Science.gov

Sample records for activated cyclic nucleotide-gated

  1. Hyperpolarization-activated, cyclic nucleotide-gated cation channels in Aplysia: Contribution to classical conditioning

    PubMed Central

    Yang, Qizong; Kuzyk, Pavlo; Antonov, Igor; Bostwick, Caleb J.; Kohn, Andrea B.; Moroz, Leonid L.; Hawkins, Robert D.

    2015-01-01

    Hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are critical regulators of neuronal excitability, but less is known about their possible roles in synaptic plasticity and memory circuits. Here, we characterized the HCN gene organization, channel properties, distribution, and involvement in associative and nonassociative forms of learning in Aplysia californica. Aplysia has only one HCN gene, which codes for a channel that has many similarities to the mammalian HCN channel. The cloned acHCN gene was expressed in Xenopus oocytes, which displayed a hyperpolarization-induced inward current that was enhanced by cGMP as well as cAMP. Similarly to its homologs in other animals, acHCN is permeable to K+ and Na+ ions, and is selectively blocked by Cs+ and ZD7288. We found that acHCN is predominantly expressed in inter- and motor neurons, including LFS siphon motor neurons, and therefore tested whether HCN channels are involved in simple forms of learning of the siphon-withdrawal reflex in a semiintact preparation. ZD7288 (100 μM) significantly reduced an associative form of learning (classical conditioning) but had no effect on two nonassociative forms of learning (intermediate-term sensitization and unpaired training) or baseline responses. The HCN current is enhanced by nitric oxide (NO), which may explain the postsynaptic role of NO during conditioning. HCN current in turn enhances the NMDA-like current in the motor neurons, suggesting that HCN channels contribute to conditioning through this pathway. PMID:26668355

  2. Persistent discharges in dentate gyrus perisoma-inhibiting interneurons require hyperpolarization-activated cyclic nucleotide-gated channel activation.

    PubMed

    Elgueta, Claudio; Köhler, Johannes; Bartos, Marlene

    2015-03-11

    Parvalbumin (PV)-expressing perisoma-inhibiting interneurons (PIIs) of the dentate gyrus integrate rapidly correlated synaptic inputs and generate short-duration action potentials that propagate along the axon to their output synapses, supporting fast inhibitory signaling onto their target cells. Here we show that PV-PIIs in rat and mouse dentate gyrus (DG) integrate their intrinsic activity over time and can turn into a persistent firing mode characterized by the ability to generate long-lasting trains of action potentials at ∼50 Hz in the absence of additional inputs. Persistent firing emerges in the axons remote from the axon initial segment and markedly depends on hyperpolarization-activated cyclic nucleotide-gated channel (HCNC) activation. Persistent firing properties are modulated by intracellular Ca(2+) levels and somatic membrane potential. Detailed computational single-cell PIIs models reveal that HCNC-mediated conductances can contribute to persistent firing during conditions of a shift in their voltage activation curve to more depolarized potentials. Paired recordings from PIIs and their target granule cells show that persistent firing supports strong inhibitory output signaling. Thus, persistent firing may emerge during conditions of intense activation of the network, thereby providing silencing to the circuitry and the maintenance of sparse activity in the dentate gyrus. PMID:25762660

  3. ZD7288, a selective hyperpolarization-activated cyclic nucleotide-gated channel blocker, inhibits hippocampal synaptic plasticity

    PubMed Central

    Zhang, Xiao-xue; Min, Xiao-chun; Xu, Xu-lin; Zheng, Min; Guo, Lian-jun

    2016-01-01

    The selective hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride (ZD7288) blocks the induction of long-term potentiation in the perforant path–CA3 region in rat hippocampus in vivo. To explore the mechanisms underlying the action of ZD7288, we recorded excitatory postsynaptic potentials in perforant path–CA3 synapses in male Sprague-Dawley rats. We measured glutamate content in the hippocampus and in cultured hippocampal neurons using high performance liquid chromatography, and determined intracellular Ca2+ concentration [Ca2+]i) using Fura-2. ZD7288 inhibited the induction and maintenance of long-term potentiation, and these effects were mirrored by the nonspecific HCN channel blocker cesium. ZD7288 also decreased glutamate release in hippocampal tissue and in cultured hippocampal neurons. Furthermore, ZD7288 attenuated glutamate-induced rises in [Ca2+]i in a concentration-dependent manner and reversed 8-Br-cAMP-mediated facilitation of these glutamate-induced [Ca2+]i rises. Our results suggest that ZD7288 inhibits hippocampal synaptic plasticity both glutamate release and resultant [Ca2+]i increases in rat hippocampal neurons. PMID:27335562

  4. ZD7288, a selective hyperpolarization-activated cyclic nucleotide-gated channel blocker, inhibits hippocampal synaptic plasticity.

    PubMed

    Zhang, Xiao-Xue; Min, Xiao-Chun; Xu, Xu-Lin; Zheng, Min; Guo, Lian-Jun

    2016-05-01

    The selective hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride (ZD7288) blocks the induction of long-term potentiation in the perforant path-CA3 region in rat hippocampus in vivo. To explore the mechanisms underlying the action of ZD7288, we recorded excitatory postsynaptic potentials in perforant path-CA3 synapses in male Sprague-Dawley rats. We measured glutamate content in the hippocampus and in cultured hippocampal neurons using high performance liquid chromatography, and determined intracellular Ca(2+) concentration [Ca(2+)]i) using Fura-2. ZD7288 inhibited the induction and maintenance of long-term potentiation, and these effects were mirrored by the nonspecific HCN channel blocker cesium. ZD7288 also decreased glutamate release in hippocampal tissue and in cultured hippocampal neurons. Furthermore, ZD7288 attenuated glutamate-induced rises in [Ca(2+)]i in a concentration-dependent manner and reversed 8-Br-cAMP-mediated facilitation of these glutamate-induced [Ca(2+)]i rises. Our results suggest that ZD7288 inhibits hippocampal synaptic plasticity both glutamate release and resultant [Ca(2+)]i increases in rat hippocampal neurons. PMID:27335562

  5. Expression of hyperpolarization-activated cyclic nucleotide-gated channel isoforms in a canine model of atrial fibrillation

    PubMed Central

    HE, WEI; ZHANG, JIAN; GAN, TIANYI; XU, GUOJUN; TANG, BAOPENG

    2016-01-01

    The aim of the present study was to analyze the mRNA and protein expression levels of atrial hyperpolarization-activated cyclic nucleotide-gated (HCN) channel isoforms in the left atrial muscle of dogs with multiple organ failure. A total of 14 beagle dogs with multiple organ failure, including seven cases with sinus rhythm and seven cases with atrial fibrillation (AF), underwent surgery to remove a sample of left atrial appendage tissue. The expression levels of a number of HCN channel subtypes were subsequently measured using quantitative polymerase chain reaction and western blot analysis. The mRNA and protein expression levels of HCN2 and HCN4 increased significantly in the AF group when compared with the sinus rhythm group. However, expression of the HCN1 isoform was not detected. Therefore, increased expression levels of HCN2 and HCN4 may be important molecular mechanisms in the pathogenesis of AF, which were associated with differences in patients with valvular heart disease. PMID:27347074

  6. Structure and stoichiometry of an accessory subunit TRIP8b interaction with hyperpolarization-activated cyclic nucleotide-gated channels

    PubMed Central

    Bankston, John R.; Camp, Stacey S.; DiMaio, Frank; Lewis, Alan S.; Chetkovich, Dane M.; Zagotta, William N.

    2012-01-01

    Ion channels operate in intact tissues as part of large macromolecular complexes that can include cytoskeletal proteins, scaffolding proteins, signaling molecules, and a litany of other molecules. The proteins that make up these complexes can influence the trafficking, localization, and biophysical properties of the channel. TRIP8b (tetratricopetide repeat-containing Rab8b-interacting protein) is a recently discovered accessory subunit of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that contributes to the substantial dendritic localization of HCN channels in many types of neurons. TRIP8b interacts with the carboxyl-terminal region of HCN channels and regulates their cell-surface expression level and cyclic nucleotide dependence. Here we examine the molecular determinants of TRIP8b binding to HCN2 channels. Using a single-molecule fluorescence bleaching method, we found that TRIP8b and HCN2 form an obligate 4:4 complex in intact channels. Fluorescence-detection size-exclusion chromatography and fluorescence anisotropy allowed us to confirm that two different domains in the carboxyl-terminal portion of TRIP8b—the tetratricopepide repeat region and the TRIP8b conserved region—interact with two different regions of the HCN carboxyl-terminal region: the carboxyl-terminal three amino acids (SNL) and the cyclic nucleotide-binding domain, respectively. And finally, using X-ray crystallography, we determined the atomic structure of the tetratricopepide region of TRIP8b in complex with a peptide of the carboxy-terminus of HCN2. Together, these experiments begin to uncover the mechanism for TRIP8b binding and regulation of HCN channels. PMID:22550182

  7. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate firing of globus pallidus neurons in vivo.

    PubMed

    Chen, Lei; Xu, Rong; Sun, Feng-Jiao; Xue, Yan; Hao, Xiao-Meng; Liu, Hong-Xia; Wang, Hua; Chen, Xin-Yi; Liu, Zi-Ran; Deng, Wen-Shuai; Han, Xiao-Hua; Xie, Jun-Xia; Yung, Wing-Ho

    2015-09-01

    The globus pallidus plays a significant role in motor control under both health and pathological states. Recent studies have revealed that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels occupy a critical position in globus pallidus pacemaking activity. Morphological studies have shown the expression of HCN channels in the globus pallidus. To investigate the in vivo effects of HCN channels in the globus pallidus, extracellular recordings and behavioral tests were performed in the present study. In normal rats, micro-pressure ejection of 0.05mM ZD7288, the selective HCN channel blocker, decreased the frequency of spontaneous firing in 21 out of the 40 pallidal neurons. The average decrease was 50.4±5.4%. Interestingly, in another 18 out of the 40 pallidal neurons, ZD7288 increased the firing rate by 137.1±27.6%. Similar bidirectional modulation on the firing rate was observed by a higher concentration of ZD7288 (0.5mM) as well as another HCN channel blocker, CsCl. Furthermore, activation of HCN channels by 8-Br-cAMP increased the firing rate by 63.0±9.3% in 15 out of the 25 pallidal neurons and decreased the firing rate by 46.9±9.4% in another 8 out of the 25 pallidal neurons. Further experiments revealed that modulation of glutamatergic but not GABAergic transmission may be involved in ZD7288-induced increase in firing rate. Consistent with electrophysiological results, further studies revealed that modulation of HCN channels also had bidirectional effects on behavior. Taken together, the present studies suggest that HCN channels may modulate the activity of pallidal neurons by different pathways in vivo. PMID:25858108

  8. Excessive activation of cyclic nucleotide-gated channels contributes to neuronal degeneration of photoreceptors.

    PubMed

    Vallazza-Deschamps, Géraldine; Cia, David; Gong, Jie; Jellali, Abdeljelil; Duboc, Agnès; Forster, Valérie; Sahel, Jose A; Tessier, Luc-Henri; Picaud, Serge

    2005-09-01

    In different animal models, photoreceptor degeneration was correlated to an abnormal increase in cGMP concentration. The cGMP-induced photoreceptor toxicity was demonstrated by applying the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine on retinal explants. To assess the role of cGMP-gated channels in this cGMP toxicity, the Ca(2+) channel blockers verapamil and L- and D-diltiazem, which block cGMP-gated channels with different efficacies, were applied to in vitro animal models of photoreceptor degeneration. These models included: (i) adult rat retinal explants incubated with zaprinast, a more specific inhibitor of the rod phosphodiesterase than 3-isobutyl-1-methylxanthine and (ii) rd mouse retinal explants. Photoreceptor apoptosis was assessed by terminal dUTP nick end labelling and caspase 3 activation. Effects of the blockers on the synaptic rod Ca(2+) channels were measured by patch-clamp recording. In the zaprinast-induced photoreceptor degeneration model, both diltiazem isomers rescued photoreceptors whereas verapamil had no influence. Their neuroprotective efficacy was correlated to their inhibition of cGMP-gated channels (l-diltiazem>d-diltiazem>verapamil=0). In contrast, all three Ca(2+) channel blockers suppressed rod Ca(2+) channel currents similarly. This suppression of the currents by the diltiazem isomers was very weak (16.5%) at the neuroprotective concentration (10 microm). In rd retinal explants, both diltiazem isomers also slowed down rod degeneration in contrast to verapamil. L-diltiazem exhibited this effect at concentrations ranging from 1 to 20 microm. This study further supports the photoreceptor neuroprotection by diltiazem particularly in the rd mouse retina, whereas the absence of neuroprotection by verapamil further suggests the role of cGMP-gated channel activation in the induction of photoreceptor degeneration. PMID:16176343

  9. Decreased expression of hyperpolarisation-activated cyclic nucleotide-gated channel 3 in Hirschsprung’s disease

    PubMed Central

    O’Donnell, Anne Marie; Coyle, David; Puri, Prem

    2015-01-01

    AIM: To determine if hyperpolarisation-activated nucleotide-gated (HCN) channels exist in human colon, and to investigate the expression of HCN channels in Hirschsprung’s disease. METHODS: We investigated HCN1, HCN2, HCN3 and HCN4 protein expression in pull-through specimens from patients with Hirschsprung’s disease (HSCR, n = 10) using the proximal-most ganglionic segment and distal-most aganglionic segment, as well as in healthy control specimens obtained at the time of sigmoid colostomy closure in children who had undergone anorectoplasty for imperforate anus (n = 10). Fluorescent immunohistochemistry was performed to assess protein distribution, which was then visualized using confocal microscopy. RESULTS: No HCN1 channel expression was observed in any of the tissues studied. Both HCN2 and HCN4 proteins were found to be equally expressed in the aganglionic and ganglionic bowel in HSCR and controls. HCN3 channel expression was found to be markedly decreased in the aganglionic colon vs ganglionic colon and controls. HCN2-4 channels were seen to be expressed within neurons of the myenteric and submucosal plexus of the ganglionic bowel and normal controls, and also co-localised to interstitial cells of Cajal in all tissues studied. CONCLUSION: We demonstrate HCN channel expression in human colon for the first time. Reduced HCN3 expression in aganglionic bowel suggests its potential role in HSCR pathophysiology. PMID:25987789

  10. The role of an ancestral hyperpolarization-activated cyclic nucleotide-gated K+ channel in branchial acid-base regulation in the green crab, Carcinus maenas.

    PubMed

    Fehsenfeld, Sandra; Weihrauch, Dirk

    2016-03-01

    Numerous electrophysiological studies on branchial K(+) transport in brachyuran crabs have established an important role for potassium channels in osmoregulatory ion uptake and ammonia excretion in the gill epithelium of decapod crustaceans. However, hardly anything is known of the actual nature of these channels in crustaceans. In the present study, the identification of a hyperpolarization-activated cyclic nucleotide-gated potassium channel (HCN) in the transcriptome of the green crab Carcinus maenas and subsequent performance of quantitative real-time PCR revealed the ubiquitous expression of this channel in this species. Even though mRNA expression levels in the cerebral ganglion were found to be approximately 10 times higher compared with all other tissues, posterior gills still expressed significant levels of HCN, indicating an important role for this transporter in branchial ion regulation. The relatively unspecific K(+)-channel inhibitor Ba(2+), as well as the HCN-specific blocker ZD7288, as applied in gill perfusion experiments and electrophysiological studies employing the split gill lamellae revealed the presence of at least two different K(+)/NH4(+)-transporting structures in the branchial epithelium of C. maenas. Furthermore, HCN mRNA levels in posterior gill 7 decreased significantly in response to the respiratory or metabolic acidosis that was induced by acclimation of green crabs to high environmental PCO2 and ammonia, respectively. Consequently, the present study provides first evidence that HCN-promoted NH4(+) epithelial transport is involved in both branchial acid-base and ammonia regulation in an invertebrate. PMID:26787479

  11. The effect of hyperpolarization-activated cyclic nucleotide-gated ion channel inhibitors on the vagal control of guinea pig airway smooth muscle tone

    PubMed Central

    McGovern, Alice E; Robusto, Jed; Rakoczy, Joanna; Simmons, David G; Phipps, Simon; Mazzone, Stuart B

    2014-01-01

    BACKGROUND AND PURPOSE Subtypes of the hyperpolarization-activated cyclic nucleotide-gated (HCN) family of cation channels are widely expressed on nerves and smooth muscle cells in many organ systems, where they serve to regulate membrane excitability. Here we have assessed whether HCN channel inhibitors alter the function of airway smooth muscle or the neurons that regulate airway smooth muscle tone. EXPERIMENTAL APPROACH The effects of the HCN channel inhibitors ZD7288, zatebradine and Cs+ were assessed on agonist and nerve stimulation-evoked changes in guinea pig airway smooth muscle tone using tracheal strips in vitro, an innervated tracheal tube preparation ex vivo or in anaesthetized mechanically ventilated guinea pigs in vivo. HCN channel expression in airway nerves was assessed using immunohistochemistry, PCR and in situ hybridization. KEY RESULTS HCN channel inhibition did not alter airway smooth muscle reactivity in vitro to exogenously administered smooth muscle spasmogens, but significantly potentiated smooth muscle contraction evoked by the sensory nerve stimulant capsaicin and electrical field stimulation of parasympathetic cholinergic postganglionic neurons. Sensory nerve hyperresponsiveness was also evident in in vivo following HCN channel blockade. Cs+, but not ZD7288, potentiated preganglionic nerve-dependent airway contractions and over time induced autorhythmic preganglionic nerve activity, which was not mimicked by inhibitors of potassium channels. HCN channel expression was most evident in vagal sensory ganglia and airway nerve fibres. CONCLUSIONS AND IMPLICATIONS HCN channel inhibitors had a previously unrecognized effect on the neural regulation of airway smooth muscle tone, which may have implications for some patients receiving HCN channel inhibitors for therapeutic purposes. PMID:24762027

  12. Altered expression of hyperpolarization-activated cyclic nucleotide-gated channels and microRNA-1 and -133 in patients with age-associated atrial fibrillation

    PubMed Central

    LI, YAO-DONG; HONG, YI-FAN; YUSUFUAJI, YUEERGULI; TANG, BAO-PENG; ZHOU, XIAN-HUI; XU, GUO-JUN; LI, JIN-XIN; SUN, LIN; ZHANG, JIANG-HUA; XIN, QIANG; XIONG, JIAN; JI, YU-TONG; ZHANG, YU

    2015-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) cation channels mediate pacemaker currents in the atrium. The microRNA (miR) families miR-1 and miR-133 regulate the expression of multiple genes involved in myocardial function, including HCN channels. It was hypothesized that age-dependent changes in HCN2, HCN4, miR-1 and miR-133 expression may contribute to age-associated atrial fibrillation, and therefore the correlation between expression levels, among adult (≤65 years) and aged patients (≥65 years), and sinus rhythm was determined. Right atrial appendage samples were collected from 60 patients undergoing coronary artery bypass grafting. Reverse transcription-quantitative polymerase chain reaction (PCR) and western blot analyses were performed in order to determine target RNA and protein expression levels. Compared with aged patients with sinus rhythm, aged patients with atrial fibrillation exhibited significantly higher HCN2 and HCN4 channel mRNA and protein expression levels (P<0.05), but significantly lower expression levels of miR-1 and miR-133 (P<0.05). In addition, aged patients with sinus rhythm exhibited significantly higher expression levels of HCN2 and HCN4 channel mRNA and protein (P<0.05), but significantly lower expression levels of miR-1 and -133 (P<0.05), compared with those of adult patients with sinus rhythm. Expression levels of HCN2 and HCN4 increased with age, and a greater increase was identified in patients with age-associated atrial fibrillation compared with that in those with aged sinus rhythm. These electrophysiological changes may contribute to the induction of ectopic premature beats that trigger atrial fibrillation. PMID:26005035

  13. Contribution of the ciliary cyclic nucleotide-gated conductance to olfactory transduction in the salamander.

    PubMed Central

    Lowe, G; Gold, G H

    1993-01-01

    1. Flash photolysis of caged cyclic nucleotides was used to examine the contribution of the ciliary cyclic nucleotide-gated conductance to olfactory transduction in the tiger salamander. Brief illumination of solitary olfactory receptor cells loaded with 100 microM caged cyclic AMP caused a large inward current (peak amplitude 355 +/- 200 pA; mean +/- S.D. for eleven cells) under whole-cell voltage clamp at -50 mV. 2. The photolysis response was initiated after a latency of 4-12 ms, whereas an odorant response of identical amplitude had a latency of several hundred milliseconds. The amplitudes of both responses exhibited almost identical voltage dependence between -50 and +25 mV, with both reversing near 0 mV. The time courses of the falling phases of odorant and photolysis responses also exhibited similar voltage dependence, both being prolonged at positive voltages. 3. Photolysis of caged cyclic GMP activated a current similar in amplitude and time course to that produced by photolysis of caged cyclic AMP. 4. When the flash was spatially limited to the cilia, the amplitude and duration of the photolysis response increased linearly with the length of the cilia illuminated (for cilia not longer than 30-40 microns) while the latency remained constant at 4-12 ms. The increase in duration was described semi-quantitatively by a model which incorporated diffusion and saturable hydrolysis of cyclic AMP. When the flash was limited to the soma or proximal dendrite, the response latency was proportional to the square of the distance between the illuminated region and the cilia. 5. Dialysis of cells with 500 microM cyclic AMP from a whole-cell electrode under voltage clamp activated a large transient inward current. Simultaneous suction electrode recording showed that this current originated almost entirely from the ciliary membrane. The density of cyclic nucleotide-gated channels was estimated to be 800-fold higher in the cilia than in the soma. 6. Summation of simultaneous

  14. Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations.

    PubMed

    Charpentier, Myriam; Sun, Jongho; Vaz Martins, Teresa; Radhakrishnan, Guru V; Findlay, Kim; Soumpourou, Eleni; Thouin, Julien; Véry, Anne-Aliénor; Sanders, Dale; Morris, Richard J; Oldroyd, Giles E D

    2016-05-27

    Nuclear-associated Ca(2+) oscillations mediate plant responses to beneficial microbial partners--namely, nitrogen-fixing rhizobial bacteria that colonize roots of legumes and arbuscular mycorrhizal fungi that colonize roots of the majority of plant species. A potassium-permeable channel is known to be required for symbiotic Ca(2+) oscillations, but the calcium channels themselves have been unknown until now. We show that three cyclic nucleotide-gated channels in Medicago truncatula are required for nuclear Ca(2+) oscillations and subsequent symbiotic responses. These cyclic nucleotide-gated channels are located at the nuclear envelope and are permeable to Ca(2+) We demonstrate that the cyclic nucleotide-gated channels form a complex with the postassium-permeable channel, which modulates nuclear Ca(2+) release. These channels, like their counterparts in animal cells, might regulate multiple nuclear Ca(2+) responses to developmental and environmental conditions. PMID:27230377

  15. VOLTAGE-DEPENDENT OPENING OF HCN CHANNELS: FACILITATION OR INHIBITION BY THE PHYTOESTROGEN, GENISTEIN, IS DETERMINED BY THE ACTIVATION STATUS OF THE CYCLIC NUCLEOTIDE GATING RING

    PubMed Central

    Rozario, Anjali. O.; Turbendian, Harma K.; Fogle, Keri J.; Olivier, Nelson B.; Tibbs, Gareth R.

    2009-01-01

    Investigation of the mechanistic bases and physiological importance of cAMP regulation of HCN channels has exploited an arginine to glutamate mutation in the nucleotide-binding fold, an approach critically dependent on the mutation selectively lowering the channel’s nucleotide affinity. In apparent conflict with this, in intact Xenopus oocytes, HCN and HCN-RE channels exhibit qualitatively and quantitatively distinct responses to the tyrosine kinase inhibitor, genistein – the estrogenic isoflavonoid strongly depolarizes the activation midpoint of HCN1-R538E, but not HCN1 channels (+9.8 mV ± 0.9 versus +2.2 mV ± 0.6) and hyperpolarizes gating of HCN2 (−4.8 mV ± 1.0) but depolarizes gating of HCN2-R591E (+13.2 mV ± 2.1). However, excised patch recording, X-ray crystallography and modeling reveal this is not due to either a fundamental effect of the mutation on channel gating per se or of genistein acting as a mutation-sensitive partial agonist at the cAMP site. Rather, we find that genistein equivalently moves both HCN and HCN-RE channels closer to the open state (rendering the channels inherently easier to open but at a cost of decreasing the coupling energy of cAMP) and that the anomaly reflects a balance of these energetic effects with the isoform specific inhibition of activation by the nucleotide gating ring and relief of this by endogenous cAMP. These findings have specific implications with regard to findings based on HCN-RE channels and kinase antagonists and general implications with respect to interpretation of drug effects in mutant channel backgrounds. PMID:19524546

  16. Proton transfer unlocks inactivation in cyclic nucleotide-gated A1 channels

    PubMed Central

    Marchesi, Arin; Arcangeletti, Manuel; Mazzolini, Monica; Torre, Vincent

    2015-01-01

    Ion channels control ionic fluxes across biological membranes by residing in any of three functionally distinct states: deactivated (closed), activated (open) or inactivated (closed). Unlike many of their cousin K+ channels, cyclic nucleotide-gated (CNG) channels do not desensitize or inactivate. Using patch recording techniques, we show that when extracellular pH (pHo) is decreased from 7.4 to 6 or lower, wild-type CNGA1 channels inactivate in a voltage-dependent manner. pHo titration experiments show that at pHo < 7 the I–V relationships are outwardly rectifying and that inactivation is coupled to current rectification. Single-channel recordings indicate that a fast mechanism of proton blockage underlines current rectification while inactivation arises from conformational changes downstream from protonation. Furthermore, mutagenesis and ionic substitution experiments highlight the role of the selectivity filter in current decline, suggesting analogies with the C-type inactivation observed in K+ channels. Analysis with Markovian models indicates that the non-independent binding of two protons within the transmembrane electrical field explains both the voltage-dependent blockage and the inactivation. Low pH, by inhibiting the CNGA1 channels in a state-dependent manner, may represent an unrecognized endogenous signal regulating CNG physiological functions in diverse tissues. PMID:25480799

  17. Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel

    SciTech Connect

    Leng, Q.; Mercier, R.W.; Yao, W.; Berkowitz, G.A.

    1999-11-01

    Cyclic nucleotide-gated (cng) non-selective cation channels have been cloned from a number of animal systems. These channels are characterized by direct gating upon cAMO or cGMO binding to the intracellular portion of the channel protein, which leads to an increase in channel conductance. Animal cng channels are involved in signal transduction systems; they translate stimulus-induced changes in cytosolic cyclic nucleotide into altered cell membrane potential and/or cation flux as part of a signal cascade pathway. Putative plant homologs of animal cng channels have been identified. However, functional characterization (i.e., demonstration of cyclic-nucleotide-dependent ion currents) of a plant cng channel has not yet been accomplished. The authors report the cloning and first functional characterization of a plant member of this family of ion channels. The Arabidopsis cDNA AtCNGC2 encodes a polypeptide with deduced homology to the {alpha}-subunit of animal channels, and facilitates cyclic nucleotide-dependent cation currents upon expression in a number of heterologous systems. AtCNGC2 expression in a yeast mutant lacking a low-affinity K{sup +} uptake system complements growth inhibition only when lipophilic nucleotides are present in the culture medium. Voltage clamp analysis indicates that Xenopus lawvis oocytes injected with AtCNGC2 cRNA demonstrate cyclic-nucleotide-dependent, inward-rectifying K{sup +} currents. Human embryonic kidney cells (HEK293) transfected with AtCNGC2 cDNA demonstrate increased permeability to Ca{sup 2+} only in the presence of lipophilic cyclic nucleotides. The evidence presented here supports the functional classification of AtCNGC2 as a cyclic-nucleotide-gated cation channel, and presents the first direct evidence identifying a plant member of this ion channel family.

  18. The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway

    PubMed Central

    Plachetzki, David C.; Fong, Caitlin R.; Oakley, Todd H.

    2010-01-01

    The evolutionary histories of complex traits are complicated because such traits are comprised of multiple integrated and interacting components, which may have different individual histories. Phylogenetic studies of complex trait evolution often do not take this into account, instead focusing only on the history of whole, integrated traits; for example, mapping eyes as simply present or absent through history. Using the biochemistry of animal vision as a model, we demonstrate how investigating the individual components of complex systems can aid in elucidating both the origins and diversification of such systems. Opsin-based phototransduction underlies all visual phenotypes in animals, using complex protein cascades that translate light information into changes in cyclic nucleotide gated (CNG) or canonical transient receptor potential (TRPC) ion-channel activity. Here we show that CNG ion channels play a role in cnidarian phototransduction. Transcripts of a CNG ion channel co-localize with opsin in specific cell types of the eyeless cnidarian Hydra magnipapillata. Further, the CNG inhibitor cis-diltiazem ablates a stereotypical photoresponse in the hydra. Our findings in the Cnidaria, the only non-bilaterian lineage to possess functional opsins, allow us to trace the history of CNG-based photosensitivity to the very origin of animal phototransduction. Our general analytical approach, based on explicit phylogenetic analysis of individual components, contrasts the deep evolutionary history of CNG-based phototransduction, today used in vertebrate vision, with the more recent assembly of TRPC-based systems that are common to protostome (e.g. fly and mollusc) vision. PMID:20219739

  19. Selective loss of cone function in mice lacking the cyclic nucleotide-gated channel CNG3

    PubMed Central

    Biel, Martin; Seeliger, Mathias; Pfeifer, Alexander; Kohler, Konrad; Gerstner, Andrea; Ludwig, Andreas; Jaissle, Gesine; Fauser, Sascha; Zrenner, Eberhart; Hofmann, Franz

    1999-01-01

    Two types of photoreceptors, rods and cones, coexist in the vertebrate retina. An in-depth analysis of the retinal circuitry that transmits rod and cone signals has been hampered by the presence of intimate physical and functional connections between rod and cone pathways. By deleting the cyclic nucleotide-gated channel CNG3 we have generated a mouse lacking any cone-mediated photoresponse. In contrast, the rod pathway is completely intact in CNG3-deficient mice. The functional loss of cone function correlates with a progressive degeneration of cone photoreceptors but not of other retinal cell types. CNG3-deficient mice provide an animal model to dissect unequivocally the contribution of rod and cone pathways for normal retinal function. PMID:10377453

  20. Structure, dynamics and implied gating mechanism of a human cyclic nucleotide-gated channel.

    PubMed

    Gofman, Yana; Schärfe, Charlotta; Marks, Debora S; Haliloglu, Turkan; Ben-Tal, Nir

    2014-12-01

    Cyclic nucleotide-gated (CNG) ion channels are nonselective cation channels, essential for visual and olfactory sensory transduction. Although the channels include voltage-sensor domains (VSDs), their conductance is thought to be independent of the membrane potential, and their gating regulated by cytosolic cyclic nucleotide-binding domains. Mutations in these channels result in severe, degenerative retinal diseases, which remain untreatable. The lack of structural information on CNG channels has prevented mechanistic understanding of disease-causing mutations, precluded structure-based drug design, and hampered in silico investigation of the gating mechanism. To address this, we built a 3D model of the cone tetrameric CNG channel, based on homology to two distinct templates with known structures: the transmembrane (TM) domain of a bacterial channel, and the cyclic nucleotide-binding domain of the mouse HCN2 channel. Since the TM-domain template had low sequence-similarity to the TM domains of the CNG channels, and to reconcile conflicts between the two templates, we developed a novel, hybrid approach, combining homology modeling with evolutionary coupling constraints. Next, we used elastic network analysis of the model structure to investigate global motions of the channel and to elucidate its gating mechanism. We found the following: (i) In the main mode of motion, the TM and cytosolic domains counter-rotated around the membrane normal. We related this motion to gating, a proposition that is supported by previous experimental data, and by comparison to the known gating mechanism of the bacterial KirBac channel. (ii) The VSDs could facilitate gating (supplementing the pore gate), explaining their presence in such 'voltage-insensitive' channels. (iii) Our elastic network model analysis of the CNGA3 channel supports a modular model of allosteric gating, according to which protein domains are quasi-independent: they can move independently, but are coupled to each

  1. Empirically founded genotype-phenotype maps from mammalian cyclic nucleotide-gated ion channels.

    PubMed

    Becchetti, Andrea

    2014-12-21

    A major barrier between evolutionary and functional biology is the difficulty of determining appropriate genotype-phenotype-fitness maps, particularly in metazoans. Concrete perspectives towards unifying these approaches are offered by studies on the physiological systems that depend on ion channel dynamics. I focus on the cyclic nucleotide-gated (CNG) channels implicated in the photoreceptor's response to light. From an evolutionary standpoint, sensory systems offers interpretative advantages, as the relation between the sensory response and environment is relatively straightforward. For CNG and other ion channels, extensive data are available about the physiological consequences of scanning mutagenesis on sensitive protein domains, such as the conduction pore. Mutant ion channels can be easily studied in living cells, so that the relation between genotypes and phenotypes is less speculative than usual. By relying on relatively simple theoretical frameworks, I used these data to relate the sequence space with phenotypes at increasing hierarchical levels. These empirical genotype-phenotype and phenotype-phenotype landscapes became smoother at higher integration levels, especially in heterozygous condition. The epistatic interaction between sites was analyzed from double mutant constructs. Magnitude epistasis was common. Moreover, evidence of reciprocal sign epistasis and the presence of permissive mutations were also observed, which suggest how adaptive regions can be connected across maladaptive valleys. The approach I describe suggests a way to better relate the evolutionary dynamics with the underlying physiology. PMID:25172772

  2. Cyclic nucleotide gated channel 10 negatively regulates salt tolerance by mediating Na+ transport in Arabidopsis.

    PubMed

    Jin, Yakang; Jing, Wen; Zhang, Qun; Zhang, Wenhua

    2015-01-01

    A number of cyclic nucleotide gated channel (CNGC) genes have been identified in plant genomes, but their functions are mainly undefined. In this study, we identified the role of CNGC10 in the response of Arabidopsis thaliana to salt stress. The cngc10 T-DNA insertion mutant showed greater tolerance to salt than wild-type A. thaliana during seed germination and seedling growth. The cngc10 mutant accumulated less Na(+) and K(+), but not less Ca(2+), in shoots in response to salt stress. By contrast, overexpression of CNGC10 resulted in greater sensitivity to salt stress, and complementation of this gene recovered salt sensitivity. In response to salt stress, heterologous expression of CNGC10 in the Na(+) sensitive yeast mutant strain B31 inhibited growth due to accumulation of Na(+) at a rate greater than that of yeast transformed with an empty vector. Quantitative RT-PCR analysis demonstrated that CNGC10 was expressed mainly in roots and flowers. GUS analysis of a root cross section indicated that CNGC10 was expressed mainly in the endodermis and epidermis. Furthermore, the expression of CNGC10 in roots was dramatically inhibited by exposure to 200 mM NaCl for 6 h. These data suggest that CNGC10 negatively regulates salt tolerance in A. thaliana and may be involved in mediating Na(+) transport. PMID:25416933

  3. Role of Cyclic Nucleotide Gated Channels in Stress Management in Plants.

    PubMed

    Jha, Saroj K; Sharma, Manisha; Pandey, Girdhar K

    2016-08-01

    Tolerance of plants to a number of biotic and abiotic stresses such as pathogen and herbivore attack, drought, salinity, cold and nutritional limitations is ensued by complex multimodule signaling pathways. The outcome of this complex signaling pathways results in adaptive responses by restoring the cellular homeostasis and thus promoting survival. Functions of many plant cation transporter and channel protein families such as glutamate receptor homologs (GLRs), cyclic nucleotide-gated ion channel (CNGC) have been implicated in providing biotic and abiotic stress tolerance. Ion homeostasis regulated by several transporters and channels is one of the crucial parameters for the optimal growth, development and survival of all living organisms. The CNGC family members are known to be involved in the uptake of cations such as Na(+), K(+) and Ca(2+) and regulate plant growth and development. Detail functional genomics approaches have given an emerging picture of CNGCs wherein these protein are believed to play crucial role in pathways related to cellular ion homeostasis, development and as a 'guard' in defense against biotic and abiotic challenges. Here, we discuss the current knowledge of role of CNGCs in mediating stress management and how they aid plants in survival under adverse conditions. PMID:27499681

  4. Structural implications of weak Ca2+ block in Drosophila cyclic nucleotide-gated channels.

    PubMed

    Lam, Yee Ling; Zeng, Weizhong; Derebe, Mehabaw Getahun; Jiang, Youxing

    2015-09-01

    Calcium permeability and the concomitant calcium block of monovalent ion current ("Ca(2+) block") are properties of cyclic nucleotide-gated (CNG) channel fundamental to visual and olfactory signal transduction. Although most CNG channels bear a conserved glutamate residue crucial for Ca(2+) block, the degree of block displayed by different CNG channels varies greatly. For instance, the Drosophila melanogaster CNG channel shows only weak Ca(2+) block despite the presence of this glutamate. We previously constructed a series of chimeric channels in which we replaced the selectivity filter of the bacterial nonselective cation channel NaK with a set of CNG channel filter sequences and determined that the resulting NaK2CNG chimeras displayed the ion selectivity and Ca(2+) block properties of the parent CNG channels. Here, we used the same strategy to determine the structural basis of the weak Ca(2+) block observed in the Drosophila CNG channel. The selectivity filter of the Drosophila CNG channel is similar to that of most other CNG channels except that it has a threonine at residue 318 instead of a proline. We constructed a NaK chimera, which we called NaK2CNG-Dm, which contained the Drosophila selectivity filter sequence. The high resolution structure of NaK2CNG-Dm revealed a filter structure different from those of NaK and all other previously investigated NaK2CNG chimeric channels. Consistent with this structural difference, functional studies of the NaK2CNG-Dm chimeric channel demonstrated a loss of Ca(2+) block compared with other NaK2CNG chimeras. Moreover, mutating the corresponding threonine (T318) to proline in Drosophila CNG channels increased Ca(2+) block by 16 times. These results imply that a simple replacement of a threonine for a proline in Drosophila CNG channels has likely given rise to a distinct selectivity filter conformation that results in weak Ca(2+) block. PMID:26283200

  5. A novel cyclic nucleotide-gated ion channel enriched in synaptic terminals of isotocin neurons in zebrafish brain and pituitary

    PubMed Central

    Khan, Sakina; Perry, Christine; Tetreault, Michelle L.; Henry, Diane; Trimmer, James S.; Zimmerman, Anita L.; Matthews, Gary

    2009-01-01

    Cyclic nucleotide-gated (CNG) channels are nonselective cation channels opened by binding of intracellular cyclic GMP or cyclic AMP. CNG channels mediate sensory transduction in the rods and cones of the retina and in olfactory sensory neurons, but in addition, CNG channels are also expressed elsewhere in the central nervous system, where their physiological roles have not yet been well defined. Besides the CNG channel subtypes that mediate vision and olfaction, zebrafish has an additional subtype, CNGA5, which is expressed almost exclusively in the brain. We have generated CNGA5-specific monoclonal antibodies, which we use here to show that immunoreactivity for CNGA5 channels is highly enriched in synaptic terminals of a discrete set of neurons that project to a subregion of the pituitary, as well as diffusely in the brain and spinal cord. Double labeling with a variety of antibodies against pituitary hormones revealed that CNGA5 is located in the terminals of neuroendocrine cells that secrete the nonapeptide hormone/transmitter isotocin in the neurohypophysis, brain, and spinal cord. Furthermore, we show that CNGA5 channels expressed in Xenopus oocytes are highly permeable to Ca2+, which suggests that the channels are capable of modulating isotocin release in the zebrafish brain and pituitary. Isotocin is the teleost homolog of the mammalian hormone oxytocin, and like oxytocin, it regulates reproductive and social behavior. Therefore, the high calcium permeability of CNGA5 channels and their strategic location in isotocin-secreting synaptic terminals suggest that activation of CNGA5 channels in response to cyclic nucleotide signaling may have wide-ranging neuroendocrine and behavioral effects. PMID:19778592

  6. Regulation of cyclic nucleotide-gated channels and membrane excitability in olfactory receptor cells by carbon monoxide

    NASA Technical Reports Server (NTRS)

    Leinders-Zufall, T.; Shepherd, G. M.; Zufall, F.

    1995-01-01

    1. The effect of the putative neural messenger carbon monoxide (CO) and the role of the cGMP second-messenger system for olfactory signal generation was examined in isolated olfactory receptor neurons (ORNs) of the tiger salamander. 2. With the use of whole cell voltage-clamp recordings in combination with a series of ionic and pharmological tests, it is demonstrated that exogenously applied CO is a potent activator (K1/2 = 2.9 microM) of cyclic nucleotide-gated (CNG) channels previously described to mediate odor transduction. 3. Several lines of evidence suggest that CO mediates its effect through stimulation of a soluble guanylyl cyclase (sGC) leading to formation of the second-messenger cGMP. This conclusion is based on the findings that CO responses show an absolute requirement for guanosine 5'-triphosphate (GTP) in the internal solution, that no direct effect of CO on CNG currents in the absence of GTP is detectable, and that a blocker of sGC activation, LY85383 (10 microM), completely inhibits the CO response. 4. The dose-response curve for cGMP at CNG channels is used as a calibration to provide a quantitative estimate of the CO-stimulated cGMP formation. This analysis implies that CO is a potent activator of olfactory sGC. 5. Perforated patch recordings using amphotericin B demonstrate that low micromolar doses of CO effectively depolarize the membrane potential of ORNs through tonic activation of CNG channels. This effect in turn regulates excitable and adaptive properties of ORNs and modulates neuronal responsiveness. 6. These data argue for an important role of the cGMP pathway in olfactory signaling and support the idea that CO may function as a diffusible messenger in the olfactory system.

  7. Plasma Membrane Cyclic Nucleotide Gated Calcium Channels Control Land Plant Thermal Sensing and Acquired Thermotolerance[C][W

    PubMed Central

    Finka, Andrija; Cuendet, America Farinia Henriquez; Maathuis, Frans J.M.; Saidi, Younousse; Goloubinoff, Pierre

    2012-01-01

    Typically at dawn on a hot summer day, land plants need precise molecular thermometers to sense harmless increments in the ambient temperature to induce a timely heat shock response (HSR) and accumulate protective heat shock proteins in anticipation of harmful temperatures at mid-day. Here, we found that the cyclic nucleotide gated calcium channel (CNGC) CNGCb gene from Physcomitrella patens and its Arabidopsis thaliana ortholog CNGC2, encode a component of cyclic nucleotide gated Ca2+ channels that act as the primary thermosensors of land plant cells. Disruption of CNGCb or CNGC2 produced a hyper-thermosensitive phenotype, giving rise to an HSR and acquired thermotolerance at significantly milder heat-priming treatments than in wild-type plants. In an aequorin-expressing moss, CNGCb loss-of-function caused a hyper-thermoresponsive Ca2+ influx and altered Ca2+ signaling. Patch clamp recordings on moss protoplasts showed the presence of three distinct thermoresponsive Ca2+ channels in wild-type cells. Deletion of CNGCb led to a total absence of one and increased the open probability of the remaining two thermoresponsive Ca2+ channels. Thus, CNGC2 and CNGCb are expected to form heteromeric Ca2+ channels with other related CNGCs. These channels in the plasma membrane respond to increments in the ambient temperature by triggering an optimal HSR, leading to the onset of plant acquired thermotolerance. PMID:22904147

  8. Phylogeny and evolution of plant cyclic nucleotide-gated ion channel (CNGC) gene family and functional analyses of tomato CNGCs.

    PubMed

    Saand, Mumtaz Ali; Xu, You-Ping; Munyampundu, Jean-Pierre; Li, Wen; Zhang, Xuan-Rui; Cai, Xin-Zhong

    2015-12-01

    Cyclic nucleotide-gated ion channels (CNGCs) are calcium-permeable channels that are involved in various biological functions. Nevertheless, phylogeny and function of plant CNGCs are not well understood. In this study, 333 CNGC genes from 15 plant species were identified using comprehensive bioinformatics approaches. Extensive bioinformatics analyses demonstrated that CNGCs of Group IVa were distinct to those of other groups in gene structure and amino acid sequence of cyclic nucleotide-binding domain. A CNGC-specific motif that recognizes all identified plant CNGCs was generated. Phylogenetic analysis indicated that CNGC proteins of flowering plant species formed five groups. However, CNGCs of the non-vascular plant Physcomitrella patens clustered only in two groups (IVa and IVb), while those of the vascular non-flowering plant Selaginella moellendorffii gathered in four (IVa, IVb, I and II). These data suggest that Group IV CNGCs are most ancient and Group III CNGCs are most recently evolved in flowering plants. Furthermore, silencing analyses revealed that a set of CNGC genes might be involved in disease resistance and abiotic stress responses in tomato and function of SlCNGCs does not correlate with the group that they are belonging to. Our results indicate that Group IVa CNGCs are structurally but not functionally unique among plant CNGCs. PMID:26546226

  9. Phylogeny and evolution of plant cyclic nucleotide-gated ion channel (CNGC) gene family and functional analyses of tomato CNGCs

    PubMed Central

    Saand, Mumtaz Ali; Xu, You-Ping; Munyampundu, Jean-Pierre; Li, Wen; Zhang, Xuan-Rui; Cai, Xin-Zhong

    2015-01-01

    Cyclic nucleotide-gated ion channels (CNGCs) are calcium-permeable channels that are involved in various biological functions. Nevertheless, phylogeny and function of plant CNGCs are not well understood. In this study, 333 CNGC genes from 15 plant species were identified using comprehensive bioinformatics approaches. Extensive bioinformatics analyses demonstrated that CNGCs of Group IVa were distinct to those of other groups in gene structure and amino acid sequence of cyclic nucleotide-binding domain. A CNGC-specific motif that recognizes all identified plant CNGCs was generated. Phylogenetic analysis indicated that CNGC proteins of flowering plant species formed five groups. However, CNGCs of the non-vascular plant Physcomitrella patens clustered only in two groups (IVa and IVb), while those of the vascular non-flowering plant Selaginella moellendorffii gathered in four (IVa, IVb, I and II). These data suggest that Group IV CNGCs are most ancient and Group III CNGCs are most recently evolved in flowering plants. Furthermore, silencing analyses revealed that a set of CNGC genes might be involved in disease resistance and abiotic stress responses in tomato and function of SlCNGCs does not correlate with the group that they are belonging to. Our results indicate that Group IVa CNGCs are structurally but not functionally unique among plant CNGCs. PMID:26546226

  10. Crossroads of stress responses, development and flowering regulation—the multiple roles of Cyclic Nucleotide Gated Ion Channel 2

    PubMed Central

    Fortuna, Alex; Lee, Jihyun; Ung, Huoi; Chin, Kimberley; Moeder, Wolfgang; Yoshioka, Keiko

    2015-01-01

    The Arabidopsis autoimmune mutant, defense-no death 1 (dnd1) is a null mutant of CYCLIC NUCLEOTIDE-GATED ION CHANNEL2 (AtCNGC2). dnd1 exhibits constitutive pathogen resistance responses including higher levels of endogenous salicylic acid (SA), which is an important signaling molecule for pathogen defense responses. Recently we have reported that dnd1 exhibits a significantly delayed flowering phenotype, indicating the involvement of AtCNGC2 in flowering transition. However, since SA has been known to influence flowering timing as a positive regulator, the delayed flowering phenotype in dnd1 was unexpected. In this study, we have asked whether SA is involved in the dnd1-mediated delayed flowering phenotype. In addition, in order to gain insight into the involvement of SA and CNGCs in flowering transition, we analyzed the flowering transition of cpr22, another CNGC mutant with a similar autoimmune phenotype as dnd1 (including high SA accumulation), and null mutants of several other CNGCs. Our data suggest that dnd1 does not require SA or SA signaling for its delayed flowering phenotype, while SA was responsible for the early flowering phenotype of cpr22. None of the other CNGC mutants besides AtCNGC41 displayed an alteration in flowering transition. This indicates that AtCNGC2 and AtCNGC4 have a unique role controlling flowering timing and this function is independent from its role in pathogen defense. PMID:25719935

  11. Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis.

    PubMed

    Gao, Qi-Fei; Gu, Li-Li; Wang, Hui-Qin; Fei, Cui-Fang; Fang, Xiang; Hussain, Jamshaid; Sun, Shu-Jing; Dong, Jing-Yun; Liu, Hongtao; Wang, Yong-Fei

    2016-03-15

    In flowering plants, pollen tubes are guided into ovules by multiple attractants from female gametophytes to release paired sperm cells for double fertilization. It has been well-established that Ca(2+) gradients in the pollen tube tips are essential for pollen tube guidance and that plasma membrane Ca(2+) channels in pollen tube tips are core components that regulate Ca(2+) gradients by mediating and regulating external Ca(2+) influx. Therefore, Ca(2+) channels are the core components for pollen tube guidance. However, there is still no genetic evidence for the identification of the putative Ca(2+) channels essential for pollen tube guidance. Here, we report that the point mutations R491Q or R578K in cyclic nucleotide-gated channel 18 (CNGC18) resulted in abnormal Ca(2+) gradients and strong pollen tube guidance defects by impairing the activation of CNGC18 in Arabidopsis. The pollen tube guidance defects of cngc18-17 (R491Q) and of the transfer DNA (T-DNA) insertion mutant cngc18-1 (+/-) were completely rescued by CNGC18. Furthermore, domain-swapping experiments showed that CNGC18's transmembrane domains are indispensable for pollen tube guidance. Additionally, we found that, among eight Ca(2+) channels (including six CNGCs and two glutamate receptor-like channels), CNGC18 was the only one essential for pollen tube guidance. Thus, CNGC18 is the long-sought essential Ca(2+) channel for pollen tube guidance in Arabidopsis. PMID:26929345

  12. Phytosulfokine Regulates Growth in Arabidopsis through a Response Module at the Plasma Membrane That Includes CYCLIC NUCLEOTIDE-GATED CHANNEL17, H+-ATPase, and BAK1[OPEN

    PubMed Central

    Ladwig, Friederike; Dahlke, Renate I.; Stührwohldt, Nils; Hartmann, Jens; Harter, Klaus; Sauter, Margret

    2015-01-01

    Phytosulfokine (PSK) is perceived by the leucine-rich repeat receptor kinase PSKR1 and promotes growth in Arabidopsis thaliana. PSKR1 is coexpressed with the CYCLIC NUCLEOTIDE-GATED CHANNEL gene CNGC17. PSK promotes protoplast expansion in the wild type but not in cngc17. Protoplast expansion is likewise promoted by cGMP in a CNGC17-dependent manner. Furthermore, PSKR1-deficient protoplasts do not expand in response to PSK but are still responsive to cGMP, suggesting that cGMP acts downstream of PSKR1. Mutating the guanylate cyclase center of PSKR1 impairs seedling growth, supporting a role for PSKR1 signaling via cGMP in planta. While PSKR1 does not interact directly with CNGC17, it interacts with the plasma membrane-localized H+-ATPases AHA1 and AHA2 and with the BRI-associated receptor kinase 1 (BAK1). CNGC17 likewise interacts with AHA1, AHA2, and BAK1, suggesting that PSKR1, BAK1, CNGC17, and AHA assemble in a functional complex. Roots of deetiolated bak1-3 and bak1-4 seedlings were unresponsive to PSK, and bak1-3 and bak1-4 protoplasts expanded less in response to PSK but were fully responsive to cGMP, indicating that BAK1 acts in the PSK signal pathway upstream of cGMP. We hypothesize that CNGC17 and AHAs form a functional cation-translocating unit that is activated by PSKR1/BAK1 and possibly other BAK1/RLK complexes. PMID:26071421

  13. Phytosulfokine Regulates Growth in Arabidopsis through a Response Module at the Plasma Membrane That Includes CYCLIC NUCLEOTIDE-GATED CHANNEL17, H+-ATPase, and BAK1.

    PubMed

    Ladwig, Friederike; Dahlke, Renate I; Stührwohldt, Nils; Hartmann, Jens; Harter, Klaus; Sauter, Margret

    2015-06-01

    Phytosulfokine (PSK) is perceived by the leucine-rich repeat receptor kinase PSKR1 and promotes growth in Arabidopsis thaliana. PSKR1 is coexpressed with the CYCLIC NUCLEOTIDE-GATED CHANNEL gene CNGC17. PSK promotes protoplast expansion in the wild type but not in cngc17. Protoplast expansion is likewise promoted by cGMP in a CNGC17-dependent manner. Furthermore, PSKR1-deficient protoplasts do not expand in response to PSK but are still responsive to cGMP, suggesting that cGMP acts downstream of PSKR1. Mutating the guanylate cyclase center of PSKR1 impairs seedling growth, supporting a role for PSKR1 signaling via cGMP in planta. While PSKR1 does not interact directly with CNGC17, it interacts with the plasma membrane-localized H(+)-ATPases AHA1 and AHA2 and with the BRI-associated receptor kinase 1 (BAK1). CNGC17 likewise interacts with AHA1, AHA2, and BAK1, suggesting that PSKR1, BAK1, CNGC17, and AHA assemble in a functional complex. Roots of deetiolated bak1-3 and bak1-4 seedlings were unresponsive to PSK, and bak1-3 and bak1-4 protoplasts expanded less in response to PSK but were fully responsive to cGMP, indicating that BAK1 acts in the PSK signal pathway upstream of cGMP. We hypothesize that CNGC17 and AHAs form a functional cation-translocating unit that is activated by PSKR1/BAK1 and possibly other BAK1/RLK complexes. PMID:26071421

  14. The B3 Subunit of the Cone Cyclic Nucleotide-gated Channel Regulates the Light Responses of Cones and Contributes to the Channel Structural Flexibility.

    PubMed

    Ding, Xi-Qin; Thapa, Arjun; Ma, Hongwei; Xu, Jianhua; Elliott, Michael H; Rodgers, Karla K; Smith, Marci L; Wang, Jin-Shan; Pittler, Steven J; Kefalov, Vladimir J

    2016-04-15

    Cone photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in cone phototransduction, which is a process essential for daylight vision, color vision, and visual acuity. Mutations in the cone channel subunits CNGA3 and CNGB3 are associated with human cone diseases, including achromatopsia, cone dystrophies, and early onset macular degeneration. Mutations in CNGB3 alone account for 50% of reported cases of achromatopsia. This work investigated the role of CNGB3 in cone light response and cone channel structural stability. As cones comprise only 2-3% of the total photoreceptor population in the wild-type mouse retina, we used Cngb3(-/-)/Nrl(-/-) mice with CNGB3 deficiency on a cone-dominant background in our study. We found that, in the absence of CNGB3, CNGA3 was able to travel to the outer segments, co-localize with cone opsin, and form tetrameric complexes. Electroretinogram analyses revealed reduced cone light response amplitude/sensitivity and slower response recovery in Cngb3(-/-)/Nrl(-/-) mice compared with Nrl(-/-) mice. Absence of CNGB3 expression altered the adaptation capacity of cones and severely compromised function in bright light. Biochemical analysis demonstrated that CNGA3 channels lacking CNGB3 were more resilient to proteolysis than CNGA3/CNGB3 channels, suggesting a hindered structural flexibility. Thus, CNGB3 regulates cone light response kinetics and the channel structural flexibility. This work advances our understanding of the biochemical and functional role of CNGB3 in cone photoreceptors. PMID:26893377

  15. Loss of cone cyclic nucleotide-gated channel leads to alterations in light response modulating system and cellular stress response pathways: a gene expression profiling study.

    PubMed

    Ma, Hongwei; Thapa, Arjun; Morris, Lynsie M; Michalakis, Stylianos; Biel, Martin; Frank, Mark Barton; Bebak, Melissa; Ding, Xi-Qin

    2013-10-01

    The cone photoreceptor cyclic nucleotide-gated (CNG) channel is essential for central and color vision and visual acuity. Mutations in the channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophy. We investigated the gene expression profiles in mouse retina with CNG channel deficiency using whole genome expression microarrays. As cones comprise only 2 to 3% of the total photoreceptor population in the wild-type mouse retina, the mouse lines with CNG channel deficiency on a cone-dominant background, i.e. Cnga3-/-/Nrl-/- and Cngb3-/-/Nrl-/- mice, were used in our study. Comparative data analysis revealed a total of 105 genes altered in Cnga3-/-/Nrl-/- and 92 in Cngb3-/-/Nrl-/- retinas, relative to Nrl-/- retinas, with 27 genes changed in both genotypes. The differentially expressed genes primarily encode proteins associated with cell signaling, cellular function maintenance and gene expression. Ingenuity pathway analysis (IPA) identified 26 and 9 canonical pathways in Cnga3-/-/Nrl-/- and Cngb3-/-/Nrl-/- retinas, respectively, with 6 pathways being shared. The shared pathways include phototransduction, cAMP/PKA-mediated signaling, endothelin signaling, and EIF2/endoplasmic reticulum (ER) stress, whereas the IL-1, CREB, and purine metabolism signaling were found to specifically associate with Cnga3 deficiency. Thus, CNG channel deficiency differentially regulates genes that affect cell processes such as phototransduction, cellular survival and gene expression, and such regulations play a crucial role(s) in the retinal adaptation to impaired cone phototransduction. Though lack of Cnga3 and Cngb3 shares many common pathways, deficiency of Cnga3 causes more significant alterations in gene expression. This work provides insights into how cones respond to impaired phototransduction at the gene expression levels. PMID:23740940

  16. Loss of cone cyclic nucleotide-gated channel leads to alterations in light response modulating system and cellular stress response pathways: a gene expression profiling study

    PubMed Central

    Ma, Hongwei; Thapa, Arjun; Morris, Lynsie M.; Michalakis, Stylianos; Biel, Martin; Frank, Mark Barton; Bebak, Melissa; Ding, Xi-Qin

    2013-01-01

    The cone photoreceptor cyclic nucleotide-gated (CNG) channel is essential for central and color vision and visual acuity. Mutations in the channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophy. We investigated the gene expression profiles in mouse retina with CNG channel deficiency using whole genome expression microarrays. As cones comprise only 2 to 3% of the total photoreceptor population in the wild-type mouse retina, the mouse lines with CNG channel deficiency on a cone-dominant background, i.e. Cnga3−/−/Nrl−/− and Cngb3−/−/Nrl−/− mice, were used in our study. Comparative data analysis revealed a total of 105 genes altered in Cnga3−/−/Nrl−/− and 92 in Cngb3−/−/Nrl−/− retinas, relative to Nrl−/− retinas, with 27 genes changed in both genotypes. The differentially expressed genes primarily encode proteins associated with cell signaling, cellular function maintenance and gene expression. Ingenuity pathway analysis (IPA) identified 26 and 9 canonical pathways in Cnga3−/−/Nrl−/− and Cngb3−/−/Nrl−/− retinas, respectively, with 6 pathways being shared. The shared pathways include phototransduction, cAMP/PKA-mediated signaling, endothelin signaling, and EIF2/endoplasmic reticulum (ER) stress, whereas the IL-1, CREB, and purine metabolism signaling were found to specifically associate with Cnga3 deficiency. Thus, CNG channel deficiency differentially regulates genes that affect cell processes such as phototransduction, cellular survival and gene expression, and such regulations play a crucial role(s) in the retinal adaptation to impaired cone phototransduction. Though lack of Cnga3 and Cngb3 shares many common pathways, deficiency of Cnga3 causes more significant alterations in gene expression. This work provides insights into how cones respond to impaired phototransduction at the gene expression levels. PMID:23740940

  17. Achromatopsia-associated mutation in the human cone photoreceptor cyclic nucleotide-gated channel CNGB3 subunit alters the ligand sensitivity and pore properties of heteromeric channels.

    PubMed

    Peng, Changhong; Rich, Elizabeth D; Varnum, Michael D

    2003-09-01

    Cone photoreceptor cyclic nucleotide-gated (CNG) channels are thought to form by assembly of two different subunit types, CNGA3 and CNGB3. Recently, mutations in the gene encoding the CNGB3 subunit have been linked to achromatopsia in humans. Here we describe the functional consequences of two achromatopsia-associated mutations in human CNGB3 (hCNGB3). Co-expression in Xenopus oocytes of human CNGA3 (hCNGA3) subunits with hCNGB3 subunits containing an achromatopsia-associated mutation in the S6 transmembrane domain (S435F) generated functional heteromeric channels that exhibited an increase in apparent affinity for both cAMP and cGMP compared with wild type heteromeric channels. In contrast, co-expression of a presumptive null mutation of hCNGB3 (T383f.s.Delta C) with hCNGA3 produced channels with properties indistinguishable from homomeric hCNGA3 channels. The effect of hCNGB3 S435F subunits on cell-surface expression of green fluorescent protein-tagged hCNGA3 subunits and of non-tagged hCNGA3 subunits on surface expression of green fluorescent protein-hCNGB3 S435F subunits were similar to those observed for wild type hCNGB3 subunits, suggesting that the mutation does not grossly disturb subunit assembly or plasma membrane targeting. The S435F mutation was also found to produce changes in the pore properties of the channel, including decreased single channel conductance and decreased sensitivity to block by l-cis-diltiazem. Overall, these results suggest that the functional properties of cone CNG channels may be altered in patients with the S435F mutation, providing evidence supporting the pathogenicity of this mutation in humans. Thus, achromatopsia may arise from a disturbance of cone CNG channel gating and permeation or from the absence of functional CNGB3 subunits. PMID:12815043

  18. The group IV-A cyclic nucleotide-gated channels, CNGC19 and CNGC20, localize to the vacuole membrane in Arabidopsis thaliana

    PubMed Central

    Yuen, Christen C. Y.; Christopher, David A.

    2013-01-01

    Plant cyclic nucleotide-gated channels (CNGCs) are implicated in the uptake of both essential and toxic cations, Ca2+ signalling, and responses to biotic and abiotic stress. The 20 CNGC paralogues of Arabidopsis are divided into five evolutionary groups. Group IV-A is highly isolated and consists only of two closely spaced genes, CNGC19 and CNGC20. Prior studies have shown that both genes are induced by salinity and biotic stress. A unique feature of CNGC19 and CNGC20 is their long hydrophilic N-termini. To determine the subcellular locations of CNGC19 and CNGC20, partial and full-length fusions to GFP(S65T) were generated. Translational fusions of the N-termini of CNGC19 (residues 1–171) and CNGC20 (residues 1–200) to GFP(S65T) were targeted to punctate structures when transiently expressed in leaf protoplasts. In the case of CNGC20, but not CNGC19, the punctate structures were co-labelled with a marker for the Golgi. The full-length CNGC19-GFP fusion co-localized with markers for the vacuole membrane (αTIP- and γTIP-mCherry). Vacuole membrane labelling by the full-length CNGC20-GFP fusion was also observed, but the signal was weak and accompanied by numerous punctate signals that did not co-localize with αTIP- or γTIP-mCherry. These punctate structures diminished, and localization of full-length CNGC20-GFP to the vacuole increased, when it was co-expressed with the full-length CNGC19-mCherry. Vacuole membrane labelling was also detected in planta via immunoelectron microscopy using a CNGC20-antiserum on cryopreserved ultrathin sections of roots. We hypothesize that the role of group IV-A CNGCs is to mediate the movement of cations between the central vacuole and the cytosol in response to certain types of abiotic and biotic stress.

  19. The cyclic nucleotide-gated channels AtCNGC11 and 12 are involved in multiple Ca2+-dependent physiological responses and act in a synergistic manner

    PubMed Central

    Urquhart, William; Chin, Kimberley; Ung, Huoi; Moeder, Wolfgang; Yoshioka, Keiko

    2011-01-01

    Arabidopsis cyclic nucleotide-gated ion channels (AtCNGCs) form a large family consisting of 20 members. These channels have so far been reported to be involved in a diverse range of physiological phenomena. For example, AtCNGC18 was reported to play an important role in pollen tube growth, while AtCNGC2, 4, 11, and 12 were implicated in mediating pathogen defence. To identify additional functions for AtCNGC11 and 12, various physiological aspects were analysed using both AtCNGC11 and 12 single knockout mutants as well as a double mutant. Although AtCNGC11 and 12 can function as K+ and Ca2+ channels in yeast, it was found that the loss of AtCNGC11 and 12 in Arabidopsis caused increased sensitivity to Ca2+ but not K+, indicating a specific function for these genes in Ca2+ signalling in planta. However, they did not show an alteration in Ca2+ accumulation, suggesting that AtCNGC11 and 12 are not involved in general Ca2+ homeostasis but rather in the endogenous movement of Ca2+ and/or Ca2+ signalling. Furthermore, these channels synergistically contribute to the generation of a Ca2+ signal that leads to gravitropic bending. Finally, AtCNGC11 and 12 gene expression was induced during dark-induced senescence and AtCNGC11 and 12 knockout mutants displayed enhanced chlorophyll loss, which was even more pronounced in the double mutant, also indicating synergistic roles in senescence. The findings indicate that (i) some CNGC family members have multiple physiological functions and (ii) some plant CNGCs share the same biological function and work in a synergistic manner. PMID:21414958

  20. cGMP/Protein Kinase G Signaling Suppresses Inositol 1,4,5-Trisphosphate Receptor Phosphorylation and Promotes Endoplasmic Reticulum Stress in Photoreceptors of Cyclic Nucleotide-gated Channel-deficient Mice*

    PubMed Central

    Ma, Hongwei; Butler, Michael R.; Thapa, Arjun; Belcher, Josh; Yang, Fan; Baehr, Wolfgang; Biel, Martin; Michalakis, Stylianos; Ding, Xi-Qin

    2015-01-01

    Photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in phototransduction. Mutations in the cone CNG channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. We have shown endoplasmic reticulum (ER) stress-associated apoptotic cone death and increased phosphorylation of the ER Ca2+ channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in CNG channel-deficient mice. We also presented a remarkable elevation of cGMP and an increased activity of the cGMP-dependent protein kinase (protein kinase G, PKG) in CNG channel deficiency. This work investigated whether cGMP/PKG signaling regulates ER stress and IP3R1 phosphorylation in CNG channel-deficient cones. Treatment with PKG inhibitor and deletion of guanylate cyclase-1 (GC1), the enzyme producing cGMP in cones, were used to suppress cGMP/PKG signaling in cone-dominant Cnga3−/−/Nrl−/− mice. We found that treatment with PKG inhibitor or deletion of GC1 effectively reduced apoptotic cone death, increased expression levels of cone proteins, and decreased activation of Müller glial cells. Furthermore, we observed significantly increased phosphorylation of IP3R1 and reduced ER stress. Our findings demonstrate a role of cGMP/PKG signaling in ER stress and ER Ca2+ channel regulation and provide insights into the mechanism of cone degeneration in CNG channel deficiency. PMID:26124274

  1. cGMP/Protein Kinase G Signaling Suppresses Inositol 1,4,5-Trisphosphate Receptor Phosphorylation and Promotes Endoplasmic Reticulum Stress in Photoreceptors of Cyclic Nucleotide-gated Channel-deficient Mice.

    PubMed

    Ma, Hongwei; Butler, Michael R; Thapa, Arjun; Belcher, Josh; Yang, Fan; Baehr, Wolfgang; Biel, Martin; Michalakis, Stylianos; Ding, Xi-Qin

    2015-08-21

    Photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in phototransduction. Mutations in the cone CNG channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. We have shown endoplasmic reticulum (ER) stress-associated apoptotic cone death and increased phosphorylation of the ER Ca(2+) channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in CNG channel-deficient mice. We also presented a remarkable elevation of cGMP and an increased activity of the cGMP-dependent protein kinase (protein kinase G, PKG) in CNG channel deficiency. This work investigated whether cGMP/PKG signaling regulates ER stress and IP3R1 phosphorylation in CNG channel-deficient cones. Treatment with PKG inhibitor and deletion of guanylate cyclase-1 (GC1), the enzyme producing cGMP in cones, were used to suppress cGMP/PKG signaling in cone-dominant Cnga3(-/-)/Nrl(-/-) mice. We found that treatment with PKG inhibitor or deletion of GC1 effectively reduced apoptotic cone death, increased expression levels of cone proteins, and decreased activation of Müller glial cells. Furthermore, we observed significantly increased phosphorylation of IP3R1 and reduced ER stress. Our findings demonstrate a role of cGMP/PKG signaling in ER stress and ER Ca(2+) channel regulation and provide insights into the mechanism of cone degeneration in CNG channel deficiency. PMID:26124274

  2. Crystallization and preliminary X-ray diffraction analyses of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels

    SciTech Connect

    Suzuki, Nobuhiro; Yamazaki, Yasuo; Fujimoto, Zui; Morita, Takashi; Mizuno, Hiroshi

    2005-08-01

    Crystals of pseudechetoxin and pseudecin, potent peptidic inhibitors of cyclic nucleotide-gated ion channels, have been prepared and X-ray diffraction data have been collected to 2.25 and 1.90 Å resolution, respectively. Cyclic nucleotide-gated (CNG) ion channels play pivotal roles in sensory transduction of retinal and olfactory neurons. The elapid snake toxins pseudechetoxin (PsTx) and pseudecin (Pdc) are the only known protein blockers of CNG channels. These toxins are structurally classified as cysteine-rich secretory proteins and exhibit structural features that are quite distinct from those of other known small peptidic channel blockers. This article describes the crystallization and preliminary X-ray diffraction analyses of these toxins. Crystals of PsTx belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 60.30, b = 61.59, c = 251.69 Å, and diffraction data were collected to 2.25 Å resolution. Crystals of Pdc also belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with similar unit-cell parameters a = 60.71, b = 61.67, c = 251.22 Å, and diffraction data were collected to 1.90 Å resolution.

  3. Structures of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels: implications for movement of the C-terminal cysteine-rich domain

    SciTech Connect

    Suzuki, Nobuhiro; Yamazaki, Yasuo; Brown, R. Lane; Fujimoto, Zui; Morita, Takashi; Mizuno, Hiroshi

    2008-10-01

    The structures of pseudechetoxin and pseudecin suggest that both proteins bind to cyclic nucleotide-gated ion channels in a manner in which the concave surface occludes the pore entrance. Cyclic nucleotide-gated (CNG) ion channels play pivotal roles in sensory transduction by retinal photoreceptors and olfactory neurons. The elapid snake toxins pseudechetoxin (PsTx) and pseudecin (Pdc) are the only known protein blockers of CNG channels. These toxins belong to a cysteine-rich secretory protein (CRISP) family containing an N-terminal pathogenesis-related proteins of group 1 (PR-1) domain and a C-terminal cysteine-rich domain (CRD). PsTx and Pdc are highly homologous proteins, but their blocking affinities on CNG channels are different: PsTx blocks both the olfactory and retinal channels with ∼15–30-fold higher affinity than Pdc. To gain further insights into their structure and function, the crystal structures of PsTx, Pdc and Zn{sup 2+}-bound Pdc were determined. The structures revealed that most of the amino-acid-residue differences between PsTx and Pdc are located around the concave surface formed between the PR-1 domain and the CRD, suggesting that the concave surface is functionally important for CNG-channel binding and inhibition. A structural comparison in the presence and absence of Zn{sup 2+} ion demonstrated that the concave surface can open and close owing to movement of the CRD upon Zn{sup 2+} binding. The data suggest that PsTx and Pdc occlude the pore entrance and that the dynamic motion of the concave surface facilitates interaction with the CNG channels.

  4. A Cyclic Nucleotide-Gated Channel Mutation Associated with Canine Daylight Blindness Provides Insight into a Role for the S2 Segment Tri-Asp motif in Channel Biogenesis

    PubMed Central

    Tanaka, Naoto; Delemotte, Lucie; Klein, Michael L.; Komáromy, András M.; Tanaka, Jacqueline C.

    2014-01-01

    Cone cyclic nucleotide-gated channels are tetramers formed by CNGA3 and CNGB3 subunits; CNGA3 subunits function as homotetrameric channels but CNGB3 exhibits channel function only when co-expressed with CNGA3. An aspartatic acid (Asp) to asparagine (Asn) missense mutation at position 262 in the canine CNGB3 (D262N) subunit results in loss of cone function (daylight blindness), suggesting an important role for this aspartic acid residue in channel biogenesis and/or function. Asp 262 is located in a conserved region of the second transmembrane segment containing three Asp residues designated the Tri-Asp motif. This motif is conserved in all CNG channels. Here we examine mutations in canine CNGA3 homomeric channels using a combination of experimental and computational approaches. Mutations of these conserved Asp residues result in the absence of nucleotide-activated currents in heterologous expression. A fluorescent tag on CNGA3 shows mislocalization of mutant channels. Co-expressing CNGB3 Tri-Asp mutants with wild type CNGA3 results in some functional channels, however, their electrophysiological characterization matches the properties of homomeric CNGA3 channels. This failure to record heteromeric currents suggests that Asp/Asn mutations affect heteromeric subunit assembly. A homology model of S1–S6 of the CNGA3 channel was generated and relaxed in a membrane using molecular dynamics simulations. The model predicts that the Tri-Asp motif is involved in non-specific salt bridge pairings with positive residues of S3/S4. We propose that the D262N mutation in dogs with CNGB3-day blindness results in the loss of these inter-helical interactions altering the electrostatic equilibrium within in the S1–S4 bundle. Because residues analogous to Tri-Asp in the voltage-gated Shaker potassium channel family were implicated in monomer folding, we hypothesize that destabilizing these electrostatic interactions impairs the monomer folding state in D262N mutant CNG channels

  5. Cyclic GMP evoked calcium transients in olfactory receptor cell growth cones.

    PubMed

    Kafitz, K W; Leinders-Zufall, T; Zufall, F; Greer, C A

    2000-03-20

    Nitric oxide-induced calcium transients in growth cones are believed to be mediated by cyclic nucleotides. Because nitric oxide is thought to influence the development of olfactory receptor cells (ORCs), we have begun to explore the effect of cyclic nucleotides on ORC growth cones. Cultured ORCs were loaded with fluo-3 AM and confocal imaging was employed to monitor calcium transients following cyclic nucleotide-gated channel activation. Application of 8-bromo-cGMP at the growth cone caused transient increases in fluorescence which were restricted to the growth cone and lasted tens of seconds. The signal was abolished by LY83583, an inhibitor of cyclic nucleotide-gated channels. 8-Bromo-cGMP also inhibited further extension of growth cones. The data indicate that ORC growth cones exhibit cGMP-dependent calcium transients that are consistent with those generated by cyclic nucleotide-gated channels. PMID:10757499

  6. Resonance assignment of the ligand-free cyclic nucleotide-binding domain from the murine ion channel HCN2.

    PubMed

    Börger, Claudia; Schünke, Sven; Lecher, Justin; Stoldt, Matthias; Winkhaus, Friederike; Kaupp, U Benjamin; Willbold, Dieter

    2015-10-01

    Hyperpolarization activated and cyclic nucleotide-gated (HCN) ion channels as well as cyclic nucleotide-gated (CNG) ion channels are essential for the regulation of cardiac cells, neuronal excitability, and signaling in sensory cells. Both classes are composed of four subunits. Each subunit comprises a transmembrane region, intracellular N- and C-termini, and a C-terminal cyclic nucleotide-binding domain (CNBD). Binding of cyclic nucleotides to the CNBD promotes opening of both CNG and HCN channels. In case of CNG channels, binding of cyclic nucleotides to the CNBD is sufficient to open the channel. In contrast, HCN channels open upon membrane hyperpolarization and their activity is modulated by binding of cyclic nucleotides shifting the activation potential to more positive values. Although several high-resolution structures of CNBDs from HCN and CNG channels are available, the gating mechanism for murine HCN2 channel, which leads to the opening of the channel pore, is still poorly understood. As part of a structural investigation, here, we report the complete backbone and side chain resonance assignments of the murine HCN2 CNBD with part of the C-linker. PMID:25324217

  7. Cyclic AMP-dependent protein kinase activity in Trypanosoma cruzi.

    PubMed Central

    Ulloa, R M; Mesri, E; Esteva, M; Torres, H N; Téllez-Iñón, M T

    1988-01-01

    A cyclic AMP-dependent protein kinase activity from epimastigote forms of Trypanosoma cruzi was characterized. Cytosolic extracts were chromatographed on DEAE-cellulose columns, giving two peaks of kinase activity, which were eluted at 0.15 M- and 0.32 M-NaCl respectively. The second activity peak was stimulated by nanomolar concentrations of cyclic AMP. In addition, a cyclic AMP-binding protein co-eluted with the second kinase activity peak. Cyclic AMP-dependent protein kinase activity was further purified by gel filtration, affinity chromatography on histone-agarose and cyclic AMP-agarose, as well as by chromatography on CM-Sephadex. The enzyme ('holoenzyme') could be partially dissociated into two different components: 'catalytic' and 'regulatory'. The 'regulatory' component had specific binding for cyclic AMP, and it inhibited phosphotransferase activity of the homologous 'catalytic component' or of the 'catalytic subunit' from bovine heart. Cyclic AMP reversed these inhibitions. A 'holoenzyme preparation' was phosphorylated in the absence of exogenous phosphate acceptor and analysed by polyacrylamide-gel electrophoresis. A 56 kDa band was phosphorylated. The same preparation was analysed by Western blotting, by using polyclonal antibodies to the regulatory subunits of protein kinases type I or II. Both antibodies reacted with the 56 kDa band. Images Fig. 7. Fig. 8. PMID:2848508

  8. Structure and Energetics of Allosteric Regulation of HCN2 Ion Channels by Cyclic Nucleotides*

    PubMed Central

    DeBerg, Hannah A.; Brzovic, Peter S.; Flynn, Galen E.; Zagotta, William N.; Stoll, Stefan

    2016-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels play an important role in regulating electrical activity in the heart and brain. They are gated by the binding of cyclic nucleotides to a conserved, intracellular cyclic nucleotide-binding domain (CNBD), which is connected to the channel pore by a C-linker region. Binding of cyclic nucleotides increases the rate and extent of channel activation and shifts it to less hyperpolarized voltages. We probed the allosteric mechanism of different cyclic nucleotides on the CNBD and on channel gating. Electrophysiology experiments showed that cAMP, cGMP, and cCMP were effective agonists of the channel and produced similar increases in the extent of channel activation. In contrast, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) on the isolated CNBD indicated that the induced conformational changes and the degrees of stabilization of the active conformation differed for the three cyclic nucleotides. We explain these results with a model where different allosteric mechanisms in the CNBD all converge to have the same effect on the C-linker and render all three cyclic nucleotides similarly potent activators of the channel. PMID:26559974

  9. Structure and Energetics of Allosteric Regulation of HCN2 Ion Channels by Cyclic Nucleotides.

    PubMed

    DeBerg, Hannah A; Brzovic, Peter S; Flynn, Galen E; Zagotta, William N; Stoll, Stefan

    2016-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels play an important role in regulating electrical activity in the heart and brain. They are gated by the binding of cyclic nucleotides to a conserved, intracellular cyclic nucleotide-binding domain (CNBD), which is connected to the channel pore by a C-linker region. Binding of cyclic nucleotides increases the rate and extent of channel activation and shifts it to less hyperpolarized voltages. We probed the allosteric mechanism of different cyclic nucleotides on the CNBD and on channel gating. Electrophysiology experiments showed that cAMP, cGMP, and cCMP were effective agonists of the channel and produced similar increases in the extent of channel activation. In contrast, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) on the isolated CNBD indicated that the induced conformational changes and the degrees of stabilization of the active conformation differed for the three cyclic nucleotides. We explain these results with a model where different allosteric mechanisms in the CNBD all converge to have the same effect on the C-linker and render all three cyclic nucleotides similarly potent activators of the channel. PMID:26559974

  10. Cyclolinopeptides, cyclic peptides from flaxseed with osteoclast differentiation inhibitory activity.

    PubMed

    Kaneda, Toshio; Yoshida, Haruka; Nakajima, Yuki; Toishi, Minako; Nugroho, Alfarius Eko; Morita, Hiroshi

    2016-04-01

    Flaxseed (Linum usitatissimum seed) is widely used in food and natural health products. In our search for osteoclast differentiation inhibitors, some cyclic peptides isolated from flaxseed, known as the cyclolinopeptides, were discovered to have osteoclast differentiation inhibition activity. The osteoclast differentiation inhibition activity of cyclolinopeptides A-I (1-9) and their related derivatives (10-14) are described herein. Cyclolinopeptides F, H and I (6, 8 and 9), in particular, showed potent osteoclast differentiation inhibition activity. PMID:26923696

  11. Structural, biochemical, and functional characterization of the cyclic nucleotide binding homology domain from the mouse EAG1 potassium channel.

