohorts. We investigated a large-scale mandatory interprofessional learning (IPL) activity for health professional students designed to promote social learning. A mixed methods research approach determined feasibility, acceptability and the extent to which student IPL outcomes were met. We developed an IPL activity founded in complexity theory to prepare students for future practice by engaging them in a self-directed (self-organised) learning activity with a diverse team, whose assessable products would be emergent creations. Complicated but authentic clinical cases (n = 12) were developed to challenge student teams (n = 5 or 6). Assessment consisted of a written management plan (academically marked) and a five-minute video (peer marked) designed to assess creative collaboration as well as provide evidence of integrated collective knowledge; the cohesive patient-centred management plan. All students (including the disciplines of diagnostic radiology, exercise physiology, medicine, nursing, occupational therapy, pharmacy, physiotherapy and speech pathology), completed all tasks successfully. Of the 26 % of students who completed the evaluation survey, 70 % agreed or strongly agreed that the IPL activity was worthwhile, and 87 % agreed or strongly agreed that their case study was relevant. Thematic analysis found overarching themes of engagement and collaboration-in-action suggesting that the IPL activity enabled students to achieve the intended learning objectives. Students recognised the contribution of others and described negotiation, collaboration and creation of new collective knowledge after working together on the complicated patient case studies. The novel video assessment was challenging to many students and contextual issues limited engagement for some disciplines. We demonstrated the feasibility and acceptability of a large scale IPL activity where design of cases, format and assessment tasks was founded in complexity theory. This theoretically based design enabled students to achieve complex IPL outcomes relevant to future practice. Future research could establish the psychometric properties of assessments of student performance in large-scale IPL events.

  4. Stochastic cycle selection in active flow networks.

    PubMed

    Woodhouse, Francis G; Forrow, Aden; Fawcett, Joanna B; Dunkel, Jörn

    2016-07-19

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models.

  5. Stochastic cycle selection in active flow networks

    NASA Astrophysics Data System (ADS)

    Woodhouse, Francis; Forrow, Aden; Fawcett, Joanna; Dunkel, Jorn

    2016-11-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such non-equilibrium networks. By connecting concepts from lattice field theory, graph theory and transition rate theory, we show how topology controls dynamics in a generic model for actively driven flow on a network. Through theoretical and numerical analysis we identify symmetry-based rules to classify and predict the selection statistics of complex flow cycles from the network topology. Our conceptual framework is applicable to a broad class of biological and non-biological far-from-equilibrium networks, including actively controlled information flows, and establishes a new correspondence between active flow networks and generalized ice-type models.

  6. Possibility of designing catalysts beyond the traditional volcano curve: a theoretical framework for multi-phase surfaces.

    PubMed

    Wang, Ziyun; Wang, Hai-Feng; Hu, P

    2015-10-01

    The current theory of catalyst activity in heterogeneous catalysis is mainly obtained from the study of catalysts with mono-phases, while most catalysts in real systems consist of multi-phases, the understanding of which is far short of chemists' expectation. Density functional theory (DFT) and micro-kinetics simulations are used to investigate the activities of six mono-phase and nine bi-phase catalysts, using CO hydrogenation that is arguably the most typical reaction in heterogeneous catalysis. Excellent activities that are beyond the activity peak of traditional mono-phase volcano curves are found on some bi-phase surfaces. By analyzing these results, a new framework to understand the unexpected activities of bi-phase surfaces is proposed. Based on the framework, several principles for the design of multi-phase catalysts are suggested. The theoretical framework extends the traditional catalysis theory to understand more complex systems.

  7. Stochastic cycle selection in active flow networks

    PubMed Central

    Woodhouse, Francis G.; Forrow, Aden; Fawcett, Joanna B.; Dunkel, Jörn

    2016-01-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models. PMID:27382186

  8. Foundations of Children's Self-Concepts about Everyday Activities: Identities and Comparative Contexts

    ERIC Educational Resources Information Center

    Fisher, Laurel

    2014-01-01

    Children's motivations to engage in everyday activities draw on their experiences in thinking of oneself and the activities. In theory, these personal and social realities provide the complex foundations of self-concepts. The aim of this project was to define the foundations of children's self-concepts about everyday activities; to focus…

  9. Regulating with imagery and the complexity of basic emotions. Comment on "The quartet theory of human emotions: An integrative and neurofunctional model" by S. Koelsch et al.

    NASA Astrophysics Data System (ADS)

    Meyer, Marcel; Kuchinke, Lars

    2015-06-01

    Literature, music and the arts have long attested to the complexity of human emotions. Hitherto, psychological and biological theories of emotions have largely neglected this rich heritage. In their review Koelsch and colleagues [1] have embarked upon the pioneering endeavour of integrating the diverse perspectives in emotion research. Noting that the focus of prior neurobiological theories relies mainly on animal studies, the authors sought to complement this body of research with a model of complex ("moral") emotions in humans (henceforth: complex emotions). According to this novel framework, there are four main interacting affective centres in the brain. Each centre is associated with a dominant affective function, such as ascending activation (brainstem), pain/pleasure (diencephalon), attachment-related affects (hippocampus) or moral emotions and unconscious cognitive appraisal (orbitofrontal cortex). Furthermore, language is ascribed a key role in (a) the communication of subjective feeling (reconfiguration) and (b) in the conscious regulation of emotions (by means of logic and rational thought).

  10. An Activity-Theoretic Approach to Multi-Touch Tools in Early Mathematics Learning

    ERIC Educational Resources Information Center

    Ladel, Silke; Kortenkamp, Ulrich

    2013-01-01

    In this article we present an activity theory based framework that can capture the complex situations that arise when modern technology like multi-touch devices are introduced in classroom situations. As these devices are able to cover more activities than traditional technologies, even computerbased, media, we have to accept that they now take a…

  11. Bio-inspired computational design of iron catalysts for the hydrogenation of carbon dioxide.

    PubMed

    Yang, Xinzheng

    2015-08-25

    Inspired by the active site structure of monoiron hydrogenase, a series of iron complexes are built using experimentally ready-made acylmethylpyridinol and aliphatic PNP pincer ligands. Density functional theory calculations indicate that the newly designed iron complexes are very promising to catalyze the formation of formic acid from H2 and CO2.

  12. Using Activity Theory to Understand Learning Design Requirements of Patient Self-Management Environments

    ERIC Educational Resources Information Center

    Schaffer, Scott P.; Reyes, Lisette; Kim, Hannah; Collins, Bart

    2010-01-01

    Learning designs aimed at supporting transformational change could significantly benefit from the adoption of socio-historical and socio-cultural analysis approaches. Such systemic perspectives are gaining more importance in education as they facilitate understanding of complex interactions between learning environments and human activity. The…

  13. Actor-Network Theory and its role in understanding the implementation of information technology developments in healthcare.

    PubMed

    Cresswell, Kathrin M; Worth, Allison; Sheikh, Aziz

    2010-11-01

    Actor-Network Theory (ANT) is an increasingly influential, but still deeply contested, approach to understand humans and their interactions with inanimate objects. We argue that health services research, and in particular evaluations of complex IT systems in health service organisations, may benefit from being informed by Actor-Network Theory perspectives. Despite some limitations, an Actor-Network Theory-based approach is conceptually useful in helping to appreciate the complexity of reality (including the complexity of organisations) and the active role of technology in this context. This can prove helpful in understanding how social effects are generated as a result of associations between different actors in a network. Of central importance in this respect is that Actor-Network Theory provides a lens through which to view the role of technology in shaping social processes. Attention to this shaping role can contribute to a more holistic appreciation of the complexity of technology introduction in healthcare settings. It can also prove practically useful in providing a theoretically informed approach to sampling (by drawing on informants that are related to the technology in question) and analysis (by providing a conceptual tool and vocabulary that can form the basis for interpretations). We draw on existing empirical work in this area and our ongoing work investigating the integration of electronic health record systems introduced as part of England's National Programme for Information Technology to illustrate salient points. Actor-Network Theory needs to be used pragmatically with an appreciation of its shortcomings. Our experiences suggest it can be helpful in investigating technology implementations in healthcare settings.

  14. The Persistence of Erroneous Familiarity in an Epileptic Male: Challenging Perceptual Theories of Deja Vu Activation

    ERIC Educational Resources Information Center

    O'Connor, Akira R.; Moulin, Christopher J. A.

    2008-01-01

    We report the case of a 39-year-old, temporal lobe epileptic male, MH. Prior to complex partial seizure, experienced up to three times a day, MH often experiences an aura experienced as a persistent sensation of deja vu. Data-driven theories of deja vu formation suggest that partial familiarity for the perceived stimulus is responsible for the…

  15. Unraveling dynamics of human physical activity patterns in chronic pain conditions

    NASA Astrophysics Data System (ADS)

    Paraschiv-Ionescu, Anisoara; Buchser, Eric; Aminian, Kamiar

    2013-06-01

    Chronic pain is a complex disabling experience that negatively affects the cognitive, affective and physical functions as well as behavior. Although the interaction between chronic pain and physical functioning is a well-accepted paradigm in clinical research, the understanding of how pain affects individuals' daily life behavior remains a challenging task. Here we develop a methodological framework allowing to objectively document disruptive pain related interferences on real-life physical activity. The results reveal that meaningful information is contained in the temporal dynamics of activity patterns and an analytical model based on the theory of bivariate point processes can be used to describe physical activity behavior. The model parameters capture the dynamic interdependence between periods and events and determine a `signature' of activity pattern. The study is likely to contribute to the clinical understanding of complex pain/disease-related behaviors and establish a unified mathematical framework to quantify the complex dynamics of various human activities.

  16. Renewal Processes in the Critical Brain

    NASA Astrophysics Data System (ADS)

    Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Gemignani, Angelo

    We describe herein a multidisciplinary research, as it developes and applies concepts of the theory of complexity, in turn stemming from recent advancements of statistical physics, onto cognitive neuroscience. We discuss (define) complexity, and how the human brain is a paradigm of it. We discuss how the hypothesis of brain activity dynamically behaving as a critical system is taking momentum in literature, then we focus on a feature of critical systems (hence of the brain), which is the intermittent passage between metastable states, marked by events, locally resetting the memory, but giving rise to correlation functions with infinite correlation times. The events, extracted from multi-channel ElectroEncephaloGrams, mark (are interpreted as) a birth/death process of cooperation, namely of system elements being recruited into collective states. Finally we discuss a recently discovered form of control (in the form of a new Linear Response Theory), that allows an optimized information transmission between complex systems, named Complexity Matching.

  17. Interprofessional communication and medical error: a reframing of research questions and approaches.

    PubMed

    Varpio, Lara; Hall, Pippa; Lingard, Lorelei; Schryer, Catherine F

    2008-10-01

    Progress toward understanding the links between interprofessional communication and issues of medical error has been slow. Recent research proposes that this delay may result from overlooking the complexities involved in interprofessional care. Medical education initiatives in this domain tend to simplify the complexities of team membership fluidity, rotation, and use of communication tools. A new theoretically informed research approach is required to take into account these complexities. To generate such an approach, we review two theories from the social sciences: Activity Theory and Knotworking. Using these perspectives, we propose that research into interprofessional communication and medical error can develop better understandings of (1) how and why medical errors are generated and (2) how and why gaps in team defenses occur. Such complexities will have to be investigated if students and practicing clinicians are to be adequately prepared to work safely in interprofessional teams.

  18. Comparative study of copper(II)-curcumin complexes as superoxide dismutase mimics and free radical scavengers.

    PubMed

    Barik, Atanu; Mishra, Beena; Kunwar, Amit; Kadam, Ramakant M; Shen, Liang; Dutta, Sabari; Padhye, Subhash; Satpati, Ashis K; Zhang, Hong-Yu; Indira Priyadarsini, K

    2007-04-01

    Two stoichiometrically different copper(II) complexes of curcumin (stoichiometry, 1:1 and 1:2 for copper:curcumin), were examined for their superoxide dismutase (SOD) activity, free radical-scavenging ability and antioxidant potential. Both the complexes are soluble in lipids and DMSO. The formation constants of the complexes were determined by voltammetry. EPR spectra of the complexes in DMSO at 77K showed that the 1:2 Cu(II)-curcumin complex is square planar and the 1:1 Cu(II)-curcumin complex is distorted orthorhombic. Cu(II)-curcumin complex (1:1) with larger distortion from square planar structure shows higher SOD activity. These complexes inhibit gamma-radiation induced lipid peroxidation in liposomes and react with DPPH acting as free radical scavengers. One-electron oxidation of the two complexes by radiolytically generated azide radicals in Tx-100 micellar solutions produced phenoxyl radicals, indicating that the phenolic moiety of curcumin in the complexes participates in free radical reactions. Depending on the structure, these two complexes possess different SOD activities, free radical neutralizing abilities and antioxidant potentials. In addition, quantum chemical calculations with density functional theory have been performed to support the experimental observations.

  19. Learning in Activity: Exploring the Methodological Potential of Action Research in Activity Theorising of Social Practice

    ERIC Educational Resources Information Center

    Darwin, Stephen

    2011-01-01

    Cultural-historical activity theory (CHAT), founded on the seminal work of Vygotsky and evolving in the subsequent work of Leont'ev and Engestrom, continues to emerge as a robust and increasingly widely used conceptual framework for the research and analysis of the complex social mediation of human learning and development. Yet there remains…

  20. A combined experimental and DFT study of active structures and self-cycle mechanisms of mononuclear tungsten peroxo complexes in oxidation reactions

    NASA Astrophysics Data System (ADS)

    Jin, Peng; Wei, Donghui; Wen, Yiqiang; Luo, Mengfei; Wang, Xiangyu; Tang, Mingsheng

    2011-04-01

    Tungsten peroxo complexes have been widely used in olefin epoxidation, alcohol oxidation, Baeyer-Villiger oxidation and other oxidation reactions, however, there is still not a unanimous viewpoint for the active structure of mononuclear tungsten peroxo complex by now. In this paper, the catalysis of mononuclear tungsten peroxo complexes 0- 5 with or without acidic ligands for the green oxidation of cyclohexene to adipic acid in the absence of organic solvent and phase-transfer catalyst has been researched in experiment. Then we have suggested two possible kinds of active structures of mononuclear tungsten peroxo complexes including peroxo ring ( nA, n = 0-1) and hydroperoxo ( nB, n = 0-1) structures, which have been investigated using density functional theory (DFT). Moreover, the calculations on self-cycle mechanisms involving the two types of active structures of tungsten peroxo complexes with and without oxalic acid ligand have also been carried out at the B3LYP/[LANL2DZ/6-31G(d, p)] level. The highest energy barrier are 26.17 kcal/mol ( 0A, peroxo ring structure without oxalic acid ligand), 23.91 kcal/mol ( 1A, peroxo ring structure with oxalic acid ligand), 18.19 kcal/mol ( 0B, hydroperoxo structure without oxalic acid ligand) and 13.10 kcal/mol ( 1B, hydroperoxo structure with oxalic acid ligand) in the four potential energy profiles, respectively. The results indicate that both the energy barriers of active structure self-cycle processes with oxalic acid ligands are lower than those without oxalic acid ligands, so the active structures with oxalic acid ligands should be easier to recycle, which is in good agreement with our experimental results. However, due to the higher energy of product than that of the reactant, the energy profile of the self-cycle process of 1B shows that the recycle of 1B could not occur at all in theory. Moreover, the crystal data of peroxo ring structure with oxalic acid ligand could be found in some experimental references. Thus, the viewpoint that the peroxo ring active structure should be the real active structure has been proved in this paper.

  1. Exploring Formative Assessment Using Cultural Historical Activity Theory

    ERIC Educational Resources Information Center

    Asghar, Mandy

    2013-01-01

    Formative assessment is a pedagogic practice that has been the subject of much research and debate, as to how it can be used most effectively to deliver enhanced student learning in the higher education setting. Often described as a complex concept it embraces activities that range from facilitating students understanding of assessment standards,…

  2. Using the Five Faces of Oppression to Teach about Interlocking Systems of Oppression

    ERIC Educational Resources Information Center

    Shlasko, Davey

    2015-01-01

    In social justice education a tension sometimes emerges between the complex ideas we want participants to grapple with and the relatively straightforward activities we use to communicate those ideas. We adapt learning activities to meet participants' evolving needs and to communicate emerging theories and analyses, but sometimes adjusting an…

  3. Symmetry, Contingency, Complexity: Accommodating Uncertainty in Public Relations Theory.

    ERIC Educational Resources Information Center

    Murphy, Priscilla

    2000-01-01

    Explores the potential of complexity theory as a unifying theory in public relations, where scholars have recently raised problems involving flux, uncertainty, adaptiveness, and loss of control. Describes specific complexity-based methodologies and their potential for public relations studies. Offers an account of complexity theory, its…

  4. Father, Son, Wife, Husband: Philanthropy as Exchange and Balance.

    PubMed

    Chan, Kwok-Bun

    2010-09-01

    This essay attempts to use exchange and balance theories to explain philanthropy. For exchange, such theoretical components as attractions or rewards, costs, barriers and alternatives are invoked to make sense of the biography of a Chinese philanthropist in Hong Kong who donated two schools to remember his father and wife. The balance theory was also used, which argues that people do not seek to maximize their pleasure or to minimize their pain, but to balance, advancing one purpose or concern without neglecting the other-to enhance their well-being and to act morally. The essay argues that the case study method is most able to handle complex behaviour and complex lives. It concludes with a plea for more active use of social theory in research on philanthropy as moral and economic behavior embedded in the social contexts of family, marriage and community.

  5. Is cognitive science usefully cast as complexity science?

    PubMed

    Van Orden, Guy; Stephen, Damian G

    2012-01-01

    Readers of TopiCS are invited to join a debate about the utility of ideas and methods of complexity science. The topics of debate include empirical instances of qualitative change in cognitive activity and whether this empirical work demonstrates sufficiently the empirical flags of complexity. In addition, new phenomena discovered by complexity scientists, and motivated by complexity theory, call into question some basic assumptions of conventional cognitive science such as stable equilibria and homogeneous variance. The articles and commentaries that appear in this issue also illustrate a new debate style format for topiCS. Copyright © 2011 Cognitive Science Society, Inc.

  6. Computational investigations of trans-platinum(II) oxime complexes used as anticancer drug

    NASA Astrophysics Data System (ADS)

    Sayin, Koray; Karakaş, Duran

    2018-01-01

    Some platinum oxime complexes are optimized at HF/CEP-31G level which has been reported as the best level for these type complexes in the gas phase. IR spectrum is calculated and the new scale factor is derived. NMR spectrum is calculated at the same level of theory and examined in detail. Quantum chemical parameters which have been mainly used are investigated and their formulas are given in detail. Additionally, selected quantum chemical parameters of studied complexes are calculated. New theoretical IC50% formulas are derived and biological activity rankings of mentioned complexes are investigated.

  7. On the complex interplay between learning and dynamics in life sciences. Comment on the paper "Collective learning modeling based on the kinetic theory of active particles" by Burini et al.

    NASA Astrophysics Data System (ADS)

    Bellomo, Nicola; Elaiw, Ahmed; Alghamdi, Mohamed Ali

    2016-03-01

    The paper by Burini, De Lillo, and Gibelli [8] presents an overview and critical analysis of the literature on the modeling of learning dynamics. The first reference is the celebrated paper by Cucker and Smale [9]. Then, the authors also propose their own approach, based on suitable development of methods of the kinetic theory [6] and theoretical tools of evolutionary game theory [12,13], recently developed on graphs [2].

  8. Theories of how the school environment impacts on student health: systematic review and synthesis.

    PubMed

    Bonell, C P; Fletcher, A; Jamal, F; Wells, H; Harden, A; Murphy, S; Thomas, J

    2013-11-01

    Public-health interventions informed by theory can be more effective but complex interventions often use insufficiently complex theories. We systematically reviewed theories of how school environments influence health. We included 37 reports drawing on 24 theories. Narrative synthesis summarised and categorised theories. We then produced an integrated theory of school environment influences on student health. This integrated theory could inform complex interventions such as health promoting schools programmes. Using systematic reviews to develop theories of change might be useful for other types of 'complex' public-health interventions addressing risks at the individual and community levels. © 2013 Published by Elsevier Ltd.

  9. Social cognitive theory, metacognition, and simulation learning in nursing education.

    PubMed

    Burke, Helen; Mancuso, Lorraine

    2012-10-01

    Simulation learning encompasses simple, introductory scenarios requiring response to patients' needs during basic hygienic care and during situations demanding complex decision making. Simulation integrates principles of social cognitive theory (SCT) into an interactive approach to learning that encompasses the core principles of intentionality, forethought, self-reactiveness, and self-reflectiveness. Effective simulation requires an environment conducive to learning and introduces activities that foster symbolic coding operations and mastery of new skills; debriefing builds self-efficacy and supports self-regulation of behavior. Tailoring the level of difficulty to students' mastery level supports successful outcomes and motivation to set higher standards. Mindful selection of simulation complexity and structure matches course learning objectives and supports progressive development of metacognition. Theory-based facilitation of simulated learning optimizes efficacy of this learning method to foster maturation of cognitive processes of SCT, metacognition, and self-directedness. Examples of metacognition that are supported through mindful, theory-based implementation of simulation learning are provided. Copyright 2012, SLACK Incorporated.

  10. Complexity analysis and mathematical tools towards the modelling of living systems.

    PubMed

    Bellomo, N; Bianca, C; Delitala, M

    2009-09-01

    This paper is a review and critical analysis of the mathematical kinetic theory of active particles applied to the modelling of large living systems made up of interacting entities. The first part of the paper is focused on a general presentation of the mathematical tools of the kinetic theory of active particles. The second part provides a review of a variety of mathematical models in life sciences, namely complex social systems, opinion formation, evolution of epidemics with virus mutations, and vehicular traffic, crowds and swarms. All the applications are technically related to the mathematical structures reviewed in the first part of the paper. The overall contents are based on the concept that living systems, unlike the inert matter, have the ability to develop behaviour geared towards their survival, or simply to improve the quality of their life. In some cases, the behaviour evolves in time and generates destructive and/or proliferative events.

  11. [Au(pyb-H)(mnt)]: A novel gold(III) 1,2-dithiolene cyclometalated complex with antimicrobial activity (pyb-H=C-deprotonated 2-benzylpyridine; mnt=1,2-dicyanoethene-1,2-dithiolate).

    PubMed

    Pintus, Anna; Aragoni, M Carla; Cinellu, Maria A; Maiore, Laura; Isaia, Francesco; Lippolis, Vito; Orrù, Germano; Tuveri, Enrica; Zucca, Antonio; Arca, Massimiliano

    2017-05-01

    The novel heteroleptic cyclometalated complex [Au III (py b -H)(mnt)] (1; py b -H=C-deprotonated 2-benzylpyridine; mnt =1,2-dicyanoethene-1,2-dithiolate) was tested against a panel of ten Gram positive (belonging to the Staphylococcus, Streptococcus spp. and Bacillus clausii), Gram negative (E. coli, K. pneumoniae, P. aeruginosa) bacteria and three yeasts belonging to the Candida spp. Complex 1 showed a remarkable bacteriostatic antimicrobial activity against staphylococci, with Minimum Inhibitory Concentration (MIC) values of 1.56 and 3.13μg/mL for S. haemoliticus and S. aureus, respectively. Spectroscopic and electrochemical measurements, supported by Density Functional Theory (DFT) calculations, were exploited to fully investigate the electronic structure of complex 1 and its relationship with the antimicrobial activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Dimensionality and entropy of spontaneous and evoked rate activity

    NASA Astrophysics Data System (ADS)

    Engelken, Rainer; Wolf, Fred

    Cortical circuits exhibit complex activity patterns both spontaneously and evoked by external stimuli. Finding low-dimensional structure in population activity is a challenge. What is the diversity of the collective neural activity and how is it affected by an external stimulus? Using concepts from ergodic theory, we calculate the attractor dimensionality and dynamical entropy production of these networks. We obtain these two canonical measures of the collective network dynamics from the full set of Lyapunov exponents. We consider a randomly-wired firing-rate network that exhibits chaotic rate fluctuations for sufficiently strong synaptic weights. We show that dynamical entropy scales logarithmically with synaptic coupling strength, while the attractor dimensionality saturates. Thus, despite the increasing uncertainty, the diversity of collective activity saturates for strong coupling. We find that a time-varying external stimulus drastically reduces both entropy and dimensionality. Finally, we analytically approximate the full Lyapunov spectrum in several limiting cases by random matrix theory. Our study opens a novel avenue to characterize the complex dynamics of rate networks and the geometric structure of the corresponding high-dimensional chaotic attractor. received funding from Evangelisches Studienwerk Villigst, DFG through CRC 889 and Volkswagen Foundation.

  13. Free Energy and Virtual Reality in Neuroscience and Psychoanalysis: A Complexity Theory of Dreaming and Mental Disorder.

    PubMed

    Hopkins, Jim

    2016-01-01

    The main concepts of the free energy (FE) neuroscience developed by Karl Friston and colleagues parallel those of Freud's Project for a Scientific Psychology. In Hobson et al. (2014) these include an innate virtual reality generator that produces the fictive prior beliefs that Freud described as the primary process. This enables Friston's account to encompass a unified treatment-a complexity theory-of the role of virtual reality in both dreaming and mental disorder. In both accounts the brain operates to minimize FE aroused by sensory impingements-including interoceptive impingements that report compliance with biological imperatives-and constructs a representation/model of the causes of impingement that enables this minimization. In Friston's account (variational) FE equals complexity minus accuracy, and is minimized by increasing accuracy and decreasing complexity. Roughly the brain (or model) increases accuracy together with complexity in waking. This is mediated by consciousness-creating active inference-by which it explains sensory impingements in terms of perceptual experiences of their causes. In sleep it reduces complexity by processes that include both synaptic pruning and consciousness/virtual reality/dreaming in REM. The consciousness-creating active inference that effects complexity-reduction in REM dreaming must operate on FE-arousing data distinct from sensory impingement. The most relevant source is remembered arousals of emotion, both recent and remote, as processed in SWS and REM on "active systems" accounts of memory consolidation/reconsolidation. Freud describes these remembered arousals as condensed in the dreamwork for use in the conscious contents of dreams, and similar condensation can be seen in symptoms. Complexity partly reflects emotional conflict and trauma. This indicates that dreams and symptoms are both produced to reduce complexity in the form of potentially adverse (traumatic or conflicting) arousals of amygdala-related emotions. Mental disorder is thus caused by computational complexity together with mechanisms like synaptic pruning that have evolved for complexity-reduction; and important features of disorder can be understood in these terms. Details of the consilience among Freudian, systems consolidation, and complexity-reduction accounts appear clearly in the analysis of a single fragment of a dream, indicating also how complexity reduction proceeds by a process resembling Bayesian model selection.

  14. Managing the integration and harmonization of national airspace for unmanned and manned systems

    NASA Astrophysics Data System (ADS)

    Mumm, Hans

    This dissertation examines the leadership challenge created by the requirement to integrate unmanned aerial vehicles (UAVs) into the national airspace system (NAS). The lack of UAV-related federal rules and regulations is a primary factor prolonging this integration. This effort focuses primarily on the leadership portion of the solution and not the technological requirements. The research explores an adaptation of the complexity theory that offers a potential leadership framework for the government, industry, and academia to use for achieving the full integration of UAVs into the NAS. Due to the large number of stakeholders and the multitude of interrelated issues, a complexity-theory-leadership methodology was created and examined as a potential way to help the FAA accelerate their rule-making efforts. This dissertation focuses on United States UAV issues. The United States is one of the leaders in the unmanned systems arena, to include the first significant use of recoverable autonomous weaponized systems in combat. Issues such as airspace, airworthiness, social issues, privacy issues, regulations, and the lack of policies, procedures, or governance are universal for all countries that are active in this technology area. This qualitative dissertation makes use of the grounded theory methodology as it combines a literature review and research along with interviews with subject matter experts, and information gained from attending UAV related gatherings/discussions. The investigation uncovered significant FAA process impediments as well as some possible break through concepts that could work well with the complexity-theory-leadership methodology. Keywords: Complexity theory, leadership, change management, UAV, unmanned aerial vehicle, National Airspace, NAS, FAA, Federal Aviation Administration.

  15. Multiscale polar theory of microtubule and motor-protein assemblies

    DOE PAGES

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; ...

    2015-01-27

    Microtubules and motor proteins are building blocks of self-organized subcellular biological structures such as the mitotic spindle and the centrosomal microtubule array. These same ingredients can form new “bioactive” liquid-crystalline fluids that are intrinsically out of equilibrium and which display complex flows and defect dynamics. It is not yet well understood how microscopic activity, which involves polarity-dependent interactions between motor proteins and microtubules, yields such larger-scale dynamical structures. In our multiscale theory, Brownian dynamics simulations of polar microtubule ensembles driven by cross-linking motors allow us to study microscopic organization and stresses. Polarity sorting and cross-link relaxation emerge as two polar-specificmore » sources of active destabilizing stress. On larger length scales, our continuum Doi-Onsager theory captures the hydrodynamic flows generated by polarity-dependent active stresses. Finally, the results connect local polar structure to flow structures and defect dynamics.« less

  16. Using Activity Theory to Evaluate a Professional Learning and Development Initiative in the Use of Narrative Assessment

    ERIC Educational Resources Information Center

    Bourke, Roseanna; Mentis, Mandia; O'Neill, John

    2013-01-01

    Analysis of the impact of professional learning and development (PLD) programmes for educators is complex. This article presents an analysis of a PLD initiative in which classroom teachers learned to use narrative assessment for students with "high" and "very high" learning needs. Using Cultural Historical Activity Theory…

  17. "And Now That I Know Them": Composing Mutuality in a Service Learning Course.

    ERIC Educational Resources Information Center

    Welch, Nancy

    2002-01-01

    Turns to contemporary feminist object-relations theory to understand the efforts of students in a service learning course, to push beyond the usual subject-object, active-passive dualisms that pervade community-based literacy projects, and to compose instead complex representations in which all participants are composed as active, as knowing, and…

  18. Distributed communication: Implications of cultural-historical activity theory (CHAT) for communication disorders.

    PubMed

    Hengst, Julie A

    2015-01-01

    This article proposes distributed communication as a promising theoretical framework for building supportive environments for child language development. Distributed communication is grounded in an emerging intersection of cultural-historical activity theory (CHAT) and theories of communicative practices that argue for integrating accounts of language, cognition and culture. The article first defines and illustrates through selected research articles, three key principles of distributed communication: (a) language and all communicative resources are inextricably embedded in activity; (b) successful communication depends on common ground built up through short- and long-term histories of participation in activities; and (c) language cannot act alone, but is always orchestrated with other communicative resources. It then illustrates how these principles are fully integrated in everyday interactions by drawing from my research on Cindy Magic, a verbal make-believe game played by a father and his two daughters. Overall, the research presented here points to the remarkably complex communicative environments and sophisticated forms of distributed communication children routinely engage in as they interact with peer and adult communication partners in everyday settings. The article concludes by considering implications of these theories for, and examples of, distributed communication relevant to clinical intervention. Readers will learn about (1) distributed communication as a conceptual tool grounded in an emerging intersection of cultural-historical activity theory and theories of communicative practices and (2) how to apply distributed communication to the study of child language development and to interventions for children with communication disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Father, Son, Wife, Husband: Philanthropy as Exchange and Balance

    PubMed Central

    2010-01-01

    This essay attempts to use exchange and balance theories to explain philanthropy. For exchange, such theoretical components as attractions or rewards, costs, barriers and alternatives are invoked to make sense of the biography of a Chinese philanthropist in Hong Kong who donated two schools to remember his father and wife. The balance theory was also used, which argues that people do not seek to maximize their pleasure or to minimize their pain, but to balance, advancing one purpose or concern without neglecting the other—to enhance their well-being and to act morally. The essay argues that the case study method is most able to handle complex behaviour and complex lives. It concludes with a plea for more active use of social theory in research on philanthropy as moral and economic behavior embedded in the social contexts of family, marriage and community. PMID:20835377

  20. The (kinetic) theory of active particles applied to learning dynamics. Comment on "Collective learning modeling based on the kinetic theory of active particles" by D. Burini et al.

    NASA Astrophysics Data System (ADS)

    Nieto, J.

    2016-03-01

    The learning phenomena, their complexity, concepts, structure, suitable theories and models, have been extensively treated in the mathematical literature in the last century, and [4] contains a very good introduction to the literature describing the many approaches and lines of research developed about them. Two main schools have to be pointed out [5] in order to understand the two -not exclusive- kinds of existing models: the stimulus sampling models and the stochastic learning models. Also [6] should be mentioned as a survey where two methods of learning are pointed out, the cognitive and the social, and where the knowledge looks like a mathematical unknown. Finally, as the authors do, we refer to the works [9,10], where the concept of population thinking was introduced and which motivate the game theory rules as a tool (both included in [4] to develop their theory) and [7], where the ideas of developing a mathematical kinetic theory of perception and learning were proposed.

  1. Application of simplified Complexity Theory concepts for healthcare social systems to explain the implementation of evidence into practice.

    PubMed

    Chandler, Jacqueline; Rycroft-Malone, Jo; Hawkes, Claire; Noyes, Jane

    2016-02-01

    To examine the application of core concepts from Complexity Theory to explain the findings from a process evaluation undertaken in a trial evaluating implementation strategies for recommendations about reducing surgical fasting times. The proliferation of evidence-based guidance requires a greater focus on its implementation. Theory is required to explain the complex processes across the multiple healthcare organizational levels. This social healthcare context involves the interaction between professionals, patients and the organizational systems in care delivery. Complexity Theory may provide an explanatory framework to explain the complexities inherent in implementation in social healthcare contexts. A secondary thematic analysis of qualitative process evaluation data informed by Complexity Theory. Seminal texts applying Complexity Theory to the social context were annotated, key concepts extracted and core Complexity Theory concepts identified. These core concepts were applied as a theoretical lens to provide an explanation of themes from a process evaluation of a trial evaluating the implementation of strategies to reduce surgical fasting times. Sampled substantive texts provided a representative spread of theoretical development and application of Complexity Theory from late 1990's-2013 in social science, healthcare, management and philosophy. Five Complexity Theory core concepts extracted were 'self-organization', 'interaction', 'emergence', 'system history' and 'temporality'. Application of these concepts suggests routine surgical fasting practice is habituated in the social healthcare system and therefore it cannot easily be reversed. A reduction to fasting times requires an incentivised new approach to emerge in the surgical system's priority of completing the operating list. The application of Complexity Theory provides a useful explanation for resistance to change fasting practice. Its utility in implementation research warrants further attention and evaluation. © 2015 John Wiley & Sons Ltd.

  2. Operational Shock Complexity Theory

    DTIC Science & Technology

    2005-05-26

    Theory : Recommendations For The National Strategy To Defeat Terrorism.” Student Issue Paper, Center for Strategic Leadership , US Army War College, July...Lens of Complexity Theory : Recommendations For The National Strategy To Defeat Terrorism.” (Student Issue Paper, Center for Strategic Leadership , US... Leadership Complexity theory affects the training of leaders. With the enemy system able to develop its complexity either through interaction with US

  3. Dannie Heineman Prize for Mathematical Physics: Applying mathematical techniques to solve important problems in quantum theory

    NASA Astrophysics Data System (ADS)

    Bender, Carl

    2017-01-01

    The theory of complex variables is extremely useful because it helps to explain the mathematical behavior of functions of a real variable. Complex variable theory also provides insight into the nature of physical theories. For example, it provides a simple and beautiful picture of quantization and it explains the underlying reason for the divergence of perturbation theory. By using complex-variable methods one can generalize conventional Hermitian quantum theories into the complex domain. The result is a new class of parity-time-symmetric (PT-symmetric) theories whose remarkable physical properties have been studied and verified in many recent laboratory experiments.

  4. Theoretical study of optical activity of 1:1 hydrogen bond complexes of water with S-warfarin

    NASA Astrophysics Data System (ADS)

    Dadsetani, Mehrdad; Abdolmaleki, Ahmad; Zabardasti, Abedin

    2016-11-01

    The molecular interaction between S-warfarin (SW) and a single water molecule was investigated using the B3LYP method at 6-311 ++G(d,p) basis set. The vibrational spectra of the optimized complexes have been investigated for stabilization checking. Quantum theories of atoms in molecules, natural bond orbitals, molecular electrostatic potentials and energy decomposition analysis methods have been applied to analyze the intermolecular interactions. The intermolecular charge transfer in the most stable complex is in the opposite direction from those in the other complexes. The optical spectra and the hyperpolarizabilities of SW-water hydrogen bond complexes have been computed.

  5. DFT calculations, spectroscopic, thermal analysis and biological activity of Sm(III) and Tb(III) complexes with 2-aminobenzoic and 2-amino-5-chloro-benzoic acids.

    PubMed

    Essawy, Amr A; Afifi, Manal A; Moustafa, H; El-Medani, S M

    2014-10-15

    The complexes of Sm(III) and Tb(III) with 2-aminobenzoic acid (anthranilic acid, AA) and 2-amino-5-chlorobenzoic acid (5-chloroanthranilic acid, AACl) were synthesized and characterized based on elemental analysis, IR and mass spectroscopy. The data are in accordance with 1:3 [Metal]:[Ligand] ratio. On the basis of the IR analysis, it was found that the metals were coordinated to bidentate anthranilic acid via the ionised oxygen of the carboxylate group and to the nitrogen of amino group. While in 5-chloroanthranilic acid, the metals were coordinated oxidatively to the bidentate carboxylate group without bonding to amino group; accordingly, a chlorine-affected coordination and reactivity-diversity was emphasized. Thermal analyses (TGA) and biological activity of the complexes were also investigated. Density Functional Theory (DFT) calculations at the B3LYP/6-311++G (d,p)_ level of theory have been carried out to investigate the equilibrium geometry of the ligand. The optimized geometry parameters of the complexes were evaluated using SDDALL basis set. Moreover, total energy, energy of HOMO and LUMO and Mullikan atomic charges were calculated. In addition, dipole moment and orientation have been performed and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. DFT calculations, spectroscopic, thermal analysis and biological activity of Sm(III) and Tb(III) complexes with 2-aminobenzoic and 2-amino-5-chloro-benzoic acids

    NASA Astrophysics Data System (ADS)

    Essawy, Amr A.; Afifi, Manal A.; Moustafa, H.; El-Medani, S. M.

    2014-10-01

    The complexes of Sm(III) and Tb(III) with 2-aminobenzoic acid (anthranilic acid, AA) and 2-amino-5-chlorobenzoic acid (5-chloroanthranilic acid, AACl) were synthesized and characterized based on elemental analysis, IR and mass spectroscopy. The data are in accordance with 1:3 [Metal]:[Ligand] ratio. On the basis of the IR analysis, it was found that the metals were coordinated to bidentate anthranilic acid via the ionised oxygen of the carboxylate group and to the nitrogen of amino group. While in 5-chloroanthranilic acid, the metals were coordinated oxidatively to the bidentate carboxylate group without bonding to amino group; accordingly, a chlorine-affected coordination and reactivity-diversity was emphasized. Thermal analyses (TGA) and biological activity of the complexes were also investigated. Density Functional Theory (DFT) calculations at the B3LYP/6-311++G (d,p)_ level of theory have been carried out to investigate the equilibrium geometry of the ligand. The optimized geometry parameters of the complexes were evaluated using SDDALL basis set. Moreover, total energy, energy of HOMO and LUMO and Mullikan atomic charges were calculated. In addition, dipole moment and orientation have been performed and discussed.

  7. Visual complexity: a review.

    PubMed

    Donderi, Don C

    2006-01-01

    The idea of visual complexity, the history of its measurement, and its implications for behavior are reviewed, starting with structuralism and Gestalt psychology at the beginning of the 20th century and ending with visual complexity theory, perceptual learning theory, and neural circuit theory at the beginning of the 21st. Evidence is drawn from research on single forms, form and texture arrays and visual displays. Form complexity and form probability are shown to be linked through their reciprocal relationship in complexity theory, which is in turn shown to be consistent with recent developments in perceptual learning and neural circuit theory. Directions for further research are suggested.

  8. Systematic theoretical investigation of the zero-field splitting in Gd(III) complexes: Wave function and density functional approaches

    NASA Astrophysics Data System (ADS)

    Khan, Shehryar; Kubica-Misztal, Aleksandra; Kruk, Danuta; Kowalewski, Jozef; Odelius, Michael

    2015-01-01

    The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H2O)-, Gd(III)DTPA(H2O)2-, and Gd(III)(H2O)83+ in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.

  9. Inhabiting the sexual landscape: toward an interpretive theory of the development of sexual orientation and identity.

    PubMed

    Gordon, Liahna E; Silva, Tony J

    2015-01-01

    Building on Paula Rust's (1996) concept of a sexual landscape, we propose an interpretive theory of the development of both sexual orientation and sexual identity. We seek to reconcile human agency with active and shifting influences in social context and to recognize the inherent complexity of environmental factors while acknowledging the role that biological potential plays. We ground our model in the insights of three compatible and related theoretical perspectives: social constructionism, symbolic interactionism, and scripting theory. Within this framework, we explain how sexual orientation and sexual identities develop and potentially change.

  10. The Differential Gibbs Free Energy of Activation and its Implications in the Transition-State of Enzymatic Reactions

    NASA Astrophysics Data System (ADS)

    Maggi, F.; Riley, W. J.

    2016-12-01

    We propose a mathematical framework to introduce the concept of differential free energy of activation in enzymatically catalyzed reactions, and apply it to N uptake by microalgae and bacteria. This framework extends the thermodynamic capabilities of the classical transition-state theory in and harmonizes the consolidated definitions of kinetic parameters with their thermodynamic and physical meaning. Here, the activation energy is assumed to be a necessary energetic level for equilibrium complexation between reactants and activated complex; however, an additional energy contribution is required for the equilibrium activated complex to release reaction products. We call this "differential free energy of activation"; it can be described by a Boltzmann distribution, and corresponds to a free energy level different from that of complexation. Whether this level is above or below the free energy of activation depends on the reaction, and defines energy domains that correspond to "superactivated", "activated", and "subactivated" complexes. The activated complex reaching one of those states will eventually release the products from an energy level different than that of activation. The concept of differential free energy of activation was tested on 57 independent experiments of NH­4+ and NO3- uptake by various microalgae and bacteria at temperatures ranging between 1 and 45oC. Results showed that the complexation equilibrium always favored the activated complex, but the differential energy of activation led to an apparent energy barrier consistent with observations. Temperature affected all energy levels within this framework but did not alter substantially these thermodynamic features. Overall the approach: (1) provides a thermodynamic and mathematical link between Michaelis-Menten and rate constants; (2) shows that both kinetic parameters can be described or approximated by Arrhenius' like equations; (3) describes the likelihood of formation of sub-, super-, and activated complexes; and (4) shows direction and thermodynamic likelihood of each reaction branch within the transition state. The approach suites particularly well for calibration of kinetic parameters against experimentally acquired reaction dynamics measurements of nutrient biogeochemical cycles.

  11. On the context-dependent nature of the contribution of the ventral premotor cortex to speech perception

    PubMed Central

    Tremblay, Pascale; Small, Steven L.

    2011-01-01

    What is the nature of the interface between speech perception and production, where auditory and motor representations converge? One set of explanations suggests that during perception, the motor circuits involved in producing a perceived action are in some way enacting the action without actually causing movement (covert simulation) or sending along the motor information to be used to predict its sensory consequences (i.e., efference copy). Other accounts either reject entirely the involvement of motor representations in perception, or explain their role as being more supportive than integral, and not employing the identical circuits used in production. Using fMRI, we investigated whether there are brain regions that are conjointly active for both speech perception and production, and whether these regions are sensitive to articulatory (syllabic) complexity during both processes, which is predicted by a covert simulation account. A group of healthy young adults (1) observed a female speaker produce a set of familiar words (perception), and (2) observed and then repeated the words (production). There were two types of words, varying in articulatory complexity, as measured by the presence or absence of consonant clusters. The simple words contained no consonant cluster (e.g. “palace”), while the complex words contained one to three consonant clusters (e.g. “planet”). Results indicate that the left ventral premotor cortex (PMv) was significantly active during speech perception and speech production but that activation in this region was scaled to articulatory complexity only during speech production, revealing an incompletely specified efferent motor signal during speech perception. The right planum temporal (PT) was also active during speech perception and speech production, and activation in this region was scaled to articulatory complexity during both production and perception. These findings are discussed in the context of current theories theory of speech perception, with particular attention to accounts that include an explanatory role for mirror neurons. PMID:21664275

  12. Muscle activation described with a differential equation model for large ensembles of locally coupled molecular motors.

    PubMed

    Walcott, Sam

    2014-10-01

    Molecular motors, by turning chemical energy into mechanical work, are responsible for active cellular processes. Often groups of these motors work together to perform their biological role. Motors in an ensemble are coupled and exhibit complex emergent behavior. Although large motor ensembles can be modeled with partial differential equations (PDEs) by assuming that molecules function independently of their neighbors, this assumption is violated when motors are coupled locally. It is therefore unclear how to describe the ensemble behavior of the locally coupled motors responsible for biological processes such as calcium-dependent skeletal muscle activation. Here we develop a theory to describe locally coupled motor ensembles and apply the theory to skeletal muscle activation. The central idea is that a muscle filament can be divided into two phases: an active and an inactive phase. Dynamic changes in the relative size of these phases are described by a set of linear ordinary differential equations (ODEs). As the dynamics of the active phase are described by PDEs, muscle activation is governed by a set of coupled ODEs and PDEs, building on previous PDE models. With comparison to Monte Carlo simulations, we demonstrate that the theory captures the behavior of locally coupled ensembles. The theory also plausibly describes and predicts muscle experiments from molecular to whole muscle scales, suggesting that a micro- to macroscale muscle model is within reach.

  13. Strategies and Rubrics for Teaching Complex Systems Theory to Novices (Invited)

    NASA Astrophysics Data System (ADS)

    Fichter, L. S.

    2010-12-01

    Bifurcation. Self-similarity. Fractal. Sensitive dependent. Agents. Self-organized criticality. Avalanche behavior. Power laws. Strange attractors. Emergence. The language of complexity is fundamentally different from the language of equilibrium. If students do not know these phenomena, and what they tell us about the pulse of dynamic systems, complex systems will be opaque. A complex system is a group of agents. (individual interacting units, like birds in a flock, sand grains in a ripple, or individual friction units along a fault zone), existing far from equilibrium, interacting through positive and negative feedbacks, following simple rules, forming interdependent, dynamic, evolutionary networks. Complex systems produce behaviors that cannot be predicted deductively from knowledge of the behaviors of the individual components themselves; they must be experienced. What complexity theory demonstrates is that, by following simple rules, all the agents end up coordinating their behavior—self organizing—so that what emerges is not chaos, but meaningful patterns. How can we introduce Freshman, non-science, general education students to complex systems theories, in 3 to 5 classes; in a way they really get it, and can use the principles to understand real systems? Complex systems theories are not a series of unconnected or disconnected equations or models; they are developed as narratives that makes sense of how all the pieces and properties are interrelated. The principles of complex systems must be taught as deliberately and systematically as the equilibrium principles normally taught; as, say, the systematic training from pre-algebra and geometry to algebra. We have developed a sequence of logically connected narratives (strategies and rubrics) that introduce complex systems principles using models that can be simulated in a computer, in class, in real time. The learning progression has a series of 12 models (e.g. logistic system, bifurcation diagrams, genetic algorithms, etc.) leading to 19 learning outcomes that encompass most of the universality properties that characterize complex systems. They are developed in a specific order to achieve specific ends of understanding. We use these models in various depths and formats in courses ranging from gened courses, to evolutionary systems and environmental systems, to upper level geology courses. Depending on the goals of a course, the learning outcomes can be applied to understanding many other complex systems; e.g. oscillating chemical reactions (reaction-diffusion and activator-inhibitor systems), autocatalytic networks, hysteresis (bistable) systems, networks, and the rise/collapse of complex societies. We use these and other complex systems concepts in various classes to talk about the origin of life, ecosystem organization, game theory, extinction events, and environmental system behaviors. The applications are almost endless. The complete learning progression with models, computer programs, experiments, and learning outcomes is available at: www.jmu.edu/geology/ComplexEvolutionarySystems/

  14. Quantum-chemical, NMR, FT IR, and ESI MS studies of complexes of colchicine with Zn(II).

    PubMed

    Jankowski, Wojciech; Kurek, Joanna; Barczyński, Piotr; Hoffmann, Marcin

    2017-04-01

    Colchicine is a tropolone alkaloid from Colchicinum autumnale. It shows antifibrotic, antimitotic, and anti-inflammatory activities, and is used to treat gout and Mediterranean fever. In this work, complexes of colchicine with zinc(II) nitrate were synthesized and investigated using DFT, 1 H and 13 C NMR, FT IR, and ESI MS. The counterpoise-corrected and uncorrected interaction energies of these complexes were calculated. We also calculated their 1 H, 13 C NMR, and IR spectra and compared them with the corresponding experimentally obtained data. According to the ESI MS mass spectra, colchicine forms stable complexes with zinc(II) nitrate that have various stoichiometries: 2:1, 1:1:1, and 2:1:1 with respect to colchichine, Zn(II), and nitrate ion. All of the complexes were investigated using the quantum theory of atoms in molecules (QTAIM). The calculated and the measured spectra showed differences before and after the complexation process. Calculated electron densities and bond critical points indicated the presence of bonds between the ligands and the central cation in the investigated complexes that satisfied the quantum theory of atoms in molecules. Graphical Abstract DFT, NMR, FT IR, ESI MS, QTAIM and puckering studies of complexes of colchicine with Zn(II).

  15. Setting the Context for Using Complexity Theory in Evaluation: Boundaries, Governance and Utilisation

    ERIC Educational Resources Information Center

    Walton, Mat

    2016-01-01

    Recent literature has usefully explored the application of complexity theory to evaluation. However, there is little discussion of the contextual conditions in applying complexity theory. Drawing upon a single complexity-consistent public health programme evaluation and subsequent policy decisions, this paper considers how programme framing and…

  16. Synthesis, spectroscopic characterization, DFT calculations and biological evaluation of benzothiazole derivative bearing Mn(II) and Ni(II) metal ions

    NASA Astrophysics Data System (ADS)

    El-Gamel, Nadia E. A.; Ali, Korany A.

    2017-11-01

    N-(benzo[d]thiazol-2-yl)-3-oxo-3-phenylpropanamide ligand and its Nickel and Manganese complexes have been synthesized and characterized by elemental and thermal analyses, IR, diffuse reflectance, mass and UV-Vis spectra, molar conductance and magnetic moment measurements. The decomposition mechanism and thermal stability of the investigated complexes are interpreted in terms of their structures. The thermal behaviour of the complexes has been studied and different thermodynamic parameters are calculated using Coats-Redfern method. N-(benzo[d]thiazol-2-yl)-3-oxo-3-phenylpropanamide is a neutral bidentate ligand coordinating metal ions via thiazole ring nitrogen and amide carbonyl O forming high spin octahedral complexes with Mn(II) (2) and distorted square planar in case of Ni(II) (1). Natural bond orbital analysis and geometry optimization were carried out at DFT/B3LYP/6-31G(d) level of theory for the ligand and the mentioned complexes. Ab inito computations at the HF/6-31G(d) level of the theory is conducted in order to detect any probability of a hydrogen bond formation in the ligand. The dipole moment of the Ni(II) and Mn(II) complexes is recorded to be 9.69 and 7.39 Debye, respectively, indicating that the complexes are more polarized than the ligand 2.39 Debye. The in vitro biological activity of the metal chelates is screened against the Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli), fungus (Aspergillus flavus, Candida albicans). Ni(II) complexes displayed the highest activity against Candida albicans and Staphylococcus aureus with MIC values of 13, 30 μg/cm3, respectively.

  17. An Improved Azimuth Angle Estimation Method with a Single Acoustic Vector Sensor Based on an Active Sonar Detection System.

    PubMed

    Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan

    2017-02-20

    In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequencydomain and achieves computational complexity reduction.

  18. Incorporation of nonlinear thermorheological complexity into the phenomenologies of structural relaxation.

    PubMed

    Hodge, Ian M

    2005-09-22

    A distribution of activation energies is introduced into the nonlinear Adam-Gibbs ("Hodge-Scherer") phenomenology for structural relaxation. The resulting dependencies of the stretched exponential beta parameter on thermodynamic temperature and fictive temperature (nonlinear thermorheological complexity) are derived. No additional adjustable parameters are introduced, and contact is made with the predictions of the random first-order transition theory of aging of Lubchenko and Wolynes [J. Chem. Physics121, 2852 (2004)].

  19. Mechanism of Hydrogen Production in [Fe-Fe]-Hydrogenase: A Density Functional Theory Study (Preprint)

    DTIC Science & Technology

    2007-03-01

    of NiFe hydrogenases. Dalton Transactions 2003,4030-4038. (9) Armstrong, F. A., Hydrogenases: active site puzzles and progress. Current Opinion in...DFT Investigation of Structural, Electronic, and Catalytic Properties of Diiron Complexes Related to the [2Fe]H Subcluster of Fe-Only Hydrogenases...Hydrogenases: Effects of Redox State and Ligand Characteristics on Structural, Electronic, and Reactivity Properties of Complexes Related to the [2Fe]H

  20. Complexity, Chaos, and Nonlinear Dynamics: A New Perspective on Career Development Theory

    ERIC Educational Resources Information Center

    Bloch, Deborah P.

    2005-01-01

    The author presents a theory of career development drawing on nonlinear dynamics and chaos and complexity theories. Career is presented as a complex adaptive entity, a fractal of the human entity. Characteristics of complex adaptive entities, including (a) autopiesis, or self-regeneration; (b) open exchange; (c) participation in networks; (d)…

  1. Taxonomy for complexity theory in the context of maternity care.

    PubMed

    Nieuwenhuijze, Marianne; Downe, Soo; Gottfreðsdóttir, Helga; Rijnders, Marlies; du Preez, Antoinette; Vaz Rebelo, Piedade

    2015-09-01

    The linear focus of 'normal science' is unable to adequately take account of the complex interactions that direct health care systems. There is a turn towards complexity theory as a more appropriate framework for understanding system behaviour. However, a comprehensive taxonomy for complexity theory in the context of health care is lacking. This paper aims to build a taxonomy based on the key complexity theory components that have been used in publications on complexity theory and health care, and to explore their explanatory power for health care system behaviour, specifically for maternity care. A search strategy was devised in PubMed and 31 papers were identified as relevant for the taxonomy. The final taxonomy for complexity theory included and defined 11 components. The use of waterbirth and the impact of the Term Breech trial showed that each of the components of our taxonomy has utility in helping to understand how these techniques became widely adopted. It is not just the components themselves that characterise a complex system but also the dynamics between them. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Brain Research and Learning.

    ERIC Educational Resources Information Center

    Claycomb, Mary

    Current research on brain activity has many implications for educators. The triune brain concept and the left and right hemisphere concepts are among the many complex theories evolving from experimentation and observation. The triune brain concept suggests that the human forebrain has expanded while retaining three structurally unique formations…

  3. Pressure Dependence of Gas-Phase Reaction Rates

    ERIC Educational Resources Information Center

    De Persis, Stephanie; Dollet, Alain; Teyssandier, Francis

    2004-01-01

    It is presented that only simple concepts, mainly taken from activated-complex or transition-state theory, are required to explain and analytically describe the influence of pressure on gas-phase reaction kinetics. The simplest kind of elementary gas-phase reaction is a unimolecular decomposition reaction.

  4. Self-organization of network dynamics into local quantized states

    DOE PAGES

    Nicolaides, Christos; Juanes, Ruben; Cueto-Felgueroso, Luis

    2016-02-17

    Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of themore » Swift-Hohenberg continuum model—a minimal-ingredients model of nodal activation and interaction within a complex network—is able to produce a complex suite of localized patterns. Thus, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements.« less

  5. Self-organization of network dynamics into local quantized states.

    PubMed

    Nicolaides, Christos; Juanes, Ruben; Cueto-Felgueroso, Luis

    2016-02-17

    Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of the Swift-Hohenberg continuum model-a minimal-ingredients model of nodal activation and interaction within a complex network-is able to produce a complex suite of localized patterns. Hence, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements.

  6. Self-organization of network dynamics into local quantized states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolaides, Christos; Juanes, Ruben; Cueto-Felgueroso, Luis

    Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of themore » Swift-Hohenberg continuum model—a minimal-ingredients model of nodal activation and interaction within a complex network—is able to produce a complex suite of localized patterns. Thus, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements.« less

  7. A Theory of Complex Adaptive Inquiring Organizations: Application to Continuous Assurance of Corporate Financial Information

    ERIC Educational Resources Information Center

    Kuhn, John R., Jr.

    2009-01-01

    Drawing upon the theories of complexity and complex adaptive systems and the Singerian Inquiring System from C. West Churchman's seminal work "The Design of Inquiring Systems" the dissertation herein develops a systems design theory for continuous auditing systems. The dissertation consists of discussion of the two foundational theories,…

  8. Being pragmatic about healthcare complexity: our experiences applying complexity theory and pragmatism to health services research.

    PubMed

    Long, Katrina M; McDermott, Fiona; Meadows, Graham N

    2018-06-20

    The healthcare system has proved a challenging environment for innovation, especially in the area of health services management and research. This is often attributed to the complexity of the healthcare sector, characterized by intersecting biological, social and political systems spread across geographically disparate areas. To help make sense of this complexity, researchers are turning towards new methods and frameworks, including simulation modeling and complexity theory. Herein, we describe our experiences implementing and evaluating a health services innovation in the form of simulation modeling. We explore the strengths and limitations of complexity theory in evaluating health service interventions, using our experiences as examples. We then argue for the potential of pragmatism as an epistemic foundation for the methodological pluralism currently found in complexity research. We discuss the similarities between complexity theory and pragmatism, and close by revisiting our experiences putting pragmatic complexity theory into practice. We found the commonalities between pragmatism and complexity theory to be striking. These included a sensitivity to research context, a focus on applied research, and the valuing of different forms of knowledge. We found that, in practice, a pragmatic complexity theory approach provided more flexibility to respond to the rapidly changing context of health services implementation and evaluation. However, this approach requires a redefinition of implementation success, away from pre-determined outcomes and process fidelity, to one that embraces the continual learning, evolution, and emergence that characterized our project.

  9. Implementation of Complexity Analyzing Based on Additional Effect

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Li, Na; Liang, Yanhong; Liu, Fang

    According to the Complexity Theory, there is complexity in the system when the functional requirement is not be satisfied. There are several study performances for Complexity Theory based on Axiomatic Design. However, they focus on reducing the complexity in their study and no one focus on method of analyzing the complexity in the system. Therefore, this paper put forth a method of analyzing the complexity which is sought to make up the deficiency of the researches. In order to discussing the method of analyzing the complexity based on additional effect, this paper put forth two concepts which are ideal effect and additional effect. The method of analyzing complexity based on additional effect combines Complexity Theory with Theory of Inventive Problem Solving (TRIZ). It is helpful for designers to analyze the complexity by using additional effect. A case study shows the application of the process.

  10. A Grounded Theory of Sexual Minority Women and Transgender Individuals' Social Justice Activism.

    PubMed

    Hagen, Whitney B; Hoover, Stephanie M; Morrow, Susan L

    2018-01-01

    Psychosocial benefits of activism include increased empowerment, social connectedness, and resilience. Yet sexual minority women (SMW) and transgender individuals with multiple oppressed statuses and identities are especially prone to oppression-based experiences, even within minority activist communities. This study sought to develop an empirical model to explain the diverse meanings of social justice activism situated in SMW and transgender individuals' social identities, values, and experiences of oppression and privilege. Using a grounded theory design, 20 SMW and transgender individuals participated in initial, follow-up, and feedback interviews. The most frequent demographic identities were queer or bisexual, White, middle-class women with advanced degrees. The results indicated that social justice activism was intensely relational, replete with multiple benefits, yet rife with experiences of oppression from within and outside of activist communities. The empirically derived model shows the complexity of SMW and transgender individuals' experiences, meanings, and benefits of social justice activism.

