Science.gov

Sample records for activated cyclic nucleotide-gated

  1. Activation of olfactory-type cyclic nucleotide-gated channels is highly cooperative

    PubMed Central

    Nache, Vasilica; Schulz, Eckhard; Zimmer, Thomas; Kusch, Jana; Biskup, Christoph; Koopmann, Rolf; Hagen, Volker; Benndorf, Klaus

    2005-01-01

    Cyclic nucleotide-gated (CNG) ion channels play a key role in the sensory transduction of vision and olfaction. The channels are opened by the binding of cyclic nucleotides. Native olfactory CNG channels are heterotetramers of CNGA2, CNGA4, and CNGB1b subunits. Upon heterologous expression, only CNGA2 subunits can form functional homotetrameric channels. It is presently not known how the binding of the ligands to the four subunits is translated to channel opening. We studied activation of olfactory CNG channels by photolysis-induced jumps of cGMP or cAMP, two cyclic nucleotides with markedly different apparent affinity. It is shown that at equal degree of activation, the activation time course of homotetrameric channels is similar with cGMP and cAMP and it is also similar in homo- and heterotetrameric channels with the same cyclic nucleotide. Kinetic models were globally fitted to activation time courses of homotetrameric channels. While all models containing equivalent binding sites failed, a model containing three binding sites with a ligand affinity high–low–high described the data adequately. Only the second binding step switches from a very low to a very high open probability. We propose a unique gating mechanism for homotetrameric and heterotetrameric channels that involves only three highly cooperative binding steps. PMID:16081488

  2. Thermodynamics of Activation Gating in Olfactory-Type Cyclic Nucleotide-Gated (CNGA2) Channels

    PubMed Central

    Nache, Vasilica; Kusch, Jana; Biskup, Christoph; Schulz, Eckhard; Zimmer, Thomas; Hagen, Volker; Benndorf, Klaus

    2008-01-01

    Olfactory-type cyclic nucleotide-gated (CNG) ion channels open by the binding of cyclic nucleotides to a binding domain in the C-terminus. Employing the Eyring rate theory, we performed a thermodynamic analysis of the activation gating in homotetrameric CNGA2 channels. Lowering the temperature shifted the concentration-response relationship to lower concentrations, resulting in a decrease of both the enthalpy ΔH and entropy ΔS upon channel opening, suggesting that the order of an open CNGA2 channel plus its environment is higher than that of the closed channel. Activation time courses induced by cGMP concentration jumps were used to study thermodynamics of the transition state. The activation enthalpies ΔH‡ were positive at all cGMP concentrations. In contrast, the activation entropy ΔS‡ was positive at low cGMP concentrations and became then negative at increasing cGMP concentrations. The enthalpic and entropic parts of the activation energies approximately balance each other at all cGMP concentrations, leaving the free enthalpy of activation in the range between 19 and 21 kcal/mol. We conclude that channel activation proceeds through different pathways at different cGMP concentrations. Compared to the unliganded channel, low cGMP concentrations generate a transitional state of lower order whereas high cGMP concentrations generate a transitional state of higher order. PMID:18567637

  3. Crizotinib Inhibits Hyperpolarization-activated Cyclic Nucleotide-Gated Channel 4 Activity

    PubMed Central

    Zhang, Zhushan; Huang, Tai-Qin; Nepliouev, Igor; Zhang, Hengtao; Barnett, Adam S.; Rosenberg, Paul B.; Ou, Sai-Hong I.; Stiber, Jonathan A.

    2017-01-01

    Background Sinus bradycardia is frequently observed in patients treated with crizotinib, a receptor tyrosine kinase inhibitor used for the treatment of anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC). We investigated whether crizotinib could influence heart rate (HR) through direct cardiac effects. Methods The direct effect of crizotinib on HR was studied using ECG analysis of Langendorff-perfused mouse hearts. The whole-cell patch clamp technique was used to measure the effects of crizotinib on the hyperpolarization-activated funny current, If, in mouse sinoatrial node cells (SANCs) and hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) activity in HEK-293 cells stably expressing human HCN4. Results Crizotinib resulted in a dose-dependent reduction in HR in isolated intact mouse hearts with a half maximal inhibitory concentration (IC50) of 1.7 ± 0.4 μmol/L. Because ECG analysis revealed that crizotinib (0–5 μmol/L) resulted in significant reductions in HR in isolated mouse hearts without changes in PR, QRS, or QT intervals, we performed whole-cell patch clamp recordings of SANCs which showed that crizotinib inhibited If which regulates cardiac pacemaker activity. Crizotinib resulted in diminished current density of HCN4, the major molecular determinant of If, with an IC50 of 1.4 ± 0.3 μmol/L. Crizotinib also slowed HCN4 activation and shifted the activation curve to the left towards more hyperpolarized potentials. Conclusions Our results suggest that crizotinib’s effects on HCN4 channels play a significant role in mediating its observed effects on HR. PMID:28217366

  4. Effects of N-glycosylation on hyperpolarization-activated cyclic nucleotide-gated (HCN) channels.

    PubMed

    Li, Mo; Tonggu, Lige; Tang, Lan; Wang, Liguo

    2015-02-15

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are activated by membrane hyperpolarization and conduct an inward cation current, which contributes to rhythmic electrical activity of neural and cardiac pacemaker cells. HCN channels have been shown to undergo N-linked glycosylation, and the N-glycosylation has been shown to be required for membrane trafficking and possibly function. In this study, recombinant wild-type (WT) and glycosylation-defective N380Q HCN2 channels were individually or co-expressed in HEK-293 cells. We demonstrate that glycosylation is required for trafficking to the plasma membrane and for the stability of HCN channels in the cell. Interestingly, the heteromeric HCN2 channels of WT and glycosylation-defective N380Q have been observed on cell membranes, indicating that not all four subunits of a tetrameric HCN2 channel need to be glycosylated for HCN2 channels to traffic to plasma membranes. Subsequently, we investigate the effect of N-glycosylation on the function of HCN2 channels. We developed a fluorescence-based flux assay, which makes it possible to establish a negative potential inside liposomes to open HCN2 channels. Using this flux assay, we demonstrate that glycosylation-defective N380Q HCN2 channels reconstituted into liposomes function similarly to WT HCN2 channels. This suggests that N-glycosylation is not required for HCN2 channels to function.

  5. Hyperpolarization-activated cyclic nucleotide-gated 1 independent grid cell-phase precession in mice.

    PubMed

    Eggink, Hannah; Mertens, Paul; Storm, Eline; Giocomo, Lisa M

    2014-03-01

    Cell assemblies code information in both the temporal and spatial domain. One tractable example of temporal coding is the phenomenon of phase precession. In medial entorhinal cortex, theta-phase precession is observed in spatially specific grid cells, with grid spike-times shifting to earlier phases of the extracellular theta rhythm as the animal passes through the grid field. Although the exact mechanisms underlying spatial-temporal coding remain unknown, computational work points to single-cell oscillatory activity as a biophysical mechanism capable of producing phase precession. Support for this idea comes from observed correlations between single-cell resonance and entorhinal neurons characterized by phase precession. Here, we take advantage of the absence of single-cell theta-frequency resonance in hyperpolarization-activated cyclic nucleotide-gated (HCN) 1 knockout (KO) mice to examine the relationship between intrinsic rhythmicity and phase precession. We find phase precession is highly comparable between forebrain-restricted HCN1 KO and wild-type mice. Grid fields in HCN1 KO mice display more experience-dependent asymmetry however, consistent with reports of enhanced long-term potentiation in the absence of HCN1 and raising the possibility that the loss of HCN1 improves temporal coding via the rate-phase transformation. Combined, our results clarify the role of HCN1 channels in temporal coding and constrain the number of possible mechanisms generating phase precession. © 2013 Wiley Periodicals, Inc.

  6. Hyperpolarization-activated, cyclic nucleotide-gated cation channels in Aplysia: Contribution to classical conditioning

    PubMed Central

    Yang, Qizong; Kuzyk, Pavlo; Antonov, Igor; Bostwick, Caleb J.; Kohn, Andrea B.; Moroz, Leonid L.; Hawkins, Robert D.

    2015-01-01

    Hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are critical regulators of neuronal excitability, but less is known about their possible roles in synaptic plasticity and memory circuits. Here, we characterized the HCN gene organization, channel properties, distribution, and involvement in associative and nonassociative forms of learning in Aplysia californica. Aplysia has only one HCN gene, which codes for a channel that has many similarities to the mammalian HCN channel. The cloned acHCN gene was expressed in Xenopus oocytes, which displayed a hyperpolarization-induced inward current that was enhanced by cGMP as well as cAMP. Similarly to its homologs in other animals, acHCN is permeable to K+ and Na+ ions, and is selectively blocked by Cs+ and ZD7288. We found that acHCN is predominantly expressed in inter- and motor neurons, including LFS siphon motor neurons, and therefore tested whether HCN channels are involved in simple forms of learning of the siphon-withdrawal reflex in a semiintact preparation. ZD7288 (100 μM) significantly reduced an associative form of learning (classical conditioning) but had no effect on two nonassociative forms of learning (intermediate-term sensitization and unpaired training) or baseline responses. The HCN current is enhanced by nitric oxide (NO), which may explain the postsynaptic role of NO during conditioning. HCN current in turn enhances the NMDA-like current in the motor neurons, suggesting that HCN channels contribute to conditioning through this pathway. PMID:26668355

  7. Hyperpolarization-activated cyclic nucleotide-gated channels in mouse vomeronasal sensory neurons.

    PubMed

    Dibattista, Michele; Mazzatenta, Andrea; Grassi, Francesca; Tirindelli, Roberto; Menini, Anna

    2008-08-01

    Hyperpolarization-activated currents (Ih) are present in several neurons of the central and peripheral nervous system. However, Ih in neurons of the vomeronasal organ (VNO) is not well characterized. We studied the properties of Ih in sensory neurons from acute slices of mouse VNO. In voltage-clamp studies, Ih was identified by the characteristic kinetics of activation, voltage dependence, and blockage by Cs+ or ZD-7288, two blockers of the Ih. Forskolin, an activator of adenylyl cyclase, shifted the activation curve for Ih to less negative potentials. A comparison of Ih properties in VNO neurons with those of heterologously expressed hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, together with RT-PCR experiments in VNO, indicate that Ih is caused by HCN2 and/or HCN4 subunits. In current-clamp recordings, blocking Ih with ZD-7288 induced a hyperpolarization of 5.1 mV, an increase in input resistance, a decrease in the sensitivity to elicit action potentials in response to small current injections, and did not modify the frequency of action potentials elicited by a large current injection. It has been shown that in VNO neurons some pheromones induce a decrease in cAMP concentration, but the physiological role of cAMP is unknown. After application of blockers of adenylyl cyclase, we measured a hyperpolarization of 5.1 mV in 11 of 14 neurons, suggesting that basal levels of cAMP could modulate the resting potential. In conclusion, these results show that mouse VNO neurons express HCN2 and/or HCN4 subunits and that Ih contributes to setting the resting membrane potential and to increase excitability at stimulus threshold.

  8. Inflammatory and neuropathic pain are rapidly suppressed by peripheral block of hyperpolarisation-activated cyclic nucleotide-gated ion channels.

    PubMed

    Young, Gareth T; Emery, Edward C; Mooney, Elizabeth R; Tsantoulas, Christoforos; McNaughton, Peter A

    2014-09-01

    Previous studies have shown that hyperpolarisation-activated cyclic nucleotide-gated (HCN)-2 ion channels regulate the firing frequency of nociceptive sensory neurons and thus play a central role in both inflammatory and neuropathic pain conditions. Here we use ivabradine, a clinically approved anti-anginal agent that blocks all HCN channel isoforms approximately equally, to investigate the effect on inflammatory and neuropathic pain of HCN ion channel block. We show that ivabradine does not have major off-target effects on a sample group of Na, Ca, and K ion channels, and that it is peripherally restricted because it is a substrate for the P-glycoprotein (PgP) multidrug transporter that is expressed in the blood-brain barrier. Its effects are therefore likely to be due to an action on HCN ion channels in peripheral sensory neurons. Using patch clamp electrophysiology, we found that ivabradine was a use-dependent blocker of native HCN channels expressed in small sensory neurons. Ivabradine suppressed the action potential firing that is induced in nociceptive neurons by elevation of intracellular cAMP. In the formalin model of inflammatory pain, ivabradine reduced pain behaviour only in the second (inflammatory) phase. In nerve injury and chemotherapy models of neuropathic pain, we observed rapid and effective analgesia as effective as that with gabapentin. We conclude that both inflammatory and neuropathic pain are rapidly inhibited by blocking HCN-dependent repetitive firing in peripheral nociceptive neurons.

  9. ZD7288, a selective hyperpolarization-activated cyclic nucleotide-gated channel blocker, inhibits hippocampal synaptic plasticity

    PubMed Central

    Zhang, Xiao-xue; Min, Xiao-chun; Xu, Xu-lin; Zheng, Min; Guo, Lian-jun

    2016-01-01

    The selective hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride (ZD7288) blocks the induction of long-term potentiation in the perforant path–CA3 region in rat hippocampus in vivo. To explore the mechanisms underlying the action of ZD7288, we recorded excitatory postsynaptic potentials in perforant path–CA3 synapses in male Sprague-Dawley rats. We measured glutamate content in the hippocampus and in cultured hippocampal neurons using high performance liquid chromatography, and determined intracellular Ca2+ concentration [Ca2+]i) using Fura-2. ZD7288 inhibited the induction and maintenance of long-term potentiation, and these effects were mirrored by the nonspecific HCN channel blocker cesium. ZD7288 also decreased glutamate release in hippocampal tissue and in cultured hippocampal neurons. Furthermore, ZD7288 attenuated glutamate-induced rises in [Ca2+]i in a concentration-dependent manner and reversed 8-Br-cAMP-mediated facilitation of these glutamate-induced [Ca2+]i rises. Our results suggest that ZD7288 inhibits hippocampal synaptic plasticity both glutamate release and resultant [Ca2+]i increases in rat hippocampal neurons. PMID:27335562

  10. Cyclic nucleotide-gated channels in non-sensory organs.

    PubMed

    Kraus-Friedmann, N

    2000-03-01

    Cyclic nucleotide-gated channels represent a class of ion channels activated directly by the binding of either cyclic-GMP or cyclic-AMP. They carry both mono and divalent cations, but select calcium over sodium. In the majority of the cases studied, binding of cyclic nucleotides to the channel results in the opening of the channel and the influx of calcium. As a consequence, cytosolic free calcium levels increase leading to the modifications of calcium-dependent processes. This represents and important link in the chain of events leading to the physiological response. Cyclic nucleotide-gated channels were discovered in sensory cell types, in the retina, and in olfactory cells, and were extensively studied in those cells. However, it is becoming increasingly evident that such channels are present not only in sensory systems, but in most, if not all, cell types where cyclic nucleotides play a role in signal transduction. A hypothesis is presented here which attributes physiological importance to these channels in non-sensory organs. Four examples of such channels in non-sensory cells are discussed in detail: those in the liver, in the heart, in the brain, and in the testis with the emphasis on the possible physiological roles that these channels might have in these organs.

  11. The conduction system and expressions of hyperpolarization-activated cyclic nucleotide-gated cation channel 4 and connexin43 expressions in the hearts of fetal day 13 mice.

    PubMed

    Wen, Y; Li, B

    2017-01-01

    We investigated the development of the sinus node of the heart conduction system by localizing hyperpolarization-activated cyclic nucleotide-gated cation channel 4 (HCN4) and connexin43 (Cx43) in the hearts of fetal day 13 mice. Horizontal serial sections of day 13 whole fetuses were stained by hematoxylin and eosin and immunofluorescence to identify myocardial cells that express HCN4, hyperpolarization-activated cyclic nucleotide-gated cation channel 2 (HCN2) and Cx43. Expression levels of HCN4 and Cx43 were determined by quantitative RT-PCR in both fetal day 13 and adult mice. We found that both Cx43 and HCN4 expressions were located on the cell membranes in the hearts of fetal day 13 mice, but Cx43 was distributed throughout the myocardial cells. HCN4 expression was concentrated mainly in the left dorsal epicardium of the right atrium where Cx43 expression was low or absent. Quantitative RT-PCR demonstrated that HCN4 expression was significantly higher and HCN2 expression was significantly lower in fetal day 13 mice than in adults. We found no statistically significant difference in Cx43 expression between fetal day 13 mice and adults. HCN4 stained myocardial cells in the left dorsal epicardium of the right atrium are the origin of the sinus node and the remainder of the heart conduction system.

  12. Decreased expression of hyperpolarisation-activated cyclic nucleotide-gated channel 3 in Hirschsprung’s disease

    PubMed Central

    O’Donnell, Anne Marie; Coyle, David; Puri, Prem

    2015-01-01

    AIM: To determine if hyperpolarisation-activated nucleotide-gated (HCN) channels exist in human colon, and to investigate the expression of HCN channels in Hirschsprung’s disease. METHODS: We investigated HCN1, HCN2, HCN3 and HCN4 protein expression in pull-through specimens from patients with Hirschsprung’s disease (HSCR, n = 10) using the proximal-most ganglionic segment and distal-most aganglionic segment, as well as in healthy control specimens obtained at the time of sigmoid colostomy closure in children who had undergone anorectoplasty for imperforate anus (n = 10). Fluorescent immunohistochemistry was performed to assess protein distribution, which was then visualized using confocal microscopy. RESULTS: No HCN1 channel expression was observed in any of the tissues studied. Both HCN2 and HCN4 proteins were found to be equally expressed in the aganglionic and ganglionic bowel in HSCR and controls. HCN3 channel expression was found to be markedly decreased in the aganglionic colon vs ganglionic colon and controls. HCN2-4 channels were seen to be expressed within neurons of the myenteric and submucosal plexus of the ganglionic bowel and normal controls, and also co-localised to interstitial cells of Cajal in all tissues studied. CONCLUSION: We demonstrate HCN channel expression in human colon for the first time. Reduced HCN3 expression in aganglionic bowel suggests its potential role in HSCR pathophysiology. PMID:25987789

  13. Tetramerization Dynamics of C-terminal Domain Underlies Isoform-specific cAMP Gating in Hyperpolarization-activated Cyclic Nucleotide-gated Channels*

    PubMed Central

    Lolicato, Marco; Nardini, Marco; Gazzarrini, Sabrina; Möller, Stefan; Bertinetti, Daniela; Herberg, Friedrich W.; Bolognesi, Martino; Martin, Holger; Fasolini, Marina; Bertrand, Jay A.; Arrigoni, Cristina; Thiel, Gerhard; Moroni, Anna

    2011-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dually activated by hyperpolarization and binding of cAMP to their cyclic nucleotide binding domain (CNBD). HCN isoforms respond differently to cAMP; binding of cAMP shifts activation of HCN2 and HCN4 by 17 mV but shifts that of HCN1 by only 2–4 mV. To explain the peculiarity of HCN1, we solved the crystal structures and performed a biochemical-biophysical characterization of the C-terminal domain (C-linker plus CNBD) of the three isoforms. Our main finding is that tetramerization of the C-terminal domain of HCN1 occurs at basal cAMP concentrations, whereas those of HCN2 and HCN4 require cAMP saturating levels. Therefore, HCN1 responds less markedly than HCN2 and HCN4 to cAMP increase because its CNBD is already partly tetrameric. This is confirmed by voltage clamp experiments showing that the right-shifted position of V½ in HCN1 is correlated with its propensity to tetramerize in vitro. These data underscore that ligand-induced CNBD tetramerization removes tonic inhibition from the pore of HCN channels. PMID:22006928

  14. DIFFERENTIAL AND AGE-DEPENDENT EXPRESSION OF HYPERPOLARIZATION-ACTIVATED, CYCLIC NUCLEOTIDE-GATED CATION CHANNEL ISOFORMS 1–4 SUGGESTS EVOLVING ROLES IN THE DEVELOPING RAT HIPPOCAMPUS

    PubMed Central

    BENDER, R. A.; BREWSTER, A.; SANTORO, B.; LUDWIG, A.; HOFMANN, F.; BIEL, M.; BARAM, T. Z.

    2011-01-01

    Hyperpolarization-activated cation currents (Ih) are found in several brain regions including thalamus and hippocampus. Important functions of these currents in promoting synchronized network activity and in determining neuronal membrane properties have been progressively recognized, but the molecular underpinnings of these currents are only emerging. Ih currents are generated by hyperpolarization-activated, cyclic nucleotide-gated cation channels (HCNs). These channel proteins are encoded by at least four HCN genes, that govern the kinetic and functional properties of the resulting channels. Because of the potential impact of Ih-mediated coordinated neuronal activity on the maturation of the functional hippocampal network, this study focused on determining the expression of the four members of the HCN gene family throughout postnatal hippocampal development at both the regional and single cell level. The results of these experiments demonstrated that HCNs 1, 2 and 4 are differentially expressed in interneuronal and principal cell populations of the rat hippocampal formation. Expression profiles of each HCN isoform evolve during postnatal development, and patterns observed during early postnatal ages differ significantly from those in mature hippocampus. The onset of HCN expression in interneurons of the hippocampus proper precedes that in the dentate gyrus, suggesting that HCN-mediated pacing activity may be generated in hippocampal interneurons prior to those in the hilus. Taken together, these findings indicate an age-dependent spatiotemporal evolution of specific HCN expression in distinct hippocampal cell populations, and suggest that these channels serve differing and evolving functions in the maturation of coordinated hippocampal activity. PMID:11682156

  15. SUMOylation of the Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel 2 Increases Surface Expression and the Maximal Conductance of the Hyperpolarization-Activated Current

    PubMed Central

    Parker, Anna R.; Welch, Meghyn A.; Forster, Lori A.; Tasneem, Sarah M.; Dubhashi, Janhavi A.; Baro, Deborah J.

    2017-01-01

    Small Ubiquitin-like Modifier (SUMO) is a ∼10 kDa peptide that can be post-translationally added to a lysine (K) on a target protein to facilitate protein–protein interactions. Recent studies have found that SUMOylation can be regulated in an activity-dependent manner and that ion channel SUMOylation can alter the biophysical properties and surface expression of the channel. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel surface expression can be regulated in an activity-dependent manner through unknown processes. We hypothesized that SUMOylation might influence the surface expression of HCN2 channels. In this manuscript, we show that HCN2 channels are SUMOylated in the mouse brain. Baseline levels of SUMOylation were also observed for a GFP-tagged HCN2 channel stably expressed in Human embryonic kidney (Hek) cells. Elevating GFP-HCN2 channel SUMOylation above baseline in Hek cells led to an increase in surface expression that augmented the hyperpolarization-activated current (Ih) mediated by these channels. Increased SUMOylation did not alter Ih voltage-dependence or kinetics of activation. There are five predicted intracellular SUMOylation sites on HCN2. Site-directed mutagenesis indicated that more than one K on the GFP-HCN2 channel was SUMOylated. Enhancing SUMOylation at one of the five predicted sites, K669, led to the increase in surface expression and Ih Gmax. The role of SUMOylation at additional sites is currently unknown. The SUMOylation site at K669 is also conserved in HCN1 channels. Aberrant SUMOylation has been linked to neurological diseases that also display alterations in HCN1 and HCN2 channel expression, such as seizures and Parkinson’s disease. This work is the first report that HCN channels can be SUMOylated and that this can regulate surface expression and Ih. PMID:28127275

  16. Tonic current through GABAA receptors and hyperpolarization-activated cyclic nucleotide-gated channels modulate resonance properties of rat subicular pyramidal neurons.

    PubMed

    Sah, Nirnath; Sikdar, Sujit K

    2014-07-01

    The subiculum, considered to be the output structure of the hippocampus, modulates information flow from the hippocampus to various cortical and sub-cortical areas such as the nucleus accumbens, lateral septal region, thalamus, nucleus gelatinosus, medial nucleus and mammillary nuclei. Tonic inhibitory current plays an important role in neuronal physiology and pathophysiology by modulating the electrophysiological properties of neurons. While the alterations of various electrical properties due to tonic inhibition have been studied in neurons from different regions, its influence on intrinsic subthreshold resonance in pyramidal excitatory neurons expressing hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is not known. Using pharmacological agents, we show the involvement of α5βγ GABAA receptors in the picrotoxin-sensitive tonic current in subicular pyramidal neurons. We further investigated the contribution of tonic conductance in regulating subthreshold electrophysiological properties using current clamp and dynamic clamp experiments. We demonstrate that tonic GABAergic inhibition can actively modulate subthreshold properties, including resonance due to HCN channels, which can potentially alter the response dynamics of subicular pyramidal neurons in an oscillating neuronal network.

  17. A Novel Carbamoyloxy Arylalkanoyl Arylpiperazine Compound (SKL-NP) Inhibits Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) Channel Currents in Rat Dorsal Root Ganglion Neurons.

    PubMed

    Chung, Gehoon; Kim, Tae-Hyung; Shin, Hyewon; Chae, Eunhee; Yi, Hanju; Moon, Hongsik; Kim, Hyun Jin; Kim, Joong Soo; Jung, Sung Jun; Oh, Seog Bae

    2012-08-01

    In this study, we determined mode of action of a novel carbamoyloxy arylalkanoyl arylpiperazine compound (SKL-NP) on hyperpolarization-activated cyclic nucleotide-gated (HCN) channel currents (I(h)) that plays important roles in neuropathic pain. In small or medium-sized dorsal root ganglion (DRG) neurons (<40 µm in diameter) exhibiting tonic firing and prominent I(h), SKL-NP inhibited I(h) and spike firings in a concentration dependent manner (IC(50)=7.85 µM). SKL-NP-induced inhibition of I(h) was blocked by pretreatment of pertussis toxin (PTX) and N-ethylmaleimide (NEM) as well as 8-Br-cAMP, a membrane permeable cAMP analogue. These results suggest that SKL-NP modulates I(h) in indirect manner by the activation of a Gi-protein coupled receptor that decreases intracellular cAMP concentration. Taken together, SKL-NP has the inhibitory effect on HCN channel currents (I(h)) in DRG neurons of rats.

  18. Synchronized network activity in developing rat hippocampus involves regional hyperpolarization-activated cyclic nucleotide-gated (HCN) channel function.

    PubMed

    Bender, Roland A; Galindo, Rafael; Mameli, Manuel; Gonzalez-Vega, Rebeca; Valenzuela, C Fernando; Baram, Tallie Z

    2005-11-01

    The principal form of synchronized network activity in neonatal hippocampus consists of low frequency 'giant depolarizing potentials' (GDPs). Whereas contribution of both GABA and glutamate to their generation has been demonstrated, full understanding of the mechanisms underlying these synchronized activity bursts remains incomplete. A contribution of the h-current, conducted by HCN channels, to GDPs has been a topic of substantial interest. Here we focus on HCN1, the prevalent HCN channel isoform in neonatal hippocampus, and demonstrate an HCN1 spatiotemporal expression pattern in both CA3 principal cells and interneurons that correlates with the developmental profile of GDPs. Abrogation of HCN physiological function in CA3, via the selective I(h)-blocker ZD7288, disrupts GDP generation. Furthermore, ZD7288 specifically abolishes spontaneous bursting of the CA3 pyramidal cells at frequencies typical of GDPs without major influence on interneuronal firing. These findings support a pivotal role for HCN channels expressed by CA3 neurons, and particularly CA3 pyramidal cells, in GDP-related network synchronization.

  19. Synchronized network activity in developing rat hippocampus involves regional hyperpolarization-activated cyclic nucleotide-gated (HCN) channel function

    PubMed Central

    Bender, Roland A.; Galindo, Rafael; Mameli, Manuel; Gonzalez-Vega, Rebeca; Valenzuela, C. Fernando; Baram, Tallie Z.

    2010-01-01

    The principal form of synchronized network activity in neonatal hippocampus consists of low frequency ‘giant depolarizing potentials’ (GDPs). Whereas contribution of both GABA and glutamate to their generation has been demonstrated, full understanding of the mechanisms underlying these synchronized activity bursts remains incomplete. A contribution of the h-current, conducted by HCN channels, to GDPs has been a topic of substantial interest. Here we focus on HCN1, the prevalent HCN channel isoform in neonatal hippocampus, and demonstrate an HCN1 spatiotemporal expression pattern in both CA3 principal cells and interneurons that correlates with the developmental profile of GDPs. Abrogation of HCN physiological function in CA3, via the selective Ih-blocker ZD7288, disrupts GDP generation. Furthermore, ZD7288 specifically abolishes spontaneous bursting of the CA3 pyramidal cells at frequencies typical of GDPs without major influence on interneuronal firing. These findings support a pivotal role for HCN channels expressed by CA3 neurons, and particularly CA3 pyramidal cells, in GDP-related network synchronization. PMID:16307610

  20. Effects of ZD7288, a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker, on term-pregnant rat uterine contractility in vitro.

    PubMed

    Alotaibi, Mohammed; Kahlat, Karima; Nedjadi, Taoufik; Djouhri, Laiche

    2017-03-01

    The uterus is a myogenic organ that is able to produce discrete spontaneous action potentials and contractions without any stimuli. Myometrial excitability is governed by ion channels including Ca(+2) and K(+) channels, but whether or not other channels such as hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which play an important role in regulating cellular excitability, are also involved has not been reported in uterine smooth muscles. The aim of the present study was to examine whether blocking HCN channels with a specific blocker ZD7288 would modulate the uterine contractility in a rat model. Using longitudinal uterine strips from term-pregnant rats, the effects of varying concentrations of ZD7288 (50 μM, 100 μM, and 200 μM) were examined on uterine contractions generated spontaneously or by oxytocin (5 nmol/L) and on uterine strips depolarized by high-KCl (60 mM/L), or activated by L-type Ca(2+) channels agonist (Bay K8644; 1 μM). Application of ZD7288 at concentrations of 200 μM and 100 μM, but not 50 μM, significantly decreased the amplitude of spontaneous uterine contractions. In addition, 200 μM of ZD7288 significantly reduced the force of contractions induced by oxytocin with a pronounced reduction while the tissues were depolarized by high-KCl solution, or activated by Bay K8644. The present study provides pharmacological evidence suggesting that pregnant uterine contractility is modulated by HCN channels and that these channels might represent a therapeutic target for controlling premature activation of uterine activity associated with preterm labor.

  1. Age-dependent down-regulation of hyperpolarization-activated cyclic nucleotide-gated channel 4 causes deterioration of canine sinoatrial node function.

    PubMed

    Du, Jianlin; Deng, Songbai; Pu, Di; Liu, Yajie; Xiao, Jun; She, Qiang

    2017-03-23

    The activity of pacemaker cells in the sinoatrial node (SAN) is an indicator of normal sinus rhythm. Clinical studies have revealed that the dysfunction of the SAN progressively increases with aging. In this study, we determined the changes in hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) expression and the relationship between aging and canine SAN dysfunction. The results of cardiac electrophysiological determination revealed that the intrinsic heart rate decreased from 168 ± 11 beats min-1 in young canines to 120 ± 9 beats min-1 in adults and to 88 ± 9 beats min-1 in aged canines. The sinus node recovery time (SNRT) increased from 412 ± 32 ms in young canines to 620 ± 56 ms in adults and to 838 ± 120 ms in aged canines. Corrected SNRT (CSNRT) increased from 55 ± 12 ms in young canines to 117 ± 27 ms in adults and to 171 ± 37 ms in aged canines. These results indicated that SAN function deteriorated with aging in the canine heart. However, histological staining illustrated that fibrosis was not significantly increased with aging in canine SAN. Real-time polymerase chain reaction indicated that the expression of HCN4 mRNA was downregulated in the elderly canine SAN. Similarly, we also verified that HCN4 protein expression within the SAN declined with aging via immunofluorescence staining and western blot analysis. Taken together, our data show that electrical remodeling, related to the down-regulation of HCN4, is responsible for the gradually increased incidence of SAN dysfunction with aging. Our results provide further evidence for explaining the mechanisms of age-related deterioration in the SAN.

  2. Phylogeny and effects of anoxia on hyperpolarization-activated cyclic nucleotide-gated channel gene expression in the heart of a primitive chordate, the Pacific hagfish (Eptatretus stoutii).

    PubMed

    Wilson, Christopher M; Stecyk, Jonathan A W; Couturier, Christine S; Nilsson, Göran E; Farrell, Anthony P

    2013-12-01

    The aneural heart of the Pacific hagfish, Eptatretus stoutii, varies heart rate fourfold during recovery from anoxia. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which play an important role in establishing the pacemaker rate of vertebrate hearts, were postulated to be present in this ancestral vertebrate heart, and it was also theorized that changes in hagfish heart rate with oxygen availability involved altered HCN expression. Partial gene cloning revealed six HCN isoforms in the hagfish heart. Hagfish representatives of HCN2, HCN3 and HCN4 were discovered, with HCN2 and HCN3 existing as isoforms designated as HCN2a, HCN2b, HCN3a, two paralogs of HCN3b, and HCN3c. Phylogenetic analysis revealed HCN3b and HCN3c to be ancestral, followed by HCN3a, HCN4 and HCN2. Moreover, HCN3a expression was dominant in both the atrial and ventricular chambers, suggesting that the HCN4 dominance in adult mammalian hearts appeared after hagfish divergence. HCN expression was higher in the atrium than in the ventricle, as might be expected given that atrial beating rate is known to be faster than the ventricular rate. In addition, mRNA expression under normoxic conditions was compared with that following 24 h of anoxia, and either a 2-h or 36-h recovery in normoxic water. In the ventricle, anoxia decreased HCN3a but not HCN4 expression. In contrast, atrial HCN3a expression significantly increased following 2 h of recovery, before returning to control levels following 36 h of recovery, possibly contributing to heart rate changes previously observed under these conditions.

  3. Mechanisms of seizure-induced ‘transcriptional channelopathy’ of hyperpolarization-activated cyclic nucleotide gated (HCN) channels

    PubMed Central

    Richichi, Cristina; Brewster, Amy L.; Bender, Roland A.; Simeone, Timothy A.; Zha, Qinqin; Yin, Hong Z.; Weiss, John H.; Baram, Tallie Z.

    2008-01-01

    Epilepsy may result from abnormal function of ion channels, such as those caused by genetic mutations. Recently, pathological alterations of the expression or localization of normal channels have been implicated in epilepsy generation, and termed ‘acquired channelopathies’. Altered expression levels of the HCN channels--that conduct the hyperpolarization-activated current, Ih--have been demonstrated in hippocampus of patients with severe temporal lobe epilepsy as well as in animal models of temporal lobe and absence epilepsies. Here we probe the mechanisms for the altered expression of HCN channels which is provoked by seizures. In organotypic hippocampal slice cultures, seizure-like events selectively reduced HCN type 1 channel expression and increased HCN2 mRNA levels, as occurs in vivo. The mechanisms for HCN1 reduction involved Ca2+-permeable AMPA receptors-mediated Ca2+ influx, and subsequent activation of Ca2+/calmodulin-dependent protein kinase II. In contrast, upregulation of HCN2 expression was independent of these processes. The data demonstrate an orchestrated program for seizure-evoked transcriptional channelopathy involving the HCN channels, that may contribute to certain epilepsies. PMID:17964174

  4. VOLTAGE-DEPENDENT OPENING OF HCN CHANNELS: FACILITATION OR INHIBITION BY THE PHYTOESTROGEN, GENISTEIN, IS DETERMINED BY THE ACTIVATION STATUS OF THE CYCLIC NUCLEOTIDE GATING RING

    PubMed Central

    Rozario, Anjali. O.; Turbendian, Harma K.; Fogle, Keri J.; Olivier, Nelson B.; Tibbs, Gareth R.

    2009-01-01

    Investigation of the mechanistic bases and physiological importance of cAMP regulation of HCN channels has exploited an arginine to glutamate mutation in the nucleotide-binding fold, an approach critically dependent on the mutation selectively lowering the channel’s nucleotide affinity. In apparent conflict with this, in intact Xenopus oocytes, HCN and HCN-RE channels exhibit qualitatively and quantitatively distinct responses to the tyrosine kinase inhibitor, genistein – the estrogenic isoflavonoid strongly depolarizes the activation midpoint of HCN1-R538E, but not HCN1 channels (+9.8 mV ± 0.9 versus +2.2 mV ± 0.6) and hyperpolarizes gating of HCN2 (−4.8 mV ± 1.0) but depolarizes gating of HCN2-R591E (+13.2 mV ± 2.1). However, excised patch recording, X-ray crystallography and modeling reveal this is not due to either a fundamental effect of the mutation on channel gating per se or of genistein acting as a mutation-sensitive partial agonist at the cAMP site. Rather, we find that genistein equivalently moves both HCN and HCN-RE channels closer to the open state (rendering the channels inherently easier to open but at a cost of decreasing the coupling energy of cAMP) and that the anomaly reflects a balance of these energetic effects with the isoform specific inhibition of activation by the nucleotide gating ring and relief of this by endogenous cAMP. These findings have specific implications with regard to findings based on HCN-RE channels and kinase antagonists and general implications with respect to interpretation of drug effects in mutant channel backgrounds. PMID:19524546

  5. Functional role of cyclic nucleotide-gated channels in rat medial vestibular nucleus neurons

    PubMed Central

    Podda, Maria Vittoria; D'Ascenzo, Marcello; Leone, Lucia; Piacentini, Roberto; Azzena, Gian Battista; Grassi, Claudio

    2008-01-01

    Although cyclic nucleotide-gated (CNG) channels are expressed in numerous brain areas, little information is available on their functions in CNS neurons. The aim of the present study was to define the distribution of CNG channels in the rat medial vestibular nucleus (MVN) and their possible involvement in regulating MVN neuron (MVNn) excitability. The majority of MVNn expressed both CNG1 and CNG2 A subunits. In whole-cell current-clamp experiments carried out on brainstem slices containing the MVNn, the membrane-permeant analogues of cyclic nucleotides, 8-Br-cGMP and 8-Br-cAMP (1 mm), induced membrane depolarizations (8.9 ± 0.8 and 9.2 ± 1.0 mV, respectively) that were protein kinase independent. The cGMP-induced depolarization was associated with a significant decrease in the membrane input resistance. The effects of cGMP on membrane potential were almost completely abolished by the CNG channel blockers, Cd2+ and l-cis-diltiazem, but they were unaffected by blockade of hyperpolarization-activated cyclic nucleotide-gated channels. In voltage-clamp experiments, 8-Br-cGMP induced non-inactivating inward currents (−22.2 ± 3.9 pA) with an estimated reversal potential near 0 mV, which were markedly inhibited by reduction of extracellular Na+ and Ca2+ concentrations. Membrane depolarization induced by CNG channel activation increased the firing rate of MVNn without changing the action potential shape. Collectively, these findings provide novel evidence that CNG channels affect membrane potential and excitability of MVNn. Such action should have a significant impact on the function of these neurons in sensory–motor integration processes. More generally, it might represent a broad mechanism for regulating the excitability of different CNS neurons. PMID:18048449

  6. Cyclic nucleotide gated channels and related signaling components in plant innate immunity.

    PubMed

    Ma, Wei; Smigel, Andries; Verma, Rajeev; Berkowitz, Gerald A

    2009-04-01

    Although plants lack the mobile sentry cells present in animal innate immune systems, plants have developed complex innate immune reactions triggering basal resistance and the hypersensitive response (HR). Cytosolic Ca(2+) elevation is considered to be an important early event in this pathogen response signal transduction cascade. Plasma membrane (PM)-localized cyclic nucleotide gated channels (CNGCs) contribute to the cytosolic Ca(2+) rise upon pathogen perception. Recent work suggests that some PM-localized leucine-rich-repeat receptor-like kinases (LRR-RLKs) may be involved in the perception of pathogen associated molecular pattern molecules and triggering some pathogen responses in plants, some of these LRR-RLKs might have cyclic nucleotide cyclase activity. The recognition of pathogens may be connected to cyclic nucleotide generation and the activation of CNGCs, followed by cytosolic Ca(2+) increase and downstream signaling events (possibly involving nitric oxide, reactive oxygen species (ROS), calmodulin (CaM), CaM-like protein (CML) and protein kinases). Notably, CaM or CML could be the crucial sensor downstream from the early Ca(2+) signal leading to nitric oxide (NO) production during plant innate immune responses.

  7. The Pharmacology of Cyclic Nucleotide-Gated Channels: Emerging from the Darkness

    PubMed Central

    Brown, R. Lane; Strassmaier, Timothy; Brady, James D.; Karpen, Jeffrey W.

    2008-01-01

    Cyclic nucleotide-gated (CNG) ion channels play a central role in vision and olfaction, generating the electrical responses to light in photoreceptors and to odorants in olfactory receptors. These channels have been detected in many other tissues where their functions are largely unclear. The use of gene knockouts and other methods have yielded some information, but there is a pressing need for potent and specific pharmacological agents directed at CNG channels. To date there has been very little systematic effort in this direction - most of what can be termed CNG channel pharmacology arose from testing reagents known to target protein kinases or other ion channels, or by accident when researchers were investigating other intracellular pathways that may regulate the activity of CNG channels. Predictably, these studies have not produced selective agents. However, taking advantage of emerging structural information and the increasing knowledge of the biophysical properties of these channels, some promising compounds and strategies have begun to emerge. In this review we discuss progress on two fronts, cyclic nucleotide analogs as both activators and competitive inhibitors, and inhibitors that target the pore or gating machinery of the channel. We also discuss the potential of these compounds for treating certain forms of retinal degeneration. PMID:17073662

  8. Modulation by internal protons of native cyclic nucleotide-gated channels from retinal rods

    PubMed Central

    Picco, C; Sanfilippo, C; Gavazzo, P; Menini, A

    1996-01-01

    Ion channels directly activated by cyclic nucleotides are present in the plasma membrane of retinal rod outer segments. These channels can be modulated by several factors including internal pH (pH(i)). Native cyclic nucleotide-gated channels were studied in excised membrane patches from the outer segment of retinal rods of the salamander. Channels were activated by cGMP or cAMP and currents as a function of voltage and cyclic nucleotide concentrations were measured as pH(i) was varied between 7.6 and 5.0. Increasing internal proton concentrations reduced the current activated by cGMP without modifying the concentration (K(1/2)) of cGMP necessary for half-activation of the maximal current. This effect could be well described as a reduction of single-channel current by protonation of a single acidic residue with a pK(1) of 5.1. When channels were activated by cAMP a more complex phenomenon was observed. K(1/2) for cAMP decreased by increasing internal proton concentration whereas maximal currents activated by cAMP increased by lowering pH(i) from 7.6 to 5.7-5.5 and then decreased from pH(i) 5.5 to 5.0. This behavior was attributed both to a reduction in single-channel current as measured with cGMP and to an increase in channel open probability induced by the binding of three protons to sites with a pK(2) of 6. PMID:8894976

  9. The expression of hyperpolarization activated cyclic nucleotide gated (HCN) channels in the rat ovary are dependent on the type of cell and the reproductive age of the animal: a laboratory investigation

    PubMed Central

    Yeh, John; Kim, Beom Su; Gaines, Larry; Peresie, Jennifer; Page, Carly; Arroyo, Armando

    2008-01-01

    Background Aim of this study was to test the hypothesis that levels of hyperpolarization activated cyclic nucleotide gated channels 1 to 4 (HCN1-4) are linked to the reproductive age of the ovary. Methods Young, adult, and reproductively aged ovaries were collected from Sprague-Dawley rats. RT-PCR and western blot analysis of ovaries was performed to investigate the presence of mRNA and total protein for HCN1-4. Immunohistochemistry with semiquantitative H score analysis was performed using whole ovarian histologic sections. Results RT-PCR analysis showed the presence of mRNA for HCN1-4. Western blot analysis revealed HCN1-3 proteins in all ages of ovarian tissues. Immunohistochemistry with H score analysis demonstrated distinct age-related changes in patterns of HCN1-3 in the oocytes, granulosa cells, theca cells, and corpora lutea. HCN4 was present only in the oocytes, with declining levels during the reproduction lifespan. Conclusion The evidence presented here demonstrates cell-type and developmental age patterns of HCN1-4 channel expression in rat ovaries. Based on this, we hypothesize that HCN channels have functional significance in rat ovaries and may have changing roles in reproductive aging. PMID:18710573

  10. The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway

    PubMed Central

    Plachetzki, David C.; Fong, Caitlin R.; Oakley, Todd H.

    2010-01-01

    The evolutionary histories of complex traits are complicated because such traits are comprised of multiple integrated and interacting components, which may have different individual histories. Phylogenetic studies of complex trait evolution often do not take this into account, instead focusing only on the history of whole, integrated traits; for example, mapping eyes as simply present or absent through history. Using the biochemistry of animal vision as a model, we demonstrate how investigating the individual components of complex systems can aid in elucidating both the origins and diversification of such systems. Opsin-based phototransduction underlies all visual phenotypes in animals, using complex protein cascades that translate light information into changes in cyclic nucleotide gated (CNG) or canonical transient receptor potential (TRPC) ion-channel activity. Here we show that CNG ion channels play a role in cnidarian phototransduction. Transcripts of a CNG ion channel co-localize with opsin in specific cell types of the eyeless cnidarian Hydra magnipapillata. Further, the CNG inhibitor cis-diltiazem ablates a stereotypical photoresponse in the hydra. Our findings in the Cnidaria, the only non-bilaterian lineage to possess functional opsins, allow us to trace the history of CNG-based photosensitivity to the very origin of animal phototransduction. Our general analytical approach, based on explicit phylogenetic analysis of individual components, contrasts the deep evolutionary history of CNG-based phototransduction, today used in vertebrate vision, with the more recent assembly of TRPC-based systems that are common to protostome (e.g. fly and mollusc) vision. PMID:20219739

  11. Identification and characterization of a putative cyclic nucleotide-gated channel, CNG-1, in C. elegans.

    PubMed

    Cho, Suk-Woo; Cho, Jeong-Hoon; Song, Hyun-Ok; Park, Chul-Seung

    2005-02-28

    Cyclic nucleotide-gated (CNG) channels encoded by the tax-4 and tax-2 genes are required for chemosensing and thermosensing in the nematode C. elegans. We identified a gene in the C. elegans genome, which we designated cng-1, that is highly homologous to tax-4. Partial CNG-1 protein tagged with green fluorescent protein was expressed in several sensory neurons of the amphid. We created a deletion mutant of cng-1, cng-1 (jh111), to investigate its in vivo function. The mutant worms had no detectable abnormalities in terms of their basic behavior or morphology. Whereas tax-4 and tax-2 mutants failed to respond to water-soluble or volatile chemical attractants, the cng-1 null mutant exhibited normal chemotaxis to such chemicals and a tax-4;cng-1 double mutant had a similar phenotype to tax-4 single mutants. Interestingly, cng-1 and tax-4 had a synergistic effect on brood size.

  12. Cyclic Nucleotide-Gated Channel Block by Hydrolysis-Resistant Tetracaine Derivatives

    PubMed Central

    Andrade, Adriana L.; Melich, Kenneth; Whatley, G. Gregory; Kirk, Sarah R.; Karpen, Jeffrey W.

    2011-01-01

    To meet a pressing need for better cyclic nucleotide-gated (CNG) channel antagonists, we have increased the biological stability of tetracaine-based blockers by synthesizing amide and thioamide linkage substitutions of tetracaine (1) and a higher affinity octyl tail derivative (5). We report the apparent KD values, the mechanism of block, and the in vitro hydrolysis rates for these compounds. The ester linkage substitutions did not adversely affect CNG channel block; unexpectedly, thioamide substitution in 1 (compound 8) improved block significantly. Furthermore, the ester linkage substitutions did not appear to affect the mechanism of block in terms of the strong state preference for closed channels. All ester substituted compounds, especially the thioamide substitutions, were more resistant to hydrolysis by serum cholinesterase than their ester counterparts. These findings have implications for dissecting the physiological roles of CNG channels, treating certain forms of retinal degeneration, and possibly the current clinical uses of compound 1. PMID:21634421

  13. The Styryl Dye FM1-43 Suppresses Odorant Responses in a Subset of Olfactory Neurons by Blocking Cyclic Nucleotide-gated (CNG) Channels*

    PubMed Central

    Breunig, Esther; Kludt, Eugen; Czesnik, Dirk; Schild, Detlev

    2011-01-01

    Many olfactory receptor neurons use a cAMP-dependent transduction mechanism to transduce odorants into depolarizations. This signaling cascade is characterized by a sequence of two currents: a cation current through cyclic nucleotide-gated channels followed by a chloride current through calcium-activated chloride channels. To date, it is not possible to interfere with these generator channels under physiological conditions with potent and specific blockers. In this study we identified the styryl dye FM1-43 as a potent blocker of native olfactory cyclic nucleotide-gated channels. Furthermore, we characterized this substance to stain olfactory receptor neurons that are endowed with cAMP-dependent transduction. This allows optical differentiation and pharmacological interference with olfactory receptor neurons at the level of the signal transduction. PMID:21646359

  14. Block of cyclic nucleotide-gated channels by tetracaine derivatives: role of apolar interactions at two distinct locations

    PubMed Central

    Strassmaier, Timothy; Kirk, Sarah R.; Banerji, Tapasree; Karpen, Jeffrey W.

    2008-01-01

    A series of new tetracaine derivatives was synthesized to explore the effects of hydrophobic character on blockade of cyclic nucleotide-gated (CNG) channels. Increasing the hydrophobicity at either of two positions on the tetracaine scaffold, the tertiary amine or the butyl tail, yields blockers with increased potency. However, shape also plays an important role. While gradual increases in length of the butyl tail lead to increased potency, substitution of the butyl tail with branched alkyl or cyclic groups is deleterious. PMID:18055205

  15. Role of Cyclic Nucleotide Gated Channels in Stress Management in Plants.

    PubMed

    Jha, Saroj K; Sharma, Manisha; Pandey, Girdhar K

    2016-08-01

    Tolerance of plants to a number of biotic and abiotic stresses such as pathogen and herbivore attack, drought, salinity, cold and nutritional limitations is ensued by complex multimodule signaling pathways. The outcome of this complex signaling pathways results in adaptive responses by restoring the cellular homeostasis and thus promoting survival. Functions of many plant cation transporter and channel protein families such as glutamate receptor homologs (GLRs), cyclic nucleotide-gated ion channel (CNGC) have been implicated in providing biotic and abiotic stress tolerance. Ion homeostasis regulated by several transporters and channels is one of the crucial parameters for the optimal growth, development and survival of all living organisms. The CNGC family members are known to be involved in the uptake of cations such as Na(+), K(+) and Ca(2+) and regulate plant growth and development. Detail functional genomics approaches have given an emerging picture of CNGCs wherein these protein are believed to play crucial role in pathways related to cellular ion homeostasis, development and as a 'guard' in defense against biotic and abiotic challenges. Here, we discuss the current knowledge of role of CNGCs in mediating stress management and how they aid plants in survival under adverse conditions.

  16. Cyclic nucleotide gated channel 10 negatively regulates salt tolerance by mediating Na+ transport in Arabidopsis.

    PubMed

    Jin, Yakang; Jing, Wen; Zhang, Qun; Zhang, Wenhua

    2015-01-01

    A number of cyclic nucleotide gated channel (CNGC) genes have been identified in plant genomes, but their functions are mainly undefined. In this study, we identified the role of CNGC10 in the response of Arabidopsis thaliana to salt stress. The cngc10 T-DNA insertion mutant showed greater tolerance to salt than wild-type A. thaliana during seed germination and seedling growth. The cngc10 mutant accumulated less Na(+) and K(+), but not less Ca(2+), in shoots in response to salt stress. By contrast, overexpression of CNGC10 resulted in greater sensitivity to salt stress, and complementation of this gene recovered salt sensitivity. In response to salt stress, heterologous expression of CNGC10 in the Na(+) sensitive yeast mutant strain B31 inhibited growth due to accumulation of Na(+) at a rate greater than that of yeast transformed with an empty vector. Quantitative RT-PCR analysis demonstrated that CNGC10 was expressed mainly in roots and flowers. GUS analysis of a root cross section indicated that CNGC10 was expressed mainly in the endodermis and epidermis. Furthermore, the expression of CNGC10 in roots was dramatically inhibited by exposure to 200 mM NaCl for 6 h. These data suggest that CNGC10 negatively regulates salt tolerance in A. thaliana and may be involved in mediating Na(+) transport.

  17. Role of Cyclic Nucleotide Gated Channels in Stress Management in Plants

    PubMed Central

    Jha, Saroj K.; Sharma, Manisha; Pandey, Girdhar K.

    2016-01-01

    Tolerance of plants to a number of biotic and abiotic stresses such as pathogen and herbivore attack, drought, salinity, cold and nutritional limitations is ensued by complex multimodule signaling pathways. The outcome of this complex signaling pathways results in adaptive responses by restoring the cellular homeostasis and thus promoting survival. Functions of many plant cation transporter and channel protein families such as glutamate receptor homologs (GLRs), cyclic nucleotide-gated ion channel (CNGC) have been implicated in providing biotic and abiotic stress tolerance. Ion homeostasis regulated by several transporters and channels is one of the crucial parameters for the optimal growth, development and survival of all living organisms. The CNGC family members are known to be involved in the uptake of cations such as Na+, K+ and Ca2+ and regulate plant growth and development. Detail functional genomics approaches have given an emerging picture of CNGCs wherein these protein are believed to play crucial role in pathways related to cellular ion homeostasis, development and as a ‘guard’ in defense against biotic and abiotic challenges. Here, we discuss the current knowledge of role of CNGCs in mediating stress management and how they aid plants in survival under adverse conditions. PMID:27499681

  18. Mechanisms of modulation by internal protons of cyclic nucleotide-gated channels cloned from sensory receptor cells.

    PubMed Central

    Gavazzo, P; Picco, C; Menini, A

    1997-01-01

    We have examined the modulation by internal protons of cyclic nucleotide-gated (CNG) channels cloned from bovine olfactory receptor cells and retinal rods. CNG channels were studied in excised inside-out membrane patches from Xenopus laevis oocytes previously injected with the mRNA encoding for the subunit 1 of olfactory or rod channels. Channels were activated by cGMP or cAMP, and currents as a function of cyclic nucleotide concentrations were measured as pHi varied between 7.6 and 5.0. Increasing internal proton concentrations caused a partial blockage of the single-channel current, consistent with protonation of a single acidic site with a pK1 of 4.5-4.7, both in rod and in olfactory CNG channels. Channel gating properties were also affected by internal protons. The open probability at low cyclic nucleotide concentrations was greatly increased by lowering pHi, and the increase was larger when channels were activated by cAMP than by cGMP. Therefore, internal protons affected both channel permeation and gating properties, causing a reduction in single-channel current and an increase in open probability. These effects are likely to be caused by different titratable groups on the channel. PMID:9308192

  19. Alternative Splicing Governs Cone Cyclic Nucleotide-gated (CNG) Channel Sensitivity to Regulation by Phosphoinositides*

    PubMed Central

    Dai, Gucan; Sherpa, Tshering; Varnum, Michael D.

    2014-01-01

    Precursor mRNA encoding CNGA3 subunits of cone photoreceptor cyclic nucleotide-gated (CNG) channels undergoes alternative splicing, generating isoforms differing in the N-terminal cytoplasmic region of the protein. In humans, four variants arise from alternative splicing, but the functional significance of these changes has been a persistent mystery. Heterologous expression of the four possible CNGA3 isoforms alone or with CNGB3 subunits did not reveal significant differences in basic channel properties. However, inclusion of optional exon 3, with or without optional exon 5, produced heteromeric CNGA3 + CNGB3 channels exhibiting an ∼2-fold greater shift in K1/2,cGMP after phosphatidylinositol 4,5-biphosphate or phosphatidylinositol 3,4,5-trisphosphate application compared with channels lacking the sequence encoded by exon 3. We have previously identified two structural features within CNGA3 that support phosphoinositides (PIPn) regulation of cone CNG channels: N- and C-terminal regulatory modules. Specific mutations within these regions eliminated PIPn sensitivity of CNGA3 + CNGB3 channels. The exon 3 variant enhanced the component of PIPn regulation that depends on the C-terminal region rather than the nearby N-terminal region, consistent with an allosteric effect on PIPn sensitivity because of altered N-C coupling. Alternative splicing of CNGA3 occurs in multiple species, although the exact variants are not conserved across CNGA3 orthologs. Optional exon 3 appears to be unique to humans, even compared with other primates. In parallel, we found that a specific splice variant of canine CNGA3 removes a region of the protein that is necessary for high sensitivity to PIPn. CNGA3 alternative splicing may have evolved, in part, to tune the interactions between cone CNG channels and membrane-bound phosphoinositides. PMID:24675082

  20. The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis.

    PubMed

    Guo, Kun-Mei; Babourina, Olga; Christopher, David A; Borsics, Tamas; Rengel, Zed

    2008-11-01

    Cyclic nucleotide-gated channels (CNGCs) in the plasma membrane transport K+ and other cations; however, their roles in the response and adaptation of plants to environmental salinity are unclear. Growth, cation contents, salt tolerance and K+ fluxes were assessed in wild-type and two AtCNGC10 antisense lines (A2 and A3) of Arabidopsis thaliana (L.) Heynh. Compared with the wild-type, mature plants of both antisense lines had altered K+ and Na+ concentrations in shoots and were more sensitive to salt stress, as assessed by biomass and Chl fluorescence. The shoots of A2 and A3 plants contained higher Na+ concentrations and significantly higher Na+/K+ ratios compared with wild-type, whereas roots contained higher K+ concentrations and lower Na+/K+ ratios. Four-day-old seedlings of both antisense lines exposed to salt stress had smaller Na+/K+ ratios and longer roots than the wild-type. Under sudden salt treatment, the Na+ efflux was higher and the K+ efflux was smaller in the antisense lines, indicating that AtCNGC10 might function as a channel providing Na+ influx and K+ efflux at the root/soil interface. We conclude that the AtCNGC10 channel is involved in Na+ and K+ transport during cation uptake in roots and in long-distance transport, such as phloem loading and/or xylem retrieval. Mature A2 and A3 plants became more salt sensitive than wild-type plants because of impaired photosynthesis induced by a higher Na+ concentration in the leaves.

  1. Halogen substituents on the aromatic moiety of the tetracaine scaffold improve potency of cyclic nucleotide-gated channel block.

    PubMed

    Kirk, Sarah R; Andrade, Adriana L; Melich, Kenneth; Jackson, Evan P; Cuellar, Elysia; Karpen, Jeffrey W

    2011-11-01

    A series of new tetracaine derivatives with substituents on the aromatic ring was prepared and evaluated for block of retinal rod cyclic nucleotide-gated (CNG) channels. Aromatic substitutions had little effect starting with the basic tetracaine scaffold, but electron-withdrawing substituents significantly improved the blocking potency of an octyl-tail derivative of tetracaine. In particular, halogen substitutions at either the 2- or 3-position on the ring resulted in compounds that were up to eight-fold more potent than the parent octyl-tail derivative and up to 50-fold more potent than tetracaine.

  2. Halogen substituents on the aromatic moiety of the tetracaine scaffold improve potency of cyclic nucleotide-gated channel block

    PubMed Central

    Kirk, Sarah R.; Andrade, Adriana L.; Melich, Kenneth; Jackson, Evan P.; Cuellar, Elysia; Karpen, Jeffrey W.