    PubMed

    Marques-Carvalho, Maria J; Sahoo, Nirakar; Muskett, Frederick W; Vieira-Pires, Ricardo S; Gabant, Guillaume; Cadene, Martine; Schönherr, Roland; Morais-Cabral, João H

    2012-10-12

    KCNH channels are voltage-gated potassium channels with important physiological functions. In these channels, a C-terminal cytoplasmic region, known as the cyclic nucleotide binding homology (CNB-homology) domain displays strong sequence similarity to cyclic nucleotide binding (CNB) domains. However, the isolated domain does not bind cyclic nucleotides. Here, we report the X-ray structure of the CNB-homology domain from the mouse EAG1 channel. Through comparison with the recently determined structure of the CNB-homology domain from the zebrafish ELK (eag-like K(+)) channel and the CNB domains from the MlotiK1 and HCN (hyperpolarization-activated cyclic nucleotide-gated) potassium channels, we establish the structural features of CNB-homology domains that explain the low affinity for cyclic nucleotides. Our structure establishes that the "self-liganded" conformation, where two residues of the C-terminus of the domain are bound in an equivalent position to cyclic nucleotides in CNB domains, is a conserved feature of CNB-homology domains. Importantly, we provide biochemical evidence that suggests that there is also an unliganded conformation where the C-terminus of the domain peels away from its bound position. A functional characterization of this unliganded conformation reveals a role of the CNB-homology domain in channel gating. PMID:22732247

  12. Antithrombotic activities of ferulic acid via intracellular cyclic nucleotide signaling.

    PubMed

    Hong, Qian; Ma, Zeng-Chun; Huang, Hao; Wang, Yu-Guang; Tan, Hong-Ling; Xiao, Cheng-Rong; Liang, Qian-De; Zhang, Han-Ting; Gao, Yue

    2016-04-15

    Ferulic acid (FA) produces protective effects against cardiovascular dysfunctions. However, the mechanisms of FA is still not known. Here we examined the antithrombotic effects of FA and its potential mechanisms. Anticoagulation assays and platelet aggregation was evaluated in vitro and in vivo. Thromboxane B2 (TXB2), cyclic adenosine monophosphate(cAMP), and cyclic guanosine monophosphate (cGMP) was determined using enzyme immunoassay kits. Nitric oxide (NO) production was measured using the Griess reaction. Protein expression was detected by Western blotting analysis. Oral administration of FA prevented death caused by pulmonary thrombosis and prolonged the tail bleeding and clotting time in mice,while, it did not alter the coagulation parameters, including the activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT). In addition, FA (50-200µM) dose-dependently inhibited platelet aggregation induced by various platelet agonists, including adenosine diphosphate (ADP), thrombin, collagen, arachidonic acid (AA), and U46619. Further, FA attenuated intracellular Ca(2)(+) mobilization and TXB2 production induced by the platelet agonists. FA increased the levels of cAMP and cGMP and phosphorylated vasodilator-stimulated phosphoprotein (VASP) while decreased phospho-MAPK (mitogen-activated protein kinase) and phosphodiesterase (PDE) in washed rat platelets, VASP is a substrate of cyclic nucleotide and PDE is an enzyme family responsible for hydrolysis of cAMP/cGMP. These results suggest that antithrombotic activities of FA may be regulated by inhibition of platelet aggregation, rather than through inhibiting the release of thromboplastin or formation of thrombin. The mechanism of this action may involve activation of cAMP and cGMP signaling. PMID:26948317

  13. Cyclic nucleotide-activated channels in carp olfactory receptor cells.

    PubMed

    Kolesnikov, S S; Kosolapov, A V

    1993-07-25

    When applied from the cytoplasmic side, cyclic 3',5'-adenosine and guanosine monophosphates reversibly increased the ion permeability of inside-out patches of carp olfactory neuron plasma membrane. The cAMP (cGMP)-induced permeability via cAMP (cGMP) concentration was fitted by Hill's equation with the exponents of 1.07 +/- 0.15 (1.12 +/- 0.05) and EC50 = 1.3 +/- 0.6 microM (0.9 +/- 0.3 microM). Substitution of NaCl in the bathing solution by chlorides of other alkali metals resulted in a slight shift of reversal potential of the cyclic nucleotide-dependent (CN) current, which indicates a weak selectivity of the channels. Permeability coefficients calculated by Goldman-Hodgkin-Katz's equation corresponded to the following relation: PNa/PK/PLi/PRb/PCs = 1:0.98:0.94:0.70:0.61. Ca2+ and Mg2+ in physiological concentrations blocked the channels activated by cyclic nucleotides (CN-channels). In the absence of divalent cations the conductance of single CN-channels was equal to 51 +/- 9 pS in 100 mM NaCl solution. Channel density did not exceed 1 micron-2. The maximal open state probability of the channel (Po) tended towards 1.0 at a high concentration of cAMP or cGMP. Dichlorobenzamil decreased Po without changing the single CN-channel' conductance. CN-channels exhibited burst activity. Mean open and closed times as well as the burst duration depended on agonist concentration. A kinetic model with four states (an inactivated, a closed and two open ones) is suggested to explain the regularities of CN-channel gating and dose-response relations. PMID:8334139

  14. Activation of cyclic electron flow by hydrogen peroxide in vivo

    PubMed Central

    Strand, Deserah D.; Livingston, Aaron K.; Satoh-Cruz, Mio; Froehlich, John E.; Maurino, Veronica G.; Kramer, David M.

    2015-01-01

    Cyclic electron flow (CEF) around photosystem I is thought to balance the ATP/NADPH energy budget of photosynthesis, requiring that its rate be finely regulated. The mechanisms of this regulation are not well understood. We observed that mutants that exhibited constitutively high rates of CEF also showed elevated production of H2O2. We thus tested the hypothesis that CEF can be activated by H2O2 in vivo. CEF was strongly increased by H2O2 both by infiltration or in situ production by chloroplast-localized glycolate oxidase, implying that H2O2 can activate CEF either directly by redox modulation of key enzymes, or indirectly by affecting other photosynthetic processes. CEF appeared with a half time of about 20 min after exposure to H2O2, suggesting activation of previously expressed CEF-related machinery. H2O2-dependent CEF was not sensitive to antimycin A or loss of PGR5, indicating that increased CEF probably does not involve the PGR5-PGRL1 associated pathway. In contrast, the rise in CEF was not observed in a mutant deficient in the chloroplast NADPH:PQ reductase (NDH), supporting the involvement of this complex in CEF activated by H2O2. We propose that H2O2 is a missing link between environmental stress, metabolism, and redox regulation of CEF in higher plants. PMID:25870290

  15. Cyclic strain increases protease-activated receptor-1 expression in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Frye, S. R.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Cyclic strain regulates many vascular smooth muscle cell (VSMC) functions through changing gene expression. This study investigated the effects of cyclic strain on protease-activated receptor-1 (PAR-1) expression in VSMCs and the possible signaling pathways involved, on the basis of the hypothesis that cyclic strain would enhance PAR-1 expression, reflecting increased thrombin activity. Uniaxial cyclic strain (1 Hz, 20%) of cells cultured on elastic membranes induced a 2-fold increase in both PAR-1 mRNA and protein levels. Functional activity of PAR-1, as assessed by cell proliferation in response to thrombin, was also increased by cyclic strain. In addition, treatment of cells with antioxidants or an NADPH oxidase inhibitor blocked strain-induced PAR-1 expression. Preincubation of cells with protein kinase inhibitors (staurosporine or Ro 31-8220) enhanced strain-increased PAR-1 expression, whereas inhibitors of NO synthase, tyrosine kinase, and mitogen-activated protein kinases had no effect. Cyclic strain in the presence of basic fibroblast growth factor induced PAR-1 mRNA levels beyond the effect of cyclic strain alone, whereas no additive effect was observed between cyclic strain and platelet-derived growth factor-AB. Our findings that cyclic strain upregulates PAR-1 mRNA expression but that shear stress downregulates this gene in VSMCs provide an opportunity to elucidate signaling differences by which VSMCs respond to different mechanical forces.

  16. Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain

    NASA Technical Reports Server (NTRS)

    Cohen, C. R.; Mills, I.; Du, W.; Kamal, K.; Sumpio, B. E.

    1997-01-01

    The aim of this study was to assess the involvement of the adenylyl cyclase/cyclic AMP/protein kinase A pathway (AC) in endothelial cells (EC) exposed to different levels of mechanical strain. Bovine aortic EC were seeded to confluence on flexible membrane-bottom wells. The membranes were deformed with either 150 mm Hg (average 10% strain) or 37.5 mm Hg (average 6% strain) vacuum at 60 cycles per minute (0.5 s strain; 0.5 s relaxation) for 0-60 min. The results demonstrate that at 10% average strain (but not 6% average strain) there was a 1.5- to 2.2-fold increase in AC, cAMP, and PKA activity by 15 min when compared to unstretched controls. Further studies revealed an increase in cAMP response element binding protein in EC subjected to the 10% average strain (but not 6% average strain). These data support the hypothesis that cyclic strain activates the AC/cAMP/PKA signal transduction pathway in EC which may occur by exceeding a strain threshold and suggest that cyclic strain may stimulate the expression of genes containing cAMP-responsive promoter elements.

  17. AMPK antagonizes hepatic glucagon-stimulated cyclic AMP signalling via phosphorylation-induced activation of cyclic nucleotide phosphodiesterase 4B

    PubMed Central

    Johanns, M.; Lai, Y.-C.; Hsu, M.-F.; Jacobs, R.; Vertommen, D.; Van Sande, J.; Dumont, J. E.; Woods, A.; Carling, D.; Hue, L.; Viollet, B.; Foretz, M; Rider, M H

    2016-01-01

    Biguanides such as metformin have previously been shown to antagonize hepatic glucagon-stimulated cyclic AMP (cAMP) signalling independently of AMP-activated protein kinase (AMPK) via direct inhibition of adenylate cyclase by AMP. Here we show that incubation of hepatocytes with the small-molecule AMPK activator 991 decreases glucagon-stimulated cAMP accumulation, cAMP-dependent protein kinase (PKA) activity and downstream PKA target phosphorylation. Moreover, incubation of hepatocytes with 991 increases the Vmax of cyclic nucleotide phosphodiesterase 4B (PDE4B) without affecting intracellular adenine nucleotide concentrations. The effects of 991 to decrease glucagon-stimulated cAMP concentrations and activate PDE4B are lost in hepatocytes deleted for both catalytic subunits of AMPK. PDE4B is phosphorylated by AMPK at three sites, and by site-directed mutagenesis, Ser304 phosphorylation is important for activation. In conclusion, we provide a new mechanism by which AMPK antagonizes hepatic glucagon signalling via phosphorylation-induced PDE4B activation. PMID:26952277

  18. Chemical modification and structure-activity relationships of pyripyropenes. 2. 1,11-Cyclic analogs.

    PubMed

    Obata, R; Sunazuka, T; Kato, Y; Tomoda, H; Harigaya, Y; Omura, S

    1996-11-01

    A series of 1,11-cyclic analogs of pyripyropene A were prepared. Replacement of the 1,11-acyl groups of pyripyropenes with 1,11-cyclic acetals effectively improved in vitro acyl CoA:cholesterol acyltransferase (ACAT) inhibitory activity. Especially noteworthy is benzylidene acetal analog 35, the most potent inhibitor (IC50 = 5.6 nM) among the derivatives prepared so far, which showed 16 times more potent inhibitory activity than pyripyropene A. PMID:8982344

  19. Brucella β 1,2 Cyclic Glucan Is an Activator of Human and Mouse Dendritic Cells

    PubMed Central

    Martirosyan, Anna; Pérez-Gutierrez, Camino; Banchereau, Romain; Dutartre, Hélène; Lecine, Patrick; Dullaers, Melissa; Mello, Marielle; Pinto Salcedo, Suzana; Muller, Alexandre; Leserman, Lee; Levy, Yves; Zurawski, Gerard; Zurawski, Sandy; Moreno, Edgardo; Moriyón, Ignacio; Klechevsky, Eynav; Banchereau, Jacques; Oh, SangKon; Gorvel, Jean-Pierre

    2012-01-01

    Bacterial cyclic glucans are glucose polymers that concentrate within the periplasm of alpha-proteobacteria. These molecules are necessary to maintain the homeostasis of the cell envelope by contributing to the osmolarity of Gram negative bacteria. Here, we demonstrate that Brucella β 1,2 cyclic glucans are potent activators of human and mouse dendritic cells. Dendritic cells activation by Brucella β 1,2 cyclic glucans requires TLR4, MyD88 and TRIF, but not CD14. The Brucella cyclic glucans showed neither toxicity nor immunogenicity compared to LPS and triggered antigen-specific CD8+ T cell responses in vivo. These cyclic glucans also enhanced antigen-specific CD4+ and CD8+ T cell responses including cross-presentation by different human DC subsets. Brucella β 1,2 cyclic glucans increased the memory CD4+ T cell responses of blood mononuclear cells exposed to recombinant fusion proteins composed of anti-CD40 antibody and antigens from both hepatitis C virus and Mycobacterium tuberculosis. Thus cyclic glucans represent a new class of adjuvants, which might contribute to the development of effective antimicrobial therapies. PMID:23166489

  20. Brucella β 1,2 cyclic glucan is an activator of human and mouse dendritic cells.

    PubMed

    Martirosyan, Anna; Pérez-Gutierrez, Camino; Banchereau, Romain; Dutartre, Hélène; Lecine, Patrick; Dullaers, Melissa; Mello, Marielle; Salcedo, Suzana Pinto; Muller, Alexandre; Leserman, Lee; Levy, Yves; Zurawski, Gerard; Zurawski, Sandy; Moreno, Edgardo; Moriyón, Ignacio; Klechevsky, Eynav; Banchereau, Jacques; Oh, Sangkon; Gorvel, Jean-Pierre

    2012-01-01

    Bacterial cyclic glucans are glucose polymers that concentrate within the periplasm of alpha-proteobacteria. These molecules are necessary to maintain the homeostasis of the cell envelope by contributing to the osmolarity of Gram negative bacteria. Here, we demonstrate that Brucella β 1,2 cyclic glucans are potent activators of human and mouse dendritic cells. Dendritic cells activation by Brucella β 1,2 cyclic glucans requires TLR4, MyD88 and TRIF, but not CD14. The Brucella cyclic glucans showed neither toxicity nor immunogenicity compared to LPS and triggered antigen-specific CD8(+) T cell responses in vivo. These cyclic glucans also enhanced antigen-specific CD4(+) and CD8(+) T cell responses including cross-presentation by different human DC subsets. Brucella β 1,2 cyclic glucans increased the memory CD4(+) T cell responses of blood mononuclear cells exposed to recombinant fusion proteins composed of anti-CD40 antibody and antigens from both hepatitis C virus and Mycobacterium tuberculosis. Thus cyclic glucans represent a new class of adjuvants, which might contribute to the development of effective antimicrobial therapies. PMID:23166489

  1. Involvement of platelet cyclic GMP but not cyclic AMP suppression in leukocyte-dependent platelet adhesion to endothelial cells induced by platelet-activating factor in vitro.

    PubMed Central

    Hirafuji, M.; Nezu, A.; Shinoda, H.; Minami, M.

    1996-01-01

    1. Incubation of endothelial cells with platelets in the absence or the presence of PAF (10 nM) markedly increased platelet cyclic AMP levels, which were significantly decreased by indomethacin (3 microM). Co-incubation of endothelial cells and platelets with polymorphonuclear leukocytes (PMNs) did not change the platelet cyclic AMP levels. 2. Incubation of endothelial cells with platelets in the absence of PAF increased platelet cyclic GMP levels, which were increased 3.5 fold by PAF. These cyclic GMP levels were significantly decreased by NG-nitro-L-arginine (100 microM), and completely by methylene blue (10 microM). When endothelial cells and platelets were co-incubated with PMNs, the cyclic GMP level in the cell mixture was 42.5 and 65.3% lower than that in endothelial cells and platelets without and with PAF stimulation, respectively. 3. PAF induced platelet adhesion to endothelial cells only when PMNs were present. Methylene blue dose-dependently potentiated the PMN-dependent platelet adhesion induced by PAF, although it had no effect in the absence of PMNs. 4. Sodium nitroprusside and 8-bromo cyclic GMP but not dibutyryl cyclic AMP significantly, although partially, inhibited the platelet adhesion. Inhibition of cyclic GMP-specific phosphodiesterase by zaprinast slightly inhibited the PMN-induced platelet adhesion and potentiated the inhibitory effect of 8-bromo cyclic GMP, while these drugs markedly inhibited the adhesion of platelet aggregates induced by PMN sonicates. 5. These results suggest that the impairment by activated PMNs of EDRF-induced platelet cyclic GMP formation is involved in part in the mechanism of PMN-dependent platelet adhesion to endothelial cells induced by PAF in vitro. The precise mechanism still remains to be clarified. PMID:8789382

  2. Cytidylate cyclase activity in mouse tissues: the enzymatic conversion of cytidine 5'-triphosphate to cytidine 3',5'-cyclic monophosphate (cyclic CMP).

    PubMed

    Yamamoto, I; Takai, T; Mori, S

    1989-12-01

    Cytidylate cyclase activity, which enzymatically converts cytidine 5'-triphosphate (CTP) to cytidine 3',5'-cyclic monophosphate (cyclic CMP), has been demonstrated in mouse tissue homogenates by use of a highly sensitive enzyme immunoassay (EIA) specific for cyclic CMP. Cyclic CMP formation is dependent on the amount of homogenate and on the incubation time. Although the enzyme activity was detected at wide ranges of pH from 6.8 to 11.5, the maximal activity was observed at around pH 9.4. The optimal temperature was 37 degrees C. Cytidylate cyclase activity was almost completely lost if the homogenates were heated at 90 degrees C for 3 min prior to use. The enzyme reaction exhibited typical Michaelis-Menten kinetics with an apparent Km for CTP of approx. 0.31 mM. Cyclic CMP formation was greatly enhanced with 4 mM Mn2+, Mg2+, Co2+; Mn2+ was the most effective. Fe2+ and Ca2+ were without effect. Cu2+ and Zn2+ at a concentration of 0.1 to 0.5 mM were inhibitory to Mn2+-dependent activity. Moreover, the enzyme activity was inhibited by several nucleotides including ATP, ADP, 5'-AMP, and GTP. Cytidylate cyclase activity was found to be present in all homogenates from a variety of mouse tissues examined except heart, with the highest level found in brain, and the lowest in liver. PMID:2557087

  3. Estimating the magnitude of near-membrane PDE4 activity in living cells.

    PubMed

    Xin, Wenkuan; Feinstein, Wei P; Britain, Andrea L; Ochoa, Cristhiaan D; Zhu, Bing; Richter, Wito; Leavesley, Silas J; Rich, Thomas C

    2015-09-15

    Recent studies have demonstrated that functionally discrete pools of phosphodiesterase (PDE) activity regulate distinct cellular functions. While the importance of localized pools of enzyme activity has become apparent, few studies have estimated enzyme activity within discrete subcellular compartments. Here we present an approach to estimate near-membrane PDE activity. First, total PDE activity is measured using traditional PDE activity assays. Second, known cAMP concentrations are dialyzed into single cells and the spatial spread of cAMP is monitored using cyclic nucleotide-gated channels. Third, mathematical models are used to estimate the spatial distribution of PDE activity within cells. Using this three-tiered approach, we observed two pharmacologically distinct pools of PDE activity, a rolipram-sensitive pool and an 8-methoxymethyl IBMX (8MM-IBMX)-sensitive pool. We observed that the rolipram-sensitive PDE (PDE4) was primarily responsible for cAMP hydrolysis near the plasma membrane. Finally, we observed that PDE4 was capable of blunting cAMP levels near the plasma membrane even when 100 μM cAMP were introduced into the cell via a patch pipette. Two compartment models predict that PDE activity near the plasma membrane, near cyclic nucleotide-gated channels, was significantly lower than total cellular PDE activity and that a slow spatial spread of cAMP allowed PDE activity to effectively hydrolyze near-membrane cAMP. These results imply that cAMP levels near the plasma membrane are distinct from those in other subcellular compartments; PDE activity is not uniform within cells; and localized pools of AC and PDE activities are responsible for controlling cAMP levels within distinct subcellular compartments. PMID:26201952

  4. High-throughput screening of phosphodiesterase activity in living cells.

    PubMed

    Rich, Thomas C; Karpen, Jeffrey W

    2005-01-01

    Phosphodiesterases (PDEs) hydrolyze the second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine 5'-monophosphate (cGMP) and play a crucial role in the termination and spatial segregation of cyclic nucleotide signals. Despite a wealth of molecular information, very little is known about how PDEs regulate cAMP and cGMP signals in living cells because conventional methods lack the necessary spatial and temporal resolution. We present here a sensitive optical method for monitoring cAMP levels and PDE activity near the membrane, using cyclic nucleotide-gated (CNG) ion channels as sensors. These channels are directly opened by the binding of cyclic nucleotides and allow cations to cross the membrane. The olfactory channel A subunit (CNGA2) has been genetically modified to improve its cAMP sensitivity and specificity. Channel activity is assessed by measuring Ca2+ influx using standard fluorometric techniques. In addition to studying PDEs in their native setting, the approach should be particularly useful in high-throughput screening assays to test for compounds that affect PDE activity, as well as the activities of the many G protein-coupled receptors that cause changes in intracellular cAMP. PMID:15988054

  5. In Search of Enzymes with a Role in 3′, 5′-Cyclic Guanosine Monophosphate Metabolism in Plants

    PubMed Central

    Gross, Inonge; Durner, Jörg

    2016-01-01

    In plants, nitric oxide (NO)-mediated 3′, 5′-cyclic guanosine monophosphate (cGMP) synthesis plays an important role during pathogenic stress response, stomata closure upon osmotic stress, the development of adventitious roots and transcript regulation. The NO-cGMP dependent pathway is well characterized in mammals. The binding of NO to soluble guanylate cyclase enzymes (GCs) initiates the synthesis of cGMP from guanosine triphosphate. The produced cGMP alters various cellular responses, such as the function of protein kinase activity, cyclic nucleotide gated ion channels and cGMP-regulated phosphodiesterases. The signal generated by the second messenger is terminated by 3′, 5′-cyclic nucleotide phosphodiesterase (PDEs) enzymes that hydrolyze cGMP to a non-cyclic 5′-guanosine monophosphate. To date, no homologues of mammalian cGMP-synthesizing and degrading enzymes have been found in higher plants. In the last decade, six receptor proteins from Arabidopsis thaliana have been reported to have guanylate cyclase activity in vitro. Of the six receptors, one was shown to be a NO dependent guanylate cyclase enzyme (NOGC1). However, the role of these proteins in planta remains to be elucidated. Enzymes involved in the degradation of cGMP remain elusive, albeit, PDE activity has been detected in crude protein extracts from various plants. Additionally, several research groups have partially purified and characterized PDE enzymatic activity from crude protein extracts. In this review, we focus on presenting advances toward the identification of enzymes involved in the cGMP metabolism pathway in higher plants. PMID:27200049

  6. Effect of Knowledge Integration Activities on Students' Perception of the Earth's Crust as a Cyclic System.

    ERIC Educational Resources Information Center

    Kali, Yael; Orion, Nir; Eylon, Bat-Sheva

    2003-01-01

    Characterizes students' understanding of the rock cycle system. Examines effects of a knowledge integration activity on their system thinking. Interprets answers to an open-ended test using a systems thinking continuum ranging from a completely static view of the system to an understanding of the system's cyclic nature. Reports meaningful…

  7. [Cyclic reproductive activity in bathyal and abyssel deep-sea fishes].

    PubMed

    Rannou, M

    1975-10-01

    A female of the rare Brotulid fish Cataetyx laticeps has been caught; it contained a great number of larvae all of the same size. Growth marks can be noticed on its otoliths as well as on those of various species caught to the depth of 4 700 m. They are indications of a cyclic activity in the abyssal depths. PMID:813869

  8. Cyclic AMP-and beta-agonist-activated chloride conductance of a toad skin epithelium.

    PubMed

    Willumsen, N J; Vestergaard, L; Larsen, E H

    1992-04-01

    1. The control by intracellular cyclic AMP and beta-adrenergic stimulation of chloride conductance was studied in toad skin epithelium mounted in a chamber on the stage of an upright microscope. Impalement of identified principal cells from the serosal side with single-barrelled conventional or double-barrelled Cl(-)-sensitive microelectrodes was performed at x500 magnification. For blocking the active sodium current 50 microM-amiloride was present in the mucosal bath. 2. When clamped at transepithelial potential difference V = 0 mV, the preparations generated clamping currents of 0.9 +/- 1 microA/cm2 (mean +/- S.E.M.; number of observations n = 55). The intracellular potential of principal cells (Vb) was -96 +/- 2 mV with a fractional resistance of the basolateral membrane (fRb) of 0.016 +/- 0.003 (n = 54), and an intracellular Cl- activity of 40 +/- 2 mM (n = 24). 3. At V = 0 mV, serosal application of a cyclic AMP analogue, dibutyryl cyclic AMP (500 microM) or a beta-adrenergic agonist, isoprenaline (5 microM) resulted in a sixfold increase in transepithelial Cl- conductance identified by standard 36Cl- tracer technique. 4. The clamping current at V = 0 mV was unaffected by cyclic AMP (short-circuit current Isc = 0.1 +/- 0.3 microA/cm2, n = 16) indicating that subepidermal Cl(-)-secreting glands are not functioning in our preparations obtained by collagenase treatment. 5. Cyclic AMP- or isoprenaline-induced chloride conductance (Gcl) activation (V = 0 mV) was not reflected in membrane potential and intracellular Cl- activity in principal cells. Intracellular chloride activity was constant at approximately 40 mM at membrane potentials between -90 and -100 mV. Therefore, it can be concluded that the principal cells are not contributing to activated Cl- currents. 6. At V = -100 mV where the voltage-dependent chloride conductance of mitochondria-rich (MR) cells was already fully activated, GCl was unaffected by cyclic AMP or isoprenaline. The major effect of these

  9. A calcium-permeable cGMP-activated cation conductance in hippocampal neurons

    NASA Technical Reports Server (NTRS)

    Leinders-Zufall, T.; Rosenboom, H.; Barnstable, C. J.; Shepherd, G. M.; Zufall, F.

    1995-01-01

    Whole-cell patch clamp recordings detected a previously unidentified cGMP-activated membrane conductance in cultured rat hippocampal neurons. This conductance is nonselectively permeable for cations and is completely but reversibly blocked by external Cd2+. The Ca2+ permeability of the hippocampal cGMP-activated conductance was examined in detail, indicating that the underlying ion channels display a high relative permeability for Ca2+. The results indicate that hippocampal neurons contain a cGMP-activated membrane conductance that has some properties similar to the cyclic nucleotide-gated channels previously shown in sensory receptor cells and retinal neurons. In hippocampal neurons this conductance similarly could mediate membrane depolarization and Ca2+ fluxes in response to intracellular cGMP elevation.

  10. Cyclic disulfide C8 iminoporfiromycin: nucleophilic activation of a porfiromycin.

    PubMed

    Lee, Sang Hyup; Kohn, Harold

    2004-04-01

    The clinical success of mitomycin C (1) and its associated toxicities and resistance have led to efforts to prepare semisynthetic analogues (i.e., KW-2149 (3), BMS-181174 (4)) that have improved pharmacological profiles. In this study, we report the preparation and evaluation of the novel 7-N-(1'-amino-4',5'-dithian-2'-yl)porfiromycin C(8) cyclized imine (6) and its reference compound, 7-N-(1'-aminocyclohex-2'-yl)porfiromycin C(8) cyclized imine (13). Porfiromycin 6 contains a disulfide unit that, upon cleavage, may provide thiol(s) that affect drug reactivity. We demonstrated that phosphines dramatically accelerated 6 activation and solvolysis in methanolic solutions ("pH 7.4") compared with 13. Porfiromycins 6 and 13 efficiently cross-linked EcoRI-linearized pBR322 DNA upon addition of Et3P. We found enhanced levels of interstrand cross-link (ISC) adducts for 6 and 13 compared with porfiromycin (7) and that 6 was more efficient than 13. The large Et3P-mediated rate enhancements for the solvolysis of 6 compared with 13 and a N(7)-substituted analogue of 1, and the increased levels of ISC adducts for 6 compared with 13 and 7 are attributed to a nucleophile-assisted disulfide cleavage process that permits porfiromycin activation and nucleophile (MeOH, DNA) adduction. The in vitro antiproliferative activities of 6 and 13 using the A549 tumor cell line (lung adenocarcinoma) were determined under aerobic and hypoxic conditions and then compared with 7. Both 6 and 13 were more cytotoxic than 7, with 13 being more potent than 6. The C(8) iminoporfiromycins 6 and 13 displayed anticancer profiles similar to 3. PMID:15053618

  11. Aortic Valve Cyclic Stretch Causes Increased Remodeling Activity and Enhanced Serotonin Receptor Responsiveness

    PubMed Central

    Balachandran, Kartik; Bakay, Marina A.; Connolly, Jeanne M.; Zhang, Xuemei; Yoganathan, Ajit P.; Levy, Robert J.

    2011-01-01

    Background Increased serotonin(5HT) receptor(5HTR) signaling has been associated with cardiac valvulopathy. Prior cell culture studies of 5HTR signaling in heart valve interstitial cells have provided mechanistic insights concerning only static conditions. We investigated the hypothesis that aortic valve biomechanics participate in the regulation of both 5HTR expression and inter-related extracellular matrix remodeling events. Methods The effects of cyclic-stretch on aortic valve 5HTR, expression, signaling and extracellular matrix remodeling were investigated using a tensile stretch bioreactor in studies which also compared the effects of adding 5HT and/or the 5HT-transporter inhibitor, Fluoxetine. Results Cyclic-stretch alone increased both proliferation and collagen in porcine aortic valve cusp samples. However, with cyclic-stretch, unlike static conditions, 5HT plus Fluoxetine caused the greatest increase in proliferation (p<0.0001), and also caused significant increases in collagen(p<0.0001) and glycosaminoglycans (p<0.0001). DNA microarray data demonstrated upregulation of 5HTR2A and 5HTR2B (>4.5 fold) for cyclic-stretch versus static (p<0.001), while expression of the 5HT transporter was not changed significantly. Extracellular matrix genes (eg. Collagen Types I,II,III, and proteoglycans) were also upregulated by cyclic-stretch. Conclusions Porcine aortic valve cusp samples subjected to cyclic stretch upregulate 5HTR2A and 2B, and also initiate remodeling activity characterized by increased proliferation and collagen production. Importantly, enhanced 5HTR responsiveness, due to increased 5HTR2A and 2B expression, results in a significantly greater response in remodeling endpoints (proliferation, collagen and GAG production) to 5HT in the presence of 5HT transporter blockade. PMID:21718840

  12. Role of cyclic AMP in promoting the thromboresistance of human endothelial cells by enhancing thrombomodulin and decreasing tissue factor activities.

    PubMed Central

    Archipoff, G.; Beretz, A.; Bartha, K.; Brisson, C.; de la Salle, C.; Froget-Léon, C.; Klein-Soyer, C.; Cazenave, J. P.

    1993-01-01

    1. The effects of forskolin, prostaglandin E1 (PGE1), dibutyryl cyclic AMP (db cyclic AMP), dibutyryl cyclic GMP (db cyclic GMP) and 3-isobutyl-l-methyl-xanthine (IBMX) were investigated on the expression of tissue factor and thrombomodulin activities on the surface of human saphenous vein endothelial cells (HSVEC) in culture. 2. Forskolin (10(-6) to 10(-4) M), PGE1 (10(-7) to 10(-5) M) and db cyclic AMP (10(-4) to 10(-3) M) caused a concentration-dependent decrease of cytokine-induced tissue factor activity. 3. Similar concentrations of forskolin, PGE1 and db cyclic AMP enhanced significantly constitutive thrombomodulin activity and reversed the decrease of this activity caused by interleukin-1 (IL-1). 4. IBMX (10(-4) M) decreased tissue factor activity and enhanced the effect of forskolin on tissue factor and thrombomodulin activities. 5. Forskolin (10(-4) M) decreased the IL-1-induced tissue factor mRNA and increased the thrombomodulin mRNA level. IL-1 did not change the thrombomodulin mRNA level after 2 h of incubation with HSVEC in culture. 6. Dibutyryl cyclic GMP (10(-4) M to 10(-3) M) did not influence tissue factor or thrombomodulin activity. 7. Our data suggest that elevation of intracellular cyclic AMP levels may participate in the regulation of tissue factor and thrombomodulin expression, thus contributing to promote or restore antithrombotic properties of the endothelium. Images Figure 5 Figure 6 PMID:7684300

  13. Calcium-independent activation of extracellular signal-regulated kinases 1 and 2 by cyclic strain

    NASA Technical Reports Server (NTRS)

    Ikeda, M.; Takei, T.; Mills, I.; Sumpio, B. E.

    1998-01-01

    We have previously demonstrated that cyclic strain induces extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation in endothelial cells (EC). The aim of this study was to investigate the effect of Ca2+ on the activation of ERK1/2. Bovine aortic EC were pretreated with a chelator of extracellular Ca2+, ethylaneglycol-bis(aminoethylether)-tetra-acetate (EGTA), a depleter of Ca2+ pools, 2,5-Di-(tert-butyl)-1,4-benzohydroquinone (BHQ), or a Ca2+ channel blocker, GdCl3, and subjected to an average 10 % strain at a rate of 60 cycles/min for 10 min. BHQ and GdCl3 did not inhibit the strain-induced ERK1/2 activation. Chelation of normal extracellular Ca2+ (1.8 mM) medium with EGTA (3 mM) acutely stimulated baseline phosphorylation and activation of ERK1/2, thereby obscuring any strain-induced activation of ERK1/2. However, in EC preincubated for 24 hours in Ca2+-free medium, elevated baseline phosphorylation was minimally activated by EGTA (200 microM) such that cyclic strain stimulated ERK1/2 in the presence or absence of BHQ. These results suggest a Ca2+ independence of the ERK1/2 signaling pathway by cyclic strain. Copyright 1998 Academic Press.

  14. Quantification of Cyclic Ground Reaction Force Histories During Daily Activity in Humans

    NASA Technical Reports Server (NTRS)

    Breit, G. A.; Whalen, R. T.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Theoretical models and experimental studies of bone remodeling suggest that bone density and structure are influenced by local cyclic skeletal tissue stress and strain histories. Estimation of long-term loading histories in humans is usually achieved by assessment of physical activity level by questionnaires, logbooks, and pedometers, since the majority of lower limb cyclic loading occurs during walking and running. These methods provide some indication of the mechanical loading history, but fail to consider the true magnitude of the lower limb skeletal forces generated by various daily activities. These techniques cannot account for individual gait characteristics, gait speed, and unpredictable high loading events that may influence bone mass significantly. We have developed portable instrumentation to measure and record the vertical component of the ground reaction force (GRFz) during normal daily activity. This equipment allows long-term quantitative monitoring of musculoskeletal loads, which in conjunction with bone mineral density assessments, promises to elucidate the relationship between skeletal stresses and bone remodeling.

  15. Modulation of Backbone Flexibility for Effective Dissociation of Antibacterial and Hemolytic Activity in Cyclic Peptides.

    PubMed

    Oddo, Alberto; Thomsen, Thomas T; Britt, Hannah M; Løbner-Olesen, Anders; Thulstrup, Peter W; Sanderson, John M; Hansen, Paul R

    2016-08-11

    Bacterial resistance to antibiotic therapy is on the rise and threatens to evolve into a worldwide emergency: alternative solutions to current therapies are urgently needed. Cationic amphipathic peptides are potent membrane-active agents that hold promise as the next-generation therapy for multidrug-resistant infections. The peptides' behavior upon encountering the bacterial cell wall is crucial, and much effort has been dedicated to the investigation and optimization of this amphipathicity-driven interaction. In this study we examined the interaction of a novel series of nine-membered flexible cyclic AMPs with liposomes mimicking the characteristics of bacterial membranes. Employed techniques included circular dichroism and marker release assays, as well as microbiological experiments. Our analysis was aimed at correlating ring flexibility with their antimicrobial, hemolytic, and membrane activity. By doing so, we obtained useful insights to guide the optimization of cyclic antimicrobial peptides via modulation of their backbone flexibility without loss of activity. PMID:27563396

  16. Enhanced efficacy (intrinsic activity) of cyclic opioid peptide analogs at the. mu. -receptor

    SciTech Connect

    Schiller, P.W.; Lemieux, C.; Nguyen, T.M.D.; Maziak, L.A.

    1986-05-01

    Side-chain to end group cyclized enkephalin analogs (e.g. H-Tyr-cyclo(-D-Lys-Gly-Phe-Leu-) and cyclic opioid peptide analogs obtained through covalent linkage of two side-chains (e.g. H-Tyr-D-Cys-Gly-Phe-Cys-NH/sub 2/ or H-Tyr-D-Lys-Gly-Phe-Glu-NH/sub 3/) were tested in the ..mu..-receptor-representative guinea pig ileum (GPI) bioassay and in a binding assay based on displacement of the ..mu..-ligand (/sup 3/H)DAGO from rat brain membranes. The cyclic analogs were 5 to 70 times more potent in the GPI assay than in the binding assay, whereas linear analogs showed equal potency in the two assays. These results suggest that the efficacy (intrinsic activity) of cyclic opioid peptide analogs at the ..mu..-receptor is increased as a consequence of the conformation constraint imposed through ring closure. This effect was most pronounced in analogs containing a long hydrophobic sidechain as part of the ring structure in the 2-position of the peptide sequence. Further experimental evidence ruled out the possibilities that these potency discrepancies may be due to differences in enzymatic degradation, dissimilar exposure of the receptors in their lipid environment or interaction with different receptor types in the two assay systems. It can be hypothesized that the semi-rigid cyclic analogs may induce a more productive conformational change in the receptor protein than the linear peptides.

  17. A Cyclic GMP-Dependent K+ Channel in the Blastocladiomycete Fungus Blastocladiella emersonii

    PubMed Central

    Avelar, Gabriela Mól; Glaser, Talita; Leonard, Guy; Richards, Thomas A.; Ulrich, Henning

    2015-01-01

    Phototaxis in flagellated zoospores of the aquatic fungus Blastocladiella emersonii depends on a novel photosensor, Blastocladiella emersonii GC1 (BeGC1), comprising a type I (microbial) rhodopsin fused to a guanylyl cyclase catalytic domain, that produces the conserved second messenger cyclic GMP (cGMP). The rapid and transient increase in cGMP levels during the exposure of zoospores to green light was shown to be necessary for phototaxis and dependent on both rhodopsin function and guanylyl cyclase activity. It is noteworthy that BeGC1 was localized to the zoospore eyespot apparatus, in agreement with its role in the phototactic response. A putative cyclic nucleotide-gated channel (BeCNG1) was also identified in the genome of the fungus and was implicated in flagellar beating via the action of a specific inhibitor (l-cis-diltiazem) that compromised zoospore motility. Here we show that B. emersonii expresses a K+ channel that is activated by cGMP. The use of specific channel inhibitors confirmed the activation of the channel by cGMP and its K+ selectivity. These characteristics are consistent with the function of an ion channel encoded by the BeCNG1 gene. Other blastocladiomycete fungi, such as Allomyces macrogynus and Catenaria anguillulae, possess genes encoding a similar K+ channel and the rhodopsin–guanylyl cyclase fusion protein, while the genes encoding both these proteins are absent in nonflagellated fungi. The presence of these genes as a pair seems to be an exclusive feature of blastocladiomycete fungi. Taken together, these data demonstrate that the B. emersonii cGMP-activated K+ channel is involved in the control of zoospore motility, most probably participating in the cGMP-signaling pathway for the phototactic response of the fungus. PMID:26150416

  18. A Cyclic GMP-Dependent K+ Channel in the Blastocladiomycete Fungus Blastocladiella emersonii.

    PubMed

    Avelar, Gabriela Mól; Glaser, Talita; Leonard, Guy; Richards, Thomas A; Ulrich, Henning; Gomes, Suely L

    2015-09-01

    Phototaxis in flagellated zoospores of the aquatic fungus Blastocladiella emersonii depends on a novel photosensor, Blastocladiella emersonii GC1 (BeGC1), comprising a type I (microbial) rhodopsin fused to a guanylyl cyclase catalytic domain, that produces the conserved second messenger cyclic GMP (cGMP). The rapid and transient increase in cGMP levels during the exposure of zoospores to green light was shown to be necessary for phototaxis and dependent on both rhodopsin function and guanylyl cyclase activity. It is noteworthy that BeGC1 was localized to the zoospore eyespot apparatus, in agreement with its role in the phototactic response. A putative cyclic nucleotide-gated channel (BeCNG1) was also identified in the genome of the fungus and was implicated in flagellar beating via the action of a specific inhibitor (l-cis-diltiazem) that compromised zoospore motility. Here we show that B. emersonii expresses a K(+) channel that is activated by cGMP. The use of specific channel inhibitors confirmed the activation of the channel by cGMP and its K(+) selectivity. These characteristics are consistent with the function of an ion channel encoded by the BeCNG1 gene. Other blastocladiomycete fungi, such as Allomyces macrogynus and Catenaria anguillulae, possess genes encoding a similar K(+) channel and the rhodopsin-guanylyl cyclase fusion protein, while the genes encoding both these proteins are absent in nonflagellated fungi. The presence of these genes as a pair seems to be an exclusive feature of blastocladiomycete fungi. Taken together, these data demonstrate that the B. emersonii cGMP-activated K(+) channel is involved in the control of zoospore motility, most probably participating in the cGMP-signaling pathway for the phototactic response of the fungus. PMID:26150416

  19. Effect of cyanide on nitrovasodilator-induced relaxation, cyclic GMP accumulation and guanylate cyclase activation in rat aorta.

    PubMed

    Rapoport, R M; Murad, F

    1984-09-01

    The effects of sodium cyanide on relaxation, increases in cyclic GMP accumulation and guanylate cyclase activation induced by sodium nitroprusside and other nitrovasodilators were examined in rat thoracic aorta. Cyanide abolished nitroprusside-induced relaxation and the associated increase in cyclic GMP levels. Basal levels of cyclic GMP and cyclic AMP were also depressed. Reversal of nitroprusside-induced relaxation by cyanide was independent of the tissue level of cyclic GMP prior to addition of cyanide. Incubation of nitroprusside with cyanide prior to addition to aortic strips did not alter the relaxant effect of nitroprusside. Sodium azide-, hydroxylamine-, N-methyl-N'-nitro-N-nitrosoguanide-, nitroglycerin- and acetylcholine-induced relaxations and increased levels of cyclic GMP were also inhibited by cyanide. Relaxations induced by nitric oxide were also inhibited by cyanide, although the relaxation with the low concentration of nitric oxide employed was not accompanied by detectable increases in cyclic GMP. Relaxation to 8-bromo-cyclic GMP was essentially unaltered by cyanide; however, isoproterenol-induced relaxation was inhibited. Guanylate cyclase in soluble and particulate fractions of aorta homogenates was activated by nitroprusside and the activation was prevented by cyanide. The present results suggest that cyanide inhibits nitrovasodilator-induced relaxation through inhibition of guanylate cyclase activation; however, cyanide may also have nonspecific effects which inhibit relaxation. PMID:6149944

  20. Effects of the soluble guanylyl cyclase activator, YC-1, on vascular tone, cyclic GMP levels and phosphodiesterase activity

    PubMed Central

    Galle, Jan; Zabel, Ulrike; Hübner, Ulrich; Hatzelmann, Armin; Wagner, Birgit; Wanner, Christoph; Schmidt, Harald H H W

    1999-01-01

    The vasomotor and cyclic GMP-elevating activity of YC-1, a novel NO-independent activator of soluble guanylyl cyclase (sGC), was studied in isolated rabbit aortic rings and compared to that of the NO donor compounds sodium nitroprusside (SNP) and NOC 18.Similarly to SNP and NOC 18, YC-1 (0.3–300 μM) caused a concentration-dependent, endothelium-independent relaxation that was greatly reduced by the sGC inhibitor 1-H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ 10 μM; 59% inhibition of dilation induced by 100 μM YC-1) suggesting the activation of sGC as one mechanism of action.Preincubation with YC-1 (3 and 30 μM) significantly increased the maximal dilator responses mediated by endogenous NO in aortic rings that was released upon exposure to acetylcholine, and enhanced the dilator response to the exogenous NO-donors, SNP and NOC 18, by almost two orders of magnitude.Vasoactivity induced by SNP and YC-1 displayed different kinetics as evidenced by a long-lasting inhibition by YC-1 (300 μM) on the phenylephrine (PE)-induced contractile response, which was not fully reversible even after extensive washout (150 min) of YC-1, and was accompanied by a long-lasting elevation of intracellular cyclic GMP content. In contrast, SNP (30 μM) had no effect on the vasoconstrictor potency of PE, and increases in intravascular cyclic GMP levels were readily reversed after washout of this NO donor compound.Surprisingly, YC-1 not only activated sGC, but also affected cyclic GMP metabolism, as it inhibited both cyclic GMP break down in aortic extracts and the activity of phosphodiesterase isoforms 1–5 in vitro.In conclusion, YC-1 caused persistent elevation of intravascular cyclic GMP levels in vivo by activating sGC and inhibiting cyclic GMP break down. Thus, YC-1 is a highly effective vasodilator compound with a prolonged duration of action, and mechanisms that are unprecedented for any previously known sGC activator. PMID:10369473

  1. Population diversity and function of hyperpolarization-activated current in olfactory bulb mitral cells

    PubMed Central

    Angelo, Kamilla; Margrie, Troy W.

    2011-01-01

    Although neurons are known to exhibit a broad array of intrinsic properties that impact critically on the computations they perform, very few studies have quantified such biophysical diversity and its functional consequences. Using in vivo and in vitro whole-cell recordings here we show that mitral cells are extremely heterogeneous in their expression of a rebound depolarization (sag) at hyperpolarized potentials that is mediated by a ZD7288-sensitive current with properties typical of hyperpolarization-activated cyclic nucleotide gated (HCN) channels. The variability in sag expression reflects a functionally diverse population of mitral cells. For example, those cells with large amplitude sag exhibit more membrane noise, a lower rheobase and fire action potentials more regularly than cells where sag is absent. Thus, cell-to-cell variability in sag potential amplitude reflects diversity in the integrative properties of mitral cells that ensures a broad dynamic range for odor representation across these principal neurons. PMID:22355569

  2. Age-related alterations in cyclic nucleotide phosphodiesterase activity in dystrophic mouse leg muscle.

    PubMed

    Bloom, Timothy J

    2005-11-01

    Previous reports have described both increased and decreased cyclic nucleotide phosphodiesterase (PDE) activity in dystrophic muscle. Total PDE activity was measured in hind leg muscle from a mouse model of Duchenne muscular dystrophy (mdx) and a genetic control strain at 5, 8, 10, and 15 weeks of age. Total PDE activity declined in fractions isolated from mdx muscle over this time period, but was stable in fractions from control mice. Compared with age-matched controls, younger mdx muscle had higher cAMP and cGMP PDE activity. However, at 15 weeks, fractions from both strains had similar cGMP PDE activity and mdx fractions had lower cAMP PDE activity than controls. Particulate fractions from mdx muscle showed an age-related decline in sensitivity to the PDE4 inhibitor RO 20-1724. A similar loss of sensitivity to the PDE2 inhibitor erythro-9-(2-hydroxyl-3-nonyl)-adenine (EHNA) was seen in a particulate fraction from mdx muscle and to a lesser degree in control muscle. These results suggest that the earlier disagreement regarding altered cyclic nucleotide metabolism in dystrophic muscle may be due to changes with age in PDE activity of dystrophic tissue. The age-related decline in particulate PDE activity seen in dystrophic muscle appears to be isozyme-specific and not due to a generalized decrease in total PDE activity. PMID:16391714

  3. Diurnal cycles in serotonin acetyltransferase activity and cyclic GMP content of cultured chick pineal glands.

    PubMed

    Wainwright, S D

    1980-06-12

    Levels of serotonin N-acetyltransferase (NAT: acetul CoA:arylamine N-acetyltransferase; EC 2.1.1.5.) activity in the chick pineal gland exhibit a marked diurnal variation in birds kept under a diurnal cycle of ilumination. Activity begins to rise rapidly at the start of the dark phase of the cycle and reaches maximum levels at mid-dark phase about 25-fold greater than the minimum basal level at mid-light phase. Thereafter, the level of activity declines to the basal level about the start of the light phase. This diurnal cycle in chick pineal NAT activity found in vivo has recently been reproduced in vitro with intact glands incubated in organ culture. The mechanism of the 'biological clock' which regulates these variations in level of chick pineal NAT activity is unknown. However, I now report that chick pineal glands cultured under a diurnal cycle of illumination exhibit a diurnal cycle in content of cyclic GMP which roughly parallels the cycles in NAT activity. In contrast, there was no correlation between variations in pineal content of cyclic AMP and in level of NAT activity. PMID:6250035

  4. Activation of Vascular Endothelial Growth Factor (VEGF) Receptor 2 Mediates Endothelial Permeability Caused by Cyclic Stretch.

    PubMed

    Tian, Yufeng; Gawlak, Grzegorz; O'Donnell, James J; Birukova, Anna A; Birukov, Konstantin G

    2016-05-01

    High tidal volume mechanical ventilation and the resultant excessive mechanical forces experienced by lung vascular endothelium are known to lead to increased vascular endothelial leak, but the underlying molecular mechanisms remain incompletely understood. One reported mechanotransduction pathway of increased endothelial cell (EC) permeability caused by high magnitude cyclic stretch (18% CS) involves CS-induced activation of the focal adhesion associated signalosome, which triggers Rho GTPase signaling. This study identified an alternative pathway of CS-induced EC permeability. We show here that high magnitude cyclic stretch (18% CS) rapidly activates VEGF receptor 2 (VEGFR2) signaling by dissociating VEGFR2 from VE-cadherin at the cell junctions. This results in VEGFR2 activation, Src-dependent VE-cadherin tyrosine phosphorylation, and internalization leading to increased endothelial permeability. This process is also accompanied by CS-induced phosphorylation and internalization of PECAM1. Importantly, CS-induced endothelial barrier disruption was attenuated by VEGFR2 inhibition. 18% CS-induced EC permeability was linked to dissociation of cell junction scaffold afadin from the adherens junctions. Forced expression of recombinant afadin in pulmonary endothelium attenuated CS-induced VEGFR2 and VE-cadherin phosphorylation, preserved adherens junction integrity and VEGFR2·VE-cadherin complex, and suppressed CS-induced EC permeability. This study shows for the first time a mechanism whereby VEGFR2 activation mediates EC permeability induced by pathologically relevant cyclic stretch. In this mechanism, CS induces dissociation of the VE-cadherin·VEGFR2 complex localized at the adherens juctions, causing activation of VEGFR2, VEGFR2-mediated Src-dependent phosphorylation of VE-cadherin, disassembly of adherens junctions, and EC barrier failure. PMID:26884340

  5. Endogenous phosphorylation of microsomal proteins in bovine corpus luteum. Tenfold activation by adenosine 3′:5′-cyclic monophosphate

    PubMed Central

    Hardie, D. Grahame; Stansfield, David A.

    1977-01-01

    Free ribosomes and a smooth-microsomal fraction were prepared from bovine corpus luteum. Both preparations will self-phosphorylate when incubated with Mg2+ and ATP, but at low concentrations of Mg2+ and ATP the self-phosphorylation of the smooth-microsomal fraction was much more dependent on cyclic AMP than was that of free ribosomes, stimulation by the nucleotide being up to 10-fold in the former case. The self-phosphorylation of the smooth-microsomal fraction was studied further. The reaction bears similarities to that brought about by soluble cyclic AMP-dependent protein kinase, being inhibited by Ca2+ and the heat-stable inhibitor protein from skeletal muscle. Cyclic GMP will activate the reaction at concentrations higher than those required for full activation by cyclic AMP. In the presence of cyclic AMP, phosphate bound to protein is found almost exclusively as phosphoserine. Several proteins are phosphorylated, as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, and the phosphorylation of all of them is markedly stimulated by cyclic AMP. If the reaction is carried out at high concentrations of Mg2+ and ATP, a distinct cyclic AMP-independent phosphorylation is observed. This activity is not inhibited by the heat-stable inhibitor protein, and phosphate is found esterified with both threonine and serine residues. PMID:195580

  6. Effect of knowledge integration activities on students' perception of the earth's crust as a cyclic system

    NASA Astrophysics Data System (ADS)

    Kali, Yael; Orion, Nir; Eylon, Bat-Sheva

    2003-08-01

    Systems thinking is regarded as a high-order thinking skill required in scientific, technological, and everyday domains. However, little is known about systems thinking in the context of science education. In the current research, students' understanding of the rock cycle system after a learning program was characterized, and the effect of a concluding knowledge integration activity on their systems thinking was studied. Answers to an open-ended test were interpreted using a systems thinking continuum, ranging from a completely static view of the system to an understanding of the system's cyclic nature. A meaningful improvement in students' views of the rock cycle toward the higher side of the systems thinking continuum was found after the knowledge integration activity. Students became more aware of the dynamic and cyclic nature of the rock cycle, and their ability to construct sequences of processes representing material transformation in relatively large chunks significantly improved. Success of the knowledge integration activity stresses the importance of postknowledge acquisition activities, which engage students in a dual process of differentiation of their knowledge and reintegration in a systems context. We suggest including such activities in curricula involving systems-based contents, particularly in earth science, in which systems thinking can bring about environmental literacy.

  7. Pharmacological inhibition of interleukin-1 activity on T cells by hydrocortisone, cyclosporine, prostaglandins, and cyclic nucleotides.

    PubMed

    Tracey, D E; Hardee, M M; Richard, K A; Paslay, J W

    1988-01-01

    The effects of a panel of hormones and pharmacological agents on the activation of T cells by a combination of interleukin-1 and phytohemagglutinin (IL-1/PHA) was studied. Pharmacological effects on various stages of IL-1/PHA-induced interleukin-2 (IL-2) production by the cloned murine thymoma cell line LBRM-33-1A5.7 were dissected using a multi-step assay procedure. A 4-h lag phase in the kinetics of IL-2 production allowed the operational definition of an early, IL-1-dependent programming stage, followed by an IL-2-production stage of the assay. A cell-washing procedure between these stages was introduced in order to distinguish IL-1 receptor antagonists from functional IL-1/PHA antagonists. Hydrocortisone and cyclosporine were potent inhibitors (active in the nM range) of both stages of IL-2 production, suggesting that neither is an IL-1 receptor antagonist. The cyclic adenosine monophosphate (cAMP)-elevating agents prostaglandin E2, dibutyryl cAMP, and theophylline inhibited IL-2 production during the early, IL-1-dependent programming stage. By contrast, prostaglandin F2 alpha and dibutyryl cyclic guanosine monophosphate did not appreciably inhibit IL-1/PHA activity. These results are discussed in relationship to the effects of these test agents in thymocyte IL-1 assays or mitogenesis assays and the implications toward understanding the mechanisms underlying IL-1/PHA activation of T cells. PMID:3258857

  8. Design and activity of a cyclic mini-β-defensin analog: a novel antimicrobial tool

    PubMed Central

    Scudiero, Olga; Nigro, Ersilia; Cantisani, Marco; Colavita, Irene; Leone, Marilisa; Mercurio, Flavia Anna; Galdiero, Massimiliano; Pessi, Antonello; Daniele, Aurora; Salvatore, Francesco; Galdiero, Stefania

    2015-01-01

    We have designed a cyclic 17-amino acid β-defensin analog featuring a single disulfide bond. This analog, designated “AMC” (ie, antimicrobial cyclic peptide), combines the internal hydrophobic domain of hBD1 and the C-terminal charged region of hBD3. The novel peptide was synthesized and characterized by nuclear magnetic resonance spectroscopy. The antimicrobial activities against gram-positive and gram-negative bacteria as well as against herpes simplex virus type 1 were analyzed. The cytotoxicity and serum stability were assessed. Nuclear magnetic resonance of AMC in aqueous solution suggests that the structure of the hBD1 region, although not identical, is preserved. Like the parent defensins, AMC is not cytotoxic for CaCo-2 cells. Interestingly, AMC retains the antibacterial activity of the parent hBD1 and hBD3 against Pseudomonas aeruginosa, Enterococcus faecalis, and Escherichia coli, and exerts dose-dependent activity against herpes simplex virus type 1. Moreover, while the antibacterial and antiviral activities of the oxidized and reduced forms of the parent defensins are similar, those of AMC are significantly different, and oxidized AMC is also considerably more stable in human serum. Taken together, our data also suggest that this novel peptide may be added to the arsenal of tools available to combat antibiotic-resistant infectious diseases, particularly because of its potential for encapsulation in a nanomedicine vector. PMID:26508857

  9. Design and activity of a cyclic mini-β-defensin analog: a novel antimicrobial tool.

    PubMed

    Scudiero, Olga; Nigro, Ersilia; Cantisani, Marco; Colavita, Irene; Leone, Marilisa; Mercurio, Flavia Anna; Galdiero, Massimiliano; Pessi, Antonello; Daniele, Aurora; Salvatore, Francesco; Galdiero, Stefania

    2015-01-01

    We have designed a cyclic 17-amino acid β-defensin analog featuring a single disulfide bond. This analog, designated "AMC" (ie, antimicrobial cyclic peptide), combines the internal hydrophobic domain of hBD1 and the C-terminal charged region of hBD3. The novel peptide was synthesized and characterized by nuclear magnetic resonance spectroscopy. The antimicrobial activities against gram-positive and gram-negative bacteria as well as against herpes simplex virus type 1 were analyzed. The cytotoxicity and serum stability were assessed. Nuclear magnetic resonance of AMC in aqueous solution suggests that the structure of the hBD1 region, although not identical, is preserved. Like the parent defensins, AMC is not cytotoxic for CaCo-2 cells. Interestingly, AMC retains the antibacterial activity of the parent hBD1 and hBD3 against Pseudomonas aeruginosa, Enterococcus faecalis, and Escherichia coli, and exerts dose-dependent activity against herpes simplex virus type 1. Moreover, while the antibacterial and antiviral activities of the oxidized and reduced forms of the parent defensins are similar, those of AMC are significantly different, and oxidized AMC is also considerably more stable in human serum. Taken together, our data also suggest that this novel peptide may be added to the arsenal of tools available to combat antibiotic-resistant infectious diseases, particularly because of its potential for encapsulation in a nanomedicine vector. PMID:26508857

  10. Cyclic silicate active site and stereochemical match for apatite nucleation on pseudowollastonite bioceramic-bone interfaces.

    PubMed

    Sahai, Nita; Anseau, Michel

    2005-10-01

    Hydroxyapatite (Ca5(PO4)3(OH)) forms on pseudowollastonite (psW) (alpha-CaSiO3) in vitro in simulated body fluid, human parotid saliva and cell-culture medium, and in vivo in implanted rat tibias. We used crystallographic constraints with ab initio molecular orbital calculations to identify the active site and reaction mechanism for heterogeneous nucleation of the earliest calcium phosphate oligomer/phase. The active site is the planar, cyclic, silicate trimer (Si3O9) on the (001) face of psW. The trimer has three silanol groups (>SiOH) arranged at 60 degrees from each other, providing a stereochemical match for O atoms bonded to Ca2+ on the (001) face of hydroxyapatite. Calcium phosphate nucleation is modeled in steps as hydrolysis of surface Ca-O bonds with leaching of Ca2+ into solution, protonation of the surface Si-O groups to form silanols, calcium sorption as an inner-sphere surface complex and, attachment of HPO4(2-). Our model explains the experimental solution and high resolution transmission electron microscopy data for epitaxial hydroxyapatite growth on psW in vitro and in vivo. We propose that the cyclic silicate trimer is the universal active site for heterogeneous, stereochemically promoted nucleation on silicate-based bioactive ceramics. A critical active site-density and a point of zero charge of the bioceramic less than physiological pH are required for bioactivity. PMID:15949543

  11. Cyclic GMP-AMP Synthase is Activated by Double-stranded DNA-Induced Oligomerization

    PubMed Central

    Li, Xin; Shu, Chang; Yi, Guanghui; Chaton, Catherine T.; Shelton, Catherine L.; Diao, Jiasheng; Zuo, Xiaobing; Kao, C Cheng; Herr, Andrew B.; Li, Pingwei

    2013-01-01

    Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide 2′,5′ cGAMP that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-β gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN-β reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2′,5′ cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization. PMID:24332030

  12. Antitumor and Antimicrobial Activity of Some Cyclic Tetrapeptides and Tripeptides Derived from Marine Bacteria

    PubMed Central

    Chakraborty, Subrata; Tai, Dar-Fu; Lin, Yi-Chun; Chiou, Tzyy-Wen

    2015-01-01

    Marine derived cyclo(Gly-l-Ser-l-Pro-l-Glu) was selected as a lead to evaluate antitumor-antibiotic activity. Histidine was chosen to replace the serine residue to form cyclo(Gly-l-His-l-Pro-l-Glu). Cyclic tetrapeptides (CtetPs) were then synthesized using a solution phase method, and subjected to antitumor and antibiotic assays. The benzyl group protected CtetPs derivatives, showed better activity against antibiotic-resistant Staphylococcus aureus in the range of 60–120 μM. Benzyl group protected CtetPs 3 and 4, exhibited antitumor activity against several cell lines at a concentration of 80–108 μM. However, shortening the size of the ring to the cyclic tripeptide (CtriP) scaffold, cyclo(Gly-l-Ser-l-Pro), cyclo(Ser-l-Pro-l-Glu) and their analogues showed no antibiotic or antitumor activity. This phenomenon can be explained from their backbone structures. PMID:25988520

  13. Pharmacological properties of novel cyclic pentapeptides with µ-opioid receptor agonist activity.

    PubMed

    Perlikowska, Renata; Piekielna, Justyna; Fichna, Jakub; do-Rego, Jean Claude; Toth, Geza; Janecki, Tomasz; Janecka, Anna

    2014-03-01

    In our previous paper we have reported the synthesis and biological activity of a cyclic analog, Tyr-c(D-Lys- Phe-Phe-Asp)-NH2, based on endomorphin-2 (EM-2) structure. This analog displayed high affinity for the µ-opioid receptor, was much more stable than EM-2 in rat brain homogenate and showed remarkable antinociceptive activity after intracerebroventricular (i.c.v.) injection. Even more importantly, the cyclic analog elicited weak analgesia also after peripheral administration, giving evidence that it was able to cross, at least to some extent, the blood-brain barrier (BBB). Here we describe further modifications of this analog aimed at enhancing brain delivery by increasing lipophilicity. Two new cyclic pentapeptides, Tyr-c(D-Lys-D-1-Nal-Phe-Asp)-NH2 and Tyr-c(D-Lys-D-2-Nal-Phe-Asp)-NH2 (where 1-Nal=1- naphthyl-3-alanine, 2-Nal=2-naphthyl-3-alanine) were synthesized and evaluated in biological assays. Both analogs showed high µ-opioid receptor affinity and agonist activity and were stable in the rat brain homogenates. Unfortunately, the increase of lipophilicity was achieved at the expense of water solubility. The analog with D-2-Nal residue showed strong analgesic effect when given i.c.v. but could not be tested after intravenous (i.v.) administration where higher concentrations of the compound are required. However, this analog showed inhibitory effect on gastrointestinal (GI) motility in vivo, providing an interesting approach to the development of peripherally restricted agents that could be useful for studying gastrointestinal disorders in animal models. PMID:23628088

  14. Cyclic, nonequilibrium models of glucocorticoid antagonism: role of activation, nuclear binding and receptor recycling.

    PubMed

    Munck, A; Holbrook, N J

    1988-10-01

    Quantitative models that have been proposed to date to explain mechanisms of glucocorticoid antagonism have generally been of the equilibrium type, involving hypothetical allosteric equilibria between active and inactive states of the receptor or the steroid-receptor complex. We describe here the agonist-antagonist relationships predicted by a nonequilibrium cyclic model that we have recently devised to account for the kinetic behavior of glucocorticoid-receptor complexes in intact rat thymus cells. This model simulates quantitatively most kinetic and steady state results that have been obtained so far. It postulates the existence of only well-established receptor species, and its kinetic parameters can in principle be determined by receptor measurements with intact cells. To calculate the steady state agonist-antagonist properties it is assumed that biological activity is proportional to the total amount of nuclear-bound complex, whether formed by agonist or antagonist. The agonist activity of a steroid is determined by the steady state ratio of nuclear-bound to total complexes it forms. This ratio varies from 0 for a pure antagonist to 1 for a pure agonist. It turns out to be independent of agonist and antagonist concentrations, and a function only of the rate constants for the reactions of the complexes formed by a steroid. Analysis of the dependence of the ratio on each rate constant shows quantitatively how each reaction in the cyclic model--activation of the nonactivated complex, nuclear binding of the activated complexes, and dissociation and recycling of activated and nuclear-bound complexes--affects antagonist properties. Steady state interactions of agonists with antagonists are found to be determined by equations that are identical to those for competition in simple equilibrium systems. Predicted dose-response relations agree qualitatively with experimentally observed relations. They are similar to those predicted by two-state allosteric models, although

  15. Cyclic GMP phosphodiesterase activity role in normal and inflamed human dental pulp.

    PubMed

    Spoto, G; Ferrante, M; D'Intino, M; Rega, L; Dolci, M; Trentini, P; Ciavarelli, L

    2004-01-01

    Cyclic GMP phosphodiesterase (cGMP PDE) plays an important role in pulp tissues. High levels of cGMP PDE are found in dental pulp cells. In the present study cGMP PDE activity was analyzed in normal healthy human dental pulps, in reversible pulpitis and in irreversible pulpitis. Enzymatic cGMP PDE control values for normal healthy pulps were 4.74+/-0.32 nmol/mg of proteins. In reversible pulpitis the cGMP PDE activity increased almost 3 times. In irreversible pulpitis specimens the values increased 4.5 times compared with the normal healthy pulps activity. The differences between the groups (control vs. reversible pulpitis and vs. irreversible pulpitis) were statistically significant. These results point to a role of cGMP PDE in the initial pulp response after injury. PMID:16857102

  16. Cyclic Amp phosphodiesterase activity in normal and inflamed human dental pulp.

    PubMed

    Spoto, G; Menna, V; Serra, E; Santoleri, F; Perfetti, G; Ciavarelli, L; Trentini, P

    2004-01-01

    Cyclic AMP phosphodiesterase (cAMP PDE) seems to be important in pulp tissues. High levels of cAMP PDE have been demonstrated to be in dental pulp cells. In the present study cAMP PDE activity was analyzed in normal healthy human dental pulps, in reversible pulpitis and in irreversible pulpitis. Enzymatic cAMP PDE control values for normal healthy pulps were 12.14 +/- 3.74 nmols/mg of proteins. In reversible pulpitis the cAMP PDE activity increased almost 2.5 times. In irreversible pulpitis specimens the values increased 4.5 times compared with normal healthy pulps activity. The differences between the groups (control vs. reversible pulpitis and vs. irreversible pulpitis) were statistically significant. These results could point to a role of cAMP PDE in the initial pulp response after injury. PMID:16857100

  17. Device and software used to carry out Cyclic Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Castro-García, M. P.; Rey-Ronco, M. A.; Alonso-Sánchez, T.

    2014-11-01

    This paper discusses the device and software used to carry out Cyclic Neutron Activation Analysis (CNAA). The aim of this investigation is defining through this device the fluorite content present on different samples from fluorspar concentration plant through the DGNAA (Delayed Gamma Neutron Activation Analysis) method. This device is made of americium-beryllium neutron source, NaI (2"×2") and BGO (2"×2") gamma rays detectors, multichannel and an automatic mechanism which moves the samples from activation and reading position. This mechanism is controlled by a software which allows moving the samples precisely and in a safe way (~ms), which it is very useful when the radioactive isotopes have to be detected with a half time less than 8s.

  18. Cyclic alkyl amino carbene (CAAC) ruthenium complexes as remarkably active catalysts for ethenolysis.

    PubMed

    Marx, Vanessa M; Sullivan, Alexandra H; Melaimi, Mohand; Virgil, Scott C; Keitz, Benjamin K; Weinberger, David S; Bertrand, Guy; Grubbs, Robert H

    2015-02-01

    An expanded family of ruthenium-based metathesis catalysts bearing cyclic alkyl amino carbene (CAAC) ligands was prepared. These catalysts exhibited exceptional activity in the ethenolysis of the seed-oil derivative methyl oleate. In many cases, catalyst turnover numbers (TONs) of more than 100,000 were achieved, at a catalyst loading of only 3 ppm. Remarkably, the most active catalyst system was able to achieve a TON of 340,000, at a catalyst loading of only 1 ppm. This is the first time a series of metathesis catalysts has exhibited such high performance in cross-metathesis reactions employing ethylene gas, with activities sufficient to render ethenolysis applicable to the industrial-scale production of linear α-olefins (LAOs) and other terminal-olefin products. PMID:25522160

  19. Variation in cyclic nucleotide levels and lysosomal enzyme activities in the irradiated rat

    SciTech Connect

    Trocha, P.J.; Catravas, G.N.

    1980-09-01

    Whole-body irradiation of rats causes not only a release of hydrolases from the lysosomes but also fluctuations in the cyclic nucleotide levels in spleen and liver tissues. Significant increases in lysosomal enzyme activities were further observed in spleen following radiation treatment. At 3 to 6 hr after rats were exposed to ..gamma.. radiation, transient increases in both cGMP and cAMP levels were accompanied with the release of ..beta..-glucuronidase and acid phosphatase enzymes from lysosomes in liver and spleen tissues. A second transitory release and activation of lysosomal hydrolases and an increase in cAMP levels occurred between 2 and 5 days after irradiation in spleen but not in liver. On Days 7 and 8, there was a third release of lysosomal hydrolases and a slight increase in the spleen cAMP concentration before they returned to near-control values. Cyclic GMP levels in the spleen decreased on the third day after irradiation, remained suppressed until Day 9, and then increased to levels higher than normal physiological values. The liver cGMP concentration remained unchanged between 9 hr and 11 days after irradiation.

  20. Mechanisms of Earth activity forsed by external celestial bodies:energy budjet and nature of cyclicity

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.; Ferrandiz, J. M.

    2003-04-01

    In given report we discuss tidal and non-tidal mechanisms of forced tectonic (endogenous) activity of the Earth caused by gravitational attraction of the Moon, Sun and the planets. On the base of the classical solution of the problem of elasticity for model of the Earth with concentric mass distribution the evaluations of the tidal energy and power of Earth lunar-solar deformations, including their joint effect, were obtained. Important role of the joint energetic effect of rotational deformation of the Earth with lunar and solar tides was illustrated. Gravitational interaction of the Moon and Sun with non-spherical, non-homogeneous shells of the Earth generates big additional mechanical forces and moments of the interaction of the neighboring shells (rigid core, liquid core, mantle, lithosphere and separate plates). Acting of these forces and moments in the different time scales on the corresponding sells generates cyclic perturbations of the tensional state of the shells, their deformations, small relative translational displacements and small relative rotational oscillations of the shells. In geological period of time it leads to a fundamental tectonic reconstruction of the Earth. These additional forces and moments of the cyclic celestial-mechanical nature produce cyclic deformations of the all layers of the body and organize and control practically all natural processes. The additional force between mantle and core is cyclic and characterized by the wide basis of frequencies typical for orbital motions (of the Sun, Moon and planets), for rotational motion of the Earth, Moon and Sun and for many from observed natural processes. The problem about small relative translatory-rotary motion of the two shells separated by the thin viscous-elastic layer is studied. The differential equations of motion were obtained and have been studied in particular cases (plane motion of system; case of two axisymmetrical interacting shells and oth.) by approximate methods of small

  1. The Characterization of Escherichia coli CpdB as a Recombinant Protein Reveals that, besides Having the Expected 3´-Nucleotidase and 2´,3´-Cyclic Mononucleotide Phosphodiesterase Activities, It Is Also Active as Cyclic Dinucleotide Phosphodiesterase

    PubMed Central

    López-Villamizar, Iralis; Cabezas, Alicia; Pinto, Rosa María; Canales, José; Ribeiro, João Meireles; Cameselle, José Carlos; Costas, María Jesús

    2016-01-01

    Endogenous cyclic diadenylate phosphodiesterase activity was accidentally detected in lysates of Escherichia coli BL21. Since this kind of activity is uncommon in Gram-negative bacteria, its identification was undertaken. After partial purification and analysis by denaturing gel electrophoresis, renatured activity correlated with a protein identified by fingerprinting as CpdB (cpdB gene product), which is annotated as 3´-nucleotidase / 2´,3´-cyclic-mononucleotide phosphodiesterase, and it is synthesized as a precursor protein with a signal sequence removable upon export to the periplasm. It has never been studied as a recombinant protein. The coding sequence of mature CpdB was cloned and expressed as a GST fusion protein. The study of the purified recombinant protein, separated from GST, confirmed CpdB annotation. The assay of catalytic efficiencies (kcat/Km) for a large substrate set revealed novel CpdB features, including very high efficiencies for 3´-AMP and 2´,3´-cyclic mononucleotides, and previously unknown activities on cyclic and linear dinucleotides. The catalytic efficiencies of the latter activities, though low in relative terms when compared to the major ones, are far from negligible. Actually, they are perfectly comparable to those of the ‘average’ enzyme and the known, bona fide cyclic dinucleotide phosphodiesterases. On the other hand, CpdB differs from these enzymes in its extracytoplasmic location and in the absence of EAL, HD and DHH domains. Instead, it contains the domains of the 5´-nucleotidase family pertaining to the metallophosphoesterase superfamily, although CpdB lacks 5´-nucleotidase activity. The possibility that the extracytoplasmic activity of CpdB on cyclic dinucleotides could have physiological meaning is discussed. PMID:27294396

  2. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration.

    PubMed

    Plikus, Maksim V; Mayer, Julie Ann; de la Cruz, Damon; Baker, Ruth E; Maini, Philip K; Maxson, Robert; Chuong, Cheng-Ming

    2008-01-17

    In the age of stem cell engineering it is critical to understand how stem cell activity is regulated during regeneration. Hairs are mini-organs that undergo cyclic regeneration throughout adult life, and are an important model for organ regeneration. Hair stem cells located in the follicle bulge are regulated by the surrounding microenvironment, or niche. The activation of such stem cells is cyclic, involving periodic beta-catenin activity. In the adult mouse, regeneration occurs in waves in a follicle population, implying coordination among adjacent follicles and the extrafollicular environment. Here we show that unexpected periodic expression of bone morphogenetic protein 2 (Bmp2) and Bmp4 in the dermis regulates this process. This BMP cycle is out of phase with the WNT/beta-catenin cycle, thus dividing the conventional telogen into new functional phases: one refractory and the other competent for hair regeneration, characterized by high and low BMP signalling, respectively. Overexpression of noggin, a BMP antagonist, in mouse skin resulted in a markedly shortened refractory phase and faster propagation of the regenerative wave. Transplantation of skin from this mutant onto a wild-type host showed that follicles in donor and host can affect their cycling behaviours mutually, with the outcome depending on the equilibrium of BMP activity in the dermis. Administration of BMP4 protein caused the competent region to become refractory. These results show that BMPs may be the long-sought 'chalone' inhibitors of hair growth postulated by classical experiments. Taken together, results presented in this study provide an example of hierarchical regulation of local organ stem cell homeostasis by the inter-organ macroenvironment. The expression of Bmp2 in subcutaneous adipocytes indicates physiological integration between these two thermo-regulatory organs. Our findings have practical importance for studies using mouse skin as a model for carcinogenesis, intra-cutaneous drug

  3. Cholesterol ester hydrolase in pig liver is activated by cyclic AMP-dependent protein kinase

    SciTech Connect

    Chen, J.J.S.; Dubin, E.; Margolis, S.

    1986-05-01

    To examine whether hepatic neutral cholesterol ester hydrolase (CEH) is regulated by phosphorylation, the authors have assayed CEH activity from pig liver cytosol by measuring /sup 14/C-oleate release from labeled cholesteryl oleate at pH 7.4. When pig liver cytosol was incubated with 2 mM Mg and 0.5 mM ATP, CEH activity was increased (141 +/- 8% of control, mean +/- SEM). Addition of 25..mu..M cyclic AMP (cAMP) further activated CEH activity (164 +/- 4% of control) as compared to incubation with Mg and ATP (p < 0.02). In the presence of 5 mM EDTA or in the absence of either Mg or ATP, no activation of CEH was observed. The activation was completely abolished by further incubation of activated cytosol with E. coli alkaline phosphatase. Activation of CEH activity was partially prevented by the addition of protein kinase inhibitor (p < 0.02) and this effect was completely reversed in the presence of exogenous cAMP-dependent protein kinase (p < 0.05). To examine further the role of the cAMP-dependent protein kinase, CEH activity was purified 240-fold by 35% (NH/sub 4/)/sub 2/SO/sub 4/ precipitation and Sepharose 4B chromatography. Incubation of partially purified CEH fractions with Mg, ATP and cAMP did not increase CEH activity. Addition of exogenous cAMP-dependent protein kinase activated CEH activity of partially purified fractions. The authors observations indicate that pig liver CEH is activated by phosphorylation mediated by cAMP-dependent protein kinase.

  4. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response.

    PubMed

    Parvatiyar, Kislay; Zhang, Zhiqiang; Teles, Rosane M; Ouyang, Songying; Jiang, Yan; Iyer, Shankar S; Zaver, Shivam A; Schenk, Mirjam; Zeng, Shang; Zhong, Wenwan; Liu, Zhi-Jie; Modlin, Robert L; Liu, Yong-jun; Cheng, Genhong

    2012-12-01

    The induction of type I interferons by the bacterial secondary messengers cyclic di-GMP (c-di-GMP) or cyclic di-AMP (c-di-AMP) is dependent on a signaling axis that involves the adaptor STING, the kinase TBK1 and the transcription factor IRF3. Here we identified the heliase DDX41 as a pattern-recognition receptor (PRR) that sensed both c-di-GMP and c-di-AMP. DDX41 specifically and directly interacted with c-di-GMP. Knockdown of DDX41 via short hairpin RNA in mouse or human cells inhibited the induction of genes encoding molecules involved in the innate immune response and resulted in defective activation of STING, TBK1 and IRF3 in response to c-di-GMP or c-di-AMP. Our results suggest a mechanism whereby c-di-GMP and c-di-AMP are detected by DDX41, which forms a complex with STING to signal to TBK1-IRF3 and activate the interferon response. PMID:23142775

  5. A new cyclic dipeptide penicimutide: the activated production of cyclic dipeptides by introduction of neomycin-resistance in the marine-derived fungus Penicillium purpurogenum G59.

    PubMed

    Wang, Nan; Cui, Cheng-Bin; Li, Chang-Wei

    2016-06-01

    A novel cyclic dipeptide, named penicimutide (1), and four known cyclic dipeptides, cyclo(L-Val-L-Pro) (2), cyclo(L-Ile-L-Pro) (3), cyclo(L-Leu-L-Pro) (4) and cyclo(L-Phe-L-Pro) (5), were isolated from a neomycin-resistant mutant of the marine-derived fungus Penicillium purpurogenum G59. The structure of 1, including the absolute configuration, was determined by spectroscopic and chemical methods, especially NMR and Marfey's analysis. An unusual amino acid in 1, 4,5-didehydro-L-leucine, was found for the first time occurring in nature. HPLC-ESI-MS analysis evidenced that 1-3 were produced only in the mutant strain, but 4 and 5 were produced in both the mutant and parental strains, indicating that the introduction of neomycin-resistance in the mutant activated pathways of 1-3 biosynthesis that were silent in the parental strain. Compound 1 selectively inhibited HeLa cells (among five tested human cancer cell lines) with an inhibition rate (IR %) of 39.4 % at 100 µg/mL, a similar inhibition intensity to that of the positive control 5-fluorouracil (IR % of 41.4 % at 100 µg/mL against HeLa cells). The present work exemplifies the effectiveness of our previous DMSO-mediated method for introducing drug-resistance in fungi to activate silent biosynthetic pathways to obtain new bioactive compounds. PMID:27129688

  6. Long-range signaling in growing neurons after local elevation of cyclic AMP-dependent activity

    PubMed Central

    1994-01-01

    Cyclic AMP-dependent activity at the growth cone or the soma of cultured Xenopus spinal neurons was elevated by local extracellular perfusion of the neuron with culture medium containing 8-bromoadenosine 3',5'-cyclic monophosphate (8-br-cAMP) or forskolin. During local perfusion of one of the growth cones of multipolar neurons with these drugs, the perfused growth cone showed further extension, while the distant, unperfused growth cones were inhibited in their growth. Local perfusion of the growth cone with culture medium or local perfusion with 8-br-cAMP at a cell-free region 100 microns away from the growth cone did not produce any effect on the extension of the growth cone. Reduced extension of all growth cones was observed when the perfusion with 8-br-cAMP was restricted to the soma. The distant inhibitory effect does not depend on the growth of the perfused growth cone since local coperfusion of the growth cone with 8-br-cAMP and colchicine inhibited growth on both perfused and unperfused growth cones, while local perfusion with colchicine alone inhibited only the perfused growth cone. The distant inhibitory effect was abolished when the perfusion of 8-br-cAMP was carried out together with kinase inhibitor H- 8, suggesting the involvement of cAMP-dependent protein kinase and/or its downstream factors in the long-range inhibitory signaling. Uniform exposure of the entire neuron to bath-applied 8-br-cAMP, however, led to enhanced growth activity at all growth cones. Thus, local elevation of cAMP-dependent activity produces long-range and opposite effects on distant parts of the neuron, and a cytosolic gradient of second messengers may produce effects distinctly different from those following uniform global elevation of the messenger, leading to differential growth regulation at different regions of the same neuron. PMID:7798321

  7. G6PDH activity highlights the operation of the cyclic electron flow around PSI in Physcomitrella patens during salt stress

    PubMed Central

    Gao, Shan; Zheng, Zhenbing; Huan, Li; Wang, Guangce

    2016-01-01

    Photosynthetic performances and glucose-6-phosphate dehydrogenase (G6PDH) activity in Physcomitrella patens changed greatly during salt stress and recovery. In P. patens, the cyclic electron flow around photosystem (PS) I was much more tolerant to high salt stress than PSII. After high salt stress, the PSII activity recovered much more slowly than that of PSI, which was rapidly restored to pretreatment levels even as PSII was almost inactivate. This result suggested that after salt stress the recovery of the cyclic electron flow around PSI was independent of PSII activity. In addition, G6PDH activity and NADPH content increased under high salt stress. When G6PDH activity was inhibited by glucosamine (Glucm, a G6PDH inhibitor), the cyclic electron flow around PSI and the NADPH content decreased significantly. Additionally, after recovery in liquid medium containing Glucm, the PSI activity was much lower than in liquid medium without Glucm. These results suggested the PSI activity was affected significantly by G6PDH activity and the NADPH content. Based on the above results, we propose that G6PDH in P. patens has a close relationship with the photosynthetic process, possibly providing NADPH for the operation of the cyclic electron flow around PSI during salt stress and promoting the restoration of PSI. PMID:26887288

  8. Cyclic Lipopeptides with Herbicidal and Insecticidal Activities Produced by Bacillus clausii DTM1.

    PubMed

    Guo, Da-Le; Wan, Bo; Xiao, Shi-Ji; Allen, Sarah; Gu, Yu-Cheng; Ding, Li-Sheng; Zhoua, Yan

    2015-12-01

    Seven cyclic lipopeptide biosurfactants (1-7) were isolated for the first time from the fermentation broth of endophytic Bacillus clausii DTM1 and were identified as anteisoC13[Val7] surfactin-(L-Glu)-O-methyl-ester (1), anteisoC12[Val7] surfactin (2), anteisoC15[Val7] surfactin (3), isoC14[Leu7] surfactin (4), anteisoC12[Leu7] surfactin (5), nC13[Leu7] surfactin (6), and anteisoC14[Leu7] surfactin-(L-Glu)-O-methyl-ester (7); 1 has not been isolated before as a natural product from any source. Plate-based herbicide and insecticide bioassays showed that all compounds exhibited interesting insecticidal and herbicidal activities. PMID:26882688

  9. Synthesis and biological evaluation of open-chain analogs of cyclic peptides as inhibitors of cellular Shp2 activity.

    PubMed

    Zhen, Xiao-Li; Yin, Wen-Hui; Tian, Xia; Ma, Zhen-Jie; Fan, Shi-Ming; Han, Jian-Rong; Liu, Shouxin

    2015-05-15

    A series of open-chain analogs of cyclic peptides was designed and synthesized using sansalvamide A as a model compound. All compounds exhibited low antitumor activity. Furthermore, the evaluation of their inhibitory potency toward IMPDH, SHP2, ACHE, proteasome, MAGL, and cathepsin B showed that all of the compounds were potent against protein tyrosine phosphatase Shp2. Specifically, compounds 1a, 1d, 2b, and 2f were found to inhibit SHP2 with IC50 values in the low micromolar range and good selectivity. Based on the molecular docking results, the binding modes of the chain cyclic peptides in the active center of SHP2 were discussed. PMID:25865131

  10. Modulation by cyclic GMP of the odour sensitivity of vertebrate olfactory receptor cells

    NASA Technical Reports Server (NTRS)

    Leinders-Zufall, T.; Shepherd, G. M.; Zufall, F.