  11. A learning theory account of depression.

    PubMed

    Ramnerö, Jonas; Folke, Fredrik; Kanter, Jonathan W

    2015-06-11

    Learning theory provides a foundation for understanding and deriving treatment principles for impacting a spectrum of functional processes relevant to the construct of depression. While behavioral interventions have been commonplace in the cognitive behavioral tradition, most often conceptualized within a cognitive theoretical framework, recent years have seen renewed interest in more purely behavioral models. These modern learning theory accounts of depression focus on the interchange between behavior and the environment, mainly in terms of lack of reinforcement, extinction of instrumental behavior, and excesses of aversive control, and include a conceptualization of relevant cognitive and emotional variables. These positions, drawn from extensive basic and applied research, cohere with biological theories on reduced reward learning and reward responsiveness and views of depression as a heterogeneous, complex set of disorders. Treatment techniques based on learning theory, often labeled Behavioral Activation (BA) focus on activating the individual in directions that increase contact with potential reinforcers, as defined ideographically with the client. BA is considered an empirically well-established treatment that generalizes well across diverse contexts and populations. The learning theory account is discussed in terms of being a parsimonious model and ground for treatments highly suitable for large scale dissemination. © 2015 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  12. Synthesis, thermal analyses, characterization and biological evaluation of new enrofloxacin vanadium(V) solvates(L) (L = An, DMF, Py, Et3N and o-Tol)

    NASA Astrophysics Data System (ADS)

    Zordok, Wael A.; Sadeek, Sadeek A.

    2016-09-01

    Five metal complexes of antibacterial agent enrofloxacin with vanadium(V) in the presence of aniline, pyridine, orthotolidine and triethylamine as nitrogen donor molecules and dimethylformamide as oxygen donor molecule have been prepared and characterized with physicochemical and diverse spectroscopic techniques (IR, UV-Vis. and 1H NMR spectroscopes) as well as thermal analysis. The deprotonated enrofloxacin complexes of V(V) were isolated as solids with the general formulas; [VO(Enr)2DMF]Cl·5H2O, [VO(Enr)2An]Cl·2H2O, [VO(Enr)2o-Tol]Cl·H2O, [VO(Enr)2Py]Cl·4H2O and [VO(Enr)2Et3N]Cl·6H2O. The prepared complexes are formed with a metal to ligand ratios as 1:2:1 for all complexes. The lowest energy model structure of each complex has been proposed by using the density functional theory (DFT) at the B3LYP/CEP-31G level of theory. The energy barrier for the pyridine complex greater than others complexes while, Et3N complex has lower value. The ligand and their metal complexes were also evaluated for their antibacterial activity against three Gram (+ve) and three Gram (-ve) microorganisms.

  13. Complexity of EEG-signal in Time Domain - Possible Biomedical Application

    NASA Astrophysics Data System (ADS)

    Klonowski, Wlodzimierz; Olejarczyk, Elzbieta; Stepien, Robert

    2002-07-01

    Human brain is a highly complex nonlinear system. So it is not surprising that in analysis of EEG-signal, which represents overall activity of the brain, the methods of Nonlinear Dynamics (or Chaos Theory as it is commonly called) can be used. Even if the signal is not chaotic these methods are a motivating tool to explore changes in brain activity due to different functional activation states, e.g. different sleep stages, or to applied therapy, e.g. exposure to chemical agents (drugs) and physical factors (light, magnetic field). The methods supplied by Nonlinear Dynamics reveal signal characteristics that are not revealed by linear methods like FFT. Better understanding of principles that govern dynamics and complexity of EEG-signal can help to find `the signatures' of different physiological and pathological states of human brain, quantitative characteristics that may find applications in medical diagnostics.

  14. Complexity growth in massive gravity theories, the effects of chirality, and more

    NASA Astrophysics Data System (ADS)

    Ghodrati, Mahdis

    2017-11-01

    To study the effect of parity violation on the rate of complexity growth, by using "complexity=action " conjecture, we find the complexity growth rates in different solutions of the chiral theory of topologically massive gravity (TMG) and parity-preserving theory of new massive gravity (NMG). Using the results, one can see that decreasing the parameter μ , which increases the effect of the Chern-Simons term and increases chirality, would increase the rate of growth of complexity. Also one can observe a stronger correlation between complexity growth and temperature rather than complexity growth and entropy. At the end we comment on the possible meaning of the deforming term of chiral Liouville action for the rate of complexity growth of warped conformal field theories in the tensor network renormalization picture.

  15. Four-dimensional \\mathcal{N} = 2 supersymmetric theory with boundary as a two-dimensional complex Toda theory

    NASA Astrophysics Data System (ADS)

    Luo, Yuan; Tan, Meng-Chwan; Vasko, Petr; Zhao, Qin

    2017-05-01

    We perform a series of dimensional reductions of the 6d, \\mathcal{N} = (2, 0) SCFT on S 2 × Σ × I × S 1 down to 2d on Σ. The reductions are performed in three steps: (i) a reduction on S 1 (accompanied by a topological twist along Σ) leading to a supersymmetric Yang-Mills theory on S 2 × Σ × I, (ii) a further reduction on S 2 resulting in a complex Chern-Simons theory defined on Σ × I, with the real part of the complex Chern-Simons level being zero, and the imaginary part being proportional to the ratio of the radii of S 2 and S 1, and (iii) a final reduction to the boundary modes of complex Chern-Simons theory with the Nahm pole boundary condition at both ends of the interval I, which gives rise to a complex Toda CFT on the Riemann surface Σ. As the reduction of the 6d theory on Σ would give rise to an \\mathcal{N} = 2 supersymmetric theory on S 2 × I × S 1, our results imply a 4d-2d duality between four-dimensional \\mathcal{N} = 2 supersymmetric theory with boundary and two-dimensional complex Toda theory.

  16. Analysing human mobility patterns of hiking activities through complex network theory.

    PubMed

    Lera, Isaac; Pérez, Toni; Guerrero, Carlos; Eguíluz, Víctor M; Juiz, Carlos

    2017-01-01

    The exploitation of high volume of geolocalized data from social sport tracking applications of outdoor activities can be useful for natural resource planning and to understand the human mobility patterns during leisure activities. This geolocalized data represents the selection of hike activities according to subjective and objective factors such as personal goals, personal abilities, trail conditions or weather conditions. In our approach, human mobility patterns are analysed from trajectories which are generated by hikers. We propose the generation of the trail network identifying special points in the overlap of trajectories. Trail crossings and trailheads define our network and shape topological features. We analyse the trail network of Balearic Islands, as a case of study, using complex weighted network theory. The analysis is divided into the four seasons of the year to observe the impact of weather conditions on the network topology. The number of visited places does not decrease despite the large difference in the number of samples of the two seasons with larger and lower activity. It is in summer season where it is produced the most significant variation in the frequency and localization of activities from inland regions to coastal areas. Finally, we compare our model with other related studies where the network possesses a different purpose. One finding of our approach is the detection of regions with relevant importance where landscape interventions can be applied in function of the communities.

  17. Analysing human mobility patterns of hiking activities through complex network theory

    PubMed Central

    Pérez, Toni; Guerrero, Carlos; Eguíluz, Víctor M.; Juiz, Carlos

    2017-01-01

    The exploitation of high volume of geolocalized data from social sport tracking applications of outdoor activities can be useful for natural resource planning and to understand the human mobility patterns during leisure activities. This geolocalized data represents the selection of hike activities according to subjective and objective factors such as personal goals, personal abilities, trail conditions or weather conditions. In our approach, human mobility patterns are analysed from trajectories which are generated by hikers. We propose the generation of the trail network identifying special points in the overlap of trajectories. Trail crossings and trailheads define our network and shape topological features. We analyse the trail network of Balearic Islands, as a case of study, using complex weighted network theory. The analysis is divided into the four seasons of the year to observe the impact of weather conditions on the network topology. The number of visited places does not decrease despite the large difference in the number of samples of the two seasons with larger and lower activity. It is in summer season where it is produced the most significant variation in the frequency and localization of activities from inland regions to coastal areas. Finally, we compare our model with other related studies where the network possesses a different purpose. One finding of our approach is the detection of regions with relevant importance where landscape interventions can be applied in function of the communities. PMID:28542280

  18. An information theory criteria based blind method for enumerating active users in DS-CDMA system

    NASA Astrophysics Data System (ADS)

    Samsami Khodadad, Farid; Abed Hodtani, Ghosheh

    2014-11-01

    In this paper, a new and blind algorithm for active user enumeration in asynchronous direct sequence code division multiple access (DS-CDMA) in multipath channel scenario is proposed. The proposed method is based on information theory criteria. There are two main categories of information criteria which are widely used in active user enumeration, Akaike Information Criterion (AIC) and Minimum Description Length (MDL) information theory criteria. The main difference between these two criteria is their penalty functions. Due to this difference, MDL is a consistent enumerator which has better performance in higher signal-to-noise ratios (SNR) but AIC is preferred in lower SNRs. In sequel, we propose a SNR compliance method based on subspace and training genetic algorithm to have the performance of both of them. Moreover, our method uses only a single antenna, in difference to the previous methods which decrease hardware complexity. Simulation results show that the proposed method is capable of estimating the number of active users without any prior knowledge and the efficiency of the method.

  19. Using intervention mapping to develop a theory-driven, group-based complex intervention to support self-management of osteoarthritis and low back pain (SOLAS).

    PubMed

    Hurley, Deirdre A; Murphy, Laura Currie; Hayes, David; Hall, Amanda M; Toomey, Elaine; McDonough, Suzanne M; Lonsdale, Chris; Walsh, Nicola E; Guerin, Suzanne; Matthews, James

    2016-04-26

    The Medical Research Council framework provides a useful general approach to designing and evaluating complex interventions, but does not provide detailed guidance on how to do this and there is little evidence of how this framework is applied in practice. This study describes the use of intervention mapping (IM) in the design of a theory-driven, group-based complex intervention to support self-management (SM) of patients with osteoarthritis (OA) and chronic low back pain (CLBP) in Ireland's primary care health system. The six steps of the IM protocol were systematically applied to develop the self-management of osteoarthritis and low back pain through activity and skills (SOLAS) intervention through adaptation of the Facilitating Activity and Self-management in Arthritis (FASA) intervention. A needs assessment including literature reviews, interviews with patients and physiotherapists and resource evaluation was completed to identify the programme goals, determinants of SM behaviour, consolidated definition of SM and required adaptations to FASA to meet health service and patient needs and the evidence. The resultant SOLAS intervention behavioural outcomes, performance and change objectives were specified and practical application methods selected, followed by organised programme, adoption, implementation and evaluation plans underpinned by behaviour change theory. The SOLAS intervention consists of six weekly sessions of 90-min education and exercise designed to increase participants' physical activity level and use of evidence-based SM strategies (i.e. pain self-management, pain coping, healthy eating for weight management and specific exercise) through targeting of individual determinants of SM behaviour (knowledge, skills, self-efficacy, fear, catastrophizing, motivation, behavioural regulation), delivered by a trained physiotherapist to groups of up to eight individuals using a needs supportive interpersonal style based on self-determination theory. Strategies to support SOLAS intervention adoption and implementation included a consensus building workshop with physiotherapy stakeholders, development of a physiotherapist training programme and a pilot trial with physiotherapist and patient feedback. The SOLAS intervention is currently being evaluated in a cluster randomised controlled feasibility trial. IM is a time-intensive collaborative process, but the range of methods and resultant high level of transparency is invaluable and allows replication by future complex intervention and trial developers.

  20. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes.

    PubMed

    Liu, Kexi; Lei, Yinkai; Wang, Guofeng

    2013-11-28

    Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O2 adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N4 chelation, as well as the molecular and electronic structures for the O2 adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O2 on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d(z(2)), d(xy), d(xz), and d(yz)) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O2 adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.

  1. An Improved Azimuth Angle Estimation Method with a Single Acoustic Vector Sensor Based on an Active Sonar Detection System

    PubMed Central

    Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan

    2017-01-01

    In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequency-domain and achieves computational complexity reduction. PMID:28230763

  2. Toward the adoption of complexity science in health care: implications for risk-taking and decision-making activities.

    PubMed

    Perez, Bianca; Liberman, Aaron

    2011-01-01

    This article explores the issues of risk taking and decision making in health care. An analysis of various sociocultural and psychological influences is provided for understanding of the dominant mind set in this industry. In tandem with this analysis, the evolution of system theories is described so as to promote understanding of the relative merits of the mechanistic and complexity philosophies. These philosophies are at odds with each other, conceptually and practically speaking; however, it seems that the complexity approach offers more promising strategies for the growth and development of health care. Recommendations for improving employee competencies and the organizational structure and culture in health care are offered in light of this analysis. These recommendations are relevant to activities that are clinical and administrative in nature.

  3. Palladium(II) complexes with N-heteroaromatic bidentate hydrazone ligands: the effect of the chelate ring size and lipophilicity on in vitro cytotoxic activity.

    PubMed

    Filipović, Nenad; Grubišić, Sonja; Jovanović, Maja; Dulović, Marija; Marković, Ivanka; Klisurić, Olivera; Marinković, Aleksandar; Mitić, Dragana; Anđelković, Katarina; Todorović, Tamara

    2014-09-01

    Novel Pd(II) complex with N-heteroaromatic Schiff base ligand, derived from 8-quinolinecarboxaldehyde (q8a) and ethyl hydrazinoacetate (haOEt), was synthesized and characterized by analytical and spectroscopy methods. The structure of novel complex, as well as structures of its quinoline and pyridine analogues, was optimized by density functional theory calculations, and theoretical data show good agreement with experimental results. A cytotoxic action of the complexes was evaluated on cultures of human promyelocytic leukemia (HL-60), human glioma (U251), rat glioma (C6), and mouse fibrosarcoma (L929) cell lines. Among investigated compounds, only complexes with quinoline-based ligands reduce the cell numbers in a dose-dependent manner in investigated cell lines. The observed cytotoxic effect of two isomeric quinoline-based complexes is predominantly mediated through the induction of apoptotic cell death in HL-60 cell line. The cytotoxicity of most efficient novel Pd(II) complex is comparable to the activity of cisplatin, in all cell lines investigated. © 2014 John Wiley & Sons A/S.

  4. A simple model for metal cation-phosphate interactions in nucleic acids in the gas phase: alkali metal cations and trimethyl phosphate.

    PubMed

    Ruan, Chunhai; Huang, Hai; Rodgers, M T

    2008-02-01

    Threshold collision-induced dissociation techniques are employed to determine the bond dissociation energies (BDEs) of complexes of alkali metal cations to trimethyl phosphate, TMP. Endothermic loss of the intact TMP ligand is the only dissociation pathway observed for all complexes. Theoretical calculations at the B3LYP/6-31G* level of theory are used to determine the structures, vibrational frequencies, and rotational constants of neutral TMP and the M+(TMP) complexes. Theoretical BDEs are determined from single point energy calculations at the B3LYP/6-311+G(2d,2p) level using the B3LYP/6-31G* optimized geometries. The agreement between theory and experiment is reasonably good for all complexes except Li+(TMP). The absolute M+-(TMP) BDEs are found to decrease monotonically as the size of the alkali metal cation increases. No activated dissociation was observed for alkali metal cation binding to TMP. The binding of alkali metal cations to TMP is compared with that to acetone and methanol.

  5. Some elements of a theory of multidimensional complex variables. I - General theory. II - Expansions of analytic functions and application to fluid flows

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1989-01-01

    The paper introduces a new theory of N-dimensional complex variables and analytic functions which, for N greater than 2, is both a direct generalization and a close analog of the theory of ordinary complex variables. The algebra in the present theory is a commutative ring, not a field. Functions of a three-dimensional variable were defined and the definition of the derivative then led to analytic functions.

  6. Rotational strength of dye-helix complexes as studied by a potential model theory

    NASA Astrophysics Data System (ADS)

    Kamiya, Mamoru

    1988-03-01

    The fundamental features of the induced optical activity in dye-helix complexes are clarified by the trap potential model. The effect of the potential depth on the induced rotational strength is explained in terms of the relative magnitudes of the wave-phase and helix-phase variations in the path of an electron moving along a restricted helix segment just like an exciton trapped around a dye intercalation site. The potential parameters have been optimized so as to reproduce the ionic strength effect upon the rotational strengths induced in proflavine-DNA intercalation complexes.

  7. Outcome Assessment from the Perspective of Psychological Science: The TAIM Approach

    ERIC Educational Resources Information Center

    Steinke, Pamela; Fitch, Peggy

    2011-01-01

    In this chapter, the authors outline an approach to assessing complex constructs supported by psychological science and research. This approach is informed by their background as psychologists but is general enough to incorporate other disciplinary approaches as well. They identify this approach as TAIM (Theory, Activities, Indicators, Multiple…

  8. Sport and Exercise Pedagogy and Questions about Learning

    ERIC Educational Resources Information Center

    Quennerstedt, Mikael; Öhman, Marie; Armour, Kathleen

    2014-01-01

    One important challenge ahead for sport and exercise pedagogy (SEP) researchers is to consider afresh questions about learning. Learning in the fields of sport, physical activity and physical education (PE) is a particularly complex business. Most existing theories of learning are defined cognitively, yet learning in sport and physical activity…

  9. Leading School Improvement: Using Popper's Theory of Learning

    ERIC Educational Resources Information Center

    Chitpin, Stephanie

    2016-01-01

    Leadership is a highly complex activity, as leaders respond to increasing diversity and external accountability. Additionally, there is increased recognition that leadership is deeply contextual, sensitive to macro-politics of systems and micro-politics of individual schools. In Ontario, Canada, the school improvement effort is focused on raising…

  10. Spanish Primary School Students' Knowledge of Invasion Games

    ERIC Educational Resources Information Center

    Moreno, David Sanchez-Mora; Lopez, Luis Miguel Garcia; Diaz, Maria Sagrario Del Valle; Martinez, Inmaculada Solera

    2011-01-01

    Background: Games represent a very important part of the physical education curriculum and the process by which they are learnt is very complex. Constructive teaching theories highlight the existence of knowledge prior to instruction that the pupil actively transforms through verbalisation and interaction with classmates. The results of research…

  11. Imaging systems level consolidation of novel associate memories: A longitudinal neuroimaging study

    PubMed Central

    Smith, Jason F; Alexander, Gene E; Chen, Kewei; Husain, Fatima T; Kim, Jieun; Pajor, Nathan; Horwitz, Barry

    2010-01-01

    Previously, a standard theory of systems level memory consolidation was developed to describe how memory recall becomes independent of the medial temporal memory system. More recently, an extended consolidation theory was proposed that predicts seven changes in regional neural activity and inter-regional functional connectivity. Using longitudinal event related functional magnetic resonance imaging of an associate memory task, we simultaneously tested all predictions and additionally tested for consolidation related changes in recall of associate memories at a sub-trial temporal resolution, analyzing cue, delay and target periods of each trial separately. Results consistent with the theoretical predictions were observed though two inconsistent results were also obtained. In particular, while recall-related delay period activity decreased with consolidation as predicted, visual cue activity increased for consolidated memories. Though the extended theory of memory consolidation is largely supported by our study, these results suggest the extended theory needs further refinement and the medial temporal memory system has multiple, temporally distinct roles in associate memory recall. Neuroimaging analysis at a sub-trial temporal resolution, as used here, may further clarify the role of the hippocampal complex in memory consolidation. PMID:19948227

  12. Complexity theory, time series analysis and Tsallis q-entropy principle part one: theoretical aspects

    NASA Astrophysics Data System (ADS)

    Pavlos, George P.

    2017-12-01

    In this study, we present the highlights of complexity theory (Part I) and significant experimental verifications (Part II) and we try to give a synoptic description of complexity theory both at the microscopic and at the macroscopic level of the physical reality. Also, we propose that the self-organization observed macroscopically is a phenomenon that reveals the strong unifying character of the complex dynamics which includes thermodynamical and dynamical characteristics in all levels of the physical reality. From this point of view, macroscopical deterministic and stochastic processes are closely related to the microscopical chaos and self-organization. The scientific work of scientists such as Wilson, Nicolis, Prigogine, Hooft, Nottale, El Naschie, Castro, Tsallis, Chang and others is used for the development of a unified physical comprehension of complex dynamics from the microscopic to the macroscopic level. Finally, we provide a comprehensive description of the novel concepts included in the complexity theory from microscopic to macroscopic level. Some of the modern concepts that can be used for a unified description of complex systems and for the understanding of modern complexity theory, as it is manifested at the macroscopic and the microscopic level, are the fractal geometry and fractal space-time, scale invariance and scale relativity, phase transition and self-organization, path integral amplitudes, renormalization group theory, stochastic and chaotic quantization and E-infinite theory, etc.

  13. Visual Complexity: A Review

    ERIC Educational Resources Information Center

    Donderi, Don C.

    2006-01-01

    The idea of visual complexity, the history of its measurement, and its implications for behavior are reviewed, starting with structuralism and Gestalt psychology at the beginning of the 20th century and ending with visual complexity theory, perceptual learning theory, and neural circuit theory at the beginning of the 21st. Evidence is drawn from…

  14. Complexity Leadership: A Theoretical Perspective

    ERIC Educational Resources Information Center

    Baltaci, Ali; Balci, Ali

    2017-01-01

    Complex systems are social networks composed of interactive employees interconnected through collaborative, dynamic ties such as shared goals, perspectives and needs. Complex systems are largely based on "the complex system theory". The complex system theory focuses mainly on finding out and developing strategies and behaviours that…

  15. Synthesis, characterization and DFT studies of two new silver(I) complexes with 3,4-lutidine

    NASA Astrophysics Data System (ADS)

    Soliman, Saied M.; Assem, Rania; Abu-Youssef, Morsy A. M.; Kassem, Taher S.

    2015-04-01

    The synthesis, characterization and molecular structure of two new Ag(I) complexes with 3,4-lutidine (34lut) have been reported. The [Ag(34lut)3(OAC)]; 1 and [Ag(34lut)2(TFA)]; 2 complexes, where OAC and TFA are acetate and trifluoroacetate respectively, have been characterized using elemental analysis, FTIR, NMR and mass spectra. Their molecular structures were calculated using DFT quantum chemical calculations. Both 1 and 2 were found to have distorted tetrahedral geometry around the Ag(I). The spectroscopic properties of the studied complexes have been calculated using the same level of theory. The Infrared vibrational frequencies of the COO stretches confirmed that the OAC is monodentate in 1 while the TFA is bidentate in 2. The calculated polarizability (α0) and HOMO-LUMO energy gap (ΔE) values indicated that 1 has higher NLO activity than 2. The electronic spectra of these complexes are calculated using the TD-DFT calculations. The calculated 1H NMR chemical shift values using GIAO approach showed good correlations with the experimental data. The interaction energies using the second order perturbation theory have been used to study the different intramolecular charge transfer interactions in the studied complexes. The NBO calculations indicated that both the Agsbnd O bonds are almost identical in 2 but not in 1.

  16. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of Gallic acid imprinted polymers

    NASA Astrophysics Data System (ADS)

    Pardeshi, Sushma; Dhodapkar, Rita; Kumar, Anupama

    2013-12-01

    Gallic acid (GA) is known by its antioxidant, anticarcinogenic properties and scavenger activity against several types of harmful free radicals. Molecularly imprinted polymers (MIPs) are used in separation of a pure compound from complex matrices. A stable template-monomer complex generates the MIPs with the highest affinity and selectivity for the template. The quantum chemical computations based on density functional theory (DFT) was used on the template Gallic acid (GA), monomer acrylic acid (AA) and GA-AA complex to study the nature of interactions involved in the GA-AA complex. B3LYP/6-31+G(2d,2p) model chemistry was used to optimize their structures and frequency calculations. The effect of porogen acetonitrile (ACN) on complex formation was included by using polarizable continuum model (PCM). The results demonstrated the formation of a stable GA-AA complex through the intermolecular hydrogen bonding between carboxylic acid groups of GA and AA. The Mulliken atomic charge analysis and simulated vibrational spectra also supported the stable hydrogen bonding interaction between the carboxylic acid groups of GA and AA with minimal interference of porogen ACN. Further, simulations on GA-AA mole ratio revealed that 1:4 GA-AA was optimum for synthesis of MIP for GA.

  17. Mechanism of Hydrogen Production in [Fe-Fe]-Hydrogenase: A Density Functional Theory Study (Postprint)

    DTIC Science & Technology

    2007-03-01

    Chem. Soc. 2001, 123, 1596-1601. (8) Volbeda, A.; Fontecilla-Camps, J. C. The Active Site and Catalytic Mechanism of NiFe Hydrogenases. Dalton Trans... Properties of Diiron Complexes Related to the [2Fe]H Subcluster of Fe-Only Hydrogenases. Inorg. Chem. 2002, 41, 1421-1429. (16) Bruschi, M.; Fantucci, P...Structural, Electronic, and Reactivity Properties of Complexes Related to the [2Fe]H Subcluster. Inorg. Chem. 2003, 42, 4773-4781. (17) Bruschi, M.; Fantucci

  18. MaRIE theory, modeling and computation roadmap executive summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lookman, Turab

    The confluence of MaRIE (Matter-Radiation Interactions in Extreme) and extreme (exascale) computing timelines offers a unique opportunity in co-designing the elements of materials discovery, with theory and high performance computing, itself co-designed by constrained optimization of hardware and software, and experiments. MaRIE's theory, modeling, and computation (TMC) roadmap efforts have paralleled 'MaRIE First Experiments' science activities in the areas of materials dynamics, irradiated materials and complex functional materials in extreme conditions. The documents that follow this executive summary describe in detail for each of these areas the current state of the art, the gaps that exist and the road mapmore » to MaRIE and beyond. Here we integrate the various elements to articulate an overarching theme related to the role and consequences of heterogeneities which manifest as competing states in a complex energy landscape. MaRIE experiments will locate, measure and follow the dynamical evolution of these heterogeneities. Our TMC vision spans the various pillar science and highlights the key theoretical and experimental challenges. We also present a theory, modeling and computation roadmap of the path to and beyond MaRIE in each of the science areas.« less

  19. Current use was established and Cochrane guidance on selection of social theories for systematic reviews of complex interventions was developed.

    PubMed

    Noyes, Jane; Hendry, Maggie; Booth, Andrew; Chandler, Jackie; Lewin, Simon; Glenton, Claire; Garside, Ruth

    2016-07-01

    To identify examples of how social theories are used in systematic reviews of complex interventions to inform production of Cochrane guidance. Secondary analysis of published/unpublished examples of theories of social phenomena for use in reviews of complex interventions identified through scoping searches, engagement with key authors and methodologists supplemented by snowballing and reference searching. Theories were classified (low-level, mid-range, grand). Over 100 theories were identified with evidence of proliferation over the last 5 years. New low-level theories (tools, taxonomies, etc) have been developed for classifying and reporting complex interventions. Numerous mid-range theories are used; one example demonstrated how control theory had changed the review's findings. Review-specific logic models are increasingly used, but these can be challenging to develop. New low-level and mid-range psychological theories of behavior change are evolving. No reviews using grand theory (e.g., feminist theory) were identified. We produced a searchable Wiki, Mendeley Inventory, and Cochrane guidance. Use of low-level theory is common and evolving; incorporation of mid-range theory is still the exception rather than the norm. Methodological work is needed to evaluate the contribution of theory. Choice of theory reflects personal preference; application of theory is a skilled endeavor. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  20. Electronic structure of transition metal-cysteine complexes from X-ray absorption spectroscopy.

    PubMed

    Leung, Bonnie O; Jalilehvand, Farideh; Szilagyi, Robert K

    2008-04-17

    The electronic structures of HgII, NiII, CrIII, and MoV complexes with cysteine were investigated by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and density functional theory. The covalency in the metal-sulfur bond was determined by analyzing the intensities of the electric-dipole allowed pre-edge features appearing in the XANES spectra below the ionization threshold. Because of the well-defined structures of the selected cysteine complexes, the current work provides a reference set for further sulfur K-edge XAS studies of bioinorganic active sites with transition metal-sulfur bonds from cysteine residues as well as more complex coordination compounds with thiolate ligands.

  1. Application of decision-making theory to the regulation of muscular work rate during self-paced competitive endurance activity.

    PubMed

    Renfree, Andrew; Martin, Louise; Micklewright, Dominic; St Clair Gibson, Alan

    2014-02-01

    Successful participation in competitive endurance activities requires continual regulation of muscular work rate in order to maximise physiological performance capacities, meaning that individuals must make numerous decisions with regards to the muscular work rate selected at any point in time. Decisions relating to the setting of appropriate goals and the overall strategic approach to be utilised are made prior to the commencement of an event, whereas tactical decisions are made during the event itself. This review examines current theories of decision-making in an attempt to explain the manner in which regulation of muscular work is achieved during athletic activity. We describe rational and heuristic theories, and relate these to current models of regulatory processes during self-paced exercise in an attempt to explain observations made in both laboratory and competitive environments. Additionally, we use rational and heuristic theories in an attempt to explain the influence of the presence of direct competitors on the quality of the decisions made during these activities. We hypothesise that although both rational and heuristic models can plausibly explain many observed behaviours in competitive endurance activities, the complexity of the environment in which such activities occur would imply that effective rational decision-making is unlikely. However, at present, many proposed models of the regulatory process share similarities with rational models. We suggest enhanced understanding of the decision-making process during self-paced activities is crucial in order to improve the ability to understand regulation of performance and performance outcomes during athletic activity.

  2. Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Dell, William B.; Agarwal, Pratul K.; Meilleur, Flora

    Lytic polysaccharide monooxygenases have attracted vast attention owing to their abilities to disrupt glycosidic bonds via oxidation instead of hydrolysis and to enhance enzymatic digestion of recalcitrant substrates including chitin and cellulose. Here, we determined the high-resolution X-ray crystal structures of an enzyme from Neurospora crassa in the resting state and of a copper(II) dioxo intermediate complex formed in the absence of substrate. X-ray crystal structures also revealed “pre-bound” molecular oxygen adjacent to the active site. An examination of protonation states enabled by neutron crystallography and density functional theory calculations identified a role for a conserved histidine in promoting oxygenmore » activation. Our results provide a new structural description of oxygen activation by substrate free lytic polysaccharide monooxygenases and provide insights that can be extended to reactivity in the enzyme–substrate complex.« less

  3. Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase

    DOE PAGES

    O'Dell, William B.; Agarwal, Pratul K.; Meilleur, Flora

    2016-12-22

    Lytic polysaccharide monooxygenases have attracted vast attention owing to their abilities to disrupt glycosidic bonds via oxidation instead of hydrolysis and to enhance enzymatic digestion of recalcitrant substrates including chitin and cellulose. Here, we determined the high-resolution X-ray crystal structures of an enzyme from Neurospora crassa in the resting state and of a copper(II) dioxo intermediate complex formed in the absence of substrate. X-ray crystal structures also revealed “pre-bound” molecular oxygen adjacent to the active site. An examination of protonation states enabled by neutron crystallography and density functional theory calculations identified a role for a conserved histidine in promoting oxygenmore » activation. Our results provide a new structural description of oxygen activation by substrate free lytic polysaccharide monooxygenases and provide insights that can be extended to reactivity in the enzyme–substrate complex.« less

  4. Fluid Mechanics and Complex Variable Theory: Getting Past the 19th Century

    ERIC Educational Resources Information Center

    Newton, Paul K.

    2017-01-01

    The subject of fluid mechanics is a rich, vibrant, and rapidly developing branch of applied mathematics. Historically, it has developed hand-in-hand with the elegant subject of complex variable theory. The Westmont College NSF-sponsored workshop on the revitalization of complex variable theory in the undergraduate curriculum focused partly on…

  5. The mechanism of grain growth in ceramics

    NASA Technical Reports Server (NTRS)

    Kapadia, C. M.; Leipold, M. H.

    1972-01-01

    The theory of grain boundary migration as a thermally activated process is reviewed, the basic mechanisms in ceramics being the same as in metals. However, porosity and non-stochiometry in ceramic materials give an added dimension to the theory and make quantitative treatment of real systems rather complex. Grain growth is a result of several simultaneous (and sometimes interacting) processes; these are most easily discussed separately, but the overall rate depends on their interaction. Sufficient insight into the nature of rate controlling diffusion mechanisms is necessary before a qualitative understanding of boundary mobility can be developed.

  6. Oxidative Stress and Immune System in Vitiligo and Thyroid Diseases

    PubMed Central

    Colucci, Roberta; Dragoni, Federica

    2015-01-01

    Vitiligo is an acquired dermatological disease frequently associated with autoimmune thyroid disorders. Several theories have been proposed so far to unravel the complex vitiligo pathogenesis. Currently, the autocytotoxic and the autoimmune theories are the most accredited hypothesis, since they are sustained by several important clinical and experimental evidences. A growing body of evidences shows that autoimmunity and oxidative stress strictly interact to finally determine melanocyte loss. In this scenario, associated thyroid autoimmunity might play an active and important role in triggering and maintaining the depigmentation process of vitiligo. PMID:25838868

  7. Time evolution of complexity in Abelian gauge theories

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Iizuka, Norihiro; Sugishita, Sotaro

    2017-12-01

    Quantum complexity is conjectured to probe inside of black hole horizons (or wormholes) via gauge gravity correspondence. In order to have a better understanding of this correspondence, we study time evolutions of complexities for Abelian pure gauge theories. For this purpose, we discretize the U (1 ) gauge group as ZN and also the continuum spacetime as lattice spacetime, and this enables us to define a universal gate set for these gauge theories and to evaluate time evolutions of the complexities explicitly. We find that to achieve a large complexity ˜exp (entropy), which is one of the conjectured criteria necessary to have a dual black hole, the Abelian gauge theory needs to be maximally nonlocal.

  8. Holistic Darwinism: the new evolutionary paradigm and some implications for political science.

    PubMed

    Corning, Peter A

    2008-03-01

    Holistic Darwinism is a candidate name for a major paradigm shift that is currently underway in evolutionary biology and related disciplines. Important developments include (1) a growing appreciation for the fact that evolution is a multilevel process, from genes to ecosystems, and that interdependent coevolution is a ubiquitous phenomenon in nature; (2) a revitalization of group selection theory, which was banned (prematurely) from evolutionary biology over 30 years ago (groups may in fact be important evolutionary units); (3) a growing respect for the fact that the genome is not a "bean bag" (in biologist Ernst Mayr's caricature), much less a gladiatorial arena for competing selfish genes, but a complex, interdependent, cooperating system; (4) an increased recognition that symbiosis is an important phenomenon in nature and that symbiogenesis is a major source of innovation in evolution; (5) an array of new, more advanced game theory models, which support the growing evidence that cooperation is commonplace in nature and not a rare exception; (6) new research and theoretical work that stresses the role of nurture in evolution, including developmental processes, phenotypic plasticity, social information transfer (culture), and especially the role of behavioral innovations as pacemakers of evolutionary change (e.g., niche construction theory, which is concerned with the active role of organisms in shaping the evolutionary process, and gene-culture coevolution theory, which relates especially to the dynamics of human evolution); (7) and, not least, a broad effort to account for the evolution of biological complexity--from major transition theory to the "Synergism Hypothesis." Here I will briefly review these developments and will present a case for the proposition that this paradigm shift has profound implications for the social sciences, including specifically political theory, economic theory, and political science as a discipline. Interdependent superorganisms, it turns out, have played a major role in evolution--from eukaryotes to complex human societies.

  9. Taking Ockham's razor to enzyme dynamics and catalysis.

    PubMed

    Glowacki, David R; Harvey, Jeremy N; Mulholland, Adrian J

    2012-01-29

    The role of protein dynamics in enzyme catalysis is a matter of intense current debate. Enzyme-catalysed reactions that involve significant quantum tunnelling can give rise to experimental kinetic isotope effects with complex temperature dependences, and it has been suggested that standard statistical rate theories, such as transition-state theory, are inadequate for their explanation. Here we introduce aspects of transition-state theory relevant to the study of enzyme reactivity, taking cues from chemical kinetics and dynamics studies of small molecules in the gas phase and in solution--where breakdowns of statistical theories have received significant attention and their origins are relatively better understood. We discuss recent theoretical approaches to understanding enzyme activity and then show how experimental observations for a number of enzymes may be reproduced using a transition-state-theory framework with physically reasonable parameters. Essential to this simple model is the inclusion of multiple conformations with different reactivity.

  10. Experimental and Theoretical Approaches for the Surface Interaction between Copper and Activated Sludge Microorganisms at Molecular Scale

    NASA Astrophysics Data System (ADS)

    Luo, Hong-Wei; Chen, Jie-Jie; Sheng, Guo-Ping; Su, Ji-Hu; Wei, Shi-Qiang; Yu, Han-Qing

    2014-11-01

    Interactions between metals and activated sludge microorganisms substantially affect the speciation, immobilization, transport, and bioavailability of trace heavy metals in biological wastewater treatment plants. In this study, the interaction of Cu(II), a typical heavy metal, onto activated sludge microorganisms was studied in-depth using a multi-technique approach. The complexing structure of Cu(II) on microbial surface was revealed by X-ray absorption fine structure (XAFS) and electron paramagnetic resonance (EPR) analysis. EPR spectra indicated that Cu(II) was held in inner-sphere surface complexes of octahedral coordination with tetragonal distortion of axial elongation. XAFS analysis further suggested that the surface complexation between Cu(II) and microbial cells was the distorted inner-sphere coordinated octahedra containing four short equatorial bonds and two elongated axial bonds. To further validate the results obtained from the XAFS and EPR analysis, density functional theory calculations were carried out to explore the structural geometry of the Cu complexes. These results are useful to better understand the speciation, immobilization, transport, and bioavailability of metals in biological wastewater treatment plants.

  11. Equivariant Verlinde Formula from Fivebranes and Vortices

    NASA Astrophysics Data System (ADS)

    Gukov, Sergei; Pei, Du

    2017-10-01

    We study complex Chern-Simons theory on a Seifert manifold M 3 by embedding it into string theory. We show that complex Chern-Simons theory on M 3 is equivalent to a topologically twisted supersymmetric theory and its partition function can be naturally regularized by turning on a mass parameter. We find that the dimensional reduction of this theory to 2d gives the low energy dynamics of vortices in four-dimensional gauge theory, the fact apparently overlooked in the vortex literature. We also generalize the relations between (1) the Verlinde algebra, (2) quantum cohomology of the Grassmannian, (3) Chern-Simons theory on {Σ× S^1} and (4) index of a spin c Dirac operator on the moduli space of flat connections to a new set of relations between (1) the "equivariant Verlinde algebra" for a complex group, (2) the equivariant quantum K-theory of the vortex moduli space, (3) complex Chern-Simons theory on {Σ × S^1} and (4) the equivariant index of a spin c Dirac operator on the moduli space of Higgs bundles.

  12. Accounting for material reality in the analytic subject.

    PubMed

    Brooks, Robin McCoy

    2013-12-01

    Scientific advances made in the 21st century contend that the forces of nature and nurture work together through an ongoing series of complex correspondences between brain and mental activity in our daily activities with others. Jung's cosmological model of the psyche minimizes the fundamental corporeal condition of human nature and as such is critiqued and amended, influenced by the transcendental materialist theories of subjectivity inspired by Žižek, Johnston and Laplanche.

  13. The Influence of Solvent on the Structural Properties of trans-(NHC)PtI2Py Complex: A Platinum-Based Anticancer Drug

    NASA Astrophysics Data System (ADS)

    Sadigh Vishkaee, Teherh; Fazaeli, Reza

    2018-06-01

    Quantum chemical calculations using MPW1PW91 method were applied to analyze the solvent effect on the structural, spectral, and thermochemical parameters for a platinum-based anticancer drug trans-(NHC)PtI2Py complex. The solvent effects were examined by the self-consistent reaction field theory (SCRF) based on Polarizable Continuum Model (PCM). The linear correlations between the solvation energies, HOMO-LUMO gaps, IR-active stretching vibration of Pt-N bonds and N-H of NHC ligand with dielectric constants of solvents were studied. The wave numbers of these IR-active stretching vibrations in different solvents were correlated with the Kirkwood-Bauer-Magat equation (KBM). The thermodynamic activation parameter such free energy of solvation, enthalpy of solvation were also calculated.

  14. Peer Assisted Learning in the Clinical Setting: An Activity Systems Analysis

    ERIC Educational Resources Information Center

    Bennett, Deirdre; O'Flynn, Siun; Kelly, Martina

    2015-01-01

    Peer assisted learning (PAL) is a common feature of medical education. Understanding of PAL has been based on processes and outcomes in controlled settings, such as clinical skills labs. PAL in the clinical setting, a complex learning environment, requires fresh evaluation. Socio-cultural theory is proposed as a means to understand educational…

  15. The Influence of Creative Process Engagement on Employee Creative Performance and Overall Job Performance: A Curvilinear Assessment

    ERIC Educational Resources Information Center

    Zhang, Xiaomeng; Bartol, Kathryn M.

    2010-01-01

    Integrating theories addressing attention and activation with creativity literature, we found an inverted U-shaped relationship between creative process engagement and overall job performance among professionals in complex jobs in an information technology firm. Work experience moderated the curvilinear relationship, with low-experience employees…

  16. Health behaviour change theories: contributions to an ICF-based behavioural exercise therapy for individuals with chronic diseases.

    PubMed

    Geidl, Wolfgang; Semrau, Jana; Pfeifer, Klaus

    2014-01-01

    The purpose of this perspective is (1) to incorporate recent psychological health behaviour change (HBC) theories into exercise therapeutic programmes, and (2) to introduce the International Classification of Functioning (ICF)-based concept of a behavioural exercise therapy (BET). Relevant personal modifiable factors of physical activity (PA) were identified based on three recent psychological HBC theories. Following the principles of intervention mapping, a matrix of proximal programme objectives specifies desirable parameter values for each personal factor. As a result of analysing reviews on behavioural techniques and intervention programmes of the German rehabilitation setting, we identified exercise-related techniques that impact the personal determinants. Finally, the techniques were integrated into an ICF-based BET concept. Individuals' attitudes, skills, emotions, beliefs and knowledge are important personal factors of PA behaviour. BET systematically addresses these personal factors by a systematic combination of adequate exercise contents with related behavioural techniques. The presented 28 intervention techniques serve as a theory-driven "tool box" for designing complex BET programmes to promote PA. The current paper highlights the usefulness of theory-based integrative research in the field of exercise therapy, offers explicit methods and contents for physical therapists to promote PA behaviour, and introduces the ICF-based conceptual idea of a BET. Implications for Rehabilitation Irrespective of the clients' indication, therapeutic exercise programmes should incorporate effective, theory-based approaches to promote physical activity. Central determinants of physical activity behaviour are a number of personal factors: individuals' attitudes, skills, emotions, beliefs and knowledge. Clinicians implementing exercise therapy should set it within a wider theoretical framework including the personal factors that influence physical activity. To increase exercise-adherence and promote long-term physical activity behaviour change, the concept of a behavioural exercise therapy (BET) offers a theory-based approach to systematically address relevant personal factors with a combination of adequate contents of exercise with exercise-related techniques of behaviour change.

  17. Density functional theory study of HfCl4, ZrCl4, and Al(CH3)3 decomposition on hydroxylated SiO2: Initial stage of high-k atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Jeloaica, L.; Estève, A.; Djafari Rouhani, M.; Estève, D.

    2003-07-01

    The initial stage of atomic layer deposition of HfO2, ZrO2, and Al2O3 high-k films, i.e., the decomposition of HfCl4, ZrCl4, and Al(CH3)3 precursor molecules on an OH-terminated SiO2 surface, is investigated within density functional theory. The energy barriers are determined using artificial activation of vibrational normal modes. For all precursors, reaction proceeds through the formation of intermediate complexes that have equivalent formation energies (˜-0.45 eV), and results in HCl and CH4 formation with activation energies of 0.88, 0.91, and 1.04 eV for Hf, Zr, and Al based precursors, respectively. The reaction product of Al(CH3)3 decomposition is found to be more stable (by -1.45 eV) than the chemisorbed intermediate complex compared to the endothermic decomposition of HfCl4 and ZrCl4 chemisorbed precursors (0.26 and 0.29 eV, respectively).

  18. Robust fixed-time synchronization for uncertain complex-valued neural networks with discontinuous activation functions.

    PubMed

    Ding, Xiaoshuai; Cao, Jinde; Alsaedi, Ahmed; Alsaadi, Fuad E; Hayat, Tasawar

    2017-06-01

    This paper is concerned with the fixed-time synchronization for a class of complex-valued neural networks in the presence of discontinuous activation functions and parameter uncertainties. Fixed-time synchronization not only claims that the considered master-slave system realizes synchronization within a finite time segment, but also requires a uniform upper bound for such time intervals for all initial synchronization errors. To accomplish the target of fixed-time synchronization, a novel feedback control procedure is designed for the slave neural networks. By means of the Filippov discontinuity theories and Lyapunov stability theories, some sufficient conditions are established for the selection of control parameters to guarantee synchronization within a fixed time, while an upper bound of the settling time is acquired as well, which allows to be modulated to predefined values independently on initial conditions. Additionally, criteria of modified controller for assurance of fixed-time anti-synchronization are also derived for the same system. An example is included to illustrate the proposed methodologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The role of medial temporal lobe in retrieving spatial and nonspatial relations from episodic and semantic memory.

    PubMed

    Ryan, Lee; Lin, Chun-Yu; Ketcham, Katie; Nadel, Lynn

    2010-01-01

    This study examined the involvement of medial temporal lobe, especially the hippocampus, in processing spatial and nonspatial relations using episodic and semantic versions of a relational judgment task. Participants studied object arrays and were tested on different types of relations between pairs of objects. Three prevalent views of hippocampal function were considered. Cognitive map theory (O'Keefe and Nadel (1978) The Hippocampus as a Cognitive Map. USA: Oxford University Press) emphasizes hippocampal involvement in spatial relational tasks. Multiple trace theory (Nadel and Moscovitch (1997) Memory consolidation, retrograde amnesia and the hippocampal complex Curr Opin Neurobiol 7:217-227) emphasizes hippocampal involvement in episodic tasks. Eichenbaum and Cohen's ((2001) From Conditioning to Conscious Recollection: Memory Systems of the Brain. USA: Oxford University Press) relational theory predicts equivalent hippocampal involvement in all relational tasks within both semantic and episodic memory. The fMRI results provided partial support for all three theories, though none of them fit the data perfectly. We observed hippocampal activation during all relational tasks, with increased activation for spatial compared to nonspatial relations, and for episodic compared to semantic relations. The placement of activation along the anterior-posterior axis of the hippocampus also differentiated the conditions. We suggest a view of hippocampal function in memory that incorporates aspects of all three theories. Copyright 2009 Wiley-Liss, Inc.

  20. Engineers' professional learning: a practice-theory perspective

    NASA Astrophysics Data System (ADS)

    Reich, Ann; Rooney, Donna; Gardner, Anne; Willey, Keith; Boud, David; Fitzgerald, Terry

    2015-07-01

    With the increasing challenges facing professional engineers working in more complex, global and interdisciplinary contexts, different approaches to understanding how engineers practice and learn are necessary. This paper draws on recent research in the social sciences from the field of workplace learning, to suggest that a practice-theory perspective on engineers' professional learning is fruitful. It shifts the focus from the attributes of the individual learner (knowledge, skills and attitudes) to the attributes of the practice (interactions, materiality, opportunities and challenges). Learning is thus more than the technical acquisition and transfer of knowledge, but a complex bundle of activities, that is, social, material, embodied and emerging. The paper is illustrated with examples from a research study of the learning of experienced engineers in the construction industry to demonstrate common practices - site walks and design review meetings - in which learning takes place.

  1. MAP-IT: A Practical Tool for Planning Complex Behavior Modification Interventions.

    PubMed

    Hansen, Sylvia; Kanning, Martina; Lauer, Romy; Steinacker, Jürgen M; Schlicht, Wolfgang

    2017-09-01

    Health research often aims to prevent noncommunicable diseases and to improve individual and public health by discovering intervention strategies that are effective in changing behavior and/or environments that are detrimental to one's health. Ideally, findings from original research support practitioners in planning and implementing effective interventions. Unfortunately, interventions often fail to overcome the translational block between science and practice. They often ignore theoretical knowledge, overlook empirical evidence, and underrate the impact of the environment. Accordingly, sustainable changes in individual behavior and/or the environment are difficult to achieve. Developing theory-driven and evidence-based interventions in the real world is a complex task. Existing implementation frameworks and theories often do not meet the needs of health practitioners. The purpose of this article is to synthesize existing frameworks and to provide a tool, the Matrix Assisting Practitioner's Intervention Planning Tool (MAP-IT), that links research to practice and helps practitioners to design multicomponent interventions. In this article, we use physical activity of older adults as an example to explain the rationale of MAP-IT. In MAP-IT, individual as well as environmental mechanisms are listed and behavior change techniques are linked to these mechanisms and to intervention components. MAP-IT is theory-driven and evidence-based. It is time-saving and helpful for practitioners when planning complex interventions.

  2. Complexity-action duality of the shock wave geometry in a massive gravity theory

    NASA Astrophysics Data System (ADS)

    Miao, Yan-Gang; Zhao, Long

    2018-01-01

    On the holographic complexity dual to the bulk action, we investigate the action growth for a shock wave geometry in a massive gravity theory within the Wheeler-DeWitt (WDW) patch at the late time limit. For a global shock wave, the graviton mass does not affect the action growth in the bulk, i.e., the complexity on the boundary, showing that the action growth (complexity) is the same for both the Einstein gravity and the massive gravity. Nevertheless, for a local shock wave that depends on transverse coordinates, the action growth (complexity) caused by the boundary disturbance (perturbation) is proportional to the butterfly velocity for the two gravity theories, but the butterfly velocity of the massive gravity theory is smaller than that of the Einstein gravity theory, indicating that the action growth (complexity) of the massive gravity is depressed by the graviton mass. In addition, we extend the black hole thermodynamics of the massive gravity and obtain the right Smarr formula.

  3. COMPARISON OF CHAOTIC AND FRACTAL PROPERTIES OF POLAR FACULAE WITH SUNSPOT ACTIVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, L. H.; Xiang, Y. Y.; Dun, G. T.

    The solar magnetic activity is governed by a complex dynamo mechanism and exhibits a nonlinear dissipation behavior in nature. The chaotic and fractal properties of solar time series are of great importance to understanding the solar dynamo actions, especially with regard to the nonlinear dynamo theories. In the present work, several nonlinear analysis approaches are proposed to investigate the nonlinear dynamical behavior of the polar faculae and sunspot activity for the time interval from 1951 August to 1998 December. The following prominent results are found: (1) both the high- and the low-latitude solar activity are governed by a three-dimensional chaoticmore » attractor, and the chaotic behavior of polar faculae is the most complex, followed by that of the sunspot areas, and then the sunspot numbers; (2) both the high- and low-latitude solar activity exhibit a high degree of persistent behavior, and their fractal nature is due to such long-range correlation; (3) the solar magnetic activity cycle is predictable in nature, but the high-accuracy prediction should only be done for short- to mid-term due to its intrinsically dynamical complexity. With the help of the Babcock–Leighton dynamo model, we suggest that the nonlinear coupling of the polar magnetic fields with strong active-region fields exhibits a complex manner, causing the statistical similarities and differences between the polar faculae and the sunspot-related indicators.« less

  4. Synthesis of Pyridine– and Pyrazine–BF 3 Complexes and Their Characterization in Solution and Solid State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chénard, Etienne; Sutrisno, Andre; Zhu, Lingyang

    2016-03-31

    Following the discovery of the redox-active 1,4- bis-BF 3-quinoxaline complex, we undertook a structure- activity study with the objective to understand the active nature of the quinoxaline complex. Through systematic synthesis and characterization, we have compared complexes prepared from pyridine and pyrazine derivatives, as heterocyclic core analogues. This paper reports the structural requirements that give rise to the electrochemical features of the 1,4-bis-BF 3-quinoxaline adduct. Using solution and solidstate NMR spectroscopy, the role of aromatic ring fusion and nitrogen incorporation in bonding and electronics was elucidated. We establish the boron atom location and its interaction with its environment from 1Dmore » and 2D solution NMR, X-ray diffraction analysis, and 11B solid-state NMR experiments. Crystallographic analysis of single crystals helped to correlate the boron geometry with 11B quadrupolar coupling constant (CQ) and asymmetry parameter (ηQ), extracted from 11B solid-state NMR spectra. Additionally, computations based on density functional theory were performed to predict electrochemical behavior of the BF 3-heteroaromatic complexes. We then experimentally measured electrochemical potential using cyclic voltammetry and found that the redox potentials and CQ values are similarly affected by electronic changes in the complexes.« less

  5. Spectroscopic characterization and biological studies in vitro of a new silver complex with furosemide: Prospective of application as an antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Lustri, Wilton R.; Lazarini, Silmara C.; Lustri, Bruna Cardinali; Corbi, Pedro P.; Silva, Maria Aline C.; Resende Nogueira, Flávia Aparecida; Aquino, Renata; Amaral, André C.; Treu Filho, Oswaldo; Massabni, Antonio Carlos; da Silva Barud, Hernane

    2017-04-01

    The present article describes the synthesis and biological studies in vitro of a novel silver complex with furosemide (Ag-FSE). Elemental, thermal and mass spectrometric analysis indicated a 1:1 metal/ligand composition, with the molecular formula AgC12H10ClN2O5S. Infrared and nuclear magnetic resonance studies suggest coordination of the ligand to the silver ion by the oxygen atoms of the carboxylate group. Additional Density Functional Theory (DFT) studies led to the proposition of the structure of the Ag-FSE complex. The antibacterial activities of the complex were primarily evaluated by antibiogram assays using the disc diffusion method and minimum inhibitory concentrations (MIC). Moreover, the mutagenicity of the complex was also evaluated to ensure that it is safe for subsequent application. The Ag-FSE complex has shown a significant in vitro antibacterial activity against Gram-positive Staphylococcus aureus (ATCC 25923), Gram negative Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 27853), and yeast Candida albicans (ATCC 90028). The absence of a mutagenic activity of Ag-FSE against Salmonella Typhimurium bacterial strains in the Ames assay is an extremely important finding for its future use as a drug in medicine.

  6. Carbon-hydrogen activation of cycloalkanes by cyclopentadienylcarbonylrhodium--a lifetime enigma.

    PubMed

    Pitts, Amanda L; Wriglesworth, Alisdair; Sun, Xue-Zhong; Calladine, James A; Zarić, Snežana D; George, Michael W; Hall, Michael B

    2014-06-18

    Carbon-hydrogen bond activation reactions of four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) by the Cp'Rh(CO) fragments (Cp' = η(5)-C5H5 (Cp) or η(5)-C5Me5 (Cp*)) were modeled theoretically by combining density functional and coupled cluster theories, and their reaction rates were measured by fast time-resolved infrared spectroscopy. The reaction has two steps, starting with the formation of a σ-complex intermediate, followed by oxidative addition of the C-H bond by the rhodium. A range of σ-complex stabilities among the electronically unique C-H bonds in a cycloalkane were calculated and are related to the individual strengths of the C-H bond's interactions with the Rh fragment and the steric repulsion that is incurred upon forming the specific σ-complex. The unexpectedly large increase in the lifetimes of the σ-complexes from cyclohexane to cycloheptane was predicted to be due to the large range of stabilities of the different σ-complexes found for cycloheptane. The reaction lifetimes were simulated with two mechanisms, with and without migrations among the different σ-complexes, to determine if ring migrations prior to C-H activation were influencing the rate. Both mechanisms predicted similar lifetimes for cyclopentane, cyclohexane, and, to a lesser extent, cycloheptane, suggesting ring migrations do not have a large impact on the rate of C-H activation for these cycloalkanes. For cyclooctane, the inclusion of ring migrations in the reaction mechanism led to a more accurate prediction of the lifetime, indicating that ring migrations did have an effect on the rate of C-H activation for this alkane, and that migration among the σ-complexes is faster than the C-H activation for this larger cycloalkane.

  7. Flame propagation in two-dimensional solids: Particle-resolved studies with complex plasmas

    NASA Astrophysics Data System (ADS)

    Yurchenko, S. O.; Yakovlev, E. V.; Couëdel, L.; Kryuchkov, N. P.; Lipaev, A. M.; Naumkin, V. N.; Kislov, A. Yu.; Ovcharov, P. V.; Zaytsev, K. I.; Vorob'ev, E. V.; Morfill, G. E.; Ivlev, A. V.

    2017-10-01

    Using two-dimensional (2D) complex plasmas as an experimental model system, particle-resolved studies of flame propagation in classical 2D solids are carried out. Combining experiments, theory, and molecular dynamics simulations, we demonstrate that the mode-coupling instability operating in 2D complex plasmas reveals all essential features of combustion, such as an activated heat release, two-zone structure of the self-similar temperature profile ("flame front"), as well as thermal expansion of the medium and temperature saturation behind the front. The presented results are of relevance for various fields ranging from combustion and thermochemistry, to chemical physics and synthesis of materials.

  8. Context matters when striving to promote active and lifelong learning in medical education.

    PubMed

    Berkhout, Joris J; Helmich, Esther; Teunissen, Pim W; van der Vleuten, Cees P M; Jaarsma, A Debbie C

    2018-01-01

    WHERE DO WE STAND NOW?: In the 30 years that have passed since The Edinburgh Declaration on Medical Education, we have made tremendous progress in research on fostering 'self-directed and independent study' as propagated in this declaration, of which one prime example is research carried out on problem-based learning. However, a large portion of medical education happens outside of classrooms, in authentic clinical contexts. Therefore, this article discusses recent developments in research regarding fostering active learning in clinical contexts. Clinical contexts are much more complex and flexible than classrooms, and therefore require a modified approach when fostering active learning. Recent efforts have been increasingly focused on understanding the more complex subject of supporting active learning in clinical contexts. One way of doing this is by using theory regarding self-regulated learning (SRL), as well as situated learning, workplace affordances, self-determination theory and achievement goal theory. Combining these different perspectives provides a holistic view of active learning in clinical contexts. ENTRY TO PRACTICE, VOCATIONAL TRAINING AND CONTINUING PROFESSIONAL DEVELOPMENT: Research on SRL in clinical contexts has mostly focused on the undergraduate setting, showing that active learning in clinical contexts requires not only proficiency in metacognition and SRL, but also in reactive, opportunistic learning. These studies have also made us aware of the large influence one's social environment has on SRL, the importance of professional relationships for learners, and the role of identity development in learning in clinical contexts. Additionally, research regarding postgraduate lifelong learning also highlights the importance of learners interacting about learning in clinical contexts, as well as the difficulties that clinical contexts may pose for lifelong learning. However, stimulating self-regulated learning in undergraduate medical education may also make postgraduate lifelong learning easier for learners in clinical contexts. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  9. New Communitarianism Movements and Complex Utopia

    NASA Astrophysics Data System (ADS)

    Akdeniz, K. Gediz

    Simulation is a rapidly growing field in social sciences. Simulation theories in social sciences are considered to critique social dynamics and societies which are mostly simulated by media, cinema, TV, internet, etc. Recently we (Akdeniz KG, Disorder in complex human system. In: Fritzsch H, Phua KK (eds) Singapore: proceedings of the conference in Honour of Murray Gell-Mann's 80th birthday quantum mechanics, elementary particles, quantum cosmology and complexity. World Scientific Publishing, Hackensack, pp 630-637, 2009) purposed a simulation theory as a critique theory to investigate disordered human behaviors. In this theory, "Disorder-Sensitive Human Behaviors (DSHB) Simulation Theory", chaotic awareness is also considered as a reality principle in simulation world to complete Baudrillard Simulation Theory (Baudrillard J, Simulacra and simulation. University of Michigan Press, Michigan, 1995). We call the emergence of this reality as zuhur which is different than simulacra. More recently we proposed the complex utopia (Akdeniz KG, From Simulacra to Zuhur in Complex Utopia. 11th International Conference of the Utopian Studies Society, Lublin, 2010; Akdeniz KG, The new identities of the physicist: cyborg-physicist and post-physicist. In: Proceedings of the conference of world international conference of technology and education, Beirut, 2010) to critique the complex societies and communities in simulation world. The challenging agents in the complex utopia are both simulacra and zuhur. In this paper we would like to review "What is the complex utopia?" And we shall critique some global events in framework of complex utopia with particular examples in socio-economic and political contexts.

  10. Unusual Circularly Polarized and Aggregation-Induced Near-Infrared Phosphorescence of Helical Platinum(II) Complexes with Tetradentate Salen Ligands.