    2011-01-01

    A series of new tetracaine derivatives with substituents on the aromatic ring was prepared and evaluated for block of retinal rod cyclic nucleotide-gated (CNG) channels. Aromatic substitutions had little effect starting with the basic tetracaine scaffold, but electron-withdrawing substituents significantly improved the blocking potency of an octyl-tail derivative of tetracaine. In particular, halogen substitutions at either the 2- or 3-position on the ring resulted in compounds that were up to 8-fold more potent than the parent octyl-tail derivative and up to 50-fold more potent than tetracaine. PMID:21944857

  3. Regulation of cyclic nucleotide-gated channels and membrane excitability in olfactory receptor cells by carbon monoxide

    NASA Technical Reports Server (NTRS)

    Leinders-Zufall, T.; Shepherd, G. M.; Zufall, F.

    1995-01-01

    1. The effect of the putative neural messenger carbon monoxide (CO) and the role of the cGMP second-messenger system for olfactory signal generation was examined in isolated olfactory receptor neurons (ORNs) of the tiger salamander. 2. With the use of whole cell voltage-clamp recordings in combination with a series of ionic and pharmological tests, it is demonstrated that exogenously applied CO is a potent activator (K1/2 = 2.9 microM) of cyclic nucleotide-gated (CNG) channels previously described to mediate odor transduction. 3. Several lines of evidence suggest that CO mediates its effect through stimulation of a soluble guanylyl cyclase (sGC) leading to formation of the second-messenger cGMP. This conclusion is based on the findings that CO responses show an absolute requirement for guanosine 5'-triphosphate (GTP) in the internal solution, that no direct effect of CO on CNG currents in the absence of GTP is detectable, and that a blocker of sGC activation, LY85383 (10 microM), completely inhibits the CO response. 4. The dose-response curve for cGMP at CNG channels is used as a calibration to provide a quantitative estimate of the CO-stimulated cGMP formation. This analysis implies that CO is a potent activator of olfactory sGC. 5. Perforated patch recordings using amphotericin B demonstrate that low micromolar doses of CO effectively depolarize the membrane potential of ORNs through tonic activation of CNG channels. This effect in turn regulates excitable and adaptive properties of ORNs and modulates neuronal responsiveness. 6. These data argue for an important role of the cGMP pathway in olfactory signaling and support the idea that CO may function as a diffusible messenger in the olfactory system.

  4. Plasma Membrane Cyclic Nucleotide Gated Calcium Channels Control Land Plant Thermal Sensing and Acquired Thermotolerance[C][W

    PubMed Central

    Finka, Andrija; Cuendet, America Farinia Henriquez; Maathuis, Frans J.M.; Saidi, Younousse; Goloubinoff, Pierre

    2012-01-01

    Typically at dawn on a hot summer day, land plants need precise molecular thermometers to sense harmless increments in the ambient temperature to induce a timely heat shock response (HSR) and accumulate protective heat shock proteins in anticipation of harmful temperatures at mid-day. Here, we found that the cyclic nucleotide gated calcium channel (CNGC) CNGCb gene from Physcomitrella patens and its Arabidopsis thaliana ortholog CNGC2, encode a component of cyclic nucleotide gated Ca2+ channels that act as the primary thermosensors of land plant cells. Disruption of CNGCb or CNGC2 produced a hyper-thermosensitive phenotype, giving rise to an HSR and acquired thermotolerance at significantly milder heat-priming treatments than in wild-type plants. In an aequorin-expressing moss, CNGCb loss-of-function caused a hyper-thermoresponsive Ca2+ influx and altered Ca2+ signaling. Patch clamp recordings on moss protoplasts showed the presence of three distinct thermoresponsive Ca2+ channels in wild-type cells. Deletion of CNGCb led to a total absence of one and increased the open probability of the remaining two thermoresponsive Ca2+ channels. Thus, CNGC2 and CNGCb are expected to form heteromeric Ca2+ channels with other related CNGCs. These channels in the plasma membrane respond to increments in the ambient temperature by triggering an optimal HSR, leading to the onset of plant acquired thermotolerance. PMID:22904147

  5. Cyclic nucleotide gated channel gene family in tomato: genome-wide identification and functional analyses in disease resistance

    PubMed Central

    Saand, Mumtaz A.; Xu, You-Ping; Li, Wen; Wang, Ji-Peng; Cai, Xin-Zhong

    2015-01-01

    The cyclic nucleotide gated channel (CNGC) is suggested to be one of the important calcium conducting channels. Nevertheless, genome-wide identification and systemic functional analysis of CNGC gene family in crop plant species have not yet been conducted. In this study, we performed genome-wide identification of CNGC gene family in the economically important crop tomato (Solanum lycopersicum L.) and analyzed function of the group IVb SlCNGC genes in disease resistance. Eighteen CNGC genes were identified in tomato genome, and four CNGC loci that were misannotated at database were corrected by cloning and sequencing. Detailed bioinformatics analyses on gene structure, domain composition and phylogenetic relationship of the SlCNGC gene family were conducted and the group-specific feature was revealed. Comprehensive expression analyses demonstrated that SlCNGC genes were highly, widely but differently responsive to diverse stimuli. Pharmacological assays showed that the putative CNGC activators cGMP and cAMP enhanced resistance against Sclerotinia sclerotiorum. Silencing of group IVb SlCNGC genes significantly enhanced resistance to fungal pathogens Pythium aphanidermatum and S. sclerotiorum, strongly reduced resistance to viral pathogen Tobacco rattle virus, while attenuated PAMP- and DAMP-triggered immunity as shown by obvious decrease of the flg22- and AtPep1-elicited hydrogen peroxide accumulation in SlCNGC-silenced plants. Additionally, silencing of these SlCNGC genes significantly altered expression of a set of Ca2+ signaling genes including SlCaMs, SlCDPKs, and SlCAMTA3. Collectively, our results reveal that group IV SlCNGC genes regulate a wide range of resistance in tomato probably by affecting Ca2+ signaling. PMID:25999969

  6. Phylogeny and evolution of plant cyclic nucleotide-gated ion channel (CNGC) gene family and functional analyses of tomato CNGCs

    PubMed Central

    Saand, Mumtaz Ali; Xu, You-Ping; Munyampundu, Jean-Pierre; Li, Wen; Zhang, Xuan-Rui; Cai, Xin-Zhong

    2015-01-01

    Cyclic nucleotide-gated ion channels (CNGCs) are calcium-permeable channels that are involved in various biological functions. Nevertheless, phylogeny and function of plant CNGCs are not well understood. In this study, 333 CNGC genes from 15 plant species were identified using comprehensive bioinformatics approaches. Extensive bioinformatics analyses demonstrated that CNGCs of Group IVa were distinct to those of other groups in gene structure and amino acid sequence of cyclic nucleotide-binding domain. A CNGC-specific motif that recognizes all identified plant CNGCs was generated. Phylogenetic analysis indicated that CNGC proteins of flowering plant species formed five groups. However, CNGCs of the non-vascular plant Physcomitrella patens clustered only in two groups (IVa and IVb), while those of the vascular non-flowering plant Selaginella moellendorffii gathered in four (IVa, IVb, I and II). These data suggest that Group IV CNGCs are most ancient and Group III CNGCs are most recently evolved in flowering plants. Furthermore, silencing analyses revealed that a set of CNGC genes might be involved in disease resistance and abiotic stress responses in tomato and function of SlCNGCs does not correlate with the group that they are belonging to. Our results indicate that Group IVa CNGCs are structurally but not functionally unique among plant CNGCs. PMID:26546226

  7. Phylogeny and evolution of plant cyclic nucleotide-gated ion channel (CNGC) gene family and functional analyses of tomato CNGCs.

    PubMed

    Saand, Mumtaz Ali; Xu, You-Ping; Munyampundu, Jean-Pierre; Li, Wen; Zhang, Xuan-Rui; Cai, Xin-Zhong

    2015-12-01

    Cyclic nucleotide-gated ion channels (CNGCs) are calcium-permeable channels that are involved in various biological functions. Nevertheless, phylogeny and function of plant CNGCs are not well understood. In this study, 333 CNGC genes from 15 plant species were identified using comprehensive bioinformatics approaches. Extensive bioinformatics analyses demonstrated that CNGCs of Group IVa were distinct to those of other groups in gene structure and amino acid sequence of cyclic nucleotide-binding domain. A CNGC-specific motif that recognizes all identified plant CNGCs was generated. Phylogenetic analysis indicated that CNGC proteins of flowering plant species formed five groups. However, CNGCs of the non-vascular plant Physcomitrella patens clustered only in two groups (IVa and IVb), while those of the vascular non-flowering plant Selaginella moellendorffii gathered in four (IVa, IVb, I and II). These data suggest that Group IV CNGCs are most ancient and Group III CNGCs are most recently evolved in flowering plants. Furthermore, silencing analyses revealed that a set of CNGC genes might be involved in disease resistance and abiotic stress responses in tomato and function of SlCNGCs does not correlate with the group that they are belonging to. Our results indicate that Group IVa CNGCs are structurally but not functionally unique among plant CNGCs.

  8. Cyclic nucleotide gated channel and Ca²⁺-mediated signal transduction during plant senescence signaling.

    PubMed

    Ma, Wei; Berkowitz, Gerald A

    2011-03-01

    Previous studies reveal that both Ca(2+) and nitric oxide (NO) play pivotal roles in the plant senescence signaling cascade. However, not much is known about the molecular identity of the Ca(2+) entry during senescence programming and its relationship to the downstream NO signal. Our recent study shows that Arabidopsis cyclic nucleotide gated channel2 (CNGC2) contributes to Ca(2+) uptake and senescence signaling. The CNGC2 loss-of-function mutant dnd1 displays reduced Ca(2+) accumulation in leaves and a series of early senescence phenotypes compared to wild type (WT). Notably, endogenous NO content in dnd1 leaves is lower than leaves of WT. Application of an NO donor can effectively rescue a number of early senescence phenotypes found in the dnd1 plants. Current evidence supports the notion that NO functions as a negative regulator in senescence signaling and our model supports this point. In this article, we expand our discussion of CNGC2 mediated Ca(2+) uptake and other related signaling components involved in the plant senescence signaling cascade.

  9. Heteromultimerization of prokaryotic bacterial cyclic nucleotide-gated (bCNG) ion channels, members of the mechanosensitive channel of small conductance (MscS) superfamily.

    PubMed

    Malcolm, Hannah R; Heo, Yoon-Young; Elmore, Donald E; Maurer, Joshua A

    2014-12-30

    Traditionally, prokaryotic channels are thought to exist as homomultimeric assemblies, while many eukaryotic ion channels form complex heteromultimers. Here we demonstrate that bacterial cyclic nucleotide-gated channels likely form heteromultimers in vivo. Heteromultimer formation is indicated through channel modeling, pull-down assays, and real-time polymerase chain reaction analysis. Our observations demonstrate that prokaryotic ion channels can display complex behavior and regulation akin to that of their eukaryotic counterparts.

  10. Rat Hippocampal Neurons Express Genes for Both Rod Retinal and Olfactory Cyclic Nucleotide-Gated Channels: Novel Targets for cAMP/cGMP Function

    NASA Astrophysics Data System (ADS)

    Kingston, Paul A.; Zufall, Frank; Barnstable, Colin J.

    1996-09-01

    Cyclic nucleotide-gated (CNG) channels are Ca2+-permeable, nonspecific cation channels that can be activated through direct interaction with cAMP and/or cGMP. Recent electrophysiological evidence for these channels in cultured hippocampal neurons prompted us to investigate the expression of CNG channel genes in hippocampus. PCR amplification detected the expression of transcripts for subunit 1 of both the rod photoreceptor (RCNGC1) and the olfactory receptor cell (OCNGC1) subtype of CNG channel in adult rat hippocampus. In situ hybridization detected expression of both channel subtypes in most principal neurons, including pyramidal cells of the CA1 through CA3 regions and granule cells of the dentate gyrus. From the hybridization patterns, we conclude that the two genes are colocalized in individual neurons. Comparison of the patterns of expression of type 1 cGMP-dependent protein kinase and the CNG channels suggests that hippocampal neurons can respond to changes in cGMP levels with both rapid changes in CNG channel activity and slower changes induced by phosphorylation. Future models of hippocampal function should include CNG channels and their effects on both electrical responses and intracellular Ca2+ levels.

  11. The cyclic nucleotide gated channel subunit CNG-1 instructs behavioral outputs in Caenorhabditis elegans by coincidence detection of nutritional status and olfactory input.

    PubMed

    He, Chao; Altshuler-Keylin, Svetlana; Daniel, David; L'Etoile, Noelle D; O'Halloran, Damien

    2016-10-06

    In mammals, olfactory subsystems have been shown to express seven-transmembrane G-protein-coupled receptors (GPCRs) in a one-receptor-one-neuron pattern, whereas in Caenorhabditis elegans, olfactory sensory neurons express multiple G-protein coupled odorant receptors per olfactory sensory neuron. In both mammalian and C. elegans olfactory sensory neurons (OSNs), the process of olfactory adaptation begins within the OSN; this process of negative feedback within the mammalian OSN has been well described in mammals and enables activated OSNs to desensitize their response cell autonomously while attending to odors detected by separate OSNs. However, the mechanism that enables C. elegans to adapt to one odor and attend to another odor sensed by the same olfactory sensory neuron remains unclear. We found that the cyclic nucleotide gated channel subunit CNG-1 is required to promote cross adaptation responses between distinct olfactory cues. This change in sensitivity to a pair of odorants after persistent stimulation by just one of these odors is modulated by the internal nutritional state of the animal, and we find that this response is maintained across a diverse range of food sources for C. elegans. We also reveal that CNG-1 integrates food related cues for exploratory motor output, revealing that CNG-1 functions in multiple capacities to link nutritional information with behavioral output. Our data describes a novel model whereby CNG channels can integrate the coincidence detection of appetitive and olfactory information to set olfactory preferences and instruct behavioral outputs.

  12. Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis

    PubMed Central

    Gao, Qi-Fei; Gu, Li-Li; Wang, Hui-Qin; Fei, Cui-Fang; Fang, Xiang; Hussain, Jamshaid; Sun, Shu-Jing; Dong, Jing-Yun; Liu, Hongtao; Wang, Yong-Fei

    2016-01-01

    In flowering plants, pollen tubes are guided into ovules by multiple attractants from female gametophytes to release paired sperm cells for double fertilization. It has been well-established that Ca2+ gradients in the pollen tube tips are essential for pollen tube guidance and that plasma membrane Ca2+ channels in pollen tube tips are core components that regulate Ca2+ gradients by mediating and regulating external Ca2+ influx. Therefore, Ca2+ channels are the core components for pollen tube guidance. However, there is still no genetic evidence for the identification of the putative Ca2+ channels essential for pollen tube guidance. Here, we report that the point mutations R491Q or R578K in cyclic nucleotide-gated channel 18 (CNGC18) resulted in abnormal Ca2+ gradients and strong pollen tube guidance defects by impairing the activation of CNGC18 in Arabidopsis. The pollen tube guidance defects of cngc18-17 (R491Q) and of the transfer DNA (T-DNA) insertion mutant cngc18-1 (+/−) were completely rescued by CNGC18. Furthermore, domain-swapping experiments showed that CNGC18’s transmembrane domains are indispensable for pollen tube guidance. Additionally, we found that, among eight Ca2+ channels (including six CNGCs and two glutamate receptor-like channels), CNGC18 was the only one essential for pollen tube guidance. Thus, CNGC18 is the long-sought essential Ca2+ channel for pollen tube guidance in Arabidopsis. PMID:26929345

  13. Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis.

    PubMed

    Gao, Qi-Fei; Gu, Li-Li; Wang, Hui-Qin; Fei, Cui-Fang; Fang, Xiang; Hussain, Jamshaid; Sun, Shu-Jing; Dong, Jing-Yun; Liu, Hongtao; Wang, Yong-Fei

    2016-03-15

    In flowering plants, pollen tubes are guided into ovules by multiple attractants from female gametophytes to release paired sperm cells for double fertilization. It has been well-established that Ca(2+) gradients in the pollen tube tips are essential for pollen tube guidance and that plasma membrane Ca(2+) channels in pollen tube tips are core components that regulate Ca(2+) gradients by mediating and regulating external Ca(2+) influx. Therefore, Ca(2+) channels are the core components for pollen tube guidance. However, there is still no genetic evidence for the identification of the putative Ca(2+) channels essential for pollen tube guidance. Here, we report that the point mutations R491Q or R578K in cyclic nucleotide-gated channel 18 (CNGC18) resulted in abnormal Ca(2+) gradients and strong pollen tube guidance defects by impairing the activation of CNGC18 in Arabidopsis. The pollen tube guidance defects of cngc18-17 (R491Q) and of the transfer DNA (T-DNA) insertion mutant cngc18-1 (+/-) were completely rescued by CNGC18. Furthermore, domain-swapping experiments showed that CNGC18's transmembrane domains are indispensable for pollen tube guidance. Additionally, we found that, among eight Ca(2+) channels (including six CNGCs and two glutamate receptor-like channels), CNGC18 was the only one essential for pollen tube guidance. Thus, CNGC18 is the long-sought essential Ca(2+) channel for pollen tube guidance in Arabidopsis.

  14. Genomic characterization, phylogenetic comparison and differential expression of the cyclic nucleotide-gated channels gene family in pear (Pyrus bretchneideri Rehd.).

    PubMed

    Chen, Jianqing; Yin, Hao; Gu, Jinping; Li, Leiting; Liu, Zhe; Jiang, Xueting; Zhou, Hongsheng; Wei, Shuwei; Zhang, Shaoling; Wu, Juyou

    2015-01-01

    The cyclic nucleotide-gated channel (CNGC) family is involved in the uptake of various cations, such as Ca(2+), to regulate plant growth and respond to biotic and abiotic stresses. However, there is far less information about this family in woody plants such as pear. Here, we provided a genome-wide identification and analysis of the CNGC gene family in pear. Phylogenetic analysis showed that the 21 pear CNGC genes could be divided into five groups (I, II, III, IVA and IVB). The majority of gene duplications in pear appeared to have been caused by segmental duplication and occurred 32.94-39.14 million years ago. Evolutionary analysis showed that positive selection had driven the evolution of pear CNGCs. Motif analyses showed that Group I CNGCs generally contained 26 motifs, which was the greatest number of motifs in all CNGC groups. Among these, eight motifs were shared by each group, suggesting that these domains play a conservative role in CNGC activity. Tissue-specific expression analysis indicated that functional diversification of the duplicated CNGC genes was a major feature of long-term evolution. Our results also suggested that the P-S6 and PBC & hinge domains had co-evolved during the evolution. These results provide valuable information to increase our understanding of the function, evolution and expression analyses of the CNGC gene family in higher plants.

  15. Mechanosensitive behavior of bacterial cyclic nucleotide gated (bCNG) ion channels: Insights into the mechanism of channel gating in the mechanosensitive channel of small conductance superfamily.

    PubMed

    Malcolm, Hannah R; Elmore, Donald E; Maurer, Joshua A

    2012-01-20

    We have recently identified and characterized the bacterial cyclic nucleotide gated (bCNG) subfamily of the larger mechanosensitive channel of small conductance (MscS) superfamily of ion channels. The channel domain of bCNG channels exhibits significant sequence homology to the mechanosensitive subfamily of MscS in the regions that have previously been used as a hallmark for channels that gate in response to mechanical stress. However, we have previously demonstrated that three of these channels are unable to rescue Escherichiacoli from osmotic downshock. Here, we examine an additional nine bCNG homologues and further demonstrate that the full-length bCNG channels are unable to rescue E. coli from hypoosmotic stress. However, limited mechanosensation is restored upon removal of the cyclic nucleotide binding domain. This indicates that the C-terminal domain of the MscS superfamily can drive channel gating and further highlight the ability of a superfamily of ion channels to be gated by multiple stimuli.

  16. Characterization of plant phenotypes associated with loss-of-function of AtCNGC1, a plant cyclic nucleotide gated cation channel.

    PubMed

    Ma, Wei; Ali, Rashid; Berkowitz, Gerald A

    2006-01-01

    Of the 57 cation channel genes in the Arabidopsis genome, over a third encode cyclic nucleotide gated cation channels (CNGCs). CNGCs are ion channels regulated by cytosolic signaling molecules (cyclic nucleotides, calmodulin, and Ca(2+)), and which conduct Ca(2+) as well as K(+) and in some cases Na(+). Little is currently known about the role CNGCs may play in plant growth and development. Here, we examined the hypothesis that an Arabidopsis thaliana genotype containing a null mutation in one of the CGNC genes (AtCNGC1) would display cation uptake-related growth phenotype differences from wild type (WT) plants. We determined that AtCNGC1 protein is primarily expressed in the roots of Arabidopsis seedlings. Seedlings lacking this protein had slightly (6-22%) lower shoot Ca(2+) than WT plants. Primary roots of Atcngc1 mutant seedlings grew faster than roots of WT plants, and had larger angles of gravicurvature and less nitric oxide generation upon gravistimulation. We conclude that channels formed (at least in part) by AtCNGC1 contribute (along with other channels) to Ca(2+) uptake into plants, and that Ca(2+) uptake into roots through AtCNGC1 affects some aspects of growth in the primary root of Arabidopsis seedlings.

  17. Structural studies of ion permeation and Ca2+ blockage of a bacterial channel mimicking the cyclic nucleotide-gated channel pore

    PubMed Central

    Derebe, Mehabaw G.; Zeng, Weizhong; Li, Yang; Alam, Amer; Jiang, Youxing

    2011-01-01

    Cyclic nucleotide-gated (CNG) channels play an essential role in the visual and olfactory sensory systems and are ubiquitous in eukaryotes. Details of their underlying ion selectivity properties are still not fully understood and are a matter of debate in the absence of high-resolution structures. To reveal the structural mechanism of ion selectivity in CNG channels, particularly their Ca2+ blockage property, we engineered a set of mimics of CNG channel pores for both structural and functional analysis. The mimics faithfully represent the CNG channels they are modeled after, permeate Na+ and K+ equally well, and exhibit the same Ca2+ blockage and permeation properties. Their high-resolution structures reveal a hitherto unseen selectivity filter architecture comprising three contiguous ion binding sites in which Na+ and K+ bind with different ion-ligand geometries. Our structural analysis reveals that the conserved acidic residue in the filter is essential for Ca2+ binding but not through direct ion chelation as in the currently accepted view. Furthermore, structural insight from our CNG mimics allows us to pinpoint equivalent interactions in CNG channels through structure-based mutagenesis that have previously not been predicted using NaK or K+ channel models. PMID:21187429

  18. Co-expression of wild-type and mutant olfactory cyclic nucleotide-gated channels: restoration of the native sensitivity to Ca(2+) and Mg(2+) blockage.

    PubMed

    Picco, C; Gavazzo, P; Menini, A

    2001-08-08

    In the pore of homomeric cyclic nucleotide-gated (CNG) channels, Ca(2+) and Mg(2+) bind to a set of glutamate residues, which in the bovine olfactory CNG channel are located at position 340. However, native CNG channels from olfactory sensory neurons are composed by the assembly of three different types of subunits, each having a different residue -- glutamate, aspartate or glycine -- at the position corresponding to the binding site for external Ca(2+) and Mg(2+). We co-expressed the wild-type principal alpha subunit with its mutants E340G and E340D in different combinations in Xenopus laevis oocytes, and measured Ca(2+) and Mg(2+) blockage in excised outside-out membrane patches. The comparison between our results and data from native olfactory CNG channels indicates that the presence of all three residues -- glutamate, aspartate and glycine -- in the different subunits, is necessary to restore the sensitivity to external Ca(2+) and Mg(2+) measured in native channels.

  19. Loss of cone cyclic nucleotide-gated channel leads to alterations in light response modulating system and cellular stress response pathways: a gene expression profiling study

    PubMed Central

    Ma, Hongwei; Thapa, Arjun; Morris, Lynsie M.; Michalakis, Stylianos; Biel, Martin; Frank, Mark Barton; Bebak, Melissa; Ding, Xi-Qin

    2013-01-01

    The cone photoreceptor cyclic nucleotide-gated (CNG) channel is essential for central and color vision and visual acuity. Mutations in the channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophy. We investigated the gene expression profiles in mouse retina with CNG channel deficiency using whole genome expression microarrays. As cones comprise only 2 to 3% of the total photoreceptor population in the wild-type mouse retina, the mouse lines with CNG channel deficiency on a cone-dominant background, i.e. Cnga3−/−/Nrl−/− and Cngb3−/−/Nrl−/− mice, were used in our study. Comparative data analysis revealed a total of 105 genes altered in Cnga3−/−/Nrl−/− and 92 in Cngb3−/−/Nrl−/− retinas, relative to Nrl−/− retinas, with 27 genes changed in both genotypes. The differentially expressed genes primarily encode proteins associated with cell signaling, cellular function maintenance and gene expression. Ingenuity pathway analysis (IPA) identified 26 and 9 canonical pathways in Cnga3−/−/Nrl−/− and Cngb3−/−/Nrl−/− retinas, respectively, with 6 pathways being shared. The shared pathways include phototransduction, cAMP/PKA-mediated signaling, endothelin signaling, and EIF2/endoplasmic reticulum (ER) stress, whereas the IL-1, CREB, and purine metabolism signaling were found to specifically associate with Cnga3 deficiency. Thus, CNG channel deficiency differentially regulates genes that affect cell processes such as phototransduction, cellular survival and gene expression, and such regulations play a crucial role(s) in the retinal adaptation to impaired cone phototransduction. Though lack of Cnga3 and Cngb3 shares many common pathways, deficiency of Cnga3 causes more significant alterations in gene expression. This work provides insights into how cones respond to impaired phototransduction at the gene expression levels. PMID:23740940

  20. Crystallization and preliminary X-ray diffraction analyses of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels

    SciTech Connect

    Suzuki, Nobuhiro; Yamazaki, Yasuo; Fujimoto, Zui; Morita, Takashi; Mizuno, Hiroshi

    2005-08-01

    Crystals of pseudechetoxin and pseudecin, potent peptidic inhibitors of cyclic nucleotide-gated ion channels, have been prepared and X-ray diffraction data have been collected to 2.25 and 1.90 Å resolution, respectively. Cyclic nucleotide-gated (CNG) ion channels play pivotal roles in sensory transduction of retinal and olfactory neurons. The elapid snake toxins pseudechetoxin (PsTx) and pseudecin (Pdc) are the only known protein blockers of CNG channels. These toxins are structurally classified as cysteine-rich secretory proteins and exhibit structural features that are quite distinct from those of other known small peptidic channel blockers. This article describes the crystallization and preliminary X-ray diffraction analyses of these toxins. Crystals of PsTx belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 60.30, b = 61.59, c = 251.69 Å, and diffraction data were collected to 2.25 Å resolution. Crystals of Pdc also belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with similar unit-cell parameters a = 60.71, b = 61.67, c = 251.22 Å, and diffraction data were collected to 1.90 Å resolution.

  1. Structures of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels: implications for movement of the C-terminal cysteine-rich domain

    SciTech Connect

    Suzuki, Nobuhiro; Yamazaki, Yasuo; Brown, R. Lane; Fujimoto, Zui; Morita, Takashi; Mizuno, Hiroshi

    2008-10-01

    The structures of pseudechetoxin and pseudecin suggest that both proteins bind to cyclic nucleotide-gated ion channels in a manner in which the concave surface occludes the pore entrance. Cyclic nucleotide-gated (CNG) ion channels play pivotal roles in sensory transduction by retinal photoreceptors and olfactory neurons. The elapid snake toxins pseudechetoxin (PsTx) and pseudecin (Pdc) are the only known protein blockers of CNG channels. These toxins belong to a cysteine-rich secretory protein (CRISP) family containing an N-terminal pathogenesis-related proteins of group 1 (PR-1) domain and a C-terminal cysteine-rich domain (CRD). PsTx and Pdc are highly homologous proteins, but their blocking affinities on CNG channels are different: PsTx blocks both the olfactory and retinal channels with ∼15–30-fold higher affinity than Pdc. To gain further insights into their structure and function, the crystal structures of PsTx, Pdc and Zn{sup 2+}-bound Pdc were determined. The structures revealed that most of the amino-acid-residue differences between PsTx and Pdc are located around the concave surface formed between the PR-1 domain and the CRD, suggesting that the concave surface is functionally important for CNG-channel binding and inhibition. A structural comparison in the presence and absence of Zn{sup 2+} ion demonstrated that the concave surface can open and close owing to movement of the CRD upon Zn{sup 2+} binding. The data suggest that PsTx and Pdc occlude the pore entrance and that the dynamic motion of the concave surface facilitates interaction with the CNG channels.

  2. A cyclic nucleotide-gated channel mutation associated with canine daylight blindness provides insight into a role for the S2 segment tri-Asp motif in channel biogenesis.

    PubMed

    Tanaka, Naoto; Delemotte, Lucie; Klein, Michael L; Komáromy, András M; Tanaka, Jacqueline C

    2014-01-01

    Cone cyclic nucleotide-gated channels are tetramers formed by CNGA3 and CNGB3 subunits; CNGA3 subunits function as homotetrameric channels but CNGB3 exhibits channel function only when co-expressed with CNGA3. An aspartatic acid (Asp) to asparagine (Asn) missense mutation at position 262 in the canine CNGB3 (D262N) subunit results in loss of cone function (daylight blindness), suggesting an important role for this aspartic acid residue in channel biogenesis and/or function. Asp 262 is located in a conserved region of the second transmembrane segment containing three Asp residues designated the Tri-Asp motif. This motif is conserved in all CNG channels. Here we examine mutations in canine CNGA3 homomeric channels using a combination of experimental and computational approaches. Mutations of these conserved Asp residues result in the absence of nucleotide-activated currents in heterologous expression. A fluorescent tag on CNGA3 shows mislocalization of mutant channels. Co-expressing CNGB3 Tri-Asp mutants with wild type CNGA3 results in some functional channels, however, their electrophysiological characterization matches the properties of homomeric CNGA3 channels. This failure to record heteromeric currents suggests that Asp/Asn mutations affect heteromeric subunit assembly. A homology model of S1-S6 of the CNGA3 channel was generated and relaxed in a membrane using molecular dynamics simulations. The model predicts that the Tri-Asp motif is involved in non-specific salt bridge pairings with positive residues of S3/S4. We propose that the D262N mutation in dogs with CNGB3-day blindness results in the loss of these inter-helical interactions altering the electrostatic equilibrium within in the S1-S4 bundle. Because residues analogous to Tri-Asp in the voltage-gated Shaker potassium channel family were implicated in monomer folding, we hypothesize that destabilizing these electrostatic interactions impairs the monomer folding state in D262N mutant CNG channels during

  3. cAMP Control of HCN2 Channel Mg2+ Block Reveals Loose Coupling between the Cyclic Nucleotide-Gating Ring and the Pore

    PubMed Central

    Lyashchenko, Alex K.; Redd, Kacy J.; Goldstein, Peter A.; Tibbs, Gareth R.

    2014-01-01

    Hyperpolarization-activated cyclic nucleotide-regulated HCN channels underlie the Na+-K+ permeable IH pacemaker current. As with other voltage-gated members of the 6-transmembrane KV channel superfamily, opening of HCN channels involves dilation of a helical bundle formed by the intracellular ends of S6 albeit this is promoted by inward, not outward, displacement of S4. Direct agonist binding to a ring of cyclic nucleotide-binding sites, one of which lies immediately distal to each S6 helix, imparts cAMP sensitivity to HCN channel opening. At depolarized potentials, HCN channels are further modulated by intracellular Mg2+ which blocks the open channel pore and blunts the inhibitory effect of outward K+ flux. Here, we show that cAMP binding to the gating ring enhances not only channel opening but also the kinetics of Mg2+ block. A combination of experimental and simulation studies demonstrates that agonist acceleration of block is mediated via acceleration of the blocking reaction itself rather than as a secondary consequence of the cAMP enhancement of channel opening. These results suggest that the activation status of the gating ring and the open state of the pore are not coupled in an obligate manner (as required by the often invoked Monod-Wyman-Changeux allosteric model) but couple more loosely (as envisioned in a modular model of protein activation). Importantly, the emergence of second messenger sensitivity of open channel rectification suggests that loose coupling may have an unexpected consequence: it may endow these erstwhile “slow” channels with an ability to exert voltage and ligand-modulated control over cellular excitability on the fastest of physiologically relevant time scales. PMID:24983358

  4. Cyclic nucleotide-gated channels, calmodulin, adenylyl cyclase, and calcium/calmodulin-dependent protein kinase II are required for late, but not early, long-term memory formation in the honeybee.

    PubMed

    Matsumoto, Yukihisa; Sandoz, Jean-Christophe; Devaud, Jean-Marc; Lormant, Flore; Mizunami, Makoto; Giurfa, Martin

    2014-04-16

    Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee Apis mellifera, olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM) are formed upon multiple-trial conditioning: an early phase (e-LTM) which depends on translation from already available mRNA, and a late phase (l-LTM) which requires de novo transcription and translation. Here we combined olfactory PER conditioning and neuropharmacological inhibition and studied the involvement of the NO-cGMP pathway, and of specific molecules, such as cyclic nucleotide-gated channels (CNG), calmodulin (CaM), adenylyl cyclase (AC), and Ca(2+)/calmodulin-dependent protein kinase (CaMKII), in the formation of olfactory LTM in bees. We show that in addition to NO-cGMP and cAMP-PKA, CNG channels, CaM, AC, and CaMKII also participate in the formation of a l-LTM (72-h post-conditioning) that is specific for the learned odor. Importantly, the same molecules are dispensable for olfactory learning and for the formation of both MTM (in the minute and hour range) and e-LTM (24-h post-conditioning), thus suggesting that the signaling pathways leading to l-LTM or e-LTM involve different molecular actors.

  5. Mutating three residues in the bovine rod cyclic nucleotide-activated channel can switch a nucleotide from inactive to active.

    PubMed Central

    Scott, S P; Cummings, J; Joe, J C; Tanaka, J C

    2000-01-01

    Cyclic nucleotide-gated (CNG) channels, which were initially studied in retina and olfactory neurons, are activated by cytoplasmic cGMP or cAMP. Detailed comparisons of nucleotide-activated currents using nucleotide analogs and mutagenesis revealed channel-specific residues in the nucleotide-binding domain that regulate the binding and channel-activation properties. Of particular interest are N(1)-oxide cAMP, which does not activate bovine rod channels, and Rp-cGMPS, which activates bovine rod, but not catfish, olfactory channels. Previously, we showed that four residues coordinate the purine interactions in the binding domain and that three of these residues vary in the alpha subunits of the bovine rod, catfish, and rat olfactory channels. Here we show that both N(1)-oxide cAMP and Rp-cGMPS activate rat olfactory channels. A mutant of the bovine rod alpha subunit, substituted with residues from the rat olfactory channel at the three variable positions, was weakly activated by N(1)-oxide cAMP, and a catfish olfactory-like bovine rod mutant lost activation by Rp-cGMPS. These experiments underscore the functional importance of purine contacts with three residues in the cyclic nucleotide-binding domain. Molecular models of nucleotide analogs in the binding domains, constructed with AMMP, showed differences in the purine contacts among the channels that might account for activation differences. PMID:10777730

  6. Kinetics of Ligand-Receptor Interaction Reveals an Induced-Fit Mode of Binding in a Cyclic Nucleotide-Activated Protein

    PubMed Central

    Peuker, Sebastian; Cukkemane, Abhishek; Held, Martin; Noé, Frank; Kaupp, U. Benjamin; Seifert, Reinhard

    2013-01-01

    Many receptors and ion channels are activated by ligands. One key question concerns the binding mechanism. Does the ligand induce conformational changes in the protein via the induced-fit mechanism? Or does the protein preexist as an ensemble of conformers and the ligand selects the most complementary one, via the conformational selection mechanism? Here, we study ligand binding of a tetrameric cyclic nucleotide-gated channel from Mesorhizobium loti and of its monomeric binding domain (CNBD) using rapid mixing, mutagenesis, and structure-based computational biology. Association rate constants of ∼107 M−1 s−1 are compatible with diffusion-limited binding. Ligand binding to the full-length CNG channel and the isolated CNBD differ, revealing allosteric control of the CNBD by the effector domain. Finally, mutagenesis of allosteric residues affects only the dissociation rate constant, suggesting that binding follows the induced-fit mechanism. This study illustrates the strength of combining mutational, kinetic, and computational approaches to unravel important mechanistic features of ligand binding. PMID:23332059

  7. Cyclic AMP-dependent protein kinase activity in Trypanosoma cruzi.

    PubMed Central

    Ulloa, R M; Mesri, E; Esteva, M; Torres, H N; Téllez-Iñón, M T

    1988-01-01

    A cyclic AMP-dependent protein kinase activity from epimastigote forms of Trypanosoma cruzi was characterized. Cytosolic extracts were chromatographed on DEAE-cellulose columns, giving two peaks of kinase activity, which were eluted at 0.15 M- and 0.32 M-NaCl respectively. The second activity peak was stimulated by nanomolar concentrations of cyclic AMP. In addition, a cyclic AMP-binding protein co-eluted with the second kinase activity peak. Cyclic AMP-dependent protein kinase activity was further purified by gel filtration, affinity chromatography on histone-agarose and cyclic AMP-agarose, as well as by chromatography on CM-Sephadex. The enzyme ('holoenzyme') could be partially dissociated into two different components: 'catalytic' and 'regulatory'. The 'regulatory' component had specific binding for cyclic AMP, and it inhibited phosphotransferase activity of the homologous 'catalytic component' or of the 'catalytic subunit' from bovine heart. Cyclic AMP reversed these inhibitions. A 'holoenzyme preparation' was phosphorylated in the absence of exogenous phosphate acceptor and analysed by polyacrylamide-gel electrophoresis. A 56 kDa band was phosphorylated. The same preparation was analysed by Western blotting, by using polyclonal antibodies to the regulatory subunits of protein kinases type I or II. Both antibodies reacted with the 56 kDa band. Images Fig. 7. Fig. 8. PMID:2848508

  8. Structure and Energetics of Allosteric Regulation of HCN2 Ion Channels by Cyclic Nucleotides*

    PubMed Central

    DeBerg, Hannah A.; Brzovic, Peter S.; Flynn, Galen E.; Zagotta, William N.; Stoll, Stefan

    2016-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels play an important role in regulating electrical activity in the heart and brain. They are gated by the binding of cyclic nucleotides to a conserved, intracellular cyclic nucleotide-binding domain (CNBD), which is connected to the channel pore by a C-linker region. Binding of cyclic nucleotides increases the rate and extent of channel activation and shifts it to less hyperpolarized voltages. We probed the allosteric mechanism of different cyclic nucleotides on the CNBD and on channel gating. Electrophysiology experiments showed that cAMP, cGMP, and cCMP were effective agonists of the channel and produced similar increases in the extent of channel activation. In contrast, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) on the isolated CNBD indicated that the induced conformational changes and the degrees of stabilization of the active conformation differed for the three cyclic nucleotides. We explain these results with a model where different allosteric mechanisms in the CNBD all converge to have the same effect on the C-linker and render all three cyclic nucleotides similarly potent activators of the channel. PMID:26559974

  9. Repressible extracellular phosphodiesterases showing cyclic 2',3'- and cyclic 3',5'-nucleotide phosphodiesterase activities in Neurospora crassa.

    PubMed Central

    Hasunuma, K

    1983-01-01

    Two molecular species of repressible extracellular phosphodiesterases showing cyclic 2',3'- and cyclic 3',5'-nucleotide phosphodiesterase activities were detected in mycelial culture media of wild-type Neurospora crassa and purified. The two molecular species were found to be monomeric and polymeric forms of an enzyme constituted of identical subunits having molecular weights of 50,000. This enzyme had the same electrophoretic mobility as repressible acid phosphatase. The enzyme designated repressible cyclic phosphodiesterase showed pH optima of 3.2 to 4.0 with a cyclic 3',5'-AMP substrate and 5.0 to 5.6 with a cyclic 2',3'-AMP substrate. Repressible cyclic phosphodiesterase was activated by MnCl2 and CoCl2 with cyclic 2',3'-AMP as substrate and was slightly activated by MnCl2 with cyclic 3',5'-AMP. The enzyme hydrolyzed cyclic 3',5'- and cyclic 2',3'-nucleotides, in addition to bis-rho-nitrophenyl phosphate, but not certain 5' -and 3'-nucleotides. 3'-GMP and 3'-CMP were hydrolyzed less efficiently. Mutant strains A1 (nuc-1) and B1 (nuc-2), which cannot utilize RNA or DNA as a sole source of phosphorus, were unable to produce repressible cyclic phosphodiesterase. The wild type (74A) and a heterocaryon between strains A1 and B1 produced the enzyme and showed growth on orthophosphate-free media containing cyclic 2',3'-AMP or cyclic 3',5'-AMP, whereas both mutants showed little or no growth on these media. Images PMID:6311798

  10. Inter-rater reliability of cyclic and non-cyclic task assessment using the hand activity level in appliance manufacturing

    PubMed Central

    Paulsen, Robert; Schwatka, Natalie; Gober, Jennifer; Gilkey, David; Anton, Dan; Gerr, Fred; Rosecrance, John

    2015-01-01

    This study evaluated the inter-rater reliability of the American Conference of Governmental Industrial Hygienists (ACGIH®) hand activity level (HAL), an observational ergonomic assessment method used to estimate physical exposure to repetitive exertions during task performance. Video recordings of 858 cyclic and non-cyclic appliance manufacturing tasks were assessed by sixteen pairs of raters using the HAL visual-analog scale. A weighted Pearson Product Moment-Correlation Coefficient was used to evaluate the agreement between the HAL scores recorded by each rater pair, and the mean weighted correlation coefficients for cyclic and non-cyclic tasks were calculated. Results indicated that the HAL is a reliable exposure assessment method for cyclic (r̄-barw = 0.69) and non-cyclic work tasks (r̄-barw = 0.68). When the two reliability scores were compared using a two-sample Student's t-test, no significant difference in reliability (p = 0.63) between these work task categories was found. This study demonstrated that the HAL may be a useful measure of exposure to repetitive exertions during cyclic and non-cyclic tasks. Relevance to industry Exposure to hazardous levels of repetitive action during non-cyclic task completion has traditionally been difficult to assess using simple observational techniques. The present study suggests that ergonomists could use the HAL to reliably and easily evaluate exposures associated with some non-cyclic work tasks. PMID:26120222

  11. Selectively deuterated and optically active cyclic ethers

    SciTech Connect

    Kawakami, Y.; Asai, T.; Umeyama, K.; Yamashita, Y.

    1982-08-27

    The synthesis of selectively deuterated epihalohydrins (F, Cl, Br, I) and 3,3-bis(chloromethyl)-d/sub 2/)oxetane and some observations on the stereochemistry of each transformation are reported. Further, the synthesis of optically active epihalohydrins, especially the optically active epifluorohydrin, from (S)-glycerol 1,2-acetonide ((S)-2), using mainly KX-18-CR-6 (X = F, Br, I), is reported. This is the first report on the synthesis of optically active epifluorohydrin. The direct halogenation of the presynthesized optically active epichlorohydrin with the same reagents gave the racemized products. The selectively deuterated or optically active compounds reported herein are expected to find a variety of uses in organic chemistry.

  12. Inter-rater reliability of cyclic and non-cyclic task assessment using the hand activity level in appliance manufacturing.

    PubMed

    Paulsen, Robert; Schwatka, Natalie; Gober, Jennifer; Gilkey, David; Anton, Dan; Gerr, Fred; Rosecrance, John

    2014-01-01

    This study evaluated the inter-rater reliability of the American Conference of Governmental Industrial Hygienists (ACGIH(®)) hand activity level (HAL), an observational ergonomic assessment method used to estimate physical exposure to repetitive exertions during task performance. Video recordings of 858 cyclic and non-cyclic appliance manufacturing tasks were assessed by sixteen pairs of raters using the HAL visual-analog scale. A weighted Pearson Product Moment-Correlation Coefficient was used to evaluate the agreement between the HAL scores recorded by each rater pair, and the mean weighted correlation coefficients for cyclic and non-cyclic tasks were calculated. Results indicated that the HAL is a reliable exposure assessment method for cyclic (r̄-bar w = 0.69) and non-cyclic work tasks (r̄-bar w = 0.68). When the two reliability scores were compared using a two-sample Student's t-test, no significant difference in reliability (p = 0.63) between these work task categories was found. This study demonstrated that the HAL may be a useful measure of exposure to repetitive exertions during cyclic and non-cyclic tasks.

  13. Cyclic GMP-AMP Displays Mucosal Adjuvant Activity in Mice

    PubMed Central

    Škrnjug, Ivana

    2014-01-01

    The recently discovered mammalian enzyme cyclic GMP-AMP synthase produces cyclic GMP-AMP (cGAMP) after being activated by pathogen-derived cytosolic double stranded DNA. The product can stimulate STING-dependent interferon type I signaling. Here, we explore the efficacy of cGAMP as a mucosal adjuvant in mice. We show that cGAMP can enhance the adaptive immune response to the model antigen ovalbumin. It promotes antigen specific IgG and a balanced Th1/Th2 lymphocyte response in immunized mice. A characteristic of the cGAMP-induced immune response is the slightly reduced induction of interleukin-17 as a hallmark of Th17 activity – a distinct feature that is not observed with other cyclic di-nucleotide adjuvants. We further characterize the innate immune stimulation activity in vitro on murine bone marrow-derived dendritic cells and human dendritic cells. The observed results suggest the consideration of cGAMP as a candidate mucosal adjuvant for human vaccines. PMID:25295996

  14. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP.

    PubMed

    DiFrancesco, D; Tortora, P

    1991-05-09

    Cyclic AMP acts as a second messenger in the modulation of several ion channels that are typically controlled by a phosphorylation process. In cardiac pacemaker cells, adrenaline and acetylcholine regulate the hyperpolarization-activated current (if), but in opposite ways; this current is involved in the generation and modulation of pacemaker activity. These actions are mediated by cAMP and underlie control of spontaneous rate by neurotransmitters. Whether the cAMP modulation of if is mediated by channel phosphorylation is, however, still unknown. Here we investigate the action of cAMP on if in excised patches of cardiac pacemaker cells and find that cAMP activates if by a mechanism independent of phosphorylation, involving a direct interaction with the channels at their cytoplasmic side. Cyclic AMP activates if by shifting its activation curve to more positive voltages, in agreement with whole-cell results. This is the first evidence of an ion channel whose gating is dually regulated by voltage and direct cAMP binding.

  15. Biologic activity of cyclic and caged phosphates: a review.

    PubMed

    Lorke, Dietrich E; Stegmeier-Petroianu, Anka; Petroianu, Georg A

    2017-01-01

    The recognition in the early 1960s by Morifusa Eto that tri-o-cresyl phosphate (TOCP) is hydroxylated by the cytochrome P450 system to an intermediate that spontaneously cyclizes to a neurotoxic phosphate (saligenin phosphate ester) ignited the interest in this group of compounds. Only the ortho isomer can cyclize and clinically cause Organo Phosphate Induced Delayed Neurotoxicity (OPIDN); the meta and para isomers of tri-cresyl phosphate are not neuropathic because they are unable to form stable cyclic saligenin phosphate esters. This review identifies the diverse biological effects associated with various cyclic and caged phosphates and phosphonates and their possible use. Cyclic compounds that inhibit acetylcholine esterase (AChE), such as salithion, can be employed as pesticides. Others are neurotoxic, most probably because of inhibition of neuropathy target esterase (NTE). Cyclic phosphates that inhibit lipases, the cyclipostins, possibly represent promising therapeutic avenues for the treatment of type 2 diabetes mellitus and/or microbial infections; those compounds inhibiting β-lactamase may prevent bacterial resistance against β-lactam antibiotics. Naturally occurring cyclic phosphates, such as cyclic AMP, cyclic phosphatidic acid and the ryanodine receptor modulator cyclic adenosine diphosphate ribose, play an important physiological role in signal transduction. Moreover, some cyclic phosphates are GABA-antagonists, while others are an essential component of Molybdenum-containing enzymes. Some cyclic phosphates (cyclophosphamide, ifosfamide) are clinically used in tumor therapy, while the coupling of therapeutic agents with other cyclic phosphates (HepDirect® Technology) allows drugs to be targeted to specific organs. Possible clinical applications of these compounds are considered. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Leaf Senescence Signaling: The Ca2+-Conducting Arabidopsis Cyclic Nucleotide Gated Channel2 Acts through Nitric Oxide to Repress Senescence Programming1[W][OA

    PubMed Central

    Ma, Wei; Smigel, Andries; Walker, Robin K.; Moeder, Wolfgang; Yoshioka, Keiko; Berkowitz, Gerald A.

    2010-01-01

    Ca2+ and nitric oxide (NO) are essential components involved in plant senescence signaling cascades. In other signaling pathways, NO generation can be dependent on cytosolic Ca2+. The Arabidopsis (Arabidopsis thaliana) mutant dnd1 lacks a plasma membrane-localized cation channel (CNGC2). We recently demonstrated that this channel affects plant response to pathogens through a signaling cascade involving Ca2+ modulation of NO generation; the pathogen response phenotype of dnd1 can be complemented by application of a NO donor. At present, the interrelationship between Ca2+ and NO generation in plant cells during leaf senescence remains unclear. Here, we use dnd1 plants to present genetic evidence consistent with the hypothesis that Ca2+ uptake and NO production play pivotal roles in plant leaf senescence. Leaf Ca2+ accumulation is reduced in dnd1 leaves compared to the wild type. Early senescence-associated phenotypes (such as loss of chlorophyll, expression level of senescence-associated genes, H2O2 generation, lipid peroxidation, tissue necrosis, and increased salicylic acid levels) were more prominent in dnd1 leaves compared to the wild type. Application of a Ca2+ channel blocker hastened senescence of detached wild-type leaves maintained in the dark, increasing the rate of chlorophyll loss, expression of a senescence-associated gene, and lipid peroxidation. Pharmacological manipulation of Ca2+ signaling provides evidence consistent with genetic studies of the relationship between Ca2+ signaling and senescence with the dnd1 mutant. Basal levels of NO in dnd1 leaf tissue were lower than that in leaves of wild-type plants. Application of a NO donor effectively rescues many dnd1 senescence-related phenotypes. Our work demonstrates that the CNGC2 channel is involved in Ca2+ uptake during plant development beyond its role in pathogen defense response signaling. Work presented here suggests that this function of CNGC2 may impact downstream basal NO production in addition to its role (also linked to NO signaling) in pathogen defense responses and that this NO generation acts as a negative regulator during plant leaf senescence signaling. PMID:20699402

  17. Leaf senescence signaling: the Ca2+-conducting Arabidopsis cyclic nucleotide gated channel2 acts through nitric oxide to repress senescence programming.

    PubMed

    Ma, Wei; Smigel, Andries; Walker, Robin K; Moeder, Wolfgang; Yoshioka, Keiko; Berkowitz, Gerald A

    2010-10-01

    Ca(2+) and nitric oxide (NO) are essential components involved in plant senescence signaling cascades. In other signaling pathways, NO generation can be dependent on cytosolic Ca(2+). The Arabidopsis (Arabidopsis thaliana) mutant dnd1 lacks a plasma membrane-localized cation channel (CNGC2). We recently demonstrated that this channel affects plant response to pathogens through a signaling cascade involving Ca(2+) modulation of NO generation; the pathogen response phenotype of dnd1 can be complemented by application of a NO donor. At present, the interrelationship between Ca(2+) and NO generation in plant cells during leaf senescence remains unclear. Here, we use dnd1 plants to present genetic evidence consistent with the hypothesis that Ca(2+) uptake and NO production play pivotal roles in plant leaf senescence. Leaf Ca(2+) accumulation is reduced in dnd1 leaves compared to the wild type. Early senescence-associated phenotypes (such as loss of chlorophyll, expression level of senescence-associated genes, H(2)O(2) generation, lipid peroxidation, tissue necrosis, and increased salicylic acid levels) were more prominent in dnd1 leaves compared to the wild type. Application of a Ca(2+) channel blocker hastened senescence of detached wild-type leaves maintained in the dark, increasing the rate of chlorophyll loss, expression of a senescence-associated gene, and lipid peroxidation. Pharmacological manipulation of Ca(2+) signaling provides evidence consistent with genetic studies of the relationship between Ca(2+) signaling and senescence with the dnd1 mutant. Basal levels of NO in dnd1 leaf tissue were lower than that in leaves of wild-type plants. Application of a NO donor effectively rescues many dnd1 senescence-related phenotypes. Our work demonstrates that the CNGC2 channel is involved in Ca(2+) uptake during plant development beyond its role in pathogen defense response signaling. Work presented here suggests that this function of CNGC2 may impact downstream basal NO production in addition to its role (also linked to NO signaling) in pathogen defense responses and that this NO generation acts as a negative regulator during plant leaf senescence signaling.

  18. Cyclic strain increases protease-activated receptor-1 expression in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Frye, S. R.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Cyclic strain regulates many vascular smooth muscle cell (VSMC) functions through changing gene expression. This study investigated the effects of cyclic strain on protease-activated receptor-1 (PAR-1) expression in VSMCs and the possible signaling pathways involved, on the basis of the hypothesis that cyclic strain would enhance PAR-1 expression, reflecting increased thrombin activity. Uniaxial cyclic strain (1 Hz, 20%) of cells cultured on elastic membranes induced a 2-fold increase in both PAR-1 mRNA and protein levels. Functional activity of PAR-1, as assessed by cell proliferation in response to thrombin, was also increased by cyclic strain. In addition, treatment of cells with antioxidants or an NADPH oxidase inhibitor blocked strain-induced PAR-1 expression. Preincubation of cells with protein kinase inhibitors (staurosporine or Ro 31-8220) enhanced strain-increased PAR-1 expression, whereas inhibitors of NO synthase, tyrosine kinase, and mitogen-activated protein kinases had no effect. Cyclic strain in the presence of basic fibroblast growth factor induced PAR-1 mRNA levels beyond the effect of cyclic strain alone, whereas no additive effect was observed between cyclic strain and platelet-derived growth factor-AB. Our findings that cyclic strain upregulates PAR-1 mRNA expression but that shear stress downregulates this gene in VSMCs provide an opportunity to elucidate signaling differences by which VSMCs respond to different mechanical forces.

  19. Termination and activation of store-operated cyclic AMP production

    PubMed Central

    Maiellaro, Isabella; Lefkimmiatis, Konstantinos; Moyer, Mary Pat; Curci, Silvana; Hofer, Aldebaran M

    2012-01-01

    Diverse pathophysiological processes (e.g. obesity, lifespan determination, addiction and male fertility) have been linked to the expression of specific isoforms of the adenylyl cyclases (AC1-AC10), the enzymes that generate cyclic AMP (cAMP). Our laboratory recently discovered a new mode of cAMP production, prominent in certain cell types, that is stimulated by any manoeuvre causing reduction of free [Ca2+] within the lumen of the endoplasmic reticulum (ER) calcium store. Activation of this ‘store-operated’ pathway requires the ER Ca2+ sensor, STIM1, but the identity of the enzymes responsible for cAMP production and how this process is regulated is unknown. Here, we used sensitive FRET-based sensors for cAMP in single cells combined with silencing and overexpression approaches to show that store-operated cAMP production occurred preferentially via the isoform AC3 in NCM460 colonic epithelial cells. Ca2+ entry via the plasma membrane Ca2+ channel, Orai1, suppressed cAMP production, independent of store refilling. These findings are an important first step towards defining the functional significance and to identify the protein composition of this novel Ca2+/cAMP crosstalk system. PMID:22681560

  20. Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain

    NASA Technical Reports Server (NTRS)

    Cohen, C. R.; Mills, I.; Du, W.; Kamal, K.; Sumpio, B. E.

    1997-01-01

    The aim of this study was to assess the involvement of the adenylyl cyclase/cyclic AMP/protein kinase A pathway (AC) in endothelial cells (EC) exposed to different levels of mechanical strain. Bovine aortic EC were seeded to confluence on flexible membrane-bottom wells. The membranes were deformed with either 150 mm Hg (average 10% strain) or 37.5 mm Hg (average 6% strain) vacuum at 60 cycles per minute (0.5 s strain; 0.5 s relaxation) for 0-60 min. The results demonstrate that at 10% average strain (but not 6% average strain) there was a 1.5- to 2.2-fold increase in AC, cAMP, and PKA activity by 15 min when compared to unstretched controls. Further studies revealed an increase in cAMP response element binding protein in EC subjected to the 10% average strain (but not 6% average strain). These data support the hypothesis that cyclic strain activates the AC/cAMP/PKA signal transduction pathway in EC which may occur by exceeding a strain threshold and suggest that cyclic strain may stimulate the expression of genes containing cAMP-responsive promoter elements.

  1. AMPK antagonizes hepatic glucagon-stimulated cyclic AMP signalling via phosphorylation-induced activation of cyclic nucleotide phosphodiesterase 4B

    PubMed Central

    Johanns, M.; Lai, Y.-C.; Hsu, M.-F.; Jacobs, R.; Vertommen, D.; Van Sande, J.; Dumont, J. E.; Woods, A.; Carling, D.; Hue, L.; Viollet, B.; Foretz, M; Rider, M H

    2016-01-01

    Biguanides such as metformin have previously been shown to antagonize hepatic glucagon-stimulated cyclic AMP (cAMP) signalling independently of AMP-activated protein kinase (AMPK) via direct inhibition of adenylate cyclase by AMP. Here we show that incubation of hepatocytes with the small-molecule AMPK activator 991 decreases glucagon-stimulated cAMP accumulation, cAMP-dependent protein kinase (PKA) activity and downstream PKA target phosphorylation. Moreover, incubation of hepatocytes with 991 increases the Vmax of cyclic nucleotide phosphodiesterase 4B (PDE4B) without affecting intracellular adenine nucleotide concentrations. The effects of 991 to decrease glucagon-stimulated cAMP concentrations and activate PDE4B are lost in hepatocytes deleted for both catalytic subunits of AMPK. PDE4B is phosphorylated by AMPK at three sites, and by site-directed mutagenesis, Ser304 phosphorylation is important for activation. In conclusion, we provide a new mechanism by which AMPK antagonizes hepatic glucagon signalling via phosphorylation-induced PDE4B activation. PMID:26952277

  2. New cyclic peptides with osteoblastic proliferative activity from Dianthus superbus.

    PubMed

    Tong, Yun; Luo, Jian-Guang; Wang, Rui; Wang, Xiao-Bing; Kong, Ling-Yi

    2012-03-01

    Two new cyclic peptides, dianthins G-H (1 and 2), together with the known dianthin E (3), were isolated from the traditional Chinese medicinal plant Dianthus superbus. The sequences of cyclic peptides 1 and 2 were elucidated as cyclo (-Gly(1)-Pro(2)-Leu(3)-Thr(4)-Leu(5)-Phe(6)-) and cyclo (-Gly(1)-Pro(2)-Val(3)-Thr(4)-Ile(5)-Phe(6)-), on the basis of ESI tandem mass fragmentation analysis, extensive 2D NMR methods and X-ray diffraction. The isolated three compounds all increase proliferation of MC3T3-E1 cells in vitro using MTT method.