    1996-01-01

    Recent evidence has indicated a significant role for the cGMP second messenger system in vertebrate olfactory transduction but no clear functions have been identified for cGMP so far. Here, we have examined the effects of 8-Br-cGMP and carbon monoxide (CO) on odour responses of salamander olfactory receptor neurons using perforated patch recordings. We report that 8-Br-cGMP strongly down-regulates the odour sensitivity of the cells, with a K1/2 of 460 nM. This adaptation-like effect can be mimicked by CO, an activator of soluble guanylyl cyclase, with a K1/2 of 1 microM. Sensitivity modulation is achieved through a regulatory chain of events in which cGMP stimulates a persistent background current due to the activation of cyclic nucleotide-gated channels. This in turn leads to sustained Ca2+ entry providing a negative feedback signal. One consequence of the Ca2+ entry is a shift to the right of the stimulus-response curve and a reduction in saturating odour currents. Together, these two effects can reduce the sensory generator current by up to twenty-fold. Thus, cGMP functions to control the gain of the G-protein coupled cAMP pathway. Another consequence of the action of cGMP is a marked prolongation of the odour response kinetics. The effects of CO/cGMP are long-lasting and can continue for minutes. Hence, we propose that cGMP helps to prevent saturation of the cell's response by adjusting the operational range of the cAMP cascade and contributes to olfactory adaptation by decreasing the sensitivity of olfactory receptor cells to repeated odour stimuli.

  11. Glial potassium channels activated by neuronal firing or intracellular cyclic AMP in Helix.

    PubMed Central

    Gommerat, I; Gola, M

    1996-01-01

    1. Cell-attached and whole cell patch clamp experiments were performed on satellite glial cells adhering to the cell body of neurones in situ within the nervous system of the snail Helix pomatia. The underlying neurone was under current or voltage-clamp control. 2. Neuronal firing induced a delayed (20-30 s) persistent (3-4 min) increase in the opening probability of glial K+ channels. The channels were also activated by perfusing the ganglion with a depolarizing high-K+ saline, except when the underlying neurone was prevented from depolarizing under voltage-clamp conditions. 3. Two K(+)-selective channels were detected in the glial membrane. The channel responding to neuronal firing was present in 95% of the patches (n = 393). It had a unitary conductance of 56 pS, a Na+ :K+ permeability ratio < 0.02 and displayed slight inward rectification in symmetrical [K+] conditions. It was sensitive to TEA, Ba2+ and Cs+. The following results refer to this channel as studied in the cell-attached configuration. 4. The glial K+ channel was activated by bath application of the membrane-permeant cyclic AMP derivatives 8-bromo-cAMP and dibutyryl-cAMP, the adenylyl cyclase activator forskolin and the diesterase inhibitors IBMX, theophylline and caffeine. It was insensitive to cyclic GMP activators and to conditions that might alter the intracellular [Ca2+] (ionomycin, low-Ca2+ saline and Ca2+ channel blockers). 5. The forskolin-induced changes in channel behaviour (open and closed time distributions, burst duration, short and long gaps within bursts) could be accounted for by a four-state model (3 closed states, 1 open state) by simply changing one of the six rate parameters. 6. The present results suggest that the signal sent by an active neurone to satellite glial cells is confined to the glial cells round that neurone. The effect of this signal on the class of glial K+ channels studied can be mimicked by an increase in glial cAMP concentration. The subsequent delayed opening

  12. Extracellular signal-regulated kinases 1 and 2 activation in endothelial cells exposed to cyclic strain

    NASA Technical Reports Server (NTRS)

    Ikeda, M.; Takei, T.; Mills, I.; Kito, H.; Sumpio, B. E.

    1999-01-01

    The aim of this study was to determine whether extracellular signal-regulated kinases 1/2 (ERK1/ERK2) are activated and might play a role in enhanced proliferation and morphological change induced by strain. Bovine aortic endothelial cells (BAEC) were subjected to an average of 6 or 10% strain at a rate of 60 cycles/min for up to 4 h. Cyclic strain caused strain- and time-dependent phosphorylation and activation of ERK1/ERK2. Peak phosphorylation and activation of ERK1/ERK2 induced by 10% strain were at 10 min. A specific ERK1/ERK2 kinase inhibitor, PD-98059, inhibited phosphorylation and activation of ERK1/ERK2 but did not inhibit the increased cell proliferation and cell alignment induced by strain. Treatment of BAEC with 2,5-di-tert-butyl-1, 4-benzohydroquinone, to deplete inositol trisphosphate-sensitive calcium storage, and gadolinium chloride, a Ca2+ channel blocker, did not inhibit the activation of ERK1/ERK2. Strain-induced ERK1/ERK2 activation was partly inhibited by the protein kinase C inhibitor calphostin C and completely inhibited by the tyrosine kinase inhibitor genistein. These data suggest that 1) ERK1/ERK2 are not critically involved in the strain-induced cell proliferation and orientation, 2) strain-dependent activation of ERK1/ERK2 is independent of intracellular and extracellular calcium mobilization, and 3) protein kinase C activation and tyrosine kinase regulate strain-induced activation of ERK1/ERK2.

  13. Mutations that alter the ability of the Escherichia coli cyclic AMP receptor protein to activate transcription.

    PubMed

    Bell, A; Gaston, K; Williams, R; Chapman, K; Kolb, A; Buc, H; Minchin, S; Williams, J; Busby, S

    1990-12-25

    The effects of a number of mutations in the E. coli cyclic AMP receptor protein (CRP) have been determined by monitoring the in vivo expression and in vitro open complex formation at two semi-synthetic promoters that are totally CRP-dependent. At one promoter the CRP-binding site is centered around 41.5 base pairs upstream from the transcription start whilst at the other promoter it is 61.5 base pairs upstream. The CRP mutation E171K reduces expression from both promoters whilst H159L renders CRP totally inactive: neither mutation stops CRP binding at either promoter. The mutations K52N and K52Q reverse the effect of H159L and 'reeducate' CRP to activate transcription. CRP carrying both H159L and K52N activates transcription from the promoter with the CRP site at -41.5 better than wild type CRP. In sharp contrast, this doubly changed CRP is totally inactive with respect to the activation of transcription from the promoter carrying the CRP site at -61.5. Our results suggest that CRP can use different contacts and/or conformations during transcription activation at promoters with different architectures. PMID:2259621

  14. Mutations that alter the ability of the Escherichia coli cyclic AMP receptor protein to activate transcription.

    PubMed Central

    Bell, A; Gaston, K; Williams, R; Chapman, K; Kolb, A; Buc, H; Minchin, S; Williams, J; Busby, S

    1990-01-01

    The effects of a number of mutations in the E. coli cyclic AMP receptor protein (CRP) have been determined by monitoring the in vivo expression and in vitro open complex formation at two semi-synthetic promoters that are totally CRP-dependent. At one promoter the CRP-binding site is centered around 41.5 base pairs upstream from the transcription start whilst at the other promoter it is 61.5 base pairs upstream. The CRP mutation E171K reduces expression from both promoters whilst H159L renders CRP totally inactive: neither mutation stops CRP binding at either promoter. The mutations K52N and K52Q reverse the effect of H159L and 'reeducate' CRP to activate transcription. CRP carrying both H159L and K52N activates transcription from the promoter with the CRP site at -41.5 better than wild type CRP. In sharp contrast, this doubly changed CRP is totally inactive with respect to the activation of transcription from the promoter carrying the CRP site at -61.5. Our results suggest that CRP can use different contacts and/or conformations during transcription activation at promoters with different architectures. Images PMID:2259621

  15. COMPUTER-ASSISTED STRUCTURE ACTIVITY RELATIONSHIPS OF NITROGENOUS CYCLIC COMPOUNDS TESTED IN SALMONELLA ASSAYS FOR MUTAGENICITY

    EPA Science Inventory

    Study of the relationship between mutagenicity and molecular structure for a data set of nitrogenous cyclic compounds is reported. A computerized SAR system (ADAPT) was utilized to classify a data set of 114 nitrogenous cyclic compounds with 19 molecular descriptors. All of the d...

  16. Development and Characterization of Potent Cyclic Acyldepsipeptide Analogues with Increased Antimicrobial Activity.

    PubMed

    Goodreid, Jordan D; Janetzko, John; Santa Maria, John P; Wong, Keith S; Leung, Elisa; Eger, Bryan T; Bryson, Steve; Pai, Emil F; Gray-Owen, Scott D; Walker, Suzanne; Houry, Walid A; Batey, Robert A

    2016-01-28

    The problem of antibiotic resistance has prompted the search for new antibiotics with novel mechanisms of action. Analogues of the A54556 cyclic acyldepsipeptides (ADEPs) represent an attractive class of antimicrobial agents that act through dysregulation of caseinolytic protease (ClpP). Previous studies have shown that ADEPs are active against Gram-positive bacteria (e.g., MRSA, VRE, PRSP (penicillin-resistant Streptococcus pneumoniae)); however, there are currently few studies examining Gram-negative bacteria. In this study, the synthesis and biological evaluation of 14 novel ADEPs against a variety of pathogenic Gram-negative and Gram-positive organisms is outlined. Optimization of the macrocyclic core residues and N-acyl side chain culminated in the development of 26, which shows potent activity against the Gram-negative species Neisseria meningitidis and Neisseria gonorrheae and improved activity against the Gram-positive organisms Staphylococcus aureus and Enterococcus faecalis in comparison with known analogues. In addition, the co-crystal structure of an ADEP-ClpP complex derived from N. meningitidis was solved. PMID:26818454

  17. Callyaerins from the Marine Sponge Callyspongia aerizusa: Cyclic Peptides with Antitubercular Activity.

    PubMed

    Daletos, Georgios; Kalscheuer, Rainer; Koliwer-Brandl, Hendrik; Hartmann, Rudolf; de Voogd, Nicole J; Wray, Victor; Lin, Wenhan; Proksch, Peter

    2015-08-28

    Chemical investigation of the Indonesian sponge Callyspongia aerizusa afforded five new cyclic peptides, callyaerins I-M (1-5), along with the known callyaerins A-G (6-12). The structures of the new compounds were unambiguously elucidated on the basis of one- and two-dimensional NMR spectroscopy and mass spectrometry. In addition, the structures of callyaerins D (9), F (11), and G (12), previously available in only small amounts, have been reinvestigated and revised. All compounds were tested in vitro against Mycobacterium tuberculosis, as well as against THP-1 (human acute monocytic leukemia) and MRC-5 (human fetal lung fibroblast) cell lines, in order to assess their general cytotoxicity. Callyaerins A (6) and B (7) showed potent anti-TB activity with MIC₉₀ values of 2 and 5 μM, respectively. Callyaerin C (8) was found to be less active, with an MIC₉₀ value of 40 μM. Callyaerin A (6), which showed the strongest anti-TB activity, was not cytotoxic to THP-1 or MRC-5 cells (IC₅₀ > 10 μM), which highlights the potential of these compounds as promising anti-TB agents. PMID:26213786

  18. Influence of dominance status on adrenal activity and ovarian cyclicity status in captive African elephants.

    PubMed

    Proctor, Christine M; Freeman, Elizabeth W; Brown, Janine L

    2010-01-01

    The North American African (Loxodonta africana) elephant population is not self-sustaining, in part because of a high rate of abnormal ovarian activity. About 12% of adult females exhibit irregular cycles and 31% do not cycle at all. Our earlier work revealed a relationship between dominance status and ovarian acyclicity, with dominant females being more likely to not cycle normally. One theory is that dominant females may be expending more energy to maintaining peace within the captive herd than for supporting reproduction. The goal of this study was to determine if there was a relationship among dominance status, serum cortisol concentrations, and ovarian acyclicity. We hypothesized that adrenal glucocorticoid activity would be increased in dominant, noncycling elephants as compared with subdominant individuals. Blood samples were collected weekly over a 2-year period in 81 females of known dominance and cyclicity status, and analyzed for cortisol. Based on a path analysis model (Reticular Action Model Or Near Approximation [RAMONA]), noncycling, dominant African elephant females did not have higher mean serum cortisol concentrations, or exhibit more variability (i.e., coefficient of variation, standard deviation) in cortisol secretion. This study suggests that alterations in adrenal activity are not related to dominance status nor contribute directly to acyclicity in captive African elephants. PMID:20033989

  19. Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion

    SciTech Connect

    Mukai, Atsushi; Hashimoto, Naohiro

    2008-01-15

    Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a 'myosheet,' was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and the lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells.

  20. Cross-talk between glucagon- and adenosine-mediated signalling systems in rat hepatocytes: effects on cyclic AMP-phosphodiesterase activity.

    PubMed Central

    Robles-Flores, M; Allende, G; Piña, E; García-Sáinz, J A

    1995-01-01

    The effect of adenosine analogues on glucagon-stimulated cyclic AMP accumulation in rat hepatocytes was explored. N6-Cyclopentyladenosine (CPA), 5'-N-ethylcarboxamidoadenosine and N6-(R-phenylisopropyl)adenosine inhibited in a dose-dependent manner the cyclic AMP accumulation induced by glucagon. This effect seems to be mediated through A1 adenosine receptors. Pertussis toxin completely abolished the effect of CPA on glucagon-stimulated cyclic AMP accumulation in whole cells which suggested that a pertussis-toxin-sensitive G-protein was involved. On the other hand, this action of adenosine analogues on glucagon-induced cyclic AMP accumulation was reverted by the selective low-Km cyclic AMP-phosphodiesterase inhibitor Ro 20-1724. Analysis of cyclic AMP-phosphodiesterase activity in purified hepatocyte plasma membranes showed that glucagon in the presence of GTP inhibited basal PDE activity by 45% and that CPA reverted this inhibition in dose-dependent manner. In membranes derived from pertussis-toxin-treated rats, we observed no inhibition of cyclic AMP-phosphodiesterase activity by glucagon in the absence or presence of CPA. Our results indicate that in hepatocyte plasma membranes, stimulation of adenylate cyclase activity and inhibition of a low-Km cyclic AMP phosphodiesterase activity are co-ordinately regulated by glucagon, and that A1 adenosine receptors can inhibit glucagon-stimulated cyclic AMP accumulation by blocking glucagon's effect on phosphodiesterase activity. Images Figure 2 PMID:8554517

  1. Single-channel properties of ionic channels gated by cyclic nucleotides.

    PubMed Central

    Bucossi, G; Nizzari, M; Torre, V

    1997-01-01

    This paper presents an extensive analysis of single-channel properties of cyclic nucleotide gated (CNG) channels, obtained by injecting into Xenopus laevis oocytes the mRNA encoding for the alpha and beta subunits from bovine rods. When the alpha and beta subunits of the CNG channel are coexpressed, at least three types of channels with different properties are observed. One type of channel has well-resolved, multiple conductive levels at negative voltages, but not at positive voltages. The other two types of channel are characterized by flickering openings, but are distinguished because they have a low and a high conductance. The alpha subunit of CNG channels has a well-defined conductance of about 28 pS, but multiple conductive levels are observed in mutant channels E363D and T364M. The conductance of these open states is modulated by protons and the membrane voltage, and has an activation energy around 44 kJ/mol. The relative probability of occupying any of these open states is independent of the cGMP concentration, but depends on extracellular protons. The open probability in the presence of saturating cGMP was 0.78, 0.47, 0.5, and 0.007 in the w.t. and mutants E363D, T364M, and E363G, and its dependence on temperature indicates that the thermodynamics of the transition between the closed and open state is also affected by mutations in the pore region. These results suggest that CNG channels have different conductive levels, leading to the existence of multiple open states in homomeric channels and to the flickering behavior in heteromeric channels, and that the pore is an essential part of the gating of CNG channels. PMID:9138564

  2. Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine.

    PubMed

    Farace, Giovanni; Fernandez, Olivier; Jacquens, Lucile; Coutte, François; Krier, François; Jacques, Philippe; Clément, Christophe; Barka, Essaid Ait; Jacquard, Cédric; Dorey, Stéphan

    2015-02-01

    Non-self-recognition of microorganisms partly relies on the perception of microbe-associated molecular patterns (MAMPs) and leads to the activation of an innate immune response. Bacillus subtilis produces three main families of cyclic lipopeptides (LPs), namely surfactins, iturins and fengycins. Although LPs are involved in induced systemic resistance (ISR) activation, little is known about defence responses induced by these molecules and their involvement in local resistance to fungi. Here, we showed that purified surfactin, mycosubtilin (iturin family) and plipastatin (fengycin family) are perceived by grapevine plant cells. Although surfactin and mycosubtilin stimulated grapevine innate immune responses, they differentially activated early signalling pathways and defence gene expression. By contrast, plipastatin perception by grapevine cells only resulted in early signalling activation. Gene expression analysis suggested that mycosubtilin activated salicylic acid (SA) and jasmonic acid (JA) signalling pathways, whereas surfactin mainly induced an SA-regulated response. Although mycosubtilin and plipastatin displayed direct antifungal activity, only surfactin and mycosubtilin treatments resulted in a local long-lasting enhanced tolerance to the necrotrophic fungus Botrytis cinerea in grapevine leaves. Moreover, challenge with specific strains overproducing surfactin and mycosubtilin led to a slightly enhanced stimulation of the defence response compared with the LP-non-producing strain of B. subtilis. Altogether, our results provide the first comprehensive view of the involvement of LPs from B. subtilis in grapevine plant defence and local resistance against the necrotrophic pathogen Bo. cinerea. Moreover, this work is the first to highlight the ability of mycosubtilin to trigger an immune response in plants. PMID:25040001

  3. Association between Heart Rate Variability, Blood Pressure and Autonomic Activity in Cyclic Alternating Pattern during Sleep

    PubMed Central

    Kondo, Hideaki; Ozone, Motohiro; Ohki, Noboru; Sagawa, Yohei; Yamamichi, Keiichirou; Fukuju, Mitsuki; Yoshida, Takeshi; Nishi, Chikako; Kawasaki, Akiko; Mori, Kaori; Kanbayashi, Takashi; Izumi, Motomori; Hishikawa, Yasuo; Nishino, Seiji; Shimizu, Tetsuo

    2014-01-01

    Study Objectives: Cyclic alternating pattern (CAP) is frequently followed by changes in heart rate (HR) and blood pressure (BP), but the sequential associations between CAP and autonomic nerve activity have not been studied. The study aimed to reveal the precise changes in heart rate variability (HRV) during phase A of the CAP cycle. Design: Polysomnography was recorded according to the CAP Atlas (Terzano, 2002), and BP and electrocardiogram were simultaneously recorded. The complex demodulation method was used for analysis of HRV and evaluation of autonomic nerve activity. Setting: Academic sleep laboratory. Participants: Ten healthy males. Measurements and Results: The increase in HR (median [first quartile – third quartile]) for each subtype was as follows: A1, 0.64 (-0.30 to 1.69), A2, 1.44 (0.02 to 3.79), and A3, 6.24 (2.53 to 10.76) bpm (A1 vs. A2 P < 0.001, A1 vs. A3 P < 0.001, A2 vs. A3 P < 0.001). The increase in BP for each subtype was as follows: A1, 1.23 (-2.04 to 5.75), A2, 1.76 (-1.46 to 9.32), and A3, 12.51 (4.75 to 19.94) mm Hg (A1 vs. A2 P = 0.249, A1 vs. A3 P < 0.001, A2 vs. A3 P < 0.001). In all of phase A, the peak values for HR and BP appeared at 4.2 (3.5 to 5.4) and 8.4 (7.0 to 10.3) seconds, respectively, after the onset of phase A. The area under the curve for low-frequency and high-frequency amplitude significantly increased after the onset of CAP phase A (P < 0.001) and was higher in the order of subtype A3, A2, and A1 (P < 0.001). Conclusions: All phase A subtypes were accompanied with increased heart rate variability, and the largest heart rate variability was seen in subtype A3, while a tendency for less heart rate variability was seen in subtype A1. Citation: Kondo H; Ozone M; Ohki N; Sagawa Y; Yamamichi K; Fukuju M; Yoshida T; Nishi C; Kawasaki; Mori; Kanbayashi T; Izumi M; Hishikawa Y; Nishino S; Shimizu T. Association between heart rate variability, blood pressure and autonomic activity in cyclic alternating pattern during sleep

  4. Cyclic stretch induces cyclooxygenase-2 gene expression in vascular endothelial cells via activation of nuclear factor kappa-{beta}

    SciTech Connect

    Zhao, Haige; Hiroi, Toyoko; Hansen, Baranda S.; Rade, Jeffrey J.

    2009-11-27

    Vascular endothelial cells respond to biomechanical forces, such as cyclic stretch and shear stress, by altering gene expression. Since endothelial-derived prostanoids, such as prostacyclin and thromboxane A{sub 2}, are key mediators of endothelial function, we investigated the effects of cyclic stretch on the expression of genes in human umbilical vein endothelial cells controlling prostanoid synthesis: cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), prostacyclin synthase (PGIS) and thromboxane A{sub 2} synthase (TXAS). COX-2 and TXAS mRNAs were upregulated by cyclic stretch for 24 h. In contrast, PGIS mRNA was decreased and stretch had no effect on COX-1 mRNA expression. We further show that stretch-induced upregulation of COX-2 is mediated by activation of the NF-{kappa}{beta} signaling pathway.

  5. Enhanced nitric oxide and cyclic GMP formation plays a role in the anti-platelet activity of simvastatin

    PubMed Central

    Chou, T-C; Lin, Y-F; Wu, W-C; Chu, K-M

    2008-01-01

    Background and purpose: It has been found that 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) exert various vascular protective effects, beyond their cholesterol-lowering property, including inhibition of platelet-dependent thrombus formation. The objective of the present study was to determine whether the nitric oxide (NO)/cyclic GMP-mediated processes in platelets contribute to the anti-aggregatory activity of simvastatin. Experimental approach: After rabbit platelets were incubated with simvastatin for 5 min, aggregation was induced and the platelet aggregation, nitric oxide synthase activity, guanylyl cyclase activity, NO and cyclic GMP formation were measured appropriately. Key results: Treatment with simvastatin concentration-dependently inhibited platelet aggregation induced by collagen or arachidonic acid with an IC50 range of 52–158 μM. We also demonstrated that simvastatin (20–80 μM) concentration-dependently further enhanced collagen-induced NO and cyclic GMP formation through increasing NOS activity (from 2.64±0.12 to 3.52±0.21–5.10±0.14 μmol min−1 mg protein−1) and guanylyl cyclase activity (from 142.9±7.2 to 163.5±17.5–283.8±19.5 pmol min−1 mg protein−1) in the platelets. On the contrary, inhibition of platelet aggregation by simvastatin was markedly attenuated (by about 50%) by addition of a nitric oxide synthase inhibitor, a NO scavenger or a NO-sensitive guanylyl cyclase inhibitor. The anti-aggregatory effects of simvastatin were significantly increased by addition of a selective inhibitor of cyclic GMP phosphodiesterase. Conclusions and implications: Our findings indicate that enhancement of a NO/cyclic GMP-mediated process plays an important role in the anti-aggregatory activity of simvastatin. PMID:18264124

  6. A Fluorometric Activity Assay for Light-Regulated Cyclic-Nucleotide-Monophosphate Actuators.

    PubMed

    Schumacher, Charlotte Helene; Körschen, Heinz G; Nicol, Christopher; Gasser, Carlos; Seifert, Reinhard; Schwärzel, Martin; Möglich, Andreas

    2016-01-01

    As a transformative approach in neuroscience and cell biology, optogenetics grants control over manifold cellular events with unprecedented spatiotemporal definition, reversibility, and noninvasiveness. Sensory photoreceptors serve as genetically encoded, light-regulated actuators and hence embody the cornerstone of optogenetics. To expand the scope of optogenetics, ever more naturally occurring photoreceptors are being characterized, and synthetic photoreceptors with customized, light-regulated function are being engineered. Perturbational control over intracellular cyclic-nucleotide-monophosphate (cNMP) levels is achieved via sensory photoreceptors that catalyze the making and breaking of these second messengers in response to light. To facilitate discovery, engineering and quantitative characterization of such light-regulated cNMP actuators, we have developed an efficient fluorometric assay. Both the formation and the hydrolysis of cNMPs are accompanied by proton release which can be quantified with the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). This assay equally applies to nucleotide cyclases, e.g., blue-light-activated bPAC, and to cNMP phosphodiesterases, e.g., red-light-activated LAPD. Key benefits include potential for parallelization and automation, as well as suitability for both purified enzymes and crude cell lysates. The BCECF assay hence stands to accelerate discovery and characterization of light-regulated actuators of cNMP metabolism. PMID:26965118

  7. Cyclic Nucleotide-Gated Channels, Calmodulin, Adenylyl Cyclase, and Calcium/Calmodulin-Dependent Protein Kinase II Are Required for Late, but Not Early, Long-Term Memory Formation in the Honeybee

    ERIC Educational Resources Information Center

    Matsumoto, Yukihisa; Sandoz, Jean-Christophe; Devaud, Jean-Marc; Lormant, Flore; Mizunami, Makoto; Giurfa, Martin

    2014-01-01

    Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee "Apis mellifera," olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM)…

  8. Changes in cyclic GMP level and phosphodiesterase activity during follicular development in the rat ovary.

    PubMed

    Fu, C Q; Shi, F X; Zhang, Z H; Li, J R; Huang, X H; Wang, Z C

    2014-01-01

    Guanosine 3',5'-cyclic monophosphate (cGMP), as a second messenger, plays potential roles in ovarian functions. To elucidate the role of phosphodiesterase (PDE) in cGMP signaling during ovarian follicular development, the present study was conducted to investigate ovarian cGMP level and cGMP-PDE activity by radioimmunoassay (RIA) in postnatal rats, immature rats during gonadotropin-primed follicular development, ovulation and luteinization, adult rats during normal estrous cycle, and aged rats that spontaneously developed persistent estrus (PE). All four rat models were confirmed by histological examination of one ovary, and the other ovary was used for RIA. In postnatal rats, cGMP level was high at birth and decreased dramatically by Day 5, and then, it increased maximally at Day 10 and declined at Day 21. However, cGMP-PDE activity did not significantly change during Days 1 to 10, but increased significantly on Day 21. In immature female rats, cGMP level markedly decreased upon treatment with equine chorionic gonadotropin (eCG), while cGMP-PDE activity did not show any significant changes; however, ovarian cGMP level and cGMP-PDE activity increased after injection of an ovulatory dose of human chorionic gonadotropin (hCG) for induction of ovulation and luteinization. In adult rats during normal estrous cycle, cGMP level was high on proestrus and metestrus days, while cGMP-PDE activity was high on estrus day. In PE rats, ovarian cGMP level was similar to that in adult rats on estrus and diestrus days but lower than that on proestrus and metestrus days; ovarian cGMP-PDE activity was lower than that on estrus days but similar as the other estrous cycle days. In addition, there was a significant negative correlation between ovarian cGMP level and cGMP-PDE activity during normal estrous cycles in the adult rat (r = -0.7715, N = 16, P < 0.05), but not in the postnatal rat (r = -0.1055, N = 20, P > 0.05). Together, the results of our present study indicated that ovarian

  9. Cyclic diguanylate monophosphate directly binds to human siderocalin and inhibits its antibacterial activity

    PubMed Central

    Li, Weihui; Cui, Tao; Hu, Lihua; Wang, Ziqing; Li, Zongqiang; He, Zheng-Guo

    2015-01-01

    Cyclic diguanylate monophosphate (c-di-GMP) is a well-conserved second messenger in bacteria. During infection, the innate immune system can also sense c-di-GMP; however, whether bacterial pathogens utilize c-di-GMP as a weapon to fight against host defense for survival and possible mechanisms underlying this process remain poorly understood. Siderocalin (LCN2) is a key antibacterial component of the innate immune system and sequesters bacterial siderophores to prevent acquisition of iron. Here we show that c-di-GMP can directly target the human LCN2 protein to inhibit its antibacterial activity. We demonstrate that c-di-GMP specifically binds to LCN2. In addition, c-di-GMP can compete with bacterial ferric siderophores to bind LCN2. Furthermore, c-di-GMP can significantly reduce LCN2-mediated inhibition on the in vitro growth of Escherichia coli. Thus, LCN2 acts as a c-di-GMP receptor. Our findings provide insight into the mechanism by which bacteria utilize c-di-GMP to interfere with the innate immune system for survival. PMID:26390966

  10. Identification of Medicinally Active Ingredient in Ultradiluted Digitalis purpurea: Fluorescence Spectroscopic and Cyclic-Voltammetric Study

    PubMed Central

    Sharma, Anup; Purkait, Bulbul

    2012-01-01

    Serially diluted and agitated (SAD) drugs available commercially are in use with great faith because of the astonishing results they produce. The scientific viewpoint attached to the centuries-old therapy with SAD drugs, as in homeopathy, remained doubtful for want of appropriate research and insufficient evidence base. The conflicting points related to SAD drug mostly related to the level of concentrations/dilutions, use of drug in contradictory clinical conditions compared to the modern system of medicine, identification of medicinally active ingredient in concentrations and dilutions used in commercially available SAD drugs, and lack of laboratory-based pharmacological data vis-à-vis modern medicine. Modus operandi of SAD drug is also unknown. To address some of these issues an analytical study was carried out wherein commercially available SAD drug Digitalis purpurea, commonly used in different systems of medicine, was put to test. Various concentrations of commercially available Digitalis purpurea were analyzed using analytical methods: cyclic voltammetry, emission spectroscopy, and UV-VIS spectroscopy. These analytical methods apparently identified the medicinal ingredients and effect of serial dilution in commercial preparation of the drugs. PMID:22606641

  11. Cyclic AMP-receptor protein activates aerobactin receptor IutA expression in Vibrio vulnificus.

    PubMed

    Kim, Choon-Mee; Kim, Seong-Jung; Shin, Sung-Heui

    2012-04-01

    The ferrophilic bacterium Vibrio vulnificus can utilize the siderophore aerobactin of Escherichia coli for iron acquisition via its specific receptor IutA. This siderophore piracy by V. vulnificus may contribute to its survival and proliferation, especially in mixed bacterial environments. In this study, we examined the effects of glucose, cyclic AMP (cAMP), and cAMP-receptor protein (Crp) on iutA expression in V. vulnificus. Glucose dose-dependently repressed iutA expression. A mutation in cya encoding adenylate cyclase required for cAMP synthesis severely repressed iutA expression, and this change was recovered by in trans complementing cya or the addition of exogenous cAMP. Furthermore, a mutation in crp encoding Crp severely repressed iutA expression, and this change was recovered by complementing crp. Accordingly, glucose deprivation under iron-limited conditions is an environmental signal for iutA expression, and Crp functions as an activator that regulates iutA expression in response to glucose availability. PMID:22538662

  12. Expression and Genetic Activation of Cyclic Di-GMP-Specific Phosphodiesterases in Escherichia coli

    PubMed Central

    Reinders, Alberto; Hee, Chee-Seng; Ozaki, Shogo; Mazur, Adam; Boehm, Alex; Schirmer, Tilman

    2015-01-01

    ABSTRACT Intracellular levels of the bacterial second messenger cyclic di-GMP (c-di-GMP) are controlled by antagonistic activities of diguanylate cyclases and phosphodiesterases. The phosphodiesterase PdeH was identified as a key regulator of motility in Escherichia coli, while deletions of any of the other 12 genes encoding potential phosphodiesterases did not interfere with motility. To analyze the roles of E. coli phosphodiesterases, we demonstrated that most of these proteins are expressed under laboratory conditions. We next isolated suppressor mutations in six phosphodiesterase genes, which reinstate motility in the absence of PdeH by reducing cellular levels of c-di-GMP. Expression of all mutant alleles also led to a reduction of biofilm formation. Thus, all of these proteins are bona fide phosphodiesterases that are capable of interfering with different c-di-GMP-responsive output systems by affecting the global c-di-GMP pool. This argues that E. coli possesses several phosphodiesterases that are inactive under laboratory conditions because they lack appropriate input signals. Finally, one of these phosphodiesterases, PdeL, was studied in more detail. We demonstrated that this protein acts as a transcription factor to control its own expression. Motile suppressor alleles led to a strong increase of PdeL activity and elevated pdeL transcription, suggesting that enzymatic activity and transcriptional control are coupled. In agreement with this, we showed that overall cellular levels of c-di-GMP control pdeL transcription and that this control depends on PdeL itself. We thus propose that PdeL acts both as an enzyme and as a c-di-GMP sensor to couple transcriptional activity to the c-di-GMP status of the cell. IMPORTANCE Most bacteria possess multiple diguanylate cyclases and phosphodiesterases. Genetic studies have proposed that these enzymes show signaling specificity by contributing to distinct cellular processes without much cross talk. Thus, spatial

  13. Biogeochemical cyclic activity of bacterial arsB in arsenic-contaminated mines.

    PubMed

    Chang, Jin-Soo; Ren, Xianghao; Kim, Kyoung-Woong

    2008-01-01

    Biogeochemical cyclic activity of the ars (arsenic resistance system) operon is arsB influx/efflux encoded by the ecological of Pseudomonas putida. This suggests that studying arsenite-oxidizing bacteria may lead to a better understanding of molecular geomicrobiology, which can be applied to the bioremediation of arsenic-contaminated mines. This is the first report in which multiple arsB-binding mechanisms have been used on indigenous bacteria. In ArsB (strains OS-5; ABB83931; OS-19; ABB04282 and RW-28; ABB88574), there are ten putative enzyme, Histidine (His) 131, His 133, His 137, Arginine (Arg) 135, Arg 137, Arg 161, Trptohan (Trp) 142, Trp 164, Trp 166, and Trp 171, which are each located in different regions of the partial sequence. The adenosine triphosphate (ATP)-binding cassette transports, binding affinities and associating ratable constants show that As-binding is comparatively insensitive to the location of the residues within the moderately stable alpha-helical structure. The alpha-helical structures in ArsB-permease and anion permease arsB have been shown to import/export arsenic in P. putida. We proposed that arsB residues, His 131, His 133, His 137, Arg 135, Arg 137, Arg 161, Trp 142, Trp 164, Trp 166, and Trp 171 are required for arsenic binding and activation of arsA/arsB or arsAB. This arsB influx/efflux pum-ping is important, and the effect in arsenic species change and mobility in mine soil has got a significantly ecological role because it allows arsenic oxidizing/reducing bacteria to control biogeochemical cycle of abandoned mines. PMID:19202875

  14. Level and length of cyclic solar activity during the Maunder minimum as deduced from the active-day statistics

    NASA Astrophysics Data System (ADS)

    Vaquero, J. M.; Kovaltsov, G. A.; Usoskin, I. G.; Carrasco, V. M. S.; Gallego, M. C.

    2015-05-01

    Aims: The Maunder minimum (MM) of greatly reduced solar activity took place in 1645-1715, but the exact level of sunspot activity is uncertain because it is based, to a large extent, on historical generic statements of the absence of spots on the Sun. Using a conservative approach, we aim to assess the level and length of solar cycle during the MM on the basis of direct historical records by astronomers of that time. Methods: A database of the active and inactive days (days with and without recorded sunspots on the solar disc) is constructed for three models of different levels of conservatism (loose, optimum, and strict models) regarding generic no-spot records. We used the active day fraction to estimate the group sunspot number during the MM. Results: A clear cyclic variability is found throughout the MM with peaks at around 1655-1657, 1675, 1684, 1705, and possibly 1666, with the active-day fraction not exceeding 0.2, 0.3, or 0.4 during the core MM, for the three models. Estimated sunspot numbers are found to be very low in accordance with a grand minimum of solar activity. Conclusions: For the core MM (1650-1700), we have found that (1) A large portion of no-spot records, which correspond to the solar meridian observations, may be unreliable in the conventional database. (2) The active-day fraction remained low (below 0.3-0.4) throughout the MM, indicating the low level of sunspot activity. (3) The solar cycle appears clearly during the core MM. (4) The length of the solar cycle during the core MM appears for 9 ± 1 years, but this is uncertain. (5) The magnitude of the sunspot cycle during MM is assessed to be below 5-10 in sunspot numbers. A hypothesis of the high solar cycles during the MM is not confirmed.

  15. Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of Thermotoga maritima HD-GYP.

    PubMed

    Miner, Kyle D; Kurtz, Donald M

    2016-02-16

    HD-GYPs make up a subclass of the metal-dependent HD phosphohydrolase superfamily and catalyze conversion of cyclic di(3',5')-guanosine monophosphate (c-di-GMP) to 5'-phosphoguanylyl-(3'→5')-guanosine (pGpG) and GMP. Until now, the only reported crystal structure of an HD-GYP that also exhibits c-di-GMP phosphodiesterase activity contains a His/carboxylate ligated triiron active site. However, other structural and phylogenetic correlations indicate that some HD-GYPs contain dimetal active sites. Here we provide evidence that an HD-GYP c-di-GMP phosphodiesterase, TM0186, from Thermotoga maritima can accommodate both di- and trimetal active sites. We show that an as-isolated iron-containing TM0186 has an oxo/carboxylato-bridged diferric site, and that the reduced (diferrous) form is necessary and sufficient to catalyze conversion of c-di-GMP to pGpG, but that conversion of pGpG to GMP requires more than two metals per active site. Similar c-di-GMP phosphodiesterase activities were obtained with divalent iron or manganese. On the basis of activity correlations with several putative metal ligand residue variants and molecular dynamics simulations, we propose that TM0186 can accommodate both di- and trimetal active sites. Our results also suggest that a Glu residue conserved in a subset of HD-GYPs is required for formation of the trimetal site and can also serve as a labile ligand to the dimetal site. Given the anaerobic growth requirement of T. maritima, we suggest that this HD-GYP can function in vivo with either divalent iron or manganese occupying di- and trimetal sites. PMID:26786892

  16. Serine Peptide Phosphoester Prodrugs of Cyclic Cidofovir: Synthesis, Transport, and Antiviral Activity

    PubMed Central

    Eriksson, Ulrika; Peterson, Larryn W.; Kashemirov, Boris A.; Hilfinger, John M.; Drach, John C.; Borysko, Katherine Z.; Breitenbach, Julie M.; Kim, Jae Seung; Mitchell, Stefanie; Kijek, Paul; McKenna, Charles E.

    2008-01-01

    Cidofovir (HPMPC, 1), a broad-spectrum antiviral agent, is currently used to treat AIDS-related human cytomegalovirus (HCMV) retinitis and has recognized therapeutic potential for orthopox virus infections, but is limited by its low oral bioavailability. Cyclic cidofovir (2) displays decreased nephrotoxicity compared to 1, while also exhibiting potent antiviral activity. Here we describe in detail the synthesis and evaluation as prodrugs of four cHPMPC dipeptide conjugates in which the free POH of 2 is esterified by the Ser side chain alcohol group of an X-l-Ser(OMe) dipeptide: 3 (X = l-Ala), 4 (X = l-Val), 5 (X = l-Leu), and 6 (X = l-Phe). Perfusion studies in the rat establish that the mesenteric permeability to 4 is more than 30-fold greater than to 1, and the bioavailability of 4 is increased 8-fold relative to 1 in an in vivo murine model. In gastrointestinal and liver homogenates, the cHPMPC prodrugs are rapidly hydrolyzed to 2. Prodrugs 3, 4, and 5 are nontoxic at 100 μM in HFF and KB cells and in cell-based plaque reduction assays had IC50 values of 0.1–0.5 μM for HCMV and 10 μM for two orthopox viruses (vaccinia and cowpox). The enhanced transport properties of 3–6, conferred by incorporation of a toxicologically benign dipeptide moiety, and the facile cleavage of the Ser–O–P linkage suggest that these prodrugs represent a promising new approach to enhancing the bioavailability of 2. PMID:18481868

  17. Consecutive visible-light photoredox decarboxylative couplings of adipic acid active esters with alkynyl sulfones leading to cyclic compounds.

    PubMed

    Li, Jingjing; Tian, Hua; Jiang, Min; Yang, Haijun; Zhao, Yufen; Fu, Hua

    2016-07-01

    Novel and efficient consecutive photoredox decarboxylative couplings of adipic acid active esters (bis(1,3-dioxoisoindolin-2-yl)-substituted hexanedioates) with substituted 1-(2-arylethynylsulfonyl)benzenes have been developed under visible-light photocatalysis. The successive photoredox decarboxylative C-C bond formation at room temperature afforded the corresponding cyclic compounds in good yields with tolerance of some functional groups. PMID:27345832

  18. Neonatal Diabetes Caused by Mutations in Sulfonylurea Receptor 1: Interplay between Expression and Mg-Nucleotide Gating Defects of ATP-Sensitive Potassium Channels

    PubMed Central

    Zhou, Qing; Garin, Intza; Castaño, Luis; Argente, Jesús; Muñoz-Calvo, Ma. Teresa; Perez de Nanclares, Guiomar; Shyng, Show-Ling

    2010-01-01

    Context: ATP-sensitive potassium (KATP) channels regulate insulin secretion by coupling glucose metabolism to β-cell membrane potential. Gain-of-function mutations in the sulfonylurea receptor 1 (SUR1) or Kir6.2 channel subunit underlie neonatal diabetes. Objective: The objective of the study was to determine the mechanisms by which two SUR1 mutations, E208K and V324M, associated with transient neonatal diabetes affect KATP channel function. Design: E208K or V324M mutant SUR1 was coexpressed with Kir6.2 in COS cells, and expression and gating properties of the resulting channels were assessed biochemically and electrophysiologically. Results: Both E208K and V324M augment channel response to MgADP stimulation without altering sensitivity to ATP4− or sulfonylureas. Surprisingly, whereas E208K causes only a small increase in MgADP response consistent with the mild transient diabetes phenotype, V324M causes a severe activating gating defect. Unlike E208K, V324M also impairs channel expression at the cell surface, which is expected to dampen its functional impact on β-cells. When either mutation was combined with a mutation in the second nucleotide binding domain of SUR1 previously shown to abolish Mg-nucleotide response, the activating effect of E208K and V324M was also abolished. Moreover, combination of E208K and V324M results in channels with Mg-nucleotide sensitivity greater than that seen in individual mutations alone. Conclusion: The results demonstrate that E208K and V324M, located in distinct domains of SUR1, enhance transduction of Mg-nucleotide stimulation from the SUR1 nucleotide binding folds to Kir6.2. Furthermore, they suggest that diabetes severity is determined by interplay between effects of a mutation on channel expression and channel gating. PMID:20810569

  19. Connexin-43 hemichannels mediate cyclic ADP-ribose generation and its Ca2+-mobilizing activity by NAD+/cyclic ADP-ribose transport.

    PubMed

    Song, Eun-Kyung; Rah, So-Young; Lee, Young-Rae; Yoo, Chae-Hwa; Kim, Yu-Ri; Yeom, Ji-Hyun; Park, Kwang-Hyun; Kim, Jong-Suk; Kim, Uh-Hyun; Han, Myung-Kwan

    2011-12-30

    The ADP-ribosyl cyclase CD38 whose catalytic domain resides in outside of the cell surface produces the second messenger cyclic ADP-ribose (cADPR) from NAD(+). cADPR increases intracellular Ca(2+) through the intracellular ryanodine receptor/Ca(2+) release channel (RyR). It has been known that intracellular NAD(+) approaches ecto-CD38 via its export by connexin (Cx43) hemichannels, a component of gap junctions. However, it is unclear how cADPR extracellularly generated by ecto-CD38 approaches intracellular RyR although CD38 itself or nucleoside transporter has been proposed to import cADPR. Moreover, it has been unknown what physiological stimulation can trigger Cx43-mediated export of NAD(+). Here we demonstrate that Cx43 hemichannels, but not CD38, import cADPR to increase intracellular calcium through RyR. We also demonstrate that physiological stimulation such as Fcγ receptor (FcγR) ligation induces calcium mobilization through three sequential steps, Cx43-mediated NAD(+) export, CD38-mediated generation of cADPR and Cx43-mediated cADPR import in J774 cells. Protein kinase A (PKA) activation also induced calcium mobilization in the same way as FcγR stimulation. FcγR stimulation-induced calcium mobilization was blocked by PKA inhibition, indicating that PKA is a linker between FcγR stimulation and NAD(+)/cADPR transport. Cx43 knockdown blocked extracellular cADPR import and extracellular cADPR-induced calcium mobilization in J774 cells. Cx43 overexpression in Cx43-negative cells conferred extracellular cADPR-induced calcium mobilization by the mediation of cADPR import. Our data suggest that Cx43 has a dual function exporting NAD(+) and importing cADPR into the cell to activate intracellular calcium mobilization. PMID:22033928

  20. Chemically Non-Innocent Cyclic (Alkyl)(Amino)Carbenes: Ligand Rearrangement, C-H and C-F Bond Activation.

    PubMed

    Turner, Zoë R

    2016-08-01

    A cyclic (alkyl)(amino)carbene (CAAC) was found to undergo unprecedented rearrangements and transformations of its core structure in the presence of Group 1 and 2 metals. Although the carbene was also found to be prone to intramolecular C-H activation, it was competent for intermolecular activation of a variety of sp-, sp(2) -, and sp(3) -hybridized C-H bonds. Double C-F activation of hexafluorobenzene was also observed in this work. These processes all hold relevance to the role of these carbenes in catalysis, as well as to their use in the synthesis of new and unusual main group or transition metal complexes. PMID:27363588

  1. Cyclical DNA Methylation and Histone Changes Are Induced by LPS to Activate COX-2 in Human Intestinal Epithelial Cells

    PubMed Central

    Brancaccio, Mariarita; Coretti, Lorena; Florio, Ermanno; Pezone, Antonio; Calabrò, Viola; Falco, Geppino; Keller, Simona; Lembo, Francesca; Avvedimento, Vittorio Enrico; Chiariotti, Lorenzo

    2016-01-01

    Bacterial lipopolysaccharide (LPS) induces release of inflammatory mediators both in immune and epithelial cells. We investigated whether changes of epigenetic marks, including selected histone modification and DNA methylation, may drive or accompany the activation of COX-2 gene in HT-29 human intestinal epithelial cells upon exposure to LPS. Here we describe cyclical histone acetylation (H3), methylation (H3K4, H3K9, H3K27) and DNA methylation changes occurring at COX-2 gene promoter overtime after LPS stimulation. Histone K27 methylation changes are carried out by the H3 demethylase JMJD3 and are essential for COX-2 induction by LPS. The changes of the histone code are associated with cyclical methylation signatures at the promoter and gene body of COX-2 gene. PMID:27253528

  2. Arthroamide, a Cyclic Depsipeptide with Quorum Sensing Inhibitory Activity from Arthrobacter sp.

    PubMed

    Igarashi, Yasuhiro; Yamamoto, Kazuki; Fukuda, Takao; Shojima, Akane; Nakayama, Jiro; Carro, Lorena; Trujillo, Martha E

    2015-11-25

    Nonfilamentous actinobacteria have been less studied as secondary metabolite producers than their filamentous counterparts such as Streptomyces. From our collection of nonfilamentous actinobacteria isolated from sandstone, an Arthrobacter strain was found to produce a new cyclic peptide arthroamide (1) together with the known compound turnagainolide A (2). These compounds inhibited the quorum sensing signaling of Staphylococcus aureus in the submicromolar to micromolar range. PMID:26575343

  3. Peculiarities of the fine structure of the 11-year cyclicity of solar activity

    SciTech Connect

    Voichishin, K.S.

    1981-01-01

    Substantiation is given for the concept of cyclicity, at the basis of which lie such characteristic features of heliophysical time series as stochasticity, discontinuity, and stability of the shape of the cycles. A conceptual and formal apparatus is developed for the description and analysis of cyclic oscillations. A simple model of cyclicity with disturbances of the phase structure and without them is analyzed on a heuristic level of rigor. The results of an investigation of the monthly fluctuations of Wolf numbers obtained within the framework of this model are presented. A connection between the quasideterminate amplitude component of the monthly fluctuations of Wolf numbers in the range of periods of from 2 to 15 months and the 11-year component is confirmed. It is shown that the fine structure of the 11-year averaged cycle of monthly average Wolf numbers is determined mainly by the almost-yearly quasideterminate component. The possibility of discontinuity (from cycle to cycle) in the quasi-determinate component of the above-mentioned fluctuations is pointed out.

  4. Continuous, Long-term, Cyclic, Varied Eruptive Activity Observed at NW Rota-1 Submarine Volcano, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Chadwick, B.; Dziak, R. P.; Baker, E. T.; Cashman, K. V.; Embley, R. W.; Ferrini, V.; de Ronde, C. E.; Butterfield, D. A.; Deardorff, N.; Haxel, J. H.; Matsumoto, H.; Fowler, M. J.; Walker, S. L.; Bobbitt, A. M.; Merle, S. G.

    2009-12-01

    NW Rota-1 is a conical, basaltic-andesite submarine volcano in the Mariana arc with a summit depth of 520 m. Eruptive activity was first witnessed here during remotely operated vehicle (ROV) dives in 2004, and was also observed during all four subsequent ROV expeditions in 2005, 2006, and 2009. Cyclic explosive bursts were documented by a portable hydrophone during the 2006 ROV dives. More recently, a year of instrumental monitoring data from a moored hydrophone and plume sensor show that the volcano was continuously active from February 2008 to February 2009, and that the cyclic character of the eruptions occurred with variable intensity and periodicity. The 2008-2009 hydrophone record includes explosive bursts every 1-2 minutes, with high acoustic amplitudes in the first half of the year and lower more variable amplitudes in the second half. In contrast, the moored turbidity sensor recorded major eruptive plumes on a time scale of every few days to weeks, and at approximately the same frequency throughout the year. This apparent disparity may be explained by the most recent ROV and portable hydrophone observations at NW Rota-1 in April 2009, which confirmed continuous and diverse eruptive activity with cyclicity over several time scales, from minutes to days. Visual observations at the eruptive vent provided new insight into the process of very slow lava extrusion on the seafloor. During slow extrusion (at rates of 1-2 m3/hr), lava spines rose in the eruptive vent, then gradually disintegrated into angular blocks as they cooled and were shoved aside by the next lava to emerge. Freshly erupted lava blocks periodically tumbled down the sides of a growing cone (40-m high and 300-m wide) that had been constructed by this process since the last visit in 2006. Thus auto-brecciation during slow lava extrusion underwater produces primary deposits that could easily be mistaken as secondary, and can construct substantial landforms on submarine arc volcanoes. Even during

  5. Cyclicity of forest fire occurrence at Kola Peninsula (North-Western Russia) in connection to meteorological and solar activity

    NASA Astrophysics Data System (ADS)

    Shumilov, O. I.; Kasatkina, E. A.; Knyazev, N. V.; Lukina, N. V.

    2010-05-01

    The cyclicity of forest fire number for the period 1958-2007 at Kola Peninsula was investigated. We used the data of regular aerial surveying. The frequency of forest fires was compared with regional meteorological and dendrochronological records. Spectral analysis with help of MEM and wavelet revealed a clear cyclic character of fire occurrence with two main maxima. The main one occurred at frequencies around 18-20 years and the other in the band 2.8-4 year. Detailed analysis showed that fire occurrence at Kola Peninsula was a result of a complicated mixture of both anthropogenic and climatic forcings (temperature and precipitation). Climatic forcing is influenced by variations of solar activity (solar radiation, cosmic rays, cosmic dust etc.). Two maxima in the fire occurrence spectrum seem to be connected to one of the main cycles of solar activity (22 y) and NAO oscillation (3-4 y). As it is well known the NAO variations are rather tightly connected to cyclonic activity in the North Atlantic region. The enhanced numbers of fires were observed close to minima of solar activity. These results may be applied for fire forecasting at Kola Peninsula. This work is financially supported by the Russian Foundation for Basic Research (grant No. 09-04-98801), by the Program of the Russian Academy and by the Regional Scientific Program of Murmansk region.

  6. Comparison of morphology of active cyclic steps created by turbidity currents on Squamish Delta, British Columbia, Canada with flume experiments

    NASA Astrophysics Data System (ADS)

    Yokokawa, Miwa; Yamamoto, Shinya; Higuchi, Hiroyuki; Hughes Clarke, John E.; Izumi, Norihiro

    2015-04-01

    Upper-flow-regime bedforms, such as cyclic steps and antidunes, have been reported to be formed by turbidity currents. Their formative conditions are, however, not fully understood because of the difficulty of field surveys in the deep sea. Field observations of turbidity currents and seabed topography on the Squamish delta in Howe Sound, British Columbia, Canada have been undertaken which found bedwaves actively migrating in the upstream direction in channels formed on the prodelta slope. Their topography and behavior suggest that they are cyclic steps formed by turbidity currents. Because Squamish delta is as shallow as around 150 m, and easy to access compared with general submarine canyons, it is thought to be one of the best places for studying characteristics of cyclic steps formed by turbidity currents through field observations. In this study, we have analyzed configurations of cyclic steps with the use of data obtained in the field observation of 2011, and compare them with the data from the flume experiments. On the prodelta slope, three major active channels are clearly developed. In addition to the sonar survey, a 600 kHz ADCP was installed in 150m of water just seaward of the termination of the North Channel. In addition, 1200kHz ADCP and 500kHz M3s are suspended from the research vessel in 60 m of water and 300 m distance from the delta edge. We selected images showing large daily differences. The steps move vigorously at the upper 600m parts of the prodelta slope, so that we measured the steps in this area. From the profiles perpendicular to the bedwave crest lines through the center of channels, wavelength and wave height for each step, mean slope were measured on the software for quantitative image analyses manually. Wave steepness for each step was calculated using the wavelength and wave height measured as above. The mean slope ranges from 6.8° ~ 2.7° (more proximal, steeper), mean wavelength and wave heights of steps range from 24.5 to 87.6m

  7. Quasisecular cyclicity in the climate of the Earth's Northern Hemisphere and its possible relation to solar activity variations

    NASA Astrophysics Data System (ADS)

    Ogurtsov, M. G.; Jungner, H.; Lindholm, M.; Helama, S.; Dergachev, V. A.

    2009-12-01

    Paleoclimatological reconstructions of temperature of the Earth’s Northern Hemisphere for the last thousand years have been studied using the up-to-date methods of statistical analysis. It has bee indicated that the quasisecular (a period of 60-130 years) cyclicity, which is observed in the climate of the Earth’s Northern Hemisphere, has a bimodal structure, i.e., being composed of the 60-85 and 85-130 year periodicities. The possible relation of the quasisecular climatic rhythm to the corresponding Gleissberg solar cycle has been studied using the solar activity reconstructions performed with the help of the solar paleoastrophysics methods.

  8. Effect of some polysaccharides in cyclic nucleotide level and phosphodiesterase activity in organs of mice with lewis' lung carcinoma

    SciTech Connect

    Veksler, I.G.; Antonenko, S.G.

    1986-04-01

    This paper describes the results of a study of the effect of the bacterial polysaccharide prodigiosan and the yeast cell membrane bipolymer zymosan on the absolute and relative levels of cAMP, cAMP, and cAMP-dependent phosphodiesterase (PDE) in the thymus, spleen, and lungs of healthy mice and of mice with metastasizing Lewis' lung carcinoma. The cyclic nucleotide concentration was determined by radioimmunoassay. Radioactivity of the samples was studied in an SL-30 liquid scintillation counter. PDE activity was determined by paper chromatography using 8-/sup 3/H-cAMP as the substrate.

  9. Calcium-activated chloride currents in olfactory sensory neurons from mice lacking bestrophin-2

    PubMed Central

    Pifferi, Simone; Dibattista, Michele; Sagheddu, Claudia; Boccaccio, Anna; Al Qteishat, Ahmed; Ghirardi, Filippo; Tirindelli, Roberto; Menini, Anna

    2009-01-01

    Olfactory sensory neurons use a chloride-based signal amplification mechanism to detect odorants. The binding of odorants to receptors in the cilia of olfactory sensory neurons activates a transduction cascade that involves the opening of cyclic nucleotide-gated channels and the entry of Ca2+ into the cilia. Ca2+ activates a Cl− current that produces an efflux of Cl− ions and amplifies the depolarization. The molecular identity of Ca2+-activated Cl− channels is still elusive, although some bestrophins have been shown to function as Ca2+-activated Cl− channels when expressed in heterologous systems. In the olfactory epithelium, bestrophin-2 (Best2) has been indicated as a candidate for being a molecular component of the olfactory Ca2+-activated Cl− channel. In this study, we have analysed mice lacking Best2. We compared the electrophysiological responses of the olfactory epithelium to odorant stimulation, as well as the properties of Ca2+-activated Cl− currents in wild-type (WT) and knockout (KO) mice for Best2. Our results confirm that Best2 is expressed in the cilia of olfactory sensory neurons, while odorant responses and Ca2+-activated Cl− currents were not significantly different between WT and KO mice. Thus, Best2 does not appear to be the main molecular component of the olfactory channel. Further studies are required to determine the function of Best2 in the cilia of olfactory sensory neurons. PMID:19622610

  10. Cyclic GMP-mediated inhibition of L-type Ca2+ channel activity by human natriuretic peptide in rabbit heart cells.

    PubMed Central

    Tohse, N; Nakaya, H; Takeda, Y; Kanno, M

    1995-01-01

    1. Effects of atrial natriuretic peptide (ANP) on the L-type Ca2+ channels were examined in rabbit isolated ventricular cells by use of whole-cell and cell-attached configurations of the patch clamp methods. ANP produced a concentration-dependent decrease (10-100 nM) in amplitude of a basal Ca2+ channel current. 2. The inactive ANP (methionine-oxidized ANP, 30 nM) failed to decrease the current. 3. 8-Bromo-cyclic GMP (300 microM), a potent activator of cyclic GMP-dependent protein kinase (PKG), produced the same effects on the basal Ca2+ channel current as those produced by ANP. The cyclic GMP-induced inhibition of the Ca2+ channel current was still evoked in the presence of 1-isobutyl-3-methyl-xanthine, an inhibitor of phosphodiesterase. ANP failed to produce inhibition of the Ca2+ channel current in the presence of 8-bromo-cyclic GMP. 4. In the single channel recording, ANP and 8-bromo-cyclic GMP also inhibited the activities of the L-type Ca2+ channels. Both agents decreased the open probability (NPo) without affecting the unit amplitude. 5. The present results suggest that ANP inhibits the cardiac L-type Ca2+ channel activity through the intracellular production of cyclic GMP and then activation of PKG. PMID:7540093

  11. Synthesis of mixed MOR/KOR efficacy cyclic opioid peptide analogs with antinociceptive activity after systemic administration.

    PubMed

    Perlikowska, Renata; Piekielna, Justyna; Gentilucci, Luca; De Marco, Rossella; Cerlesi, Maria Camilla; Calo, Girolamo; Artali, Roberto; Tömböly, Csaba; Kluczyk, Alicja; Janecka, Anna

    2016-02-15

    Cyclic pentapeptide Tyr-c[D-Lys-Phe-Phe-Asp]NH2, based on the structure of endomorphin-2 (EM-2), which shows high affinity to the μ-opioid receptor (MOR) and a very strong antinociceptive activity in mice was used as a parent compound for the structure-activity relationship studies. In this report we synthesized analogs of a general sequence Dmt-c[D-Lys-Xaa-Yaa-Asp]NH2, with D-1- or D-2-naphthyl-3-alanine (D-1-Nal or D-2-Nal) in positions 3 or 4. In our earlier papers we have indicated that replacing a phenylalanine residue by the more extended aromatic system of naphthylalanines may result in increased bioactivities of linear analogs. The data obtained here showed that only cyclopeptides modified in position 4 retained the sub-nanomolar MOR and nanomolar κ-opioid receptor (KOR) affinity, similar but not better than that of a parent cyclopeptide. In the in vivo mouse hot-plate test, the most potent analog, Dmt-c[D-Lys-Phe-D-1-Nal-Asp]NH2, exhibited higher than EM-2 but slightly lower than the cyclic parent peptide antinociceptive activity after peripheral (ip) and also central administration (icv). Conformational analyses in a biomimetic environment and molecular docking studies disclosed the structural determinants responsible for the different pharmacological profiles of position 3- versus position 4-modified analogs. PMID:26785295

  12. Determinants of ligand binding and catalytic activity in the myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase.

    PubMed

    Raasakka, Arne; Myllykoski, Matti; Laulumaa, Saara; Lehtimäki, Mari; Härtlein, Michael; Moulin, Martine; Kursula, Inari; Kursula, Petri

    2015-01-01

    2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is an enzyme highly abundant in the central nervous system myelin of terrestrial vertebrates. The catalytic domain of CNPase belongs to the 2H phosphoesterase superfamily and catalyzes the hydrolysis of nucleoside 2',3'-cyclic monophosphates to nucleoside 2'-monophosphates. The detailed reaction mechanism and the essential catalytic amino acids involved have been described earlier, but the roles of many amino acids in the vicinity of the active site have remained unknown. Here, several CNPase catalytic domain mutants were studied using enzyme kinetics assays, thermal stability experiments, and X-ray crystallography. Additionally, the crystal structure of a perdeuterated CNPase catalytic domain was refined at atomic resolution to obtain a detailed view of the active site and the catalytic mechanism. The results specify determinants of ligand binding and novel essential residues required for CNPase catalysis. For example, the aromatic side chains of Phe235 and Tyr168 are crucial for substrate binding, and Arg307 may affect active site electrostatics and regulate loop dynamics. The β5-α7 loop, unique for CNPase in the 2H phosphoesterase family, appears to have various functions in the CNPase reaction mechanism, from coordinating the nucleophilic water molecule to providing a binding pocket for the product and being involved in product release. PMID:26563764

  13. Micro-electrode studies on the effects of exogenous cyclic adenosine monophosphate on active sodium transport in frog skin.

    PubMed Central

    Els, W J; Mahlangu, A F

    1987-01-01

    1. The electrical parameters of the sodium-transporting cells in frog skin of Rana angolensis were determined under control conditions by using the micro-electrode technique. The data were analysed in terms of an electrical model (Helman, 1979). 2. The control intracellular voltages averaged -84.7 mV while the electromotive force of the inner barrier, E'1, averaged 103.9 mV. The major portion (82%) of the transcellular resistance was situated at the outer, apical, barrier. 3. Exogenous cyclic AMP stimulated active sodium transport and the short-circuit current (Isc) increased by an average 88%. The change in Isc was mediated primarily by decreasing the resistance of the apical barrier (Ro) with little effect on the electromotive force or resistance (Ri) of the inner membranes. 4. Isoprenaline increased the Isc by an average of 165%. The major effect of isoprenaline was to decrease the apical resistance by an average 77%. 5. Forskolin (2.5 microM) stimulated the Isc by an average of 138%. Amiloride would not completely reduce the Isc, but with the low concentration of 0.2 microM-forskolin, the Isc was typically inhibited to values close to zero. The major effect of forskolin was also to reduce the resistance of the apical barrier, although it concurrently also caused the E'1 to decrease by about 13%. 6. Theophylline increased the Isc by reducing the resistance of the apical barrier by an average 61%, with little or no effect on the other parameters. Theophylline augmented the effect of cyclic AMP. 8. Our results are consistent with the theory that cyclic AMP is a second messenger in hormonal control of active sodium transport in frog skin. PMID:2821244

  14. Rescue of Cyclic AMP Mediated Long Term Potentiation Impairment in the Hippocampus of Mecp2 Knockout (Mecp2-/y) Mice by Rolipram

    PubMed Central

    Balakrishnan, Saju; Niebert, Marcus; Richter, Diethelm W.

    2016-01-01

    Rett syndrome (RTT) patients experience learning difficulties and memory loss. Analogous deficits of hippocampal plasticity are reported in mouse models of RTT. To elucidate the underlying pathophysiology, we studied long term potentiation (LTP) at the CA3 to CA1 synapses in the hippocampus in acute brain slices from WT and Mecp2-/y mice, by either activating cAMP dependent pathway or using high frequency stimulation, by means of patch clamp. We have observed that, the NMDA channel current characteristics remain unchanged in the Mecp2-/y mice. The adenylyl cyclase (AC) agonist forskolin evoked a long lasting potentiation of evoked EPSCs in WT CA1 neurons, but only minimally enhanced the EPSCs in the Mecp2-/y mice. This weaker potentiation in Mecp2-/y mice was ameliorated by application of phosphodiesterase 4 inhibitor rolipram. The hyperpolarization activated cyclic nucleotide gated channel current (Ih) was potentiated to similar extent by forskolin in both phenotypes. Multiple tetanus induced cAMP-dependent plasticity was also impaired in the Mecp2-/y mice, and was also partially rescued by rolipram. Western blot analysis of CA region of Mecp2-/y mice hippocampus revealed more than twofold up-regulation of protein kinase A (PKA) regulatory subunits, while the expression of the catalytic subunit remained unchanged. We hypothesize that the overexpressed PKA regulatory subunits buffer cAMP and restrict the PKA mediated phosphorylation of target proteins necessary for LTP. Blocking the degradation of cAMP, thereby saturating the regulatory subunits alleviated this defect. PMID:26869885

  15. Rescue of Cyclic AMP Mediated Long Term Potentiation Impairment in the Hippocampus of Mecp2 Knockout (Mecp2(-/y) ) Mice by Rolipram.

    PubMed

    Balakrishnan, Saju; Niebert, Marcus; Richter, Diethelm W

    2016-01-01

    Rett syndrome (RTT) patients experience learning difficulties and memory loss. Analogous deficits of hippocampal plasticity are reported in mouse models of RTT. To elucidate the underlying pathophysiology, we studied long term potentiation (LTP) at the CA3 to CA1 synapses in the hippocampus in acute brain slices from WT and Mecp2(-/y) mice, by either activating cAMP dependent pathway or using high frequency stimulation, by means of patch clamp. We have observed that, the NMDA channel current characteristics remain unchanged in the Mecp2(-/y) mice. The adenylyl cyclase (AC) agonist forskolin evoked a long lasting potentiation of evoked EPSCs in WT CA1 neurons, but only minimally enhanced the EPSCs in the Mecp2(-/y) mice. This weaker potentiation in Mecp2 (-/) (y) mice was ameliorated by application of phosphodiesterase 4 inhibitor rolipram. The hyperpolarization activated cyclic nucleotide gated channel current (I h) was potentiated to similar extent by forskolin in both phenotypes. Multiple tetanus induced cAMP-dependent plasticity was also impaired in the Mecp2 (-/) (y) mice, and was also partially rescued by rolipram. Western blot analysis of CA region of Mecp2 (-/) (y) mice hippocampus revealed more than twofold up-regulation of protein kinase A (PKA) regulatory subunits, while the expression of the catalytic subunit remained unchanged. We hypothesize that the overexpressed PKA regulatory subunits buffer cAMP and restrict the PKA mediated phosphorylation of target proteins necessary for LTP. Blocking the degradation of cAMP, thereby saturating the regulatory subunits alleviated this defect. PMID:26869885

  16. Reduced Hyperpolarization-Activated Current Contributes to Enhanced Intrinsic Excitability in Cultured Hippocampal Neurons from PrP−/− Mice

    PubMed Central

    Fan, Jing; Stemkowski, Patrick L.; Gandini, Maria A.; Black, Stefanie A.; Zhang, Zizhen; Souza, Ivana A.; Chen, Lina; Zamponi, Gerald W.

    2016-01-01

    Genetic ablation of cellular prion protein (PrPC) has been linked to increased neuronal excitability and synaptic activity in the hippocampus. We have previously shown that synaptic activity in hippocampi of PrP-null mice is increased due to enhanced N-methyl-D-aspartate receptor (NMDAR) function. Here, we focused on the effect of PRNP gene knock-out (KO) on intrinsic neuronal excitability, and in particular, the underlying ionic mechanism in hippocampal neurons cultured from P0 mouse pups. We found that the absence of PrPC profoundly affected the firing properties of cultured hippocampal neurons in the presence of synaptic blockers. The membrane impedance was greater in PrP-null neurons, and this difference was abolished by the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker ZD7288 (100 μM). HCN channel activity appeared to be functionally regulated by PrPC. The amplitude of voltage sag, a characteristic of activating HCN channel current (Ih), was decreased in null mice. Moreover, Ih peak current was reduced, along with a hyperpolarizing shift in activation gating and slower kinetics. However, neither HCN1 nor HCN2 formed a biochemical complex with PrPC. These results suggest that the absence of PrP downregulates the activity of HCN channels through activation of a cell signaling pathway rather than through direct interactions. This in turn contributes to an increase in membrane impedance to potentiate neuronal excitability. PMID:27047338

  17. Investigation of the role of nitric oxide and cyclic GMP in both the activation and inhibition of human neutrophils

    PubMed Central

    Wanikiat, P; Woodward, D F; Armstrong, R A

    1997-01-01

    The aim of this study was to establish the role of nitric oxide (NO) and cyclic GMP in chemotaxis and superoxide anion generation (SAG) by human neutrophils, by use of selective inhibitors of NO and cyclic GMP pathways. In addition, inhibition of neutrophil chemotaxis by NO releasing compounds and increases in neutrophil nitrate/nitrite and cyclic GMP levels were examined. The ultimate aim of this work was to resolve the paradox that NO both activates and inhibits human neutrophils. A role for NO as a mediator of N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced chemotaxis was supported by the finding that the NO synthase (NOS) inhibitor L-NMMA (500 μM) inhibited chemotaxis; EC50 for fMLP 28.76±5.62 and 41.13±4.77 pmol/106 cells with and without L-NMMA, respectively. Similarly the NO scavenger carboxy-PTIO (100 μM) inhibited chemotaxis; EC50 for fMLP 19.71±4.23 and 31.68±8.50 pmol/106 cells with and without carboxy-PTIO, respectively. A role for cyclic GMP as a mediator of chemotaxis was supported by the finding that the guanylyl cyclase inhibitor LY 83583 (100 μM) completely inhibited chemotaxis and suppressed the maximal response; EC50 for fMLP 32.53±11.18 and 85.21±15.14 pmol/106 cells with and without LY 83583, respectively. The same pattern of inhibition was observed with the G-kinase inhibitor KT 5823 (10 μM); EC50 for fMLP 32.16±11.35 and >135 pmol/106 cells with and without KT 5823, respectively. The phosphatase inhibitor, 2,3-diphosphoglyceric acid (DPG) (100 μM) which inhibits phospholipase D, attenuated fMLP-induced chemotaxis; EC50 for fMLP 19.15±4.36 and 61.52±16.2 pmol/106 cells with and without DPG, respectively. Although the NOS inhibitors L-NMMA and L-canavanine (500 μM) failed to inhibit fMLP-induced SAG, carboxy-PTIO caused significant inhibition (EC50 for fMLP 36.15±7.43 and 86.31±14.06 nM and reduced the maximal response from 22.14±1.5 to 9.8±1.6 nmol O2−/106 cells/10 min with and without

  18. Modulation of the hyperpolarization-activated current (Ih) by cyclic nucleotides in guinea-pig primary afferent neurons.

    PubMed Central

    Ingram, S L; Williams, J T

    1996-01-01

    1. Whole-cell patch-clamp recordings were made from dissociated guinea-pig nodose and trigeminal ganglion neurons in culture to study second messenger mechanisms of the hyperpolarization-activated current (Ih) modulation. 2. Prostaglandin E2 (PGE2) and forskolin modulate Ih in primary afferents by shifting the activation curve in the depolarizing direction and increasing the maximum amplitude. 3. The cAMP analogues, RP-cAMP-S (an inhibitor of protein kinase A (PKA)) and SP-cAMP-S (an activator of PKA), both shifted the activation curve of Ih to more depolarized potentials and occluded the effects of forskolin. These results suggest that Ih is modulated by a direct action of the cAMP analogues. 4. Superfusion of other cyclic nucleotide analogues (8-Br-cAMP, 8-(4-chlorophenylthio)-cAMP and 8-Br-cGMP) mimicked the actions of forskolin and PGE2, but dibutyryl cGMP, 5'-AMP and adenosine had no effect on Ih. 8-Br-cAMP and 8-Br-cGMP had similar concentration response profiles, suggesting that Ih has little nucleotide selectivity. 5. The inhibitor peptide (PKI), the catalytic subunit of PKA (C subunit) and phosphatase inhibitors (microcystin and okadaic acid) had no effect on forskolin modulation of Ih. 6. These results indicate that Ih is regulated by cyclic nucleotides in sensory neurons. Positive regulation of Ih by prostaglandins produced during inflammation may lead to depolarization and facilitation of repetitive activity, and thus contribute to sensitization to painful stimuli. PMID:8730586

  19. Ligand-selective activation of heterologously-expressed mammalian olfactory receptor.

    PubMed

    Ukhanov, K; Bobkov, Y; Corey, E A; Ache, B W

    2014-10-01

    Mammalian olfactory receptors (ORs) appear to have the capacity to couple to multiple G protein-coupled signaling pathways in a ligand-dependent selective manner. To better understand the mechanisms and molecular range of such ligand selectivity, we expressed the mouse eugenol OR (mOR-EG) in HEK293T cells together with Gα15 to monitor activation of the phospholipase-C (PLC) signaling pathway and/or Gαolf to monitor activation of the adenylate cyclase (AC) signaling pathway, resulting in intracellular Ca(2+) release and/or Ca(2+) influx through a cyclic nucleotide-gated channel, respectively. PLC-dependent responses differed dynamically from AC-dependent responses, allowing them to be distinguished when Gα15 and Gαolf were co-expressed. The dynamic difference in readout was independent of the receptor, the heterologous expression system, and the ligand concentration. Of 17 reported mOR-EG ligands tested, including eugenol, its analogs, and structurally dissimilar compounds (mousse cristal, nootkatone, orivone), some equally activated both signaling pathways, some differentially activated both signaling pathways, and some had no noticeable effect even at 1-5mM. Our findings argue that mOR-EG, when heterologously expressed, can couple to two different signaling pathways in a ligand selective manner. The challenge now is to determine the potential of mOR-EG, and perhaps other ORs, to activate multiple signaling pathways in a ligand selective manner in native ORNs. PMID:25149566

  20. Ligand-selective activation of heterologously-expressed mammalian olfactory receptor

    PubMed Central

    Ukhanov, K.; Bobkov, Y.; Corey, E.A.; Ache, B.W.

    2014-01-01

    Mammalian olfactory receptors (ORs) appear to have the capacity to couple to multiple G protein-coupled signaling pathways in a ligand-dependent selective manner. To better understand the mechanisms and molecular range of such ligand selectivity, we expressed the mouse eugenol OR (mOR-EG) in HEK293T cells together with Gα15 to monitor activation of the phospholipase-C (PLC) signaling pathway and/or Gαolf to monitor activation of the adenylate cyclase (AC) signaling pathway, resulting in intracellular Ca2+ release and/or Ca2+ influx through a cyclic nucleotide-gated channel, respectively. PLC-dependent responses differed dynamically from AC-dependent responses, allowing them to be distinguished when Gα15 and Gαolf were co-expressed. The dynamic difference in readout was independent of the receptor, the heterologous expression system, and the ligand concentration. Of 17 reported mOR-EG ligands tested, including eugenol, its analogs, and structurally dissimilar compounds (mousse cristal, nootkatone, orivone), some equally activated both signaling pathways, some differentially activated both signaling pathways, and some had no noticeable effect even at 1-5 mM. Our findings argue that mOR-EG, when heterologously expressed, can couple to two different signaling pathways in a ligand selective manner. The challenge now is to determine the potential of mOR-EG, and perhaps other ORs, to activate multiple signaling pathways in a ligand selective manner in native ORNs. PMID:25149566

  1. The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells

    PubMed Central

    Warren, Erin J.; Allen, Charles N.; Brown, R. Lane; Robinson, David W.

    2008-01-01

    In mammals, the master circadian clock resides in the suprachiasmatic nuclei (SCN) of the hypothalamus. The period and phase of the circadian pacemaker are calibrated by direct photic input from retinal ganglion cells (RGCs). SCN-projecting RGCs respond to light in the absence of rod- and cone-driven synaptic input, a property for which they are termed intrinsically photosensitive. In SCN-projecting RGCs, light activates a nonselective cationic current that displays inward and outward rectification. The goal of the present study was to investigate the identity of the light-activated ion channel and the intracellular signaling pathway leading to its activation. We considered two candidate channels, cyclic nucleotide-gated (CNG) channels and transient receptor potential (TRP) channels, which mediate vertebrate and invertebrate phototransduction, respectively. We report that the intrinsic light response relies upon a G-protein-dependent process. Although our data indicate that cyclic nucleotides modulate the signaling pathway, CNG channels do not appear to conduct the light-activated current because (i) cyclic nucleotides in the pipette solution do not activate a conductance or completely block the light response, (ii) CNG channel blockers fail to inhibit the light response, (iii) the effects of internal and external divalent cations are inconsistent with their effects on CNG channels, and (iv) immunohistochemistry reveals no CNG channels in SCN-projecting RGCs. Finally, we show that the pharmacology of the light-activated channel resembles that of some TRPC channel family members; the response is blocked by lanthanides and ruthenium red and SK&F 96365, and is enhanced by flufenamic acid and 1-oleoyl-2-acetyl-sn-glycerol. Furthermore, immunohistochemical experiments reveal that TRPC6 is expressed in many RGCs, including those that express melanopsin. PMID:16706854

  2. Phosphorylation and activation of calcineurin by glycogen synthase (casein) kinase-1 and cyclic AMP-dependent protein kinase

    SciTech Connect

    Singh, T.J.; Wang, J.H.

    1986-05-01

    Calcineurin is a phosphoprotein phosphatase that is activated by divalent cations and further stimulated by calmodulin. In this study calcineurin is shown to be a substrate for both glycogen synthase (casein) kinase-1 (CK-1) and cyclic AMP-dependent protein kinase (A-kinase). Either kinase can catalyze the incorporation of 1.0-1.4 mol /sup 32/P/mol calcineurin. Analysis by SDS-PAGE revealed that only the ..cap alpha.. subunit is phosphorylated. Phosphorylation of calcineurin by either kinase leads to its activation. Using p-nitrophenyl phosphate as a substrate the authors observed a 2-3 fold activation of calcineurin by either Mn/sup 2 +/ or Ni/sup 2 +/ (in the presence or absence of calmodulin) after phosphorylation of calcineurin by either CK-1 or A-kinase. In the absence of Mn/sup 2 +/ or Ni/sup 2 +/ phosphorylated calcineurin, like the nonphosphorylated enzyme, showed very little activity. Ni/sup 2 +/ was a more potent activator of phosphorylated calcineurin compared to Mn/sup 2 +/. Higher levels of activation (5-8 fold) of calcineurin by calmodulin was observed when phosphorylated calcineurin was pretreated with Ni/sup 2 +/ before measurement of phosphatase activity. These results indicate that phosphorylation may be an important mechanism by which calcineurin activity is regulated by Ca/sup 2 +/.

  3. Mangiferin Prevents Guinea Pig Tracheal Contraction via Activation of the Nitric Oxide-Cyclic GMP Pathway

    PubMed Central

    Vieira, Aline B.; Coelho, Luciana P.; Insuela, Daniella B. R.; Carvalho, Vinicius F.; dos Santos, Marcelo H.; Silva, Patricia MR.; Martins, Marco A.

    2013-01-01

    Previous studies have described the antispasmodic effect of mangiferin, a natural glucoside xanthone (2-C-β-Dgluco-pyranosyl-1,3,6,7-tetrahydroxyxanthone) that is present in mango trees and other plants, but its mechanism of action remains unknown. The aim of this study was to examine the potential contribution of the nitric oxide-cyclic GMP pathway to the antispasmodic effect of mangiferin on isolated tracheal rings preparations. The functional effect of mangiferin on allergic and non-allergic contraction of guinea pig tracheal rings was assessed in conventional organ baths. Cultured tracheal rings were exposed to mangiferin or vehicle, and nitric oxide synthase (NOS) 3 and cyclic GMP (cGMP) levels were quantified using western blotting and enzyme immunoassays, respectively. Mangiferin (0.1–10 µM) inhibited tracheal contractions induced by distinct stimuli, such as allergen, histamine, 5-hydroxytryptamine or carbachol, in a concentration-dependent manner. Mangiferin also caused marked relaxation of tracheal rings that were precontracted by carbachol, suggesting that it has both anti-contraction and relaxant properties that are prevented by removing the epithelium. The effect of mangiferin was inhibited by the nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME) (100 µM), and the soluble guanylate cyclase inhibitor, 1H-[1], [2], [4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (10 µM), but not the adenylate cyclase inhibitor, 9-(tetrahydro-2-furyl)adenine (SQ22536) (100 µM). The antispasmodic effect of mangiferin was also sensitive to K+ channel blockers, such as tetraethylammonium (TEA), glibenclamide and apamin. Furthermore, mangiferin inhibited Ca2+-induced contractions in K+ (60 mM)-depolarised tracheal rings preparations. In addition, mangiferin increased NOS3 protein levels and cGMP intracellular levels in cultured tracheal rings. Finally, mangiferin-induced increase in cGMP levels was abrogated by co-incubation with either ODQ or L

  4. Phosphatidylinositol-specific phospholipase C from Bacillus cereus combines intrinsic phosphotransferase and cyclic phosphodiesterase activities: A sup 31 P NMR study

    SciTech Connect

    Shashidhar, M.S.; Kuppe, A. ); Volwerk, J.J.; Griffith, O.H.