    PubMed

    Song, Jintong; Wang, Man; Zhou, Xiangge; Xiang, Haifeng

    2018-05-17

    A series of chiral and helical Pt II -Salen complexes with 1,1'-binaphthyl linkers were synthesized and characterized. Owing to the restriction of intramolecular motions of central 1,1'-binaphthyls, the complexes exhibit unusual near-infrared aggregation-induced phosphorescence (AIP). The (R)/(S) enantiopure complexes were characterized by X-ray diffraction, circular dichroism spectra, time-dependent density functional theory calculations, and circularly polarized luminescence (CPL). The present work explores the use of tetradentate ligands that can be easily prepared from commercially available enantiopure compounds, and the subsequent preparation of stable CPL-active square planar Pt II complexes with AIP effect that may have interest in many applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Single-photon test of hyper-complex quantum theories using a metamaterial.

    PubMed

    Procopio, Lorenzo M; Rozema, Lee A; Wong, Zi Jing; Hamel, Deny R; O'Brien, Kevin; Zhang, Xiang; Dakić, Borivoje; Walther, Philip

    2017-04-21

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial with a negative refractive index, and a positive phase shifter. To accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. We show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.

  12. Single-photon test of hyper-complex quantum theories using a metamaterial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial withmore » a negative refractive index, and a positive phase shifter. In order to accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. Here, we show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.« less

  13. Single-photon test of hyper-complex quantum theories using a metamaterial

    DOE PAGES

    Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing; ...

    2017-04-21

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial withmore » a negative refractive index, and a positive phase shifter. In order to accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. Here, we show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.« less

  14. Single-photon test of hyper-complex quantum theories using a metamaterial

    PubMed Central

    Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing; Hamel, Deny R.; O'Brien, Kevin; Zhang, Xiang; Dakić, Borivoje; Walther, Philip

    2017-01-01

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial with a negative refractive index, and a positive phase shifter. To accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. We show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories. PMID:28429711

  15. Modular Bayesian Networks with Low-Power Wearable Sensors for Recognizing Eating Activities.

    PubMed

    Kim, Kee-Hoon; Cho, Sung-Bae

    2017-12-11

    Recently, recognizing a user's daily activity using a smartphone and wearable sensors has become a popular issue. However, in contrast with the ideal definition of an experiment, there could be numerous complex activities in real life with respect to its various background and contexts: time, space, age, culture, and so on. Recognizing these complex activities with limited low-power sensors, considering the power and memory constraints of the wearable environment and the user's obtrusiveness at once is not an easy problem, although it is very crucial for the activity recognizer to be practically useful. In this paper, we recognize activity of eating, which is one of the most typical examples of a complex activity, using only daily low-power mobile and wearable sensors. To organize the related contexts systemically, we have constructed the context model based on activity theory and the "Five W's", and propose a Bayesian network with 88 nodes to predict uncertain contexts probabilistically. The structure of the proposed Bayesian network is designed by a modular and tree-structured approach to reduce the time complexity and increase the scalability. To evaluate the proposed method, we collected the data with 10 different activities from 25 volunteers of various ages, occupations, and jobs, and have obtained 79.71% accuracy, which outperforms other conventional classifiers by 7.54-14.4%. Analyses of the results showed that our probabilistic approach could also give approximate results even when one of contexts or sensor values has a very heterogeneous pattern or is missing.

  16. Nearside-farside, local angular momentum and resummation theories: Useful tools for understanding the dynamics of complex-mode reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankel, Marlies, E-mail: m.hankel@uq.edu.au, E-mail: j.n.l.connor@manchester.ac.uk; Connor, J. N. L., E-mail: m.hankel@uq.edu.au, E-mail: j.n.l.connor@manchester.ac.uk

    2015-07-15

    A valuable tool for understanding the dynamics of direct reactions is Nearside-Farside (NF) scattering theory. It makes a decomposition of the (resummed) partial wave series for the scattering amplitude, both for the differential cross section (DCS) and the Local Angular Momentum (LAM). This paper makes the first combined application of these techniques to complex-mode reactions. We ask if NF theory is a useful tool for their identification, in particular, can it distinguish complex-mode from direct-mode reactions? We also ask whether NF theory can identify NF interference oscillations in the full DCSs of complex-mode reactions. Our investigation exploits the fact thatmore » accurate quantum scattering matrix elements have recently become available for complex-mode reactions. We first apply NF theory to two simple models for the scattering amplitude of a complex-mode reaction: One involves a single Legendre polynomial; the other involves a single Legendre function of the first kind, whose form is suggested by complex angular momentum theory. We then study, at fixed translational energies, four state-to-state complex-mode reactions. They are: S({sup 1}D) + HD → SH + D, S({sup 1}D) + DH → SD + H, N({sup 2}D) +H{sub 2} → NH + H, and H{sup +} + D{sub 2} → HD + D{sup +}. We compare the NF results for the DCSs and LAMs with those for a state-to-state direct reaction, namely, F + H{sub 2} → FH + H. We demonstrate that NF theory is a valuable tool for identifying and analyzing the dynamics of complex-mode reactions.« less

  17. Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity.

    PubMed

    Zhou, Shungui; Chen, Shanshan; Yuan, Yong; Lu, Qin

    2015-11-23

    Humic acids (HAs) can act as electron shuttles and mediate biogeochemical cycles, thereby influencing the transformation of nutrients and environmental pollutants. HAs commonly complex with metals in the environment, but few studies have focused on how these metals affect the roles of HAs in extracellular electron transfer (EET). In this study, HA-metal (HA-M) complexes (HA-Fe, HA-Cu, and HA-Al) were prepared and characterized. The electron shuttle capacities of HA-M complexes were experimentally evaluated through microbial Fe(III) reduction, biocurrent generation, and microbial azoreduction. The results show that the electron shuttle capacities of HAs were enhanced after complexation with Fe but were weakened when using Cu or Al. Density functional theory calculations were performed to explore the structural geometry of the HA-M complexes and revealed the best binding sites of the HAs to metals and the varied charge transfer rate constants (k). The EET activity of the HA-M complexes were in the order HA-Fe > HA-Cu > HA-Al. These findings have important implications for biogeochemical redox processes given the ubiquitous nature of both HAs and various metals in the environment.

  18. Studying complex interventions: reflections from the FEMHealth project on evaluating fee exemption policies in West Africa and Morocco.

    PubMed

    Marchal, Bruno; Van Belle, Sara; De Brouwere, Vincent; Witter, Sophie

    2013-11-08

    The importance of complexity in health care policy-making and interventions, as well as research and evaluation is now widely acknowledged, but conceptual confusion reigns and few applications of complexity concepts in research design have been published. Taking user fee exemption policies as an entry point, we explore the methodological consequences of 'complexity' for health policy research and evaluation. We first discuss the difference between simple, complicated and complex and introduce key concepts of complex adaptive systems theory. We then apply these to fee exemption policies. We describe how the FEMHealth research project attempts to address the challenges of complexity in its evaluation of fee exemption policies for maternal care. We present how the development of a programme theory for fee exemption policies was used to structure the overall design. This allowed for structured discussions on the hypotheses held by the researchers and helped to structure, integrate and monitor the sub-studies. We then show how the choice of data collection methods and tools for each sub-study was informed by the overall design. Applying key concepts from complexity theory proved useful in broadening our view on fee exemption policies and in developing the overall research design. However, we encountered a number of challenges, including maintaining adaptiveness of the design during the evaluation, and ensuring cohesion in the disciplinary diversity of the research teams. Whether the programme theory can fulfil its claimed potential to help making sense of the findings is yet to be tested. Experience from other studies allows for some moderate optimism. However, the biggest challenge complexity throws at health system researchers may be to deal with the unknown unknowns and the consequence that complex issues can only be understood in retrospect. From a complexity theory point of view, only plausible explanations can be developed, not predictive theories. Yet here, theory-driven approaches may help.

  19. Advances in the Theory of Complex Networks

    NASA Astrophysics Data System (ADS)

    Peruani, Fernando

    An exhaustive and comprehensive review on the theory of complex networks would imply nowadays a titanic task, and it would result in a lengthy work containing plenty of technical details of arguable relevance. Instead, this chapter addresses very briefly the ABC of complex network theory, visiting only the hallmarks of the theoretical founding, to finally focus on two of the most interesting and promising current research problems: the study of dynamical processes on transportation networks and the identification of communities in complex networks.

  20. A Quantum-Based Similarity Method in Virtual Screening.

    PubMed

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2015-10-02

    One of the most widely-used techniques for ligand-based virtual screening is similarity searching. This study adopted the concepts of quantum mechanics to present as state-of-the-art similarity method of molecules inspired from quantum theory. The representation of molecular compounds in mathematical quantum space plays a vital role in the development of quantum-based similarity approach. One of the key concepts of quantum theory is the use of complex numbers. Hence, this study proposed three various techniques to embed and to re-represent the molecular compounds to correspond with complex numbers format. The quantum-based similarity method that developed in this study depending on complex pure Hilbert space of molecules called Standard Quantum-Based (SQB). The recall of retrieved active molecules were at top 1% and top 5%, and significant test is used to evaluate our proposed methods. The MDL drug data report (MDDR), maximum unbiased validation (MUV) and Directory of Useful Decoys (DUD) data sets were used for experiments and were represented by 2D fingerprints. Simulated virtual screening experiment show that the effectiveness of SQB method was significantly increased due to the role of representational power of molecular compounds in complex numbers forms compared to Tanimoto benchmark similarity measure.

  1. Research on application of intelligent computation based LUCC model in urbanization process

    NASA Astrophysics Data System (ADS)

    Chen, Zemin

    2007-06-01

    Global change study is an interdisciplinary and comprehensive research activity with international cooperation, arising in 1980s, with the largest scopes. The interaction between land use and cover change, as a research field with the crossing of natural science and social science, has become one of core subjects of global change study as well as the front edge and hot point of it. It is necessary to develop research on land use and cover change in urbanization process and build an analog model of urbanization to carry out description, simulation and analysis on dynamic behaviors in urban development change as well as to understand basic characteristics and rules of urbanization process. This has positive practical and theoretical significance for formulating urban and regional sustainable development strategy. The effect of urbanization on land use and cover change is mainly embodied in the change of quantity structure and space structure of urban space, and LUCC model in urbanization process has been an important research subject of urban geography and urban planning. In this paper, based upon previous research achievements, the writer systematically analyzes the research on land use/cover change in urbanization process with the theories of complexity science research and intelligent computation; builds a model for simulating and forecasting dynamic evolution of urban land use and cover change, on the basis of cellular automation model of complexity science research method and multi-agent theory; expands Markov model, traditional CA model and Agent model, introduces complexity science research theory and intelligent computation theory into LUCC research model to build intelligent computation-based LUCC model for analog research on land use and cover change in urbanization research, and performs case research. The concrete contents are as follows: 1. Complexity of LUCC research in urbanization process. Analyze urbanization process in combination with the contents of complexity science research and the conception of complexity feature to reveal the complexity features of LUCC research in urbanization process. Urban space system is a complex economic and cultural phenomenon as well as a social process, is the comprehensive characterization of urban society, economy and culture, and is a complex space system formed by society, economy and nature. It has dissipative structure characteristics, such as opening, dynamics, self-organization, non-balance etc. Traditional model cannot simulate these social, economic and natural driving forces of LUCC including main feedback relation from LUCC to driving force. 2. Establishment of Markov extended model of LUCC analog research in urbanization process. Firstly, use traditional LUCC research model to compute change speed of regional land use through calculating dynamic degree, exploitation degree and consumption degree of land use; use the theory of fuzzy set to rewrite the traditional Markov model, establish structure transfer matrix of land use, forecast and analyze dynamic change and development trend of land use, and present noticeable problems and corresponding measures in urbanization process according to research results. 3. Application of intelligent computation research and complexity science research method in LUCC analog model in urbanization process. On the basis of detailed elaboration of the theory and the model of LUCC research in urbanization process, analyze the problems of existing model used in LUCC research (namely, difficult to resolve many complexity phenomena in complex urban space system), discuss possible structure realization forms of LUCC analog research in combination with the theories of intelligent computation and complexity science research. Perform application analysis on BP artificial neural network and genetic algorithms of intelligent computation and CA model and MAS technology of complexity science research, discuss their theoretical origins and their own characteristics in detail, elaborate the feasibility of them in LUCC analog research, and bring forward improvement methods and measures on existing problems of this kind of model. 4. Establishment of LUCC analog model in urbanization process based on theories of intelligent computation and complexity science. Based on the research on abovementioned BP artificial neural network, genetic algorithms, CA model and multi-agent technology, put forward improvement methods and application assumption towards their expansion on geography, build LUCC analog model in urbanization process based on CA model and Agent model, realize the combination of learning mechanism of BP artificial neural network and fuzzy logic reasoning, express the regulation with explicit formula, and amend the initial regulation through self study; optimize network structure of LUCC analog model and methods and procedures of model parameters with genetic algorithms. In this paper, I introduce research theory and methods of complexity science into LUCC analog research and presents LUCC analog model based upon CA model and MAS theory. Meanwhile, I carry out corresponding expansion on traditional Markov model and introduce the theory of fuzzy set into data screening and parameter amendment of improved model to improve the accuracy and feasibility of Markov model in the research on land use/cover change.

  2. Accounting for Material Reality in the Analytic Subject

    PubMed Central

    Brooks, Robin McCoy

    2013-01-01

    Scientific advances made in the 21st century contend that the forces of nature and nurture work together through an ongoing series of complex correspondences between brain and mental activity in our daily activities with others. Jung’s cosmological model of the psyche minimizes the fundamental corporeal condition of human nature and as such is critiqued and amended, influenced by the transcendental materialist theories of subjectivity inspired by Žižek, Johnston and Laplanche. PMID:25379260

  3. Affinity to bovine serum albumin and anticancer activity of some new water-soluble metal Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Asadi, Mozaffar; Asadi, Zahra; Zarei, Leila; Sadi, Somaye Barzegar; Amirghofran, Zahra

    2014-12-01

    Metal Schiff-base complexes show biological activity but they are usually insoluble in water so four new water-soluble metal Schiff base complexes of Na2[M(5-SO3-1,2-salben]; (5-SO3-1,2-salben denoted N,N";-bis(5-sulphosalicyliden)-1,2-diaminobenzylamine and M = Mg, Mn, Cu, Zn) were synthesized and characterized. The formation constants of the metal complexes were determined by UV-Vis absorption spectroscopy. The interaction of these complexes with bovine serum albumin (BSA) was studied by fluorescence spectroscopy. Type of quenching, binding constants, number of binding sites and binding stoichiometries were determined by fluorescence quenching method. The results showed that the mentioned complexes strongly bound to BSA. Thermodynamic parameters indicated that hydrophobic association was the major binding force and that the interaction was entropy driven and enthalpically disfavoured. The displacement experiment showed that these complexes could bind to the subdomain IIA (site I) of albumin. Furthermore the synchronous fluorescence spectra showed that the microenvironment of the tryptophan residues was not apparently changed. Based on the Förster theory of non-radiation energy transfer, the distance between the donor (Trp residues) and the acceptor metal complexes was obtained. The growth inhibitory effect of complexes toward the K562 cancer cell line was measured.

  4. Density functional theory studies of oxygen and carbonate binding to a dicopper patellamide complex.

    PubMed

    Latifi, Reza; Bagherzadeh, Mojtaba; Milne, Bruce F; Jaspars, Marcel; de Visser, Sam P

    2008-12-01

    In this work we present results of density functional theory (DFT) calculations on dicopper patellamides and their affinity for molecular oxygen and carbonate. Patellamides are cyclic octapeptides that are produced by a cyanobacterium, and may show promise as therapeutics. Thus, carbonate binding to a dicopper patellamide center gives a stable cyclic octapeptide with a twist of almost 90 degrees . The system exists in close-lying open-shell singlet and triplet spin states with two unpaired electrons in orthogonal sigma* orbitals on each metal center. Subsequently, we replaced carbonate with dioxygen and found a stable Cu2(mu-O)2 diamond shaped patellamide core. In this structure the original dioxygen bond is significantly weakened to essentially a single bond, which should enable the system to transfer these oxygen atoms to substrates. We predicted the IR and Raman spectra of the Cu2(mu-O)2 diamond shaped patellamide structure using density functional theory and found a considerable isotope effect on the O-O stretch vibration for 16O2 versus 18O2 bound structures. Our studies reveal that carbonate forms an extremely stable complex with dicopper patellamide, but that additional molecular oxygen to this system does not give a potential oxidant. Therefore, it is more likely that carbonate prepares the system for dioxygen binding by folding it into the correct configuration followed in the proposed catalytic cycle by a protonation event preceding dioxygen binding to enable the system to reorganize to form a stable Cu2(mu-O)2-patellamide cluster. Alternatively, carbonate may act as an inhibitor that blocks the catalytic activity of the system. It is anticipated that the Cu2(mu-O)2-patellamide structure is a potential active oxidant of the dicopper patellamide complex.

  5. Applicability of Complexity Theory to Martian Fluvial Systems: A Preliminary Analysis

    NASA Technical Reports Server (NTRS)

    Rosenshein, E. B.

    2003-01-01

    In the last 15 years, terrestrial geomorphology has been revolutionized by the theories of chaotic systems, fractals, self-organization, and selforganized criticality. Except for the application of fractal theory to the analysis of lava flows and rampart craters on Mars, these theories have not yet been applied to problems of Martian landscape evolution. These complexity theories are elucidated below, along with the methods used to relate these theories to the realities of Martian fluvial systems.

  6. Five schools of thought about complexity: Implications for design and process science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warfield, J.N.

    1996-12-31

    The prevalence of complexity is a fact of life in virtually all aspects of system design today. Five schools of thought concerning complexity seem to be present in areas where people strive to gain more facility with difficult issues: (1) Interdisciplinary or Cross-Disciplinary {open_quotes}approaches{close_quotes} or {open_quotes}methods{close_quotes} (fostered by the Association for Integrative Studies, a predominantly liberal-arts faculty activity), (2) Systems Dynamics (fostered by Jay Forrester, Dennis Meadows, Peter Senge, and others closely associated with MIT), (3) Chaos Theory (arising in small groups in many locations), (4) Adaptive Systems Theory (predominantly associated with the Santa Fe Institute), and (5) The Structure-Basedmore » school (developed by the author, his colleagues and associates). A comparison of these five schools of thought will be offered, in order to show the implications of them upon the development and application of design and process science. The following criteria of comparison will be used: (a) how complexity is defined, (b) analysis versus synthesis, (c) potential for acquiring practical competence in coping with complexity, and (d) relationship to underlying formalisms that facilitate computer assistance in applications. Through these comparisons, the advantages and disadvantages of each school of thought can be clarified, and the possibilities of changes in the educational system to provide for the management of complexity in system design can be articulated.« less

  7. Science and technology convergence: with emphasis for nanotechnology-inspired convergence

    NASA Astrophysics Data System (ADS)

    Bainbridge, William S.; Roco, Mihail C.

    2016-07-01

    Convergence offers a new universe of discovery, innovation, and application opportunities through specific theories, principles, and methods to be implemented in research, education, production, and other societal activities. Using a holistic approach with shared goals, convergence seeks to transcend existing human limitations to achieve improved conditions for work, learning, aging, physical, and cognitive wellness. This paper outlines ten key theories that offer complementary perspectives on this complex dynamic. Principles and methods are proposed to facilitate and enhance science and technology convergence. Several convergence success stories in the first part of the 21st century—including nanotechnology and other emerging technologies—are discussed in parallel with case studies focused on the future. The formulation of relevant theories, principles, and methods aims at establishing the convergence science.

  8. Exercise contagion in a global social network.

    PubMed

    Aral, Sinan; Nicolaides, Christos

    2017-04-18

    We leveraged exogenous variation in weather patterns across geographies to identify social contagion in exercise behaviours across a global social network. We estimated these contagion effects by combining daily global weather data, which creates exogenous variation in running among friends, with data on the network ties and daily exercise patterns of ∼1.1M individuals who ran over 350M km in a global social network over 5 years. Here we show that exercise is socially contagious and that its contagiousness varies with the relative activity of and gender relationships between friends. Less active runners influence more active runners, but not the reverse. Both men and women influence men, while only women influence other women. While the Embeddedness and Structural Diversity theories of social contagion explain the influence effects we observe, the Complex Contagion theory does not. These results suggest interventions that account for social contagion will spread behaviour change more effectively.

  9. Using complexity theory to analyse the organisational response to resurgent tuberculosis across London.

    PubMed

    Trenholm, Susan; Ferlie, Ewan

    2013-09-01

    We employ complexity theory to analyse the English National Health Service (NHS)'s organisational response to resurgent tuberculosis across London. Tennison (2002) suggests that complexity theory could fruitfully explore a healthcare system's response to this complex and emergent phenomenon: we explore this claim here. We also bring in established New Public Management principles to enhance our empirical analysis, which is based on data collected between late 2009 and mid-2011. We find that the operation of complexity theory based features, especially self-organisation, are significantly impacted by the macro context of a New Public Management-based regime which values control, measurement and risk management more than innovation, flexibility and lateral system building. We finally explore limitations and suggest perspectives for further research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Complexity Theory

    USGS Publications Warehouse

    Lee, William H K.

    2016-01-01

    A complex system consists of many interacting parts, generates new collective behavior through self organization, and adaptively evolves through time. Many theories have been developed to study complex systems, including chaos, fractals, cellular automata, self organization, stochastic processes, turbulence, and genetic algorithms.

  11. Exchange Coupling Interactions from the Density Matrix Renormalization Group and N-Electron Valence Perturbation Theory: Application to a Biomimetic Mixed-Valence Manganese Complex.

    PubMed

    Roemelt, Michael; Krewald, Vera; Pantazis, Dimitrios A

    2018-01-09

    The accurate description of magnetic level energetics in oligonuclear exchange-coupled transition-metal complexes remains a formidable challenge for quantum chemistry. The density matrix renormalization group (DMRG) brings such systems for the first time easily within reach of multireference wave function methods by enabling the use of unprecedentedly large active spaces. But does this guarantee systematic improvement in predictive ability and, if so, under which conditions? We identify operational parameters in the use of DMRG using as a test system an experimentally characterized mixed-valence bis-μ-oxo/μ-acetato Mn(III,IV) dimer, a model for the oxygen-evolving complex of photosystem II. A complete active space of all metal 3d and bridge 2p orbitals proved to be the smallest meaningful starting point; this is readily accessible with DMRG and greatly improves on the unrealistic metal-only configuration interaction or complete active space self-consistent field (CASSCF) values. Orbital optimization is critical for stabilizing the antiferromagnetic state, while a state-averaged approach over all spin states involved is required to avoid artificial deviations from isotropic behavior that are associated with state-specific calculations. Selective inclusion of localized orbital subspaces enables probing the relative contributions of different ligands and distinct superexchange pathways. Overall, however, full-valence DMRG-CASSCF calculations fall short of providing a quantitative description of the exchange coupling owing to insufficient recovery of dynamic correlation. Quantitatively accurate results can be achieved through a DMRG implementation of second order N-electron valence perturbation theory (NEVPT2) in conjunction with a full-valence metal and ligand active space. Perspectives for future applications of DMRG-CASSCF/NEVPT2 to exchange coupling in oligonuclear clusters are discussed.

  12. The quartet theory of human emotions: An integrative and neurofunctional model

    NASA Astrophysics Data System (ADS)

    Koelsch, Stefan; Jacobs, Arthur M.; Menninghaus, Winfried; Liebal, Katja; Klann-Delius, Gisela; von Scheve, Christian; Gebauer, Gunter

    2015-06-01

    Despite an explosion of research in the affective sciences during the last few decades, interdisciplinary theories of human emotions are lacking. Here we present a neurobiological theory of emotions that includes emotions which are uniquely human (such as complex moral emotions), considers the role of language for emotions, advances the understanding of neural correlates of attachment-related emotions, and integrates emotion theories from different disciplines. We propose that four classes of emotions originate from four neuroanatomically distinct cerebral systems. These emotional core systems constitute a quartet of affect systems: the brainstem-, diencephalon-, hippocampus-, and orbitofrontal-centred affect systems. The affect systems were increasingly differentiated during the course of evolution, and each of these systems generates a specific class of affects (e.g., ascending activation, pain/pleasure, attachment-related affects, and moral affects). The affect systems interact with each other, and activity of the affect systems has effects on - and interacts with - biological systems denoted here as emotional effector systems. These effector systems include motor systems (which produce actions, action tendencies, and motoric expression of emotion), peripheral physiological arousal, as well as attentional and memory systems. Activity of affect systems and effector systems is synthesized into an emotion percept (pre-verbal subjective feeling), which can be transformed (or reconfigured) into a symbolic code such as language. Moreover, conscious cognitive appraisal (involving rational thought, logic, and usually language) can regulate, modulate, and partly initiate, activity of affect systems and effector systems. Our emotion theory integrates psychological, neurobiological, sociological, anthropological, and psycholinguistic perspectives on emotions in an interdisciplinary manner, aiming to advance the understanding of human emotions and their neural correlates.

  13. Development of Planning Behaviour and Decision Making Ability of Children

    ERIC Educational Resources Information Center

    Mahapatra, Shamita

    2016-01-01

    Decision making, a complex mental activity underlying the act of choosing from among the alternatives in attaining a goal constitutes the core component of planning, a higher order cognitive process as per the PASS theory of intelligence. An attempt, therefore, has been made in the present study to examine the development of planning behaviour in…

  14. Can the Tools of Activity Theory Help Us in Advancing Understanding and Organisational Change in Undergraduate Medical Education?

    ERIC Educational Resources Information Center

    Reid, Anne-Marie; Ledger, Alison; Kilminster, Sue; Fuller, Richard

    2015-01-01

    Continued changes to healthcare delivery in the UK, and an increasing focus on patient safety and quality improvement, require a radical rethink on how we enable graduates to begin work in challenging, complex environments. Professional regulatory bodies now require undergraduate medical schools to implement an "assistantship" period in…

  15. On the Spatial Foundations of the Conceptual System and Its Enrichment

    ERIC Educational Resources Information Center

    Mandler, Jean M.

    2012-01-01

    A theory of how concept formation begins is presented that accounts for conceptual activity in the first year of life, shows how increasing conceptual complexity comes about, and predicts the order in which new types of information accrue to the conceptual system. In a compromise between nativist and empiricist views, it offers a single…

  16. Post-KR Delay Intervals and Mental Practice: A Test of Adams' Closed Loop Theory

    ERIC Educational Resources Information Center

    Bole, Ronald

    1976-01-01

    The present study suggests that post-KR delay interval time or activity in the interval has little to do with learning on a self-paced positioning task, not ruling out that on ballistic tasks or more complex nonballistic tasks that a learner could make use of additional time or strategy. (MB)

  17. Metacognition in Speech and Language Therapy for Children with Social (Pragmatic) Communication Disorders: Implications for a Theory of Therapy

    ERIC Educational Resources Information Center

    Gaile, Jacqueline; Adams, Catherine

    2018-01-01

    Background: Metacognition is a significant component of complex interventions for children who have developmental language disorders. Research into how metacognition operates in the content or process of developmental language therapy delivery is limited. Identification and description of proposed active therapy components, such as metacognition,…

  18. Understanding the Online Informal Learning of English as a Complex Dynamic System: An Emic Approach

    ERIC Educational Resources Information Center

    Sockett, Geoffrey

    2013-01-01

    Research into the online informal learning of English has already shown it to be a widespread phenomenon involving a range of comprehension and production activities such as viewing original version television series, listening to music on demand and social networking with other English users. Dynamic systems theory provides a suitable framework…

  19. Corporate social responsibility: an assessment of the enlightened self-interest model.

    PubMed

    Keim, G D

    1978-01-01

    Much recent discussion of corporate social responsibility has concerned operationality. Many activities subsumed under corporate social responsibility can be shown to be public or partially public goods. The theory of public goods can clarify and explain some complex problems of operationalizing the social responsibility doctrine. An examination of philanthropy provides some behavioral applications.

  20. Introductory Computer Programming Course Teaching Improvement Using Immersion Language, Extreme Programming, and Education Theories

    ERIC Educational Resources Information Center

    Velez-Rubio, Miguel

    2013-01-01

    Teaching computer programming to freshmen students in Computer Sciences and other Information Technology areas has been identified as a complex activity. Different approaches have been studied looking for the best one that could help to improve this teaching process. A proposed approach was implemented which is based in the language immersion…

  1. Pursuing Lines of Flight: Enacting Equity-Based Preservice Teacher Learning in First-Year Teaching

    ERIC Educational Resources Information Center

    Strom, Katie; Martin, Adrian D.

    2016-01-01

    This article examines how one first-year physics teacher translated his inquiry-based, socially just pre-professional learning into classroom practice in his first several months of teaching, using rhizomatics, a non-linear theory of social activity, as a theoretical and methodological frame. This case highlights the complexity of enacting a…

  2. Analyzing Cultural Artifacts for the Introduction, Perpetuation, or Reinforcement of Moral Ideals

    ERIC Educational Resources Information Center

    Williams, Jennifer

    2013-01-01

    The development and socialization of morals is a complex concept for students studying ethics. To help students understand the role social learning theory plays in the development of morality, an activity was created focusing on cultural artifacts and their introduction, perpetuation, and/or reinforcement of morality. The aim of this assignment is…

  3. The discourse of design-based science classroom activities

    NASA Astrophysics Data System (ADS)

    Azevedo, Flávio S.; Martalock, Peggy L.; Keser, Tugba

    2015-06-01

    This paper is an initial contribution to a general theory in which science classroom activity types and epistemological discourse practices are systematically linked. The idea is that activities and discourse are reflexively related, so that different types of science classroom activities (e.g., scientific argumentation, modeling, and design) recruit characteristically distinct forms of participants' (students and teacher) discourse. Such a general theory would eventually map out the full spectrum of discourse practices (and their patterns of manifestation) across various kinds of science classroom activities, and reveal new relationships between forms of both discourse and activities. Because this defines a complex and long-term project, here our aim is simply to delineate this larger theoretical program and to illustrate it with a detailed case study—namely, that of mapping out and characterizing the discourse practices of design- based science classroom activities. To do so, we draw on data from an activity that is prototypically design-based—i.e., one in which students iteratively design and refine an artifact (in this case, pictorial representations of moving objects)—and examine the structure and dynamics of the whole-class discourse practices that emerge around these representational forms. We then compare and contrast these discourse practices to those of an activity that is prototypical of scientific argumentation (taken from the literature)—i.e., one in which students argue between competing theories and explanations of a phenomenon—and begin to illustrate the kinds of insights our theoretical program might afford.

  4. Density functional theory study of the reaction mechanism for competitive carbon-hydrogen and carbon-halogen bond activations catalyzed by transition metal complexes.

    PubMed

    Yang, Xinzheng; Hall, Michael B

    2009-03-12

    Carbon-hydrogen and carbon-halogen bond activations between halobenzenes and metal centers were studied by density functional theory with the nonempirical meta-GGA Tao-Perdew-Staroverov-Scuseria functional and an all-electron correlation-consistent polarized valence double-zeta basis set. Our calculations demonstrate that the hydrogen on the metal center and halogen in halobenzene could exchange directly through a kite-shaped transition state. Transition states with this structure were previously predicted to have high energy barriers (J. Am. Chem. Soc. 2005, 127, 279), and this prediction misled others in proposing a mechanism for their recent experimental study (J. Am. Chem. Soc. 2006, 128, 3303). Furthermore, other halo-carbon activation pathways were found in the detailed mechanism for the competitive reactions between cationic titanium hydride complex [Cp*((t)Bu(3)P=N)TiH](+) and chlorobenzene under different pressure of H(2). These pathways include the ortho-C-H and Ti-H bond activations for the formation and release of H(2) and the indirect C-Cl bond activation via beta-halogen elimination for the movement of the C(6)H(4) ring and the formation of a C-N bond in the observed final product. A new stable isomer of the observed product with a similar total energy and an unexpected bridging between the Cp* ring and the metal center by a phenyl ring is also predicted.

  5. The syntactic complexity of Russian relative clauses

    PubMed Central

    Fedorenko, Evelina; Gibson, Edward

    2012-01-01

    Although syntactic complexity has been investigated across dozens of studies, the available data still greatly underdetermine relevant theories of processing difficulty. Memory-based and expectation-based theories make opposite predictions regarding fine-grained time course of processing difficulty in syntactically constrained contexts, and each class of theory receives support from results on some constructions in some languages. Here we report four self-paced reading experiments on the online comprehension of Russian relative clauses together with related corpus studies, taking advantage of Russian’s flexible word order to disentangle predictions of competing theories. We find support for key predictions of memory-based theories in reading times at RC verbs, and for key predictions of expectation-based theories in processing difficulty at RC-initial accusative noun phrase (NP) objects, which corpus data suggest should be highly unexpected. These results suggest that a complete theory of syntactic complexity must integrate insights from both expectation-based and memory-based theories. PMID:24711687

  6. Network Analysis Reveals Putative Genes Affecting Meat Quality in Angus Cattle.

    PubMed

    Mateescu, Raluca G; Garrick, Dorian J; Reecy, James M

    2017-01-01

    Improvements in eating satisfaction will benefit consumers and should increase beef demand which is of interest to the beef industry. Tenderness, juiciness, and flavor are major determinants of the palatability of beef and are often used to reflect eating satisfaction. Carcass qualities are used as indicator traits for meat quality, with higher quality grade carcasses expected to relate to more tender and palatable meat. However, meat quality is a complex concept determined by many component traits making interpretation of genome-wide association studies (GWAS) on any one component challenging to interpret. Recent approaches combining traditional GWAS with gene network interactions theory could be more efficient in dissecting the genetic architecture of complex traits. Phenotypic measures of 23 traits reflecting carcass characteristics, components of meat quality, along with mineral and peptide concentrations were used along with Illumina 54k bovine SNP genotypes to derive an annotated gene network associated with meat quality in 2,110 Angus beef cattle. The efficient mixed model association (EMMAX) approach in combination with a genomic relationship matrix was used to directly estimate the associations between 54k SNP genotypes and each of the 23 component traits. Genomic correlated regions were identified by partial correlations which were further used along with an information theory algorithm to derive gene network clusters. Correlated SNP across 23 component traits were subjected to network scoring and visualization software to identify significant SNP. Significant pathways implicated in the meat quality complex through GO term enrichment analysis included angiogenesis, inflammation, transmembrane transporter activity, and receptor activity. These results suggest that network analysis using partial correlations and annotation of significant SNP can reveal the genetic architecture of complex traits and provide novel information regarding biological mechanisms and genes that lead to complex phenotypes, like meat quality, and the nutritional and healthfulness value of beef. Improvements in genome annotation and knowledge of gene function will contribute to more comprehensive analyses that will advance our ability to dissect the complex architecture of complex traits.

  7. Molybdenum chloride catalysts for Z-selective olefin metathesis reactions

    NASA Astrophysics Data System (ADS)

    Koh, Ming Joo; Nguyen, Thach T.; Lam, Jonathan K.; Torker, Sebastian; Hyvl, Jakub; Schrock, Richard R.; Hoveyda, Amir H.

    2017-01-01

    The development of catalyst-controlled stereoselective olefin metathesis processes has been a pivotal recent advance in chemistry. The incorporation of appropriate ligands within complexes based on molybdenum, tungsten and ruthenium has led to reactivity and selectivity levels that were previously inaccessible. Here we show that molybdenum monoaryloxide chloride complexes furnish higher-energy (Z) isomers of trifluoromethyl-substituted alkenes through cross-metathesis reactions with the commercially available, inexpensive and typically inert Z-1,1,1,4,4,4-hexafluoro-2-butene. Furthermore, otherwise inefficient and non-stereoselective transformations with Z-1,2-dichloroethene and 1,2-dibromoethene can be effected with substantially improved efficiency and Z selectivity. The use of such molybdenum monoaryloxide chloride complexes enables the synthesis of representative biologically active molecules and trifluoromethyl analogues of medicinally relevant compounds. The origins of the activity and selectivity levels observed, which contradict previously proposed principles, are elucidated with the aid of density functional theory calculations.

  8. Emergent "Quantum" Theory in Complex Adaptive Systems.

    PubMed

    Minic, Djordje; Pajevic, Sinisa

    2016-04-30

    Motivated by the question of stability, in this letter we argue that an effective quantum-like theory can emerge in complex adaptive systems. In the concrete example of stochastic Lotka-Volterra dynamics, the relevant effective "Planck constant" associated with such emergent "quantum" theory has the dimensions of the square of the unit of time. Such an emergent quantum-like theory has inherently non-classical stability as well as coherent properties that are not, in principle, endangered by thermal fluctuations and therefore might be of crucial importance in complex adaptive systems.

  9. Emergent “Quantum” Theory in Complex Adaptive Systems

    PubMed Central

    Minic, Djordje; Pajevic, Sinisa

    2017-01-01

    Motivated by the question of stability, in this letter we argue that an effective quantum-like theory can emerge in complex adaptive systems. In the concrete example of stochastic Lotka-Volterra dynamics, the relevant effective “Planck constant” associated with such emergent “quantum” theory has the dimensions of the square of the unit of time. Such an emergent quantum-like theory has inherently non-classical stability as well as coherent properties that are not, in principle, endangered by thermal fluctuations and therefore might be of crucial importance in complex adaptive systems. PMID:28890591

  10. Lack of consensus among competency ratings of the same occupation: noise or substance?

    PubMed

    Lievens, Filip; Sanchez, Juan I; Bartram, Dave; Brown, Anna

    2010-05-01

    Although rating differences among incumbents of the same occupation have traditionally been viewed as error variance in the work analysis domain, such differences might often capture substantive discrepancies in how incumbents approach their work. This study draws from job crafting, creativity, and role theories to uncover situational factors (i.e., occupational activities, context, and complexity) related to differences among competency ratings of the same occupation. The sample consisted of 192 incumbents from 64 occupations. Results showed that 25% of the variance associated with differences in competency ratings of the same occupation was related to the complexity, the context, and primarily the nature of the occupation's work activities. Consensus was highest for occupations involving equipment-related activities and direct contact with the public. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  11. Insight into the kinetics and thermodynamics of the hydride transfer reactions between quinones and lumiflavin: a density functional theory study.

    PubMed

    Reinhardt, Clorice R; Jaglinski, Tanner C; Kastenschmidt, Ashly M; Song, Eun H; Gross, Adam K; Krause, Alyssa J; Gollmar, Jonathan M; Meise, Kristin J; Stenerson, Zachary S; Weibel, Tyler J; Dison, Andrew; Finnegan, Mackenzie R; Griesi, Daniel S; Heltne, Michael D; Hughes, Tom G; Hunt, Connor D; Jansen, Kayla A; Xiong, Adam H; Hati, Sanchita; Bhattacharyya, Sudeep

    2016-09-01

    The kinetics and equilibrium of the hydride transfer reaction between lumiflavin and a number of substituted quinones was studied using density functional theory. The impact of electron withdrawing/donating substituents on the redox potentials of quinones was studied. In addition, the role of these substituents on the kinetics of the hydride transfer reaction with lumiflavin was investigated in detail under the transition state (TS) theory assumption. The hydride transfer reactions were found to be more favorable for an electron-withdrawing substituent. The activation barrier exhibited a quadratic relationship with the driving force of these reactions as derived under the formalism of modified Marcus theory. The present study found a significant extent of electron delocalization in the TS that is stabilized by enhanced electrostatic, polarization, and exchange interactions. Analysis of geometry, bond-orders, and energetics revealed a predominant parallel (Leffler-Hammond) effect on the TS. Closer scrutiny reveals that electron-withdrawing substituents, although located on the acceptor ring, reduce the N-H bond order of the donor fragment in the precursor complex. Carried out in the gas-phase, this is the first ever report of a theoretical study of flavin's hydride transfer reactions with quinones, providing an unfiltered view of the electronic effect on the nuclear reorganization of donor-acceptor complexes.

  12. Using self-determination theory to promote adolescent girls' physical activity: Exploring the theoretical fidelity of the Bristol Girls Dance Project.

    PubMed

    Sebire, Simon J; Kesten, Joanna M; Edwards, Mark J; May, Thomas; Banfield, Kathryn; Tomkinson, Keeley; Blair, Peter S; Bird, Emma L; Powell, Jane E; Jago, Russell

    2016-05-01

    To report the theory-based process evaluation of the Bristol Girls' Dance Project, a cluster-randomised controlled trial to increase adolescent girls' physical activity. A mixed-method process evaluation of the intervention's self-determination theory components comprising lesson observations, post-intervention interviews and focus groups. Four intervention dance lessons per dance instructor were observed, audio recorded and rated to estimate the use of need-supportive teaching strategies. Intervention participants (n = 281) reported their dance instructors' provision of autonomy-support. Semi-structured interviews with the dance instructors (n = 10) explored fidelity to the theory and focus groups were conducted with participants (n = 59) in each school to explore their receipt of the intervention and views on the dance instructors' motivating style. Although instructors accepted the theory-based approach, intervention fidelity was variable. Relatedness support was the most commonly observed need-supportive teaching behaviour, provision of structure was moderate and autonomy-support was comparatively low. The qualitative findings identified how instructors supported competence and developed trusting relationships with participants. Fidelity was challenged where autonomy provision was limited to option choices rather than input into the pace or direction of lessons and where controlling teaching styles were adopted, often to manage disruptive behaviour. The successes and challenges to achieving theoretical fidelity in the Bristol Girls' Dance Project may help explain the intervention effects and can more broadly inform the design of theory-based complex interventions aimed at increasing young people's physical activity in after-school settings.

  13. Using self-determination theory to promote adolescent girls' physical activity: Exploring the theoretical fidelity of the Bristol Girls Dance Project

    PubMed Central

    Sebire, Simon J.; Kesten, Joanna M.; Edwards, Mark J.; May, Thomas; Banfield, Kathryn; Tomkinson, Keeley; Blair, Peter S.; Bird, Emma L.; Powell, Jane E.; Jago, Russell

    2016-01-01

    Objectives To report the theory-based process evaluation of the Bristol Girls' Dance Project, a cluster-randomised controlled trial to increase adolescent girls' physical activity. Design A mixed-method process evaluation of the intervention's self-determination theory components comprising lesson observations, post-intervention interviews and focus groups. Method Four intervention dance lessons per dance instructor were observed, audio recorded and rated to estimate the use of need-supportive teaching strategies. Intervention participants (n = 281) reported their dance instructors' provision of autonomy-support. Semi-structured interviews with the dance instructors (n = 10) explored fidelity to the theory and focus groups were conducted with participants (n = 59) in each school to explore their receipt of the intervention and views on the dance instructors' motivating style. Results Although instructors accepted the theory-based approach, intervention fidelity was variable. Relatedness support was the most commonly observed need-supportive teaching behaviour, provision of structure was moderate and autonomy-support was comparatively low. The qualitative findings identified how instructors supported competence and developed trusting relationships with participants. Fidelity was challenged where autonomy provision was limited to option choices rather than input into the pace or direction of lessons and where controlling teaching styles were adopted, often to manage disruptive behaviour. Conclusion The successes and challenges to achieving theoretical fidelity in the Bristol Girls' Dance Project may help explain the intervention effects and can more broadly inform the design of theory-based complex interventions aimed at increasing young people's physical activity in after-school settings. PMID:27175102

  14. Electrostatic theory of the assembly of PAMAM dendrimers and DNA.

    PubMed

    Perico, Angelo

    2016-05-01

    The electrostatic interactions mediated by counterions between a cationic PAMAM dendrimer, modelized as a sphere of radius and cationic surface charge highly increasing with generation, and a DNA, modelized as an anionic elastic line, are analytically calculated in the framework of condensation theory. Under these interactions the DNA is wrapped around the sphere. For excess phosphates relative to dendrimer primary amines, the free energy of the DNA-dendrimer complex displays an absolute minimum when the complex is weakly negatively overcharged. This overcharging opposes gene delivery. For a highly positive dendrimer and a DNA fixed by experimental conditions to a number of phosphates less than the number of dendrimer primary amines, excess amine charges, the dendrimer may at the same time bind stably DNA and interact with negative cell membranes to activate cell transfection in fair agreement with molecular simulations and experiments. © 2016 Wiley Periodicals, Inc.

  15. Minimization of Dependency Length in Written English

    ERIC Educational Resources Information Center

    Temperley, David

    2007-01-01

    Gibson's Dependency Locality Theory (DLT) [Gibson, E. 1998. "Linguistic complexity: locality of syntactic dependencies." "Cognition," 68, 1-76; Gibson, E. 2000. "The dependency locality theory: A distance-based theory of linguistic complexity." In A. Marantz, Y. Miyashita, & W. O'Neil (Eds.), "Image,…

  16. Complexity, Connections, and Soul-Work

    ERIC Educational Resources Information Center

    Bloch, Deborah P.

    2008-01-01

    Organizational theory and personal behaviors are both shaped by contemporary thinking and theories regarding spirituality, history, and the order, shape, and direction of modern culture. Complexity theory, discussed in this article, offers some helpful insights into appreciating the relationships and connections often overlooked in today's…

  17. Holographic complexity and noncommutative gauge theory

    NASA Astrophysics Data System (ADS)

    Couch, Josiah; Eccles, Stefan; Fischler, Willy; Xiao, Ming-Lei

    2018-03-01

    We study the holographic complexity of noncommutative field theories. The four-dimensional N=4 noncommutative super Yang-Mills theory with Moyal algebra along two of the spatial directions has a well known holographic dual as a type IIB supergravity theory with a stack of D3 branes and non-trivial NS-NS B fields. We start from this example and find that the late time holographic complexity growth rate, based on the "complexity equals action" conjecture, experiences an enhancement when the non-commutativity is turned on. This enhancement saturates a new limit which is exactly 1/4 larger than the commutative value. We then attempt to give a quantum mechanics explanation of the enhancement. Finite time behavior of the complexity growth rate is also studied. Inspired by the non-trivial result, we move on to more general setup in string theory where we have a stack of D p branes and also turn on the B field. Multiple noncommutative directions are considered in higher p cases.

  18. Complex adaptive systems: concept analysis.

    PubMed

    Holden, Lela M

    2005-12-01

    The aim of this paper is to explicate the concept of complex adaptive systems through an analysis that provides a description, antecedents, consequences, and a model case from the nursing and health care literature. Life is more than atoms and molecules--it is patterns of organization. Complexity science is the latest generation of systems thinking that investigates patterns and has emerged from the exploration of the subatomic world and quantum physics. A key component of complexity science is the concept of complex adaptive systems, and active research is found in many disciplines--from biology to economics to health care. However, the research and literature related to these appealing topics have generated confusion. A thorough explication of complex adaptive systems is needed. A modified application of the methods recommended by Walker and Avant for concept analysis was used. A complex adaptive system is a collection of individual agents with freedom to act in ways that are not always totally predictable and whose actions are interconnected. Examples include a colony of termites, the financial market, and a surgical team. It is often referred to as chaos theory, but the two are not the same. Chaos theory is actually a subset of complexity science. Complexity science offers a powerful new approach--beyond merely looking at clinical processes and the skills of healthcare professionals. The use of complex adaptive systems as a framework is increasing for a wide range of scientific applications, including nursing and healthcare management research. When nursing and other healthcare managers focus on increasing connections, diversity, and interactions they increase information flow and promote creative adaptation referred to as self-organization. Complexity science builds on the rich tradition in nursing that views patients and nursing care from a systems perspective.

  19. Theoretical study on the antitumor properties of Ru(II) complexes containing 2-pyridyl, 2-pyridine-4-carboxylic acid ligands

    NASA Astrophysics Data System (ADS)

    Erkan kariper, Sultan; Sayin, Koray; Karakaş, Duran

    2017-12-01

    [Ru(bipy)2(CppH)]2+(1), [Ru(bipy)2(Cpp-NH-Hex-COOH)]2+(2), [Ru(dppz)2(CppH)]2+(3) and [Ru(dppz)2(Cpp-NH-Hex-COOH)]2+(4) were calculated by Hartree-Fock (HF), Density Functional Theory (DFT) hybrid B3LYP and Moller-Plesset Perturbation (MPn n = 2,3) theory method and CEP-4G, CEP-31G, CEP-121G, LANL2DZ, LANL2MB, SDD basic sets and a mixed basic set with the keyword GEN in gas phase and water. Structure parameters obtained from optimized structures were compared with experimental parameters. M062X/(6-31G(d))(CEP-4G) level was taken into account for the most appropriate calculation level. IR, UV-VIS and NMR spectrums were examined for structural characterization. The optimal structure was identified via structure parameters, IR, UV-VIS and NMR spectrums. For the most compatible structure, the highest molecular orbital energy (EHOMO) which one of the most effective chemical determiners on the antitumor activity of the complexes, the lowest molecular orbital energy (ELUMO), LUMO-HOMO energy gap, hardness (η), softness (σ), electronegativity (χ), chemical potential (μ), electrophilicity index (ω), molar volume (V), dipole moment (DM), total negative charge (TNC), enthalpy (H), entropy (S) and total energy (E) were calculated. The causes of anticancer activity of the complexes have been studied.

  20. Optimal Experience and Optimal Identity: A Multinational Study of the Associations Between Flow and Social Identity.

    PubMed

    Mao, Yanhui; Roberts, Scott; Pagliaro, Stefano; Csikszentmihalyi, Mihaly; Bonaiuto, Marino

    2016-01-01

    Eudaimonistic identity theory posits a link between activity and identity, where a self-defining activity promotes the strength of a person's identity. An activity engaged in with high enjoyment, full involvement, and high concentration can facilitate the subjective experience of flow. In the present paper, we hypothesized in accordance with the theory of psychological selection that beyond the promotion of individual development and complexity at the personal level, the relationship between flow and identity at the social level is also positive through participation in self-defining activities. Three different samples (i.e., American, Chinese, and Spanish) filled in measures for flow and social identity, with reference to four previously self-reported activities, characterized by four different combinations of skills (low vs. high) and challenges (low vs. high). Findings indicated that flow was positively associated with social identity across each of the above samples, regardless of participants' gender and age. The results have implications for increasing social identity via participation in self-defining group activities that could facilitate flow.

  1. Optimal Experience and Optimal Identity: A Multinational Study of the Associations Between Flow and Social Identity

    PubMed Central

    Mao, Yanhui; Roberts, Scott; Pagliaro, Stefano; Csikszentmihalyi, Mihaly; Bonaiuto, Marino

    2016-01-01

    Eudaimonistic identity theory posits a link between activity and identity, where a self-defining activity promotes the strength of a person’s identity. An activity engaged in with high enjoyment, full involvement, and high concentration can facilitate the subjective experience of flow. In the present paper, we hypothesized in accordance with the theory of psychological selection that beyond the promotion of individual development and complexity at the personal level, the relationship between flow and identity at the social level is also positive through participation in self-defining activities. Three different samples (i.e., American, Chinese, and Spanish) filled in measures for flow and social identity, with reference to four previously self-reported activities, characterized by four different combinations of skills (low vs. high) and challenges (low vs. high). Findings indicated that flow was positively associated with social identity across each of the above samples, regardless of participants’ gender and age. The results have implications for increasing social identity via participation in self-defining group activities that could facilitate flow. PMID:26924995

  2. Cage-Like Porous Carbon with Superhigh Activity and Br2 -Complex-Entrapping Capability for Bromine-Based Flow Batteries.

    PubMed

    Wang, Chenhui; Lai, Qinzhi; Xu, Pengcheng; Zheng, Daoyuan; Li, Xianfeng; Zhang, Huamin

    2017-06-01

    Bromine-based flow batteries receive wide attention in large-scale energy storage because of their attractive features, such as high energy density and low cost. However, the Br 2 diffusion and relatively low activity of Br 2 /Br - hinder their further application. Herein, a cage-like porous carbon (CPC) with specific pore structure combining superhigh activity and Br 2 -complex-entrapping capability is designed and fabricated. According to the results of density functional theory (DFT) calculation, the pore size of the CPC (1.1 nm) is well designed between the size of Br - (4.83 Å), MEP + (9.25 Å), and Br 2 complex (MEPBr 3 12.40 Å), wherein Br - is oxidized to Br 2 , which forms a Br 2 complex with the complexing agent immediately and is then entrapped in the cage via pore size exclusion. In addition, the active sites produced during the carbon dioxide activation process dramatically accelerate the reaction rate of Br 2 /Br - . In this way, combining a high Br 2 -entrapping-capability and high specific surface areas, the CPC shows very impressive performance. The zinc bromine flow battery assembled with the prepared CPC shows a Coulombic efficiency of 98% and an energy efficiency of 81% at the current density of 80 mA cm -2 , which are among the highest values ever reported. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Theory of Mind disruption and recruitment of the right hemisphere during narrative comprehension in autism

    PubMed Central

    Mason, Robert A.; Williams, Diane L.; Kana, Rajesh K.; Minshew, Nancy; Just, Marcel Adam

    2008-01-01

    The intersection of Theory of Mind (ToM) processing and complex narrative comprehension in high functioning autism was examined by comparing cortical activation during the reading of passages that required inferences based on either intentions, emotional states, or physical causality. Right hemisphere activation was substantially greater for all sentences in the autism group than in a matched control group suggesting decreased LH capacity in autism resulting in a spillover of processing to RH homologs. Moreover, the ToM network was disrupted. The autism group showed similar activation for all inference types in the right temporo-parietal component of the ToM network whereas the control participants selectively activated this network only when appropriate. The autism group had lower functional connectivity within the ToM network and also between the ToM and a left hemisphere language network. Furthermore, the within-network functional connectivity in autism was correlated with the size of the anterior portion of the corpus callosum. PMID:17869314

  4. Theory of Mind disruption and recruitment of the right hemisphere during narrative comprehension in autism.

    PubMed

    Mason, Robert A; Williams, Diane L; Kana, Rajesh K; Minshew, Nancy; Just, Marcel Adam

    2008-01-15

    The intersection of Theory of Mind (ToM) processing and complex narrative comprehension in high functioning autism was examined by comparing cortical activation during the reading of passages that required inferences based on either intentions, emotional states, or physical causality. Right hemisphere activation was substantially greater for all sentences in the autism group than in a matched control group suggesting decreased LH capacity in autism resulting in a spillover of processing to RH homologs. Moreover, the ToM network was disrupted. The autism group showed similar activation for all inference types in the right temporo-parietal component of the ToM network whereas the control participants selectively activated this network only when appropriate. The autism group had lower functional connectivity within the ToM network and also between the ToM and a left hemisphere language network. Furthermore, the within-network functional connectivity in autism was correlated with the size of the anterior portion of the corpus callosum.

  5. Emotional Complexity and the Neural Representation of Emotion in Motion

    PubMed Central

    Barnard, Philip J.; Lawrence, Andrew D.

    2011-01-01

    According to theories of emotional complexity, individuals low in emotional complexity encode and represent emotions in visceral or action-oriented terms, whereas individuals high in emotional complexity encode and represent emotions in a differentiated way, using multiple emotion concepts. During functional magnetic resonance imaging, participants viewed valenced animated scenarios of simple ball-like figures attending either to social or spatial aspects of the interactions. Participant’s emotional complexity was assessed using the Levels of Emotional Awareness Scale. We found a distributed set of brain regions previously implicated in processing emotion from facial, vocal and bodily cues, in processing social intentions, and in emotional response, were sensitive to emotion conveyed by motion alone. Attention to social meaning amplified the influence of emotion in a subset of these regions. Critically, increased emotional complexity correlated with enhanced processing in a left temporal polar region implicated in detailed semantic knowledge; with a diminished effect of social attention; and with increased differentiation of brain activity between films of differing valence. Decreased emotional complexity was associated with increased activity in regions of pre-motor cortex. Thus, neural coding of emotion in semantic vs action systems varies as a function of emotional complexity, helping reconcile puzzling inconsistencies in neuropsychological investigations of emotion recognition. PMID:20207691

  6. From the limits of the classical model of sensitometric curves to a realistic model based on the percolation theory for GafChromic EBT films.

    PubMed

    del Moral, F; Vázquez, J A; Ferrero, J J; Willisch, P; Ramírez, R D; Teijeiro, A; López Medina, A; Andrade, B; Vázquez, J; Salvador, F; Medal, D; Salgado, M; Muñoz, V

    2009-09-01

    Modern radiotherapy uses complex treatments that necessitate more complex quality assurance procedures. As a continuous medium, GafChromic EBT films offer suitable features for such verification. However, its sensitometric curve is not fully understood in terms of classical theoretical models. In fact, measured optical densities and those predicted by the classical models differ significantly. This difference increases systematically with wider dose ranges. Thus, achieving the accuracy required for intensity-modulated radiotherapy (IMRT) by classical methods is not possible, plecluding their use. As a result, experimental parametrizations, such as polynomial fits, are replacing phenomenological expressions in modern investigations. This article focuses on identifying new theoretical ways to describe sensitometric curves and on evaluating the quality of fit for experimental data based on four proposed models. A whole mathematical formalism starting with a geometrical version of the classical theory is used to develop new expressions for the sensitometric curves. General results from the percolation theory are also used. A flat-bed-scanner-based method was chosen for the film analysis. Different tests were performed, such as consistency of the numeric results for the proposed model and double examination using data from independent researchers. Results show that the percolation-theory-based model provides the best theoretical explanation for the sensitometric behavior of GafChromic films. The different sizes of active centers or monomer crystals of the film are the basis of this model, allowing acquisition of information about the internal structure of the films. Values for the mean size of the active centers were obtained in accordance with technical specifications. In this model, the dynamics of the interaction between the active centers of GafChromic film and radiation is also characterized by means of its interaction cross-section value. The percolation model fulfills the accuracy requirements for quality-control procedures when large ranges of doses are used and offers a physical explanation for the film response.

  7. Quantum mechanics study of the hydroxyethylamines-BACE-1 active site interaction energies

    NASA Astrophysics Data System (ADS)

    Gueto-Tettay, Carlos; Drosos, Juan Carlos; Vivas-Reyes, Ricardo

    2011-06-01

    The identification of BACE-1, a key enzyme in the production of Amyloid-β (Aβ) peptides, generated by the proteolytic processing of amyloid precursor protein, was a major advance in the field of Alzheimer's disease as this pathology is characterized by the presence of extracellular senile plaques, mainly comprised of Aβ peptides. Hydroxyethylamines have demonstrated a remarkable potential, like candidate drugs, for this disease using BACE-1 as target. Density Functional Theory calculations were employed to estimate interaction energies for the complexes formed between the hydroxyethylamine derivated inhibitors and 24 residues in the BACE-1 active site. The collected data offered not only a general but a particular quantitative description that gives a deep insight of the interactions in the active site, showing at the same time how ligand structural variations affect them. Polar interactions are the major energetic contributors for complex stabilization and those ones with charged aspartate residues are highlighted, as they contribute over 90% of the total attractive interaction energy. Ligand-ARG296 residue interaction reports the most repulsive value and decreasing of the magnitude of this repulsion can be a key feature for the design of novel and more potent BACE-1 inhibitors. Also it was explained why sultam derivated BACE-1 inhibitors are better ones than lactam based. Hydrophobic interactions concentrated at S1 zone and other relevant repulsions and attractions were also evaluated. The comparison of two different theory levels (X3LYP and M062X) allowed to confirm the relevance of the detected interactions as each theory level has its own strength to depict the forces involved, as is the case of M062X which is better describing the hydrophobic interactions. Those facts were also evaluated and confirmed by comparing the quantitative trend, of selected ligand-residue interactions, with MP2 theory level as reference standard method for electrostatic plus dispersion energies.