  3. Brucella β 1,2 Cyclic Glucan Is an Activator of Human and Mouse Dendritic Cells

    PubMed Central

    Martirosyan, Anna; Pérez-Gutierrez, Camino; Banchereau, Romain; Dutartre, Hélène; Lecine, Patrick; Dullaers, Melissa; Mello, Marielle; Pinto Salcedo, Suzana; Muller, Alexandre; Leserman, Lee; Levy, Yves; Zurawski, Gerard; Zurawski, Sandy; Moreno, Edgardo; Moriyón, Ignacio; Klechevsky, Eynav; Banchereau, Jacques; Oh, SangKon; Gorvel, Jean-Pierre

    2012-01-01

    Bacterial cyclic glucans are glucose polymers that concentrate within the periplasm of alpha-proteobacteria. These molecules are necessary to maintain the homeostasis of the cell envelope by contributing to the osmolarity of Gram negative bacteria. Here, we demonstrate that Brucella β 1,2 cyclic glucans are potent activators of human and mouse dendritic cells. Dendritic cells activation by Brucella β 1,2 cyclic glucans requires TLR4, MyD88 and TRIF, but not CD14. The Brucella cyclic glucans showed neither toxicity nor immunogenicity compared to LPS and triggered antigen-specific CD8+ T cell responses in vivo. These cyclic glucans also enhanced antigen-specific CD4+ and CD8+ T cell responses including cross-presentation by different human DC subsets. Brucella β 1,2 cyclic glucans increased the memory CD4+ T cell responses of blood mononuclear cells exposed to recombinant fusion proteins composed of anti-CD40 antibody and antigens from both hepatitis C virus and Mycobacterium tuberculosis. Thus cyclic glucans represent a new class of adjuvants, which might contribute to the development of effective antimicrobial therapies. PMID:23166489

  4. Brucella β 1,2 cyclic glucan is an activator of human and mouse dendritic cells.

    PubMed

    Martirosyan, Anna; Pérez-Gutierrez, Camino; Banchereau, Romain; Dutartre, Hélène; Lecine, Patrick; Dullaers, Melissa; Mello, Marielle; Salcedo, Suzana Pinto; Muller, Alexandre; Leserman, Lee; Levy, Yves; Zurawski, Gerard; Zurawski, Sandy; Moreno, Edgardo; Moriyón, Ignacio; Klechevsky, Eynav; Banchereau, Jacques; Oh, Sangkon; Gorvel, Jean-Pierre

    2012-01-01

    Bacterial cyclic glucans are glucose polymers that concentrate within the periplasm of alpha-proteobacteria. These molecules are necessary to maintain the homeostasis of the cell envelope by contributing to the osmolarity of Gram negative bacteria. Here, we demonstrate that Brucella β 1,2 cyclic glucans are potent activators of human and mouse dendritic cells. Dendritic cells activation by Brucella β 1,2 cyclic glucans requires TLR4, MyD88 and TRIF, but not CD14. The Brucella cyclic glucans showed neither toxicity nor immunogenicity compared to LPS and triggered antigen-specific CD8(+) T cell responses in vivo. These cyclic glucans also enhanced antigen-specific CD4(+) and CD8(+) T cell responses including cross-presentation by different human DC subsets. Brucella β 1,2 cyclic glucans increased the memory CD4(+) T cell responses of blood mononuclear cells exposed to recombinant fusion proteins composed of anti-CD40 antibody and antigens from both hepatitis C virus and Mycobacterium tuberculosis. Thus cyclic glucans represent a new class of adjuvants, which might contribute to the development of effective antimicrobial therapies.

  5. A cyclic model for bimodal activation of calcium activated potassium channels in radish vacuoles.

    PubMed

    Carpaneto, A

    2001-01-01

    This paper presents the mathematical framework of a cyclic model proposed for describing the transition between a fast and a slow mode (fast-slow effect) induced by the application of step membrane potentials to ion channels from radish vacuoles. A voltage stimulation pulse with frequency in the range of 2 Hz or higher increased the activation time (slow mode) of the recorded currents. When the frequency of the stimulation pattern was restored to 0.1 Hz the activation time decreased twofold (fast mode). This experimental result cannot be explained by classical kinetic theory. The model, based on a simple extension of the Hodgkin and Huxley chain, describes the whole current experimental data and provides hints on the structural conformation of ion channels.

  6. Photosystem I cyclic electron transport: Measurement of ferredoxin-plastoquinone reductase activity.

    PubMed

    Cleland, R E; Bendall, D S

    1992-12-01

    Absorbance changes of ferredoxin measured at 463 nm in isolated thylakoids were shown to arise from the activity of the enzyme ferredoxin-plastoquinone reductase (FQR) in cyclic electron transport. Under anaerobic conditions in the presence of DCMU and an appropriate concentration of reduced ferredoxin, a light-induced absorbance decrease due to further reduction of Fd was assigned to the oxidation of the other components in the cyclic pathway, primarily plastoquinone. When the light was turned off, Fd was reoxidised and this gave a direct quantitative measurement of the rate of cyclic electron transport due to the activity of FQR. This activity was sensitive to the classical inhibitor of cyclic electron transport, antimycin, and also to J820 and DBMIB. Antimycin had no effect on Fd reduction although this was inhibited by stigmatellin. This provides further evidence that there is a quinone reduction site outside the cytochrome bf complex. The effect of inhibitors of ferredoxin-NADP(+) reductase and experiments involving the modification of ferredoxin suggest that there may be some role for the reductase as a component of FQR. Contrary to expectations, NADPH2 inhibited FQR activity; ATP and ADP had no effect.

  7. Effect of Knowledge Integration Activities on Students' Perception of the Earth's Crust as a Cyclic System.

    ERIC Educational Resources Information Center

    Kali, Yael; Orion, Nir; Eylon, Bat-Sheva

    2003-01-01

    Characterizes students' understanding of the rock cycle system. Examines effects of a knowledge integration activity on their system thinking. Interprets answers to an open-ended test using a systems thinking continuum ranging from a completely static view of the system to an understanding of the system's cyclic nature. Reports meaningful…

  8. A calcium-permeable cGMP-activated cation conductance in hippocampal neurons

    NASA Technical Reports Server (NTRS)

    Leinders-Zufall, T.; Rosenboom, H.; Barnstable, C. J.; Shepherd, G. M.; Zufall, F.

    1995-01-01

    Whole-cell patch clamp recordings detected a previously unidentified cGMP-activated membrane conductance in cultured rat hippocampal neurons. This conductance is nonselectively permeable for cations and is completely but reversibly blocked by external Cd2+. The Ca2+ permeability of the hippocampal cGMP-activated conductance was examined in detail, indicating that the underlying ion channels display a high relative permeability for Ca2+. The results indicate that hippocampal neurons contain a cGMP-activated membrane conductance that has some properties similar to the cyclic nucleotide-gated channels previously shown in sensory receptor cells and retinal neurons. In hippocampal neurons this conductance similarly could mediate membrane depolarization and Ca2+ fluxes in response to intracellular cGMP elevation.

  9. Calcium-independent activation of extracellular signal-regulated kinases 1 and 2 by cyclic strain

    NASA Technical Reports Server (NTRS)

    Ikeda, M.; Takei, T.; Mills, I.; Sumpio, B. E.

    1998-01-01

    We have previously demonstrated that cyclic strain induces extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation in endothelial cells (EC). The aim of this study was to investigate the effect of Ca2+ on the activation of ERK1/2. Bovine aortic EC were pretreated with a chelator of extracellular Ca2+, ethylaneglycol-bis(aminoethylether)-tetra-acetate (EGTA), a depleter of Ca2+ pools, 2,5-Di-(tert-butyl)-1,4-benzohydroquinone (BHQ), or a Ca2+ channel blocker, GdCl3, and subjected to an average 10 % strain at a rate of 60 cycles/min for 10 min. BHQ and GdCl3 did not inhibit the strain-induced ERK1/2 activation. Chelation of normal extracellular Ca2+ (1.8 mM) medium with EGTA (3 mM) acutely stimulated baseline phosphorylation and activation of ERK1/2, thereby obscuring any strain-induced activation of ERK1/2. However, in EC preincubated for 24 hours in Ca2+-free medium, elevated baseline phosphorylation was minimally activated by EGTA (200 microM) such that cyclic strain stimulated ERK1/2 in the presence or absence of BHQ. These results suggest a Ca2+ independence of the ERK1/2 signaling pathway by cyclic strain. Copyright 1998 Academic Press.

  10. Quantification of Cyclic Ground Reaction Force Histories During Daily Activity in Humans

    NASA Technical Reports Server (NTRS)

    Breit, G. A.; Whalen, R. T.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Theoretical models and experimental studies of bone remodeling suggest that bone density and structure are influenced by local cyclic skeletal tissue stress and strain histories. Estimation of long-term loading histories in humans is usually achieved by assessment of physical activity level by questionnaires, logbooks, and pedometers, since the majority of lower limb cyclic loading occurs during walking and running. These methods provide some indication of the mechanical loading history, but fail to consider the true magnitude of the lower limb skeletal forces generated by various daily activities. These techniques cannot account for individual gait characteristics, gait speed, and unpredictable high loading events that may influence bone mass significantly. We have developed portable instrumentation to measure and record the vertical component of the ground reaction force (GRFz) during normal daily activity. This equipment allows long-term quantitative monitoring of musculoskeletal loads, which in conjunction with bone mineral density assessments, promises to elucidate the relationship between skeletal stresses and bone remodeling.

  11. Novel cyclic lipodepsipeptide from Pseudomonas syringae pv. lachrymans strain 508 and syringopeptin antimicrobial activities.

    PubMed

    Grgurina, Ingeborg; Bensaci, Mekki; Pocsfalvi, Gabriella; Mannina, Luisa; Cruciani, Oscar; Fiore, Alberto; Fogliano, Vincenzo; Sorensen, Kevin N; Takemoto, Jon Y

    2005-12-01

    The syringopeptins are a group of antimicrobial cyclic lipodepsipeptides produced by several plant-associated pseudomonads. A novel syringopeptin, SP508, was shown to be produced as two homologs (A and B) by Pseudomonas syringae pv. lachrymans strain 508 from apple and to structurally resemble syringopeptin SP22. SP508 differed from SP22 and other syringopeptins by having three instead of four alpha,beta-unsaturated amino acids and a longer beta-hydroxy acyl chain. Both SP508 and SP22 displayed growth-inhibitory activities against Mycobacterium smegmatis, other gram-positive bacteria, and yeasts but not against gram-negative bacteria. Structure-activity analyses of the SP508 and SP22 homologs indicated chemical structural features that lead to enhanced antimycobacterial activity by these pseudomonad cyclic lipodepsipeptides.

  12. Polyphosphate, cyclic AMP, guanosine tetraphosphate, and c-di-GMP reduce in vitro Lon activity

    PubMed Central

    Osbourne, Devon O; Soo, Valerie WC; Konieczny, Igor; Wood, Thomas K

    2014-01-01

    Lon protease is conserved from bacteria to humans and regulates cellular processes by degrading different classes of proteins including antitoxins, transcriptional activators, unfolded proteins, and free ribosomal proteins. Since we found that Lon has several putative cyclic diguanylate (c-di-GMP) binding sites and since Lon binds polyphosphate (polyP) and lipid polysaccharide, we hypothesized that Lon has an affinity for phosphate-based molecules that might regulate its activity. Hence we tested the effect of polyP, cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), guanosine tetraphosphate (ppGpp), c-di-GMP, and GMP on the ability of Lon to degrade α-casein. Inhibition of in vitro Lon activity occurred for polyP, cAMP, ppGpp, and c-di-GMP. We also demonstrated by HPLC that Lon is able to bind c-di-GMP. Therefore, four cell signals were found to regulate the activity of Lon protease. PMID:24874800

  13. Corticosterone Blocks Ovarian Cyclicity and the LH Surge via Decreased Kisspeptin Neuron Activation in Female Mice

    PubMed Central

    Luo, Elena; Stephens, Shannon B. Z.; Chaing, Sharon; Munaganuru, Nagambika; Kauffman, Alexander S.

    2016-01-01

    Stress elicits activation of the hypothalamic-pituitary-adrenal axis, which leads to enhanced circulating glucocorticoids, as well as impaired gonadotropin secretion and ovarian cyclicity. Here, we tested the hypothesis that elevated, stress-levels of glucocorticoids disrupt ovarian cyclicity by interfering with the preovulatory sequence of endocrine events necessary for the LH surge. Ovarian cyclicity was monitored in female mice implanted with a cholesterol or corticosterone (Cort) pellet. Cort, but not cholesterol, arrested cyclicity in diestrus. Subsequent studies focused on the mechanism whereby Cort stalled the preovulatory sequence by assessing responsiveness to the positive feedback estradiol signal. Ovariectomized mice were treated with an LH surge-inducing estradiol implant, as well as Cort or cholesterol, and assessed several days later for LH levels on the evening of the anticipated surge. All cholesterol females showed a clear LH surge. At the time of the anticipated surge, LH levels were undetectable in Cort-treated females. In situ hybridization analyses the anteroventral periventricular nucleus revealed that Cort robustly suppressed the percentage of Kiss1 cells coexpressing cfos, as well as reduced the number of Kiss1 cells and amount of Kiss1 mRNA per cell, compared with expression in control brains. In addition, Cort blunted pituitary expression of the genes encoding the GnRH receptor and LHβ, indicating inhibition of gonadotropes during the blockage of the LH surge. Collectively, our findings support the hypothesis that physiological stress-levels of Cort disrupts ovarian cyclicity, in part, through disruption of positive feedback mechanisms at both the hypothalamic and pituitary levels which are necessary for generation of the preovulatory LH surge. PMID:26697722

  14. Effects of Acetazolamide on the Unrinary Excretion of Cyclic AMP and on the Activity of Renal Adenyl Cyclase

    PubMed Central

    Rodriguez, Hector J.; Walls, John; Yates, Jesse; Klahr, Saulo

    1974-01-01

    Acetazolamide, an inhibitor of the enzyme carbonic anhydrase, increased the urinary excretion of cyclic AMP in normal and parathyroidectomized rats. The increase was greater in rats with intact parathyroid glands than in parathyroidectomized rats. This rise in the urinary excretion of cyclic AMP was not due to an increase in urine flow or a change in urine pH. Furosemide caused an increase in urine flow, but did not affect the excretion of cyclic AMP or phosphate. Alkalinization of the urine with bicarbonate did not increase the urinary excretion of phosphate or cyclic AMP. Acetazolamide increased the productionof cyclic AMP by rat renal cortical slices in vitro. This effect was dose-dependent. Acetazolamide also stimulated the activity of renal cortical adenyl cyclase in a dose-dependent manner but had no effect on the activity of cyclic nucleotide phosphodiesterase. The pattern of urinary excretion of cyclic AMP and phosphate after administration of acetazolamide was similar to that observed in rats given parathyroid hormone. It is suggested that acetazolamide stimulates the renal production of cyclic AMP by activating adenyl cyclase and that this may be the mechanism by which this inhibitor of carbonic anhydrase produces phosphaturia. PMID:4357608

  15. The importance of cyclic structure for Labaditin on its antimicrobial activity against Staphylococcus aureus.

    PubMed

    Barbosa, Simone C; Nobre, Thatyane M; Volpati, Diogo; Ciancaglini, Pietro; Cilli, Eduardo M; Lorenzón, Esteban N; Oliveira, Osvaldo N

    2016-12-01

    Antimicrobial resistance has reached alarming levels in many countries, thus leading to a search for new classes of antibiotics, such as antimicrobial peptides whose activity is exerted by interacting specifically with the microorganism membrane. In this study, we investigate the molecular-level mechanism of action for Labaditin (Lo), a 10-amino acid residue cyclic peptide from Jatropha multifida with known bactericidal activity against Streptococcus mutans. We show that Lo is also effective against Staphylococcus aureus (S. aureus) but this does not apply to its linear analogue (L1). Using polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS), we observed with that the secondary structure of Lo was preserved upon interacting with Langmuir monolayers from a phospholipid mixture mimicking S. aureus membrane, in contrast to L1. This structure preservation for the rigid, cyclic Lo is key for the self-assembly of peptide nanotubes that induce pore formation in large unilamellar vesicles (LUVs), according to permeability assays and dynamic light scattering measurements. In summary, the comparison between Labaditin (Lo) and its linear analogue L1 allowed us to infer that the bactericidal activity of Lo is more related to its interaction with the membrane. It does not require specific metabolic targets, which makes cyclic peptides promising for antibiotics without bacteria resistance.

  16. Cyclic nucleotide phosphodiesterase activity in 10-nm filaments and microtubule preparations from bovine brain

    PubMed Central

    Runge, Marschall S.; Hewgley, Paula B.; Puett, David; Williams, Robley C.

    1979-01-01

    Cyclic nucleotide phosphodiesterase activity (3′:5′-cyclic-AMP 5′-nucleotidohydrolase, EC 3.1.4.17), which is activatable by Ca2+-dependent regulator protein (CDR), has been identified in cycled microtubule preparations from bovine brain. By using various methods to fractionate the microtubule preparation into subfractions (e.g., phosphocellulose chromatography to obtain purified 6S tubulin and soluble microtubule-associated proteins, and gel exclusion chromatography on Bio-Gel A-150m to obtain 10-nm filaments), we found that all the fractions exhibited some enzymic activity, but that most of the phosphodiesterase activity was localized in the 10-nm filament fraction. By using cyclic GMP as substrate, a specific activity of 921 ± 168 pmol/mg of filament protein·min was determined. Also, 10-nm filaments were prepared directly from brain homogenates by differential centrifugation and gel exclusion chromatography. This fraction also contained phosphodiesterase activity but of slightly lower specific activity (752 ± 9 pmol/mg of protein·min). The filament-associated enzymic activity was stable during storage (-70°C) and to several salt extractions at moderate ionic strength (0.5 M); the latter finding indicates that the phosphodiesterase is not adsorbed to the filaments via nonspecific electrostatic interactions. Although a chelating agent was present in the initial homogenization buffer and generally in all buffers used in preparing fractions, an activator of a smooth muscle phosphodiesterase was released upon boiling the 10-nm filaments. This activator obtained in the boiled supernatant was Ca2+-sensitive, trifluoperazine-sensitive, and stimulated smooth muscle phosphodiesterase to nearly the same extent as purified (exogenous) CDR; thus, it probably represents filament-associated CDR. Images PMID:223149

  17. ZD7288 inhibits low-threshold Ca(2+) channel activity and regulates sperm function.

    PubMed

    Felix, Ricardo; Sandoval, Alejandro; Sánchez, Daniel; Gómora, Juan Carlos; De la Vega-Beltrán, José L; Treviño, Claudia L; Darszon, Alberto

    2003-11-07

    In this study, ZD7288, a blocker of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels, has been found to inhibit the mouse sperm acrosome reaction (AR). HCN channels have not yet been either recorded or implicated in mouse sperm AR, but low-threshold (T-type) Ca(2+) channels have. Interestingly, ZD7288 blocked native T-type Ca(2+) currents in mouse spermatogenic cells with an IC(50) of about 100 microM. This blockade was more effective at voltages producing low levels of inactivation, suggesting a differential affinity of ZD7288 for different channel conformations. Furthermore, ZD7288 inhibited all cloned T-type but not high-threshold N-type channels heterologously expressed in HEK-293 cells. Our results further support the role of T-type Ca(2+) channels in the mouse sperm AR.

  18. Extracellular modulation of the silkmoth sex pheromone receptor activity by cyclic nucleotides.

    PubMed

    Nakagawa, Tatsuro; Touhara, Kazushige

    2014-01-01

    Odorants and pheromones are essential to insects as chemical cues for finding food or an appropriate mating partner. These volatile compounds bind to olfactory receptors (Ors) expressed by olfactory sensory neurons. Each insect Or functions as a ligand-gated ion channel and is a heteromeric complex that comprises one type of canonical Or and a highly conserved Orco subunit. Because there are many Or types, insect Ors can recognize with high specificity a myriad of chemical cues. Cyclic nucleotides can modulate the activity of insect Or-Orco complexes; however, the mechanism of action of these nucleotides is under debate. Here, we show that cyclic nucleotides, including cAMP and cGMP, interact with the silkmoth sex pheromone receptor complex, BmOr-1-BmOrco, from the outside of the cell and that these nucleotides act as antagonists at low concentrations and weak agonists at high concentrations. These cyclic nucleotides do not compete with the sex pheromone, bombykol, for binding to the BmOr-1 subunit. ATP and GTP also weakly inhibited BmOr-1-BmOrco activity, but D-ribose had no effect; these findings indicated that the purine moiety was crucial for the inhibition. Only the bombykol receptors have been so far shown to be subject to modulation by nucleotide-related compounds, indicating that this responsiveness to these compounds is not common for all insect Or-Orco complexes.

  19. Translation of structure-activity relationships from cyclic mixed efficacy opioid peptides to linear analogues.

    PubMed

    Anand, Jessica P; Porter-Barrus, Vanessa R; Waldschmidt, Helen V; Yeomans, Larisa; Pogozheva, Irina D; Traynor, John R; Mosberg, Henry I

    2014-01-01

    Most opioid analgesics used in the treatment of pain are mu opioid receptor (MOR) agonists. While effective, there are significant drawbacks to opioid use, including the development of tolerance and dependence. However, the coadministration of a MOR agonist with a delta opioid receptor (DOR) antagonist slows the development of MOR-related side effects, while maintaining analgesia. We have previously reported a series of cyclic mixed efficacy MOR agonist/DOR antagonist ligands. Here we describe the transfer of key features from these cyclic analogs to linear sequences. Using the linear MOR/DOR agonist, Tyr-DThr-Gly-Phe-Leu-Ser-NH2 (DTLES), as a lead scaffold, we replaced Phe(4) with bulkier and/or constrained aromatic residues shown to confer DOR antagonism in our cyclic ligands. These replacements failed to confer DOR antagonism in the DTLES analogs, presumably because the more flexible linear ligands can adopt binding poses that will fit in the narrow binding pocket of the active conformations of both MOR and DOR. Nonetheless, the pharmacological profile observed in this series, high affinity and efficacy for MOR and DOR with selectivity relative to KOR, has also been shown to reduce the development of unwanted side effects. We further modified our lead MOR/DOR agonist with a C-terminal glucoserine to improve bioavailability. The resulting ligand displayed high efficacy and potency at both MOR and DOR and no efficacy at KOR.

  20. Effect of knowledge integration activities on students' perception of the earth's crust as a cyclic system

    NASA Astrophysics Data System (ADS)

    Kali, Yael; Orion, Nir; Eylon, Bat-Sheva

    2003-08-01

    Systems thinking is regarded as a high-order thinking skill required in scientific, technological, and everyday domains. However, little is known about systems thinking in the context of science education. In the current research, students' understanding of the rock cycle system after a learning program was characterized, and the effect of a concluding knowledge integration activity on their systems thinking was studied. Answers to an open-ended test were interpreted using a systems thinking continuum, ranging from a completely static view of the system to an understanding of the system's cyclic nature. A meaningful improvement in students' views of the rock cycle toward the higher side of the systems thinking continuum was found after the knowledge integration activity. Students became more aware of the dynamic and cyclic nature of the rock cycle, and their ability to construct sequences of processes representing material transformation in relatively large chunks significantly improved. Success of the knowledge integration activity stresses the importance of postknowledge acquisition activities, which engage students in a dual process of differentiation of their knowledge and reintegration in a systems context. We suggest including such activities in curricula involving systems-based contents, particularly in earth science, in which systems thinking can bring about environmental literacy.

  1. Design and activity of a cyclic mini-β-defensin analog: a novel antimicrobial tool

    PubMed Central

    Scudiero, Olga; Nigro, Ersilia; Cantisani, Marco; Colavita, Irene; Leone, Marilisa; Mercurio, Flavia Anna; Galdiero, Massimiliano; Pessi, Antonello; Daniele, Aurora; Salvatore, Francesco; Galdiero, Stefania

    2015-01-01

    We have designed a cyclic 17-amino acid β-defensin analog featuring a single disulfide bond. This analog, designated “AMC” (ie, antimicrobial cyclic peptide), combines the internal hydrophobic domain of hBD1 and the C-terminal charged region of hBD3. The novel peptide was synthesized and characterized by nuclear magnetic resonance spectroscopy. The antimicrobial activities against gram-positive and gram-negative bacteria as well as against herpes simplex virus type 1 were analyzed. The cytotoxicity and serum stability were assessed. Nuclear magnetic resonance of AMC in aqueous solution suggests that the structure of the hBD1 region, although not identical, is preserved. Like the parent defensins, AMC is not cytotoxic for CaCo-2 cells. Interestingly, AMC retains the antibacterial activity of the parent hBD1 and hBD3 against Pseudomonas aeruginosa, Enterococcus faecalis, and Escherichia coli, and exerts dose-dependent activity against herpes simplex virus type 1. Moreover, while the antibacterial and antiviral activities of the oxidized and reduced forms of the parent defensins are similar, those of AMC are significantly different, and oxidized AMC is also considerably more stable in human serum. Taken together, our data also suggest that this novel peptide may be added to the arsenal of tools available to combat antibiotic-resistant infectious diseases, particularly because of its potential for encapsulation in a nanomedicine vector. PMID:26508857

  2. Pharmacological properties of novel cyclic pentapeptides with µ-opioid receptor agonist activity.

    PubMed

    Perlikowska, Renata; Piekielna, Justyna; Fichna, Jakub; do-Rego, Jean Claude; Toth, Geza; Janecki, Tomasz; Janecka, Anna

    2014-03-01

    In our previous paper we have reported the synthesis and biological activity of a cyclic analog, Tyr-c(D-Lys- Phe-Phe-Asp)-NH2, based on endomorphin-2 (EM-2) structure. This analog displayed high affinity for the µ-opioid receptor, was much more stable than EM-2 in rat brain homogenate and showed remarkable antinociceptive activity after intracerebroventricular (i.c.v.) injection. Even more importantly, the cyclic analog elicited weak analgesia also after peripheral administration, giving evidence that it was able to cross, at least to some extent, the blood-brain barrier (BBB). Here we describe further modifications of this analog aimed at enhancing brain delivery by increasing lipophilicity. Two new cyclic pentapeptides, Tyr-c(D-Lys-D-1-Nal-Phe-Asp)-NH2 and Tyr-c(D-Lys-D-2-Nal-Phe-Asp)-NH2 (where 1-Nal=1- naphthyl-3-alanine, 2-Nal=2-naphthyl-3-alanine) were synthesized and evaluated in biological assays. Both analogs showed high µ-opioid receptor affinity and agonist activity and were stable in the rat brain homogenates. Unfortunately, the increase of lipophilicity was achieved at the expense of water solubility. The analog with D-2-Nal residue showed strong analgesic effect when given i.c.v. but could not be tested after intravenous (i.v.) administration where higher concentrations of the compound are required. However, this analog showed inhibitory effect on gastrointestinal (GI) motility in vivo, providing an interesting approach to the development of peripherally restricted agents that could be useful for studying gastrointestinal disorders in animal models.

  3. Cyclic-GMP-dependent protein kinase inhibits the Ras/Mitogen-activated protein kinase pathway.

    PubMed

    Suhasini, M; Li, H; Lohmann, S M; Boss, G R; Pilz, R B

    1998-12-01

    Agents which increase the intracellular cyclic GMP (cGMP) concentration and cGMP analogs inhibit cell growth in several different cell types, but it is not known which of the intracellular target proteins of cGMP is (are) responsible for the growth-suppressive effects of cGMP. Using baby hamster kidney (BHK) cells, which are deficient in cGMP-dependent protein kinase (G-kinase), we show that 8-(4-chlorophenylthio)guanosine-3', 5'-cyclic monophosphate and 8-bromoguanosine-3',5'-cyclic monophosphate inhibit cell growth in cells stably transfected with a G-kinase Ibeta expression vector but not in untransfected cells or in cells transfected with a catalytically inactive G-kinase. We found that the cGMP analogs inhibited epidermal growth factor (EGF)-induced activation of mitogen-activated protein (MAP) kinase and nuclear translocation of MAP kinase in G-kinase-expressing cells but not in G-kinase-deficient cells. Ras activation by EGF was not impaired in G-kinase-expressing cells treated with cGMP analogs. We show that activation of G-kinase inhibited c-Raf kinase activation and that G-kinase phosphorylated c-Raf kinase on Ser43, both in vitro and in vivo; phosphorylation of c-Raf kinase on Ser43 uncouples the Ras-Raf kinase interaction. A mutant c-Raf kinase with an Ala substitution for Ser43 was insensitive to inhibition by cGMP and G-kinase, and expression of this mutant kinase protected cells from inhibition of EGF-induced MAP kinase activity by cGMP and G-kinase, suggesting that Ser43 in c-Raf is the major target for regulation by G-kinase. Similarly, B-Raf kinase was not inhibited by G-kinase; the Ser43 phosphorylation site of c-Raf is not conserved in B-Raf. Activation of G-kinase induced MAP kinase phosphatase 1 expression, but this occurred later than the inhibition of MAP kinase activation. Thus, in BHK cells, inhibition of cell growth by cGMP analogs is strictly dependent on G-kinase and G-kinase activation inhibits the Ras/MAP kinase pathway (i) by

  4. 2',3'-cyclic nucleotide phosphohydrolase activity determined using an image analyzer detection system.

    PubMed

    Jacks, A S; Jones, M A

    1990-02-01

    The activity of 2',3'-cyclic nucleotide phosphohydrolase (CNPase) was assayed using high-performance thin-layer chromatography (HPTLC) and an image analyzer detection system. The assay system was used to study a possible inhibitory effect by aminoguanidine on CNPase specific activity. One advantage of using a fixed-time HPTLC system over a real-time spectrophotometric system for an enzyme activity study was that apparent inhibition of the enzyme due to interference of the assay system (chromophore inhibition, etc.) was avoided. In addition, due to the increased accuracy of the image analyzer over conventional methods of TLC plate analysis, a rapid and more accurate measurement of HPTLC plates was possible which required only nanomole amounts of substrate. Also, a digital image of each plate analyzed was stored indefinitely in the computer's memory for future reference. The measurements of CNPase specific activity made using this system compared favorably to those found in recent literature.

  5. Characterization of the 2',3' cyclic phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase-phosphatase and bacteriophage lambda phosphatase.

    PubMed

    Keppetipola, Niroshika; Shuman, Stewart

    2007-01-01

    Clostridium thermocellum polynucleotide kinase-phosphatase (CthPnkp) catalyzes 5' and 3' end-healing reactions that prepare broken RNA termini for sealing by RNA ligase. The central phosphatase domain of CthPnkp belongs to the dinuclear metallophosphoesterase superfamily exemplified by bacteriophage lambda phosphatase (lambda-Pase). CthPnkp is a Ni(2+)/Mn(2+)-dependent phosphodiesterase-monoesterase, active on nucleotide and non-nucleotide substrates, that can be transformed toward narrower metal and substrate specificities via mutations of the active site. Here we characterize the Mn(2+)-dependent 2',3' cyclic nucleotide phosphodiesterase activity of CthPnkp, the reaction most relevant to RNA repair pathways. We find that CthPnkp prefers a 2',3' cyclic phosphate to a 3',5' cyclic phosphate. A single H189D mutation imposes strict specificity for a 2',3' cyclic phosphate, which is cleaved to form a single 2'-NMP product. Analysis of the cyclic phosphodiesterase activities of mutated CthPnkp enzymes illuminates the active site and the structural features that affect substrate affinity and k(cat). We also characterize a previously unrecognized phosphodiesterase activity of lambda-Pase, which catalyzes hydrolysis of bis-p-nitrophenyl phosphate. lambda-Pase also has cyclic phosphodiesterase activity with nucleoside 2',3' cyclic phosphates, which it hydrolyzes to yield a mixture of 2'-NMP and 3'-NMP products. We discuss our results in light of available structural and functional data for other phosphodiesterase members of the binuclear metallophosphoesterase family and draw inferences about how differences in active site composition influence catalytic repertoire.

  6. Cyclic alkyl amino carbene (CAAC) ruthenium complexes as remarkably active catalysts for ethenolysis

    SciTech Connect

    Marx, Vanessa M.; Sullivan, Alexandra H.; Melaimi, Mohand; Virgil, Scott C.; Keitz, Benjamin K.; Weinberger, David S.; Bertrand, Guy; Grubbs, Robert H.

    2014-12-17

    In this paper, an expanded family of ruthenium-based metathesis catalysts bearing cyclic alkyl amino carbene (CAAC) ligands was prepared. These catalysts exhibited exceptional activity in the ethenolysis of the seed-oil derivative methyl oleate. In many cases, catalyst turnover numbers (TONs) of more than 100,000 were achieved, at a catalyst loading of only 3 ppm. Remarkably, the most active catalyst system was able to achieve a TON of 340 000, at a catalyst loading of only 1 ppm. Finally, this is the first time a series of metathesis catalysts has exhibited such high performance in cross-metathesis reactions employing ethylene gas, with activities sufficient to render ethenolysis applicable to the industrial-scale production of linear α-olefins (LAOs) and other terminal-olefin products.

  7. Cyclic alkyl amino carbene (CAAC) ruthenium complexes as remarkably active catalysts for ethenolysis

    DOE PAGES

    Marx, Vanessa M.; Sullivan, Alexandra H.; Melaimi, Mohand; ...

    2014-12-17

    In this paper, an expanded family of ruthenium-based metathesis catalysts bearing cyclic alkyl amino carbene (CAAC) ligands was prepared. These catalysts exhibited exceptional activity in the ethenolysis of the seed-oil derivative methyl oleate. In many cases, catalyst turnover numbers (TONs) of more than 100,000 were achieved, at a catalyst loading of only 3 ppm. Remarkably, the most active catalyst system was able to achieve a TON of 340 000, at a catalyst loading of only 1 ppm. Finally, this is the first time a series of metathesis catalysts has exhibited such high performance in cross-metathesis reactions employing ethylene gas, withmore » activities sufficient to render ethenolysis applicable to the industrial-scale production of linear α-olefins (LAOs) and other terminal-olefin products.« less

  8. Device and software used to carry out Cyclic Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Castro-García, M. P.; Rey-Ronco, M. A.; Alonso-Sánchez, T.

    2014-11-01

    This paper discusses the device and software used to carry out Cyclic Neutron Activation Analysis (CNAA). The aim of this investigation is defining through this device the fluorite content present on different samples from fluorspar concentration plant through the DGNAA (Delayed Gamma Neutron Activation Analysis) method. This device is made of americium-beryllium neutron source, NaI (2"×2") and BGO (2"×2") gamma rays detectors, multichannel and an automatic mechanism which moves the samples from activation and reading position. This mechanism is controlled by a software which allows moving the samples precisely and in a safe way (~ms), which it is very useful when the radioactive isotopes have to be detected with a half time less than 8s.

  9. Synthesis and antifungal activities of glycosylated derivatives of the cyclic peptide fungicide caspofungin.

    PubMed

    Guo, Junxiang; Hu, Honggang; Zhao, Qingjie; Wang, Ting; Zou, Yan; Yu, Shichong; Wu, Qiuye; Guo, Zhongwu

    2012-08-01

    Diseases caused by systemic fungal infections have become a significant clinical problem in recent decades. A series of glycosyl derivatives of the approved cyclic peptide antifungal drug caspofungin conjugated with β-D-glucopyranose, β-D-galactopyranose, β-D-xylopyranose, β-L-rhamnopyranose, β-maltose and β-lactose units were designed, synthesized, and evaluated as new potential antifungal drugs. The compounds were obtained by coupling the corresponding glycosyl amines to the free primary amino groups of caspofungin through a bifunctional glutaryl linker. In contrast to caspofungin, these glycosylated derivatives are soluble in water, but are not hygroscopic and moreover, are more stable than caspofungin under high humidity and temperature. CD studies showed that glycosylation has very little impact on the conformation of the cyclic peptide of caspofungin. In vitro antifungal tests against seven human pathogenic fungi revealed that the caspofungin-monosaccharide conjugates, but not the disaccharide conjugates, have increased antifungal activities against the majority of tested fungus species relative to caspofungin. The β-D-glucopyranosyl derivative 2 a showed the strongest and broadest antifungal activity, providing a lead for further studies.

  10. Variation in cyclic nucleotide levels and lysosomal enzyme activities in the irradiated rat

    SciTech Connect

    Trocha, P.J.; Catravas, G.N.

    1980-09-01

    Whole-body irradiation of rats causes not only a release of hydrolases from the lysosomes but also fluctuations in the cyclic nucleotide levels in spleen and liver tissues. Significant increases in lysosomal enzyme activities were further observed in spleen following radiation treatment. At 3 to 6 hr after rats were exposed to ..gamma.. radiation, transient increases in both cGMP and cAMP levels were accompanied with the release of ..beta..-glucuronidase and acid phosphatase enzymes from lysosomes in liver and spleen tissues. A second transitory release and activation of lysosomal hydrolases and an increase in cAMP levels occurred between 2 and 5 days after irradiation in spleen but not in liver. On Days 7 and 8, there was a third release of lysosomal hydrolases and a slight increase in the spleen cAMP concentration before they returned to near-control values. Cyclic GMP levels in the spleen decreased on the third day after irradiation, remained suppressed until Day 9, and then increased to levels higher than normal physiological values. The liver cGMP concentration remained unchanged between 9 hr and 11 days after irradiation.

  11. The intrinsically liganded cyclic nucleotide-binding homology domain promotes KCNH channel activation.

    PubMed

    Zhao, Yaxian; Goldschen-Ohm, Marcel P; Morais-Cabral, João H; Chanda, Baron; Robertson, Gail A

    2017-02-01

    Channels in the ether-à-go-go or KCNH family of potassium channels are characterized by a conserved, C-terminal domain with homology to cyclic nucleotide-binding homology domains (CNBhDs). Instead of cyclic nucleotides, two amino acid residues, Y699 and L701, occupy the binding pocket, forming an "intrinsic ligand." The role of the CNBhD in KCNH channel gating is still unclear, however, and a detailed characterization of the intrinsic ligand is lacking. In this study, we show that mutating both Y699 and L701 to alanine, serine, aspartate, or glycine impairs human EAG1 channel function. These mutants slow channel activation and shift the conductance-voltage (G-V) relation to more depolarized potentials. The mutations affect activation and the G-V relation progressively, indicating that the gating machinery is sensitive to multiple conformations of the CNBhD. Substitution with glycine at both sites (GG), which eliminates the side chains that interact with the binding pocket, also reduces the ability of voltage prepulses to populate more preactivated states along the activation pathway (i.e., the Cole-Moore effect), as if stabilizing the voltage sensor in deep resting states. Notably, deletion of the entire CNBhD (577-708, ΔCNBhD) phenocopies the GG mutant, suggesting that GG is a loss-of-function mutation and the CNBhD requires an intrinsic ligand to exert its functional effects. We developed a kinetic model for both wild-type and ΔCNBhD mutant channels that describes all our observations on activation kinetics, the Cole-Moore shift, and G-V relations. These findings support a model in which the CNBhD both promotes voltage sensor activation and stabilizes the open pore. The intrinsic ligand is critical for these functional effects.

  12. Mechanisms of Earth activity forsed by external celestial bodies:energy budjet and nature of cyclicity

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.; Ferrandiz, J. M.

    2003-04-01

    In given report we discuss tidal and non-tidal mechanisms of forced tectonic (endogenous) activity of the Earth caused by gravitational attraction of the Moon, Sun and the planets. On the base of the classical solution of the problem of elasticity for model of the Earth with concentric mass distribution the evaluations of the tidal energy and power of Earth lunar-solar deformations, including their joint effect, were obtained. Important role of the joint energetic effect of rotational deformation of the Earth with lunar and solar tides was illustrated. Gravitational interaction of the Moon and Sun with non-spherical, non-homogeneous shells of the Earth generates big additional mechanical forces and moments of the interaction of the neighboring shells (rigid core, liquid core, mantle, lithosphere and separate plates). Acting of these forces and moments in the different time scales on the corresponding sells generates cyclic perturbations of the tensional state of the shells, their deformations, small relative translational displacements and small relative rotational oscillations of the shells. In geological period of time it leads to a fundamental tectonic reconstruction of the Earth. These additional forces and moments of the cyclic celestial-mechanical nature produce cyclic deformations of the all layers of the body and organize and control practically all natural processes. The additional force between mantle and core is cyclic and characterized by the wide basis of frequencies typical for orbital motions (of the Sun, Moon and planets), for rotational motion of the Earth, Moon and Sun and for many from observed natural processes. The problem about small relative translatory-rotary motion of the two shells separated by the thin viscous-elastic layer is studied. The differential equations of motion were obtained and have been studied in particular cases (plane motion of system; case of two axisymmetrical interacting shells and oth.) by approximate methods of small

  13. Rescue of Cyclic AMP Mediated Long Term Potentiation Impairment in the Hippocampus of Mecp2 Knockout (Mecp2(-/y) ) Mice by Rolipram.

    PubMed

    Balakrishnan, Saju; Niebert, Marcus; Richter, Diethelm W

    2016-01-01

    Rett syndrome (RTT) patients experience learning difficulties and memory loss. Analogous deficits of hippocampal plasticity are reported in mouse models of RTT. To elucidate the underlying pathophysiology, we studied long term potentiation (LTP) at the CA3 to CA1 synapses in the hippocampus in acute brain slices from WT and Mecp2(-/y) mice, by either activating cAMP dependent pathway or using high frequency stimulation, by means of patch clamp. We have observed that, the NMDA channel current characteristics remain unchanged in the Mecp2(-/y) mice. The adenylyl cyclase (AC) agonist forskolin evoked a long lasting potentiation of evoked EPSCs in WT CA1 neurons, but only minimally enhanced the EPSCs in the Mecp2(-/y) mice. This weaker potentiation in Mecp2 (-/) (y) mice was ameliorated by application of phosphodiesterase 4 inhibitor rolipram. The hyperpolarization activated cyclic nucleotide gated channel current (I h) was potentiated to similar extent by forskolin in both phenotypes. Multiple tetanus induced cAMP-dependent plasticity was also impaired in the Mecp2 (-/) (y) mice, and was also partially rescued by rolipram. Western blot analysis of CA region of Mecp2 (-/) (y) mice hippocampus revealed more than twofold up-regulation of protein kinase A (PKA) regulatory subunits, while the expression of the catalytic subunit remained unchanged. We hypothesize that the overexpressed PKA regulatory subunits buffer cAMP and restrict the PKA mediated phosphorylation of target proteins necessary for LTP. Blocking the degradation of cAMP, thereby saturating the regulatory subunits alleviated this defect.

  14. The Characterization of Escherichia coli CpdB as a Recombinant Protein Reveals that, besides Having the Expected 3´-Nucleotidase and 2´,3´-Cyclic Mononucleotide Phosphodiesterase Activities, It Is Also Active as Cyclic Dinucleotide Phosphodiesterase

    PubMed Central

    López-Villamizar, Iralis; Cabezas, Alicia; Pinto, Rosa María; Canales, José; Ribeiro, João Meireles; Cameselle, José Carlos; Costas, María Jesús

    2016-01-01

    Endogenous cyclic diadenylate phosphodiesterase activity was accidentally detected in lysates of Escherichia coli BL21. Since this kind of activity is uncommon in Gram-negative bacteria, its identification was undertaken. After partial purification and analysis by denaturing gel electrophoresis, renatured activity correlated with a protein identified by fingerprinting as CpdB (cpdB gene product), which is annotated as 3´-nucleotidase / 2´,3´-cyclic-mononucleotide phosphodiesterase, and it is synthesized as a precursor protein with a signal sequence removable upon export to the periplasm. It has never been studied as a recombinant protein. The coding sequence of mature CpdB was cloned and expressed as a GST fusion protein. The study of the purified recombinant protein, separated from GST, confirmed CpdB annotation. The assay of catalytic efficiencies (kcat/Km) for a large substrate set revealed novel CpdB features, including very high efficiencies for 3´-AMP and 2´,3´-cyclic mononucleotides, and previously unknown activities on cyclic and linear dinucleotides. The catalytic efficiencies of the latter activities, though low in relative terms when compared to the major ones, are far from negligible. Actually, they are perfectly comparable to those of the ‘average’ enzyme and the known, bona fide cyclic dinucleotide phosphodiesterases. On the other hand, CpdB differs from these enzymes in its extracytoplasmic location and in the absence of EAL, HD and DHH domains. Instead, it contains the domains of the 5´-nucleotidase family pertaining to the metallophosphoesterase superfamily, although CpdB lacks 5´-nucleotidase activity. The possibility that the extracytoplasmic activity of CpdB on cyclic dinucleotides could have physiological meaning is discussed. PMID:27294396

  15. Effect of ionizing irradiation on the physiological activity of cyclic adenosine monophosphate on smooth muscle preparations.

    PubMed

    Schachinger, L; Michailov, M; Owusa Daaku, S; Prechter, I; Klöter, H; Schippel, C

    1982-01-01

    The effect of ionizing irradiation on the physiological activity of cyclic adenosine monophosphate (cAMP) in smooth muscle preparations from frog lung was studied. cAMP, given as dibutyryl salt (dib-cAMP) inhibited the radiation induced contractions of the muscle in a manner similar to the action of theophylline. In vitro irradiation of dib-cAMP resulted in an alteration of the chemical structure of this substance, i.e., formation of monobutyryl-cAMP and further derivatives as well as a decomposition of the purine structure. There was also a loss of the relaxing activity of irradiated cAMP on the muscle tone of frog lung preparations. The physiologically measured inactivation of dib-cAMP was far more pronounced than the chemical alteration. An inhibitory effect of the reaction products is postulated.

  16. A new cyclic dipeptide penicimutide: the activated production of cyclic dipeptides by introduction of neomycin-resistance in the marine-derived fungus Penicillium purpurogenum G59.

    PubMed

    Wang, Nan; Cui, Cheng-Bin; Li, Chang-Wei

    2016-06-01

    A novel cyclic dipeptide, named penicimutide (1), and four known cyclic dipeptides, cyclo(L-Val-L-Pro) (2), cyclo(L-Ile-L-Pro) (3), cyclo(L-Leu-L-Pro) (4) and cyclo(L-Phe-L-Pro) (5), were isolated from a neomycin-resistant mutant of the marine-derived fungus Penicillium purpurogenum G59. The structure of 1, including the absolute configuration, was determined by spectroscopic and chemical methods, especially NMR and Marfey's analysis. An unusual amino acid in 1, 4,5-didehydro-L-leucine, was found for the first time occurring in nature. HPLC-ESI-MS analysis evidenced that 1-3 were produced only in the mutant strain, but 4 and 5 were produced in both the mutant and parental strains, indicating that the introduction of neomycin-resistance in the mutant activated pathways of 1-3 biosynthesis that were silent in the parental strain. Compound 1 selectively inhibited HeLa cells (among five tested human cancer cell lines) with an inhibition rate (IR %) of 39.4 % at 100 µg/mL, a similar inhibition intensity to that of the positive control 5-fluorouracil (IR % of 41.4 % at 100 µg/mL against HeLa cells). The present work exemplifies the effectiveness of our previous DMSO-mediated method for introducing drug-resistance in fungi to activate silent biosynthetic pathways to obtain new bioactive compounds.

  17. Cyclic modulation of semi-active controllable dampers for tonal vibration isolation

    NASA Astrophysics Data System (ADS)

    Anusonti-Inthra, P.; Gandhi, F.

    2004-08-01

    The present study examines the potential of using a semi-active controllable damper, whose damping coefficient can be modulated in real time, for tonal vibration isolation applications. A frequency-domain control algorithm is developed for determining the damping coefficient variation (at twice the disturbance frequency) that minimizes the force transmitted to the support at the disturbance frequency. The effectiveness of open-loop, closed-loop, and adaptive controllers in rejecting the transmitted disturbances are evaluated. The results of the study indicate that when limits in damping coefficient variation are considered, the support force could be reduced by about an additional 30%, beyond the levels due to the passive isolation characteristics (no cyclic damping modulation). When the disturbance phase changes during operation, the effectiveness of the open-loop controller is rapidly degraded. While the closed-loop controller (with inputs based on current levels of force transmitted to the support) performed better, there was still some degradation in performance, and transmitted support forces were not reduced to levels prior to the change in disturbance phase. The results show that for the semi-active system to retain its effectiveness in rejecting disturbances, a closed-loop, adaptive controller (with on-line system identification) is required; even when there is only a change in disturbance, and no change in basic system properties. An explanation for this phenomenon, related to the bi-linear nature of the semi-active system, is provided. Cyclic modulations in the damping coefficient were more effective in reducing the transmitted forces at the disturbance frequency than simply reducing the baseline damping coefficient (to improve the passive isolation characteristics).

  18. G6PDH activity highlights the operation of the cyclic electron flow around PSI in Physcomitrella patens during salt stress

    PubMed Central

    Gao, Shan; Zheng, Zhenbing; Huan, Li; Wang, Guangce

    2016-01-01

    Photosynthetic performances and glucose-6-phosphate dehydrogenase (G6PDH) activity in Physcomitrella patens changed greatly during salt stress and recovery. In P. patens, the cyclic electron flow around photosystem (PS) I was much more tolerant to high salt stress than PSII. After high salt stress, the PSII activity recovered much more slowly than that of PSI, which was rapidly restored to pretreatment levels even as PSII was almost inactivate. This result suggested that after salt stress the recovery of the cyclic electron flow around PSI was independent of PSII activity. In addition, G6PDH activity and NADPH content increased under high salt stress. When G6PDH activity was inhibited by glucosamine (Glucm, a G6PDH inhibitor), the cyclic electron flow around PSI and the NADPH content decreased significantly. Additionally, after recovery in liquid medium containing Glucm, the PSI activity was much lower than in liquid medium without Glucm. These results suggested the PSI activity was affected significantly by G6PDH activity and the NADPH content. Based on the above results, we propose that G6PDH in P. patens has a close relationship with the photosynthetic process, possibly providing NADPH for the operation of the cyclic electron flow around PSI during salt stress and promoting the restoration of PSI. PMID:26887288

  19. Cyclic Lipopeptides with Herbicidal and Insecticidal Activities Produced by Bacillus clausii DTM1.

    PubMed

    Guo, Da-Le; Wan, Bo; Xiao, Shi-Ji; Allen, Sarah; Gu, Yu-Cheng; Ding, Li-Sheng; Zhoua, Yan

    2015-12-01

    Seven cyclic lipopeptide biosurfactants (1-7) were isolated for the first time from the fermentation broth of endophytic Bacillus clausii DTM1 and were identified as anteisoC13[Val7] surfactin-(L-Glu)-O-methyl-ester (1), anteisoC12[Val7] surfactin (2), anteisoC15[Val7] surfactin (3), isoC14[Leu7] surfactin (4), anteisoC12[Leu7] surfactin (5), nC13[Leu7] surfactin (6), and anteisoC14[Leu7] surfactin-(L-Glu)-O-methyl-ester (7); 1 has not been isolated before as a natural product from any source. Plate-based herbicide and insecticide bioassays showed that all compounds exhibited interesting insecticidal and herbicidal activities.

  20. Cyclic activation of histone H1 kinase during sea urchin egg mitotic divisions.

    PubMed

    Meijer, L; Pondaven, P

    1988-01-01

    Fertilized sea urchin eggs undergo a series of rapid and synchronized mitotic divisions. Extracts were made at various times throughout the first three mitotic divisions and assayed for phosphorylating activity toward histone H1. Histone H1 kinase (HH1K) undergoes a transient activation (8- to 10-fold increase) 20 min before each cleavage. The amplitude of the HH1K peak strongly depends on the synchrony of the egg population. Concomitant cytological observations show that the time-course of HH1K correlates with the time-course of nuclear envelope breakdown and of metaphase. This correlation is observed at each cell division cycle. HH1K from each of the three first mitoses show identical time- and concentration-dependence curves as well as identical dose-inhibition curves with 6-dimethylaminopurine and quercetin, suggesting that the same (group of) kinase(s) is (are) activated before each cleavage. Ionophore A23187 does not trigger, but inhibits, HH1K activation; however, partial activation of the eggs with ammonia at pH 9.0 (but not at pH 8.0) triggers the transient HH1K activation. Appearance of the HH1K cycle requires protein synthesis since it is completely abolished in emetine-treated eggs. Although cytochalasin B blocks egg cleavage, it does not inhibit HH1K activation nor nuclear divisions. A prolonged HH1K activation cycle is observed in eggs arrested in metaphase with colchicine or nocodazole. Despite the existence of a cycle in cAMP concentration during mitosis, forskolin, an activator of adenylate cyclase, does not modify the time-course of HH1K activation and of cell division. The cycling HH1K is independent of calcium-calmodulin, calcium-phospholipids, or cyclic AMP. It clearly resembles the mammalian "growth-associated histone kinase." The relationship between the transient activation of HH1K and the intracellular mitotic factors driving the cell cycle is discussed.

  1. Calcium phosphate/porous silicon biocomposites prepared by cyclic deposition methods: spin coating vs electrochemical activation.

    PubMed

    Hernandez-Montelongo, J; Gallach, D; Naveas, N; Torres-Costa, V; Climent-Font, A; García-Ruiz, J P; Manso-Silvan, M

    2014-01-01

    Porous silicon (PSi) provides an excellent platform for bioengineering applications due to its biocompatibility, biodegradability, and bioresorbability. However, to promote its application as bone engineering scaffold, deposition of calcium phosphate (CaP) ceramics in its hydroxyapatite (HAP) phase is in progress. In that sense, this work focuses on the synthesis of CaP/PSi composites by means of two different techniques for CaP deposition on PSi: Cyclic Spin Coating (CSC) and Cyclic Electrochemical Activation (CEA). Both techniques CSC and CEA consisted on alternate Ca and P deposition steps on PSi. Each technique produced specific morphologies and CaP phases using the same independent Ca and P stem-solutions at neutral pH and at room temperature. The brushite (BRU) phase was favored with the CSC technique and the hydroxyapatite (HAP) phase was better synthesized using the CEA technique. Analyses by elastic backscattering spectroscopy (EBS) on CaP/PSi structures synthesized by CEA supported that, by controlling the CEA parameters, an HAP coating with the required Ca/P atomic ratio of 1.67 can be promoted. Biocompatibility was evaluated by bone-derived progenitor cells, which grew onto CaP/PSi prepared by CSC technique with a long-shaped actin cytoskeleton. The density of adhered cells was higher on CaP/PSi prepared by CEA, where cells presented a normal morphological appearance and active mitosis. These results can be used for the design and optimization of CaP/PSi composites with enhanced biocompatibility for bone-tissue engineering.

  2. Estimating the rate constant of cyclic GMP hydrolysis by activated phosphodiesterase in photoreceptors

    NASA Astrophysics Data System (ADS)

    Reingruber, Jürgen; Holcman, David

    2008-10-01

    The early steps of light response occur in the outer segment of rod and cone photoreceptor. They involve the hydrolysis of cGMP, a soluble cyclic nucleotide, that gates ionic channels located in the outer segment membrane. We shall study here the rate by which cGMP is hydrolyzed by activated phosphodiesterase (PDE). This process has been characterized experimentally by two different rate constants βd and βsub: βd accounts for the effect of all spontaneously active PDE in the outer segment, and βsub characterizes cGMP hydrolysis induced by a single light-activated PDE. So far, no attempt has been made to derive the experimental values of βd and βsub from a theoretical model, which is the goal of this work. Using a model of diffusion in the confined rod geometry, we derive analytical expressions for βd and βsub by calculating the flux of cGMP molecules to an activated PDE site. We obtain the dependency of these rate constants as a function of the outer segment geometry, the PDE activation and deactivation rates and the aqueous cGMP diffusion constant. Our formulas show good agreement with experimental measurements. Finally, we use our derivation to model the time course of the cGMP concentration in a transversally well-stirred outer segment.

  3. Role of the S4-S5 Linker in CNG Channel Activation

    PubMed Central

    Kusch, Jana; Zimmer, Thomas; Holschuh, Jascha; Biskup, Christoph; Schulz, Eckhard; Nache, Vasilica; Benndorf, Klaus

    2010-01-01

    Cyclic nucleotide-gated (CNG) channels mediate sensory signal transduction in retinal and olfactory cells. The channels are activated by the binding of cyclic nucleotides to a cyclic nucleotide-binding domain (CNBD) in the C-terminus that is located at the intracellular side. The molecular events translating the ligand binding to the pore opening are still unknown. We investigated the role of the S4-S5 linker in the activation process by quantifying its interaction with other intracellular regions. To this end, we constructed chimeric channels in which the N-terminus, the S4-S5 linker, the C-linker, and the CNBD of the retinal CNGA1 subunit were systematically replaced by the respective regions of the olfactory CNGA2 subunit. Macroscopic concentration-response relations were analyzed, yielding the apparent affinity to cGMP and the Hill coefficient. The degree of functional coupling of intracellular regions in the activation gating was determined by thermodynamic double-mutant cycle analysis. We observed that all four intracellular regions, including the relatively short S4-S5 linker, are involved in controlling the apparent affinity of the channel to cGMP and, moreover, in determining the degree of cooperativity between the subunits, as derived from the Hill coefficient. The interaction energies reveal an interaction of the S4-S5 linker with both the N-terminus and the C-linker, but no interaction with the CNBD. PMID:20959089

  4. Modulation by cyclic GMP of the odour sensitivity of vertebrate olfactory receptor cells

    NASA Technical Reports Server (NTRS)

    Leinders-Zufall, T.; Shepherd, G. M.; Zufall, F.

    1996-01-01

    Recent evidence has indicated a significant role for the cGMP second messenger system in vertebrate olfactory transduction but no clear functions have been identified for cGMP so far. Here, we have examined the effects of 8-Br-cGMP and carbon monoxide (CO) on odour responses of salamander olfactory receptor neurons using perforated patch recordings. We report that 8-Br-cGMP strongly down-regulates the odour sensitivity of the cells, with a K1/2 of 460 nM. This adaptation-like effect can be mimicked by CO, an activator of soluble guanylyl cyclase, with a K1/2 of 1 microM. Sensitivity modulation is achieved through a regulatory chain of events in which cGMP stimulates a persistent background current due to the activation of cyclic nucleotide-gated channels. This in turn leads to sustained Ca2+ entry providing a negative feedback signal. One consequence of the Ca2+ entry is a shift to the right of the stimulus-response curve and a reduction in saturating odour currents. Together, these two effects can reduce the sensory generator current by up to twenty-fold. Thus, cGMP functions to control the gain of the G-protein coupled cAMP pathway. Another consequence of the action of cGMP is a marked prolongation of the odour response kinetics. The effects of CO/cGMP are long-lasting and can continue for minutes. Hence, we propose that cGMP helps to prevent saturation of the cell's response by adjusting the operational range of the cAMP cascade and contributes to olfactory adaptation by decreasing the sensitivity of olfactory receptor cells to repeated odour stimuli.

  5. Chain-breaking antioxidant activity and cyclic voltammetry characterization of polyphenols in a range of green, oolong, and black teas.

    PubMed

    Roginsky, Vitaly; Barsukova, Tatyana; Hsu, Chyong F; Kilmartin, Paul A

    2003-09-10

    A series of eight green, eight oolong, and 17 black teas have been analyzed for polyphenol content by absorbance at 272 nm and cyclic voltammetry response at an inert carbon electrode, a new method developed to provide a rapid measure of easily oxidizable polyphenols in beverages. The chain-breaking antioxidant activity of the teas has also been determined during the chain oxidation of methyl linoleate in a pH 7.4 micellar solution, for which realistic kinetic parameters have been derived. While higher mean values were obtained for green teas than for oolong and black teas, the differences were not large, and the spread of values within each type was considerable. The absorbance at 272 nm correlated well with the cyclic voltammetry response only for green teas and black teas taken on their own. The cyclic voltammetry measure and the antioxidant activity correlated well only for the green teas, where the polyphenol content is dominated by epigallocatechin gallate.