    1990-09-04

    The inositol phosphate products formed during the cleavage of phosphatidylinositol by phosphatidylinositol-specific phospholipase C from Bacillus cereus were analyzed by {sup 31}P NMR. {sup 31}P NMR spectroscopy can distinguish between the inositol phosphate species and phosphatidylinositol. Chemical shift values (with reference to phosphoric acid) observed are {minus}0.41, 3.62, 4.45, and 16.30 ppm for phosphatidylinositol, myo-inositol 1-monophosphate, myo-inositol 2-monophosphate, and myo-inositol 1,2-cyclic monophosphate, respectively. It is shown that under a variety of experimental conditions this phospholipase C cleaves phosphatidylinositol via an intramolecular phosphotransfer reaction producing diacylglycerol and D-myo-inositol 1,2-cyclic monophosphate. The authors also report the new and unexpected observation that the phosphatidylinositol-specific phospholipase C from B. cereus is able to hydrolyze the inositol cyclic phosphate to form D-myo-inositol 1-monophosphate. The enzyme, therefore, possesses phosphotransferase and cyclic phosphodiesterase activities. The second reaction requires thousandfold higher enzyme concentrations to be observed by {sup 31}P NMR. This reaction was shown to be regiospecific in that only the 1-phosphate was produced and stereospecific in that only D-myo-inositol 1,2-cyclic monophosphate was hydrolyzed. Inhibition with a monoclonal antibody specific for the B.cereus phospholipase C showed that the cyclic phosphodiesterase activity is intrinsic to the bacterial enzyme. They propose a two-step mechanism for the phosphatidyl-inositol-specific phospholipase C from B. cereus involving sequential phosphotransferase and cyclic phosphodiesterase activities. This mechanism bears a resemblance to the well-known two-step mechanism of pancreatic ribonuclease, RNase A.

  5. SF-1 (Nuclear Receptor 5A1) Activity Is Activated by Cyclic AMP via p300-Mediated Recruitment to Active Foci, Acetylation, and Increased DNA Binding

    PubMed Central

    Chen, Wei-Yi; Juan, Li-Jung; Chung, Bon-chu

    2005-01-01

    Steroidogenic factor 1 (SF-1) is a nuclear receptor essential for steroidogenic gene expression, but how its activity is regulated is unclear. Here we demonstrate that p300 plays an important role in regulating SF-1 function. SF-1 was acetylated in vitro and in vivo by p300 at the KQQKK motif in the Ftz-F1 (Fushi-tarazu factor 1) box adjacent to its DNA-binding domain. Mutation of the KQQKK motif reduced the DNA-binding activity and p300-dependent activation of SF-1. When stimulated with cyclic AMP (cAMP), adrenocortical Y1 cells expressed more p300, leading to additional SF-1 association with p300 and increased SF-1 acetylation and DNA binding. It also increased SF-1 colocalization with p300 in nuclear foci. Collectively, these results indicate that SF-1 transcriptional activity is regulated by p300 in response to the cAMP signaling pathway by way of increased acetylation, DNA binding, and recruitment to nuclear foci. PMID:16287857

  6. Cyclic Voltammetry.

    ERIC Educational Resources Information Center

    Evans, Dennis H.; And Others

    1983-01-01

    Cyclic voltammetry is a simple experiment that has become popular in chemical research because it can provide useful information about redox reactions in a form which is easily obtained and interpreted. Discusses principles of the method and illustrates its use in the study of four electrode reactions. (Author/JN)

  7. The cyclic AMP receptor protein is the main activator of pectinolysis genes in Erwinia chrysanthemi.

    PubMed

    Reverchon, S; Expert, D; Robert-Baudouy, J; Nasser, W

    1997-06-01

    The main virulence factors of the phytopathogenic bacterium Erwinia chrysanthemi are pectinases that cleave pectin, a major constituent of the plant cell wall. Although physiological studies suggested that pectinase production in Erwinia species is subjected to catabolite repression, the direct implication of the cyclic AMP receptor protein (CRP) in this regulation has never been demonstrated. To investigate the role of CRP in pectin catabolism, we cloned the E. chrysanthemi crp gene by complementation of an Escherichia coli crp mutation and then constructed E. chrysanthemi crp mutants by reverse genetics. The carbohydrate fermentation phenotype of the E. chrysanthemi crp mutants is similar to that of an E. coli crp mutant. Furthermore, these mutants are unable to grow on pectin or polygalacturonate as the sole carbon source. Analysis of the nucleotide sequence of the E. chrysanthemi crp gene revealed the presence of a 630-bp open reading frame (ORF) that codes for a protein highly similar to the CRP of E. coli. Using a crp::uidA transcriptional fusion, we demonstrated that the E. chrysanthemi CRP represses its own expression, probably via a mechanism similar to that described for the E. coli crp gene. Moreover, in the E. chrysanthemi crp mutants, expression of pectinase genes (pemA, pelB, pelC, pelD, and pelE) and of genes of the intracellular part of the pectin degradation pathway (ogl, kduI, and kdgT), which are important for inducer formation and transport, is dramatically reduced in induced conditions. In contrast, expression of pelA, which encodes a pectate lyase important for E. chrysanthemi pathogenicity, seems to be negatively regulated by CRP. The E. chrysanthemi crp mutants have greatly decreased maceration capacity in potato tubers, chicory leaves, and celery petioles as well as highly diminished virulence on saintpaulia plants. These findings demonstrate that CRP plays a crucial role in expression of the pectinolysis genes and in the pathogenicity of E

  8. Effects of cadmium on the activities of photosystems of Chlorella pyrenoidosa and the protective role of cyclic electron flow.

    PubMed

    Wang, Shuzhi; Zhang, Daoyong; Pan, Xiangliang

    2013-09-01

    Cadmium (Cd) shows high toxicity to aquatic microalgae. Many studies showed that Cd inhibited activities of photosystem II (PSII) but the effects of heavy metals on photosystem I (PSI) and cyclic electron flow (CEF) were still controversial and unclear. The effects of CdCl2 on the activities of PSI, PSII and CEF in Chlorella pyrenoidosa was measured simultaneously in the present study. In presence of 200μM of Cd, ultrastructure of some cells was strongly modified. Cd exposure led to decrease of the activities of photosynthetic oxygen evolution and respiration. PSII was more sensitive to Cd treatment than PSI. Cd treatment showed significant inhibition on the photochemical quantum yield and electron transport rate of PSII. Cd increased the quantum yield of non-light-induced non-photochemical fluorescence quenching, indicating the damage of PSII. The activity of PSI showed tolerance to Cd treatment with concentration less than 100μM in the experiment. Linear electron flow (LEF) made significant contribution to the photochemical quantum yield of PSI of the untreated cells, but decreased with increasing Cd concentration. The contribution of CEF to the yield of PSI increased with increasing Cd concentration. The activation of CEF after exposure to Cd played an essential role for the protection of PSI. PMID:23726885

  9. Cyclic adenosine monophosphate phosphodiesterase activity in peripheral blood mononuclear leucocytes from patients with atopic dermatitis: correlation with respiratory atopy.

    PubMed

    Sawai, T; Ikai, K; Uehara, M

    1998-05-01

    We determined the cyclic adenosine monophosphate phosphodiesterase (cAMP-PDE) activity in peripheral blood mononuclear leucocytes from 100 patients with atopic dermatitis (AD) aged 13-57 years (mean +/- SD, 29.8 +/- 17.7 years). The correlation between cAMP-PDE activity and clinical parameters such as the severity of eczema and a personal or family predisposition to atopic respiratory diseases (ARD) (asthma or allergic rhinitis) was examined. Although the enzymic activity varied from normal to very high in the AD patients, cAMP-PDE activity was significantly (P < 0.005) elevated in AD patients (42.1 +/- 22.0 units) as compared with the normal controls (12.4 +/- 5.6) and clinical control subjects (13.4 +/- 9.5). In contrast, we found no correlation between cAMP-PDE activity and the severity of eczema when AD patients were classified into four categories (remission, mild, moderate and severe) according to the extent of their skin involvement. Furthermore, we found that systemic corticosteroid therapy in severe AD patients did not alter the cAMP-PDE activity. cAMP-PDE activity was significantly (P < 0.01) higher in those AD patients who had a personal history of ARD (47.2 +/- 11.2) than in AD patients with a family history of ARD (37.2 +/- 17.4) and those without a personal or family history ('pure' AD) (34.4 +/- 19.8). Nevertheless, the cAMP-PDE activity was significantly higher even in 'pure' AD patients than in the controls. These results suggest that an elevation of cAMP-PDE activity is closely related to a predisposition to respiratory atopy, and does not follow inflammation in AD patients. PMID:9666832

  10. Preparation of a Cyclic RGD: Modified Liposomal SiRNA Formulation for Use in Active Targeting to Tumor and Tumor Endothelial Cells.

    PubMed

    Sakurai, Yu; Hada, Tomoya; Harashima, Hideyoshi

    2016-01-01

    The delivery of SiRNA is not only a challenging strategy for developing new remedies, but is also useful as an analytic tool for an in vivo phenotypic alteration by loss-of-function. Specifically, ligand-mediated SiRNA active targeting can be used to silence any gene in any organ of interest. In this chapter, we describe the preparation of an active targeting system to tumor endothelial cells (TECs) using liposomal SiRNA modified with cyclic RGD peptides. The procedure consists of essentially three steps: (1) the synthesis of a cyclic RGD peptide derivative, (2) SiRNA encapsulation into a liposomal delivery system, and (3) modification of liposomal SiRNA with a cyclic RGD derivative. PMID:26472442

  11. Activation of Cyclic Adenosine Monophosphate Pathway Increases the Sensitivity of Cancer Cells to the Oncolytic Virus M1.

    PubMed

    Li, Kai; Zhang, Haipeng; Qiu, Jianguang; Lin, Yuan; Liang, Jiankai; Xiao, Xiao; Fu, Liwu; Wang, Fang; Cai, Jing; Tan, Yaqian; Zhu, Wenbo; Yin, Wei; Lu, Bingzheng; Xing, Fan; Tang, Lipeng; Yan, Min; Mai, Jialuo; Li, Yuan; Chen, Wenli; Qiu, Pengxin; Su, Xingwen; Gao, Guangping; Tai, Phillip W L; Hu, Jun; Yan, Guangmei

    2016-02-01

    Oncolytic virotherapy is a novel and emerging treatment modality that uses replication-competent viruses to destroy cancer cells. Although diverse cancer cell types are sensitive to oncolytic viruses, one of the major challenges of oncolytic virotherapy is that the sensitivity to oncolysis ranges among different cancer cell types. Furthermore, the underlying mechanism of action is not fully understood. Here, we report that activation of cyclic adenosine monophosphate (cAMP) signaling significantly sensitizes refractory cancer cells to alphavirus M1 in vitro, in vivo, and ex vivo. We find that activation of the cAMP signaling pathway inhibits M1-induced expression of antiviral factors in refractory cancer cells, leading to prolonged and severe endoplasmic reticulum (ER) stress, and cell apoptosis. We also demonstrate that M1-mediated oncolysis, which is enhanced by cAMP signaling, involves the factor, exchange protein directly activated by cAMP 1 (Epac1), but not the classical cAMP-dependent protein kinase A (PKA). Taken together, cAMP/Epac1 signaling pathway activation inhibits antiviral factors and improves responsiveness of refractory cancer cells to M1-mediated virotherapy. PMID:26373347

  12. Transduction for Pheromones in the Main Olfactory Epithelium Is Mediated by the Ca2+-Activated Channel TRPM5

    PubMed Central

    López, Fabián; Delgado, Ricardo; López, Roberto; Bacigalupo, Juan

    2014-01-01

    Growing evidence suggests that the main olfactory epithelium contains a subset of olfactory sensory neurons (OSNs) responding to pheromones. One candidate subpopulation expresses the calcium activated cation channel TRPM5 (transient receptor potential channel M5). Using GFP driven by the TRPM5 promoter in mice, we show that this subpopulation responds to putative pheromones, urine, and major histocompatibility complex peptides, but not to regular odors or a pheromone detected by other species. In addition, this subpopulation of TRPM5-GFP+ OSNs uses novel transduction. In regular OSNs, odorants elicit activation of the cyclic nucleotide-gated (CNG) channel, leading to Ca2+ gating of Cl− channels; in TRPM5-GFP+ OSNs, the Ca2+-activated Cl− ANO2 (anoctamin 2) channel is not expressed, and pheromones elicit activation of the CNG channel leading to Ca2+ gating of TRPM5. In conclusion, we show that OSNs expressing TRPM5 respond to pheromones, but not to regular odors through the opening of CNG channels leading to Ca2+ gating of TRPM5. PMID:24573286

  13. Odorant receptors activated by amino acids in sensory neurons of the channel catfish Ictalurus punctatus.

    PubMed

    Ivanova, T T; Caprio, J

    1993-12-01

    Odorant receptors activated by amino acids were investigated with patch-clamp techniques in olfactory receptor neurons of the channel catfish, Ictalurus punctatus. The L-isomers of alanine, norvaline, arginine, and glutamate, known to act predominantly on different olfactory receptor sites, activated nondesensitizing inward currents with amplitudes of -2.5 to -280 pA in olfactory neurons voltage-clamped at membrane potentials of -72 or -82 mV. Different amino acids were shown to induce responses in the same sensory neurons; however, the amplitude and the kinetics of the observed whole cell currents differed among the stimuli and may therefore reflect activation of different amino acid receptor types or combinations of receptor types in these cells. Amino acid-induced currents appeared to have diverse voltage dependence and could also be classified according to the amplitude of the spontaneous channel fluctuations underlying the macroscopic currents. A mean single-channel conductance (gamma) of 360 fS was estimated from small noise whole-cell currents evoked by arginine within the same olfactory neuron in which a mean gamma value of 23.6 pS was estimated from 'large noise' response to norvaline. Quiescent olfactory neurons fired bursts of action potentials in response to either amino acid stimulation or application of 8-Br-cyclic GMP (100 microM), and voltage-gated channels underlying generation of action potentials were similar in these neurons. However, in whole-cell voltage-clamp, 8-Br-cyclic GMP evoked large rectangular current pulses, and single-channel conductances of 275, 220, and 110 pS were obtained from the discrete current levels. These results suggest that in addition to the cyclic nucleotide-gated transduction channels, olfactory neurons of the channel catfish possess a variety of odor receptors coupled to different types of transduction channels. PMID:8133240

  14. Antibacterial and anticancer activity of a series of novel peptides incorporating cyclic tetra-substituted C(α) amino acids.

    PubMed

    Hicks, Rickey P

    2016-09-15

    Eleven antimicrobial peptides (AMP) based on the incorporation of cyclic tetra substituted C(α) amino acids, as well as other unnatural amino acids were designed, synthesized and screened for in vitro activity against 18 strains of bacteria as well as 12 cancer cell lines. The AMPs discussed herein are derived from the following peptide sequence: Ac-GF(X)G(X)B(X)G(X)F(X)G(X)GB(X)BBBB-amide, X=any one of the following residues, A5c, A6c, Tic or Oic and B=any one of the following residues, Arg, Lys, Orn, Dpr or Dab. A diversity of in vitro inhibitory activity was observed for these AMPs. Several analogs exhibited single digit μM activity against drug resistant bacteria including; multiple drug resistant Mycobacterium tuberculosis, extremely drug resistant Mycobacterium tuberculosis and MRSA. The physicochemical properties of the basic amino acid residues incorporated into these AMPs seem to play a major role in defining antibacterial activity. Overall hydrophobicity seems to play a limited role in defining antibacterial activity. The ESKAPE pathogens were used to compare the activity of these AMPs to another family of synthetic AMPs incorporating the unnatural amino acids Tic and Oic. In most cases similarly substituted members of both families exhibited similar inhibitory activity against the ESKAPE pathogens. In specific cases differences in activity as high as 15 fold were observed between analogs. In addition four of these AMPs exhibited promising IC50 (<7.5μM) values against 12 different and diverse cancer cell lines. Five other AMPs exhibited promising IC50 (<7.5μM) values against selected cancer cell lines. PMID:27387357

  15. Structure-activity studies on anticonvulsant sugar sulfamates related to topiramate. Enhanced potency with cyclic sulfate derivatives.

    PubMed

    Maryanoff, B E; Costanzo, M J; Nortey, S O; Greco, M N; Shank, R P; Schupsky, J J; Ortegon, M P; Vaught, J L

    1998-04-01

    We have explored the structure-activity relationship (SAR) surrounding the clinically efficacious antiepileptic drug topiramate (1), a unique sugar sulfamate anticonvulsant that was discovered in our laboratories. Systematic structural modification of the parent compound was directed to identifying potent anticonvulsants with a long duration of action and a favorable neurotoxicity index. In this context, we have probed the pharmacological importance of several molecular features: (1) the sulfamate group (6-8, 22-25, 27, 84), (2) the linker between the sulfamate group and the pyran ring (9, 10, 21a,b), (3) the substituents on the 2,3- (58-60, 85, 86) and 4, 5-fused (30-38, 43, 45-47, 52, 53) 1,3-dioxolane rings, (4) the constitution of the 4,5-fused 1,3-dioxolane ring (2, 54, 55, 63-68, 76, 77, 80, 83a-r, 84-87, 90a, 91a, 93a), (5) the ring oxygen atoms (95, 96, 100-102, 104, 105), and (6) the absolute stereochemistry (106 and 107). We established the C1 configuration as R for the predominant alcohol diastereomer from the highly selective addition of methylmagnesium bromide to aldehyde 15 (16:1 ratio) by single-crystal X-ray analysis of the major diastereomer of sulfamate 21a. Details for the stereoselective syntheses of the hydrindane carbocyclic analogues 95, 96, 100, and 104 are presented. We also report the synthesis of cyclic imidosulfites 90a and 93a, and imidosulfate 91a, which are rare examples in the class of such five-membered-ring sulfur species. Imidosulfite 93a required the preparation and use of the novel sulfur dichloride reagent, BocN=SCl2. Our SAR investigation led to the impressive 4,5-cyclic sulfate analogue 2 (RWJ-37947), which exhibits potent anticonvulsant activity in the maximal electroshock seizure (MES) test (ca. 8 times greater than 1 in mice at 4 h, ED50 = 6.3 mg/kg; ca. 15 times greater than 1 in rats at 8 h, ED50 = 1.0 mg/kg) with a long duration of action (>24 h in mice and rats, po) and very low neurotoxicity (TD50 value of >1000 mg

  16. High activity of an indium alkoxide complex toward ring opening polymerization of cyclic esters.

    PubMed

    Quan, Stephanie M; Diaconescu, Paula L

    2015-06-14

    An indium complex supported by a ferrocene-derived Schiff base ligand has an unprecedented high activity toward ε-caprolactone, δ-valerolactone, and β-butyrolactone. l-Lactide, d,l-lactide, and trimethylene carbonate polymerizations also showed moderate to high activity. PMID:25973852

  17. Influence of ofloxacin on photosystems I and II activities of Microcystis aeruginosa and the potential role of cyclic electron flow.

    PubMed

    Deng, Chunnuan; Pan, Xiangliang; Zhang, Daoyong

    2015-02-01

    Pollution with antibiotics poses a great risk to aquatic ecosystems. Although some toxic effects of antibiotics on photosystem II (PSII) have been documented, their toxicity to photosystem I (PSI) is still unclear. In this study, effects of ofloxacin on activities of both PSI and PSII of Microcystis aeruginosa (Kützing) Kützing were investigated. Exposure to 0.1 mg L(-)(1) ofloxacin led to increases in contents of chlorophyll a and carotenoids and photosynthetic activity of M. aeruginosa. PSI activity and its electron transport were not affected by 0.1 mg L(-)(1) ofloxacin. When M. aeruginosa was exposed to ≥10 mg L(-)(1) ofloxacin, the electron transport rates of PSI and PSII, the yield of cyclic electron flow (CEF) and the contribution of linear electron flow (LEF) to PSI decreased whereas Y(NA) (limitation of donor side of PSI) and Y(NO) (the quantum yield of non-regulated energy dissipation in PSII) significantly increased. CEF had a significant contribution to alleviating the inhibitory effect of ofloxacin on PSI of M. aeruginosa treated with low concentrations of ofloxacin. The protective role CEF for tolerance of PSI to the toxicity of ofloxacin decreased with increasing ofloxacin concentration. PMID:25209631

  18. Transient potassium channels augment degeneracy in hippocampal active dendritic spectral tuning.

    PubMed

    Rathour, Rahul Kumar; Malik, Ruchi; Narayanan, Rishikesh

    2016-01-01

    Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor. PMID:27094086

  19. Transient potassium channels augment degeneracy in hippocampal active dendritic spectral tuning

    PubMed Central

    Rathour, Rahul Kumar; Malik, Ruchi; Narayanan, Rishikesh

    2016-01-01

    Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor. PMID:27094086

  20. Macrophages contribute to the cyclic activation of adult hair follicle stem cells.

    PubMed

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-12-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. PMID:25536657

  1. Macrophages Contribute to the Cyclic Activation of Adult Hair Follicle Stem Cells

    PubMed Central

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-01-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. PMID:25536657

  2. [Cyclic enteral nutrition].

    PubMed

    Hébuterne, X; Rampal, P

    1996-02-10

    Cyclic enteral nutrition consists in continuous infusion of nutrients with a pump over a 12 to 14 hour period at night. Different reports have demonstrated that cyclic enteral nutrition is well tolerated in malnourished ambulatory patients. The incidence of pneumonia by inhalation in this type of patients is less than 2%. Excepting patients with major amputation of the small intestine and important functional consequences, the increased infusion rate required by cyclic enteral nutrition does not diminish digestive tract absorption making the technique as effective as continuous 24-hour infusion. The main advantages of the cyclic infusion are the preservation of physiological balance between fasting and feeding, improved physical activity during the day with its beneficial effect on protein-energy metabolism, compatibility with oral nutrition during the day in nutrition reeducation programs, and the psychological impact in patients who are free to move about, further improving tolerance. Finally, cyclic enteral nutrition is adapted to enteral nutrition programs conducted in the patient's homes. PMID:8729381

  3. Development of Highly Active and Regioselective Catalysts for the Copolymerization of Epoxides with Cyclic Anhydrides: An Unanticipated Effect of Electronic Variation.

    PubMed

    DiCiccio, Angela M; Longo, Julie M; Rodríguez-Calero, Gabriel G; Coates, Geoffrey W

    2016-06-01

    Recent developments in polyester synthesis have established several systems based on zinc, chromium, cobalt, and aluminum catalysts for the ring-opening alternating copolymerization of epoxides with cyclic anhydrides. However, to date, regioselective processes for this copolymerization have remained relatively unexplored. Herein we report the development of a highly active, regioselective system for the copolymerization of a variety of terminal epoxides and cyclic anhydrides. Unexpectedly, electron withdrawing substituents on the salen framework resulted in a more redox stable Co(III) species and longer catalyst lifetime. Using enantiopure propylene oxide, we synthesized semicrystalline polyesters via the copolymerization of a range of epoxide/anhydride monomer pairs. PMID:27171536

  4. Phospholipase C in Dictyostelium discoideum. Cyclic AMP surface receptor and G-protein-regulated activity in vitro.

    PubMed

    Bominaar, A A; Kesbeke, F; Van Haastert, P J

    1994-01-01

    The cellular slime mould Dictyostelium discoideum shows several responses after stimulation with the chemoattractant cAMP, including a transient rise in cyclic AMP (cAMP), cGMP and Ins(1,4,5)P3. In this paper the regulation of phospholipase C in vitro is described. Under our experimental conditions commercial PtdIns(4,5)P2 cannot be used to analyse phospholipase C activity in Dictyostelium lysates, because it is hydrolysed mainly to glycerophosphoinositol instead of Ins(1,4,5)P3. Enzyme activity was determined with endogenous unlabelled PtdInsP2 as a substrate. The product was measured by isotope-dilution assay and identified as authentic Ins(1,4,5)P3. Since phospholipase C is strictly Ca(2+)-dependent, with an optimal concentration range of 1-100 microM, cell lysates were prepared in EGTA and the enzyme reaction was started by adding 10 microM free Ca2+. Phospholipase C activity increased 2-fold during Dictyostelium development up to 8 h of starvation, after which the activity declined to less than 10% of the vegetative level. Enzyme activity in vitro increased up to 2-fold after stimulation of cells with the agonist cAMP in vivo. Addition of 10 microM guanosine 5'-[gamma-thio]triphosphate during lysis activated the enzyme to the same extent, and this effect was antagonized by guanosine 5'-[beta-thio]diphosphate. These results strongly suggest that surface cAMP receptors and G-proteins regulate phospholipase C during Dictyostelium development. PMID:8280097

  5. Activation of InsP3 receptors is sufficient for inducing graded intrinsic plasticity in rat hippocampal pyramidal neurons

    PubMed Central

    Ashhad, Sufyan; Johnston, Daniel

    2014-01-01

    The synaptic plasticity literature has focused on establishing necessity and sufficiency as two essential and distinct features in causally relating a signaling molecule to plasticity induction, an approach that has been surprisingly lacking in the intrinsic plasticity literature. In this study, we complemented the recently established necessity of inositol trisphosphate (InsP3) receptors (InsP3R) in a form of intrinsic plasticity by asking if InsP3R activation was sufficient to induce intrinsic plasticity in hippocampal neurons. Specifically, incorporation of d-myo-InsP3 in the recording pipette reduced input resistance, maximal impedance amplitude, and temporal summation but increased resonance frequency, resonance strength, sag ratio, and impedance phase lead. Strikingly, the magnitude of plasticity in all these measurements was dependent on InsP3 concentration, emphasizing the graded dependence of such plasticity on InsP3R activation. Mechanistically, we found that this InsP3-induced plasticity depended on hyperpolarization-activated cyclic nucleotide-gated channels. Moreover, this calcium-dependent form of plasticity was critically reliant on the release of calcium through InsP3Rs, the influx of calcium through N-methyl-d-aspartate receptors and voltage-gated calcium channels, and on the protein kinase A pathway. Our results delineate a causal role for InsP3Rs in graded adaptation of neuronal response dynamics, revealing novel regulatory roles for the endoplasmic reticulum in neural coding and homeostasis. PMID:25552640

  6. Role of receptor desensitization, phosphatase induction and intracellular cyclic AMP in the termination of mitogen-activated protein kinase activity in UTP-stimulated EAhy 926 endothelial cells.

    PubMed Central

    Graham, A; McLees, A; Malarkey, K; Gould, G W; Plevin, R

    1996-01-01

    We have investigated the mechanisms that bring about the termination of mitogen-activated protein kinase (MAP kinase) activation in response to UTP in EAhy 926 endothelial cells. UTP-stimulated MAP kinase activity was transient, returning to basal values by 60 min. At this time MAP kinase activation was desensitized; re-application of UTP did not further activate MAP kinase, full re-activation of MAP kinase being only apparent after a 1-2 h wash period. However, activation of MAP kinase by UTP could be sustained beyond 60 min by preincubation of the cells with the protein synthesis inhibitor cycloheximide. UTP also stimulated expression of MAP kinase phosphatase-1 and this was abolished after pretreatment with cycloheximide. Pretreatment of cells with forskolin abolished the initial activation of MAP kinase kinase or c-Raf-1 by UTP, but only affected MAP kinase activity during prolonged stimulation. The effect of forskolin on prolonged MAP kinase activation was also prevented by cycloheximide. These results suggest that the termination of MAP kinase activity in response to UTP involves a number of interacting mechanisms including receptor desensitization and the induction of a phosphatase. However, several pieces of evidence do not support a major role for MAP kinase phosphatase-1 in termination of the MAP kinase signal. Raising intracellular cyclic AMP may also be involved but only after an initial protein-synthesis step and by a mechanism that does not involve the inactivation of c-Raf-1 or MAP kinase kinase. PMID:8615830

  7. Role of receptor desensitization, phosphatase induction and intracellular cyclic AMP in the termination of mitogen-activated protein kinase activity in UTP-stimulated EAhy 926 endothelial cells.

    PubMed

    Graham, A; McLees, A; Malarkey, K; Gould, G W; Plevin, R

    1996-04-15

    We have investigated the mechanisms that bring about the termination of mitogen-activated protein kinase (MAP kinase) activation in response to UTP in EAhy 926 endothelial cells. UTP-stimulated MAP kinase activity was transient, returning to basal values by 60 min. At this time MAP kinase activation was desensitized; re-application of UTP did not further activate MAP kinase, full re-activation of MAP kinase being only apparent after a 1-2 h wash period. However, activation of MAP kinase by UTP could be sustained beyond 60 min by preincubation of the cells with the protein synthesis inhibitor cycloheximide. UTP also stimulated expression of MAP kinase phosphatase-1 and this was abolished after pretreatment with cycloheximide. Pretreatment of cells with forskolin abolished the initial activation of MAP kinase kinase or c-Raf-1 by UTP, but only affected MAP kinase activity during prolonged stimulation. The effect of forskolin on prolonged MAP kinase activation was also prevented by cycloheximide. These results suggest that the termination of MAP kinase activity in response to UTP involves a number of interacting mechanisms including receptor desensitization and the induction of a phosphatase. However, several pieces of evidence do not support a major role for MAP kinase phosphatase-1 in termination of the MAP kinase signal. Raising intracellular cyclic AMP may also be involved but only after an initial protein-synthesis step and by a mechanism that does not involve the inactivation of c-Raf-1 or MAP kinase kinase. PMID:8615830

  8. Synthesis and anti-inflammatory activity of some potential cyclic phenothiazines.

    PubMed

    Kumar, A; Ram, T; Tyagi, R; Goel, B; Bansal, E; Srivastava, V K

    1998-05-01

    Some new schiff's bases (IVa-IVe), thiazolidinones (Va-Ve), delta 2-triazolines (VIa-VIe) and formazans (VIIa-VIIe) of 2-chlorophenothiazine have been synthesized and screened against Carrageenin induced oedema in albino rats. Some compounds of the series have shown promising activity. The most active compound is 2-chloro-10[5-(2-fluorophenyl-2-oxo-4 thiazolidin-1-yl)-amino acetyl] phenothiazine was found to be most potent. This compound (Vb) was further evaluated in detail and compared with phenylbutazone for its relative anti inflammatory potency (ED50), ulcerogenic liabilities (UD50) and acute toxicity (ALD50). It was found to be almost comparable to phenylbutazone as regards anti-inflammatory activity was concerned but and minimum ulcerogenic liability and cardiovascular effects. Hence, it seems promising as an anti-inflammatory agent in our preliminary studies. PMID:9689901

  9. New models for carrying out cyclic neutron activation. Discussion of the theoretical response

    NASA Astrophysics Data System (ADS)

    Castro-García, M. P.; Rey-Ronco, M. A.; Alonso-Sánchez, T.

    2014-11-01

    This paper studies two specific procedures for analyzing mining samples through a neutron activation technique called DGNAA (Delayed Gamma Neutron Activation Analysis). This particular study is part of a broader line of research, whose overall objective is to find the optimal procedure for analyzing the fluorite content of samples taken from different parts of a fluorite concentration plant, using the DGNAA method [1-2]. The mining sample is fluorspar, which contains other minerals in addition to fluorite, such as silica, barite, iron oxides and silicates. The main contribution of the article is the development of a new method for determining the fluorite content in minerals and the increase of sensitivity in respect to the symmetrical method and single-cycle activation.

  10. Polyamine aza-cyclic compounds demonstrate anti-proliferative activity in vitro but fail to control tumour growth in vivo.

    PubMed

    Wong, Pui Ee; Tetley, Laurence; Dufès, Christine; Chooi, Kar Wai; Bolton, Katherine; Schätzlein, Andreas G; Uchegbu, Ijeoma F

    2010-11-01

    Cationic polyamines such as the poly(propylenimine) dendrimers (DAB16) are anti-tumour agents (Dufes et al., 2005, Cancer Res 65:8079-8084). Their mechanism of action is poorly understood, but the lack of in vivo toxicity suggests cancer specificity. To explore this polyamine pharmacophore we cross-linked the aza-cyclic compound, hexacyclen, with 1,4-dibromobutane or 1,8-dibromooctane to yield the polyamines [poly(butylhexacyclen)--CL4] or [poly(octylhexacyclen)--CL8] respectively, both free of primary amines. We characterised the compounds and their respective nanoparticles and examined their interaction with the putative targets of the cationic polyamines: the cell membrane and DNA. Like DAB 16, CL4 and CL8 bind plasmid DNA and all three compounds interrupted the cell cycle of A431 epidermoid carcinoma cells in the S-phase. Additionally all three compounds disrupted erythrocyte membranes, with CL8 and DAB 16 being more active, in this respect, than CL4. CL4 (IC(50) =775.1 µg mL(-1)) and CL8 (IC(50) =8.4 µg mL(-1)), in a similar manner to DAB 16, were anti-proliferative against A431 cells; although unlike DAB 16, CL4 and CL8 were not tumouricidal against A431 xenografts in mice, indicating that primary amines may play an important role in the in vivo activity of DAB 16. PMID:20845462

  11. Cyclic lipopeptide iturin A structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways.

    PubMed

    Kawagoe, Yumi; Shiraishi, Soma; Kondo, Hiroko; Yamamoto, Shoko; Aoki, Yoshinao; Suzuki, Shunji

    2015-05-15

    Iturin A is the most well studied antifungal cyclic lipopeptide produced by Bacillus species that are frequently utilized as biological control agents. Iturin A not only shows strong antifungal activity against phytopathogens but also induces defense response in plants, thereby reducing plant disease severity. Here we report the defense signaling pathways triggered by iturin A in Arabidopsis salicylic acid (SA) or jasmonic acid (JA)-insensitive mutants. Iturin A activated the transcription of defense genes PR1 and PDF1.2 through the SA and JA signaling pathways, respectively. The role of iturin A as an elicitor was dependent on the cyclization of the seven amino acids and/or the β-hydroxy fatty acid chain. The iturin A derivative peptide, NH2-(L-Asn)-(D-Tyr)-(D-Asn)-(L-Gln)-(L-Pro)-(D-Asn)-(L-Ser)-COOH, completely suppressed PR1 and PDF1.2 gene expression in wild Arabidopsis plants. The identification of target molecules binding to iturin A and its derivative peptide is expected to shed new light on defense response in plants through the SA and JA signaling pathways. PMID:25842204

  12. Cyclic AMP enhances agonist-induced Ca2+ entry into endothelial cells by activation of potassium channels and membrane hyperpolarization.

    PubMed Central

    Graier, W F; Kukovetz, W R; Groschner, K

    1993-01-01

    The mechanism underlying cyclic AMP (cAMP)-mediated amplification of agonist-induced Ca2+ responses in endothelial cells was investigated in pig endothelial cells. Forskolin, adenosine and isoprenaline, as well as the membrane-permeant cAMP analogue dibutyryl cAMP, enhanced bradykinin-induced rises in intracellular free Ca2+ as well as bradykinin-induced Mn2+ entry. These agents were also found to hyperpolarize endothelial cells without increasing intracellular Ca2+ by itself, i.e. in the absence of bradykinin. Both amplification of bradykinin effects and the hyperpolarizing action was blocked by the protein kinase inhibitor H-8. The involvement of K+ channels in the hyperpolarizing effects of forskolin was consequently studied in perforated outside-out vesicles. Two different types of K+ channels were recorded, one of which had a large conductance (170 pS) and was activated by forskolin. We suggest that stimulation of endothelial adenylate cyclase results in activation of large-conductance K+ channels and consequently in membrane hyperpolarization, which in turn enhances bradykinin-induced entry of Ca2+ by increasing its electrochemical gradient. PMID:8385935

  13. Synthesis and biological activity of a lysine-containing cyclic analog of (Leu/sup 5/)enkephalin

    SciTech Connect

    Bobrova, I.V.; Abissova, N.A.; Rozental', G.F.; Nikiforovich, G.V.; Chipens, G.I.

    1986-09-01

    A cyclic analog of enkephalin - cyclo(Lys-Tyr-Gly-Gly-Phe-Leu) -- and two corresponding linear hexapeptides containing a residue of the amino acid lysine at the beginning and the end of the molecule - Lys-Tyr-Gly-Gly-Phe-Leu and Tyr-Gly-Gly-Phe-Leu-Lys - have been synthesized by the classical methods of peptide chemistry. The addition of a lysine residue to the N-end of the enkephalin molecule or the cyclization of this hexapeptide decreased the action of the analogs on the central and peripheral opiate receptors. The addition of lysine through the epsilon-amino group to the C-end of the enkephalin molecule scarcely changed the interaction of the analog with the ..mu..-type of opiate receptor but lowered its affinity for the delta-type of receptor approximately 10-fold. All three analogs that were synthesized possessed an analgesic activity comparable in magnitude with the activity of (Leu/sup 5/)enkephalin determined by the tail pinch method on intracisternal administration to mice.

  14. Triiodothyronine causes rapid reversal of alpha 1/cyclic adenosine monophosphate synergism on brown adipocyte respiration and type II deiodinase activity.

    PubMed

    Noronha, M; Raasmaja, A; Moolten, N; Larsen, P R

    1991-12-01

    Previous studies have shown that thyroid status affects the response of brown adipose tissue (BAT) to the sympathetic nervous system. For example, hypothyroidism is associated with the development of a marked synergism between alpha 1- and beta-adrenergic pathways to stimulate type II iodothyronine 5'-deiodinase activity. Hypothyroidism also attenuates the respiratory response (thermogenesis) of isolated brown adipocytes to norepinephrine. To explore the interactions of the sympathetic nervous system and thyroid status in these cells, we compared the thermogenic and 5'-deiodinase responses to adrenergic agonists in isolated brown adipocytes from hypothyroid rats during treatment with 3,5,3'-triiodothyronine (T3). The fivefold synergism of alpha 1- and beta-adrenergic catecholamines to increase the deiodinase activity was progressively reduced, reaching a control euthyroid value of unity after 5 days of T3 treatment. Hypothyroidism reduced both the O2max (twofold to threefold) and increased the concentration of agonist required for 50% stimulation (10-fold) for both norepinephrine and forskolin. In hypothyroid cells, there was a twofold synergism between the alpha 1-agonist cirazoline and forskolin to increase respiration, which was blocked by prazosin and reproduced by the calcium ionophore, A23187. This synergistic effect of the alpha 1-agonist was lost within 2 days of T3 administration. These studies identify a second Ca(2+)-dependent intra-adrenergic synergism, which functions to ameliorate the reduced cyclic adenosine monophosphate (cAMP) responsiveness of the hypothyroid brown adipocyte. PMID:1683679

  15. Reduction of sludge generation by the addition of support material in a cyclic activated sludge system for municipal wastewater treatment.

    PubMed

    Araujo, Moacir Messias de; Lermontov, André; Araujo, Philippe Lopes da Silva; Zaiat, Marcelo

    2013-09-01

    An innovative biomass carrier (Biobob®) was tested for municipal wastewater treatment in an activated sludge system to evaluate the pollutant removal performance and the sludge generation for different carrier volumes. The experiment was carried out in a pilot-scale cyclic activated sludge system (CASS®) built with three cylindrical tanks in a series: an anoxic selector (2.1 m(3)), an aerobic selector (2.5 m(3)) and the main aerobic reactor (25.1 m(3)). The results showed that by adding the Biobob® carrier decreased the MLVSS concentration, which consequently reduced the waste sludge production of the system. Having 7% and 18% (v/v) support material in the aerobic reactor, the observed biomass yield decreased 18% and 36%, respectively, relative to the reactor operated with suspended biomass. The addition of media did not affect the system's performance for COD and TSS removal. However, TKN and TN removal were improved by 24% and 14%, respectively, using 18% (v/v) carrier. PMID:23831747

  16. Nucleoprotein structure influences the response of the mouse mammary tumor virus promoter to activation of the cyclic AMP signalling pathway.

    PubMed Central

    Pennie, W D; Hager, G L; Smith, C L

    1995-01-01

    Recent studies have provided evidence of crosstalk between steroid receptors and cyclic AMP (cAMP) signalling pathways in the regulation of gene expression. A synergism between intracellular phosphorylation inducers and either glucocorticoids or progestins has been shown to occur during activation of the mouse mammary tumor virus (MMTV) promoter. We have investigated the effect of 8-Br-cAMP and okadaic acid, modulators of cellular kinases and phosphatases, on the hormone-induced activation of the MMTV promoter in two forms: a transiently transfected template with a disorganized, accessible nucleoprotein structure and a stably replicating template with an ordered, inaccessible nucleoprotein structure. Both okadaic acid and 8-Br-cAMP synergize significantly with either glucocorticoids or progestins in activating the transiently transfected MMTV template. In contrast, 8-Br-cAMP, but not okadaic acid, is antagonistic to hormone-induced activation of the stably replicating MMTV template. Nuclear run-on experiments demonstrate that this inhibition is a transcriptional effect on both hormone-induced transcription and basal transcription. Surprisingly, 8-Br-cAMP does not inhibit glucocorticoid-induced changes in restriction enzyme access and nuclear factor 1 binding. However, association of a complex with the TATA box region is inhibited in the presence of 8-Br-cAMP. Thus, cAMP treatment interferes with the initiation process but does not inhibit interaction of the receptor with the template. Since the replicated, ordered MMTV templates and the transfected, disorganized templates show opposite responses to 8-Br-cAMP treatment, we conclude that chromatin structure can influence the response of a promoter to activation of the cAMP signalling pathway. PMID:7891707

  17. Competitive balance of intrabulge BMP/Wnt signaling reveals a robust gene network ruling stem cell homeostasis and cyclic activation

    PubMed Central

    Kandyba, Eve; Leung, Yvonne; Chen, Yi-Bu; Widelitz, Randall; Chuong, Cheng-Ming; Kobielak, Krzysztof

    2013-01-01

    Hair follicles facilitate the study of stem cell behavior because stem cells in progressive activation stages, ordered within the follicle architecture, are capable of cyclic regeneration. To study the gene network governing the homeostasis of hair bulge stem cells, we developed a Keratin 15-driven genetic model to directly perturb molecular signaling in the stem cells. We visualize the behavior of these modified stem cells, evaluating their hair-regenerating ability and profile their molecular expression. Bone morphogenetic protein (BMP)-inactivated stem cells exhibit molecular profiles resembling those of hair germs, yet still possess multipotentiality in vivo. These cells also exhibit up-regulation of Wnt7a, Wnt7b, and Wnt16 ligands and Frizzled (Fzd) 10 receptor. We demonstrate direct transcriptional modulation of the Wnt7a promoter. These results highlight a previously unknown intra-stem cell antagonistic competition, between BMP and Wnt signaling, to balance stem cell activity. Reduced BMP signaling and increased Wnt signaling tilts each stem cell toward a hair germ fate and, vice versa, based on a continuous scale dependent on the ratio of BMP/Wnt activity. This work reveals one more hierarchical layer regulating stem cell homeostasis beneath the stem cell–dermal papilla-based epithelial–mesenchymal interaction layer and the hair follicle–intradermal adipocyte-based tissue interaction layer. Although hierarchical layers are all based on BMP/Wnt signaling, the multilayered control ensures that all information is taken into consideration and allows hair stem cells to sum up the total activators/inhibitors involved in making the decision of activation. PMID:23292934

  18. Mechanisms of tyrosine hydroxylase regulation in striatal synaptosomes: effects of activation of cyclic AMP-dependent protein kinase

    SciTech Connect

    Colby, K.A.

    1987-01-01

    The regulation of tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine biosynthesis, was examined in synaptosomes prepared from rat corpus striatum. Exposure of striatal synaptosomes to dibutyryl-cyclic AMP (dbcAMP) causes an increase in the maximal velocity of TH, but does not change the K/sub m/ of the enzyme for the synthetic cofactor, 2-amino-4-hydroxy-6-methyl-tetrahydropterin. Activation of TH by synaptosomal exposure to dbcAMP also causes a decrease in the pH sensitivity and an increase in the thermolability of the enzyme. Striatal synaptosomes were used to examine the in vitro phosphorylation of TH. Under the protocol developed as part of this work, TH in synaptosomes can be labelled with /sup 32/P. This is the first report of in vitro labelling of TH in a biochemically intact CNS preparation. Under certain protocols, treatment of synaptosomes with dbcAMP causes an increase in the /sup 32/P labelling of TH. These results are consistent with the notion that dbcAMP produces changes in the physical properties of TH by activating cAMP-dependent protein kinase which subsequently phosphorylates TH. In vivo electrical stimulation of the rat medial forebrain bundle causes an activation of striatal TH as well as an decrease in the pH sensitivity of the enzyme. Since similar changes are produced upon activation of snaptosomal TH by dbcAMP, it is likely that phosphorylation of TH is involved in the increase in TH activity that is associated with neuronal depolarization.

  19. The Cyclic Peptide Ecumicin Targeting ClpC1 Is Active against Mycobacterium tuberculosis In Vivo

    PubMed Central

    Gao, Wei; Kim, Jin-Yong; Anderson, Jeffrey R.; Akopian, Tatos; Hong, Seungpyo; Jin, Ying-Yu; Kandror, Olga; Kim, Jong-Woo; Lee, In-Ae; Lee, Sun-Young; McAlpine, James B.; Mulugeta, Surafel; Sunoqrot, Suhair; Wang, Yuehong; Yang, Seung-Hwan; Yoon, Tae-Mi; Goldberg, Alfred L.; Pauli, Guido F.; Cho, Sanghyun

    2014-01-01

    Drug-resistant tuberculosis (TB) has lent urgency to finding new drug leads with novel modes of action. A high-throughput screening campaign of >65,000 actinomycete extracts for inhibition of Mycobacterium tuberculosis viability identified ecumicin, a macrocyclic tridecapeptide that exerts potent, selective bactericidal activity against M. tuberculosis in vitro, including nonreplicating cells. Ecumicin retains activity against isolated multiple-drug-resistant (MDR) and extensively drug-resistant (XDR) strains of M. tuberculosis. The subcutaneous administration to mice of ecumicin in a micellar formulation at 20 mg/kg body weight resulted in plasma and lung exposures exceeding the MIC. Complete inhibition of M. tuberculosis growth in the lungs of mice was achieved following 12 doses at 20 or 32 mg/kg. Genome mining of lab-generated, spontaneous ecumicin-resistant M. tuberculosis strains identified the ClpC1 ATPase complex as the putative target, and this was confirmed by a drug affinity response test. ClpC1 functions in protein breakdown with the ClpP1P2 protease complex. Ecumicin markedly enhanced the ATPase activity of wild-type (WT) ClpC1 but prevented activation of proteolysis by ClpC1. Less stimulation was observed with ClpC1 from ecumicin-resistant mutants. Thus, ClpC1 is a valid drug target against M. tuberculosis, and ecumicin may serve as a lead compound for anti-TB drug development. PMID:25421483

  20. Oral activity of a nature-derived cyclic peptide for the treatment of multiple sclerosis

    PubMed Central

    Thell, Kathrin; Hellinger, Roland; Sahin, Emine; Michenthaler, Paul; Gold-Binder, Markus; Haider, Thomas; Kuttke, Mario; Liutkevičiūtė, Zita; Göransson, Ulf; Gründemann, Carsten; Schabbauer, Gernot; Gruber, Christian W.

    2016-01-01

    Multiple sclerosis (MS) is the most common autoimmune disease affecting the central nervous system. It is characterized by auto-reactive T cells that induce demyelination and neuronal degradation. Treatment options are still limited and several MS medications need to be administered by parenteral application but are modestly effective. Oral active drugs such as fingolimod have been weighed down by safety concerns. Consequently, there is a demand for novel, especially orally active therapeutics. Nature offers an abundance of compounds for drug discovery. Recently, the circular plant peptide kalata B1 was shown to silence T-cell proliferation in vitro in an IL-2–dependent mechanism. Owing to this promising effect, we aimed to determine in vivo activity of the cyclotide [T20K]kalata B1 using the MS mouse model experimental autoimmune encephalomyelitis (EAE). Treatment of mice with the cyclotide resulted in a significant delay and diminished symptoms of EAE by oral administration. Cyclotide application substantially impeded disease progression and did not exhibit adverse effects. Inhibition of lymphocyte proliferation and the reduction of proinflammatory cytokines, in particular IL-2, distinguish the cyclotide from other marketed drugs. Considering their stable structural topology and oral activity, cyclotides are candidates as peptide therapeutics for pharmaceutical drug development for treatment of T-cell-mediated disorders. PMID:27035952

  1. Synthesis, Antitubercular Activity and Docking Study of Novel Cyclic Azole Substituted Diphenyl Ether Derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tuberculosis is a global health problem. New of heterocyclic diphenyl ether derivatives were tested against the Mycobacterium in laboratory settings. All ten compounds inhibited the growth of the mycobacterium at concentrations as low as 1 ug/mL. This level of activity was found comparable to refe...

  2. Estrogenic activity of bis(4-hydroxyphenyl)methanes with cyclic hydrophobic structure.

    PubMed

    Kojima, Tomohiro; Ogawa, Takumi; Kitao, Souichiro; Sato, Manabu; Oda, Akifumi; Ohta, Kiminori; Endo, Yasuyuki

    2015-11-01

    Monoalkylated bis(4-hydroxyphenyl)methanes (e.g., 1) are reported to show weak binding affinity for estrogen receptor (ER). We hypothesized that introduction of appropriately located hydrophobic substituents in these compounds would increase the binding affinity. Indeed, we found that bis(4-hydroxyphenyl)methane bearing a 3,3-dimethylcyclohexyl group (7) shows potent ERα binding affinity, comparable to that of estradiol. Bulkier substituents could be introduced at the 3,3-position without decreasing the affinity. However, the position of the substituents was critical: the 4,4-dimethylcyclohexyl derivative (2) showed very weak binding affinity. The compounds with high ER-binding affinity showed predominantly agonistic activity, together with weak antagonistic activity at high concentration, in cell proliferation assay with human breast cancer cell line MCF-7. Further structure-function studies of these compounds and their derivatives might lead to the development of more selective and potent estrogen receptor modulators. PMID:26462053

  3. NONLINEAR DYNAMICS OF MAGNETOHYDRODYNAMIC ROSSBY WAVES AND THE CYCLIC NATURE OF SOLAR MAGNETIC ACTIVITY

    SciTech Connect

    Raphaldini, Breno; Raupp, Carlos F. M. E-mail: carlos.raupp@iag.usp.br

    2015-01-20

    The solar dynamo is known to be associated with several periodicities, with the nearly 11/22 yr cycle being the most pronounced one. Even though these quasiperiodic variations of solar activity have been attributed to the underlying dynamo action in the Sun's interior, a fundamental theoretical description of these cycles is still elusive. Here, we present a new possible direction in understanding the Sun's cycles based on resonant nonlinear interactions among magnetohydrodynamic (MHD) Rossby waves. The WKB theory for dispersive waves is applied to magnetohydrodynamic shallow-water equations describing the dynamics of the solar tachocline, and the reduced dynamics of a resonant triad composed of MHD Rossby waves embedded in constant toroidal magnetic field is analyzed. In the conservative case, the wave amplitudes evolve periodically in time, with periods on the order of the dominant solar activity timescale (∼11 yr). In addition, the presence of linear forcings representative of either convection or instabilities of meridionally varying background states appears to be crucial in balancing dissipation and thus sustaining the periodic oscillations of wave amplitudes associated with resonant triad interactions. Examination of the linear theory of MHD Rossby waves embedded in a latitudinally varying mean flow demonstrates that MHD Rossby waves propagate toward the equator in a waveguide from –35° to 35° in latitude, showing a remarkable resemblance to the structure of the butterfly diagram of the solar activity. Therefore, we argue that resonant nonlinear magnetohydrodynamic Rossby wave interactions might significantly contribute to the observed cycles of magnetic solar activity.

  4. Activation of portal-hepatic osmoreceptors in rats: role of calcium, acetylcholine and cyclic AMP.

    PubMed

    Stoppini, L; Baertschi, A J

    1984-11-01

    Osmoreceptors are sensory organs of paramount importance in water and electrolyte balance, yet the mechanisms for their activation are virtually unknown. Peripheral osmoreceptors have been localised in the hepatic portal vein area of rats. We thus superfused the portal adventitia with 0.2 ml of 4% NaCl before and after various pharmacological pretreatments (0.4 ml of 1 mM solutions) of the portal area, while monitoring the neural activity of the hypothalamo-neurohypophysial system. Portal superfusion with verapamil, to reduce Ca-influx, reversibly inhibited the response to osmotic stimuli by up to 50% (P less than 0.0005). Such inhibition (58%; P less than 0.0005) was also seen with portal superfusion by atropine. Atropine did not affect hypothalamo-neurohypophysial responses to stimulation of portal bradykinin receptors with 0.2 ml 1 muM bradykinin, and portal superfusion with acetylcholine activated the hypothalamo-neurohypophysial system. The results thus support the hypothesis of a cholinergic neurotransmission linking portal osmoreceptive structures and afferent nerve endings. Diamide, which inhibits water efflux in frog skin, also reversibly inhibited responses to osmotic stimuli by 38% (P less than 0.0005). Pretreatments with trifluoperazine, a calmodulin inhibitor, and cordycepin, an adenylate cyclase inhibitor, diminished responses to osmotic stimuli by 30-45% (P less than 0.005), while cAMP and theophilline potentiated them by 38% (P less than 0.0005). Responses to bradykinin superfusion were reduced 20-30% (P less than 0.05) by both cordycepin and cAMP. The results suggest that portal osmoreceptors release acetylcholine to excite afferent nerves when exposed to an osmotic gradient. The mechanism of this release may be mediated by an efflux of water and an increase of intracellular calcium activity and cAMP. PMID:6150955

  5. Cyclical strain modulates metalloprotease and matrix gene expression in human tenocytes via activation of TGFβ☆

    PubMed Central

    Jones, Eleanor R.; Jones, Gavin C.; Legerlotz, Kirsten; Riley, Graham P.

    2013-01-01

    Tendinopathies are a range of diseases characterised by degeneration and chronic tendon pain and represent a significant cause of morbidity. Relatively little is known about the underlying mechanisms; however onset is often associated with physical activity. A number of molecular changes have been documented in tendinopathy such as a decrease in overall collagen content, increased extracellular matrix turnover and protease activity. Metalloproteinases are involved in the homeostasis of the extracellular matrix and expression is regulated by mechanical strain. The aims of this study were to determine the effects of strain upon matrix turnover by measuring metalloproteinase and matrix gene expression and to elucidate the mechanism of action. Primary Human Achilles tenocytes were seeded in type I rat tail collagen gels in a Flexcell™ tissue train system and subjected to 5% cyclic uniaxial strain at 1 Hz for 48 h. TGFβ1 and TGFβRI inhibitor were added to selected cultures. RNA was measured using qRT-PCR and TGFβ protein levels were determined using a cell based luciferase assay. We observed that mechanical strain regulated the mRNA levels of multiple protease and matrix genes anabolically, and this regulation mirrored that seen with TGFβ stimulation alone. We have also demonstrated that the inhibition of the TGFβ signalling pathway abrogated the strain induced changes in mRNA and that TGFβ activation, rather than gene expression, was increased with mechanical strain. We concluded that TGFβ activation plays an important role in mechanotransduction. Targeting this pathway may have its place in the treatment of tendinopathy. PMID:23830915

  6. Hairpin assembly-triggered cyclic activation of a DNA machine for label-free and ultrasensitive chemiluminescence detection of DNA.

    PubMed

    Chen, Jia; Qiu, Hongdeng; Zhang, Mingliang; Gu, Tongnian; Shao, Shijun; Huang, Yong; Zhao, Shulin

    2015-06-15

    DNA plays important regulatory roles in many life activities. Here, we have developed a novel label-free, ultrasensitive and specific chemiluminescence (CL) assay protocol for DNA detection based on hairpin assembly-triggered cyclic activation of a DNA machine. The system involves two hairpin structures, H1 and H2. Firstly, a target DNA binds with and opens the hairpin structure of H1. Then, H2 hybridizes with H1 and displaces the target DNA, which is used to trigger another new hybridization cycle between H1 and H2, leading to the generation of numerous H1-H2 complexes. The generated H1-H2 complexes are further activated with the help of polymerase and nicking enzyme, continuously yielding a large amount of G-riched DNA fragments. The G-riched DNA fragment products interact with hemin to form the activated HRP-mimicking DNAzymes that can catalyze the oxidation of luminol by H2O2 to produce strong CL signal resulting in an amplified sensing process. Our newly proposed homogeneous assay enables the quantitative measurement of p53 DNA (as a model) with a detection limit of 0.85 fM, which is at least 5 orders of magnitude lower than that of traditional unamplified homogeneous optical approaches. Moreover, this assay exhibits high discrimination ability even against a single base mismatch. In addition, this strategy is also capable of detecting p53 DNA in complex biological samples. The proposed sensing approach might hold a great promise for further applications in biomedical research and early clinical diagnosis. PMID:25638797

  7. Cyclic multiverses

    NASA Astrophysics Data System (ADS)

    Marosek, Konrad; Da¸browski, Mariusz P.; Balcerzak, Adam

    2016-09-01

    Using the idea of regularization of singularities due to the variability of the fundamental constants in cosmology we study the cyclic universe models. We find two models of oscillating and non-singular mass density and pressure (`non-singular' bounce) regularized by varying gravitational constant G despite the scale factor evolution is oscillating and having sharp turning points (`singular' bounce). Both violating (big-bang) and non-violating (phantom) null energy condition models appear. Then, we extend this idea on to the multiverse containing cyclic individual universes with either growing or decreasing entropy though leaving the net entropy constant. In order to get an insight into the key idea, we consider the doubleverse with the same geometrical evolution of the two `parallel' universes with their physical evolution [physical coupling constants c(t) and G(t)] being different. An interesting point is that there is a possibility to exchange the universes at the point of maximum expansion - the fact which was already noticed in quantum cosmology. Similar scenario is also possible within the framework of Brans-Dicke theory where varying G(t) is replaced by the dynamical Brans-Dicke field φ(t) though these theories are slightly different.

  8. Effect of cyclic aromatics on sodium active transport in frog skin

    SciTech Connect

    Blankemeyer, J.T.; Bowerman, M.C. )

    1993-01-01

    A modified glass Ussing-chamber was used to mount the skin. The electrical potential difference (PD) was measured by two 3% agar-frog Ringer's bridges. Current (i.e. short-circuit current, or ISC) was passed by Ag-AgCl electrodes placed so that current density was uniform across the skin. Ringer's solution, bathing each side of the frog skin, was stirred and aerated by gas-lift pumps. The effect of toxicants on the ISC was determined by using the 15 min prior to toxicant administration as a control period, then calculating the change in ISC during the toxicant period as a percent of the control ISC. Phenol and benzene are components of crude oil and crude oil waste. These hydrocarbons and phenanthrene were tested for their effect on frog skin. The results show that the effect of organics on sodium active transport of an epithelium is to alter the active transport of sodium ions. 5 refs., 3 figs., 1 tab.

  9. Cav1.4 L-Type Calcium Channels Contribute to Calpain Activation in Degenerating Photoreceptors of rd1 Mice

    PubMed Central

    Schön, Christian; Paquet-Durand, François; Michalakis, Stylianos

    2016-01-01

    Retinitis pigmentosa is an inherited blinding disorder characterized by progressive degeneration and loss of photoreceptors. The exact mechanism of degeneration and cell death of photoreceptors is not known, but is thought to involve disturbed Ca2+—signaling. Ca2+ can enter the photoreceptor cell via outer segment cyclic nucleotide-gated (CNG) channels or synaptic Cav1.4 L-type voltage-gated calcium channels (VGCC). Previously, we have shown that genetic ablation of the Cngb1 gene encoding the B subunit of the rod CNG channel delays the fast progressing degeneration in the rd1 mutant mouse model of retinitis pigmentosa. In this study, we crossbred rd1 mice with the Cacna1f-deficient mouse lacking the Cav1.4 α1 subunit of the L-type VGCC. Longitudinal in vivo examinations of photoreceptor layer thickness by optical coherence tomography revealed a significant, but not sustained delay of retinal degeneration in Cacna1f x rd1 double mutant mice compared to rd1 mice. This was accompanied by a reduction of TUNEL positive cells in the early phase of rod degeneration. Remarkably, Cacna1f x rd1 double mutant mice displayed a strong decrease in the activation of the Ca2+-dependent protease calpain during photoreceptor loss. Our results show that genetic deletion of the synaptic Cav1.4 L-type VGCCs impairs calpain activation and leads to a short-term preservation of photoreceptors in the rd1 mouse. PMID:27270916

  10. Cav1.4 L-Type Calcium Channels Contribute to Calpain Activation in Degenerating Photoreceptors of rd1 Mice.

    PubMed

    Schön, Christian; Paquet-Durand, François; Michalakis, Stylianos

    2016-01-01

    Retinitis pigmentosa is an inherited blinding disorder characterized by progressive degeneration and loss of photoreceptors. The exact mechanism of degeneration and cell death of photoreceptors is not known, but is thought to involve disturbed Ca2+-signaling. Ca2+ can enter the photoreceptor cell via outer segment cyclic nucleotide-gated (CNG) channels or synaptic Cav1.4 L-type voltage-gated calcium channels (VGCC). Previously, we have shown that genetic ablation of the Cngb1 gene encoding the B subunit of the rod CNG channel delays the fast progressing degeneration in the rd1 mutant mouse model of retinitis pigmentosa. In this study, we crossbred rd1 mice with the Cacna1f-deficient mouse lacking the Cav1.4 α1 subunit of the L-type VGCC. Longitudinal in vivo examinations of photoreceptor layer thickness by optical coherence tomography revealed a significant, but not sustained delay of retinal degeneration in Cacna1f x rd1 double mutant mice compared to rd1 mice. This was accompanied by a reduction of TUNEL positive cells in the early phase of rod degeneration. Remarkably, Cacna1f x rd1 double mutant mice displayed a strong decrease in the activation of the Ca2+-dependent protease calpain during photoreceptor loss. Our results show that genetic deletion of the synaptic Cav1.4 L-type VGCCs impairs calpain activation and leads to a short-term preservation of photoreceptors in the rd1 mouse. PMID:27270916

  11. CYCLIC MAGNETIC ACTIVITY DUE TO TURBULENT CONVECTION IN SPHERICAL WEDGE GEOMETRY

    SciTech Connect

    Kaepylae, Petri J.; Mantere, Maarit J.; Brandenburg, Axel

    2012-08-10

    We report on simulations of turbulent, rotating, stratified, magnetohydrodynamic convection in spherical wedge geometry. An initially small-scale, random, weak-amplitude magnetic field is amplified by several orders of magnitude in the course of the simulation to form oscillatory large-scale fields in the saturated state of the dynamo. The differential rotation is solar-like (fast equator), but neither coherent meridional poleward circulation nor near-surface shear layer develop in these runs. In addition to a poleward branch of magnetic activity beyond 50 Degree-Sign latitude, we find for the first time a pronounced equatorward branch at around 20 Degree-Sign latitude, reminiscent of the solar cycle.

  12. Hepatitis C virus NS2 protein activates cellular cyclic AMP-dependent pathways

    SciTech Connect

    Kim, Kyoung Mi; Kwon, Shi-Nae; Kang, Ju-Il; Lee, Song Hee; Jang, Sung Key; Ahn, Byung-Yoon; Kim, Yoon Ki . E-mail: yk-kim@korea.ac.kr

    2007-05-18

    Chronic infection of the hepatitis C virus (HCV) leads to liver cirrhosis and cancer. The mechanism leading to viral persistence and hepatocellular carcinoma, however, has not been fully understood. In this study, we show that the HCV infection activates cellular cAMP-dependent pathways. Expression of a luciferase reporter gene controlled by a basic promoter with the cAMP response element (CRE) was significantly elevated in human hepatoma Huh-7 cells infected with the HCV JFH1. Analysis with viral subgenomic replicons indicated that the HCV NS2 protein is responsible for the effect. Furthermore, the level of cellular transcripts whose stability is known to be regulated by cAMP was specifically reduced in cells harboring NS2-expressing replicons. These results allude to the HCV NS2 protein having a novel function of regulating cellular gene expression and proliferation through the cAMP-dependent pathway.

  13. Synthesis and Antiproliferative Activity Evaluation of the Disulfide-Containing Cyclic Peptide Thiochondrilline C and Derivatives.

    PubMed

    Vippila, Mohana Rao; Ly, Phuong Kim; Cuny, Gregory D

    2015-10-23

    Thiochondrilline C (4) was previously isolated from Verrucisispora sp. and reported to have moderate cytotoxicity against human lung adenocarcinoma cells. Herein, we report the synthesis of thiochondrilline C by N-terminal peptide extension, oxidative disulfide bond formation, and heterocycle installation as key steps. Antiproliferative activities for the prepared natural product and several derivatives against the NCI 60 cancer cell line panel are also described. Derivative 22 was identified as a moderately potent antiproliferative agent (50% growth inhibition (GI50) = 0.2-12.2 μM) with leukemia (average GI50 = 1.8 ± 0.1 μM) and colon (average GI50 = 2.4 ± 0.3 μM) cells being most sensitive. PMID:26444379

  14. The self-assembly of a cyclic lipopeptides mixture secreted by a B. megaterium strain and its implications on activity against a sensitive Bacillus species.

    PubMed

    Pueyo, Manuel T; Mutafci, Bruna A; Soto-Arriaza, Marco A; Di Mascio, Paolo; Carmona-Ribeiro, Ana M

    2014-01-01

    Cyclic lipopeptides are produced by a soil Bacillus megaterium strain and several other Bacillus species. In this work, they are detected both in the Bacillus intact cells and the cells culture medium by MALDI-TOF mass spectrometry. The cyclic lipopeptides self-assemble in water media producing negatively charged and large aggregates (300-800 nm of mean hydrodynamic radius) as evaluated by dynamic light scattering and zeta-potential analysis. The aggregate size depends on pH and ionic strength. However, it is not affected by changes in the osmolarity of the outer medium suggesting the absence of an internal aqueous compartment despite the occurrence of low molecular weight phospholipids in their composition as determined from inorganic phosphorus analysis. The activity against a sensitive Bacillus cereus strain was evaluated from inhibition halos and B. cereus lysis. Essential features determining the antibiotic activity on susceptible Bacillus cereus cells are the preserved cyclic moiety conferring cyclic lipopeptides resistance to proteases and the medium pH. The aggregates are inactive per se at the pH of the culture medium which is around 6 or below. The knock out of the sensitive cells only takes place when the aggregates are disassembled due to a high negative charge at pH above 6. PMID:24816927

  15. Nitric Oxide Signaling in Pseudomonas aeruginosa Biofilms Mediates Phosphodiesterase Activity, Decreased Cyclic Di-GMP Levels, and Enhanced Dispersal▿ †

    PubMed Central

    Barraud, Nicolas; Schleheck, David; Klebensberger, Janosch; Webb, Jeremy S.; Hassett, Daniel J.; Rice, Scott A.; Kjelleberg, Staffan

    2009-01-01

    Bacteria in biofilms often undergo active dispersal events and revert to a free-swimming, planktonic state to complete the biofilm life cycle. The signaling molecule nitric oxide (NO) was previously found to trigger biofilm dispersal in the opportunistic pathogen Pseudomonas aeruginosa at low, nontoxic concentrations (N. Barraud, D. J. Hassett, S. H. Hwang, S. A. Rice, S. Kjelleberg, and J. S. Webb, J. Bacteriol. 188:7344-7353, 2006). NO was further shown to increase cell motility and susceptibility to antimicrobials. Recently, numerous studies revealed that increased degradation of the secondary messenger cyclic di-GMP (c-di-GMP) by specific phosphodiesterases (PDEs) triggers a planktonic mode of growth in eubacteria. In this study, the potential link between NO and c-di-GMP signaling was investigated by performing (i) PDE inhibitor studies, (ii) enzymatic assays to measure PDE activity, and (iii) direct quantification of intracellular c-di-GMP levels. The results suggest a role for c-di-GMP signaling in triggering the biofilm dispersal event induced by NO, as dispersal requires PDE activity and addition of NO stimulates PDE and induces the concomitant decrease in intracellular c-di-GMP levels in P. aeruginosa. Furthermore, gene expression studies indicated global responses to low, nontoxic levels of NO in P. aeruginosa biofilms, including upregulation of genes involved in motility and energy metabolism and downregulation of adhesins and virulence factors. Finally, site-directed mutagenesis of candidate genes and physiological characterization of the corresponding mutant strains uncovered that the chemotaxis transducer BdlA is involved in the biofilm dispersal response induced by NO. PMID:19801410

  16. Cyclic up-regulation fluorescence of pyrene excimer for studying polynucleotide kinase activity based on dual amplification.

    PubMed

    Xu, Jing; Gao, Yanfang; Li, Baoxin; Jin, Yan

    2016-06-15

    Due to its important biological and clinical roles of polynucleotide kinase (PNK), accurate monitoring of PNK activity and inhibition is highly desirable. Herein, a homogeneous and sensitive fluorescence assay has been proposed for the detection of PNK activity by integrating target recycling signal amplification of DNA toehold strand displacement reaction (TSDR) with gamma-cyclodextrin (γ-CD) enhancement of pyrene excimer. A label-free hairpin DNA1 (H1) and two singly pyrene-labelled DNA, H2 and H3, are designed. Accompanying the occurrence of the efficient enzyme reactions, namely phosphorylation-actuated λ exonuclease reaction, a single-stranded DNA as a trigger DNA (tDNA) of TSDR can be released from H1. Then, tDNA drives circulatory interactions between H2 and H3 to continuously form H2/H3 duplex, resulting in formation of pyrene excimer and a "turn on" fluorescence signal of pyrene excimer. Furthermore, the fluorescence of pyrene excimer is further amplified by introducing gamma-cyclodextrin (γ-CD), which can regulate the space proximity of two pyrene molecules. Thus, TSDR-induced cyclic formation of pyrene excimer and γ-CD enhancement can specifically up-regulate the fluorescence of pyrene excimer for detection of PNK activity, the detection limit is 9.3×10(-5)UmL(-1), which is superior to those of most existing approaches. Moreover, the proposed strategy can also be successfully utilized to study inhibition efficiency of different PNK inhibitors as well. Therefore, a dual amplification approach is provided for nucleic acid phosphorylation related researches. PMID:26807522

  17. Understanding the origin of the solar cyclic activity for an improved earth climate prediction

    NASA Astrophysics Data System (ADS)

    Turck-Chièze, Sylvaine; Lambert, Pascal

    This review is dedicated to the processes which could explain the origin of the great extrema of the solar activity. We would like to reach a more suitable estimate and prediction of the temporal solar variability and its real impact on the Earth climatic models. The development of this new field is stimulated by the SoHO helioseismic measurements and by some recent solar modelling improvement which aims to describe the dynamical processes from the core to the surface. We first recall assumptions on the potential different solar variabilities. Then, we introduce stellar seismology and summarize the main SOHO results which are relevant for this field. Finally we mention the dynamical processes which are presently introduced in new solar models. We believe that the knowledge of two important elements: (1) the magnetic field interplay between the radiative zone and the convective zone and (2) the role of the gravity waves, would allow to understand the origin of the grand minima and maxima observed during the last millennium. Complementary observables like acoustic and gravity modes, radius and spectral irradiance from far UV to visible in parallel to the development of 1D-2D-3D simulations will improve this field. PICARD, SDO, DynaMICCS are key projects for a prediction of the next century variability. Some helioseismic indicators constitute the first necessary information to properly describe the Sun-Earth climatic connection.

  18. Finite element modeling of the cyclic wetting mechanism in the active part of wheat awns.

    PubMed

    Zickler, Gerald A; Ruffoni, Davide; Dunlop, John W C; Elbaum, Rivka; Weinkamer, Richard; Fratzl, Peter; Antretter, Thomas

    2012-12-01

    Many plant tissues and organs are capable of moving due to changes in the humidity of the environment, such as the opening of the seed capsule of the ice plant and the opening of the pine cone. These are fascinating examples for the materials engineer, as these tissues are non-living and move solely through the differential swelling of anisotropic tissues and in principle may serve as examples for the bio-inspired design of artificial actuators. In this paper, we model the microstructure of the wild wheat awn (Triticum turgidum ssp. dicoccoides) by finite elements, especially focusing on the specific microscopic features of the active part of the awn. Based on earlier experimental findings, cell walls are modeled as multilayered cylindrical tubes with alternating cellulose fiber orientation in successive layers. It is shown that swelling upon hydration of this system leads to the formation of gaps between the layers, which could act as valves, thus enabling the entry of water into the cell wall. This supports the hypothesis that this plywood-like arrangement of cellulose fibrils enhances the effect of ambient humidity by accelerated water or vapor diffusion along the gaps. The finite element model shows that a certain distribution of axially and tangentially oriented fibers is necessary to generate sufficient tensile stresses within the cell wall to open nanometer-sized gaps between cell wall layers. PMID:22791359

  19. An embryonic myosin isoform enables stretch activation and cyclical power in Drosophila jump muscle.

    PubMed

    Zhao, Cuiping; Swank, Douglas M

    2013-06-18

    The mechanism behind stretch activation (SA), a mechanical property that increases muscle force and oscillatory power generation, is not known. We used Drosophila transgenic techniques and our new muscle preparation, the jump muscle, to determine if myosin heavy chain isoforms influence the magnitude and rate of SA force generation. We found that Drosophila jump muscles show very low SA force and cannot produce positive power under oscillatory conditions at pCa 5.0. However, we transformed the jump muscle to be moderately stretch-activatable by replacing its myosin isoform with an embryonic isoform (EMB). Expressing EMB, jump muscle SA force increased by 163% and it generated net positive power. The rate of SA force development decreased by 58% with EMB expression. Power generation is Pi dependent as >4 mM Pi was required for positive power from EMB. Pi increased EMB SA force, but not wild-type SA force. Our data suggest that when muscle expressing EMB is stretched, EMB is more easily driven backward to a weakly bound state than wild-type jump muscle. This increases the number of myosin heads available to rapidly bind to actin and contribute to SA force generation. We conclude that myosin heavy chain isoforms influence both SA kinetics and SA force, which can determine if a muscle is capable of generating oscillatory power at a fixed calcium concentration. PMID:23790374

  20. The Role of Angiotensin II and Cyclic AMP in Alveolar Active Sodium Transport

    PubMed Central

    Ismael-Badarneh, Reem; Guetta, Julia; Klorin, Geula; Berger, Gidon; Abu-saleh, Niroz; Abassi, Zaid; Azzam, Zaher S.

    2015-01-01

    Active alveolar fluid clearance is important in keeping airspaces free of edema. Angiotensin II plays a role in the pathogenesis of hypertension, heart failure and others. However, little is known about its contribution to alveolar fluid clearance. Angiotensin II effects are mediated by two specific receptors; AT1 and AT2. The localization of these two receptors in the lung, specifically in alveolar epithelial cells type II, was recently reported. We hypothesize that Angiotensin II may have a role in the regulation of alveolar fluid clearance. We investigated the effect of Angiotensin II on alveolar fluid clearance in rats using the isolated perfused lung model and isolated rat alveolar epithelial cells. The rate of alveolar fluid clearance in control rats was 8.6% ± 0.1 clearance of the initial volume and decreased by 22.5%, 28.6%, 41.6%, 48.7% and 39% in rats treated with 10-10 M, 10-9 M, 10-8 M, 10-7 M or 10-6 M of Ang II respectively (P < 0.003). The inhibitory effect of Angiotensin II was restored in losartan, an AT1 specific antagonist, pretreated rats, indicating an AT1 mediated effect of Ang II on alveolar fluid clearance. The expression of Na,K-ATPase proteins and cAMP levels in alveolar epithelial cells were down-regulated following the administration of Angiotensin II; suggesting that cAMP may be involved in AngII-induced reduced Na,K-ATPase expression, though the contribution of additional factors could not be excluded. We herein suggest a novel mechanism of clinical relevance by which angiotensin adversely impairs the ability of the lungs to clear edema. PMID:26230832

  1. Role of Dynamics in the Autoinhibition and Activation of the Hyperpolarization-activated Cyclic Nucleotide-modulated (HCN) Ion Channels*♦

    PubMed Central

    VanSchouwen, Bryan; Akimoto, Madoka; Sayadi, Maryam; Fogolari, Federico; Melacini, Giuseppe

    2015-01-01

    The hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels control rhythmicity in neurons and cardiomyocytes. Cyclic AMP allosterically modulates HCN through the cAMP-dependent formation of a tetrameric gating ring spanning the intracellular region (IR) of HCN, to which cAMP binds. Although the apo versus holo conformational changes of the cAMP-binding domain (CBD) have been previously mapped, only limited information is currently available on the HCN IR dynamics, which have been hypothesized to play a critical role in the cAMP-dependent gating of HCN. Here, using molecular dynamics simulations validated and complemented by experimental NMR and CD data, we comparatively analyze HCN IR dynamics in the four states of the thermodynamic cycle arising from the coupling between cAMP binding and tetramerization equilibria. This extensive set of molecular dynamics trajectories captures the active-to-inactive transition that had remained elusive for other CBDs, and it provides unprecedented insight on the role of IR dynamics in HCN autoinhibition and its release by cAMP. Specifically, the IR tetramerization domain becomes more flexible in the monomeric states, removing steric clashes that the apo-CDB structure would otherwise impose. Furthermore, the simulations reveal that the active/inactive structural transition for the apo-monomeric CBD occurs through a manifold of pathways that are more divergent than previously anticipated. Upon cAMP binding, these pathways become disallowed, pre-confining the CBD conformational ensemble to a tetramer-compatible state. This conformational confinement primes the IR for tetramerization and thus provides a model of how cAMP controls HCN channel gating. PMID:25944904

  2. Cyclic Lipopeptide Biosynthetic Genes and Products, and Inhibitory Activity of Plant-Associated Bacillus against Phytopathogenic Bacteria.

    PubMed

    Mora, Isabel; Cabrefiga, Jordi; Montesinos, Emilio

    2015-01-01

    The antibacterial activity against bacterial plant pathogens and its relationships with the presence of the cyclic lipopeptide (cLP) biosynthetic genes ituC (iturin), bmyB (bacillomycin), fenD (fengycin) and srfAA (surfactin), and their corresponding antimicrobial peptide products have been studied in a collection of 64 strains of Bacillus spp. isolated from plant environments. The most frequent antimicrobial peptide (AMP) genes were bmyB, srfAA and fenD (34-50% of isolates). Most isolates (98.4%) produced surfactin isoforms, 90.6% iturins and 79.7% fengycins. The antibacterial activity was very frequent and generally intense among the collection of strains because 75% of the isolates were active against at least 6 of the 8 bacterial plant pathogens tested. Hierarchical and correspondence analysis confirmed the presence of two clearly differentiated groups. One group consisted of Bacillus strains that showed a strong antibacterial activity, presented several cLPs genes and produced several isoforms of cLPs simultaneously, mainly composed of B. subtilis and B. amyloliquefaciens, although the last one was exclusive to this group. Another group was characterized by strains with very low or none antibacterial activity, that showed one or none of the cLP genes and produced a few or none of the corresponding cLPs, and was the most heterogenous group including B. subtilis, B. licheniformis, B. megaterium, B. pumilus, B. cereus and B. thuringiensis, although the last two were exclusive to this group. This work demonstrated that the antagonistic capacity of plant-associated Bacillus against plant pathogenic bacteria is related to the presence of cLP genes and to the production of the corresponding cLPs, and it is mainly associated to the species B. subtilis and B. amyloliquefaciens. Our findings would help to increase the yield and efficiency of screening methods to obtain candidate strains to biocontrol agents with a mechanism of action relaying on the production of

  3. Cyclic Lipopeptide Biosynthetic Genes and Products, and Inhibitory Activity of Plant-Associated Bacillus against Phytopathogenic Bacteria

    PubMed Central

    Mora, Isabel; Cabrefiga, Jordi; Montesinos, Emilio

    2015-01-01

    The antibacterial activity against bacterial plant pathogens and its relationships with the presence of the cyclic lipopeptide (cLP) biosynthetic genes ituC (iturin), bmyB (bacillomycin), fenD (fengycin) and srfAA (surfactin), and their corresponding antimicrobial peptide products have been studied in a collection of 64 strains of Bacillus spp. isolated from plant environments. The most frequent antimicrobial peptide (AMP) genes were bmyB, srfAA and fenD (34-50% of isolates). Most isolates (98.4%) produced surfactin isoforms, 90.6% iturins and 79.7% fengycins. The antibacterial activity was very frequent and generally intense among the collection of strains because 75% of the isolates were active against at least 6 of the 8 bacterial plant pathogens tested. Hierarchical and correspondence analysis confirmed the presence of two clearly differentiated groups. One group consisted of Bacillus strains that showed a strong antibacterial activity, presented several cLPs genes and produced several isoforms of cLPs simultaneously, mainly composed of B. subtilis and B. amyloliquefaciens, although the last one was exclusive to this group. Another group was characterized by strains with very low or none antibacterial activity, that showed one or none of the cLP genes and produced a few or none of the corresponding cLPs, and was the most heterogenous group including B. subtilis, B. licheniformis, B. megaterium, B. pumilus, B. cereus and B. thuringiensis, although the last two were exclusive to this group. This work demonstrated that the antagonistic capacity of plant-associated Bacillus against plant pathogenic bacteria is related to the presence of cLP genes and to the production of the corresponding cLPs, and it is mainly associated to the species B. subtilis and B. amyloliquefaciens. Our findings would help to increase the yield and efficiency of screening methods to obtain candidate strains to biocontrol agents with a mechanism of action relaying on the production of

  4. Effectiveness of Topical Nigella sativa Seed Oil in the Treatment of Cyclic Mastalgia: A Randomized, Triple-Blind, Active, and Placebo-Controlled Clinical Trial.