  8. Quantum mechanics study of the hydroxyethylamines-BACE-1 active site interaction energies.

    PubMed

    Gueto-Tettay, Carlos; Drosos, Juan Carlos; Vivas-Reyes, Ricardo

    2011-06-01

    The identification of BACE-1, a key enzyme in the production of Amyloid-β (Aβ) peptides, generated by the proteolytic processing of amyloid precursor protein, was a major advance in the field of Alzheimer's disease as this pathology is characterized by the presence of extracellular senile plaques, mainly comprised of Aβ peptides. Hydroxyethylamines have demonstrated a remarkable potential, like candidate drugs, for this disease using BACE-1 as target. Density Functional Theory calculations were employed to estimate interaction energies for the complexes formed between the hydroxyethylamine derivated inhibitors and 24 residues in the BACE-1 active site. The collected data offered not only a general but a particular quantitative description that gives a deep insight of the interactions in the active site, showing at the same time how ligand structural variations affect them. Polar interactions are the major energetic contributors for complex stabilization and those ones with charged aspartate residues are highlighted, as they contribute over 90% of the total attractive interaction energy. Ligand-ARG296 residue interaction reports the most repulsive value and decreasing of the magnitude of this repulsion can be a key feature for the design of novel and more potent BACE-1 inhibitors. Also it was explained why sultam derivated BACE-1 inhibitors are better ones than lactam based. Hydrophobic interactions concentrated at S1 zone and other relevant repulsions and attractions were also evaluated. The comparison of two different theory levels (X3LYP and M062X) allowed to confirm the relevance of the detected interactions as each theory level has its own strength to depict the forces involved, as is the case of M062X which is better describing the hydrophobic interactions. Those facts were also evaluated and confirmed by comparing the quantitative trend, of selected ligand-residue interactions, with MP2 theory level as reference standard method for electrostatic plus dispersion energies.

  9. Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function.

    PubMed

    Saitow, Masaaki; Kurashige, Yuki; Yanai, Takeshi

    2013-07-28

    We report development of the multireference configuration interaction (MRCI) method that can use active space scalable to much larger size references than has previously been possible. The recent development of the density matrix renormalization group (DMRG) method in multireference quantum chemistry offers the ability to describe static correlation in a large active space. The present MRCI method provides a critical correction to the DMRG reference by including high-level dynamic correlation through the CI treatment. When the DMRG and MRCI theories are combined (DMRG-MRCI), the full internal contraction of the reference in the MRCI ansatz, including contraction of semi-internal states, plays a central role. However, it is thought to involve formidable complexity because of the presence of the five-particle rank reduced-density matrix (RDM) in the Hamiltonian matrix elements. To address this complexity, we express the Hamiltonian matrix using commutators, which allows the five-particle rank RDM to be canceled out without any approximation. Then we introduce an approximation to the four-particle rank RDM by using a cumulant reconstruction from lower-particle rank RDMs. A computer-aided approach is employed to derive the exceedingly complex equations of the MRCI in tensor-contracted form and to implement them into an efficient parallel computer code. This approach extends to the size-consistency-corrected variants of MRCI, such as the MRCI+Q, MR-ACPF, and MR-AQCC methods. We demonstrate the capability of the DMRG-MRCI method in several benchmark applications, including the evaluation of single-triplet gap of free-base porphyrin using 24 active orbitals.

  10. Synthesis, characterization, computational studies, antimicrobial activities and carbonic anhydrase inhibitor effects of 2-hydroxy acetophenone-N-methyl p-toluenesulfonylhydrazone and its Co(II), Pd(II), Pt(II) complexes

    NASA Astrophysics Data System (ADS)

    Özbek, Neslihan; Alyar, Saliha; Memmi, Burcu Koçak; Gündüzalp, Ayla Balaban; Bahçeci, Zafer; Alyar, Hamit

    2017-01-01

    2-Hydroxyacetophenone-N-methyl p-toluenesulfonylhydrazone (afptsmh) derived from p-toluenesulfonicacid-1-methylhydrazide (ptsmh) and its Co(II), Pd(II), Pt(II) complexes were synthesized for the first time. Synthesized compounds were characterized by spectroscopic methods (FT-IR, 1Hsbnd 13C NMR, LC-MS, UV-vis), magnetic susceptibility and conductivity measurements. 1H and 13C shielding tensors for crystal structure of ligand were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The vibrational band assignments were performed at B3LYP/6-311++G(d,p) theory level combined with scaled quantum mechanics force field (SQMFF) methodology. The antibacterial activities of synthesized compounds were studied against some Gram positive and Gram negative bacteria by using microdilution and disc diffusion methods. In vitro enzyme inhibitory effects of the compounds were measured by UV-vis spectrophotometer. The enzyme activities against human carbonic anhydrase II (hCA II) were evaluated as IC50 (the half maximal inhibitory concentration) values. It was found that afptsmh and its metal complexes have inhibitory effects on hCA II isoenzyme. General esterase activities were determined using alpha and beta naphtyl acetate substrates (α- and β-NAs) of Drosophila melanogaster (D. melanogaster). Activity results show that afptsmh does not strongly affect the bacteria strains and also shows poor inhibitory activity against hCAII isoenzyme whereas all complexes posses higher biological activities.

  11. Peer assisted learning in the clinical setting: an activity systems analysis.

    PubMed

    Bennett, Deirdre; O'Flynn, Siun; Kelly, Martina

    2015-08-01

    Peer assisted learning (PAL) is a common feature of medical education. Understanding of PAL has been based on processes and outcomes in controlled settings, such as clinical skills labs. PAL in the clinical setting, a complex learning environment, requires fresh evaluation. Socio-cultural theory is proposed as a means to understand educational interventions in ways that are practical and meaningful. We describe the evaluation of a PAL intervention, introduced to support students' transition into full time clinical attachments, using activity theory and activity systems analysis (ASA). Our research question was How does PAL transfer to the clinical environment? Junior students on their first clinical attachments undertook a weekly same-level, reciprocal PAL activity. Qualitative data was collected after each session, and focus groups (n = 3) were held on completion. Data was analysed using ASA. ASA revealed two competing activity systems on clinical attachment; Learning from Experts, which students saw as the primary function of the attachment and Learning with Peers, the PAL intervention. The latter took time from the first and was in tension with it. Tensions arose from student beliefs about how learning takes place in clinical settings, and the importance of social relationships, leading to variable engagement with PAL. Differing perspectives within the group were opportunities for expansive learning. PAL in the clinical environment presents challenges specific to that context. Using ASA helped to describe student activity on clinical attachment and to highlight tensions and contradictions relating PAL in that setting. Planning learning opportunities on clinical placements, must take account of how students learn in workplaces, and the complexity of the multiple competing activity systems related to learning and social activities.

  12. Devil is in the details: Using logic models to investigate program process.

    PubMed

    Peyton, David J; Scicchitano, Michael

    2017-12-01

    Theory-based logic models are commonly developed as part of requirements for grant funding. As a tool to communicate complex social programs, theory based logic models are an effective visual communication. However, after initial development, theory based logic models are often abandoned and remain in their initial form despite changes in the program process. This paper examines the potential benefits of committing time and resources to revising the initial theory driven logic model and developing detailed logic models that describe key activities to accurately reflect the program and assist in effective program management. The authors use a funded special education teacher preparation program to exemplify the utility of drill down logic models. The paper concludes with lessons learned from the iterative revision process and suggests how the process can lead to more flexible and calibrated program management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Relative roles of general and complementation language in theory-of-mind development: evidence from Cantonese and English.

    PubMed

    Cheung, Him; Hsuan-Chih, Chen; Creed, Nikki; Ng, Lisa; Ping Wang, Sui; Mo, Lei

    2004-01-01

    Complex complements are clausal objects containing tensed verbs (e.g., that she cried) or infinitives (e.g., to cry), following main verbs of communication or mental activities (e.g., say, want). This research examined whether English- and Cantonese-speaking 4-year-olds' complement understanding uniquely predicts their representation of other minds (i.e., theory of mind). Results showed that neither meaning of main verbs (communication vs. desire) nor complement structure (tensed vs. infinitival) affected the correlation between complement understanding and theory of mind. More important, the correlation became insignificant after controlling for general language comprehension. These findings led to the conclusion that the syntax of complement per se does not contribute uniquely to theory-of-mind development; general language comprehension is a more important factor to consider. Copyright 2004 Society for Research in Child Development, Inc.

  14. A nickel phosphine complex as a fast and efficient hydrogen production catalyst.

    PubMed

    Gan, Lu; Groy, Thomas L; Tarakeshwar, Pilarisetty; Mazinani, Shobeir K S; Shearer, Jason; Mujica, Vladimiro; Jones, Anne K

    2015-01-28

    Here we report the electrocatalytic reduction of protons to hydrogen by a novel S2P2 coordinated nickel complex, [Ni(bdt)(dppf)] (bdt = 1,2-benzenedithiolate, dppf = 1,1'-bis(diphenylphosphino)ferrocene). The catalysis is fast and efficient with a turnover frequency of 1240 s(-1) and an overpotential of only 265 mV for half activity at low acid concentrations. Furthermore, catalysis is possible using a weak acid, and the complex is stable for at least 4 h in acidic solution. Calculations of the system carried out at the density functional level of theory (DFT) are consistent with a mechanism for catalysis in which both protonations take place at the nickel center.

  15. Three VO2+ complexes of the pyridoxal-derived Schiff bases: Synthesis, experimental and theoretical characterizations, and catalytic activity in a cyclocondensation reaction

    NASA Astrophysics Data System (ADS)

    Jafari-Moghaddam, Faezeh; Beyramabadi, S. Ali; Khashi, Maryam; Morsali, Ali

    2018-02-01

    Three oxovanadium(IV) complexes of the pyridoxal Schiff bases have been newly synthesized and characterized. The used Schiff bases were N,N‧-dipyridoxyl(ethylenediamine), N,N‧-dipyridoxyl(1,3-propanediamine) and N,N‧-dipyridoxyl(1,2-benzenediamine). Also, the optimized geometry, assignment of the IR bands and the Natural Bond Orbital (NBO) analysis of the complexes have been computed using the density functional theory (DFT) methods. Dianionic form of the Schiff bases (L2-) acts as a tetradentate N2O2 ligand. The coordinating atoms of the Schiff base are the phenolate oxygens and imine nitrogens, which occupy four base positions of the square-pyramidal geometry of the complexes. The oxo ligand occupies the apical position of the [VO(L)] complexes. In the optimized geometry of the complexes, the coordinated Schiff bases have more planar structure than their free form. Due to the high-energy gaps, all of the complexes are predicted to be stable. Good agreement between the experimental values and the DFT-computed results supports suitability of the optimized geometries for the complexes. The investigated complexes show high catalytic activities in synthesis of the tetrahydrobenzo[b]pyrans through a three-component cyclocondensation reaction of dimedone, malononitrile and some aromatic aldehydes. The complexes catalyzed the reaction in solvent free conditions and the catalysts were found to be reusable.

  16. Studies on the synthesis, characterization, human serum albumin binding and biological activity of single chain surfactant-cobalt(III) complexes.

    PubMed

    Vignesh, G; Sugumar, K; Arunachalam, S; Vignesh, S; Arthur James, R; Arun, R; Premkumar, K

    2016-03-01

    The interaction of surfactant-cobalt(III) complexes [Co(bpy)(dien)TA](ClO4)3 · 3H2O (1) and [Co(dien)(phen)TA](ClO4)3 · 4H2O (2), where bpy = 2,2'-bipyridine, dien = diethylenetriamine, phen = 1,10-phenanthroline and TA = tetradecylamine with human serum albumin (HSA) under physiological conditions was analyzed using steady state, synchronous, 3D fluorescence, UV/visabsorption and circular dichroism spectroscopic techniques. The results show that these complexes cause the fluorescence quenching of HSA through a static mechanism. The binding constant (Kb ) and number of binding-sites (n) were obtained at different temperatures. The corresponding thermodynamic parameters (∆G°, ∆H° and ∆S°) and Ea were also obtained. According to Förster's non-radiation energy transfer theory, the binding distance (r) between the complexes and HSA were calculated. The results of synchronous and 3D fluorescence spectroscopy indicate that the binding process has changed considerably the polarity around the fluorophores, along with changes in the conformation of the protein. The antimicrobial and anticancer activities of the complexes were tested and the results show that the complexes have good activities against pathogenic microorganisms and cancer cells. Copyright © 2015 John Wiley & Sons, Ltd.

  17. New copper(I) complexes bearing lomefloxacin motif: Spectroscopic properties, in vitro cytotoxicity and interactions with DNA and human serum albumin.

    PubMed

    Komarnicka, Urszula K; Starosta, Radosław; Kyzioł, Agnieszka; Płotek, Michał; Puchalska, Małgorzata; Jeżowska-Bojczuk, Małgorzata

    2016-12-01

    In this paper we present lomefloxacin's (HLm, 2nd generation fluoroquinolone antibiotic agent) organic and inorganic derivatives: aminomethyl(diphenyl)phosphine (PLm), its oxide as well as new copper(I) iodide or copper(I) thiocyanate complexes with PLm and 2,9-dimethyl-1,10-phenanthroline (dmp) or 2,2'-biquinoline (bq) as the auxiliary ligands. The synthesized compounds were fully characterised by NMR, UV-Vis and luminescence spectroscopies. Selected structures were analysed by theoretical DFT (density functional theory) methods. High stability of the complexes in aqueous solutions in the presence of atmosferic oxygen was proven. Cytotoxic activity of all compounds was tested towards three cancer cell lines (CT26 - mouse colon carcinoma, A549 - human lung adenocarcinoma, and MCF7 - human breast adenocarcinoma). All complexes are characterised by cytotoxic activity higher than the activity of the parent drug and its organic derivatives as well as cisplatin. Studied derivatives as well as parent drug do not intercalate to DNA, except Cu(I) complexes with bq ligand. All studied complexes caused single-stranded cleavage of the sugar-phosphate backbone of plasmid DNA. The addition of H 2 O 2 caused distinct changes in the plasmid structure and led to single- and/or double-strain plasmid cleavage. Studied compounds interact with human serum albumin without affecting its secondary structure. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Educational Philosophy and the Challenge of Complexity Theory

    ERIC Educational Resources Information Center

    Morrison, Keith

    2008-01-01

    Complexity theory challenges educational philosophy to reconsider accepted paradigms of teaching, learning and educational research. However, though attractive, not least because of its critique of positivism, its affinity to Dewey and Habermas, and its arguments for openness, diversity, relationships, agency and creativity, the theory is not…

  19. Structure, Agency, Complexity Theory and Interdisciplinary Research in Education Studies

    ERIC Educational Resources Information Center

    Smith, John A.

    2013-01-01

    This article argues that Education Studies needs to develop its existing interdisciplinarity understanding of structures and agencies by giving greater attention to the modern process theories of self-organisation in the physical, biological, psychological and social sciences, sometimes given the umbrella term "complexity theory". The…

  20. Slow dynamics in glasses: A comparison between theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, J. C.

    Minimalist theories of complex systems are broadly of two kinds: mean field and axiomatic. So far, all theories of complex properties absent from simple systems and intrinsic to glasses are axiomatic. Stretched Exponential Relaxation (SER) is the prototypical complex temporal property of glasses, discovered by Kohlrausch 150 years ago, and now observed almost universally in microscopically homogeneous, complex nonequilibrium materials, including luminescent electronic Coulomb glasses. A critical comparison of alternative axiomatic theories with both numerical simulations and experiments strongly favors channeled dynamical trap models over static percolative or energy landscape models. The topics discussed cover those reported since the author'smore » review article in 1996, with an emphasis on parallels between channel bifurcation in electronic and molecular relaxation.« less

  1. Modular Bayesian Networks with Low-Power Wearable Sensors for Recognizing Eating Activities

    PubMed Central

    Kim, Kee-Hoon

    2017-01-01

    Recently, recognizing a user’s daily activity using a smartphone and wearable sensors has become a popular issue. However, in contrast with the ideal definition of an experiment, there could be numerous complex activities in real life with respect to its various background and contexts: time, space, age, culture, and so on. Recognizing these complex activities with limited low-power sensors, considering the power and memory constraints of the wearable environment and the user’s obtrusiveness at once is not an easy problem, although it is very crucial for the activity recognizer to be practically useful. In this paper, we recognize activity of eating, which is one of the most typical examples of a complex activity, using only daily low-power mobile and wearable sensors. To organize the related contexts systemically, we have constructed the context model based on activity theory and the “Five W’s”, and propose a Bayesian network with 88 nodes to predict uncertain contexts probabilistically. The structure of the proposed Bayesian network is designed by a modular and tree-structured approach to reduce the time complexity and increase the scalability. To evaluate the proposed method, we collected the data with 10 different activities from 25 volunteers of various ages, occupations, and jobs, and have obtained 79.71% accuracy, which outperforms other conventional classifiers by 7.54–14.4%. Analyses of the results showed that our probabilistic approach could also give approximate results even when one of contexts or sensor values has a very heterogeneous pattern or is missing. PMID:29232937

  2. Social complexity, modernity and suicide: an assessment of Durkheim's suicide from the perspective of a non-linear analysis of complex social systems.

    PubMed

    Condorelli, Rosalia

    2016-01-01

    Can we share even today the same vision of modernity which Durkheim left us by its suicide analysis? or can society 'surprise us'? The answer to these questions can be inspired by several studies which found that beginning the second half of the twentieth century suicides in western countries more industrialized and modernized do not increase in a constant, linear way as modernization and social fragmentation process increases, as well as Durkheim's theory seems to lead us to predict. Despite continued modernizing process, they found stabilizing or falling overall suicide rate trends. Therefore, a gradual process of adaptation to the stress of modernization associated to low social integration levels seems to be activated in modern society. Assuming this perspective, the paper highlights as this tendency may be understood in the light of the new concept of social systems as complex adaptive systems, systems which are able to adapt to environmental perturbations and generate as a whole surprising, emergent effects due to nonlinear interactions among their components. So, in the frame of Nonlinear Dynamical System Modeling, we formalize the logic of suicide decision-making process responsible for changes at aggregate level in suicide growth rates by a nonlinear differential equation structured in a logistic way, and in so doing we attempt to capture the mechanism underlying the change process in suicide growth rate and to test the hypothesis that system's dynamics exhibits a restrained increase process as expression of an adaptation process to the liquidity of social ties in modern society. In particular, a Nonlinear Logistic Map is applied to suicide data in a modern society such as the Italian one from 1875 to 2010. The analytic results, seeming to confirm the idea of the activation of an adaptation process to the liquidity of social ties, constitutes an opportunity for a more general reflection on the current configuration of modern society, by relating the Durkheimian Theory with the Halbwachs' Theory and most current visions of modernity such as the Baumanian one. Complexity completes the interpretative framework by rooting the generating mechanism of adaptation process in the precondition of a new General Theory of Systems making the non linearity property of social system's interactions and surprise the functioning and evolution rule of social systems.

  3. Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation.

    PubMed

    Li, Shuai; Li, Yangming

    2013-10-28

    The Sylvester equation is often encountered in mathematics and control theory. For the general time-invariant Sylvester equation problem, which is defined in the domain of complex numbers, the Bartels-Stewart algorithm and its extensions are effective and widely used with an O(n³) time complexity. When applied to solving the time-varying Sylvester equation, the computation burden increases intensively with the decrease of sampling period and cannot satisfy continuous realtime calculation requirements. For the special case of the general Sylvester equation problem defined in the domain of real numbers, gradient-based recurrent neural networks are able to solve the time-varying Sylvester equation in real time, but there always exists an estimation error while a recently proposed recurrent neural network by Zhang et al [this type of neural network is called Zhang neural network (ZNN)] converges to the solution ideally. The advancements in complex-valued neural networks cast light to extend the existing real-valued ZNN for solving the time-varying real-valued Sylvester equation to its counterpart in the domain of complex numbers. In this paper, a complex-valued ZNN for solving the complex-valued Sylvester equation problem is investigated and the global convergence of the neural network is proven with the proposed nonlinear complex-valued activation functions. Moreover, a special type of activation function with a core function, called sign-bi-power function, is proven to enable the ZNN to converge in finite time, which further enhances its advantage in online processing. In this case, the upper bound of the convergence time is also derived analytically. Simulations are performed to evaluate and compare the performance of the neural network with different parameters and activation functions. Both theoretical analysis and numerical simulations validate the effectiveness of the proposed method.

  4. Study of electrical properties of Sc doped BaFe12O19 ceramic using dielectric, impedance, modulus spectroscopy and AC conductivity

    NASA Astrophysics Data System (ADS)

    Gupta, Surbhi; Deshpande, S. K.; Sathe, V. G.; Siruguri, V.

    2018-04-01

    We present dielectric, complex impedance, modulus spectroscopy and AC conductivity studies of the compound BaFe10Sc2O19 as a function of temperature and frequency to understand the conduction mechanism. The variation in complex dielectric constant with frequency and temperature were analyzed on the basis of Maxwell-Wagner-Koop's theory and charge hopping between ferrous and ferric ions. The complex impedance spectroscopy study shows only grain contribution whereas complex modulus plot shows two semicircular arcs which indicate both grain and grain boundary contributions in conduction mechanism. AC conductivity has also been evaluated which follows the Jonscher's law. The activation energy calculated from temperature dependence of DC conductivity comes out to be Ea˜ 0.31eV.

  5. Experiential Learning--A Case Study of the Use of Computerised Stock Market Trading Simulation in Finance Education

    ERIC Educational Resources Information Center

    Marriott, Pru; Tan, Siew Min; Marriott, Neil

    2015-01-01

    Finance is a popular programme of study in UK higher education despite it being a challenging subject that requires students to understand and apply complex and abstract mathematical models and academic theories. Educational simulation is an active learning method found to be useful in enhancing students' learning experience, but there has been…

  6. Context in Models of Human-Machine Systems

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    All human-machine systems models represent context. This paper proposes a theory of context through which models may be usefully related and integrated for design. The paper presents examples of context representation in various models, describes an application to developing models for the Crew Activity Tracking System (CATS), and advances context as a foundation for integrated design of complex dynamic systems.

  7. A multilayered-representation quantum mechanical/molecular mechanics study of the SN2 reaction of CH3Br + OH- in aqueous solution

    NASA Astrophysics Data System (ADS)

    Xu, Yulong; Wang, Tingting; Wang, Dunyou

    2012-11-01

    The bimolecular nucleophilic substitution (SN2) reaction of CH3Br and OH- in aqueous solution was investigated using a multilayered-representation quantum mechanical and molecular mechanics methodology. Reactant complex, transition state, and product complex are identified and characterized in aqueous solution. The potentials of mean force are computed under both the density function theory and coupled-cluster single double (triple) (CCSD(T)) levels of theory for the reaction region. The results show that the aqueous environment has a significant impact on the reaction process. The solvation effect and the polarization effect combined raise the activation barrier height by ˜16.2 kcal/mol and the solvation effect is the dominant contribution to the potential of mean force. The CCSD(T)/MM representation presents a free energy activation barrier height of 22.8 kcal/mol and the rate constant at 298 K of 3.7 × 10-25 cm3 molecule-1 s-1 which agree very well with the experiment values at 23.0 kcal/mol and 2.6 × 10-25 cm3 molecule-1 s-1, respectively.

  8. Leadership as an Emergent Feature in Social Organizations: Insights from A Laboratory Simulation Experiment.

    PubMed

    Curral, Luis; Marques-Quinteiro, Pedro; Gomes, Catarina; Lind, Pedro G

    2016-01-01

    Recent theoretical contributions have suggested a theory of leadership that is grounded in complexity theory, hence regarding leadership as a complex process (i.e., nonlinear; emergent). This article tests if complexity leadership theory promotes efficiency in work groups. 40 groups of five participants each had to complete four decision making tasks using the city simulation game SimCity4. Before engaging in the four decision making tasks, participants received information regarding what sort of leadership behaviors were more adequate to help them perform better. Results suggest that if complexity leadership theory is applied, groups can achieve higher efficiency over time, when compared with other groups where complexity leadership is not applied. This study goes beyond traditional views of leadership as a centralized form of control, and presents new evidence suggesting that leadership is a collective and emergent phenomenon, anchored in simple rules of behavior.

  9. Leadership as an Emergent Feature in Social Organizations: Insights from A Laboratory Simulation Experiment

    PubMed Central

    Marques-Quinteiro, Pedro; Gomes, Catarina; Lind, Pedro G.

    2016-01-01

    Recent theoretical contributions have suggested a theory of leadership that is grounded in complexity theory, hence regarding leadership as a complex process (i.e., nonlinear; emergent). This article tests if complexity leadership theory promotes efficiency in work groups. 40 groups of five participants each had to complete four decision making tasks using the city simulation game SimCity4. Before engaging in the four decision making tasks, participants received information regarding what sort of leadership behaviors were more adequate to help them perform better. Results suggest that if complexity leadership theory is applied, groups can achieve higher efficiency over time, when compared with other groups where complexity leadership is not applied. This study goes beyond traditional views of leadership as a centralized form of control, and presents new evidence suggesting that leadership is a collective and emergent phenomenon, anchored in simple rules of behavior. PMID:27973596

  10. On the growth and form of shoots

    PubMed Central

    Chelakkot, Raghunath

    2017-01-01

    Growing plant stems and shoots exhibit a variety of shapes that embody growth in response to various stimuli. Building on experimental observations, we provide a quantitative biophysical theory for these shapes by accounting for the inherent observed passive and active effects: (i) the active controllable growth response of the shoot in response to its orientation relative to gravity, (ii) proprioception, the shoot's growth response to its own observable current shape, and (iii) the passive elastic deflection of the shoot due to its own weight, which determines the current shape of the shoot. Our theory separates the sensed and actuated variables in a growing shoot and results in a morphospace diagram in terms of two dimensionless parameters representing a scaled local active gravitropic sensitivity, and a scaled passive elastic sag. Our computational results allow us to explain the variety of observed transient and steady morphologies with effective positive, negative and even oscillatory gravitropic behaviours, without the need for ad hoc complex spatio-temporal control strategies in terms of these parameters. More broadly, our theory is applicable to the growth of soft, floppy organs where sensing and actuation are dynamically coupled through growth processes via shape. PMID:28330990

  11. Total Charge Movement per Channel

    PubMed Central

    Sigg, Daniel; Bezanilla, Francisco

    1997-01-01

    One measure of the voltage dependence of ion channel conductance is the amount of gating charge that moves during activation and vice versa. The limiting slope method, introduced by Almers (Almers, W. 1978. Rev. Physiol. Biochem. Pharmacol. 82:96–190), exploits the relationship of charge movement and voltage sensitivity, yielding a lower limit to the range of single channel gating charge displacement. In practice, the technique is plagued by low experimental resolution due to the requirement that the logarithmic voltage sensitivity of activation be measured at very low probabilities of opening. In addition, the linear sequential models to which the original theory was restricted needed to be expanded to accommodate the complexity of mechanisms available for the activation of channels. In this communication, we refine the theory by developing a relationship between the mean activation charge displacement (a measure of the voltage sensitivity of activation) and the gating charge displacement (the integral of gating current). We demonstrate that recording the equilibrium gating charge displacement as an adjunct to the limiting slope technique greatly improves accuracy under conditions where the plots of mean activation charge displacement and gross gating charge displacement versus voltage can be superimposed. We explore this relationship for a wide variety of channel models, which include those having a continuous density of states, nonsequential activation pathways, and subconductance states. We introduce new criteria for the appropriate use of the limiting slope procedure and provide a practical example of the theory applied to low resolution simulation data. PMID:8997663

  12. Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Iron, Cobalt, and Manganese Cyclopentadienone Complexes: Mechanistic Insights and Computational Design.

    PubMed

    Ge, Hongyu; Chen, Xiangyang; Yang, Xinzheng

    2017-07-03

    Density functional theory study of the hydrogenation of carbon dioxide to methanol catalyzed by iron, cobalt, and manganese cyclopentadienone complexes reveals a self-promoted mechanism, which features a methanol- or water-molecule-assisted proton transfer for the cleavage of H 2 . The total free energy barrier of the formation of methanol from CO 2 and H 2 catalyzed by Knölker's iron cyclopentadienone complex, [2,5-(SiMe 3 ) 2 -3,4-(CH 2 ) 4 (η 5 -C 4 COH)]Fe(CO) 2 H, is 26.0 kcal mol -1 in the methanol solvent. We also evaluated the catalytic activities of 8 other experimentally reported iron cyclopentadienone complexes and 37 iron, cobalt, and manganese cyclopentadienone complexes proposed in this study. In general, iron and manganese complexes have relatively higher catalytic activities. Among all calculated complexes, [2,5-(SiMe 3 ) 2 -3,4-CH 3 CHSCH 2 (η 5 -C 4 COH)]Fe(CO) 2 H (1 Fe-Casey-S-CH3 ) is the most active one with a total free energy barrier of 25.1 kcal mol -1 in the methanol solvent. Such a low barrier indicates that 1 Fe-Casey-S-CH3 is a very promising low-cost and high efficiency catalyst for the conversion of CO 2 and H 2 to methanol under mild conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Interacting complex systems: Theory and application to real-world situations

    NASA Astrophysics Data System (ADS)

    Piccinini, Nicola

    The interest in complex systems has increased exponentially during the past years because it was found helpful in addressing many of today's challenges. The study of the brain, biology, earthquakes, markets and social sciences are only a few examples of the fields that have benefited from the investigation of complex systems. Internet, the increased mobility of people and the raising energy demand are among the factors that brought in contact complex systems that were isolated till a few years ago. A theory for the interaction between complex systems is becoming more and more urgent to help mankind in this transition. The present work builds upon the most recent results in this field by solving a theoretical problem that prevented previous work to be applied to important complex systems, like the brain. It also shows preliminary laboratory results of perturbation of in vitro neural networks that were done to test the theory. Finally, it gives a preview of the studies that are being done to create a theory that is even closer to the interaction between real complex systems.

  14. The quartet theory of human emotions: An integrative and neurofunctional model.

    PubMed

    Koelsch, Stefan; Jacobs, Arthur M; Menninghaus, Winfried; Liebal, Katja; Klann-Delius, Gisela; von Scheve, Christian; Gebauer, Gunter

    2015-06-01

    Despite an explosion of research in the affective sciences during the last few decades, interdisciplinary theories of human emotions are lacking. Here we present a neurobiological theory of emotions that includes emotions which are uniquely human (such as complex moral emotions), considers the role of language for emotions, advances the understanding of neural correlates of attachment-related emotions, and integrates emotion theories from different disciplines. We propose that four classes of emotions originate from four neuroanatomically distinct cerebral systems. These emotional core systems constitute a quartet of affect systems: the brainstem-, diencephalon-, hippocampus-, and orbitofrontal-centred affect systems. The affect systems were increasingly differentiated during the course of evolution, and each of these systems generates a specific class of affects (e.g., ascending activation, pain/pleasure, attachment-related affects, and moral affects). The affect systems interact with each other, and activity of the affect systems has effects on - and interacts with - biological systems denoted here as emotional effector systems. These effector systems include motor systems (which produce actions, action tendencies, and motoric expression of emotion), peripheral physiological arousal, as well as attentional and memory systems. Activity of affect systems and effector systems is synthesized into an emotion percept (pre-verbal subjective feeling), which can be transformed (or reconfigured) into a symbolic code such as language. Moreover, conscious cognitive appraisal (involving rational thought, logic, and usually language) can regulate, modulate, and partly initiate, activity of affect systems and effector systems. Our emotion theory integrates psychological, neurobiological, sociological, anthropological, and psycholinguistic perspectives on emotions in an interdisciplinary manner, aiming to advance the understanding of human emotions and their neural correlates. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. "Synergistic selection": a Darwinian frame for the evolution of complexity.

    PubMed

    Corning, Peter A; Szathmáry, Eörs

    2015-04-21

    Non-Darwinian theories about the emergence and evolution of complexity date back at least to Lamarck, and include those of Herbert Spencer and the "emergent evolution" theorists of the later nineteenth and early twentieth centuries. In recent decades, this approach has mostly been espoused by various practitioners in biophysics and complexity theory. However, there is a Darwinian alternative - in essence, an economic theory of complexity - proposing that synergistic effects of various kinds have played an important causal role in the evolution of complexity, especially in the "major transitions". This theory is called the "synergism hypothesis". We posit that otherwise unattainable functional advantages arising from various cooperative phenomena have been favored over time in a dynamic that the late John Maynard Smith characterized and modeled as "synergistic selection". The term highlights the fact that synergistic "wholes" may become interdependent "units" of selection. We provide some historical perspective on this issue, as well as a brief explication of the underlying theory and the concept of synergistic selection, and we describe two relevant models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Reliability analysis in interdependent smart grid systems

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong

    2018-06-01

    Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.

  17. Computational Study of Formic Acid Dehydrogenation Catalyzed by Al(III)-Bis(imino)pyridine.

    PubMed

    Lu, Qian-Qian; Yu, Hai-Zhu; Fu, Yao

    2016-03-18

    The mechanism of formic acid dehydrogenation catalyzed by the bis(imino)pyridine-ligated aluminum hydride complex (PDI(2-))Al(THF)H (PDI=bis(imino)pyridine) was studied by density functional theory calculations. The overall transformation is composed of two stages: catalyst activation and the catalytic cycle. The catalyst activation begins with O-H bond cleavage of HCOOH promoted by aluminum-ligand cooperation, followed by HCOOH-assisted Al-H bond cleavage, and protonation of the imine carbon atom of the bis(imino)pyridine ligand. The resultant doubly protonated complex ((H,H) PDI)Al(OOCH)3 is the active catalyst for formic acid dehydrogenation. Given this, the catalytic cycle includes β-hydride elimination of ((H,H) PDI)Al(OOCH)3 to produce CO2, and the formed ((H,H) PDI)Al(OOCH)2 H mediates HCOOH to release H2. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Assessment of ten density functionals through the use of local hyper-softness to get insights about the catalytic activity : Iron-based organometallic compounds for ethylene polymerization as testing molecules.

    PubMed

    Martínez-Araya, Jorge I; Glossman-Mitnik, Daniel

    2018-01-18

    Ten functionals were used to assess their capability to compute a local reactivity descriptor coming from the Conceptual Density Functional Theory on a group of iron-based organometallic compounds that have been synthesized by Zohuri, G.H. et al. in 2010; these compounds bear the following substituent groups: H-, O 2 N- and CH 3 O- at the para position of the pyridine ring and their catalytic activities were experimentally measured by these authors. The present work involved a theoretical analysis applied on the aforementioned iron-based compounds thus leading to suggest a new 2,6-bis(imino)pyridine catalyst based on iron(II) bearing a fluorine atom whose possible catalytic activity is suggested to be near the catalytic activity of the complex bearing a hydrogen atom as a substituent group by means of the so called local hyper-softness (LHS) thus opening a chance to estimate a possible value of catalytic activity for a new catalyst that has not been synthesized yet without simulating the entire process of ethylene polymerization. Since Conceptual DFT is not a predictive theory, but rather interpretative, an analysis of the used reactivity descriptor and its dependence upon the level of theory was carried in the present work, thus revealing that care should be taken when DFT calculations are used for these purposes.

  19. The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer

    NASA Astrophysics Data System (ADS)

    Garner, Andrew J. P.; Müller, Markus P.; Dahlsten, Oscar C. O.

    2017-12-01

    The patterns of fringes produced by an interferometer have long been important testbeds for our best contemporary theories of physics. Historically, interference has been used to contrast quantum mechanics with classical physics, but recently experiments have been performed that test quantum theory against even more exotic alternatives. A physically motivated family of theories are those where the state space of a two-level system is given by a sphere of arbitrary dimension. This includes classical bits, and real, complex and quaternionic quantum theory. In this paper, we consider relativity of simultaneity (i.e. that observers may disagree about the order of events at different locations) as applied to a two-armed interferometer, and show that this forbids most interference phenomena more complicated than those of complex quantum theory. If interference must depend on some relational property of the setting (such as path difference), then relativity of simultaneity will limit state spaces to standard complex quantum theory, or a subspace thereof. If this relational assumption is relaxed, we find one additional theory compatible with relativity of simultaneity: quaternionic quantum theory. Our results have consequences for current laboratory interference experiments: they have to be designed carefully to avoid rendering beyond-quantum effects invisible by relativity of simultaneity.

  20. The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer.

    PubMed

    Garner, Andrew J P; Müller, Markus P; Dahlsten, Oscar C O

    2017-12-01

    The patterns of fringes produced by an interferometer have long been important testbeds for our best contemporary theories of physics. Historically, interference has been used to contrast quantum mechanics with classical physics, but recently experiments have been performed that test quantum theory against even more exotic alternatives. A physically motivated family of theories are those where the state space of a two-level system is given by a sphere of arbitrary dimension. This includes classical bits, and real, complex and quaternionic quantum theory. In this paper, we consider relativity of simultaneity (i.e. that observers may disagree about the order of events at different locations) as applied to a two-armed interferometer, and show that this forbids most interference phenomena more complicated than those of complex quantum theory. If interference must depend on some relational property of the setting (such as path difference), then relativity of simultaneity will limit state spaces to standard complex quantum theory, or a subspace thereof. If this relational assumption is relaxed, we find one additional theory compatible with relativity of simultaneity: quaternionic quantum theory. Our results have consequences for current laboratory interference experiments: they have to be designed carefully to avoid rendering beyond-quantum effects invisible by relativity of simultaneity.

  1. Students Fail to Transfer Knowledge of Chromosome Structure to Topics Pertaining to Cell Division

    PubMed Central

    Newman, Dina L.; Catavero, Christina M.; Wright, L. Kate

    2012-01-01

    Cellular processes that rely on knowledge of molecular behavior are difficult for students to comprehend. For example, thorough understanding of meiosis requires students to integrate several complex concepts related to chromosome structure and function. Using a grounded theory approach, we have unified classroom observations, assessment data, and in-depth interviews under the theory of knowledge transfer to explain student difficulties with concepts related to chromosomal behavior. In this paper, we show that students typically understand basic chromosome structure but do not activate cognitive resources that would allow them to explain macromolecular phenomena (e.g., homologous pairing during meiosis). To improve understanding of topics related to genetic information flow, we suggest that instructors use pedagogies and activities that prime students for making connections between chromosome structure and cellular processes. PMID:23222838

  2. Applying Antonio Gramsci's philosophy to postcolonial feminist social and political activism in nursing.

    PubMed

    Racine, Louise

    2009-07-01

    Through its social and political activism goals, postcolonial feminist theoretical approaches not only focus on individual issues that affect health but encompass the examination of the complex interplay between neocolonialism, neoliberalism, and globalization, in mediating the health of non-Western immigrants and refugees. Postcolonial feminism holds the promise to influence nursing research and practice in the 21st century where health remains a goal to achieve and a commitment for humanity. This is especially relevant for nurses, who act as global citizens and as voices for the voiceless. The commitment of nursing to social justice must be further strengthened by relying on postcolonial theories to address issues of health inequities that arise from marginalization and racialization. In using postcolonial feminist theories, nurse researchers locate the inquiry process within a Gramscian philosophy of praxis that represents knowledge in action.

  3. Computational Design of Cobalt Catalysts for Hydrogenation of Carbon Dioxide and Dehydrogenation of Formic Acid.

    PubMed

    Ge, Hongyu; Jing, Yuanyuan; Yang, Xinzheng

    2016-12-05

    A series of cobalt complexes with acylmethylpyridinol and aliphatic PNP pincer ligands are proposed based on the active site structure of [Fe]-hydrogenase. Density functional theory calculations indicate that the total free energy barriers of the hydrogenation of CO 2 and dehydrogenation of formic acid catalyzed by these Co complexes are as low as 23.1 kcal/mol in water. The acylmethylpyridinol ligand plays a significant role in the cleavage of H 2 by forming a strong Co-H δ- ···H δ+ -O dihydrogen bond in a fashion of frustrated Lewis pairs.

  4. Transition path theory analysis of c-Src kinase activation

    PubMed Central

    Meng, Yilin; Shukla, Diwakar; Pande, Vijay S.; Roux, Benoît

    2016-01-01

    Nonreceptor tyrosine kinases of the Src family are large multidomain allosteric proteins that are crucial to cellular signaling pathways. In a previous study, we generated a Markov state model (MSM) to simulate the activation of c-Src catalytic domain, used as a prototypical tyrosine kinase. The long-time kinetics of transition predicted by the MSM was in agreement with experimental observations. In the present study, we apply the framework of transition path theory (TPT) to the previously constructed MSM to characterize the main features of the activation pathway. The analysis indicates that the activating transition, in which the activation loop first opens up followed by an inward rotation of the αC-helix, takes place via a dense set of intermediate microstates distributed within a fairly broad “transition tube” in a multidimensional conformational subspace connecting the two end-point conformations. Multiple microstates with negligible equilibrium probabilities carry a large transition flux associated with the activating transition, which explains why extensive conformational sampling is necessary to accurately determine the kinetics of activation. Our results suggest that the combination of MSM with TPT provides an effective framework to represent conformational transitions in complex biomolecular systems. PMID:27482115

  5. The Sleep Elaboration-Awake Pruning (SEAP) theory of memory: long term memories grow in complexity during sleep and undergo selection while awake. Clinical, psychopharmacological and creative implications.

    PubMed

    Charlton, Bruce G; Andras, Peter

    2009-07-01

    Long term memory (LTM) systems need to be adaptive such that they enhance an organism's reproductive fitness and self-reproducing in order to maintain their complexity of communications over time in the face of entropic loss of information. Traditional 'representation-consolidation' accounts conceptualize memory adaptiveness as due to memories being 'representations' of the environment, and the longevity of memories as due to 'consolidation' processes. The assumption is that memory representations are formed while an animal is awake and interacting with the environment, and these memories are consolidated mainly while the animal is asleep. So the traditional view of memory is 'instructionist' and assumes that information is transferred from the environment into the brain. By contrast, we see memories as arising endogenously within the brain's LTM system mainly during sleep, to create complex but probably maladaptive memories which are then simplified ('pruned') and selected during the awake period. When awake the LTM system is brought into a more intense interaction with past and present experience. Ours is therefore a 'selectionist' account of memory, and could be termed the Sleep Elaboration-Awake Pruning (or SEAP) theory. The SEAP theory explains the longevity of memories in the face of entropy by the tendency for memories to grow in complexity during sleep; and explains the adaptiveness of memory by selection for consistency with perceptions and previous memories during the awake state. Sleep is therefore that behavioural state during which most of the internal processing of the system of LTM occurs; and the reason sleep remains poorly understood is that its primary activity is the expansion of long term memories. By re-conceptualizing the relationship between memory, sleep and the environment; SEAP provides a radically new framework for memory research, with implications for the measurement of memory and the design of empirical investigations in clinical, psychopharmacological and creative domains. For example, it would be predicted that states of insufficient alertness such as delirium would produce errors of commission (memory distortion and false memories, as with psychotic delusions), while sleep deprivation would produce errors of memory omission (memory loss). Ultimately, the main argument in favour of SEAP is that long term memory must be a complex adaptive system, and complex systems arise, are selected and sustained according to the principles of systems theory; and therefore LTM cannot be functioning in the way assumed by 'representation-consolidation' theories.

  6. Evolution of complexity following a quantum quench in free field theory

    NASA Astrophysics Data System (ADS)

    Alves, Daniel W. F.; Camilo, Giancarlo

    2018-06-01

    Using a recent proposal of circuit complexity in quantum field theories introduced by Jefferson and Myers, we compute the time evolution of the complexity following a smooth mass quench characterized by a time scale δ t in a free scalar field theory. We show that the dynamics has two distinct phases, namely an early regime of approximately linear evolution followed by a saturation phase characterized by oscillations around a mean value. The behavior is similar to previous conjectures for the complexity growth in chaotic and holographic systems, although here we have found that the complexity may grow or decrease depending on whether the quench increases or decreases the mass, and also that the time scale for saturation of the complexity is of order δ t (not parametrically larger).

  7. The Conceptual Mechanism for Viable Organizational Learning Based on Complex System Theory and the Viable System Model

    ERIC Educational Resources Information Center

    Sung, Dia; You, Yeongmahn; Song, Ji Hoon

    2008-01-01

    The purpose of this research is to explore the possibility of viable learning organizations based on identifying viable organizational learning mechanisms. Two theoretical foundations, complex system theory and viable system theory, have been integrated to provide the rationale for building the sustainable organizational learning mechanism. The…

  8. Teaching the Dynamics of Framing Competitions

    ERIC Educational Resources Information Center

    Rinke, Eike Mark

    2012-01-01

    Framing theory is one of the most thriving and complex fields of communication theory, and as such it has grown to be an integral part of many political communication, public opinion, and communication theory courses. Part of the complexity stems from scholars' efforts to develop accounts of framing processes that are closer to the "real world" of…

  9. Applying Chaos Theory to Lesson Planning and Delivery

    ERIC Educational Resources Information Center

    Cvetek, Slavko

    2008-01-01

    In this article, some of the ways in which thinking about chaos theory can help teachers and student-teachers to accept uncertainty and randomness as natural conditions in the classroom are considered. Building on some key features of complex systems commonly attributed to chaos theory (e.g. complexity, nonlinearity, sensitivity to initial…

  10. The Complexity of Language Learning

    ERIC Educational Resources Information Center

    Nelson, Charles

    2011-01-01

    This paper takes a complexity theory approach to looking at language learning, an approach that investigates how language learners adapt to and interact with people and their environment. Based on interviews with four graduate students, it shows how complexity theory can help us understand both the situatedness of language learning and also…

  11. Ecosystemic Complexity Theory of Conflict: Understanding the Fog of Conflict

    ERIC Educational Resources Information Center

    Brack, Greg; Lassiter, Pamela S.; Hill, Michele B.; Moore, Sarah A.

    2011-01-01

    Counselors often engage in conflict mediation in professional practice. A model for understanding the complex and subtle nature of conflict resolution is presented. The ecosystemic complexity theory of conflict is offered to assist practitioners in navigating the fog of conflict. Theoretical assumptions are discussed with implications for clinical…

  12. Perturbation theory in the catalytic rate constant of the Henri-Michaelis-Menten enzymatic reaction.

    PubMed

    Bakalis, Evangelos; Kosmas, Marios; Papamichael, Emmanouel M

    2012-11-01

    The Henry-Michaelis-Menten (HMM) mechanism of enzymatic reaction is studied by means of perturbation theory in the reaction rate constant k (2) of product formation. We present analytical solutions that provide the concentrations of the enzyme (E), the substrate (S), as well as those of the enzyme-substrate complex (C), and the product (P) as functions of time. For k (2) small compared to k (-1), we properly describe the entire enzymatic activity from the beginning of the reaction up to longer times without imposing extra conditions on the initial concentrations E ( o ) and S ( o ), which can be comparable or much different.

  13. Native and hydrogen-containing point defects in Mg3N2 : A density functional theory study

    NASA Astrophysics Data System (ADS)

    Lange, Björn; Freysoldt, Christoph; Neugebauer, Jörg

    2010-06-01

    The formation energy and solubility of hydrogen in magnesium nitride bulk (antibixbyite Mg3N2 ) have been studied employing density functional theory in the generalized gradient approximation. The effect of doping and the presence of native defects and complex formation have been taken into account. Our results show that magnesium nitride is a nearly defect-free insulator with insignificant hydrogen-storage capacity. Based on this insight we derive a model that highlights the role of the formation and presence of the parasitic Mg3N2 inclusions in the activation of p -doped GaN in optoelectronic devices.

  14. Community mobilisation in the 21st century: updating our theory of social change?

    PubMed

    Campbell, Catherine

    2014-01-01

    The article explores the Freirian theory of social change underpinning health-related community mobilisation in poor and marginalised communities. Highlighting potential shortcomings of its essentialist understandings of power and identity, and linear notions of change, it examines how lessons from the 'new left', and burgeoning global protest movements, can rejuvenate the field given the growing complexity of 21st-century social inequalities. It suggests the need for a pastiche of approaches to accommodate health struggles in different times and places. However, while needing some updating, Freire's profound and actionable understandings of the symbolic and material dimensions of social inequalities remain a powerful starting point for activism.

  15. Zn and Fe complexes containing a redox active macrocyclic biquinazoline ligand.

    PubMed

    Banerjee, Priyabrata; Company, Anna; Weyhermüller, Thomas; Bill, Eckhard; Hess, Corinna R

    2009-04-06

    A series of iron and zinc complexes has been synthesized, coordinated by the macrocyclic biquinazoline ligand, 2-4:6-8-bis(3,3,4,4-tetramethyldihydropyrrolo)-10-15-(2,2'-biquinazolino)-[15]-1,3,5,8,10,14-hexaene-1,3,7,9,11,14-N(6) (Mabiq). The Mabiq ligand consists of a bipyrimidine moiety and two dihydropyrrole units. The electronic structures of the metal-Mabiq complexes have been characterized using spectroscopic and density-functional theory (DFT) computational methods. The parent zinc complex exhibits a ligand-centered reduction to generate the metal-coordinated Mabiq radical dianion, establishing the redox non-innocence of this ligand. Iron-Mabiq complexes have been isolated in three oxidation states. This redox series includes low-spin ferric and low-spin ferrous species, as well as an intermediate-spin Fe(II) compound. In the latter complex, the iron ion is antiferromagnetically coupled to a Mabiq-centered pi-radical. The results demonstrate the rich redox chemistry and electronic properties of metal complexes coordinated by the Mabiq ligand.

  16. Towards a differentiated understanding of active travel behaviour: Using social theory to explore everyday commuting

    PubMed Central

    Guell, C.; Panter, J.; Jones, N.R.; Ogilvie, D.

    2012-01-01

    Fostering physical activity is an established public health priority for the primary prevention of a variety of chronic diseases. One promising population approach is to seek to embed physical activity in everyday lives by promoting walking and cycling to and from work (‘active commuting’) as an alternative to driving. Predominantly quantitative epidemiological studies have investigated travel behaviours, their determinants and how they may be changed towards more active choices. This study aimed to depart from narrow behavioural approaches to travel and investigate the social context of commuting with qualitative social research methods. Within a social practice theory framework, we explored how people describe their commuting experiences and make commuting decisions, and how travel behaviour is embedded in and shaped by commuters' complex social worlds. Forty-nine semi-structured interviews and eighteen photo-elicitation interviews with accompanying field notes were conducted with a subset of the Commuting and Health in Cambridge study cohort, based in the UK. The findings are discussed in terms of three particularly pertinent facets of the commuting experience. Firstly, choice and decisions are shaped by the constantly changing and fluid nature of commuters' social worlds. Secondly, participants express ambiguities in relation to their reasoning, ambitions and identities as commuters. Finally, commuting needs to be understood as an embodied and emotional practice. With this in mind, we suggest that everyday decision-making in commuting requires the tactical negotiation of these complexities. This study can help to explain the limitations of more quantitative and static models and frameworks in predicting travel behaviour and identify future research directions. PMID:22486840

  17. Systems and complexity thinking in the general practice literature: an integrative, historical narrative review.

    PubMed

    Sturmberg, Joachim P; Martin, Carmel M; Katerndahl, David A

    2014-01-01

    Over the past 7 decades, theories in the systems and complexity sciences have had a major influence on academic thinking and research. We assessed the impact of complexity science on general practice/family medicine. We performed a historical integrative review using the following systematic search strategy: medical subject heading [humans] combined in turn with the terms complex adaptive systems, nonlinear dynamics, systems biology, and systems theory, limited to general practice/family medicine and published before December 2010. A total of 16,242 articles were retrieved, of which 49 were published in general practice/family medicine journals. Hand searches and snowballing retrieved another 35. After a full-text review, we included 56 articles dealing specifically with systems sciences and general/family practice. General practice/family medicine engaged with the emerging systems and complexity theories in 4 stages. Before 1995, articles tended to explore common phenomenologic general practice/family medicine experiences. Between 1995 and 2000, articles described the complex adaptive nature of this discipline. Those published between 2000 and 2005 focused on describing the system dynamics of medical practice. After 2005, articles increasingly applied the breadth of complex science theories to health care, health care reform, and the future of medicine. This historical review describes the development of general practice/family medicine in relation to complex adaptive systems theories, and shows how systems sciences more accurately reflect the discipline's philosophy and identity. Analysis suggests that general practice/family medicine first embraced systems theories through conscious reorganization of its boundaries and scope, before applying empirical tools. Future research should concentrate on applying nonlinear dynamics and empirical modeling to patient care, and to organizing and developing local practices, engaging in community development, and influencing health care reform.

  18. Systems and Complexity Thinking in the General Practice Literature: An Integrative, Historical Narrative Review

    PubMed Central

    Sturmberg, Joachim P.; Martin, Carmel M.; Katerndahl, David A.

    2014-01-01

    PURPOSE Over the past 7 decades, theories in the systems and complexity sciences have had a major influence on academic thinking and research. We assessed the impact of complexity science on general practice/family medicine. METHODS We performed a historical integrative review using the following systematic search strategy: medical subject heading [humans] combined in turn with the terms complex adaptive systems, nonlinear dynamics, systems biology, and systems theory, limited to general practice/family medicine and published before December 2010. A total of 16,242 articles were retrieved, of which 49 were published in general practice/family medicine journals. Hand searches and snowballing retrieved another 35. After a full-text review, we included 56 articles dealing specifically with systems sciences and general/family practice. RESULTS General practice/family medicine engaged with the emerging systems and complexity theories in 4 stages. Before 1995, articles tended to explore common phenomenologic general practice/family medicine experiences. Between 1995 and 2000, articles described the complex adaptive nature of this discipline. Those published between 2000 and 2005 focused on describing the system dynamics of medical practice. After 2005, articles increasingly applied the breadth of complex science theories to health care, health care reform, and the future of medicine. CONCLUSIONS This historical review describes the development of general practice/family medicine in relation to complex adaptive systems theories, and shows how systems sciences more accurately reflect the discipline’s philosophy and identity. Analysis suggests that general practice/family medicine first embraced systems theories through conscious reorganization of its boundaries and scope, before applying empirical tools. Future research should concentrate on applying nonlinear dynamics and empirical modeling to patient care, and to organizing and developing local practices, engaging in community development, and influencing health care reform. PMID:24445105

  19. Application of Intervention Mapping to the Development of a Complex Physical Therapist Intervention.

    PubMed

    Jones, Taryn M; Dear, Blake F; Hush, Julia M; Titov, Nickolai; Dean, Catherine M

    2016-12-01

    Physical therapist interventions, such as those designed to change physical activity behavior, are often complex and multifaceted. In order to facilitate rigorous evaluation and implementation of these complex interventions into clinical practice, the development process must be comprehensive, systematic, and transparent, with a sound theoretical basis. Intervention Mapping is designed to guide an iterative and problem-focused approach to the development of complex interventions. The purpose of this case report is to demonstrate the application of an Intervention Mapping approach to the development of a complex physical therapist intervention, a remote self-management program aimed at increasing physical activity after acquired brain injury. Intervention Mapping consists of 6 steps to guide the development of complex interventions: (1) needs assessment; (2) identification of outcomes, performance objectives, and change objectives; (3) selection of theory-based intervention methods and practical applications; (4) organization of methods and applications into an intervention program; (5) creation of an implementation plan; and (6) generation of an evaluation plan. The rationale and detailed description of this process are presented using an example of the development of a novel and complex physical therapist intervention, myMoves-a program designed to help individuals with an acquired brain injury to change their physical activity behavior. The Intervention Mapping framework may be useful in the development of complex physical therapist interventions, ensuring the development is comprehensive, systematic, and thorough, with a sound theoretical basis. This process facilitates translation into clinical practice and allows for greater confidence and transparency when the program efficacy is investigated. © 2016 American Physical Therapy Association.

  20. From liability to challenge: Complex environments are associated with favorable psychosocial outcomes in adolescent sport participants.

    PubMed

    García Bengoechea, Enrique; Wilson, Philip M; Dunn, Steven

    2017-07-01

    This study aimed to identify different groups of adolescents who have distinct profiles based upon their perceptions of interpersonal and activity-based dimensions of the sport environment. A sample of 310 adolescents from Eastern Canada (M age  = 14.69 ± 1.60 years; 54.8% girls) completed questionnaires assessing selected interpersonal, activity-based, demographic and sport-specific variables. Using TwoStep Cluster Analysis, we identified three groupings of adolescent sport participants. Consistent with the literature, we labeled these groups 'negative context,' 'positive context,' and 'complex context,' respectively. As expected, participants in the last two groups reported greater enjoyment, perceived competence, and commitment to sport. Further, participants in the 'complex context' group showed the highest levels of sport commitment. We draw on insights from Csikszentmihalyi's theory of complexity and relational conceptions of compensation and resilience to interpret the findings, and offer an alternative account of contextual conditions suitable for adolescents involved in competitive sport. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  1. Density functional theory study on aqueous aluminum-fluoride complexes: exploration of the intrinsic relationship between water-exchange rate constants and structural parameters for monomer aluminum complexes.

    PubMed

    Jin, Xiaoyan; Qian, Zhaosheng; Lu, Bangmei; Yang, Wenjing; Bi, Shuping

    2011-01-01

    Density functional theory (DFT) calculation is carried out to investigate the structures, (19)F and (27)Al NMR chemical shifts of aqueous Al-F complexes and their water-exchange reactions. The following investigations are performed in this paper: (1) the microscopic properties of typical aqueous Al-F complexes are obtained at the level of B3LYP/6-311+G**. Al-OH(2) bond lengths increase with F(-) replacing inner-sphere H(2)O progressively, indicating labilizing effect of F(-) ligand. The Al-OH(2) distance trans to fluoride is longer than other Al-OH(2) distance, accounting for trans effect of F(-) ligand. (19)F and (27)Al NMR chemical shifts are calculated using GIAO method at the HF/6-311+G** level relative to F(H(2)O)(6)(-) and Al(H(2)O)(6)(3+) references, respectively. The results are consistent with available experimental values; (2) the dissociative (D) activated mechanism is observed by modeling water-exchange reaction for [Al(H(2)O)(6-i)F(i)]((3-i)+) (i = 1-4). The activation energy barriers are found to decrease with increasing F(-) substitution, which is in line with experimental rate constants (k(ex)). The log k(ex) of AlF(3)(H(2)O)(3)(0) and AlF(4)(H(2)O)(2)(-) are predicted by three ways. The results indicate that the correlation between log k(ex) and Al-O bond length as well as the given transmission coefficient allows experimental rate constants to be predicted, whereas the correlation between log k(ex) and activation free energy is poor; (3) the environmental significance of this work is elucidated by the extension toward three fields, that is, polyaluminum system, monomer Al-organic system and other metal ions system with high charge-to-radius ratio.

  2. Aspects of Complexity in Sleep Analysis

    NASA Astrophysics Data System (ADS)

    Leitão, José M. N.; Da Rosa, Agostinho C.

    The paper presents a selection of sleep analysis problems where some aspects and concepts of complexity come about. Emphasis is given to the electroencephalogram (EEG) as the most important sleep related variable. The conception of the EEG as a message to be deciphered stresses the importance of the communication and information theories in this field. An optimal detector of K complexes and vertex sharp waves based on a stochastic model of sleep EEG is considered. Besides detecting, the algorithm is also able to follow the evolution of the basic ongoing activity. It is shown that both the ostructure and microstructure of sleep can be described in terms of symbols and interpreted as sentences of a language. Syntactic models and Markov chain representations play in this context an important role.

  3. "Visions" for Children's Health and Wellbeing: Exploring the Complex and Arbitrary Processes of Putting Theory into Practice

    ERIC Educational Resources Information Center

    Wellard, Ian; Secker, Michelle

    2017-01-01

    It could be claimed that the priority of any Government should be to look after the interests of the public it serves. Much of this role includes attempting to actively develop and implement policies and programmes that best contribute to or enhance general standards of living. Addressing health and wellbeing, it follows, is a reasonable vision…

  4. The Complexities of Practical Work in Physics Teaching: A Case Study of Three Secondary Schools in Sierra Leone.

    ERIC Educational Resources Information Center

    Keister, Jonathan N.

    The purpose of this study was to document and analyze teachers' and students' activities during physics practicals in order to gain critical insights into why students did not acquire the expected practical skills and how theory and practice interacted in the context of teaching for the practical examination in physics. The study involves three…

  5. Symmetrical group theory for mathematical complexity reduction of digital holograms

    NASA Astrophysics Data System (ADS)

    Perez-Ramirez, A.; Guerrero-Juk, J.; Sanchez-Lara, R.; Perez-Ramirez, M.; Rodriguez-Blanco, M. A.; May-Alarcon, M.

    2017-10-01

    This work presents the use of mathematical group theory through an algorithm to reduce the multiplicative computational complexity in the process of creating digital holograms. An object is considered as a set of point sources using mathematical symmetry properties of both the core in the Fresnel integral and the image, where the image is modeled using group theory. This algorithm has multiplicative complexity equal to zero and an additive complexity ( k - 1) × N for the case of sparse matrices and binary images, where k is the number of pixels other than zero and N is the total points in the image.

  6. Hybrid genetic algorithm with an adaptive penalty function for fitting multimodal experimental data: application to exchange-coupled non-Kramers binuclear iron active sites.