  6. Glial potassium channels activated by neuronal firing or intracellular cyclic AMP in Helix.

    PubMed

    Gommerat, I; Gola, M

    1996-09-15

    1. Cell-attached and whole cell patch clamp experiments were performed on satellite glial cells adhering to the cell body of neurones in situ within the nervous system of the snail Helix pomatia. The underlying neurone was under current or voltage-clamp control. 2. Neuronal firing induced a delayed (20-30 s) persistent (3-4 min) increase in the opening probability of glial K+ channels. The channels were also activated by perfusing the ganglion with a depolarizing high-K+ saline, except when the underlying neurone was prevented from depolarizing under voltage-clamp conditions. 3. Two K(+)-selective channels were detected in the glial membrane. The channel responding to neuronal firing was present in 95% of the patches (n = 393). It had a unitary conductance of 56 pS, a Na+ :K+ permeability ratio < 0.02 and displayed slight inward rectification in symmetrical [K+] conditions. It was sensitive to TEA, Ba2+ and Cs+. The following results refer to this channel as studied in the cell-attached configuration. 4. The glial K+ channel was activated by bath application of the membrane-permeant cyclic AMP derivatives 8-bromo-cAMP and dibutyryl-cAMP, the adenylyl cyclase activator forskolin and the diesterase inhibitors IBMX, theophylline and caffeine. It was insensitive to cyclic GMP activators and to conditions that might alter the intracellular [Ca2+] (ionomycin, low-Ca2+ saline and Ca2+ channel blockers). 5. The forskolin-induced changes in channel behaviour (open and closed time distributions, burst duration, short and long gaps within bursts) could be accounted for by a four-state model (3 closed states, 1 open state) by simply changing one of the six rate parameters. 6. The present results suggest that the signal sent by an active neurone to satellite glial cells is confined to the glial cells round that neurone. The effect of this signal on the class of glial K+ channels studied can be mimicked by an increase in glial cAMP concentration. The subsequent delayed opening

  7. Glial potassium channels activated by neuronal firing or intracellular cyclic AMP in Helix.

    PubMed Central

    Gommerat, I; Gola, M

    1996-01-01

    1. Cell-attached and whole cell patch clamp experiments were performed on satellite glial cells adhering to the cell body of neurones in situ within the nervous system of the snail Helix pomatia. The underlying neurone was under current or voltage-clamp control. 2. Neuronal firing induced a delayed (20-30 s) persistent (3-4 min) increase in the opening probability of glial K+ channels. The channels were also activated by perfusing the ganglion with a depolarizing high-K+ saline, except when the underlying neurone was prevented from depolarizing under voltage-clamp conditions. 3. Two K(+)-selective channels were detected in the glial membrane. The channel responding to neuronal firing was present in 95% of the patches (n = 393). It had a unitary conductance of 56 pS, a Na+ :K+ permeability ratio < 0.02 and displayed slight inward rectification in symmetrical [K+] conditions. It was sensitive to TEA, Ba2+ and Cs+. The following results refer to this channel as studied in the cell-attached configuration. 4. The glial K+ channel was activated by bath application of the membrane-permeant cyclic AMP derivatives 8-bromo-cAMP and dibutyryl-cAMP, the adenylyl cyclase activator forskolin and the diesterase inhibitors IBMX, theophylline and caffeine. It was insensitive to cyclic GMP activators and to conditions that might alter the intracellular [Ca2+] (ionomycin, low-Ca2+ saline and Ca2+ channel blockers). 5. The forskolin-induced changes in channel behaviour (open and closed time distributions, burst duration, short and long gaps within bursts) could be accounted for by a four-state model (3 closed states, 1 open state) by simply changing one of the six rate parameters. 6. The present results suggest that the signal sent by an active neurone to satellite glial cells is confined to the glial cells round that neurone. The effect of this signal on the class of glial K+ channels studied can be mimicked by an increase in glial cAMP concentration. The subsequent delayed opening

  8. Extracellular signal-regulated kinases 1 and 2 activation in endothelial cells exposed to cyclic strain

    NASA Technical Reports Server (NTRS)

    Ikeda, M.; Takei, T.; Mills, I.; Kito, H.; Sumpio, B. E.

    1999-01-01

    The aim of this study was to determine whether extracellular signal-regulated kinases 1/2 (ERK1/ERK2) are activated and might play a role in enhanced proliferation and morphological change induced by strain. Bovine aortic endothelial cells (BAEC) were subjected to an average of 6 or 10% strain at a rate of 60 cycles/min for up to 4 h. Cyclic strain caused strain- and time-dependent phosphorylation and activation of ERK1/ERK2. Peak phosphorylation and activation of ERK1/ERK2 induced by 10% strain were at 10 min. A specific ERK1/ERK2 kinase inhibitor, PD-98059, inhibited phosphorylation and activation of ERK1/ERK2 but did not inhibit the increased cell proliferation and cell alignment induced by strain. Treatment of BAEC with 2,5-di-tert-butyl-1, 4-benzohydroquinone, to deplete inositol trisphosphate-sensitive calcium storage, and gadolinium chloride, a Ca2+ channel blocker, did not inhibit the activation of ERK1/ERK2. Strain-induced ERK1/ERK2 activation was partly inhibited by the protein kinase C inhibitor calphostin C and completely inhibited by the tyrosine kinase inhibitor genistein. These data suggest that 1) ERK1/ERK2 are not critically involved in the strain-induced cell proliferation and orientation, 2) strain-dependent activation of ERK1/ERK2 is independent of intracellular and extracellular calcium mobilization, and 3) protein kinase C activation and tyrosine kinase regulate strain-induced activation of ERK1/ERK2.

  9. Cyclic Nucleotide-Gated Channels, Calmodulin, Adenylyl Cyclase, and Calcium/Calmodulin-Dependent Protein Kinase II Are Required for Late, but Not Early, Long-Term Memory Formation in the Honeybee

    ERIC Educational Resources Information Center

    Matsumoto, Yukihisa; Sandoz, Jean-Christophe; Devaud, Jean-Marc; Lormant, Flore; Mizunami, Makoto; Giurfa, Martin

    2014-01-01

    Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee "Apis mellifera," olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM)…

  10. Frequencies and cyclical pattern of the human sphincter of Oddi phasic activity.

    PubMed Central

    Torsoli, A; Corazziari, E; Habib, F I; De Masi, E; Biliotti, D; Mazzarella, R; Giubilei, D; Fegiz, G

    1986-01-01

    Basal frequency of sphincter of Oddi phasic contractility has been repeatedly measured during endoscopic manometry and reported to range, in control subjects, from (M +/- SE) 3.0 +/- 0.6 to 7.5 +/- 0.7 c/min. Recently, high frequency (greater than 8 c/min) phasic contractions or absence of phasic activity were recorded in patients with postcholecystectomy or pancreatic complaints, possibly suggesting a sphincter of Oddi dysfunction. In the present study, sphincter of Oddi (biliary tract) phasic contractility was measured by perendoscopic manometry in 13 subjects without specific clinical symptoms of biliopancreatic disease and with a normal common bile and pancreatic duct at ERCP. Four T-tube patients with no evidence of common bile duct stones or papillary stenosis were studied for comparison (transductal sphincter of Oddi manometry). Basal frequency was found to range from 0 to 7 c/min (M +/- SE: 2.99 +/- 0.46) in perendoscopic manometry (85 min of recording time) and from 0 to 12 c/min (2.0 +/- 0.3) in transductal manometry (2546 min of recording time). Long lasting transductal recordings also showed that frequency of activity derived from the sphincter area varied cyclically in close relation with the duodenal migrating motor complex. It is concluded that the sphincter of Oddi in man is likely to participate in the interdigestive gastrointestinal motor activity and that short perendoscopic recordings may not be representative of the overall sphincter of Oddi activity. PMID:3957107

  11. Cyclical strain modulates metalloprotease and matrix gene expression in human tenocytes via activation of TGFβ.

    PubMed

    Jones, Eleanor R; Jones, Gavin C; Legerlotz, Kirsten; Riley, Graham P

    2013-12-01

    Tendinopathies are a range of diseases characterised by degeneration and chronic tendon pain and represent a significant cause of morbidity. Relatively little is known about the underlying mechanisms; however onset is often associated with physical activity. A number of molecular changes have been documented in tendinopathy such as a decrease in overall collagen content, increased extracellular matrix turnover and protease activity. Metalloproteinases are involved in the homeostasis of the extracellular matrix and expression is regulated by mechanical strain. The aims of this study were to determine the effects of strain upon matrix turnover by measuring metalloproteinase and matrix gene expression and to elucidate the mechanism of action. Primary Human Achilles tenocytes were seeded in type I rat tail collagen gels in a Flexcell™ tissue train system and subjected to 5% cyclic uniaxial strain at 1Hz for 48h. TGFβ1 and TGFβRI inhibitor were added to selected cultures. RNA was measured using qRT-PCR and TGFβ protein levels were determined using a cell based luciferase assay. We observed that mechanical strain regulated the mRNA levels of multiple protease and matrix genes anabolically, and this regulation mirrored that seen with TGFβ stimulation alone. We have also demonstrated that the inhibition of the TGFβ signalling pathway abrogated the strain induced changes in mRNA and that TGFβ activation, rather than gene expression, was increased with mechanical strain. We concluded that TGFβ activation plays an important role in mechanotransduction. Targeting this pathway may have its place in the treatment of tendinopathy.

  12. Influence of dominance status on adrenal activity and ovarian cyclicity status in captive African elephants.

    PubMed

    Proctor, Christine M; Freeman, Elizabeth W; Brown, Janine L

    2010-01-01

    The North American African (Loxodonta africana) elephant population is not self-sustaining, in part because of a high rate of abnormal ovarian activity. About 12% of adult females exhibit irregular cycles and 31% do not cycle at all. Our earlier work revealed a relationship between dominance status and ovarian acyclicity, with dominant females being more likely to not cycle normally. One theory is that dominant females may be expending more energy to maintaining peace within the captive herd than for supporting reproduction. The goal of this study was to determine if there was a relationship among dominance status, serum cortisol concentrations, and ovarian acyclicity. We hypothesized that adrenal glucocorticoid activity would be increased in dominant, noncycling elephants as compared with subdominant individuals. Blood samples were collected weekly over a 2-year period in 81 females of known dominance and cyclicity status, and analyzed for cortisol. Based on a path analysis model (Reticular Action Model Or Near Approximation [RAMONA]), noncycling, dominant African elephant females did not have higher mean serum cortisol concentrations, or exhibit more variability (i.e., coefficient of variation, standard deviation) in cortisol secretion. This study suggests that alterations in adrenal activity are not related to dominance status nor contribute directly to acyclicity in captive African elephants.

  13. Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion

    SciTech Connect

    Mukai, Atsushi; Hashimoto, Naohiro

    2008-01-15

    Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a 'myosheet,' was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and the lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells.

  14. Single-channel properties of ionic channels gated by cyclic nucleotides.

    PubMed Central

    Bucossi, G; Nizzari, M; Torre, V

    1997-01-01

    This paper presents an extensive analysis of single-channel properties of cyclic nucleotide gated (CNG) channels, obtained by injecting into Xenopus laevis oocytes the mRNA encoding for the alpha and beta subunits from bovine rods. When the alpha and beta subunits of the CNG channel are coexpressed, at least three types of channels with different properties are observed. One type of channel has well-resolved, multiple conductive levels at negative voltages, but not at positive voltages. The other two types of channel are characterized by flickering openings, but are distinguished because they have a low and a high conductance. The alpha subunit of CNG channels has a well-defined conductance of about 28 pS, but multiple conductive levels are observed in mutant channels E363D and T364M. The conductance of these open states is modulated by protons and the membrane voltage, and has an activation energy around 44 kJ/mol. The relative probability of occupying any of these open states is independent of the cGMP concentration, but depends on extracellular protons. The open probability in the presence of saturating cGMP was 0.78, 0.47, 0.5, and 0.007 in the w.t. and mutants E363D, T364M, and E363G, and its dependence on temperature indicates that the thermodynamics of the transition between the closed and open state is also affected by mutations in the pore region. These results suggest that CNG channels have different conductive levels, leading to the existence of multiple open states in homomeric channels and to the flickering behavior in heteromeric channels, and that the pore is an essential part of the gating of CNG channels. PMID:9138564

  15. [Cyclic processes in neuronal populations of the cat somatosensory cortex during extero- and interoceptive activation and in extinction].

    PubMed

    Lavrov, V V

    1991-11-01

    Comparative analysis of the EEG activation responses and multiunit responses in the cortical somatosensory (I) areas revealed a cyclic character of the multiunit discharges in response to light, sound, mechanical and chemical stimuli in alert cats. The fluctuations were reducing to initial values in the course of the stimulation.

  16. Consecutive visible-light photoredox decarboxylative couplings of adipic acid active esters with alkynyl sulfones leading to cyclic compounds.

    PubMed

    Li, Jingjing; Tian, Hua; Jiang, Min; Yang, Haijun; Zhao, Yufen; Fu, Hua

    2016-07-07

    Novel and efficient consecutive photoredox decarboxylative couplings of adipic acid active esters (bis(1,3-dioxoisoindolin-2-yl)-substituted hexanedioates) with substituted 1-(2-arylethynylsulfonyl)benzenes have been developed under visible-light photocatalysis. The successive photoredox decarboxylative C-C bond formation at room temperature afforded the corresponding cyclic compounds in good yields with tolerance of some functional groups.

  17. Cyclic stretch induces cyclooxygenase-2 gene expression in vascular endothelial cells via activation of nuclear factor kappa-{beta}

    SciTech Connect

    Zhao, Haige; Hiroi, Toyoko; Hansen, Baranda S.; Rade, Jeffrey J.

    2009-11-27

    Vascular endothelial cells respond to biomechanical forces, such as cyclic stretch and shear stress, by altering gene expression. Since endothelial-derived prostanoids, such as prostacyclin and thromboxane A{sub 2}, are key mediators of endothelial function, we investigated the effects of cyclic stretch on the expression of genes in human umbilical vein endothelial cells controlling prostanoid synthesis: cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), prostacyclin synthase (PGIS) and thromboxane A{sub 2} synthase (TXAS). COX-2 and TXAS mRNAs were upregulated by cyclic stretch for 24 h. In contrast, PGIS mRNA was decreased and stretch had no effect on COX-1 mRNA expression. We further show that stretch-induced upregulation of COX-2 is mediated by activation of the NF-{kappa}{beta} signaling pathway.

  18. Blockage and permeation of divalent cations through the cyclic GMP-activated channel from tiger salamander retinal rods.

    PubMed Central

    Colamartino, G; Menini, A; Torre, V

    1991-01-01

    1. Blockage and permeation of divalent cations through channels activated by guanosine 3',5'-cyclic monophosphate (cyclic GMP) were studied in membrane patches excised from retinal rods of the tiger salamander Ambystoma tigrinum by rapidly changing the ionic medium bathing the intracellular side of the excised membrane. 2. The Na+ current, observed when 110 mM-NaCl was present on both sides of the membrane patch, was reduced by the addition of 1 mM of the chloride salts of Ca2+, Mg2+, Sr2+, Ba2+ or Mn2+ to the bathing medium. The sequence of blocking potency at +60 mV was Mg2+ greater than Mn2+ approximately Ba2+ greater than Ca2+ greater than Sr2+, while at -60 mV it was Ba2+ greater than Ca2+ greater than Sr2+ greater than Mn2+ approximately Mg2+. For all divalent cations the blocking effect depended, in a complex way, on the membrane potential. 3. The blocking effect of Ca2+ and Mg2+ increased when the concentration of cyclic GMP was reduced from 100 to 5 microM. At -60 mV 1 mM-Ca2+ blocked about 34% of the Na+ current in the presence of 100 microM-cyclic GMP, while in the presence of 5 microM-cyclic GMP, 1 mM-Ca2+ blocked about 56% of the Na+ current. 4. When, in the presence of 100 microM-cyclic GMP, 110 mM-NaCl at the intracellular side was replaced by equiosmolar amounts of chloride salts of divalent cations (73.3 mM) a small outward current carried by divalent cations could be observed at large positive membrane potentials. At +60 mV the ratio between the current carried by Na+, Sr2+, Ca2+, Ba2+, Mg2+ and Mn2+ was 83.3:1.4:1:0.58:0.33:0.25. 5. In agreement with previous observations the dependence of the Na+ current on the concentration of cyclic GMP shows a clear co-operativity among cyclic GMP molecules.4+ cyclic GMP-gated channel in excised patches is similar to but not identical to the selectivity sequence of divalent cations through the channel in intact rods. PMID:1725182

  19. Antiproliferative activity of the Michael adducts of aroylacrylic acids and cyclic amines.

    PubMed

    Juranić, Ivan O; Tošić, Ana V; Kolundžija, Branka; Drakulić, Branko J

    2014-08-01

    Antiproliferative activity of twenty one Michael adducts of aroylacrylic acids and cyclic amines (N-Me-piperazine, imidazole, 2-Me-imidazole, and indole) was tested toward five human tumor cell lines (HeLa, LS174, K562, FemX, MDA-MB-361) in vitro. Compounds exerted antiproliferative activity in the high to the single-digit micromolar concentrations, causing increase of the cell population fraction in S phase and apoptosis. N-Me-piperazine and imidazole derivatives of aroylacrylic acids substituted with bulky alkyl substituents (2,4-di-i-Pr-Ph-, 2,4,6-tri-Et-Ph-, or β-tetrahydronaphthyl-) showed the best potency, while indole adducts were proved as the inferior antiproliferative agents. Few compounds showed significant selectivity, tumor versus healthy cells, with selectivity index ~60 for the most selective congener. An unbiased in silico distinction between more and less potent compounds was obtained from 3D QSAR models derived by alignment-independent GRIND-2 descriptors.

  20. Simulating a cyclic activated sludge system by employing a modified ASM3 model for wastewater treatment.

    PubMed

    Gao, Feng; Nan, Jun; Zhang, Xinhui

    2017-03-13

    To interpret the biological nutrient removal in a cyclic activated sludge system (CAS), a modified model was developed by combining the process of simultaneous storage and growth, and the kinetics of soluble microbial product (S SMP) and extracellular polymeric substance (X EPS) with activated sludge model no. 3 (ASM3). These most sensitive parameters were initially selected whilst parameters with low sensitivity were given values from literature. The selected parameters were then calibrated on an oxygen uptake rate test and a batch CAS reactor on an operational cycle. The calibrated model was validated using a combination of the measurements from a batch CAS reactor operated for 1 month and the average deviation method. The simulations demonstrated that the modified model was capable of predicting higher effluent concentrations compared to outputs of the ASM3 model. Additionally, it was also shown that the average deviation of effluent S COD, S NH, S SMP and X EPS simulated with the modified model was all less than 1 mg L(-1). In summary, the model could effectively describe biological processes in a CAS reactor and provide a wonderful tool for operation.

  1. [Cyclic nucleotide phosphodiesterase IV expression, activity and targeting in cells of cardiovascular system].

    PubMed

    Yan, Jun; Zhu, Hai-Bo

    2007-06-01

    Cyclic nucleotide second messages (cAMP and cGMP) play a central role in signal transduction and regulation of physiologic responses. The only way to inactivate them is to degrade them through the action of phosphodiesterases (PDEs). Recent advances show that PDE4, a cAMP specific phosphodiesterase, has specific functions in regulating the activities of the cardiovascular system. PDE4 is expressed in the cells of cardiovascular systems including cardiomyocytes, vascular smooth muscle cells, and vascular endothelial cells. The expression level of PDE4 is shown to be downregulated in the failure hearts, while it is upregulated in hypertrophied hearts. And PDE4 deficiency in mice is associated with a cardiac phenotype comprised of a progressive, age-related cardiomyopathy, accelerated heart failure after myocardial infarction and exercise-induced arrhythmias. Local levels of cAMP regulate the precise opening of the ryanodine receptor complex (RyR2) which releases calcium at the start of a heartbeat. Loss or inhibition of PDE4 activity increases calcium flow through RyR2, and causes leakiness and heart failure in mice. These finding may show us a new target for treating cardiovascular diseases.

  2. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases.

    PubMed

    Gao, Daxing; Li, Tuo; Li, Xiao-Dong; Chen, Xiang; Li, Quan-Zhen; Wight-Carter, Mary; Chen, Zhijian J

    2015-10-20

    TREX1 is an exonuclease that digests DNA in the cytoplasm. Loss-of-function mutations of TREX1 are linked to Aicardi-Goutieres Syndrome (AGS) and systemic lupus erythematosus (SLE) in humans. Trex1(-/-) mice exhibit autoimmune and inflammatory phenotypes that are associated with elevated expression of interferon (IFN)-induced genes (ISGs). Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that activates the IFN pathway. Upon binding to DNA, cGAS is activated to catalyze the synthesis of cGAMP, which functions as a second messenger that binds and activates the adaptor protein STING to induce IFNs and other cytokines. Here we show that genetic ablation of cGas in Trex1(-/-) mice eliminated all detectable pathological and molecular phenotypes, including ISG induction, autoantibody production, aberrant T-cell activation, and lethality. Even deletion of just one allele of cGas largely rescued the phenotypes of Trex1(-/-) mice. Similarly, deletion of cGas in mice lacking DNaseII, a lysosomal enzyme that digests DNA, rescued the lethal autoimmune phenotypes of the DNaseII(-/-) mice. Through quantitative mass spectrometry, we found that cGAMP accumulated in mouse tissues deficient in Trex1 or DNaseII and that this accumulation was dependent on cGAS. These results demonstrate that cGAS activation causes the autoimmune diseases in Trex1(-/-) and DNaseII(-/-) mice and suggest that inhibition of cGAS may lead to prevention and treatment of some human autoimmune diseases caused by self-DNA.

  3. Replenishing the cyclic-di-AMP pool: regulation of diadenylate cyclase activity in bacteria.

    PubMed

    Pham, Thi Huong; Liang, Zhao-Xun; Marcellin, Esteban; Turner, Mark S

    2016-11-01

    Bacteria can sense environmental cues and alter their physiology accordingly through the use of signal transduction pathways involving second messenger nucleotides. One broadly conserved second messenger is cyclic-di-AMP (c-di-AMP) which regulates a range of processes including cell wall homeostasis, potassium uptake, DNA repair, fatty acid synthesis, biofilm formation and central metabolism in bacteria. The intracellular pool of c-di-AMP is maintained by the activities of diadenylate cyclase (DAC) and phosphodiesterase (PDE) enzymes, as well as possibly via c-di-AMP export. Whilst extracellular stimuli regulating c-di-AMP levels in bacteria are poorly understood, recent work has identified effector proteins which directly interact and alter the activity of DACs. These include the membrane bound CdaR and the phosphoglucosamine mutase GlmM which both bind directly to the membrane bound CdaA DAC and the recombination protein RadA which binds directly to the DNA binding DisA DAC. The genes encoding these multiprotein complexes are co-localised in many bacteria providing further support for their functional connection. The roles of GlmM in peptidoglycan synthesis and RadA in Holliday junction intermediate processing suggest that c-di-AMP synthesis by DACs will be responsive to these cellular activities. In addition to these modulatory interactions, permanent dysregulation of DAC activity due to suppressor mutations can occur during selection to overcome growth defects, rapid cell lysis and osmosensitivity. DACs have also been investigated as targets for the development of new antibiotics and several small compound inhibitors have recently been identified. This review aims to provide an overview of how c-di-AMP synthesis by DACs can be regulated.

  4. Cyclic dipeptides from rhabditid entomopathogenic nematode-associated Bacillus cereus have antimicrobial activities.

    PubMed

    Nishanth Kumar, S; Nath, Vishnu Sukumari; Pratap Chandran, R; Nambisan, Bala

    2014-02-01

    The cell free culture filtrate of Bacillus cereus associated with an entomopathogenic nematode, Rhabditis (Oscheius) sp. exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by silica gel column chromatography to obtain four bioactive compounds. The structure and absolute stereochemistry of these compounds were determined based on extensive spectroscopic analyses (FABMS, (1)H NMR, (13)C NMR, (1)H-(1)H COSY, (1)H-(13)C HMBC) and Marfey's method. The compounds were identified as cyclic dipeptides (CDPs): cyclo(L-Pro-L-Trp), cyclo(L-Leu-L-Val), cyclo(D-Pro-D-Met), and cyclo(D-Pro-D-Phe), respectively. Compounds recorded significant antibacterial activity against all the test bacteria (Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa and methicillin-resistant S. aureus) except cyclo(L-Leu-L-Val). Cyclo(L-Leu-L-Val) recorded activity only against Gram positive bacteria. Best antibacterial activity was recorded by cyclo(L-Pro-L-Trp) against S. aureus (4 μg/ml). The four compounds were active against all the five fungi tested (Trichophyton rubrum, Aspergillus flavus, Candida albicans, Candida tropicalis and Cryptococcus neoformans) and the activity was compared with amphotericin B, the standard fungicide. The highest activity of 1 μg/ml by cyclo(L-Pro-L-Trp) was recorded against T. rubrum, a human pathogen responsible for causing athlete's foot, jock itch, and ringworm. The activity of cyclo(L-Pro-L-Trp) against T. rubrum, C. neoformans and C. albicans were better than amphotericin B, the standard antifungal agent. To our knowledge, this is the first report of antifungal activity of CDPs against the human pathogenic fungi T. rubrum and C. neoformans. The four CDPs are nontoxic to healthy human cell line up to 200 μg/ml. We conclude that the bacterium associated with entomopathogenic nematode is promising sources of natural antimicrobial

  5. The concentration of cyclic AMP and the activity of cyclic AMP dependent protein kinase and an inhibitor in the adipose tissue of rats fed lard or glucose diets.

    PubMed

    Jackowski, M M; Tepperman, H M; Tepperman, J

    1978-08-01

    Measurements of tissue cyclic AMP (cAMP) concentration, the activity of cAMP-dependent protein kinase and the level of the enzyme's thermostable, macromolecular inhibitor were made on preparations of rat epididymal fat pad from animals fed high fat or high carbohydrate diets. The cAMP concentration from rats adapted to a high lard diet for 14-15 days was 153 +/- 17.8 pmoles/mg protein as opposed to 76 +/- 6.0 found with high glucose diet. No significant difference in total cAMP-dependent protein kinase activity was observed among rats fed high glucose, high lard or laboratory chow, although the enzyme's activity ratio (-cAMP)(+cAMP) was significantly elevated with lard feeding (0.49 +/- 0.02) as opposed to glucose feeding (0.43 +/- 0.01). Crude preparations from lard and glucose fed animals were equivalent in inhibitory activity when tested with enzyme from chow fed animals. Agarose column chromatography separated holoenzyme and C subunit forms of the protein kinase when 500 mM NaCl was present in the elution buffer. Absence of the salt allowed subunit reassociation to occur. Direct addition of NaCl greater than or equal to 75 mM significantly inhibited protein kinase activity. The results indicate that the adipose tissue of rats fed a high lard diet has a higher concentration of cAMP and an increased protein kinase activity ratio than tissue from rats fed a fat free, high glucose diet. Total cAMP-dependent protein kinase activity and the level of a thermostable macromolecular inhibitor remained unchanged.

  6. Cyclic adenosine 3',5'-monophosphate levels and activities of adenylate cyclase and cyclic adenosine 3',5'-monophosphate phosphodiesterase in Pseudomonas and Bacteroides.

    PubMed Central

    Siegel, L S; Hylemon, P B; Phibbs, P V

    1977-01-01

    A modified Gilman assay was used to determine the concentrations of cyclic adenosine 3',5'-monophosphate (cAMP) in rapidly filtered cells and in the culture filtrates of Pseudomonas aeruginosa, Escherichia coli K-12, and Bacteroides fragilis. In P. aeruginosa cultures, levels of cAMP in the filtrate increased with the culture absorbance (3.5 to 19.8 X 10(-9) M) but did not vary significantly with the carbon source used to support growth. Intracellular concentrations (0.8 to 3.2 X 10(-5) M) were substantially higher and did not vary appreciably during growth or with carbon source. Sodium cAMP (5 mM) failed to reverse the catabolite repression of inducible glucose-6-phosphate dehydrogenase (EC 1.1.1.49) synthesis caused by the addition of 10 mM succinate. Exogenous cAMP also had no discernible effect on the catabolite repression control of inducible mannitol dehydrogenase (EC 1.1.1.67). P. aeruginosa was found to contain both soluble cAMP phosphodiesterase (EC 3.1.4.17) and membrane-associated adenylate cyclase (EC 4.6.1.1) activity, and these were compared to the activities detected in crude extracts of E. coli. B. fragilis crude cell extracts contain neither of these enzyme activities, and little or no cAMP was detected in cells or culture filtrates of this anaerobic bacterium. PMID:187575

  7. Cyclic mechanical deformation stimulates human lung fibroblast proliferation and autocrine growth factor activity.

    PubMed

    Bishop, J E; Mitchell, J J; Absher, P M; Baldor, L; Geller, H A; Woodcock-Mitchell, J; Hamblin, M J; Vacek, P; Low, R B

    1993-08-01

    Cellular hypertrophy and hyperplasia and increased extracellular matrix deposition are features of tissue hypertrophy resulting from increased work load. It is known, for example, that mechanical forces play a critical role in lung development, cardiovascular remodeling following pressure overload, and skeletal muscle growth. The mechanisms involved in these processes, however, remain unclear. Here we examined the effect of mechanical deformation on fibroblast function in vitro. IMR-90 human fetal lung fibroblasts grown on collagen-coated silastic membranes were subjected to cyclical mechanical deformation (10% increase in culture surface area; 1 Hz) for up to 5 days. Cell number was increased by 39% after 2 days of deformation (1.43 +/- .01 x 10(5) cells/membrane compared with control, 1.03 +/- 0.02 x 10(5) cells; mean +/- SEM; P < 0.02) increasing to 163% above control by 4 days (2.16 +/- 0.16 x 10(5) cells compared with 0.82 +/- 0.03 x 10(5) cells; P < 0.001). The medium from mechanically deformed cells was mitogenic for IMR-90 cells, with maximal activity in the medium from cells mechanically deformed for 2 days (stimulating cell replication by 35% compared with media control; P < 0.002). These data suggest that mechanical deformation stimulates human lung fibroblast replication and that this effect is mediated by the release of autocrine growth factors.

  8. Cyclic AMP-receptor protein activates aerobactin receptor IutA expression in Vibrio vulnificus.

    PubMed

    Kim, Choon-Mee; Kim, Seong-Jung; Shin, Sung-Heui

    2012-04-01

    The ferrophilic bacterium Vibrio vulnificus can utilize the siderophore aerobactin of Escherichia coli for iron acquisition via its specific receptor IutA. This siderophore piracy by V. vulnificus may contribute to its survival and proliferation, especially in mixed bacterial environments. In this study, we examined the effects of glucose, cyclic AMP (cAMP), and cAMP-receptor protein (Crp) on iutA expression in V. vulnificus. Glucose dose-dependently repressed iutA expression. A mutation in cya encoding adenylate cyclase required for cAMP synthesis severely repressed iutA expression, and this change was recovered by in trans complementing cya or the addition of exogenous cAMP. Furthermore, a mutation in crp encoding Crp severely repressed iutA expression, and this change was recovered by complementing crp. Accordingly, glucose deprivation under iron-limited conditions is an environmental signal for iutA expression, and Crp functions as an activator that regulates iutA expression in response to glucose availability.

  9. Expression and Genetic Activation of Cyclic Di-GMP-Specific Phosphodiesterases in Escherichia coli

    PubMed Central

    Reinders, Alberto; Hee, Chee-Seng; Ozaki, Shogo; Mazur, Adam; Boehm, Alex; Schirmer, Tilman

    2015-01-01

    ABSTRACT Intracellular levels of the bacterial second messenger cyclic di-GMP (c-di-GMP) are controlled by antagonistic activities of diguanylate cyclases and phosphodiesterases. The phosphodiesterase PdeH was identified as a key regulator of motility in Escherichia coli, while deletions of any of the other 12 genes encoding potential phosphodiesterases did not interfere with motility. To analyze the roles of E. coli phosphodiesterases, we demonstrated that most of these proteins are expressed under laboratory conditions. We next isolated suppressor mutations in six phosphodiesterase genes, which reinstate motility in the absence of PdeH by reducing cellular levels of c-di-GMP. Expression of all mutant alleles also led to a reduction of biofilm formation. Thus, all of these proteins are bona fide phosphodiesterases that are capable of interfering with different c-di-GMP-responsive output systems by affecting the global c-di-GMP pool. This argues that E. coli possesses several phosphodiesterases that are inactive under laboratory conditions because they lack appropriate input signals. Finally, one of these phosphodiesterases, PdeL, was studied in more detail. We demonstrated that this protein acts as a transcription factor to control its own expression. Motile suppressor alleles led to a strong increase of PdeL activity and elevated pdeL transcription, suggesting that enzymatic activity and transcriptional control are coupled. In agreement with this, we showed that overall cellular levels of c-di-GMP control pdeL transcription and that this control depends on PdeL itself. We thus propose that PdeL acts both as an enzyme and as a c-di-GMP sensor to couple transcriptional activity to the c-di-GMP status of the cell. IMPORTANCE Most bacteria possess multiple diguanylate cyclases and phosphodiesterases. Genetic studies have proposed that these enzymes show signaling specificity by contributing to distinct cellular processes without much cross talk. Thus, spatial

  10. Diazepam increases the hypothalamic-pituitary-adrenocortical (HPA) axis activity by a cyclic AMP-dependent mechanism

    PubMed Central

    Vargas, M Luisa; Abella, Cristina; Hernandez, Jesus

    2001-01-01

    Previous studies in this laboratory have shown that diazepam behaves as a phosphodiesterase 4 (PDE 4) inhibitor. It has been reported that PDE-4 inhibitors activate the hypothalamic-pituitary-adrenocortical (HPA) axis in the rat. In the present study we have examined whether activation of the cyclic AMP-dependent protein kinase (PKA) is involved in the effect of diazepam on basal HPA axis activity. Acute systemic administration of diazepam (10 mg kg−1 i.p.) was found to increase the basal HPA axis activity, increasing the plasma concentrations of corticotrophin (ACTH) and corticosterone 30 min post injection. Diazepam also elevated cyclic AMP content of the hypothalamus. Pretreatment of the animals with dexamethasone (1 mg kg−1 s.c.) for 3 days completely abolished the effect of diazepam on HPA axis activity. The antagonists of central and peripheral benzodiazepine receptors, flumazenil (10 mg kg−1 i.p.) and PK 11195 (5 mg kg−1 i.p.) did not affect the diazepam induced increase of HPA axis activity nor did they have an effect per se. The increase in ACTH and corticosterone levels was significantly reduced by the cyclic AMP-dependent protein kinase (PKA) inhibitor, H-89, given either subcutaneously (5 mg kg−1 s.c.) or intracerebroventricularly (i.c.v.; 28 μg in 10 μl). The results indicate that diazepam can stimulate basal HPA axis activity in the rat by a cyclic AMP-dependent PKA mediated pathway. PMID:11498522

  11. Neonatal Diabetes Caused by Mutations in Sulfonylurea Receptor 1: Interplay between Expression and Mg-Nucleotide Gating Defects of ATP-Sensitive Potassium Channels

    PubMed Central

    Zhou, Qing; Garin, Intza; Castaño, Luis; Argente, Jesús; Muñoz-Calvo, Ma. Teresa; Perez de Nanclares, Guiomar; Shyng, Show-Ling

    2010-01-01

    Context: ATP-sensitive potassium (KATP) channels regulate insulin secretion by coupling glucose metabolism to β-cell membrane potential. Gain-of-function mutations in the sulfonylurea receptor 1 (SUR1) or Kir6.2 channel subunit underlie neonatal diabetes. Objective: The objective of the study was to determine the mechanisms by which two SUR1 mutations, E208K and V324M, associated with transient neonatal diabetes affect KATP channel function. Design: E208K or V324M mutant SUR1 was coexpressed with Kir6.2 in COS cells, and expression and gating properties of the resulting channels were assessed biochemically and electrophysiologically. Results: Both E208K and V324M augment channel response to MgADP stimulation without altering sensitivity to ATP4− or sulfonylureas. Surprisingly, whereas E208K causes only a small increase in MgADP response consistent with the mild transient diabetes phenotype, V324M causes a severe activating gating defect. Unlike E208K, V324M also impairs channel expression at the cell surface, which is expected to dampen its functional impact on β-cells. When either mutation was combined with a mutation in the second nucleotide binding domain of SUR1 previously shown to abolish Mg-nucleotide response, the activating effect of E208K and V324M was also abolished. Moreover, combination of E208K and V324M results in channels with Mg-nucleotide sensitivity greater than that seen in individual mutations alone. Conclusion: The results demonstrate that E208K and V324M, located in distinct domains of SUR1, enhance transduction of Mg-nucleotide stimulation from the SUR1 nucleotide binding folds to Kir6.2. Furthermore, they suggest that diabetes severity is determined by interplay between effects of a mutation on channel expression and channel gating. PMID:20810569

  12. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway.

    PubMed

    Sun, Lijun; Wu, Jiaxi; Du, Fenghe; Chen, Xiang; Chen, Zhijian J

    2013-02-15

    The presence of DNA in the cytoplasm of mammalian cells is a danger signal that triggers host immune responses such as the production of type I interferons. Cytosolic DNA induces interferons through the production of cyclic guanosine monophosphate-adenosine monophosphate (cyclic GMP-AMP, or cGAMP), which binds to and activates the adaptor protein STING. Through biochemical fractionation and quantitative mass spectrometry, we identified a cGAMP synthase (cGAS), which belongs to the nucleotidyltransferase family. Overexpression of cGAS activated the transcription factor IRF3 and induced interferon-β in a STING-dependent manner. Knockdown of cGAS inhibited IRF3 activation and interferon-β induction by DNA transfection or DNA virus infection. cGAS bound to DNA in the cytoplasm and catalyzed cGAMP synthesis. These results indicate that cGAS is a cytosolic DNA sensor that induces interferons by producing the second messenger cGAMP.

  13. Comparison of Ca2+ mobilizing activities of cyclic ADP-ribose and inositol trisphosphate.

    PubMed Central

    Dargie, P J; Agre, M C; Lee, H C

    1990-01-01

    We have previously shown that a metabolite of NAD+ generated by an enzyme present in sea urchin eggs and mammalian tissues can mobilize intracellular Ca2+ in the eggs. Structural determination established it to be a cyclized ADP-ribose, and the name cyclic ADP-ribose (cADPR) has been proposed. In this study, Ca2+ mobilizations induced by cADPR and inositol trisphosphate (IP3) in sea urchin egg homogenates were monitored with Ca2+ indicators and Ca2(+)-specific electrodes. Both methods showed that cADPR can release Ca2+ from egg homogenates. Evidence indicated that it did not act as a nonspecific Ca2(+)-ionophore or as a blocker of the microsomal Ca2(+)-transport; instead, it was likely to be operating through a specific receptor system. This was supported by its half-maximal effective concentration of 18 nM, which was 7 times lower than that of IP3. The receptor for cADPR appeared to be different from that of IP3 because heparin, an inhibitor of IP3 binding, had no effect on the cADPR action. The Ca2+ releases induced by cADPR and IP3 were not additive and had an inverse relationship, indicating overlapping stores were mobilized. Microinjection of cADPR into intact eggs induced transient intracellular Ca2+ changes and activated the cortical reaction. The in vivo effectiveness of cADPR was directly comparable with IP3 and neither required external Ca2+. In addition, both were effective in activating the eggs to undergo multiple nuclear cycles and DNA synthesis. These results suggest that cADPR could function as a second messenger in sea urchin eggs. Images PMID:2100201

  14. Positive anti‐cyclic citrullinated proteins and rheumatoid factor during active lung tuberculosis

    PubMed Central

    Elkayam, O; Segal, R; Lidgi, M; Caspi, D

    2006-01-01

    Objectives To determine the prevalence of anti‐cyclic citrullinated proteins (anti‐CCP) and IgM rheumatoid factor (RF) in sera of patients with TB compared with healthy controls. Patients and methods 47 consecutive patients with recently diagnosed active pulmonary TB and 39 healthy controls were studied. Data were collected by questionnaire on clinical features of the disease, duration of symptoms, fever, cough, arthralgia, myalgia, sicca symptoms. Serum samples were collected from patients before starting treatment for TB and frozen at −20°C. Anti‐CCP and IgM RF were evaluated by ELISA. Results The mean (SD) duration of TB related symptoms was 4.4 (1.7) months, 73% had fever, 94% a cough. Rheumatic symptoms were relatively rare: arthralgia (4%), myalgias (4%), eye and mouth dryness (2% and 9%, respectively). Mean (SD) levels of anti‐CCP were significantly increased in patients with TB compared with controls: 44.9 (51) IU v 20 (7.3) IU (p = 0.002). Serum levels >40 U were found in 15/47 (32%) patients compared with 1/39 (2.6%) controls (p = 0.002). Mean (SD) serum levels of IgM RF were significantly increased in patients with TB: 17.8 (19) v 4.3 (5) (p<0.0001). IgM RF was positive (>6 IU) in 29/47 (62%) patients v 1/39 (2.6%) controls (p<0.0001). Conclusions A significant proportion of patients with active TB have an increased titre of anti‐CCP and IgM RF. PMID:16361276

  15. A cyclic AMP-activated K+ channel in Drosophila larval muscle is persistently activated in dunce.

    PubMed

    Delgado, R; Hidalgo, P; Diaz, F; Latorre, R; Labarca, P

    1991-01-15

    Single-channel recording from longitudinal ventrolateral Drosophila larval muscle reveals the presence of a potassium-selective channel that is directly and reversibly activated by cAMP in a dose-dependent fashion. Activation is specific and it cannot be mimicked by a series of agents that include AMP, cGMP, ATP, inositol trisphosphate, and Ca2+. Channel current records obtained from larval muscle in different dunce mutants possessing abnormally high levels of cAMP show that, in the mutants, the channel displays an increased probability of opening.

  16. A cyclic AMP-activated K+ channel in Drosophila larval muscle is persistently activated in dunce.

    PubMed Central

    Delgado, R; Hidalgo, P; Diaz, F; Latorre, R; Labarca, P

    1991-01-01

    Single-channel recording from longitudinal ventrolateral Drosophila larval muscle reveals the presence of a potassium-selective channel that is directly and reversibly activated by cAMP in a dose-dependent fashion. Activation is specific and it cannot be mimicked by a series of agents that include AMP, cGMP, ATP, inositol trisphosphate, and Ca2+. Channel current records obtained from larval muscle in different dunce mutants possessing abnormally high levels of cAMP show that, in the mutants, the channel displays an increased probability of opening. PMID:1846445

  17. Concentration dependence of sodium permeation and sodium ion interactions in the cyclic AMP-gated channels of mammalian olfactory receptor neurons.

    PubMed

    Balasubramanian, S; Lynch, J W; Barry, P H

    1997-09-01

    The dependence of currents through the cyclic nucleotide-gated (CNG) channels of mammalian olfactory receptor neurons (ORNs) on the concentration of NaCl was studied in excised inside-out patches from their dendritic knobs using the patch-clamp technique. With a saturating concentration (100 microM) of adenosine 3',5'-cyclic monophosphate (cAMP), the changes in the reversal potential of macroscopic currents were studied at NaCl concentrations from 25 to 300 mM. In symmetrical NaCl solutions without the addition of divalent cations, the current-voltage relations were almost linear, reversing close to 0 mV. When the external NaCl concentration was maintained at 150 mM and the internal concentrations were varied, the reversal potentials of the cAMP-activated currents closely followed the Na+ equilibrium potential indicating that PCl/PNa approximately 0. However, at low external NaCl concentrations (< or = 100 mM) there was some significant chloride permeability. Our results further indicated that Na+ currents through these channels: (i) did not obey the independence principle; (ii) showed saturation kinetics with K(m)s in the range of 100-150 mM and (iii) displayed a lack of voltage dependence of conductance in asymmetric solutions that suggested that ion-binding sites were situated midway along the channel. Together, these characteristics indicate that the permeation properties of the olfactory CNG channels are significantly different from those of photoreceptor CNG channels.

  18. Nobiletin, a citrus flavonoid, activates vasodilator-stimulated phosphoprotein in human platelets through non-cyclic nucleotide-related mechanisms

    PubMed Central

    Jayakumar, Thanasekaran; Lin, Kao-Chang; Lu, Wan-Jung; Lin, Chia-Ying; Pitchairaj, Geraldine; Li, Jiun-Yi; Sheu, Joen-Rong

    2017-01-01

    Nobiletin, a bioactive polymethoxylated flavone, has been described to possess a diversity of biological effects through its antioxidant and anti-inflammatory properties. Vasodilator-stimulated phosphoprotein (VASP) is a common substrate for cyclic AMP and cyclic GMP-regulated protein kinases [i.e., cyclic AMP-dependent protein kinase (PKA; also known as protein kinase A) and cyclic GMP-dependent protein kinase (PKG; also known as protein kinase G)] and it has been shown to be directly phosphorylated by protein kinase C (PKC). In the present study, we demonstrate that VASP is phosphorylated by nobiletin in human platelets via a non-cyclic nucleotide-related mechanism. This was confirmed by the use of inhibitors of adenylate cyclase (SQ22536) and guanylate cyclase [1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ)], since they prevented VASP phosphorylation induced by nobiletin. Furthormore, this event was also not affected by specific inhibitors of PKA (H-89), PKG (KT5823) and PKC (Ro318220), representing cyclic nucleotide-dependent pathways upon nobiletin-induced VASP phosphorylation. Similarly, inhibitors of p38 mitogen-activated protein kinase (MAPK; SB203580), extracellular signal-regulated kinase 2 (ERK2; PD98059), c-Jun N-terminal kinase 1 (JNK1; SP600125), Akt (LY294002) and nuclear factor-κB (NF-κB; Bay11-7082) did not affect nobiletin-induced VASP phosphorylation. Moreover, electron spin resonance, dichlorofluorescein fluorescence and western blotting techniques revealed that nobiletin did not affect hydroxyl radicals (OH•), intracellular reactive oxygen species (ROS) and on protein carbonylation, respectively. Furthermore, the nobiletin-induced VASP phosphorylation was surprisingly reversed by the intracellular antioxidant, N-acetylcysteine (NAC), but not by the inhibitor of NADPH oxidase, diphenyleneiodonium chloride (DPI). It was surprising to observe the differential effects of nobiletin and NAC on VASP phosphorylation in human platelets, since

  19. Detection and localization of a putative cyclic-GMP-activated channel protein in the protozoan ciliate Stentor coeruleus.

    PubMed

    Walerczyk, M; Fabczak, H; Fabczak, S

    2006-05-01

    Immunoblotting and immunocytochemical assays were employed to identify and localize a channel protein activated by cyclic GMP (cGMP) in the protozoan ciliate Stentor coeruleus. Analysis of whole-cell homogenate with antibodies raised against the alpha-subunit of the cGMP-activated channel protein from bovine rod outer segments and against cGMP revealed four major protein bands with molecular masses of 40 kDa, 63 kDa, and over 120 kDa, which bound cGMP. However, only a cGMP-binding protein of 63 kDa, corresponding to the alpha-subunit of the cGMP-activated ion channel protein from bovine rod outer segments, was found in the ciliate cortex fraction. The functional cGMP-activated channel protein was also shown to be present in the cortex fraction of S. coeruleus by patch-clamp measurements of artificial liposomes. Incorporation of the cortex fraction into liposomes resulted in the appearance of ion channel activity related to cGMP. The reconstituted protein channels were strongly inhibited by l-cis-diltiazem, a known potent blocker of many types of cyclic-nucleotide-activated channels. The results presented here are the first demonstration of the existence and localization of a putative cGMP-activated channel protein in the ciliate S. coeruleus. Cyclic-nucleotide-activated channel proteins are nonspecific cation channels which mediate the receptor potentials in photoreceptor cells and in cells of the olfactory epithelium. On the basis of these data, we suggest that the 63 kDa protein identified in Stentor coeruleus is also a cGMP-activated ion channel and that it may be involved as an effector in the photosensory transduction pathway leading to the motile photophobic response in this ciliate protist.

  20. Currents carried by monovalent cations through cyclic GMP-activated channels in excised patches from salamander rods.

    PubMed Central

    Menini, A

    1990-01-01

    1. Ionic selectivity and affinity for monovalent cations of channels activated by guanosine 3',5'-cyclic monophosphate (cyclic GMP) were studied in excised inside-out patches of plasma membrane from retinal rods of the tiger salamander. Channels were activated by addition of cyclic GMP to the medium bathing the cytoplasmic side of the membrane. The ionic solution at the cytoplasmic side was rapidly changed using the method of Nunn (1987 a). 2. Permeability ratios were calculated with the Goldman-Hodgkin-Katz potential equation from reversal potential measurements for alkali monovalent cations in bi-ionic conditions. The permeability sequence was: Li+:Na+:K+:Rb+:Cs+ = 1.14:1:0.98:0.84:0.58. 3. The selectivity sequence obtained from macroscopic current measurements in bi-ionic conditions at +100 mV was: Na+:K+:Rb+:Li+:Cs+ = 1:1:0.67:0.36:0.25. 4. The organic cations tetramethylammonium (TMA+), choline and tetraethylammonium (TEA+) were not permeant through the cyclic GMP-activated channels and caused a reduction of the Na+ inward current. At -100 mV the current ratio for inward current was 1:0.75:0.58:0.2 in the presence, at the cytoplasmic side, of 110 mM-Na+, TMA+, choline or TEA+ respectively. 5. The concentration dependence of the macroscopic current and the reversal potential was studied by changing the internal concentration of Na+ or K+ or Li+ from 5 mM to 500 mM. The permeability ratios were nearly constant regardless of the permeant ion concentration. 6. The current as a function of internal ion activity could be described by a Michaelis-Menten relation with a half-saturating activity, Km, at +90 mV equal to 249, 203 and 160 mM for Na+, K+ and Li+ respectively. The ratio of the extrapolated saturating current Imax at +90 mV was 1:0.86:0.26 for Na+, K+ and Li+ respectively. 7. The outward currents and the reversal potentials measured in different mixtures of Na+ and Li+ were monotonic function of the mole fraction. 8. These results can be explained by

  1. Chemically Non-Innocent Cyclic (Alkyl)(Amino)Carbenes: Ligand Rearrangement, C-H and C-F Bond Activation.

    PubMed

    Turner, Zoë R

    2016-08-01

    A cyclic (alkyl)(amino)carbene (CAAC) was found to undergo unprecedented rearrangements and transformations of its core structure in the presence of Group 1 and 2 metals. Although the carbene was also found to be prone to intramolecular C-H activation, it was competent for intermolecular activation of a variety of sp-, sp(2) -, and sp(3) -hybridized C-H bonds. Double C-F activation of hexafluorobenzene was also observed in this work. These processes all hold relevance to the role of these carbenes in catalysis, as well as to their use in the synthesis of new and unusual main group or transition metal complexes.

  2. Modulation of Compartmentalised Cyclic Nucleotide Signalling via Local Inhibition of Phosphodiesterase Activity

    PubMed Central

    Brescia, Marcella; Zaccolo, Manuela

    2016-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) are the only enzymes that degrade the cyclic nucleotides cAMP and cGMP, and play a key role in modulating the amplitude and duration of the signal delivered by these two key intracellular second messengers. Defects in cyclic nucleotide signalling are known to be involved in several pathologies. As a consequence, PDEs have long been recognized as potential drug targets, and they have been the focus of intense research for the development of therapeutic agents. A number of PDE inhibitors are currently available for the treatment of disease, including obstructive pulmonary disease, erectile dysfunction, and heart failure. However, the performance of these drugs is not always satisfactory, due to a lack of PDE-isoform specificity and their consequent adverse side effects. Recent advances in our understanding of compartmentalised cyclic nucleotide signalling and the role of PDEs in local regulation of cAMP and cGMP signals offers the opportunity for the development of novel strategies for therapeutic intervention that may overcome the current limitation of conventional PDE inhibitors. PMID:27706091

  3. Arthroamide, a Cyclic Depsipeptide with Quorum Sensing Inhibitory Activity from Arthrobacter sp.

    PubMed

    Igarashi, Yasuhiro; Yamamoto, Kazuki; Fukuda, Takao; Shojima, Akane; Nakayama, Jiro; Carro, Lorena; Trujillo, Martha E

    2015-11-25

    Nonfilamentous actinobacteria have been less studied as secondary metabolite producers than their filamentous counterparts such as Streptomyces. From our collection of nonfilamentous actinobacteria isolated from sandstone, an Arthrobacter strain was found to produce a new cyclic peptide arthroamide (1) together with the known compound turnagainolide A (2). These compounds inhibited the quorum sensing signaling of Staphylococcus aureus in the submicromolar to micromolar range.

  4. Cyclical DNA Methylation and Histone Changes Are Induced by LPS to Activate COX-2 in Human Intestinal Epithelial Cells

    PubMed Central

    Brancaccio, Mariarita; Coretti, Lorena; Florio, Ermanno; Pezone, Antonio; Calabrò, Viola; Falco, Geppino; Keller, Simona; Lembo, Francesca; Avvedimento, Vittorio Enrico; Chiariotti, Lorenzo

    2016-01-01

    Bacterial lipopolysaccharide (LPS) induces release of inflammatory mediators both in immune and epithelial cells. We investigated whether changes of epigenetic marks, including selected histone modification and DNA methylation, may drive or accompany the activation of COX-2 gene in HT-29 human intestinal epithelial cells upon exposure to LPS. Here we describe cyclical histone acetylation (H3), methylation (H3K4, H3K9, H3K27) and DNA methylation changes occurring at COX-2 gene promoter overtime after LPS stimulation. Histone K27 methylation changes are carried out by the H3 demethylase JMJD3 and are essential for COX-2 induction by LPS. The changes of the histone code are associated with cyclical methylation signatures at the promoter and gene body of COX-2 gene. PMID:27253528

  5. Cyclic lipopeptides as antibacterial agents - potent antibiotic activity mediated by intriguing mode of actions.

    PubMed

    Schneider, Tanja; Müller, Anna; Miess, Henrike; Gross, Harald

    2014-01-01

    Cyclic lipopeptides (CLPs) are a promising class of natural products with antibiotic properties. CLPs are amphiphilic molecules, composed of a fatty acid tail linked to a short oligopeptide which form a macrocylic ring structure. This review presents an overview of this class of antibiotics, focusing on the current and potential therapeutic applications and placing particular emphasis on the molecular modes of action of these compounds.

  6. Comparison of morphology of active cyclic steps created by turbidity currents on Squamish Delta, British Columbia, Canada with flume experiments

    NASA Astrophysics Data System (ADS)

    Yokokawa, Miwa; Yamamoto, Shinya; Higuchi, Hiroyuki; Hughes Clarke, John E.; Izumi, Norihiro

    2015-04-01

    Upper-flow-regime bedforms, such as cyclic steps and antidunes, have been reported to be formed by turbidity currents. Their formative conditions are, however, not fully understood because of the difficulty of field surveys in the deep sea. Field observations of turbidity currents and seabed topography on the Squamish delta in Howe Sound, British Columbia, Canada have been undertaken which found bedwaves actively migrating in the upstream direction in channels formed on the prodelta slope. Their topography and behavior suggest that they are cyclic steps formed by turbidity currents. Because Squamish delta is as shallow as around 150 m, and easy to access compared with general submarine canyons, it is thought to be one of the best places for studying characteristics of cyclic steps formed by turbidity currents through field observations. In this study, we have analyzed configurations of cyclic steps with the use of data obtained in the field observation of 2011, and compare them with the data from the flume experiments. On the prodelta slope, three major active channels are clearly developed. In addition to the sonar survey, a 600 kHz ADCP was installed in 150m of water just seaward of the termination of the North Channel. In addition, 1200kHz ADCP and 500kHz M3s are suspended from the research vessel in 60 m of water and 300 m distance from the delta edge. We selected images showing large daily differences. The steps move vigorously at the upper 600m parts of the prodelta slope, so that we measured the steps in this area. From the profiles perpendicular to the bedwave crest lines through the center of channels, wavelength and wave height for each step, mean slope were measured on the software for quantitative image analyses manually. Wave steepness for each step was calculated using the wavelength and wave height measured as above. The mean slope ranges from 6.8° ~ 2.7° (more proximal, steeper), mean wavelength and wave heights of steps range from 24.5 to 87.6m

  7. Rhodium(III)-Catalyzed Enantiotopic C-H Activation Enables Access to P-Chiral Cyclic Phosphinamides.

    PubMed

    Sun, Yang; Cramer, Nicolai

    2017-01-02

    Compounds with stereogenic phosphorus atoms are frequently used as ligands for transition-metal as well as organocatalysts. A direct catalytic enantioselective method for the synthesis of P-chiral compounds from easily accessible diaryl phosphinamides is presented. The use of rhodium(III) complexes equipped with a suitable atropochiral cyclopentadienyl ligand is shown to enable an enantiodetermining C-H activation step. Upon trapping with alkynes, a broad variety of cyclic phosphinamides with a stereogenic phosphorus(V) atom are formed in high yields and enantioselectivities. Moreover, these can be reduced enantiospecifically to P-chiral phosphorus(III) compounds.

  8. Synthesis of mixed MOR/KOR efficacy cyclic opioid peptide analogs with antinociceptive activity after systemic administration.

    PubMed

    Perlikowska, Renata; Piekielna, Justyna; Gentilucci, Luca; De Marco, Rossella; Cerlesi, Maria Camilla; Calo, Girolamo; Artali, Roberto; Tömböly, Csaba; Kluczyk, Alicja; Janecka, Anna

    2016-02-15

    Cyclic pentapeptide Tyr-c[D-Lys-Phe-Phe-Asp]NH2, based on the structure of endomorphin-2 (EM-2), which shows high affinity to the μ-opioid receptor (MOR) and a very strong antinociceptive activity in mice was used as a parent compound for the structure-activity relationship studies. In this report we synthesized analogs of a general sequence Dmt-c[D-Lys-Xaa-Yaa-Asp]NH2, with D-1- or D-2-naphthyl-3-alanine (D-1-Nal or D-2-Nal) in positions 3 or 4. In our earlier papers we have indicated that replacing a phenylalanine residue by the more extended aromatic system of naphthylalanines may result in increased bioactivities of linear analogs. The data obtained here showed that only cyclopeptides modified in position 4 retained the sub-nanomolar MOR and nanomolar κ-opioid receptor (KOR) affinity, similar but not better than that of a parent cyclopeptide. In the in vivo mouse hot-plate test, the most potent analog, Dmt-c[D-Lys-Phe-D-1-Nal-Asp]NH2, exhibited higher than EM-2 but slightly lower than the cyclic parent peptide antinociceptive activity after peripheral (ip) and also central administration (icv). Conformational analyses in a biomimetic environment and molecular docking studies disclosed the structural determinants responsible for the different pharmacological profiles of position 3- versus position 4-modified analogs.

  9. Calcium-activated chloride currents in olfactory sensory neurons from mice lacking bestrophin-2.

    PubMed

    Pifferi, Simone; Dibattista, Michele; Sagheddu, Claudia; Boccaccio, Anna; Al Qteishat, Ahmed; Ghirardi, Filippo; Tirindelli, Roberto; Menini, Anna

    2009-09-01

    Olfactory sensory neurons use a chloride-based signal amplification mechanism to detect odorants. The binding of odorants to receptors in the cilia of olfactory sensory neurons activates a transduction cascade that involves the opening of cyclic nucleotide-gated channels and the entry of Ca(2+) into the cilia. Ca(2+) activates a Cl(-) current that produces an efflux of Cl(-) ions and amplifies the depolarization. The molecular identity of Ca(2+)-activated Cl(-) channels is still elusive, although some bestrophins have been shown to function as Ca(2+)-activated Cl(-) channels when expressed in heterologous systems. In the olfactory epithelium, bestrophin-2 (Best2) has been indicated as a candidate for being a molecular component of the olfactory Ca(2+)-activated Cl(-) channel. In this study, we have analysed mice lacking Best2. We compared the electrophysiological responses of the olfactory epithelium to odorant stimulation, as well as the properties of Ca(2+)-activated Cl(-) currents in wild-type (WT) and knockout (KO) mice for Best2. Our results confirm that Best2 is expressed in the cilia of olfactory sensory neurons, while odorant responses and Ca(2+)-activated Cl(-) currents were not significantly different between WT and KO mice. Thus, Best2 does not appear to be the main molecular component of the olfactory channel. Further studies are required to determine the function of Best2 in the cilia of olfactory sensory neurons.