    PubMed

    Huseini, Hasan Fallah; Kianbakht, Saeed; Mirshamsi, Mohammad Hossein; Zarch, Ali Babaei

    2016-03-01

    Cyclic mastalgia is common in women and has no optimal therapy. Analgesic effects of Nigella sativa have been reported. Thus, the effect of a standardized N. sativa seed oil (600 mg applied to the site of pain bis in die for 2 months) on the 10-centimeter visual analog scale scores of pain severity in 52 women with cyclic mastalgia was compared to that of topical diclofenac (20 mg bis in die) (n = 51) and placebo (n = 53). There was no significant difference between the 1- and 2-month pain scores in the active treatment groups (p > 0.05). The pain scores of the active treatment groups did not differ significantly at 1 and 2 months (p > 0.05). The endpoint pain scores of the active treatment groups decreased significantly compared with the baseline (both p < 0.001). The pain scores of the active treatment groups at 1 and 2 months were significantly smaller than those of the placebo group (both p < 0.001). The pain scores of the placebo group at 1 and 2 months were not significantly different from the baseline (p > 0.05). No adverse effect was observed. In conclusion, topical N. sativa seed oil is safe, more effective than placebo, and has clinical effectiveness comparable to topical diclofenac in the treatment of cyclic mastalgia. PMID:26584456

  5. DEEP, LOW-MASS RATIO OVERCONTACT BINARY SYSTEMS. XII. CK BOOTIS WITH POSSIBLE CYCLIC MAGNETIC ACTIVITY AND ADDITIONAL COMPANION

    SciTech Connect

    Yang, Y.-G.; Qian, S.-B.; Soonthornthum, B. E-mail: qsb@ynao.ac.cn

    2012-05-15

    We present precision CCD photometry, a period study, and a two-color simultaneous Wilson code solution of the short-period contact binary CK Bootis. The asymmetric light curves were modeled by a dark spot on the primary component. The result identifies that CK Boo is an A-type W UMa binary with a high fillout of f = 71.7({+-} 4.4)%. From the O - C curve, it is found that the orbital period changes in a complicated mode, i.e., a long-term increase with two sinusoidal variations. One cyclic oscillation with a period of 10.67({+-} 0.20) yr may result from magnetic activity cycles, which are identified by the variability of Max. I - Max. II. Another sinusoidal variation (i.e., A = 0.0131 days({+-} 0.0009 days) and P{sub 3} = 24.16({+-} 0.64) yr) may be attributed to the light-time effect due to a third body. This kind of additional companion can extract angular momentum from the central binary system. The orbital period secularly increases at a rate of dP/dt = +9.79 ({+-}0.80) Multiplication-Sign 10{sup -8} days yr{sup -1}, which may be interpreted by conservative mass transfer from the secondary to the primary. This kind of deep, low-mass ratio overcontact binaries may evolve into a rapid-rotating single star, only if the contact configuration do not break down at J{sub spin} > (1/3)J{sub orb}.

  6. Rapid regulation of PDE-2 and PDE-4 cyclic AMP phosphodiesterase activity following ligation of the T cell antigen receptor on thymocytes: analysis using the selective inhibitors erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA) and rolipram.

    PubMed

    Michie, A M; Lobban, M; Müller, T; Harnett, M M; Houslay, M D

    1996-02-01

    The PDE2, cyclic GMP-stimulated, and the PDE4, cyclic AMP-specific enzymes provide the major, detectable cyclic AMP phosphodiesterase activities in murine thymocytes. In the absence of the cyclic GMP, PDE4 activity predominated (approximately 80% total) but in the presence of low (10 microM) cyclic GMP concentrations, PDE2 activity constituted the major PDE activity in thymocytes (approximately 80% total). The PDE4 selective inhibitor rolipram dose-dependently inhibited thymocyte PDE4 activity (IC50 approximately 65 nM). PDE2 was dose-dependently activated (EC50 approximately 1 microM) by cyclic GMP and inhibited by erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA) (IC50 approximately 4 microM). EHNA was shown to serve as a selective inhibitor of PDE-2 activity as assessed from studies using separated PDE1, PDE2, PDE3 and PDE4 species from hepatocytes as well as human PDE2 and PDE4 enzymes. EHNA completely ablated the ability of cyclic GMP to activate PDE2 activity, whilst having a much smaller inhibitory effect on the unstimulated PDE2 activity. EHNA exhibited normal Michaelian kinetics of inhibition for the cyclic GMP-stimulated PDE2 activity with Hill plots near unity. Apparent negative co-operative effect were seen in the absence of cyclic GMP with Hill coefficients of approximately 0.3 for inhibition of PDE2 activity. Within 5 min of challenge of thymocytes with the lectin phytohaemagglutinin (PHA) there was a transient decrease (approximately 83%) in PDE-4 activity and in PDE2 activity (approximately 40%). Both anti-TCR antibodies also caused an initial reduction in the PDE4 activity which was followed by a sustained and profound increase in activity. In contrast to that observed with PHA, anti-TCR/CD3 antisera had little effect on PDE2 activity. It is suggested that, dependent upon the intracellular concentrations of cyclic GMP, thymocyte cyclic AMP metabolism can be expected to switch from being under the predominant control of PDE4 activity to that determined

  7. Activation of rhodopsin gene transcription in cultured retinal precursors of chicken embryo: role of Ca(2+) signaling and hyperpolarization-activated cation channels.

    PubMed

    Bernard, Marianne; Dejos, Camille; Bergès, Thierry; Régnacq, Matthieu; Voisin, Pierre

    2014-04-01

    This study reports that the spontaneous 50-fold activation of rhodopsin gene transcription, observed in cultured retinal precursors from 13-day chicken embryo, relies on a Ca(2+)-dependent mechanism. Activation of a transiently transfected rhodopsin promoter (luciferase reporter) in these cells was inhibited (60%) by cotransfection of a dominant-negative form of the cAMP-responsive element-binding protein. Both rhodopsin promoter activity and rhodopsin mRNA accumulation were blocked by Ca(2+)/calmodulin-dependent kinase II inhibitors, but not by protein kinase A inhibitors, suggesting a role of Ca(2+) rather than cAMP. This was confirmed by the inhibitory effect of general and T-type selective Ca(2+) channel blockers. Oscillations in Ca(2+) fluorescence (Fluo8) could be observed in 1/10 cells that activated the rhodopsin promoter (DsRed reporter). A robust and reversible inhibition of rhodopsin gene transcription by ZD7288 indicated a role of hyperpolarization-activated channels (HCN). Cellular localization and developmental expression of HCN1 were compatible with a role in the onset of rhodopsin gene transcription. Together, the data suggest that the spontaneous activation of rhodopsin gene transcription in cultured retinal precursors results from a signaling cascade that involves the pacemaker activity of HCN channels, the opening of voltage-gated Ca(2+)-channels, activation of Ca(2+)/calmodulin-dependent kinase II and phosphorylation of cAMP-responsive element-binding protein. Rhodopsin gene expression in cultured retinal precursors from chicken embryo relies on a Ca2+-dependent mechanism whereby hyperpolarization-activated cyclic nucleotide-gated channels (HCN) activate T-type voltage-dependent Ca2+ channels (VDCC) through membrane depolarization, causing calmodulin-dependent kinase II (CaMKII) to phosphorylate the cAMP-responsive element-binding protein (CREB) and leading to activation of rhodopsin gene transcription. Photoreceptor localization and development

  8. Kinetics of activation of the P4 promoter of pBR322 by the Escherichia coli cyclic AMP receptor protein.

    PubMed

    Hoggett, J G; Brierley, I

    1992-11-01

    The activation of transcription initiation from the P4 promoter of pBR322 by the Escherichia coli cyclic AMP receptor protein (CRP) has been investigated using a fluorescence abortive initiation assay. The effect of the cyclic-AMP/CRP complex on the linear P4 promoter was to increase the initial binding (KB) of RNA polymerase to the promoter by about a factor of 10, but the rate of isomerization of closed to open complex (kf) was unaffected. One molecule of CRP per promoter was required for activation, and the concentration of cyclic AMP producing half-maximal stimulation was about 7-8 microM. Supercoiling caused a 2-3-fold increase in the rate of isomerization of the CRP-activated promoter, but weakened the initial binding of polymerase by about one order of magnitude. The unactivated supercoiled promoter was too weak to allow reliable assessment of kinetic parameters against the high background rate originating from the rest of the plasmid. PMID:1445251

  9. Kinetics of activation of the P4 promoter of pBR322 by the Escherichia coli cyclic AMP receptor protein.

    PubMed Central

    Hoggett, J G; Brierley, I

    1992-01-01

    The activation of transcription initiation from the P4 promoter of pBR322 by the Escherichia coli cyclic AMP receptor protein (CRP) has been investigated using a fluorescence abortive initiation assay. The effect of the cyclic-AMP/CRP complex on the linear P4 promoter was to increase the initial binding (KB) of RNA polymerase to the promoter by about a factor of 10, but the rate of isomerization of closed to open complex (kf) was unaffected. One molecule of CRP per promoter was required for activation, and the concentration of cyclic AMP producing half-maximal stimulation was about 7-8 microM. Supercoiling caused a 2-3-fold increase in the rate of isomerization of the CRP-activated promoter, but weakened the initial binding of polymerase by about one order of magnitude. The unactivated supercoiled promoter was too weak to allow reliable assessment of kinetic parameters against the high background rate originating from the rest of the plasmid. PMID:1445251

  10. Activation of Exchange Protein Activated by Cyclic-AMP Enhances Long-Lasting Synaptic Potentiation in the Hippocampus

    ERIC Educational Resources Information Center

    Gelinas, Jennifer N.; Banko, Jessica L.; Peters, Melinda M.; Klann, Eric; Weeber, Edwin J.; Nguyen, Peter V.

    2008-01-01

    cAMP is a critical second messenger implicated in synaptic plasticity and memory in the mammalian brain. Substantial evidence links increases in intracellular cAMP to activation of cAMP-dependent protein kinase (PKA) and subsequent phosphorylation of downstream effectors (transcription factors, receptors, protein kinases) necessary for long-term…

  11. Hormone-sensitive lipase in differentiated 3T3-L1 cells and its activation by cyclic AMP-dependent protein kinase.

    PubMed Central

    Kawamura, M; Jensen, D F; Wancewicz, E V; Joy, L L; Khoo, J C; Steinberg, D

    1981-01-01

    Differentiation of 3T3-L1 fibroblasts to adipocyte-like cells was accompanied by a 19-fold increase in neutral triglyceride lipase activity, a 12-fold increase in diglyceride lipase activity, a 10-fold increase in monoglyceride lipase activity, and a 280-fold increase in cholesterol esterase activity. In contrast, acid acylhydrolase activities did not increase during differentiation. The rate of glycerol release from unstimulated intact cells increased by more than 1 order of magnitude upon differentiation. Isoproterenol (1 microM) and 1-methyl-3-isobutylxanthine (0.1 mM) further stimulated this rate of glycerol release 3-fold. The neutral triglyceride lipase activity in cell-free preparations of differentiated cells was activated 105% by cyclic AMP-dependent protein kinase. Neutral cholesterol esterase, diglyceride lipase, and monoglyceride lipase were also activated (117%, 10%, and 37+, respectively) by cyclic AMP-dependent protein kinase. In contrast, protein kinase had no effect on any of the four lysosomal acid acylhydrolase activities. Thus, hormone-sensitive lipase, the most characteristic and functionally important enzyme of adipose tissue, has been characterized in differentiated 3T3-L1 cells. The 3T3-L1 cell should be a valuable model system in which to study regulation of hormone-sensitive lipase, particularly its long-term regulation. PMID:6262767

  12. The role of group 14 element hydrides in the activation of C-H bonds in cyclic olefins.

    PubMed

    Summerscales, Owen T; Caputo, Christine A; Knapp, Caroline E; Fettinger, James C; Power, Philip P

    2012-09-01

    Formally, triple-bonded dimetallynes ArEEAr [E = Ge (1), Sn (2); Ar = C(6)H(3)-2,6-(C(6)H(3)-2,6-(i)Pr(2))(2)] have been previously shown to activate aliphatic, allylic C-H bonds in cyclic olefins, cyclopentadiene (CpH), cyclopentene (c-C(5)H(8)) and 1,4-cyclohexadiene, with intriguing selectivity. In the case of the five-membered carbocycles, cyclopentadienyl species ArECp [E = Ge (3), Sn (4)] are formed. In this study, we examine the mechanisms for activation of CpH and c-C(5)H(8) using experimental methods and describe a new product found from the reaction between 1 and c-C(5)H(8), an asymmetrically substituted digermene ArGe(H)Ge(c-C(5)H(9))Ar (5), crystallized in 46% yield. This compound contains a hydrogenated cyclopentyl moiety and is found to be produced in a 3:2 ratio with 3, explaining the fate of the liberated H atoms following triple C-H activation. We show that when these C-H activation reactions are carried out in the presence of tert-butyl ethylene (excess), compounds {ArE(CH(2)CH(2)tBu)}(2) [E = Ge(8), Sn(9)] are obtained in addition to ArECp; in the case of CpH, the neohexyl complexes replace the production of H(2) gas, and for c-C(5)H(8) they displace cyclopentyl product 5 and account for all the hydrogen removed in the dehydroaromatization reactions. To confirm the source of 8 and 9, it was demonstrated that these molecules are formed cleanly between the reaction of (ArEH)(2) [E = Ge(6), Sn(7)] and tert-butyl ethylene, new examples of noncatalyzed hydro-germylation and -stannylation. Therefore, the presence of transient hydrides of the type 6 and 7 can be surmised to be reactive intermediates in the production of 3 and 4, along with H(2), from 1 and 2 and CpH (respectively), or the formation of 3 and 5 from 1. The reaction of 6 or 7 with CpH gave 3 or 4, respectively, with concomitant H(2) evolution, demonstrating the basic nature of these low-valent group 14 element hydrides and their key role in the 'cascade' of C-H activation steps

  13. Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex.

    PubMed

    Neymotin, S A; McDougal, R A; Bulanova, A S; Zeki, M; Lakatos, P; Terman, D; Hines, M L; Lytton, W W

    2016-03-01

    Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium (Ca(2+)) regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. The network contained 776 compartmental neurons arranged in the cortical layers, connected using synapses containing AMPA/NMDA/GABAA/GABAB receptors. Metabotropic glutamate receptors (mGluR) produced inositol triphosphate (IP3) which caused the release of Ca(2+) from endoplasmic reticulum (ER) stores, with reuptake by sarco/ER Ca(2+)-ATP-ase pumps (SERCA), and influence on HCN channels. Stimulus-induced depolarization led to Ca(2+) influx via NMDA and voltage-gated Ca(2+) channels (VGCCs). After a delay, mGluR activation led to ER Ca(2+) release via IP3 receptors. These factors increased HCN channel conductance and produced firing lasting for ∼1min. The model displayed inter-scale synergies among synaptic weights, excitation/inhibition balance, firing rates, membrane depolarization, Ca(2+) levels, regulation of HCN channels, and induction of persistent activity. The interaction between inhibition and Ca(2+) at the HCN channel nexus determined a limited range of inhibition strengths for which intracellular Ca(2+) could prepare population-specific persistent activity. Interactions between metabotropic and ionotropic inputs to the neuron demonstrated how multiple pathways could contribute in a complementary manner to persistent activity. Such redundancy and complementarity via multiple pathways is a critical feature of biological systems. Mediation of activation at different time scales, and through different pathways, would be expected to protect against disruption, in

  14. Kynurenic acid and zaprinast induce analgesia by modulating HCN channels through GPR35 activation.

    PubMed

    Resta, Francesco; Masi, Alessio; Sili, Maria; Laurino, Annunziatina; Moroni, Flavio; Mannaioni, Guido

    2016-09-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have a key role in the control of cellular excitability. HCN2, a subgroup of the HCN family channels, are heavily expressed in small dorsal root ganglia (DRG) neurons and their activation seems to be important in the determination of pain intensity. Intracellular elevation of cAMP levels activates HCN-mediated current (Ih) and small DRG neurons excitability. GPR35, a Gi/o coupled receptor, is highly expressed in small DRG neurons, and we hypothesized that its activation, mediated by endogenous or exogenous ligands, could lead to pain control trough a reduction of Ih current. Patch clamp recordings were carried out in primary cultures of rat DRG neurons and the effects of GPR35 activation on Ih current and neuronal excitability were studied in control conditions and after adenylate cyclase activation with either forskolin or prostaglandin E2 (PGE2). We found that both kynurenic acid (KYNA) and zaprinast, the endogenous and synthetic GPR35 agonist respectively, were able to antagonize the forskolin-induced depolarization of resting membrane potential by reducing Ih-mediated depolarization. Similar results were obtained when PGE2 was used to activate adenylate cyclase and to increase Ih current and the overall neuronal excitability. Finally, we tested the analgesic effect of both GPR35 agonists in an in vivo model of PGE2-induced thermal hyperalgesia. In accord with the hypothesis, both KYNA and zaprinast showed a dose dependent analgesic effect. In conclusion, GPR35 activation leads to a reduced excitability of small DRG neurons in vitro and causes a dose-dependent analgesia in vivo. GPR35 agonists, by reducing adenylate cyclase activity and inhibiting Ih in DRG neurons may represent a promising new group of analgesic drugs. PMID:27131920

  15. Evolution of Vertebrate Phototransduction: Cascade Activation

    PubMed Central

    Lamb, Trevor D.; Patel, Hardip; Chuah, Aaron; Natoli, Riccardo C.; Davies, Wayne I. L.; Hart, Nathan S.; Collin, Shaun P.; Hunt, David M.

    2016-01-01

    We applied high-throughput sequencing to eye tissue from several species of basal vertebrates (a hagfish, two species of lamprey, and five species of gnathostome fish), and we analyzed the mRNA sequences for the proteins underlying activation of the phototransduction cascade. The molecular phylogenies that we constructed from these sequences are consistent with the 2R WGD model of two rounds of whole genome duplication. Our analysis suggests that agnathans retain an additional representative (that has been lost in gnathostomes) in each of the gene families we studied; the evidence is strong for the G-protein α subunit (GNAT) and the cGMP phosphodiesterase (PDE6), and indicative for the cyclic nucleotide-gated channels (CNGA and CNGB). Two of the species (the hagfish Eptatretus cirrhatus and the lamprey Mordacia mordax) possess only a single class of photoreceptor, simplifying deductions about the composition of cascade protein isoforms utilized in their photoreceptors. For the other lamprey, Geotria australis, analysis of the ratios of transcript levels in downstream and upstream migrant animals permits tentative conclusions to be drawn about the isoforms used in four of the five spectral classes of photoreceptor. Overall, our results suggest that agnathan rod-like photoreceptors utilize the same GNAT1 as gnathostomes, together with a homodimeric PDE6 that may be agnathan-specific, whereas agnathan cone-like photoreceptors utilize a GNAT that may be agnathan-specific, together with the same PDE6C as gnathostomes. These findings help elucidate the evolution of the vertebrate phototransduction cascade from an ancestral chordate phototransduction cascade that existed prior to the vertebrate radiation. PMID:27189541

  16. Evolution of Vertebrate Phototransduction: Cascade Activation.

    PubMed

    Lamb, Trevor D; Patel, Hardip; Chuah, Aaron; Natoli, Riccardo C; Davies, Wayne I L; Hart, Nathan S; Collin, Shaun P; Hunt, David M

    2016-08-01

    We applied high-throughput sequencing to eye tissue from several species of basal vertebrates (a hagfish, two species of lamprey, and five species of gnathostome fish), and we analyzed the mRNA sequences for the proteins underlying activation of the phototransduction cascade. The molecular phylogenies that we constructed from these sequences are consistent with the 2R WGD model of two rounds of whole genome duplication. Our analysis suggests that agnathans retain an additional representative (that has been lost in gnathostomes) in each of the gene families we studied; the evidence is strong for the G-protein α subunit (GNAT) and the cGMP phosphodiesterase (PDE6), and indicative for the cyclic nucleotide-gated channels (CNGA and CNGB). Two of the species (the hagfish Eptatretus cirrhatus and the lamprey Mordacia mordax) possess only a single class of photoreceptor, simplifying deductions about the composition of cascade protein isoforms utilized in their photoreceptors. For the other lamprey, Geotria australis, analysis of the ratios of transcript levels in downstream and upstream migrant animals permits tentative conclusions to be drawn about the isoforms used in four of the five spectral classes of photoreceptor. Overall, our results suggest that agnathan rod-like photoreceptors utilize the same GNAT1 as gnathostomes, together with a homodimeric PDE6 that may be agnathan-specific, whereas agnathan cone-like photoreceptors utilize a GNAT that may be agnathan-specific, together with the same PDE6C as gnathostomes. These findings help elucidate the evolution of the vertebrate phototransduction cascade from an ancestral chordate phototransduction cascade that existed prior to the vertebrate radiation. PMID:27189541

  17. Isolation, structure, and biological activity of Phaeofungin, a cyclic lipodepsipeptide from a Phaeosphaeria sp. Using the Genome-Wide Candida albicans Fitness Test.

    PubMed

    Singh, Sheo B; Ondeyka, John; Harris, Guy; Herath, Kithsiri; Zink, Deborah; Vicente, Francisca; Bills, Gerald; Collado, Javier; Platas, Gonzalo; González del Val, Antonio; Martin, Jesus; Reyes, Fernando; Wang, Hao; Kahn, Jennifer Nielsen; Galuska, Stefan; Giacobbe, Robert; Abruzzo, George; Roemer, Terry; Xu, Deming

    2013-03-22

    Phaeofungin (1), a new cyclic depsipeptide isolated from Phaeosphaeria sp., was discovered by application of reverse genetics technology, using the Candida albicans fitness test (CaFT). Phaeofungin is comprised of seven amino acids and a β,γ-dihydroxy-γ-methylhexadecanoic acid arranged in a 25-membered cyclic depsipeptide. Five of the amino acids were assigned with d-configurations. The structure was elucidated by 2D-NMR and HRMS-MS analysis of the natural product and its hydrolyzed linear peptide. The absolute configuration of the amino acids was determined by Marfey's method by complete and partial hydrolysis of 1. The CaFT profile of the phaeofungin-containing extract overlapped with that of phomafungin (3), another structurally different cyclic lipodepsipeptide isolated from a Phoma sp. using the same approach. Comparative biological characterization further demonstrated that these two fungal lipodepsipeptides are functionally distinct. While phomafungin was potentiated by cyclosporin A (an inhibitor of the calcineurin pathway), phaeofungin was synergized with aureobasidin A (2) (an inhibitor of the sphingolipid biosynthesis) and to some extent caspofungin (an inhibitor of glucan synthase). Furthermore, phaeofungin caused ATP release in wild-type C. albicans strains but phomafungin did not. It showed modest antifungal activity against C. albicans (MIC 16-32 μg/mL) and better activity against Aspergillus fumigatus (MIC 8-16 μg/mL) and Trichophyton mentagrophytes (MIC 4 μg/mL). The linear peptide was inactive, suggesting that the macrocyclic depsipeptide ring is essential for target engagement and antifungal activity. PMID:23259972

  18. Identification of Cyclic GMP-Activated Nonselective Ca2+-Permeable Cation Channels and Associated CNGC5 and CNGC6 Genes in Arabidopsis Guard Cells1[W][OPEN

    PubMed Central

    Wang, Yong-Fei; Munemasa, Shintaro; Nishimura, Noriyuki; Ren, Hui-Min; Robert, Nadia; Han, Michelle; Puzõrjova, Irina; Kollist, Hannes; Lee, Stephen; Mori, Izumi; Schroeder, Julian I.

    2013-01-01

    Cytosolic Ca2+ in guard cells plays an important role in stomatal movement responses to environmental stimuli. These cytosolic Ca2+ increases result from Ca2+ influx through Ca2+-permeable channels in the plasma membrane and Ca2+ release from intracellular organelles in guard cells. However, the genes encoding defined plasma membrane Ca2+-permeable channel activity remain unknown in guard cells and, with some exceptions, largely unknown in higher plant cells. Here, we report the identification of two Arabidopsis (Arabidopsis thaliana) cation channel genes, CNGC5 and CNGC6, that are highly expressed in guard cells. Cytosolic application of cyclic GMP (cGMP) and extracellularly applied membrane-permeable 8-Bromoguanosine 3′,5′-cyclic monophosphate-cGMP both activated hyperpolarization-induced inward-conducting currents in wild-type guard cells using Mg2+ as the main charge carrier. The cGMP-activated currents were strongly blocked by lanthanum and gadolinium and also conducted Ba2+, Ca2+, and Na+ ions. cngc5 cngc6 double mutant guard cells exhibited dramatically impaired cGMP-activated currents. In contrast, mutations in CNGC1, CNGC2, and CNGC20 did not disrupt these cGMP-activated currents. The yellow fluorescent protein-CNGC5 and yellow fluorescent protein-CNGC6 proteins localize in the cell periphery. Cyclic AMP activated modest inward currents in both wild-type and cngc5cngc6 mutant guard cells. Moreover, cngc5 cngc6 double mutant guard cells exhibited functional abscisic acid (ABA)-activated hyperpolarization-dependent Ca2+-permeable cation channel currents, intact ABA-induced stomatal closing responses, and whole-plant stomatal conductance responses to darkness and changes in CO2 concentration. Furthermore, cGMP-activated currents remained intact in the growth controlled by abscisic acid2 and abscisic acid insensitive1 mutants. This research demonstrates that the CNGC5 and CNGC6 genes encode unique cGMP-activated nonselective Ca2+-permeable cation channels

  19. Determinants of ligand binding and catalytic activity in the myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase

    PubMed Central

    Raasakka, Arne; Myllykoski, Matti; Laulumaa, Saara; Lehtimäki, Mari; Härtlein, Michael; Moulin, Martine; Kursula, Inari; Kursula, Petri

    2015-01-01

    2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) is an enzyme highly abundant in the central nervous system myelin of terrestrial vertebrates. The catalytic domain of CNPase belongs to the 2H phosphoesterase superfamily and catalyzes the hydrolysis of nucleoside 2′,3′-cyclic monophosphates to nucleoside 2′-monophosphates. The detailed reaction mechanism and the essential catalytic amino acids involved have been described earlier, but the roles of many amino acids in the vicinity of the active site have remained unknown. Here, several CNPase catalytic domain mutants were studied using enzyme kinetics assays, thermal stability experiments, and X-ray crystallography. Additionally, the crystal structure of a perdeuterated CNPase catalytic domain was refined at atomic resolution to obtain a detailed view of the active site and the catalytic mechanism. The results specify determinants of ligand binding and novel essential residues required for CNPase catalysis. For example, the aromatic side chains of Phe235 and Tyr168 are crucial for substrate binding, and Arg307 may affect active site electrostatics and regulate loop dynamics. The β5-α7 loop, unique for CNPase in the 2H phosphoesterase family, appears to have various functions in the CNPase reaction mechanism, from coordinating the nucleophilic water molecule to providing a binding pocket for the product and being involved in product release. PMID:26563764

  20. Plant Cyclic Nucleotide Signalling

    PubMed Central

    Martinez-Atienza, Juliana; Van Ingelgem, Carl; Roef, Luc

    2007-01-01

    The presence of the cyclic nucleotides 3′,5′-cyclic adenyl monophosphate (cAMP) and 3′,5′-cyclic guanyl monophosphate (cGMP) in plants is now generally accepted. In addition, cAMP and cGMP have been implicated in the regulation of important plant processes such as stomatal functioning, monovalent and divalent cation fluxes, chloroplast development, gibberellic acid signalling, pathogen response and gene transcription. However, very little is known regarding the components of cyclic nucleotide signalling in plants. In this addendum, the evidence for specific mechanisms of plant cyclic nucleotide signalling is evaluated and discussed. PMID:19704553

  1. Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels

    PubMed Central

    Qi, Zhi; Verma, Rajeev; Gehring, Chris; Yamaguchi, Yube; Zhao, Yichen; Ryan, Clarence A.; Berkowitz, Gerald A.

    2010-01-01

    A family of peptide signaling molecules (AtPeps) and their plasma membrane receptor AtPepR1 are known to act in pathogen-defense signaling cascades in plants. Little is currently known about the molecular mechanisms that link these signaling peptides and their receptor, a leucine-rich repeat receptor-like kinase, to downstream pathogen-defense responses. We identify some cellular activities of these molecules that provide the context for a model for their action in signaling cascades. AtPeps activate plasma membrane inwardly conducting Ca2+ permeable channels in mesophyll cells, resulting in cytosolic Ca2+ elevation. This activity is dependent on their receptor as well as a cyclic nucleotide-gated channel (CNGC2). We also show that the leucine-rich repeat receptor-like kinase receptor AtPepR1 has guanylyl cyclase activity, generating cGMP from GTP, and that cGMP can activate CNGC2-dependent cytosolic Ca2+ elevation. AtPep-dependent expression of pathogen-defense genes (PDF1.2, MPK3, and WRKY33) is mediated by the Ca2+ signaling pathway associated with AtPep peptides and their receptor. The work presented here indicates that extracellular AtPeps, which can act as danger-associated molecular patterns, signal by interaction with their receptor, AtPepR1, a plasma membrane protein that can generate cGMP. Downstream from AtPep and AtPepR1 in a signaling cascade, the cGMP-activated channel CNGC2 is involved in AtPep- and AtPepR1-dependent inward Ca2+ conductance and resulting cytosolic Ca2+ elevation. The signaling cascade initiated by AtPeps leads to expression of pathogen-defense genes in a Ca2+-dependent manner. PMID:21088220

  2. Active dendrites regulate the impact of gliotransmission on rat hippocampal pyramidal neurons.

    PubMed

    Ashhad, Sufyan; Narayanan, Rishikesh

    2016-06-01

    An important consequence of gliotransmission, a signaling mechanism that involves glial release of active transmitter molecules, is its manifestation as N-methyl-d-aspartate receptor (NMDAR)-dependent slow inward currents in neurons. However, the intraneuronal spatial dynamics of these events or the role of active dendrites in regulating their amplitude and spatial spread have remained unexplored. Here, we used somatic and/or dendritic recordings from rat hippocampal pyramidal neurons and demonstrate that a majority of NMDAR-dependent spontaneous slow excitatory potentials (SEP) originate at dendritic locations and are significantly attenuated through their propagation across the neuronal arbor. We substantiated the astrocytic origin of SEPs through paired neuron-astrocyte recordings, where we found that specific infusion of inositol trisphosphate (InsP3) into either distal or proximal astrocytes enhanced the amplitude and frequency of neuronal SEPs. Importantly, SEPs recorded after InsP3 infusion into distal astrocytes exhibited significantly slower kinetics compared with those recorded after proximal infusion. Furthermore, using neuron-specific infusion of pharmacological agents and morphologically realistic conductance-based computational models, we demonstrate that dendritically expressed hyperpolarization-activated cyclic-nucleotide-gated (HCN) and transient potassium channels play critical roles in regulating the strength, kinetics, and compartmentalization of neuronal SEPs. Finally, through the application of subtype-specific receptor blockers during paired neuron-astrocyte recordings, we provide evidence that GluN2B- and GluN2D-containing NMDARs predominantly mediate perisomatic and dendritic SEPs, respectively. Our results unveil an important role for active dendrites in regulating the impact of gliotransmission on neurons and suggest astrocytes as a source of dendritic plateau potentials that have been implicated in localized plasticity and place cell

  3. Remodeling of Hyperpolarization-Activated Current, Ih, in Ah-Type Visceral Ganglion Neurons Following Ovariectomy in Adult Rats

    PubMed Central

    Xu, Wen-Xiao; Yan, Zhen-Yu; Liu, Yang; Zhou, Jia-Ying; Zhang, Hao-Cheng; Wang, Li-Juan; Pan, Xiao-Dong; Fu, Yili

    2013-01-01

    Hyperpolarization-activated currents (Ih) mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels modulate excitability of myelinated A− and Ah-type visceral ganglion neurons (VGN). Whether alterations in Ih underlie the previously reported reduction of excitability of myelinated Ah-type VGNs following ovariectomy (OVX) has remained unclear. Here we used the intact nodose ganglion preparation in conjunction with electrophysiological approaches to examine the role of Ih remodeling in altering Ah-type neuron excitability following ovariectomy in adult rats. Ah-type neurons were identified based on their afferent conduction velocity. Ah-type neurons in nodose ganglia from non-OVX rats exhibited a voltage ‘sag’ as well as ‘rebound’ action potentials immediately following hyperpolarizing current injections, which both were suppressed by the Ih blocker ZD7288. Repetitive spike activity induced afterhyperpolarizations lasting several hundreds of milliseconds (termed post-excitatory membrane hyperpolarizations, PEMHs), which were significantly reduced by ZD7288, suggesting that they resulted from transient deactivation of Ih during the preceding spike trains. Ovariectomy reduced whole-cell Ih density, caused a hyperpolarizing shift of the voltage-dependence of Ih activation, and slowed Ih activation. OVX-induced Ih remodeling was accompanied by a flattening of the stimulus frequency/response curve and loss of PEMHs. Also, HCN1 mRNA levels were reduced by ∼30% in nodose ganglia from OVX rats compared with their non-OVX counterparts. Acute exposure of nodose ganglia to 17beta-estradiol partly restored Ih density and accelerated Ih activation in Ah-type cells. In conclusion, Ih plays a significant role in modulating the excitability of myelinated Ah-type VGNs in adult female rats. PMID:23951107

  4. Two DHH subfamily 1 proteins in Streptococcus pneumoniae possess cyclic di-AMP phosphodiesterase activity and affect bacterial growth and virulence.

    PubMed

    Bai, Yinlan; Yang, Jun; Eisele, Leslie E; Underwood, Adam J; Koestler, Benjamin J; Waters, Christopher M; Metzger, Dennis W; Bai, Guangchun

    2013-11-01

    Cyclic di-AMP (c-di-AMP) and cyclic di-GMP (c-di-GMP) are signaling molecules that play important roles in bacterial biology and pathogenesis. However, these nucleotides have not been explored in Streptococcus pneumoniae, an important bacterial pathogen. In this study, we characterized the c-di-AMP-associated genes of S. pneumoniae. The results showed that SPD_1392 (DacA) is a diadenylate cyclase that converts ATP to c-di-AMP. Both SPD_2032 (Pde1) and SPD_1153 (Pde2), which belong to the DHH subfamily 1 proteins, displayed c-di-AMP phosphodiesterase activity. Pde1 cleaved c-di-AMP into phosphoadenylyl adenosine (pApA), whereas Pde2 directly hydrolyzed c-di-AMP into AMP. Additionally, Pde2, but not Pde1, degraded pApA into AMP. Our results also demonstrated that both Pde1 and Pde2 played roles in bacterial growth, resistance to UV treatment, and virulence in a mouse pneumonia model. These results indicate that c-di-AMP homeostasis is essential for pneumococcal biology and disease. PMID:24013631

  5. Activation of pp70/85 S6 kinases in interleukin-2-responsive lymphoid cells is mediated by phosphatidylinositol 3-kinase and inhibited by cyclic AMP.

    PubMed Central

    Monfar, M; Lemon, K P; Grammer, T C; Cheatham, L; Chung, J; Vlahos, C J; Blenis, J

    1995-01-01

    Activation of phosphatidylinositol 3-kinase (PI3K) and activation of the 70/85-kDa S6 protein kinases (alpha II and alpha I isoforms, referred to collectively as pp70S6k) have been independently linked to the regulation of cell proliferation. We demonstrate that these kinases lie on the same signalling pathway and that PI3K mediates the activation of pp70 by the cytokine interleukin-2 (IL-2). We also show that the activation of pp70S6k can be blocked at different points along the signalling pathway by using specific inhibitors of T-cell proliferation. Inhibition of PI3K activity with structurally unrelated but highly specific PI3K inhibitors (wortmannin or LY294002) results in inhibition of IL-2-dependent but not phorbol ester (conventional protein kinase C [cPKC])-dependent pp70S6k activation. The T-cell immunosuppressant rapamycin potently antagonizes IL-2-(PI3K)- and phorbol ester (cPKC)-mediated activation of pp70S6k. Thus, wortmannin and rapamycin antagonize IL-2-mediated activation of pp70S6k at distinct points along the PI3K-regulated signalling pathway, or rapamycin antagonizes another pathway required for pp70S6k activity. Agents that raise the concentration of intracellular cyclic AMP (cAMP) and activate cAMP-dependent protein kinase (PKA) also inhibit IL-2-dependent activation of pp70S6k. In this case, inhibition appears to occur at least two points in this signalling path. Like rapamycin, PKA appears to act downstream of cPKC-mediated pp70S6k activation, and like wortmannin, PKA antagonizes IL-2-dependent activation of PI3K. The results with rapamycin and wortmannin are of added interest since the yeast and mammalian rapamycin targets resemble PI3K in the catalytic domain. PMID:7528328

  6. Activity of C-7 substituted cyclic acetal derivatives of mitomycin C and porfiromycin against hypoxic and oxygenated EMT6 carcinoma cells in vitro and in vivo.

    PubMed

    Rockwell, S; Keyes, S R; Loomis, R; Kelley, M; Vyas, D M; Wong, H; Doyle, T W; Sartorelli, A C

    1991-06-01

    A series of cyclic acetal derivatives of mitomycin C (MC) and porfiromycin (POR) were tested for their ability to kill hypoxic and oxygenated EMT6 tumor cells. Amino methyl acetal and thioacetal substitutions at C-7 of MC and POR dramatically increased the cytotoxicity of the compounds to hypoxic EMT6 tumor cells in vitro but had little effect on the aerobic toxicities. In contrast, a methyl substitution at N1a markedly decreased the aerobic cytotoxicities of the compounds but did not alter the hypoxic cytotoxicities. The POR acetal, BMY-42355, had the largest differential between hypoxic and aerobic cytotoxicities yet observed among MC analogs. Preliminary studies in mice showed that BMY-42355 had good antineoplastic activity when used alone or in combination with radiation and was less toxic than POR; the therapeutic ratio of this compound in these initial studies was higher than those of either MC or POR. PMID:2049227

  7. Effects of a novel cyclic RGD peptidomimetic on cell proliferation, migration and angiogenic activity in human endothelial cells

    PubMed Central

    2014-01-01

    Background Cyclic RGD peptidomimetics containing a bifunctional diketopiperazine scaffold are a novel class of high-affinity ligands for the integrins αVβ3 and αVβ5. Since integrins are a promising target for the modulation of normal and pathological angiogenesis, the present study aimed at characterizing the ability of the RGD peptidomimetic cyclo[DKP-RGD] 1 proliferation, migration and network formation in human umbilical vein endothelial cells (HUVEC). Methods Cell viability was assessed by flow cytometry and annexin V (ANX)/propidium iodide (PI) staining. Cell proliferation was evaluated by the ELISA measurement of bromodeoxyuridine (BrdU) incorporation. Network formation by HUVEC cultured in Matrigel-coated plates was evaluated by optical microscopy and image analysis. Integrin subunit mRNA expression was assessed by real time-PCR and Akt phosphorylation by western blot analysis. Results Cyclo[DKP-RGD] 1 does not affect cell viability and proliferation either in resting conditions or in the presence of the pro-angiogenic growth factors VEGF, EGF, FGF, and IGF-I. Addition of cyclo[DKP-RGD] 1 however significantly decreased network formation induced by pro-angiogenic growth factors or by IL-8. Cyclo[DKP-RGD] 1 did not affect mRNA levels of αV, β3 or β5 integrin subunits, however it significantly reduced the phosphorylation of Akt. Conclusions Cyclo[DKP-RGD] 1 can be a potential modulator of angiogenesis induced by different growth factors, possibly devoid of the adverse effects of cytotoxic RGD peptidomimetic analogues. PMID:25053992

  8. Cyclic phosphonium ionic liquids

    PubMed Central

    Mukhlall, Joshua A; Romeo, Alicia R; Gohdo, Masao; Ramati, Sharon; Berman, Marc; Suarez, Sophia N

    2014-01-01

    Summary Ionic liquids (ILs) incorporating cyclic phosphonium cations are a novel category of materials. We report here on the synthesis and characterization of four new cyclic phosphonium bis(trifluoromethylsulfonyl)amide ILs with aliphatic and aromatic pendant groups. In addition to the syntheses of these novel materials, we report on a comparison of their properties with their ammonium congeners. These exemplars are slightly less conductive and have slightly smaller self-diffusion coefficients than their cyclic ammonium congeners. PMID:24605146

  9. Role of the Cyclic AMP Response Element Binding Complex and Activation of Mitogen-Activated Protein Kinases in Synergistic Activation of the Glycoprotein Hormone α Subunit Gene by Epidermal Growth Factor and Forskolin

    PubMed Central

    Roberson, Mark S.; Ban, Makiko; Zhang, Tong; Mulvaney, Jennifer M.

    2000-01-01

    The aim of these studies was to elucidate a role for epidermal growth factor (EGF) signaling in the transcriptional regulation of the glycoprotein hormone α subunit gene, a subunit of chorionic gonadotropin. Studies examined the effects of EGF and the adenylate cyclase activator forskolin on the expression of a transfected α subunit reporter gene in a human choriocarcinoma cell line (JEG3). At maximal doses, administration of EGF resulted in a 50% increase in a subunit reporter activity; forskolin administration induced a fivefold activation; the combined actions of EGF and forskolin resulted in synergistic activation (greater than eightfold) of the α subunit reporter. Mutagenesis studies revealed that the cyclic AMP response elements (CRE) were required and sufficient to mediate EGF-forskolin-induced synergistic activation. The combined actions of EGF and forskolin resulted in potentiated activation of extracellular signal-regulated kinase (ERK) enzyme activity compared with EGF alone. Specific blockade of ERK activation was sufficient to block EGF-forskolin-induced synergistic activation of the α subunit reporter. Pretreatment of JEG3 cells with a p38 mitogen-activated protein kinase inhibitor did not influence activation of the α reporter. However, overexpression of c-Jun N-terminal kinase (JNK)-interacting protein 1 as a dominant interfering molecule abolished the synergistic effects of EGF and forskolin on the α subunit reporter. CRE binding studies suggested that the CRE complex consisted of CRE binding protein and EGF-ERK-dependent recruitment of c-Jun–c-Fos (AP-1) to the CRE. A dominant negative form of c-Fos (A-Fos) that specifically disrupts c-Jun–c-Fos DNA binding inhibited synergistic activation of the α subunit. Thus, synergistic activation of the α subunit gene induced by EGF-forskolin requires the ERK and JNK cascades and the recruitment of AP-1 to the CRE binding complex. PMID:10779323

  10. Induction of cyclooxygenase-2 by ginsenoside Rd via activation of CCAAT-enhancer binding proteins and cyclic AMP response binding protein

    SciTech Connect

    Jeong, Hye Gwang; Pokharel, Yuba Raj; Han, Eun Hee; Kang, Keon Wook . E-mail: kwkang@chosun.ac.kr

    2007-07-20

    Panax ginseng is a widely used herbal medicine in East Asia and is reported to have a variety of pharmacological effects against cardiovascular diseases and cancers. Here we show a unique effect of ginsenoside Rd (Rd) on cyclooxygenase-2 (COX-2) expression in RAW264.7 macrophages. Rd (100 {mu}g/ml), but not other ginsenosides induced COX-2 and increased prostaglandin E{sub 2} production. Gel shift and Western blot analyses using nuclear fractions revealed that Rd increased both the DNA binding of and the nuclear levels of CCAAT/enhancer binding protein (C/EBP){alpha}/{beta} and cyclic AMP response element binding protein (CREB), but not of p65, in RAW264.7 cells. Moreover, Rd increased the luciferase reporter gene activity in cells transfected with a 574-bp mouse COX-2 promoter construct. Site-specific mutation analyses confirmed that Rd-mediated transcriptional activation of COX-2 gene was regulated by C/EBP and CREB. These results provide evidence that Rd activated C/EBP and CREB, and that the activation of C/EBP and CREB appears to be essential for induction of COX-2 in RAW264.7 cells.

  11. Age-related changes of cyclic AMP phosphodiesterase activity in rat brain regions and a new phosphodiesterase inhibitor--nootropic agent adafenoxate.

    PubMed

    Stancheva, S L; Alova, L G

    1991-01-01

    1. The low- and high-KM cyclic AMP phosphodiesterase (cAMP PDE) activity in cerebral cortex, striatum, hypothalamus and hippocampus of young (4-5-month-old) and aged (22-month-old) rats has been studied. 2. A significant rise in the high-KM cAMP PDE activity in the cerebral cortex, hypothalamus and hippocampus in aged rats has been found. 3. The activity of the low-KM cAMP PDE does not change during senescence in all the brain structures studied. 4. In a series of increased concentrations (from 5 x 10(-4) to 1 x 10(-5) M) adafenoxate inhibits low- and high-KM cAMP PDE in most of the brain structures studied in both age groups. 5. The present results provide evidence for realization of the CNS effects of adafenoxate through inhibition of cAMP PDE activity and regulation of the intracellular level of cAMP. PMID:1662175

  12. The Evolution of Cyclic Activity of the Sun in the Context of Physical Processes on Late-Type Stars

    NASA Astrophysics Data System (ADS)

    Katsova, Maria M.

    Features of the solar cycle in the context of stellar activity are investigated. We discovered reliably differential rotation in chromospheres of some stars and presented the first stellar butterfly diagrams. These stars possess less regular variability and do not demonstrate excellent cycles. This is the first evidence for differences of the solar activity from processes on stars with Excellent cycles. We compare indices of the chromospheric activity of the Sun with that for above 1,300 northern and southern stars whose activity revealed during planet search programs. We argue the matter pro and con for two possible ways of an evolution of activity from a contraction phase to 10Gyrs. When a young star brakes down, the chromospheric and the coronal activity weaken synchronously. The solar-like activity of the most main sequence F and early G stars does evolve by this path. The activity of the later stars from G5 to K7 after a definite level evolves by another way: the chromospheric activity diminishes up to the solar level, while coronae stay stronger than the solar one. Two possible paths of the evolution of activity are associated with the different depth of the convective zone of these stars. Physically this means that the relative input of small- and large-scale of magnetic fields differs for F-G and K stars.

  13. Zinc deficiency decreases the activity of calmodulin regulated cyclic nucleotide phosphodiesterases in vivo in selected rat tissues.

    PubMed

    Law, J S; McBride, S A; Graham, S; Nelson, N R; Slotnick, B M; Henkin, R I

    1988-08-01

    The effect of zinc deficiency on calmodulin function was investigated by assessing the in vivo activity of two calmodulin regulated enzymes, adenosine 3',5'-monophosphate (c-AMP) and guanosine 3',5'-monophosphate (c-GMP) phosphodiesterase (PDE) in several rat tissues. Enzymatic activities in brain, heart, and testis of rats fed a zinc deficient diet were compared with activities in these tissues from pair fed, zinc supplemented rats. In testis, a tissue in which zinc concentration decreased with zinc deficient diet, enzyme activities were significantly decreased over those in rats who were pair fed zinc supplemented diets. In brain and heart, tissues in which zinc concentrations did not change with either diet, enzymatic activities between the groups were not different. These results indicate that zinc deficiency influences the activity of calmodulin-regulated phosphodiesterases in vivo supporting the hypothesis that zinc plays a role in calmodulin function in vivo in zinc sensitive tissues. PMID:2484550

  14. Benchmarking the repeatability of a pneumatic cyclic neutron activation analysis facility using 16O(n,p)16N for nuclear forensics.

    PubMed

    Pierson, Bruce D; Griffin, Henry C; Flaska, Marek; Katalenich, Jeff A; Kitchen, Brian B; Pozzi, Sara A

    2015-02-01

    A target was prepared for cyclic neutron activation analysis by heat sealing lithium-carbonate in polyethylene. The target was cyclically irradiated 50 times using a Thermo-Scientific accelerator based deuterium-tritium fusion neutron generator. During counting periods, gamma-rays emitted by (16)N were detected using three high-purity germanium detectors acquiring data in list-mode. Total counts acquired in each spectrum were compared between the three detectors to examine variability in geometric positioning of the target and variability of the generator intensity throughout the experiment. These two effects were determined to be the primary sources of variation in the measured counts. Variation in target positioning and generator intensity were found to increase the standard deviation by 34% and 33%, respectively. Transit times to the detector were found to be slower and more variable than transit to the generator but were well below the half second threshold needed to measure short-lived radionuclides with half-lives on the order of seconds. The standard deviation in irradiation time was found to be less than 1 milliseconds. The impact on statistical variability in the measured counts was negligible relative to the two primary sources of variation. Spectra acquired from each cycle were summed together. The sum of the peak areas from the 6.1 MeV gamma-ray and its corresponding single and double escape peaks were used to measure the half-life of (16)N. The result of 7.108(15)seconds derived from data suggests that the currently published value of 7.13(2)seconds has minimal systematic bias induced by background. PMID:25479431

  15. Are Math Grades Cyclical?

    ERIC Educational Resources Information Center

    Adams, Gerald J.; Dial, Micah

    1998-01-01

    The cyclical nature of mathematics grades was studied for a cohort of elementary school students from a large metropolitan school district in Texas over six years (average cohort size of 8495). The study used an autoregressive integrated moving average (ARIMA) model. Results indicate that grades do exhibit a significant cyclical pattern. (SLD)

  16. Affordable Cyclic Voltammetry

    ERIC Educational Resources Information Center

    Stewart, Greg; Kuntzleman, Thomas S.; Amend, John R.; Collins, Michael J.

    2009-01-01

    Cyclic voltammetry is an important component of the undergraduate chemical curriculum. Unfortunately, undergraduate students rarely have the opportunity to conduct experiments in cyclic voltammetry owing to the high cost of potentiostats, which are required to control these experiments. By using MicroLab data acquisition interfaces in conjunction…

  17. Transcription activation at Escherichia coli promoters dependent on the cyclic AMP receptor protein: effects of binding sequences for the RNA polymerase alpha-subunit.

    PubMed Central

    Savery, N J; Rhodius, V A; Wing, H J; Busby, S J

    1995-01-01

    Transcription activation at two semi-synthetic Escherichia coli promoters, CC(-41.5) and CC(-72.5), is dependent on the cyclic AMP receptor protein (CRP) that binds to sites centred 41.5 and 72.5 bp upstream from the respective transcription startpoints. An UP-element that can bind the C-terminal domain of the RNA polymerase (RNAP) alpha-subunit was cloned upstream of the DNA site for CRP at CC(-41.5) and downstream of the DNA site for CRP at CC(-72.5). In both cases CRP-dependent promoter activity was increased by the UP-element, but CRP-independent activity was not increased. DNase I footprinting was exploited to investigate the juxtaposition of bound CRP and RNAP alpha-subunits. In both cases, CRP and RNAP alpha-subunits occupy their cognate binding sites in ternary CRP-RNAP promoter complexes. RNAP alpha-subunits can occupy the UP-element in the absence of CRP, but this is not sufficient for open complex formation. The positive effects of binding RNAP alpha-subunits upstream of the DNA site for CRP at -41.5 are suppressed if the UP-element is incorrectly positioned. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7619086

  18. Identification of the odour-active cyclic diketone cis-2,6-dimethyl-1,4-cyclohexanedione in roasted Arabica coffee brew.

    PubMed

    Miyazato, Hironari; Nakamura, Michiaki; Hashimoto, Seiji; Hayashi, Shuichi

    2013-06-15

    We investigated odour-active trace compounds in roasted Brazilian Arabica coffee. Aroma dilution extract analysis (AEDA) applied to the volatile oil extracted from roasted coffee brew revealed 34 odour-active compounds. Among these, a pungent-smelling unknown odour-active compound was determined. The volatile oil was fractioned by silica gel column chromatography. Gas chromatography-olfactometry (GC-O) and multidimensional gas chromatography-mass spectrometry (MDGC-MS) of the fraction which contained a significant amount of the target unknown compound revealed the cyclic 1,4-diketone, cis-2,6-dimethyl-1,4-cyclohexanedione, which had a pungent odour, and was thus first identified in roasted coffee. Model experiments revealed that cis-2,6-dimethyl-1,4-cyclohexanedione was formed via thermal degradation of sugars, especially monosaccharides, under alkaline conditions. Further, we demonstrated that 2-hydroxy-3-pentanone and 1-hydroxy-2-propanone, thermal degradation products of monosaccharides, were closely related to the formation of cis-2,6-dimethyl-1,4-cyclohexanedione. PMID:23497895

  19. Induction of Photosynthetic Carbon Fixation in Anoxia Relies on Hydrogenase Activity and Proton-Gradient Regulation-Like1-Mediated Cyclic Electron Flow in Chlamydomonas reinhardtii1

    PubMed Central

    Bailleul, Benjamin; Berne, Nicolas

    2015-01-01

    The model green microalga Chlamydomonas reinhardtii is frequently subject to periods of dark and anoxia in its natural environment. Here, by resorting to mutants defective in the maturation of the chloroplastic oxygen-sensitive hydrogenases or in Proton-Gradient Regulation-Like1 (PGRL1)-dependent cyclic electron flow around photosystem I (PSI-CEF), we demonstrate the sequential contribution of these alternative electron flows (AEFs) in the reactivation of photosynthetic carbon fixation during a shift from dark anoxia to light. At light onset, hydrogenase activity sustains a linear electron flow from photosystem II, which is followed by a transient PSI-CEF in the wild type. By promoting ATP synthesis without net generation of photosynthetic reductants, the two AEF are critical for restoration of the capacity for carbon dioxide fixation in the light. Our data also suggest that the decrease in hydrogen evolution with time of illumination might be due to competition for reduced ferredoxins between ferredoxin-NADP+ oxidoreductase and hydrogenases, rather than due to the sensitivity of hydrogenase activity to oxygen. Finally, the absence of the two alternative pathways in a double mutant pgrl1 hydrogenase maturation factor G-2 is detrimental for photosynthesis and growth and cannot be compensated by any other AEF or anoxic metabolic responses. This highlights the role of hydrogenase activity and PSI-CEF in the ecological success of microalgae in low-oxygen environments. PMID:25931521

  20. Induction of Photosynthetic Carbon Fixation in Anoxia Relies on Hydrogenase Activity and Proton-Gradient Regulation-Like1-Mediated Cyclic Electron Flow in Chlamydomonas reinhardtii.

    PubMed

    Godaux, Damien; Bailleul, Benjamin; Berne, Nicolas; Cardol, Pierre

    2015-06-01

    The model green microalga Chlamydomonas reinhardtii is frequently subject to periods of dark and anoxia in its natural environment. Here, by resorting to mutants defective in the maturation of the chloroplastic oxygen-sensitive hydrogenases or in Proton-Gradient Regulation-Like1 (PGRL1)-dependent cyclic electron flow around photosystem I (PSI-CEF), we demonstrate the sequential contribution of these alternative electron flows (AEFs) in the reactivation of photosynthetic carbon fixation during a shift from dark anoxia to light. At light onset, hydrogenase activity sustains a linear electron flow from photosystem II, which is followed by a transient PSI-CEF in the wild type. By promoting ATP synthesis without net generation of photosynthetic reductants, the two AEF are critical for restoration of the capacity for carbon dioxide fixation in the light. Our data also suggest that the decrease in hydrogen evolution with time of illumination might be due to competition for reduced ferredoxins between ferredoxin-NADP(+) oxidoreductase and hydrogenases, rather than due to the sensitivity of hydrogenase activity to oxygen. Finally, the absence of the two alternative pathways in a double mutant pgrl1 hydrogenase maturation factor G-2 is detrimental for photosynthesis and growth and cannot be compensated by any other AEF or anoxic metabolic responses. This highlights the role of hydrogenase activity and PSI-CEF in the ecological success of microalgae in low-oxygen environments. PMID:25931521

  1. Gating Kinetics of the Cyclic-GMP-Activated Channel of Retinal Rods: Flash Photolysis and Voltage-Jump Studies

    NASA Astrophysics Data System (ADS)

    Karpen, Jeffrey W.; Zimmerman, Anita L.; Stryer, Lubert; Baylor, Denis A.

    1988-02-01

    The gating kinetics of the cGMP-activated cation channel of salamander retinal rods have been studied in excised membrane patches. Relaxations in patch current were observed after two kinds of perturbation: (i) fast jumps of cGMP concentration, generated by laser flash photolysis of a cGMP ester (``caged'' cGMP), and (ii) membrane voltage jumps, which perturb activation of the channel by cGMP. In both methods the speed of activation increased with the final cGMP concentration. The results are explained by a simple kinetic model in which activation involves three sequential cGMP binding steps with bimolecular rate constants close to the diffusion-controlled limit; fully liganded channels undergo rapid open-closed transitions. Voltage perturbs activation by changing the rate constant for channel closing, which increases with hyperpolarization. Intramolecular transitions of the fully liganded channel limit the kinetics of activation at high cGMP concentrations (>50 μ M), whereas at physiological cGMP concentrations (<5 μ M), the kinetics of activation are limited by the third cGMP binding step. The channel appears to be optimized for rapid responses to changes in cytoplasmic cGMP concentration.

  2. Exchange protein directly activated by cAMP (epac): a multidomain cAMP mediator in the regulation of diverse biological functions.

    PubMed

    Schmidt, Martina; Dekker, Frank J; Maarsingh, Harm

    2013-04-01

    Since the discovery nearly 60 years ago, cAMP is envisioned as one of the most universal and versatile second messengers. The tremendous feature of cAMP to tightly control highly diverse physiologic processes, including calcium homeostasis, metabolism, secretion, muscle contraction, cell fate, and gene transcription, is reflected by the award of five Nobel prizes. The discovery of Epac (exchange protein directly activated by cAMP) has ignited a new surge of cAMP-related research and has depicted novel cAMP properties independent of protein kinase A and cyclic nucleotide-gated channels. The multidomain architecture of Epac determines its activity state and allows cell-type specific protein-protein and protein-lipid interactions that control fine-tuning of pivotal biologic responses through the "old" second messenger cAMP. Compartmentalization of cAMP in space and time, maintained by A-kinase anchoring proteins, phosphodiesterases, and β-arrestins, contributes to the Epac signalosome of small GTPases, phospholipases, mitogen- and lipid-activated kinases, and transcription factors. These novel cAMP sensors seem to implement certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Agonists and antagonists selective for Epac are developed and will support further studies on the biologic net outcome of the activation of Epac. This will increase our current knowledge on the pathophysiology of devastating diseases, such as diabetes, cognitive impairment, renal and heart failure, (pulmonary) hypertension, asthma, and chronic obstructive pulmonary disease. Further insights into the cAMP dynamics executed by the Epac signalosome will help to optimize the pharmacological treatment of these diseases. PMID:23447132

  3. Ca2+-Activated Cl− Channels of the ClCa Family Express in the Cilia of a Subset of Rat Olfactory Sensory Neurons

    PubMed Central

    Gonzalez-Silva, Carolina; Vera, Jorge; Bono, María Rosa; González-Billault, Christian; Baxter, Brooke; Hansen, Anne; Lopez, Robert; Gibson, Emily A.

    2013-01-01

    The Ca2+-activated Cl− channel is considered a key constituent of odor transduction. Odorant binding to a specific receptor in the cilia of olfactory sensory neurons (OSNs) triggers a cAMP cascade that mediates the opening of a cationic cyclic nucleotide-gated channel (CNG), allowing Ca2+ influx. Ca2+ ions activate Cl− channels, generating a significant Cl− efflux, with a large contribution to the receptor potential. The Anoctamin 2 channel (ANO2) is a major constituent of the Cl− conductance, but its knock-out has no impairment of behavior and only slightly reduces field potential odorant responses of the olfactory epithelium. Likely, an additional Ca2+-activated Cl− channel of unknown molecular identity is also involved. In addition to ANO2, we detected two members of the ClCa family of Ca2+-activated Cl− channels in the rat olfactory epithelium, ClCa4l and ClCa2. These channels, also expressed in the central nervous system, may correspond to odorant transduction channels. Whole Sprague Dawley olfactory epithelium nested RT-PCR and single OSNs established that the mRNAs of both channels are expressed in OSNs. Real time RT-PCR and full length sequencing of amplified ClCa expressed in rat olfactory epithelium indicated that ClCa4l is the most abundant. Immunoblotting with an antibody recognizing both channels revealed immunoreactivity in the ciliary membrane. Immunochemistry of olfactory epithelium and OSNs confirmed their ciliary presence in a subset of olfactory sensory neurons. The evidence suggests that ClCa4l and ClCa2 might play a role in odorant transduction in rat olfactory cilia. PMID:23874937

  4. Modulators of cyclic AMP systems.

    PubMed

    Hess, S M; Chasin, M; Free, C A; Harris, D N

    1975-01-01

    On the basis of the data reported here, one may conclude that although many agents that act in the central nervous system are modulators of the action of cyclic AMP, it is difficult to establish a direct connection between the pharmacologic activity and the levels of cyclic AMP in the brain. This lack of interrelation applies to the benzodiazepines as well as to the pyrazolopyridines. The data for members of the latter group are somewhat frustrating in this regard, since an excellent correlation has been shown to exist between the potency of inhibition of PDE and activity in the antianxiety test. In measurements of steroidogenesis in the isolated adrenal cell, the correlation between activity in vito and the conflict assay is even better. The data presented here and reported elsewhere (Shimizu et al., 1974; Kelly et al., 1974; Mayer and King, 1974; King and Mayer, 1974) provide evidence that agents that act as inhibitors of PDE in cell-free systems exert their influence on cyclic AMP in tissue slices of the brain of guinea pigs by mechanisms that seem not to be related to an effect on PDE. Papaverine, and possibly chlordiazepoxide, may act by releasing agonists that, in turn, stimulate the accumulation of cyclic AMP. This activity is blocked bo other inhibitors of PDE, such as theophyline. Results obtained by the use of platelets are refreshingly clear. Inhibition of aggregation has been shown to occur when the level of cyclic AMP is raised, and a suggestive exists that the most potent inhibitors of platelet PDE are the best potentiators of the action of PGE1 in blocking aggregation. The study utilizing drugs collected from a large number of therapeutic classes makes clear that it is difficult to attribute the mechanism of action for any of the classes studied to modulation of cyclic AMP. An unexpected finding of this study, however, was the fact that pharmacologic agents include an unusually large number of inhibitors of PDE as compared with agents chosen at

  5. Prostaglandin E2 Inhibits NLRP3 Inflammasome Activation through EP4 Receptor and Intracellular Cyclic AMP in Human Macrophages.

    PubMed

    Sokolowska, Milena; Chen, Li-Yuan; Liu, Yueqin; Martinez-Anton, Asuncion; Qi, Hai-Yan; Logun, Carolea; Alsaaty, Sara; Park, Yong Hwan; Kastner, Daniel L; Chae, Jae Jin; Shelhamer, James H

    2015-06-01

    PGE2 is a potent lipid mediator involved in maintaining homeostasis but also promotion of acute inflammation or immune suppression in chronic inflammation and cancer. Nucleotide-binding domain, leucine-rich repeat-containing protein (NLR)P3 inflammasome plays an important role in host defense. Uncontrolled activation of the NLRP3 inflammasome, owing to mutations in the NLRP3 gene, causes cryopyrin-associated periodic syndromes. In this study, we showed that NLRP3 inflammasome activation is inhibited by PGE2 in human primary monocyte-derived macrophages. This effect was mediated through PGE2 receptor subtype 4 (EP4) and an increase in intracellular cAMP, independently of protein kinase A or exchange protein directly activated by cAMP. A specific agonist of EP4 mimicked, whereas its antagonist or EP4 knockdown reversed, PGE2-mediated NLRP3 inhibition. PGE2 caused an increase in intracellular cAMP. Blockade of adenylate cyclase by its inhibitor reversed PGE2-mediated NLRP3 inhibition. Increase of intracellular cAMP by an activator of adenylate cyclase or an analog of cAMP, or a blockade of cAMP degradation by phosphodiesterase inhibitor decreased NLRP3 activation. Protein kinase A or exchange protein directly activated by cAMP agonists did not mimic, and their antagonists did not reverse, PGE2-mediated NLRP3 inhibition. Additionally, constitutive IL-1β secretion from LPS-primed PBMCs of cryopyrin-associated periodic fever syndromes patients was substantially reduced by high doses of PGE2. Moreover, blocking cytosolic phospholipase A2α by its inhibitor or small interfering RNA or inhibiting cyclooxygenase 2, resulting in inhibition of endogenous PGE2 production, caused an increase in NLRP3 inflammasome activation. Our results suggest that PGE2 might play a role in maintaining homeostasis during the resolution phase of inflammation and might serve as an autocrine and paracrine regulator. PMID:25917098

  6. Distinct perinatal features of the hyperpolarization-activated non-selective cation current Ih in the rat cortical plate

    PubMed Central

    2012-01-01

    Background During neocortical development, multiple voltage- and ligand-gated ion channels are differentially expressed in neurons thereby shaping their intrinsic electrical properties. One of these voltage-gated ion channels, the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel and its current Ih, is an important regulator of neuronal excitability. Thus far, studies on an early Ih appearance in rodent neocortex are missing or conflicting. Therefore, we focused our study on perinatal neocortical Ih and its properties. Results In the perinatal rat neocortex we observed a rapid increase in the number of neurons exhibiting Ih. Perinatal Ih had unique properties: first, a pronounced cAMP sensitivity resulting in a marked shift of the voltage sufficient for half-maximum activation of the current towards depolarized voltages and second, an up to 10 times slower deactivation at physiological membrane potentials when compared to the one at postnatal day 30. The combination of these features was sufficient to suppress membrane resonance in our in silico and in vitro experiments. Although all four HCN subunits were present on the mRNA level we only detected HCN4, HCN3 and HCN1 on the protein level at P0. HCN1 protein at P0, however, appeared incompletely processed. At P30 glycosilated HCN1 and HCN2 dominated. By in silico simulations and heterologous co-expression experiments of a ‘slow’ and a ‘fast’ Ih conducting HCN channel subunit in HEK293 cells, we mimicked most characteristics of the native current, pointing to a functional combination of subunit homo- or heteromeres. Conclusion Taken together, these data indicate a HCN subunit shift initiated in the first 24 hours after birth and implicate a prominent perinatal role of the phylogenetically older HCN3 and/or HCN4 subunits in the developing neocortex. PMID:22694806

  7. Genetics Home Reference: cyclic neutropenia

    MedlinePlus

    ... Understand Genetics Home Health Conditions cyclic neutropenia cyclic neutropenia Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Cyclic neutropenia is a disorder that causes frequent infections and ...

  8. Cyclic AMP in prokaryotes.

    PubMed Central

    Botsford, J L; Harman, J G

    1992-01-01

    Cyclic AMP (cAMP) is found in a variety of prokaryotes including both eubacteria and archaebacteria. cAMP plays a role in regulating gene expression, not only for the classic inducible catabolic operons, but also for other categories. In the enteric coliforms, the effects of cAMP on gene expression are mediated through its interaction with and allosteric modification of a cAMP-binding protein (CRP). The CRP-cAMP complex subsequently binds specific DNA sequences and either activates or inhibits transcription depending upon the positioning of the complex relative to the promoter. Enteric coliforms have provided a model to explore the mechanisms involved in controlling adenylate cyclase activity, in regulating adenylate cyclase synthesis, and in performing detailed examinations of CRP-cAMP complex-regulated gene expression. This review summarizes recent work focused on elucidating the molecular mechanisms of CRP-cAMP complex-mediated processes. For other bacteria, less detail is known. cAMP has been implicated in regulating antibiotic production, phototrophic growth, and pathogenesis. A role for cAMP has been suggested in nitrogen fixation. Often the only data that support cAMP involvement in these processes includes cAMP measurement, detection of the enzymes involved in cAMP metabolism, or observed effects of high concentrations of the nucleotide on cell growth. PMID:1315922

  9. Highly Active and Robust Metalloporphyrin Catalysts for the Synthesis of Cyclic Carbonates from a Broad Range of Epoxides and Carbon Dioxide.

    PubMed

    Maeda, Chihiro; Shimonishi, Junta; Miyazaki, Ray; Hasegawa, Jun-Ya; Ema, Tadashi

    2016-05-01

    Bifunctional metalloporphyrins with quaternary ammonium bromides (nucleophiles) at the meta, para, or ortho positions of meso-phenyl groups were synthesized as catalysts for the formation of cyclic carbonates from epoxides and carbon dioxide under solvent-free conditions. The meta-substituted catalysts exhibited high catalytic performance, whereas the para- and ortho-substituted catalysts showed moderate and low activity, respectively. DFT calculations revealed the origin of the advantage of the meta-substituted catalyst, which could use the flexible quaternary ammonium cation at the meta position to stabilize various anionic species generated during catalysis. A zinc(II) porphyrin with eight nucleophiles at the meta positions showed very high catalytic activity (turnover number (TON)=240 000 at 120 °C, turnover frequency (TOF)=31 500 h(-1) at 170 °C) at an initial CO2 pressure of 1.7 MPa; catalyzed the reaction even at atmospheric CO2 pressure (balloon) at ambient temperature (20 °C); and was applicable to a broad range of substrates, including terminal and internal epoxides. PMID:26990557

  10. Anti-TMV Activity of Malformin A1, a Cyclic Penta-Peptide Produced by an Endophytic Fungus Aspergillus tubingensis FJBJ11

    PubMed Central

    Tan, Qing-Wei; Gao, Fang-Luan; Wang, Fu-Rong; Chen, Qi-Jian

    2015-01-01

    Plant-associated microorganisms are known to produce a variety of metabolites with novel structures and interesting biological activities. An endophytic fungus FJBJ11, isolated from the plant tissue of Brucea javanica (L.) Merr. (Simaroubaceae), was proven to be significantly effective in producing metabolites with anti-Tobacco mosaic virus (TMV) activities. The isolate was identified as Aspergillus tubingensis FJBJ11 based on morphological characteristics and ITS sequence. Bioassay-guided isolation led to the identification of a cycli penta-peptide, malformin A1, along with two cyclic dipeptides, cyclo (Gly-l-Pro) and cyclo (Ala-Leu). Malformin A1 showed potent inhibitory effect against the infection and replication of TMV with IC50 values of 19.7 and 45.4 μg·mL−1, as tested using local lesion assay and leaf-disc method, respectively. The results indicated the potential use of malformin A1 as a leading compound or a promising candidate of new viricide. PMID:25775156

  11. Luteinizing Hormone Reduces the Activity of the NPR2 Guanylyl Cyclase in Mouse Ovarian Follicles, Contributing to the Cyclic GMP Decrease that Promotes Resumption of Meiosis in Oocytes

    PubMed Central

    Robinson, Jerid W.; Zhang, Meijia; Shuhaibar, Leia C.; Norris, Rachael P.; Geerts, Andreas; Wunder, Frank; Eppig, John J.; Potter, Lincoln R.; Jaffe, Laurinda A.

    2012-01-01

    In preovulatory ovarian follicles of mice, meiotic prophase arrest in the oocyte is maintained by cyclic GMP from the surrounding granulosa cells that diffuses into the oocyte through gap junctions. The cGMP is synthesized in the granulosa cells by the transmembrane guanylyl cyclase natriuretic peptide receptor 2 (NPR2) in response to the agonist C-type natriuretic peptide (CNP). In response to luteinizing hormone (LH), cGMP in the granulosa cells decreases, and as a consequence, oocyte cGMP decreases and meiosis resumes. Here we report that within 20 minutes, LH treatment results in decreased guanylyl cyclase activity of NPR2, as determined in the presence of a maximally activating concentration of CNP. This occurs by a process that does not reduce the amount of NPR2 protein. We also show that by a slower process, first detected at 2 hours, LH decreases the amount of CNP available to bind to the receptor. Both of these LH actions contribute to decreasing cGMP in the follicle, thus signaling meiotic resumption in the oocyte. PMID:22546688

  12. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells

    PubMed Central

    Gudjonsson, Thorarinn; Karason, Sigurbergur

    2015-01-01

    Mechanical ventilation (MV) of patients can cause damage to bronchoalveolar epithelium, leading to a sterile inflammatory response, infection and in severe cases sepsis. Limited knowledge is available on the effects of MV on the innate immune defense system in the human lung. In this study, we demonstrate that cyclic stretch of the human bronchial epithelial cell lines VA10 and BCi NS 1.1 leads to down-regulation of cathelicidin antimicrobial peptide (CAMP) gene expression. We show that treatment of VA10 cells with vitamin D3 and/or 4-phenyl butyric acid counteracted cyclic stretch mediated down-regulation of CAMP mRNA and protein expression (LL-37). Further, we observed an increase in pro-inflammatory responses in the VA10 cell line subjected to cyclic stretch. The mRNA expression of the genes encoding pro-inflammatory cytokines IL-8 and IL-1β was increased after cyclic stretching, where as a decrease in gene expression of chemokines IP-10 and RANTES was observed. Cyclic stretch enhanced oxidative stress in the VA10 cells. The mRNA expression of toll-like receptor (TLR) 3, TLR5 and TLR8 was reduced, while the gene expression of TLR2 was increased in VA10 cells after cyclic stretch. In conclusion, our in vitro results indicate that cyclic stretch may differentially modulate innate immunity by down-regulation of antimicrobial peptide expression and increase in pro-inflammatory responses. PMID:26664810

  13. Activation of mGluR1 contributes to neuronal hyperexcitability in the rat anterior cingulate cortex via inhibition of HCN channels.

    PubMed

    Gao, Shi-Hao; Wen, Hui-Zhong; Shen, Lin-Lin; Zhao, Yan-Dong; Ruan, Huai-Zhen

    2016-06-01

    Neuronal hyperexcitability in the anterior cingulate cortex (ACC) is considered as one of the most important pathological changes responsible for the chronification of neuropathic pain. However, the underlying mechanisms remain elusive. In the present study, we investigated the possible mechanisms using a rat model of chronic constriction injury (CCI) to the sciatic nerve. We found a substantial decrease in hyperpolarization-activated/cyclic nucleotide-gated (HCN) currents in layer 5 pyramidal neurons (L5 PNs) in ACC slices, which dramatically increased the excitability of these neurons. This effect could be mimicked in sham slices by activating group 1 metabotropic glutamate receptors, and be blocked in CCI slices by inhibiting metabotropic glutamate receptor subtype 1 (mGluR1). Next, the inhibition of HCN currents was reversed by a protein kinase C (PKC) inhibitor, followed by a reduced neuronal hyperexcitability. Furthermore, HCN channel subtype 1 (HCN1) level was significantly reduced after CCI, whereas mGluR1 level increased. These changes were mainly observed in L5 of the ACC, where HCN1 and mGluR1 were highly colocalized. For behavioral tests, intra-ACC microinjection of mGluR1-shRNA suppressed the CCI-induced behavioral hypersensitivity, particularly thermal hyperalgesia, but not aversive behavior, and this effect was attenuated by the pre-blockade of HCN channels. Taken together, the neuronal hyperexcitability of ACC L5 PNs likely results from an upregulation of mGluR1 and a downstream pathway involving PKC activation and a downregulation of HCN1 in the early phase of neuropathic pain. These alterations may at least in part contribute to the development of behavioral hypersensitivity in CCI rats. PMID:26829470

  14. Activation of Endogenous Anti-Inflammatory Mediator Cyclic AMP Attenuates Acute Pyelonephritis in Mice Induced by Uropathogenic Escherichia coli

    PubMed Central

    Wei, Yang; Li, Ke; Wang, Na; Cai, Gui-Dong; Zhang, Ting; Lin, Yan; Gui, Bao-Song; Liu, En-Qi; Li, Zong-Fang; Zhou, Wuding

    2015-01-01

    The pathogenesis of pyelonephritis caused by uropathogenic Escherichia coli (UPEC) is not well understood. Here, we show that besides UPEC virulence, the severity of the host innate immune response and invasion of renal epithelial cells are important pathogenic factors. Activation of endogenous anti-inflammatory mediator cAMP significantly attenuated acute pyelonephritis in mice induced by UPEC. Administration of forskolin (a potent elevator of intracellular cAMP) reduced kidney infection (ie, bacterial load, tissue destruction); this was associated with attenuated local inflammation, as evidenced by the reduction of renal production of proinflammatory mediators, renal infiltration of inflammatory cells, and renal myeloperoxidase activity. In primary cell culture systems, forskolin not only down-regulated UPEC-stimulated production of proinflammatory mediators by renal tubular epithelial cells and inflammatory cells (eg, monocyte/macrophages) but also reduced bacterial internalization by renal tubular epithelial cells. Our findings clearly indicate that activation of endogenous anti-inflammatory mediator cAMP is beneficial for controlling UPEC-mediated acute pyelonephritis in mice. The beneficial effect can be explained at least in part by limiting excessive inflammatory responses through acting on both renal tubular epithelial cells and inflammatory cells and by inhibiting bacteria invasion of renal tubular epithelial cells. PMID:25478807

  15. Comparison of the simple cyclic voltammetry (CV) and DPPH assays for the determination of antioxidant capacity of active principles.

    PubMed

    Arteaga, Jesús F; Ruiz-Montoya, Mercedes; Palma, Alberto; Alonso-Garrido, Gema; Pintado, Sara; Rodríguez-Mellado, José M

    2012-01-01

    Antioxidant activity of a number of small (low molecular weight) natural compounds found in spices, condiments or drugs (gallic acid, sesamol, eugenol, thymol, carvacrol, vanillin, salicylaldehyde, limonene, geraniol, 4-hexylresorcinol, etc.) has been evaluated using electrochemical and DPPH• radical scavenging measurements. Structural analysis of the tested compound suggest a remarkable activity for phenol derivatives and the importance of the -R groups located on the phenolic ring in the molecule's ability to act as free radical scavenging as well as their influence in the electrochemical behavior. The voltammetric method can be used for the determination of the antioxidant capability in the same manner as the DPPH• radical scavenging because of the correlation found between oxidation potentials and anti-radical power (ARP = 1/EC₅₀). Such electrochemical determination is fast and cheap and allows making measurements under a variety of experimental conditions. The accuracy of the electrochemical measurements is the same for all the compounds, irrespective of their scavenging activity, the opposite of what occurs in the DPPH• test. PMID:22555300

  16. Activation of endogenous anti-inflammatory mediator cyclic AMP attenuates acute pyelonephritis in mice induced by uropathogenic Escherichia coli.

    PubMed

    Wei, Yang; Li, Ke; Wang, Na; Cai, Gui-Dong; Zhang, Ting; Lin, Yan; Gui, Bao-Song; Liu, En-Qi; Li, Zong-Fang; Zhou, Wuding

    2015-02-01

    The pathogenesis of pyelonephritis caused by uropathogenic Escherichia coli (UPEC) is not well understood. Here, we show that besides UPEC virulence, the severity of the host innate immune response and invasion of renal epithelial cells are important pathogenic factors. Activation of endogenous anti-inflammatory mediator cAMP significantly attenuated acute pyelonephritis in mice induced by UPEC. Administration of forskolin (a potent elevator of intracellular cAMP) reduced kidney infection (ie, bacterial load, tissue destruction); this was associated with attenuated local inflammation, as evidenced by the reduction of renal production of proinflammatory mediators, renal infiltration of inflammatory cells, and renal myeloperoxidase activity. In primary cell culture systems, forskolin not only down-regulated UPEC-stimulated production of proinflammatory mediators by renal tubular epithelial cells and inflammatory cells (eg, monocyte/macrophages) but also reduced bacterial internalization by renal tubular epithelial cells. Our findings clearly indicate that activation of endogenous anti-inflammatory mediator cAMP is beneficial for controlling UPEC-mediated acute pyelonephritis in mice. The beneficial effect can be explained at least in part by limiting excessive inflammatory responses through acting on both renal tubular epithelial cells and inflammatory cells and by inhibiting bacteria invasion of renal tubular epithelial cells. PMID:25478807

  17. The role of beaded activated carbon's pore size distribution on heel formation during cyclic adsorption/desorption of organic vapors.

    PubMed

    Jahandar Lashaki, Masoud; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2016-09-01

    The effect of activated carbon's pore size distribution (PSD) on heel formation during adsorption of organic vapors was investigated. Five commercially available beaded activated carbons (BAC) with varying PSDs (30-88% microporous) were investigated. Virgin samples had similar elemental compositions but different PSDs, which allowed for isolating the contribution of carbon's microporosity to heel formation. Heel formation was linearly correlated (R(2)=0.91) with BAC micropore volume; heel for the BAC with the lowest micropore volume was 20% lower than the BAC with the highest micropore volume. Meanwhile, first cycle adsorption capacities and breakthrough times correlated linearly (R(2)=0.87 and 0.93, respectively) with BAC total pore volume. Micropore volume reduction for all BACs confirmed that heel accumulation takes place in the highest energy pores. Overall, these results show that a greater portion of adsorbed species are converted into heel on highly microporous adsorbents due to higher share of high energy adsorption sites in their structure. This differs from mesoporous adsorbents (low microporosity) in which large pores contribute to adsorption but not to heel formation, resulting in longer adsorbent lifetime. Thus, activated carbon with high adsorption capacity and high mesopore fraction is particularly desirable for organic vapor application involving extended adsorption/regeneration cycling. PMID:27173087

  18. A Ric8/Synembryn Homolog Promotes Gpa1 and Gpa2 Activation To Respectively Regulate Cyclic AMP and Pheromone Signaling in Cryptococcus neoformans

    PubMed Central

    Gong, Jinjun; Grodsky, Jacob D.; Zhang, Zhengguang

    2014-01-01

    The G protein α subunits Gpa1, Gpa2, and Gpa3 mediate signal transduction and are important in the growth and virulence of Cryptococcus neoformans. To understand how Gpa1 functions without a conventional Gβ subunit, we characterized a resistance to inhibitors of cholinesterase 8 (Ric8) homolog from C. neoformans, which shares amino acid sequence homology with other Ric8 proteins that exhibit guanine nucleotide exchange factor (GEF) activity toward Gα. We found that the ric8 mutant was reduced in capsule size and melanin formation, which could be suppressed by cyclic AMP (cAMP) supplementation or by introducing the activated GPA1Q284L allele. Consistent with the fact that Ric8 participates in cAMP signaling to regulate virulence, the ric8 mutant was attenuated in virulence toward mice. Interestingly, disruption of RIC8 also resulted in opposing effects on pheromone signaling, as the ric8 mutant showed reduced mating but an enhanced ability to induce the pheromone response in the mating partner. To identify Ric8 functional mechanisms, we examined the interactions between Ric8 and the three Gα proteins. Ric8 interacted with Gpa1 and Gpa2, but not Gpa3. The presence of Gpa1Q284L negatively affected its interaction with Ric8, whereas the activated Gpa2Q203L allele abolished the interaction. Collectively, these findings suggest that Ric8 functions as a GEF to facilitate the activation of Gpa1-cAMP signaling and to promote Gpa2, affecting mating efficiency. Our study highlights the distinct and conserved characteristics associated with G protein signaling and contributes to our overall understanding of how G protein α subunits function with or without a canonical Gβ partner in C. neoformans. PMID:25084863

  19. Cyclic AMP-dependent activation of rhodopsin gene transcription in cultured retinal precursor cells of chicken embryo.