    PubMed

    Beaser, Eric; Schwartz, Jennifer K; Bell, Caleb B; Solomon, Edward I

    2011-09-26

    A Genetic Algorithm (GA) is a stochastic optimization technique based on the mechanisms of biological evolution. These algorithms have been successfully applied in many fields to solve a variety of complex nonlinear problems. While they have been used with some success in chemical problems such as fitting spectroscopic and kinetic data, many have avoided their use due to the unconstrained nature of the fitting process. In engineering, this problem is now being addressed through incorporation of adaptive penalty functions, but their transfer to other fields has been slow. This study updates the Nanakorrn Adaptive Penalty function theory, expanding its validity beyond maximization problems to minimization as well. The expanded theory, using a hybrid genetic algorithm with an adaptive penalty function, was applied to analyze variable temperature variable field magnetic circular dichroism (VTVH MCD) spectroscopic data collected on exchange coupled Fe(II)Fe(II) enzyme active sites. The data obtained are described by a complex nonlinear multimodal solution space with at least 6 to 13 interdependent variables and are costly to search efficiently. The use of the hybrid GA is shown to improve the probability of detecting the global optimum. It also provides large gains in computational and user efficiency. This method allows a full search of a multimodal solution space, greatly improving the quality and confidence in the final solution obtained, and can be applied to other complex systems such as fitting of other spectroscopic or kinetics data.

  7. Towards An Integrative Theory Of Consciousness: Part 1 (Neurobiological And Cognitive Models)

    PubMed Central

    De Sousa, Avinash

    2013-01-01

    The study of consciousness is poised today at interesting crossroads. There has been a surge of research into various neurobiological underpinnings of consciousness in the past decade. The present article looks at the theories regarding this complex phenomenon, especially the ones that neurobiology, cognitive neuroscience and cognitive psychology have to offer. We will first discuss the origin and etymology of word consciousness and its usage. Neurobiological correlates of consciousness are discussed with structures like the ascending reticular activating system, the amygdala, the cerebellum, the thalamus, the frontoparietal circuits, the prefrontal cortex and the precuneus. The cellular and microlevel theories of consciousness and cerebral activity at the neuronal level contributing to consciousness are highlighted, along with the various theories posited in this area. The role of neuronal assemblies and circuits along with firing patterns and their ramifications for the understanding of consciousness are discussed. A section on the role of anaesthesia and its links to consciousness is presented, along with details of split-brain studies in consciousness and altered states of awareness, including the vegetative states. The article finally discusses the progress cognitive psychology has made in identifying and theorising various perspectives of consciousness, perceptual awareness and conscious processing. Both recent and past researches are highlighted. The importance and salient features of each theory are discussed along with the pitfalls, if present. A need for integration of various theories to understand consciousness from a holistic perspective is stressed, to enable one to reach a theory that explains the ultimate neurobiology of consciousness. PMID:23678241

  8. Ionic interactions in biological and physical systems: a variational treatment.

    PubMed

    Eisenberg, Bob

    2013-01-01

    Chemistry is about chemical reactions. Chemistry is about electrons changing their configurations as atoms and molecules react. Chemistry has for more than a century studied reactions as if they occurred in ideal conditions of infinitely dilute solutions. But most reactions occur in salt solutions that are not ideal. In those solutions everything (charged) interacts with everything else (charged) through the electric field, which is short and long range extending to the boundaries of the system. Mathematics has recently been developed to deal with interacting systems of this sort. The variational theory of complex fluids has spawned the theory of liquid crystals (or vice versa). In my view, ionic solutions should be viewed as complex fluids, particularly in the biological and engineering context. In both biology and electrochemistry ionic solutions are mixtures highly concentrated (to approximately 10 M) where they are most important, near electrodes, nucleic ids, proteins, active sites of enzymes, and ionic channels. Ca2+ is always involved in biological solutions because the concentration (really free energy per mole) of Ca2+ in a particular location is the signal that controls many biological functions. Such interacting systems are not simple fluids, and it is no wonder that analysis of interactions, such as the Hofmeister series, rooted in that tradition has not succeeded as one would hope. Here, we present a variational treatment of ard spheres in a frictional dielectric with the hope that such a treatment of an lectrolyte as a complex fluid will be productive. The theory automatically extends to spatially nonuniform boundary conditions and the nonequilibrium systems and flows they produce. The theory is unavoidably self-consistent since differential equations are derived (not assumed) from models of (Helmholtz free) nergy and dissipation of the electrolyte. The origin of the Hofmeister series is (in my view) an inverse problem that becomes well posed when enough data from disjoint experimental traditions are interpreted with a self-consistent theory.

  9. Complexity Theory, School Leadership and Management: Questions for Theory and Practice

    ERIC Educational Resources Information Center

    Morrison, Keith

    2010-01-01

    Complexity theory (CT) has had a meteoric rise in management literature and the social sciences. Its fledgling importation into school leadership and management raises several questions and concerns. This article takes one view of CT and argues that, though its key elements have much to offer school leadership and management, caution has to be…

  10. What Is Complexity Theory and What Are Its Implications for Educational Change?

    ERIC Educational Resources Information Center

    Mason, Mark

    2008-01-01

    HistoryThis paper considers questions of continuity and change in education from the perspective of complexity theory, introducing the field to educationists who might not be familiar with it. Given a significant degree of complexity in a particular environment (or "dynamical system"), new properties and behaviours, which are not necessarily…

  11. Graph theory applied to the analysis of motor activity in patients with schizophrenia and depression

    PubMed Central

    Fasmer, Erlend Eindride; Berle, Jan Øystein; Oedegaard, Ketil J.; Hauge, Erik R.

    2018-01-01

    Depression and schizophrenia are defined only by their clinical features, and diagnostic separation between them can be difficult. Disturbances in motor activity pattern are central features of both types of disorders. We introduce a new method to analyze time series, called the similarity graph algorithm. Time series of motor activity, obtained from actigraph registrations over 12 days in depressed and schizophrenic patients, were mapped into a graph and we then applied techniques from graph theory to characterize these time series, primarily looking for changes in complexity. The most marked finding was that depressed patients were found to be significantly different from both controls and schizophrenic patients, with evidence of less regularity of the time series, when analyzing the recordings with one hour intervals. These findings support the contention that there are important differences in control systems regulating motor behavior in patients with depression and schizophrenia. The similarity graph algorithm we have described can easily be applied to the study of other types of time series. PMID:29668743

  12. Theories of Impaired Consciousness in Epilepsy

    PubMed Central

    Yu, Lissa; Blumenfeld, Hal

    2015-01-01

    Although the precise mechanisms for control of consciousness are not fully understood, emerging data show that conscious information processing depends on the activation of certain networks in the brain and that the impairment of consciousness is related to abnormal activity in these systems. Epilepsy can lead to transient impairment of consciousness, providing a window into the mechanisms necessary for normal consciousness. Thus, despite differences in behavioral manifestations, cause, and electrophysiology, generalized tonic–clonic, absence, and partial seizures engage similar anatomical structures and pathways. We review prior concepts of impaired consciousness in epilepsy, focusing especially on temporal lobe complex partial seizures, which are a common and debilitating form of epileptic unconsciousness. We discuss a “network inhibition hypothesis” in which focal temporal lobe seizure activity disrupts normal cortical–subcortical interactions, leading to depressed neocortical function and impaired consciousness. This review of the major prior theories of impaired consciousness in epilepsy allows us to put more recent data into context and to reach a better understanding of the mechanisms important for normal consciousness. PMID:19351355

  13. Theory of meiotic spindle assembly

    NASA Astrophysics Data System (ADS)

    Furthauer, Sebastian; Foster, Peter; Needleman, Daniel; Shelley, Michael

    2016-11-01

    The meiotic spindle is a biological structure that self assembles from the intracellular medium to separate chromosomes during meiosis. It consists of filamentous microtubule (MT) proteins that interact through the fluid in which they are suspended and via the associated molecules that orchestrate their behavior. We aim to understand how the interplay between fluid medium, MTs, and regulatory proteins allows this material to self-organize into the spindle's highly stereotyped shape. To this end we develop a continuum model that treats the spindle as an active liquid crystal with MT turnover. In this active material, molecular motors, such as dyneins which collect MT minus ends and kinesins which slide MTs past each other, generate active fluid and material stresses. Moreover nucleator proteins that are advected with and transported along MTs control the nucleation and depolymerization of MTs. This theory captures the growth process of meiotic spindles, their shapes, and the essential features of many perturbation experiments. It thus provides a framework to think about the physics of this complex biological suspension.

  14. Graph theory applied to the analysis of motor activity in patients with schizophrenia and depression.

    PubMed

    Fasmer, Erlend Eindride; Fasmer, Ole Bernt; Berle, Jan Øystein; Oedegaard, Ketil J; Hauge, Erik R

    2018-01-01

    Depression and schizophrenia are defined only by their clinical features, and diagnostic separation between them can be difficult. Disturbances in motor activity pattern are central features of both types of disorders. We introduce a new method to analyze time series, called the similarity graph algorithm. Time series of motor activity, obtained from actigraph registrations over 12 days in depressed and schizophrenic patients, were mapped into a graph and we then applied techniques from graph theory to characterize these time series, primarily looking for changes in complexity. The most marked finding was that depressed patients were found to be significantly different from both controls and schizophrenic patients, with evidence of less regularity of the time series, when analyzing the recordings with one hour intervals. These findings support the contention that there are important differences in control systems regulating motor behavior in patients with depression and schizophrenia. The similarity graph algorithm we have described can easily be applied to the study of other types of time series.

  15. Theory of Change: a theory-driven approach to enhance the Medical Research Council's framework for complex interventions

    PubMed Central

    2014-01-01

    Background The Medical Research Councils’ framework for complex interventions has been criticized for not including theory-driven approaches to evaluation. Although the framework does include broad guidance on the use of theory, it contains little practical guidance for implementers and there have been calls to develop a more comprehensive approach. A prospective, theory-driven process of intervention design and evaluation is required to develop complex healthcare interventions which are more likely to be effective, sustainable and scalable. Methods We propose a theory-driven approach to the design and evaluation of complex interventions by adapting and integrating a programmatic design and evaluation tool, Theory of Change (ToC), into the MRC framework for complex interventions. We provide a guide to what ToC is, how to construct one, and how to integrate its use into research projects seeking to design, implement and evaluate complex interventions using the MRC framework. We test this approach by using ToC within two randomized controlled trials and one non-randomized evaluation of complex interventions. Results Our application of ToC in three research projects has shown that ToC can strengthen key stages of the MRC framework. It can aid the development of interventions by providing a framework for enhanced stakeholder engagement and by explicitly designing an intervention that is embedded in the local context. For the feasibility and piloting stage, ToC enables the systematic identification of knowledge gaps to generate research questions that strengthen intervention design. ToC may improve the evaluation of interventions by providing a comprehensive set of indicators to evaluate all stages of the causal pathway through which an intervention achieves impact, combining evaluations of intervention effectiveness with detailed process evaluations into one theoretical framework. Conclusions Incorporating a ToC approach into the MRC framework holds promise for improving the design and evaluation of complex interventions, thereby increasing the likelihood that the intervention will be ultimately effective, sustainable and scalable. We urge researchers developing and evaluating complex interventions to consider using this approach, to evaluate its usefulness and to build an evidence base to further refine the methodology. Trial registration Clinical trials.gov: NCT02160249 PMID:24996765

  16. Theory of Change: a theory-driven approach to enhance the Medical Research Council's framework for complex interventions.

    PubMed

    De Silva, Mary J; Breuer, Erica; Lee, Lucy; Asher, Laura; Chowdhary, Neerja; Lund, Crick; Patel, Vikram

    2014-07-05

    The Medical Research Councils' framework for complex interventions has been criticized for not including theory-driven approaches to evaluation. Although the framework does include broad guidance on the use of theory, it contains little practical guidance for implementers and there have been calls to develop a more comprehensive approach. A prospective, theory-driven process of intervention design and evaluation is required to develop complex healthcare interventions which are more likely to be effective, sustainable and scalable. We propose a theory-driven approach to the design and evaluation of complex interventions by adapting and integrating a programmatic design and evaluation tool, Theory of Change (ToC), into the MRC framework for complex interventions. We provide a guide to what ToC is, how to construct one, and how to integrate its use into research projects seeking to design, implement and evaluate complex interventions using the MRC framework. We test this approach by using ToC within two randomized controlled trials and one non-randomized evaluation of complex interventions. Our application of ToC in three research projects has shown that ToC can strengthen key stages of the MRC framework. It can aid the development of interventions by providing a framework for enhanced stakeholder engagement and by explicitly designing an intervention that is embedded in the local context. For the feasibility and piloting stage, ToC enables the systematic identification of knowledge gaps to generate research questions that strengthen intervention design. ToC may improve the evaluation of interventions by providing a comprehensive set of indicators to evaluate all stages of the causal pathway through which an intervention achieves impact, combining evaluations of intervention effectiveness with detailed process evaluations into one theoretical framework. Incorporating a ToC approach into the MRC framework holds promise for improving the design and evaluation of complex interventions, thereby increasing the likelihood that the intervention will be ultimately effective, sustainable and scalable. We urge researchers developing and evaluating complex interventions to consider using this approach, to evaluate its usefulness and to build an evidence base to further refine the methodology. Clinical trials.gov: NCT02160249.

  17. [Documenting a rehabilitation program using a logic model: an advantage to the assessment process].

    PubMed

    Poncet, Frédérique; Swaine, Bonnie; Pradat-Diehl, Pascale

    2017-03-06

    The cognitive and behavioral disorders after brain injury can result in severe limitations of activities and restrictions of participation. An interdisciplinary rehabilitation program was developed in physical medicine and rehabilitation at the Pitié-Salpêtriere Hospital, Paris, France. Clinicians believe this program decreases activity limitations and improves participation in patients. However, the program’s effectiveness had never been assessed. To do this, we had to define/describe this program. However rehabilitation programs are holistic and thus complex making them difficult to describe. Therefore, to facilitate the evaluation of complex programs, including those for rehabilitation, we illustrate the use of a theoretical logic model, as proposed by Champagne, through the process of documentation of a specific complex and interdisciplinary rehabilitation program. Through participatory/collaborative research, the rehabilitation program was analyzed using three “submodels” of the logic model of intervention: causal model, intervention model and program theory model. This should facilitate the evaluation of programs, including those for rehabilitation.

  18. Psychotherapists' spiritual, religious, atheist or agnostic identity and their practice of psychotherapy: a grounded theory study.

    PubMed

    Magaldi-Dopman, Danielle; Park-Taylor, Jennie; Ponterotto, Joseph G

    2011-05-01

    In this present grounded theory study, 16 experienced psychologists, who practiced from varied theoretical orientations and came from diverse religious/spiritual/nonreligious backgrounds, explored their personal religious/spiritual/nonreligious identity development journeys, their experiences with clients' religious/spiritual content in psychotherapy sessions, and how their identity may have influenced the way they interacted with religious/spiritual material during sessions. Results revealed that psychologists' spiritual/religious/nonreligious identity is conflicted and complex and that their academic and clinical training did not provide sufficient opportunity to examine how this may affect their therapeutic work. A tentative grounded theory emerged suggesting that psychologists both identified with and were activated by clients' spiritual/religious conflicts and their internal experiences about the spiritual/religious content, both of which presented significant challenges to therapeutic work.

  19. [A complexity analysis of Chinese herbal property theory: the multiple formations of herbal property].

    PubMed

    Jin, Rui; Zhang, Bing

    2012-11-01

    Chinese herbal property theory (CHPT) is the fundamental characteristic of Chinese materia medica different from modern medicines. It reflects the herbal properties associated with efficacy and formed the early framework of four properties and five flavors in Shennong's Classic of Materia Medica. After the supplement and improvement of CHPT in the past thousands of years, it has developed a theory system including four properties, five flavors, meridian entry, direction of medicinal actions (ascending, descending, floating and sinking) and toxicity. However, because of the influence of philosophy about yin-yang theory and five-phase theory and the difference of cognitive approach and historical background at different times, CHPT became complex. One of the complexity features was the multiple methods for determining herbal property, which might include the inference from herbal efficacy, the thought of Chinese Taoist School and witchcraft, the classification thinking according to manifestations, etc. Another complexity feature was the multiselection associations between herbal property and efficacy, which indicated that the same property could be inferred from different kinds of efficacy. This paper analyzed these complexity features and provided the importance of cognitive approaches and efficacy attributes corresponding to certain herbal property in the study of CHPT.

  20. Critical behavior in earthquake energy dissipation

    NASA Astrophysics Data System (ADS)

    Wanliss, James; Muñoz, Víctor; Pastén, Denisse; Toledo, Benjamín; Valdivia, Juan Alejandro

    2017-09-01

    We explore bursty multiscale energy dissipation from earthquakes flanked by latitudes 29° S and 35.5° S, and longitudes 69.501° W and 73.944° W (in the Chilean central zone). Our work compares the predictions of a theory of nonequilibrium phase transitions with nonstandard statistical signatures of earthquake complex scaling behaviors. For temporal scales less than 84 hours, time development of earthquake radiated energy activity follows an algebraic arrangement consistent with estimates from the theory of nonequilibrium phase transitions. There are no characteristic scales for probability distributions of sizes and lifetimes of the activity bursts in the scaling region. The power-law exponents describing the probability distributions suggest that the main energy dissipation takes place due to largest bursts of activity, such as major earthquakes, as opposed to smaller activations which contribute less significantly though they have greater relative occurrence. The results obtained provide statistical evidence that earthquake energy dissipation mechanisms are essentially "scale-free", displaying statistical and dynamical self-similarity. Our results provide some evidence that earthquake radiated energy and directed percolation belong to a similar universality class.

  1. Active hydrodynamics of synchronization and ordering in moving oscillators

    NASA Astrophysics Data System (ADS)

    Banerjee, Tirthankar; Basu, Abhik

    2017-08-01

    The nature of emergent collective behaviors of moving interacting physical agents is a long-standing open issue in physical and biological systems alike. This calls for studies on the control of synchronization and the degree of order in a collection of diffusively moving noisy oscillators. We address this by constructing a generic hydrodynamic theory for active phase fluctuations in a collection of a large number of nearly-phase-coherent moving oscillators in two dimensions. Our theory describes the general situation where phase fluctuations and oscillator mobility mutually affect each other. We show that the interplay between the active effects and the mobility of the oscillators leads to a variety of phenomena, ranging from synchronization with long-range, nearly-long-range, and quasi-long-range orders to instabilities and desynchronization with short-range order of the oscillator phases. We highlight the complex dependences of synchronization on the active effects. These should be testable in wide-ranging systems, e.g., oscillating chemical reactions in the presence of different reaction inhibitors and facilitators, live oriented cytoskeletal extracts, and vertebrate segmentation clocks.

  2. An investigation into the unusual linkage isomerization and nitrite reduction activity of a novel tris(2-pyridyl) copper complex

    NASA Astrophysics Data System (ADS)

    Roger, Isolda; Wilson, Claire; Senn, Hans M.; Sproules, Stephen; Symes, Mark D.

    2017-08-01

    The copper-containing nitrite reductases (CuNIRs) are a class of enzymes that mediate the reduction of nitrite to nitric oxide in biological systems. Metal-ligand complexes that reproduce the salient features of the active site of CuNIRs are therefore of fundamental interest, both for elucidating the possible mode of action of the enzymes and for developing biomimetic catalysts for nitrite reduction. Herein, we describe the synthesis and characterization of a new tris(2-pyridyl) copper complex ([Cu1(NO2)2]) that binds two molecules of nitrite, and displays all three of the common binding modes for NO2-, with one nitrite bound in an asymmetric quasi-bidentate κ2-ONO manner and the other bound in a monodentate fashion with a linkage isomerism between the κ1-ONO and κ1-NO2 binding modes. We use density functional theory to help rationalize the presence of all three of these linkage isomers in one compound, before assessing the redox activity of [Cu1(NO2)2]. These latter studies show that the complex is not a competent nitrite reduction electrocatalyst in non-aqueous solvent, even in the presence of additional proton donors, a finding which may have implications for the design of biomimetic catalysts for nitrite reduction.

  3. Synthesis, structures, nuclease activity, cytotoxicity, DFT and molecular docking studies of two nitrato bridged homodinuclear (Cu-Cu, Zn-Zn) complexes containing 2,2'-bipyridine and a chalcone derivative.

    PubMed

    Gaur, Ruchi; Choubey, Diksha Kumari; Usman, Mohammad; Ward, Benzamin D; Roy, Jagat Kumar; Mishra, Lallan

    2017-08-01

    Nitrato briged dinuclear complexes of type [Cu 2 (L) 2 (bpy) 2 (NO 3 )](NO 3 )·4H 2 O, 1 and [Zn 2 (L) 2 (bpy) 2 (NO 3 )](NO 3 )·4H 2 O, 2 (L=deprotonated form of free ligand LH, [1-(2-hydroxyphenyl)-3-(9-anthracenyl) propenone; bpy=2,2'bipyridine] are synthesized and characterized using a battery of physicochemical techniques and X-ray crystallography. A distorted square pyramidal geometry is assigned to them with N 2 O 3 coordination core around the metal ion. The co-ligand L binds the metal ions through its O,O' atoms in anti-syn mode. The metal centers in complexes 1 and 2 are separated via bridging nitrato group at a distance of 6.073Å and 5.635Å respectively. Their structures and absorption spectra are supported by the computational studies using density functional theory (DFT) and TD-DFT. Both complexes exhibit nuclease activity and cleave supercoiled (form I) DNA. The complex 1 preferentially binds major groove of DNA and follows an oxidative pathway whereas complex 2 binds with minor groove of DNA via hydrolytic pathway. Both complexes inhibit topoisomerase I relaxation activity with IC 50 values of 7 and 35μM. Molecular docking studies support the groove binding and topoisomerase I binding of the complexes. The complex 1 showed a significant cytotoxicity against HeLa cell lines (a cervical cancer cell lines) in vitro with IC 50 value calculated as 2.9±0.021μM as compared to 28.2±0. 044μΜ for complex 2. Complex 2 induces the cell apoptosis at a later-stage as compared to complex 1. The cell apoptosis and topoisomerase inhibition by complexes enable them to be potential candidates as future anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Interplay between theory and experiment: computational organometallic and transition metal chemistry.

    PubMed

    Lin, Zhenyang

    2010-05-18

    Computational and theoretical chemistry provide fundamental insights into the structures, properties, and reactivities of molecules. As a result, theoretical calculations have become indispensable in various fields of chemical research and development. In this Account, we present our research in the area of computational transition metal chemistry, using examples to illustrate how theory impacts our understanding of experimental results and how close collaboration between theoreticians and experimental chemists can be mutually beneficial. We begin by examining the use of computational chemistry to elucidate the details of some unusual chemical bonds. We consider the three-center, two-electron bonding in titanocene sigma-borane complexes and the five-center, four-electron bonding in a rhodium-bismuth complex. The bonding in metallabenzene complexes is also examined. In each case, theoretical calculations provide particular insight into the electronic structure of the chemical bonds. We then give an example of how theoretical calculations aided the structural determination of a kappa(2)-N,N chelate ruthenium complex formed upon heating an intermediate benzonitrile-coordinated complex. An initial X-ray diffraction structure proposed on the basis of a reasonable mechanism appeared to fit well, with an apparently acceptable R value of 0.0478. But when DFT calculations were applied, the optimized geometry differed significantly from the experimental data. By combining experimental and theoretical outlooks, we posited a new structure. Remarkably, a re-refining of the X-ray diffraction data based on the new structure resulted in a slightly lower R value of 0.0453. We further examine the use of computational chemistry in providing new insight into C-H bond activation mechanisms and in understanding the reactivity properties of nucleophilic boryl ligands, addressing experimental difficulties with calculations and vice versa. Finally, we consider the impact of theoretical insights in three very specific experimental studies of chemical reactions, illustrating how theoretical results prompt further experimental studies: (i) diboration of aldehydes catalyzed by copper(I) boryl complexes, (ii) ruthenium-catalyzed C-H amination of arylazides, and (iii) zinc reduction of a vinylcarbyne complex. The concepts and examples presented here are intended for nonspecialists, particularly experimentalists. Together, they illustrate some of the achievements that are possible with a fruitful union of experiment and theory.

  5. Three Co(II) complexes with a sexidentate N2O4-donor bis-Schiff base ligand: Synthesis, crystal structures, DFT studies, urease inhibition and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Zhang, Xia; Zhao, Yu; Zhang, Dongmei; Jin, Fan; Fan, Yuhua

    2017-11-01

    Three new N2O4-donor bis-Schiff base Co(II) complexes, Co(C36H34N2O8)·2CH3OH (1), Co(C28H34N2O8S2)·H2O (2) and Co(C40H36N4O8)·3CH3OH (3) with distorted octahedral six-coordinate Co(II) centers were synthesized and determined by single crystal X-ray analysis. The X-ray crystallography shows that the metal atoms of three complexes are all six-coordinate with two nitrogen atoms from Cdbnd N groups, two oxygen atoms from ether groups and two carboxylic oxygen atoms in the mono-ligand, forming a distorted octahedral geometry. Theoretical studies of the three complexes were carried out by density functional theory (DFT) Becke's three-parameter hybrid (B3LYP) method employing the 6-31G basis set. The DFT studies indicate that the calculation is in accordance with the experimental results. Moreover, inhibition of jack bean urease by Co(II) complexes 1-3 have also been investigated. At the same time, a docking analysis using a DOCK program was conducted to determine the probable binding mode by inserting the complexes into the active site of jack bean urease. The experimental values and docking simulation exhibited that the complex 3 showed strong inhibitory activity (IC50 = 16.43 ± 2.35 μM) and the structure-activity relationships were further discussed.

  6. Envisioning a New Foundation for Gifted Education: Evolving Complexity Theory (ECT) of Talent Development

    ERIC Educational Resources Information Center

    Dai, David Yun

    2017-01-01

    This article presents a new theory of talent development, evolving complexity theory (ECT), in the context of the changing theoretical directions as well as the landscape of gifted education. I argue that gifted education needs a new foundation that provides a broad psychosocial basis than what the notion of giftedness can afford. A focus on…

  7. Influence of the large-small split effect on strategy choice in complex subtraction.

    PubMed

    Xiang, Yan Hui; Wu, Hao; Shang, Rui Hong; Chao, Xiaomei; Ren, Ting Ting; Zheng, Li Ling; Mo, Lei

    2018-04-01

    Two main theories have been used to explain the arithmetic split effect: decision-making process theory and strategy choice theory. Using the inequality paradigm, previous studies have confirmed that individuals tend to adopt a plausibility-checking strategy and a whole-calculation strategy to solve large and small split problems in complex addition arithmetic, respectively. This supports strategy choice theory, but it is unknown whether this theory also explains performance in solving different split problems in complex subtraction arithmetic. This study used small, intermediate and large split sizes, with each split condition being further divided into problems requiring and not requiring borrowing. The reaction times (RTs) for large and intermediate splits were significantly shorter than those for small splits, while accuracy was significantly higher for large and middle splits than for small splits, reflecting no speed-accuracy trade-off. Further, RTs and accuracy differed significantly between the borrow and no-borrow conditions only for small splits. This study indicates that strategy choice theory is suitable to explain the split effect in complex subtraction arithmetic. That is, individuals tend to choose the plausibility-checking strategy or the whole-calculation strategy according to the split size. © 2016 International Union of Psychological Science.

  8. Understanding Teacher Collaboration Processes from a Complexity Theory Perspective: A Case Study of a Chinese Secondary School

    ERIC Educational Resources Information Center

    Yuan, Rui; Zhang, Jia; Yu, Shulin

    2018-01-01

    Although research on teacher collaboration has proliferated in the last few decades, scant attention has been paid to the development of teacher collaboration in school contexts. Informed by the perspective of complexity theory, this study investigates the complex process of teacher collaboration through qualitative interviews in an English…

  9. A Call for a Multifaceted Approach to Language Learning Motivation Research: Combining Complexity, Humanistic, and Critical Perspectives

    ERIC Educational Resources Information Center

    Pigott, Julian

    2012-01-01

    In this paper I give an overview of recent developments in the L2 motivation field, in particular the movement away from quantitative, questionnaire-based methodologies toward smaller-scale qualitative studies incorporating concepts from complexity theory. While complexity theory provides useful concepts for exploring motivation in new ways, it…

  10. Reasons why undergraduate women comply with unwanted, non-coercive sexual advances: A serial indirect effect model integrating sexual script theory and sexual self-control perspectives.

    PubMed

    Quinn-Nilas, Christopher; Kennett, Deborah J

    2018-01-16

    This study explored the predictors of young women's compliance with unwanted sexual activities, integrating the social with the cognitive and behavioral correlates of sexual compliance. In total, 222 young heterosexual women completed measures examining the Sexual Self-Control model, including reasons for consenting, sexual resourcefulness, and compliance with unwanted sex, as well as gender role measures pertaining to sexual script theory, including the sexual double standard, gender role stress, and virginity scripts. An exploratory analysis of serial indirect effects demonstrated that women scoring lower in sexual resourcefulness endorsed higher female gender role stress, which in turn was associated with higher endorsement of reasons for consent, translating into more frequent compliance with unwanted sexual activities. The relationship between one's ability to refuse and their decision to refuse appears quite complex. Understanding one's decision requires consideration of the social aspects of gender role endorsement.

  11. Transformative environmental governance

    USGS Publications Warehouse

    Chaffin, Brian C.; Garmestani, Ahjond S.; Gunderson, Lance H.; Harm Benson, Melinda; Angeler, David G.; Arnold, Craig Anthony (Tony); Cosens, Barbara; Kundis Craig, Robin; Ruhl, J.B.; Allen, Craig R.

    2016-01-01

    Transformative governance is an approach to environmental governance that has the capacity to respond to, manage, and trigger regime shifts in coupled social-ecological systems (SESs) at multiple scales. The goal of transformative governance is to actively shift degraded SESs to alternative, more desirable, or more functional regimes by altering the structures and processes that define the system. Transformative governance is rooted in ecological theories to explain cross-scale dynamics in complex systems, as well as social theories of change, innovation, and technological transformation. Similar to adaptive governance, transformative governance involves a broad set of governance components, but requires additional capacity to foster new social-ecological regimes including increased risk tolerance, significant systemic investment, and restructured economies and power relations. Transformative governance has the potential to actively respond to regime shifts triggered by climate change, and thus future research should focus on identifying system drivers and leading indicators associated with social-ecological thresholds.

  12. Putting Families Into Place: Using Neighborhood-Effects Research and Activity Spaces to Understand Families

    PubMed Central

    Noah, Aggie J.

    2015-01-01

    Neighborhood is an important context in which individuals and families are embedded. Yet family studies researchers have been relatively slow to incorporate spatial approaches into family science. Although limited theoretical and methodological attention has been devoted to families in neighborhood-effects research, family scholars can contribute greatly to theories about neighborhood effects, and neighborhood-effects research can help move the field of family studies forward. This article reviews the theories, applications, and limitations of research on neighborhood effects and discusses how family studies can benefit from incorporating a spatial perspective from neighborhood-effects research. I then present an innovative methodology—referred to as activity spaces—emerging in neighborhood-effects research, and I discuss how this approach can be used to better understand the complexity and heterogeneity of families. Last, I highlight ways to incorporate space into family studies by “putting families into place.” PMID:26681979

  13. Even with the best of intentions: paternal involvement and the theory of planned behavior.

    PubMed

    Perry, Armon Rashard; Langley, Cheri

    2013-06-01

    Implicit in much of the fatherhood discourse is the assumption that if fathers want to take an active role in their children's lives, they could and would do so. While research has highlighted the factors associated with fathers' involvement, very few, if any, of these studies have been guided by a theory that accounts for both fathers' involvement intentions and their ability to follow through on those intentions. The theory of planned behavior and its emphasis on attitudes, the beliefs of significant others, and whether one has control over engaging in behavior is a conceptual fit to respond to questions related to the complex nature of paternal involvement. Using data from the Fragile Families and Child Well-being Study, the purpose of this study was to test the utility of the theory of planned behavior in predicting fathers' involvement intentions and reports of involvement. The results revealed that the theory of planned behavior can be useful in examining paternal involvement and should be used in future research to enhance the fatherhood literature. © FPI, Inc.

  14. Addressing weight stigma in physiotherapy: Development of a theory-driven approach to (re)thinking weight-related interactions.

    PubMed

    Setchell, J; Gard, M; Jones, L; Watson, B M

    2017-08-01

    In this article, we propose a theory-driven approach to developing interventions for reducing weight stigma in physiotherapy and discuss the design and exploratory trial of such an intervention. Weight stigma has been identified in physiotherapists in empirical investigations. However, there has been little consideration of how this stigma might be addressed. We highlight Goffman's work on stigma that provides social and embodied understandings of stigma. Goffman's approach, however, is notably apolitical, ahistorical and lacks mechanisms for understanding power. We suggest that post-structuralist perspectives can provide insight into these areas. Drawing on these theories, we critically examine the literature on weight stigma reduction, finding that trials have largely been unsuccessful. We argue that this may be due to overly passive and simplistic intervention designs. As context-specific understandings are desirable, we examine the nature of physiotherapy to determine what might be relevant to (re)thinking weight in this profession. We then discuss the development of a multifactorial, active weight stigma intervention we trialed with eight physiotherapists. Supported by theory, the outcomes of the exploratory study suggest that physiotherapy-specific factors such as fostering professional reflexivity and improving understandings of stigma need to be incorporated into an active intervention that considers the complex determinants of weight stigma.

  15. Using social bonding theory to examine 'recovery' in a forensic mental health hospital: A qualitative study.

    PubMed

    Nijdam-Jones, Alicia; Livingston, James D; Verdun-Jones, Simon; Brink, Johann

    2015-07-01

    For people living with mental illness, recovery involves learning to overcome and manage their symptoms and striving to live fulfilling lives. The literature on achieving recovery emphasises the importance of social connections and positive role models. Hirschi's social bonding theory posits that an individual's attachment to others, belief in social norms, and their commitment and involvement in conventional activities are the major contributors to normalising social behaviour. The aim of this study is to understand the qualities of service identified by patients in a forensic hospital as being important and meaningful to recovery. Semi-structured interviews with 30 inpatients in a forensic mental health hospital in British Columbia, Canada, were audio recorded, and the transcriptions were analysed using thematic analysis. Five themes emerged: involvement in programmes, belief in rules and social norms, attachment to supportive individuals, commitment to work-related activities and concern about indeterminacy of stay. The first four themes map closely onto Hirschi's criminologically derived social bonding theory; however, indeterminacy of stay also arose as a common theme. In addition, the theory was too simple in its separation of elements; our data suggested the complex integration of themes. Our findings may be useful for informing evaluation of forensic mental health services. Copyright © 2014 John Wiley & Sons, Ltd.

  16. A Study of Theory U and Its Application to a Complex Japanese Maritime Self-Defense Force Problem

    DTIC Science & Technology

    2014-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited A STUDY OF “ THEORY ...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE A STUDY OF “ THEORY U” AND ITS APPLICATION TO A COMPLEX JAPANESE MARITIME SELF-DEFENSE...and a new approach to this way of thinking, called “ Theory U.” This thesis describes the types of problems that require managers to change their

  17. Punctuated equilibrium dynamics in human communications

    NASA Astrophysics Data System (ADS)

    Peng, Dan; Han, Xiao-Pu; Wei, Zong-Wen; Wang, Bing-Hong

    2015-10-01

    A minimal model based on network incorporating individual interactions is proposed to study the non-Poisson statistical properties of human behavior: individuals in system interact with their neighbors, the probability of an individual acting correlates to its activity, and all the individuals involved in action will change their activities randomly. The model reproduces varieties of spatial-temporal patterns observed in empirical studies of human daily communications, providing insight into various human activities and embracing a range of realistic social interacting systems, particularly, intriguing bimodal phenomenon. This model bridges priority queueing theory and punctuated equilibrium dynamics, and our modeling and analysis is likely to shed light on non-Poisson phenomena in many complex systems.

  18. Absorption Spectra of Fe, Mn, and Mg Water Complexes Calculated Using Density Functional Theory

    DTIC Science & Technology

    2013-08-20

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--13-9479 Absorption Spectra of Fe, Mn, and Mg Water Complexes Calculated Using ...ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Absorption Spectra of Fe, Mn, and Mg Water Complexes Calculated Using Density...structure associated with Fe, Mn, and Mg water complexes using time-dependent density functional theory (TD-DFT). Calculation of excited state resonance

  19. Utilizing a Sense of Community Theory in Order to Optimize Interagency Response to Complex Contingencies

    DTIC Science & Technology

    2010-06-01

    of Not at all Somewhat Mostly Completely membership such as clothes , signs, art, architecture, logos , landmarks, and flags that people can...on a ?whole of nation? approach to solving complex problems. Psychological sense of community (PSOC) theory provides the link that explains how an...States during complex contingency operations depends on a “whole of nation” approach to solving complex problems. Psychological sense of community

  20. Toward a Definition of Complexity for Quantum Field Theory States.

    PubMed

    Chapman, Shira; Heller, Michal P; Marrochio, Hugo; Pastawski, Fernando

    2018-03-23

    We investigate notions of complexity of states in continuous many-body quantum systems. We focus on Gaussian states which include ground states of free quantum field theories and their approximations encountered in the context of the continuous version of the multiscale entanglement renormalization ansatz. Our proposal for quantifying state complexity is based on the Fubini-Study metric. It leads to counting the number of applications of each gate (infinitesimal generator) in the transformation, subject to a state-dependent metric. We minimize the defined complexity with respect to momentum-preserving quadratic generators which form su(1,1) algebras. On the manifold of Gaussian states generated by these operations, the Fubini-Study metric factorizes into hyperbolic planes with minimal complexity circuits reducing to known geodesics. Despite working with quantum field theories far outside the regime where Einstein gravity duals exist, we find striking similarities between our results and those of holographic complexity proposals.

  1. Toward a Definition of Complexity for Quantum Field Theory States

    NASA Astrophysics Data System (ADS)

    Chapman, Shira; Heller, Michal P.; Marrochio, Hugo; Pastawski, Fernando

    2018-03-01

    We investigate notions of complexity of states in continuous many-body quantum systems. We focus on Gaussian states which include ground states of free quantum field theories and their approximations encountered in the context of the continuous version of the multiscale entanglement renormalization ansatz. Our proposal for quantifying state complexity is based on the Fubini-Study metric. It leads to counting the number of applications of each gate (infinitesimal generator) in the transformation, subject to a state-dependent metric. We minimize the defined complexity with respect to momentum-preserving quadratic generators which form s u (1 ,1 ) algebras. On the manifold of Gaussian states generated by these operations, the Fubini-Study metric factorizes into hyperbolic planes with minimal complexity circuits reducing to known geodesics. Despite working with quantum field theories far outside the regime where Einstein gravity duals exist, we find striking similarities between our results and those of holographic complexity proposals.

  2. Newer mixed ligand Schiff base complexes from aquo-N-(2‧-hydroxy acetophenone) glycinatocopper(II) as synthon: DFT, antimicrobial activity and molecular docking study

    NASA Astrophysics Data System (ADS)

    Pramanik, Harun A. R.; Das, Dharitri; Paul, Pradip C.; Mondal, Paritosh; Bhattacharjee, Chira R.

    2014-02-01

    Synthesis of a series of newer mixed ligand copper(II) complexes of aminoacid Schiff base of the type [CuL(X)] (L = N-(2‧-hydroxy acetophenone) glycinate, X = imidazole (im) 2, benzimidazole (benz) 3, pyridine (py) 4, hydrazine (hz) 5,8-hydroxyquinoline (8-hq) 6, pyrrolidine (pyrr) 7, piperidine (pip) 8, and nicotinamide (nic) 9) have been accomplished from the interaction of an aquated Schiff base complex, [CuL(H2O)]·H2O, 1 with some selected neutral nitrogen-donor ligands. The copper(II) Schiff base complex, [CuL(H2O)]·H2O, L = N-(2‧-hydroxy acetophenone) glycinate was synthesized from the reaction of glycine and 2‧ hydroxy acetophenone and copper(II) acetate. The compounds were characterised by elemental analysis, spectral, magnetic and thermal studies. The density functional theory calculations were performed using LANL2DZ and 6-311 G(d, p) basis sets with B3LYP correlation functional to ascertain the stable electronic structure, HOMO-LUMO energy gap, chemical hardness and dipole moment of the mixed ligand complexes. A distorted square planar geometry has been conjectured for the complexes. Antibacterial activities of the ligand and its metal complexes have been tested against selected gram-positive and gram-negative strains and correlated with computational docking scores.

  3. General theory for multiple input-output perturbations in complex molecular systems. 1. Linear QSPR electronegativity models in physical, organic, and medicinal chemistry.

    PubMed

    González-Díaz, Humberto; Arrasate, Sonia; Gómez-SanJuan, Asier; Sotomayor, Nuria; Lete, Esther; Besada-Porto, Lina; Ruso, Juan M

    2013-01-01

    In general perturbation methods starts with a known exact solution of a problem and add "small" variation terms in order to approach to a solution for a related problem without known exact solution. Perturbation theory has been widely used in almost all areas of science. Bhor's quantum model, Heisenberg's matrix mechanincs, Feyman diagrams, and Poincare's chaos model or "butterfly effect" in complex systems are examples of perturbation theories. On the other hand, the study of Quantitative Structure-Property Relationships (QSPR) in molecular complex systems is an ideal area for the application of perturbation theory. There are several problems with exact experimental solutions (new chemical reactions, physicochemical properties, drug activity and distribution, metabolic networks, etc.) in public databases like CHEMBL. However, in all these cases, we have an even larger list of related problems without known solutions. We need to know the change in all these properties after a perturbation of initial boundary conditions. It means, when we test large sets of similar, but different, compounds and/or chemical reactions under the slightly different conditions (temperature, time, solvents, enzymes, assays, protein targets, tissues, partition systems, organisms, etc.). However, to the best of our knowledge, there is no QSPR general-purpose perturbation theory to solve this problem. In this work, firstly we review general aspects and applications of both perturbation theory and QSPR models. Secondly, we formulate a general-purpose perturbation theory for multiple-boundary QSPR problems. Last, we develop three new QSPR-Perturbation theory models. The first model classify correctly >100,000 pairs of intra-molecular carbolithiations with 75-95% of Accuracy (Ac), Sensitivity (Sn), and Specificity (Sp). The model predicts probabilities of variations in the yield and enantiomeric excess of reactions due to at least one perturbation in boundary conditions (solvent, temperature, temperature of addition, or time of reaction). The model also account for changes in chemical structure (connectivity structure and/or chirality paterns in substrate, product, electrophile agent, organolithium, and ligand of the asymmetric catalyst). The second model classifies more than 150,000 cases with 85-100% of Ac, Sn, and Sp. The data contains experimental shifts in up to 18 different pharmacological parameters determined in >3000 assays of ADMET (Absorption, Distribution, Metabolism, Elimination, and Toxicity) properties and/or interactions between 31723 drugs and 100 targets (metabolizing enzymes, drug transporters, or organisms). The third model classifies more than 260,000 cases of perturbations in the self-aggregation of drugs and surfactants to form micelles with Ac, Sn, and Sp of 94-95%. The model predicts changes in 8 physicochemical and/or thermodynamics output parameters (critic micelle concentration, aggregation number, degree of ionization, surface area, enthalpy, free energy, entropy, heat capacity) of self-aggregation due to perturbations. The perturbations refers to changes in initial temperature, solvent, salt, salt concentration, solvent, and/or structure of the anion or cation of more than 150 different drugs and surfactants. QSPR-Perturbation Theory models may be useful for multi-objective optimization of organic synthesis, physicochemical properties, biological activity, metabolism, and distribution profiles towards the design of new drugs, surfactants, asymmetric ligands for catalysts, and other materials.

  4. Towards understanding the complexity of cardiovascular oscillations: Insights from information theory.

    PubMed

    Javorka, Michal; Krohova, Jana; Czippelova, Barbora; Turianikova, Zuzana; Lazarova, Zuzana; Wiszt, Radovan; Faes, Luca

    2018-07-01

    Cardiovascular complexity is a feature of healthy physiological regulation, which stems from the simultaneous activity of several cardiovascular reflexes and other non-reflex physiological mechanisms. It is manifested in the rich dynamics characterizing the spontaneous heart rate and blood pressure variability (HRV and BPV). The present study faces the challenge of disclosing the origin of short-term HRV and BPV from the statistical perspective offered by information theory. To dissect the physiological mechanisms giving rise to cardiovascular complexity in different conditions, measures of predictive information, information storage, information transfer and information modification were applied to the beat-to-beat variability of heart period (HP), systolic arterial pressure (SAP) and respiratory volume signal recorded non-invasively in 61 healthy young subjects at supine rest and during head-up tilt (HUT) and mental arithmetics (MA). Information decomposition enabled to assess simultaneously several expected and newly inferred physiological phenomena, including: (i) the decreased complexity of HP during HUT and the increased complexity of SAP during MA; (ii) the suppressed cardiorespiratory information transfer, related to weakened respiratory sinus arrhythmia, under both challenges; (iii) the altered balance of the information transferred along the two arms of the cardiovascular loop during HUT, with larger baroreflex involvement and smaller feedforward mechanical effects; and (iv) an increased importance of direct respiratory effects on SAP during HUT, and on both HP and SAP during MA. We demonstrate that a decomposition of the information contained in cardiovascular oscillations can reveal subtle changes in system dynamics and improve our understanding of the complexity changes during physiological challenges. Copyright © 2018. Published by Elsevier Ltd.

  5. Constructive Developmental Theory and Programming across Cultures: An Examination of the Development and Experiences of Adult Burmese Participants in a High Quality Adaptive Capacity Development Program

    ERIC Educational Resources Information Center

    Lindsley, Robert Bugden

    2011-01-01

    A recent movement in international development has seen the expansion of capacity development activities to include adaptive approaches to education. Adaptive approaches are distinct from traditional approaches to education as they seek not only to provide new knowledge, but to cultivate more complex and flexible qualities of mind. Borrowed from…

  6. Curcumin derivatives as metal-chelating agents with potential multifunctional activity for pharmaceutical applications.

    PubMed

    Ferrari, Erika; Benassi, Rois; Sacchi, Stefania; Pignedoli, Francesca; Asti, Mattia; Saladini, Monica

    2014-10-01

    Curcuminoids represent new perspectives for the development of novel therapeutics for Alzheimer's disease (AD), one probable mechanism of action is related to their metal complexing ability. In this work we examined the metal complexing ability of substituted curcuminoids to propose new chelating molecules with biological properties comparable with curcumin but with improved stability as new potential AD therapeutic agents. The K2T derivatives originate from the insertion of a -CH2COOC(CH3)3 group on the central atom of the diketonic moiety of curcumin. They retain the diketo-ketoenol tautomerism which is solvent dependent. In aqueous solution the prevalent form is the diketo one but the addition of metal ion (Ga(3+), Cu(2+)) causes the dissociation of the enolic proton creating chelate complexes and shifting the tautomeric equilibrium towards the keto-enol form. The formation of metal complexes is followed by both NMR and UV-vis spectroscopy. The density functional theory (DFT) calculations on K2T21 complexes with Ga(3+) and Cu(2+) are performed and compared with those on curcumin complexes. [Ga(K2T21)2(H2O)2](+) was found more stable than curcumin one. Good agreement is detected between calculated and experimental (1)H and (13)C NMR data. The calculated OH bond dissociation energy (BDE) and the OH proton dissociation enthalpy (PDE), allowed to predict the radical scavenging ability of the metal ion complexed with K2T21, while the calculated electronic affinity (EA) and ionization potential (IP) represent yardsticks of antioxidant properties. Eventually theoretical calculations suggest that the proton-transfer-associated superoxide-scavenging activity is enhanced after binding metal ions, and that Ga(3+) complexes display possible superoxide dismutase (SOD)-like activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Approximation methods in gravitational-radiation theory

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1986-01-01

    The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.

  8. Networks in cognitive science.

    PubMed

    Baronchelli, Andrea; Ferrer-i-Cancho, Ramon; Pastor-Satorras, Romualdo; Chater, Nick; Christiansen, Morten H

    2013-07-01

    Networks of interconnected nodes have long played a key role in Cognitive Science, from artificial neural networks to spreading activation models of semantic memory. Recently, however, a new Network Science has been developed, providing insights into the emergence of global, system-scale properties in contexts as diverse as the Internet, metabolic reactions, and collaborations among scientists. Today, the inclusion of network theory into Cognitive Sciences, and the expansion of complex-systems science, promises to significantly change the way in which the organization and dynamics of cognitive and behavioral processes are understood. In this paper, we review recent contributions of network theory at different levels and domains within the Cognitive Sciences. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Nonlinear dynamical systems for theory and research in ergonomics.

    PubMed

    Guastello, Stephen J

    2017-02-01

    Nonlinear dynamical systems (NDS) theory offers new constructs, methods and explanations for phenomena that have in turn produced new paradigms of thinking within several disciplines of the behavioural sciences. This article explores the recent developments of NDS as a paradigm in ergonomics. The exposition includes its basic axioms, the primary constructs from elementary dynamics and so-called complexity theory, an overview of its methods, and growing areas of application within ergonomics. The applications considered here include: psychophysics, iconic displays, control theory, cognitive workload and fatigue, occupational accidents, resilience of systems, team coordination and synchronisation in systems. Although these applications make use of different subsets of NDS constructs, several of them share the general principles of the complex adaptive system. Practitioner Summary: Nonlinear dynamical systems theory reframes problems in ergonomics that involve complex systems as they change over time. The leading applications to date include psychophysics, control theory, cognitive workload and fatigue, biomechanics, occupational accidents, resilience of systems, team coordination and synchronisation of system components.

  10. Neural network classifications and correlation analysis of EEG and MEG activity accompanying spontaneous reversals of the Necker cube.

    PubMed

    Gaetz, M; Weinberg, H; Rzempoluck, E; Jantzen, K J

    1998-04-01

    It has recently been suggested that reentrant connections are essential in systems that process complex information [A. Damasio, H. Damasio, Cortical systems for the retrieval of concrete knowledge: the convergence zone framework, in: C. Koch, J.L. Davis (Eds.), Large Scale Neuronal Theories of the Brain, The MIT Press, Cambridge, 1995, pp. 61-74; G. Edelman, The Remembered Present, Basic Books, New York, 1989; M.I. Posner, M. Rothbart, Constructing neuronal theories of mind, in: C. Koch, J.L. Davis (Eds.), Large Scale Neuronal Theories of the Brain, The MIT Press, Cambridge, 1995, pp. 183-199; C. von der Malsburg, W. Schneider, A neuronal cocktail party processor, Biol. Cybem., 54 (1986) 29-40]. Reentry is not feedback, but parallel signalling in the time domain between spatially distributed maps, similar to a process of correlation between distributed systems. Accordingly, it was expected that during spontaneous reversals of the Necker cube, complex patterns of correlations between distributed systems would be present in the cortex. The present study included EEG (n=4) and MEG recordings (n=5). Two experimental questions were posed: (1) Can distributed cortical patterns present during perceptual reversals be classified differently using a generalised regression neural network (GRNN) compared to processing of a two-dimensional figure? (2) Does correlated cortical activity increase significantly during perception of a Necker cube reversal? One-second duration single trials of EEG and MEG data were analysed using the GRNN. Electrode/sensor pairings based on cortico-cortical connections were selected to assess correlated activity in each condition. The GRNN significantly classified single trials recorded during Necker cube reversals as different from single trials recorded during perception of a two-dimensional figure for both EEG and MEG. In addition, correlated cortical activity increased significantly in the Necker cube reversal condition for EEG and MEG compared to the perception of a non-reversing stimulus. Coherent MEG activity observed over occipital, parietal and temporal regions is believed to represent neural systems related to the perception of Necker cube reversals. Copyright 1998 Elsevier Science B.V.

  11. On the theory of time dilation in chemical kinetics

    NASA Astrophysics Data System (ADS)

    Baig, Mirza Wasif

    2017-10-01

    The rates of chemical reactions are not absolute but their magnitude depends upon the relative speeds of the moving observers. This has been proved by unifying basic theories of chemical kinetics, which are transition state theory, collision theory, RRKM and Marcus theory, with the special theory of relativity. Boltzmann constant and energy spacing between permitted quantum levels of molecules are quantum mechanically proved to be Lorentz variant. The relativistic statistical thermodynamics has been developed to explain quasi-equilibrium existing between reactants and activated complex. The newly formulated Lorentz transformation of the rate constant from Arrhenius equation, of the collision frequency and of the Eyring and Marcus equations renders the rate of reaction to be Lorentz variant. For a moving observer moving at fractions of the speed of light along the reaction coordinate, the transition state possess less kinetic energy to sweep translation over it. This results in the slower transformation of reactants into products and in a stretched time frame for the chemical reaction to complete. Lorentz transformation of the half-life equation explains time dilation of the half-life period of chemical reactions and proves special theory of relativity and presents theory in accord with each other. To demonstrate the effectiveness of the present theory, the enzymatic reaction of methylamine dehydrogenase and radioactive disintegration of Astatine into Bismuth are considered as numerical examples.

  12. Lessons from isolable nickel(I) precursor complexes for small molecule activation.

    PubMed

    Yao, Shenglai; Driess, Matthias

    2012-02-21

    Small-molecule activation by transition metals is essential to numerous organic transformations, both biological and industrial. Creating useful metal-mediated activation systems often depends on stabilizing the metal with uncommon low oxidation states and low coordination numbers. This provides a redox-active metal center with vacant coordination sites well suited for interacting with small molecules. Monovalent nickel species, with their d(9) electronic configuration, are moderately strong one-electron reducing agents that are synthetically attractive if they can be isolated. They represent suitable reagents for closing the knowledge gap in nickel-mediated activation of small molecules. Recently, the first strikingly stable dinuclear β-diketiminate nickel(I) precursor complexes were synthesized, proving to be suitable promoters for small-molecule binding and activation. They have led to many unprecedented nickel complexes bearing activated small molecules in different reduction stages. In this Account, we describe selected achievements in the activation of nitrous oxide (N(2)O), O(2), the heavier chalcogens (S, Se, and Te), and white phosphorus (P(4)) through this β-diketiminatonickel(I) precursor species. We emphasize the reductive activation of O(2), owing to its promise in oxidation processes. The one-electron-reduced O(2) activation product, that is, the corresponding β-diketiminato-supported Ni-O(2) complex, is a genuine superoxonickel(II) complex, representing an important intermediate in the early stages of O(2) activation. It selectively acts as an oxygen-atom transfer agent, hydrogen-atom scavenger, or both towards exogenous organic substrates to yield oxidation products. The one-electron reduction of the superoxonickel(II) moiety was examined by using elemental potassium, β-diketiminatozinc(II) chloride, and β-diketiminatoiron(I) complexes, affording the first heterobimetallic complexes featuring a [NiO(2)M] subunit (M is K, Zn, or Fe). Through density functional theory (DFT) calculations, the geometric and electronic structures of these complexes were established and their distinctive reactivity, including the unprecedented monooxygenase-like activity of a bis(μ-oxo)nickel-iron complex, was studied. The studies have further led to other heterobimetallic complexes containing a [NiO(2)M] core, which are useful for understanding the influence of the heterometal on structure-reactivity relationships. The activation of N(2)O led directly to the hydrogen-atom abstraction product bis(μ-hydroxo)nickel(II) species and prevented isolation of any intermediate. In contrast, the activation of elemental S, Se, and Te with the same nickel(I) reagent furnished activation products with superchalcogenido E(2)(-) (E is S, Se, or Te) and dichalcogenido E(2)(2-) ligand in different activation stages. The isolable supersulfidonickel(II) subunit may serve as a versatile building block for the synthesis of heterobimetallic disulfidonickel(II) complexes with a [NiS(2)M] core. In the case of white phosphorus, the P(4) molecule has been coordinated to the nickel(I) center of dinuclear β-diketiminatonickel(I) precursor complexes; however, the whole P(4) subunit is a weaker electron acceptor than the dichalcogen ligands E(2), thus remaining unreduced. This P(4) binding mode is rare and could open new doors for subsequent functionalization of P(4). Our advances in understanding how these small molecules are bound to a nickel(I) center and are activated for further transformation offer promise for designing new catalysts. These nickel-containing complexes offer exceptional potential for nickel-mediated transformations of organic molecules and as model compounds for mimicking active sites of nickel-containing metalloenzymes.

  13. Towards a differentiated understanding of active travel behaviour: using social theory to explore everyday commuting.

    PubMed

    Guell, C; Panter, J; Jones, N R; Ogilvie, D

    2012-07-01

    Fostering physical activity is an established public health priority for the primary prevention of a variety of chronic diseases. One promising population approach is to seek to embed physical activity in everyday lives by promoting walking and cycling to and from work ('active commuting') as an alternative to driving. Predominantly quantitative epidemiological studies have investigated travel behaviours, their determinants and how they may be changed towards more active choices. This study aimed to depart from narrow behavioural approaches to travel and investigate the social context of commuting with qualitative social research methods. Within a social practice theory framework, we explored how people describe their commuting experiences and make commuting decisions, and how travel behaviour is embedded in and shaped by commuters' complex social worlds. Forty-nine semi-structured interviews and eighteen photo-elicitation interviews with accompanying field notes were conducted with a subset of the Commuting and Health in Cambridge study cohort, based in the UK. The findings are discussed in terms of three particularly pertinent facets of the commuting experience. Firstly, choice and decisions are shaped by the constantly changing and fluid nature of commuters' social worlds. Secondly, participants express ambiguities in relation to their reasoning, ambitions and identities as commuters. Finally, commuting needs to be understood as an embodied and emotional practice. With this in mind, we suggest that everyday decision-making in commuting requires the tactical negotiation of these complexities. This study can help to explain the limitations of more quantitative and static models and frameworks in predicting travel behaviour and identify future research directions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Ab initio kinetics of gas phase decomposition reactions.

    PubMed

    Sharia, Onise; Kuklja, Maija M

    2010-12-09

    The thermal and kinetic aspects of gas phase decomposition reactions can be extremely complex due to a large number of parameters, a variety of possible intermediates, and an overlap in thermal decomposition traces. The experimental determination of the activation energies is particularly difficult when several possible reaction pathways coexist in the thermal decomposition. Ab initio calculations intended to provide an interpretation of the experiment are often of little help if they produce only the activation barriers and ignore the kinetics of the decomposition process. To overcome this ambiguity, a theoretical study of a complete picture of gas phase thermo-decomposition, including reaction energies, activation barriers, and reaction rates, is illustrated with the example of the β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) molecule by means of quantum-chemical calculations. We study three types of major decomposition reactions characteristic of nitramines: the HONO elimination, the NONO rearrangement, and the N-NO(2) homolysis. The reaction rates were determined using the conventional transition state theory for the HONO and NONO decompositions and the variational transition state theory for the N-NO(2) homolysis. Our calculations show that the HMX decomposition process is more complex than it was previously believed to be and is defined by a combination of reactions at any given temperature. At all temperatures, the direct N-NO(2) homolysis prevails with the activation barrier at 38.1 kcal/mol. The nitro-nitrite isomerization and the HONO elimination, with the activation barriers at 46.3 and 39.4 kcal/mol, respectively, are slow reactions at all temperatures. The obtained conclusions provide a consistent interpretation for the reported experimental data.

  15. Chaos, complexity and complicatedness: lessons from rocket science.

    PubMed

    Norman, Geoff

    2011-06-01

    Recently several authors have drawn parallels between educational research and some theories of natural science, in particular complexity theory and chaos theory. The central claim is that both the natural science theories are useful metaphors for education research in that they deal with phenomena that involve many variables interacting in complex, non-linear and unstable ways, and leading to effects that are neither reproducible nor comprehensible. This paper presents a counter-argument. I begin by carefully examining the concepts of uncertainty, complexity and chaos, as described in physical science. I distinguish carefully between systems that are, respectively, complex, chaotic and complicated. I demonstrate that complex and chaotic systems have highly specific characteristics that are unlikely to be present in education systems. I then suggest that, in fact, there is ample evidence that human learning can be understood adequately with conventional linear models. The implications of these opposing world views are substantial. If education science has the properties of complex or chaotic systems, we should abandon any attempt at control or understanding. However, as I point out, to do so would ignore a number of recent developments in our understanding of learning that hold promise to yield substantial improvements in effectiveness and efficiency of learning. © Blackwell Publishing Ltd 2011.