  10. Calcium-activated chloride currents in olfactory sensory neurons from mice lacking bestrophin-2

    PubMed Central

    Pifferi, Simone; Dibattista, Michele; Sagheddu, Claudia; Boccaccio, Anna; Al Qteishat, Ahmed; Ghirardi, Filippo; Tirindelli, Roberto; Menini, Anna

    2009-01-01

    Olfactory sensory neurons use a chloride-based signal amplification mechanism to detect odorants. The binding of odorants to receptors in the cilia of olfactory sensory neurons activates a transduction cascade that involves the opening of cyclic nucleotide-gated channels and the entry of Ca2+ into the cilia. Ca2+ activates a Cl− current that produces an efflux of Cl− ions and amplifies the depolarization. The molecular identity of Ca2+-activated Cl− channels is still elusive, although some bestrophins have been shown to function as Ca2+-activated Cl− channels when expressed in heterologous systems. In the olfactory epithelium, bestrophin-2 (Best2) has been indicated as a candidate for being a molecular component of the olfactory Ca2+-activated Cl− channel. In this study, we have analysed mice lacking Best2. We compared the electrophysiological responses of the olfactory epithelium to odorant stimulation, as well as the properties of Ca2+-activated Cl− currents in wild-type (WT) and knockout (KO) mice for Best2. Our results confirm that Best2 is expressed in the cilia of olfactory sensory neurons, while odorant responses and Ca2+-activated Cl− currents were not significantly different between WT and KO mice. Thus, Best2 does not appear to be the main molecular component of the olfactory channel. Further studies are required to determine the function of Best2 in the cilia of olfactory sensory neurons. PMID:19622610

  11. Rescue of Cyclic AMP Mediated Long Term Potentiation Impairment in the Hippocampus of Mecp2 Knockout (Mecp2-/y) Mice by Rolipram

    PubMed Central

    Balakrishnan, Saju; Niebert, Marcus; Richter, Diethelm W.

    2016-01-01

    Rett syndrome (RTT) patients experience learning difficulties and memory loss. Analogous deficits of hippocampal plasticity are reported in mouse models of RTT. To elucidate the underlying pathophysiology, we studied long term potentiation (LTP) at the CA3 to CA1 synapses in the hippocampus in acute brain slices from WT and Mecp2-/y mice, by either activating cAMP dependent pathway or using high frequency stimulation, by means of patch clamp. We have observed that, the NMDA channel current characteristics remain unchanged in the Mecp2-/y mice. The adenylyl cyclase (AC) agonist forskolin evoked a long lasting potentiation of evoked EPSCs in WT CA1 neurons, but only minimally enhanced the EPSCs in the Mecp2-/y mice. This weaker potentiation in Mecp2-/y mice was ameliorated by application of phosphodiesterase 4 inhibitor rolipram. The hyperpolarization activated cyclic nucleotide gated channel current (Ih) was potentiated to similar extent by forskolin in both phenotypes. Multiple tetanus induced cAMP-dependent plasticity was also impaired in the Mecp2-/y mice, and was also partially rescued by rolipram. Western blot analysis of CA region of Mecp2-/y mice hippocampus revealed more than twofold up-regulation of protein kinase A (PKA) regulatory subunits, while the expression of the catalytic subunit remained unchanged. We hypothesize that the overexpressed PKA regulatory subunits buffer cAMP and restrict the PKA mediated phosphorylation of target proteins necessary for LTP. Blocking the degradation of cAMP, thereby saturating the regulatory subunits alleviated this defect. PMID:26869885

  12. Thionation of segetalins A and B, cyclic peptides with estrogen-like activity from seeds of Vaccaria segetalis.

    PubMed

    Morita, H; Yun, Y S; Takeya, K; Itokawa, H; Shirota, O

    1997-03-01

    Thionation of estrogen-like active cyclic peptides, segetalins A (1) and B (2), with Lawesson's reagent provided each two thiosegetalins; thiosegetalin A1 [Gly-1-psi(CS-NH)-Val-2; Trp-5-psi (CS-NH)-Ala-6]segetalin A, thiosegetalin A2 [Gly-1-psi(CS-NH)-Val-2; Ala-6-psi(CS-NH)-Gly-1]segetalin A, thiosegetalin B1 [Gly-1-psi (CS-NH)-Val-2; Ala-3-psi(CS-NH)-Trp-4]segetalin B, and thiosegetalin B2 [Gly-1-psi(CS-NH)-Val-2; Trp-4-psi(CS-NH)-Ala-1]segetalin B. Thiosegetalin A2 only showed estrogen-like activity against ovariectomized rats. On the basis of their conformations analysed by NMR experiments, the backbone conformation was considered to play an important role in estrogen-like activity for segetalins.

  13. Sensory deprivation regulates the development of the hyperpolarization-activated current in auditory brainstem neurons.

    PubMed

    Hassfurth, Benjamin; Magnusson, Anna K; Grothe, Benedikt; Koch, Ursula

    2009-10-01

    Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are highly expressed in the superior olivary complex, the primary locus for binaural information processing. This hyperpolarization-activated current (I(h)) regulates the excitability of neurons and enhances the temporally precise analysis of the binaural acoustic cues. By using the whole-cell patch-clamp technique, we examined the properties of I(h) current in neurons of the lateral superior olive (LSO) and the medial nucleus of the trapezoid body (MNTB) before and after hearing onset. Moreover, we tested the hypothesis that I(h) currents are actively regulated by sensory input activity by performing bilateral and unilateral cochlear ablations before hearing onset, resulting in a chronic auditory deprivation. The results show that after hearing onset, I(h) currents are rapidly upregulated in LSO neurons, but change only marginally in neurons of the MNTB. We also found a striking difference in maximal current density, voltage dependence and activation time constant between the LSO and the MNTB in mature-like animals. Following bilateral cochlear ablations before hearing onset, the I(h) currents were scaled up in the LSO and scaled down in the MNTB. Consequently, in the LSO this resulted in a depolarized resting membrane potential and a lower input resistance of these neurons. This type of activity-dependent homeostatic change could thus result in an augmented response to the remaining inputs.

  14. Reduced Hyperpolarization-Activated Current Contributes to Enhanced Intrinsic Excitability in Cultured Hippocampal Neurons from PrP−/− Mice

    PubMed Central

    Fan, Jing; Stemkowski, Patrick L.; Gandini, Maria A.; Black, Stefanie A.; Zhang, Zizhen; Souza, Ivana A.; Chen, Lina; Zamponi, Gerald W.

    2016-01-01

    Genetic ablation of cellular prion protein (PrPC) has been linked to increased neuronal excitability and synaptic activity in the hippocampus. We have previously shown that synaptic activity in hippocampi of PrP-null mice is increased due to enhanced N-methyl-D-aspartate receptor (NMDAR) function. Here, we focused on the effect of PRNP gene knock-out (KO) on intrinsic neuronal excitability, and in particular, the underlying ionic mechanism in hippocampal neurons cultured from P0 mouse pups. We found that the absence of PrPC profoundly affected the firing properties of cultured hippocampal neurons in the presence of synaptic blockers. The membrane impedance was greater in PrP-null neurons, and this difference was abolished by the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker ZD7288 (100 μM). HCN channel activity appeared to be functionally regulated by PrPC. The amplitude of voltage sag, a characteristic of activating HCN channel current (Ih), was decreased in null mice. Moreover, Ih peak current was reduced, along with a hyperpolarizing shift in activation gating and slower kinetics. However, neither HCN1 nor HCN2 formed a biochemical complex with PrPC. These results suggest that the absence of PrP downregulates the activity of HCN channels through activation of a cell signaling pathway rather than through direct interactions. This in turn contributes to an increase in membrane impedance to potentiate neuronal excitability. PMID:27047338

  15. Age-dependent cyclic locomotor activity in the cricket, Gryllus bimaculatus, and the effect of adipokinetic hormone on locomotion and excitability.

    PubMed

    Fassold, Katharina; El-Damanhouri, Hassan I H; Lorenz, Matthias W

    2010-04-01

    Excitability and locomotor activity of male and female last instar larvae and adults of the two-spotted cricket are measured under crowded conditions, allowing the animals to interact with conspecifics during observations. Male and female last instar larvae display age-dependent cyclic patterns of activity with maxima during early to mid scotophase and minima during early photophase. A period of low locomotor activity without time of day-dependent cyclic changes starts 1 day before the final moult and lasts until 1 day after the moult. Then, both excitability and locomotor activity increase and become cyclic again within 2 or 3 days. The cyclic changes gradually dampen in adult females older than 6 days and finally cease. When injected into photophase larvae and adults, adipokinetic hormone (AKH) increases excitability and locomotor activity in a dose-dependent manner, whereas it has no such effect when injected into scotophase animals. Other behaviours (jumping, hind wing trembling) that mostly occur in scotophase crickets are also increased by injecting AKH into photophase crickets. We argue that AKH could be responsible for linking the endogenous clock output with the cyclic changes in locomotor activity. Furthermore, AKH may serve to synchronise metabolism and behaviour to optimise larval development and reproduction.

  16. Modulation of the hyperpolarization-activated current (Ih) by cyclic nucleotides in guinea-pig primary afferent neurons.

    PubMed Central

    Ingram, S L; Williams, J T

    1996-01-01

    1. Whole-cell patch-clamp recordings were made from dissociated guinea-pig nodose and trigeminal ganglion neurons in culture to study second messenger mechanisms of the hyperpolarization-activated current (Ih) modulation. 2. Prostaglandin E2 (PGE2) and forskolin modulate Ih in primary afferents by shifting the activation curve in the depolarizing direction and increasing the maximum amplitude. 3. The cAMP analogues, RP-cAMP-S (an inhibitor of protein kinase A (PKA)) and SP-cAMP-S (an activator of PKA), both shifted the activation curve of Ih to more depolarized potentials and occluded the effects of forskolin. These results suggest that Ih is modulated by a direct action of the cAMP analogues. 4. Superfusion of other cyclic nucleotide analogues (8-Br-cAMP, 8-(4-chlorophenylthio)-cAMP and 8-Br-cGMP) mimicked the actions of forskolin and PGE2, but dibutyryl cGMP, 5'-AMP and adenosine had no effect on Ih. 8-Br-cAMP and 8-Br-cGMP had similar concentration response profiles, suggesting that Ih has little nucleotide selectivity. 5. The inhibitor peptide (PKI), the catalytic subunit of PKA (C subunit) and phosphatase inhibitors (microcystin and okadaic acid) had no effect on forskolin modulation of Ih. 6. These results indicate that Ih is regulated by cyclic nucleotides in sensory neurons. Positive regulation of Ih by prostaglandins produced during inflammation may lead to depolarization and facilitation of repetitive activity, and thus contribute to sensitization to painful stimuli. PMID:8730586

  17. Localization and activity of tissue bound cyclic nucleotide phosphodiesterase in normal and lack of changes in psoriatic human skin.

    PubMed

    Mahrle, G; Organos, C E

    1976-12-01

    This study has been undertaken to elucidate the localization and the activity of cyclic nucleotide phosphodiesterase (PDE) in psoriatic epidermis compared to normal. The results showed that the evaluation of cytochemical methods may be difficult because of the various factors which interfere with the reaction and the considerable amount of background staining. Additionally, only the tissue bound particulate enzyme fraction may be demonstrated by cytochemical means. Nevertheless, the method did reveal that the activity of PDE, if any, is localized on the cytoplasmic membranes of the cells, independent of their origin, and not on the cell surface. Moreover, no differences were found between normal and psoriatic skin. It seems, therefore, that the intracellular degradation of cAMP remains unaltered in psoriasis.

  18. Rates, timing, and cyclicity of Holocene eolian activity in north-central United States: Evidence from varved lake sediments

    USGS Publications Warehouse

    Dean, W.E.

    1997-01-01

    Most of the sediment components that accumulated in Elk Lake, northwestern Minnesota, during the Holocene are autochthonous or biogenic, delivered to the sediment-water interface on a seasonal schedule, preserved in distinct annual laminae (varves). The main allochthonous component is detrital clastic material, as measured by bulk-sediment concentrations of aluminum, sodium, potassium, titanium, and quartz, that enters the lake mostly as eolian dust. The eolian clastic influx to Elk Lake was considerably greater during the mid-Holocene (8-4 ka) than it has been for the past 4000 yr, when periods of increased eolian activity correspond to the time of the Little Ice Age and the dust bowl. Geochemical records of eolian activity exhibit distinct cyclicities with dominant periodicities of 400 and 84 yr.

  19. Potential Agents for Treating Cystic Fibrosis: Cyclic Tetrapeptides that Restore Trafficking and Activity of ΔF508-CFTR.

    PubMed

    Hutt, Darren M; Olsen, Christian A; Vickers, Chris J; Herman, David; Chalfant, Monica; Montero, Ana; Leman, Luke J; Burkle, Renner; Maryanoff, Bruce E; Balch, William E; Ghadiri, M Reza

    2011-07-21

    Cystic fibrosis (CF) is a loss-of-function disease caused by mutations in the CF transmembrane conductance regulator (CFTR) protein, a chloride ion channel that localizes to the apical plasma membrane of epithelial cells. The most common form of the disease results from the deletion of phenylalanine-508 (ΔF508), leading to the accumulation of CFTR in the endoplasmic reticulum with a concomitant loss of chloride flux. We discovered that cyclic tetrapeptides, such as 11, 14, and 15, are able to correct the trafficking defect and restore cell surface activity of ΔF508-CFTR. Although this class of cyclic tetrapeptides is known to contain inhibitors of certain histone deacetylase (HDAC) isoforms, their HDAC inhibitory potencies did not directly correlate with their ability to rescue ΔF508-CFTR. In full HDAC profiling, 15 strongly inhibited HDACs 1, 2, 3, 10 and 11, but not HDACs 4-9. Although 15 had less potent IC(50) values than reference agent vorinostat (2) in HDAC profiling, it was markedly more potent than 2 in rescuing ΔF508-CFTR. We suggest that specific HDACs can have a differential influence on correcting ΔF508-CFTR, which may reflect both deacetylase and protein scaffolding actions.

  20. Mangiferin prevents guinea pig tracheal contraction via activation of the nitric oxide-cyclic GMP pathway.

    PubMed

    Vieira, Aline B; Coelho, Luciana P; Insuela, Daniella B R; Carvalho, Vinicius F; dos Santos, Marcelo H; Silva, Patricia Mr; Martins, Marco A

    2013-01-01

    Previous studies have described the antispasmodic effect of mangiferin, a natural glucoside xanthone (2-C-β-Dgluco-pyranosyl-1,3,6,7-tetrahydroxyxanthone) that is present in mango trees and other plants, but its mechanism of action remains unknown. The aim of this study was to examine the potential contribution of the nitric oxide-cyclic GMP pathway to the antispasmodic effect of mangiferin on isolated tracheal rings preparations. The functional effect of mangiferin on allergic and non-allergic contraction of guinea pig tracheal rings was assessed in conventional organ baths. Cultured tracheal rings were exposed to mangiferin or vehicle, and nitric oxide synthase (NOS) 3 and cyclic GMP (cGMP) levels were quantified using western blotting and enzyme immunoassays, respectively. Mangiferin (0.1-10 µM) inhibited tracheal contractions induced by distinct stimuli, such as allergen, histamine, 5-hydroxytryptamine or carbachol, in a concentration-dependent manner. Mangiferin also caused marked relaxation of tracheal rings that were precontracted by carbachol, suggesting that it has both anti-contraction and relaxant properties that are prevented by removing the epithelium. The effect of mangiferin was inhibited by the nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME) (100 µM), and the soluble guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (10 µM), but not the adenylate cyclase inhibitor, 9-(tetrahydro-2-furyl)adenine (SQ22536) (100 µM). The antispasmodic effect of mangiferin was also sensitive to K⁺ channel blockers, such as tetraethylammonium (TEA), glibenclamide and apamin. Furthermore, mangiferin inhibited Ca²⁺-induced contractions in K⁺ (60 mM)-depolarised tracheal rings preparations. In addition, mangiferin increased NOS3 protein levels and cGMP intracellular levels in cultured tracheal rings. Finally, mangiferin-induced increase in cGMP levels was abrogated by co-incubation with either ODQ or L

  1. In Vitro Antiviral Activity of 6-Substituted 9-β-d-Ribofuranosylpurine 3′,5′-Cyclic Phosphates

    PubMed Central

    Sidwell, Robert W.; Huffman, John H.; Allen, Lois B.; Meyer, Rich B.; Shuman, Dennis A.; Simon, Lionel N.; Robins, Roland K.

    1974-01-01

    A series of twelve recently synthesized 6-substituted derivatives of 9-β-d-ribofuranosylpurine 3′,5′-cyclic phosphate (RPcMP) were evaluated for in vitro antiviral activity, using inhibition of viral cytopathogenic effect as the primary parameter for evaluation. Inhibition of the development of intra- and extracellular virus titer was used as a secondary criterion with certain viruses. Five derivatives were considered to have significant antiviral activity. 6-Hydroxylamino-RPcMP was active against type 1 herpes simplex, cytomegalo-, and vaccinia viruses. 6-Thio-RPcMP was inhibitory to types 1 and 2 herpes simplex, cytomegalo-, vaccinia, and type 3 parainfluenza viruses. The 6-methylthio derivative was active against types 1 and 2 herpes simplex, cytomegalo-, and vaccinia viruses, and types 1A, 2, 8, and 13 rhinoviruses; alteration of this 6-substitution to 6-ethylthio or to 6-benzylthio weakened the herpes- and vaccinia virus activity of the compound, but each continued to have significant antirhinovirus activity. The effect of time of addition of 6-methylthio-RPcMP to type 1 herpes simplex virus-infected cells was determined; the compound was most active when added prior to the virus. Early removal of the compound from the infected cells markedly reduced its antiviral effectiveness. PMID:15825420

  2. Effect of ester to amide or N-methylamide substitution on bacterial membrane depolarization and antibacterial activity of novel cyclic lipopeptides.

    PubMed

    Bionda, Nina; Fleeman, Renee M; Shaw, Lindsey N; Cudic, Predrag

    2013-08-01

    Cyclic lipopeptides derived from the fusaricidin/LI-F family of naturally occurring antibiotics represent particularly attractive candidates for the development of new antibacterial agents. In comparison with natural products, these derivatives may offer better stability under physiologically relevant conditions and lower nonspecific toxicity, while preserving their antibacterial activity. In this study we assessed the ability of cyclic lipodepsipeptide 1 and its analogues--amide 2, N-methylamide 3, and linear peptide 4--to interact with the cytoplasmic membranes of selected Gram-positive bacteria. We also investigated their bacteriostatic/bactericidal modes of action and in vivo potency by using a Galleria mellonella model of MRSA infection. Cyclic lipopeptides 1 and 2 depolarize the cytoplasmic membranes of Gram-positive bacteria in a concentration-dependent manner. The degree of membrane depolarization was influenced by the structural and physical properties of 1 and 2, with the more flexible and hydrophobic peptide 1 being most efficient. However, membrane depolarization does not correlate with bacterial cell lethality, suggesting that membrane-targeting activity is not the main mode of action for this class of antibacterial peptides. Conversely, substitution of the depsipeptide bond in 1 with an N-methylamide bond in 3, or its hydrolysis to peptide 4, lead to a complete loss of antibacterial activity and indicate that the conformation of cyclic lipopeptides plays a role in their antibacterial activities. Cyclic lipopeptides 1 and 2 are also capable of improving the survival of G. mellonella larvae infected with MRSA at varying efficiencies, reflecting their in vitro activities. Gaining more insight into the structure-activity relationship and mode of action of these cyclic lipopeptides may enable the development of new antibiotics of this class with improved antibacterial activity.

  3. Anti-ischemic properties of a new spiro-cyclic benzopyran activator of the cardiac mito-KATP channel.

    PubMed

    Calderone, Vincenzo; Testai, Lara; Martelli, Alma; Rapposelli, Simona; Digiacomo, Maria; Balsamo, Aldo; Breschi, Maria C

    2010-01-01

    Many activators of K(ATP) channels exhibit cardioprotective effects, mainly mediated by channels expressed on mitochondria (mito-K(ATP)). Previous results showed anti-ischemic effects of the spiro-cyclic derivative A, on isolated rat hearts. In this work this molecule was more extensively studied and diazoxide was used as reference mito-K(ATP) opener. The studies were performed on an in vivo rat model of myocardial infarct and on heart-derived H9c2 cells exposed to an anoxic environment. The mechanism of action was further investigated on isolated rat heart mitochondria. In the model of myocardial infarct compound A and diazoxide produced significant cardioprotective effects, antagonised by the selective mito-K(ATP) blocker 5-hydroxydecanoic acid (5-HD). Compound A, like diazoxide, produced modest and non-significant hypotensive responses, while the hyperglycaemic effects of diazoxide were not observed for the new compound. Protective effects of compound A and diazoxide were also recorded in H9c2 cells and again were inhibited by 5-HD. Compound A and diazoxide caused swelling of cardiac mitochondria, in agreement with the profile of mito-K(ATP) openers. Both compounds evoked concentration-dependent Ca2+-release from Ca2+-preloaded mitochondria, prevented mitochondrial Ca2+-uptake and caused mitochondrial membrane depolarisation. These effects were antagonised by ATP, the endogenous K(ATP) inhibitor. In conclusion, compound A exhibits a promising profile of an anti-ischemic agent, with a mechanism likely to be linked to the activation of mito-K(ATP) channels, and, because of its chemical characteristics such as structural rigidity and chirality due to the spiro-cyclic moiety, represents an interesting template for development of analogues further improved in activity and selectivity.

  4. Beta-ionone activates and bleaches visual pigment in salamander photoreceptors.

    PubMed

    Isayama, Tomoki; McCabe England, S L; Crouch, R K; Zimmerman, A L; Makino, C L

    2009-01-01

    Vision begins with photoisomerization of 11-cis retinal to the all-trans conformation within the chromophore-binding pocket of opsin, leading to activation of a biochemical cascade. Release of all-trans retinal from the binding pocket curtails but does not fully quench the ability of opsin to activate transducin. All-trans retinal and some other analogs, such as beta-ionone, enhance opsin's activity, presumably on binding the empty chromophore-binding pocket. By recording from isolated salamander photoreceptors and from patches of rod outer segment membrane, we now show that high concentrations of beta-ionone suppressed circulating current in dark-adapted green-sensitive rods by inhibiting the cyclic nucleotide-gated channels. There were also decreases in circulating current and flash sensitivity, and accelerated flash response kinetics in dark-adapted blue-sensitive (BS) rods and cones, and in ultraviolet-sensitive cones, at concentrations too low to inhibit the channels. These effects persisted in BS rods even after incubation with 9-cis retinal to ensure complete regeneration of their visual pigment. After long exposures to high concentrations of beta-ionone, recovery was incomplete unless 9-cis retinal was given, indicating that visual pigment had been bleached. Therefore, we propose that beta-ionone activates and bleaches some types of visual pigments, mimicking the effects of light.

  5. Phosphatidylinositol-specific phospholipase C from Bacillus cereus combines intrinsic phosphotransferase and cyclic phosphodiesterase activities: A sup 31 P NMR study

    SciTech Connect

    Shashidhar, M.S.; Kuppe, A. ); Volwerk, J.J.; Griffith, O.H.

    1990-09-04

    The inositol phosphate products formed during the cleavage of phosphatidylinositol by phosphatidylinositol-specific phospholipase C from Bacillus cereus were analyzed by {sup 31}P NMR. {sup 31}P NMR spectroscopy can distinguish between the inositol phosphate species and phosphatidylinositol. Chemical shift values (with reference to phosphoric acid) observed are {minus}0.41, 3.62, 4.45, and 16.30 ppm for phosphatidylinositol, myo-inositol 1-monophosphate, myo-inositol 2-monophosphate, and myo-inositol 1,2-cyclic monophosphate, respectively. It is shown that under a variety of experimental conditions this phospholipase C cleaves phosphatidylinositol via an intramolecular phosphotransfer reaction producing diacylglycerol and D-myo-inositol 1,2-cyclic monophosphate. The authors also report the new and unexpected observation that the phosphatidylinositol-specific phospholipase C from B. cereus is able to hydrolyze the inositol cyclic phosphate to form D-myo-inositol 1-monophosphate. The enzyme, therefore, possesses phosphotransferase and cyclic phosphodiesterase activities. The second reaction requires thousandfold higher enzyme concentrations to be observed by {sup 31}P NMR. This reaction was shown to be regiospecific in that only the 1-phosphate was produced and stereospecific in that only D-myo-inositol 1,2-cyclic monophosphate was hydrolyzed. Inhibition with a monoclonal antibody specific for the B.cereus phospholipase C showed that the cyclic phosphodiesterase activity is intrinsic to the bacterial enzyme. They propose a two-step mechanism for the phosphatidyl-inositol-specific phospholipase C from B. cereus involving sequential phosphotransferase and cyclic phosphodiesterase activities. This mechanism bears a resemblance to the well-known two-step mechanism of pancreatic ribonuclease, RNase A.

  6. Cyclic Voltammetry.

    ERIC Educational Resources Information Center

    Evans, Dennis H.; And Others

    1983-01-01

    Cyclic voltammetry is a simple experiment that has become popular in chemical research because it can provide useful information about redox reactions in a form which is easily obtained and interpreted. Discusses principles of the method and illustrates its use in the study of four electrode reactions. (Author/JN)

  7. The physiological links of the increased photosystem II activity in moderately desiccated Porphyra haitanensis (Bangiales, Rhodophyta) to the cyclic electron flow during desiccation and re-hydration.

    PubMed

    Gao, Shan; Niu, Jianfeng; Chen, Weizhou; Wang, Guangce; Xie, Xiujun; Pan, Guanghua; Gu, Wenhui; Zhu, Daling

    2013-09-01

    Photosynthetic electron flow changed considerably during desiccation and re-hydration of the intertidal macroalgae Porphyra haitanensis. Activities of both photosystem (PSI) and photosystem (PSII) increased significantly at moderate desiccation levels. Whereas PSII activity was abolished at an absolute water content (AWC) <24 %, PSI remained active with progressive decreases in AWC to values as low as 16 %. This result suggested that cyclic electron flow around PSI was still active after inactivation of linear electron flow following severe desiccation. Moreover, the PSI activity was restored more rapidly than that of PSII upon re-hydration. Pretreatment of the blades with 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) suppressed PSII activity following desiccation to an AWC of ~16 % AWC. Cyclic electron flow around PSI decreased markedly in blades pretreated with DCMU than in blades without pretreatment of DCMU during re-hydration in seawater containing DCMU. All results suggested that the activity of PSII under desiccation conditions plays an important role in the operation of cyclic electron flow during desiccation and its recovery during re-hydration. Therefore, we proposed the PSII activity during desiccation could eventually lead to the accumulation of NADPH, which could serve as electron donor for P700(+) and promote its recovery during re-hydration, thereby favoring the operation of cyclic electron flow.

  8. The catalytic subunit of protein kinase A triggers activation of the type V cyclic GMP-specific phosphodiesterase from guinea-pig lung.

    PubMed Central

    Burns, F; Rodger, I W; Pyne, N J

    1992-01-01

    The type V cyclic GMP phosphodiesterase was partially purified from the high-speed supernatant of guinea-pig lung. The isoenzyme displayed linear kinetics for cyclic GMP hydrolysis, with Km = 2.2 +/- 0.2 microM and Vmax. = 1.2 +/- 0.08 nmol/min per mg. The selective type V phosphodiesterase inhibitor Zaprinast inhibited cyclic GMP hydrolysis with IC50 (concn. giving 50% inhibition) = 0.45 +/- 0.08 microM. Isobutylmethylxanthine promoted a 3-fold increase in the binding of cyclic GMP to the isoenzyme. The addition of the catalytic subunit of protein kinase A to an activation cocktail containing the partially purified type V phosphodiesterase resulted in a marked increase in Vmax. for cyclic GMP hydrolysis (approximately 10-fold at 40 units of protein kinase A). We have suggested that protein kinase A triggers phosphorylation of the phosphodiesterase, which results in activation of phosphodiesterase activity. In addition, the sensitivity to inhibition by Zaprinast is severely decreased (the IC50 for inhibition is 7.5 +/- 1.1 microM), suggesting that the potency of phosphodiesterase inhibitors is effected by phosphorylation of the enzyme. PMID:1315515

  9. Fluorine concentrations in bone biopsy samples determined by proton-induced gamma-ray emission and cyclic neutron activation.

    PubMed

    Spyrou, N M; Altaf, W J; Gill, B S; Jeynes, C; Nicolaou, G; Pietra, R; Sabbioni, E; Surian, M

    1990-01-01

    Fluorine concentrations in bone biopsy samples taken from the iliac crest of subjects, divided into four groups depending on the length of dialysis treatment, and aluminium levels in blood and bone pathology, in terms of osteoporosis, were determined by two instrumental methods. Proton-induced gamma-ray emission (PIGE), making use of the resonance reaction of 19F(p, alpha gamma)16O at 872 keV, and cyclic neutron activation analysis (CNAA), using the 19F(n, gamma)20F reaction in a reactor irradiation facility, were employed. Rutherford backscattering (RBS) was used to calculate the volume, and, hence, mass of the sample excited in PIGE by determining the major element composition of the samples in order to express results in terms of concentration. From this preliminary investigation, a relationship is suggested between fluorine concentrations in bone and aluminium levels in the system.

  10. The cyclic AMP receptor protein is the main activator of pectinolysis genes in Erwinia chrysanthemi.

    PubMed Central

    Reverchon, S; Expert, D; Robert-Baudouy, J; Nasser, W

    1997-01-01

    The main virulence factors of the phytopathogenic bacterium Erwinia chrysanthemi are pectinases that cleave pectin, a major constituent of the plant cell wall. Although physiological studies suggested that pectinase production in Erwinia species is subjected to catabolite repression, the direct implication of the cyclic AMP receptor protein (CRP) in this regulation has never been demonstrated. To investigate the role of CRP in pectin catabolism, we cloned the E. chrysanthemi crp gene by complementation of an Escherichia coli crp mutation and then constructed E. chrysanthemi crp mutants by reverse genetics. The carbohydrate fermentation phenotype of the E. chrysanthemi crp mutants is similar to that of an E. coli crp mutant. Furthermore, these mutants are unable to grow on pectin or polygalacturonate as the sole carbon source. Analysis of the nucleotide sequence of the E. chrysanthemi crp gene revealed the presence of a 630-bp open reading frame (ORF) that codes for a protein highly similar to the CRP of E. coli. Using a crp::uidA transcriptional fusion, we demonstrated that the E. chrysanthemi CRP represses its own expression, probably via a mechanism similar to that described for the E. coli crp gene. Moreover, in the E. chrysanthemi crp mutants, expression of pectinase genes (pemA, pelB, pelC, pelD, and pelE) and of genes of the intracellular part of the pectin degradation pathway (ogl, kduI, and kdgT), which are important for inducer formation and transport, is dramatically reduced in induced conditions. In contrast, expression of pelA, which encodes a pectate lyase important for E. chrysanthemi pathogenicity, seems to be negatively regulated by CRP. The E. chrysanthemi crp mutants have greatly decreased maceration capacity in potato tubers, chicory leaves, and celery petioles as well as highly diminished virulence on saintpaulia plants. These findings demonstrate that CRP plays a crucial role in expression of the pectinolysis genes and in the pathogenicity of E

  11. Cyclic adenosine monophosphate (cAMP)-induced histone hyperacetylation contributes to its antiproliferative and differentiation-inducing activities.

    PubMed

    Yoo, Seungwan; Lee, Yong Gyu; Kim, Ji Hye; Byeon, Se Eun; Rho, Ho Sik; Cho, Jae Youl; Hong, Sungyoul

    2012-01-01

    Histone acetylation is linked to the control of chromatin remodeling, which is involved in cell growth, proliferation, and differentiation. It is not fully understood whether cyclic adenosine monophosphate (cAMP), a representative differentiation-inducing molecule, is able to modulate histone acetylation as part of its anticancer activity. In the present study, we aimed to address this issue using cell-permeable cAMP, i.e. dibutyryl cAMP (dbcAMP) and C6 glioma cells. As reported previously, under the conditions of our studies, treatment with dbcAMP clearly arrested C6 cell proliferation and altered their morphology. Its antiproliferative and differentiation-inducing activity in C6 glioma cells involved upregulation of p219WAF/CIP), p27(kip1), glial fibrillary acidic protein (GFAP), and Cx43, as well as downregulation of vimentin. Furthermore, dbcAMP modulated the phosphorylation of ERK and Akt in a time-dependent manner and altered the colocalization pattern of phospho-Src and the actin cytoskeleton. Interestingly, dbcAMP upregulated the enzyme activity of histone acetyltransferase (HAT) and, in parallel, enhanced cellular acetyllysine levels. Finally, the hyperacetylation-inducing compound, sodium butyrate (NaB), a histone deacetylase (HDAC) inhibitor, displayed similar anticancer activity to dbcAMP. Therefore, our data suggest that antiproliferative and differentiation-inducing activities of dbcAMP may be generated by its enhanced hyperacetylation function.

  12. Effects of cadmium on the activities of photosystems of Chlorella pyrenoidosa and the protective role of cyclic electron flow.

    PubMed

    Wang, Shuzhi; Zhang, Daoyong; Pan, Xiangliang

    2013-09-01

    Cadmium (Cd) shows high toxicity to aquatic microalgae. Many studies showed that Cd inhibited activities of photosystem II (PSII) but the effects of heavy metals on photosystem I (PSI) and cyclic electron flow (CEF) were still controversial and unclear. The effects of CdCl2 on the activities of PSI, PSII and CEF in Chlorella pyrenoidosa was measured simultaneously in the present study. In presence of 200μM of Cd, ultrastructure of some cells was strongly modified. Cd exposure led to decrease of the activities of photosynthetic oxygen evolution and respiration. PSII was more sensitive to Cd treatment than PSI. Cd treatment showed significant inhibition on the photochemical quantum yield and electron transport rate of PSII. Cd increased the quantum yield of non-light-induced non-photochemical fluorescence quenching, indicating the damage of PSII. The activity of PSI showed tolerance to Cd treatment with concentration less than 100μM in the experiment. Linear electron flow (LEF) made significant contribution to the photochemical quantum yield of PSI of the untreated cells, but decreased with increasing Cd concentration. The contribution of CEF to the yield of PSI increased with increasing Cd concentration. The activation of CEF after exposure to Cd played an essential role for the protection of PSI.

  13. Cyclic AMP-responsive expression of the surfactant protein-A gene is mediated by increased DNA binding and transcriptional activity of thyroid transcription factor-1.

    PubMed

    Li, J; Gao, E; Mendelson, C R

    1998-02-20

    Surfactant protein (SP)-A gene transcription is stimulated by factors that increase cyclic AMP. In the present study, we observed that three thyroid transcription factor-1 (TTF-1) binding elements (TBEs) located within a 255 base pair region flanking the 5'-end of the baboon SP-A2 (bSP-A2) gene are required for maximal cyclic AMP induction of bSP-A2 promoter activity. We found that TTF-1 DNA binding activity was increased in nuclear extracts of pulmonary type II cells cultured in the presence of cyclic AMP. By contrast, the levels of immunoreactive TTF-1 protein were similar in nuclear extracts of control and cyclic AMP-treated type II cells. The incorporation of [32P]orthophosphate into immunoprecipitated TTF-1 protein also was markedly increased by cyclic AMP treatment. Moreover, exposure of nuclear extracts from cyclic AMP-treated type II cells either to potato acid phosphatase or alkaline phosphatase abolished the cyclic AMP-induced increase in TTF-1 DNA-binding activity. Interestingly, the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), known to activate protein kinase C, also enhanced incorporation of [32P]orthophosphate into TTF-1 protein; however, the DNA binding activity of TTF-1 was decreased in nuclear extracts of TPA-treated type II cells. Expression vectors encoding TTF-1 and the catalytic subunit of protein kinase A (PKA-cat) were cotransfected into A549 lung adenocarcinoma cells together with an SPA:human growth hormone fusion gene (255 base pairs of 5'-flanking DNA from the baboon SP-A2 gene linked to human growth hormone, as reporter) containing TBEs, or with a reporter gene construct containing three tandem TBEs fused upstream of the bSP-A2 gene TATA box and the transcription initiation site. Coexpression of TTF-1 and PKA-cat increased fusion gene expression 3-4-fold as compared with expression of TTF-1 in the absence of PKA-cat. Moreover, the transcriptional activity of TTF-1 was suppressed by cotransfection of a dominant negative form

  14. A Leucine Zipper Motif Essential for Gating of Hyperpolarization-activated Channels*

    PubMed Central

    Wemhöner, Konstantin; Silbernagel, Nicole; Marzian, Stefanie; Netter, Michael F.; Rinné, Susanne; Stansfeld, Phillip J.; Decher, Niels

    2012-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are pacemakers in cardiac myocytes and neurons. Although their membrane topology closely resembles that of voltage-gated K+ channels, the mechanism of their unique gating behavior in response to hyperpolarization is still poorly understood. We have identified a highly conserved leucine zipper motif in the S5 segment of HCN family members. In order to study the role of this motif for channel function, the leucine residues of the zipper were individually mutated to alanine, arginine, or glutamine residues. Leucine zipper mutants traffic to the plasma membrane, but the channels lose their sensitivity to open upon hyperpolarization. Thus, our data indicate that the leucine zipper is an important molecular determinant for hyperpolarization-activated channel gating. Residues of the leucine zipper interact with the adjacent S6 segment of the channel. This interaction is essential for voltage-dependent gating of the channel. The lower part of the leucine zipper, at the intracellular mouth of the channel, is important for stabilizing the closed state. Mutations at these sites increase current amplitudes or result in channels with deficient closing and increased min-Po. Our data are further supported by homology models of the open and closed state of the HCN2 channel pore. Thus, we conclude that the leucine zipper of HCN channels is a major determinant for hyperpolarization-activated channel gating. PMID:23048023

  15. Memantine inhibits serotonin-induced rise of cytosolic Ca2+ activity and of cyclic GMP level in a neuronal cell line.

    PubMed

    Reiser, G; Koch, R

    1989-05-11

    Serotonin (5-HT) evoked a rise of cytosolic Ca2+ activity in neuroblastoma X glioma hybrid cells, most probably due to the entry of extracellular Ca2+; cyclic GMP synthesis was also stimulated. The rise of both cytosolic Ca2+ activity and of cyclic GMP level was blocked by memantine (1-amino-3,5-dimethyladamantane). Memantine inhibited the rise of the cyclic GMP level non-competitively (Ki about 50 microM). Thus, memantine suppresses the effects of 5-HT in the neuronal cell line, most likely by blocking Ca2+-permeable ion channels. This interpretation is in line with the previously reported finding that memantine suppressed the 5-HT-induced depolarizing response in the same cell line.

  16. Active Traction Force Response to Long-Term Cyclic Stretch Is Dependent on Cell Pre-stress.

    PubMed

    Cirka, Heather; Monterosso, Melissa; Diamantides, Nicole; Favreau, John; Wen, Qi; Billiar, Kristen

    2016-04-26

    Mechanical stimulation is recognized as a potent modulator of cellular behaviors such as proliferation, differentiation, and extracellular matrix assembly. However, the study of how cell-generated traction force changes in response to stretch is generally limited to short-term stimulation. The goal of this work is to determine how cells actively alter their traction force in response to long-term physiological cyclic stretch as a function of cell pre-stress. We have developed, to our knowledge, a novel method to assess traction force after long-term (24 h) uniaxial or biaxial cyclic stretch under conditions of high cell pre-stress with culture on stiff (7.5 kPa) polyacrylamide gels (with or without transforming growth factor β1 (TGF-β1)) and low pre-stress by treating with blebbistatin or culture on soft gels (0.6 kPa). In response to equibiaxial stretch, valvular interstitial cells on stiff substrates decreased their traction force (from 300 nN to 100 nN) and spread area (from 3000 to 2100 μm(2)). With uniaxial stretch, the cells had similar decreases in traction force and area and reoriented perpendicular to the stretch. TGF-β1-treated valvular interstitial cells had higher pre-stress (1100 nN) and exhibited a larger drop in traction force with uniaxial stretch, but the percentage changes in force and area with stretch were similar to the non-TGF-β1-treated group. Cells with inhibited myosin II motors increased traction force (from 41 nN to 63 nN) and slightly reoriented toward the stretch direction. In contrast, cells cultured on soft gels increased their traction force significantly, from 15 nN to 45 nN, doubled their spread area, elongated from an initially rounded morphology, and reoriented perpendicular to the uniaxial stretch. Contractile-moment measurements provided results consistent with total traction force measurements. The combined results indicate that the change in traction force in response to external cyclic stretch is dependent upon the

  17. Alteration of sodium, potassium-adenosine triphosphatase activity in rabbit ciliary processes by cyclic adenosine monophosphate-dependent protein kinase

    SciTech Connect

    Delamere, N.A.; Socci, R.R.; King, K.L. )

    1990-10-01

    The response of sodium, potassium-adenosine triphosphatase (Na,K-ATPase) to cyclic adenosine monophosphate (cAMP)-dependent protein kinase was examined in membranes obtained from rabbit iris-ciliary body. In the presence of the protein kinase together with 10(-5) M cAMP, Na,K-ATPase activity was reduced. No change in Na,K-ATPase activity was detected in response to the protein kinase without added cAMP. Likewise cAMP alone did not alter Na,K-ATPase activity. Reduction of Na,K-ATPase activity was also observed in the presence of the cAMP-dependent protein kinase catalytic subunit. The response of the enzyme to the kinase catalytic subunit was also examined in membranes obtained from rabbit ciliary processes. In the presence of 8 micrograms/ml of the catalytic subunit, ciliary process Na,K-ATPase activity was reduced by more than 50%. To examine whether other ATPases were suppressed by the protein kinase, calcium-stimulated ATPase activity was examined; its activity was stimulated by the catalytic subunit. To test whether the response of the ciliary process Na,K-ATPase is unique, experiments were also performed using membrane preparations from rabbit lens epithelium or rabbit kidney; the catalytic subunit significantly reduced the activity of Na,K-ATPase from the kidney but not the lens. These Na,K-ATPase studies suggest that in the iris-ciliary body, cAMP may alter sodium pump activity. In parallel 86Rb uptake studies, we observed that ouabain-inhibitable potassium uptake by intact pieces of iris-ciliary body was reduced by exogenous dibutryl cAMP or by forskolin.

  18. Reverse relationship between malignancy and cyclic AMP-dependent protein kinase activity in Yoshida rat ascites hepatomas.

    PubMed

    Miyamoto, K; Nakamura, S; Nomura, M; Yamamoto, H; Sanae, F; Hidaka, H

    1993-08-31

    Rat ascites hepatoma (AH) cells (10(6) cells/head) inoculated intraperitoneally into rats had host-killing ability (malignancy) in the order AH66F > AH44 > AH13 > AH7974 > AH109A > AH66 > AH130. The life span of the rats after inoculation closely correlated with the activity of cyclic AMP-dependent protein kinase (protein kinase A) in the tumor cells but not the activity of Ca2+/phospholipid-dependent protein kinase (protein kinase C). N-[2-[N-[3-(4-chlorophenyl)-1-methyl-2-propenyl]amino]ethyl]-5- isoquinoline-sulfonamide (H-87), a potent, selective inhibitor of protein kinase A, inhibited in vitro growth of these hepatoma cells with a similar potency and, intraperitoneally injected, prolonged the lives of rats bearing less malignant AH66 cells (with high protein kinase A activity) but did not affect the life span of rats bearing highly malignant AH66F cells (with low protein kinase A activity). On the other hand N-(2-methylpiperazyl)-5-isoquinolinesulfonamide (H-7), an inhibitor of protein kinase C, inhibited AH66F cells more than AH66 cells, but did not influence the life span of rats bearing either hepatoma. From these results it is deduced that protein kinase A may be important in the regulation of malignancy and in vivo proliferation of AH cells.

  19. Developmental Febrile Seizures Modulate Hippocampal Gene Expression of Hyperpolarization-Activated Channels in an Isoform- and Cell-Specific Manner

    PubMed Central

    Brewster, Amy; Bender, Roland A.; Chen, Yuncai; Dube, Celine; Eghbal-Ahmadi, Mariam; Baram, Tallie Z.

    2012-01-01

    Febrile seizures, in addition to being the most common seizure type of the developing human, may contribute to the generation of subsequent limbic epilepsy. Our previous work has demonstrated that prolonged experimental febrile seizures in the immature rat model increased hippocampal excitability long term, enhancing susceptibility to future seizures. The mechanisms for these profound proepileptogenic changes did not require cell death and were associated with long-term slowed kinetics of the hyperpolarization-activated depolarizing current (IH). Here we show that these seizures modulate the expression of genes encoding this current, the hyperpolarization-activated, cyclic nucleotide-gated channels (HCNs): In CA1 neurons expressing multiple HCN isoforms, the seizures induced a coordinated reduction of HCN1 mRNA and enhancement of HCN2 expression, thus altering the neuronal HCN phenotype. The seizure-induced augmentation of HCN2 expression involved CA3 in addition to CA1, whereas for HCN4, mRNA expression was not changed by the seizures in either hippocampal region. This isoform- and region-specific transcriptional regulation of the HCNs required neuronal activity rather than hyperthermia alone, correlated with seizure duration, and favored the formation of slow-kinetics HCN2-encoded channels. In summary, these data demonstrate a novel, activity-dependent transcriptional regulation of HCN molecules by developmental seizures. These changes result in long-lasting alteration of the HCN phenotype of specific hippocampal neuronal populations, with profound consequences on the excitability of the hippocampal network. PMID:12040066

  20. Transduction for Pheromones in the Main Olfactory Epithelium Is Mediated by the Ca2+-Activated Channel TRPM5

    PubMed Central

    López, Fabián; Delgado, Ricardo; López, Roberto; Bacigalupo, Juan

    2014-01-01

    Growing evidence suggests that the main olfactory epithelium contains a subset of olfactory sensory neurons (OSNs) responding to pheromones. One candidate subpopulation expresses the calcium activated cation channel TRPM5 (transient receptor potential channel M5). Using GFP driven by the TRPM5 promoter in mice, we show that this subpopulation responds to putative pheromones, urine, and major histocompatibility complex peptides, but not to regular odors or a pheromone detected by other species. In addition, this subpopulation of TRPM5-GFP+ OSNs uses novel transduction. In regular OSNs, odorants elicit activation of the cyclic nucleotide-gated (CNG) channel, leading to Ca2+ gating of Cl− channels; in TRPM5-GFP+ OSNs, the Ca2+-activated Cl− ANO2 (anoctamin 2) channel is not expressed, and pheromones elicit activation of the CNG channel leading to Ca2+ gating of TRPM5. In conclusion, we show that OSNs expressing TRPM5 respond to pheromones, but not to regular odors through the opening of CNG channels leading to Ca2+ gating of TRPM5. PMID:24573286

  1. Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform- and cell-specific manner.

    PubMed

    Brewster, Amy; Bender, Roland A; Chen, Yuncai; Dube, Celine; Eghbal-Ahmadi, Mariam; Baram, Tallie Z

    2002-06-01

    Febrile seizures, in addition to being the most common seizure type of the developing human, may contribute to the generation of subsequent limbic epilepsy. Our previous work has demonstrated that prolonged experimental febrile seizures in the immature rat model increased hippocampal excitability long term, enhancing susceptibility to future seizures. The mechanisms for these profound proepileptogenic changes did not require cell death and were associated with long-term slowed kinetics of the hyperpolarization-activated depolarizing current (I(H)). Here we show that these seizures modulate the expression of genes encoding this current, the hyperpolarization-activated, cyclic nucleotide-gated channels (HCNs): In CA1 neurons expressing multiple HCN isoforms, the seizures induced a coordinated reduction of HCN1 mRNA and enhancement of HCN2 expression, thus altering the neuronal HCN phenotype. The seizure-induced augmentation of HCN2 expression involved CA3 in addition to CA1, whereas for HCN4, mRNA expression was not changed by the seizures in either hippocampal region. This isoform- and region-specific transcriptional regulation of the HCNs required neuronal activity rather than hyperthermia alone, correlated with seizure duration, and favored the formation of slow-kinetics HCN2-encoded channels. In summary, these data demonstrate a novel, activity-dependent transcriptional regulation of HCN molecules by developmental seizures. These changes result in long-lasting alteration of the HCN phenotype of specific hippocampal neuronal populations, with profound consequences on the excitability of the hippocampal network.

  2. Electrochemical behavior of polyamides with cyclic disulfide structure and their application to positive active material for lithium secondary battery

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Hiromori; Oyari, Yoshiaki; Onimura, Kenjiro; Oishi, Tsutomu

    Polyamides (DTA-I, DTA-II, and DTA-III) containing cyclic disulfide structure were prepared by condensation between 1,2-dithiane-3,6-dicarboxylic acid (DTA) and alkyl diamine, NH 2-(CH 2) n-NH 2 (DTA-I; n=4, DTA-II; n=6, DTA-III; n=8) and their application to positive active material for lithium secondary batteries was investigated. Cyclic voltammetry (CV) measurements under slow sweep rate (0.5 mV s -1) with a carbon paste electrode containing the polyamide (DTA-I, DTA-II, or DTA-III) were performed. The results indicated that the polyamides were electroactive in the organic electrolyte solution (propylene carbonate (PC)-1,2-dimethoxyethane (DME), 1:1 by volume containing lithium salt, such as LiClO 4). The responses based on the redox of the disulfide bonds in the polyamide were observed. Test cells, Li/PC-DME (1:1. by volume) with 1 mol dm -3 LiClO 4/the polyamide cathode, were constructed and their performance was tested under constant current charge/discharge condition. The average capacity of the test cells with the DTA-III cathode was 64.3 Ah kg -1 of cathode (135 Wh kg -1 of cathode, capacity (Ah kg -1) of the cathode×average cell voltage (2.10 V)). Performance of the cell with linear polyamide containing disulfide bond (-CO-(CH 2) 2-S-S-(CH 2) 2-CONH-(CH 2) 8-NH-, GTA-III) was also investigated and the average capacity was 56.8 Ah kg -1 of cathode (100 Wh kg -1 of cathode, capacity (Ah kg -1) of the cathode×average cell voltage (1.76 V)). Cycle efficiency of the test cell with the DTA-III cathode was higher than that with the GTA-III cathode.

  3. High activity of an indium alkoxide complex toward ring opening polymerization of cyclic esters.

    PubMed

    Quan, Stephanie M; Diaconescu, Paula L

    2015-06-14

    An indium complex supported by a ferrocene-derived Schiff base ligand has an unprecedented high activity toward ε-caprolactone, δ-valerolactone, and β-butyrolactone. l-Lactide, d,l-lactide, and trimethylene carbonate polymerizations also showed moderate to high activity.

  4. Activation of cyclic amp/protein kinase: a signaling pathway enhances osteoblast cell adhesion on biomaterials for regenerative engineering.

    PubMed

    Lo, Kevin W-H; Ashe, Keshia M; Kan, Ho Man; Lee, Duron A; Laurencin, Cato T

    2011-04-01

    Osteoblast cell adhesion on biomaterials is an important goal for implants to be useful in bone regeneration technologies. The adhesion of osteoblastic cells to biomaterials has been investigated in the field of bone regenerative engineering. Previous work from our group demonstrated that osteoblastic cells adhering to biodegradable biomaterials require the expression of integrins on the cell surface. However, the underlying molecular signaling mechanism is still not fully clear. We report here that cyclic adenosine monophosphate (cAMP), a small signaling molecule, regulates osteoblast cell adhesion to biomaterial surfaces. We used an in vitro cell adhesion assay to demonstrate that at 0.1 mM, 8-Br-cAMP, a cell-permeable cAMP analog, significantly enhances osteoblast-like cells' (MC3T3-E1) adherence to biomaterials. Moreover, we demonstrate that a commonly used cAMP-elevating agent, forskolin, promotes cell adhesion similar to that of the cell permeable cAMP analog. By using different target-specific cAMP analogs: 8-CPT-2Me-cAMP which specifically activates exchange protein activated by cAMP (Epac), and 6-Bnz-cAMP which specifically activates protein kinase A (PKA), we observed that the PKA signaling pathway plays a dominant role in this process. Thus, this report suggests a new method to enhance osteoblast cell adhesion on biodegradable biomaterials for bone regenerative engineering applications.

  5. Abscisic acid activates the murine microglial cell line N9 through the second messenger cyclic ADP-ribose.

    PubMed

    Bodrato, Nicoletta; Franco, Luisa; Fresia, Chiara; Guida, Lucrezia; Usai, Cesare; Salis, Annalisa; Moreschi, Iliana; Ferraris, Chiara; Verderio, Claudia; Basile, Giovanna; Bruzzone, Santina; Scarfì, Sonia; De Flora, Antonio; Zocchi, Elena

    2009-05-29

    Abscisic acid (ABA) is a phytohormone regulating important functions in higher plants, notably responses to abiotic stress. Recently, chemical or physical stimulation of human granulocytes was shown to induce production and release of endogenous ABA, which activates specific cell functions. Here we provide evidence that ABA stimulates several functional activities of the murine microglial cell line N9 (NO and tumor necrosis factor-alpha production, cell migration) through the second messenger cyclic ADP-ribose and an increase of intracellular calcium. ABA production and release occur in N9 cells stimulated with bacterial lipopolysaccharide, phorbol myristate acetate, the chemoattractant peptide f-MLP, or beta-amyloid, the primary plaque component in Alzheimer disease. Finally, ABA priming stimulates N9 cell migration toward beta-amyloid. These results indicate that ABA is a pro-inflammatory hormone inducing autocrine microglial activation, potentially representing a new target for anti-inflammatory therapies aimed at limiting microglia-induced tissue damage in the central nervous system.

  6. Influence of ofloxacin on photosystems I and II activities of Microcystis aeruginosa and the potential role of cyclic electron flow.

    PubMed

    Deng, Chunnuan; Pan, Xiangliang; Zhang, Daoyong

    2015-02-01

    Pollution with antibiotics poses a great risk to aquatic ecosystems. Although some toxic effects of antibiotics on photosystem II (PSII) have been documented, their toxicity to photosystem I (PSI) is still unclear. In this study, effects of ofloxacin on activities of both PSI and PSII of Microcystis aeruginosa (Kützing) Kützing were investigated. Exposure to 0.1 mg L(-)(1) ofloxacin led to increases in contents of chlorophyll a and carotenoids and photosynthetic activity of M. aeruginosa. PSI activity and its electron transport were not affected by 0.1 mg L(-)(1) ofloxacin. When M. aeruginosa was exposed to ≥10 mg L(-)(1) ofloxacin, the electron transport rates of PSI and PSII, the yield of cyclic electron flow (CEF) and the contribution of linear electron flow (LEF) to PSI decreased whereas Y(NA) (limitation of donor side of PSI) and Y(NO) (the quantum yield of non-regulated energy dissipation in PSII) significantly increased. CEF had a significant contribution to alleviating the inhibitory effect of ofloxacin on PSI of M. aeruginosa treated with low concentrations of ofloxacin. The protective role CEF for tolerance of PSI to the toxicity of ofloxacin decreased with increasing ofloxacin concentration.

  7. Sarcoplasmic reticulum-associated cyclic adenosine 5'-monophosphate phosphodiesterase activity in normal and failing human hearts.

    PubMed Central

    Movsesian, M A; Smith, C J; Krall, J; Bristow, M R; Manganiello, V C

    1991-01-01

    Sarcoplasmic reticulum-associated cAMP phosphodiesterase activity was examined in microsomes prepared from the left ventricular myocardium of eight heart transplant recipients with end-stage idiopathic dilated cardiomyopathy and six unmatched organ donors with normal cardiac function. At cAMP concentrations less than or equal to 1.0 microM, sarcoplasmic reticulum-associated cAMP phosphodiesterase activity was functionally homogeneous. cAMP phosphodiesterase activity was inhibited competitively by cGMP (Ki = 0.031 +/- 0.008 microM) and the cilostamide derivative OPC 3911 (Ki = 0.018 +/- 0.004 microM), but was essentially insensitive to rolipram. Vmax and Km were 781.7 +/- 109.2 nmol/mg per min and 0.188 +/- 0.031 microM, respectively, in microsomes prepared from nonfailing hearts and 793.9 +/- 68.9 nmol/mg per min and 0.150 +/- 0.027 microM in microsomes prepared from failing hearts. Microsomes prepared from nonfailing and failing hearts did not differ with respect to either the ratio of cAMP phosphodiesterase activity to ATP-dependent Ca2+ accumulation activity or the sensitivity of cAMP phosphodiesterase activity to inhibition by OPC 3911. These data suggest that the diminished inotropic efficacy of phosphodiesterase inhibitors in failing human hearts does not result from changes in the level, kinetic properties, or pharmacologic sensitivity of sarcoplasmic reticulum-associated cAMP phosphodiesterase activity. PMID:1647414

  8. Development of Highly Active and Regioselective Catalysts for the Copolymerization of Epoxides with Cyclic Anhydrides: An Unanticipated Effect of Electronic Variation.

    PubMed

    DiCiccio, Angela M; Longo, Julie M; Rodríguez-Calero, Gabriel G; Coates, Geoffrey W

    2016-06-08

    Recent developments in polyester synthesis have established several systems based on zinc, chromium, cobalt, and aluminum catalysts for the ring-opening alternating copolymerization of epoxides with cyclic anhydrides. However, to date, regioselective processes for this copolymerization have remained relatively unexplored. Herein we report the development of a highly active, regioselective system for the copolymerization of a variety of terminal epoxides and cyclic anhydrides. Unexpectedly, electron withdrawing substituents on the salen framework resulted in a more redox stable Co(III) species and longer catalyst lifetime. Using enantiopure propylene oxide, we synthesized semicrystalline polyesters via the copolymerization of a range of epoxide/anhydride monomer pairs.