    PubMed

    Voisin, Pierre; Bernard, Marianne

    2009-07-01

    The present study describes a robust 50-fold increase in rhodopsin gene transcription by cAMP in cultured retinal precursor cells of chicken embryo. Retinal cells isolated at embryonic day 8 (E8) and cultured for 3 days in serum-supplemented medium differentiated mostly into red-sensitive cones and to a lesser degree into green-sensitive cones, as indicated by real-time RT-PCR quantification of each specific opsin mRNA. In contrast, both rhodopsin mRNA concentration and rhodopsin gene promoter activity required the presence of cAMP-increasing agents [forskolin and 3-isobutyl-1-methylxanthine (IBMX)] to reach significant levels. This response was rod-specific and was sufficient to activate rhodopsin gene transcription in serum-free medium. The increase in rhodopsin mRNA levels evoked by a series of cAMP analogs suggested the response was mediated by protein kinase A, not by EPAC. Membrane depolarization by high KCl concentration also increased rhodopsin mRNA levels and this response was strongly potentiated by IBMX. The rhodopsin gene response to cAMP-increasing agents was developmentally gated between E6 and E7. Rod-specific transducin alpha subunit mRNA levels also increased up to 50-fold in response to forskolin and IBMX, while rod-specific phosphodiesterase-VI and rod arrestin transcripts increased 3- to 10-fold. These results suggest a cAMP-mediated signaling pathway may play a role in rod differentiation. PMID:19457115

  20. Cyclic control stick

    DOEpatents

    Whitaker, Charles N.; Zimmermann, Richard E.

    1989-01-01

    A cyclic control stick of the type used in helicopters for reducing the safety hazards associated with such a mechanism in the event of a crewman being thrown violently into contact with the cyclic control stick resulting from a crash or the like. The cyclic control stick is configured to break away upon the exertion of an impact force which exceeds a predetermined value and/or is exerted for more than a momentary time duration. The cyclic control stick is also configured to be adjustable so as to locate the grip thereof as far away from the crewman as possible for safety reasons without comprising the comfort of the crewman or the use of the control stick, and a crushable pad is provided on the top of the grip for impact energy absorbing purposes.

  1. Cyclic steps on ice

    NASA Astrophysics Data System (ADS)

    Yokokawa, M.; Izumi, N.; Naito, K.; Parker, G.; Yamada, T.; Greve, R.

    2016-05-01

    Boundary waves often form at the interface between ice and fluid flowing adjacent to it, such as ripples under river ice covers, and steps on the bed of supraglacial meltwater channels. They may also be formed by wind, such as the megadunes on the Antarctic ice sheet. Spiral troughs on the polar ice caps of Mars have been interpreted to be cyclic steps formed by katabatic wind blowing over ice. Cyclic steps are relatives of upstream-migrating antidunes. Cyclic step formation on ice is not only a mechanical but also a thermodynamic process. There have been very few studies on the formation of either cyclic steps or upstream-migrating antidunes on ice. In this study, we performed flume experiments to reproduce cyclic steps on ice by flowing water, and found that trains of steps form when the Froude number is larger than unity. The features of those steps allow them to be identified as ice-bed analogs of cyclic steps in alluvial and bedrock rivers. We performed a linear stability analysis and obtained a physical explanation of the formation of upstream-migrating antidunes, i.e., precursors of cyclic steps. We compared the results of experiments with the predictions of the analysis and found the observed steps fall in the range where the analysis predicts interfacial instability. We also found that short antidune-like undulations formed as a precursor to the appearance of well-defined steps. This fact suggests that such antidune-like undulations correspond to the instability predicted by the analysis and are precursors of cyclic steps.

  2. Low-Power Laser Irradiation Suppresses Inflammatory Response of Human Adipose-Derived Stem Cells by Modulating Intracellular Cyclic AMP Level and NF-κB Activity

    PubMed Central

    Wang, Chau-Zen; Ho, Mei-Ling; Yeh, Ming-Long; Wang, Yan-Hsiung

    2013-01-01

    Mesenchymal stem cell (MSC)-based tissue regeneration is a promising therapeutic strategy for treating damaged tissues. However, the inflammatory microenvironment that exists at a local injury site might restrict reconstruction. Low-power laser irradiation (LPLI) has been widely applied to retard the inflammatory reaction. The purpose of this study was to investigate the anti-inflammatory effect of LPLI on human adipose-derived stem cells (hADSCs) in an inflammatory environment. We showed that the hADSCs expressed Toll-like Receptors (TLR) 1, TLR2, TLR3, TLR4, and TLR6 and that lipopolysaccharide (LPS) significantly induced the production of pro-inflammatory cytokines (Cyclooxygenase-2 (Cox-2), Interleukin-1β (IL-1β), Interleukin-6 (IL-6), and Interleukin-8 (IL-8)). LPLI markedly inhibited LPS-induced, pro-inflammatory cytokine expression at an optimal dose of 8 J/cm2. The inhibitory effect triggered by LPLI might occur through an increase in the intracellular level of cyclic AMP (cAMP), which acts to down-regulate nuclear factor kappa B (NF-κB) transcriptional activity. These data collectively provide insight for further investigations of the potential application of anti-inflammatory treatment followed by stem cell therapy. PMID:23342077

  3. Enhancement of Biocontrol Activities and Cyclic Lipopeptides Production by Chemical Mutagenesis of Bacillus subtilis XF-1, a Biocontrol Agent of Plasmodiophora brassicae and Fusarium solani.

    PubMed

    Li, Xing-Yu; Yang, Jing-Jing; Mao, Zi-Chao; Ho, Hon-Hing; Wu, Yi-Xing; He, Yue-Qiu

    2014-12-01

    Bacillus subtilis XF-1 has been used as a biocontrol agent of clubroot disease of crucifers infected by Plasmodiophora brassicae, an obligate pathogen. In order to maximize the growth inhibition of the pathogen, random mutagenesis using N-methyl-N'-nitro-N-nitrosoguanidine was applied to strain XF-1. The efficacy of 226 selected mutants was assessed against the growth of an indicator fungal pathogen: Fusarium solani using agar plate assay and the disruptive effects on the resting spores of P. brassicae. Four mutants exhibited inhibition activity significantly higher than the wild type. The cell extracts of these mutants and the XF-1 were subjected to matrix-assisted laser desorption ionization-time of flight mass spectra analysis, and three families of cyclic lipopeptides (CLPs) fengycin, surfactin and iturin were identified from the parental strain and the screened mutants. However, the relative contents and compound diversity changed after mutagenesis, and there was slight variation in the surfactin and fengycin. Notably, only 5 iturin components were discovered from the wild strain XF-1, but 13 were obtained from the mutant strains, and the relative CLPs contents of all mutant strains increased substantially. The results suggested that CLPs might be one of main biocontrol mechanisms of the clubroot disease by XF-1. The 4 mutants are far more effective than the parental strain, and they would be promising biocontrol candidates not only against P. brassicae but probably other plant diseases caused by fungi. PMID:25320450

  4. Role of Exchange Protein Directly Activated by Cyclic AMP Isoform 1 in Energy Homeostasis: Regulation of Leptin Expression and Secretion in White Adipose Tissue.

    PubMed

    Hu, Yaohua; Robichaux, William G; Mei, Fang C; Kim, Eun Ran; Wang, Hui; Tong, Qingchun; Jin, Jianping; Xu, Mingxuan; Chen, Ju; Cheng, Xiaodong

    2016-10-01

    Epacs (exchange proteins directly activated by cyclic AMP [cAMP]) act as downstream effectors of cAMP and play important roles in energy balance and glucose homeostasis. While global deletion of Epac1 in mice leads to heightened leptin sensitivity in the hypothalamus and partial protection against high-fat diet (HFD)-induced obesity, the physiological functions of Epac1 in white adipose tissue (WAT) has not been explored. Here, we report that adipose tissue-specific Epac1 knockout (AEKO) mice are more prone to HFD-induced obesity, with increased food intake, reduced energy expenditure, and impaired glucose tolerance. Despite the fact that AEKO mice on HFD display increased body weight, these mice have decreased circulating leptin levels compared to their wild-type littermates. In vivo and in vitro analyses further reveal that suppression of Epac1 in WAT decreases leptin mRNA expression and secretion by inhibiting cAMP response element binding (CREB) protein and AKT phosphorylation, respectively. Taken together, our results demonstrate that Epac1 plays an important role in regulating energy balance and glucose homeostasis by promoting leptin expression and secretion in WAT. PMID:27381457

  5. Low-power laser irradiation suppresses inflammatory response of human adipose-derived stem cells by modulating intracellular cyclic AMP level and NF-κB activity.

    PubMed

    Wu, Jyun-Yi; Chen, Chia-Hsin; Wang, Chau-Zen; Ho, Mei-Ling; Yeh, Ming-Long; Wang, Yan-Hsiung

    2013-01-01

    Mesenchymal stem cell (MSC)-based tissue regeneration is a promising therapeutic strategy for treating damaged tissues. However, the inflammatory microenvironment that exists at a local injury site might restrict reconstruction. Low-power laser irradiation (LPLI) has been widely applied to retard the inflammatory reaction. The purpose of this study was to investigate the anti-inflammatory effect of LPLI on human adipose-derived stem cells (hADSCs) in an inflammatory environment. We showed that the hADSCs expressed Toll-like Receptors (TLR) 1, TLR2, TLR3, TLR4, and TLR6 and that lipopolysaccharide (LPS) significantly induced the production of pro-inflammatory cytokines (Cyclooxygenase-2 (Cox-2), Interleukin-1β (IL-1β), Interleukin-6 (IL-6), and Interleukin-8 (IL-8)). LPLI markedly inhibited LPS-induced, pro-inflammatory cytokine expression at an optimal dose of 8 J/cm². The inhibitory effect triggered by LPLI might occur through an increase in the intracellular level of cyclic AMP (cAMP), which acts to down-regulate nuclear factor kappa B (NF-κB) transcriptional activity. These data collectively provide insight for further investigations of the potential application of anti-inflammatory treatment followed by stem cell therapy. PMID:23342077

  6. Temperature- and Touch-Sensitive Neurons Couple CNG and TRPV Channel Activities to Control Heat Avoidance in Caenorhabditis elegans

    PubMed Central

    Liu, Shu; Schulze, Ekkehard; Baumeister, Ralf

    2012-01-01

    Background Any organism depends on its ability to sense temperature and avoid noxious heat. The nematode Caenorhabditis elegans responds to noxious temperatures exceeding ∼35°C and also senses changes in its environmental temperature in the range between 15 and 25°C. The neural circuits and molecular mechanisms involved in thermotaxis have been successfully studied, whereas details of the thermal avoidance behavior remain elusive. In this work, we investigate neurological and molecular aspects of thermonociception using genetic, cell biological and physiological approaches. Methodology/Principal Findings We show here that the thermosensory neurons AFD, in addition to sensing temperature within the range within which the animals can thrive, also contribute to the sensation of noxious temperatures resulting in a reflex-like escape reaction. Distinct sets of interneurons are involved in transmitting thermonociception and thermotaxis, respectively. Loss of AFD is partially compensated by the activity of a pair of multidendritic, polymodal neurons, FLP, whereas laser ablation of both types of neurons abrogated the heat response in the head of the animals almost completely. A third pair of heat sensory neurons, PHC, is situated in the tail. We find that the thermal avoidance response requires the cell autonomous function of cGMP dependent Cyclic Nucleotide-Gated (CNG) channels in AFD, and the heat- and capsaicin-sensitive Transient Receptor Potential Vanilloid (TRPV) channels in the FLP and PHC sensory neurons. Conclusions/Significance Our results identify distinct thermal responses mediated by a single neuron, but also show that parallel nociceptor circuits and molecules may be used as back-up strategies to guarantee fast and efficient responses to potentially detrimental stimuli. PMID:22448218

  7. Cyclic polymers from alkynes.

    PubMed

    Roland, Christopher D; Li, Hong; Abboud, Khalil A; Wagener, Kenneth B; Veige, Adam S

    2016-08-01

    Cyclic polymers have dramatically different physical properties compared with those of their equivalent linear counterparts. However, the exploration of cyclic polymers is limited because of the inherent challenges associated with their synthesis. Conjugated linear polyacetylenes are important materials for electrical conductivity, paramagnetic susceptibility, optical nonlinearity, photoconductivity, gas permeability, liquid crystallinity and chain helicity. However, their cyclic analogues are unknown, and therefore the ability to examine how a cyclic topology influences their properties is currently not possible. We have solved this challenge and now report a tungsten catalyst supported by a tetraanionic pincer ligand that can rapidly polymerize alkynes to form conjugated macrocycles in high yield. The catalyst works by tethering the ends of the polymer to the metal centre to overcome the inherent entropic penalty of cyclization. Gel-permeation chromatography, dynamic and static light scattering, viscometry and chemical tests are all consistent with theoretical predictions and provide unambiguous confirmation of a cyclic topology. Access to a wide variety of new cyclic polymers is now possible by simply choosing the appropriate alkyne monomer. PMID:27442285

  8. Cyclic polymers from alkynes

    NASA Astrophysics Data System (ADS)

    Roland, Christopher D.; Li, Hong; Abboud, Khalil A.; Wagener, Kenneth B.; Veige, Adam S.

    2016-08-01

    Cyclic polymers have dramatically different physical properties compared with those of their equivalent linear counterparts. However, the exploration of cyclic polymers is limited because of the inherent challenges associated with their synthesis. Conjugated linear polyacetylenes are important materials for electrical conductivity, paramagnetic susceptibility, optical nonlinearity, photoconductivity, gas permeability, liquid crystallinity and chain helicity. However, their cyclic analogues are unknown, and therefore the ability to examine how a cyclic topology influences their properties is currently not possible. We have solved this challenge and now report a tungsten catalyst supported by a tetraanionic pincer ligand that can rapidly polymerize alkynes to form conjugated macrocycles in high yield. The catalyst works by tethering the ends of the polymer to the metal centre to overcome the inherent entropic penalty of cyclization. Gel-permeation chromatography, dynamic and static light scattering, viscometry and chemical tests are all consistent with theoretical predictions and provide unambiguous confirmation of a cyclic topology. Access to a wide variety of new cyclic polymers is now possible by simply choosing the appropriate alkyne monomer.

  9. Adenylyl cyclase 6 mediates the action of cyclic AMP-dependent secretagogues in mouse pancreatic exocrine cells via protein kinase A pathway activation

    PubMed Central

    Sabbatini, Maria E; D’Alecy, Louis; Lentz, Stephen I; Tang, Tong; Williams, John A

    2013-01-01

    Both secretin and vasoactive intestinal polypeptide (VIP) receptors are responsible for the activation of adenylyl cyclases (ACs), which increase intracellular cyclic AMP (cAMP) levels in the exocrine pancreas. There are nine membrane-associated isoforms, each with its own pattern of expression and regulation. In this study we sought to establish which AC isoforms play a regulatory role in pancreatic exocrine cells. Using RT-PCR, AC3, AC4, AC6, AC7 and AC9 were found to be expressed in the pancreas. AC3, AC4, AC6 and AC9 were expressed in both pancreatic acini and ducts, whereas AC7 was expressed only in pancreatic ducts. Based on known regulation by intracellular signals, selective inhibitors and stimulators were used to suggest which isoforms play an important role in the induction of cAMP formation. AC6 appeared to be an important isoform because protein kinase A (PKA), PKC and calcium all inhibited VIP-induced cAMP formation, whereas calcineurin or calmodulin did not modify the response to VIP. Mice with genetically deleted AC6 were studied and showed reduced cAMP formation and PKA activation in both isolated pancreatic acini and duct fragments. The absence of AC6 reduced cAMP-dependent secretagogue-stimulated amylase secretion, and abolished fluid secretion in both in vivo and isolated duct fragments. In conclusion, several AC isoforms are expressed in pancreatic acini and ducts. AC6 mediates a significant part of pancreatic amylase and fluid secretion in response to secretin, VIP and forskolin through cAMP/PKA pathway activation. PMID:23753526

  10. Activity-dependent and graded BACE1 expression in the olfactory epithelium is mediated by the retinoic acid metabolizing enzyme CYP26B1.

    PubMed

    Login, Hande; Butowt, Rafal; Bohm, Staffan

    2015-07-01

    It is well established that environmental influences play a key role in sculpting neuronal connectivity in the brain. One example is the olfactory sensory map of topographic axonal connectivity. While intrinsic odorant receptor signaling in olfactory sensory neurons (OSN) determines anterior-posterior counter gradients of the axonal guidance receptors Neuropilin-1 and Plexin-A1, little is known about stimulus-dependent gradients of protein expression, which correlates with the functional organization of the olfactory sensory map along its dorsomedial (DM)-ventrolateral (VL) axis. Deficiency of the Alzheimer's β-secretase BACE1, which is expressed in a DM(low)-VL(high) gradient, results in OSN axon targeting errors in a DM > VL and gene dose-dependent manner. We show that expression of BACE1 and the all-trans retinoic acid (RA)-degrading enzyme Cyp26B1 form DM-VL counter gradients in the olfactory epithelium. Analyses of mRNA and protein levels in OSNs after naris occlusion, in mice deficient in the olfactory cyclic nucleotide-gated channel and in relation to onset of respiration, show that BACE1 and Cyp26B1 expression in OSNs inversely depend on neuronal activity. Overexpression of a Cyp26B1 or presence of a dominant negative RA receptor transgene selectively in OSNs, inhibit BACE1 expression while leaving the DM(low)-VL(high) gradient of the axonal guidance protein Neuropilin-2 intact. We conclude that stimulus-dependent neuronal activity can control the expression of the RA catabolic enzyme Cyp26B1 and downstream genes such as BACE1. This result is pertinent to an understanding of the mechanisms by which a topographic pattern of connectivity is achieved and modified as a consequence of graded gene expression and sensory experience. PMID:24797530

  11. Activation of Cyclic AMP Synthesis by Full and Partial Beta-Adrenergic Receptor Agonists in Chicken Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Cureri, Peter A. (Technical Monitor)

    2002-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Accordingly, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate cAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of cAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of cAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax concentrations were approximately 15-fold weaker than isoproterenol in stimulating the rate of cAMP synthesis. When cimaterol and clenbuterol were added to culture media at concentrations known to cause significant muscle hypertrophy in animals, there was no detectable effect on stimulation of cAMP synthesis. Finally, these same levels of cimaterol and clenbuterol did not antagonize the stimulation of cAMP by either epinephrine or isoproterenol.

  12. Activation of Cyclic AMP Synthesis by Full and Partial Beta-Adrenergic Receptor Agonists in Chicken Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.

    2003-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Accordingly, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate CAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of CAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of CAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax concentrations were approximately 15-fold weaker than isoproterenol in stimulating the rate of CAMP synthesis. When cimaterol and clenbuterol were added to culture media at concentrations known to cause significant muscle hypertrophy in animals, there was no detectable effect on stimulation of CAMP synthesis. Finally, these same levels of cimaterol and clenbuterol did not antagonize the stimulation of CAMP by either epinephrine or isoproterenol.

  13. Activation of cyclic AMP-dependent protein kinase inhibits the desensitization and internalization of metabotropic glutamate receptors 1a and 1b.

    PubMed

    Mundell, Stuart J; Pula, Giordano; More, Julia C A; Jane, David E; Roberts, Peter J; Kelly, Eamonn

    2004-06-01

    In this study, we characterized the effects of activation of cyclic AMP-dependent protein kinase (PKA) on the internalization and functional coupling of the metabotropic glutamate receptor (mGluR1) splice variants mGluR1a and mGluR1b. Using an enzyme-linked immunosorbent assay technique to assess receptor internalization, we found that the glutamate-induced internalization of mGluR1a or mGluR1b transiently expressed in human embryonic kidney (HEK) 293 cells was inhibited by coactivation of endogenous beta2-adrenoceptors with isoprenaline or by direct activation of adenylyl cyclase with forskolin. The PKA inhibitor N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide hydrochloride (H89) blocked the effects of both isoprenaline and forskolin. The heterologous internalization of the mGluR1 splice variants triggered by carbachol was also inhibited by isoprenaline and forskolin in a PKA-sensitive fashion, whereas the constitutive (agonist-independent) internalization of mGluR1a was inhibited only modestly by PKA activation. Using inositol phosphate (IP) accumulation in cells prelabeled with [3H]inositol to assess receptor coupling, PKA activation increased basal IP accumulation in mGluR1a receptor-expressing cells and also increased glutamate-stimulated IP accumulation in both mGluR1a- and mGluR1b-expressing cells, but only at short times of glutamate addition. Furthermore, PKA activation completely blocked the carbachol-induced heterologous desensitization of glutamate-stimulated IP accumulation in both mGluR1a- and mGluR1b-expressing cells. In coimmunoprecipitation experiments, the ability of glutamate to increase association of GRK2 and arrestin-2 with mGluR1a and mGluR1b was inhibited by PKA activation with forskolin. Together, these results indicate that PKA activation inhibits the agonist-induced internalization and desensitization of mGluR1a and mGluR1b, probably by reducing their interaction with GRK2 and nonvisual arrestins. PMID:15155843

  14. Soluble guanylyl cyclase-activated cyclic GMP-dependent protein kinase inhibits arterial smooth muscle cell migration independent of VASP-serine 239 phosphorylation.

    PubMed

    Holt, Andrew W; Martin, Danielle N; Shaver, Patti R; Adderley, Shaquria P; Stone, Joshua D; Joshi, Chintamani N; Francisco, Jake T; Lust, Robert M; Weidner, Douglas A; Shewchuk, Brian M; Tulis, David A

    2016-09-01

    Coronary artery disease (CAD) accounts for over half of all cardiovascular disease-related deaths. Uncontrolled arterial smooth muscle (ASM) cell migration is a major component of CAD pathogenesis and efforts aimed at attenuating its progression are clinically essential. Cyclic nucleotide signaling has long been studied for its growth-mitigating properties in the setting of CAD and other vascular disorders. Heme-containing soluble guanylyl cyclase (sGC) synthesizes cyclic guanosine monophosphate (cGMP) and maintains vascular homeostasis predominantly through cGMP-dependent protein kinase (PKG) signaling. Considering that reactive oxygen species (ROS) can interfere with appropriate sGC signaling by oxidizing the cyclase heme moiety and so are associated with several CVD pathologies, the current study was designed to test the hypothesis that heme-independent sGC activation by BAY 60-2770 (BAY60) maintains cGMP levels despite heme oxidation and inhibits ASM cell migration through phosphorylation of the PKG target and actin-binding vasodilator-stimulated phosphoprotein (VASP). First, using the heme oxidant ODQ, cGMP content was potentiated in the presence of BAY60. Using a rat model of arterial growth, BAY60 significantly reduced neointima formation and luminal narrowing compared to vehicle (VEH)-treated controls. In rat ASM cells BAY60 significantly attenuated cell migration, reduced G:F actin, and increased PKG activity and VASP Ser239 phosphorylation (pVASP·S239) compared to VEH controls. Site-directed mutagenesis was then used to generate overexpressing full-length wild type VASP (FL-VASP/WT), VASP Ser239 phosphorylation-mimetic (FL-VASP/239D) and VASP Ser239 phosphorylation-resistant (FL-VASP/239A) ASM cell mutants. Surprisingly, FL-VASP/239D negated the inhibitory effects of FL-VASP/WT and FL-VASP/239A cells on migration. Furthermore, when FL-VASP mutants were treated with BAY60, only the FL-VASP/239D group showed reduced migration compared to its VEH controls

  15. Synergistic activation by serotonin and GTP analogue and inhibition by phorbol ester of cyclic Ca2+ rises in hamster eggs.

    PubMed Central

    Miyazaki, S; Katayama, Y; Swann, K

    1990-01-01

    1. Synergistic activation of a GTP-binding protein (G protein) by external serotonin (5-hydroxytryptamine, 5-HT) and internally applied guanosine-5'-O-(3-thiotriphosphate (GTP gamma S) in hamster eggs was demonstrated by the facilitation of repetitive increases in cytoplasmic Ca2+ as measured by their associated hyperpolarizing responses (HRs) and by aequorin luminescence. 2. Rapid application of 70 nM-5-HT caused a single HR of 10-12 s duration and with a delay of 80 s. The critical concentration of 5-HT to cause an HR was 50 nM. 3. With 10 microM-5-HT four to six HRs were often elicited with a delay to the first HR of 8-30 s. HRs disappeared after prolonged or repeated application of 5-HT, indicating an apparent desensitization. 4. 5-HT-induced HRs were completely inhibited by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (TPA) (100 nM). Conversely, the PKC inhibitor sphingosine (2 microM) enhanced the series of HRs by shortening the delay to the first HR (3-9 s) and by causing more HRs. 5. Ionophoretic injection of GTP gamma S into the egg usually produced a large HR with a delay of 120-240 s followed by a series of much smaller HRs. When 5-HT was applied within 1 min of injection of GTP gamma S. 70 nM-5-HT induced a number of large HRs and even 1 nM-5-HT could induce HR(s). In contrast, when 5-HT was applied after the size of GTP gamma S-induced HRs had declined, as much as 10 microM-5-HT could only elicit a single large HR. Thus, GTP gamma S apparently caused a sensitization and then a desensitization of the action of 5-HT. 6. GTP gamma S-induced Ca2+ transients were facilitated when injected in the presence of 5-HT concentrations as low as 0.1 nM. The time delay to the first HR was 65 s in 0.1 nM-5-HT or 4 s in 100 nM-5-HT whereas it was 170 s without 5-HT (mean values). The magnitude as well as frequency of HRs succeeding the first HR was enhanced by 5-HT at concentrations above 0.01 nM. 7. TPA (100 nM) blocked the GTP gamma S-plus-5

  16. Purification and synergistic antibacterial activity of arginine derived cyclic dipeptides, from Achromobacter sp. associated with a rhabditid entomopathogenic nematode against major clinically relevant biofilm forming wound bacteria.

    PubMed

    Deepa, Indira; Kumar, Sasidharan N; Sreerag, Ravikumar S; Nath, Vishnu S; Mohandas, Chellapan

    2015-01-01

    Skin and chronic wound infections caused by various pathogenic bacteria are an increasing and urgent health problem worldwide. In the present investigation ethyl acetate extract of an Achromobacter sp. associated with a Rhabditis entomopathogenic nematode (EPN), displayed promising antibacterial property and was further purified by silica gel column chromatography to get three different cyclic dipeptides (CDPs). Based on the spectral data and Marfey's analyses, the CDPs were identified as cyclo(D-Leu-D-Arg) (1), cyclo(L-Trp-L-Arg) (2), and cyclo(D-Trp-D-Arg) (3), respectively. Three CDPs were active against all the 10 wound associated bacteria tested. The significant antibacterial activity was recorded by CDP 3, and highest activity of 0.5 μg/ml was recorded against Staphylococcus aureus and Pseudomonas aeruginosa. The synergistic antibacterial activities of CDPs and ampicillin were assessed using the checkerboard microdilution method. The results of the current study recorded that the combined effects of CDPs and ampicillin principally recorded synergistic activity. Interestingly, the combination of CDPs and ampicillin also recorded enhanced inhibition of biofilm formation by bacteria. Moreover, CDPs significantly stimulate the production of IL-10 and IL-4 (anti-inflammatory cytokines) by human peripheral blood mononuclear cells. CDPs do not make any significant effect on the production of pro-inflammatory cytokines like TNF-α. The three CDPs have been studied for their effect on intracellular S. aureus in murine macrophages (J774) using 24 h exposure to 0.5X, 1X, and 2X MIC concentrations. Significant decrease in intracellular S. aureus burden was recorded by CDPs. CDPs also recorded no cytotoxicity toward FS normal fibroblast, VERO, and L231 normal lung epithelial cell lines. Antimicrobial activity of the arginine containing CDPs against the wound associated bacteria is reported here for the first. Moreover, this is also the first report on the production of

  17. Purification and synergistic antibacterial activity of arginine derived cyclic dipeptides, from Achromobacter sp. associated with a rhabditid entomopathogenic nematode against major clinically relevant biofilm forming wound bacteria

    PubMed Central

    Deepa, Indira; Kumar, Sasidharan N.; Sreerag, Ravikumar S.; Nath, Vishnu S.; Mohandas, Chellapan

    2015-01-01

    Skin and chronic wound infections caused by various pathogenic bacteria are an increasing and urgent health problem worldwide. In the present investigation ethyl acetate extract of an Achromobacter sp. associated with a Rhabditis entomopathogenic nematode (EPN), displayed promising antibacterial property and was further purified by silica gel column chromatography to get three different cyclic dipeptides (CDPs). Based on the spectral data and Marfey's analyses, the CDPs were identified as cyclo(D-Leu-D-Arg) (1), cyclo(L-Trp-L-Arg) (2), and cyclo(D-Trp-D-Arg) (3), respectively. Three CDPs were active against all the 10 wound associated bacteria tested. The significant antibacterial activity was recorded by CDP 3, and highest activity of 0.5 μg/ml was recorded against Staphylococcus aureus and Pseudomonas aeruginosa. The synergistic antibacterial activities of CDPs and ampicillin were assessed using the checkerboard microdilution method. The results of the current study recorded that the combined effects of CDPs and ampicillin principally recorded synergistic activity. Interestingly, the combination of CDPs and ampicillin also recorded enhanced inhibition of biofilm formation by bacteria. Moreover, CDPs significantly stimulate the production of IL-10 and IL-4 (anti-inflammatory cytokines) by human peripheral blood mononuclear cells. CDPs do not make any significant effect on the production of pro-inflammatory cytokines like TNF-α. The three CDPs have been studied for their effect on intracellular S. aureus in murine macrophages (J774) using 24 h exposure to 0.5X, 1X, and 2X MIC concentrations. Significant decrease in intracellular S. aureus burden was recorded by CDPs. CDPs also recorded no cytotoxicity toward FS normal fibroblast, VERO, and L231 normal lung epithelial cell lines. Antimicrobial activity of the arginine containing CDPs against the wound associated bacteria is reported here for the first. Moreover, this is also the first report on the production of

  18. Inhibition of cyclic GMP-dependent protein kinase-mediated effects by (Rp)-8-bromo-PET-cyclic GMPS.

    PubMed Central

    Butt, E.; Pöhler, D.; Genieser, H. G.; Huggins, J. P.; Bucher, B.

    1995-01-01

    1. The modulation of the guanosine 3':5'-cyclic monophosphate (cyclic GMP)- and adenosine 3':5'-cyclic monophosphate (cyclic AMP)-dependent protein kinase activities by the diastereomers of 8-bromo-beta phenyl-1, N2-ethenoguanosine 3':5'-cyclic monophosphorothioate, ((Rp)- and (Sp)-8-bromo-PET-cyclic GMPS) was investigated by use of purified protein kinases. In addition, the effects of (Rp)-8-bromo-PET-cyclic GMPS on protein phosphorylation in intact human platelets and on [3H]-noradrenaline release and neurogenic vasoconstriction in electrical field stimulated rat tail arteries were also studied. 2. Kinetic analysis with purified cyclic GMP-dependent protein kinase (PKG) type I alpha and I beta, which are expressed in the rat tail artery, revealed that (Rp)-8-bromo-PET-cyclic GMPS is a competitive inhibitor with an apparent Ki of 0.03 microM. The activation of purified cyclic AMP-dependent protein kinase (PKA) type II was antagonized with an apparent Ki of 10 microM. 3. In human platelets, (Rp)-8-bromo-PET-cyclic GMPS (0.1 mM) antagonized the activation of the PKG by the selective activator 8-(4-chlorophenylthio)-guanosine 3':5'-cyclic monophosphate (8-pCPT-cyclic GMP; 0.2 mM) without affecting the activation of PKA by (Sp)-5, 6-dichloro-1-beta-D-ribofurano-sylbenzimidazole- 3':5'-cyclic monophosphorothioate ((Sp)-5,6-DCl-cyclic BiMPS; 0.1 mM). 4. (Rp)-8-bromo-PET-cyclic GMPS was not hydrolysed by the cyclic GMP specific phosphodiesterase (PDE) type V from bovine aorta but potently inhibited this PDE. 5. The corresponding sulphur free cyclic nucleotide of the two studied phosphorothioate derivatives, 8-bromo-beta-phenyl-1, N2-ethenoguanosine-3':5'-cyclic monophosphate (8-bromo-PET-cyclic GMP), had no effect on electrically-induced [3H]-noradrenaline release but concentration-dependently decreased the stimulation-induced vasoconstriction. (Rp)-8-bromo-PET-cyclic GMPS (3 microM) shifted the vasoconstriction response to the right without affecting stimulation evoked

  19. Potent and specific inhibition of the biological activity of the type-II transmembrane serine protease matriptase by the cyclic microprotein MCoTI-II.

    PubMed

    Gray, K; Elghadban, S; Thongyoo, P; Owen, K A; Szabo, R; Bugge, T H; Tate, E W; Leatherbarrow, R J; Ellis, V

    2014-08-01

    Matriptase is a type-II transmembrane serine protease involved in epithelial homeostasis in both health and disease, and is implicated in the development and progression of a variety of cancers. Matriptase mediates its biological effects both via as yet undefined substrates and pathways, and also by proteolytic cleavage of a variety of well-defined protein substrates, several of which it shares with the closely-related protease hepsin. Development of targeted therapeutic strategies will require discrimination between these proteases. Here we have investigated cyclic microproteins of the squash Momordica cochinchinensis trypsin-inhibitor family (generated by total chemical synthesis) and found MCoTI-II to be a high-affinity (Ki 9 nM) and highly selective (> 1,000-fold) inhibitor of matriptase. MCoTI-II efficiently inhibited the proteolytic activation of pro-hepatocyte growth factor (HGF) by matriptase but not by hepsin, in both purified and cell-based systems, and inhibited HGF-dependent cell scattering. MCoTI-II also selectively inhibited the invasion of matriptase-expressing prostate cancer cells. Using a model of epithelial cell tight junction assembly, we also found that MCoTI-II could effectively inhibit the re-establishment of tight junctions and epithelial barrier function in MDCK-I cells after disruption, consistent with the role of matriptase in regulating epithelial integrity. Surprisingly, MCoTI-II was unable to inhibit matriptase-dependent proteolytic activation of prostasin, a GPI-anchored serine protease also implicated in epithelial homeostasis. These observations suggest that the unusually high selectivity afforded by MCoTI-II and its biological effectiveness might represent a useful starting point for the development of therapeutic inhibitors, and further highlight the role of matriptase in epithelial maintenance. PMID:24696092

  20. Antimicrobial Cyclic Peptides for Plant Disease Control

    PubMed Central

    Lee, Dong Wan; Kim, Beom Seok

    2015-01-01

    Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources. PMID:25774105

  1. Synthesis of cyclic N 1-pentylinosine phosphate, a new structurally reduced cADPR analogue with calcium-mobilizing activity on PC12 cells

    PubMed Central

    Borbone, Nicola; Pinto, Brunella; Secondo, Agnese; Costantino, Valeria; Tedeschi, Valentina; Piccialli, Vincenzo; Piccialli, Gennaro

    2015-01-01

    Summary Cyclic N 1-pentylinosine monophosphate (cpIMP), a novel simplified inosine derivative of cyclic ADP-ribose (cADPR) in which the N 1-pentyl chain and the monophosphate group replace the northern ribose and the pyrophosphate moieties, respectively, was synthesized. The role played by the position of the phosphate group in the key cyclization step, which consists in the formation of a phosphodiester bond, was thoroughly investigated. We have also examined the influence of the phosphate bridge on the ability of cpIMP to mobilize Ca2+ in PC12 neuronal cells in comparison with the pyrophosphate bridge present in the cyclic N 1-pentylinosine diphosphate analogue (cpIDP) previously synthesized in our laboratories. The preliminary biological tests indicated that cpIMP and cpIDP induce a rapid increase of intracellular Ca2+ concentration in PC12 neuronal cells. PMID:26877790

  2. Identification of LY2510924, a novel cyclic peptide CXCR4 antagonist that exhibits antitumor activities in solid tumor and breast cancer metastatic models.

    PubMed

    Peng, Sheng-Bin; Zhang, Xiaoyi; Paul, Donald; Kays, Lisa M; Gough, Wendy; Stewart, Julie; Uhlik, Mark T; Chen, Qi; Hui, Yu-Hua; Zamek-Gliszczynski, Maciej J; Wijsman, John A; Credille, Kelly M; Yan, Liang Zeng

    2015-02-01

    Emerging evidence demonstrates that stromal cell-derived factor 1 (SDF-1) and CXCR4, a chemokine and chemokine receptor pair, play important roles in tumorigenesis. In this report, we describe a small cyclic peptide, LY2510924, which is a potent and selective CXCR4 antagonist currently in phase II clinical studies for cancer. LY2510924 specifically blocked SDF-1 binding to CXCR4 with IC50 value of 0.079 nmol/L, and inhibited SDF-1-induced GTP binding with Kb value of 0.38 nmol/L. In human lymphoma U937 cells expressing endogenous CXCR4, LY2510924 inhibited SDF-1-induced cell migration with IC50 value of 0.26 nmol/L and inhibited SDF-1/CXCR4-mediated intracellular signaling. LY2510924 exhibited a concentration-dependent inhibition of SDF-1-stimulated phospho-ERK and phospho-Akt in tumor cells. Biochemical and cellular analyses revealed that LY2510924 had no apparent agonist activity. Pharmacokinetic analyses suggested that LY2510924 had acceptable in vivo stability and a pharmacokinetic profile similar to a typical small-molecular inhibitor in preclinical species. LY2510924 showed dose-dependent inhibition of tumor growth in human xenograft models developed with non-Hodgkin lymphoma, renal cell carcinoma, lung, and colon cancer cells that express functional CXCR4. In MDA-MB-231, a breast cancer metastatic model, LY2510924 inhibited tumor metastasis by blocking migration/homing process of tumor cells to the lung and by inhibiting cell proliferation after tumor cell homing. Collectively, the preclinical data support further investigation of LY2510924 in clinical studies for cancer. PMID:25504752

  3. Cyclic membrane separation process

    DOEpatents

    Bowser, John

    2004-04-13

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In one of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the other part, the membrane is inoperative while gas pressure rises in the ullage. Ambient air is charged to the membrane separation unit during the latter part of the cycle.

  4. Flow in cyclic cosmology

    SciTech Connect

    Kinney, William H.; Dizgah, Azadeh Moradinezhad

    2010-10-15

    In this paper, we use a known duality between expanding and contracting cosmologies to construct a dual of the inflationary flow hierarchy applicable to contracting cosmologies such as ekpyrotic and cyclic models. We show that the inflationary flow equations are invariant under the duality and therefore apply equally well to inflation or to cyclic cosmology. We construct a self-consistent small-parameter approximation dual to the slow-roll approximation in inflation, and calculate the power spectrum of perturbations in this limit. We also recover the matter-dominated contracting solution of Wands, and the recently proposed adiabatic ekpyrosis solution.

  5. Cyclic membrane separation process

    DOEpatents

    Nemser, Stuart M.

    2005-05-03

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.

  6. Cyclic Voltammetry Experiment.

    ERIC Educational Resources Information Center

    Van Benschoten, James J.; And Others

    1983-01-01

    Describes a three-part experiment designed to introduce cyclic voltammetry to graduate/undergraduate students. Part 1 demonstrates formal reduction potential, redox electron transfer, diffusion coefficient, and electrochemical reversibility. Part 2 investigates electrochemical behavior of acetaminophen. Part 3 examines such experimental variables…

  7. Dual Activation of a Sex Pheromone-Dependent Ion Channel from Insect Olfactory Dendrites by Protein Kinase C Activators and Cyclic GMP

    NASA Astrophysics Data System (ADS)

    Zufall, Frank; Hatt, Hanns

    1991-10-01

    Olfactory transduction is thought to take place in the outer dendritic membrane of insect olfactory receptor neurons. Here we show that the outer dendritic plasma membrane of silkmoth olfactory receptor neurons seems to be exclusively equipped with a specific ion channel activated by low concentrations of the species-specific sex pheromone component. This so-called AC_1 channel has a conductance of 56 pS and is nonselectively permeable to cations. The AC_1 channel can be activated from the intracellular side by protein kinase C activators such as diacylglycerol and phorbolester and by cGMP but not by Ca2+, inositol 1,4,5-trisphosphate, or cAMP. Our results imply that phosphorylation of this ion channel by protein kinase C could be the crucial step in channel opening by sex pheromones.

  8. Functional expression of the hyperpolarization-activated, non-selective cation current If in immortalized HL-1 cardiomyocytes

    PubMed Central

    Sartiani, Laura; Bochet, Pascal; Cerbai, Elisabetta; Mugelli, Alessandro; Fischmeister, Rodolphe

    2002-01-01

    HL-1 cells are adult mouse atrial myocytes induced to proliferate indefinitely by SV40 large T antigen. These cells beat spontaneously when confluent and express several adult cardiac cell markers including the outward delayed rectifier K+ channel. Here, we examined the presence of a hyperpolarization-activated If current in HL-1 cells using the whole-cell patch-clamp technique on isolated cells enzymatically dissociated from the culture at confluence. Cell membrane capacitance (Cm) ranged from 5 to 53 pF. If was detected in about 30 % of the cells and its occurrence was independent of the stage of the culture. If maximal slope conductance was 89.7 ± 0.4 pS pF−1 (n = 10). If current in HL-1 cells showed typical characteristics of native cardiac If current: activation threshold between −50 and −60 mV, half-maximal activation potential of −83.1 ± 0.7 mV (n = 50), reversal potential at −20.8 ± 1.5 mV (n = 10), time-dependent activation by hyperpolarization and blockade by 4 mm Cs+. In half of the cells tested, activation of adenylyl cyclase by the forskolin analogue L858051 (20 μm) induced both a ≈6 mV positive shift of the half-activation potential and a ≈37 % increase in the fully activated If current. RT-PCR analysis of the hyperpolarization-activated, cyclic nucleotide-gated channels (HCN) expressed in HL-1 cells demonstrated major contributions of HCN1 and HCN2 channel isoforms to If current. Cytosolic Ca2+ oscillations in spontaneously beating HL-1 cells were measured in Fluo-3 AM-loaded cells using a fast-scanning confocal microscope. The oscillation frequency ranged from 1.3 to 5 Hz and the spontaneous activity was stopped in the presence of 4 mm Cs+. Action potentials from HL-1 cells had a triangular shape, with an overshoot at +15 mV and a maximal diastolic potential of −69 mV, i.e. more negative than the threshold potential for If activation. In conclusion, HL-1 cells display a hyperpolarization-activated If current which might

  9. Functional expression of the hyperpolarization-activated, non-selective cation current I(f) in immortalized HL-1 cardiomyocytes.

    PubMed

    Sartiani, Laura; Bochet, Pascal; Cerbai, Elisabetta; Mugelli, Alessandro; Fischmeister, Rodolphe

    2002-11-15

    HL-1 cells are adult mouse atrial myocytes induced to proliferate indefinitely by SV40 large T antigen. These cells beat spontaneously when confluent and express several adult cardiac cell markers including the outward delayed rectifier K(+) channel. Here, we examined the presence of a hyperpolarization-activated I(f) current in HL-1 cells using the whole-cell patch-clamp technique on isolated cells enzymatically dissociated from the culture at confluence. Cell membrane capacitance (C(m)) ranged from 5 to 53 pF. I(f) was detected in about 30% of the cells and its occurrence was independent of the stage of the culture. I(f) maximal slope conductance was 89.7 +/- 0.4 pS pF(-1) (n = 10). I(f) current in HL-1 cells showed typical characteristics of native cardiac I(f) current: activation threshold between -50 and -60 mV, half-maximal activation potential of -83.1 +/- 0.7 mV (n = 50), reversal potential at -20.8 +/- 1.5 mV (n = 10), time-dependent activation by hyperpolarization and blockade by 4 mM Cs(+). In half of the cells tested, activation of adenylyl cyclase by the forskolin analogue L858051 (20 microM) induced both an approximately 6 mV positive shift of the half-activation potential and an approximately 37 % increase in the fully activated I(f) current. RT-PCR analysis of the hyperpolarization-activated, cyclic nucleotide-gated channels (HCN) expressed in HL-1 cells demonstrated major contributions of HCN1 and HCN2 channel isoforms to I(f) current. Cytosolic Ca(2+) oscillations in spontaneously beating HL-1 cells were measured in Fluo-3 AM-loaded cells using a fast-scanning confocal microscope. The oscillation frequency ranged from 1.3 to 5 Hz and the spontaneous activity was stopped in the presence of 4 mM Cs(+). Action potentials from HL-1 cells had a triangular shape, with an overshoot at +15 mV and a maximal diastolic potential of -69 mV, i.e. more negative than the threshold potential for I(f) activation. In conclusion, HL-1 cells display a

  10. Superelectrophilic Activation of Crotonic/Methacrylic Acids: Direct Access to Thiochroman-4-ones from Benzenethiols by Microwave-Assisted One-Pot Alkylation/Cyclic Acylation.

    PubMed

    Vaghoo, Habiba; Prakash, G K Surya; Narayanan, Arjun; Choudhary, Rohit; Paknia, Farzaneh; Mathew, Thomas; Olah, George A

    2015-12-18

    An efficient microwave-assisted protocol for the synthesis of 2-/3-methylthiochroman-4-ones by superacid-catalyzed alkylation followed by cyclic acylation (cyclization via intramolecular acylation) is described. Using easily accessible benzenethiols and crotonic acid/methacrylic acid with triflic acid (as catalyst of choice for needed optimal acidity), the reaction was tuned toward the formation of the cyclized products in good selectivity and yield. A mechanism involving the formation of carbenium-carboxonium superelectrophilic species is suggested. PMID:26636718

  11. Total synthesis of cyclomarins A, C and D, marine cyclic peptides with interesting anti-tuberculosis and anti-malaria activities.

    PubMed

    Barbie, Philipp; Kazmaier, Uli

    2016-07-01

    Cyclomarins are cyclic heptapeptides containing four unusual amino acids. New synthetic protocols toward their synthesis have been developed, leading to the synthesis and biological evaluation of three natural occurring cyclomarins. Interestingly, cyclomarins address two completely different targets: Clp C1, a subunit of the caseinolytic protease of Mycobacterium tuberculosis (MTB), as well as PfAp3Ase of Plasmodium falciparum. Therefore, cyclomarins are interesting lead structures for the development of drugs against tuberculosis and malaria. PMID:27241518

  12. Cyclic Degradation of Co49Ni21Ga30 High-Temperature Shape Memory Alloy: On the Roles of Dislocation Activity and Chemical Order

    NASA Astrophysics Data System (ADS)

    Krooß, P.; Kadletz, P. M.; Somsen, C.; Gutmann, M. J.; Chumlyakov, Y. I.; Schmahl, W. W.; Maier, H. J.; Niendorf, T.

    2016-03-01

    Conventional shape memory alloys (SMAs), such as binary Ni-Ti, are typically limited to service temperatures below 100 °C. Recent studies on Co-Ni-Ga high-temperature SMAs revealed the potential that these alloys can be used up to temperatures of about 400 °C. Analysis of the cyclic functional properties showed that degradation in these alloys is mainly triggered by intensive dislocation motion. However, data on the cyclic stress-strain response and the mechanisms leading to functional degradation of Co-Ni-Ga above 300 °C were missing in open literature. Current results reveal that above 300 °C diffusion-controlled mechanisms, e.g., precipitation of secondary phases and changes in the chemical degree of order, seem to dictate cyclic instability. Detailed neutron and transmission electron microscopy analyses following superelastic cycling in a temperature range of 200-400 °C were employed to characterize the changes in degradation behavior above 300 °C.

  13. Identification of essential residues in 2',3'-cyclic nucleotide 3'-phosphodiesterase. Chemical modification and site-directed mutagenesis to investigate the role of cysteine and histidine residues in enzymatic activity.

    PubMed

    Lee, J; Gravel, M; Gao, E; O'Neill, R C; Braun, P E

    2001-05-01

    2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNP; EC ) catalyzes in vitro hydrolysis of 3'-phosphodiester bonds in 2',3'-cyclic nucleotides to produce 2'-nucleotides exclusively. N-terminal deletion mapping of the C-terminal two-thirds of recombinant rat CNP1 identified a region that possesses the catalytic domain, with further truncations abolishing activity. Proteolysis and kinetic analysis indicated that this domain forms a compact globular structure and contains all of the catalytically essential features. Subsequently, this catalytic fragment of CNP1 (CNP-CF) was used for chemical modification studies to identify amino acid residues essential for activity. 5,5'-Dithiobis-(2-nitrobenzoic acid) modification studies and kinetic analysis of cysteine CNP-CF mutants revealed the nonessential role of cysteines for enzymatic activity. On the other hand, modification studies with diethyl pyrocarbonate indicated that two histidines are essential for CNPase activity. Consequently, the only two conserved histidines, His-230 and His-309, were mutated to phenylalanine and leucine. All four histidine mutants had k(cat) values 1000-fold lower than wild-type CNP-CF, but K(m) values were similar. Circular dichroism studies demonstrated that the low catalytic activities of the histidine mutants were not due to gross changes in secondary structure. Taken together, these results demonstrate that both histidines assume critical roles for catalysis. PMID:11278504

  14. Possible involvement of integrin-mediated signalling in oocyte activation: evidence that a cyclic RGD-containing peptide can stimulate protein kinase C and cortical granule exocytosis in mouse oocytes

    PubMed Central

    Tatone, Carla; Carbone, Maria Cristina

    2006-01-01

    Background Mammalian sperm-oocyte interaction at fertilization involves several combined interactions between integrins on the oocyte and integrin ligands (disintegrins) on the sperm. Recent research has indicated the ability of peptides containing the RGD sequence that characterized several sperm disintegrins, to induce intracellular Ca2+ transients and to initiate parthenogenetic development in amphibian and bovine oocytes. In the present study, we investigate the hypothesis that an integrin-associated signalling may participate in oocyte activation signalling by determining the ability of a cyclic RGD-containing peptide to stimulate the activation of protein kinase C (PKC) and the exocytosis of cortical granules in mouse oocytes. Methods An In-Vitro-Fertilization assay (IVF) was carried in order to test the condition under which a peptide containing the RGD sequence, cyclo(Arg-Gly-Asp-D-Phe-Val), was able to inhibit sperm fusion with zona-free mouse oocytes at metaphase II stage. PKC activity was determined by means of an assay based on the ability of cell lysates to phosphorylate MARKS peptide, a specific PKC substrate. Loss of cortical granules was evaluated by measuring density in the oocyte cortex of cortical granules stained with LCA-biotin/Texas red-streptavidin. In all the experiments, effects of a control peptide containing a non RGD sequence, cyclo(Arg-Ala-Asp-D-Phe-Val), were evaluated. Results The IVF assay revealed that the fusion rate declined significantly when insemination was carried out in the presence of cyclic RGD peptide at concentrations > or = 250 microM (P < 0.05, Student-Newman-Keuls Method). When the peptide was applied to the oocytes at these concentrations, a dose-dependent increase of PKC activity was observed, in association with a loss of cortical granules ranging from 38+/-2.5 % to 52+/-5.4 %. Evaluation of meiotic status revealed that cyclic RGD peptide was ineffective in inducing meiosis resumption under conditions used in the

  15. Cyclic depsipeptides as potential cancer therapeutics.

    PubMed

    Kitagaki, Jirouta; Shi, Genbin; Miyauchi, Shizuka; Murakami, Shinya; Yang, Yili

    2015-03-01

    Cyclic depsipeptides are polypeptides in which one or more amino acid is replaced by a hydroxy acid, resulting in the formation of at least one ester bond in the core ring structure. Many natural cyclic depsipeptides possessing intriguing structural and biological properties, including antitumor, antifungal, antiviral, antibacterial, anthelmintic, and anti-inflammatory activities, have been identified from fungi, plants, and marine organisms. In particular, the potent effects of cyclic depsipeptides on tumor cells have led to a number of clinical trials evaluating their potential as chemotherapeutic agents. Although many of the trials have not achieved the desired results, romidepsin (FK228), a bicyclic depsipeptide that inhibits histone deacetylase, has been shown to have clinical efficacy in patients with refractory cutaneous T-cell lymphoma and has received Food and Drug Administration approval for use in treatment. In this review, we discuss antitumor cyclic depsipeptides that have undergone clinical trials and focus on their structural features, mechanisms, potential applications in chemotherapy, and pharmacokinetic and toxicity data. The results of this study indicate that cyclic depsipeptides could be a rich source of new cancer therapeutics. PMID:25419631

  16. Granulosa cell apoptosis, aromatase activity, cyclic adenosine 3',5'-monophosphate response to gonadotropins, and follicular fluid steroid levels during spontaneous and induced follicular atresia in ewes.

    PubMed

    Jolly, P D; Tisdall, D J; De'ath, G; Heath, D A; Lun, S; Hudson, N L; McNatty, K P

    1997-04-01

    The aims of the present study in ewes were 1) to test the hypothesis that apoptosis in granulosa cells is one of the processes involved in the structural demise of follicles and 2) to define the temporal relationships among the occurrence and degree of apoptosis in granulosa cells, aromatase activity, production of cyclic AMP (cAMP) by granulosa cells in response to FSH or LH, concentrations of estradiol 17 beta (E2) and progesterone in follicular fluid, and the characteristic morphometric changes associated with the process of follicular atresia. To address these aims, ewes were treated with either saline or steroid-free bovine follicular fluid (bFF) at 60 h after estrus, and ovarian follicles > or = 3 mm diameter were recovered at 0, 12, 18, or 24 h later. Apoptotic granulosa cells were identified by the presence of oligonucleosomes after 3'-end labeling of extracted DNA with [32P]alpha dideoxy ATP (ddATP). The degree of oligonucleosome formation, based on the intensity of radiolabeling, was given an apoptosis score (AP) of 0 (nondetectable), 1 (slight), 2 (moderate), or 3 (marked). Moreover, a labeling index (LI) was calculated from the amount of radiolabeled ddATP incorporated into low-molecular weight (< 4.2 kb) DNA fragments. On the basis of morphometric criteria, 73% (141 of 194) of the follicles classified as healthy had apoptotic granulosa cells compared to 86% (18 of 21) of the follicles classified as atretic. In the bFF-but not saline-treated ewes, the concentrations of plasma FSH had declined to basal values at 12 h after treatment. At the beginning of the treatment period, the degree of granulosa cell apoptosis was either undetectable (AP = 0, 47% of follicles) or slight (AP = 1, 44% of follicles) in the majority of follicles. After 12 h from the bFF but not the saline injection, there was a significant increase in the proportion of follicles (> or = 3 mm diameter) per ewe containing apoptotic granulosa cells (p < 0.001) and a significant decrease in

  17. Interpretation of tandem mass spectra obtained from cyclic nonribosomal peptides.

    PubMed

    Liu, Wei-Ting; Ng, Julio; Meluzzi, Dario; Bandeira, Nuno; Gutierrez, Marcelino; Simmons, Thomas L; Schultz, Andrew W; Linington, Roger G; Moore, Bradley S; Gerwick, William H; Pevzner, Pavel A; Dorrestein, Pieter C

    2009-06-01

    Natural and non-natural cyclic peptides are a crucial component in drug discovery programs because of their considerable pharmaceutical properties. Cyclosporin, microcystins, and nodularins are all notable pharmacologically important cyclic peptides. Because these biologically active peptides are often biosynthesized nonribosomally, they often contain nonstandard amino acids, thus increasing the complexity of the resulting tandem mass spectrometry data. In addition, because of the cyclic nature, the fragmentation patterns of many of these peptides showed much higher complexity when compared to related counterparts. Therefore, at the present time it is still difficult to annotate cyclic peptides MS/MS spectra. In this current work, an annotation program was developed for the annotation and characterization of tandem mass spectra obtained from cyclic peptides. This program, which we call MS-CPA is available as a web tool (http://lol.ucsd.edu/ms-cpa_v1/Input.py). Using this program, we have successfully annotated the sequence of representative cyclic peptides, such as seglitide, tyrothricin, desmethoxymajusculamide C, dudawalamide A, and cyclomarins, in a rapid manner and also were able to provide the first-pass structure evidence of a newly discovered natural product based on predicted sequence. This compound is not available in sufficient quantities for structural elucidation by other means such as NMR. In addition to the development of this cyclic annotation program, it was observed that some cyclic peptides fragmented in unexpected ways resulting in the scrambling of sequences. In summary, MS-CPA not only provides a platform for rapid confirmation and annotation of tandem mass spectrometry data obtained with cyclic peptides but also enables quantitative analysis of the ion intensities. This program facilitates cyclic peptide analysis, sequencing, and also acts as a useful tool to investigate the uncommon fragmentation phenomena of cyclic peptides and aids the

  18. Dietary cyclic dipeptides, apoptosis and psychiatric disorders: a hypothesis.

    PubMed

    Semon, Bruce A

    2014-06-01

    Cyclic dipeptides from food and intestinal yeast cyclic dipeptides may play a role in causing psychiatric disorders such as schizophrenia. From cancer research, cyclic dipeptides such as cyclo (proline-phenylalanine) have been found to activate the pathways of apoptosis and to cause programmed cell death. Activation of such pathways is also thought to be important in causing the neurodevelopmental abnormalities seen in disorders such as schizophrenia and autistic disorder, and also may be important in Alzheimer's. Cyclic dipeptides are found in foods such as malt and cocoa and beer. The intestinal yeast Candida albicans also synthesizes cyclic dipeptides. These dipeptides may be activating apoptosis pathways throughout fetal development and postnatal development, leading to some of the changes seen in brain in schizophrenia and in other psychiatric disorders. These compounds should be researched further to see if they play a role in causing these brain changes. In addition, these cyclic dipeptides are considered within the larger context of research on amino acids and other cyclic dipeptides in neurotransmission and neurophysiology. A better understanding of the role of these cyclic dipeptides in psychiatric disorders could lead to strategies for prevention and treatment of these disorders. PMID:24717821

  19. An Early Cyclic Universe

    NASA Astrophysics Data System (ADS)

    Duhe, William; Biswas, Tirthibir

    2014-03-01

    We provide a comprehensive numerical study of the Emergent Cyclic Inflation scenario. This is a scenario where instead of traditional monotonic slow roll inflation, the universe expands over numerous short asymmetric cycles due to the production of entropy via interactions among different species. This is one of the very few scenarios of inflation which provides a nonsingular geodesically complete space-time and does not require any ``reheating'' mechanism. A special thanks to Loyola University for an excellent community to help this project grow.

  20. Cyclic degradation of titanium-tantalum high-temperature shape memory alloys — the role of dislocation activity and chemical decomposition

    NASA Astrophysics Data System (ADS)

    Niendorf, T.; Krooß, P.; Somsen, C.; Rynko, R.; Paulsen, A.; Batyrshina, E.; Frenzel, J.; Eggeler, G.; Maier, H. J.

    2015-05-01

    Titanium-tantalum shape memory alloys (SMAs) are promising candidates for actuator applications at elevated temperatures. They may even succeed in substituting ternary nickel-titanium high temperature SMAs, which are either extremely expensive or difficult to form. However, titanium-tantalum alloys show rapid functional and structural degradation under cyclic thermo-mechanical loading. The current work reveals that degradation is not only governed by the evolution of the ω-phase. Dislocation processes and chemical decomposition of the matrix at grain boundaries also play a major role.

  1. Cell reorientation under cyclic stretching.

    PubMed

    Livne, Ariel; Bouchbinder, Eran; Geiger, Benjamin

    2014-01-01

    Mechanical cues from the extracellular microenvironment play a central role in regulating the structure, function and fate of living cells. Nevertheless, the precise nature of the mechanisms and processes underlying this crucial cellular mechanosensitivity remains a fundamental open problem. Here we provide a novel framework for addressing cellular sensitivity and response to external forces by experimentally and theoretically studying one of its most striking manifestations--cell reorientation to a uniform angle in response to cyclic stretching of the underlying substrate. We first show that existing approaches are incompatible with our extensive measurements of cell reorientation. We then propose a fundamentally new theory that shows that dissipative relaxation of the cell's passively-stored, two-dimensional, elastic energy to its minimum actively drives the reorientation process. Our theory is in excellent quantitative agreement with the complete temporal reorientation dynamics of individual cells measured over a wide range of experimental conditions, thus elucidating a basic aspect of mechanosensitivity. PMID:24875391

  2. Cell reorientation under cyclic stretching

    NASA Astrophysics Data System (ADS)

    Livne, Ariel; Bouchbinder, Eran; Geiger, Benjamin

    2014-05-01

    Mechanical cues from the extracellular microenvironment play a central role in regulating the structure, function and fate of living cells. Nevertheless, the precise nature of the mechanisms and processes underlying this crucial cellular mechanosensitivity remains a fundamental open problem. Here we provide a novel framework for addressing cellular sensitivity and response to external forces by experimentally and theoretically studying one of its most striking manifestations—cell reorientation to a uniform angle in response to cyclic stretching of the underlying substrate. We first show that existing approaches are incompatible with our extensive measurements of cell reorientation. We then propose a fundamentally new theory that shows that dissipative relaxation of the cell’s passively-stored, two-dimensional, elastic energy to its minimum actively drives the reorientation process. Our theory is in excellent quantitative agreement with the complete temporal reorientation dynamics of individual cells measured over a wide range of experimental conditions, thus elucidating a basic aspect of mechanosensitivity.

  3. Anti-adipogenic activity of a new cyclic diarylheptanoid isolated from Alnus japonica on 3T3-L1 cells via modulation of PPARγ, C/EBPα and SREBP1c signaling.

    PubMed

    Sung, Sang Hyun; Lee, Mina

    2015-10-15

    Total methanolic extract of Alnus japonica fruits exhibited significant anti-adipogenic activities in 3T3-L1 cells. A new cyclic diarylheptanoid (1) along with ten known compounds (2-11) were isolated by activity-guided fractionation. Compound 1, determined to be 4-hydroxy-alnus-3,5-dione, showed the most potent anti-adipogenic effect. Compound 1 significantly down-regulated expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), and sterol regulatory element binding protein 1 (SREBP1c) in 3T3-L1 cells, as determined by quantitative real-time PCR and Western blot analysis. Furthermore, compound 1 suppressed mRNA expression of C/EBPβ and C/EBPδ during the early stage of adipogenesis as well as stearoyl coenzyme A desaturase 1 (SCD-1) and fatty acid synthase (FAS), target genes of SREBP1c. Upon investigating the mechanism of natural products, we propose that cyclic diarylheptanoid (1), the most potent constituent of A. japonica, can be a potent therapeutic agent against obesity through anti-adipogenesis via down-regulation of PPARγ, C/EBPα, and SREBP1c signaling. PMID:26341132

  4. Automated mass spectrometric sequence determination of cyclic peptide library members.

    PubMed

    Redman, James E; Wilcoxen, Keith M; Ghadiri, M Reza

    2003-01-01

    Cyclic peptides have come under scrutiny as potential antimicrobial therapeutic agents. Combinatorial split-and-pool synthesis of cyclic peptides can afford single compound per well libraries for antimicrobial screening, new lead identification, and construction of quantitative structure-activity relationships (QSAR). Here, we report a new sequencing protocol for rapid identification of the members of a cyclic peptide library based on automated computer analysis of mass spectra, obviating the need for library encoding/decoding strategies. Furthermore, the software readily integrates with common spreadsheet and database packages to facilitate data visualization and archiving. The utility of the new MS-sequencing approach is demonstrated using sonic spray ionization ion trap MS and MS/MS spectrometry on a single compound per bead cyclic peptide library and validated with individually synthesized pure cyclic D,L-alpha-peptides. PMID:12523832

  5. Structure–Activity Relationships of Cyclic Lactam Analogues of α-Melanocyte-Stimulating Hormone (α-MSH) Targeting the Human Melanocortin-3 Receptor

    PubMed Central

    Mayorov, Alexander V.; Cai, Minying; Palmer, Erin S.; Dedek, Matthew M.; Cain, James P.; Van Scoy, April R.; Tan, Bahar; Vagner, Josef; Trivedi, Dev; Hruby, Victor J.

    2008-01-01

    A variety of dicarboxylic acid linkers introduced between the α-amino group of Pro6 and the ε-amino group of Lys10 of the cyclic lactam α-melanocyte-stimulating hormone (α-MSH)-derived Pro6-D-Phe7/D-Nal(2′)7-Arg8-Trp9-Lys10-NH2 pentapeptide template lead to nanomolar range and selective hMC3R agonists and antagonists. Replacement of the Pro6 residue and the dicarboxylic acid linker with 2,3-pyrazine-dicarboxylic acid furnished a highly selective nanomolar range hMC3R partial agonist (analogue 12, c[CO-2,3-pyrazine-CO-D-Phe-Arg-Trp-Lys]-NH2, EC50 = 27 nM, 70% max cAMP) and an hMC3R antagonist (analogue 13, c[CO-2,3-pyrazine-CO-D-Nal(2′)-Arg-Trp-Lys]-NH2, IC50 = 23 nM). Modeling experiments suggest that 2,3-pyrazinedicarboxylic acid stabilizes a β-turn-like structure with the D-Phe/D-Nal(2′) residues, which explains the high potency of the corresponding peptides. Placement of a Nle residue in position 6 produced a hMC3R/hMC5R antagonist (analogue 15, c[CO-(CH2)2-CO-Nle-D-Nal(2′)-Arg-Trp-Lys]-NH2, IC50 = 12 and 17 nM, respectively), similarly to the previously described cyclic γ-melanocyte-stimulating hormone (γ-MSH)-derived hMC3R/hMC5R antagonists. These newly developed melanotropins will serve as critical biochemical tools for elucidating the full spectrum of functions performed by the physiologically important melanocortin-3 receptor. PMID:18088090

  6. High-affinity Cyclic Peptide Matriptase Inhibitors*

    PubMed Central

    Quimbar, Pedro; Malik, Uru; Sommerhoff, Christian P.; Kaas, Quentin; Chan, Lai Y.; Huang, Yen-Hua; Grundhuber, Maresa; Dunse, Kerry; Craik, David J.; Anderson, Marilyn A.; Daly, Norelle L.

    2013-01-01

    The type II transmembrane serine protease matriptase is a key activator of multiple signaling pathways associated with cell proliferation and modification of the extracellular matrix. Deregulated matriptase activity correlates with a number of diseases, including cancer and hence highly selective matriptase inhibitors may have therapeutic potential. The plant-derived cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), is a promising drug scaffold with potent matriptase inhibitory activity. In the current study we have analyzed the structure-activity relationships of SFTI-1 and Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II), a structurally divergent trypsin inhibitor from Momordica cochinchinensis that also contains a cyclic backbone. We show that MCoTI-II is a significantly more potent matriptase inhibitor than SFTI-1 and that all alanine mutants of both peptides, generated using positional scanning mutagenesis, have decreased trypsin affinity, whereas several mutations either maintain or result in enhanced matriptase inhibitory activity. These intriguing results were used to design one of the most potent matriptase inhibitors known to date with a 290 pm equilibrium dissociation constant, and provide the first indication on how to modulate affinity for matriptase over trypsin in cyclic peptides. This information might be useful for the design of more selective and therapeutically relevant inhibitors of matriptase. PMID:23548907

  7. Combustion oscillation control by cyclic fuel injection

    SciTech Connect

    Richards, G.A.; Yip, M.J.; Robey, E.; Cowell, L.; Rawlins, D.

    1997-04-01

    A number of recent articles have demonstrated the use of active control to mitigate the effects of combustion instability in afterburner and dump combustor applications. In these applications, cyclic injection of small quantities of control fuel has been proposed to counteract the periodic heat release that contributes to undesired pressure oscillations. This same technique may also be useful to mitigate oscillations in gas turbine combustors, especially in test rig combustors characterized by acoustic modes that do not exist in the final engine configuration. To address this issue, the present paper reports on active control of a subscale, atmospheric pressure nozzle.combustor arrangement. The fuel is natural gas. Cyclic injection of 14 percent control fuel in a premix fuel nozzle is shown to reduce oscillating pressure amplitude by a factor of 0.30 (i.e., {minus}10 dB) at 300 Hz. Measurement of the oscillating heat release is also reported.

  8. Combustion oscillation control by cyclic fuel injection

    SciTech Connect

    Richards, G.A.; Yip, M.J.; Robey, E.; Cowell, L.; Rawlins, D.

    1995-04-01

    A number of recent articles have demonstrated the use of active control to mitigate the effects of combustion instability in afterburner and dump combustor applications. In these applications, cyclic injection of small quantities of control fuel has been proposed to counteract the periodic heat release that contributes to undesired pressure oscillations. This same technique may also be useful to mitigate oscillations in gas turbine combustors, especially in test rig combustors characterized by acoustic modes that do not exist in the final engine configuration. To address this issue, the present paper reports on active control of a subscale, atmospheric pressure nozzle/combustor arrangement. The fuel is natural gas. Cyclic injection of 14% control fuel in a premix fuel nozzle is shown to reduce oscillating pressure amplitude by a factor of 0.30 (i.e., {approximately}10 dB) at 300 Hz. Measurement of the oscillating heat release is also reported.

  9. Dual bradykinin B2 receptor signalling in A431 human epidermoid carcinoma cells: activation of protein kinase C is counteracted by a GS-mediated stimulation of the cyclic AMP pathway.

    PubMed Central

    Liebmann, C; Graness, A; Ludwig, B; Adomeit, A; Boehmer, A; Boehmer, F D; Nürnberg, B; Wetzker, R

    1996-01-01

    Cell membranes of the human epidermoid cell line A431 express classical bradykinin (BK) B2 receptors, as assessed by [3H]BK binding studies. Furthermore, stimulation by BK induced a time-dependent modulation of protein kinase C (PKC) activity in A431 cells: a rapid activation (t1/2 approximately 1 min) is followed by a slow inhibition (t1/2 approximately 20 min) of PKC translocation measured by [3H]phorbol 12,13-dibutyrate binding. In addition, BK stimulated both adenylate cyclase activity in A431 membranes and accumulation of intracellular cyclic AMP (cAMP) in intact cells in a retarded manner. A possible BK-induced activation of the cAMP pathway mediated via PKC, phospholipase D, prostaglandins or Ca2+/calmodulin was excluded. A 35 kDa protein was found in A431 membranes to be specifically phosphorylated in the presence of both BK and protein kinase A (PKA). An anti-alpha s-antibody, AS 348, abolished stimulation of adenylate cyclase activity in response to BK, cholera toxin and isoprenaline, strongly suggesting the involvement of Gs proteins in the BK action. The BK-activated cAMP signalling system might be important for the observed inactivation of PKC slowly evoked by BK: the BK-induced rapid activation of PKC is decreased by dibutyryl cAMP, and the slow inhibition of PKC is prevented by an inhibitor of PKA, adenosine 3':5'-monophosphothioate (cyclic, Rp isomer). The inhibition of PKC translocation might be exerted directly at the level of PKC activation, since stimulation of phosphoinositide hydrolysis by BK was affected by neither dibutyryl cAMP nor forskolin. Thus our results provide the first evidence that A431 cells BK is able to activate two independent signal-transduction pathways via a single class of B2 receptors but two different G proteins. The lagging stimulation of the cAMP signalling pathway via Gs might serve to switch off PKC, which is rapidly activated via Gq-mediated stimulation of phosphoinositide hydrolysis. PMID:8546671

  10. Ada and cyclic runtime scheduling

    NASA Technical Reports Server (NTRS)

    Hood, Philip E.

    1986-01-01

    An important issue that must be faced while introducing Ada into the real time world is efficient and prodictable runtime behavior. One of the most effective methods employed during the traditional design of a real time system is the cyclic executive. The role cyclic scheduling might play in an Ada application in terms of currently available implementations and in terms of implementations that might be developed especially to support real time system development is examined. The cyclic executive solves many of the problems faced by real time designers, resulting in a system for which it is relatively easy to achieve approporiate timing behavior. Unfortunately a cyclic executive carries with it a very high maintenance penalty over the lifetime of the software that is schedules. Additionally, these cyclic systems tend to be quite fragil when any aspect of the system changes. The findings are presented of an ongoing SofTech investigation into Ada methods for real time system development. The topics covered include a description of the costs involved in using cyclic schedulers, the sources of these costs, and measures for future systems to avoid these costs without giving up the runtime performance of a cyclic system.

  11. Cyclic Vomiting Syndrome

    PubMed Central

    2009-01-01

    Initially described in children, cyclic vomiting syndrome (CVS) is an idiopathic disorder that affects patients of all ages and is characterized by recurrent episodes of vomiting separated by symptom-free intervals or baseline health. Frequent misdiagnoses and delays in diagnosis often lead to years of recurrent vomiting. Similarities in the clinical features and symptoms of children and adults with CVS are often linked to migraines. Association with mitochondrial disorders and neuroendocrine dysfunction have been described in the pediatric CVS literature, whereas migraines, anxiety, and panic are common in adults with CVS. Various psychological, infectious, and physical stressors commonly precipitate episodes of CVS. Treatment is mostly empiric, with few controlled therapeutic studies conducted thus far. Associations with migraines have aided in developing pharmacologic treatment strategies for prophylaxis as well as abortive therapy during episodes, including the use of trip-tans. Most children outgrow CVS with time, though some children transition to migraine headaches or continue to have CVS as adults. Improved recognition of CVS in adults, along with the emergence of data in the use of anticonvulsants and antiemetics, may help further delineate pathophysiologic connections and therapeutic options for this debilitating disorder.

  12. Ethanol-induced loss of brain cyclic AMP binding proteins: correlation with growth suppression

    SciTech Connect

    Pennington, S.; Kalmus, G.

    1987-05-01

    Brain hypoplasia secondary to maternal ethanol consumption is a common fetal defect observed in all models of fetal alcohol syndrome. The molecular mechanism by which ethanol inhibits growth is unknown but has been hypothesized to involve ethanol-induced changes in the activity of cyclic-AMP stimulated protein kinase. Acute and chronic alcohol exposure elevate cyclic AMP level in many tissues, including brain. This increase in cyclic AMP should increase the phosphorylating activity of kinase by increasing the amount of dissociated (active) kinase catalytic subunit. In 7-day embryonic chick brains, ethanol-induced growth suppression was correlated with increased brain cyclic AMP content but neither basal nor cyclic AMP stimulated kinase catalytic activity was increased. However, the levels of cyclic AMP binding protein (kinase regulatory subunit) were significantly lowered by ethanol exposure. Measured as either /sup 3/H cyclic AMP binding or as 8-azido cyclic AM/sup 32/P labeling, ethanol-exposed brains had significantly less cyclic AMP binding activity (51 +/- 14 versus 29 +/- 10 units/..mu..g protein for 8-azido cyclic AMP binding). These findings suggest that ethanol's effect on kinase activity may involve more than ethanol-induced activation of adenylate cyclase.

  13. Cyclic nucleotide–gated channels, calmodulin, adenylyl cyclase, and calcium/calmodulin-dependent protein kinase II are required for late, but not early, long-term memory formation in the honeybee

    PubMed Central

    Matsumoto, Yukihisa; Sandoz, Jean-Christophe; Devaud, Jean-Marc; Lormant, Flore; Mizunami, Makoto; Giurfa, Martin

    2014-01-01

    Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee Apis mellifera, olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM) are formed upon multiple-trial conditioning: an early phase (e-LTM) which depends on translation from already available mRNA, and a late phase (l-LTM) which requires de novo transcription and translation. Here we combined olfactory PER conditioning and neuropharmacological inhibition and studied the involvement of the NO–cGMP pathway, and of specific molecules, such as cyclic nucleotide-gated channels (CNG), calmodulin (CaM), adenylyl cyclase (AC), and Ca2+/calmodulin-dependent protein kinase (CaMKII), in the formation of olfactory LTM in bees. We show that in addition to NO–cGMP and cAMP–PKA, CNG channels, CaM, AC, and CaMKII also participate in the formation of a l-LTM (72-h post-conditioning) that is specific for the learned odor. Importantly, the same molecules are dispensable for olfactory learning and for the formation of both MTM (in the minute and hour range) and e-LTM (24-h post-conditioning), thus suggesting that the signaling pathways leading to l-LTM or e-LTM involve different molecular actors. PMID:24741108

  14. Cyclic nucleotide phosphodiesterase 1 and vascular aging.

    PubMed

    Yan, Chen

    2015-12-01

    VSMCs (vascular smooth muscle cells) play critical roles in arterial remodelling with aging, hypertension and atherosclerosis. VSMCs exist in diverse phenotypes and exhibit phenotypic plasticity, e.g. changing from a quiescent/contractile phenotype to an active myofibroblast-like, often called 'synthetic', phenotype. Synthetic VSMCs are able to proliferate, migrate and secrete ECM (extracellular matrix) proteinases and ECM proteins. In addition, they produce pro-inflammatory molecules, providing an inflammatory microenvironment for leucocyte penetration, accumulation and activation. The aging VSMCs have also shown changes in cellular phenotype, responsiveness to contracting and relaxing mediators, replicating potential, matrix synthesis, inflammatory mediators and intracellular signalling. VSMC dysfunction plays a key role in age-associated vascular remodelling. Cyclic nucleotide PDEs (phosphodiesterases), by catalysing cyclic nucleotide hydrolysis, play a critical role in regulating the amplitude, duration and compartmentalization of cyclic nucleotide signalling. Abnormal alterations of PDEs and subsequent changes in cyclic nucleotide homoeostasis have been implicated in a number of different diseases. In the study published in the latest issue of Clinical Science, Bautista Niño and colleagues have shown that, in cultured senescent human VSMCs, PDE1A and PDE1C mRNA levels are significantly up-regulated and inhibition of PDE1 activity with vinpocetine reduced cellular senescent makers in senescent VSMCs. Moreover, in the premature aging mice with genomic instability (Ercc1(d/-)), impaired aortic ring relaxation in response to SNP (sodium nitroprusside), an NO (nitric oxide) donor, was also largely improved by vinpocetine. More interestingly, using data from human GWAS (genome-wide association studies), it has been found that PDE1A single nucleotide polymorphisms is significantly associated with diastolic blood pressure and carotid intima-media thickening, two

  15. Concerted Amidation of Activated Esters: Reaction Path and Origins of Selectivity in the Kinetic Resolution of Cyclic Amines via N-Heterocyclic Carbenes and Hydroxamic Acid Cocatalyzed Acyl Transfer

    PubMed Central

    2015-01-01

    The N-heterocyclic carbene and hydroxamic acid cocatalyzed kinetic resolution of cyclic amines generates enantioenriched amines and amides with selectivity factors up to 127. In this report, a quantum mechanical study of the reaction mechanism indicates that the selectivity-determining aminolysis step occurs via a novel concerted pathway in which the hydroxamic acid plays a key role in directing proton transfer from the incoming amine. This modality was found to be general in amide bond formation from a number of activated esters including those generated from HOBt and HOAt, reagents that are broadly used in peptide coupling. For the kinetic resolution, the proposed model accurately predicts the faster reacting enantiomer. A breakdown of the steric and electronic control elements shows that a gearing effect in the transition state is responsible for the observed selectivity. PMID:25050843

  16. [The effect of some pharmacological agents and electroshock on the level of cyclic AMP of the total mouse brain].

    PubMed

    Joanny, P; Devolx, B C; Garron, J; Giannellini, F

    1976-01-01

    Amphetamin, pentobarbital, pargyline, parachlorophenylalanine, pentetrasol and maximal electroshock all increased significantly cyclic AMP in mice whole brain conversely reserpine induced a decrease of cyclic nucleotide. All those changes were tentatively correlated toward central monoaminergic systems activation. PMID:192423

  17. Template-constrained cyclic sulfopeptide HIV-1 entry inhibitors†

    PubMed Central

    Rudick, Jonathan G.; Laakso, Meg M.; Schloss, Ashley C.; DeGrado, William F.

    2013-01-01

    Template-constrained cyclic sulfopeptides that inhibit HIV-1 entry were rationally designed based on a loop from monoclonal antibody (mAb) 412d. A focused set of sulfopeptides was synthesized using Fmoc-Tyr(SO3DCV)-OH (DCV = 2,2-dichlorovinyl). Three cyclic sulfopeptides that inhibit entry of HIV-1 and complement the activity of known CCR5 antagonists were identified. PMID:24065278

  18. Similarity analysis, synthesis, and bioassay of antibacterial cyclic peptidomimetics

    PubMed Central

    Berhanu, Workalemahu M; Ibrahim, Mohamed A; Pillai, Girinath G; Oliferenko, Alexander A; Khelashvili, Levan; Jabeen, Farukh; Mirza, Bushra; Ansari, Farzana Latif; ul-Haq, Ihsan; El-Feky, Said A

    2012-01-01

    Summary The chemical similarity of antibacterial cyclic peptides and peptidomimetics was studied in order to identify new promising cyclic scaffolds. A large descriptor space coupled with cluster analysis was employed to digitize known antibacterial structures and to gauge the potential of new peptidomimetic macrocycles, which were conveniently synthesized by acylbenzotriazole methodology. Some of the synthesized compounds were tested against an array of microorganisms and showed antibacterial activity against Bordetella bronchistepica, Micrococcus luteus, and Salmonella typhimurium. PMID:23019443

  19. Targeting Cyclic Nucleotide Phosphodiesterase in the Heart: Therapeutic Implications

    PubMed Central

    Miller, Clint L.