  16. Changing the Known; Knowing the Changing: General Systems Theory Paradigms as Ways to Study Complex Change and Complex Thoughts.

    ERIC Educational Resources Information Center

    Sinnott, Jan D.

    This paper discusses the utility of a general systems theory paradigm for psychology. The paradigm can be used for conceptualizing such complex phenomena as change over time in living systems, person-society interactions, and the epistemology of multiply determined changes. Consideration is also given to applications of the approach to…

  17. Introducing Evidence Through Research "Push": Using Theory and Qualitative Methods.

    PubMed

    Morden, Andrew; Ong, Bie Nio; Brooks, Lauren; Jinks, Clare; Porcheret, Mark; Edwards, John J; Dziedzic, Krysia S

    2015-11-01

    A multitude of factors can influence the uptake and implementation of complex interventions in health care. A plethora of theories and frameworks recognize the need to establish relationships, understand organizational dynamics, address context and contingency, and engage key decision makers. Less attention is paid to how theories that emphasize relational contexts can actually be deployed to guide the implementation of an intervention. The purpose of the article is to demonstrate the potential role of qualitative research aligned with theory to inform complex interventions. We detail a study underpinned by theory and qualitative research that (a) ensured key actors made sense of the complex intervention at the earliest stage of adoption and (b) aided initial engagement with the intervention. We conclude that using theoretical approaches aligned with qualitative research can provide insights into the context and dynamics of health care settings that in turn can be used to aid intervention implementation. © The Author(s) 2015.

  18. Disorder in Complex Human System

    NASA Astrophysics Data System (ADS)

    Akdeniz, K. Gediz

    2011-11-01

    Since the world of human and whose life becomes more and more complex every day because of the digital technology and under the storm of knowledge (media, internet, governmental and non-governmental organizations, etc...) the simulation is rapidly growing in the social systems and in human behaviors. The formation of the body and mutual interactions are left to digital technological, communication mechanisms and coding the techno genetics of the body. Deconstruction begins everywhere. The linear simulation mechanism with modern realities are replaced by the disorder simulation of human behaviors with awareness realities. In this paper I would like to introduce simulation theory of "Disorder Sensitive Human Behaviors". I recently proposed this theory to critique the role of disorder human behaviors in social systems. In this theory the principle of realty is the chaotic awareness of the complexity of human systems inside of principle of modern thinking in Baudrillard's simulation theory. Proper examples will be also considered to investigate the theory.

  19. Sulfur K-edge XAS of WV=O vs. MoV=O Bis(dithiolene) Complexes: Contributions of Relativistic Effects to Electronic Structure and Reactivity of Tungsten Enzymes†

    PubMed Central

    Tenderholt, Adam L.; Szilagyi, Robert K.; Holm, Richard H.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.

    2009-01-01

    Molybdenum- or tungsten-containing enzymes catalyze oxygen atom transfer reactions involved in carbon, sulfur, or nitrogen metabolism. It has been observed that reduction potentials and oxygen atom transfer rates are different for W relative to Mo enzymes and the isostructural Mo/W complexes. Sulfur K-edge X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations on [MoVO(bdt)2]− and [WVO(bdt)2]−, where bdt = benzene-1,2-dithiolate(2−), have been used to determine that the energies of the half-filled redox-active orbital, and thus the reduction potentials and M=O bond strengths, are different for these complexes due to relativistic effects in the W sites. PMID:17720249

  20. Multiple Mechanisms for the Thermal Decomposition of Metallaisoxazolin-5-ones from Computational Investigations.

    PubMed

    Zhou, Chen-Chen; Hawthorne, M Frederick; Houk, K N; Jiménez-Osés, Gonzalo

    2017-08-18

    The thermal decompositions of metallaisoxazolin-5-ones containing Ir, Rh, or Co are investigated using density functional theory. The experimentally observed decarboxylations of these molecules are found to proceed through retro-(3+2)-cycloaddition reactions, generating the experimentally reported η 2 side-bonded nitrile complexes. These intermediates can isomerize in situ to yield a η 1 nitrile complex. A competitive alternative pathway is also found where the decarboxylation happens concertedly with an aryl migration process, producing a η 1 isonitrile complex. Despite their comparable stability, these η 1 bonded species were not detected experimentally. The experimentally detected η 2 side bound species are likely involved in the subsequent C-H activation reactions with hydrocarbon solvents reported for some of these metallaisoxazolin-5-ones.

  1. New Pyrazole-Hydrazone Derivatives: X-ray Analysis, Molecular Structure Investigation via Density Functional Theory (DFT) and Their High In-Situ Catecholase Activity.

    PubMed

    Karrouchi, Khalid; Yousfi, El Bekkaye; Sebbar, Nada Kheira; Ramli, Youssef; Taoufik, Jamal; Ouzidan, Younes; Ansar, M'hammed; Mabkhot, Yahia N; Ghabbour, Hazem A; Radi, Smaail

    2017-10-25

    The development of low-cost catalytic systems that mimic the activity of tyrosinase enzymes (Catechol oxidase) is of great promise for future biochemistry technologic demands. Herein, we report the synthesis of new biomolecules systems based on hydrazone derivatives containing a pyrazole moiety ( L1 - L6 ) with superior catecholase activity. Crystal structures of L1 and L2 biomolecules were determined by X-ray single crystal diffraction (XRD). Optimized geometrical parameters were calculated by density functional theory (DFT) at B3LYP/6-31G (d, p) level and were found to be in good agreement with single crystal XRD data. Copper (II) complexes of the compounds ( L1 - L6 ), generated in-situ, were investigated for their catalytic activities towards the oxidation reaction of catechol to ortho -quinone with the atmospheric dioxygen, in an attempt to model the activity of the copper containing enzyme tyrosinase. The studies showed that the activities depend on four parameters: the nature of the ligand, the nature of counter anion, the nature of solvent and the concentration of ligand. The Cu(II)-ligands, given here, present the highest catalytic activity (72.920 μmol·L -1 ·min -1 ) among the catalysts recently reported in the existing literature.

  2. What Can Quantum Optics Say about Computational Complexity Theory?

    NASA Astrophysics Data System (ADS)

    Rahimi-Keshari, Saleh; Lund, Austin P.; Ralph, Timothy C.

    2015-02-01

    Considering the problem of sampling from the output photon-counting probability distribution of a linear-optical network for input Gaussian states, we obtain results that are of interest from both quantum theory and the computational complexity theory point of view. We derive a general formula for calculating the output probabilities, and by considering input thermal states, we show that the output probabilities are proportional to permanents of positive-semidefinite Hermitian matrices. It is believed that approximating permanents of complex matrices in general is a #P-hard problem. However, we show that these permanents can be approximated with an algorithm in the BPPNP complexity class, as there exists an efficient classical algorithm for sampling from the output probability distribution. We further consider input squeezed-vacuum states and discuss the complexity of sampling from the probability distribution at the output.

  3. CASE STUDY RESEARCH: THE VIEW FROM COMPLEXITY SCIENCE

    PubMed Central

    Anderson, Ruth; Crabtree, Benjamin F.; Steele, David J.; McDaniel, Reuben R.

    2005-01-01

    Many wonder why there has been so little change in care quality, despite substantial quality improvement efforts. Questioning why current approaches are not making true changes draws attention to the organization as a source of answers. We bring together the case study method and complexity science to suggest new ways to study health care organizations. The case study provides a method for studying systems. Complexity theory suggests that keys to understanding the system are contained in patterns of relationships and interactions among the system’s agents. We propose some of the “objects” of study that are implicated by complexity theory and discuss how studying these using case methods may provide useful maps of the system. We offer complexity theory, partnered with case study method, as a place to begin the daunting task of studying a system as an integrated whole. PMID:15802542

  4. Information Theory Applied to Dolphin Whistle Vocalizations with Possible Application to SETI Signals

    NASA Astrophysics Data System (ADS)

    Doyle, Laurance R.; McCowan, Brenda; Hanser, Sean F.

    2002-01-01

    Information theory allows a quantification of the complexity of a given signaling system. We are applying information theory to dolphin whistle vocalizations, humpback whale songs, squirrel monkey chuck calls, and several other animal communication systems' in order to develop a quantitative and objective way to compare inter species communication systems' complexity. Once signaling units have been correctly classified the communication system must obey certain statistical distributions in order to contain complexity whether it is human languages, dolphin whistle vocalizations, or even a system of communication signals received from an extraterrestrial source.

  5. A study of the spreading scheme for viral marketing based on a complex network model

    NASA Astrophysics Data System (ADS)

    Yang, Jianmei; Yao, Canzhong; Ma, Weicheng; Chen, Guanrong

    2010-02-01

    Buzzword-based viral marketing, known also as digital word-of-mouth marketing, is a marketing mode attached to some carriers on the Internet, which can rapidly copy marketing information at a low cost. Viral marketing actually uses a pre-existing social network where, however, the scale of the pre-existing network is believed to be so large and so random, so that its theoretical analysis is intractable and unmanageable. There are very few reports in the literature on how to design a spreading scheme for viral marketing on real social networks according to the traditional marketing theory or the relatively new network marketing theory. Complex network theory provides a new model for the study of large-scale complex systems, using the latest developments of graph theory and computing techniques. From this perspective, the present paper extends the complex network theory and modeling into the research of general viral marketing and develops a specific spreading scheme for viral marking and an approach to design the scheme based on a real complex network on the QQ instant messaging system. This approach is shown to be rather universal and can be further extended to the design of various spreading schemes for viral marketing based on different instant messaging systems.

  6. A first-principles study of carbon-related energy levels in GaN. I. Complexes formed by substitutional/interstitial carbons and gallium/nitrogen vacancies

    NASA Astrophysics Data System (ADS)

    Matsubara, Masahiko; Bellotti, Enrico

    2017-05-01

    Various forms of carbon based complexes in GaN are studied with first-principles calculations employing Heyd-Scuseria-Ernzerhof hybrid functionals within the framework of the density functional theory. We consider carbon complexes made of the combinations of single impurities, i.e., CN-CGa, CI-CN , and CI-CGa , where CN, CGa , and CI denote C substituting nitrogen, C substituting gallium, and interstitial C, respectively, and of neighboring gallium/nitrogen vacancies ( VGa / VN ), i.e., CN-VGa and CGa-VN . Formation energies are computed for all these configurations with different charge states after full geometry optimizations. From our calculated formation energies, thermodynamic transition levels are evaluated, which are related to the thermal activation energies observed in experimental techniques such as deep level transient spectroscopy. Furthermore, the lattice relaxation energies (Franck-Condon shift) are computed to obtain optical activation energies, which are observed in experimental techniques such as deep level optical spectroscopy. We compare our calculated values of activation energies with the energies of experimentally observed C-related trap levels and identify the physical origins of these traps, which were unknown before.

  7. Active and Passive Microrheology: Theory and Simulation

    NASA Astrophysics Data System (ADS)

    Zia, Roseanna N.

    2018-01-01

    Microrheological study of complex fluids traces its roots to the work of the botanist Robert Brown in the early nineteenth century. Indeed, passive microrheology and Brownian motion are one and the same. Once thought to reveal a fundamental life force, the phenomenon was ultimately leveraged by Einstein in proof of the atomic nature of matter ( Haw 2006 ). His work simultaneously paved the way for modern-day passive microrheology by connecting observable particle motion—diffusion—to solvent properties—the viscosity—via the well-known Stokes-Einstein relation. Advances in microscopy techniques in the last two decades have prompted extensions of the original model to generalized forms for passive probing of complex fluids. In the last decade, active microrheology has emerged as a means by which to interrogate the nonequilibrium behavior of complex fluids, in particular, the non-Newtonian rheology of dynamically heterogeneous and microscopically small systems. Here we review theoretical and computational approaches and advances in both passive and active microrheology, with a focus on the extent to which these techniques preserve the connection between single-particle motion and flow properties, as well as the rather surprising recovery of non-Newtonian flow behavior observed in bulk rheology.

  8. Widespread correlations between dominance and homozygous effects of mutations: implications for theories of dominance.

    PubMed

    Phadnis, Nitin; Fry, James D

    2005-09-01

    The dominance of deleterious mutations has important consequences for phenomena such as inbreeding depression, the evolution of diploidy, and levels of natural genetic variation. Kacser and Burns' metabolic theory provides a paradigmatic explanation for why most large-effect mutations are recessive. According to the metabolic theory, the recessivity of large-effect mutations is a consequence of a diminishing-returns relationship between flux through a metabolic pathway and enzymatic activity at any step in the pathway, which in turn is an inevitable consequence of long metabolic pathways. A major line of support for this theory was the demonstration of a negative correlation between homozygous effects and dominance of mutations in Drosophila, consistent with a central prediction of the metabolic theory. Using data on gene deletions in yeast, we show that a negative correlation between homozygous effects and dominance of mutations exists for all major categories of genes analyzed, not just those encoding enzymes. The relationship between dominance and homozygous effects is similar for duplicated and single-copy genes and for genes whose products are members of protein complexes and those that are not. A complete explanation of dominance therefore requires either a generalization of Kacser and Burns' theory to nonenzyme genes or a new theory.

  9. Theory of First Order Chemical Kinetics at the Critical Point of Solution.

    PubMed

    Baird, James K; Lang, Joshua R

    2017-10-26

    Liquid mixtures, which have a phase diagram exhibiting a miscibility gap ending in a critical point of solution, have been used as solvents for chemical reactions. The reaction rate in the forward direction has often been observed to slow down as a function of temperature in the critical region. Theories based upon the Gibbs free energy of reaction as the driving force for chemical change have been invoked to explain this behavior. With the assumption that the reaction is proceeding under relaxation conditions, these theories expand the free energy in a Taylor series about the position of equilibrium. Since the free energy is zero at equilibrium, the leading term in the Taylor series is proportional to the first derivative of the free energy with respect to the extent of reaction. To analyze the critical behavior of this derivative, the theories exploit the principle of critical point isomorphism, which is thought to govern all critical phenomena. They find that the derivative goes to zero in the critical region, which accounts for the slowing down observed in the reaction rate. As has been pointed out, however, most experimental rate investigations have been carried out under irreversible conditions as opposed to relaxation conditions [Shen et al. J. Phys. Chem. A 2015, 119, 8784-8791]. Below, we consider a reaction governed by first order kinetics and invoke transition state theory to take into account the irreversible conditions. We express the apparent activation energy in terms of thermodynamic derivatives evaluated under standard conditions as well as the pseudoequilibrium conditions associated with the reactant and the activated complex. We show that these derivatives approach infinity in the critical region. The apparent activation energy follows this behavior, and its divergence accounts for the slowing down of the reaction rate.

  10. Theory of activated glassy dynamics in randomly pinned fluids.

    PubMed

    Phan, Anh D; Schweizer, Kenneth S

    2018-02-07

    We generalize the force-level, microscopic, Nonlinear Langevin Equation (NLE) theory and its elastically collective generalization [elastically collective nonlinear Langevin equation (ECNLE) theory] of activated dynamics in bulk spherical particle liquids to address the influence of random particle pinning on structural relaxation. The simplest neutral confinement model is analyzed for hard spheres where there is no change of the equilibrium pair structure upon particle pinning. As the pinned fraction grows, cage scale dynamical constraints are intensified in a manner that increases with density. This results in the mobile particles becoming more transiently localized, with increases of the jump distance, cage scale barrier, and NLE theory mean hopping time; subtle changes of the dynamic shear modulus are predicted. The results are contrasted with recent simulations. Similarities in relaxation behavior are identified in the dynamic precursor regime, including a roughly exponential, or weakly supra-exponential, growth of the alpha time with pinning fraction and a reduction of dynamic fragility. However, the increase of the alpha time with pinning predicted by the local NLE theory is too small and severely so at very high volume fractions. The strong deviations are argued to be due to the longer range collective elasticity aspect of the problem which is expected to be modified by random pinning in a complex manner. A qualitative physical scenario is offered for how the three distinct aspects that quantify the elastic barrier may change with pinning. ECNLE theory calculations of the alpha time are then presented based on the simplest effective-medium-like treatment for how random pinning modifies the elastic barrier. The results appear to be consistent with most, but not all, trends seen in recent simulations. Key open problems are discussed with regard to both theory and simulation.

  11. Theory of activated glassy dynamics in randomly pinned fluids

    NASA Astrophysics Data System (ADS)

    Phan, Anh D.; Schweizer, Kenneth S.

    2018-02-01

    We generalize the force-level, microscopic, Nonlinear Langevin Equation (NLE) theory and its elastically collective generalization [elastically collective nonlinear Langevin equation (ECNLE) theory] of activated dynamics in bulk spherical particle liquids to address the influence of random particle pinning on structural relaxation. The simplest neutral confinement model is analyzed for hard spheres where there is no change of the equilibrium pair structure upon particle pinning. As the pinned fraction grows, cage scale dynamical constraints are intensified in a manner that increases with density. This results in the mobile particles becoming more transiently localized, with increases of the jump distance, cage scale barrier, and NLE theory mean hopping time; subtle changes of the dynamic shear modulus are predicted. The results are contrasted with recent simulations. Similarities in relaxation behavior are identified in the dynamic precursor regime, including a roughly exponential, or weakly supra-exponential, growth of the alpha time with pinning fraction and a reduction of dynamic fragility. However, the increase of the alpha time with pinning predicted by the local NLE theory is too small and severely so at very high volume fractions. The strong deviations are argued to be due to the longer range collective elasticity aspect of the problem which is expected to be modified by random pinning in a complex manner. A qualitative physical scenario is offered for how the three distinct aspects that quantify the elastic barrier may change with pinning. ECNLE theory calculations of the alpha time are then presented based on the simplest effective-medium-like treatment for how random pinning modifies the elastic barrier. The results appear to be consistent with most, but not all, trends seen in recent simulations. Key open problems are discussed with regard to both theory and simulation.

  12. Socio-material perspectives on interprofessional team and collaborative learning.

    PubMed

    McMurtry, Angus; Rohse, Shanta; Kilgour, Kelly N

    2016-02-01

    Interprofessional teamwork and collaboration have become important parts of health care practice and education. Most of the literature on interprofessional learning, however, assumes that learning is something acquired by individuals and readily transferred to other contexts. This assumption severely limits the ways in which interprofessional educators and researchers can conceptualise and support learning related to collaborative interprofessional health care. Socio-material theories provide an alternative to individualistic, acquisition-oriented notions by reconceiving learning in terms of collective dynamics, participation in social communities and active engagement with material contexts. Socio-material literature and theories were reviewed to identify concepts relevant to interprofessional learning. After briefly summarising the origins and key principles of socio-material approaches, the authors draw upon specific socio-material theories--including complexity theory, cultural-historical activity theory and actor-network theory--in order to reconceive how learning happens in interprofessional contexts. This reframing of interprofessional learning focuses less on individuals and more on collective dynamics and the actual social and material relations involved in practice. The paper proposes five ways in which learning may be enacted in interprofessional teamwork and collaboration from a socio-material perspective: (i) diverse contributions; (ii) social interactions and relationships; (iii) synthesis of professional ideas; (iv) integration of material elements, and (v) connections to large-scale organisations. For each of these categories, the paper provides practical illustrations to assist educators and researchers who wish to identify and assess this learning. Although more exploratory than comprehensive, this paper articulates many key aspects of socio-material learning theories and offers practical guidance for those who wish to employ and assess them in interprofessional contexts. © 2016 John Wiley & Sons Ltd.

  13. Benchmarking successional progress in a quantitative food web.

    PubMed

    Boit, Alice; Gaedke, Ursula

    2014-01-01

    Central to ecology and ecosystem management, succession theory aims to mechanistically explain and predict the assembly and development of ecological communities. Yet processes at lower hierarchical levels, e.g. at the species and functional group level, are rarely mechanistically linked to the under-investigated system-level processes which drive changes in ecosystem properties and functioning and are comparable across ecosystems. As a model system for secondary succession, seasonal plankton succession during the growing season is readily observable and largely driven autogenically. We used a long-term dataset from large, deep Lake Constance comprising biomasses, auto- and heterotrophic production, food quality, functional diversity, and mass-balanced food webs of the energy and nutrient flows between functional guilds of plankton and partly fish. Extracting population- and system-level indices from this dataset, we tested current hypotheses about the directionality of successional progress which are rooted in ecosystem theory, the metabolic theory of ecology, quantitative food web theory, thermodynamics, and information theory. Our results indicate that successional progress in Lake Constance is quantifiable, passing through predictable stages. Mean body mass, functional diversity, predator-prey weight ratios, trophic positions, system residence times of carbon and nutrients, and the complexity of the energy flow patterns increased during succession. In contrast, both the mass-specific metabolic activity and the system export decreased, while the succession rate exhibited a bimodal pattern. The weighted connectance introduced here represents a suitable index for assessing the evenness and interconnectedness of energy flows during succession. Diverging from earlier predictions, ascendency and eco-exergy did not increase during succession. Linking aspects of functional diversity to metabolic theory and food web complexity, we reconcile previously disjoint bodies of ecological theory to form a complete picture of successional progress within a pelagic food web. This comprehensive synthesis may be used as a benchmark for quantifying successional progress in other ecosystems.

  14. Benchmarking Successional Progress in a Quantitative Food Web

    PubMed Central

    Boit, Alice; Gaedke, Ursula

    2014-01-01

    Central to ecology and ecosystem management, succession theory aims to mechanistically explain and predict the assembly and development of ecological communities. Yet processes at lower hierarchical levels, e.g. at the species and functional group level, are rarely mechanistically linked to the under-investigated system-level processes which drive changes in ecosystem properties and functioning and are comparable across ecosystems. As a model system for secondary succession, seasonal plankton succession during the growing season is readily observable and largely driven autogenically. We used a long-term dataset from large, deep Lake Constance comprising biomasses, auto- and heterotrophic production, food quality, functional diversity, and mass-balanced food webs of the energy and nutrient flows between functional guilds of plankton and partly fish. Extracting population- and system-level indices from this dataset, we tested current hypotheses about the directionality of successional progress which are rooted in ecosystem theory, the metabolic theory of ecology, quantitative food web theory, thermodynamics, and information theory. Our results indicate that successional progress in Lake Constance is quantifiable, passing through predictable stages. Mean body mass, functional diversity, predator-prey weight ratios, trophic positions, system residence times of carbon and nutrients, and the complexity of the energy flow patterns increased during succession. In contrast, both the mass-specific metabolic activity and the system export decreased, while the succession rate exhibited a bimodal pattern. The weighted connectance introduced here represents a suitable index for assessing the evenness and interconnectedness of energy flows during succession. Diverging from earlier predictions, ascendency and eco-exergy did not increase during succession. Linking aspects of functional diversity to metabolic theory and food web complexity, we reconcile previously disjoint bodies of ecological theory to form a complete picture of successional progress within a pelagic food web. This comprehensive synthesis may be used as a benchmark for quantifying successional progress in other ecosystems. PMID:24587353

  15. Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes.

    PubMed

    Taha, Mohamed; Khan, Imran; Coutinho, João A P

    2016-04-01

    With many metal-based drugs extensively used today in the treatment of cancer, attention has focused on the development of new coordination compounds with antitumor activity with europium(III) complexes recently introduced as novel anticancer drugs. The aim of this work is to design new Eu(III) complexes with gallic acid, an antioxida'nt phenolic compound. Gallic acid was chosen because it shows anticancer activity without harming health cells. As antioxidant, it helps to protect human cells against oxidative damage that implicated in DNA damage, cancer, and accelerated cell aging. In this work, the formation of binary and ternary complexes of Eu(III) with gallic acid, primary ligand, and amino acids alanine, leucine, isoleucine, and tryptophan was studied by glass electrode potentiometry in aqueous solution containing 0.1M NaNO3 at (298.2 ± 0.1) K. Their overall stability constants were evaluated and the concentration distributions of the complex species in solution were calculated. The protonation constants of gallic acid and amino acids were also determined at our experimental conditions and compared with those predicted by using conductor-like screening model for realistic solvation (COSMO-RS) model. The geometries of Eu(III)-gallic acid complexes were characterized by the density functional theory (DFT). The spectroscopic UV-visible and photoluminescence measurements are carried out to confirm the formation of Eu(III)-gallic acid complexes in aqueous solutions. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Generalized Optical Theorem Detection in Random and Complex Media

    NASA Astrophysics Data System (ADS)

    Tu, Jing

    The problem of detecting changes of a medium or environment based on active, transmit-plus-receive wave sensor data is at the heart of many important applications including radar, surveillance, remote sensing, nondestructive testing, and cancer detection. This is a challenging problem because both the change or target and the surrounding background medium are in general unknown and can be quite complex. This Ph.D. dissertation presents a new wave physics-based approach for the detection of targets or changes in rather arbitrary backgrounds. The proposed methodology is rooted on a fundamental result of wave theory called the optical theorem, which gives real physical energy meaning to the statistics used for detection. This dissertation is composed of two main parts. The first part significantly expands the theory and understanding of the optical theorem for arbitrary probing fields and arbitrary media including nonreciprocal media, active media, as well as time-varying and nonlinear scatterers. The proposed formalism addresses both scalar and full vector electromagnetic fields. The second contribution of this dissertation is the application of the optical theorem to change detection with particular emphasis on random, complex, and active media, including single frequency probing fields and broadband probing fields. The first part of this work focuses on the generalization of the existing theoretical repertoire and interpretation of the scalar and electromagnetic optical theorem. Several fundamental generalizations of the optical theorem are developed. A new theory is developed for the optical theorem for scalar fields in nonhomogeneous media which can be bounded or unbounded. The bounded media context is essential for applications such as intrusion detection and surveillance in enclosed environments such as indoor facilities, caves, tunnels, as well as for nondestructive testing and communication systems based on wave-guiding structures. The developed scalar optical theorem theory applies to arbitrary lossless backgrounds and quite general probing fields including near fields which play a key role in super-resolution imaging. The derived formulation holds for arbitrary passive scatterers, which can be dissipative, as well as for the more general class of active scatterers which are composed of a (passive) scatterer component and an active, radiating (antenna) component. Furthermore, the generalization of the optical theorem to active scatterers is relevant to many applications such as surveillance of active targets including certain cloaks, invisible scatterers, and wireless communications. The latter developments have important military applications. The derived theoretical framework includes the familiar real power optical theorem describing power extinction due to both dissipation and scattering as well as a reactive optical theorem related to the reactive power changes. Meanwhile, the developed approach naturally leads to three optical theorem indicators or statistics, which can be used to detect changes or targets in unknown complex media. In addition, the optical theorem theory is generalized in the time domain so that it applies to arbitrary full vector fields, and arbitrary media including anisotropic media, nonreciprocal media, active media, as well as time-varying and nonlinear scatterers. The second component of this Ph.D. research program focuses on the application of the optical theorem to change detection. Three different forms of indicators or statistics are developed for change detection in unknown background media: a real power optical theorem detector, a reactive power optical theorem detector, and a total apparent power optical theorem detector. No prior knowledge is required of the background or the change or target. The performance of the three proposed optical theorem detectors is compared with the classical energy detector approach for change detection. The latter uses a mathematical or functional energy while the optical theorem detectors are based on real physical energy. For reference, the optical theorem detectors are also compared with the matched filter approach which (unlike the optical theorem detectors) assumes perfect target and medium information. The practical implementation of the optical theorem detectors is based for certain random and complex media on the exploitation of time reversal focusing ideas developed in the past 20 years in electromagnetics and acoustics. In the final part of the dissertation, we also discuss the implementation of the optical theorem sensors for one-dimensional propagation systems such as transmission lines. We also present a new generalized likelihood ratio test for detection that exploits a prior data constraint based on the optical theorem. Finally, we also address the practical implementation of the optical theorem sensors for optical imaging systems, by means of holography. The later is the first holographic implementation the optical theorem for arbitrary scenes and targets.

  17. Preliminary study of the effect of the turbulent flow field around complex surfaces on their acoustic characteristics

    NASA Technical Reports Server (NTRS)

    Olsen, W. A.; Boldman, D.

    1978-01-01

    Fundamental theories for noise generated by flow over surfaces exist for only a few simple configurations. The role of turbulence in noise generation by complex surfaces should be essentially the same as for simple configurations. Examination of simple-surface theories indicates that the spatial distributions of the mean velocity and turbulence properties are sufficient to define the noise emission. Measurements of these flow properties were made for a number of simple and complex surfaces. The configurations were selected because of their acoustic characteristics are quite different. The spatial distribution of the turbulent flow properties around the complex surfaces and approximate theory are used to locate and describe the noise sources, and to qualitatively explain the varied acoustic characteristics.

  18. Design tools for complex dynamic security systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, Raymond Harry; Rigdon, James Brian; Rohrer, Brandon Robinson

    2007-01-01

    The development of tools for complex dynamic security systems is not a straight forward engineering task but, rather, a scientific task where discovery of new scientific principles and math is necessary. For years, scientists have observed complex behavior but have had difficulty understanding it. Prominent examples include: insect colony organization, the stock market, molecular interactions, fractals, and emergent behavior. Engineering such systems will be an even greater challenge. This report explores four tools for engineered complex dynamic security systems: Partially Observable Markov Decision Process, Percolation Theory, Graph Theory, and Exergy/Entropy Theory. Additionally, enabling hardware technology for next generation security systemsmore » are described: a 100 node wireless sensor network, unmanned ground vehicle and unmanned aerial vehicle.« less

  19. Synthesis, characterization, antimicrobial activity and DFT studies of 2-(pyrimidin-2-ylamino)naphthalene-1,4-dione and its Mn(II), Co(II), Ni(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Chioma, Festus; Ekennia, Anthony C.; Ibeji, Collins U.; Okafor, Sunday N.; Onwudiwe, Damian C.; Osowole, Aderoju A.; Ujam, Oguejiofo T.

    2018-07-01

    A pyrimidine-based ligand, 2-(pyrimidin-2-ylamino)naphthalene-1,4-dione (L), has been synthesized by the reaction of 2-aminopyrimidine with 2-hydroxy-1,4-napthoquinone. Reaction of the ligand with Ni(II), Co(II), Mn(II) and Zn(II) acetate gave the corresponding metal complexes which were characterized by spectroscopic techniques, (infrared, electronic), elemental analysis, room-temperature magnetometry, conductance measurements and thermogravimetry-differential scanning calorimetry (TG-DSC) analyses. The room-temperature magnetic data and electronic spectral measurements of the complexes gave evidence of 4-coordinate square planar/tetrahedral geometry. The thermal analyses values obtained indicated the monohydrate complexes. The antimicrobial screening of the compounds showed mild to very good results. The Mn(II) complex showed the best result within in the range of 11.5-29 mm. The electronic, structural and spectroscopic properties of the complexes were further discussed using density functional theory. Molecular docking studies showed significant binding affinity with the drug targets and the metal complexes have potentials to be used as drugs.

  20. The design of dual-mode complex signal processors based on quadratic modular number codes

    NASA Astrophysics Data System (ADS)

    Jenkins, W. K.; Krogmeier, J. V.

    1987-04-01

    It has been known for a long time that quadratic modular number codes admit an unusual representation of complex numbers which leads to complete decoupling of the real and imaginary channels, thereby simplifying complex multiplication and providing error isolation between the real and imaginary channels. This paper first presents a tutorial review of the theory behind the different types of complex modular rings (fields) that result from particular parameter selections, and then presents a theory for a 'dual-mode' complex signal processor based on the choice of augmented power-of-2 moduli. It is shown how a diminished-1 binary code, used by previous designers for the realization of Fermat number transforms, also leads to efficient realizations for dual-mode complex arithmetic for certain augmented power-of-2 moduli. Then a design is presented for a recursive complex filter based on a ROM/ACCUMULATOR architecture and realized in an augmented power-of-2 quadratic code, and a computer-generated example of a complex recursive filter is shown to illustrate the principles of the theory.

  1. The connection between typological complexes of properties of the nervous system, temperaments, and personality types in the professions and sports

    PubMed Central

    Drozdovski, Aleksandr K

    2015-01-01

    Based on experimental studies in education, professions and sports, an attempt was made to combine the following two historically disconnected research directions in the study of the natural human traits into a single coordinate system: Pavlov’s theory on the properties of the nervous system, as well as the types of higher nervous activity, and Jung’s theory on psychological types. It is noted that Pavlov’s school of thought was developed by his followers in Russia within the scientific school of differential psychophysiology, while Yung’s theory was developed through the works of well-known American researchers Myers and Keirsey. The spatial model that is presented here rests on the knowledge of the properties of the human nervous system and enables the prediction of psychological characteristics, temperament, and psychological types of individuals belonging to a wide age range. PMID:26056499

  2. Patterns of gender development.

    PubMed

    Martin, Carol Lynn; Ruble, Diane N

    2010-01-01

    A comprehensive theory of gender development must describe and explain long-term developmental patterning and changes and how gender is experienced in the short term. This review considers multiple views on gender patterning, illustrated with contemporary research. First, because developmental research involves understanding normative patterns of change with age, several theoretically important topics illustrate gender development: how children come to recognize gender distinctions and understand stereotypes, and the emergence of prejudice and sexism. Second, developmental researchers study the stability of individual differences over time, which elucidates developmental processes. We review stability in two domains-sex segregation and activities/interests. Finally, a new approach advances understanding of developmental patterns, based on dynamic systems theory. Dynamic systems theory is a metatheoretical framework for studying stability and change, which developed from the study of complex and nonlinear systems in physics and mathematics. Some major features and examples show how dynamic approaches have been and could be applied in studying gender development.

  3. Patterns of Gender Development

    PubMed Central

    Martin, Carol Lynn; Ruble, Diane N.

    2013-01-01

    A comprehensive theory of gender development must describe and explain long-term developmental patterning and changes and how gender is experienced in the short term. This review considers multiple views on gender patterning, illustrated with contemporary research. First, because developmental research involves understanding normative patterns of change with age, several theoretically important topics illustrate gender development: how children come to recognize gender distinctions and understand stereotypes, and the emergence of prejudice and sexism. Second, developmental researchers study the stability of individual differences over time, which elucidates developmental processes. We review stability in two domains—sex segregation and activities/interests. Finally, a new approach advances understanding of developmental patterns, based on dynamic systems theory. Dynamic systems theory is a metatheoretical framework for studying stability and change, which developed from the study of complex and nonlinear systems in physics and mathematics. Some major features and examples show how dynamic approaches have been and could be applied in studying gender development. PMID:19575615

  4. Working memory deficits in high-functioning adolescents with autism spectrum disorders: neuropsychological and neuroimaging correlates.

    PubMed

    Barendse, Evelien M; Hendriks, Marc Ph; Jansen, Jacobus Fa; Backes, Walter H; Hofman, Paul Am; Thoonen, Geert; Kessels, Roy Pc; Aldenkamp, Albert P

    2013-06-04

    Working memory is a temporary storage system under attentional control. It is believed to play a central role in online processing of complex cognitive information and may also play a role in social cognition and interpersonal interactions. Adolescents with a disorder on the autism spectrum display problems in precisely these domains. Social impairments, communication difficulties, and repetitive interests and activities are core domains of autism spectrum disorders (ASD), and executive function problems are often seen throughout the spectrum. As the main cognitive theories of ASD, including the theory of mind deficit hypotheses, weak central coherence account, and the executive dysfunction theory, still fail to explain the broad spectrum of symptoms, a new perspective on the etiology of ASD is needed. Deficits in working memory are central to many theories of psychopathology, and are generally linked to frontal-lobe dysfunction. This article will review neuropsychological and (functional) brain imaging studies on working memory in adolescents with ASD. Although still disputed, it is concluded that within the working memory system specific problems of spatial working memory are often seen in adolescents with ASD. These problems increase when information is more complex and greater demands on working memory are made. Neuroimaging studies indicate a more global working memory processing or connectivity deficiency, rather than a focused deficit in the prefrontal cortex. More research is needed to relate these working memory difficulties and neuroimaging results in ASD to the behavioral difficulties as seen in individuals with a disorder on the autism spectrum.

  5. Dynamical complexity in a mean-field model of human EEG

    NASA Astrophysics Data System (ADS)

    Frascoli, Federico; Dafilis, Mathew P.; van Veen, Lennaert; Bojak, Ingo; Liley, David T. J.

    2008-12-01

    A recently proposed mean-field theory of mammalian cortex rhythmogenesis describes the salient features of electrical activity in the cerebral macrocolumn, with the use of inhibitory and excitatory neuronal populations (Liley et al 2002). This model is capable of producing a range of important human EEG (electroencephalogram) features such as the alpha rhythm, the 40 Hz activity thought to be associated with conscious awareness (Bojak & Liley 2007) and the changes in EEG spectral power associated with general anesthetic effect (Bojak & Liley 2005). From the point of view of nonlinear dynamics, the model entails a vast parameter space within which multistability, pseudoperiodic regimes, various routes to chaos, fat fractals and rich bifurcation scenarios occur for physiologically relevant parameter values (van Veen & Liley 2006). The origin and the character of this complex behaviour, and its relevance for EEG activity will be illustrated. The existence of short-lived unstable brain states will also be discussed in terms of the available theoretical and experimental results. A perspective on future analysis will conclude the presentation.

  6. The Importance of Why: An Intelligence Approach for a Multi-Polar World

    DTIC Science & Technology

    2016-04-04

    December 27, 2015). 12. 2 Jupiter Scientific, “Definitions of Important Terms in Chaos Theory ,” Jupiter Scientific website, http...Important Terms in Chaos Theory .” Linearizing a system is approximating a nonlinear system through the application of linear system model. 25...Complexity Theory to Anticipate Strategic Surprise,” 24. 16 M. Mitchell Waldrop, Complexity: The Emerging Science at the Edge of Order and Chaos (New

  7. Spectroscopic, thermal, quantum chemical calculations and in vitro biological studies of titanium/zirconium(IV) complexes of mono-and disubstituted aryldithiocarbonates

    NASA Astrophysics Data System (ADS)

    Andotra, Savit; Kumar, Sandeep; Kour, Mandeep; Kalgotra, Nidhi; Vikas; Chayawan; Pandey, Sushil K.

    2018-03-01

    Aryldithiocarbonates of titanium(IV) and zirconium(IV) corresponding to [(ROCS2)2MCl2] (R = o-, m- or p-CH3C6H4 and 4-Cl-3-CH3C6H3; M = Ti or Zr) have been isolated by the reaction of sodium salt of dithiocarbonates with titanium or zirconium tetrachloride in 1:2 M ratio in CHCl3. Donor stabilized addition complexes of titanium/zirconium with aryldithiocarbonates were also successfully isolated in chloroform. These have been characterized by elemental analyses, IR, mass, TGA/DTA, SEM and heteronuclear NMR (1H, 13C and 31P) spectroscopic studies. The antimicrobial test of these complexes has also been conducted against the bacteria Klebsiella pneumonia and Enterococcus faciolus and fungus Fusarium oxysporium, which indicate potential antimicrobial activity. In addition, the antioxidant activities of the complexes were also investigated through their scavenging effect on DPPH radicals. Density Functional Theory (DFT) calculations have been carried out to investigate geometry parameters of the complexes using B3LYP method and LANL2DZ basis set. HOMO (Highest Occupied Molecular Orbital), LUMO (Lowest Unoccupied Molecular Orbital) energies are analyzed. Based on analytical and theoretical results, a hexacoordinate geometry is concluded around the Ti or Zr atom.

  8. fMRI responses to Jung's Word Association Test: implications for theory, treatment and research.

    PubMed

    Petchkovsky, Leon; Petchkovsky, Michael; Morris, Philip; Dickson, Paul; Montgomery, Danielle; Dwyer, Jonathan; Burnett, Patrick

    2013-06-01

    Jung's Word Association Test was performed under fMRI conditions by 12 normal subjects. Pooled complexed responses were contrasted against pooled neutral ones. The fMRI activation pattern of this generic 'complexed response' was very strong (corrected Z scores ranging from 4.90 to 5.69). The activation pattern in each hemisphere includes mirror neurone areas that track 'otherness' (perspectival empathy), anterior insula (both self-awareness and emotional empathy), and cingulated gyrus (self-awareness and conflict-monitoring). These are the sites described by Siegel and colleagues as the 'resonance circuitry' in the brain which is central to mindfulness (awareness of self) and empathy (sense of the other), negotiations between self awareness and the 'internal other'. But there is also an interhemispheric dialogue. Within 3 seconds, the left hemisphere over-rides the right (at least in our normal subjects). Mindfulness and empathy are central to good psychotherapy, and complexes can be windows of opportunity if left-brain hegemony is resisted. This study sets foundations for further research: (i) QEEG studies (with their finer temporal resolution) of complexed responses in normal subjects (ii) QEEG and fMRI studies of complexed responses in other conditions, like schizophrenia, PTSD, disorders of self organization. © 2013, The Society of Analytical Psychology.

  9. Bioinspired Design and Computational Prediction of Iron Complexes with Pendant Amines for the Production of Methanol from CO2 and H2.

    PubMed

    Chen, Xiangyang; Yang, Xinzheng

    2016-03-17

    Inspired by the active site structure of [FeFe]-hydrogenase, we built a series of iron dicarbonyl diphosphine complexes with pendant amines and predicted their potentials to catalyze the hydrogenation of CO2 to methanol using density functional theory. Among the proposed iron complexes, [(P(tBu)2N(tBu)2H)FeH(CO)2(COOH)](+) (5COOH) is the most active one with a total free energy barrier of 23.7 kcal/mol. Such a low barrier indicates that 5COOH is a very promising low-cost catalyst for high-efficiency conversion of CO2 and H2 to methanol under mild conditions. For comparison, we also examined Bullock's Cp iron diphosphine complex with pendant amines, [(P(tBu)2N(tBu)2H)FeHCp(C5F4N)](+) (5Cp-C5F4N), as a catalyst for hydrogenation of CO2 to methanol and obtained a total free energy barrier of 27.6 kcal/mol, which indicates that 5Cp-C5F4N could also catalyze the conversion of CO2 and H2 to methanol but has a much lower efficiency than our newly designed iron complexes.

  10. Broadening conceptions of learning in medical education: the message from teamworking.

    PubMed

    Bleakley, Alan

    2006-02-01

    There is a mismatch between the broad range of learning theories offered in the wider education literature and a relatively narrow range of theories privileged in the medical education literature. The latter are usually described under the heading of 'adult learning theory'. This paper critically addresses the limitations of the current dominant learning theories informing medical education. An argument is made that such theories, which address how an individual learns, fail to explain how learning occurs in dynamic, complex and unstable systems such as fluid clinical teams. Models of learning that take into account distributed knowing, learning through time as well as space, and the complexity of a learning environment including relationships between persons and artefacts, are more powerful in explaining and predicting how learning occurs in clinical teams. Learning theories may be privileged for ideological reasons, such as medicine's concern with autonomy. Where an increasing amount of medical education occurs in workplace contexts, sociocultural learning theories offer a best-fit exploration and explanation of such learning. We need to continue to develop testable models of learning that inform safe work practice. One type of learning theory will not inform all practice contexts and we need to think about a range of fit-for-purpose theories that are testable in practice. Exciting current developments include dynamicist models of learning drawing on complexity theory.

  11. Carbon-supported iron complexes as electrocatalysts for the cogeneration of hydroxylamine and electricity in a NO-H2 fuel cell: A combined electrochemical and density functional theory study

    NASA Astrophysics Data System (ADS)

    Sheng, Xia; Alvarez-Gallego, Yolanda; Dominguez-Benetton, Xochitl; Baert, Kitty; Hubin, Annick; Zhao, Hailiang; Mihaylov, Tzvetan T.; Pierloot, Kristine; Vankelecom, Ivo F. J.; Pescarmona, Paolo P.

    2018-06-01

    Carbon-supported iron complexes were investigated as electrocatalysts for the reduction of nitric oxide (NO) in a H2-NO fuel cell conceived for the production of hydroxylamine (NH2OH) with concomitant generation of electricity. Two types of iron complexes with tetradentate ligands, namely bis(salicylidene)ethylenediimine (Salen) and phthalocyanine (Pc), supported on activated carbon or graphite were prepared and evaluated as electrocatalysts, either without further treatment or after pyrolysis at 700 °C. The performance in the reduction of NO of gas diffusion cathodes based on these electrocatalysts was investigated in an electrochemical half cell (3-electrode configuration) using linear sweep voltammetry (LSV). The most promising electrocatalysts were studied further by chronoamperometric experiments in a H2-NO fuel cell, which allowed comparison in terms of power output and hydroxylamine production. Depending on the concentration of the NO feed (6 or 18%), the best electrocatalytic performance was delivered either by FePc or FeSalen. The gas diffusion electrode based on FeSalen supported on activated carbon with 0.3 wt% Fe-loading provided the highest current density (86 A/m2) and the best current efficiency (43%) towards the desired NH2OH when operating at the higher NO concentration (18%). Moreover, FeSalen offers the advantage of being cheaper than FePc. The experimental work was complemented by density functional theory (DFT) calculations, which allowed to shed more light on the reaction mechanism for the reduction of nitric oxide at the atomistic level.

  12. Origin of the Anomalous Color of Egyptian and Han Blue Historical Pigments: Going beyond the Complex Approximation in Ligand Field Theory

    ERIC Educational Resources Information Center

    García-Fernandez, Pablo; Moreno, Miguel; Aramburu, José Antonio

    2016-01-01

    The complex approximation is widely used in the framework of the Ligand Field Theory for explaining the optical properties of crystalline coordination compounds. Here, we show that there are essential features of these systems that cannot be understood with the usual approximation that only considers an isolated complex at the correct equilibrium…

  13. Medicine as a Community of Practice: Implications for Medical Education.

    PubMed

    Cruess, Richard L; Cruess, Sylvia R; Steinert, Yvonne

    2018-02-01

    The presence of a variety of independent learning theories makes it difficult for medical educators to construct a comprehensive theoretical framework for medical education, resulting in numerous and often unrelated curricular, instructional, and assessment practices. Linked with an understanding of identity formation, the concept of communities of practice could provide such a framework, emphasizing the social nature of learning. Individuals wish to join the community, moving from legitimate peripheral to full participation, acquiring the identity of community members and accepting the community's norms.Having communities of practice as the theoretical basis of medical education does not diminish the value of other learning theories. Communities of practice can serve as the foundational theory, and other theories can provide a theoretical basis for the multiple educational activities that take place within the community, thus helping create an integrated theoretical approach.Communities of practice can guide the development of interventions to make medical education more effective and can help both learners and educators better cope with medical education's complexity. An initial step is to acknowledge the potential of communities of practice as the foundational theory. Educational initiatives that could result from this approach include adding communities of practice to the cognitive base; actively engaging students in joining the community; creating a welcoming community; expanding the emphasis on explicitly addressing role modeling, mentoring, experiential learning, and reflection; providing faculty development to support the program; and recognizing the necessity to chart progress toward membership in the community.

  14. Realist complex intervention science: Applying realist principles across all phases of the Medical Research Council framework for developing and evaluating complex interventions

    PubMed Central

    Fletcher, Adam; Jamal, Farah; Moore, Graham; Evans, Rhiannon E.; Murphy, Simon; Bonell, Chris

    2016-01-01

    The integration of realist evaluation principles within randomised controlled trials (‘realist RCTs’) enables evaluations of complex interventions to answer questions about what works, for whom and under what circumstances. This allows evaluators to better develop and refine mid-level programme theories. However, this is only one phase in the process of developing and evaluating complex interventions. We describe and exemplify how social scientists can integrate realist principles across all phases of the Medical Research Council framework. Intervention development, modelling, and feasibility and pilot studies need to theorise the contextual conditions necessary for intervention mechanisms to be activated. Where interventions are scaled up and translated into routine practice, realist principles also have much to offer in facilitating knowledge about longer-term sustainability, benefits and harms. Integrating a realist approach across all phases of complex intervention science is vital for considering the feasibility and likely effects of interventions for different localities and population subgroups. PMID:27478401

  15. Computational Complexity and Human Decision-Making.

    PubMed

    Bossaerts, Peter; Murawski, Carsten

    2017-12-01

    The rationality principle postulates that decision-makers always choose the best action available to them. It underlies most modern theories of decision-making. The principle does not take into account the difficulty of finding the best option. Here, we propose that computational complexity theory (CCT) provides a framework for defining and quantifying the difficulty of decisions. We review evidence showing that human decision-making is affected by computational complexity. Building on this evidence, we argue that most models of decision-making, and metacognition, are intractable from a computational perspective. To be plausible, future theories of decision-making will need to take into account both the resources required for implementing the computations implied by the theory, and the resource constraints imposed on the decision-maker by biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A density functional theory study on the active center of Fe-only hydrogenase: characterization and electronic structure of the redox states.

    PubMed

    Liu, Zhi-Pan; Hu, P

    2002-05-08

    We have carried out extensive density functional theory (DFT) calculations for possible redox states of the active center in Fe-only hydrogenases. The active center is modeled by [(H(CH(3))S)(CO)(CN(-))Fe(p)(mu-DTN)(mu-CO)Fe(d)(CO)(CN(-))(L)](z)() (z is the net charge in the complex; Fe(p)= the proximal Fe, Fe(d) = the distal Fe, DTN = (-SCH(2)NHCH(2)S-), L is the ligand that bonds with the Fe(d) at the trans position to the bridging CO). Structures of possible redox states are optimized, and CO stretching frequencies are calculated. By a detailed comparison of all the calculated structures and the vibrational frequencies with the available experimental data, we find that (i) the fully oxidized, inactive state is an Fe(II)-Fe(II) state with a hydroxyl (OH(-)) group bonded at the Fe(d), (ii) the oxidized, active state is an Fe(II)-Fe(I) complex which is consistent with the assignment of Cao and Hall (J. Am. Chem. Soc. 2001, 123, 3734), and (iii) the fully reduced state is a mixture with the major component being a protonated Fe(I)-Fe(I) complex and the other component being its self-arranged form, Fe(II)-Fe(II) hydride. Our calculations also show that the exogenous CO can strongly bond with the Fe(II)-Fe(I) species, but cannot bond with the Fe(I)-Fe(I) complex. This result is consistent with experiments that CO tends to inhibit the oxidized, active state, but not the fully reduced state. The electronic structures of all the redox states have been analyzed. It is found that a frontier orbital which is a mixing state between the e(g) of Fe and the 2 pi of the bridging CO plays a key role concerning the reactivity of Fe-only hydrogenases: (i) it is unoccupied in the fully oxidized, inactive state, half-occupied in the oxidized, active state, and fully occupied in the fully reduced state; (ii) the e(g)-2 pi orbital is a bonding state, and this is the key reason for stability of the low oxidation states, such as Fe(I)-Fe(I) complexes; and (iii) in the e(g)-2 pi orbital more charge accumulates between the bridging CO and the Fe(d) than between the bridging CO and the Fe(p), and the occupation increase in this orbital will enhance the bonding between the bridging CO and the Fe(d), leading to the bridging-CO shift toward the Fe(d).

  17. Auditory Power-Law Activation Avalanches Exhibit a Fundamental Computational Ground State

    NASA Astrophysics Data System (ADS)

    Stoop, Ruedi; Gomez, Florian

    2016-07-01

    The cochlea provides a biological information-processing paradigm that we are only beginning to understand in its full complexity. Our work reveals an interacting network of strongly nonlinear dynamical nodes, on which even a simple sound input triggers subnetworks of activated elements that follow power-law size statistics ("avalanches"). From dynamical systems theory, power-law size distributions relate to a fundamental ground state of biological information processing. Learning destroys these power laws. These results strongly modify the models of mammalian sound processing and provide a novel methodological perspective for understanding how the brain processes information.

  18. Cosmic rays, solar activity, magnetic coupling, and lightning incidence

    NASA Technical Reports Server (NTRS)

    Ely, J. T. A.

    1984-01-01

    A theoretical model is presented and described that unifies the complex influence of several factors on spatial and temporal variation of lightning incidence. These factors include the cosmic radiation, solar activity, and coupling between geomagnetic and interplanetary (solar wind) magnetic fields. Atmospheric electrical conductivity in the 10 km region was shown to be the crucial parameter altered by these factors. The theory reconciles several large scale studies of lightning incidence previously misinterpreted or considered contradictory. The model predicts additional strong effects on variations in lightning incidence, but only small effects on the morphology and rate of thunderstorm development.

  19. Ethical perspectives in neuroscience nursing practice.

    PubMed

    Murphy, W J; Olsen, B J

    1999-09-01

    The role of neuroscience nurses in relation to ethical issues has become increasingly complex. Knowledge of ethical principles and theories assists the nurse in the development of a theoretical basis for resolution of ethical issues or concerns. Additionally, the nurse must possess information regarding practice codes or standards as well as legislative requirements. The nurse must act as an advocate for the patient and society through active participation in institutional ethics committees and legislative forums.

  20. Multi-Compartmentalisation in the MAPK Signalling Pathway Contributes to the Emergence of Oscillatory Behaviour and to Ultrasensitivity

    PubMed Central

    Shuaib, Aban; Hartwell, Adam; Kiss-Toth, Endre; Holcombe, Mike

    2016-01-01

    Signal transduction through the Mitogen Activated Protein Kinase (MAPK) pathways is evolutionarily highly conserved. Many cells use these pathways to interpret changes to their environment and respond accordingly. The pathways are central to triggering diverse cellular responses such as survival, apoptosis, differentiation and proliferation. Though the interactions between the different MAPK pathways are complex, nevertheless, they maintain a high level of fidelity and specificity to the original signal. There are numerous theories explaining how fidelity and specificity arise within this complex context; spatio-temporal regulation of the pathways and feedback loops are thought to be very important. This paper presents an agent based computational model addressing multi-compartmentalisation and how this influences the dynamics of MAPK cascade activation. The model suggests that multi-compartmentalisation coupled with periodic MAPK kinase (MAPKK) activation may be critical factors for the emergence of oscillation and ultrasensitivity in the system. Finally, the model also establishes a link between the spatial arrangements of the cascade components and temporal activation mechanisms, and how both contribute to fidelity and specificity of MAPK mediated signalling. PMID:27243235

  1. Multifractal Approach to the Analysis of Crime Dynamics: Results for Burglary in San Francisco

    NASA Astrophysics Data System (ADS)

    Melgarejo, Miguel; Obregon, Nelson

    This paper provides evidence of fractal, multifractal and chaotic behaviors in urban crime by computing key statistical attributes over a long data register of criminal activity. Fractal and multifractal analyses based on power spectrum, Hurst exponent computation, hierarchical power law detection and multifractal spectrum are considered ways to characterize and quantify the footprint of complexity of criminal activity. Moreover, observed chaos analysis is considered a second step to pinpoint the nature of the underlying crime dynamics. This approach is carried out on a long database of burglary activity reported by 10 police districts of San Francisco city. In general, interarrival time processes of criminal activity in San Francisco exhibit fractal and multifractal patterns. The behavior of some of these processes is close to 1/f noise. Therefore, a characterization as deterministic, high-dimensional, chaotic phenomena is viable. Thus, the nature of crime dynamics can be studied from geometric and chaotic perspectives. Our findings support that crime dynamics may be understood from complex systems theories like self-organized criticality or highly optimized tolerance.

  2. A SPATIALLY EXPLICIT HIERARCHICAL APPROACH TO MODELING COMPLEX ECOLOGICAL SYSTEMS: THEORY AND APPLICATIONS. (R827676)

    EPA Science Inventory

    Ecological systems are generally considered among the most complex because they are characterized by a large number of diverse components, nonlinear interactions, scale multiplicity, and spatial heterogeneity. Hierarchy theory, as well as empirical evidence, suggests that comp...

  3. Service quality and maturity of health care organizations through the lens of Complexity Leadership Theory.

    PubMed

    Horvat, Ana; Filipovic, Jovan

    2018-02-01

    This research focuses on Complexity Leadership Theory and the relationship between leadership-examined through the lens of Complexity Leadership Theory-and organizational maturity as an indicator of the performance of health organizations. The research adopts a perspective that conceptualizes organizations as complex adaptive systems and draws upon a survey of opinion of 189 managers working in Serbian health organizations. As the results indicate a dependency between functions of leadership and levels of the maturity of health organizations, we propose a model that connects the two. The study broadens our understanding of the implications of complexity thinking and its reflection on leadership functions and overall organizational performance. The correlations between leadership functions and maturity could have practical applications in policy processing, thus improving the quality of outcomes and the overall level of service quality. © 2017 John Wiley & Sons, Ltd.

  4. Interaction between transition metals and phenylalanine: a combined experimental and computational study.

    PubMed

    Elius Hossain, Md; Mahmudul Hasan, Md; Halim, M E; Ehsan, M Q; Halim, Mohammad A

    2015-03-05

    Some transition metal complexes of phenylalanine of general formula [M(C9H10NO2)2]; where M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) are prepared in aqueous medium and characterized by spectroscopic, thermo-gravimetric (TG) and magnetic susceptibility analysis. Density functional theory (DFT) has been employed calculating the equilibrium geometries and vibrational frequencies of those complexes at B3LYP level of theory using 6-31G(d) and SDD basis sets. In addition, frontier molecular orbital and time-dependent density functional theory (TD-DFT) calculations are performed with CAM-B3LYP/6-31+G(d,p) and B3LYP/SDD level of theories. Thermo-gravimetric analysis confirms the composition of the complexes by comparing the experimental and calculated data for C, H, N and metals. Experimental and computed IR results predict a significant change in vibrational frequencies of metal-phenylalanine complexes compared to free ligand. DFT calculation confirms that Mn, Co, Ni and Cu complexes form square planar structure whereas Zn adopts distorted tetrahedral geometry. The metal-oxygen bonds in the optimized geometry of all complexes are shorter compared to the metal-nitrogen bonds which is consistent with a previous study. Cation-binding energy, enthalpy and Gibbs free energy indicates that these complexes are thermodynamically stable. UV-vis and TD-DFT studies reveal that these complexes demonstrate representative metal-to-ligand charge transfer (MLCT) and d-d transitions bands. TG analysis and IR spectra of the metal complexes strongly support the absence of water in crystallization. Magnetic susceptibility data of the complexes exhibits that all except Zn(II) complex are high spin paramagnetic. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Bayesian inference and decision theory - A framework for decision making in natural resource management

    USGS Publications Warehouse

    Dorazio, R.M.; Johnson, F.A.

    2003-01-01

    Bayesian inference and decision theory may be used in the solution of relatively complex problems of natural resource management, owing to recent advances in statistical theory and computing. In particular, Markov chain Monte Carlo algorithms provide a computational framework for fitting models of adequate complexity and for evaluating the expected consequences of alternative management actions. We illustrate these features using an example based on management of waterfowl habitat.

  6. Nonlinear effects in evolution - an ab initio study: A model in which the classical theory of evolution occurs as a special case.

    PubMed

    Clerc, Daryl G

    2016-07-21

    An ab initio approach was used to study the molecular-level interactions that connect gene-mutation to changes in an organism׳s phenotype. The study provides new insights into the evolutionary process and presents a simplification whereby changes in phenotypic properties may be studied in terms of the binding affinities of the chemical interactions affected by mutation, rather than by correlation to the genes. The study also reports the role that nonlinear effects play in the progression of organs, and how those effects relate to the classical theory of evolution. Results indicate that the classical theory of evolution occurs as a special case within the ab initio model - a case having two attributes. The first attribute: proteins and promoter regions are not shared among organs. The second attribute: continuous limiting behavior exists in the physical properties of organs as well as in the binding affinity of the associated chemical interactions, with respect to displacements in the chemical properties of proteins and promoter regions induced by mutation. Outside of the special case, second-order coupling contributions are significant and nonlinear effects play an important role, a result corroborated by analyses of published activity levels in binding and transactivation assays. Further, gradations in the state of perfection of an organ may be small or large depending on the type of mutation, and not necessarily closely-separated as maintained by the classical theory. Results also indicate that organs progress with varying degrees of interdependence, the likelihood of successful mutation decreases with increasing complexity of the affected chemical system, and differences between the ab initio model and the classical theory increase with increasing complexity of the organism. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  7. Positive deviance: an elegant solution to a complex problem.

    PubMed

    Lindberg, Curt; Clancy, Thomas R

    2010-04-01

    As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 13th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. This article provides one example of how concepts taken from complex systems theory can be applied to real-world problems facing nurses today.