  9. Transient potassium channels augment degeneracy in hippocampal active dendritic spectral tuning

    PubMed Central

    Rathour, Rahul Kumar; Malik, Ruchi; Narayanan, Rishikesh

    2016-01-01

    Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor. PMID:27094086

  10. Reexposure to nicotine during withdrawal increases the pacemaking activity of cholinergic habenular neurons

    PubMed Central

    Görlich, Andreas; Antolin-Fontes, Beatriz; Ables, Jessica L.; Frahm, Silke; Ślimak, Marta A.; Dougherty, Joseph D.; Ibañez-Tallon, Inés

    2013-01-01

    The discovery of genetic variants in the cholinergic receptor nicotinic CHRNA5-CHRNA3-CHRNB4 gene cluster associated with heavy smoking and higher relapse risk has led to the identification of the midbrain habenula–interpeduncular axis as a critical relay circuit in the control of nicotine dependence. Although clear roles for α3, β4, and α5 receptors in nicotine aversion and withdrawal have been established, the cellular and molecular mechanisms that participate in signaling nicotine use and contribute to relapse have not been identified. Here, using translating ribosome affinity purification (TRAP) profiling, electrophysiology, and behavior, we demonstrate that cholinergic neurons, but not peptidergic neurons, of the medial habenula (MHb) display spontaneous tonic firing of 2–10 Hz generated by hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels and that infusion of the HCN pacemaker antagonist ZD7288 in the habenula precipitates somatic and affective signs of withdrawal. Further, we show that a strong, α3β4-dependent increase in firing frequency is observed in these pacemaker neurons upon acute exposure to nicotine. No change in the basal or nicotine-induced firing was observed in cholinergic MHb neurons from mice chronically treated with nicotine. We observe, however, that, during withdrawal, reexposure to nicotine doubles the frequency of pacemaking activity in these neurons. These findings demonstrate that the pacemaking mechanism of cholinergic MHb neurons controls withdrawal, suggesting that the heightened nicotine sensitivity of these neurons during withdrawal may contribute to smoking relapse. PMID:24082085

  11. Macrophages Contribute to the Cyclic Activation of Adult Hair Follicle Stem Cells

    PubMed Central

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-01-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. PMID:25536657

  12. Cyclic ADP-ribose is a second messenger in the lipopolysaccharide-stimulated activation of murine N9 microglial cell line.

    PubMed

    Franco, Luisa; Bodrato, Nicoletta; Moreschi, Iliana; Usai, Cesare; Bruzzone, Santina; Scarf ì, Sonia; Zocchi, Elena; De Flora, Antonio

    2006-10-01

    Lipopolysaccharide, the main component of the cell wall of Gram-negative bacteria, is known to activate microglial cells following its interaction with the CD14/Toll-like receptor complex (TLR-4). The activation pathway triggered by lipopolysaccharide in microglia involves enhanced basal levels of intracellular calcium ([Ca2+]i) and terminates with increased generation of cytokines/chemokines and nitric oxide. Here we demonstrate that in lipopolysaccharide-stimulated murine N9 microglial cells, cyclic ADP-ribose, a universal and potent Ca2+ mobiliser generated from NAD+ by ADP-ribosyl cyclases (ADPRC), behaves as a second messenger in the cell activation pathway. Lipopolysaccharide induced phosphorylation, mediated by multiple protein kinases, of the mammalian ADPRC CD38, which resulted in significantly enhanced ADPRC activity and in a 1.7-fold increase in the concentration of intracellular cyclic ADP-ribose. This event was paralleled by doubling of the basal [Ca2+]i levels, which was largely prevented by the cyclic ADP-ribose antagonists 8-Br-cyclic ADP-ribose and ryanodine (by 75% and 88%, respectively). Both antagonists inhibited, although incompletely, functional events downstream of the lipopolysaccharide-induced microglia-activating pathway, i.e. expression of inducible nitric oxide synthase, overproduction and release of nitric oxide and of tumor necrosis factor alpha. The identification of cyclic ADP-ribose as a key signal metabolite in the complex cascade of events triggered by lipopolysaccharide and eventually leading to enhanced generation of pro-inflammatory molecules may suggest a new therapeutic target for treatment of neurodegenerative diseases related to microglia activation.

  13. Activation of InsP3 receptors is sufficient for inducing graded intrinsic plasticity in rat hippocampal pyramidal neurons

    PubMed Central

    Ashhad, Sufyan; Johnston, Daniel

    2014-01-01

    The synaptic plasticity literature has focused on establishing necessity and sufficiency as two essential and distinct features in causally relating a signaling molecule to plasticity induction, an approach that has been surprisingly lacking in the intrinsic plasticity literature. In this study, we complemented the recently established necessity of inositol trisphosphate (InsP3) receptors (InsP3R) in a form of intrinsic plasticity by asking if InsP3R activation was sufficient to induce intrinsic plasticity in hippocampal neurons. Specifically, incorporation of d-myo-InsP3 in the recording pipette reduced input resistance, maximal impedance amplitude, and temporal summation but increased resonance frequency, resonance strength, sag ratio, and impedance phase lead. Strikingly, the magnitude of plasticity in all these measurements was dependent on InsP3 concentration, emphasizing the graded dependence of such plasticity on InsP3R activation. Mechanistically, we found that this InsP3-induced plasticity depended on hyperpolarization-activated cyclic nucleotide-gated channels. Moreover, this calcium-dependent form of plasticity was critically reliant on the release of calcium through InsP3Rs, the influx of calcium through N-methyl-d-aspartate receptors and voltage-gated calcium channels, and on the protein kinase A pathway. Our results delineate a causal role for InsP3Rs in graded adaptation of neuronal response dynamics, revealing novel regulatory roles for the endoplasmic reticulum in neural coding and homeostasis. PMID:25552640

  14. Type II cyclic guanosine monophosphate-dependent protein kinase inhibits Rac1 activation in gastric cancer cells

    PubMed Central

    WANG, YING; CHEN, YONGCHANG; WU, MIN; LAN, TING; WU, YAN; LI, YUEYING; QIAN, HAI

    2015-01-01

    Enhanced motility of cancer cells is a critical step in promoting tumor metastasis, which remains the major cause of gastric cancer-associated mortality. The small GTPase Rac1 is a key signaling component in the regulation of cell migration. Previous studies have demonstrated that Rac1 activity may be regulated by protein kinase G (PKG); however, the underlying mechanism is not yet clear. The current study aimed to investigate the effect of type II cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG II) on Rac1 activity. The human gastric cancer cell line AGS was infected with adenoviral constructs encoding PKG II to increase the expression of this enzyme, and treated with a cGMP analog (8-pCPT-cGMP) to induce its activation. A Transwell assay was employed to measure cell migration, and the activity of Rac1 was assessed using a pull-down assay. Immunoprecipitation was used to isolate the Rac1 protein. Phosphorylation of phosphatidylinositol 4,5 bisphosphate 3 kinase (PI3K) and its downstream effecter protein kinase B (Akt) are associated with lysophosphatidic acid (LPA)-induced motility/migration of cancer cells. Extracellular signal regulated kinase (ERK) is the major signaling molecule of the Mitogen activated protein kinase (MAPK) mediated signaling pathway. ERK and its upstream activator MAPK kinase (MEK) are also involved in LPA-induced motility/migration of cancer cells. Phosphorylation of PI3K/Akt, MEK/ERK and enriched Rac1 were detected by western blotting. The results revealed that blocking the activation of Rac1 by ectopically expressing an inactive Rac1 mutant (T17N) impeded LPA-induced cell migration. Increased PKG II activity inhibited LPA-induced migration and LPA-induced activation of Rac1; however, it had no effect on the phosphorylation of Rac1. PKG II also inhibited the activation of PI3K/Akt and MEK/ERK mediated signaling, which is important for LPA-induced Rac1 activation. These results suggest that PKG II affects LPA

  15. Role of receptor desensitization, phosphatase induction and intracellular cyclic AMP in the termination of mitogen-activated protein kinase activity in UTP-stimulated EAhy 926 endothelial cells.

    PubMed Central

    Graham, A; McLees, A; Malarkey, K; Gould, G W; Plevin, R

    1996-01-01

    We have investigated the mechanisms that bring about the termination of mitogen-activated protein kinase (MAP kinase) activation in response to UTP in EAhy 926 endothelial cells. UTP-stimulated MAP kinase activity was transient, returning to basal values by 60 min. At this time MAP kinase activation was desensitized; re-application of UTP did not further activate MAP kinase, full re-activation of MAP kinase being only apparent after a 1-2 h wash period. However, activation of MAP kinase by UTP could be sustained beyond 60 min by preincubation of the cells with the protein synthesis inhibitor cycloheximide. UTP also stimulated expression of MAP kinase phosphatase-1 and this was abolished after pretreatment with cycloheximide. Pretreatment of cells with forskolin abolished the initial activation of MAP kinase kinase or c-Raf-1 by UTP, but only affected MAP kinase activity during prolonged stimulation. The effect of forskolin on prolonged MAP kinase activation was also prevented by cycloheximide. These results suggest that the termination of MAP kinase activity in response to UTP involves a number of interacting mechanisms including receptor desensitization and the induction of a phosphatase. However, several pieces of evidence do not support a major role for MAP kinase phosphatase-1 in termination of the MAP kinase signal. Raising intracellular cyclic AMP may also be involved but only after an initial protein-synthesis step and by a mechanism that does not involve the inactivation of c-Raf-1 or MAP kinase kinase. PMID:8615830

  16. Cyclic Opioid Peptides.

    PubMed

    Remesic, Michael; Lee, Yeon Sun; Hruby, Victor J

    2016-01-01

    For decades the opioid receptors have been an attractive therapeutic target for the treatment of pain. Since the first discovery of enkephalin, approximately a dozen endogenous opioid peptides have been known to produce opioid activity and analgesia, but their therapeutics have been limited mainly due to low blood brain barrier penetration and poor resistance to proteolytic degradation. One versatile approach to overcome these drawbacks is the cyclization of linear peptides to cyclic peptides with constrained topographical structure. Compared to their linear parents, cyclic analogs exhibit better metabolic stability, lower offtarget toxicity, and improved bioavailability. Extensive structure-activity relationship studies have uncovered promising compounds for the treatment of pain as well as further elucidate structural elements required for selective opioid receptor activity. The benefits that come with employing cyclization can be further enhanced through the generation of polycyclic derivatives. Opioid ligands generally have a short peptide chain and thus the realm of polycyclic peptides has yet to be explored. In this review, a brief history of designing ligands for the opioid receptors, including classic linear and cyclic ligands, is discussed along with recent approaches and successes of cyclic peptide ligands for the receptors. Various scaffolds and approaches to improve bioavailability are elaborated and concluded with a discourse towards polycyclic peptides.

  17. Cyclic-nucleotide–gated cation current and Ca2+-activated Cl current elicited by odorant in vertebrate olfactory receptor neurons

    PubMed Central

    Li, Rong-Chang; Ben-Chaim, Yair; Yau, King-Wai; Lin, Chih-Chun

    2016-01-01

    Olfactory transduction in vertebrate olfactory receptor neurons (ORNs) involves primarily a cAMP-signaling cascade that leads to the opening of cyclic-nucleotide–gated (CNG), nonselective cation channels. The consequent Ca2+ influx triggers adaptation but also signal amplification, the latter by opening a Ca2+-activated Cl channel (ANO2) to elicit, unusually, an inward Cl current. Hence the olfactory response has inward CNG and Cl components that are in rapid succession and not easily separable. We report here success in quantitatively separating these two currents with respect to amplitude and time course over a broad range of odorant strengths. Importantly, we found that the Cl current is the predominant component throughout the olfactory dose–response relation, down to the threshold of signaling to the brain. This observation is very surprising given a recent report by others that the olfactory-signal amplification effected by the Ca2+-activated Cl current does not influence the behavioral olfactory threshold in mice. PMID:27647918

  18. Novel synthetic cyclic integrin αvβ3 binding peptide ALOS4: antitumor activity in mouse melanoma models

    PubMed Central

    Yacobovich, Shiri; Tuchinsky, Lena; Kirby, Michael; Kardash, Tetiana; Agranyoni, Oryan; Nesher, Elimelech; Redko, Boris; Gellerman, Gary; Tobi, Dror; Gurova, Katerina; Koman, Igor; Fabian, Osnat Ashur; Pinhasov, Albert

    2016-01-01

    ALOS4, a unique synthetic cyclic peptide without resemblance to known integrin ligand sequences, was discovered through repeated biopanning with pIII phage expressing a disulfide-constrained nonapeptide library. Binding assays using a FITC-labeled analogue demonstrated selective binding to immobilized αvβ3 and a lack of significant binding to other common proteins, such as bovine serum albumin and collagen. In B16F10 cell cultures, ALOS4 treatment at 72 h inhibited cell migration (30%) and adhesion (up to 67%). Immunofluorescent imaging an ALOS4-FITC analogue with B16F10 cells demonstrated rapid cell surface binding, and uptake and localization in the cytoplasm. Daily injections of ALOS4 (0.1, 0.3 or 0.5 mg/kg i.p.) to mice inoculated with B16F10 mouse melanoma cells in two different cancer models, metastatic and subcutaneous tumor, resulted in reduction of lung tumor count (metastatic) and tumor mass (subcutaneous) and increased survival of animals monitored to 45 and 60 days, respectively. Examination of cellular activity indicated that ALOS4 produces inhibition of cell migration and adhesion in a concentration-dependent manner. Collectively, these results suggest that ALOS4 is a structurally-unique selective αvβ3 integrin ligand with potential anti-metastatic activity. PMID:27556860

  19. Caffeine, dibutyryl cyclic-AMP and heparin affect the chemotactic and phagocytotic activities of neutrophils for boar sperm in vitro.

    PubMed

    Li, J-C; Yamaguchi, S; Kondo, Y; Funahashi, H

    2011-04-15

    The objective was to examine the effects of caffeine, dibutyryl cyclic AMP, and heparin on the chemotaxis and/or phagocytosis of PMNs for porcine sperm. The chemotactic activity of PMNs, determined in a blind well chamber, increased (P < 0.05) when fresh serum was added to the medium (control containing BSA, 1109.5 cells/mm(2) vs serum, 1226.3 cells/mm(2)), regardless of the presence of sperm (control, 1121.1 cells/mm(2) vs serum, 1245.8 cells/mm(2)), whereas heat-inactivated serum did not affect activity (without sperm, 1099.4 cells/mm(2) and with sperm, 1132.6 cells/mm(2)). Regardless of live and dead sperm and of the origin of PMNs (boars vs sows), the phagocytotic activity of PMNs, as determined by co-culture of PMNs with sperm for 60 min, increased (P < 0.05) in the presence of fresh serum containing active complement (46.7 and 43.0%, respectively), but stimulation was decreased (P < 0.05) when 1 mM or higher concentrations of caffeine was added to the medium (from 40.7 to 20.8-31.6%). The origin of PMNs (sows vs boars) did not significantly affect phagocytotic activity. The percentage of PMNs that phagocytized polystyrene latex beads decreased when 2 mM caffeine was added to the medium containing porcine serum (from 43.7 to 21.5%). Serum-stimulated chemotactic activity of PMNs (1089.9 cells/mm(2)) was also reduced (P < 0.05) with 2 mM caffeine (942.5 cells/mm(2)). Furthermore, dibutyryl cAMP at ≥ 0.1 mM or heparin at ≥ 100 μg/mL decreased phagocytotic activity, in a concentration-dependent manner (P < 0.05). Supplementation of PMNs with heparin at 100 or 500 μg/mL decreased (P < 0.05) chemotactic activity in the presence of serum (from 1137.1 cells/mm(2) to 1008.8-1026.3 cells/mm(2)). We inferred that opsonization in the presence of active complement stimulated phagocytotic and chemotactic activities of PMNs, whereas supplementation with caffeine and dibutyryl cAMP (which could be associated with the intracellular cAMP level of PMNs) or adding heparin

  20. The Cyclic Peptide Ecumicin Targeting ClpC1 Is Active against Mycobacterium tuberculosis In Vivo

    PubMed Central

    Gao, Wei; Kim, Jin-Yong; Anderson, Jeffrey R.; Akopian, Tatos; Hong, Seungpyo; Jin, Ying-Yu; Kandror, Olga; Kim, Jong-Woo; Lee, In-Ae; Lee, Sun-Young; McAlpine, James B.; Mulugeta, Surafel; Sunoqrot, Suhair; Wang, Yuehong; Yang, Seung-Hwan; Yoon, Tae-Mi; Goldberg, Alfred L.; Pauli, Guido F.; Cho, Sanghyun

    2014-01-01

    Drug-resistant tuberculosis (TB) has lent urgency to finding new drug leads with novel modes of action. A high-throughput screening campaign of >65,000 actinomycete extracts for inhibition of Mycobacterium tuberculosis viability identified ecumicin, a macrocyclic tridecapeptide that exerts potent, selective bactericidal activity against M. tuberculosis in vitro, including nonreplicating cells. Ecumicin retains activity against isolated multiple-drug-resistant (MDR) and extensively drug-resistant (XDR) strains of M. tuberculosis. The subcutaneous administration to mice of ecumicin in a micellar formulation at 20 mg/kg body weight resulted in plasma and lung exposures exceeding the MIC. Complete inhibition of M. tuberculosis growth in the lungs of mice was achieved following 12 doses at 20 or 32 mg/kg. Genome mining of lab-generated, spontaneous ecumicin-resistant M. tuberculosis strains identified the ClpC1 ATPase complex as the putative target, and this was confirmed by a drug affinity response test. ClpC1 functions in protein breakdown with the ClpP1P2 protease complex. Ecumicin markedly enhanced the ATPase activity of wild-type (WT) ClpC1 but prevented activation of proteolysis by ClpC1. Less stimulation was observed with ClpC1 from ecumicin-resistant mutants. Thus, ClpC1 is a valid drug target against M. tuberculosis, and ecumicin may serve as a lead compound for anti-TB drug development. PMID:25421483

  1. Nonlinear Dynamics of Magnetohydrodynamic Rossby Waves and the Cyclic Nature of Solar Magnetic Activity

    NASA Astrophysics Data System (ADS)

    Raphaldini, Breno; Raupp, Carlos F. M.

    2015-01-01

    The solar dynamo is known to be associated with several periodicities, with the nearly 11/22 yr cycle being the most pronounced one. Even though these quasiperiodic variations of solar activity have been attributed to the underlying dynamo action in the Sun's interior, a fundamental theoretical description of these cycles is still elusive. Here, we present a new possible direction in understanding the Sun's cycles based on resonant nonlinear interactions among magnetohydrodynamic (MHD) Rossby waves. The WKB theory for dispersive waves is applied to magnetohydrodynamic shallow-water equations describing the dynamics of the solar tachocline, and the reduced dynamics of a resonant triad composed of MHD Rossby waves embedded in constant toroidal magnetic field is analyzed. In the conservative case, the wave amplitudes evolve periodically in time, with periods on the order of the dominant solar activity timescale (~11 yr). In addition, the presence of linear forcings representative of either convection or instabilities of meridionally varying background states appears to be crucial in balancing dissipation and thus sustaining the periodic oscillations of wave amplitudes associated with resonant triad interactions. Examination of the linear theory of MHD Rossby waves embedded in a latitudinally varying mean flow demonstrates that MHD Rossby waves propagate toward the equator in a waveguide from -35° to 35° in latitude, showing a remarkable resemblance to the structure of the butterfly diagram of the solar activity. Therefore, we argue that resonant nonlinear magnetohydrodynamic Rossby wave interactions might significantly contribute to the observed cycles of magnetic solar activity.

  2. Oral activity of a nature-derived cyclic peptide for the treatment of multiple sclerosis

    PubMed Central

    Thell, Kathrin; Hellinger, Roland; Sahin, Emine; Michenthaler, Paul; Gold-Binder, Markus; Haider, Thomas; Kuttke, Mario; Liutkevičiūtė, Zita; Göransson, Ulf; Gründemann, Carsten; Schabbauer, Gernot; Gruber, Christian W.

    2016-01-01

    Multiple sclerosis (MS) is the most common autoimmune disease affecting the central nervous system. It is characterized by auto-reactive T cells that induce demyelination and neuronal degradation. Treatment options are still limited and several MS medications need to be administered by parenteral application but are modestly effective. Oral active drugs such as fingolimod have been weighed down by safety concerns. Consequently, there is a demand for novel, especially orally active therapeutics. Nature offers an abundance of compounds for drug discovery. Recently, the circular plant peptide kalata B1 was shown to silence T-cell proliferation in vitro in an IL-2–dependent mechanism. Owing to this promising effect, we aimed to determine in vivo activity of the cyclotide [T20K]kalata B1 using the MS mouse model experimental autoimmune encephalomyelitis (EAE). Treatment of mice with the cyclotide resulted in a significant delay and diminished symptoms of EAE by oral administration. Cyclotide application substantially impeded disease progression and did not exhibit adverse effects. Inhibition of lymphocyte proliferation and the reduction of proinflammatory cytokines, in particular IL-2, distinguish the cyclotide from other marketed drugs. Considering their stable structural topology and oral activity, cyclotides are candidates as peptide therapeutics for pharmaceutical drug development for treatment of T-cell-mediated disorders. PMID:27035952

  3. Oral activity of a nature-derived cyclic peptide for the treatment of multiple sclerosis.

    PubMed

    Thell, Kathrin; Hellinger, Roland; Sahin, Emine; Michenthaler, Paul; Gold-Binder, Markus; Haider, Thomas; Kuttke, Mario; Liutkevičiūtė, Zita; Göransson, Ulf; Gründemann, Carsten; Schabbauer, Gernot; Gruber, Christian W

    2016-04-12

    Multiple sclerosis (MS) is the most common autoimmune disease affecting the central nervous system. It is characterized by auto-reactive T cells that induce demyelination and neuronal degradation. Treatment options are still limited and several MS medications need to be administered by parenteral application but are modestly effective. Oral active drugs such as fingolimod have been weighed down by safety concerns. Consequently, there is a demand for novel, especially orally active therapeutics. Nature offers an abundance of compounds for drug discovery. Recently, the circular plant peptide kalata B1 was shown to silence T-cell proliferation in vitro in an IL-2-dependent mechanism. Owing to this promising effect, we aimed to determine in vivo activity of the cyclotide [T20K]kalata B1 using the MS mouse model experimental autoimmune encephalomyelitis (EAE). Treatment of mice with the cyclotide resulted in a significant delay and diminished symptoms of EAE by oral administration. Cyclotide application substantially impeded disease progression and did not exhibit adverse effects. Inhibition of lymphocyte proliferation and the reduction of proinflammatory cytokines, in particular IL-2, distinguish the cyclotide from other marketed drugs. Considering their stable structural topology and oral activity, cyclotides are candidates as peptide therapeutics for pharmaceutical drug development for treatment of T-cell-mediated disorders.

  4. NONLINEAR DYNAMICS OF MAGNETOHYDRODYNAMIC ROSSBY WAVES AND THE CYCLIC NATURE OF SOLAR MAGNETIC ACTIVITY

    SciTech Connect

    Raphaldini, Breno; Raupp, Carlos F. M. E-mail: carlos.raupp@iag.usp.br

    2015-01-20

    The solar dynamo is known to be associated with several periodicities, with the nearly 11/22 yr cycle being the most pronounced one. Even though these quasiperiodic variations of solar activity have been attributed to the underlying dynamo action in the Sun's interior, a fundamental theoretical description of these cycles is still elusive. Here, we present a new possible direction in understanding the Sun's cycles based on resonant nonlinear interactions among magnetohydrodynamic (MHD) Rossby waves. The WKB theory for dispersive waves is applied to magnetohydrodynamic shallow-water equations describing the dynamics of the solar tachocline, and the reduced dynamics of a resonant triad composed of MHD Rossby waves embedded in constant toroidal magnetic field is analyzed. In the conservative case, the wave amplitudes evolve periodically in time, with periods on the order of the dominant solar activity timescale (∼11 yr). In addition, the presence of linear forcings representative of either convection or instabilities of meridionally varying background states appears to be crucial in balancing dissipation and thus sustaining the periodic oscillations of wave amplitudes associated with resonant triad interactions. Examination of the linear theory of MHD Rossby waves embedded in a latitudinally varying mean flow demonstrates that MHD Rossby waves propagate toward the equator in a waveguide from –35° to 35° in latitude, showing a remarkable resemblance to the structure of the butterfly diagram of the solar activity. Therefore, we argue that resonant nonlinear magnetohydrodynamic Rossby wave interactions might significantly contribute to the observed cycles of magnetic solar activity.

  5. Cyclic multiverses

    NASA Astrophysics Data System (ADS)

    Marosek, Konrad; Dąbrowski, Mariusz P.; Balcerzak, Adam

    2016-09-01

    Using the idea of regularization of singularities due to the variability of the fundamental constants in cosmology we study the cyclic universe models. We find two models of oscillating and non-singular mass density and pressure (`non-singular' bounce) regularized by varying gravitational constant G despite the scale factor evolution is oscillating and having sharp turning points (`singular' bounce). Both violating (big-bang) and non-violating (phantom) null energy condition models appear. Then, we extend this idea on to the multiverse containing cyclic individual universes with either growing or decreasing entropy though leaving the net entropy constant. In order to get an insight into the key idea, we consider the doubleverse with the same geometrical evolution of the two `parallel' universes with their physical evolution [physical coupling constants c(t) and G(t)] being different. An interesting point is that there is a possibility to exchange the universes at the point of maximum expansion - the fact which was already noticed in quantum cosmology. Similar scenario is also possible within the framework of Brans-Dicke theory where varying G(t) is replaced by the dynamical Brans-Dicke field φ(t) though these theories are slightly different.

  6. Unprecedented antioxidative cyclic ether from the red seaweed Kappaphycus alvarezii with anti-cyclooxygenase and lipoxidase activities.

    PubMed

    Makkar, Fasina; Chakraborty, Kajal

    2017-05-01

    An unprecedented non-isoprenoid oxocine carboxylate cyclic ether characterised as (3S, 4R, 5S, 6Z)-3-((R)-hexan-2'-yl)-3,4,5,8-tetrahydro-4-methyl-2H-oxocin-5-yl acetate was isolated from the ethyl acetate-methanol extract of the red seaweed Kappaphycus alvarezii. The structure, as well as its relative stereochemistry, was proposed on the basis of extensive spectral data. The antioxidative activity of the isolated metabolite was found to have significantly greater as determined by 1, 1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothiozoline-6-sulfonic acid radical scavenging activities (IC50 ~ 0.3 mg/mL) compared to α-tocopherol (IC50 > 0.6 mg/mL) and was comparable to the synthetic antioxidants butylated hydroxytoluene and butylated hydroxyanisole (IC50 ~ 0.35-0.34 mg/mL). The compound exhibited greater activity against COX-2 (cyclooxygenase-2) than COX-1 (cyclooxygenase-1) isoform, and therefore, the selectivity index remained significantly lesser (anti-COX-1IC50: anti-COX-2IC50 0.87) than synthetic anti-inflammatory drugs (0.02-0.44). No significant difference of in vivo 5-lipoxidase activity (IC50 0.95 mg/mL) than ibuprofen (IC50 0.93 mg/mL) indicated the potential anti-inflammatory properties of the title compound.

  7. Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal(II) complexes.

    PubMed

    Neelakantan, M A; Rusalraj, F; Dharmaraja, J; Johnsonraja, S; Jeyakumar, T; Sankaranarayana Pillai, M

    2008-12-15

    Metal complexes are synthesized with Schiff bases derived from o-phthalaldehyde (opa) and amino acids viz., glycine (gly) l-alanine (ala), l-phenylalanine (pal). Metal ions coordinate in a tetradentate or hexadentate manner with these N(2)O(2) donor ligands, which are characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic, (1)H NMR and EPR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Based on EPR studies, spin-Hamiltonian and bonding parameters have been calculated. The g-values calculated for copper complexes at 300K and in frozen DMSO (77K) indicate the presence of the unpaired electron in the dx2-y2 orbital. The evaluated metal-ligand bonding parameters showed strong in-plane sigma- and pi-bonding. X-ray diffraction (XRD) and scanning electron micrography (SEM) analysis provide the crystalline nature and the morphology of the metal complexes. The cyclic voltammograms of the Cu(II)/Mn(II)/VO(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions. The biological activity of the complexes has been tested on eight bacteria and three fungi. Cu(II) and Ni(II) complexes show an increased activity in comparison to the controls. The metal complexes of opapal Schiff base were evaluated for their DNA cleaving activities with calf-thymus DNA (CT DNA) under aerobic conditions. Cu(II) and VO(II) complexes show more pronounced activity in presence of the oxidant.

  8. Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal(II) complexes

    NASA Astrophysics Data System (ADS)

    Neelakantan, M. A.; Rusalraj, F.; Dharmaraja, J.; Johnsonraja, S.; Jeyakumar, T.; Sankaranarayana Pillai, M.

    2008-12-01

    Metal complexes are synthesized with Schiff bases derived from o-phthalaldehyde (opa) and amino acids viz., glycine (gly) L-alanine (ala), L-phenylalanine (pal). Metal ions coordinate in a tetradentate or hexadentate manner with these N 2O 2 donor ligands, which are characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic, 1H NMR and EPR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Based on EPR studies, spin-Hamiltonian and bonding parameters have been calculated. The g-values calculated for copper complexes at 300 K and in frozen DMSO (77 K) indicate the presence of the unpaired electron in the d orbital. The evaluated metal-ligand bonding parameters showed strong in-plane σ- and π-bonding. X-ray diffraction (XRD) and scanning electron micrography (SEM) analysis provide the crystalline nature and the morphology of the metal complexes. The cyclic voltammograms of the Cu(II)/Mn(II)/VO(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5 V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions. The biological activity of the complexes has been tested on eight bacteria and three fungi. Cu(II) and Ni(II) complexes show an increased activity in comparison to the controls. The metal complexes of opapal Schiff base were evaluated for their DNA cleaving activities with calf-thymus DNA (CT DNA) under aerobic conditions. Cu(II) and VO(II) complexes show more pronounced activity in presence of the oxidant.

  9. The activity of Rhizomuchor miehei lipase as a biocatalyst in enzymatic acylation of cyclic alcohol

    NASA Astrophysics Data System (ADS)

    Iftitah, Elvina Dhiaul; Srihardyastuti, Arie; Ariefin, Mokhamat

    2017-03-01

    We report the activity of Rhizomuchor miehei lipase (RML) as a biocatalyst, in particular the investigations concerning the effort of substrate-structure reactivity on the enzymatic acylation. The acylation was studied using acetic anhydride as an acyl donor and performed in n-hexane as a solvent. The selectivity of the enzymatic acylation was revealed by Gas Chromatography-Mass Spectra. We observed that, RML has shown different behavior when catalyzing the acylation of isopulegol and mixture of isopulegol and citronellal (ratio 1:1). The chemoselectivity for the O-acylation was improved when the acyl acceptor included mixture of isopulegol and citronellal

  10. Effect of cyclic aromatics on sodium active transport in frog skin

    SciTech Connect

    Blankemeyer, J.T.; Bowerman, M.C. )

    1993-01-01

    A modified glass Ussing-chamber was used to mount the skin. The electrical potential difference (PD) was measured by two 3% agar-frog Ringer's bridges. Current (i.e. short-circuit current, or ISC) was passed by Ag-AgCl electrodes placed so that current density was uniform across the skin. Ringer's solution, bathing each side of the frog skin, was stirred and aerated by gas-lift pumps. The effect of toxicants on the ISC was determined by using the 15 min prior to toxicant administration as a control period, then calculating the change in ISC during the toxicant period as a percent of the control ISC. Phenol and benzene are components of crude oil and crude oil waste. These hydrocarbons and phenanthrene were tested for their effect on frog skin. The results show that the effect of organics on sodium active transport of an epithelium is to alter the active transport of sodium ions. 5 refs., 3 figs., 1 tab.

  11. The self-assembly of a cyclic lipopeptides mixture secreted by a B. megaterium strain and its implications on activity against a sensitive Bacillus species.

    PubMed

    Pueyo, Manuel T; Mutafci, Bruna A; Soto-Arriaza, Marco A; Di Mascio, Paolo; Carmona-Ribeiro, Ana M

    2014-01-01

    Cyclic lipopeptides are produced by a soil Bacillus megaterium strain and several other Bacillus species. In this work, they are detected both in the Bacillus intact cells and the cells culture medium by MALDI-TOF mass spectrometry. The cyclic lipopeptides self-assemble in water media producing negatively charged and large aggregates (300-800 nm of mean hydrodynamic radius) as evaluated by dynamic light scattering and zeta-potential analysis. The aggregate size depends on pH and ionic strength. However, it is not affected by changes in the osmolarity of the outer medium suggesting the absence of an internal aqueous compartment despite the occurrence of low molecular weight phospholipids in their composition as determined from inorganic phosphorus analysis. The activity against a sensitive Bacillus cereus strain was evaluated from inhibition halos and B. cereus lysis. Essential features determining the antibiotic activity on susceptible Bacillus cereus cells are the preserved cyclic moiety conferring cyclic lipopeptides resistance to proteases and the medium pH. The aggregates are inactive per se at the pH of the culture medium which is around 6 or below. The knock out of the sensitive cells only takes place when the aggregates are disassembled due to a high negative charge at pH above 6.

  12. The Self-Assembly of a Cyclic Lipopeptides Mixture Secreted by a B. megaterium Strain and Its Implications on Activity against a Sensitive Bacillus Species

    PubMed Central

    Pueyo, Manuel T.; Mutafci, Bruna A.; Soto-Arriaza, Marco A.; Di Mascio, Paolo; Carmona-Ribeiro, Ana M.

    2014-01-01

    Cyclic lipopeptides are produced by a soil Bacillus megaterium strain and several other Bacillus species. In this work, they are detected both in the Bacillus intact cells and the cells culture medium by MALDI-TOF mass spectrometry. The cyclic lipopeptides self-assemble in water media producing negatively charged and large aggregates (300–800 nm of mean hydrodynamic radius) as evaluated by dynamic light scattering and zeta-potential analysis. The aggregate size depends on pH and ionic strength. However, it is not affected by changes in the osmolarity of the outer medium suggesting the absence of an internal aqueous compartment despite the occurrence of low molecular weight phospholipids in their composition as determined from inorganic phosphorus analysis. The activity against a sensitive Bacillus cereus strain was evaluated from inhibition halos and B. cereus lysis. Essential features determining the antibiotic activity on susceptible Bacillus cereus cells are the preserved cyclic moiety conferring cyclic lipopeptides resistance to proteases and the medium pH. The aggregates are inactive per se at the pH of the culture medium which is around 6 or below. The knock out of the sensitive cells only takes place when the aggregates are disassembled due to a high negative charge at pH above 6. PMID:24816927

  13. Cyclic lipopeptide antibiotics bind to the N-terminal domain of the prokaryotic Hsp90 to inhibit the chaperone activity.

    PubMed

    Minagawa, Shun; Kondoh, Yasumitsu; Sueoka, Keigo; Osada, Hiroyuki; Nakamoto, Hitoshi

    2011-04-01

    Chemical arrays were employed to screen ligands for HtpG, the prokaryotic homologue of Hsp (heat-shock protein) 90. We found that colistins and the closely related polymyxin B interact physically with HtpG. They bind to the N-terminal domain of HtpG specifically without affecting its ATPase activity. The interaction caused inhibition of chaperone function of HtpG that suppresses thermal aggregation of substrate proteins. Further studies were performed with one of these cyclic lipopeptide antibiotics, colistin sulfate salt. It inhibited the chaperone function of the N-terminal domain of HtpG. However, it inhibited neither the chaperone function of the middle domain of HtpG nor that of other molecular chaperones such as DnaK, the prokaryotic homologue of Hsp70, and small Hsp. The addition of colistin sulfate salt increased surface hydrophobicity of the N-terminal domain of HtpG and induced oligomerization of HtpG and its N-terminal domain. These structural changes are discussed in relation to the inhibition of the chaperone function.

  14. CYCLIC MAGNETIC ACTIVITY DUE TO TURBULENT CONVECTION IN SPHERICAL WEDGE GEOMETRY

    SciTech Connect

    Kaepylae, Petri J.; Mantere, Maarit J.; Brandenburg, Axel

    2012-08-10

    We report on simulations of turbulent, rotating, stratified, magnetohydrodynamic convection in spherical wedge geometry. An initially small-scale, random, weak-amplitude magnetic field is amplified by several orders of magnitude in the course of the simulation to form oscillatory large-scale fields in the saturated state of the dynamo. The differential rotation is solar-like (fast equator), but neither coherent meridional poleward circulation nor near-surface shear layer develop in these runs. In addition to a poleward branch of magnetic activity beyond 50 Degree-Sign latitude, we find for the first time a pronounced equatorward branch at around 20 Degree-Sign latitude, reminiscent of the solar cycle.

  15. Hepatitis C virus NS2 protein activates cellular cyclic AMP-dependent pathways

    SciTech Connect

    Kim, Kyoung Mi; Kwon, Shi-Nae; Kang, Ju-Il; Lee, Song Hee; Jang, Sung Key; Ahn, Byung-Yoon; Kim, Yoon Ki . E-mail: yk-kim@korea.ac.kr

    2007-05-18

    Chronic infection of the hepatitis C virus (HCV) leads to liver cirrhosis and cancer. The mechanism leading to viral persistence and hepatocellular carcinoma, however, has not been fully understood. In this study, we show that the HCV infection activates cellular cAMP-dependent pathways. Expression of a luciferase reporter gene controlled by a basic promoter with the cAMP response element (CRE) was significantly elevated in human hepatoma Huh-7 cells infected with the HCV JFH1. Analysis with viral subgenomic replicons indicated that the HCV NS2 protein is responsible for the effect. Furthermore, the level of cellular transcripts whose stability is known to be regulated by cAMP was specifically reduced in cells harboring NS2-expressing replicons. These results allude to the HCV NS2 protein having a novel function of regulating cellular gene expression and proliferation through the cAMP-dependent pathway.

  16. Cyclic up-regulation fluorescence of pyrene excimer for studying polynucleotide kinase activity based on dual amplification.

    PubMed

    Xu, Jing; Gao, Yanfang; Li, Baoxin; Jin, Yan

    2016-06-15

    Due to its important biological and clinical roles of polynucleotide kinase (PNK), accurate monitoring of PNK activity and inhibition is highly desirable. Herein, a homogeneous and sensitive fluorescence assay has been proposed for the detection of PNK activity by integrating target recycling signal amplification of DNA toehold strand displacement reaction (TSDR) with gamma-cyclodextrin (γ-CD) enhancement of pyrene excimer. A label-free hairpin DNA1 (H1) and two singly pyrene-labelled DNA, H2 and H3, are designed. Accompanying the occurrence of the efficient enzyme reactions, namely phosphorylation-actuated λ exonuclease reaction, a single-stranded DNA as a trigger DNA (tDNA) of TSDR can be released from H1. Then, tDNA drives circulatory interactions between H2 and H3 to continuously form H2/H3 duplex, resulting in formation of pyrene excimer and a "turn on" fluorescence signal of pyrene excimer. Furthermore, the fluorescence of pyrene excimer is further amplified by introducing gamma-cyclodextrin (γ-CD), which can regulate the space proximity of two pyrene molecules. Thus, TSDR-induced cyclic formation of pyrene excimer and γ-CD enhancement can specifically up-regulate the fluorescence of pyrene excimer for detection of PNK activity, the detection limit is 9.3 × 10(-5)UmL(-1), which is superior to those of most existing approaches. Moreover, the proposed strategy can also be successfully utilized to study inhibition efficiency of different PNK inhibitors as well. Therefore, a dual amplification approach is provided for nucleic acid phosphorylation related researches.

  17. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal.

    PubMed

    Barraud, Nicolas; Schleheck, David; Klebensberger, Janosch; Webb, Jeremy S; Hassett, Daniel J; Rice, Scott A; Kjelleberg, Staffan

    2009-12-01

    Bacteria in biofilms often undergo active dispersal events and revert to a free-swimming, planktonic state to complete the biofilm life cycle. The signaling molecule nitric oxide (NO) was previously found to trigger biofilm dispersal in the opportunistic pathogen Pseudomonas aeruginosa at low, nontoxic concentrations (N. Barraud, D. J. Hassett, S. H. Hwang, S. A. Rice, S. Kjelleberg, and J. S. Webb, J. Bacteriol. 188:7344-7353, 2006). NO was further shown to increase cell motility and susceptibility to antimicrobials. Recently, numerous studies revealed that increased degradation of the secondary messenger cyclic di-GMP (c-di-GMP) by specific phosphodiesterases (PDEs) triggers a planktonic mode of growth in eubacteria. In this study, the potential link between NO and c-di-GMP signaling was investigated by performing (i) PDE inhibitor studies, (ii) enzymatic assays to measure PDE activity, and (iii) direct quantification of intracellular c-di-GMP levels. The results suggest a role for c-di-GMP signaling in triggering the biofilm dispersal event induced by NO, as dispersal requires PDE activity and addition of NO stimulates PDE and induces the concomitant decrease in intracellular c-di-GMP levels in P. aeruginosa. Furthermore, gene expression studies indicated global responses to low, nontoxic levels of NO in P. aeruginosa biofilms, including upregulation of genes involved in motility and energy metabolism and downregulation of adhesins and virulence factors. Finally, site-directed mutagenesis of candidate genes and physiological characterization of the corresponding mutant strains uncovered that the chemotaxis transducer BdlA is involved in the biofilm dispersal response induced by NO.

  18. Solvent free, catalyst free, microwave or grinding assisted synthesis of bis-cyclic imide derivatives and their evaluation for anticancer activity.

    PubMed

    Kumar, Anuj; Banerjee, Somesh; Roy, Partha; Sondhi, S M; Sharma, Anuj

    2017-02-01

    Cyclic imides are well known to be very important antitumor agents such as mitonafide and amonafide etc. Based on this fact, we have synthesized two series of cyclic imide derivatives containing two cyclic imide moiety in their structures (bis-cyclic imides) and screened them for in vitro anticancer activity against five human cancer cell lines i.e. breast (T47D), lung (NCl H-522), colon (HCT-15), ovary (PA-1) and liver (Hep G2). One series of bis-cyclic imide derivatives (3a-h) have been synthesized by condensation of acid anhydrides (1a-b) with diamines (2a-d) and another series (9a-f, 10a-f, 11a-f and 12a-f) by condensation of various diamines (4a-f) with diacids (5-8) in good yields. Structures assigned to 3a-h, 9a-f, 10a-f, 11a-f and 12a-f were fully characterized by spectroscopic means and elemental analysis. On screening for in vitro anticancer activity, compounds 3a (breast T47D), 3d (breast T47D, liver Hep G2), 3e (breast T47D, liver Hep G2), 3h (colon HCT-15), 10f (liver Hep G2) and 11a (colon HCT-15, ovary PA-1) exhibited good anticancer activities with IC50 values range from 12.41±3.2 to 17.9±2.5μM.

  19. An Embryonic Myosin Isoform Enables Stretch Activation and Cyclical Power in Drosophila Jump Muscle

    PubMed Central

    Zhao, Cuiping; Swank, Douglas M.

    2013-01-01

    The mechanism behind stretch activation (SA), a mechanical property that increases muscle force and oscillatory power generation, is not known. We used Drosophila transgenic techniques and our new muscle preparation, the jump muscle, to determine if myosin heavy chain isoforms influence the magnitude and rate of SA force generation. We found that Drosophila jump muscles show very low SA force and cannot produce positive power under oscillatory conditions at pCa 5.0. However, we transformed the jump muscle to be moderately stretch-activatable by replacing its myosin isoform with an embryonic isoform (EMB). Expressing EMB, jump muscle SA force increased by 163% and it generated net positive power. The rate of SA force development decreased by 58% with EMB expression. Power generation is Pi dependent as >4 mM Pi was required for positive power from EMB. Pi increased EMB SA force, but not wild-type SA force. Our data suggest that when muscle expressing EMB is stretched, EMB is more easily driven backward to a weakly bound state than wild-type jump muscle. This increases the number of myosin heads available to rapidly bind to actin and contribute to SA force generation. We conclude that myosin heavy chain isoforms influence both SA kinetics and SA force, which can determine if a muscle is capable of generating oscillatory power at a fixed calcium concentration. PMID:23790374

  20. Activation of Protein Kinase Cα by EPAC1 Is Required for the ERK- and CCAAT/Enhancer-binding Protein β-dependent Induction of the SOCS-3 Gene by Cyclic AMP in COS1 Cells*

    PubMed Central

    Borland, Gillian; Bird, Rebecca J.; Palmer, Timothy M.; Yarwood, Stephen J.

    2009-01-01

    We recently found that induction of the anti-inflammatory SOCS-3 gene by cyclic AMP occurs through novel cyclic AMP-dependent protein kinase-independent mechanisms involving activation of CCAAT/enhancer-binding protein (C/EBP) transcription factors, notably C/EBPβ, by the cyclic AMP GEF EPAC1 and the Rap1 GTPase. In this study we show that down-regulation of phospholipase (PL) Cϵ with small interfering RNA or blockade of PLC activity with chemical inhibitors ablates exchange protein directly activated by cyclic AMP (EPAC)-dependent induction of SOCS-3 in COS1 cells. Consistent with this, stimulation of cells with 1-oleoyl-2-acetyl-sn-glycerol and phorbol 12-myristate 13-acetate, both cell-permeable analogues of the PLC product diacylglycerol, are sufficient to induce SOCS-3 expression in a Ca2+-dependent manner. Moreover, the diacylglycerol- and Ca2+-dependent protein kinase C (PKC) isoform PKCα becomes activated following cyclic AMP elevation or EPAC stimulation. Conversely, down-regulation of PKC activity with chemical inhibitors or small interfering RNA-mediated depletion of PKCα or -δ blocks EPAC-dependent SOCS-3 induction. Using the MEK inhibitor U0126, we found that activation of ERK MAPKs is essential for SOCS-3 induction by either cyclic AMP or PKC. C/EBPβ is known to be phosphorylated and activated by ERK. Accordingly, we found ERK activation to be essential for cyclic AMP-dependent C/EBP activation and C/EBPβ-dependent SOCS-3 induction by cyclic AMP and PKC. Moreover, overexpression of a mutant form of C/EBPβ (T235A), which lacks the ERK phosphorylation site, blocks SOCS-3 induction by cyclic AMP and PKC in a dominant-negative manner. Together, these results indicate that EPAC mediates novel regulatory cross-talk between the cyclic AMP and PKC signaling pathways leading to ERK- and C/EBPβ-dependent induction of the SOCS-3 gene. PMID:19423709

  1. An active twenty-amino-acid-residue peptide derived from the inhibitor protein of the cyclic AMP-dependent protein kinase.

    PubMed Central

    Cheng, H C; van Patten, S M; Smith, A J; Walsh, D A

    1985-01-01

    Digestion with Staphylococcus aureus V8 proteinase of the inhibitor protein of the cyclic AMP-dependent protein kinase results in the sequential formation of three active inhibitory peptides. The smallest active peptide has the sequence Thr-Thr-Tyr-Ala-Asp-Phe-Ile-Ala-Ser-Gly-Arg-Thr-Gly-Arg-Arg-Asn-Ala-Ile- His-Asp . This 20-amino-acid-residue peptide has 20-40% of the activity of the native molecule and a Ki of 0.2 nM. Inhibition, as a minimum, appears to be based upon the inhibitor protein containing the recognition sequences that dictate protein-substrate-specificity. This inhibitory peptide also has sequence homology with the phosphorylation site for a protein kinase other than the cyclic AMP-dependent enzyme. PMID:3000357

  2. Cyclic Lipopeptide Biosynthetic Genes and Products, and Inhibitory Activity of Plant-Associated Bacillus against Phytopathogenic Bacteria

    PubMed Central

    Mora, Isabel; Cabrefiga, Jordi; Montesinos, Emilio

    2015-01-01

    The antibacterial activity against bacterial plant pathogens and its relationships with the presence of the cyclic lipopeptide (cLP) biosynthetic genes ituC (iturin), bmyB (bacillomycin), fenD (fengycin) and srfAA (surfactin), and their corresponding antimicrobial peptide products have been studied in a collection of 64 strains of Bacillus spp. isolated from plant environments. The most frequent antimicrobial peptide (AMP) genes were bmyB, srfAA and fenD (34-50% of isolates). Most isolates (98.4%) produced surfactin isoforms, 90.6% iturins and 79.7% fengycins. The antibacterial activity was very frequent and generally intense among the collection of strains because 75% of the isolates were active against at least 6 of the 8 bacterial plant pathogens tested. Hierarchical and correspondence analysis confirmed the presence of two clearly differentiated groups. One group consisted of Bacillus strains that showed a strong antibacterial activity, presented several cLPs genes and produced several isoforms of cLPs simultaneously, mainly composed of B. subtilis and B. amyloliquefaciens, although the last one was exclusive to this group. Another group was characterized by strains with very low or none antibacterial activity, that showed one or none of the cLP genes and produced a few or none of the corresponding cLPs, and was the most heterogenous group including B. subtilis, B. licheniformis, B. megaterium, B. pumilus, B. cereus and B. thuringiensis, although the last two were exclusive to this group. This work demonstrated that the antagonistic capacity of plant-associated Bacillus against plant pathogenic bacteria is related to the presence of cLP genes and to the production of the corresponding cLPs, and it is mainly associated to the species B. subtilis and B. amyloliquefaciens. Our findings would help to increase the yield and efficiency of screening methods to obtain candidate strains to biocontrol agents with a mechanism of action relaying on the production of

  3. Effectiveness of Topical Nigella sativa Seed Oil in the Treatment of Cyclic Mastalgia: A Randomized, Triple-Blind, Active, and Placebo-Controlled Clinical Trial.

    PubMed

    Huseini, Hasan Fallah; Kianbakht, Saeed; Mirshamsi, Mohammad Hossein; Zarch, Ali Babaei

    2016-03-01

    Cyclic mastalgia is common in women and has no optimal therapy. Analgesic effects of Nigella sativa have been reported. Thus, the effect of a standardized N. sativa seed oil (600 mg applied to the site of pain bis in die for 2 months) on the 10-centimeter visual analog scale scores of pain severity in 52 women with cyclic mastalgia was compared to that of topical diclofenac (20 mg bis in die) (n = 51) and placebo (n = 53). There was no significant difference between the 1- and 2-month pain scores in the active treatment groups (p > 0.05). The pain scores of the active treatment groups did not differ significantly at 1 and 2 months (p > 0.05). The endpoint pain scores of the active treatment groups decreased significantly compared with the baseline (both p < 0.001). The pain scores of the active treatment groups at 1 and 2 months were significantly smaller than those of the placebo group (both p < 0.001). The pain scores of the placebo group at 1 and 2 months were not significantly different from the baseline (p > 0.05). No adverse effect was observed. In conclusion, topical N. sativa seed oil is safe, more effective than placebo, and has clinical effectiveness comparable to topical diclofenac in the treatment of cyclic mastalgia.

  4. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    PubMed

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity.

  5. [The action of émoksipin on the basal activity of cyclic nucleotide phosphodiesterase and on the late receptor potential of the isolated retina].

    PubMed

    Shvedova, A A; Polianskiĭ, N B; Akopian, G Kh; Dzhafarov, A I

    1989-09-01

    The influence of emoxypin (derivate of 3-hydroxypyridine) upon the late receptor potential (LRP) and activity of the cyclic 3',5'-nucleotide phosphodiesterase (PDE) have been investigated. The inhibition of PDE and increase of the amplitude of LPR have been shown. The curve (RP as a function of the stimulus light intensity) was moved towards the lesser lighting and the time of the achievement of the maximum was increased. Thus, emoxypin produces an effect on the LRP like classical inhibitors of PDE. It is suggested that increase of the functional activity of the retinae upon the influence of emoxypin in caused by the influence of the one towards the system of the cyclic nucleotides.

  6. DEEP, LOW-MASS RATIO OVERCONTACT BINARY SYSTEMS. XII. CK BOOTIS WITH POSSIBLE CYCLIC MAGNETIC ACTIVITY AND ADDITIONAL COMPANION

    SciTech Connect

    Yang, Y.-G.; Qian, S.-B.; Soonthornthum, B. E-mail: qsb@ynao.ac.cn

    2012-05-15

    We present precision CCD photometry, a period study, and a two-color simultaneous Wilson code solution of the short-period contact binary CK Bootis. The asymmetric light curves were modeled by a dark spot on the primary component. The result identifies that CK Boo is an A-type W UMa binary with a high fillout of f = 71.7({+-} 4.4)%. From the O - C curve, it is found that the orbital period changes in a complicated mode, i.e., a long-term increase with two sinusoidal variations. One cyclic oscillation with a period of 10.67({+-} 0.20) yr may result from magnetic activity cycles, which are identified by the variability of Max. I - Max. II. Another sinusoidal variation (i.e., A = 0.0131 days({+-} 0.0009 days) and P{sub 3} = 24.16({+-} 0.64) yr) may be attributed to the light-time effect due to a third body. This kind of additional companion can extract angular momentum from the central binary system. The orbital period secularly increases at a rate of dP/dt = +9.79 ({+-}0.80) Multiplication-Sign 10{sup -8} days yr{sup -1}, which may be interpreted by conservative mass transfer from the secondary to the primary. This kind of deep, low-mass ratio overcontact binaries may evolve into a rapid-rotating single star, only if the contact configuration do not break down at J{sub spin} > (1/3)J{sub orb}.

  7. Rate Constants and Activation Energies for Gas‐Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical

    PubMed Central

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie

    2015-01-01

    ABSTRACT Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second‐order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140‐mL gas‐phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D4 and D5 with the OH radical are 1.9 × 10−12 (95% confidence interval (CI): (1.7–2.2) × 10−12) and 2.6 × 10−12 (CI: (2.3–2.9) × 10−12) cm3 molecule−1 s−1, respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D6 is 2.8 × 10−12 (CI: (2.5–3.2) × 10−12) cm3 molecule−1 s−1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D5 were 33% higher than for D4 (CI: 30–37%), whereas the rates for D6 were only 8% higher than for D5 (CI: 5–10%). The activation energies of the reactions of D4, D5, and D6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol. PMID:27708500

  8. Rate Constants and Activation Energies for Gas-Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical.

    PubMed

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie; Macleod, Matthew

    2015-07-01

    Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second-order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140-mL gas-phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D4 and D5 with the OH radical are 1.9 × 10(-12) (95% confidence interval (CI): (1.7-2.2) × 10(-12)) and 2.6 × 10(-12) (CI: (2.3-2.9) × 10(-12)) cm(3) molecule(-1) s(-1), respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D6 is 2.8 × 10(-12) (CI: (2.5-3.2) × 10(-12)) cm(3) molecule(-1) s(-1) and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D5 were 33% higher than for D4 (CI: 30-37%), whereas the rates for D6 were only 8% higher than for D5 (CI: 5-10%). The activation energies of the reactions of D4, D5, and D6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol.

  9. Neural plasticity maintained high by activation of cyclic AMP-dependent protein kinase: an age-independent, general mechanism in cat striate cortex.

    PubMed

    Imamura, K; Kasamatsu, T; Tanaka, S

    2007-06-29

    Adult cats lack ocular dominance plasticity, showing little change in the ocular dominance distribution following monocular deprivation. Ocular dominance plasticity is also lost in kitten visual cortex that has been continuously infused with either catecholaminergic neurotoxin, beta-adrenoreceptor blocker, or inhibitor of cyclic AMP-dependent protein kinase (protein kinase A). Complementarily, in adult cats we showed earlier that pharmacological activation of protein kinase A, albeit partially, restored ocular dominance plasticity. In the present study, we first asked whether, mediated by protein kinase A activation, the same molecular mechanisms could restore ocular dominance plasticity to kitten cortex that once lost the expression of plasticity due to prior pharmacological treatments. Concurrently with monocular deprivation, two kinds of cyclic AMP-related drugs (cholera toxin A-subunit or dibutyryl cyclic AMP) were directly infused in two types of aplastic kitten cortex pretreated with either 6-hydroxydopamine or propranolol. The combined treatment resulted in clear ocular dominance shift to the non-deprived eye, indicating that cortical plasticity was fully restored to aplastic kitten cortex. Next, to directly prove the sensitivity difference in protein kinase A activation between the immature and mature cortex, we compared the thus-obtained data in kittens with the published data derived from adult cats under the comparable experimental paradigm. The extent of ocular dominance changes following monocular deprivation was compared at different drug concentrations in the two preparations: the shifted ocular dominance distribution in aplastic kitten cortex infused with dibutyryl cyclic AMP at the lowest concentration tested and the W-shaped distribution in similarly treated adult cortex at a thousandfold-higher drug concentration that induced nearly maximal changes. We conclude that, irrespective of the animal's age, activation of protein kinase A cascades is a

  10. HCN channels contribute to serotonergic modulation of ventral surface chemosensitive neurons and respiratory activity

    PubMed Central

    Hawkins, Virginia E.; Hawryluk, Joanna M.; Takakura, Ana C.; Tzingounis, Anastasios V.; Moreira, Thiago S.

    2014-01-01

    Chemosensitive neurons in the retrotrapezoid nucleus (RTN) provide a CO2/H+-dependent drive to breathe and function as an integration center for the respiratory network, including serotonergic raphe neurons. We recently showed that serotonergic modulation of RTN chemoreceptors involved inhibition of KCNQ channels and activation of an unknown inward current. Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels are the molecular correlate of the hyperpolarization-activated inward current (Ih) and have a high propensity for modulation by serotonin. To investigate whether HCN channels contribute to basal activity and serotonergic modulation of RTN chemoreceptors, we characterize resting activity and the effects of serotonin on RTN chemoreceptors in vitro and on respiratory activity of anesthetized rats in the presence or absence of blockers of KCNQ (XE991) and/or HCN (ZD7288, Cs+) channels. We found in vivo that bilateral RTN injections of ZD7288 increased respiratory activity and in vitro HCN channel blockade increased activity of RTN chemoreceptors under control conditions, but this was blunted by KCNQ channel inhibition. Furthermore, in vivo unilateral RTN injection of XE991 plus ZD7288 eliminated the serotonin response, and in vitro serotonin sensitivity was eliminated by application of XE991 and ZD7288 or SQ22536 (adenylate cyclase blocker). Serotonin-mediated activation of RTN chemoreceptors was blocked by a 5-HT7-receptor blocker and mimicked by a 5-HT7-receptor agonist. In addition, serotonin caused a depolarizing shift in the voltage-dependent activation of Ih. These results suggest that HCN channels contribute to resting chemoreceptor activity and that serotonin activates RTN chemoreceptors and breathing in part by a 5-HT7 receptor-dependent mechanism and downstream activation of Ih. PMID:25429115

  11. Chlorotoxin does not inhibit volume-regulated, calcium-activated and cyclic AMP-activated chloride channels

    PubMed Central

    Maertens, Chantal; Wei, Lin; Tytgat, Jan; Droogmans, Guy; Nilius, Bernd

    2000-01-01

    It was the aim of this study to look for a high-affinity and selective polypeptide toxin, which could serve as a probe for the volume-regulated anion channel (VRAC) or the calcium-activated chloride channel (CaCC). We have partially purified chlorotoxin, including new and homologous short chain insectotoxins, from the crude venom of Leiurus quinquestriatus quinquestriatus (Lqq) by means of gel filtration chromatography. Material eluting between 280 and 420 min, corresponding to fractions 15–21, was lyophilized and tested on VRAC and CaCC, using the whole-cell patch-clamp technique. We have also tested the commercially available chlorotoxin on VRAC, CaCC, the cystic fibrosis transmembrane conductance regulator (CFTR) and on the glioma specific chloride channel (GCC). VRAC and the correspondent current, ICl,swell, was activated in Cultured Pulmonary Artery Endothelial (CPAE) cells by a 25% hypotonic solution. Neither of the fractions 16–21 significantly inhibited ICl,swell (n=4–5). Ca2+-activated Cl− currents, ICl,Ca, activated by loading T84 cells via the patch pipette with 1 μM free Ca2+, were not inhibited by any of the tested fractions (15–21), (n=2–5). Chlorotoxin (625 nM) did neither effect ICl,swell nor ICl,Ca (n=4–5). The CFTR channel, transiently transfected in COS cells and activated by a cocktail containing IBMX and forskolin, was not affected by 1.2 μM chlorotoxin (n=5). In addition, it did not affect currents through GCC. We conclude that submicromolar concentrations of chlorotoxin do not block volume-regulated, Ca2+-activated and CFTR chloride channels and that it can not be classified as a general chloride channel toxin. PMID:10683204

  12. Activation of Exchange Protein Activated by Cyclic-AMP Enhances Long-Lasting Synaptic Potentiation in the Hippocampus

    ERIC Educational Resources Information Center

    Gelinas, Jennifer N.; Banko, Jessica L.; Peters, Melinda M.; Klann, Eric; Weeber, Edwin J.; Nguyen, Peter V.