    2010-01-01

    The second messengers, cAMP and cGMP, regulate a number of physiological processes in the myocardium, from acute contraction/relaxation to chronic gene expression and cardiac structural remodeling. Emerging evidence suggests that multiple spatiotemporally distinct pools of cyclic nucleotides can discriminate specific cellular functions from a given cyclic nucleotide-mediated signal. Cyclic nucleotide phosphodiesterases (PDEs), by hydrolyzing intracellular cyclic AMP and/or cyclic GMP, control the amplitude, duration, and compartmentation of cyclic nucleotide signaling. To date, more than 60 different isoforms have been described and grouped into 11 broad families (PDE1–PDE11) based on differences in their structure, kinetic and regulatory properties, as well as sensitivity to chemical inhibitors. In the heart, PDE isozymes from at least six families have been investigated. Studies using selective PDE inhibitors and/or genetically manipulated animals have demonstrated that individual PDE isozymes play distinct roles in the heart by regulating unique cyclic nucleotide signaling microdomains. Alterations of PDE activity and/or expression have also been observed in various cardiac disease models, which may contribute to disease progression. Several family-selective PDE inhibitors have been used clinically or pre-clinically for the treatment of cardiac or vascular-related diseases. In this review, we will highlight both recent advances and discrepancies relevant to cardiovascular PDE expression, pathophysiological function, and regulation. In particular, we will emphasize how these properties influence current and future development of PDE inhibitors for the treatment of pathological cardiac remodeling and dysfunction. PMID:20632220

  20. Phorbol esters modulate cyclic AMP accumulation in porcine thyroid cells

    SciTech Connect

    Emoto, T.; Kasai, K.; Hiraiwa, M.; Shimoda, S.

    1988-01-01

    In cultured porcine thyroid cells, during 60 min incubation phorbol 12-myristate 13-acetate (PMA) had no effect on basal cyclic AMP accumulation and slightly stimulated cyclic AMP accumulation evoked by thyroid stimulating hormone (TSH) or forskolin. Cholera toxin-induced cyclic AMP accumulation was significantly stimulated by PMA. On the other hand, cyclic AMP accumulation evoked by prostaglandin E/sub 1/ or E/sub 2/ (PGE/sub 1/ and PGE/sub 2/) was markedly depressed by simultaneous addition of PMA. These opposing effects of PMA on cyclic AMP accumulation evoked by PGE and cholera toxin were observed in a dose-related fashion, with half-maximal effect of around 10/sup -9/ M in either case. The almost same effects of PMA on cyclic AMP accumulation in basal and stimulated conditions were also observed in freshly prepared thyroid cells. The present study was performed in the presence of phosphodiesterase inhibitor, 3-iso-butyl-1-methylxanthine (IBMX), indicating that PMA affected adenylate cyclase activity. Therefore, it is suggested that PMA may modulate the production of cyclic AMP in response to different stimuli, possibly by affecting several sites in the adenylate cyclase complex in thyroid cells.

  1. Cyclic nucleotide signalling in kidney fibrosis

    PubMed Central

    Schinner, Elisabeth; Wetzl, Veronika; Schlossmann, Jens

    2015-01-01

    Kidney fibrosis is an important factor for the progression of kidney diseases, e.g., diabetes mellitus induced kidney failure, glomerulosclerosis and nephritis resulting in chronic kidney disease or end-stage renal disease. Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) were implicated to suppress several of the above mentioned renal diseases. In this review article, identified effects and mechanisms of cGMP and cAMP regarding renal fibrosis are summarized. These mechanisms include several signalling pathways of nitric oxide/ANP/guanylyl cyclases/cGMP-dependent protein kinase and cAMP/Epac/adenylyl cyclases/cAMP-dependent protein kinase. Furthermore, diverse possible drugs activating these pathways are discussed. From these diverse mechanisms it is expected that new pharmacological treatments will evolve for the therapy or even prevention of kidney failure. PMID:25622251

  2. Role of Tissue-Specific Transcription Factor LFB3 in a Cyclic AMP-Responsive Enhancer of the Urokinase-Type Plasminogen Activator Gene in LLC-PK1 Cells

    PubMed Central

    Soubt, Mazin Khalil; Marksitzer, René; Menoud, Pierre-Alain; Nagamine, Yoshikuni

    1998-01-01

    A cyclic AMP (cAMP)-inducible enhancer in the pig urokinase-type plasminogen activator gene located 3.4 kb upstream of the transcription initiation site is composed of three protein-binding domains, A, B, and C. Domains A and B each contain a CRE (cAMP response element)-like sequence but require the adjoining C domain for full cAMP responsiveness. A tissue-specific transcription factor, LFB3/HNF1β/vHNF1, binds to the C domain. Mutation analyses suggest that the imperfect CRE and LFB3-binding sequences are required for tight coupling of hormonal and tissue-specific regulation. CREB and ATF1 bind to domains A and B, and this binding is enhanced upon phosphorylation by cAMP-dependent protein kinase (protein kinase A [PKA]). Analysis in a mammalian two-hybrid system revealed that CREB/ATF1 and LFB3 interact and that transactivation potential is enhanced by PKA activation. Interestingly, however, phosphorylation of CREB at Ser-133 does not contribute to its interaction with LFB3. The region of LFB3 involved in its interaction with CREB/ATF1 lies, at least partly, between amino acids 400 and 450. Deletion of this region removed the ability of LFB3 to mediate cAMP induction of the ABC enhancer but did not impair its basal transactivation activity on the albumin promoter. Thus, the two activities are distinct functions of LFB3. PMID:9671480

  3. Generation of biologically active linear and cyclic peptides has revealed a unique fine specificity of rituximab and its possible cross-reactivity with acid sphingomyelinase-like phosphodiesterase 3b precursor.

    PubMed

    Perosa, Federico; Favoino, Elvira; Caragnano, Maria Antonietta; Dammacco, Franco

    2006-02-01

    Heterogeneity of the effector functions displayed by rituximab and other anti-CD20 monoclonal antibodies (mAbs) apparently recognizing the same CD20 epitope suggests that additional mechanisms, probably related to mAb fine specificity, are responsible for B-cell depletion. To improve our understanding of rituximab's function, its fine specificity was investigated by means of phage display peptide library (PDPL)-expressing 7-mer cyclic (c7c) or 7-/12-mer linear peptides. Rituximab-specific c7c PDPL-derived clone insert sequences expressed the motif A(S)NPS overlapping the human CD20 170ANPS173. P172 was the most critical for rituximab binding, since its replacement with S172 (of mouse CD20) abolished the reactivity. The WPXWLE motif expressed by the linear PDPL-derived clone insert sequences could only be aligned to the reverse-oriented 161WPXWLE156 of acid sphingomyelinase-like phosphodiesterase 3b precursor (ASMLPD), though linear peptides bearing WPXWLE competed with cyclic ones for rituximab-paratope binding. Anti-CD20 mAb 1F5 only displayed a reactivity profile similar to that of rituximab, which also reacted with ASMLPD-derived peptides. Peptides induced antibodies with specificity and effector functions similar to those of rituximab. Our results show a unique fine specificity of rituximab, define the molecular basis for the lack of rituximab reactivity with mouse CD20 (mCD20), and the potential of targeting CD20 in an active immunotherapy setting. A possible rituximab interaction with ASMLPD is suggested. PMID:16223774

  4. Investigation of Cyclic Deformation and Fatigue of Polycrystalline Cu under Pure Compression Cyclic Loading Conditions

    NASA Astrophysics Data System (ADS)

    Hsu, Tzu-Yin Jean

    It is commonly accepted that fatigue crack is initiated under tensile fatigue stresses. However, practical examples demonstrate that cracks may also initiate under pure compressive fluctuating loads such as the failures observed in aircraft landing gear frames. However, the mechanism of such failures is rarely investigated. Furthermore, knowledge on cyclic deformation response under pure compressive fatigue condition is also very limited or non-existent. Our recent work already verified that fatigue cracks may nucleate from stress concentration sites under pure compression fatigue, but whether or not a form of stress concentration is always needed to initiate a crack under pure compression fatigue remains uncertain. In this study, compression fatigue tests under different peak stresses were carried out on smooth bars of fully annealed OFHC Copper. The purpose of these tests is to investigate not only the cyclic deformation response but also the possibility of crack nucleation without the stress concentrator. Results showed that overall the cyclic stress-strain response and microstructural evolution of OFHC Copper under pure compression fatigue exhibits rather dissimilar behaviour compared to those under symmetrical fatigue. The specimens hardened rapidly within 10 cycles under pure compression fatigue unlike the gradual cyclic hardening behaviour in symmetrical fatigue with the same peak stress amplitude. Compressive cyclic creep behaviour was also observed under the same testing conditions. Moreover, unlike conventional tension-compression fatigue, only moderate slip activity was detectable on the surface instead of typical PSB features detected from TEM observations. The surface observations has revealed that surface slip bands did not increase in number nor did they become more pronounced in height with increasing number of cycles. In addition, surface roughening by grain boundary extrusion was detected to become more severe as the cycling progressed. Therefore

  5. Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics

    PubMed Central

    Koopmanschap, Gijs; Ruijter, Eelco

    2014-01-01

    Summary In the recent past, the design and synthesis of peptide mimics (peptidomimetics) has received much attention. This because they have shown in many cases enhanced pharmacological properties over their natural peptide analogues. In particular, the incorporation of cyclic constructs into peptides is of high interest as they reduce the flexibility of the peptide enhancing often affinity for a certain receptor. Moreover, these cyclic mimics force the molecule into a well-defined secondary structure. Constraint structural and conformational features are often found in biological active peptides. For the synthesis of cyclic constrained peptidomimetics usually a sequence of multiple reactions has been applied, which makes it difficult to easily introduce structural diversity necessary for fine tuning the biological activity. A promising approach to tackle this problem is the use of multicomponent reactions (MCRs), because they can introduce both structural diversity and molecular complexity in only one step. Among the MCRs, the isocyanide-based multicomponent reactions (IMCRs) are most relevant for the synthesis of peptidomimetics because they provide peptide-like products. However, these IMCRs usually give linear products and in order to obtain cyclic constrained peptidomimetics, the acyclic products have to be cyclized via additional cyclization strategies. This is possible via incorporation of bifunctional substrates into the initial IMCR. Examples of such bifunctional groups are N-protected amino acids, convertible isocyanides or MCR-components that bear an additional alkene, alkyne or azide moiety and can be cyclized via either a deprotection–cyclization strategy, a ring-closing metathesis, a 1,3-dipolar cycloaddition or even via a sequence of multiple multicomponent reactions. The sequential IMCR-cyclization reactions can afford small cyclic peptide mimics (ranging from four- to seven-membered rings), medium-sized cyclic constructs or peptidic macrocycles

  6. Quantifying the cooperative subunit action in a multimeric membrane receptor

    PubMed Central

    Wongsamitkul, Nisa; Nache, Vasilica; Eick, Thomas; Hummert, Sabine; Schulz, Eckhard; Schmauder, Ralf; Schirmeyer, Jana; Zimmer, Thomas; Benndorf, Klaus

    2016-01-01

    In multimeric membrane receptors the cooperative action of the subunits prevents exact knowledge about the operation and the interaction of the individual subunits. We propose a method that permits quantification of ligand binding to and activation effects of the individual binding sites in a multimeric membrane receptor. The power of this method is demonstrated by gaining detailed insight into the subunit action in olfactory cyclic nucleotide-gated CNGA2 ion channels. PMID:26858151

  7. On Improvements of Cyclic MUSIC

    NASA Astrophysics Data System (ADS)

    Yan, Huiqin; Fan, H. Howard

    2005-12-01

    Many man-made signals encountered in communications exhibit cyclostationarity. By exploiting cyclostationarity, cyclic MUSIC has been shown to be able to separate signals with different cycle frequencies, thus, to be able to perform signal selective direction of-arrival (DOA) estimation. However, as will be shown in this paper, the DOA estimation of cyclic MUSIC is actually biased. We show in this paper that by properly choosing the frequency for evaluating the steering vector, the bias of DOA estimation can be substantially reduced and the performance can be improved. Furthermore, we propose another algorithm exploiting cyclic conjugate correlation to further improve the performance of DOA estimation. Simulation results show the effectiveness of both of our methods.

  8. Cyclic adenosine monophosphate phosphodiesterase in brain: effect on anxiety.

    PubMed

    Beer, B; Chasin, M; Clody, D E; Vogel, J R

    1972-04-28

    Drugs that reduce anxiety may be mediated by cyclic adenosine monophosphate in the brain because (i) potent anxiety-reducing drugs are also potent inhibitors of brain phosphodiesterase activity; (ii) dibutyryl cyclic adenosine monophosphate has the ability to reduce anxiety; (iii) the methylxanthines show significant anxiety-reducing effects; (iv) theophylline and chlordiazepoxide produce additive anxiety-reducing activity; and (v) there is a significant correlation between the anxiety-reducing property of drugs and their ability to inhibit phosphodiesterase activity in the brain. PMID:4402069

  9. Pituitary adenylate cyclase-activating peptide induces long-lasting neuroprotection through the induction of activity-dependent signaling via the cyclic AMP response element-binding protein-regulated transcription co-activator 1

    PubMed Central

    Baxter, Paul S; Martel, Marc-Andre; McMahon, Aoife; Kind, Peter C; Hardingham, Giles E

    2011-01-01

    Pituitary adenylate cyclase-activating peptide (PACAP) is a neuroprotective peptide which exerts its effects mainly through the cAMP-protein kinase A (PKA) pathway. Here, we show that in cortical neurons, PACAP-induced PKA signaling exerts a major part of its neuroprotective effects indirectly, by triggering action potential (AP) firing. Treatment of cortical neurons with PACAP induces a rapid and sustained PKA-dependent increase in AP firing and associated intracellular Ca2+ transients, which are essential for the anti-apoptotic actions of PACAP. Transient exposure to PACAP induces long-lasting neuroprotection in the face of apoptotic insults which is reliant on AP firing and the activation of cAMP response element (CRE) binding protein (CREB)-mediated gene expression. Although direct, activity-independent PKA signaling is sufficient to trigger phosphorylation on CREB’s activating serine-133 site, this is insufficient for activation of CREB-mediated gene expression. Full activation is dependent on CREB-regulated transcription co-activator 1 (CRTC1), whose PACAP-induced nuclear import is dependent on firing activity-dependent calcineurin signaling. Over-expression of CRTC1 is sufficient to rescue PACAP-induced CRE-mediated gene expression in the face of activity-blockade, while dominant negative CRTC1 interferes with PACAP-induced, CREB-mediated neuroprotection. Thus, the enhancement of AP firing may play a significant role in the neuroprotective actions of PACAP and other adenylate cyclase-coupled ligands. PMID:21623792

  10. Mechanical stimulation of cyclic tensile strain induces reduction of pluripotent related gene expressions via activation of Rho/ROCK and subsequent decreasing of AKT phosphorylation in human induced pluripotent stem cells

    SciTech Connect

    Teramura, Takeshi; Takehara, Toshiyuki; Onodera, Yuta; Nakagawa, Koichi; Hamanishi, Chiaki; Fukuda, Kanji

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Mechanical stimulation is an important factor for regulation of stem cell fate. Black-Right-Pointing-Pointer Cyclic stretch to human induced pluripotent stem cells activated small GTPase Rho. Black-Right-Pointing-Pointer Rho-kinase activation attenuated pluripotency via inhibition of AKT activation. Black-Right-Pointing-Pointer This reaction could be reproduced only by transfection of dominant active Rho. Black-Right-Pointing-Pointer Rho/ROCK are important molecules in mechanotransduction and control of stemness. -- Abstract: Mechanical stimulation has been shown to regulate the proliferation and differentiation of stem cells. However, the effects of the mechanical stress on the stemness or related molecular mechanisms have not been well determined. Pluripotent stem cells such as embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are used as good materials for cell transplantation therapy and research of mammalian development, since they can self-renew infinitely and differentiate into various cell lineages. Here we demonstrated that the mechanical stimulation to human iPS cells altered alignment of actin fibers and expressions of the pluripotent related genes Nanog, POU5f1 and Sox2. In the mechanically stimulated iPS cells, small GTPase Rho was activated and interestingly, AKT phosphorylation was decreased. Inhibition of Rho-associated kinase ROCK recovered the AKT phosphorylation and the gene expressions. These results clearly suggested that the Rho/ROCK is a potent primary effector of mechanical stress in the pluripotent stem cells and it participates to pluripotency-related signaling cascades as an upper stream regulator.

  11. Spatial Memory in the Morris Water Maze and Activation of Cyclic AMP Response Element-Binding (CREB) Protein within the Mouse Hippocampus

    ERIC Educational Resources Information Center

    Porte, Yves; Buhot, Marie Christine; Mons, Nicole E.

    2008-01-01

    We investigated the spatio-temporal dynamics of learning-induced cAMP response element-binding protein activation/phosphorylation (pCREB) in mice trained in a spatial reference memory task in the water maze. Using immunohistochemistry, we examined pCREB immunoreactivity (pCREB-ir) in hippocampal CA1 and CA3 and related brain structures. During the…

  12. A "turn-on" carbon nanotube-Ag nanoclusters fluorescent sensor for sensitive and selective detection of Hg2+ with cyclic amplification of exonuclease III activity.

    PubMed

    Wang, Guangfeng; Xu, Gang; Zhu, Yanhong; Zhang, Xiaojun

    2014-01-21

    With exonuclease III activity on DNA hybrids containing thymine-Hg(2+)-thymine, a label-free ultrasensitive "turn-on" fluorescent sensor involving "quenching" and "reappearing" processes based on a carbon nanotube-Ag nanoclusters system is demonstrated for amplified determination of Hg(2+). PMID:24292243

  13. A label-free cyclic assembly of G-quadruplex nanowires for cascade amplification detection of T4 polynucleotide kinase activity and inhibition.

    PubMed

    Shi, Zhilu; Zhang, Xiafei; Cheng, Rui; Li, Baoxin; Jin, Yan

    2015-09-01

    Several fluorescence methods have been developed for sensitive detection of PNK activity based on signal amplification techniques, but they need fluorescently labeled DNA probes and superabundant assistant enzymes. We have addressed these limitations and report here a label-free and enzyme-free amplification strategy for sensitively and specifically studying PNK activity and inhibition via hybridization chain reaction (HCR). First, the phosphorylation of hairpin DNA H1 by T4 PNK makes it be specifically digested by lambda exonuclease (λ exo) from 5' to 3' direction to generate a single-stranded initiator which can successively open hairpins H2 and H3 to trigger an autonomous assembly of long DNA nanowires. Meanwhile, an intermolecular G-quadruplex is formed between H2 and H3, thereby providing fluorescence enhancement of N-methyl mesoporphyrin IX (NMM) which is a highly quadruplex-selective fluorophore. So, the PNK activity can be facilely and sensitively detected by using NMM as a signal probe which provides a low background signal to improve the overall sensitivity, resulting in the detection limit of 3.37 × 10(-4) U mL(-1). More importantly, its successful application for detecting PNK activity in a complex biological matrix and studying the inhibition effects of PNK inhibitors demonstrated that it provides a promising platform for screening PNK inhibitors as well as detecting PNK activity. Therefore, it is a highly sensitive, specific, reliable and cost-effective strategy which shows great potential for biological process research, drug discovery, and clinical diagnostics. PMID:26215375

  14. Analgesic and anti-inflammatory activities of Citrus aurantium L. blossoms essential oil (neroli): involvement of the nitric oxide/cyclic-guanosine monophosphate pathway.

    PubMed

    Khodabakhsh, Pariya; Shafaroodi, Hamed; Asgarpanah, Jinous

    2015-07-01

    The analgesic and anti-inflammatory properties of Citrus aurantium L. blossoms essential oil (neroli) were investigated in mice and rats. The analgesic activity of neroli was assessed by acetic acid-induced writhing and Eddy's hot plate methods, while acute and chronic anti-inflammatory effects were investigated by inflammatory paw edema in rat and the cotton pellet-induced granuloma tissue model, respectively. Mechanistic studies were conducted using L-nitro arginine methyl ester (L-NAME), an inhibitor of NO synthase. Neroli significantly decreased the number of acetic acid-induced writhes in mice compared to animals that received vehicle only. Also, it exhibited a central analgesic effect, as evidenced by a significant increase in reaction time in the hot plate method. The oil also significantly reduced carrageenan-induced paw edema in rats. The inhibitory activity of neroli (especially at 40 mg/kg) was found to be very close to the standard drug, diclofenac sodium (50 mg/kg). In cotton pellet-induced granuloma, neroli was effective regarding the transudate and granuloma formation amount. Neroli was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) and twenty-three constituents, representing 91.0 % of the oil, were identified. The major components of neroli were characterized as linalool (28.5 %), linalyl acetate (19.6 %), nerolidol (9.1 %), E,E-farnesol (9.1 %), α-terpineol (4.9 %), and limonene (4.6 %), which might be responsible for these observed activities. The results suggest that neroli possesses biologically active constituent(s) that have significant activity against acute and especially chronic inflammation, and have central and peripheral antinociceptive effects which support the ethnomedicinal claims of the use of the plant in the management of pain and inflammation. PMID:25762161

  15. CCAAT/enhancer-binding protein delta activates insulin-like growth factor-I gene transcription in osteoblasts. Identification of a novel cyclic AMP signaling pathway in bone

    NASA Technical Reports Server (NTRS)

    Umayahara, Y.; Ji, C.; Centrella, M.; Rotwein, P.; McCarthy, T. L.

    1997-01-01

    Insulin-like growth factor-I (IGF-I) plays a key role in skeletal growth by stimulating bone cell replication and differentiation. We previously showed that prostaglandin E2 (PGE2) and other cAMP-activating agents enhanced IGF-I gene transcription in cultured primary rat osteoblasts through promoter 1, the major IGF-I promoter, and identified a short segment of the promoter, termed HS3D, that was essential for hormonal regulation of IGF-I gene expression. We now demonstrate that CCAAT/enhancer-binding protein (C/EBP) delta is a major component of a PGE2-stimulated DNA-protein complex involving HS3D and find that C/EBPdelta transactivates IGF-I promoter 1 through this site. Competition gel shift studies first indicated that a core C/EBP half-site (GCAAT) was required for binding of a labeled HS3D oligomer to osteoblast nuclear proteins. Southwestern blotting and UV-cross-linking studies showed that the HS3D probe recognized a approximately 35-kDa nuclear protein, and antibody supershift assays indicated that C/EBPdelta comprised most of the PGE2-activated gel-shifted complex. C/EBPdelta was detected by Western immunoblotting in osteoblast nuclear extracts after treatment of cells with PGE2. An HS3D oligonucleotide competed effectively with a high affinity C/EBP site from the rat albumin gene for binding to osteoblast nuclear proteins. Co-transfection of osteoblast cell cultures with a C/EBPdelta expression plasmid enhanced basal and PGE2-activated IGF-I promoter 1-luciferase activity but did not stimulate a reporter gene lacking an HS3D site. By contrast, an expression plasmid for the related protein, C/EBPbeta, did not alter basal IGF-I gene activity but did increase the response to PGE2. In osteoblasts and in COS-7 cells, C/EBPdelta, but not C/EBPbeta, transactivated a reporter gene containing four tandem copies of HS3D fused to a minimal promoter; neither transcription factor stimulated a gene with four copies of an HS3D mutant that was unable to bind osteoblast

  16. Cyclic AMP system in muscle tissue during prolonged hypokinesia

    NASA Technical Reports Server (NTRS)

    Antipenko, Y. A.; Bubeyev, Y. A.; Korovkin, B. F.; Mikhaleva, N. P.

    1980-01-01

    Components of the cyclic Adenosine-cyclic-35-monophosphate (AMP) system in the muscle tissue of white rats were studied during 70-75 days of hypokinesia, created by placing the animals in small booths which restricted their movements, and during the readaptation period. In the initial period, cyclic AMP levels and the activities of phosphodiesterase and adenylate cyclase in muscle tissue were increased. The values for these indices were roughly equal for controls and experimental animals during the adaptation period, but on the 70th day of the experiment cAMP levels dropped, phosphodiesterase activity increased, and the stimulative effect of epinephrine on the activity of adenylate cyclase decreased. The indices under study normalized during the readaptation period.

  17. Glucose Evokes Rapid Ca2+ and Cyclic AMP Signals by Activating the Cell-Surface Glucose-Sensing Receptor in Pancreatic β-Cells

    PubMed Central

    Nakagawa, Yuko; Nagasawa, Masahiro; Medina, Johan; Kojima, Itaru

    2015-01-01

    Glucose is a primary stimulator of insulin secretion in pancreatic β-cells. High concentration of glucose has been thought to exert its action solely through its metabolism. In this regard, we have recently reported that glucose also activates a cell-surface glucose-sensing receptor and facilitates its own metabolism. In the present study, we investigated whether glucose activates the glucose-sensing receptor and elicits receptor-mediated rapid actions. In MIN6 cells and isolated mouse β-cells, glucose induced triphasic changes in cytoplasmic Ca2+ concentration ([Ca2+]c); glucose evoked an immediate elevation of [Ca2+]c, which was followed by a decrease in [Ca2+]c, and after a certain lag period it induced large oscillatory elevations of [Ca2+]c. Initial rapid peak and subsequent reduction of [Ca2+]c were independent of glucose metabolism and reproduced by a nonmetabolizable glucose analogue. These signals were also blocked by an inhibitor of T1R3, a subunit of the glucose-sensing receptor, and by deletion of the T1R3 gene. Besides Ca2+, glucose also induced an immediate and sustained elevation of intracellular cAMP ([cAMP]c). The elevation of [cAMP]c was blocked by transduction of the dominant-negative Gs, and deletion of the T1R3 gene. These results indicate that glucose induces rapid changes in [Ca2+]c and [cAMP]c by activating the cell-surface glucose-sensing receptor. Hence, glucose generates rapid intracellular signals by activating the cell-surface receptor. PMID:26630567

  18. The EAL domain containing protein STM2215 (rtn) is needed during Salmonella infection and has cyclic di-GMP phosphodiesterase activity.

    PubMed

    Zheng, Yi; Sambou, Tounkang; Bogomolnaya, Lydia M; Cirillo, Jeffrey D; McClelland, Michael; Andrews-Polymenis, Helene

    2013-08-01

    Salmonella Typhimurium gene STM2215 (rtn) is conserved among many enterobacteriaceae. Mutants lacking STM2215 poorly colonized the liver and spleen in intraperitoneal infection of mice and poorly colonized the intestine and deeper tissues in oral infection. These phenotypes were complemented by a wild-type copy of STM2215 provided in trans. STM2215 deletion mutants grew normally in J774A.1 murine macrophages but were unable to invade Caco-2 colonic epithelial cells. Consistent with this finding, mutants in STM2215 produced lower levels of effectors of the TTSS-1. STM2215 is a predicted c-di-GMP phosphodiesterase, but lacks identifiable sensor domains. Biochemical analysis of STM2215 determined that it is located in the inner membrane and has c-di-GMP phosphodiesterase activity in vitro dependent on an intact EAL motif. Unlike some previously identified members of this family, STM2215 did not affect motility, was expressed on plates, and in liquid media at late exponential and early stationary phase during growth. Defined mutations in STM2215 revealed that neither the predicted periplasmic domain nor the anchoring of the protein to the inner membrane is necessary for the activity of this protein during infection. However, the EAL domain of STM2215 is required during infection, suggesting that its phosphodiesterase activity is necessary during infection. PMID:23734719

  19. Cyclical magnetic field flow fractionation

    NASA Astrophysics Data System (ADS)

    Tasci, T. O.; Johnson, W. P.; Gale, B. K.

    2012-04-01

    In this study, a new magnetic field flow fractionation (FFF) system was designed and modeled by using finite element simulations. Other than current magnetic FFF systems, which use static magnetic fields, our system uses cyclical magnetic fields. Results of the simulations show that our cyclical magnetic FFF system can be used effectively for the separation of magnetic nanoparticles. Cyclical magnetic FFF system is composed of a microfluidic channel (length = 5 cm, height = 30 μm) and 2 coils. Square wave currents of 1 Hz (with 90 deg of phase difference) were applied to the coils. By using Comsol Multiphysics 3.5a, magnetic field profile and corresponding magnetic force exerted on the magnetite nanoparticles were calculated. The magnetic force data were exported from Comsol to Matlab. In Matlab, a parabolic flow profile with maximum flow speed of 0.4 mL/h was defined. Particle trajectories were obtained by the calculation of the particle speeds resulted from both magnetic and hydrodynamic forces. Particle trajectories of the particles with sizes ranging from 10 to 50 nm were simulated and elution times of the particles were calculated. Results show that there is a significant difference between the elution times of the particles so that baseline separation of the particles can be obtained. In this work, it is shown that by the application of cyclical magnetic fields, the separation of magnetic nanoparticles can be done efficiently.

  20. Buffering in cyclic gene networks

    NASA Astrophysics Data System (ADS)

    Glyzin, S. D.; Kolesov, A. Yu.; Rozov, N. Kh.

    2016-06-01

    We consider cyclic chains of unidirectionally coupled delay differential-difference equations that are mathematical models of artificial oscillating gene networks. We establish that the buffering phenomenon is realized in these system for an appropriate choice of the parameters: any given finite number of stable periodic motions of a special type, the so-called traveling waves, coexist.

  1. Color visualization of cyclic magnitudes

    NASA Astrophysics Data System (ADS)

    Restrepo, Alfredo; Estupiñán, Viviana

    2014-02-01

    We exploit the perceptual, circular ordering of the hues in a technique for the visualization of cyclic variables. The hue is thus meaningfully used for the indication of variables such as the azimuth and the units of the measurement of time. The cyclic (or circular) variables may be both of the continuous type or the discrete type; among the first there is azimuth and among the last you find the musical notes and the days of the week. A correspondence between the values of a cyclic variable and the chromatic hues, where the natural circular ordering of the variable is respected, is called a color code for the variable. We base such a choice of hues on an assignment of of the unique hues red, yellow, green and blue, or one of the 8 even permutations of this ordered list, to 4 cardinal values of the cyclic variable, suitably ordered; color codes based on only 3 cardinal points are also possible. Color codes, being intuitive, are easy to remember. A possible low accuracy when reading instruments that use this technique is compensated by fast, ludic and intuitive readings; also, the use of a referential frame makes readings precise. An achromatic version of the technique, that can be used by dichromatic people, is proposed.

  2. Investigation of Cyclic Deformation and Fatigue of Polycrystalline Cu under Pure Compression Cyclic Loading Conditions

    NASA Astrophysics Data System (ADS)

    Hsu, Tzu-Yin Jean

    It is commonly accepted that fatigue crack is initiated under tensile fatigue stresses. However, practical examples demonstrate that cracks may initiate under pure compressive fluctuating loads, e.g. the failures observed in aircraft landing gear frames. As the mechanism of such failures is rarely investigated, there is very limited or non-existent knowledge pool on cyclic deformation response under pure compressive fatigue condition. Our recent work verified that fatigue cracks may nucleate from stress concentration sites under pure compression fatigue, but whether or not a form of stress concentration is always needed to initiate a crack remains uncertain. In this study, compression fatigue tests under different peak stresses were carried out on smooth bars of fully annealed OFHC Copper. The purpose of these tests is to investigate not only the cyclic deformation response but also the possibility of crack nucleation without the stress concentrator. Results showed that overall the cyclic stress-strain response and microstructural evolution of OFHC Copper under pure compression fatigue exhibits rather dissimilar behaviour compared to those under symmetrical fatigue. The specimens hardened rapidly within 10 cycles under pure compression fatigue unlike the gradual cyclic hardening behaviour in symmetrical fatigue with the same peak stress amplitude. Compressive cyclic creep behaviour was also observed. Moreover, TEM observation showed that only moderate slip activity was detectable on the surface instead of typical PSB features. The surface observations revealed that surface slip bands did not increase in number nor height as cycling progressed. In addition, surface roughening by grain boundary extrusion was detected to become more severe with further cycling. Therefore, the plastic strain accommodated within the samples was not mainly related to dislocation activities. Instead, the mechanism of cyclic creep response for pure compression fatigue was correlated and

  3. Isolation and structural characterization of Coryxin, a novel cyclic lipopeptide from Corynebacterium xerosis NS5 having emulsifying and anti-biofilm activity.

    PubMed

    Dalili, Dina; Amini, Mohsen; Faramarzi, Mohammad Ali; Fazeli, Mohammad Reza; Khoshayand, Mohammad Reza; Samadi, Nasrin

    2015-11-01

    Herein we reported the structure and several properties of a new biosurfactants produced by Corynebacterium xerosis strain NS5. This strain was capable of producing a novel lipopeptide biosurfactant that we have named coryxin. The biosurfactant structure was characterized by using Fourier transform infrared spectroscopy (FTIR), Nuclear magnetic resonance spectroscopy (NMR), and Liquid chromatography-mass spectrometry (LC-MS). It contained a hydrophobic moiety of 3-hydroxydecanoic acid and a peptide part predicted as a sequence of seven amino acids including Asn-Arg-Asn-Gln-Pro-Asn-Ser. Coryxin lowered the surface tension of water to 31.4 mN/m, with a critical micelle concentration of 25mg/l. It was a strong emulsifier with an emulsification index of 61% against n-hexane. Coryxin showed antibacterial activity against test organisms belonging to Gram-positive and Gram-negative bacteria and disrupted preformed biofilms of Staphylococcus aureus (82.5%), Streptococcus mutans (80%), Escherichia coli (66%) and Pseudomonas aeruginosa (30%). In conclusion, microbial surfactant from C. xerosis exhibited inhibitory and disruptive activities against biofilm formation that could be of use in biofilm-related menace. PMID:26280817

  4. Sweet Taste Receptor Expressed in Pancreatic β-Cells Activates the Calcium and Cyclic AMP Signaling Systems and Stimulates Insulin Secretion

    PubMed Central

    Nakagawa, Yuko; Nagasawa, Masahiro; Yamada, Satoko; Hara, Akemi; Mogami, Hideo; Nikolaev, Viacheslav O.; Lohse, Martin J.; Shigemura, Noriatsu; Ninomiya, Yuzo; Kojima, Itaru

    2009-01-01

    Background Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. Methodology/Principal Findings The expression of the sweet taste receptor was determined by RT–PCR and immunohistochemistry. Changes in cytoplasmic Ca2+ ([Ca2+]c) and cAMP ([cAMP]c) were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca2+]c. The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5)-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca2+]c response. The effect of sucralose on [Ca2+]c was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a Gq inhibitor. Sucralose also induced sustained elevation of [cAMP]c, which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. Conclusions Sweet taste receptor is expressed in β-cells, and activation of this receptor induces insulin secretion by Ca2+ and cAMP-dependent mechanisms. PMID:19352508

  5. New group 6 metal carbonyl complexes with 4,5-dimethyl-N,N-bis(pyridine-2-yl-methylene)benzene-1,2-diimine Schiff base: synthesis, spectral, cyclic voltammetry and biological activity studies.

    PubMed

    Mohamed, Rania G; Elantabli, Fatma M; Helal, Nadia H; El-Medani, Samir M

    2015-04-15

    Thermal reaction of M(CO)6 (M=Cr, Mo or W) with a Schiff base (DMPA) derived from the condensation of 4,5-dimethyl-1,2-phenylenediamine and pyridine-2-carboxaldehyde in THF in absence and presence of a secondary ligand; 2-aminobenzimidazole (Abz), thiourea (Tu) or 2-(2'-pyridyl)benzimidazole (pybz) were studied. The reaction of Cr(CO)6 gave the four complexes Cr2(CO)2(DMPA)2; 1, Cr(DMPA)2(Abz)2; 2, Cr2(CO)4(DMPA)2(Tu)2; 3 and Cr(DMPA)2(Pybz); 4, while the thermal reaction of Mo(CO)6 resulted in the formation of the two complexes Mo2(O)6(DMPA)2; 5, and Mo2(O)2(CO)2(DMPA)2(Tu)2; 6. Thermal reaction of W(CO)6 and the Schiff base DMPA gave the complex W(O)2(DMPA)2; 7. The ligand DMPA and its metal complexes have been reported and characterized based on elemental analyses, IR, (1)H NMR, magnetic measurements, and thermal analysis. Cyclic voltammetry and biological activity were also investigated. PMID:25670089

  6. New group 6 metal carbonyl complexes with 4,5-dimethyl-N,N-bis(pyridine-2-yl-methylene)benzene-1,2-diimine Schiff base: Synthesis, spectral, cyclic voltammetry and biological activity studies

    NASA Astrophysics Data System (ADS)

    Mohamed, Rania G.; Elantabli, Fatma M.; Helal, Nadia H.; El-Medani, Samir M.

    2015-04-01

    Thermal reaction of M(CO)6 (M = Cr, Mo or W) with a Schiff base (DMPA) derived from the condensation of 4,5-dimethyl-1,2-phenylenediamine and pyridine-2-carboxaldehyde in THF in absence and presence of a secondary ligand; 2-aminobenzimidazole (Abz), thiourea (Tu) or 2-(2‧-pyridyl)benzimidazole (pybz) were studied. The reaction of Cr(CO)6 gave the four complexes Cr2(CO)2(DMPA)2; 1, Cr(DMPA)2(Abz)2; 2, Cr2(CO)4(DMPA)2(Tu)2; 3 and Cr(DMPA)2(Pybz); 4, while the thermal reaction of Mo(CO)6 resulted in the formation of the two complexes Mo2(O)6(DMPA)2; 5, and Mo2(O)2(CO)2(DMPA)2(Tu)2; 6. Thermal reaction of W(CO)6 and the Schiff base DMPA gave the complex W(O)2(DMPA)2; 7. The ligand DMPA and its metal complexes have been reported and characterized based on elemental analyses, IR, 1H NMR, magnetic measurements, and thermal analysis. Cyclic voltammetry and biological activity were also investigated.

  7. Deficient guanine nucleotide regulatory unit activity in cultured fibroblast membranes from patients with pseudohypoparathyroidism type I. A cause of impaired synthesis of 3',5'-cyclic AMP by intact and broken cells

    PubMed Central

    Levine, Michael A.; Eil, Charles; Downs, Robert W.; Spiegel, Allen M.

    1983-01-01

    Deficient activity of the guanine nucleotide regulatory protein (G unit), an integral component of the membrane-bound adenylate cyclase complex, has been implicated as the biochemical lesion in many patients with pseudohypoparathyroidism (PHP) type I. In addition to renal resistance to parathyroid hormone in this disorder, there is decreased responsiveness of diverse tissues to hormones that act via 3',5'-cyclic AMP (cAMP). To assess whether a deficiency of G units could account for impaired adenylate cyclase activity, we studied cAMP production in intact cultured fibroblasts and fibroblast plasma membranes from five patients with PHP in response to several activators of adenylate cyclase. The number of G units in PHP fibroblast membranes, measured by cholera toxin-dependent [32P]ADP ribosylation of G-unit peptides, as well as the G-unit activity, determined by the ability of detergent extracts to reconstitute adenylate cyclase activity in G-unit-deficient S49 CYC- membranes, were found to be markedly reduced compared with control membranes (43 and 40%, respectively), The activation of fibroblast membrane adenylate cyclase by effectors that act directly through the G unit (guanosine triphosphate, guanosine 5'-0-[3-thiotriphosphate] [GTP-γ-S], NaF) was significantly greater in control membranes than in membranes from patients with PHP. Moreover, we found that hormone (prostaglandin E1) stimulated adenylate cyclase activity was also greater in control membranes than in PHP membranes. Neither the apparent affinity of membrane adenylate cyclase for GTP-γ-S (apparent Km =5 X 10-8 M) nor the rate of enzyme activation by GTP-γ-S was significantly different in fibroblast membranes from control subjects and patients with PHP. In contrast to the notable differences in hormone and G-unit-activated adenylate cyclase shown in fibroblast membranes from PHP patients and control subjects, the intrinsic catalytic activity of membranes, as determined by forskolin

  8. Evidence that cyclic nucleotides are not mediators of fever in rabbits.

    PubMed Central

    Dascombe, M. J.

    1984-01-01

    The N6-2'-O-dibutyryl derivative of adenosine 3',5'-monophosphate (db cyclic AMP) and related compounds have been micro-injected into the preoptic/anterior hypothalamic nuclei (PO/AH) of the unanaesthetized, restrained rabbit and the effects on deep body temperature observed. Db cyclic AMP (100-400 micrograms) produced hypothermia of rapid onset in rabbits at an ambient temperature of 20-23 degrees C. Hypothermia was also produced by N2-2'-O-dibutyryl guanosine 3',5'-monophosphate (db cyclic GMP), but not by saline, sodium n-butyrate, adenosine 3',5'-monophosphate (cyclic AMP), guanosine 3',5'-monophosphate, adenosine 5'-mono-, di- or triphosphate. The initial hypothermic response to db cyclic AMP and db cyclic GMP was followed by a sustained rise in temperature. However, all compounds injected into the PO/AH produced a similar hyperthermia which was attenuated by paracetamol. Development of this tissue-damage fever abolished the hypothermic response to db cyclic AMP in some rabbits. The effects of db cyclic AMP on body temperature and behaviour were not reproduced by the adenylate cyclase activators, cholera toxin (0.125-5 micrograms) and guanyl imidodiphosphate (5-400 micrograms). It is concluded that hypothermia is the principal effect of db cyclic AMP on body temperature when injected into the PO/AH in rabbits. These data do not support the proposal that endogenous cyclic AMP in the rabbit brain mediates pyrexia. PMID:6326920

  9. A homogeneous immunoassay for cyclic nucleotides based on chemiluminescence energy transfer.

    PubMed Central

    Campbell, A K; Patel, A

    1983-01-01

    A chemiluminescent derivative of cyclic AMP, aminobutylethylisoluminol succinyl cyclic AMP (ABEI-scAMP), was synthesized in order to develop a homogeneous immunoassay based on non-radiative energy transfer. ABEI-scAMP was chemiluminescent (5.1 X 10(18) luminescent counts X mol-1 at pH 13), pure (greater than 95%) stable and immunologically active. A conventional immunoassay was established using ABEI-scAMP and a solid-phase anti-(cyclic AMP) immunoglobulin G which could detect cyclic AMP at least down to 25fmol. A homogeneous immunoassay for cyclic AMP was established by measuring the shift in wavelength from 460 to 525nm which occurred when ABEI-scAMP was bound to fluorescein-labelled anti-(cyclic AMP) immunoglobulin G. The assay was at least as sensitive as the conventional radioimmunoassay using cyclic [3H]AMP and could measure cyclic AMP over the range 1-1000nM. The homogeneous chemiluminescent energy transfer assay was also able to quantify the association and dissociation of antibody-antigen complexes. Chemiluminescence energy transfer occurred between fluorescein-labelled antibodies and several other ABEI-labelled antigens (Mr values 314-150000) including progesterone, cyclic GMP, complement component C9 and immunoglobulin G. The results provide a homogeneous immunoassay capable of measuring free cyclic AMP under conditions likely to exist inside cells. PMID:6316935

  10. Effect of gallium-porphyrin analogue ATX-70 on nitroxide formation from a cyclic secondary amine by ultrasound: on the mechanism of sonodynamic activation.

    PubMed

    Miyoshi, N; Misík, V; Fukuda, M; Riesz, P

    1995-08-01

    Sonodynamic therapy is a promising new modality for cancer treatment based on the synergistic effect on tumor cell killing by combination of a drug (typically a photosensitizer) and ultrasound. The mechanism of sonodynamic action was suggested to involve photoexcitation of the sensitizer by sonoluminescent light, with subsequent formation of singlet oxygen. In this work we studied the aqueous sonochemical reactions of the gallium-porphyrin derivative ATX-70, one of the most active sonodynamic agents found, using 50 kHz ultrasound. The experiments were carried out in the presence of 2,2,6,6-tetramethyl-4-piperidone hydrochloride (TMP), which reacts with singlet oxygen or .OH radicals to give the EPR-detectable nitroxide 2,2,6,6-tetramethyl-4-piperidone-N-oxyl (TMP-NO). Recently it has been suggested that the enhancement of TMP-NO yields in the presence of aqueous solutions of ATX-70 exposed to ultrasound was evidence for the formation of singlet oxygen in the system. Our results show that the surfactant cetyltrimethylammonium bromide (CTAB) can mimic the ATX-70-induced increase in the TMP-NO signal, but it fails to reproduce the behavior of ATX-70 in D2O: while the yields of TMP-NO in the presence of ATX-70 increase in D2O, the opposite effect was found with the surfactant CTAB. However, our data show that the increased TMP-NO yields in D2O are paralleled by an increased concentration of ATX-70 dimer, a form that is inactive in the photochemical generation of singlet oxygen. Our finding that the ATX-70-dependent enhancement of the TMP-NO signal was highest at approximately 20% O2, in both N2/O2 and argon/O2 mixtures, and decreased with increasing oxygen concentration is not compatible with the singlet oxygen mechanism. Finally, our results on the temperature dependence of the ATX-70-induced formation of TMP-NO are not consistent with the photochemical excitation of ATX-70 by sonoluminescent light: the ATX-70-dependent enhancement of TMP-NO signal increased with

  11. Supramolecular nesting of cyclic polymers

    NASA Astrophysics Data System (ADS)

    Kondratuk, Dmitry V.; Perdigão, Luís M. A.; Esmail, Ayad M. S.; O'Shea, James N.; Beton, Peter H.; Anderson, Harry L.

    2015-04-01

    Advances in template-directed synthesis make it possible to create artificial molecules with protein-like dimensions, directly from simple components. These synthetic macromolecules have a proclivity for self-organization that is reminiscent of biopolymers. Here, we report the synthesis of monodisperse cyclic porphyrin polymers, with diameters of up to 21 nm (750 C-C bonds). The ratio of the intrinsic viscosities for cyclic and linear topologies is 0.72, indicating that these polymers behave as almost ideal flexible chains in solution. When deposited on gold surfaces, the cyclic polymers display a new mode of two-dimensional supramolecular organization, combining encapsulation and nesting; one nanoring adopts a near-circular conformation, thus allowing a second nanoring to be captured within its perimeter, in a tightly folded conformation. Scanning tunnelling microscopy reveals that nesting occurs in combination with stacking when nanorings are deposited under vacuum, whereas when they are deposited directly from solution under ambient conditions there is stacking or nesting, but not a combination of both.

  12. Cyclic stretch of airway epithelium inhibits prostanoid synthesis.

    PubMed

    Savla, U; Sporn, P H; Waters, C M

    1997-11-01

    Airway epithelial cells (AEC) metabolize arachidonic acid (AA) to biologically active eicosanoids, which contribute to regulation of airway smooth muscle tone and inflammatory responses. Although in vivo the airways undergo cyclical stretching during ventilation, the effect of cyclic stretch on airway epithelial AA metabolism is unknown. In this study, cat and human AEC were grown on flexible membranes and were subjected to cyclic stretch using the Flexercell strain unit. Cyclic stretch downregulated synthesis of prostaglandin (PG) E2, PGI2, and thromboxane A2 by both cell types in a frequency-dependent manner. The percent inhibition of prostanoid synthesis in both cell types ranged from 53 +/- 7 to 75 +/- 8% (SE; n = 4 and 5, respectively). Treatment of cat AEC with exogenous AA (10 micrograms/ml) had no effect on the stretch-induced inhibition of PGE2 synthesis, whereas treatment with exogenous PGH2 (10 micrograms/ml) overcame the stretch-induced decrease in PGE2 production. These results indicate that stretch inhibits prostanoid synthesis by inactivating cyclooxygenase. When cells were pretreated with the antioxidants catalase (100 micrograms/ml, 150 U/ml) and N-acetylcysteine (1 mM), there was a partial recovery of eicosanoid production, suggesting that cyclic stretch-induced inactivation of cyclooxygenase is oxidant mediated. These results may have important implications for inflammatory diseases in which airway mechanics are altered. PMID:9374729

  13. Cyclical components of local rainfall data

    NASA Astrophysics Data System (ADS)

    Mentz, R. P.; D'Urso, M. A.; Jarma, N. M.; Mentz, G. B.

    2000-02-01

    This paper reports on the use of a comparatively simple statistical methodology to study local short time series rainfall data. The objective is to help in agricultural planning, by diminishing the risks associated with some uncertainties affecting this business activity.The analysis starts by assuming a model of unobservable components, trend, cycle, seasonal and irregular, that is well known in many areas of application. When series are in the realm of business and economics, the statistical methods popularized by the US Census Bureau US National Bureau of Economic Research are used for seasonal and cyclical estimation, respectively. The flexibility of these methods makes them good candidates to be applied in the meteorological context, and this is done in this paper for a selection of monthly rainfall time series.Use of the results to help in analysing and forecasting cyclical components is emphasized. The results are interesting. An agricultural entrepreneur, or a group of them located in a single geographical region, will profit by systematically collecting information (monthly in our work) about rainfall, and adopting the scheme of analysis described in this paper.

  14. Antifungal cyclic peptides from the marine sponge Microscleroderma herdmani

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Screening natural product extracts from National Cancer Institute Open Repository for antifungal discovery afforded hits for bioassay-guided fractionation. Upon LC-MS analysis of column fractions with antifungal activities to generate information on chemical structure, two new cyclic hexapeptides, m...

  15. Cyclic tensile strain upregulates collagen synthesis in isolated tendon fascicles

    SciTech Connect

    Screen, Hazel R.C. . E-mail: H.R.C.Screen@qmul.ac.uk; Shelton, Julia C.; Bader, Dan L.; Lee, David A.

    2005-10-21

    Mechanical stimulation has been implicated as an important regulatory factor in tendon homeostasis. In this study, a custom-designed tensile loading system was used to apply controlled mechanical stimulation to isolated tendon fascicles, in order to examine the effects of 5% cyclic tensile strain at 1 Hz on cell proliferation and matrix synthesis. Sample viability and gross structural composition were maintained over a 24 h loading period. Data demonstrated no statistically significant differences in cell proliferation or glycosaminoglycan production, however, collagen synthesis was upregulated with the application of cyclic tensile strain over the 24 h period. Moreover, a greater proportion of the newly synthesised matrix was retained within the sample after loading. These data provide evidence of altered anabolic activity within tendon in response to mechanical stimuli, and suggest the importance of cyclic tensile loading for the maintenance of the collagen hierarchy within tendon.

  16. A long-acting β2-adrenergic agonist increases the expression of muscarine cholinergic subtype-3 receptors by activating the β2-adrenoceptor cyclic adenosine monophosphate signaling pathway in airway smooth muscle cells

    PubMed Central

    LIU, YUAN-HUA; WU, SONG-ZE; WANG, GANG; HUANG, NI-WEN; LIU, CHUN-TAO

    2015-01-01

    The persistent administration of β2-adrenergic (β2AR) agonists has been demonstrated to increase the risk of severe asthma, partly due to the induction of tolerance to bronchoprotection via undefined mechanisms. The present study investigated the potential effect of the long-acting β2-adrenergic agonist, formoterol, on the expression of muscarinic M3 receptor (M3R) in rat airway smooth muscle cells (ASMCs). Primary rat ASMCs were isolated and characterized following immunostaining with anti-α-smooth muscle actin antibodies. The protein expression levels of M3R and phospholipase C-β1 (PLCβ1) were characterized by western blot analysis and the production of inositol 1,4,5-trisphosphate (IP3) was determined using an enzyme-linked immunosorbent assay. Formoterol increased the protein expression of M3R in rat ASMCs in a time- and dose-dependent manner, which was significantly inhibited by the β2AR antagonist, ICI118,551 and the cyclic adenosine monophosphate (cAMP) inhibitor, SQ22,536. The increased protein expression of M3R was positively correlated with increased production of PLCβ1 and IP3. Furthermore, treatment with the glucocorticoid, budesonide, and the PLC inhibitor, U73,122, significantly suppressed the formoterol-induced upregulated protein expression levels of M3R and PLCβ1 and production of IP3. The present study demonstrated that formoterol mediated the upregulation of M3R in the rat ASMCs by activating the β2AR-cAMP signaling pathway, resulting in increased expression levels of PLCβ1 and IP3, which are key to inducing bronchoprotection tolerance. Administration of glucocorticoids or a PLC antagonist prevented formoterol-induced bronchoprotection tolerance by suppressing the protein expression of M3R. PMID:25672589

  17. Microheterogeneity of adenosine cyclic monophosphate-dependent protein kinases from mouse brain and heart.

    PubMed Central

    Malkinson, A M; Gharrett, A J; Hogy, L

    1978-01-01

    1. DEAE-cellulose chromatography of mouse brain cytosol indicated the presence of only the type II isoenzyme of cyclic AMP-dependent protein kinase. Mouse heart cytosol contained approximately equal amounts of the type I and type II isoenzymes. 2. Both brain and heart type II isoenzymes reassociated after a transient exposure to cyclic AMP, but the heart type I isoenzyme remained dissociated. 3. Elution of brain cytosol continuously exposed to cyclic AMP resolved multiple peaks of protein kinase and cyclic AMP-binding activities. A single peak of kinase and multiple peaks of cyclic AMP-binding activities were found under the same conditions with heart cytosol. Various control experiments suggested that the heterogeneity within the brain type II isoenzymic class had not been caused by proteolysis. 4. Kinetic experiments with unfractionated brain cytosol showed that the binding of cyclic AMP, the dissociation of cyclic AMP from protein and the rate of heat denaturation of the cyclic AMP-binding activity gave results consistent with the presence of multiple binding species. 5. It concluded that the type II isoenzymic peak obtained by DEAE-cellulose chromatography of mouse brain cytosol represents a class of enzymes containing multiple regulatory and catalytic subunits. The two heart cytosol isoenzymes contain a common catalytic subunit. The degree of protein kinase 'microheterogeneity", defined as the presence of multiple regulatory and/or catalytic subunits within a single isoenzymic class, appears to be tissue-specific. PMID:217338

  18. Cyclic GMP and Cilia Motility

    PubMed Central

    Wyatt, Todd A.

    2015-01-01

    Motile cilia of the lungs respond to environmental challenges by increasing their ciliary beat frequency in order to enhance mucociliary clearance as a fundamental tenant of innate defense. One important second messenger in transducing the regulable nature of motile cilia is cyclic guanosine 3′,5′-monophosphate (cGMP). In this review, the history of cGMP action is presented and a survey of the existing data addressing cGMP action in ciliary motility is presented. Nitric oxide (NO)-mediated regulation of cGMP in ciliated cells is presented in the context of alcohol-induced cilia function and dysfunction. PMID:26264028

  19. Fitting curves to cyclic data

    USGS Publications Warehouse

    Langbein, W.B.

    1955-01-01

    A common problem in hydrology is to fit a smooth curve to cyclic or periodic data, either to define the most probable values of the data or to test some principle that one wishes to demonstrate.  This study treats of those problems where the length or period of the cycle is know beforehand - as a day, year, or meander length for example.  Curve-fitting can be made by free-hand drawing, and where the data are closely aligned this method offers the simplest and most direct course.  However, there are many problems where the best fit is far from obvious, and analytical methods may be necessary.

  20. Mechanistic determinants of the directionality and energetics of active export by a heterodimeric ABC transporter

    NASA Astrophysics Data System (ADS)

    Grossmann, Nina; Vakkasoglu, Ahmet S.; Hulpke, Sabine; Abele, Rupert; Gaudet, Rachelle; Tampé, Robert

    2014-11-01

    The ATP-binding cassette (ABC) transporter associated with antigen processing (TAP) participates in immune surveillance by moving proteasomal products into the endoplasmic reticulum (ER) lumen for major histocompatibility complex class I loading and cell surface presentation to cytotoxic T cells. Here we delineate the mechanistic basis for antigen translocation. Notably, TAP works as a molecular diode, translocating peptide substrates against the gradient in a strict unidirectional way. We reveal the importance of the D-loop at the dimer interface of the two nucleotide-binding domains (NBDs) in coupling substrate translocation with ATP hydrolysis and defining transport vectoriality. Substitution of the conserved aspartate, which coordinates the ATP-binding site, decreases NBD dimerization affinity and turns the unidirectional primary active pump into a passive bidirectional nucleotide-gated facilitator. Thus, ATP hydrolysis is not required for translocation per se, but is essential for both active and unidirectional transport. Our data provide detailed mechanistic insight into how heterodimeric ABC exporters operate.

  1. Insights into How Cyclic Peptides Switch Conformations.

    PubMed

    McHugh, Sean M; Rogers, Julia R; Yu, Hongtao; Lin, Yu-Shan

    2016-05-10

    Cyclic peptides have recently emerged as promising modulators of protein-protein interactions. However, it is currently highly difficult to predict the structures of cyclic peptides owing to their rugged conformational free energy landscape, which prevents sampling of all thermodynamically relevant conformations. In this article, we first investigate how a relatively flexible cyclic hexapeptide switches conformations. It is found that, although the circular geometry of small cyclic peptides of size 6-8 may require rare, coherent dihedral changes to sample a new conformation, the changes are rather local, involving simultaneous changes of ϕi and ψi or ψi and ϕi+1. The understanding of how these cyclic peptides switch conformations enables the use of metadynamics simulations with reaction coordinates specifically targeting such coupled two-dihedral changes to effectively sample cyclic peptide conformational space. PMID:27031286

  2. Advances in targeting cyclic nucleotide phosphodiesterases

    PubMed Central

    Maurice, Donald H.; Ke, Hengming; Ahmad, Faiyaz; Wang, Yousheng; Chung, Jay; Manganiello, Vincent C.

    2014-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants. PMID:24687066

  3. Advances in targeting cyclic nucleotide phosphodiesterases.

    PubMed

    Maurice, Donald H; Ke, Hengming; Ahmad, Faiyaz; Wang, Yousheng; Chung, Jay; Manganiello, Vincent C

    2014-04-01

    Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants. PMID:24687066

  4. Cyclic Imide Dioxime: Formation and Hydrolytic Stability

    SciTech Connect

    Kang, S.O.; Vukovic, Sinisa; Custelcean, Radu; Hay, Benjamin

    2012-01-01

    Poly(acrylamidoximes) play an important role in the uranium extraction from seawater. The present work reports solution studies of simple analogs to address the formation and stability of two binding sites present in these polymers, open-chain amidoximes and cyclic imide dioximes, including: 1) conditions that maximize the formation of the cyclic form, 2) existence of a base-induced conversion from open-chain to cyclic form, and 3) degradation under acid and base conditions.

  5. Enhanced catalyst stability for cyclic co methanation operations

    DOEpatents

    Risch, Alan P.; Rabo, Jule A.

    1983-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is thereafter reacted with steam or hydrogen to form methane. Enhanced catalyst stability for long term, cyclic operation is obtained by the incorporation of an alkali or alkaline earth dopant in a silica binding agent added to the catalyst-support additive composition.

  6. Nonlinear, nonbinary cyclic group codes

    NASA Technical Reports Server (NTRS)

    Solomon, G.

    1992-01-01

    New cyclic group codes of length 2(exp m) - 1 over (m - j)-bit symbols are introduced. These codes can be systematically encoded and decoded algebraically. The code rates are very close to Reed-Solomon (RS) codes and are much better than Bose-Chaudhuri-Hocquenghem (BCH) codes (a former alternative). The binary (m - j)-tuples are identified with a subgroup of the binary m-tuples which represents the field GF(2 exp m). Encoding is systematic and involves a two-stage procedure consisting of the usual linear feedback register (using the division or check polynomial) and a small table lookup. For low rates, a second shift-register encoding operation may be invoked. Decoding uses the RS error-correcting procedures for the m-tuple codes for m = 4, 5, and 6.

  7. Cyclic strength of hard metals

    SciTech Connect

    Sereda, N.N.; Gerikhanov, A.K.; Koval'chenko, M.S.; Pedanov, L.G.; Tsyban', V.A.

    1986-02-01

    The authors study the strength of hard-metal specimens and structural elements under conditions of cyclic loading since many elements of processing plants, equipment, and machines are made of hard metals. Fatigue tests were conducted on KTS-1N, KTSL-1, and KTNKh-70 materials, which are titanium carbide hard metals cemented with nickel-molybdenum, nickelcobalt-chromium, and nickel-chromium alloys, respectively. As a basis of comparison, the standard VK-15 (WC+15% Co) alloy was used. Some key physicomechanical characteristics of the materials investigated are presented. On time bases not exceeding 10/sup 6/ cycles, titanium carbide hard metals are comparable in fatigue resistance to the standard tungstencontaining hard metals.

  8. Solid-Phase Peptide Head-to-Side Chain Cyclodimerization: Discovery of C2-Symmetric Cyclic Lactam Hybrid α-Melanocyte-Stimulating Hormone (MSH)/Agouti-Signaling Protein (ASIP) Analogues with Potent Activities at the Human Melanocortin Receptors

    PubMed Central

    Mayorov, Alexander V.; Cai, Minying; Palmer, Erin S.; Liu, Zhihua; Cain, James P.; Vagner, Josef; Trivedi, Dev; Hruby, Victor J.

    2011-01-01

    A novel hybrid melanocortin pharmacophore was designed based on the pharmacophores of the Agouti signaling protein (ASIP), an endogenous melanocortin antagonist, and α-melanocyte-stimulating hormone (α-MSH), an endogenous melanocortin agonist. The designed hybrid ASIP/MSH pharmacophore was explored in monomeric cyclic, and cyclodimeric templates. The monomeric cyclic disulfide series yielded peptides with hMC3R-selective non-competitive binding affinities. The direct on-resin peptide lactam cyclodimerization yielded nanomolar range (25-120 nM) hMC1R-selective full and partial agonists in the cyclodimeric lactam series which demonstrates an improvement over the previous attempts at hybridization of MSH and agouti protein sequences. The secondary structure-oriented pharmacophore hybridization strategy will prove useful in development of unique allosteric and orthosteric melanocortin receptor modulators. This report also illustrates the utility of peptide cyclodimerization for the development of novel GPCR peptide ligands. PMID:20688117

  9. Cyclic Linearization and Island Repair in Sluicing

    ERIC Educational Resources Information Center

    Qiu, Chunan

    2009-01-01

    Cyclic Linearization is adopted to account for the island repair of Sluicing in English. The extraction of wh-phrase out of certain islands undergoes non-successive-cyclic movement, which yields conflicting ordering statements. The derivation can be rescued by deleting all ordering statements in IP, including those conflicting ones. Two arguments…

  10. Twisted Cyclic Cohomology and Modular Fredholm Modules

    NASA Astrophysics Data System (ADS)

    Rennie, Adam; Sitarz, Andrzej; Yamashita, Makoto

    2013-07-01

    Connes and Cuntz showed in [Comm. Math. Phys. 114 (1988), 515-526] that suitable cyclic cocycles can be represented as Chern characters of finitely summable semifinite Fredholm modules. We show an analogous result in twisted cyclic cohomology using Chern characters of modular Fredholm modules. We present examples of modular Fredholm modules arising from Podleś spheres and from SUq(2).

  11. Copper regulates cyclic-AMP-dependent lipolysis.

    PubMed

    Krishnamoorthy, Lakshmi; Cotruvo, Joseph A; Chan, Jefferson; Kaluarachchi, Harini; Muchenditsi, Abigael; Pendyala, Venkata S; Jia, Shang; Aron, Allegra T; Ackerman, Cheri M; Wal, Mark N Vander; Guan, Timothy; Smaga, Lukas P; Farhi, Samouil L; New, Elizabeth J; Lutsenko, Svetlana; Chang, Christopher J

    2016-08-01

    Cell signaling relies extensively on dynamic pools of redox-inactive metal ions such as sodium, potassium, calcium and zinc, but their redox-active transition metal counterparts such as copper and iron have been studied primarily as static enzyme cofactors. Here we report that copper is an endogenous regulator of lipolysis, the breakdown of fat, which is an essential process in maintaining body weight and energy stores. Using a mouse model of genetic copper misregulation, in combination with pharmacological alterations in copper status and imaging studies in a 3T3-L1 white adipocyte model, we found that copper regulates lipolysis at the level of the second messenger, cyclic AMP (cAMP), by altering the activity of the cAMP-degrading phosphodiesterase PDE3B. Biochemical studies of the copper-PDE3B interaction establish copper-dependent inhibition of enzyme activity and identify a key conserved cysteine residue in a PDE3-specific loop that is essential for the observed copper-dependent lipolytic phenotype. PMID:27272565

  12. Phase behaviors of cyclic diblock copolymers.

    PubMed

    Zhang, Guojie; Fan, Zhongyong; Yang, Yuliang; Qiu, Feng

    2011-11-01

    A spectral method of self-consistent field theory has been applied to AB cyclic block copolymers. Phase behaviors of cyclic diblock copolymers, such as order-disorder transition, order-order transition, and domain spacing size, have been studied, showing good consistency with previous experimental and theoretical results. Compared to linear diblocks, cyclic diblocks are harder to phase separate due to the topological constraint of the ring structure. A direct disorder-to-cylinder transition window is observed in the phase diagram, which is significantly different from the mean field phase diagram of linear diblock copolymers. The domain spacing size ratio between cyclic and linear diblock copolymers is typically close to 0.707, indicating in segregation that the cyclic polymer can be considered to be made up of linear diblocks with half of the original chain length. PMID:22070321

  13. The dependence of Escherichia coli asparaginase II formation on cyclic AMP and cyclic AMP receptor protein.

    PubMed

    Russell, L; Yamazaki, H

    1978-05-01

    The amount of asparaginase II in an Escherichia coli wild-type strain (cya+, crp+) markedly increased upon a shift from aerobic to anaerobic growth. However, no such increase occurred in a mutant (cya) lacking cyclic AMP synthesis unless supplemented with exogenous cyclic AMP. Since a mutant (crp) deficient in cyclic AMP receptor protein also did not support the anaerobic formation of this enzyme, it is concluded that the formation of E. coli asparaginase II depends on both cyclic AMP and cyclic AMP receptor protein. PMID:207402

  14. Inducing coproporphyria in rat hepatocyte cultures using cyclic AMP and cyclic AMP-releasing agents.

    PubMed

    De Matteis, Francesco; Harvey, Carolyn

    2005-07-01

    Cyclic AMP (c-AMP), added on its own to rat hepatocyte cultures, caused a marked accumulation of coproporphyrin III. The results obtained by comparing the effect of c-AMP to that of exogenous 5-aminolevulinate (ALA), and from adding c-AMP and ALA together, indicated that the coproporphyrinogen III metabolism was blocked, even though no inhibition of the relevant enzyme, coproporphyrinogen oxidase, could be demonstrated. Preferential accumulation of coproporphyrin could also be produced in cultures of rat hepatocytes by agents that raise the cellular levels of cyclic AMP, such as glucagon. The effect of supplementing the culture medium with triiodothyronine (T3) on the response of rat hepatocytes to c-AMP was also investigated. T3, which is known to stimulate mitochondrial respiration, uncoupling O2 consumption from ATP synthesis, produced a c-AMP-like effect when given on its own and potentiated the effect of c-AMP, with an apparent increase in the severity of the metabolic block. It is suggested that an oxidative mechanism may be activated in c-AMP and T3-induced coproporphyria, preferentially involving the mitochondrial compartment, leading to oxidation of porphyrinogen intermediates of haem biosynthesis, especially coproporphyrinogen. Coproporphyin, the fully oxidized aromatic derivative produced, cannot be metabolized and will therefore accumulate. PMID:15902420

  15. 8-Bromo-cyclic inosine diphosphoribose: towards a selective cyclic ADP-ribose agonist

    PubMed Central

    Kirchberger, Tanja; Moreau, Christelle; Wagner, Gerd K.; Fliegert, Ralf; Siebrands, Cornelia C.; Nebel, Merle; Schmid, Frederike; Harneit, Angelika; Odoardi, Francesca; Flügel, Alexander; Potter, Barry V. L.; Guse, Andreas H.

    2009-01-01

    cADPR (cyclic ADP-ribose) is a universal Ca2+ mobilizing second messenger. In T-cells cADPR is involved in sustained Ca2+ release and also in Ca2+ entry. Potential mechanisms for the latter include either capacitative Ca2+ entry, secondary to store depletion by cADPR, or direct activation of the non-selective cation channel TRPM2 (transient receptor potential cation channel, subfamily melastatin, member 2). Here we characterize the molecular target of the newly-described membrane-permeant cADPR agonist 8-Br-N1-cIDPR (8-bromo-cyclic IDP-ribose). 8-Br-N1-cIDPR evoked Ca2+ signalling in the human T-lymphoma cell line Jurkat and in primary rat T-lymphocytes. Ca2+ signalling induced by 8-Br-N1-cIDPR consisted of Ca2+ release and Ca2+ entry. Whereas Ca2+ release was sensitive to both the RyR (ryanodine receptor) blocker RuRed (Ruthenium Red) and the cADPR antagonist 8-Br-cADPR (8-bromo-cyclic ADP-ribose), Ca2+ entry was inhibited by the Ca2+ entry blockers Gd3+ (gadolinium ion) and SKF-96365, as well as by 8-Br-cADPR. To unravel a potential role for TRPM2 in sustained Ca2+ entry evoked by 8-Br-N1-cIDPR, TRPM2 was overexpressed in HEK (human embryonic kidney)-293 cells. However, though activation by H2O2 was enhanced dramatically in those cells, Ca2+ signalling induced by 8-Br-N1-cIDPR was almost unaffected. Similarly, direct analysis of TRPM2 currents did not reveal activation or co-activation of TRPM2 by 8-Br-N1-cIDPR. In summary, the sensitivity to the Ca2+ entry blockers Gd3+ and SKF-96365 is in favour of the concept of capacitative Ca2+ entry, secondary to store depletion by 8-Br-N1-cIDPR. Taken together, 8-Br-N1-cIDPR appears to be the first cADPR agonist affecting Ca2+ release and secondary Ca2+ entry, but without effect on TRPM2. PMID:19492987

  16. Physiological cyclic strain promotes endothelial cell survival via the induction of heme oxygenase-1

    PubMed Central

    Liu, Xiao-ming; Peyton, Kelly J.

    2013-01-01

    Endothelial cells (ECs) are constantly subjected to cyclic strain that arises from periodic change in vessel wall diameter as a result of pulsatile blood flow. Application of physiological levels of cyclic strain inhibits EC apoptosis; however, the underlying mechanism is not known. Since heme oxygenase-1 (HO-1) is a potent inhibitor of apoptosis, the present study investigated whether HO-1 contributes to the antiapoptotic action of cyclic strain. Administration of physiological cyclic strain (6% at 1 Hz) to human aortic ECs stimulated an increase in HO-1 activity, protein, and mRNA expression. The induction of HO-1 was preceded by a rise in reactive oxygen species (ROS) and Nrf2 protein expression. Cyclic strain also stimulated an increase in HO-1 promoter activity that was prevented by mutating the antioxidant responsive element in the promoter or by overexpressing dominant-negative Nrf2. In addition, the strain-mediated induction of HO-1 and activation of Nrf2 was abolished by the antioxidant N-acetyl-l-cysteine. Finally, application of cyclic strain blocked inflammatory cytokine-mediated EC death and apoptosis. However, the protective action of cyclic strain was reversed by the HO inhibitor tin protoporphyrin-IX and was absent in ECs isolated from HO-1-deficient mice. In conclusion, the present study demonstrates that a hemodynamically relevant level of cyclic strain stimulates HO-1 gene expression in ECs via the ROS-Nrf2 signaling pathway to inhibit EC death. The ability of cyclic strain to induce HO-1 expression may provide an important mechanism by which hemodynamic forces promote EC survival and vascular homeostasis. PMID:23604711

  17. Collagen network strengthening following cyclic tensile loading.

    PubMed

    Susilo, Monica E; Paten, Jeffrey A; Sander, Edward A; Nguyen, Thao D; Ruberti, Jeffrey W

    2016-02-01

    The bulk mechanical properties of tissues are highly tuned to the physiological loads they experience and reflect the hierarchical structure and mechanical properties of their constituent parts. A thorough understanding of the processes involved in tissue adaptation is required to develop multi-scale computational models of tissue remodelling. While extracellular matrix (ECM) remodelling is partly due to the changing cellular metabolic activity, there may also be mechanically directed changes in ECM nano/microscale organization which lead to mechanical tuning. The thermal and enzymatic stability of collagen, which is the principal load-bearing biopolymer in vertebrates, have been shown to be enhanced by force suggesting that collagen has an active role in ECM mechanical properties. Here, we ask how changes in the mechanical properties of a collagen-based material are reflected by alterations in the micro/nanoscale collagen network following cyclic loading. Surprisingly, we observed significantly higher tensile stiffness and ultimate tensile strength, roughly analogous to the effect of work hardening, in the absence of network realignment and alterations to the fibril area fraction. The data suggest that mechanical loading induces stabilizing changes internal to the fibrils themselves or in the fibril-fibril interactions. If such a cell-independent strengthening effect is operational in vivo, then it would be an important consideration in any multiscale computational approach to ECM growth and remodelling. PMID:26855760

  18. Mixed Strategies in cyclic competition

    NASA Astrophysics Data System (ADS)

    Intoy, Ben; Pleimling, Michel

    2015-03-01

    Physicists have been using evolutionary game theory to model and simulate cyclically competing species, with applications to lizard mating strategies and competing bacterial strains. However these models assume that each agent plays the same strategy, which is called a pure strategy in game theory, until they are beaten by a better strategy which they immediately adopt. We relax this constraint of an agent playing a single strategy by instead letting the agent pick its strategy randomly from a probability distribution, which is called a mixed strategy in game theory. This scheme is very similar to multiple occupancy models seen in the literature, the major difference being that interactions happen between sites rather than within them. Choosing strategies out of a distribution also has applications to economic/social systems such as the public goods game. We simulate a model of mixed strategy and cylic competition on a one-dimensional lattice with three and four strategies and find interesting spatial and stability properties depending on how discretized the choice of strategy is for the agents. This work is supported by the US National Science Foundation through Grant DMR-1205309.

  19. Cyclic AMP induces maturation of trout sperm axoneme to initiate motility

    NASA Astrophysics Data System (ADS)

    Morisawa, Masaaki

    1982-02-01

    Cyclic AMP has long been implicated as an activator of sperm motility1-5. From more recent experiments using demembranated mammalian and sea urchin spermatozoa6,7, it was concluded that cyclic AMP only increases the motility of the axoneme after it has been initiated by MgATP2-. We have now carried out similar experiments using spermatozoa collected from the rainbow trout and demembranated by treatment with the detergent Triton X-100. Our results suggest that in this species, cyclic AMP is required before MgATP2- to trigger maturation of the nonmotile axoneme. Subsequent addition of an energy source then induces motility.

  20. Asymmetric cyclic evolution in polymerised cosmology

    SciTech Connect

    Hrycyna, Orest; Mielczarek, Jakub; Szydłowski, Marek E-mail: jakub.mielczarek@uj.edu.pl

    2009-12-01

    The dynamical systems methods are used to study evolution of the polymerised scalar field cosmologies with the cosmological constant. We have found all evolutional paths admissible for all initial conditions on the two-dimensional phase space. We have shown that the cyclic solutions are generic. The exact solution for polymerised cosmology is also obtained. Two basic cases are investigated, the polymerised scalar field and the polymerised gravitational and scalar field part. In the former the division on the cyclic and non-cyclic behaviour is established following the sign of the cosmological constant. The value of the cosmological constant is upper bounded purely from the dynamical setting.

  1. Processable Cyclic Peptide Nanotubes with Tunable Interiors

    SciTech Connect

    Hourani, Rami; Zhang, Chen; van der Weegen, Rob; Ruiz, Luis; Li, Changyi; Keten, Sinan; Helms, Brett A.; Xu, Ting

    2011-09-06

    A facile route to generate cyclic peptide nanotubes with tunable interiors is presented. By incorporating 3-amino-2-methylbenzoic acid in the d,l-alternating primary sequence of a cyclic peptide, a functional group can be presented in the interior of the nanotubes without compromising the formation of high aspect ratio nanotubes. The new design of such a cyclic peptide also enables one to modulate the nanotube growth process to be compatible with the polymer processing window without compromising the formation of high aspect ratio nanotubes, thus opening a viable approach toward molecularly defined porous membranes.

  2. Accessibility of cysteines in the native bovine rod cGMP-gated channel.

    PubMed

    Bauer, Paul J; Krause, Eberhard

    2005-02-01

    Cyclic nucleotide-gated channels of photoreceptors and olfactory sensory neurons are tetramers consisting of A and B subunits. Here, the accessibility of the cysteines of the bovine rod cyclic nucleotide-gated channel is examined as a function of ligand binding. N-Ethylmaleimide-modified cysteines of both subunits were identified by mass spectrometry after trypsin digestion. In the absence of ligand, the intracellular carboxy-terminal cysteines of both subunits were accessible to N-ethylmaleimide. Activation of the channel abolished the accessibility of Cys505 of the A subunit and Cys1104 of the B subunit, with both being conserved cysteines of the cyclic nucleotide-binding sites. The cysteine of the pore loop of the B subunit was also found to be modified by this reagent in the absence of ligand. The total number of accessible cysteines of each subunit was determined by mass shifting upon modification with polyethylene glycol maleimide. In the absence of cyclic nucleotides, this hydrophilic reagent only weakly labeled cysteines of the A subunit but readily labeled at least three cysteines of the B subunit. Ligand binding exposed two cysteines of the A subunit and one cysteine of the B subunit to chemical modification. Double-modification experiments suggest that some of these cysteines are in or close to membrane-spanning domains. However, these cysteines could not yet be identified. Together, the cysteine accessibility of the native rod cyclic nucleotide-gated channel varies markedly upon ligand binding, thus indicating major structural rearrangements, which are of functional importance for channel activation. PMID:15683246

  3. Cyclic Peptidomimetics and Pseudopeptides from Multicomponent Reactions

    NASA Astrophysics Data System (ADS)

    Wessjohann, Ludger A.; Rhoden, Cristiano R. B.; Rivera, Daniel G.; Vercillo, Otilie Eichler

    Multicomponent reactions (MCRs) that provide in the final product amides are suitable to produce peptides and peptide-like moieties. The Passerini and Staudinger reactions provide one amide bond, and the Ugi-four-component reaction generates two amides from three or even four (or more) components, respectively. The Ugi-reaction thus is most important to produce peptides and peptoids while the Passerini reaction is useful to generate depsipeptoid moieties. In order to produce cyclic peptides and pseudopeptides, the linear peptidic MCR products have to be cyclized, usually with the help of bifunctional or activatable building blocks. Orthogonal but cyclizable secondary functionalities that need no protection in isonitrile MCRs commonly include alkenes (for ring closing metathesis), azide/alkyne (for Huisgen click reactions) or dienes and enoates (Diels-Alder) etc. If MCR-reactive groups are to be used also for the cyclisation, monoprotected bifunctional building blocks are used and deprotected after the MCR, e.g. for Ugi reactions as Ugi-Deprotection-Cyclisation (UDC). Alternatively one of the former building blocks or functional groups generated by the MCR can be activated. Most commonly these are activated amides (from so-called convertible isonitriles) which can be used e.g. for Ugi-Activation-Cyclisation (UAC) protocols, or most recently for a simultaneous use of both strategies Ugi-Deprotection/Activation-Cyclisation (UDAC). These methods mostly lead to small, medicinally relevant peptide turn mimics. In an opposing strategy, the MCR is rather used as ring-closing reaction, thereby introducing a (di-)peptide moiety. Most recently these processes have been combined to use MCRs for both, linear precursor synthesis and cyclisation. These multiple MCR approaches allow the most efficient and versatile one pot synthesis of macrocyclic pseudopeptides known to date.

  4. Binding of regulatory subunits of cyclic AMP-dependent protein kinase to cyclic CMP agarose.

    PubMed

    Hammerschmidt, Andreas; Chatterji, Bijon; Zeiser, Johannes; Schröder, Anke; Genieser, Hans-Gottfried; Pich, Andreas; Kaever, Volkhard; Schwede, Frank; Wolter, Sabine; Seifert, Roland

    2012-01-01

    The bacterial adenylyl cyclase toxins CyaA from Bordetella pertussis and edema factor from Bacillus anthracis as well as soluble guanylyl cyclase α(1)β(1) synthesize the cyclic pyrimidine nucleotide cCMP. These data raise the question to which effector proteins cCMP binds. Recently, we reported that cCMP activates the regulatory subunits RIα and RIIα of cAMP-dependent protein kinase. In this study, we used two cCMP agarose matrices as novel tools in combination with immunoblotting and mass spectrometry to identify cCMP-binding proteins. In agreement with our functional data, RIα and RIIα were identified as cCMP-binding proteins. These data corroborate the notion that cAMP-dependent protein kinase may serve as a cCMP target. PMID:22808067

  5. Synchronization in chaotic oscillators by cyclic coupling

    NASA Astrophysics Data System (ADS)

    Olusola, O. I.; Njah, A. N.; Dana, S. K.

    2013-07-01

    We introduce a type of cyclic coupling to investigate synchronization of chaotic oscillators. We derive analytical solutions of the critical coupling for stable synchronization under the cyclic coupling for the Rössler system and the Lorenz oscillator as paradigmatic illustration. Based on the master stability function (MSF) approach, the analytical results on critical coupling are verified numerically. An enhancing effect in terms of lowering the critical coupling or enlarging the synchronization window in a critical coupling space is noticed. The cyclic coupling is also applied in other models, Hindmarsh-Rose model, Sprott system, Chen system and forced Duffing system to confirm the enhancing effect. The cyclic coupling allows tuning of two coupling constants in reverse directions when an optimal control of synchronization is feasible.

  6. Low severity coal liquefaction promoted by cyclic olefins

    SciTech Connect

    Curtis, C.W.

    1992-07-27

    Low severity coal liquefaction allows for solubilization of coal with reduced gas make. These lower severity conditions may result in some selective bond rupture. Promotion of coal solubilization through hydrogen transfer using highly active and effective hydrogen donors is the objective of this study. The highly effective donors being tested are cyclic olefins. Representative cyclic olefins are isotetralin, which is 1,4,5,8-tetrahydronaphthalene, and 1,4,5,8,9,10-hexahydroanthracene. These compounds are hydroaromatics without aromatic rings and have been shown to be highly effective donors. The objective of the work performed in this study during this quarter was to evaluate reaction parameters for low severity liquefaction reactions using the cyclic olefin, hexahydroanthracene, and the aromatic, anthracene. These model compounds were reacted under a variety of conditions to evaluate their reactivity without coal. The reactions were performed under both thermal and catalytic conditions. Finely divided catalysts from different molybdenum precursors were used to determine their activity in promoting hydrogenation and hydrogen transfer at low severity conditions. The catalysts used were Molyvan L, sulfurized oxymolybdenum dithiocarbamate, molybdenum naphthenate, and Molyvan 822, organo molybdenum dithiocarbamate.