  8. Complexity leadership: a healthcare imperative.

    PubMed

    Weberg, Dan

    2012-01-01

    The healthcare system is plagued with increasing cost and poor quality outcomes. A major contributing factor for these issues is that outdated leadership practices, such as leader-centricity, linear thinking, and poor readiness for innovation, are being used in healthcare organizations. Complexity leadership theory provides a new framework with which healthcare leaders may practice leadership. Complexity leadership theory conceptualizes leadership as a continual process that stems from collaboration, complex systems thinking, and innovation mindsets. Compared to transactional and transformational leadership concepts, complexity leadership practices hold promise to improve cost and quality in health care. © 2012 Wiley Periodicals, Inc.

  9. Activation of Carbon-Hydrogen and Hydrogen-Hydrogen Bonds by Copper-Nitrenes: A Comparison of Density Functional Theory with Single- and Multireference Correlation Consistent Composite Approaches.

    PubMed

    Tekarli, Sammer M; Williams, T Gavin; Cundari, Thomas R

    2009-11-10

    The kinetics and thermodynamics of copper-mediated nitrene insertion into C-H and H-H bonds (the former of methane) have been studied using several levels of theory: B3LYP/6-311++G(d,p), B97-1/cc-pVTZ, PBE1KCIS/cc-pVTZ, and ccCA (correlation consistent Composite Approach). The results show no significant difference among the DFT methods. All three DFT methods predict the ground state of the copper-nitrene model complex, L'Cu(NH), to be a triplet, while single reference ccCA predicts the singlet to be the ground state. The contributions to the total ccCA energy indicate that the singlet state is favored at the MP2/CBS level of theory, while electron correlation beyond this level (CCSD(T)) favors a triplet state, resulting in a close energetic balance between the two states. A multireference ccCA method is applied to the nitrene active species and supports the assignment of a singlet ground state. In general, the largest difference in the model reaction cycles between DFT and ccCA methods is for processes involving radicals and bond dissociation.

  10. Quantum chemistry and TST study of the mechanism and kinetics of the butadiene and isoprene reactions with mercapto radicals

    NASA Astrophysics Data System (ADS)

    Francisco-Márquez, Misaela; Alvarez-Idaboy, J. Raul; Galano, Annia; Vivier-Bunge, Annik

    2008-03-01

    The reactions of isoprene and butadiene with SH rad radicals have been investigated by density functional theory and ab initio molecular orbital theories. We report the thermodynamics and kinetics of four different pathways, involving addition of SH rad radicals to all double-bonded carbon atoms. Calculations have been performed on all stationary points using BHandHLYP functional, Moller-Plesset perturbation theory to second-order (MP2) and the composite CBS-QB3 method at the MP2 optimized geometries and frequencies. Pre-reactive complexes have been identified. The apparent activation energies are negative for SH rad addition at the terminal carbon atoms and are slightly smaller than those for OH rad addition at the same positions. The calculated overall rate coefficient for butadiene + SH rad reaction at 298 K is in excellent agreement with the only available experimentally measured value. Activation energies and overall rate coefficients at different temperatures are predicted for the first time for butadiene + SH rad and isoprene + SH rad reactions. The reactions of butadiene and isoprene with SH rad radicals were found to be about four times faster than with OH rad radicals.

  11. Carbon-hydrogen vs. carbon-halogen oxidative addition of chlorobenzene by a neutral iridium complex explored by DFT.

    PubMed

    Wu, Hong; Hall, Michael B

    2009-08-14

    Density functional theory (DFT) is used to explore the competitive C-H and C-Cl oxidative additions (OA) of chlorobenzene to the neutral Ir(i) complex: (PNP)Ir(I) [PNP = bis(Z-2-(dimethylphosphino)vinyl)amino]. Consistent with experimental results, our calculation shows that C-H OA is kinetically favored with an activation free-energy barrier of DeltaG(double dagger) = 17.2 kcal mol(-1) that is significantly lower than that for the C-Cl activation at DeltaG(double dagger) = 24.2 kcal mol(-1). However, C-Cl OA is thermodynamically preferred and the C-Cl OA product is 22.6 kcal mol(-1) more stable than the most stable C-H OA product. The calculations also show that the lowest energy path for the conversion of the C-H OA product to the more stable C-Cl OA product is intramolecular through a "benzyne"-type intermediate.

  12. The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction.

    PubMed

    Casey, M

    1996-08-15

    Recurrent neural networks (RNNs) can learn to perform finite state computations. It is shown that an RNN performing a finite state computation must organize its state space to mimic the states in the minimal deterministic finite state machine that can perform that computation, and a precise description of the attractor structure of such systems is given. This knowledge effectively predicts activation space dynamics, which allows one to understand RNN computation dynamics in spite of complexity in activation dynamics. This theory provides a theoretical framework for understanding finite state machine (FSM) extraction techniques and can be used to improve training methods for RNNs performing FSM computations. This provides an example of a successful approach to understanding a general class of complex systems that has not been explicitly designed, e.g., systems that have evolved or learned their internal structure.

  13. Characterizing Adsorption Performance of Granular Activated Carbon with Permittivity.

    PubMed

    Yang, Yang; Shi, Chao; Zhang, Yi; Ye, Jinghua; Zhu, Huacheng; Huang, Kama

    2017-03-07

    A number of studies have achieved the consensus that microwave thermal technology can regenerate the granular activated carbon (GAC) more efficiently and energy-conservatively than other technologies. In particular, in the microwave heating industry, permittivity is a crucial parameter. This paper developed two equivalent models to establish the relationship between effective complex permittivity and pore volume of the GAC. It is generally based on Maxwell-Garnett approximation (MGA) theory. With two different assumptions in the model, two quantificational expressions were derived, respectively. Permittivity measurements and Brunauer-Emmett-Teller (BET) testing had been introduced in the experiments. Results confirmed the two expressions, which were extremely similar. Theoretical and experimental graphs were matched. This paper set up a bridge which links effective complex permittivity and pore volume of the GAC. Furthermore, it provides a potential and convenient method for the rapid assisted characterization of the GAC in its adsorption performance.

  14. Characterizing Adsorption Performance of Granular Activated Carbon with Permittivity

    PubMed Central

    Yang, Yang; Shi, Chao; Zhang, Yi; Ye, Jinghua; Zhu, Huacheng; Huang, Kama

    2017-01-01

    A number of studies have achieved the consensus that microwave thermal technology can regenerate the granular activated carbon (GAC) more efficiently and energy-conservatively than other technologies. In particular, in the microwave heating industry, permittivity is a crucial parameter. This paper developed two equivalent models to establish the relationship between effective complex permittivity and pore volume of the GAC. It is generally based on Maxwell-Garnett approximation (MGA) theory. With two different assumptions in the model, two quantificational expressions were derived, respectively. Permittivity measurements and Brunauer–Emmett–Teller (BET) testing had been introduced in the experiments. Results confirmed the two expressions, which were extremely similar. Theoretical and experimental graphs were matched. This paper set up a bridge which links effective complex permittivity and pore volume of the GAC. Furthermore, it provides a potential and convenient method for the rapid assisted characterization of the GAC in its adsorption performance. PMID:28772628

  15. [Diagnosis and the technology for optimizing the medical support of a troop unit].

    PubMed

    Korshever, N G; Polkovov, S V; Lavrinenko, O V; Krupnov, P A; Anastasov, K N

    2000-05-01

    The work is devoted to investigation of the system of military unit medical support with the use of principles and states of organizational diagnosis; development of the method allowing to assess its functional activity; and determination of optimization trends. Basing on the conducted organizational diagnosis and expert inquiry the informative criteria were determined which characterize the stages of functioning of the military unit medical support system. To evaluate the success of military unit medical support the complex multi-criteria pattern was developed and algorithm of this process optimization was substantiated. Using the results obtained, particularly realization of principles and states of decision taking theory in machine program it is possible to solve more complex problem of comparison between any number of military units: to dispose them according to priority decrease; to select the programmed number of the best and worst; to determine the trends of activity optimization in corresponding medical service personnel.

  16. The theory of expanded, extended, and enhanced opportunities for youth physical activity promotion.

    PubMed

    Beets, Michael W; Okely, Anthony; Weaver, R Glenn; Webster, Collin; Lubans, David; Brusseau, Tim; Carson, Russ; Cliff, Dylan P

    2016-11-16

    Physical activity interventions targeting children and adolescents (≤18 years) often focus on complex intra- and inter-personal behavioral constructs, social-ecological frameworks, or some combination of both. Recently published meta-analytical reviews and large-scale randomized controlled trials have demonstrated that these intervention approaches have largely produced minimal or no improvements in young people's physical activity levels. In this paper, we propose that the main reason for previous studies' limited effects is that fundamental mechanisms that lead to change in youth physical activity have often been overlooked or misunderstood. Evidence from observational and experimental studies is presented to support the development of a new theory positing that the primary mechanisms of change in many youth physical activity interventions are approaches that fall into one of the following three categories: (a) the expansion of opportunities for youth to be active by the inclusion of a new occasion to be active, (b) the extension of an existing physical activity opportunity by increasing the amount of time allocated for that opportunity, and/or (c) the enhancement of existing physical activity opportunities through strategies designed to increase physical activity above routine practice. Their application and considerations for intervention design and interpretation are presented. The utility of these mechanisms, referred to as the Theory of Expanded, Extended, and Enhanced Opportunities (TEO), is demonstrated in their parsimony, logical appeal, support with empirical evidence, and the direct and immediate application to numerous settings and contexts. The TEO offers a new way to understand youth physical activity behaviors and provides a common taxonomy by which interventionists can identify appropriate targets for interventions across different settings and contexts. We believe the formalization of the TEO concepts will propel them to the forefront in the design of future intervention studies and through their use, lead to a greater impact on youth activity behaviors than what has been demonstrated in previous studies.

  17. Complex Intelligent Systems: Juxtaposition of Foundational Notions and a Research Agenda

    NASA Astrophysics Data System (ADS)

    Gelepithis, Petros A.

    2001-11-01

    The cardinality of the class, C , of complex intelligent systems, i.e., systems of intelligent systems and their resources, is steadily increasing. Such an increase, whether designed, sometimes changes significantly and fundamentally, the structure of C . Recently,the study of members of C and its structure comes under a variety of multidisciplinary headings the most prominent of which include General Systems Theory, Complexity Science, Artificial Life, and Cybernetics. Their common characteristic is the quest for a unified theory of a certain class of systems like a living system or an organisation. So far, the only candidate for a general theory of intelligent systems is Newell's Soar. To my knowledge there is presently no candidate theory of C except Newell's claimed extensibility of Soar. This paper juxtaposes the elements of Newell's conceptual basis with those of an alternative conceptual framework based on the thesis that communication and understanding are the primary processes shaping the structure of C and its members. It is patently obvious that a research agenda for the study of C can be extremely varied and long. The third section of this paper presents a highly selective research agenda that aims to provoke discussion among complexity theory scientists.

  18. Activity matters: a web-based resource to enable people with multiple sclerosis to become more active.

    PubMed

    Casey, Blathin; Coote, Susan; Byrne, Molly

    2018-03-27

    Increasing physical activity (PA) through exercise is associated with improvements in many of the symptoms associated with multiple sclerosis (MS) such as fatigue, strength, balance, and mobility. Despite this, people with MS remain largely inactive. Interventions that are grounded in theory and that aim to change PA behavior need to be developed. The purpose of this study was to describe the development process of a web-based resource, namely, "Activity Matters," to enable people with MS to become more active. Development of the "Activity Matters" online intervention was guided by the UK's Medical Research Council (MRC) framework for the development and evaluation of complex interventions and the behavior change wheel (BCW). Seven sources of data were used to inform the process and were mapped on to both the MRC and BCW frameworks. The intervention is theoretically based, and constructs including knowledge, memory, attention and decision processes, skills, social influences, environmental context and resources, beliefs about capabilities, beliefs about consequences, goals, and emotions were recognized as important. "Activity Matters" is the first MS PA intervention to be developed using the theoretical approach outlined by the BCW and MRC complex interventions frameworks. The next phase of this work is to test the usability, acceptability, and preliminary effectiveness of "Activity Matters" among people with MS.

  19. Characterization of Combustion Dynamics, Detection, and Prevention of an Unstable Combustion State Based on a Complex-Network Theory

    NASA Astrophysics Data System (ADS)

    Gotoda, Hiroshi; Kinugawa, Hikaru; Tsujimoto, Ryosuke; Domen, Shohei; Okuno, Yuta

    2017-04-01

    Complex-network theory has attracted considerable attention for nearly a decade, and it enables us to encompass our understanding of nonlinear dynamics in complex systems in a wide range of fields, including applied physics and mechanical, chemical, and electrical engineering. We conduct an experimental study using a pragmatic online detection methodology based on complex-network theory to prevent a limiting unstable state such as blowout in a confined turbulent combustion system. This study introduces a modified version of the natural visibility algorithm based on the idea of a visibility limit to serve as a pragmatic online detector. The average degree of the modified version of the natural visibility graph allows us to detect the onset of blowout, resulting in online prevention.

  20. Traditional Chinese medicine: potential approaches from modern dynamical complexity theories.

    PubMed

    Ma, Yan; Zhou, Kehua; Fan, Jing; Sun, Shuchen

    2016-03-01

    Despite the widespread use of traditional Chinese medicine (TCM) in clinical settings, proving its effectiveness via scientific trials is still a challenge. TCM views the human body as a complex dynamical system, and focuses on the balance of the human body, both internally and with its external environment. Such fundamental concepts require investigations using system-level quantification approaches, which are beyond conventional reductionism. Only methods that quantify dynamical complexity can bring new insights into the evaluation of TCM. In a previous article, we briefly introduced the potential value of Multiscale Entropy (MSE) analysis in TCM. This article aims to explain the existing challenges in TCM quantification, to introduce the consistency of dynamical complexity theories and TCM theories, and to inspire future system-level research on health and disease.

  1. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    PubMed

    Qi, Jinpeng; Ding, Yongsheng; Zhu, Ying; Wu, Yizhi

    2011-01-01

    Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR) by using mathematical framework of kinetic theory of active particles (KTAP). Firstly, we focus on illustrating the profile of Cellular Repair System (CRS) instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs) and Repair Protein (RP) generating, DSB-protein complexes (DSBCs) synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  2. Using complexity science and negotiation theory to resolve boundary-crossing water issues

    NASA Astrophysics Data System (ADS)

    Islam, Shafiqul; Susskind, Lawrence

    2018-07-01

    Many water governance and management issues are complex. The complexity of these issues is related to crossing of multiple boundaries: political, social and jurisdictional, as well as physical, ecological and biogeochemical. Resolution of these issues usually requires interactions of many parties with conflicting values and interests operating across multiple boundaries and scales to make decisions. The interdependence and feedback among interacting variables, processes, actors and institutions are hard to model and difficult to forecast. Thus, decision-making related to complex water problems needs be contingent and adaptive. This paper draws on a number of ideas from complexity science and negotiation theory that may make it easier to cope with the complexities and difficulties of managing boundary crossing water disputes. It begins with the Water Diplomacy Framework that was developed and tested over the past several years. Then, it uses three key ideas from complexity science (interdependence and interconnectedness; uncertainty and feedback; emergence and adaptation) and three from negotiation theory (stakeholder identification and engagement; joint fact finding; and value creation through option generation) to show how application of these ideas can help enhance effectiveness of water management.

  3. Type synthesis for 4-DOF parallel press mechanism using GF set theory

    NASA Astrophysics Data System (ADS)

    He, Jun; Gao, Feng; Meng, Xiangdun; Guo, Weizhong

    2015-07-01

    Parallel mechanisms is used in the large capacity servo press to avoid the over-constraint of the traditional redundant actuation. Currently, the researches mainly focus on the performance analysis for some specific parallel press mechanisms. However, the type synthesis and evaluation of parallel press mechanisms is seldom studied, especially for the four degrees of freedom(DOF) press mechanisms. The type synthesis of 4-DOF parallel press mechanisms is carried out based on the generalized function(GF) set theory. Five design criteria of 4-DOF parallel press mechanisms are firstly proposed. The general procedure of type synthesis of parallel press mechanisms is obtained, which includes number synthesis, symmetrical synthesis of constraint GF sets, decomposition of motion GF sets and design of limbs. Nine combinations of constraint GF sets of 4-DOF parallel press mechanisms, ten combinations of GF sets of active limbs, and eleven combinations of GF sets of passive limbs are synthesized. Thirty-eight kinds of press mechanisms are presented and then different structures of kinematic limbs are designed. Finally, the geometrical constraint complexity( GCC), kinematic pair complexity( KPC), and type complexity( TC) are proposed to evaluate the press types and the optimal press type is achieved. The general methodologies of type synthesis and evaluation for parallel press mechanism are suggested.

  4. The future (and past) of quantum theory after the Higgs boson: a quantum-informational viewpoint.

    PubMed

    Plotnitsky, Arkady

    2016-05-28

    Taking as its point of departure the discovery of the Higgs boson, this article considers quantum theory, including quantum field theory, which predicted the Higgs boson, through the combined perspective of quantum information theory and the idea of technology, while also adopting anon-realistinterpretation, in 'the spirit of Copenhagen', of quantum theory and quantum phenomena themselves. The article argues that the 'events' in question in fundamental physics, such as the discovery of the Higgs boson (a particularly complex and dramatic, but not essentially different, case), are made possible by the joint workings of three technologies: experimental technology, mathematical technology and, more recently, digital computer technology. The article will consider the role of and the relationships among these technologies, focusing on experimental and mathematical technologies, in quantum mechanics (QM), quantum field theory (QFT) and finite-dimensional quantum theory, with which quantum information theory has been primarily concerned thus far. It will do so, in part, by reassessing the history of quantum theory, beginning with Heisenberg's discovery of QM, in quantum-informational and technological terms. This history, the article argues, is defined by the discoveries of increasingly complex configurations of observed phenomena and the emergence of the increasingly complex mathematical formalism accounting for these phenomena, culminating in the standard model of elementary-particle physics, defining the current state of QFT. © 2016 The Author(s).

  5. TOWARD A THEORY OF SUSTAINABLE SYSTEMS

    EPA Science Inventory

    While there is tremendous interest in sustainability, a fundamental theory of sustainability does not exist. We present our efforts at constructing such a theory using Physics, Information Theory, Economics and Ecology. We discuss the state of complex sustainable systems that i...

  6. Coulomb branches with complex singularities

    NASA Astrophysics Data System (ADS)

    Argyres, Philip C.; Martone, Mario

    2018-06-01

    We construct 4d superconformal field theories (SCFTs) whose Coulomb branches have singular complex structures. This implies, in particular, that their Coulomb branch coordinate rings are not freely generated. Our construction also gives examples of distinct SCFTs which have identical moduli space (Coulomb, Higgs, and mixed branch) geometries. These SCFTs thus provide an interesting arena in which to test the relationship between moduli space geometries and conformal field theory data. We construct these SCFTs by gauging certain discrete global symmetries of N = 4 superYang-Mills (sYM) theories. In the simplest cases, these discrete symmetries are outer automorphisms of the sYM gauge group, and so these theories have lagrangian descriptions as N = 4 sYM theories with disconnected gauge groups.

  7. The activation strain model and molecular orbital theory

    PubMed Central

    Wolters, Lando P; Bickelhaupt, F Matthias

    2015-01-01

    The activation strain model is a powerful tool for understanding reactivity, or inertness, of molecular species. This is done by relating the relative energy of a molecular complex along the reaction energy profile to the structural rigidity of the reactants and the strength of their mutual interactions: ΔE(ζ) = ΔEstrain(ζ) + ΔEint(ζ). We provide a detailed discussion of the model, and elaborate on its strong connection with molecular orbital theory. Using these approaches, a causal relationship is revealed between the properties of the reactants and their reactivity, e.g., reaction barriers and plausible reaction mechanisms. This methodology may reveal intriguing parallels between completely different types of chemical transformations. Thus, the activation strain model constitutes a unifying framework that furthers the development of cross-disciplinary concepts throughout various fields of chemistry. We illustrate the activation strain model in action with selected examples from literature. These examples demonstrate how the methodology is applied to different research questions, how results are interpreted, and how insights into one chemical phenomenon can lead to an improved understanding of another, seemingly completely different chemical process. WIREs Comput Mol Sci 2015, 5:324–343. doi: 10.1002/wcms.1221 PMID:26753009

  8. Active measurement-based quantum feedback for preparing and stabilizing superpositions of two cavity photon number states

    NASA Astrophysics Data System (ADS)

    Berube-Lauziere, Yves

    The measurement-based quantum feedback scheme developed and implemented by Haroche and collaborators to actively prepare and stabilize specific photon number states in cavity quantum electrodynamics (CQED) is a milestone achievement in the active protection of quantum states from decoherence. This feat was achieved by injecting, after each weak dispersive measurement of the cavity state via Rydberg atoms serving as cavity sensors, a low average number classical field (coherent state) to steer the cavity towards the targeted number state. This talk will present the generalization of the theory developed for targeting number states in order to prepare and stabilize desired superpositions of two cavity photon number states. Results from realistic simulations taking into account decoherence and imperfections in a CQED set-up will be presented. These demonstrate the validity of the generalized theory and points to the experimental feasibility of preparing and stabilizing such superpositions. This is a further step towards the active protection of more complex quantum states than number states. This work, cast in the context of CQED, is also almost readily applicable to circuit QED. YBL acknowledges financial support from the Institut Quantique through a Canada First Research Excellence Fund.

  9. Combining Flux Balance and Energy Balance Analysis for Large-Scale Metabolic Network: Biochemical Circuit Theory for Analysis of Large-Scale Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Beard, Daniel A.; Liang, Shou-Dan; Qian, Hong; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Predicting behavior of large-scale biochemical metabolic networks represents one of the greatest challenges of bioinformatics and computational biology. Approaches, such as flux balance analysis (FBA), that account for the known stoichiometry of the reaction network while avoiding implementation of detailed reaction kinetics are perhaps the most promising tools for the analysis of large complex networks. As a step towards building a complete theory of biochemical circuit analysis, we introduce energy balance analysis (EBA), which compliments the FBA approach by introducing fundamental constraints based on the first and second laws of thermodynamics. Fluxes obtained with EBA are thermodynamically feasible and provide valuable insight into the activation and suppression of biochemical pathways.

  10. An Applied Ecological Framework for Evaluating Infrastructure to Promote Walking and Cycling: The iConnect Study

    PubMed Central

    Bull, Fiona; Powell, Jane; Cooper, Ashley R.; Brand, Christian; Mutrie, Nanette; Preston, John; Rutter, Harry

    2011-01-01

    Improving infrastructure for walking and cycling is increasingly recommended as a means to promote physical activity, prevent obesity, and reduce traffic congestion and carbon emissions. However, limited evidence from intervention studies exists to support this approach. Drawing on classic epidemiological methods, psychological and ecological models of behavior change, and the principles of realistic evaluation, we have developed an applied ecological framework by which current theories about the behavioral effects of environmental change may be tested in heterogeneous and complex intervention settings. Our framework guides study design and analysis by specifying the most important data to be collected and relations to be tested to confirm or refute specific hypotheses and thereby refine the underlying theories. PMID:21233429

  11. An introduction to orbit dynamics and its application to satellite-based earth monitoring systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. R.

    1977-01-01

    The long term behavior of satellites is studied at a level of complexity suitable for the initial planning phases of earth monitoring missions. First-order perturbation theory is used to describe in detail the basic orbit dynamics of satellite motion around the earth and relative to the sun. Surface coverage capabilities of satellite orbits are examined. Several examples of simulated observation and monitoring missions are given to illustrate representative applications of the theory. The examples stress the need for devising ways of maximizing total mission output in order to make the best possible use of the resultant data base as input to those large-scale, long-term earth monitoring activities which can best justify the use of satellite systems.

  12. A Simplified Approach to Risk Assessment Based on System Dynamics: An Industrial Case Study.

    PubMed

    Garbolino, Emmanuel; Chery, Jean-Pierre; Guarnieri, Franck

    2016-01-01

    Seveso plants are complex sociotechnical systems, which makes it appropriate to support any risk assessment with a model of the system. However, more often than not, this step is only partially addressed, simplified, or avoided in safety reports. At the same time, investigations have shown that the complexity of industrial systems is frequently a factor in accidents, due to interactions between their technical, human, and organizational dimensions. In order to handle both this complexity and changes in the system over time, this article proposes an original and simplified qualitative risk evaluation method based on the system dynamics theory developed by Forrester in the early 1960s. The methodology supports the development of a dynamic risk assessment framework dedicated to industrial activities. It consists of 10 complementary steps grouped into two main activities: system dynamics modeling of the sociotechnical system and risk analysis. This system dynamics risk analysis is applied to a case study of a chemical plant and provides a way to assess the technological and organizational components of safety. © 2016 Society for Risk Analysis.

  13. Anticancer activity of metal complexes: involvement of redox processes.

    PubMed

    Jungwirth, Ute; Kowol, Christian R; Keppler, Bernhard K; Hartinger, Christian G; Berger, Walter; Heffeter, Petra

    2011-08-15

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of "activation by reduction" as well as the "hard and soft acids and bases" theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology.

  14. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    PubMed Central

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  15. Lanthanide and transition metal complexes of bioactive coumarins: molecular modeling and spectroscopic studies.

    PubMed

    Georgieva, I; Mihaylov, Tz; Trendafilova, N

    2014-06-01

    The present paper summarizes theoretical and spectroscopic investigations on a series of active coumarins and their lanthanide and transition metal complexes with application in medicine and pharmacy. Molecular modeling as well as IR, Raman, NMR and electronic spectral simulations at different levels of theory were performed to obtain important molecular descriptors: total energy, formation energy, binding energy, stability, conformations, structural parameters, electron density distribution, molecular electrostatic potential, Fukui functions, atomic charges, and reactive indexes. The computations are performed both in gas phase and in solution with consideration of the solvent effect on the molecular structural and energetic parameters. The investigations have shown that the advanced computational methods are reliable for prediction of the metal-coumarin binding mode, electron density distribution, thermodynamic properties as well as the strength and nature of the metal-coumarin interaction (not experimentally accessible) and correctly interpret the experimental spectroscopic data. Known results from biological tests for cytotoxic, antimicrobial, anti-fungal, spasmolytic and anti-HIV activities on the studied metal complexes are reported and discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Hydride oxidation from a titanium–aluminum bimetallic complex: insertion, thermal and electrochemical reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Alexandra C.; Altman, Alison B.; Lohrey, Trevor D.

    We report the synthesis and reactivity of paramagnetic heterometallic complexes containing a Ti(III)-μ-H-Al(III) moiety. Combining different stoichiometries amounts of Cp 2TiCl and KH 3AlC(TMS) 3 (Cp = cyclopentadienyl, TMS = trimethylsilyl) resulted in the formation of either bimetallic Cp 2Ti(μ-H) 2(H)AlC(TMS) 3 (2) or trimetallic (Cp 2Ti) 2(μ-H) 3(H)AlC(TMS) 3 (3) via salt metathesis pathways. While these complexes were indefinitely stable at room temperature, the bridging hydrides were readily activated upon exposure to heteroallenes, heating, or electrochemical oxidation. In each case, formal hydride oxidation occurred, but the isolated product maintained the +3 oxidation state at both metal centers. The naturemore » of this reactivity was explored using deuterium labelling experiments and Density Functional Theory (DFT) calculations. It was found that while C–H activation from the Ti(III) bimetallic may occur through a σ-bond metathesis pathway, chemical oxidation to Ti(IV) promotes bimolecular reductive elimination of dihydrogen to form a Ti(III) product.« less

  17. Hydride oxidation from a titanium–aluminum bimetallic complex: insertion, thermal and electrochemical reactivity

    DOE PAGES

    Brown, Alexandra C.; Altman, Alison B.; Lohrey, Trevor D.; ...

    2017-05-31

    We report the synthesis and reactivity of paramagnetic heterometallic complexes containing a Ti(III)-μ-H-Al(III) moiety. Combining different stoichiometries amounts of Cp 2TiCl and KH 3AlC(TMS) 3 (Cp = cyclopentadienyl, TMS = trimethylsilyl) resulted in the formation of either bimetallic Cp 2Ti(μ-H) 2(H)AlC(TMS) 3 (2) or trimetallic (Cp 2Ti) 2(μ-H) 3(H)AlC(TMS) 3 (3) via salt metathesis pathways. While these complexes were indefinitely stable at room temperature, the bridging hydrides were readily activated upon exposure to heteroallenes, heating, or electrochemical oxidation. In each case, formal hydride oxidation occurred, but the isolated product maintained the +3 oxidation state at both metal centers. The naturemore » of this reactivity was explored using deuterium labelling experiments and Density Functional Theory (DFT) calculations. It was found that while C–H activation from the Ti(III) bimetallic may occur through a σ-bond metathesis pathway, chemical oxidation to Ti(IV) promotes bimolecular reductive elimination of dihydrogen to form a Ti(III) product.« less

  18. Investigation on Law and Economics Based on Complex Network and Time Series Analysis.

    PubMed

    Yang, Jian; Qu, Zhao; Chang, Hui

    2015-01-01

    The research focuses on the cooperative relationship and the strategy tendency among three mutually interactive parties in financing: small enterprises, commercial banks and micro-credit companies. Complex network theory and time series analysis were applied to figure out the quantitative evidence. Moreover, this paper built up a fundamental model describing the particular interaction among them through evolutionary game. Combining the results of data analysis and current situation, it is justifiable to put forward reasonable legislative recommendations for regulations on lending activities among small enterprises, commercial banks and micro-credit companies. The approach in this research provides a framework for constructing mathematical models and applying econometrics and evolutionary game in the issue of corporation financing.

  19. Molecular Knots

    PubMed Central

    Fielden, Stephen D. P.; Woltering, Steffen L.

    2017-01-01

    Abstract The first synthetic molecular trefoil knot was prepared in the late 1980s. However, it is only in the last few years that more complex small‐molecule knot topologies have been realized through chemical synthesis. The steric restrictions imposed on molecular strands by knotting can impart significant physical and chemical properties, including chirality, strong and selective ion binding, and catalytic activity. As the number and complexity of accessible molecular knot topologies increases, it will become increasingly useful for chemists to adopt the knot terminology employed by other disciplines. Here we give an overview of synthetic strategies towards molecular knots and outline the principles of knot, braid, and tangle theory appropriate to chemistry and molecular structure. PMID:28477423

  20. Study of the neural dynamics for understanding communication in terms of complex hetero systems.

    PubMed

    Tsuda, Ichiro; Yamaguchi, Yoko; Hashimoto, Takashi; Okuda, Jiro; Kawasaki, Masahiro; Nagasaka, Yasuo

    2015-01-01

    The purpose of the research project was to establish a new research area named "neural information science for communication" by elucidating its neural mechanism. The research was performed in collaboration with applied mathematicians in complex-systems science and experimental researchers in neuroscience. The project included measurements of brain activity during communication with or without languages and analyses performed with the help of extended theories for dynamical systems and stochastic systems. The communication paradigm was extended to the interactions between human and human, human and animal, human and robot, human and materials, and even animal and animal. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  1. Deconstructing zero: resurgence, supersymmetry and complex saddles

    DOE PAGES

    Dunne, Gerald V.; Ünsal, Mithat

    2016-12-01

    We explain how a vanishing, or truncated, perturbative expansion, such as often arises in semi-classically tractable supersymmetric theories, can nevertheless be related to fluctuations about non-perturbative sectors via resurgence. We also demonstrate that, in the same class of theories, the vanishing of the ground state energy (unbroken supersymmetry) can be attributed to the cancellation between a real saddle and a complex saddle (with hidden topological angle π), and positivity of the ground state energy (broken supersymmetry) can be interpreted as the dominance of complex saddles. In either case, despite the fact that the ground state energy is zero to allmore » orders in perturbation theory, all orders of fluctuations around non-perturbative saddles are encoded in the perturbative E (N, g). Finally, we illustrate these ideas with examples from supersymmetric quantum mechanics and quantum field theory.« less

  2. Therapeutic Jurisprudence in Health Research: Enlisting Legal Theory as a Methodological Guide in an Interdisciplinary Case Study of Mental Health and Criminal Law.

    PubMed

    Ferrazzi, Priscilla; Krupa, Terry

    2015-09-01

    Studies that seek to understand and improve health care systems benefit from qualitative methods that employ theory to add depth, complexity, and context to analysis. Theories used in health research typically emerge from social science, but these can be inadequate for studying complex health systems. Mental health rehabilitation programs for criminal courts are complicated by their integration within the criminal justice system and by their dual health-and-justice objectives. In a qualitative multiple case study exploring the potential for these mental health court programs in Arctic communities, we assess whether a legal theory, known as therapeutic jurisprudence, functions as a useful methodological theory. Therapeutic jurisprudence, recruited across discipline boundaries, succeeds in guiding our qualitative inquiry at the complex intersection of mental health care and criminal law by providing a framework foundation for directing the study's research questions and the related propositions that focus our analysis. © The Author(s) 2014.

  3. Anti-inflammatory drugs interacting with Zn (II) metal ion based on thiocyanate and azide ligands: synthesis, spectroscopic studies, DFT calculations and antibacterial assays.

    PubMed

    Chiniforoshan, Hossein; Tabrizi, Leila; Hadizade, Morteza; Sabzalian, Mohammad R; Chermahini, Alireza Najafi; Rezapour, Mehdi

    2014-07-15

    Zinc (II) complexes with non-steroidal anti-inflammatory drugs (NSAIDs) naproxen (nap) and ibuprofen (ibu) were synthesized in the presence of nitrogen donor ligands (thiocyanate or azide). The complexes were characterized by elemental analysis, FT-IR, (1)H NMR and UV-Vis spectroscopes. The binding modes of the ligands in complexes were established by means of molecular modeling of the complexes, and calculation of their IR, NMR and absorption spectra at DFT (TDDFT)/B3LYP level were studied. The experimental and calculated data verified monodentate binding through the carboxylic oxygen atoms of anti-inflammatory drugs in the zinc complexes. The calculated (1)H, FT-IR and UV-Vis data are in better agreement with the experimental results, and confirm the predicted tetrahedral structures for the Zn (II) complexes. In addition to DFT calculations of complexes, natural bond orbital (NBO) was performed at B3LYP/6-31+G(d,p) level of theory. Biological studies showed the antibacterial activity of zinc complexes against Gram-positive and Gram-negative bacterial strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Cadmium (II) macrocyclic Schiff-base complexes containing piperazine moiety: Synthesis, spectroscopic, X-ray structure, theoretical and antibacterial studies

    NASA Astrophysics Data System (ADS)

    Keypour, Hassan; Mahmoudabadi, Masoumeh; Shooshtari, Amir; Bayat, Mehdi; Mohsenzadeh, Fariba; Gable, Robert William

    2018-03-01

    The new Cd(II) macrocyclic Schiff-base complexes were prepared via the metal templated [1 + 1] cyclocondensation of 2,2'-(piperazine-1,4-diylbis (methylene))dianiline (A) and 2,6-pyridinedicarbaldehyde or 2,6-diacetylpyridine. The products were characterized by elemental analysis, mass spectrometry and spectroscopic methods such as: FT-IR, 1H and 13C-NMR, the crystal structure of [CdL1(ClO4)2](CH3CN) (1) complex was also obtained by single-crystal X-ray crystallography. The complexes were tested for in vitro antibacterial properties against some bacteria. The complexes had antibacterial properties and in some cases were active even more than standards. The geometries of the [CdLn (ClO4)2], (n = 1,2) complexes have been optimized at the BP86/def2-SVP level of theory. Also the nature of Cd←Ln (n = 1, 2) bonds in [CdLn (ClO4)2], (n = 1,2) complexes are studied with the help of NBO and Energy decomposition analysis (EDA). Results showed that the nature of metal-ligand bond in the complexes is slightly more electrostatic with a contribution of about 52% in total interaction energy.

  5. Unexpected formation of chiral pincer CNN nickel complexes with β-diketiminato type ligands via C-H activation: synthesis, properties, structures, and computational studies.

    PubMed

    Lu, Zhengliang; Abbina, Srinivas; Sabin, Jared R; Nemykin, Victor N; Du, Guodong

    2013-02-04

    Reaction of lithiated chiral, unsymmetric β-diketimine type ligands HL(2a-e) containing oxazoline moiety (HL(2a-e) = 2-(2'-R(1)NH)-phenyl-4-R(2)-oxazoline) with trans-NiCl(Ph)(PPh(3))(2) afforded a series of new chiral CNN pincer type nickel complexes (3a-3e) via an unexpected cyclometalation at benzylic or aryl C-H positions. Single crystal X-ray diffraction analysis established the pincer coordination mode and the strained conformation. Chirality, and in one case, racemization of the target nickel complexes were confirmed by circular dichroism (CD) spectroscopy. Electronic structure and band assignments in experimental UV-vis and CD spectra were discussed on the basis of Density Functional Theory (DFT) and time-dependent (TD) DFT calculations.

  6. Networks as systems.

    PubMed

    Best, Allan; Berland, Alex; Greenhalgh, Trisha; Bourgeault, Ivy L; Saul, Jessie E; Barker, Brittany

    2018-03-19

    Purpose The purpose of this paper is to present a case study of the World Health Organization's Global Healthcare Workforce Alliance (GHWA). Based on a commissioned evaluation of GHWA, it applies network theory and key concepts from systems thinking to explore network emergence, effectiveness, and evolution to over a ten-year period. The research was designed to provide high-level strategic guidance for further evolution of global governance in human resources for health (HRH). Design/methodology/approach Methods included a review of published literature on HRH governance and current practice in the field and an in-depth case study whose main data sources were relevant GHWA background documents and key informant interviews with GHWA leaders, staff, and stakeholders. Sampling was purposive and at a senior level, focusing on board members, executive directors, funders, and academics. Data were analyzed thematically with reference to systems theory and Shiffman's theory of network development. Findings Five key lessons emerged: effective management and leadership are critical; networks need to balance "tight" and "loose" approaches to their structure and processes; an active communication strategy is key to create and maintain support; the goals, priorities, and membership must be carefully focused; and the network needs to support shared measurement of progress on agreed-upon goals. Shiffman's middle-range network theory is a useful tool when guided by the principles of complex systems that illuminate dynamic situations and shifting interests as global alliances evolve. Research limitations/implications This study was implemented at the end of the ten-year funding cycle. A more continuous evaluation throughout the term would have provided richer understanding of issues. Experience and perspectives at the country level were not assessed. Practical implications Design and management of large, complex networks requires ongoing attention to key issues like leadership, and flexible structures and processes to accommodate the dynamic reality of these networks. Originality/value This case study builds on growing interest in the role of networks to foster large-scale change. The particular value rests on the longitudinal perspective on the evolution of a large, complex global network, and the use of theory to guide understanding.

  7. Theory testing in prehistoric North America: fruits of one of the world's great archeological natural laboratories.

    PubMed

    Bingham, Paul M; Souza, Joanne

    2013-01-01

    This paper has several interconnected goals. First and most generally, we will review the project represented by the papers in this dedicated issue and the SAA Symposium (2012) on Social Complexity and the Bow. This project centers on the ever-stronger and broader theory testing now becoming feasible in archeology and anthropology, in this case exploiting the unique natural laboratory represented by what we refer to as the North American Neolithic transitions. Second, we will strive to synopsize the papers in this issue as opportunities to falsify two general theories of the cause of increases in social complexity associated with the North American Neolithic: warfare and social coercion theories.(1) We argue that, though much work remains to be done, the current evidence supports one of the central predictions of both these theories, that the local arrival of elite bow technology was a central driver of local transitions to increased social complexity. This conclusion, if ultimately verified, has profound implications for the possibility of general theories of history. Third, we will argue that several important details of this evidence falsify warfare theory and support (fail to falsify) social coercion theory (the authors' favored perspective). Moreover, several potential falsifications of social coercion theory are amenable to alternative interpretations, leading to new falsifiable predictions. Finally, we discuss how interactions with our colleagues in this project produced new insights into several details of the predictions of social coercion theory, improving our interpretative capacity. Copyright © 2013 Wiley Periodicals, Inc.

  8. In vitro antitumor activity, metal uptake and reactivity with ascorbic acid and BSA of some gold(III) complexes with N,N'-ethylenediamine bidentate ester ligands.

    PubMed

    Pantelić, Nebojša; Zmejkovski, Bojana B; Kolundžija, Branka; Crnogorac, Marija Đorđić; Vujić, Jelena M; Dojčinović, Biljana; Trifunović, Srećko R; Stanojković, Tatjana P; Sabo, Tibor J; Kaluđerović, Goran N

    2017-07-01

    Four novel gold(III) complexes of general formulae [AuCl 2 {(S,S)-R 2 eddl}]PF 6 (R 2 eddl=O,O'-dialkyl-(S,S)-ethylenediamine-N,N'-di-2-(4-methyl)pentanoate, R=n-Pr, n-Bu, n-Pe, i-Bu; 1-4, respectively), were synthesized and characterized by elemental analysis, UV/Vis, IR, and NMR spectroscopy, as well as high resolution mass spectrometry. Density functional theory calculations pointed out that (R,R)-N,N'-configuration diastereoisomers were energetically the most favorable. Duo to high cytotoxic activity complex 3 was chosen for stability study in DMSO, no decomposition occurs within 24h, and for the reaction with ascorbic acid in which was reduced immediately. Additionally, 3 interacts with bovine serum albumin (BSA) as proven by UV/Vis spectroscopy. In vitro antitumor activity was determined against human cervix adenocarcinoma (HeLa), human myelogenous leukemia (K562), and human melanoma (Fem-x) cancer cell lines, as well as against non-cancerous human embryonic lung fibroblast cells MRC-5. The highest activity was observed against K562 cells (IC 50 : 5.04-6.51μM). Selectivity indices showed that these complexes are less toxic than cisplatin. 3 had a similar viability kinetics on HeLa cells as cisplatin. Drug accumulation studies in HeLa cells showed that the total gold uptake increased much faster than that of cisplatin pointing out that 3 more efficiently enters the cells than cisplatin. Furthermore, morphological and cell cycle analysis reveal that gold(III) complexes induced apoptosis in time- and dose-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Quantum Linguistics: A Response to David Mallows.

    ERIC Educational Resources Information Center

    Hill, Kent A.

    2003-01-01

    Responds to an earlier article that illustrated how metaphorically applying chaos and complexity theory to language teaching, second language acquisition, and the observed lesson can alter perspectives about how these things are viewed. Suggests that chaos and complexity theory could also help see the following areas in a new light: syllabus…

  10. Classification Consistency and Accuracy for Complex Assessments Using Item Response Theory

    ERIC Educational Resources Information Center

    Lee, Won-Chan

    2010-01-01

    In this article, procedures are described for estimating single-administration classification consistency and accuracy indices for complex assessments using item response theory (IRT). This IRT approach was applied to real test data comprising dichotomous and polytomous items. Several different IRT model combinations were considered. Comparisons…

  11. A Dynamic Ensemble for Second Language Research: Putting Complexity Theory into Practice

    ERIC Educational Resources Information Center

    Hiver, Phil; Al-Hoorie, Ali H.

    2016-01-01

    In this article, we introduce a template of methodological considerations, termed "the dynamic ensemble," for scholars doing or evaluating empirical second language development (SLD) research within a complexity/dynamic systems theory (CDST) framework. Given that CDST principles have yielded significant insight into SLD and have become…

  12. Play: The Reversal Theory Perspective.

    ERIC Educational Resources Information Center

    Kerr, J. H.

    The intention of this theoretical paper is to present a reversal theory interpretation of play phenomena. Reversal theory, a developing theory in psychology, concerns the complex relationship between experience and motivation. One of the central charactieristics of the theory is that it attempts to understand why so much of human behavior is…

  13. Information-theoretic metamodel of organizational evolution

    NASA Astrophysics Data System (ADS)

    Sepulveda, Alfredo

    2011-12-01

    Social organizations are abstractly modeled by holarchies---self-similar connected networks---and intelligent complex adaptive multiagent systems---large networks of autonomous reasoning agents interacting via scaled processes. However, little is known of how information shapes evolution in such organizations, a gap that can lead to misleading analytics. The research problem addressed in this study was the ineffective manner in which classical model-predict-control methods used in business analytics attempt to define organization evolution. The purpose of the study was to construct an effective metamodel for organization evolution based on a proposed complex adaptive structure---the info-holarchy. Theoretical foundations of this study were holarchies, complex adaptive systems, evolutionary theory, and quantum mechanics, among other recently developed physical and information theories. Research questions addressed how information evolution patterns gleamed from the study's inductive metamodel more aptly explained volatility in organization. In this study, a hybrid grounded theory based on abstract inductive extensions of information theories was utilized as the research methodology. An overarching heuristic metamodel was framed from the theoretical analysis of the properties of these extension theories and applied to business, neural, and computational entities. This metamodel resulted in the synthesis of a metaphor for, and generalization of organization evolution, serving as the recommended and appropriate analytical tool to view business dynamics for future applications. This study may manifest positive social change through a fundamental understanding of complexity in business from general information theories, resulting in more effective management.

  14. Evidence for Neural Computations of Temporal Coherence in an Auditory Scene and Their Enhancement during Active Listening.

    PubMed

    O'Sullivan, James A; Shamma, Shihab A; Lalor, Edmund C

    2015-05-06

    The human brain has evolved to operate effectively in highly complex acoustic environments, segregating multiple sound sources into perceptually distinct auditory objects. A recent theory seeks to explain this ability by arguing that stream segregation occurs primarily due to the temporal coherence of the neural populations that encode the various features of an individual acoustic source. This theory has received support from both psychoacoustic and functional magnetic resonance imaging (fMRI) studies that use stimuli which model complex acoustic environments. Termed stochastic figure-ground (SFG) stimuli, they are composed of a "figure" and background that overlap in spectrotemporal space, such that the only way to segregate the figure is by computing the coherence of its frequency components over time. Here, we extend these psychoacoustic and fMRI findings by using the greater temporal resolution of electroencephalography to investigate the neural computation of temporal coherence. We present subjects with modified SFG stimuli wherein the temporal coherence of the figure is modulated stochastically over time, which allows us to use linear regression methods to extract a signature of the neural processing of this temporal coherence. We do this under both active and passive listening conditions. Our findings show an early effect of coherence during passive listening, lasting from ∼115 to 185 ms post-stimulus. When subjects are actively listening to the stimuli, these responses are larger and last longer, up to ∼265 ms. These findings provide evidence for early and preattentive neural computations of temporal coherence that are enhanced by active analysis of an auditory scene. Copyright © 2015 the authors 0270-6474/15/357256-08$15.00/0.

  15. Oxovanadium(IV), cerium(III), thorium(IV) and dioxouranium(VI) complexes of 1-ethyl-4-hydroxy-3-(nitroacetyl)quinolin-2(1H)-one: Synthesis, spectral, thermal, fluorescence, DFT calculations, antimicrobial and antitumor studies

    NASA Astrophysics Data System (ADS)

    El-Shafiy, H. F.; Shebl, Magdy

    2018-03-01

    A new series of mononuclear oxovanadium(IV), cerium(III), thorium(IV) and dioxouranium(VI) complexes of a quinolinone ligand; 1-ethyl-4-hydroxy-3-(nitroacetyl)quinolin-2(1H)-one (H2L) have been synthesized. The metal complexes were characterized by different techniques such as elemental and thermal analyses, IR, 1H NMR, electronic, ESR, mass spectra and powder XRD, TEM in addition to magnetic susceptibility and conductivity measurements. The quinolinone ligand acts as a dibasic bidentate ligand forming mononuclear complexes, which can be formulated as: [(L)VO(H2O)2]·0.5H2O, [(L)M(NO3)x(H2O)y]·nH2O; M = Ce or Th, x = 1 or 2, y = 3 or 4 and n = 2 or 7 and [(L)UO2(H2O)x(MeOH)y]·nH2O; x = 2 or 3, y = 0 or 1 and n = 0.5 or 2.5. The photoluminescent properties of the prepared complexes were studied. The ligand and its thorium(IV) complex are characterized by an intense green emission. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages have been evaluated using Coats-Redfern equations. The geometry of the ligand and its oxovanadium(IV) complex has been optimized using density functional theory (DFT). Total energy, energy of HOMO and LUMO, dipole moment and structure activity relationship were performed and confirmed practical antimicrobial and antitumor results. The antimicrobial activity of the ligand and its metal complexes was conducted against the microorganisms S. aureus, K. pnemonia, E. coli, P. vulgaris and C. albicans and the MIC values were determined. The antitumor activity of the ligand and its metal complexes was investigated against human Hepatocelluar carcinoma and human breast cancer cell lines.

  16. TOWARD A THEORY OF SUSTAINABLE SYSTEMS

    EPA Science Inventory

    While there is tremendous interest in the topic of sustainability, a fundamental theory of sustainability does not exist. We present our efforts at constructing such a theory starting with Information Theory and ecological models. We discuss the state of complex sustainable syste...

  17. Implementation of a Cross-Layer Sensing Medium-Access Control Scheme.

    PubMed

    Su, Yishan; Fu, Xiaomei; Han, Guangyao; Xu, Naishen; Jin, Zhigang

    2017-04-10

    In this paper, compressed sensing (CS) theory is utilized in a medium-access control (MAC) scheme for wireless sensor networks (WSNs). We propose a new, cross-layer compressed sensing medium-access control (CL CS-MAC) scheme, combining the physical layer and data link layer, where the wireless transmission in physical layer is considered as a compress process of requested packets in a data link layer according to compressed sensing (CS) theory. We first introduced using compressive complex requests to identify the exact active sensor nodes, which makes the scheme more efficient. Moreover, because the reconstruction process is executed in a complex field of a physical layer, where no bit and frame synchronizations are needed, the asynchronous and random requests scheme can be implemented without synchronization payload. We set up a testbed based on software-defined radio (SDR) to implement the proposed CL CS-MAC scheme practically and to demonstrate the validation. For large-scale WSNs, the simulation results show that the proposed CL CS-MAC scheme provides higher throughput and robustness than the carrier sense multiple access (CSMA) and compressed sensing medium-access control (CS-MAC) schemes.

  18. Further steps in the modeling of behavioural crowd dynamics, good news for safe handling. Comment on "Human behaviours in evacuation crowd dynamics: From modelling to "big data" toward crisis management" by Nicola Bellomo et al.

    NASA Astrophysics Data System (ADS)

    Knopoff, Damián A.

    2016-09-01

    The recent review paper [4] constitutes a valuable contribution on the understanding, modeling and simulation of crowd dynamics in extreme situations. It provides a very comprehensive revision about the complexity features of the system under consideration, scaling and the consequent justification of the used methods. In particular, macro and microscopic models have so far been used to model crowd dynamics [9] and authors appropriately explain that working at the mesoscale is a good choice to deal with the heterogeneous behaviour of walkers as well as with the difficulty of their deterministic identification. In this way, methods based on the kinetic theory and statistical dynamics are employed, more precisely the so-called kinetic theory for active particles [7]. This approach has successfully been applied in the modeling of several complex dynamics, with recent applications to learning [2,8] that constitutes the key to understand communication and is of great importance in social dynamics and behavioral sciences.

  19. On the ultrafast charge migration and subsequent charge directed reactivity in Cl⋯N halogen-bonded clusters following vertical ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, Sankhabrata; Bhattacharya, Atanu, E-mail: atanub@ipc.iisc.ernet.in; Periyasamy, Ganga

    2015-06-28

    In this article, we have presented ultrafast charge transfer dynamics through halogen bonds following vertical ionization of representative halogen bonded clusters. Subsequent hole directed reactivity of the radical cations of halogen bonded clusters is also discussed. Furthermore, we have examined effect of the halogen bond strength on the electron-electron correlation- and relaxation-driven charge migration in halogen bonded complexes. For this study, we have selected A-Cl (A represents F, OH, CN, NH{sub 2}, CF{sub 3}, and COOH substituents) molecules paired with NH{sub 3} (referred as ACl:NH{sub 3} complex): these complexes exhibit halogen bonds. To the best of our knowledge, this ismore » the first report on purely electron correlation- and relaxation-driven ultrafast (attosecond) charge migration dynamics through halogen bonds. Both density functional theory and complete active space self-consistent field theory with 6-31 + G(d, p) basis set are employed for this work. Upon vertical ionization of NCCl⋯NH{sub 3} complex, the hole is predicted to migrate from the NH{sub 3}-end to the ClCN-end of the NCCl⋯NH{sub 3} complex in approximately 0.5 fs on the D{sub 0} cationic surface. This hole migration leads to structural rearrangement of the halogen bonded complex, yielding hydrogen bonding interaction stronger than the halogen bonding interaction on the same cationic surface. Other halogen bonded complexes, such as H{sub 2}NCl:NH{sub 3}, F{sub 3}CCl:NH{sub 3}, and HOOCCl:NH{sub 3}, exhibit similar charge migration following vertical ionization. On the contrary, FCl:NH{sub 3} and HOCl:NH{sub 3} complexes do not exhibit any charge migration following vertical ionization to the D{sub 0} cation state, pointing to interesting halogen bond strength-dependent charge migration.« less

  20. Heterogeneity of Purkinje cell simple spike-complex spike interactions: zebrin- and non-zebrin-related variations.

    PubMed

    Tang, Tianyu; Xiao, Jianqiang; Suh, Colleen Y; Burroughs, Amelia; Cerminara, Nadia L; Jia, Linjia; Marshall, Sarah P; Wise, Andrew K; Apps, Richard; Sugihara, Izumi; Lang, Eric J

    2017-08-01

    Cerebellar Purkinje cells (PCs) generate two types of action potentials, simple and complex spikes. Although they are generated by distinct mechanisms, interactions between the two spike types exist. Zebrin staining produces alternating positive and negative stripes of PCs across most of the cerebellar cortex. Thus, here we compared simple spike-complex spike interactions both within and across zebrin populations. Simple spike activity undergoes a complex modulation preceding and following a complex spike. The amplitudes of the pre- and post-complex spike modulation phases were correlated across PCs. On average, the modulation was larger for PCs in zebrin positive regions. Correlations between aspects of the complex spike waveform and simple spike activity were found, some of which varied between zebrin positive and negative PCs. The implications of the results are discussed with regard to hypotheses that complex spikes are triggered by rises in simple spike activity for either motor learning or homeostatic functions. Purkinje cells (PCs) generate two types of action potentials, called simple and complex spikes (SSs and CSs). We first investigated the CS-associated modulation of SS activity and its relationship to the zebrin status of the PC. The modulation pattern consisted of a pre-CS rise in SS activity, and then, following the CS, a pause, a rebound, and finally a late inhibition of SS activity for both zebrin positive (Z+) and negative (Z-) cells, though the amplitudes of the phases were larger in Z+ cells. Moreover, the amplitudes of the pre-CS rise with the late inhibitory phase of the modulation were correlated across PCs. In contrast, correlations between modulation phases across CSs of individual PCs were generally weak. Next, the relationship between CS spikelets and SS activity was investigated. The number of spikelets/CS correlated with the average SS firing rate only for Z+ cells. In contrast, correlations across CSs between spikelet numbers and the amplitudes of the SS modulation phases were generally weak. Division of spikelets into likely axonally propagated and non-propagated groups (based on their interspikelet interval) showed that the correlation of spikelet number with SS firing rate primarily reflected a relationship with non-propagated spikelets. In sum, the results show both zebrin-related and non-zebrin-related physiological heterogeneity in SS-CS interactions among PCs, which suggests that the cerebellar cortex is more functionally diverse than is assumed by standard theories of cerebellar function. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  1. Understanding student concerns about peer physical examination using an activity theory framework.

    PubMed

    Wearn, Andy M; Rees, Charlotte E; Bradley, Paul; Vnuk, Anna K

    2008-12-01

    Peer physical examination (PPE) has been employed for several decades as part of the formal curriculum for learning clinical skills. Most of the existing studies exploring students' attitudes towards PPE are single-site and use quantitative methods. Currently, there is a lack of theoretical underpinning to PPE as a learning method. Using an adaptation of the Examining Fellow Students questionnaire, we captured qualitative data from Year 1 medical students about their views and concerns around learning using PPE. The study was set in six schools across five countries (the UK, Australia, New Zealand, Japan and Hong Kong). Students provided free text comments that were later transcribed and analysed using framework analysis. A total of 617 students provided comments for analysis. This paper focuses on several related themes about the complexities of students' relationships within the context of PPE and their reflections on peer examination in comparison with genuine patient examination. Students drew parallels and differences between the peer examiner-examinee relationship and the doctor-patient relationship. They explained how these two types of relationship differed in nature and in terms of their levels of interaction. Our findings illuminate the interactional and complex nature of PPE, drawing out concerns and ambiguities around relationships, community and rules. We discuss our results in light of Engeström's model of activity theory (AT) and provide recommendations for educational practice and further research based on the principles of AT.

  2. Charge-transfer mechanism for electrophilic aromatic nitration and nitrosation via the convergence of (ab initio) molecular-orbital and Marcus-Hush theories with experiments.

    PubMed

    Gwaltney, Steven R; Rosokha, Sergiy V; Head-Gordon, Martin; Kochi, Jay K

    2003-03-19

    The highly disparate rates of aromatic nitrosation and nitration, despite the very similar (electrophilic) properties of the active species: NO(+) and NO(2)(+) in Chart 1, are quantitatively reconciled. First, the thorough mappings of the potential-energy surfaces by high level (ab initio) molecular-orbital methodologies involving extensive coupled-cluster CCSD(T)/6-31G optimizations establish the intervention of two reactive intermediates in nitration (Figure 8) but only one in nitrosation (Figure 7). Second, the same distinctive topologies involving double and single potential-energy minima (Figures 6 and 5) also emerge from the semiquantitative application of the Marcus-Hush theory to the transient spectral data. Such a striking convergence from quite different theoretical approaches indicates that the molecular-orbital and Marcus-Hush (potential-energy) surfaces are conceptually interchangeable. In the resultant charge-transfer mechanism, the bimolecular interactions of arene donors with both NO(+) and NO(2)(+) spontaneously lead (barrierless) to pi-complexes in which electron transfer is concurrent with complexation. Such a pi-complex in nitration is rapidly converted to the sigma-complex, whereas this Wheland adduct in nitrosation merely represents a high energy (transition-state) structure. Marcus-Hush analysis thus demonstrates how the strongly differentiated (arene) reactivities toward NO(+) and NO(2)(+) can actually be exploited in the quantitative development of a single coherent (electron-transfer) mechanism for both aromatic nitrosation and nitration.

  3. Pluripotential theory and convex bodies

    NASA Astrophysics Data System (ADS)

    Bayraktar, T.; Bloom, T.; Levenberg, N.

    2018-03-01

    A seminal paper by Berman and Boucksom exploited ideas from complex geometry to analyze the asymptotics of spaces of holomorphic sections of tensor powers of certain line bundles L over compact, complex manifolds as the power grows. This yielded results on weighted polynomial spaces in weighted pluripotential theory in {C}^d. Here, motivated by a recent paper by the first author on random sparse polynomials, we work in the setting of weighted pluripotential theory arising from polynomials associated to a convex body in ({R}^+)^d. These classes of polynomials need not occur as sections of tensor powers of a line bundle L over a compact, complex manifold. We follow the approach of Berman and Boucksom to obtain analogous results. Bibliography: 16 titles.

  4. The Chaos Theory of Careers.

    ERIC Educational Resources Information Center

    Pryor, Robert G. L.; Bright, Jim

    2003-01-01

    Four theoretical streams--contexualism/ecology, systems theory, realism/constructivism, and chaos theory--contributed to a theory of individuals as complex, unique, nonlinear, adaptive chaotic and open systems. Individuals use purposive action to construct careers but can make maladaptive and inappropriate choices. (Contains 42 references.) (SK)

  5. Arts-Based Learning: A New Approach to Nursing Education Using Andragogy.

    PubMed

    Nguyen, Megan; Miranda, Joyal; Lapum, Jennifer; Donald, Faith

    2016-07-01

    Learner-oriented strategies focusing on learning processes are needed to prepare nursing students for complex practice situations. An arts-based learning approach uses art to nurture cognitive and emotional learning. Knowles' theory of andragogy aims to develop the skill of learning and can inform the process of implementing arts-based learning. This article explores the use and evaluation of andragogy-informed arts-based learning for teaching nursing theory at the undergraduate level. Arts-based learning activities were implemented and then evaluated by students and instructors using anonymous questionnaires. Most students reported that the activities promoted learning. All instructors indicated an interest in integrating arts-based learning into the curricula. Facilitators and barriers to mainstreaming arts-based learning were highlighted. Findings stimulate implications for prospective research and education. Findings suggest that arts-based learning approaches enhance learning by supporting deep inquiry and different learning styles. Further exploration of andragogy-informed arts-based learning in nursing and other disciplines is warranted. [J Nurs Educ. 2016;55(7):407-410.]. Copyright 2016, SLACK Incorporated.