    2008-01-01

    cAMP is a critical second messenger implicated in synaptic plasticity and memory in the mammalian brain. Substantial evidence links increases in intracellular cAMP to activation of cAMP-dependent protein kinase (PKA) and subsequent phosphorylation of downstream effectors (transcription factors, receptors, protein kinases) necessary for long-term…

  13. Cyclic AMP Analog Blocks Kinase Activation by Stabilizing Inactive Conformation: Conformational Selection Highlights a New Concept in Allosteric Inhibitor Design*

    PubMed Central

    Badireddy, Suguna; Yunfeng, Gao; Ritchie, Mark; Akamine, Pearl; Wu, Jian; Kim, Choel W.; Taylor, Susan S.; Qingsong, Lin; Swaminathan, Kunchithapadam; Anand, Ganesh S.

    2011-01-01

    The regulatory (R) subunit of protein kinase A serves to modulate the activity of protein kinase A in a cAMP-dependent manner and exists in two distinct and structurally dissimilar, end point cAMP-bound “B” and C-subunit-bound “H”-conformations. Here we report mechanistic details of cAMP action as yet unknown through a unique approach combining x-ray crystallography with structural proteomics approaches, amide hydrogen/deuterium exchange and ion mobility mass spectrometry, applied to the study of a stereospecific cAMP phosphorothioate analog and antagonist((Rp)-cAMPS). X-ray crystallography shows cAMP-bound R-subunit in the B form but surprisingly the antagonist Rp-cAMPS-bound R-subunit crystallized in the H conformation, which was previously assumed to be induced only by C-subunit-binding. Apo R-subunit crystallized in the B form as well but amide exchange mass spectrometry showed large differences between apo, agonist and antagonist-bound states of the R-subunit. Further ion mobility reveals the apo R-subunit as an ensemble of multiple conformations with collisional cross-sectional areas spanning both the agonist and antagonist-bound states. Thus contrary to earlier studies that explained the basis for cAMP action through “induced fit” alone, we report evidence for conformational selection, where the ligand-free apo form of the R-subunit exists as an ensemble of both B and H conformations. Although cAMP preferentially binds the B conformation, Rp-cAMPS interestingly binds the H conformation. This reveals the unique importance of the equatorial oxygen of the cyclic phosphate in mediating conformational transitions from H to B forms highlighting a novel approach for rational structure-based drug design. Ideal inhibitors such as Rp-cAMPS are those that preferentially “select” inactive conformations of target proteins by satisfying all “binding” constraints alone without inducing conformational changes necessary for activation. PMID:21081668

  14. The role of group 14 element hydrides in the activation of C-H bonds in cyclic olefins.

    PubMed

    Summerscales, Owen T; Caputo, Christine A; Knapp, Caroline E; Fettinger, James C; Power, Philip P

    2012-09-05

    Formally, triple-bonded dimetallynes ArEEAr [E = Ge (1), Sn (2); Ar = C(6)H(3)-2,6-(C(6)H(3)-2,6-(i)Pr(2))(2)] have been previously shown to activate aliphatic, allylic C-H bonds in cyclic olefins, cyclopentadiene (CpH), cyclopentene (c-C(5)H(8)) and 1,4-cyclohexadiene, with intriguing selectivity. In the case of the five-membered carbocycles, cyclopentadienyl species ArECp [E = Ge (3), Sn (4)] are formed. In this study, we examine the mechanisms for activation of CpH and c-C(5)H(8) using experimental methods and describe a new product found from the reaction between 1 and c-C(5)H(8), an asymmetrically substituted digermene ArGe(H)Ge(c-C(5)H(9))Ar (5), crystallized in 46% yield. This compound contains a hydrogenated cyclopentyl moiety and is found to be produced in a 3:2 ratio with 3, explaining the fate of the liberated H atoms following triple C-H activation. We show that when these C-H activation reactions are carried out in the presence of tert-butyl ethylene (excess), compounds {ArE(CH(2)CH(2)tBu)}(2) [E = Ge(8), Sn(9)] are obtained in addition to ArECp; in the case of CpH, the neohexyl complexes replace the production of H(2) gas, and for c-C(5)H(8) they displace cyclopentyl product 5 and account for all the hydrogen removed in the dehydroaromatization reactions. To confirm the source of 8 and 9, it was demonstrated that these molecules are formed cleanly between the reaction of (ArEH)(2) [E = Ge(6), Sn(7)] and tert-butyl ethylene, new examples of noncatalyzed hydro-germylation and -stannylation. Therefore, the presence of transient hydrides of the type 6 and 7 can be surmised to be reactive intermediates in the production of 3 and 4, along with H(2), from 1 and 2 and CpH (respectively), or the formation of 3 and 5 from 1. The reaction of 6 or 7 with CpH gave 3 or 4, respectively, with concomitant H(2) evolution, demonstrating the basic nature of these low-valent group 14 element hydrides and their key role in the 'cascade' of C-H activation steps

  15. Cyclic Cushing's syndrome: an overview.

    PubMed

    Mantero, Franco; Scaroni, Carla M; Albiger, Nora M E

    2004-01-01

    Cyclic Cushing's syndrome (CS) involves rhythmic fluctuations in ACTH secretion resulting in a cyclic variation of adrenal steroid production. In the majority of cases, cyclic CS is caused by an ACTH-secreting pituitary adenoma, but it can also be due to ectopic ACTH production or an adrenal adenoma. This condition should be strongly suspected in patients with symptoms or signs of hypercortisolism but normal cortisol levels and paradoxical responses to the dexamethasone test, that may reflect an increasing or decreasing endogenous hormone activity. Dynamic tests are best interpreted if they are performed during a sustained period of hypercortisolism. Sometimes, it is necessary to confirm the diagnosis over lengthy periods of observation. Responses to treatment must be closely monitored, interpreted and evaluated with caution because of the potential variations in steroidogenesis. An original case report of a cyclic Cushing's syndrome is presented in this review.

  16. Synthesis of Isocoumarins from Cyclic 2-Diazo-1,3-diketones and Benzoic Acids via Rh(III)-Catalyzed C-H Activation and Esterification.

    PubMed

    Yang, Cheng; He, Xinwei; Zhang, Lanlan; Han, Guang; Zuo, Youpeng; Shang, Yongjia

    2017-02-17

    A mild and efficient Rh(III)-catalyzed C-H activation/esterification reaction for the synthesis of isocoumarins has been developed. This procedure uses readily available benzoic acids and cyclic diazo-1,3-diketones as starting materials and involves domino intermolecular C-H activation in combination with intramolecular esterification to give the corresponding isocoumarins in moderate to excellent yields. This process provides a facile approach for the construction of isocoumarins containing various functional groups that does not require any additives.

  17. Cyclic Cushing's syndrome: an overview.

    PubMed

    Albiger, Nora Maria Elvira; Scaroni, Carla M; Mantero, Franco

    2007-11-01

    Cyclic Cushing's syndrome (CS) is a disorder in which glucocorticoid levels are alternately normal and high, the latter occurring in episodes that can last from a few days to several months. It is more common in children than in adults. Cyclic CS may be either of the two different forms of CS (ACTH-dependent or -independent CS). Clinically, it may present with one or many symptoms, depending on the duration of disease activity and the timing of the fluctuations. A serotoninergic influence, cyclic changes in central dopaminergic tone, spontaneous episodic hemorrhage in the tumor, and the action of inflammatory cytokines with antitumor properties are some of the mechanisms suggested to explain the physiopathology of this phenomenon but the exact mechanism remains to be clarified. The cyclic pattern of hypercortisolism can delay the final diagnosis of CS and make it difficult to interpret the results of dynamic tests. Patients may have paradoxical responses to dexamethasone that can reflect increasing or decreasing levels of endogenous activity. Hormone assessments have to be repeated periodically when a diagnosis of CS is suspected. The cyclic pattern can also interfere with medical treatment because patients may show unexpected clinical and biochemical signs of hypocortisolism when cortisol secretion cyclically returns to normal, so an accurate follow-up is mandatory in these patients.

  18. Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex

    PubMed Central

    McDougal, Robert A.; Bulanova, Anna S.; Zeki, Mustafa; Lakatos, Peter; Terman, David; Hines, Michael L.; Lytton, William W.

    2016-01-01

    Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. The network contained 776 compartmental neurons arranged in the cortical layers, connected using synapses containing AMPA/NMDA/GABAA/GABAB receptors. Metabotropic glutamate receptors (mGluR) produced inositol triphosphate (IP3) which caused release of Ca2+ from endoplasmic reticulum (ER) stores, with reuptake by sarco/ER Ca2+-ATP-ase pumps (SERCA), and influence on HCN channels. Stimulus-induced depolarization led to Ca2+ influx via NMDA and voltage-gated Ca2+ channels (VGCCs). After a delay, mGluR activation led to ER Ca2+ release via IP3 receptors. These factors increased HCN channel conductance and produced firing lasting for ~1 minute. The model displayed inter-scale synergies among synaptic weights, excitation/inhibition balance, firing rates, membrane depolarization, calcium levels, regulation of HCN channels, and induction of persistent activity. The interaction between inhibition and Ca2+ at the HCN channel nexus determined a limited range of inhibition strengths for which intracellular Ca2+ could prepare population-specific persistent activity. Interactions between metabotropic and ionotropic inputs to the neuron demonstrated how multiple pathways could contribute in a complementary manner to persistent activity. Such redundancy and complementarity via multiple pathways is a critical feature of biological systems. Mediation of activation at different time scales, and through different pathways, would be expected to protect against disruption, in this case providing

  19. Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex.

    PubMed

    Neymotin, S A; McDougal, R A; Bulanova, A S; Zeki, M; Lakatos, P; Terman, D; Hines, M L; Lytton, W W

    2016-03-01

    Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium (Ca(2+)) regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. The network contained 776 compartmental neurons arranged in the cortical layers, connected using synapses containing AMPA/NMDA/GABAA/GABAB receptors. Metabotropic glutamate receptors (mGluR) produced inositol triphosphate (IP3) which caused the release of Ca(2+) from endoplasmic reticulum (ER) stores, with reuptake by sarco/ER Ca(2+)-ATP-ase pumps (SERCA), and influence on HCN channels. Stimulus-induced depolarization led to Ca(2+) influx via NMDA and voltage-gated Ca(2+) channels (VGCCs). After a delay, mGluR activation led to ER Ca(2+) release via IP3 receptors. These factors increased HCN channel conductance and produced firing lasting for ∼1min. The model displayed inter-scale synergies among synaptic weights, excitation/inhibition balance, firing rates, membrane depolarization, Ca(2+) levels, regulation of HCN channels, and induction of persistent activity. The interaction between inhibition and Ca(2+) at the HCN channel nexus determined a limited range of inhibition strengths for which intracellular Ca(2+) could prepare population-specific persistent activity. Interactions between metabotropic and ionotropic inputs to the neuron demonstrated how multiple pathways could contribute in a complementary manner to persistent activity. Such redundancy and complementarity via multiple pathways is a critical feature of biological systems. Mediation of activation at different time scales, and through different pathways, would be expected to protect against disruption, in

  20. Grueneberg Glomeruli in the Olfactory Bulb are Activated by Odorants and Cool Temperature.

    PubMed

    Bumbalo, Rosolino; Lieber, Marilena; Schroeder, Lisa; Polat, Yasemin; Breer, Heinz; Fleischer, Joerg

    2016-08-03

    Neurons of the Grueneberg ganglion respond to cool temperatures as well as to distinct odorants and extend axonal processes to the olfactory bulb of the brain. Analyses of transgenic mice, in which Grueneberg ganglion neurons and their axons are labeled, revealed that these axons innervated nine distinct glomeruli distributed in a characteristic topographical pattern in dorsal, lateral, ventral, and medial regions of rather posterior areas in the bulb. To assess activation of these glomeruli (hereinafter designated as Grueneberg glomeruli) upon stimulation of Grueneberg ganglion neurons, mice were exposed to the odorant 2,3-dimethylpyrazine (2,3-DMP) and the expression of the activity-dependent marker c-Fos in juxtaglomerular cells of the relevant glomeruli was monitored. It was found that all of these glomeruli were activated, irrespective of their localization in the bulb. To verify that the activation of juxtaglomerular cells in Grueneberg glomeruli was indeed based on stimulation of Grueneberg ganglion neurons, the 2,3-DMP-induced responses in these glomeruli were investigated in mice lacking the cyclic nucleotide-gated channel CNGA3 which is critical for chemo- and thermosensory signal transduction in Grueneberg ganglion neurons. This approach revealed that elimination of CNGA3 led to a reduction of the odorant-induced activity in Grueneberg glomeruli, indicating that the activation of these glomeruli is based on a preceding stimulation of the Grueneberg ganglion. Analyzing whether Grueneberg glomeruli in the bulb might also process thermosensory information, it was found that upon exposure to coolness, Grueneberg glomeruli were activated. Investigating mice lacking CNGA3, the activation of these glomeruli by cool temperatures was attenuated.

  1. Src tyrosine kinase alters gating of hyperpolarization-activated HCN4 pacemaker channel through Tyr531.

    PubMed

    Li, Chen-Hong; Zhang, Qi; Teng, Bunyen; Mustafa, S Jamal; Huang, Jian-Ying; Yu, Han-Gang

    2008-01-01

    We recently discovered that the constitutively active Src tyrosine kinase can enhance hyperpolarization-activated, cyclic nucleotide-gated (HCN) 4 channel activity by binding to the channel protein. To investigate the mechanism of modulation by Src of HCN channels, we studied the effects of a selective inhibitor of Src tyrosine kinase, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), on HCN4 and its mutant channels expressed in HEK 293 cells by using a whole cell patch-clamp technique. We found that PP2 can inhibit HCN4 currents by negatively shifting the voltage dependence of channel activation, decreasing the whole cell channel conductance, and slowing activation and deactivation kinetics. Screening putative tyrosine residues subject to phosphorylation yielded two candidates: Tyr(531) and Tyr(554). Substituting HCN4-Tyr(531) with phenylalanine largely abolished the effects of PP2 on HCN4 channels. Replacing HCN4-Tyr(554) with phenylalanine did not abolish the effects of PP2 on voltage-dependent activation but did eliminate PP2-induced slowing of channel kinetics. The inhibitory effects of HCN channels associated with reduced Src tyrosine activity is confirmed in HL-1 cardiomyocytes. Finally, we found that PP2 can decrease the heart rate in a mouse model. These results demonstrate that Src tyrosine kinase enhances HCN4 currents by shifting their activation to more positive potentials and increasing the whole cell channel conductance as well as speeding the channel kinetics. The tyrosine residue that mediates most of Src's actions on HCN4 channels is Tyr(531).

  2. Evolution of Vertebrate Phototransduction: Cascade Activation

    PubMed Central

    Lamb, Trevor D.; Patel, Hardip; Chuah, Aaron; Natoli, Riccardo C.; Davies, Wayne I. L.; Hart, Nathan S.; Collin, Shaun P.; Hunt, David M.

    2016-01-01

    We applied high-throughput sequencing to eye tissue from several species of basal vertebrates (a hagfish, two species of lamprey, and five species of gnathostome fish), and we analyzed the mRNA sequences for the proteins underlying activation of the phototransduction cascade. The molecular phylogenies that we constructed from these sequences are consistent with the 2R WGD model of two rounds of whole genome duplication. Our analysis suggests that agnathans retain an additional representative (that has been lost in gnathostomes) in each of the gene families we studied; the evidence is strong for the G-protein α subunit (GNAT) and the cGMP phosphodiesterase (PDE6), and indicative for the cyclic nucleotide-gated channels (CNGA and CNGB). Two of the species (the hagfish Eptatretus cirrhatus and the lamprey Mordacia mordax) possess only a single class of photoreceptor, simplifying deductions about the composition of cascade protein isoforms utilized in their photoreceptors. For the other lamprey, Geotria australis, analysis of the ratios of transcript levels in downstream and upstream migrant animals permits tentative conclusions to be drawn about the isoforms used in four of the five spectral classes of photoreceptor. Overall, our results suggest that agnathan rod-like photoreceptors utilize the same GNAT1 as gnathostomes, together with a homodimeric PDE6 that may be agnathan-specific, whereas agnathan cone-like photoreceptors utilize a GNAT that may be agnathan-specific, together with the same PDE6C as gnathostomes. These findings help elucidate the evolution of the vertebrate phototransduction cascade from an ancestral chordate phototransduction cascade that existed prior to the vertebrate radiation. PMID:27189541

  3. Cyclic torsion testing

    NASA Technical Reports Server (NTRS)

    Leese, G. E.

    1984-01-01

    Torsional fatigue testing and data analysis procedures are described. Since there are no standards governing cyclic torsion testing that are generally accepted on a widespread basis by the technical community, the different approaches that dominate current experimental activity, and the ramifications of each are discussed. Particular attention is given to the theoretical and experimental difficulties that have paced refinement and general acceptance of test procedures. Finally, specific quantities and nomenclature modelled after analagous axial fatigue properties are suggested as an effective way to communicate torsional fatigue results until accepted standards are established.

  4. Vimocin and vidapin, cyclic KTS peptides, are dual antagonists of α1β1/α2β1 integrins with antiangiogenic activity.

    PubMed

    Momic, Tatjana; Katzehendler, Jehoshua; Benny, Ofra; Lahiani, Adi; Cohen, Gadi; Noy, Efrat; Senderowitz, Hanoch; Eble, Johannes A; Marcinkiewicz, Cezary; Lazarovici, Philip

    2014-09-01

    Obtustatin and viperistatin, members of the disintegrin protein family, served as lead compounds for the synthesis of linear and cyclic peptides containing the KTS binding motif. The most active linear peptide, a viperistatin analog, indicated the importance of Cys(19) and Cys(29), as well as the presence of Arg at position 24 for their biologic activity, and was used as the basic sequence for the synthesis of cyclic peptides. Vimocin (compound 6) and vidapin (compound 10) showed a high potency (IC50 = 0.17 nM) and intermediate efficacy (20 and 40%) in inhibition of adhesion of α1/α2 integrin overexpressor cells to respective collagens. Vimocin was more active in inhibition of the wound healing (53%) and corneal micropocket (17%) vascularization, whereas vidapin was more potent in inhibition of migration in the Matrigel tube formation assay (90%). Both compounds similarly inhibited proliferation (50-90%) of endothelial cells, and angiogenesis induced by vascular endothelial growth factor (80%) and glioma (55%) in the chorioallantoic membrane assay. These peptides were not toxic to endothelial cell cultures and caused no acute toxicity upon intravenous injection in mice, and were stable for 10-30 hours in human serum. The in vitro and in vivo potency of the peptides are consistent with conformational ensembles and "bioactive" space shared by obtustatin and viperistatin. These findings suggest that vimocin and vidapin can serve as dual α1β1/α2β1 integrin antagonists in antiangiogenesis and cancer therapy.

  5. Novel interactions between human T-cell leukemia virus type I Tax and activating transcription factor 3 at a cyclic AMP-responsive element.

    PubMed Central

    Low, K G; Chu, H M; Schwartz, P M; Daniels, G M; Melner, M H; Comb, M J

    1994-01-01

    Human proenkephalin gene transcription is transactivated by human T-cell leukemia virus type I (HTLV-I) Tax in human Jurkat T lymphocytes. This transactivation was further enhanced in Jurkat cells treated with concanavalin A, cyclic AMP, or 12-O-tetradecanoylphorbol-13-acetate. Deletion and cis-element transfer analyses of the human proenkephalin promoter identified a cyclic AMP-responsive AP-1 element (-92 to -86) as both necessary and sufficient to confer Tax-dependent transactivation. Different AP-1 or cyclic AMP-responsive element-binding protein (CREB)/activating transcription factor (ATF) proteins which bind this element were expressed in murine teratocarcinoma F9 cells to identify those capable of mediating Tax-dependent transactivation of human proenkephalin gene transcription. Although CREB, c-Fos, c-Jun, and JunD did not have significant effects, JunB inhibited the Tax-dependent transactivation. In contrast, ATF3 dramatically induced Tax-dependent transactivation, which was further enhanced by protein kinase A. Electrophoretic mobility shift assays with recombinant fusion proteins expressed and purified from bacteria indicate that the DNA-binding activity of ATF3 is also dramatically enhanced by Tax. Chimeric fusion proteins consisting of the DNA-binding domain of the yeast transcription factor Gal4 and the amino-terminal domain (residues 1 to 66) of ATF3 were able to mediate Tax-dependent transactivation of a Gal4-responsive promoter, which suggests a direct involvement of this region of ATF3. Recombinant fusion proteins of glutathione S-transferase with either the amino- or carboxy-terminal (residues 139 to 181) domain of ATF3 were able to specifically interact with Tax. Furthermore, specific antisera directed against Tax coimmunoprecipitated ATF3 only in the presence of Tax. Images PMID:8007991

  6. The hyperpolarization-activated non-specific cation current (In ) adjusts the membrane properties, excitability, and activity pattern of the giant cells in the rat dorsal cochlear nucleus.

    PubMed

    Rusznák, Zoltán; Pál, Balázs; Kőszeghy, Aron; Fu, Yuhong; Szücs, Géza; Paxinos, George

    2013-03-01

    Giant cells of the cochlear nucleus are thought to integrate multimodal sensory inputs and participate in monaural sound source localization. Our aim was to explore the significance of a hyperpolarization-activated current in determining the activity of giant neurones in slices prepared from 10 to 14-day-old rats. When subjected to hyperpolarizing stimuli, giant cells produced a 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyridinium chloride (ZD7288)-sensitive inward current with a reversal potential and half-activation voltage of -36 and -88 mV, respectively. Consequently, the current was identified as the hyperpolarization-activated non-specific cationic current (Ih ). At the resting membrane potential, 3.5% of the maximum Ih conductance was available. Immunohistochemistry experiments suggested that hyperpolarization-activated, cyclic nucleotide-gated, cation non-selective (HCN)1, HCN2, and HCN4 subunits contribute to the assembly of the functional channels. Inhibition of Ih hyperpolarized the membrane by 6 mV and impeded spontaneous firing. The frequencies of spontaneous inhibitory and excitatory postsynaptic currents reaching the giant cell bodies were reduced but no significant change was observed when evoked postsynaptic currents were recorded. Giant cells are affected by biphasic postsynaptic currents consisting of an excitatory and a subsequent inhibitory component. Inhibition of Ih reduced the frequency of these biphasic events by 65% and increased the decay time constants of the inhibitory component. We conclude that Ih adjusts the resting membrane potential, contributes to spontaneous action potential firing, and may participate in the dendritic integration of the synaptic inputs of the giant neurones. Because its amplitude was higher in young than in adult rats, Ih of the giant cells may be especially important during the postnatal maturation of the auditory system.

  7. GABAergic neurons of the medial septum lead the hippocampal network during theta activity.

    PubMed

    Hangya, Balázs; Borhegyi, Zsolt; Szilágyi, Nóra; Freund, Tamás F; Varga, Viktor

    2009-06-24

    Information processing in the hippocampus critically relies on its reciprocal interaction with the medial septum (MS). Synchronization of the septo-hippocampal system was demonstrated during both major hippocampal activity states, the regular theta rhythm and the large amplitude irregular activity. Previous experimental and modeling data suggest that the MS provides rhythmic drive to the hippocampus, and hippocampo-septal feedback synchronizes septal pacemaker units. However, this view has recently been questioned based on the possibility of intrahippocampal theta genesis. Previously, we identified putative pacemaker neurons expressing parvalbumin (PV) and/or the pacemaker hyperpolarization-activated and cyclic nucleotide-gated nonselective cation channel (HCN) in the MS. In this study, by analyzing the temporal relationship of activity between the PV/HCN-containing medial septal neurons and hippocampal local field potential, we aimed to uncover whether the sequence of events during theta formation supports the classic view of septal drive or the challenging theory of hippocampal pacing of theta. Importantly, by implementing a circular statistical method, a temporal lead of these septal neurons over the hippocampus was observed on the course of theta synchronization. Moreover, the activity of putative hippocampal interneurons also preceded hippocampal local field theta, but by a shorter time period compared with PV/HCN-containing septal neurons. Using the concept of mutual information, the action potential series of PV/HCN-containing neurons shared higher amount of information with hippocampal field oscillation than PV/HCN-immunonegative cells. Thus, a pacemaker neuron population of the MS leads hippocampal activity, presumably via the synchronization of hippocampal interneurons.

  8. Oscillation of ADP-ribosyl cyclase activity during the cell cycle and function of cyclic ADP-ribose in a unicellular organism, Euglena gracilis.

    PubMed

    Masuda, W; Takenaka, S; Inageda, K; Nishina, H; Takahashi, K; Katada, T; Tsuyama, S; Inui, H; Miyatake, K; Nakano, Y

    1997-03-17

    In Euglena gracilis, the activity of ADP-ribosyl cyclase, which produces cyclic ADP-ribose, oscillated during the cell cycle in a synchronous culture induced by a light-dark cycle, and a marked increase in the activity was observed in the G2 phase. Similarly, the ADP-ribosyl cyclase activity rose extremely immediately before cell division started, when synchronous cell division was induced by adding cobalamin (which is an essential growth factor and participates in DNA synthesis in this organism) to its deficient culture. Further, cADPR in these cells showed a maximum level immediately before cell division started. A dose-dependent Ca2+ release was observed when microsomes were incubated with cADPR.

  9. The magnitudes of hyperpolarization-activated and low-voltage-activated potassium currents co-vary in neurons of the ventral cochlear nucleus.

    PubMed

    Cao, Xiao-Jie; Oertel, Donata

    2011-08-01

    In the ventral cochlear nucleus (VCN), neurons have hyperpolarization-activated conductances, which in some cells are enormous, that contribute to the ability of neurons to convey acoustic information in the timing of their firing by decreasing the input resistance and speeding-up voltage changes. Comparisons of the electrophysiological properties of neurons in the VCN of mutant mice that lack the hyperpolarization-activated cyclic nucleotide-gated channel α subunit 1 (HCN1(-/-)) (Nolan et al. 2003) with wild-type controls (HCN1(+/+)) and with outbred ICR mice reveal that octopus, T stellate, and bushy cells maintain their electrophysiological distinctions in all strains. Hyperpolarization-activated (I(h)) currents were smaller and slower, input resistances were higher, and membrane time constants were longer in HCN1(-/-) than in HCN1(+/+) in octopus, bushy, and T stellate cells. There were significant differences in the average magnitudes of I(h), input resistances, and time constants between HCN1(+/+) and ICR mice, but the resting potentials did not differ between strains. I(h) is opposed by a low-voltage-activated potassium (I(KL)) current in bushy and octopus cells, whose magnitudes varied widely between neuronal types and between strains. The magnitudes of I(h) and I(KL) were correlated across neuronal types and across mouse strains. Furthermore, these currents balanced one another at the resting potential in individual cells. The magnitude of I(h) and I(KL) is linked in bushy and octopus cells and varies not only between HCN1(-/-) and HCN1(+/+) but also between "wild-type" strains of mice, raising the question to what extent the wild-type strains reflect normal mice.

  10. The magnitudes of hyperpolarization-activated and low-voltage-activated potassium currents co-vary in neurons of the ventral cochlear nucleus

    PubMed Central

    Cao, Xiao-Jie

    2011-01-01

    In the ventral cochlear nucleus (VCN), neurons have hyperpolarization-activated conductances, which in some cells are enormous, that contribute to the ability of neurons to convey acoustic information in the timing of their firing by decreasing the input resistance and speeding-up voltage changes. Comparisons of the electrophysiological properties of neurons in the VCN of mutant mice that lack the hyperpolarization-activated cyclic nucleotide-gated channel α subunit 1 (HCN1−/−) (Nolan et al. 2003) with wild-type controls (HCN1+/+) and with outbred ICR mice reveal that octopus, T stellate, and bushy cells maintain their electrophysiological distinctions in all strains. Hyperpolarization-activated (Ih) currents were smaller and slower, input resistances were higher, and membrane time constants were longer in HCN1−/− than in HCN1+/+ in octopus, bushy, and T stellate cells. There were significant differences in the average magnitudes of Ih, input resistances, and time constants between HCN1+/+ and ICR mice, but the resting potentials did not differ between strains. Ih is opposed by a low-voltage-activated potassium (IKL) current in bushy and octopus cells, whose magnitudes varied widely between neuronal types and between strains. The magnitudes of Ih and IKL were correlated across neuronal types and across mouse strains. Furthermore, these currents balanced one another at the resting potential in individual cells. The magnitude of Ih and IKL is linked in bushy and octopus cells and varies not only between HCN1−/− and HCN1+/+ but also between “wild-type” strains of mice, raising the question to what extent the wild-type strains reflect normal mice. PMID:21562186

  11. Plant Cyclic Nucleotide Signalling

    PubMed Central

    Martinez-Atienza, Juliana; Van Ingelgem, Carl; Roef, Luc

    2007-01-01

    The presence of the cyclic nucleotides 3′,5′-cyclic adenyl monophosphate (cAMP) and 3′,5′-cyclic guanyl monophosphate (cGMP) in plants is now generally accepted. In addition, cAMP and cGMP have been implicated in the regulation of important plant processes such as stomatal functioning, monovalent and divalent cation fluxes, chloroplast development, gibberellic acid signalling, pathogen response and gene transcription. However, very little is known regarding the components of cyclic nucleotide signalling in plants. In this addendum, the evidence for specific mechanisms of plant cyclic nucleotide signalling is evaluated and discussed. PMID:19704553

  12. Defects in the Expression of Chloroplast Proteins Leads to H2O2 Accumulation and Activation of Cyclic Electron Flow around Photosystem I.

    PubMed

    Strand, Deserah D; Livingston, Aaron K; Satoh-Cruz, Mio; Koepke, Tyson; Enlow, Heather M; Fisher, Nicholas; Froehlich, John E; Cruz, Jeffrey A; Minhas, Deepika; Hixson, Kim K; Kohzuma, Kaori; Lipton, Mary; Dhingra, Amit; Kramer, David M

    2016-01-01

    We describe a new member of the class of mutants in Arabidopsis exhibiting high rates of cyclic electron flow around photosystem I (CEF), a light-driven process that produces ATP but not NADPH. High cyclic electron flow 2 (hcef2) shows strongly increased CEF activity through the NADPH dehydrogenase complex (NDH), accompanied by increases in thylakoid proton motive force (pmf), activation of the photoprotective qE response, and the accumulation of H2O2. Surprisingly, hcef2 was mapped to a non-sense mutation in the TADA1 (tRNA adenosine deaminase arginine) locus, coding for a plastid targeted tRNA editing enzyme required for efficient codon recognition. Comparison of protein content from representative thylakoid complexes, the cytochrome bf complex, and the ATP synthase, suggests that inefficient translation of hcef2 leads to compromised complex assembly or stability leading to alterations in stoichiometries of major thylakoid complexes as well as their constituent subunits. Altered subunit stoichiometries for photosystem I, ratios and properties of cytochrome bf hemes, and the decay kinetics of the flash-induced thylakoid electric field suggest that these defect lead to accumulation of H2O2 in hcef2, which we have previously shown leads to activation of NDH-related CEF. We observed similar increases in CEF, as well as increases in H2O2 accumulation, in other translation defective mutants. This suggests that loss of coordination in plastid protein levels lead to imbalances in photosynthetic energy balance that leads to an increase in CEF. These results taken together with a large body of previous observations, support a general model in which processes that lead to imbalances in chloroplast energetics result in the production of H2O2, which in turn activates CEF. This activation could be from either H2O2 acting as a redox signal, or by a secondary effect from H2O2 inducing a deficit in ATP.

  13. Defects in the Expression of Chloroplast Proteins Leads to H2O2 Accumulation and Activation of Cyclic Electron Flow around Photosystem I

    PubMed Central

    Strand, Deserah D.; Livingston, Aaron K.; Satoh-Cruz, Mio; Koepke, Tyson; Enlow, Heather M.; Fisher, Nicholas; Froehlich, John E.; Cruz, Jeffrey A.; Minhas, Deepika; Hixson, Kim K.; Kohzuma, Kaori; Lipton, Mary; Dhingra, Amit; Kramer, David M.

    2017-01-01

    We describe a new member of the class of mutants in Arabidopsis exhibiting high rates of cyclic electron flow around photosystem I (CEF), a light-driven process that produces ATP but not NADPH. High cyclic electron flow 2 (hcef2) shows strongly increased CEF activity through the NADPH dehydrogenase complex (NDH), accompanied by increases in thylakoid proton motive force (pmf), activation of the photoprotective qE response, and the accumulation of H2O2. Surprisingly, hcef2 was mapped to a non-sense mutation in the TADA1 (tRNA adenosine deaminase arginine) locus, coding for a plastid targeted tRNA editing enzyme required for efficient codon recognition. Comparison of protein content from representative thylakoid complexes, the cytochrome bf complex, and the ATP synthase, suggests that inefficient translation of hcef2 leads to compromised complex assembly or stability leading to alterations in stoichiometries of major thylakoid complexes as well as their constituent subunits. Altered subunit stoichiometries for photosystem I, ratios and properties of cytochrome bf hemes, and the decay kinetics of the flash-induced thylakoid electric field suggest that these defect lead to accumulation of H2O2 in hcef2, which we have previously shown leads to activation of NDH-related CEF. We observed similar increases in CEF, as well as increases in H2O2 accumulation, in other translation defective mutants. This suggests that loss of coordination in plastid protein levels lead to imbalances in photosynthetic energy balance that leads to an increase in CEF. These results taken together with a large body of previous observations, support a general model in which processes that lead to imbalances in chloroplast energetics result in the production of H2O2, which in turn activates CEF. This activation could be from either H2O2 acting as a redox signal, or by a secondary effect from H2O2 inducing a deficit in ATP. PMID:28133462

  14. Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels

    PubMed Central

    Qi, Zhi; Verma, Rajeev; Gehring, Chris; Yamaguchi, Yube; Zhao, Yichen; Ryan, Clarence A.; Berkowitz, Gerald A.

    2010-01-01

    A family of peptide signaling molecules (AtPeps) and their plasma membrane receptor AtPepR1 are known to act in pathogen-defense signaling cascades in plants. Little is currently known about the molecular mechanisms that link these signaling peptides and their receptor, a leucine-rich repeat receptor-like kinase, to downstream pathogen-defense responses. We identify some cellular activities of these molecules that provide the context for a model for their action in signaling cascades. AtPeps activate plasma membrane inwardly conducting Ca2+ permeable channels in mesophyll cells, resulting in cytosolic Ca2+ elevation. This activity is dependent on their receptor as well as a cyclic nucleotide-gated channel (CNGC2). We also show that the leucine-rich repeat receptor-like kinase receptor AtPepR1 has guanylyl cyclase activity, generating cGMP from GTP, and that cGMP can activate CNGC2-dependent cytosolic Ca2+ elevation. AtPep-dependent expression of pathogen-defense genes (PDF1.2, MPK3, and WRKY33) is mediated by the Ca2+ signaling pathway associated with AtPep peptides and their receptor. The work presented here indicates that extracellular AtPeps, which can act as danger-associated molecular patterns, signal by interaction with their receptor, AtPepR1, a plasma membrane protein that can generate cGMP. Downstream from AtPep and AtPepR1 in a signaling cascade, the cGMP-activated channel CNGC2 is involved in AtPep- and AtPepR1-dependent inward Ca2+ conductance and resulting cytosolic Ca2+ elevation. The signaling cascade initiated by AtPeps leads to expression of pathogen-defense genes in a Ca2+-dependent manner. PMID:21088220

  15. Bradykinin activates ADP-ribosyl cyclase in neuroblastoma cells: intracellular concentration decrease in NAD and increase in cyclic ADP-ribose.

    PubMed

    Higashida, Haruhiro; Salmina, Alla; Hashii, Minako; Yokoyama, Shigeru; Zhang, Jia-Sheng; Noda, Mami; Zhong, Zen-Guo; Jin, Duo

    2006-09-04

    ADP-ribosyl cyclase activity in the crude membrane fraction of neuroblastomaxglioma NGPM1-27 hybrid cells was measured by monitoring [(3)H] cyclic ADP-ribose (cADPR) formation from [(3)H] NAD(+). Bradykinin (BK) at 100nM increased ADP-ribosyl cyclase activity by about 2.5-fold. Application of 300nM BK to living NGPM1-27 cells decreased NAD(+) to 78% of the prestimulation level at 30s. In contrast, intracellular cADPR concentrations were increased by 2-3-fold during the period from 30 to 120s after the same treatment. Our results suggest that cADPR is one of the second messengers downstream of B(2) BK receptors.

  16. Mitotic activation of the DISC1-inducible cyclic AMP phosphodiesterase-4D9 (PDE4D9), through multi-site phosphorylation, influences cell cycle progression.

    PubMed

    Sheppard, Catherine L; Lee, Louisa C Y; Hill, Elaine V; Henderson, David J P; Anthony, Diana F; Houslay, Daniel M; Yalla, Krishna C; Cairns, Lynne S; Dunlop, Allan J; Baillie, George S; Huston, Elaine; Houslay, Miles D

    2014-09-01

    In Rat-1 cells, the dramatic decrease in the levels of both intracellular cyclic 3'5' adenosine monophosphate (cyclic AMP; cAMP) and in the activity of cAMP-activated protein kinase A (PKA) observed in mitosis was paralleled by a profound increase in cAMP hydrolyzing phosphodiesterase-4 (PDE4) activity. The decrease in PKA activity, which occurs during mitosis, was attributable to PDE4 activation as the PDE4 selective inhibitor, rolipram, but not the phosphodiesterase-3 (PDE3) inhibitor, cilostamide, specifically ablated this cell cycle-dependent effect. PDE4 inhibition caused Rat-1 cells to move from S phase into G2/M more rapidly, to transit through G2/M more quickly and to remain in G1 for a longer period. Inhibition of PDE3 elicited no observable effects on cell cycle dynamics. Selective immunopurification of each of the four PDE4 sub-families identified PDE4D as being selectively activated in mitosis. Subsequent analysis uncovered PDE4D9, an isoform whose expression can be regulated by Disrupted-In-Schizophrenia 1 (DISC1)/activating transcription factor 4 (ATF4) complex, as the sole PDE4 species activated during mitosis in Rat-1 cells. PDE4D9 becomes activated in mitosis through dual phosphorylation at Ser585 and Ser245, involving the combined action of ERK and an unidentified 'switch' kinase that has previously been shown to be activated by H2O2. Additionally, in mitosis, PDE4D9 also becomes phosphorylated at Ser67 and Ser81, through the action of MK2 (MAPKAPK2) and AMP kinase (AMPK), respectively. The multisite phosphorylation of PDE4D9 by all four of these protein kinases leads to decreased mobility (band-shift) of PDE4D9 on SDS-PAGE. PDE4D9 is predominantly concentrated in the perinuclear region of Rat-1 cells but with a fraction distributed asymmetrically at the cell margins. Our investigations demonstrate that the diminished levels of cAMP and PKA activity that characterise mitosis are due to enhanced cAMP degradation by PDE4D9. PDE4D9, was found to

  17. Two pacemaker channels from human heart with profoundly different activation kinetics.

    PubMed Central

    Ludwig, A; Zong, X; Stieber, J; Hullin, R; Hofmann, F; Biel, M

    1999-01-01

    Cardiac pacemaking is produced by the slow diastolic depolarization phase of the action potential. The hyperpolarization-activated cation current (If) forms an important part of the pacemaker depolarization and consists of two kinetic components (fast and slow). Recently, three full-length cDNAs encoding hyperpolarization-activated and cyclic nucleotide-gated cation channels (HCN1-3) have been cloned from mouse brain. To elucidate the molecular identity of cardiac pacemaker channels, we screened a human heart cDNA library using a highly conserved neuronal HCN channel segment and identified two cDNAs encoding HCN channels. The hHCN2 cDNA codes for a protein of 889 amino acids. The HCN2 gene is localized on human chromosome 19p13.3 and contains eight exons spanning approximately 27 kb. The second cDNA, designated hHCN4, codes for a protein of 1203 amino acids. Northern blot and PCR analyses showed that both hHCN2 and hHCN4 are expressed in heart ventricle and atrium. When expressed in HEK 293 cells, either cDNA gives rise to hyperpolarization-activated cation currents with the hallmark features of native If. hHCN2 and hHCN4 currents differ profoundly from each other in their activation kinetics, being fast and slow, respectively. We thus conclude that hHCN2 and hHCN4 may underlie the fast and slow component of cardiac If, respectively. PMID:10228147

  18. Characteristics and physiological role of hyperpolarization activated currents in mouse cold thermoreceptors

    PubMed Central

    Orio, Patricio; Madrid, Rodolfo; de la Peña, Elvira; Parra, Andrés; Meseguer, Víctor; Bayliss, Douglas A; Belmonte, Carlos; Viana, Félix

    2009-01-01

    Hyperpolarization-activated currents (Ih) are mediated by the expression of combinations of hyperpolarization-activated, cyclic nucleotide-gated (HCN) channel subunits (HCN1–4). These cation currents are key regulators of cellular excitability in the heart and many neurons in the nervous system. Subunit composition determines the gating properties and cAMP sensitivity of native Ih currents. We investigated the functional properties of Ih in adult mouse cold thermoreceptor neurons from the trigeminal ganglion, identified by their high sensitivity to moderate cooling and responsiveness to menthol. All cultured cold-sensitive (CS) neurons expressed a fast activating Ih, which was fully blocked by extracellular Cs+ or ZD7288 and had biophysical properties consistent with those of heteromeric HCN1–HCN2 channels. In CS neurons from HCN1(−/−) animals, Ih was greatly reduced but not abolished. We find that Ih activity is not essential for the transduction of cold stimuli in CS neurons. Nevertheless, Ih has the potential to shape the excitability of CS neurons. First, Ih blockade caused a membrane hyperpolarization in CS neurons of about 5 mV. Furthermore, impedance power analysis showed that all CS neurons had a prominent subthreshold membrane resonance in the 5–7 Hz range, completely abolished upon blockade of Ih and absent in HCN1 null mice. This frequency range matches the spontaneous firing frequency of cold thermoreceptor terminals in vivo. Behavioural responses to cooling were reduced in HCN1 null mice and after peripheral pharmacological blockade of Ih with ZD7288, suggesting that Ih plays an important role in peripheral sensitivity to cold. PMID:19273581

  19. Remodeling of Hyperpolarization-Activated Current, Ih, in Ah-Type Visceral Ganglion Neurons Following Ovariectomy in Adult Rats

    PubMed Central

    Xu, Wen-Xiao; Yan, Zhen-Yu; Liu, Yang; Zhou, Jia-Ying; Zhang, Hao-Cheng; Wang, Li-Juan; Pan, Xiao-Dong; Fu, Yili

    2013-01-01

    Hyperpolarization-activated currents (Ih) mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels modulate excitability of myelinated A− and Ah-type visceral ganglion neurons (VGN). Whether alterations in Ih underlie the previously reported reduction of excitability of myelinated Ah-type VGNs following ovariectomy (OVX) has remained unclear. Here we used the intact nodose ganglion preparation in conjunction with electrophysiological approaches to examine the role of Ih remodeling in altering Ah-type neuron excitability following ovariectomy in adult rats. Ah-type neurons were identified based on their afferent conduction velocity. Ah-type neurons in nodose ganglia from non-OVX rats exhibited a voltage ‘sag’ as well as ‘rebound’ action potentials immediately following hyperpolarizing current injections, which both were suppressed by the Ih blocker ZD7288. Repetitive spike activity induced afterhyperpolarizations lasting several hundreds of milliseconds (termed post-excitatory membrane hyperpolarizations, PEMHs), which were significantly reduced by ZD7288, suggesting that they resulted from transient deactivation of Ih during the preceding spike trains. Ovariectomy reduced whole-cell Ih density, caused a hyperpolarizing shift of the voltage-dependence of Ih activation, and slowed Ih activation. OVX-induced Ih remodeling was accompanied by a flattening of the stimulus frequency/response curve and loss of PEMHs. Also, HCN1 mRNA levels were reduced by ∼30% in nodose ganglia from OVX rats compared with their non-OVX counterparts. Acute exposure of nodose ganglia to 17beta-estradiol partly restored Ih density and accelerated Ih activation in Ah-type cells. In conclusion, Ih plays a significant role in modulating the excitability of myelinated Ah-type VGNs in adult female rats. PMID:23951107

  20. Cyclical processes in neuronal populations of the cat somatosensory cortex during extero- and interoceptive activation and in the course of its extinction.

    PubMed

    Lavrov, V V

    1993-01-01

    The EEG reactions were recorded in chronic experiments in awake cats and the slow periodic changes in the frequency of the multicellular impulse activity were observed at points (standard localization) of the somatosensory (1) zone of the cortex. Results of the analysis of both processes were combined in graphs in a single time scale. The correlation of the expressivity of the activation reaction and degree of modulation of the cyclical fluctuations of the frequency of the impulse activity were followed both during the action of exteroceptive (conditional, light; unconditional, sound) and the interoceptive (mechanical and chemical) stimuli. A particular characteristic of the interoceptive stimulation as compared with the exteroceptive consisted in the inertia of the respondent reaction and the lesser contrast in relation to the background. During the extinction of the responses the decrease in the activation reaction correlated with a decrease in the initial (after the switching on of the stimulus) fluctuation of the frequency of the multicellular impulse activity. The data obtained serves as proof of the unity of the two processes: the regulation of the activation of the brain and the regulation of the periodicity of the neuronal impulse activity.

  1. Novel blockers of hyperpolarization-activated current with isoform selectivity in recombinant cells and native tissue.

    PubMed

    Del Lungo, Martina; Melchiorre, Michele; Guandalini, Luca; Sartiani, Laura; Mugelli, Alessandro; Koncz, Istvan; Szel, Tamas; Varro, Andras; Romanelli, Maria Novella; Cerbai, Elisabetta

    2012-05-01

    BACKGROUND AND PURPOSE Selective hyperpolarization activated, cyclic nucleotide-gated channel (HCN) blockers represent an important therapeutic goal due to the wide distribution and multiple functions of these proteins, representing the molecular correlate of f- and h-current (I(f) or I(h) ). Recently, new compounds able to block differentially the homomeric HCN isoforms expressed in HEK293 have been synthesized. In the present work, the electrophysiological and pharmacological properties of these new HCN blockers were characterized and their activities evaluated on native channels. EXPERIMENTAL APPROACH HEK293 cells expressing mHCN1, mHCN2 and hHCN4 isoforms were used to verify channel blockade. Selected compounds were tested on native guinea pig sinoatrial node cells and neurons from mouse dorsal root ganglion (DRG) by patch-clamp recordings and on dog Purkinje fibres by intracellular recordings. KEY RESULTS In HEK293 cells, EC18 was found to be significantly selective for HCN4 and MEL57A for HCN1 at physiological membrane potential. When tested on guinea pig sinoatrial node cells, EC18 (10 µM) maintained its activity, reducing I(f) by 67% at -120 mV, while MEL57A (3 µM) reduced I(f) by 18%. In contrast, in mouse DRG neurons, only MEL57A (30 and 100 µM) significantly reduced I(h) by 60% at -80 mV. In dog cardiac Purkinje fibres, EC18, but not MEL57A, reduced the amplitude and slowed the slope of the spontaneous diastolic depolarization. CONCLUSIONS Our results have identified novel and highly selective HCN isoform blockers, EC18 and MEL57A; the selectivity found in recombinant system was maintained in various tissues expressing different HCN isoforms.

  2. Cyclic metabolites: chemical and biological considerations.

    PubMed

    Erve, John C L

    2008-02-01

    Metabolism of xenobiotics can sometimes generate cyclic metabolites. Such metabolites are usually the result of intramolecular reactions occurring within a primary or secondary metabolite and this chemistry may lead to unexpected structures. Intramolecular chemistry is often driven by nucleophilic groups reacting with electrophilic atoms, often carbon, although radical processes also occur. Conjugation of xenobiotics or their metabolites with endogenous thiols, such as glutathione or cysteine, introduce a reactive amino group that can lead to the formation of cyclic structures. Less common than chemically driven cyclizations are enzymatically mediated ring-closures, although this may reflect our incomplete recognition of enzymatic involvement in this step of cyclic metabolite formation. While some cyclic metabolites are biologically inactive, others are biologically active. Thus, a cyclic metabolite may display desirable pharmacology, or, contribute to toxicology. When a cyclic metabolite is identified, it is important to consider the possibility that it is an artifact, i.e. metabonate, that was formed during processing of the sample, for example, through degradation or by chemical reactions with other components present in the matrix. From a medicinal chemistry perspective, a cyclic metabolite with a different chemical scaffold from the parent structure may lead to a new series of structurally novel, biologically active molecules with the same, or different, pharmacology from the parent. This review will cover a selection of cyclic metabolites from a mechanistic point of view, and when possible, discuss their biological relevance.

  3. Induction of cyclooxygenase-2 by ginsenoside Rd via activation of CCAAT-enhancer binding proteins and cyclic AMP response binding protein

    SciTech Connect

    Jeong, Hye Gwang; Pokharel, Yuba Raj; Han, Eun Hee; Kang, Keon Wook . E-mail: kwkang@chosun.ac.kr

    2007-07-20

    Panax ginseng is a widely used herbal medicine in East Asia and is reported to have a variety of pharmacological effects against cardiovascular diseases and cancers. Here we show a unique effect of ginsenoside Rd (Rd) on cyclooxygenase-2 (COX-2) expression in RAW264.7 macrophages. Rd (100 {mu}g/ml), but not other ginsenosides induced COX-2 and increased prostaglandin E{sub 2} production. Gel shift and Western blot analyses using nuclear fractions revealed that Rd increased both the DNA binding of and the nuclear levels of CCAAT/enhancer binding protein (C/EBP){alpha}/{beta} and cyclic AMP response element binding protein (CREB), but not of p65, in RAW264.7 cells. Moreover, Rd increased the luciferase reporter gene activity in cells transfected with a 574-bp mouse COX-2 promoter construct. Site-specific mutation analyses confirmed that Rd-mediated transcriptional activation of COX-2 gene was regulated by C/EBP and CREB. These results provide evidence that Rd activated C/EBP and CREB, and that the activation of C/EBP and CREB appears to be essential for induction of COX-2 in RAW264.7 cells.

  4. Hyperpolarization-activated current Ih in mouse trigeminal sensory neurons in a transgenic mouse model of familial hemiplegic migraine type-1.

    PubMed

    Eroli, Francesca; Vilotti, Sandra; van den Maagdenberg, Arn M J M; Nistri, Andrea

    2017-03-29

    Transgenic knock-in (KI) mice that express CaV2.1 channels containing an R192Q gain-of-function mutation in the α1A subunit known to cause familial hemiplegic migraine type-1 in patients, exhibit key disease characteristics and provide a useful tool to investigate pathophysiological mechanisms of pain transduction. Previously, KI trigeminal sensory neurons were shown to exhibit constitutive hyperexcitability due to up-regulation of ATP-gated P2X3 receptors that trigger spike activity at a more negative threshold. This implies that intrinsic neuronal conductances may shape action potential generation in response to ATP, which could act as a mediator of migraine headache. Here we investigated whether the hyperpolarization-activated conductance Ih, mediated by hyperpolarization-activated cyclic nucleotide-gated channel (HCN) channels, contributes to sub-threshold behavior and firing in wild-type (WT) and KI trigeminal ganglia (TG) neurons. Whereas most WT and KI trigeminal neurons expressed Ih current, blocked by the specific inhibitor ZD7288, it was smaller in KI neurons despite similar activation and deactivation kinetics. HCN1 and HCN2 were the most abundantly expressed subunits in TG, both in situ and in culture. In KI TG neurons, HCN2 subunits were predominantly present in the cytoplasm, not at the plasma membrane, likely accounting for the smaller Ih of such cells. ZD7288 hyperpolarized the membrane potential, thereby raising the firing threshold, and prolonging the spike trajectory to generate fewer spikes due to P2X3 receptor activation. The low amplitude of Ih in KI TG neurons suggests that down-regulation of Ih current in sub-threshold behavior acts as a compensatory mechanism to limit sensory hyperexcitability, manifested under certain stressful stimuli.

  5. Hyperpolarization-activated current (I(h)) in vestibular calyx terminals: characterization and role in shaping postsynaptic events.

    PubMed

    Meredith, Frances L; Benke, Tim A; Rennie, Katherine J

    2012-12-01

    Calyx afferent terminals engulf the basolateral region of type I vestibular hair cells, and synaptic transmission across the vestibular type I hair cell/calyx is not well understood. Calyces express several ionic conductances, which may shape postsynaptic potentials. These include previously described tetrodotoxin-sensitive inward Na(+) currents, voltage-dependent outward K(+) currents and a K(Ca) current. Here, we characterize an inwardly rectifying conductance in gerbil semicircular canal calyx terminals (postnatal days 3-45), sensitive to voltage and to cyclic nucleotides. Using whole-cell patch clamp, we recorded from isolated calyx terminals still attached to their type I hair cells. A slowly activating, noninactivating current (I(h)) was seen with hyperpolarizing voltage steps negative to the resting potential. External Cs(+) (1-5 mM) and ZD7288 (100 μM) blocked the inward current by 97 and 83 %, respectively, confirming that I(h) was carried by hyperpolarization-activated, cyclic nucleotide gated channels. Mean half-activation voltage of I(h) was -123 mV, which shifted to -114 mV in the presence of cAMP. Activation of I(h) was well described with a third order exponential fit to the current (mean time constant of activation, τ, was 190 ms at -139 mV). Activation speeded up significantly (τ=136 and 127 ms, respectively) when intracellular cAMP and cGMP were present, suggesting that in vivo I(h) could be subject to efferent modulation via cyclic nucleotide-dependent mechanisms. In current clamp, hyperpolarizing current steps produced a time-dependent depolarizing sag followed by either a rebound afterdepolarization or an action potential. Spontaneous excitatory postsynaptic potentials (EPSPs) became larger and wider when I(h) was blocked with ZD7288. In a three-dimensional mathematical model of the calyx terminal based on Hodgkin-Huxley type ionic conductances, removal of I(h) similarly increased the EPSP, whereas cAMP slightly decreased simulated EPSP size

  6. The Evolution of Cyclic Activity of the Sun in the Context of Physical Processes on Late-Type Stars

    NASA Astrophysics Data System (ADS)

    Katsova, Maria M.

    Features of the solar cycle in the context of stellar activity are investigated. We discovered reliably differential rotation in chromospheres of some stars and presented the first stellar butterfly diagrams. These stars possess less regular variability and do not demonstrate excellent cycles. This is the first evidence for differences of the solar activity from processes on stars with Excellent cycles. We compare indices of the chromospheric activity of the Sun with that for above 1,300 northern and southern stars whose activity revealed during planet search programs. We argue the matter pro and con for two possible ways of an evolution of activity from a contraction phase to 10Gyrs. When a young star brakes down, the chromospheric and the coronal activity weaken synchronously. The solar-like activity of the most main sequence F and early G stars does evolve by this path. The activity of the later stars from G5 to K7 after a definite level evolves by another way: the chromospheric activity diminishes up to the solar level, while coronae stay stronger than the solar one. Two possible paths of the evolution of activity are associated with the different depth of the convective zone of these stars. Physically this means that the relative input of small- and large-scale of magnetic fields differs for F-G and K stars.

  7. Benchmarking the repeatability of a pneumatic cyclic neutron activation analysis facility using 16O(n,p)16N for nuclear forensics.

    PubMed

    Pierson, Bruce D; Griffin, Henry C; Flaska, Marek; Katalenich, Jeff A; Kitchen, Brian B; Pozzi, Sara A

    2015-02-01

    A target was prepared for cyclic neutron activation analysis by heat sealing lithium-carbonate in polyethylene. The target was cyclically irradiated 50 times using a Thermo-Scientific accelerator based deuterium-tritium fusion neutron generator. During counting periods, gamma-rays emitted by (16)N were detected using three high-purity germanium detectors acquiring data in list-mode. Total counts acquired in each spectrum were compared between the three detectors to examine variability in geometric positioning of the target and variability of the generator intensity throughout the experiment. These two effects were determined to be the primary sources of variation in the measured counts. Variation in target positioning and generator intensity were found to increase the standard deviation by 34% and 33%, respectively. Transit times to the detector were found to be slower and more variable than transit to the generator but were well below the half second threshold needed to measure short-lived radionuclides with half-lives on the order of seconds. The standard deviation in irradiation time was found to be less than 1 milliseconds. The impact on statistical variability in the measured counts was negligible relative to the two primary sources of variation. Spectra acquired from each cycle were summed together. The sum of the peak areas from the 6.1 MeV gamma-ray and its corresponding single and double escape peaks were used to measure the half-life of (16)N. The result of 7.108(15)seconds derived from data suggests that the currently published value of 7.13(2)seconds has minimal systematic bias induced by background.

  8. Designing cyclic universe models.

    PubMed

    Khoury, Justin; Steinhardt, Paul J; Turok, Neil

    2004-01-23

    The phenomenological constraints on the scalar field potential in cyclic models of the Universe are presented. We show that cyclic models require a comparable degree of tuning to that needed for inflationary models. The constraints are reduced to a set of simple design rules including "fast-roll" parameters analogous to the "slow-roll" parameters in inflation.

  9. Cyclic Hematopoiesis: animal models

    SciTech Connect

    Jones, J.B.; Lange, R.D.

    1983-08-01

    The four existing animal models of cyclic hematopoiesis are briefly described. The unusual erythropoietin (Ep) responses of the W/Wv mouse, the Sl/Sld mouse, and cyclic hematopoietic dog are reviewed. The facts reviewed indicate that the bone marrow itself is capable of influencing regulatory events of hematopoiesis.

  10. Affordable Cyclic Voltammetry

    ERIC Educational Resources Information Center

    Stewart, Greg; Kuntzleman, Thomas S.; Amend, John R.; Collins, Michael J.

    2009-01-01

    Cyclic voltammetry is an important component of the undergraduate chemical curriculum. Unfortunately, undergraduate students rarely have the opportunity to conduct experiments in cyclic voltammetry owing to the high cost of potentiostats, which are required to control these experiments. By using MicroLab data acquisition interfaces in conjunction…

  11. Transcriptional regulation of the mouse alpha A-crystallin gene: activation dependent on a cyclic AMP-responsive element (DE1/CRE) and a Pax-6-binding site.