  7. Cyclic process for producing methane with catalyst regeneration

    DOEpatents

    Frost, Albert C.; Risch, Alan P.

    1980-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. For practical commercial operations utilizing the two-step process of the invention of a cyclic basis, nickel, cobalt, ruthenium, thenium and alloys thereof are especially prepared for use in a metal state, with CO disproportionation being carried out at temperatures up to about 350.degree. C. and with the conversion of active surface carbon to methane being carried out by reaction with steam. The catalyst is employed in such cyclic operations without the necessity for employing a regeneration step as part of each processing cycle. Inactive carbon or coke that tends to form on the catalyst over the course of continuous operations utilizing such cyclic process is effectively and advantageously removed, on a periodic basis, in place of conventional burn off with an inert stream containing a low concentration of oxygen.

  8. Unusual cyclic terpenoids with terminal pendant prenyl moieties: from occurrence to synthesis.

    PubMed

    Kulcitki, Veaceslav; Harghel, Petru; Ungur, Nicon

    2014-12-01

    The paper reviews the known examples of cyclic terpenoids produced from open chain polyenic precursors by an "unusual" biosynthetic pathway, involving selective electrophilic attack on an internal double bond followed by cyclization. The resulting compounds possess cyclic backbones with pendant terminal prenyl groups. Synthetic approaches applied for the synthesis of such specifically functionalized compounds are also discussed, as well as biological activity of reported representatives. PMID:25118808

  9. Gymnopeptides A and B, Cyclic Octadecapeptides from the Mushroom Gymnopus fusipes.

    PubMed

    Ványolós, Attila; Dékány, Miklós; Kovács, Bernadett; Krámos, Balázs; Bérdi, Péter; Zupkó, István; Hohmann, Judit; Béni, Zoltán

    2016-06-01

    Mycochemical study of the mushroom Gymnopus fusipes led to the discovery of two new cyclopeptides. The two compounds, named as gymnopeptides A and B, are unprecedented highly N-methylated cyclic octadecapeptides. Detailed spectroscopic studies, Marfey's analysis, and a preliminary molecular modeling study suggested that both are natural cyclic β hairpins. The isolated compounds exhibited striking antiproliferative activity on several human cancer cell lines, with nanomolar IC50 values. PMID:27194202

  10. Control of cyclic adenosine 3',5'-monophosphate levels by depolarizing agents in fungi.

    PubMed Central

    Trevillyan, J M; Pall, M L

    1979-01-01

    It has been reported that diverse treatments which depolarize the plasma membrane of Neurospora crassa produce rapid increases in cyclic adenosine 3',5'-monophosphate (cyclic AMP) levels. In the current study, membrane active antibiotics, which are known or putative depolarizing agents, were found to produce similar cyclic AMP increases, not only in N. crassa, but also in the distantly related fungi Saccharomyces cerevisiae and Mucor racemosus. Uncouplers of oxidative phosphorylation, which have been found to depolarize Neurospora, also produced cyclic AMP increases in all three fungi. The time course of the cyclic AMP response to these various treatments was similar in all three fungi. The fungal studies and studies on depolarized central nervous tissue suggest that cyclic AMP increases may be produced in response to plasma membrane depolarization in diverse eucaryotic cells. A model is proposed for eucaryotic microorganisms in which membrane depolarization serves as a signal of breakdown of the plasma membrane integrity. The subsequent cyclic AMP increase, in turn, may mediate cellular response to help protect the plasma membrane from chemical and mechanical threats to its integrity. PMID:220213

  11. Regulation by guanosine 3':5'-cyclic monophosphate of phospholipid methylation during chemotaxis in Dictyostelium discoideum.

    PubMed Central

    Alemany, S; García Gil, M; Mato, J M

    1980-01-01

    In Dictyostelium discoideum, the chemoattractant cyclic AMP activates the enzyme guanylate cyclase, giving a brief up to 10-fold increase in the intracellular cyclic GMP content. The addition of physiological cyclic GMP concentrations to a homogenate of D. discoideum cells markedly increased the incorporation of the 3H-labeled methyl group from S-adenosyl-L-[methyl-3H]methionine into mono- and dimethylated phosphatidylethanolamine and phosphatidylcholine. Lipid methylation was inhibited by S-adenosyl-L-homocysteine, which inhibits transmethylation. When whole cells prelabeled with L-[methyl-3H]methionine were exposed to cyclic AMP, a rapid transient increase in the amount of [methyl-3H]phosphatidylcholine was observed. The time course of [methyl-3H]phosphatidylcholine formation agrees with its being mediated by the intracellular increase in cyclic GMP originating during chemotactic stimulation. Addition of the 8-Br derivative of cyclic GMP to whole cells also increased the levels of labeled phosphatidylcholine. It is therefore likely that cyclic GMP contributes to chemotaxis by regulating membrane function via phospholipid methylation. PMID:6261233

  12. Cyclic variations of the period and luminosity of SV Camelopardalis

    NASA Astrophysics Data System (ADS)

    Manzoori, D.

    2016-07-01

    New standardized V-band light curves (LCs) for the eclipsing binary SV Cam have been modeled using the PHOEBE program (v. 0.31a). Absolute parameters of the stellar components were then determined, enabling them to be positioned on the mass-radius diagram. Analysis of eclipse minima timing data (O-C diagrams) indicated two cyclic periods of 48.0 and 23.3 yr. These cyclic variations of the orbital period are interpreted in terms of motion of a third body around the system and magnetic activity cycle modulating the orbital period of SV Cam via the Applegate (1992) mechanism. The use of the Applegate model for SV Cam has been checked by examining the long term brightness variation and calculating some important parameters of this system. The results of these calculations favor the modulation of the orbital period by the Applegate mechanism.

  13. Cyclic flow underground coal gasification process

    DOEpatents

    Bissett, Larry A.

    1978-01-01

    The present invention is directed to a method of in situ coal gasification for providing the product gas with an enriched concentration of carbon monoxide. The method is practiced by establishing a pair of combustion zones in spaced-apart boreholes within a subterranean coal bed and then cyclically terminating the combustion in the first of the two zones to establish a forward burn in the coal bed so that while an exothermic reaction is occurring in the second combustion zone to provide CO.sub.2 -laden product gas, an endothermic CO-forming reaction is occurring in the first combustion zone between the CO.sub.2 -laden gas percolating thereinto and the hot carbon in the wall defining the first combustion zone to increase the concentration of CO in the product gas. When the endothermic reaction slows to a selected activity the roles of the combustion zones are reversed by re-establishing an exothermic combustion reaction in the first zone and terminating the combustion in the second zone.

  14. Treadmill exercise promotes cyclic alterations in coronary blood flow in dogs with coronary artery stenoses and endothelial injury.

    PubMed Central

    Eidt, J F; Ashton, J; Golino, P; McNatt, J; Buja, L M; Willerson, J T

    1989-01-01

    We have previously shown in anesthetized, open-chest dogs with coronary stenosis and endothelial injury that serotonin and/or thromboxane A2 (TXA2) receptor activation play a major role in the mediation of platelet-dependent, intermittent coronary occlusion. Using a similar model in awake, closed-chest dogs, we tested the following hypotheses: (a) treadmill exercise promotes the development of cyclic flow variations in dogs with coronary stenoses and endothelial injury; (b) ventricular pacing does not induce cyclic flow variations in the same dogs; and (c) TXA2 and/or serotonin are important mediators of exercise-induced cyclic flow variations in this model. The surgical preparation consisted of the application of a hard, flow-limiting constrictor and a Doppler ultrasonic flow probe around the left coronary artery of 11 dogs. Treadmill exercise resulted in the prompt development of cyclic flow variations in all 11 dogs. Ventricular pacing at rates as high as 170 beats/min induced cyclic flow variations in only one of five dogs. Exercise-induced cyclic flow variations were abolished by TXA2 and/or serotonin receptor antagonists in all but one dog. Thus, (a) treadmill exercise promotes the development of cyclic flow variations in dogs with coronary stenoses and endothelial injury; (b) ventricular pacing does not induce cyclic flow variations in most dogs in the same model; and (c) TXA2 and/or serotonin are important mediators of cyclic flow variations in this model. PMID:2760199

  15. Measuring Cyclic Error in Laser Heterodyne Interferometers

    NASA Technical Reports Server (NTRS)

    Ryan, Daniel; Abramovici, Alexander; Zhao, Feng; Dekens, Frank; An, Xin; Azizi, Alireza; Chapsky, Jacob; Halverson, Peter

    2010-01-01

    An improved method and apparatus have been devised for measuring cyclic errors in the readouts of laser heterodyne interferometers that are configured and operated as displacement gauges. The cyclic errors arise as a consequence of mixing of spurious optical and electrical signals in beam launchers that are subsystems of such interferometers. The conventional approach to measurement of cyclic error involves phase measurements and yields values precise to within about 10 pm over air optical paths at laser wavelengths in the visible and near infrared. The present approach, which involves amplitude measurements instead of phase measurements, yields values precise to about .0.1 microns . about 100 times the precision of the conventional approach. In a displacement gauge of the type of interest here, the laser heterodyne interferometer is used to measure any change in distance along an optical axis between two corner-cube retroreflectors. One of the corner-cube retroreflectors is mounted on a piezoelectric transducer (see figure), which is used to introduce a low-frequency periodic displacement that can be measured by the gauges. The transducer is excited at a frequency of 9 Hz by a triangular waveform to generate a 9-Hz triangular-wave displacement having an amplitude of 25 microns. The displacement gives rise to both amplitude and phase modulation of the heterodyne signals in the gauges. The modulation includes cyclic error components, and the magnitude of the cyclic-error component of the phase modulation is what one needs to measure in order to determine the magnitude of the cyclic displacement error. The precision attainable in the conventional (phase measurement) approach to measuring cyclic error is limited because the phase measurements are af-

  16. Cyclic fatigue mechanisms in partially stabilized zirconia

    SciTech Connect

    Hoffman, M.J.; Wakayama, Shuichi; Kawahara, Masanori; Mai, Y.W.; Kishi, Teruo

    1995-12-31

    Cyclic fatigue crack growth rate and crack resistance curve testing were undertaken on 6 different grades of Mg-PSZ. The width of the transformation zone at the flanks of the cracks was determined using Raman spectroscopy and, combined with R-curve toughening values, used to ascertain the level of crack-tip shielding during cyclic fatigue crack growth and hence the crack-tip stress intensity factor amplitude. By normalizing the crack-tip stress intensity factor amplitude with the intrinsic toughness of the material, it was found that the cyclic fatigue threshold stress intensity factor was independent of the extent of crack-tip shielding and a function of the stress intensity factor at the crack tip. In situ SEM observations of cyclic fatigue revealed crack bridging by uncracked ligaments and the precipitate phase. Under cyclic loading the precipitate bridges were postulated to undergo frictional degradation at the precipitate/matrix interface with the degree of degradation determined by the cyclic amplitude. Acoustic emission testing revealed acoustic emissions at three distinct levels during the loading cycle: firstly, near the maximum applied stress intensity factor caused by crack propagation; secondly, at the mid-range of the applied stress intensity factor attributed to crack closure near the crack tip, presumably as a result of transformation induced dilation; and thirdly, intermittently near the base of the loading cycle as a result of fracture surface contact due to surface roughness at a significant distance behind the crack tip. Crack closure near the crack tip due to dilation is proposed to significantly reduce the crack tip stress intensity factor amplitude and hence the degree of cyclic fatigue.

  17. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Miller, Robert A.; Sudbrack, Chantal K.; Draper, Susan L.; Nesbitt, James A.; Rogers, Richard B.; Telesman, Ignacy; Ngo, Vanda; Healy, Jonathan

    2016-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 degrees Centigrade and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 degrees Centigrade. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. This cyclic oxidation did not impair the coating's resistance to subsequent hot corrosion pitting attack.

  18. Interactions between tetrathiafulvalene units in dimeric structures - the influence of cyclic cores.

    PubMed

    Jiang, Huixin; Mazzanti, Virginia; Parker, Christian R; Broman, Søren Lindbæk; Wallberg, Jens Heide; Lušpai, Karol; Brincko, Adam; Kjaergaard, Henrik G; Kadziola, Anders; Rapta, Peter; Hammerich, Ole; Nielsen, Mogens Brøndsted

    2015-01-01

    A selection of cyclic and acyclic acetylenic scaffolds bearing two tetrathiafulvalene (TTF) units was prepared by different metal-catalyzed coupling reactions. The bridge separating the two TTF units was systematically changed from linearly conjugated ethyne, butadiyne and tetraethynylethene (trans-substituted) units to a cross-conjugated tetraethynylethene unit, placed in either acyclic or cyclic arrangements. The cyclic structures correspond to so-called radiaannulenes having both endo- and exocyclic double bonds. Interactions between two redox-active TTF units in these molecules were investigated by cyclic voltammetry, UV-vis-NIR and EPR absorption spectroscopical methods of the electrochemically generated oxidized species. The electron-accepting properties of the acetylenic cores were also investigated electrochemically. PMID:26124895

  19. Is a decrease in cyclic AMP a necessary and sufficient signal for maturation of amphibian oocytes

    SciTech Connect

    Gelerstein, S.; Shapira, H.; Dascal, N.; Yekuel, R.; Oron, Y.

    1988-05-01

    Acetylcholine rapidly lowered the intracellular levels of cyclic AMP in stage 5 and 6 Xenopus laevis oocytes. Acetylcholine alone did not induce oocyte maturation, though it did accelerate maturation induced by progesterone. The effect of acetylcholine on oocyte maturation was independent of extracellular calcium concentration. Adenosine increased cyclic AMP and abolished the progesterone-induced decrease in cyclic AMP levels in follicles and in denuded oocytes. This effect of adenosine was blocked by the Ra purinergic receptor antagonist, theophylline. Despite those effects, adenosine alone induced maturation in stage 6 oocytes and accelerated progesterone-induced maturation in both stage 5 and 6 cells. Adenosine also induced a significant increase in the rate of /sup 45/Ca efflux from oocytes in the presence and the absence of external calcium. We suggest that the activation of cell surface receptors involved in the release of calcium from cellular stores may induce or accelerate oocyte maturation independently of small changes in intracellular cyclic AMP concentration.

  20. Combinatorial Library Screening Coupled to Mass Spectrometry to Identify Valuable Cyclic Peptides.

    PubMed

    Camperi, Silvia A; Giudicessi, Silvana L; Martínez-Ceron, María C; Gurevich-Messina, Juan M; Saavedra, Soledad L; Acosta, Gerardo; Cascone, Osvaldo; Erra-Balsells, Rosa; Albericio, Fernando

    2016-01-01

    Combinatorial library screening coupled to mass spectrometry (MS) analysis is a practical approach to identify useful peptides. Cyclic peptides can have high biological activity, selectivity, and affinity for target proteins, and high stability against proteolytic degradation. Here we describe two strategies to prepare combinatorial libraries suitable for MS analysis to accelerate the discovery of cyclic peptide structures. Both approaches use ChemMatrix resin and the linker 4-hydroxymethylbenzoic acid. One strategy involves the synthesis of a one-bead-two-peptides library in which each bead contains both the cyclic peptide and its linear counterpart to facilitate MS analysis. The other protocol is based on the synthesis of a cyclic depsipeptide library in which a glycolamidic ester group is incorporated by adding glycolic acid. After library screening, the ring is opened and the peptide is released simultaneously for subsequent MS analysis. © 2016 by John Wiley & Sons, Inc. PMID:27258690

  1. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Miller, R. A.; Sudbrack, C. K.; Draper, S. L.; Nesbitt, J.; Telesman, J.; Ngo, V.; Healy, J.

    2015-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 C and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 C. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. The effects of this cyclic oxidation on resistance to subsequent hot corrosion attack were examined.

  2. Cyclic Dinucleotide-Controlled Regulatory Pathways in Streptomyces Species

    PubMed Central

    2015-01-01

    The cyclic dinucleotides cyclic 3′,5′-diguanylate (c-di-GMP) and cyclic 3′,5′-diadenylate (c-di-AMP) have emerged as key components of bacterial signal transduction networks. These closely related second messengers follow the classical general principles of nucleotide signaling by integrating diverse signals into regulatory pathways that control cellular responses to changing environments. They impact distinct cellular processes, with c-di-GMP having an established role in promoting bacterial adhesion and inhibiting motility and c-di-AMP being involved in cell wall metabolism, potassium homeostasis, and DNA repair. The involvement of c-dinucleotides in the physiology of the filamentous, nonmotile streptomycetes remained obscure until recent discoveries showed that c-di-GMP controls the activity of the developmental master regulator BldD and that c-di-AMP determines the level of the resuscitation-promoting factor A(RpfA) cell wall-remodelling enzyme. Here, I summarize our current knowledge of c-dinucleotide signaling in Streptomyces species and highlight the important roles of c-di-GMP and c-di-AMP in the biology of these antibiotic-producing, multicellular bacteria. PMID:26216850

  3. Cyclic sediment deposition within Amazon deep-sea fan

    SciTech Connect

    Manley, P.L.; Flood, R.D.

    1988-08-01

    The Upper and middle Amazon Fan has grown in a cyclic fashion. An individual deposition cycle consists of (1) a widespread basal, acoustically transparent seismic unit (interpreted as debris-flow deposits) that fills and levels preexisting topographic lows, and (2) a levee complex built of overlapping channel-levee systems. Two and possibly three cycles have been identified within the Amazon Fan. The levee complex beneath one debris flow originated from a different submarine canyon than did the levee complex above the debris flow, suggesting that these levee complexes formed during different sea level lowstands. Calculations based on present sediment discharge of the Amazon River suggest that an entire levee complex can form within the time span of a single glacial stage, such as the Wisconsin; however, the levee complex probably could not have formed during the relatively short time interval when sea level rose rapidly at the end of a glacial stage. The basal seismic units (debris-flow deposits) may have been deposited at any time during sea level fluctuations. Although seismic evidence suggests that this cyclic sedimentation pattern may be related to glacio-eustatic sea level variations, cyclic fan growth may be attributed to other processes as well. For example, a bottom-simulating reflector (BSR) observed within the upper fan appears to be a gas hydrate. Migration of the hydrate phase boundary during sea level fluctuations and diapiric activity may be mechanisms for initiating widespread debris flows. 10 figs.

  4. Can cyclic HIV protease inhibitors bind in a non-preferred form? An ab initio, DFT and MM-PB(GB)SA study.

    PubMed

    Oehme, Daniel P; Brownlee, Robert T C; Wilson, David J D

    2013-03-01

    X-ray crystallography studies have identified that most cyclic inhibitors of HIV protease (including cyclic ureas) bind in a symmetric manner, however some cyclic inhibitors, such as cyclic sulfamides, bind in a non-symmetric manner. This raises the question as to whether it is possible for cyclic sulfamides to bind symmetrically and conversely for cyclic ureas to bind non-symmetrically. Herein we report an analysis of the conformational preference of cyclic ureas and sulfamides both free in solution and bound to HIV protease, including an investigation of the effect of branching. Quantum chemical calculations (B3LYP, M06-2X, MP2, CCSD(T)) predict the cyclic urea to prefer a symmetric conformation in solution, with a large activation barrier towards inter-conversion to the non-symmetric conformation. This differs from the cyclic sulfamides, which marginally prefer a non-symmetric conformation with a much smaller barrier to inter-conversion making it more likely for a non-preferred conformation to be observed. It is predicted that the cyclic scaffold itself favours a symmetric form, while branching induces a preference for a non-symmetric form. MD simulations on the free inhibitors identified inter-conversion with the cyclic sulfamides but not the cyclic ureas, in support of the quantum chemical results. MM-PB(GB)SA calculations on the cyclic inhibitors bound to HIV protease corroborate the X-ray crystallography studies, identifying the cyclic ureas to bind symmetrically and the cyclic sulfamides in a non-symmetrical manner. While the non-preferred form of the sulfamide may well be present as a free molecule in solution, our results suggest that it is unlikely to bind to HIV protease in a symmetric manner. PMID:23149763

  5. On-chip assessment of human primary cardiac fibroblasts proliferative responses to uniaxial cyclic mechanical strain.

    PubMed

    Ugolini, Giovanni Stefano; Rasponi, Marco; Pavesi, Andrea; Santoro, Rosaria; Kamm, Roger; Fiore, Gianfranco Beniamino; Pesce, Maurizio; Soncini, Monica

    2016-04-01

    Cardiac cell function is substantially influenced by the nature and intensity of the mechanical loads the cells experience. Cardiac fibroblasts (CFs) are primarily involved in myocardial tissue remodeling: at the onset of specific pathological conditions, CFs activate, proliferate, differentiate, and critically alter the amount of myocardial extra-cellular matrix with important consequences for myocardial functioning. While cyclic mechanical strain has been shown to increase matrix synthesis of CFs in vitro, the role of mechanical cues in CFs proliferation is unclear. We here developed a multi-chamber cell straining microdevice for cell cultures under uniform, uniaxial cyclic strain. After careful characterization of the strain field, we extracted human heart-derived CFs and performed cyclic strain experiments. We subjected cells to 2% or 8% cyclic strain for 24 h or 72 h, using immunofluorescence to investigate markers of cell morphology, cell proliferation (Ki67, EdU, phospho-Histone-H3) and subcellular localization of the mechanotransduction-associated transcription factor YAP. Cell morphology was affected by cyclic strain in terms of cell area, cell and nuclear shape and cellular alignment. We additionally observed a strain intensity-dependent control of cell growth: a significant proliferation increase occurred at 2% cyclic strain, while time-dependent effects took place upon 8% cyclic strain. The YAP-dependent mechano-transduction pathway was similarly activated in both strain conditions. These results demonstrate a differential effect of cyclic strain intensity on human CFs proliferation control and provide insights into the YAP-dependent mechano-sensing machinery of human CFs. Biotechnol. Bioeng. 2016;113: 859-869. © 2015 Wiley Periodicals, Inc. PMID:26444553

  6. Novel pH-Sensitive Cyclic Peptides

    PubMed Central

    Weerakkody, Dhammika; Moshnikova, Anna; El-Sayed, Naglaa Salem; Adochite, Ramona-Cosmina; Slaybaugh, Gregory; Golijanin, Jovana; Tiwari, Rakesh K.; Andreev, Oleg A.; Parang, Keykavous; Reshetnyak, Yana K.

    2016-01-01

    A series of cyclic peptides containing a number of tryptophan (W) and glutamic acid (E) residues were synthesized and evaluated as pH-sensitive agents for targeting of acidic tissue and pH-dependent cytoplasmic delivery of molecules. Biophysical studies revealed the molecular mechanism of peptides action and localization within the lipid bilayer of the membrane at high and low pHs. The symmetric, c[(WE)4WC], and asymmetric, c[E4W5C], cyclic peptides translocated amanitin, a polar cargo molecule of similar size, across the lipid bilayer and induced cell death in a pH- and concentration-dependent manner. Fluorescently-labelled peptides were evaluated for targeting of acidic 4T1 mammary tumors in mice. The highest tumor to muscle ratio (5.6) was established for asymmetric cyclic peptide, c[E4W5C], at 24 hours after intravenous administration. pH-insensitive cyclic peptide c[R4W5C], where glutamic acid residues (E) were replaced by positively charged arginine residues (R), did not exhibit tumor targeting. We have introduced a novel class of cyclic peptides, which can be utilized as a new pH-sensitive tool in investigation or targeting of acidic tissue. PMID:27515582

  7. Cyclic transformation of orbital angular momentum modes

    NASA Astrophysics Data System (ADS)

    Schlederer, Florian; Krenn, Mario; Fickler, Robert; Malik, Mehul; Zeilinger, Anton

    2016-04-01

    The spatial modes of photons are one realization of a QuDit, a quantum system that is described in a D-dimensional Hilbert space. In order to perform quantum information tasks with QuDits, a general class of D-dimensional unitary transformations is needed. Among these, cyclic transformations are an important special case required in many high-dimensional quantum communication protocols. In this paper, we experimentally demonstrate a cyclic transformation in the high-dimensional space of photonic orbital angular momentum (OAM). Using simple linear optical components, we show a successful four-fold cyclic transformation of OAM modes. Interestingly, our experimental setup was found by a computer algorithm. In addition to the four-cyclic transformation, the algorithm also found extensions to higher-dimensional cycles in a hybrid space of OAM and polarization. Besides being useful for quantum cryptography with QuDits, cyclic transformations are key for the experimental production of high-dimensional maximally entangled Bell-states.

  8. Novel pH-Sensitive Cyclic Peptides.

    PubMed

    Weerakkody, Dhammika; Moshnikova, Anna; El-Sayed, Naglaa Salem; Adochite, Ramona-Cosmina; Slaybaugh, Gregory; Golijanin, Jovana; Tiwari, Rakesh K; Andreev, Oleg A; Parang, Keykavous; Reshetnyak, Yana K

    2016-01-01

    A series of cyclic peptides containing a number of tryptophan (W) and glutamic acid (E) residues were synthesized and evaluated as pH-sensitive agents for targeting of acidic tissue and pH-dependent cytoplasmic delivery of molecules. Biophysical studies revealed the molecular mechanism of peptides action and localization within the lipid bilayer of the membrane at high and low pHs. The symmetric, c[(WE)4WC], and asymmetric, c[E4W5C], cyclic peptides translocated amanitin, a polar cargo molecule of similar size, across the lipid bilayer and induced cell death in a pH- and concentration-dependent manner. Fluorescently-labelled peptides were evaluated for targeting of acidic 4T1 mammary tumors in mice. The highest tumor to muscle ratio (5.6) was established for asymmetric cyclic peptide, c[E4W5C], at 24 hours after intravenous administration. pH-insensitive cyclic peptide c[R4W5C], where glutamic acid residues (E) were replaced by positively charged arginine residues (R), did not exhibit tumor targeting. We have introduced a novel class of cyclic peptides, which can be utilized as a new pH-sensitive tool in investigation or targeting of acidic tissue. PMID:27515582

  9. Visualization of cyclic nucleotide dynamics in neurons

    PubMed Central

    Gorshkov, Kirill; Zhang, Jin

    2014-01-01

    The second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) transduce many neuromodulatory signals from hormones and neurotransmitters into specific functional outputs. Their production, degradation and signaling are spatiotemporally regulated to achieve high specificity in signal transduction. The development of genetically encodable fluorescent biosensors has provided researchers with useful tools to study these versatile second messengers and their downstream effectors with unparalleled spatial and temporal resolution in cultured cells and living animals. In this review, we introduce the general design of these fluorescent biosensors and describe several of them in more detail. Then we discuss a few examples of using cyclic nucleotide fluorescent biosensors to study regulation of neuronal function and finish with a discussion of advances in the field. Although there has been significant progress made in understanding how the specific signaling of cyclic nucleotide second messengers is achieved, the mechanistic details in complex cell types like neurons are only just beginning to surface. Current and future fluorescent protein reporters will be essential to elucidate the role of cyclic nucleotide signaling dynamics in the functions of individual neurons and their networks. PMID:25538560

  10. Further studies on cyclic erythropoiesis in mice

    SciTech Connect

    Gibson, C.M.; Gurney, C.W.; Simmons, E.L.; Gaston, E.O.

    1985-10-01

    When young adult female W/Wv mice are given 0.5 micro+Ci /sup 89/Sr/g body weight intravenously, their hematocrit values oscillate from nadirs of 26% to zeniths of 42% with a periodicity of 16 days. The response of the W/Wv mouse to an assortment of radioactive and hematologic stresses have been examined in an effort to understand better the pathophysiology of cyclic erythropoiesis. When the dose of /sup 89/Sr is increased, the amplitude of cycling increases as nadirs are lowered, but periodicity is unchanged. When the dose of /sup 89/Sr is lowered to 0.3 microCi or less, cyclic erythropoiesis of substantial amplitude is observed only after five or six microoscillations. A single hematopoietic insult of 80 rad x-irradiation coupled with phlebotomy produces a transient form of cyclic erythropoiesis, namely, a series of dampened oscillations prior to recovery. Finally, we report that Wv/Wv mice exhibit a form of cyclic erythropoiesis in response to 0.5 microCi /sup 89/Sr/g body weight, in which the hematocrit values of successive nadirs gradually increase, and stabilize at about 100 days. /sup 89/Sr does not induce cyclic erythropoiesis in the +/+, W/+, or W/v/+ mice, the Hertwig strain of anemic mice, or in normal BDF1 mice.

  11. Cyclic dinucleotides modulate human T-cell response through monocyte cell death.

    PubMed

    Tosolini, Marie; Pont, Frédéric; Verhoeyen, Els; Fournié, Jean-Jacques

    2015-12-01

    Cyclic dinucleotides, a class of microbial messengers, have been recently identified in bacteria, but their activity in humans remains largely unknown. Here, we have studied the function of cyclic dinucleotides in humans. We found that c-di-AMP and cGAMP, two adenosine-based cyclic dinucleotides, activated T lymphocytes in an unusual manner through monocyte cell death. c-di-AMP and cGAMP induced the selective apoptosis of human monocytes, and T lymphocytes were activated by the direct contact with these dying monocytes. The ensuing T-cell response comprised cell-cycle exit, phenotypic maturation into effector memory cells and proliferation arrest, but not cell death. This quiescence was transient since T cells remained fully responsive to further restimulation. Together, our results depict a novel activation pattern for human T lymphocytes: a transient quiescence induced by c-di-AMP- or cGAMP-primed apoptotic monocytes. PMID:26460927

  12. Schlafen 3 induction by cyclic strain regulates intestinal epithelial differentiation

    PubMed Central

    Yuan, Lisi; Yu, Yingjie; Sanders, Matthew A.; Majumdar, Adhip P. N.

    2010-01-01

    The intestinal epithelium is subjected to repetitive deformation during normal gut function by peristalsis and villous motility. In vitro, cyclic strain promotes intestinal epithelial proliferation and induces an absorptive phenotype characterized by increased dipeptidyl dipeptidase (DPPIV) expression. Schlafen 3 is a novel gene recently associated with cellular differentiation. We sought to evaluate whether Schlafen 3 mediates the effects of strain on the differentiation of intestinal epithelial cell (IEC)-6 in the absence or presence of cyclic strain. Strain increased Schlafen 3 mRNA and protein. In cells transfected with a control-nontargeting siRNA, strain increased DPPIV-specific activity. However, Schlafen 3 reduction by siRNA decreased basal DPPIV and prevented any stimulation of DPPIV activity by strain. Schlafen 3 reduction also prevented DPPIV induction by sodium butyrate (1 mM) or transforming growth factor (TGF)-β (0.1 ng/ml), two unrelated differentiating stimuli. However, Schlafen-3 reduction by siRNA did not prevent the mitogenic effect of strain or that of EGF. Blocking Src and phosphatidyl inositol (PI3)-kinase prevented strain induction of Schlafen 3, but Schlafen 3 induction required activation of p38 but not ERK. These results suggest that cyclic strain induces an absorptive phenotype characterized by increased DPPIV activity via Src-, p38-, and PI3-kinase-dependent induction of Schlafen 3 in rat IEC-6 cells on collagen, whereas Schlafen 3 may also be a key factor in the induction of intestinal epithelial differentiation by other stimuli such as sodium butyrate or TGF-β. The induction of Schlafen 3 or its human homologs may modulate intestinal epithelial differentiation and preserve the gut mucosa during normal gut function. PMID:20299602

  13. Cyclic and low temperature effects on microcircuits

    NASA Technical Reports Server (NTRS)

    Weissflug, V. A.; Sisul, E. V.

    1977-01-01

    Cyclic temperature and low temperature operating life tests, and pre-/post-life device evaluations were used to determine the degrading effects of thermal environments on microcircuit reliability. Low power transistor-transistor-logic gates and linear devices were included in each test group. Device metallization systems included aluminum metallization/aluminum wire, aluminum metallization/gold wire, and gold metallization/gold wire. Fewer than 2% electrical failures were observed during the cyclic and low temperature life tests and the post-life evaluations revealed approximately 2% bond pull failures. Reconstruction of aluminum die metallization was observed in all devices and the severity of the reconstruction appeared to be directly related to the magnitude of the temperature excursion. All types of bonds except the gold/gold bonds were weakened by exposure to repeated cyclic temperature stress.

  14. Cyclic di-AMP mediates biofilm formation.

    PubMed

    Peng, Xian; Zhang, Yang; Bai, Guangchun; Zhou, Xuedong; Wu, Hui

    2016-03-01

    Cyclic di-AMP (c-di-AMP) is an emerging second messenger in bacteria. It has been shown to play important roles in bacterial fitness and virulence. However, transduction of c-di-AMP signaling in bacteria and the role of c-di-AMP in biofilm formation are not well understood. The level of c-di-AMP is modulated by activity of di-adenylyl cyclase that produces c-di-AMP and phosphodiesterase (PDE) that degrades c-di-AMP. In this study, we determined that increased c-di-AMP levels by deletion of the pdeA gene coding for a PDE promoted biofilm formation in Streptococcus mutans. Deletion of pdeA upregulated expression of gtfB, the gene coding for a major glucan producing enzyme. Inactivation of gtfB blocked the increased biofilm by the pdeA mutant. Two c-di-AMP binding proteins including CabPA (SMU_1562) and CabPB (SMU_1708) were identified. Interestingly, only CabPA deficiency inhibited both the increased biofilm formation and the upregulated expression of GtfB observed in the pdeA mutant. In addition, CabPA but not CabPB interacted with VicR, a known transcriptional factor that regulates expression of gtfB, suggesting that a signaling link between CabPA and GtfB through VicR. Increased biofilm by the pdeA deficiency also enhanced bacterial colonization of Drosophila in vivo. Taken together, our studies reveal a new role of c-di-AMP in mediating biofilm formation through a CabPA/VicR/GtfB signaling network in S. mutans. PMID:26564551

  15. Asymmetric catalytic aziridination of cyclic enones.

    PubMed

    De Vincentiis, Francesco; Bencivenni, Giorgio; Pesciaioli, Fabio; Mazzanti, Andrea; Bartoli, Giuseppe; Galzerano, Patrizia; Melchiorre, Paolo

    2010-07-01

    The first catalytic method for the asymmetric aziridination of cyclic enones is described. The presented organocatalytic strategy is based on the use of an easily available organocatalyst that is able to convert a wide range of cyclic enones into the desired aziridines with very high enantiomeric purity and good chemical yield. Such a method may very well open up new opportunities to stereoselectively prepare complex chiral molecules that possess an indane moiety, a framework that is found in a large number of bioactive and pharmaceutically important molecules. PMID:20512797

  16. Perturbations in bouncing and cyclic models

    NASA Astrophysics Data System (ADS)

    Biswas, Tirthabir; Mayes, Riley; Lattyak, Colleen

    2016-03-01

    Being able to reliably track perturbations across bounces and turnarounds in cyclic and bouncing cosmology lies at the heart of being able to compare the predictions of these models with the cosmic microwave background observations. This has been a challenging task due to the unknown nature of the physics involved during the bounce as well as the technical challenge of matching perturbations precisely between the expansion and contraction phases. In this paper, we present some general techniques (analytical and numerical) that can be applied to understand the physics of the fluctuations, especially those with "long" wavelengths, and apply our techniques to nonsingular cosmological models such as the bounce inflation and cyclic inflation.

  17. Vasopressin treatment for cyclic antidepressant overdose.

    PubMed

    Barry, James David; Durkovich, David W; Williams, Saralyn R

    2006-07-01

    Due to neurotransmitter reuptake inhibition, peripheral alpha receptor blocking effects, and sodium channel blockade, severe cyclic antidepressant poisoning may lead to intractable hypotension. We report a case of severe amitriptyline toxicity, with hypotension unresponsive to direct alpha receptor agonists after pH manipulation, but improved with intravenous vasopressin. Vasopressin use in the setting of cyclic antidepressant toxicity has not been previously reported. Vasopressin may be a beneficial agent in the treatment of recalcitrant hypotension associated with poisoning or overdose. The anecdotal nature of this report must be emphasized and the use of vasopressin requires further research to define efficacy, dose, and potential side effects. PMID:16798158

  18. Generalized Coefficients for Hopf Cyclic Cohomology

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Mohammad; Kucerovsky, Dan; Rangipour, Bahram

    2014-09-01

    A category of coefficients for Hopf cyclic cohomology is defined. It is shown that this category has two proper subcategories of which the smallest one is the known category of stable anti Yetter-Drinfeld modules. The middle subcategory is comprised of those coefficients which satisfy a generalized SAYD condition depending on both the Hopf algebra and the (co)algebra in question. Some examples are introduced to show that these three categories are different. It is shown that all components of Hopf cyclic cohomology work well with the new coefficients we have defined.

  19. Cyclical rectal bleeding in colorectal endometriosis.

    PubMed

    Levitt, M D; Hodby, K J; van Merwyk, A J; Glancy, R J

    1989-12-01

    Three case reports of cyclical rectal bleeding in endometriosis affecting rectum and sigmoid colon emphasize the close relationship between such cyclical bleeding and intestinal endometriosis. The cause of bleeding, however, is still unclear. The predilection of endometriotic deposits for the outer layers of the bowel wall suggests that mucosal involvement is not a prerequisite for rectal bleeding. The frequent absence of identifiable intramural haemorrhage casts doubt on the premise that intestinal endometriotic deposits 'menstruate'. The cause may simply be a transient tear in normal mucosa due to swelling of an underlying endometriotic deposit at the time of menstruation. PMID:2597100

  20. Nitric oxide and cyclic guanosine monophosphate signaling in the eye.

    PubMed

    Murad, Ferid

    2008-06-01

    This brief review describes the components and pathways utilized in nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) signaling. Since the discovery of the effects of NO and cGMP on smooth muscle relaxation about 30 years ago, the field has expanded in many directions such that many, but not all, biochemical and biological effects seem to be regulated by these unique signaling molecules. While many of the effects of NO are due to activation of soluble guanylyl cyclase (sGC) that can be considered the receptor for NO, cGMP, in turn, can activate a cGMP-dependent protein kinase (PKG) to phosphorylate an array of proteins. Some of the effects of cGMP can be independent of PKG and are due to effects on ion channels or cyclic nucleotide phosphodiesterases. Also, some of the effects of NO can be independent of sGC activation. The isoenzymes and macromolecules that participate in these signaling pathways can serve as molecular targets to identify compounds that increase or decrease their activation and thus serve as chemical leads for discovering novel drugs for a variety of diseases. Some examples are given. However, with about 90,000 publications in the field since our first reports in 1977, this brief review can only give the readers a sample of the excitement and opportunities we have found in this cell signaling system. PMID:18443613

  1. Receptor-mediated gonadotropin action in the ovary. Regulatory role of cyclic nucleotide phosphodiesterase(s) in intracellular adenosine 3′:5′-cyclic monophosphate turnover and gonadotropin-stimulated progesterone production by rat ovarian cells

    PubMed Central

    Azhar, Salman; Menon, K. M. Jairam

    1979-01-01

    The regulatory role of cyclic nucleotide phosphodiesterase(s) and cyclic AMP metabolism in relation to progesterone production by gonadotropins has been studied in isolated rat ovarian cells. Low concentrations of choriogonadotropin (0.4–5ng/ml) increased steroid production without any detectable increase in cyclic AMP, when experiments were carried out in the absence of phosphodiesterase inhibitors. The concentration of choriogonadotropin (10ng/ml) that stimulated progesterone synthesis maximally resulted in a minimal increase in cyclic AMP accumulation and choriogonadotropin binding. Choriogonadotropin at a concentration of 10ng/ml and higher, however, significantly stimulated protein kinase activity and reached a maximum between 250 and 1000ng of hormone/ml. Higher concentrations (50–2500ng/ml) of choriogonadotropin caused an increase in endogenous cyclic AMP, and this increase preceded the increase in steroid synthesis. Analysis of dose–response relationships of gonadotropin-stimulated cyclic AMP accumulation, progesterone production and protein kinase activity revealed a correlation between these responses over a wide concentration range when experiments were performed in the presence of 3-isobutyl-1-methylxanthine. The phosphodiesterase inhibitors papaverine, theophylline and 3-isobutyl-1-methylxanthine each stimulated steroid production in a dose-dependent manner. Incubation of ovarian cells with dibutyryl cyclic AMP or 8-bromo cyclic AMP mimicked the steroidogenic action of gonadotropins and this effect was dependent on both incubation time and nucleotide concentration. Maximum stimulation was obtained with 2mm-dibutyryl cyclic AMP and 8-bromo cyclic AMP, and this increase was close to that produced by a maximally stimulating dose of choriogonadotropin. Other 8-substituted derivatives such as 8-hydroxy cyclic AMP and 8-isopropylthio cyclic AMP, which were less susceptible to phosphodiesterase action, also effectively stimulated steroidogenesis. The

  2. Cyclic adenosine 3', 5'-monophosphate in cerebrospinal fluid during thermoregulation and fever.

    PubMed Central

    Dascombe, M J; Milton, A S

    1976-01-01

    1. Samples of cerebrospinal fluid (c.s.f.) have been taken from the cisterna magna of unanaesthetized cats, whilst rectal temperature was recorded, during exposure of the animals to various ambient temperatures and during fever induced by pyrogen. The concentration of adenosine 3', 5'-monophosphate (cyclic AMP) in samples of c.s.f. has been assayed. 2. Cats exposed to low ambient temperatures (-2 to +2 degrees C) for 3 h maintained body temperature by both behavioural and autonomic heat gain activity. Exposure of cats to high ambient temperatures (44 - 45 degrees C) for 3.5 h caused a rise in body temperatures of about 2.5 degrees C, despite behavioural and autonomic heat loss activity. Neither cold nor heat stress had a significant effect on c.s.f. cyclic AMP. 3. Fever induced by intravenous Shigella dysenteriae (2 and 20 mug/kg) was associated with a dose-related increase in the concentration of cyclic AMP in c.s.f. Paracetamol (75 mg/kg) injected I.P. before the onset of fever, suppressed the increase in both temperature and c.s.f. cyclic AMP in response to pyrogen. Paracetamol (50 and 100 mg/kg), injected after the onset of fever, caused a fall in temperature, which was not associated with a decrease in the concentration of cyclic AMP in c.s.f. 4. Fever induced in cats by intravenous Shigella dysenteriae (20 mug/kg) was associated with an increase in the concentration of cyclic AMP in plasma as well as in c.s.f. 5. The sodium salt of cyclic AMP (0.1-10 mg/kg) injected I.V. into unanaesthetized cats caused a dose-related hypothermia, which was associated with autonomic heat loss activity and a dose-related increase in the concentration of cyclic AMP in cisternal c.s.f., which was not mimicked by adenosine. 6. It is concluded that the raised concentrations of cyclic AMP in c.s.f., in response to pyrogen I.V., do not mediate fever in the cat and that the concentration of cyclic AMP in cisternal c.s.f. may be affected by changes in the plasma concentration of the

  3. Cyclic strain is a weak inducer of prostacyclin synthase expression in bovine aortic endothelial cells

    NASA Technical Reports Server (NTRS)

    Segurola, R. J. Jr; Oluwole, B.; Mills, I.; Yokoyama, C.; Tanabe, T.; Kito, H.; Nakajima, N.; Sumpio, B. E.

    1997-01-01

    Recent studies indicate that hemodynamic forces such as cyclic strain and shear stress can increase prostacyclin (PGI2) secretion by endothelial cells (EC) but the effect of these forces on prostacyclin synthase (PGIS) gene expression remains unclear and is the focus of this study. Bovine aortic EC were seeded onto type I collagen coated flexible membranes and grown to confluence. The membranes and attached EC were subjected to 10% average strain at 60 cpm (0.5 sec deformation alternating with 0.5 sec relaxation) for up to 5 days. PGIS gene expression was determined by Northern blot analysis and protein level by Western blot analysis. The effect of cyclic strain on the PGIS promoter was determined by the transfection of a 1-kb human PGIS gene promoter construct coupled to a luciferase reporter gene into EC, followed by determination of luciferase activity. PGIS gene expression increased 1.7-fold in EC subjected to cyclic strain for 24 hr. Likewise, EC transfected with a pGL3B-PGIS (-1070/-10) construct showed an approximate 1.3-fold elevation in luciferase activity in EC subjected to cyclic strain for 3, 4, 8, and 12 hr. The weak stimulation of PGIS gene expression by cyclic strain was reflected in an inability to detect alterations in PGIS protein levels in EC subjected to cyclic strain for as long as 5 days. These data suggest that strain-induced stimulation of PGIS gene expression plays only a minor role in the ability of cyclic strain to stimulate PGI2 release in EC. These findings coupled with our earlier demonstration of a requisite addition of exogenous arachidonate in order to observe strain-induced PGI2 release, implicates a mechanism that more likely involves strain-induced stimulation of PGIS activity.

  4. Cyclic unequal error protection codes constructed from cyclic codes of composite length

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1987-01-01

    The distance structure of cyclic codes of composite length was investigated. A lower bound on the minimum distance for this class of codes is derived. In many cases, the lower bound gives the true minimum distance of a code. Then the distance structure of the direct sum of two cyclic codes of composite length were investigated. It was shown that, under certain conditions, the direct-sum code provides two levels of error correcting capability, and hence is a two-level unequal error protection (UEP) code. Finally, a class of two-level UEP cyclic direct-sum codes and a decoding algorithm for a subclass of these codes are presented.

  5. An Experimental Test of Phonemic Cyclicity.

    ERIC Educational Resources Information Center

    Gierut, Judith A.

    1996-01-01

    Evaluates the principle of laryngeal-supralaryngeal cyclicity by manipulating the domain cycle and phase relationship of the cycle as independent variables and by monitoring longitudinally the order of emergent phonemic distinctions in the sound systems of seven children with phonological delays as the dependent variable. Findings are discussed.…

  6. One pot solution synthesis of cyclic oligodeoxyribonucleotides.

    PubMed Central

    Capobianco, M L; Carcuro, A; Tondelli, L; Garbesi, A; Bonora, G M

    1990-01-01

    Several cyclic oligodeoxynucleotides with different base composition and size have been prepared from 5',3'-unprotected linear precursors, using a bifunctional phosphorylating reagent. The final deprotected oligomers have been characterized by 1H- and 31P-NMR. The present procedure is particularly useful for millimolar scale syntheses. PMID:2339055

  7. One pot solution synthesis of cyclic oligodeoxyribonucleotides.

    PubMed

    Capobianco, M L; Carcuro, A; Tondelli, L; Garbesi, A; Bonora, G M

    1990-05-11

    Several cyclic oligodeoxynucleotides with different base composition and size have been prepared from 5',3'-unprotected linear precursors, using a bifunctional phosphorylating reagent. The final deprotected oligomers have been characterized by 1H- and 31P-NMR. The present procedure is particularly useful for millimolar scale syntheses. PMID:2339055

  8. Scale invariant density perturbations from cyclic cosmology

    NASA Astrophysics Data System (ADS)

    Frampton, Paul Howard

    2016-04-01

    It is shown how quantum fluctuations of the radiation during the contraction era of a comes back empty (CBE) cyclic cosmology can provide density fluctuations which re-enter the horizon during the subsequent expansion era and at lowest order are scale invariant, in a Harrison-Zel’dovich-Peebles sense. It is necessary to be consistent with observations of large scale structure.

  9. Cyclic Cratonic Carbonates and Phanerozoic Calcite Seas.

    ERIC Educational Resources Information Center

    Wilkinson, Bruce H.

    1982-01-01

    Discusses causes of cyclicity in cratonic carbonate sequences and evidence for and potential significance of postulated primary calcite sediment components in past Paleozoic seas, outlining problems, focusing on models explaining existing data, and identifying background. Future sedimentary geologists will need to address these and related areas…

  10. Unraveling cyclic deformation mechanisms of a rolled magnesium alloy using in situ neutron diffraction

    SciTech Connect

    Wu, Wei; An, Ke; Liaw, Peter K.

    2014-12-23

    In the current study, the deformation mechanisms of a rolled magnesium alloy were investigated under cyclic loading using real-time in situ neutron diffraction under a continuous-loading condition. The relationship between the macroscopic cyclic deformation behavior and the microscopic response at the grain level was established. The neutron diffraction results indicate that more and more grains are involved in the twinning and detwinning deformation process with the increase of fatigue cycles. The residual twins appear in the early fatigue life, which is responsible for the cyclic hardening behavior. The asymmetric shape of the hysteresis loop is attributed to the early exhaustion of the detwinning process during compression, which leads to the activation of dislocation slips and rapid strain-hardening. The critical resolved shear stress for the activation of tensile twinning closely depends on the residual strain developed during cyclic loading. In the cycle before the sample fractured, the dislocation slips became active in tension, although the sample was not fully twinned. The increased dislocation density leads to the rise of the stress concentration at weak spots, which is believed to be the main reason for the fatigue failure. Furthermore, the deformation history greatly influences the deformation mechanisms of hexagonal-close-packed-structured magnesium alloy during cyclic loading.

  11. Unraveling cyclic deformation mechanisms of a rolled magnesium alloy using in situ neutron diffraction

    DOE PAGESBeta

    Wu, Wei; An, Ke; Liaw, Peter K.

    2014-12-23

    In the current study, the deformation mechanisms of a rolled magnesium alloy were investigated under cyclic loading using real-time in situ neutron diffraction under a continuous-loading condition. The relationship between the macroscopic cyclic deformation behavior and the microscopic response at the grain level was established. The neutron diffraction results indicate that more and more grains are involved in the twinning and detwinning deformation process with the increase of fatigue cycles. The residual twins appear in the early fatigue life, which is responsible for the cyclic hardening behavior. The asymmetric shape of the hysteresis loop is attributed to the early exhaustionmore » of the detwinning process during compression, which leads to the activation of dislocation slips and rapid strain-hardening. The critical resolved shear stress for the activation of tensile twinning closely depends on the residual strain developed during cyclic loading. In the cycle before the sample fractured, the dislocation slips became active in tension, although the sample was not fully twinned. The increased dislocation density leads to the rise of the stress concentration at weak spots, which is believed to be the main reason for the fatigue failure. Furthermore, the deformation history greatly influences the deformation mechanisms of hexagonal-close-packed-structured magnesium alloy during cyclic loading.« less

  12. Converting a Staphylococcus aureus toxin into effective cyclic pseudopeptide antibiotics.

    PubMed

    Solecki, Olivia; Mosbah, Amor; Baudy Floc'h, Michèle; Felden, Brice

    2015-03-19

    Staphylococcus aureus produces peptide toxins that it uses to respond to environmental cues. We previously characterized PepA1, a peptide toxin from S. aureus, that induces lytic cell death of both bacterial and host cells. That led us to suggest that PepA1 has an antibacterial activity. Here, we demonstrate that exogenously provided PepA1 has activity against both Gram-positive and Gram-negative bacteria. We also see that PepA1 is significantly hemolytic, thus limiting its use as an antibacterial agent. To overcome these limitations, we converted PepA1 into nonhemolytic derivatives. Our most promising derivative is a cyclic heptapseudopeptide with inconsequential toxicity to human cells, enhanced stability in human sera, and sharp antibacterial activity. Mechanistically, linear and helical PepA1 derivatives form pores at the bacterial and erythrocyte surfaces, while the cyclic peptide induces bacterial envelope reorganization, with insignificant action on the erythrocytes. Our work demonstrates that bacterial toxins might be an attractive starting point for antibacterial drug development. PMID:25728268

  13. Structural mechanism for the regulation of HCN ion channels by the accessory protein TRIP8b

    PubMed Central

    DeBerg, Hannah A.; Bankston, John R.; Rosenbaum, Joel C.; Brzovic, Peter S.; Zagotta, William N.; Stoll, Stefan

    2015-01-01

    Summary Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels underlie the cationic Ih current present in many neurons. The direct binding of cAMP to HCN channels increases the rate and extent of channel opening and results in a depolarizing shift in the voltage dependence of activation. TRIP8b is an accessory protein that regulates the cell surface expression and dendritic localization of HCN channels and reduces the cyclic nucleotide dependence of these channels. Here we use electron paramagnetic resonance (EPR) to show that TRIP8b binds to the apo state of the cyclic nucleotide-binding domain (CNBD) of HCN2 channels without changing the overall domain structure. With EPR and nuclear magnetic resonance (NMR), we locate TRIP8b relative to the HCN channel and identify the binding interface on the CNBD. These data provide a structural framework for understanding how TRIP8b regulates the cyclic nucleotide dependence of HCN channels. PMID:25800552

  14. Cyclic hardening in copper described in terms of combined monotonic and cyclic stress-strain curves

    SciTech Connect

    Chandler, H.D. . School of Mechanical Engineering)

    1995-01-01

    Hardening of polycrystalline copper subjected to tension-compression loading cycles in the plastic region is discussed with reference to changes in flow stress determined from equations describing dislocation glide. It is suggested that hardening is as a result of the accumulation of strain on a monotonic stress-strain curve. On initial loading, the behavior is monotonic. On stress reversal, a characteristic cyclic stress-strain curve is followed until the stress reaches a value in reverse loading corresponding to the maximum attained during the preceding half cycle. Thereafter, the monotonic path is followed until strain reversal occurs at completion of the half cycle. Repetition of the process results in cyclic hardening. Steady state cyclic behavior is reached when a stress associated with the monotonic stress-strain curve is reached which is equal to the stress associated with the cyclic stress-strain curve corresponding to the imposed strain amplitude.

  15. 3',5'-cyclic adenosine monophosphate and adenylate cyclase in phototransduction by limulus ventral photoreceptors.

    PubMed Central

    Brown, J E; Kaupp, U B; Malbon, C C

    1984-01-01

    Biochemical and electrophysiological measurements were made on photoreceptor cells from Limulus ventral eyes to investigate the possible role of cyclic AMP and adenylate cyclase in the visual transduction mechanism. Cyclic AMP content in a photoreceptor-enriched fraction (the end organs) of Limulus ventral eyes was approximately 15 pmol/mg protein. The cyclic AMP content was increased by bathing eyes in 1-methyl-3-isobutyl xanthine or forskolin and was increased almost 100-fold when bathed in both. Illumination did not change cyclic AMP content significantly in any of these conditions. Discrete events that can be recorded electrophysiologically occur spontaneously in darkness. An increase in the frequency of discrete events is evoked by dim illumination. The discrete events are a sign of excitation of Limulus photoreceptor cells. Drug-induced changes in the rate of occurrence of discrete events recorded electrophysiologically in darkness were not correlated with changes in cyclic AMP content. Adenylate cyclase activity measured from a small number of pooled photoreceptor clusters was stimulated by fluoride and vanadate ions, hydrolysis-resistant analogues of GTP, cholera toxin and forskolin. The Limulus enzyme is similar pharmacologically to mammalian and avian adenylate cyclases. Activation of adenylate cyclase by drugs was not correlated with changes in the rate of occurrence of discrete events recorded electrophysiologically in darkness. A heat-treated Lubrol extract of membranes from Limulus ventral eyes reconstituted the adenylate cyclase activity of membranes from S49 mouse lymphoma cyc- mutant cells which lack a functional regulatory protein. These findings suggest that Limulus ventral eye photoreceptors contain a regulatory protein that mediates the activation of adenylate cyclase by guanine nucleotides, fluoride or cholera toxin. This regulatory protein is homologous with that found in mammalian and avian adenylate cyclases. Our findings suggest that

  16. Structures and Surface Properties of "Cyclic" Polyoxyethylene Alkyl Ethers: Unusual Behavior of Cyclic Surfactants in Water.

    PubMed

    Hirose, Yuki; Taira, Toshiaki; Sakai, Kenichi; Sakai, Hideki; Endo, Akira; Imura, Tomohiro

    2016-08-23

    The cyclization of amphiphiles has emerged as an attractive strategy for inducing remarkable properties in these materials without changing their chemical composition. In this study, we successfully synthesized three cyclic polyoxyethylene dodecyl ethers (c-POEC12's) with different ring sizes and explored the effects of their topology on their surface and self-assembly properties related to their function, comparing them with those of their linear counterparts (l-POEC12's). The surface activity of the c-POEC12's remained almost constant despite the change in their hydrophobic and hydrophilic balance (HLB) value, while that of the l-POEC12's decreased with an increase in the HLB value as general surfactants. In contrast to the normal micelles seen in the case of the l-POEC12's (3.4-9.7 nm), the cyclization of the POEC12's resulted in the formation of large spherical structures 72.8-256.8 nm in size. It also led to a dramatic decrease of 28 °C in the cloud point temperature. Furthermore, the cyclization of the POEC12's markedly suppressed the rate of protease hydrolysis caused by the surfactants. The initial rate of reduction of a detergent enzyme from Bacillus licheniformis was increased by more than 40% in the case of c-POE600C12 and c-POE1000C12, even though they exhibited surface activities almost equal to or higher than those of their linear counterparts. These results suggest that cyclization induces unusual aqueous behaviors in POEC12, making the surfactant milder with respect to detergent enzymes while ensuring it exhibits increased surface activity. PMID:27462805

  17. Cyclicity of Suicides May Be Modulated by Internal or External - 11-Year Cycles: An Example of Suicide Rates in Finland

    NASA Astrophysics Data System (ADS)

    Dimitrov, B. D.; Atanassova, P. A.; Rachkova, M. I.

    2009-12-01

    Multicomponent cyclicity in monthly suicides (periods T = 18, 46 and 198 months) was found and close similarity with heliogeophysical activity (HGA) suggested by Dimitrov in 1999. The current report aimed at scrutinizing the results on suicide annual cyclicity (seasonality) in Slovenia as reported by Oravecz et al in 2007 as well as at analyzing suicide data from Finland in this regard. We postulated that: (i) trans-year (12-24 months) or far-trans-year long-term cycles of suicides might interfere with their seasonality; and (ii) associations to environmental factors with alike cyclicity (e.g. HGA, temperature) could exist. Annual suicide incidence from Oulu, Finland over years 1987-1999 was analyzed. Annual data on solar activity (sunspot index Rz or Wolf number), planetary geomagnetic activity (aa-index) and local daily mean temperatures were used. The exploration of underlying chronomes (time structures) was done by periodogram regression analysis with trigonometric approximation. We analyzed temporal dynamics, revealed cyclicity, decomposed and reconstructed significant cycles and correlated the time series data. Suicide seasonality in Slovenia during the years 1971-2002 (n=384 months, peak May-June) was considered and, although some discrepancies and methodological weaknesses were suspected, we further hypothesized about trans-year and/or longer (far-transyear) cyclic components. Suicide incidence data from Finland indicated that the 12.5-year cyclic component (or trend) was almost parallel (coherent) to the cyclic heliogeophysical parameters and similar to local decreasing temperature dynamics. Also, 8-year and 24.5-year cycles were revealed. A correlation between the 12.5-year suicide cycle and 11-year solar cycle was found (R=0.919, p=0.000009). Above findings on cyclicity and temporal correlations of suicides with cyclic environmental factors, even being still preliminary, might not only allow for further more specific analyses. They might also corroborate

  18. [Cyclic impotence in male infertility].

    PubMed

    Lew-Starowicz, Z

    1988-11-01

    23 men were treated during 1977-87 in a special hospital in Warsaw for infertility by administering the Mell-Krat scale, the Rorschach test, and a test consisting of drawing figures. Most of them were in the 26-35 age group and had secondary and higher level education. 15 of them had a domineering mother, and 13 were only children. 14 had been married for 5 years and had used a biological method of contraception for 5-8 years. The personality tests indicated that 16 were immature and 5 were neurotic; in 13, the marital roles were reversed; the need for fatherhood was lacking in 7, and it was deficient in 9; 17 had disorders of erection, 4 had premature ejaculation, and 2 half diminished libido; the partners of 9 were tolerant and passive concerning the sexual dysfunction, 7 were critical and castrating, and 4 were understanding and helpful. The causative factors and the effectiveness of treatment were: partner-related in 13 cases (9 treated), stereotypical transformation of cohabitation in 23 cases (14 treated), burdensome sexual activity in 3 cases (1 treated), and 4 unknown factors (1 treated). Various therapeutic methods were used: hypnosis, psychotherapy of married couple, and training. 14 patients were successfully treated and rehabilitated; however, 9 patients did not improve. Although the small number of this sample does not permit the drawing of sweeping conclusions, some inferences could be made on forms of impotence of psychogenic origin. Implicated factors were: having a domineering mother, being an only child, and immature personality. Other causes had to do with the partner, sexual duty, and stereotypical sexual cohabitation of many years' duration during a nonfertile period of the woman using a natural method of contraception. PMID:3253157

  19. Discovery and characterization of a nonphosphorylated cyclic peptide inhibitor of the peptidylprolyl isomerase, Pin1.

    PubMed

    Duncan, Kelly E; Dempsey, Brian R; Killip, Lauren E; Adams, Jarrett; Bailey, Melanie L; Lajoie, Gilles A; Litchfield, David W; Brandl, Christopher J; Shaw, Gary S; Shilton, Brian H

    2011-06-01

    Phage panning led to the discovery of a disulfide-cyclized peptide CRYPEVEIC that inhibits Pin1 activity with a K(I) of 0.5 μM. NMR chemical shift perturbation experiments show that cyclic CRYPEVEIC binds to the active site of Pin1. Pin1 residues K63 and R68, which bind the phosphate of substrate peptides, do not show a significant chemical shift change in response to binding of cyclic CRYPEVEIC, consistent with absence of phosphate on the peptide. Cyclic CRYPEVEIC adopts a stable conformation with the side chains of the Y, P, V, and I residues packed together on one side of the ring. Cyclic CRYPEVEIC in solution exists as a mixture of two species, with a 1:4 cis/trans ratio for the Y-P bond. This mixture is stabilized to a single conformation when bound to Pin1. The constrained structure of cyclic CRYPEVEIC apparently facilitates high affinity binding without the presence of a phosphate group. PMID:21545152

  20. Attempts to detect cyclic adenosine 3':5'-monophosphate in higher plants by three assay methods.

    PubMed

    Bressan, R A; Ross, C W

    1976-01-01

    Endogenous levels of cyclic adenosine-3':5'-monophosphate in coleoptile first leaf segments of oat (Avena sativa L.), potato (Solanum tuberosum L.) tubers, tobacco (Nicotiana tabacum L.) callus, and germinating seeds of lettuce (Lactuca sativa L.) were measured with a modified Gilman binding assay and a protein kinase activation assay. The incorporation of adenosine-8-(14)C into compounds with properties similar to those of cyclic AMP was also measured in studies with germinating lettuce seeds. The binding assay proved reliable for mouse and rat liver analyses, but was nonspecific for plant tissues. It responded to various components from lettuce and potato tissues chromatographically similar to but not identical with cyclic AMP. The protein kinase activation assay was much more specific, but it also exhibited positive responses in the presence of compounds not chromatographically identical to cyclic AMP. The concentrations of cyclic AMP in the plant tissues tested were at the lower limits of detection and characterization obtainable with these assays. The estimates of maximal levels were much lower than reported in many previous studies. PMID:16659419

  1. Total synthesis of antimicrobial and antitumor cyclic depsipeptides.

    PubMed

    Li, Wenhua; Schlecker, Andreas; Ma, Dawei

    2010-08-14

    The total synthesis of natural products "has to be viewed as an art and a science that needs to be advanced for its own sake" (K. C. Nicolaou) and indeed, the achievements within this field of chemistry during the last decades are astonishing. However, besides its inherent beauty, total synthesis also opens the gates widely to a better understanding of biological processes and the development of pharmaceutical interesting substances. Cyclic depsipeptides form one of the compound classes that have attracted tremendous attention from synthetic chemists. They often feature non-proteinogenic amino acids and various types of structural unique building blocks, which make them challenging targets for synthetic efforts. Their total synthesis offers the chance to implement the use of newly developed synthetic tools in a complex environment. Synthetic dead-ends have shown the limitations of today's chemistry as well as triggering the development of new methodologies to circumvent the observed problems. Cyclic depsipeptides also often possess biological properties, especially antimicrobial and antitumor activity, that make them promising candidates for further pharmaceutical investigations and thus have a value at their own. Furthermore, through construction from scratch, ambiguities regarding the structure of several members of that compound class could be successfully clarified and derivatives for structure-activity-relationship (SAR) studies obtained. PMID:20544117

  2. Inhibition of cyclic diadenylate cyclase, DisA, by polyphenols

    PubMed Central

    Opoku-Temeng, Clement; Sintim, Herman O.

    2016-01-01

    Cyclic di-AMP has emerged as an important signaling molecule that controls a myriad of functions, including cell wall homeostasis in different bacteria. Polyphenols display various biological activities and tea polyphenols in particular have been shown to possess among other properties antioxidant and antibacterial activities. Certain tea polyphenols, such as catechin and epigallocatechin gallate, have been used to augment the action of traditional antibiotics that target the cell wall. Considering the expanding role played by cyclic dinucleotides in bacteria, we investigated whether the action of polyphenols on bacteria could be due in part to modulation of c-di-AMP signaling. Out of 14 tested polyphenols, tannic acid (TA), theaflavin-3′-gallate (TF2B) and theaflavin-3,3′-digallate (TF3) exhibited inhibitory effects on B. subtilis c-di-AMP synthase, DisA. TF2B and TF3 specifically inhibited DisA but not YybT (a PDE) whilst TA was more promiscuous and inhibited both DisA and YybT. PMID:27150552

  3. Phosphorylation of bovine rod photoreceptor cyclic GMP phosphodiesterase.

    PubMed Central

    Udovichenko, I P; Cunnick, J; Gonzales, K; Takemoto, D J

    1993-01-01

    The cyclic GMP phosphodiesterase (PDE) of retinal rods plays a key role in phototransduction and consists of two catalytic subunits (PDE alpha and PDE beta) and two identical inhibitory subunits (PDE gamma). Here we report that PDE alpha and PDE gamma are phosphorylated by protein kinase(s) C (PKC) from brain and rod outer segments (ROS). These same two types of PKC also phosphorylate PDE alpha in trypsin-activated PDE (without PDE gamma). In contrast, cyclic-AMP-dependent protein kinase catalytic subunit phosphorylates both PDE alpha and PDE beta, but not PDE gamma. This kinase does not phosphorylate trypsin-activated PDE. The synthetic peptides AKVISNLLGPREAAV (PDE alpha 30-44) and KQRQTRQFKSKPPKK (PDE gamma 31-45) inhibited phosphorylation of PDE by PKC from ROS. These data suggest that sites (at least one for each subunit) for phosphorylation of PDE by PKC are localized in these corresponding regions of PDE alpha and PDE gamma. Isoenzyme-specific PKC antibodies against peptides unique to the alpha, beta, gamma, delta, epsilon and zeta isoforms of protein kinase C were used to show that a major form of PKC in ROS is PKC alpha. However, other minor forms were also present. Images Figure 1 Figure 4 Figure 6 Figure 7 PMID:8216238

  4. 40 CFR 721.3440 - Haloalkyl substituted cyclic ethers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Haloalkyl substituted cyclic ethers... Substances § 721.3440 Haloalkyl substituted cyclic ethers. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances haloalkyl substituted cyclic ethers (PMN P-85-368 and...

  5. 40 CFR 721.3440 - Haloalkyl substituted cyclic ethers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Haloalkyl substituted cyclic ethers... Substances § 721.3440 Haloalkyl substituted cyclic ethers. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances haloalkyl substituted cyclic ethers (PMN P-85-368 and...

  6. Synthesis of cyclic sulfones by ring-closing metathesis.

    PubMed

    Yao, Qingwei

    2002-02-01

    A general and highly efficient synthesis of cyclic sulfones based on ring-closing metathesis has been developed. The synthetic utility of the resulting cyclic sulfones was demonstrated by their participation in stereoselective Diels-Alder reactions and transformation to cyclic dienes by the Ramberg-Bäcklund reaction. PMID:11820896

  7. Cyclic Peptide–Selenium Nanoparticles as Drug Transporters

    PubMed Central

    2015-01-01

    A cyclic peptide composed of five tryptophan, four arginine, and one cysteine [W5R4C] was synthesized. The peptide was evaluated for generating cyclic peptide-capped selenium nanoparticles (CP–SeNPs) in situ. A physical mixing of the cyclic peptide with SeO3–2 solution in water generated [W5R4C]–SeNPs via the combination of reducing and capping properties of amino acids in the peptide structure. Transmission electron microscopy (TEM) images showed that [W5R4C]–SeNPs were in the size range of 110–150 nm. Flow cytometry data revealed that a fluorescence-labeled phosphopeptide (F′-PEpYLGLD, where F′ = fluorescein) and an anticancer drug (F′-dasatinib) exhibited approximately 25- and 9-times higher cellular uptake in the presence of [W5R4C]–SeNPs than those of F′-PEpYLGLD and dasatinib alone in human leukemia (CCRF-CEM) cells after 2 h of incubation, respectively. Confocal microscopy also exhibited higher cellular delivery of F′-PEpYLGLD and F′-dasatinib in the presence of [W5R4C]–SeNPs compared to the parent fluorescence-labeled drug alone in human ovarian adenocarcinoma (SK-OV-3) cells after 2 h of incubation at 37 °C. The antiproliferative activities of several anticancer drugs doxorubicin, gemcitabine, clofarabine, etoposide, camptothecin, irinotecan, epirubicin, fludarabine, dasatinib, and paclitaxel were improved in the presence of [W5R4C]–SeNPs (50 μM) by 38%, 49%, 36%, 36%, 31%, 30%, 30%, 28%, 24%, and 17%, respectively, after 48 h incubation in SK-OV-3 cells. The results indicate that CP–SeNPs can be potentially used as nanosized delivery tools for negatively charged biomolecules and anticancer drugs. PMID:25184366

  8. Cyclic peptide-selenium nanoparticles as drug transporters.

    PubMed

    Nasrolahi Shirazi, Amir; Tiwari, Rakesh K; Oh, Donghoon; Sullivan, Brian; Kumar, Anil; Beni, Yousef A; Parang, Keykavous

    2014-10-01

    A cyclic peptide composed of five tryptophan, four arginine, and one cysteine [W5R4C] was synthesized. The peptide was evaluated for generating cyclic peptide-capped selenium nanoparticles (CP-SeNPs) in situ. A physical mixing of the cyclic peptide with SeO3(-2) solution in water generated [W5R4C]-SeNPs via the combination of reducing and capping properties of amino acids in the peptide structure. Transmission electron microscopy (TEM) images showed that [W5R4C]-SeNPs were in the size range of 110-150 nm. Flow cytometry data revealed that a fluorescence-labeled phosphopeptide (F'-PEpYLGLD, where F' = fluorescein) and an anticancer drug (F'-dasatinib) exhibited approximately 25- and 9-times higher cellular uptake in the presence of [W5R4C]-SeNPs than those of F'-PEpYLGLD and dasatinib alone in human leukemia (CCRF-CEM) cells after 2 h of incubation, respectively. Confocal microscopy also exhibited higher cellular delivery of F'-PEpYLGLD and F'-dasatinib in the presence of [W5R4C]-SeNPs compared to the parent fluorescence-labeled drug alone in human ovarian adenocarcinoma (SK-OV-3) cells after 2 h of incubation at 37 °C. The antiproliferative activities of several anticancer drugs doxorubicin, gemcitabine, clofarabine, etoposide, camptothecin, irinotecan, epirubicin, fludarabine, dasatinib, and paclitaxel were improved in the presence of [W5R4C]-SeNPs (50 μM) by 38%, 49%, 36%, 36%, 31%, 30%, 30%, 28%, 24%, and 17%, respectively, after 48 h incubation in SK-OV-3 cells. The results indicate that CP-SeNPs can be potentially used as nanosized delivery tools for negatively charged biomolecules and anticancer drugs. PMID:25184366

  9. Pro-inflammatory cytokine regulation of cyclic AMP-phosphodiesterase 4 signaling in microglia in vitro and following CNS injury

    PubMed Central

    Ghosh, Mousumi; Garcia-Castillo, Daniela; Aguirre, Vladimir; Golshani, Roozbeh; Atkins, Coleen M.; Bramlett, Helen M.; Dietrich, W. Dalton; Pearse, Damien D.

    2015-01-01

    Cyclic AMP suppresses immune cell activation and inflammation. The positive feedback loop of pro-inflammatory cytokine production and immune activation implies that cytokines may not only be regulated by cyclic AMP but conversely regulate cyclic AMP. This study examined the effects of TNF-α and IL-1β on cyclic AMP-phosphodiesterase (PDE) signaling in microglia in vitro and after spinal cord or traumatic brain injury (SCI, TBI). TNF-α or IL-1β stimulation produced a profound reduction (>90%) of cyclic AMP within EOC2 microglia from 30min that then recovered after IL-1β but remained suppressed with TNF-α through 24h. Cyclic AMP was also reduced in TNF-α-stimulated primary microglia, albeit to a lesser extent. Accompanying TNF-α-induced cyclic AMP reductions, but not IL-1β, was increased cyclic AMP-PDE activity. The role of PDE4 activity in cyclic AMP reductions was confirmed by using Rolipram. Examination of pde4 mRNA revealed an immediate, persistent increase in pde4b with TNF-α; IL-1β increased all pde4 mRNAs. Immunoblotting for PDE4 showed that both cytokines increased PDE4A1, but only TNF-α increased PDE4B2. Immunocytochemistry revealed PDE4B nuclear translocation with TNF-α but not IL-1β. Acutely after SCI/TBI, where cyclic AMP levels are reduced, PDE4B was localized to activated OX-42+ microglia; PDE4B was absent in OX-42+ cells in uninjured spinal cord/cortex or inactive microglia. Immunoblotting showed PDE4B2 up-regulation from 24h to 1wk post-SCI, the peak of microglia activation. These studies show that TNF-α and IL-1β differentially affect cyclic AMP-PDE signaling in microglia. Targeting PDE4B2 may be a putative therapeutic direction for reducing microglia activation in CNS injury and neurodegenerative diseases. PMID:22865690

  10. Relayed Regioselective Alkynylation/Olefination of Unsymmetrical Cyclic Diaryliodonium Species Catalyzed by Cu and Pd: Affording Fluorescent Cytotoxic Benzoxazoles.

    PubMed

    Zhu, Daqian; Liu, Panpan; Lu, Wenhua; Wang, Haiwen; Luo, Bingling; Hu, Yumin; Huang, Peng; Wen, Shijun

    2015-12-21

    Although cyclic diaryliodonium species have the potential to act as valuable synthons for cascade transformations, they still remain largely unexplored. The regioselectivity associated with unsymmetrical cyclic diaryliodonium species has previously been known to pose a challenge. A regioselective relayed alkynylation and olefination of unsymmetrical cyclic diaryliodonium species has been achieved by installation of a directing amido group. These relayed transformations were delayed until an oxazole ring had formed, delivering a series of unique fluorescent benzoxazoles. Moreover, some of these synthetic benzoxazoles showed apparent inhibitory activity against malignant cancer cells. Further confocal visualization revealed that benzoxazoles targeted cell nuclei. These findings might provide a novel structural scaffold to develop desirable anticancer agents. PMID:26516085

  11. Cyclic ethers adsorbed on Ru(001)

    NASA Astrophysics Data System (ADS)

    Walczak, M. M.; Thiel, P. A.

    1990-11-01

    The three cyclic ethers 1,3-dioxane. 1,4-dioxane and 1,3,5-trioxane all exhibit multiple desorption states from Ru(001) between 200 and 310 K, in addition to the multilayer and metastable states at lower temperature. Most distinctive are the two low-temperature α-states. which are similar in shape, position, and relative population for all three compounds. This suggests that these states are associated with configurations which are accessible to all three molecules. The data also indicate that there is some molecular decomposition to gaseous CO and H 2. 1,4-Dioxane yields the largest amounts of these decomposition products, suggesting that this molecule is most susceptible to surface-catalyzed decomposition. The desorption data for the three cyclic ethers are grossly similar to each other, and also to the straight-chain diethers which we have previously studied.

  12. Cyclic debonding of adhesively bonded composites

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.; Everett, R. A., Jr.

    1982-01-01

    The fatigue behavior of a simple composite to composite bonded joint was analyzed. The cracked lap shear specimen subjected to constant amplitude cyclic loading was studied. Two specimen geometries were tested for each bonded system: (1) a strap adherend of 16 plies bonded to a lap adherend of 8 plies; and (2) a strap adherend of 8 plies bonded to a lap adherend of 16 plies. In all specimens the fatigue failure was in the form of cyclic debonding with some 0 deg fiber pull off from the strap adherend. The debond always grew in the region of adhesive that had the highest mode (peel) loading and that region was close to the adhesive strap interface.

  13. Separation of isotopes by cyclical processes

    DOEpatents

    Hamrin, Jr., Charles E.; Weaver, Kenny

    1976-11-02

    Various isotopes of hydrogen are separated by a cyclic sorption process in which a gas stream containing the isotopes is periodically passed through a high pressure column containing a palladium sorbent. A portion of the product from the high pressure column is passed through a second column at lower pressure to act as a purge. Before the sorbent in the high pressure column becomes saturated, the sequence is reversed with the stream flowing through the former low-pressure column now at high pressure, and a portion of the product purging the former high pressure column now at low pressure. The sequence is continued in cyclic manner with the product being enriched in a particular isotope.

  14. Universal Cyclic Topology in Polymer Networks.

    PubMed

    Wang, Rui; Alexander-Katz, Alfredo; Johnson, Jeremiah A; Olsen, Bradley D

    2016-05-01

    Polymer networks invariably possess topological defects: loops of different orders which have profound effects on network properties. Here, we demonstrate that all cyclic topologies are a universal function of a single dimensionless parameter characterizing the conditions for network formation. The theory is in excellent agreement with both experimental measurements of hydrogel loop fractions and Monte Carlo simulations without any fitting parameters. We demonstrate the superposition of the dilution effect and chain-length effect on loop formation. The one-to-one correspondence between the network topology and primary loop fraction demonstrates that the entire network topology is characterized by measurement of just primary loops, a single chain topological feature. Different cyclic defects cannot vary independently, in contrast to the intuition that the densities of all topological species are freely adjustable. Quantifying these defects facilitates studying the correlations between the topology and properties of polymer networks, providing a key step in overcoming an outstanding challenge in polymer physics. PMID:27203346

  15. Canine infectious cyclic thrombocytopenia found in Taiwan.

    PubMed

    Chang, A C; Chang, W L; Lin, C T; Pan, M J; Lee, S C

    1996-05-01

    Here were report the first canine infectious cyclic thrombocytopenia (CICT) found in Taiwan. Platelet-specific inclusions were detected in the blood smear of a military working dog. To identify the etiologic agent, the patient's blood was transmitted to three six-month-old German Shepherd dogs. The Ehrlichia platys-like inclusions were observed six to eight days after inoculation. Indirect fluorescent antibody test showed that the serum from the patient reacted specifically with the microorganisms within the platelets. Typical hematologic manifestations of E. platys infection, cyclic parasitemia and concomitant thrombocytopenia, were observed in these dogs. The prevalence of CICT in north Taiwan was also studied, and the incidence was 8.9% (4 out of 45) in civilian dogs and 97.1% (34 out of 35) in dogs from a heavily tick infested kennel. PMID:8741613

  16. Universal Cyclic Topology in Polymer Networks

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Alexander-Katz, Alfredo; Johnson, Jeremiah A.; Olsen, Bradley D.

    2016-05-01

    Polymer networks invariably possess topological defects: loops of different orders which have profound effects on network properties. Here, we demonstrate that all cyclic topologies are a universal function of a single dimensionless parameter characterizing the conditions for network formation. The theory is in excellent agreement with both experimental measurements of hydrogel loop fractions and Monte Carlo simulations without any fitting parameters. We demonstrate the superposition of the dilution effect and chain-length effect on loop formation. The one-to-one correspondence between the network topology and primary loop fraction demonstrates that the entire network topology is characterized by measurement of just primary loops, a single chain topological feature. Different cyclic defects cannot vary independently, in contrast to the intuition that the densities of all topological species are freely adjustable. Quantifying these defects facilitates studying the correlations between the topology and properties of polymer networks, providing a key step in overcoming an outstanding challenge in polymer physics.

  17. Cyclic Oxidation Modeling and Life Prediction

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2004-01-01

    The cyclic oxidation process can be described as an iterative scale growth and spallation sequence by a number of similar models. Model input variable include oxide scale type and growth parameters, spalling geometry, spall constant, and cycle duration. Outputs include net weight change, the amounts of retained and spalled oxide, the total oxygen and metal consumed, and the terminal rates of weight loss and metal consumption. All models and their variations produce a number of similar characteristic features. In general, spalling and material consumption increase to a steady state rate, at which point the retained scale approaches a constant and the rate of weight loss becomes linear. For one model, this regularity was demonstrated as dimensionless, universal expressions, obtained by normalizing the variables by critical performance factors. These insights were enabled through the use of the COSP for Windows cyclic oxidation spalling program.

  18. [Cyclic esotropia (alternate day squint) (author's transl)].

    PubMed

    Aichmair, H

    1977-02-10

    One case of the extremely rare conditioning of cyclic esotropia is reported following a short review of the literature and clinical features of this form of strabism. According to our experience the only effective treatment is operative correction on the day of the squint. It is not advisable to wait until the alternate day squint cycle breaks down and a permanent convergent squint develops. PMID:836616

  19. Asymmetric Redox-Annulation of Cyclic Amines

    PubMed Central

    2015-01-01

    Cyclic amines such as 1,2,3,4-tetrahydroisoquinoline undergo regiodivergent annulation reactions with 4-nitrobutyraldehydes. These redox-neutral transformations enable the asymmetric synthesis of highly substituted polycyclic ring systems in just two steps from commercial materials. The utility of this process is illustrated in a rapid synthesis of (−)-protoemetinol. Computational studies provide mechanistic insights and implicate the elimination of acetic acid from an ammonium nitronate intermediate as the rate-determining step. PMID:26348653

  20. General solution of the cyclic Leibniz rule

    NASA Astrophysics Data System (ADS)

    Kadoh, Daisuke; Ukita, Naoya

    2015-10-01

    We study the cyclic Leibniz rule (CLR) which was recently proposed as a new approach to the realization of supersymmetric quantum mechanics on the lattice. The CLR has an infinite number of solutions that give the different definitions of the lattice supersymmetric quantum mechanics. We show the general form of the solution for the naive symmetric difference operator and reveal the differences between the lattice models.