  6. Theoretical Calculation of the Uv-Vis Spectral Band Locations of Pahs with Unknown Syntheses Procedures and Prospective Carcinogenic Activity

    NASA Astrophysics Data System (ADS)

    Ona-Ruales, Jorge Oswaldo; Ruiz-Morales, Yosadara

    2017-06-01

    Annellation Theory and ZINDO/S semiempirical calculations have been used for the calculation of the locations of maximum absorbance (LMA) of the Ultraviolet-Visible (UV-Vis) of 31 C_{34}H_{16} PAHs (molecular mass 424 Da) with unknown protocols of synthesis. The presence of benzo[a]pyrene bay-like regions and dibenzo[a,l]pyrene fjord-like regions in several of the structures that could be linked to an enhancement of the biological behavior and carcinogenic activity stresses the importance of C_{34}H_{16} PAHs in fields like molecular biology and cancer research. In addition, the occurrence of large PAHs in oil asphaltenes exemplifies the importance of these calculations for the characterization of complex systems. The C_{34}H_{16} PAH group is the largest molecular mass group of organic compounds analyzed so far following the Annellation Theory and ZINDO/S methodology. Future analysis using the same approach will provide evidence regarding the LMA of other high molecular mass PAHs.

  7. Perfect gas effects in compressible rapid distortion theory

    NASA Technical Reports Server (NTRS)

    Kerschen, E. J.; Myers, M. R.

    1987-01-01

    The governing equations presented for small amplitude unsteady disturbances imposed on steady, compressible mean flows that are two-dimensional and nearly uniform have their basis in the perfect gas equations of state, and therefore generalize previous results based on tangent gas theory. While these equations are more complex, this complexity is required for adequate treatment of high frequency disturbances, especially when the base flow Mach number is large; under such circumstances, the simplifying assumptions of tangent gas theory are not applicable.

  8. Complex Adaptive Systems and the Development of Force Structures for the United States Air Force

    DTIC Science & Technology

    2014-12-01

    the ideas of self -organized criticality to the theory of international relations—and by extension to the formation of na- tional policy to interact...and Bak and Paczuski, “Complexity, Contingency, and Criticality,” 6689–96. More recent work applies the theory of self -organized criticality to the... theory of international relations. 15. Mann, “Chaos, Criticality, and Strategic Thought,” 45–50. 16. Brunk, “ Self -Organized Criticality,” 427–45. A

  9. Oligomeric complexes of some heteroaromatic ligands and aromatic diamines with rhodium and molybdenum tetracarboxylates: 13C and 15N CPMAS NMR and density functional theory studies.

    PubMed

    Leniak, Arkadiusz; Kamieński, Bohdan; Jaźwiński, Jarosław

    2015-05-01

    Seven new oligomeric complexes of 4,4'-bipyridine; 3,3'-bipyridine; benzene-1,4-diamine; benzene-1,3-diamine; benzene-1,2-diamine; and benzidine with rhodium tetraacetate, as well as 4,4'-bipyridine with molybdenum tetraacetate, have been obtained and investigated by elemental analysis and solid-state nuclear magnetic resonance spectroscopy, (13)C and (15)N CPMAS NMR. The known complexes of pyrazine with rhodium tetrabenzoate, benzoquinone with rhodium tetrapivalate, 4,4'-bipyridine with molybdenum tetrakistrifluoroacetate and the 1 : 1 complex of 2,2'-bipyridine with rhodium tetraacetate exhibiting axial-equatorial ligation mode have been obtained as well for comparison purposes. Elemental analysis revealed 1 : 1 complex stoichiometry of all complexes. The (15)N CPMAS NMR spectra of all new complexes consist of one narrow signal, indicating regular uniform structures. Benzidine forms a heterogeneous material, probably containing linear oligomers and products of further reactions. The complexes were characterized by the parameter complexation shift Δδ (Δδ = δcomplex  - δligand). This parameter ranged from around -40 to -90 ppm in the case of heteroaromatic ligands, from around -12 to -22 ppm for diamines and from -16 to -31 ppm for the complexes of molybdenum tetracarboxylates with 4,4'-bipyridine. The experimental results have been supported by a density functional theory computation of (15)N NMR chemical shifts and complexation shifts at the non-relativistic Becke, three-parameter, Perdew-Wang 91/[6-311++G(2d,p), Stuttgart] and GGA-PBE/QZ4P levels of theory and at the relativistic scalar and spin-orbit zeroth order regular approximation/GGA-PBE/QZ4P level of theory. Nucleus-independent chemical shifts have been calculated for the selected compounds. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Do robots need to sleep?

    PubMed

    Fouks, J D; Besnard, S; Signac, L; Meurice, J C; Neau, J P; Paquereau, J

    2004-04-01

    The present paper exposes algorithmic results providing a vision about sleep functions which complements biological theory and experiments. Derived from the algorithmic theory of information, the theory of adaptation aims at quantifying how an inherited or acquired piece of knowledge helps individuals to survive. It gives a scale of complexity for survival problems and proves that some of them can only be solved by a dynamical management of memory associating continuous learning and forgetting methods. In this paper we explain how a virtual robot "Picota" has been designed to simulate the behavior of a living hen. In order to survive in its synthetical environment, our robot must recognize good seeds from bad ones, and should take rest during night periods. Within this frame, and facing the rapid evolution of to-be-recognized forms, the best way to equilibrate the energetic needs of the robot and ensure survival is to use the nightly rest to reorganize the pieces of data acquired during the daily learning, and to trash the less useful ones. Thanks to this time sharing, the same circuits can be used for both daily learning and nightly forgetting and thus costs are lower; however, this also forces the system to "paralyse" the virtual robot, and therefore the night algorithm is reminiscent of paradoxical (REM) sleep. The algorithm of the robot takes advantage of the alternation between wakefulness or activity and the rest period. This diagram quite accurately recalls the REM period. In the future, the convergence between the neurophysiology of sleep and the theory of complexity may give us a new line of research in order to elucidate sleep functions.

  11. Thermodynamic studies of drug-alpha-cyclodextrin interactions in water at 298.15 K: promazine hydrochloride/chlorpromazine hydrochloride + alpha-cyclodextrin + H(2)O systems.

    PubMed

    Terdale, Santosh S; Dagade, Dilip H; Patil, Kesharsingh J

    2007-12-06

    Data on osmotic coefficients have been obtained for a binary aqueous solution of two drugs, namely, promazine hydrochloride (PZ) and chlorpromazine hydrochloride (CPZ) using a vapor pressure osmometer at 298.15 K. The observed critical micelle concentration (cmc) agrees excellently with the available literature data. The measurements are extended to aqueous ternary solutions containing fixed a concentration of alpha-cyclodextrin (alpha-CD) of 0.1 mol kg(-1) and varied concentrations (approximately 0.005-0.2 mol kg(-1)) of drugs at 298.15 K. It has been found that the cmc values increase by the addition of alpha-CD. The mean molal activity coefficients of the ions and the activity coefficient of alpha-CD in binary as well as ternary solutions were obtained, which have been further used to calculate the excess Gibbs free energies and transfer Gibbs free energies. The lowering of the activity coefficients of ions and of alpha-CD is attributed to the existence of host-guest (inclusion)-type complex equilibria. It is suggested that CPZ forms 2:1 and 1:1 complexed species with alpha-CD, while PZ forms only 1:1 complexed species. The salting constant (ks) values are determined at 298.15 K for promazine-alpha-CD and chlorpromazine-alpha-CD complexes, respectively, by following the method based on the application of the McMillan-Mayer theory of virial coefficients to transfer free energy data. It is noted that the presence of chlorine in the drug molecule imparts better complexing capacity, the effect of which gets attenuated as a result of hydrophobic interaction. The results are discussed from the point of view of associative equilibria before the cmc and complexed equilibria for binary and ternary solutions, respectively.

  12. Internal complexity and environmental sensitivity in hospitals.

    PubMed

    Ashmos, D P; Duchon, D; Hauge, F E; McDaniel, R R

    1996-01-01

    Theory suggests that organizations should respond to external complexity with internal complexity. We examine whether "environmentally sensitive" hospitals are more internally complex than "environmentally insensitive" hospitals. Results show that environmentally sensitive and insensitive hospitals differed on three of the measures of internal complexity: goal complexity, strategic complexity, and relational complexity.

  13. A theory-based approach to teaching young children about health: A recipe for understanding

    PubMed Central

    Nguyen, Simone P.; McCullough, Mary Beth; Noble, Ashley

    2011-01-01

    The theory-theory account of conceptual development posits that children’s concepts are integrated into theories. Concept learning studies have documented the central role that theories play in children’s learning of experimenter-defined categories, but have yet to extensively examine complex, real-world concepts such as health. The present study examined whether providing young children with coherent and causally-related information in a theory-based lesson would facilitate their learning about the concept of health. This study used a pre-test/lesson/post-test design, plus a five month follow-up. Children were randomly assigned to one of three conditions: theory (i.e., 20 children received a theory-based lesson); nontheory (i.e., 20 children received a nontheory-based lesson); and control (i.e., 20 children received no lesson). Overall, the results showed that children in the theory condition had a more accurate conception of health than children in the nontheory and control conditions, suggesting the importance of theories in children’s learning of complex, real-world concepts. PMID:21894237

  14. Theory of space-charge polarization for determining ionic constants of electrolytic solutions

    NASA Astrophysics Data System (ADS)

    Sawada, Atsushi

    2007-06-01

    A theoretical expression of the complex dielectric constant attributed to space-charge polarization has been derived under an electric field calculated using Poisson's equation considering the effects of bound charges on ions. The frequency dependence of the complex dielectric constant of chlorobenzene solutions doped with tetrabutylammonium tetraphenylborate (TBATPB) has been analyzed using the theoretical expression, and the impact of the bound charges on the complex dielectric constant has been clarified quantitatively in comparison with a theory that does not consider the effect of the bound charges. The Stokes radius of TBA +(=TPB-) determined by the present theory shows a good agreement with that determined by conductometry in the past; hence, the present theory should be applicable to the direct determination of the mobility of ion species in an electrolytic solution without the need to measure ionic limiting equivalent conductance and transport number.

  15. A parametric model for the changes in the complex valued conductivity of a lung during tidal breathing

    NASA Astrophysics Data System (ADS)

    Nordebo, Sven; Dalarsson, Mariana; Khodadad, Davood; Müller, Beat; Waldmann, Andreas D.; Becher, Tobias; Frerichs, Inez; Sophocleous, Louiza; Sjöberg, Daniel; Seifnaraghi, Nima; Bayford, Richard

    2018-05-01

    Classical homogenization theory based on the Hashin–Shtrikman coated ellipsoids is used to model the changes in the complex valued conductivity (or admittivity) of a lung during tidal breathing. Here, the lung is modeled as a two-phase composite material where the alveolar air-filling corresponds to the inclusion phase. The theory predicts a linear relationship between the real and the imaginary parts of the change in the complex valued conductivity of a lung during tidal breathing, and where the loss cotangent of the change is approximately the same as of the effective background conductivity and hence easy to estimate. The theory is illustrated with numerical examples based on realistic parameter values and frequency ranges used with electrical impedance tomography (EIT). The theory may be potentially useful for imaging and clinical evaluations in connection with lung EIT for respiratory management and control.

  16. Evaluating Action Learning: A Critical Realist Complex Network Theory Approach

    ERIC Educational Resources Information Center

    Burgoyne, John G.

    2010-01-01

    This largely theoretical paper will argue the case for the usefulness of applying network and complex adaptive systems theory to an understanding of action learning and the challenge it is evaluating. This approach, it will be argued, is particularly helpful in the context of improving capability in dealing with wicked problems spread around…

  17. A Complex Systems Framework for Research on Leadership and Organizational Dynamics in Academic Libraries

    ERIC Educational Resources Information Center

    Gilstrap, Donald L.

    2009-01-01

    This article provides a historiographical analysis of major leadership and organizational development theories that have shaped our thinking about how we lead and administrate academic libraries. Drawing from behavioral, cognitive, systems, and complexity theories, this article discusses major theorists and research studies appearing over the past…

  18. Organizational Change at the Edge of Chaos: A Complexity Theory Perspective of Autopoietic Systems

    ERIC Educational Resources Information Center

    Susini, Domenico, III.

    2010-01-01

    This qualitative phenomenological study includes explorations of organizational change phenomena from the vantage point of complexity theory as experienced through the lived experiences of eight senior level managers and executives based in Northern N.J. who have experienced crisis situations in their organizations. Concepts from the natural…

  19. Critical phenomena at the complex tensor ordering phase transition

    NASA Astrophysics Data System (ADS)

    Boettcher, Igor; Herbut, Igor F.

    2018-02-01

    We investigate the critical properties of the phase transition towards complex tensor order that has been proposed to occur in spin-orbit-coupled superconductors. For this purpose, we formulate the bosonic field theory for fluctuations of the complex irreducible second-rank tensor order parameter close to the transition. We then determine the scale dependence of the couplings of the theory by means of the perturbative renormalization group (RG). For the isotropic system, we generically detect a fluctuation-induced first-order phase transition. The initial values for the running couplings are determined by the underlying microscopic model for the tensorial order. As an example, we study three-dimensional Luttinger semimetals with electrons at a quadratic band-touching point. Whereas the strong-coupling transition of the model receives substantial fluctuation corrections, the weak-coupling transition at low temperatures is rendered only weakly first order due to the presence of a fixed point in the vicinity of the RG trajectory. If the number of fluctuating complex components of the order parameter is reduced by cubic anisotropy, the theory maps onto the field theory for frustrated magnetism.

  20. Complex Chern-Simons from M5-branes on the squashed three-sphere

    NASA Astrophysics Data System (ADS)

    Córdova, Clay; Jafferis, Daniel L.

    2017-11-01

    We derive an equivalence between the (2,0) superconformal M5-brane field theory dimensionally reduced on a squashed three-sphere, and Chern-Simons theory with complex gauge group. In the reduction, the massless fermions obtain an action which is second order in derivatives and are reinterpreted as ghosts for gauge fixing the emergent non-compact gauge symmetry. A squashing parameter in the geometry controls the imaginary part of the complex Chern-Simons level.

  1. Hypothesis: the chaos and complexity theory may help our understanding of fibromyalgia and similar maladies.

    PubMed

    Martinez-Lavin, Manuel; Infante, Oscar; Lerma, Claudia

    2008-02-01

    Modern clinicians are often frustrated by their inability to understand fibromyalgia and similar maladies since these illnesses cannot be explained by the prevailing linear-reductionist medical paradigm. This article proposes that new concepts derived from the Complexity Theory may help understand the pathogenesis of fibromyalgia, chronic fatigue syndrome, and Gulf War syndrome. This hypothesis is based on the recent recognition of chaos fractals and complex systems in human physiology. These nonlinear dynamics concepts offer a different perspective to the notion of homeostasis and disease. They propose that the essence of disease is dysfunction and not structural damage. Studies using novel nonlinear instruments have shown that fibromyalgia and similar maladies may be caused by the degraded performance of our main complex adaptive system. This dysfunction explains the multifaceted manifestations of these entities. To understand and alleviate the suffering associated with these complex illnesses, a paradigm shift from reductionism to holism based on the Complexity Theory is suggested. This shift perceives health as resilient adaptation and some chronic illnesses as rigid dysfunction.

  2. Aminopurvalanol A, a Potent, Selective, and Cell Permeable Inhibitor of Cyclins/Cdk Complexes, Causes the Reduction of in Vitro Fertilizing Ability of Boar Spermatozoa, by Negatively Affecting the Capacitation-Dependent Actin Polymerization

    PubMed Central

    Bernabò, Nicola; Valbonetti, Luca; Greco, Luana; Capacchietti, Giulia; Ramal Sanchez, Marina; Palestini, Paola; Botto, Laura; Mattioli, Mauro; Barboni, Barbara

    2017-01-01

    The adoption of high-througput technologies demonstrated that in mature spermatozoa are present proteins that are thought to be not present or active in sperm cells, such as those involved in control of cell cycle. Here, by using an in silico approach based on the application of networks theory, we found that Cyclins/Cdk complexes could play a central role in signal transduction active during capacitation. Then, we tested this hypothesis in the vitro model. With this approach, spermatozoa were incubated under capacitating conditions in control conditions (CTRL) or in the presence of Aminopurvalanol A a potent, selective and cell permeable inhibitor of Cyclins/Cdk complexes at different concentrations (2, 10, and 20 μM). We found that this treatment caused dose-dependent inhibition of sperm fertilizing ability. We attribute this event to the loss of acrosome integrity due to the inhibition of physiological capacitation-dependent actin polymerization, rather than to a detrimental effect on membrane lipid remodeling or on other signaling pathways such as tubulin reorganization or MAPKs activation. In our opinion, these data could revamp the knowledge on biochemistry of sperm capacitation and could suggest new perspectives in studying male infertility. PMID:29312003

  3. Comparisons of MN2S2vs. bipyridine as redox-active ligands to manganese and rhenium in (L-L)M'(CO)3Cl complexes.

    PubMed

    Lunsford, Allen M; Goldstein, Kristina F; Cohan, Matthew A; Denny, Jason A; Bhuvanesh, Nattamai; Ding, Shengda; Hall, Michael B; Darensbourg, Marcetta Y

    2017-04-19

    The bipyridine ligand is renowned as a photo- and redox-active ligand in catalysis; the latter has been particularly explored in the complex Re(bipy)(CO) 3 Cl for CO 2 reduction. We ask whether a bidentate, redox-active MN 2 S 2 metallodithiolate ligand in heterobimetallic complexes of Mn and Re might similarly serve as a receptor and conduit of electrons. In order to assess the electrochemical features of such designed bimetallics, a series of complexes featuring redox active MN 2 S 2 metallodithiolates, with M = Ni 2+ , {Fe(NO)} 2+ , and {Co(NO)} 2+ , bound to M'(CO) 3 X, where M' = Mn and Re, were synthesized and characterized using IR and EPR spectroscopies, X-ray diffraction, cyclic voltammetry, and density functional theory (DFT) computations. Butterfly type structures resulted from binding of the convergent lone pairs of the cis-sulfur atoms to the M'(CO) 3 X unit. Bond distances and angles are similar across the M' metal series regardless of the ligand attached. Electrochemical characterizations of [MN 2 S 2 ·Re(CO) 3 Cl] showed the redox potential of the Re is significantly altered by the identity of the metal in the N 2 S 2 pocket. DFT calculations proved useful to identify the roles played by the MN 2 S 2 ligands, upon reduction of the bimetallics, in altering the lability of the Re-Cl bond and the ensuing effect on the reduction of Re I to Re 0 .

  4. Nature and potency interactions of the hydrogen bond through the NBO analysis for charge transfer complex between 2-amino-4-hydroxy-6-methylpyrimidine and 2,3-pyrazinedicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Faizan, Mohd; Afroz, Ziya; Alam, Mohammad Jane; Bhat, Sheeraz Ahmad; Ahmad, Shabbir; Ahmad, Afaq

    2018-05-01

    The intermolecular interactions in complex formation between 2-amino-4-hydroxy-6-methylpyrimidine (AHMP) and 2,3-pyrazinedicarboxylicacid (PDCA) have been explored using density functional theory calculations. The isolated 1:1 molecular geometry of proton transfer (PT) complex between AHMP and PDCA has been optimized on a counterpoise corrected potential energy surface (PES) at DFT-B3LYP/6-31G(d,p) level of theory in the gaseous phase. Further, the formation of hydrogen bonded charge transfer (HBCT) complex between PDCA and AHMP has been also discussed. PT energy barrier between two extremes is calculated using potential energy surface (PES) scan by varying bond length. The intermolecular interactions have been analyzed from theoretical perspective of natural bond orbital (NBO) analysis. In addition, the interaction energy between molecular fragments involved in the complex formation has been also computed by counterpoise procedure at same level of theory.

  5. Marr's levels and the minimalist program.

    PubMed

    Johnson, Mark

    2017-02-01

    A simple change to a cognitive system at Marr's computational level may entail complex changes at the other levels of description of the system. The implementational level complexity of a change, rather than its computational level complexity, may be more closely related to the plausibility of a discrete evolutionary event causing that change. Thus the formal complexity of a change at the computational level may not be a good guide to the plausibility of an evolutionary event introducing that change. For example, while the Minimalist Program's Merge is a simple formal operation (Berwick & Chomsky, 2016), the computational mechanisms required to implement the language it generates (e.g., to parse the language) may be considerably more complex. This has implications for the theory of grammar: theories of grammar which involve several kinds of syntactic operations may be no less evolutionarily plausible than a theory of grammar that involves only one. A deeper understanding of human language at the algorithmic and implementational levels could strengthen Minimalist Program's account of the evolution of language.

  6. Feeling Interpersonally Controlled While Pursuing Materialistic Goals: A Problematic Combination for Moral Behavior.

    PubMed

    Sheldon, Kennon M; Sommet, Nicolas; Corcoran, Mike; Elliot, Andrew J

    2018-04-01

    We created a life-goal assessment drawing from self-determination theory and achievement goal literature, examining its predictive power regarding immoral behavior and subjective well-being. Our source items assessed direction and energization of motivation, via the distinction between intrinsic and extrinsic aims and between intrinsic and extrinsic reasons for acting, respectively. Fused source items assessed four goal complexes representing a combination of direction and energization. Across three studies ( Ns = 109, 121, and 398), the extrinsic aim/extrinsic reason complex was consistently associated with immoral and/or unethical behavior beyond four source and three other goal complex variables. This was consistent with the triangle model of responsibility's claim that immoral behaviors may result when individuals disengage the self from moral prescriptions. The extrinsic/extrinsic complex also predicted lower subjective well-being, albeit less consistently. Our goal complex approach sheds light on how self-determination theory's goal contents and organismic integration mini-theories interact, particularly with respect to unethical behavior.

  7. Multi-path variational transition state theory for chemical reaction rates of complex polyatomic species: ethanol + OH reactions.

    PubMed

    Zheng, Jingjing; Truhlar, Donald G

    2012-01-01

    Complex molecules often have many structures (conformations) of the reactants and the transition states, and these structures may be connected by coupled-mode torsions and pseudorotations; some but not all structures may have hydrogen bonds in the transition state or reagents. A quantitative theory of the reaction rates of complex molecules must take account of these structures, their coupled-mode nature, their qualitatively different character, and the possibility of merging reaction paths at high temperature. We have recently developed a coupled-mode theory called multi-structural variational transition state theory (MS-VTST) and an extension, called multi-path variational transition state theory (MP-VTST), that includes a treatment of the differences in the multi-dimensional tunneling paths and their contributions to the reaction rate. The MP-VTST method was presented for unimolecular reactions in the original paper and has now been extended to bimolecular reactions. The MS-VTST and MP-VTST formulations of variational transition state theory include multi-faceted configuration-space dividing surfaces to define the variational transition state. They occupy an intermediate position between single-conformation variational transition state theory (VTST), which has been used successfully for small molecules, and ensemble-averaged variational transition state theory (EA-VTST), which has been used successfully for enzyme kinetics. The theories are illustrated and compared here by application to three thermal rate constants for reactions of ethanol with hydroxyl radical--reactions with 4, 6, and 14 saddle points.

  8. Characterization of oxygen defects in diamond by means of density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Thiering, Gergő; Gali, Adam

    2016-09-01

    Point defects in diamond are of high interest as candidates for realizing solid state quantum bits, bioimaging agents, or ultrasensitive electric or magnetic field sensors. Various artificial diamond synthesis methods should introduce oxygen contamination in diamond, however, the incorporation of oxygen into diamond crystal and the nature of oxygen-related point defects are largely unknown. Oxygen may be potentially interesting as a source of quantum bits or it may interact with other point defects which are well established solid state qubits. Here we employ plane-wave supercell calculations within density functional theory, in order to characterize the electronic and magneto-optical properties of various oxygen-related defects. Besides the trivial single interstitial and substitutional oxygen defects we also consider their complexes with vacancies and hydrogen atoms. We find that oxygen defects are mostly electrically active and introduce highly correlated orbitals that pose a challenge for density functional theory modeling. Nevertheless, we are able to identify the fingerprints of substitutional oxygen defect, the oxygen-vacancy and oxygen-vacancy-hydrogen complexes in the electron paramagnetic resonance spectrum. We demonstrate that first principles calculations can predict the motional averaging of the electron paramagnetic resonance spectrum of defects that are subject to Jahn-Teller distortion. We show that the high-spin neutral oxygen-vacancy defect exhibits very fast nonradiative decay from its optical excited state that might hinder applying it as a qubit.

  9. Modeling the chelation of As(III) in lewisite by dithiols using density functional theory and solvent-assisted proton exchange.

    PubMed

    Harper, Lenora K; Bayse, Craig A

    2015-12-01

    Dithiols such as British anti-lewisite (BAL, rac-2,3-dimercaptopropanol) are an important class of antidotes for the blister agent lewisite (trans-2-chlorovinyldichloroarsine) and, more generally, are chelating agents for arsenic and other toxic metals. The reaction of the vicinal thiols of BAL with lewisite through the chelation of the As(III) center has been modeled using density functional theory (DFT) and solvent-assisted proton exchange (SAPE), a microsolvation method that uses a network of water molecules to mimic the role of bulk solvent in models of aqueous phase chemical reactions. The small activation barriers for the stepwise SN2-type nucleophilic attack of BAL on lewisite (0.7-4.9kcal/mol) are consistent with the favorable leaving group properties of the chloride and the affinity of As(III) for soft sulfur nucleophiles. Small, but insignificant, differences in activation barriers were found for the initial attack of the primary versus secondary thiol of BAL and the R vs S enantiomer. An examination of the relative stability of various dithiol-lewisite complexes shows that ethanedithiols like BAL form the most favorable chelation complexes because the angles formed in five-membered ring are most consistent with the hybridization of As(III). More obtuse S-As-S angles are required for larger chelate rings, but internal As⋯N or As⋯O interactions can enhance the stability of moderate-sized rings. The low barriers for lewisite detoxification by BAL and the greater stability of the chelation complexes of small dithiols are consistent with the rapid reversal of toxicity demonstrated in previously reported animal models. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Pre-pregnancy community-based intervention for couples in Malaysia: application of intervention mapping.

    PubMed

    Norris, Shane A; Ho, Julius Cheah Chee; Rashed, Aswir Abd; Vinding, Vibeke; Skau, Jutta K H; Biesma, Regien; Aagaard-Hansen, Jens; Hanson, Mark; Matzen, Priya

    2016-11-17

    Malaysia is experiencing a nutrition transition with burgeoning obesity, particularly in women, and a growing prevalence of non-communicable disease. These health burdens have severe implications not only for adult health but also across generations. Pre-conception health promotion could address the intergenerational risk of metabolic disease. This paper describes the development of the "Jom Mama" intervention using Intervention Mapping (IM). The Jom Mama intervention aims to improve the health of young adult couples in Malaysia prior to conception. IM comprises of five steps prior to the last one, which involves the evaluation of the intervention. We used the five steps to develop the Jom Mama intervention. Both the process and evidence is documented providing the rationale to the selection of the key objectives of the intervention: (i) increasing healthy dietary practice; (ii) increasing physical activity levels, (iii) reducing sedentary activity; and (iv) improving social support to offset stressful lifestyles. From the IM process, Jom Mama will be health-system centred approach that uniquely combines both community health promoters and an electronic-health platform to deliver the complex intervention. IM is an iterative process that systematically gathers "best" evidence, selects appropriate theories of behaviour change, and facilitates formative research so as to develop a complex intervention. Though the IM process is time consuming, complex, and costly, it has enriched the Jom Mama intervention with a number of notable advantages: (i) intervention fashioned on formative work with stakeholders and in the target group; (ii) intervention combines research evidence with theory; (iii) intervention acknowledges multiple dynamics of influence; and (iv) intervention is embedded within health service priorities in Malaysia for greater scale-up possibility.

  11. Complexity of Multi-Dimensional Spontaneous EEG Decreases during Propofol Induced General Anaesthesia

    PubMed Central

    Schartner, Michael; Seth, Anil; Noirhomme, Quentin; Boly, Melanie; Bruno, Marie-Aurelie; Laureys, Steven; Barrett, Adam

    2015-01-01

    Emerging neural theories of consciousness suggest a correlation between a specific type of neural dynamical complexity and the level of consciousness: When awake and aware, causal interactions between brain regions are both integrated (all regions are to a certain extent connected) and differentiated (there is inhomogeneity and variety in the interactions). In support of this, recent work by Casali et al (2013) has shown that Lempel-Ziv complexity correlates strongly with conscious level, when computed on the EEG response to transcranial magnetic stimulation. Here we investigated complexity of spontaneous high-density EEG data during propofol-induced general anaesthesia. We consider three distinct measures: (i) Lempel-Ziv complexity, which is derived from how compressible the data are; (ii) amplitude coalition entropy, which measures the variability in the constitution of the set of active channels; and (iii) the novel synchrony coalition entropy (SCE), which measures the variability in the constitution of the set of synchronous channels. After some simulations on Kuramoto oscillator models which demonstrate that these measures capture distinct ‘flavours’ of complexity, we show that there is a robustly measurable decrease in the complexity of spontaneous EEG during general anaesthesia. PMID:26252378

  12. Mixed-ligand cobalt(II) complexes of bioinorganic and medicinal relevance, involving dehydroacetic acid and β-diketones: Their synthesis, hyphenated experimental-DFT, thermal and bactericidal facets

    NASA Astrophysics Data System (ADS)

    Maurya, R. C.; Malik, B. A.; Mir, J. M.; Vishwakarma, P. K.; Rajak, D. K.; Jain, N.

    2015-11-01

    The present report pertains to synthesis and combined experimental-DFT studies of a series of four novel mixed-ligand complexes of cobalt(II) of the general composition [Co(dha)(L)(H2O)2], where dhaH = dehydroacetic acid, LH = β-ketoenolates viz., o-acetoacetotoluidide (o-aatdH), o-acetoacetanisidide (o-aansH), acetylacetone (acacH) or 1-benzoylacetone (1-bac). The resulting complexes were formulated based on elemental analysis, molar conductance, magnetic measurements, mass spectrometric, IR, electronic, electron spin resonance and cyclic voltammetric studies. The TGA based thermal behavior of one representative complex was evaluated. Molecular geometry optimizations and vibrational frequency calculations have been performed with Gaussian 09 software package by using density functional theory (DFT) methods with B3LYP/LANL2MB combination for dhaH and one of its complexes, [Co(dha)(1-bac)(H2O)2]. Theoretical data has been found in an excellent agreement with the experimental results. Based on experimental and theoretical data, suitable trans-octahedral structure has been proposed for the present class of complexes. Moreover, the complexes also showed a satisfactory antibacterial activity.

  13. Interdisciplinary and physics challenges of network theory

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra

    2015-09-01

    Network theory has unveiled the underlying structure of complex systems such as the Internet or the biological networks in the cell. It has identified universal properties of complex networks, and the interplay between their structure and dynamics. After almost twenty years of the field, new challenges lie ahead. These challenges concern the multilayer structure of most of the networks, the formulation of a network geometry and topology, and the development of a quantum theory of networks. Making progress on these aspects of network theory can open new venues to address interdisciplinary and physics challenges including progress on brain dynamics, new insights into quantum technologies, and quantum gravity.

  14. Prospect Theory and Interval-Valued Hesitant Set for Safety Evacuation Model

    NASA Astrophysics Data System (ADS)

    Kou, Meng; Lu, Na

    2018-01-01

    The study applies the research results of prospect theory and multi attribute decision making theory, combined with the complexity, uncertainty and multifactor influence of the underground mine fire system and takes the decision makers’ psychological behavior of emotion and intuition into full account to establish the intuitionistic fuzzy multiple attribute decision making method that is based on the prospect theory. The model established by this method can explain the decision maker’s safety evacuation decision behavior in the complex system of underground mine fire due to the uncertainty of the environment, imperfection of the information and human psychological behavior and other factors.

  15. Relational frame theory: A new paradigm for the analysis of social behavior

    PubMed Central

    Roche, Bryan; Barnes-Holmes, Yvonne; Barnes-Holmes, Dermot; Stewart, Ian; O'Hora, Denis

    2002-01-01

    Recent developments in the analysis of derived relational responding, under the rubric of relational frame theory, have brought several complex language and cognitive phenomena within the empirical reach of the experimental analysis of behavior. The current paper provides an outline of relational frame theory as a new approach to the analysis of language, cognition, and complex behavior more generally. Relational frame theory, it is argued, also provides a suitable paradigm for the analysis of a wide variety of social behavior that is mediated by language. Recent empirical evidence and theoretical interpretations are provided in support of the relational frame approach to social behavior. PMID:22478379

  16. Graph Theory-Based Pinning Synchronization of Stochastic Complex Dynamical Networks.

    PubMed

    Li, Xiao-Jian; Yang, Guang-Hong

    2017-02-01

    This paper is concerned with the adaptive pinning synchronization problem of stochastic complex dynamical networks (CDNs). Based on algebraic graph theory and Lyapunov theory, pinning controller design conditions are derived, and the rigorous convergence analysis of synchronization errors in the probability sense is also conducted. Compared with the existing results, the topology structures of stochastic CDN are allowed to be unknown due to the use of graph theory. In particular, it is shown that the selection of nodes for pinning depends on the unknown lower bounds of coupling strengths. Finally, an example on a Chua's circuit network is given to validate the effectiveness of the theoretical results.

  17. Quantitative assessment of Hox complex expression in the indirect development of the polychaete annelid Chaetopterus sp

    NASA Technical Reports Server (NTRS)

    Peterson, K. J.; Irvine, S. Q.; Cameron, R. A.; Davidson, E. H.

    2000-01-01

    A prediction from the set-aside theory of bilaterian origins is that pattern formation processes such as those controlled by the Hox cluster genes are required specifically for adult body plan formation. This prediction can be tested in animals that use maximal indirect development, in which the embryonic formation of the larva and the postembryonic formation of the adult body plan are temporally and spatially distinct. To this end, we quantitatively measured the amount of transcripts for five Hox genes in embryos of a lophotrochozoan, the polychaete annelid Chaetopterus sp. The polychaete Hox complex is shown not to be expressed during embryogenesis, but transcripts of all measured Hox complex genes are detected at significant levels during the initial stages of adult body plan formation. Temporal colinearity in the sequence of their activation is observed, so that activation follows the 3'-5' arrangement of the genes. Moreover, Hox gene expression is spatially localized to the region of teloblastic set-aside cells of the later-stage embryos. This study shows that an indirectly developing lophotrochozoan shares with an indirectly developing deuterostome, the sea urchin, a common mode of Hox complex utilization: construction of the larva, whether a trochophore or dipleurula, does not involve Hox cluster expression, but in both forms the complex is expressed in the set-aside cells from which the adult body plan derives.

  18. Viscous drag reduction in boundary layers

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)

    1990-01-01

    The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.

  19. Liquid-gas phase transitions and C K symmetry in quantum field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal

    A general field-theoretic framework for the treatment of liquid-gas phase transitions is developed. Starting from a fundamental four-dimensional field theory at nonzero temperature and density, an effective three-dimensional field theory is derived. The effective field theory has a sign problem at finite density. Although finite density explicitly breaks charge conjugation C , there remains a symmetry under C K , where K is complex conjugation. Here, we consider four models: relativistic fermions, nonrelativistic fermions, static fermions and classical particles. The interactions are via an attractive potential due to scalar field exchange and a repulsive potential due to massive vector exchange.more » The field-theoretic representation of the partition function is closely related to the equivalence of the sine-Gordon field theory with a classical gas. The thermodynamic behavior is extracted from C K -symmetric complex saddle points of the effective field theory at tree level. In the cases of nonrelativistic fermions and classical particles, we find complex saddle point solutions but no first-order transitions, and neither model has a ground state at tree level. The relativistic and static fermions show a liquid-gas transition at tree level in the effective field theory. The liquid-gas transition, when it occurs, manifests as a first-order line at low temperature and high density, terminated by a critical end point. The mass matrix controlling the behavior of correlation functions is obtained from fluctuations around the saddle points. Due to the C K symmetry of the models, the eigenvalues of the mass matrix are not always real but can be complex. This then leads to the existence of disorder lines, which mark the boundaries where the eigenvalues go from purely real to complex. The regions where the mass matrix eigenvalues are complex are associated with the critical line. In the case of static fermions, a powerful duality between particles and holes allows for the analytic determination of both the critical line and the disorder lines. Depending on the values of the parameters, either zero, one, or two disorder lines are found. Our numerical results for relativistic fermions give a very similar picture.« less

  20. Liquid-gas phase transitions and C K symmetry in quantum field theories

    DOE PAGES

    Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal

    2017-04-04

    A general field-theoretic framework for the treatment of liquid-gas phase transitions is developed. Starting from a fundamental four-dimensional field theory at nonzero temperature and density, an effective three-dimensional field theory is derived. The effective field theory has a sign problem at finite density. Although finite density explicitly breaks charge conjugation C , there remains a symmetry under C K , where K is complex conjugation. Here, we consider four models: relativistic fermions, nonrelativistic fermions, static fermions and classical particles. The interactions are via an attractive potential due to scalar field exchange and a repulsive potential due to massive vector exchange.more » The field-theoretic representation of the partition function is closely related to the equivalence of the sine-Gordon field theory with a classical gas. The thermodynamic behavior is extracted from C K -symmetric complex saddle points of the effective field theory at tree level. In the cases of nonrelativistic fermions and classical particles, we find complex saddle point solutions but no first-order transitions, and neither model has a ground state at tree level. The relativistic and static fermions show a liquid-gas transition at tree level in the effective field theory. The liquid-gas transition, when it occurs, manifests as a first-order line at low temperature and high density, terminated by a critical end point. The mass matrix controlling the behavior of correlation functions is obtained from fluctuations around the saddle points. Due to the C K symmetry of the models, the eigenvalues of the mass matrix are not always real but can be complex. This then leads to the existence of disorder lines, which mark the boundaries where the eigenvalues go from purely real to complex. The regions where the mass matrix eigenvalues are complex are associated with the critical line. In the case of static fermions, a powerful duality between particles and holes allows for the analytic determination of both the critical line and the disorder lines. Depending on the values of the parameters, either zero, one, or two disorder lines are found. Our numerical results for relativistic fermions give a very similar picture.« less

  1. Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic

    NASA Astrophysics Data System (ADS)

    Li, Yang; Li, Ying; Wang, Baomin; Luo, Yi; Yang, Dawei; Tong, Peng; Zhao, Jinfeng; Luo, Lun; Zhou, Yuhan; Chen, Si; Cheng, Fang; Qu, Jingping

    2013-04-01

    Although nitrogenase enzymes routinely convert molecular nitrogen into ammonia under ambient temperature and pressure, this reaction is currently carried out industrially using the Haber-Bosch process, which requires extreme temperatures and pressures to activate dinitrogen. Biological fixation occurs through dinitrogen and reduced NxHy species at multi-iron centres of compounds bearing sulfur ligands, but it is difficult to elucidate the mechanistic details and to obtain stable model intermediate complexes for further investigation. Metal-based synthetic models have been applied to reveal partial details, although most models involve a mononuclear system. Here, we report a diiron complex bridged by a bidentate thiolate ligand that can accommodate HN=NH. Following reductions and protonations, HN=NH is converted to NH3 through pivotal intermediate complexes bridged by N2H3- and NH2- species. Notably, the final ammonia release was effected with water as the proton source. Density functional theory calculations were carried out, and a pathway of biological nitrogen fixation is proposed.

  2. Unusual Complex Formation and Chemical Reaction of Haloacetate Anion on the Exterior Surface of Cucurbit[6]uril in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Choi, Tae Su; Ko, Jae Yoon; Heo, Sung Woo; Ko, Young Ho; Kim, Kimoon; Kim, Hugh I.

    2012-10-01

    Noncovalent interactions of cucurbit[6]uril (CB[6]) with haloacetate and halide anions are investigated in the gas phase using electrospray ionization ion mobility mass spectrometry. Strong noncovalent interactions of monoiodoacetate, monobromoacetate, monochloroacetate, dichloroacetate, and trichloroacetate on the exterior surface of CB[6] are observed in the negative mode electrospray ionization mass spectra. The strong binding energy of the complex allows intramolecular SN2 reaction of haloacetate, which yields externally bound CB[6]-halide complex, by collisional activation. Utilizing ion mobility technique, structures of exteriorly bound CB[6] complexes of haloacetate and halide anions are confirmed. Theoretically determined low energy structures using density functional theory (DFT) further support results from ion mobility studies. The DFT calculation reveals that the binding energy and conformation of haloacetate on the CB[6] surface affect the efficiency of the intramolecular SN2 reaction of haloacetate, which correlate well with the experimental observation.

  3. Kinetic Isotope Effects as a Probe for the Protonolysis Mechanism of Alkylmetal Complexes: VTST/MT Calculations Based on DFT Potential Energy Surfaces.

    PubMed

    Mai, Binh Khanh; Kim, Yongho

    2016-10-03

    Protonolysis by platinum or palladium complexes has been extensively studied because it is the microscopic reverse of the C-H bond activation reaction. The protonolysis of (COD)Pt II Me 2 , which exhibits abnormally large kinetic isotope effects (KIEs), is proposed to occur via a concerted pathway (S E 2 mechanism) with large tunneling. However, further investigation of KIEs for the protonolysis of ZnMe 2 and others led to a conclusion that there is no noticeable correlation between the mechanism and magnitude of KIE. In this study, we demonstrated that variational transition state theory including multidimensional tunneling (VTST/MT) could accurately predict KIEs and Arrhenius parameters of the protonolysis of alkylmetal complexes based on the potential energy surfaces generated by density functional theory. The predicted KIEs, E a D - E a H values, and A H /A D ratios for the protonolysis of (COD)Pt II Me 2 and Zn II Me 2 by TFA agreed very well with experimental values. The protonolysis of ZnMe 2 with the concerted pathway has a very flat potential energy surface, which produces a very small tunneling effect and therefore a small KIE. The predicted KIE for the stepwise protonolysis (S E (ox) mechanism) of (COD)Pt II Me 2 was much smaller than that of the concerted pathway, but greater than the KIE of the concerted protonolysis of ZnMe 2 . A large KIE, which entails a significant tunneling effect, could be used as an experimental probe of the concerted pathway. However, a normal or small KIE should not be used as an indicator of the stepwise mechanism, and the interplay between experiments and reliable theory including tunneling would be essential to uncover the mechanism correctly.

  4. Ligands raise the constraint that limits constitutive activation in G protein-coupled opioid receptors.

    PubMed

    Vezzi, Vanessa; Onaran, H Ongun; Molinari, Paola; Guerrini, Remo; Balboni, Gianfranco; Calò, Girolamo; Costa, Tommaso

    2013-08-16

    Using a cell-free bioluminescence resonance energy transfer strategy we compared the levels of spontaneous and ligand-induced receptor-G protein coupling in δ (DOP) and μ (MOP) opioid receptors. In this assay GDP can suppress spontaneous coupling, thus allowing its quantification. The level of constitutive activity was 4-5 times greater at the DOP than at the MOP receptor. A series of opioid analogues with a common peptidomimetic scaffold displayed remarkable inversions of efficacy in the two receptors. Agonists that enhanced coupling above the low intrinsic level of the MOP receptor were inverse agonists in reducing the greater level of constitutive coupling of the DOP receptor. Yet the intrinsic activities of such ligands are identical when scaled over the GDP base line of both receptors. This pattern is in conflict with the predictions of the ternary complex model and the "two state" extensions. According to this theory, the order of spontaneous and ligand-induced coupling cannot be reversed if a shift of the equilibrium between active and inactive forms raises constitutive activation in one receptor type. We propose that constitutive activation results from a lessened intrinsic barrier that restrains spontaneous coupling. Any ligand, regardless of its efficacy, must enhance this constraint to stabilize the ligand-bound complexed form.

  5. Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals.

    PubMed

    Sayfutyarova, Elvira R; Sun, Qiming; Chan, Garnet Kin-Lic; Knizia, Gerald

    2017-09-12

    We introduce the atomic valence active space (AVAS), a simple and well-defined automated technique for constructing active orbital spaces for use in multiconfiguration and multireference (MR) electronic structure calculations. Concretely, the technique constructs active molecular orbitals capable of describing all relevant electronic configurations emerging from a targeted set of atomic valence orbitals (e.g., the metal d orbitals in a coordination complex). This is achieved via a linear transformation of the occupied and unoccupied orbital spaces from an easily obtainable single-reference wave function (such as from a Hartree-Fock or Kohn-Sham calculations) based on projectors to targeted atomic valence orbitals. We discuss the premises, theory, and implementation of the idea, and several of its variations are tested. To investigate the performance and accuracy, we calculate the excitation energies for various transition-metal complexes in typical application scenarios. Additionally, we follow the homolytic bond breaking process of a Fenton reaction along its reaction coordinate. While the described AVAS technique is not a universal solution to the active space problem, its premises are fulfilled in many application scenarios of transition-metal chemistry and bond dissociation processes. In these cases the technique makes MR calculations easier to execute, easier to reproduce by any user, and simplifies the determination of the appropriate size of the active space required for accurate results.

  6. Learning Activity Models for Multiple Agents in a Smart Space

    NASA Astrophysics Data System (ADS)

    Crandall, Aaron; Cook, Diane J.

    With the introduction of more complex intelligent environment systems, the possibilities for customizing system behavior have increased dramatically. Significant headway has been made in tracking individuals through spaces using wireless devices [1, 18, 26] and in recognizing activities within the space based on video data (see chapter by Brubaker et al. and [6, 8, 23]), motion sensor data [9, 25], wearable sensors [13] or other sources of information [14, 15, 22]. However, much of the theory and most of the algorithms are designed to handle one individual in the space at a time. Resident tracking, activity recognition, event prediction, and behavior automation becomes significantly more difficult for multi-agent situations, when there are multiple residents in the environment.

  7. Spontaneous ordering and vortex states of active fluids in circular confinement

    NASA Astrophysics Data System (ADS)

    Theillard, Maxime; Ezhilan, Barath; Saintillan, David

    2015-11-01

    Recent experimental, theoretical and simulation studies have shown that confinement can profoundly affect self-organization in active suspensions leading to striking features such as directed fluid pumping in planar confinement, formation of steady and spontaneous vortices in radial confinement. Motivated by this, we study the dynamics in a suspension of biologically active particles confined in spherical geometries using a mean-field kinetic theory for which we developed a novel numerical solver. In the case of circular confinement, we conduct a systematic exploration of the entire parameter space and distinguish 3 broad states: no-flow, stable vortex and chaotic and several interesting sub-states. Our efficient numerical framework is also employed to study 3D effects and dynamics in more complex geometries.

  8. Testing the criterion for correct convergence in the complex Langevin method

    NASA Astrophysics Data System (ADS)

    Nagata, Keitaro; Nishimura, Jun; Shimasaki, Shinji

    2018-05-01

    Recently the complex Langevin method (CLM) has been attracting attention as a solution to the sign problem, which occurs in Monte Carlo calculations when the effective Boltzmann weight is not real positive. An undesirable feature of the method, however, was that it can happen in some parameter regions that the method yields wrong results even if the Langevin process reaches equilibrium without any problem. In our previous work, we proposed a practical criterion for correct convergence based on the probability distribution of the drift term that appears in the complex Langevin equation. Here we demonstrate the usefulness of this criterion in two solvable theories with many dynamical degrees of freedom, i.e., two-dimensional Yang-Mills theory with a complex coupling constant and the chiral Random Matrix Theory for finite density QCD, which were studied by the CLM before. Our criterion can indeed tell the parameter regions in which the CLM gives correct results.

  9. A review of human factors challenges of complex adaptive systems: discovering and understanding chaos in human performance.

    PubMed

    Karwowski, Waldemar

    2012-12-01

    In this paper, the author explores a need for a greater understanding of the true nature of human-system interactions from the perspective of the theory of complex adaptive systems, including the essence of complexity, emergent properties of system behavior, nonlinear systems dynamics, and deterministic chaos. Human performance, more often than not, constitutes complex adaptive phenomena with emergent properties that exhibit nonlinear dynamical (chaotic) behaviors. The complexity challenges in the design and management of contemporary work systems, including service systems, are explored. Examples of selected applications of the concepts of nonlinear dynamics to the study of human physical performance are provided. Understanding and applications of the concepts of theory of complex adaptive and dynamical systems should significantly improve the effectiveness of human-centered design efforts of a large system of systems. Performance of many contemporary work systems and environments may be sensitive to the initial conditions and may exhibit dynamic nonlinear properties and chaotic system behaviors. Human-centered design of emergent human-system interactions requires application of the theories of nonlinear dynamics and complex adaptive system. The success of future human-systems integration efforts requires the fusion of paradigms, knowledge, design principles, and methodologies of human factors and ergonomics with those of the science of complex adaptive systems as well as modern systems engineering.

  10. Solar Activity Forecasting for use in Orbit Prediction

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth

    2001-01-01

    Orbital prediction for satellites in low Earth orbit (LEO) or low planetary orbit depends strongly on exospheric densities. Solar activity forecasting is important in orbital prediction, as the solar UV and EUV inflate the upper atmospheric layers of the Earth and planets, forming the exosphere in which satellites orbit. Geomagnetic effects also relate to solar activity. Because of the complex and ephemeral nature of solar activity, with different cycles varying in strength by more than 100%, many different forecasting techniques have been utilized. The methods range from purely numerical techniques (essentially curve fitting) to numerous oddball schemes, as well as a small subset, called 'Precursor techniques.' The situation can be puzzling, owing to the numerous methodologies involved, somewhat akin to the numerous ether theories near the turn of the last century. Nevertheless, the Precursor techniques alone have a physical basis, namely dynamo theory, which provides a physical explanation for why this subset seems to work. I discuss this solar cycle's predictions, as well as the Sun's observed activity. I also discuss the SODA (Solar Dynamo Amplitude) index, which provides the user with the ability to track the Sun's hidden, interior dynamo magnetic fields. As a result, one may then update solar activity predictions continuously, by monitoring the solar magnetic fields as they change throughout the solar cycle. This paper ends by providing a glimpse into what the next solar cycle (#24) portends.

  11. Defense Systems Management Review. Volume 3, Number 3, Summer 1980. Maturing of the DoD Acquisition Process.

    DTIC Science & Technology

    1980-01-01

    economic equity among the participants. Dr. Walter B. LaBerge , former Assistant Secretary General for Defense Sup- port, NATO, and now Deputy Under...1977. 34. Thomas A. Callaghan, President, Export-Import Technology, Inc., Washington, D.C. 35. Dr. Walter B. LaBerge , "A Concept of a Two-Way Street...one single activity-the production and acquisition : ’. 1. Steven Rosen, Testing the Theory of the Military-Industrial Complex (Lexington, Mass.: D. C

  12. Experimental and theoretical study on activation of the C-H bond in pyridine by [M(m)]- (M = Cu, Ag, Au, m = 1-3).

    PubMed

    Liu, Xiao-Jing; Hamilton, I P; Han, Ke-Li; Tang, Zi-Chao

    2010-09-21

    Activation of the C-H bond of pyridine by [M(m)](-) (M = Cu, Ag, Au, m = 1-3) is investigated by experiment and theory. Complexes of coinage metal clusters and the pyridyl group, [M(m)-C(5)H(4)N](-), are produced from reactions between metal clusters formed by laser ablation of coinage metal samples and pyridine molecules seeded in argon carrier gas. We examine the structure and formation mechanism of these pyridyl-coinage metal complexes. Our study shows that C(5)H(4)N bonds to the metal clusters through a M-C sigma bond and [M(m)-C(5)H(4)N](-) is produced via a stepwise mechanism. The first step is a direct insertion reaction between [M(m)](-) and C(5)H(5)N with activation of the C-H bond to yield the intermediate [HM(m)-C(5)H(4)N](-). The second step is H atom abstraction by a neutral metal atom to yield [M(m)-C(5)H(4)N](-).

  13. Iron(IV)hydroxide pK(a) and the role of thiolate ligation in C-H bond activation by cytochrome P450.

    PubMed

    Yosca, Timothy H; Rittle, Jonathan; Krest, Courtney M; Onderko, Elizabeth L; Silakov, Alexey; Calixto, Julio C; Behan, Rachel K; Green, Michael T

    2013-11-15

    Cytochrome P450 enzymes activate oxygen at heme iron centers to oxidize relatively inert substrate carbon-hydrogen bonds. Cysteine thiolate coordination to iron is posited to increase the pK(a) (where K(a) is the acid dissociation constant) of compound II, an iron(IV)hydroxide complex, correspondingly lowering the one-electron reduction potential of compound I, the active catalytic intermediate, and decreasing the driving force for deleterious auto-oxidation of tyrosine and tryptophan residues in the enzyme's framework. Here, we report on the preparation of an iron(IV)hydroxide complex in a P450 enzyme (CYP158) in ≥90% yield. Using rapid mixing technologies in conjunction with Mössbauer, ultraviolet/visible, and x-ray absorption spectroscopies, we determine a pK(a) value for this compound of 11.9. Marcus theory analysis indicates that this elevated pK(a) results in a >10,000-fold reduction in the rate constant for oxidations of the protein framework, making these processes noncompetitive with substrate oxidation.

  14. Theory of mind in middle childhood and early adolescence: Different from before?

    PubMed

    Im-Bolter, Nancie; Agostino, Alba; Owens-Jaffray, Keely

    2016-09-01

    Studies with preschool children have shown that language and executive function are important for theory of mind, but few studies have examined these associations in older children and in an integrative theory-guided manner. The theory of constructive operators was used as a framework to test a model of relations among mental attentional capacity, attentional inhibition, language, executive processes (shifting and updating), and higher order theory of mind in two groups of school-aged children: one in middle childhood (n=226; mean age=8.08years) and the other in early adolescence (n=216; mean age=12.09years). Results revealed a complex model of interrelations between cognitive resources and language in middle childhood that directly and indirectly predicted theory of mind. The model in early adolescence was less complex, however, and highlighted the importance of semantic language and shifting for theory of mind. Our findings suggest not only that contributors to theory of mind change over time but also that they may depend on the maturity level of the theory of mind system being examined. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Structural and catalytic characterization of a heterovalent Mn(II)Mn(III) complex that mimics purple acid phosphatases.

    PubMed

    Smith, Sarah J; Riley, Mark J; Noble, Christopher J; Hanson, Graeme R; Stranger, Robert; Jayaratne, Vidura; Cavigliasso, Germán; Schenk, Gerhard; Gahan, Lawrence R

    2009-11-02

    The binuclear heterovalent manganese model complex [Mn(II)Mn(III)(L1)(OAc)(2)] ClO(4) x H(2)O (H(2)L1 = 2-(((3-((bis(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzyl)(pyridin-2-ylmethyl)amino)-methyl)phenol) has been prepared and studied structurally, spectroscopically, and computationally. The magnetic and electronic properties of the complex have been related to its structure. The complex is weakly antiferromagnetically coupled (J approximately -5 cm(-1), H = -2J S(1) x S(2)) and the electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectra identify the Jahn-Teller distortion of the Mn(III) center as predominantly a tetragonal compression, with a significant rhombic component. Electronic structure calculations using density functional theory have confirmed the conclusions derived from the experimental investigations. In contrast to isostructural M(II)Fe(III) complexes (M = Fe, Mn, Zn, Ni), the Mn(II)Mn(III) system is bifunctional possessing both catalase and hydrolase activities, and only one catalytically relevant pK(a) (= 8.2) is detected. Mechanistic implications are discussed.

  16. A novel vehicle tracking algorithm based on mean shift and active contour model in complex environment

    NASA Astrophysics Data System (ADS)

    Cai, Lei; Wang, Lin; Li, Bo; Zhang, Libao; Lv, Wen

    2017-06-01

    Vehicle tracking technology is currently one of the most active research topics in machine vision. It is an important part of intelligent transportation system. However, in theory and technology, it still faces many challenges including real-time and robustness. In video surveillance, the targets need to be detected in real-time and to be calculated accurate position for judging the motives. The contents of video sequence images and the target motion are complex, so the objects can't be expressed by a unified mathematical model. Object-tracking is defined as locating the interest moving target in each frame of a piece of video. The current tracking technology can achieve reliable results in simple environment over the target with easy identified characteristics. However, in more complex environment, it is easy to lose the target because of the mismatch between the target appearance and its dynamic model. Moreover, the target usually has a complex shape, but the tradition target tracking algorithm usually represents the tracking results by simple geometric such as rectangle or circle, so it cannot provide accurate information for the subsequent upper application. This paper combines a traditional object-tracking technology, Mean-Shift algorithm, with a kind of image segmentation algorithm, Active-Contour model, to get the outlines of objects while the tracking process and automatically handle topology changes. Meanwhile, the outline information is used to aid tracking algorithm to improve it.

  17. Safe medication management in specialized home healthcare - an observational study.

    PubMed

    Lindblad, Marléne; Flink, Maria; Ekstedt, Mirjam

    2017-08-24

    Medication management is a complex, error-prone process. The aim of this study was to explore what constitutes the complexity of the medication management process (MMP) in specialized home healthcare and how healthcare professionals handle this complexity. The study is theoretically based in resilience engineering. Data were collected during the MMP at three specialized home healthcare units in Sweden using two strategies: observation of workplaces and shadowing RNs in everyday work, including interviews. Transcribed material was analysed using grounded theory. The MMP in home healthcare was dynamic and complex with unclear boundaries of responsibilities, inadequate information systems and fluctuating work conditions. Healthcare professionals adapted their everyday clinical work by sharing responsibility and simultaneously being authoritative and preserving patients' active participation, autonomy and integrity. To promote a safe MMP, healthcare professionals constantly re-prioritized goals, handled gaps in communication and information transmission at a distance by creating new bridging solutions. Trade-offs and workarounds were necessary elements, but also posed a threat to patient safety, as these interim solutions were not systematically evaluated or devised learning strategies. To manage a safe medication process in home healthcare, healthcare professionals need to adapt to fluctuating conditions and create bridging strategies through multiple parallel activities distributed over time, space and actors. The healthcare professionals' strategies could be integrated in continuous learning, while preserving boundaries of safety, instead of being more or less interim solutions. Patients' and family caregivers' as active partners in the MMP may be an underestimated resource for a resilient home healthcare.

  18. Methodological issues in measures of imitative reaction times.

    PubMed

    Aicken, Michael D; Wilson, Andrew D; Williams, Justin H G; Mon-Williams, Mark

    2007-04-01

    Ideomotor (IM) theory suggests that observing someone else perform an action activates an internal motor representation of that behaviour within the observer. Evidence supporting the case for an ideomotor theory of imitation has come from studies that show imitative responses to be faster than the same behavioural measures performed in response to spatial cues. In an attempt to replicate these findings, we manipulated the salience of the visual cue and found that we could reverse the advantage of the imitative cue over the spatial cue. We suggest that participants utilised a simple visuomotor mechanism to perform all aspects of this task, with performance being driven by the relative visual salience of the stimuli. Imitation is a more complex motor skill that would constitute an inefficient strategy for rapid performance.

  19. Lexical Complexity Development from Dynamic Systems Theory Perspective: Lexical Density, Diversity, and Sophistication

    ERIC Educational Resources Information Center

    Kalantari, Reza; Gholami, Javad

    2017-01-01

    This longitudinal case study explored Iranian EFL learners' lexical complexity (LC) through the lenses of Dynamic Systems Theory (DST). Fifty independent essays written by five intermediate to advanced female EFL learners in a TOEFL iBT preparation course over six months constituted the corpus of this study. Three Coh-Metrix indices (Graesser,…

  20. Theoretically Speaking: An Examination of Four Theories and How They Support Writing in the Classroom

    ERIC Educational Resources Information Center

    Hodges, Tracey S.

    2017-01-01

    Writing is complex, and the more researchers understand the cognitive processes and engagement for writing, the more complex the relationships between cognition and producing writing appear. Writing theory is constantly shifting from a focus on mechanics and form to a focus on creativity and sociability. This literature review analyzes four…

Top