    PubMed Central

    Cvekl, A; Kashanchi, F; Sax, C M; Brady, J N; Piatigorsky, J

    1995-01-01

    Two cis-acting promoter elements (-108 to -100 and -49 to -33) of the mouse alpha A-crystallin gene, which is highly expressed in the ocular lens, were studied. Here we show that DE1 (-108 to -100; 5'TGACGGTG3'), which resembles the consensus cyclic AMP (cAMP)-responsive element sequence (CRE; 5'TGACGT[A/C][A/G]3'), behaves like a functional CRE site. Transfection experiments and electrophoretic mobility shift assays (EMSAs) using site-specific mutations correlated a loss of function with deviations from the CRE consensus sequence. Results of EMSAs in the presence of antisera against CREB, delta CREB, and CREM were consistent with the binding of CREB-like proteins to the DE1 sequence. Stimulation of alpha A-crystallin promoter activity via 8-bromo-cAMP, forskolin, or human T-cell leukemia virus type I Tax1 in transfections and reduction of activity of this site in cell-free transcription tests by competition with the somatostatin CRE supported the idea that DE1 is a functional CRE. Finally, Pax-6, a member of the paired-box family of transcription factors, activated the mouse alpha A-crystallin promoter in cotransfected COP-8 fibroblasts and bound to the -59 to -29 promoter sequence in EMSAs. These data provide evidence for a synergistic role of Pax-6 and CREB-like proteins for high expression of the mouse alpha A-crystallin gene in the lens. PMID:7823934

  12. Induction of Photosynthetic Carbon Fixation in Anoxia Relies on Hydrogenase Activity and Proton-Gradient Regulation-Like1-Mediated Cyclic Electron Flow in Chlamydomonas reinhardtii1

    PubMed Central

    Bailleul, Benjamin; Berne, Nicolas

    2015-01-01

    The model green microalga Chlamydomonas reinhardtii is frequently subject to periods of dark and anoxia in its natural environment. Here, by resorting to mutants defective in the maturation of the chloroplastic oxygen-sensitive hydrogenases or in Proton-Gradient Regulation-Like1 (PGRL1)-dependent cyclic electron flow around photosystem I (PSI-CEF), we demonstrate the sequential contribution of these alternative electron flows (AEFs) in the reactivation of photosynthetic carbon fixation during a shift from dark anoxia to light. At light onset, hydrogenase activity sustains a linear electron flow from photosystem II, which is followed by a transient PSI-CEF in the wild type. By promoting ATP synthesis without net generation of photosynthetic reductants, the two AEF are critical for restoration of the capacity for carbon dioxide fixation in the light. Our data also suggest that the decrease in hydrogen evolution with time of illumination might be due to competition for reduced ferredoxins between ferredoxin-NADP+ oxidoreductase and hydrogenases, rather than due to the sensitivity of hydrogenase activity to oxygen. Finally, the absence of the two alternative pathways in a double mutant pgrl1 hydrogenase maturation factor G-2 is detrimental for photosynthesis and growth and cannot be compensated by any other AEF or anoxic metabolic responses. This highlights the role of hydrogenase activity and PSI-CEF in the ecological success of microalgae in low-oxygen environments. PMID:25931521

  13. Identification of the odour-active cyclic diketone cis-2,6-dimethyl-1,4-cyclohexanedione in roasted Arabica coffee brew.

    PubMed

    Miyazato, Hironari; Nakamura, Michiaki; Hashimoto, Seiji; Hayashi, Shuichi

    2013-06-15

    We investigated odour-active trace compounds in roasted Brazilian Arabica coffee. Aroma dilution extract analysis (AEDA) applied to the volatile oil extracted from roasted coffee brew revealed 34 odour-active compounds. Among these, a pungent-smelling unknown odour-active compound was determined. The volatile oil was fractioned by silica gel column chromatography. Gas chromatography-olfactometry (GC-O) and multidimensional gas chromatography-mass spectrometry (MDGC-MS) of the fraction which contained a significant amount of the target unknown compound revealed the cyclic 1,4-diketone, cis-2,6-dimethyl-1,4-cyclohexanedione, which had a pungent odour, and was thus first identified in roasted coffee. Model experiments revealed that cis-2,6-dimethyl-1,4-cyclohexanedione was formed via thermal degradation of sugars, especially monosaccharides, under alkaline conditions. Further, we demonstrated that 2-hydroxy-3-pentanone and 1-hydroxy-2-propanone, thermal degradation products of monosaccharides, were closely related to the formation of cis-2,6-dimethyl-1,4-cyclohexanedione.

  14. Gating Kinetics of the Cyclic-GMP-Activated Channel of Retinal Rods: Flash Photolysis and Voltage-Jump Studies

    NASA Astrophysics Data System (ADS)

    Karpen, Jeffrey W.; Zimmerman, Anita L.; Stryer, Lubert; Baylor, Denis A.

    1988-02-01

    The gating kinetics of the cGMP-activated cation channel of salamander retinal rods have been studied in excised membrane patches. Relaxations in patch current were observed after two kinds of perturbation: (i) fast jumps of cGMP concentration, generated by laser flash photolysis of a cGMP ester (``caged'' cGMP), and (ii) membrane voltage jumps, which perturb activation of the channel by cGMP. In both methods the speed of activation increased with the final cGMP concentration. The results are explained by a simple kinetic model in which activation involves three sequential cGMP binding steps with bimolecular rate constants close to the diffusion-controlled limit; fully liganded channels undergo rapid open-closed transitions. Voltage perturbs activation by changing the rate constant for channel closing, which increases with hyperpolarization. Intramolecular transitions of the fully liganded channel limit the kinetics of activation at high cGMP concentrations (>50 μ M), whereas at physiological cGMP concentrations (<5 μ M), the kinetics of activation are limited by the third cGMP binding step. The channel appears to be optimized for rapid responses to changes in cytoplasmic cGMP concentration.

  15. Effect on platelet functions of derivatives of cyclic nucleotides.

    PubMed

    Pareti, F I; Carrera, D; Mannucci, L; Mannucci, P M

    1978-04-30

    Derivatives of cyclic nucleotides were evaluated for their ability to inhibit platelet aggregation and the release reaction. Derivatives substituted in position 8 (mainly 8-Br-cyclic GMP) were more active than 3'-5' cyclic AMP, and their relative potency in inhibiting platelet aggregation and 14C-serotonin release was comparable to that of N62-0'-dibutyryl-cyclic AMP. Compounds substituted in position 6 or 2'-0 were not effective. The active compounds, which were also tested for their ability to stimulate platelet adenylate cyclase or to inhibit cyclic AMP phosphodiesterase, did not modify the intracellular levels of cyclic AMP. Since previous animal experiments have shown that these derivatives cause less side effects than cyclic AMP and its dibutyryl derivative in animals, it is suggested that modification of the cyclophosphate molecule might make it possible to find compounds active only on platelet function without interfering with other biological systems.

  16. Active dendrites mediate stratified gamma-range coincidence detection in hippocampal model neurons

    PubMed Central

    Das, Anindita; Narayanan, Rishikesh

    2015-01-01

    Hippocampal pyramidal neurons exhibit gamma-phase preference in their spikes, selectively route inputs through gamma frequency multiplexing and are considered part of gamma-bound cell assemblies. How do these neurons exhibit gamma-frequency coincidence detection capabilities, a feature that is essential for the expression of these physiological observations, despite their slow membrane time constant? In this conductance-based modelling study, we developed quantitative metrics for the temporal window of integration/coincidence detection based on the spike-triggered average (STA) of the neuronal compartment. We employed these metrics in conjunction with quantitative measures for spike initiation dynamics to assess the emergence and dependence of coincidence detection and STA spectral selectivity on various ion channel combinations. We found that the presence of resonating conductances (hyperpolarization-activated cyclic nucleotide-gated or T-type calcium), either independently or synergistically when expressed together, led to the emergence of spectral selectivity in the spike initiation dynamics and a significant reduction in the coincidence detection window (CDW). The presence of A-type potassium channels, along with resonating conductances, reduced the STA characteristic frequency and broadened the CDW, but persistent sodium channels sharpened the CDW by strengthening the spectral selectivity in the STA. Finally, in a morphologically precise model endowed with experimentally constrained channel gradients, we found that somatodendritic compartments expressed functional maps of strong theta-frequency selectivity in spike initiation dynamics and gamma-range CDW. Our results reveal the heavy expression of resonating and spike-generating conductances as the mechanism underlying the robust emergence of stratified gamma-range coincidence detection in the dendrites of hippocampal and cortical pyramidal neurons. PMID:26018187

  17. Cyclic AMP in prokaryotes.

    PubMed Central

    Botsford, J L; Harman, J G

    1992-01-01

    Cyclic AMP (cAMP) is found in a variety of prokaryotes including both eubacteria and archaebacteria. cAMP plays a role in regulating gene expression, not only for the classic inducible catabolic operons, but also for other categories. In the enteric coliforms, the effects of cAMP on gene expression are mediated through its interaction with and allosteric modification of a cAMP-binding protein (CRP). The CRP-cAMP complex subsequently binds specific DNA sequences and either activates or inhibits transcription depending upon the positioning of the complex relative to the promoter. Enteric coliforms have provided a model to explore the mechanisms involved in controlling adenylate cyclase activity, in regulating adenylate cyclase synthesis, and in performing detailed examinations of CRP-cAMP complex-regulated gene expression. This review summarizes recent work focused on elucidating the molecular mechanisms of CRP-cAMP complex-mediated processes. For other bacteria, less detail is known. cAMP has been implicated in regulating antibiotic production, phototrophic growth, and pathogenesis. A role for cAMP has been suggested in nitrogen fixation. Often the only data that support cAMP involvement in these processes includes cAMP measurement, detection of the enzymes involved in cAMP metabolism, or observed effects of high concentrations of the nucleotide on cell growth. PMID:1315922

  18. Highly Active and Robust Metalloporphyrin Catalysts for the Synthesis of Cyclic Carbonates from a Broad Range of Epoxides and Carbon Dioxide.

    PubMed

    Maeda, Chihiro; Shimonishi, Junta; Miyazaki, Ray; Hasegawa, Jun-Ya; Ema, Tadashi

    2016-05-04

    Bifunctional metalloporphyrins with quaternary ammonium bromides (nucleophiles) at the meta, para, or ortho positions of meso-phenyl groups were synthesized as catalysts for the formation of cyclic carbonates from epoxides and carbon dioxide under solvent-free conditions. The meta-substituted catalysts exhibited high catalytic performance, whereas the para- and ortho-substituted catalysts showed moderate and low activity, respectively. DFT calculations revealed the origin of the advantage of the meta-substituted catalyst, which could use the flexible quaternary ammonium cation at the meta position to stabilize various anionic species generated during catalysis. A zinc(II) porphyrin with eight nucleophiles at the meta positions showed very high catalytic activity (turnover number (TON)=240 000 at 120 °C, turnover frequency (TOF)=31 500 h(-1) at 170 °C) at an initial CO2 pressure of 1.7 MPa; catalyzed the reaction even at atmospheric CO2 pressure (balloon) at ambient temperature (20 °C); and was applicable to a broad range of substrates, including terminal and internal epoxides.

  19. Exchange protein activated by cyclic AMP is involved in the regulation of adipogenic genes during 3T3-L1 fibroblasts differentiation.

    PubMed

    Gabrielli, Matías; Martini, Claudia N; Brandani, Javier N; Iustman, Laura J R; Romero, Damián G; del C Vila, María

    2014-02-01

    Adipogenesis is stimulated in 3T3-L1 fibroblasts by a combination of insulin, dexamethasone and isobutylmethylxanthine, IBMX, (I+D+M). Two transcription factors are important for the acquisition of the adipocyte phenotype, C/EBP beta (CCAT enhancer-binding protein beta) and PPAR gamma (peroxisome proliferator-activated receptor gamma). IBMX increases cAMP content, which can activate protein kinase A (PKA) and/or EPAC (exchange protein activated by cAMP). To investigate the importance of IBMX in the differentiation mixture, we first evaluated the effect of the addition of IBMX on the increase of C/EBP beta and PPAR gamma and found an enhancement of the amount of both proteins. IBMX addition (I+D+M) or its replacement with a cAMP analogue, dibutyryl-cAMP or 8-(4-chlorophenylthio)-2-O'-methyl-cAMP (8CPT-2-Me-cAMP), the latter activates EPAC and not PKA, remarkably increased PPAR gamma mRNA. However, neither I+D nor any of the inducers alone, increased PPAR gamma mRNA to a similar extent, suggesting the importance of the presence of both IBMX and I+D. It was also found that the addition of IBMX or 8CPT-2-Me-cAMP was able to increase the content of C/EBP beta with respect to I+D. In agreement with these findings, a microarray analysis showed that the presence of either 8CPT-2-Me-cAMP or IBMX in the differentiation mixture was able to upregulate PPAR gamma and PPAR gamma-activated genes as well as other genes involved in lipid metabolism. Our results prove the involvement of IBMX-cAMP-EPAC in the regulation of adipogenic genes during differentiation of 3T3-L1 fibroblasts and therfore contributes to elucidate the role of cyclic AMP in this process.

  20. Adrenergic activation of steroid 5alpha-reductase gene expression in rat C6 glioma cells: involvement of cyclic amp/protein kinase A-mediated signaling pathway.

    PubMed

    Morita, Kyoji; Arimochi, Hideki; Tsuruo, Yoshihiro

    2004-01-01

    Steroid 5alpha-reductase (5alpha-R) is well known as the enzyme converting progesterone and other steroid hormones to their 5alpha-reduced metabolites and has been reported to be localized in both neuronal and glial cells in the brain. Previously, the enzyme activity in glial cells has been shown to be enhanced either by coculturing with neuronal cells or by adding the conditioned medium of neuronal cells, suggesting a possible implication of neuro-glial interactions in the regulation of neurosteroid metabolism in the brain. In the present studies, the effects of adrenergic agonists on 5alpha-R mRNA and protein levels in rat C6 glioma cells were examined as one of the model experiments for investigating the influence of neuronal activity on the expression of 5alpha-R gene in the glial cell. The direct challenge of beta-adrenergic agonists to glioma cells resulted in the rapid and transient elevation of 5alpha-R mRNA levels through the activation of the cyclic AMP (cAMP)/protein kinase A-mediated signaling pathway. Further studies showed that cAMP-induced 5alpha-R mRNA expression was completely abolished by pretreatment of cells with actinomycin D and also indicated that the elevation of 5alpha-R mRNA levels was accompanied by an increase in enzyme protein in the cells. These findings provide strong evidence that the stimulation of beta-adrenergic receptors might induce the transcriptional activation of 5alpha-R gene expression in glial cells, proposing the possibility that neuronal activity might be involved in the production of neuroactive 5alpha-reduced steroids in the brain.

  1. Relation of rheumatoid factor and anti-cyclic citrullinated peptide antibody with disease activity in rheumatoid arthritis: cross-sectional study.

    PubMed

    Choe, Jung-Yoon; Bae, Jisuk; Lee, Hwajeong; Bae, Sang-Cheol; Kim, Seong-Kyu

    2013-09-01

    To analyze the association of rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibody (anti-CCP) with non-remission and with disease activity measures in rheumatoid arthritis (RA). Cross-sectional study of consecutive RA patients. Non-remission was defined as a disease activity score (DAS28) ≥ 2.6 at study enrollment. The Simplified Disease Activity Index (SDAI) and the Clinical Disease Activity Index (CDAI) were additionally measured. Serum titers of RF and anti-CCP were transformed into incremental levels (100/units) and log-transformed levels. Analysis of association with non-remission was done with logistic regression models, with and without adjustment for age, sex, disease duration, and corticoid use. Multiple regression models, raw and similarly adjusted, were used to measure the association of RF and anti-CCP with the disease activity measures. A total of 385 patients were included, of whom 286 (74 %) were not in remission. Log-transformed RF level was associated with an increased risk of non-remission after adjustment (OR = 1.32, 95 % CI 1.04-1.67). This association was especially evident in patients with less than 10 years of disease duration (OR = 1.51, 95 % CI 1.15-1.99) and in those using steroids (OR = 2.06, 95 % CI 1.22-3.48). Serum RF titers and log-transformed RF levels showed a small but significant association with DAS28 score (adjusted beta coefficients 0.002 and 0.18, respectively; both p ≤ 0.01), but neither with SDAI or CDAI nor with anti-CCP antibody. : Log-transformed RF levels might be associated with non-remission in RA, especially in patients with short disease duration or on steroids.

  2. Cyclic AMP Receptor Protein and RhaR Synergistically Activate Transcription from the l-Rhamnose-Responsive rhaSR Promoter in Escherichia coli

    PubMed Central

    Wickstrum, Jason R.; Santangelo, Thomas J.; Egan, Susan M.

    2005-01-01

    The Escherichia coli rhaSR operon encodes two AraC family transcription activator proteins, RhaS and RhaR, which regulate expression of the l-rhamnose catabolic regulon in response to l-rhamnose availability. RhaR positively regulates rhaSR in response to l-rhamnose, and RhaR activation can be enhanced by the cyclic AMP (cAMP) receptor protein (CRP) protein. CRP is a well-studied global transcription regulator that binds to DNA as a dimer and activates transcription in the presence of cAMP. We investigated the mechanism of CRP activation at rhaSR both alone and in combination with RhaR in vivo and in vitro. Base pair substitutions at potential CRP binding sites in the rhaSR-rhaBAD intergenic region demonstrate that CRP site 3, centered at position −111.5 relative to the rhaSR transcription start site, is required for the majority of the CRP-dependent activation of rhaSR. DNase I footprinting confirms that CRP binds to site 3; CRP binding to the other potential CRP sites at rhaSR was not detected. We show that, at least in vitro, CRP is capable of both RhaR-dependent and RhaR-independent activation of rhaSR from a total of three transcription start sites. In vitro transcription assays indicate that the carboxy-terminal domain of the alpha subunit (α-CTD) of RNA polymerase is at least partially dispensable for RhaR-dependent activation but that the α-CTD is required for CRP activation of rhaSR. Although CRP requires the presence of RhaR for efficient in vivo activation of rhaSR, DNase I footprinting assays indicated that cooperative binding between RhaR and CRP does not make a significant contribution to the mechanism of CRP activation at rhaSR. It therefore appears that CRP activates transcription from rhaSR as it would at simple class I promoters, albeit from a relatively distant position. PMID:16166533

  3. Bioelectrical activity of porcine oviduct and uterus during spontaneous and induced estrus associated with cyclic hormone changes.

    PubMed

    Pawliński, Bartosz; Domino, Małgorzata; Aniołek, Olga; Ziecik, Adam; Gajewski, Zdzislaw

    2016-12-01

    It is widely accepted that uterine contraction is initiated by spontaneous generation of electrical activity at a cellular level in the form of action potentials. Such action potential events, when they involve many myometrial cells and occur in immediate succession, are described by their amplitude and duration. In an effort to improve clinical management of uterine contractions, research has focused on determination of the properties of the reproductive tract's electrical activity under hormonal stimulation. The aim of this study was to evaluate the myoelectric activity (amplitude and duration) of the oviduct and the uterus in relation to plasma concentration of LH, estradiol (E2), and progesterone (P4) during spontaneous and induced estrus in gilts. The course of the experiment was divided into eight periods defined by hormone concentrations (LH, P4, and E2) and time intervals before and after the start of the LH surge. Myoelectric signals were recorded, and the hormone levels were measured during proestrus and estrus in natural and hormone-induced estrus cycle. During the natural estrus, the LH surge was longer than after hormonal stimulation (28 vs. 20 hours) and suggested an inverse relationship between the LH concentration and the duration of myoelectric activity (SR = -0.68). Analyses of the records of the amplitudes and durations of the electromyography activity in uterine horns and oviducts showed significant differences between spontaneous and induced estrus (P < 0.05). During induced estrus, the LH surge began earlier (T1 vs. T2) and increased more (7.46 vs. 6.50 ng/mL) than during spontaneous estrus. This observation suggests a direct relationship between the LH concentration and the amplitude of the myoelectric activity (Spearman rank correlation = 0.71). The significantly higher duration and amplitude of the activity in the isthmus of the oviduct and the uterus during induced estrus shortly after the onset of standing heat (4-8 hours after

  4. Immunolocalization of hyperpolarization-activated cationic HCN1 and HCN3 channels in the rat nephron: regulation of HCN3 by potassium diets.

    PubMed

    López-González, Zinaeli; Ayala-Aguilera, Cosete; Martinez-Morales, Flavio; Galicia-Cruz, Othir; Salvador-Hernández, Carolina; Pedraza-Chaverri, José; Medeiros, Mara; Hernández, Ana Maria; Escobar, Laura I

    2016-01-01

    Hyperpolarization-activated cationic and cyclic nucleotide-gated channels (HCN) comprise four homologous subunits (HCN1-HCN4). HCN channels are found in excitable and non-excitable tissues in mammals. We have previously shown that HCN2 may transport ammonium (NH4 (+)), besides sodium (Na(+)), in the rat distal nephron. In the present work, we identified HCN1 and HCN3 in the proximal tubule (PT) and HCN3 in the thick ascending limb of Henle (TALH) of the rat kidney. Immunoblot assays detected HCN1 (130 kDa) and HCN3 (90 KDa) and their truncated proteins C-terminal HCN1 (93 KDa) and N-terminal HCN3 (65 KDa) in enriched plasma membranes from cortex (CX) and outer medulla (OM), as well as in brush-border membrane vesicles. Immunofluorescence assays confirmed apical localization of HCN1 and HCN3 in the PT. HCN3 was also found at the basolateral membrane of TALH. We evaluated chronic changes in mineral dietary on HCN3 protein abundance. Animals were fed with three different diets: sodium-deficient (SD) diet, potassium-deficient (KD) diet, and high-potassium (HK) diet. Up-regulation of HCN3 was observed in OM by KD and in CX and OM by HK; the opposite effect occurred with the N-terminal truncated HCN3 in CX (KD) and OM (HK). SD diet did not produce any change. Since HCN channels activate with membrane hyperpolarization, our results suggest that HCN channels may play a role in the Na(+)-K(+)-ATPase activity, contributing to Na(+), K(+), and acid-base homeostasis in the rat kidney.

  5. A Ric8/synembryn homolog promotes Gpa1 and Gpa2 activation to respectively regulate cyclic AMP and pheromone signaling in Cryptococcus neoformans.

    PubMed

    Gong, Jinjun; Grodsky, Jacob D; Zhang, Zhengguang; Wang, Ping

    2014-10-01

    The G protein α subunits Gpa1, Gpa2, and Gpa3 mediate signal transduction and are important in the growth and virulence of Cryptococcus neoformans. To understand how Gpa1 functions without a conventional Gβ subunit, we characterized a resistance to inhibitors of cholinesterase 8 (Ric8) homolog from C. neoformans, which shares amino acid sequence homology with other Ric8 proteins that exhibit guanine nucleotide exchange factor (GEF) activity toward Gα. We found that the ric8 mutant was reduced in capsule size and melanin formation, which could be suppressed by cyclic AMP (cAMP) supplementation or by introducing the activated GPA1(Q284L) allele. Consistent with the fact that Ric8 participates in cAMP signaling to regulate virulence, the ric8 mutant was attenuated in virulence toward mice. Interestingly, disruption of RIC8 also resulted in opposing effects on pheromone signaling, as the ric8 mutant showed reduced mating but an enhanced ability to induce the pheromone response in the mating partner. To identify Ric8 functional mechanisms, we examined the interactions between Ric8 and the three Gα proteins. Ric8 interacted with Gpa1 and Gpa2, but not Gpa3. The presence of Gpa1(Q284L) negatively affected its interaction with Ric8, whereas the activated Gpa2(Q203L) allele abolished the interaction. Collectively, these findings suggest that Ric8 functions as a GEF to facilitate the activation of Gpa1-cAMP signaling and to promote Gpa2, affecting mating efficiency. Our study highlights the distinct and conserved characteristics associated with G protein signaling and contributes to our overall understanding of how G protein α subunits function with or without a canonical Gβ partner in C. neoformans.

  6. The role of cyclooxygenase-2-dependent signaling via cyclic AMP response element activation on aromatase up-regulation by o,p'-DDT in human breast cancer cells.

    PubMed

    Han, Eun Hee; Kim, Hyung Gyun; Hwang, Yong Pil; Choi, Jae Ho; Im, Ji Hye; Park, Bonghwan; Yang, Ji Hye; Jeong, Tae Cheon; Jeong, Hye Gwang

    2010-10-20

    o,p'-Dichlorodiphenyltrichloroethane (o,p'-DDT) is a DDT isomer and xenoestrogen that can induce inflammation and cancer. However, the effect of o,p'-DDT on aromatase is unclear. Thus, we investigated the effects of o,p'-DDT on aromatase expression in human breast cancer cells. We also examined whether cyclooxygenase-2 (COX-2) is involved in o,p'-DDT-mediated aromatase expression. Treatment with o,p'-DDT-induced aromatase protein expression in MCF-7 and MDA-MB-231 human breast cancer cells; enhancing aromatase gene expression, and enzyme and promoter activity. Treatment with ICI 182.780, a estrogen receptor antagonist, did not affect the inductive effects of o,p'-DDT on aromatase expression. In addition, o,p'-DDT increased COX-2 protein levels markedly, increased COX-2 mRNA expression and promoter activity, enhanced the production of prostaglandin E(2) (PGE(2)), induced cyclic AMP response element (CRE) activation, and cAMP levels and binding of CREB. o,p'-DDT also increased the phosphorylation of PKA, Akt, ERK, and JNK in their signaling pathways in MCF-7 and MDA-MB-231 cells. Finally, o,p'-DDT induction of aromatase was inhibited by various inhibitors [COX-2 (by NS-398), PKA (H-89), PI3-K/Akt (LY 294002), EP2 (AH6809), and EP4 receptor (AH23848)]. Together, these results suggest that o,p'-DDT increases aromatase, and that o,p'-DDT-induced aromatase is correlated with COX-2 up-regulation, mediated via the CRE activation and PKA and PI3-kinase/Akt signaling pathways in breast cancer cells.

  7. A Ric8/Synembryn Homolog Promotes Gpa1 and Gpa2 Activation To Respectively Regulate Cyclic AMP and Pheromone Signaling in Cryptococcus neoformans

    PubMed Central

    Gong, Jinjun; Grodsky, Jacob D.; Zhang, Zhengguang

    2014-01-01

    The G protein α subunits Gpa1, Gpa2, and Gpa3 mediate signal transduction and are important in the growth and virulence of Cryptococcus neoformans. To understand how Gpa1 functions without a conventional Gβ subunit, we characterized a resistance to inhibitors of cholinesterase 8 (Ric8) homolog from C. neoformans, which shares amino acid sequence homology with other Ric8 proteins that exhibit guanine nucleotide exchange factor (GEF) activity toward Gα. We found that the ric8 mutant was reduced in capsule size and melanin formation, which could be suppressed by cyclic AMP (cAMP) supplementation or by introducing the activated GPA1Q284L allele. Consistent with the fact that Ric8 participates in cAMP signaling to regulate virulence, the ric8 mutant was attenuated in virulence toward mice. Interestingly, disruption of RIC8 also resulted in opposing effects on pheromone signaling, as the ric8 mutant showed reduced mating but an enhanced ability to induce the pheromone response in the mating partner. To identify Ric8 functional mechanisms, we examined the interactions between Ric8 and the three Gα proteins. Ric8 interacted with Gpa1 and Gpa2, but not Gpa3. The presence of Gpa1Q284L negatively affected its interaction with Ric8, whereas the activated Gpa2Q203L allele abolished the interaction. Collectively, these findings suggest that Ric8 functions as a GEF to facilitate the activation of Gpa1-cAMP signaling and to promote Gpa2, affecting mating efficiency. Our study highlights the distinct and conserved characteristics associated with G protein signaling and contributes to our overall understanding of how G protein α subunits function with or without a canonical Gβ partner in C. neoformans. PMID:25084863

  8. Cyclic Vomiting Syndrome

    MedlinePlus

    ... 2013. Slutsker B, et al. Breaking the cycle: Cognitive behavioral therapy and biofeedback training in a case of cyclic vomiting syndrome. Psychology, Health & Medicine. 2010;15:625. Boles RG. High ...

  9. Cyclic control stick

    DOEpatents

    Whitaker, Charles N.; Zimmermann, Richard E.

    1989-01-01

    A cyclic control stick of the type used in helicopters for reducing the safety hazards associated with such a mechanism in the event of a crewman being thrown violently into contact with the cyclic control stick resulting from a crash or the like. The cyclic control stick is configured to break away upon the exertion of an impact force which exceeds a predetermined value and/or is exerted for more than a momentary time duration. The cyclic control stick is also configured to be adjustable so as to locate the grip thereof as far away from the crewman as possible for safety reasons without comprising the comfort of the crewman or the use of the control stick, and a crushable pad is provided on the top of the grip for impact energy absorbing purposes.

  10. Cyclic polymers from alkynes

    NASA Astrophysics Data System (ADS)

    Roland, Christopher D.; Li, Hong; Abboud, Khalil A.; Wagener, Kenneth B.; Veige, Adam S.

    2016-08-01

    Cyclic polymers have dramatically different physical properties compared with those of their equivalent linear counterparts. However, the exploration of cyclic polymers is limited because of the inherent challenges associated with their synthesis. Conjugated linear polyacetylenes are important materials for electrical conductivity, paramagnetic susceptibility, optical nonlinearity, photoconductivity, gas permeability, liquid crystallinity and chain helicity. However, their cyclic analogues are unknown, and therefore the ability to examine how a cyclic topology influences their properties is currently not possible. We have solved this challenge and now report a tungsten catalyst supported by a tetraanionic pincer ligand that can rapidly polymerize alkynes to form conjugated macrocycles in high yield. The catalyst works by tethering the ends of the polymer to the metal centre to overcome the inherent entropic penalty of cyclization. Gel-permeation chromatography, dynamic and static light scattering, viscometry and chemical tests are all consistent with theoretical predictions and provide unambiguous confirmation of a cyclic topology. Access to a wide variety of new cyclic polymers is now possible by simply choosing the appropriate alkyne monomer.

  11. Regulation of intracellular cyclic AMP in skeletal muscle cells involves the efflux of cyclic nucleotide to the extracellular compartment

    PubMed Central

    Godinho, Rosely Oliveira; Costa-Jr, Valter Luiz

    2003-01-01

    This report analyses the intracellular and extracellular accumulation of cyclic AMP in primary rat skeletal muscle cultures, after direct and receptor-dependent stimulation of adenylyl cyclase (AC). Isoprenaline, calcitonin gene-related peptide (CGRP) and forskolin induced a transient increase in the intracellular cyclic AMP that peaked 5 min after onset stimulation. Under stimulation with isoprenaline or CGRP, the intracellular cyclic AMP initial rise was followed by an exponential decline, reaching 46 and 52% of peak levels in 10 min, respectively. Conversely, the forskolin-dependent accumulation of intracellular cyclic AMP decreased slowly and linearly, reaching 49% of the peak level in 30 min. The loss of intracellular cyclic AMP from peak levels, induced by direct or receptor-induced activation of AC, was followed by an increase in the extracellular cyclic AMP. This effect was independent on PDEs, since it was obtained in the presence of 3-isobutyl-1-methylxanthine (IBMX). Besides, in isoprenaline treated cells, the beta-adrenoceptor antagonist propranolol reduced both intra- and extracellular accumulation of cyclic AMP, whereas the organic anion transporter inhibitor probenecid reduced exclusively the extracellular accumulation. Together our data show that direct or receptor-dependent activation of skeletal muscle AC results in a transient increase in the intracellular cyclic AMP, despite the continuous presence of the stimulus. The temporal declining of intracellular cyclic AMP was not dependent on the cyclic AMP breakdown but associated to the efflux of cyclic nucleotide to the extracellular compartment, by an active transport since it was prevented by probenecid. PMID:12642402

  12. Nitric oxide stimulates human sperm motility via activation of the cyclic GMP/protein kinase G signaling pathway.

    PubMed

    Miraglia, Erica; De Angelis, Federico; Gazzano, Elena; Hassanpour, Hossain; Bertagna, Angela; Aldieri, Elisabetta; Revelli, Alberto; Ghigo, Dario

    2011-01-01

    Nitric oxide (NO), a modulator of several physiological processes, is involved in different human sperm functions. We have investigated whether NO may stimulate the motility of human spermatozoa via activation of the soluble guanylate cyclase (sGC)/cGMP pathway. Sperm samples obtained by masturbation from 70 normozoospermic patients were processed by the swim-up technique. The kinetic parameters of the motile sperm-rich fractions were assessed by computer-assisted sperm analysis. After a 30-90  min incubation, the NO donor S-nitrosoglutathione (GSNO) exerted a significant enhancing effect on progressive motility (77, 78, and 78% vs 66, 65, and 62% of the control at the corresponding time), straight linear velocity (44, 49, and 48 μm/s vs 34, 35, and 35.5 μm/s), curvilinear velocity (81, 83, and 84 μm/s vs 68 μm/s), and average path velocity (52, 57, and 54 μm/s vs 40, 42, and 42 μm/s) at 5 μM but not at lower concentrations, and in parallel increased the synthesis of cGMP. A similar effect was obtained with the NO donor spermine NONOate after 30 and 60  min. The GSNO-induced effects on sperm motility were abolished by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (a specific sGC inhibitor) and mimicked by 8-bromo-cGMP (8-Br-cGMP; a cell-permeating cGMP analog); the treatment with Rp-8-Br-cGMPS (an inhibitor of cGMP-dependent protein kinases) prevented both the GSNO- and the 8-Br-cGMP-induced responses. On the contrary, we did not observe any effect of the cGMP/PRKG1 (PKG) pathway modulators on the onset of hyperactivated sperm motility. Our results suggest that NO stimulates human sperm motility via the activation of sGC, the subsequent synthesis of cGMP, and the activation of cGMP-dependent protein kinases.

  13. Role of Exchange Protein Directly Activated by Cyclic AMP Isoform 1 in Energy Homeostasis: Regulation of Leptin Expression and Secretion in White Adipose Tissue.

    PubMed

    Hu, Yaohua; Robichaux, William G; Mei, Fang C; Kim, Eun Ran; Wang, Hui; Tong, Qingchun; Jin, Jianping; Xu, Mingxuan; Chen, Ju; Cheng, Xiaodong

    2016-10-01

    Epacs (exchange proteins directly activated by cyclic AMP [cAMP]) act as downstream effectors of cAMP and play important roles in energy balance and glucose homeostasis. While global deletion of Epac1 in mice leads to heightened leptin sensitivity in the hypothalamus and partial protection against high-fat diet (HFD)-induced obesity, the physiological functions of Epac1 in white adipose tissue (WAT) has not been explored. Here, we report that adipose tissue-specific Epac1 knockout (AEKO) mice are more prone to HFD-induced obesity, with increased food intake, reduced energy expenditure, and impaired glucose tolerance. Despite the fact that AEKO mice on HFD display increased body weight, these mice have decreased circulating leptin levels compared to their wild-type littermates. In vivo and in vitro analyses further reveal that suppression of Epac1 in WAT decreases leptin mRNA expression and secretion by inhibiting cAMP response element binding (CREB) protein and AKT phosphorylation, respectively. Taken together, our results demonstrate that Epac1 plays an important role in regulating energy balance and glucose homeostasis by promoting leptin expression and secretion in WAT.

  14. 70 microM caffeine treatment enhances in vitro force and power output during cyclic activities in mouse extensor digitorum longus muscle.

    PubMed

    James, Rob S; Kohlsdorf, Tiana; Cox, Val M; Navas, Carlos A

    2005-09-01

    Caffeine ingestion by human athletes has been found to improve endurance performance primarily acting via the central nervous system as an adenosine receptor antagonist. However, a few studies have implied that the resultant micromolar levels of caffeine in blood plasma (70 microM maximum for humans) may directly affect skeletal muscle causing enhanced force production. In the present study, the effects of 70 microM caffeine on force and power output in isolated mouse extensor digitorum longus muscle were investigated in vitro at 35 degrees C. Muscle preparations were subjected to cyclical sinusoidal length changes with electrical stimulation conditions optimised to produce maximal work. 70 microM caffeine caused a small but significant increase (2-3%) in peak force and net work produced during work loops (where net work represents the work input required to lengthen the muscle subtracted from the work produced during shortening). However, these micromolar caffeine levels did not affect the overall pattern of fatigue or the pattern of recovery from fatigue. Our results suggest that the plasma concentrations found when caffeine is used to enhance athletic performance in human athletes might directly enhance force and power during brief but not prolonged activities. These findings potentially confirm previous in vivo studies, using humans, which implied caffeine ingestion may cause acute improvements in muscle force and power output but would not enhance endurance.

  15. Membrane-permeabilizing activities of cyclic lipodepsipeptides, syringopeptin 22A and syringomycin E from Pseudomonas syringae pv. syringae in human red blood cells and in bilayer lipid membranes.

    PubMed

    Agner, G; Kaulin, Y A; Gurnev, P A; Szabo, Z; Schagina, L V; Takemoto, J Y; Blasko, K

    2000-12-01

    The pore-forming activities of cyclic lipodepsipeptides (CLPs), syringopeptin 22A (SP22A) and syringomycin E (SRE) were compared on the human red blood cell (RBC) membrane and on bilayer lipid membranes (BLMs). SP22A above a concentration of 4 x 10(5) molecules/cell significantly increased the RBC membrane permeability for 86Rb. With electric current measurements on BLM, it was proved that like SRE, the SP22A formed two types of ion channels in the membrane, small and large, the latter having six times larger conductance and longer dwell time. Both CLPs formed clusters consisting of six small channels, and the channel-forming activity of SP22A is about one order of magnitude higher than that of SRE. A Hill coefficient of 2-3 estimated from the concentration dependence of these CLPs-induced lysis gave a proof of the pore oligomerization on RBCs. Transport kinetic data also confirmed that SP22A pores were oligomers of at least three monomers. While SRE pores were inactivated in time, no pore inactivation was observed with SP22A. The 86Rb efflux through SP22A-treated RBCs approached the tracer equilibrium distribution with a constant rate; a constant integral current was measured on the BLM for as long as 2.5 h as well. The partition coefficient (Kp = 2 x 10(4) l/mol) between the RBC membrane and the extracellular space was estimated for SRE to be at least six times higher than that for SP22A. This finding suggested that the higher ion permeability of the SP22A-treated cells compared to that of SRE was the result of the higher pore-forming activity of SP22A.

  16. The Role of Cyclic Nucleotide Signaling Pathways in Cancer: Targets for Prevention and Treatment

    PubMed Central

    Fajardo, Alexandra M.; Piazza, Gary A.; Tinsley, Heather N.

    2014-01-01

    For more than four decades, the cyclic nucleotides cyclic AMP (cAMP) and cyclic GMP (cGMP) have been recognized as important signaling molecules within cells. Under normal physiological conditions, cyclic nucleotides regulate a myriad of biological processes such as cell growth and adhesion, energy homeostasis, neuronal signaling, and muscle relaxation. In addition, altered cyclic nucleotide signaling has been observed in a number of pathophysiological conditions, including cancer. While the distinct molecular alterations responsible for these effects vary depending on the specific cancer type, several studies have demonstrated that activation of cyclic nucleotide signaling through one of three mechanisms—induction of cyclic nucleotide synthesis, inhibition of cyclic nucleotide degradation, or activation of cyclic nucleotide receptors—is sufficient to inhibit proliferation and activate apoptosis in many types of cancer cells. These findings suggest that targeting cyclic nucleotide signaling can provide a strategy for the discovery of novel agents for the prevention and/or treatment of selected cancers. PMID:24577242

  17. Soluble guanylyl cyclase-activated cyclic GMP-dependent protein kinase inhibits arterial smooth muscle cell migration independent of VASP-serine 239 phosphorylation.

    PubMed

    Holt, Andrew W; Martin, Danielle N; Shaver, Patti R; Adderley, Shaquria P; Stone, Joshua D; Joshi, Chintamani N; Francisco, Jake T; Lust, Robert M; Weidner, Douglas A; Shewchuk, Brian M; Tulis, David A

    2016-09-01

    Coronary artery disease (CAD) accounts for over half of all cardiovascular disease-related deaths. Uncontrolled arterial smooth muscle (ASM) cell migration is a major component of CAD pathogenesis and efforts aimed at attenuating its progression are clinically essential. Cyclic nucleotide signaling has long been studied for its growth-mitigating properties in the setting of CAD and other vascular disorders. Heme-containing soluble guanylyl cyclase (sGC) synthesizes cyclic guanosine monophosphate (cGMP) and maintains vascular homeostasis predominantly through cGMP-dependent protein kinase (PKG) signaling. Considering that reactive oxygen species (ROS) can interfere with appropriate sGC signaling by oxidizing the cyclase heme moiety and so are associated with several CVD pathologies, the current study was designed to test the hypothesis that heme-independent sGC activation by BAY 60-2770 (BAY60) maintains cGMP levels despite heme oxidation and inhibits ASM cell migration through phosphorylation of the PKG target and actin-binding vasodilator-stimulated phosphoprotein (VASP). First, using the heme oxidant ODQ, cGMP content was potentiated in the presence of BAY60. Using a rat model of arterial growth, BAY60 significantly reduced neointima formation and luminal narrowing compared to vehicle (VEH)-treated controls. In rat ASM cells BAY60 significantly attenuated cell migration, reduced G:F actin, and increased PKG activity and VASP Ser239 phosphorylation (pVASP·S239) compared to VEH controls. Site-directed mutagenesis was then used to generate overexpressing full-length wild type VASP (FL-VASP/WT), VASP Ser239 phosphorylation-mimetic (FL-VASP/239D) and VASP Ser239 phosphorylation-resistant (FL-VASP/239A) ASM cell mutants. Surprisingly, FL-VASP/239D negated the inhibitory effects of FL-VASP/WT and FL-VASP/239A cells on migration. Furthermore, when FL-VASP mutants were treated with BAY60, only the FL-VASP/239D group showed reduced migration compared to its VEH controls

  18. Effect of 2',6'-dimethyl-L-tyrosine (Dmt) on pharmacological activity of cyclic endomorphin-2 and morphiceptin analogs.

    PubMed

    Fichna, Jakub; Perlikowska, Renata; Wyrębska, Anna; Gach, Katarzyna; Piekielna, Justyna; do-Rego, Jean Claude; Toth, Geza; Kluczyk, Alicja; Janecki, Tomasz; Janecka, Anna

    2011-12-01

    This study reports the synthesis and biological evaluation of a series of new side-chain-to-side-chain cyclized endomorphin-2 (EM-2) and morphiceptin analogs of a general structure Tyr-c(Xaa-Phe-Phe-Yaa)NH(2) or Tyr-c(Xaa-Phe-D-Pro-Yaa)NH(2), respectively, where Xaa and Yaa were L/D Asp or L/D Lys. Further modification of these analogs was achieved by introduction of 2',6'-dimethyl-L-tyrosine (Dmt) instead of Tyr in position 1. Peptides were synthesized by solid phase method and cleaved from the resin by a microwave-assisted procedure. Dmt(1)-substituted analogs displayed high affinity at the μ-opioid receptors, remained intact after incubation with the rat brain homogenate and showed remarkable, long-lasting μ-opioid receptor-mediated antinociceptive activity after central, but not peripheral administration. Our results demonstrate that cyclization is a promising strategy in the development of new opioid analgesics, but further modifications are necessary to enhance the blood-brain barrier permeability.

  19. Activation of Cyclic AMP Synthesis by Full and Partial Beta-Adrenergic Receptor Agonists in Chicken Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.

    2003-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Accordingly, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate CAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of CAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of CAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax concentrations were approximately 15-fold weaker than isoproterenol in stimulating the rate of CAMP synthesis. When cimaterol and clenbuterol were added to culture media at concentrations known to cause significant muscle hypertrophy in animals, there was no detectable effect on stimulation of CAMP synthesis. Finally, these same levels of cimaterol and clenbuterol did not antagonize the stimulation of CAMP by either epinephrine or isoproterenol.

  20. Activation of Cyclic AMP Synthesis by Full and Partial Beta-Adrenergic Receptor Agonists in Chicken Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Cureri, Peter A. (Technical Monitor)

    2002-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Accordingly, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate cAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of cAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of cAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax concentrations were approximately 15-fold weaker than isoproterenol in stimulating the rate of cAMP synthesis. When cimaterol and clenbuterol were added to culture media at concentrations known to cause significant muscle hypertrophy in animals, there was no detectable effect on stimulation of cAMP synthesis. Finally, these same levels of cimaterol and clenbuterol did not antagonize the stimulation of cAMP by either epinephrine or isoproterenol.

  1. Purification and synergistic antibacterial activity of arginine derived cyclic dipeptides, from Achromobacter sp. associated with a rhabditid entomopathogenic nematode against major clinically relevant biofilm forming wound bacteria

    PubMed Central

    Deepa, Indira; Kumar, Sasidharan N.; Sreerag, Ravikumar S.; Nath, Vishnu S.; Mohandas, Chellapan

    2015-01-01

    Skin and chronic wound infections caused by various pathogenic bacteria are an increasing and urgent health problem worldwide. In the present investigation ethyl acetate extract of an Achromobacter sp. associated with a Rhabditis entomopathogenic nematode (EPN), displayed promising antibacterial property and was further purified by silica gel column chromatography to get three different cyclic dipeptides (CDPs). Based on the spectral data and Marfey's analyses, the CDPs were identified as cyclo(D-Leu-D-Arg) (1), cyclo(L-Trp-L-Arg) (2), and cyclo(D-Trp-D-Arg) (3), respectively. Three CDPs were active against all the 10 wound associated bacteria tested. The significant antibacterial activity was recorded by CDP 3, and highest activity of 0.5 μg/ml was recorded against Staphylococcus aureus and Pseudomonas aeruginosa. The synergistic antibacterial activities of CDPs and ampicillin were assessed using the checkerboard microdilution method. The results of the current study recorded that the combined effects of CDPs and ampicillin principally recorded synergistic activity. Interestingly, the combination of CDPs and ampicillin also recorded enhanced inhibition of biofilm formation by bacteria. Moreover, CDPs significantly stimulate the production of IL-10 and IL-4 (anti-inflammatory cytokines) by human peripheral blood mononuclear cells. CDPs do not make any significant effect on the production of pro-inflammatory cytokines like TNF-α. The three CDPs have been studied for their effect on intracellular S. aureus in murine macrophages (J774) using 24 h exposure to 0.5X, 1X, and 2X MIC concentrations. Significant decrease in intracellular S. aureus burden was recorded by CDPs. CDPs also recorded no cytotoxicity toward FS normal fibroblast, VERO, and L231 normal lung epithelial cell lines. Antimicrobial activity of the arginine containing CDPs against the wound associated bacteria is reported here for the first. Moreover, this is also the first report on the production of

  2. Antimicrobial Cyclic Peptides for Plant Disease Control

    PubMed Central

    Lee, Dong Wan; Kim, Beom Seok

    2015-01-01

    Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources. PMID:25774105

  3. Cyclic membrane separation process

    DOEpatents

    Bowser, John

    2004-04-13

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In one of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the other part, the membrane is inoperative while gas pressure rises in the ullage. Ambient air is charged to the membrane separation unit during the latter part of the cycle.

  4. Cyclic membrane separation process

    DOEpatents

    Nemser, Stuart M.

    2005-05-03

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.

  5. Cyclic Voltammetry Experiment.

    ERIC Educational Resources Information Center

    Van Benschoten, James J.; And Others

    1983-01-01

    Describes a three-part experiment designed to introduce cyclic voltammetry to graduate/undergraduate students. Part 1 demonstrates formal reduction potential, redox electron transfer, diffusion coefficient, and electrochemical reversibility. Part 2 investigates electrochemical behavior of acetaminophen. Part 3 examines such experimental variables…

  6. Cyclic nucleotide phosphodiesterases (PDEs): coincidence detectors acting to spatially and temporally integrate cyclic nucleotide and non-cyclic nucleotide signals.

    PubMed

    Maurice, Donald H; Wilson, Lindsay S; Rampersad, Sarah N; Hubert, Fabien; Truong, Tammy; Kaczmarek, Milosz; Brzezinska, Paulina; Freitag, Silja I; Umana, M Bibiana; Wudwud, Alie

    2014-04-01

    The cyclic nucleotide second messengers cAMP and cGMP each affect virtually all cellular processes. Although these hydrophilic small molecules readily diffuse throughout cells, it is remarkable that their ability to activate their multiple intracellular effectors is spatially and temporally selective. Studies have identified a critical role for compartmentation of the enzymes which hydrolyse and metabolically inactivate these second messengers, the PDEs (cyclic nucleotide phosphodiesterases), in this specificity. In the present article, we describe several examples from our work in which compartmentation of selected cAMP- or cGMP-hydrolysing PDEs co-ordinate selective activation of cyclic nucleotide effectors, and, as a result, selectively affect cellular functions. It is our belief that therapeutic strategies aimed at targeting PDEs within these compartments will allow greater selectivity than those directed at inhibiting these enzymes throughout the cells.

  7. Endothelium-Dependent Contractions of Isolated Arteries to Thymoquinone Require Biased Activity of Soluble Guanylyl Cyclase with Subsequent Cyclic IMP Production.

    PubMed

    Detremmerie, Charlotte M; Chen, Zhengju; Li, Zhuoming; Alkharfy, Khalid M; Leung, Susan W S; Xu, Aimin; Gao, Yuansheng; Vanhoutte, Paul M

    2016-09-01

    Preliminary experiments on isolated rat arteries demonstrated that thymoquinone, a compound widely used for its antioxidant properties and believed to facilitate endothelium-dependent relaxations, as a matter of fact caused endothelium-dependent contractions. The present experiments were designed to determine the mechanisms underlying this unexpected response. Isometric tension was measured in rings (with and without endothelium) of rat mesenteric arteries and aortae and of porcine coronary arteries. Precontracted preparations were exposed to increasing concentrations of thymoquinone, which caused concentration-dependent, sustained further increases in tension (augmentations) that were prevented by endothelium removal, Nω-nitro-L-arginine methyl ester [L-NAME; nitric oxide (NO) synthase inhibitor], and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; soluble guanylyl cyclase [sGC] inhibitor). In L-NAME-treated rings, the NO-donor diethylenetriamine NONOate restored the thymoquinone-induced augmentations; 5-[1-(phenylmethyl)-1H-indazol-3-yl]-2-furanmethanol (sGC activator) and cyclic IMP (cIMP) caused similar restorations. By contrast, in ODQ-treated preparations, the cell-permeable cGMP analog did not restore the augmentation by thymoquinone. The compound augmented the content (measured with ultra-high performance liquid chromatography-tandem mass spectrometry) of cIMP, but not that of cGMP; these increases in cIMP content were prevented by endothelium removal, L-NAME, and ODQ. The augmentation of contractions caused by thymoquinone was prevented in porcine arteries, but not in rat arteries, by 1-(5-isoquinolinylsulfonyl)homopiperazine dihydrochloride and trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride (Rho-kinase inhibitors); in the latter, but not in the former, it was reduced by 3,5-dichloro-N-[[(1α,5α,6-exo,6α)-3-(3,3-dimethylbutyl)-3-azabicyclo[3.1.0]hex-6-yl]methyl]-benzamide hydrochloride (T-type calcium channel inhibitor

  8. Cyclic networks of quantum gates

    NASA Astrophysics Data System (ADS)

    Cabauy, Peter

    In this thesis we first give an introduction to the basic aspects of quantum computation followed by an analysis of networks of quantum logic gates where the qubit lines are loops (cyclic). Thus far, investigations into cyclic networks of quantum logic gates have not been examined (as far as we know) by the quantum information community. In our investigations of cyclic quantum networks we have studied simple, one and two qubit systems. The analysis includes: classifying networks into groups, the dynamics of the qubits in a cyclic quantum network, and the perturbation effects of an external qubit acting on a cyclic quantum network. The analysis will be followed by a discussion on quantum algorithms and quantum information processing with cyclic quantum networks, a novel implementation of a cyclic network quantum memory and a discussion of quantum sensors via cyclic quantum networks.

  9. Involvement of cyclic nucleotide-dependent protein kinases in cyclic AMP-mediated vasorelaxation

    PubMed Central

    Eckly-Michel, Anita; Martin, Viviane; Lugnier, Claire

    1997-01-01

    The involvement of cyclic AMP-dependent protein kinase (PKA) and cyclic GMP-dependent protein kinase (PKG) in the effects of cyclic AMP-elevating agents on vascular smooth muscle relaxation, cyclic nucleotide dependent-protein kinase activities and ATP-induced calcium signalling ([Ca2+]i) was studied in rat aorta. Cyclic AMP-elevating agents used were a β-adrenoceptor agonist (isoprenaline), a phosphodiesterase 3 (PDE3) inhibitor (SK&F 94120) and a PDE4 inhibitor (rolipram). In rat intact aorta, the relaxant effect induced by isoprenaline (0.01–0.3 μM) was decreased by a specific inhibitor of PKA, H-89, whereas a specific inhibitor of PKG, Rp-8-Br-cyclic GMPS, was without effect. No significant difference in PKA and PKG activity ratios was detected in aortic rings when isoprenaline 10 μM was used. At the same concentration, isoprenaline did not modify ATP-induced changes in [Ca2+]i in smooth muscle cells. Neither H-89 nor Rp-8-Br-cyclic GMPS modified this response. These findings suggest that PKA is only involved in the relaxant effect induced by low concentrations of isoprenaline (0.01–0.3 μM), whereas for higher concentrations, other mechanisms independent of PKA and PKG are involved. The relaxant effects induced by SK&F 94120 and rolipram were inhibited by Rp-8-Br-cyclic GMPS with no significant effect of H-89. Neither SK&F 94120, nor rolipram at 30 μM significantly modified the activity ratios of PKA and PKG. Rolipram inhibited the ATP-induced transient increase in [Ca2+]i. This decrease was abolished by Rp-8-Br-cyclic GMPS whereas H-89 had no significant effect. These results suggest that PKG is involved in the vascular effects induced by the inhibitors of PDE3 and PDE4. Moreover, since it was previously shown that PDE3 and PDE4 inhibitors only increased cyclic AMP levels with no change in cyclic GMP level, these data also suggest a cross-activation of PKG by cyclic AMP in rat aorta. The combination of 5 μM SK&F 94120 with rolipram markedly

  10. Opposite and independent actions of cyclic AMP and transforming growth factor beta in the regulation of type 1 plasminogen activator inhibitor expression.

    PubMed Central

    Thalacker, F W; Nilsen-Hamilton, M

    1992-01-01

    We have investigated the mechanisms by which type 1 plasminogen activator inhibitor (PAI-1) is regulated by transforming growth factor beta (TGF-beta) and by epidermal growth factor (EGF) in CCL64 mink lung epithelial cells, BSC-1 monkey kidney epithelial cells, mouse embryo fibroblast (AKR-2B 84A) cells and normal rat kidney fibroblasts (NRK). TGF-beta increases PAI-1 expression in all four cell lines, and EGF acts synergistically with TGF-beta to increase PAI-1 expression in CCL64 cells but not in the other three cell lines. Here we show that PAI-1 expression can be regulated independently through two different signal transduction pathways. One pathway involves protein kinase C and is stimulated by the tumour promoter phorbol myristate acetate (PMA). Whereas preincubation with PMA completely eliminated PMA-induced PAI-1 synthesis and secretion in both CCL64 and BSC-1 cells, this treatment had no effect on TGF-beta- and EGF-induced PAI-1 levels. Therefore we conclude that protein kinase C does not mediate the effects of either EGF or TGF-beta on PAI-1 expression. The expression of PAI-1 was decreased by agents increasing intracellular cyclic AMP: (cAMP) cholera toxin, forskolin and dibutyryl cAMP lowered both the basal level and the TGF-beta- and PMA-induced levels of PAI-1 expression. These effects of cAMP-elevating agents and of TGF-beta on PAI-1 protein synthesis were also reflected in changes in TGF-beta-induced PAI-1 gene transcription, as measured by nuclear run-on. These results show that PAI-1 gene expression is sensitive to high levels of intracellular cAMP and that this effect occurs at the transcriptional level. Although increased intracellular cAMP concentrations decrease the absolute level of PAI-1 expression, the ability of TGF-beta and EGF to induce PAI-1 gene expression is unchanged. These results are discussed in relation to the observation that sensitivity to cAMP is a common feature of TGF-beta-regulated genes. Images Fig. 1. Fig. 2. Fig. 3. Fig

  11. Dependence of the Excitability of Pituitary Cells on Cyclic Nucleotides

    PubMed Central

    Stojilkovic, Stanko S.; Kretschmannova, Karla; Tomic, Melanija; Stratakis, Constantine A.

    2012-01-01

    Cyclic 3′,5′-adenosine monophosphate and cyclic 3′,5′-guanosine monophosphate are intracellular (second) messengers that are produced from the nucleotide triphosphates by a family of enzymes consisting of adenylyl and guanylyl cyclases. These enzymes are involved in a broad array of signal transduction pathways mediated by the cyclic nucleotide monophosphates and their kinases, which control multiple aspects of cell function through the phosphorylation of protein substrates. Here, we review the findings and working hypotheses on the role of the cyclic nucleotides and their kinases in the control of electrical activity of the endocrine pituitary cells and the plasma membrane channels involved in this process. PMID:22564128

  12. The nature of solar cyclicity. I

    NASA Astrophysics Data System (ADS)

    Romanchuk, P. R.

    1981-02-01

    The report contains a critical survey of work devoted to the study of the nature of solar cyclicity. The inconsistency of the representation of cyclic curves using a frequency spectrum is indicated. The useful contribution of the ideas of Wolf, Newcomb, and Waldmeier to the solution of the problem is noted. Data are cited in favor of the theory of the tidal nature of solar cyclicity developed by the author, which also takes into account the ideas of the above-mentioned authors: the continuous paired and single tidal actions of the planets and the resonance character of this action, thanks to which the approximately 10-year period of action of Jupiter and Saturn is transformed into the 11-year activity cycle.

  13. Pharmacological modulation of secondary mediator systems--cyclic AMP and cyclic GMP--on inflammatory hyperalgesia.

    PubMed

    Cunha, F Q; Teixeira, M M; Ferreira, S H

    1999-06-01

    1. The objective of the present paper was to evaluate the relevance of neuronal balance of cyclic AMP and cyclic GMP concentration for functional regulation of nociceptor sensitivity during inflammation. 2. Injection of PGE2 (10-100 ng paw-1) evoked a dose-dependent hyperalgesic effect which was mediated via a cyclic AMP-activated protein kinase (PKA) inasmuch as hyperalgesia was blocked by the PKA inhibitor H89. 3. The PDE4 inhibitor rolipram and RP73401, but not PDE3 and PDE5 inhibitors potentiated the hyperalgesic effects of PGE2. The hyperalgesic effect of dopamine was also enhanced by rolipram. Moreover, rolipram significantly potentiated hyperalgesia induced by carrageenan, bradykinin, TNF alpha, IL-1 beta, IL-6 and IL-8. This suggests that neuronal cyclic AMP mediates the prostanoid and sympathetic components of mechanical hyperalgesia. Moreover, in the neuron cyclic AMP is mainly metabolized by PDE4. 4. To examine the role of the NO/cyclic GMP pathway in modulating mechanical hyperalgesia, we tested the effects of the soluble guanylate cyclase inhibitor, ODQ. This substance counteracts the inhibitory effects of the NO donor, SNAP, on the hyperalgesia induced by PGE2. 5. The ODQ potentiated hyperalgesia induced by carrageenan, bradykinin, TNF alpha, IL-1 beta, IL-6 and IL-8. In contrast, ODQ had no significant effect on the hyperalgesia induced by PGE2 and dopamine. This indicates that the hyperalgesic cytokines may activate soluble guanylate cyclase, which down-regulate the ability of these substances to cause hyperalgesia. This event appears not to be mediated by prostaglandin or dopamine. 6. In conclusion, the results presented in this paper confirm an association between (i) hyperalgesia and elevated levels of cyclic AMP as well as (ii) antinociception and elevated levels of cyclic GMP. The intracellular levels of cyclic AMP that enhance hyperalgesia are controlled by the PDE4 isoform and appear to result in activation of protein kinase A whereas the

  14. An Early Cyclic Universe

    NASA Astrophysics Data System (ADS)

    Duhe, William; Biswas, Tirthibir

    2014-03-01

    We provide a comprehensive numerical study of the Emergent Cyclic Inflation scenario. This is a scenario where instead of traditional monotonic slow roll inflation, the universe expands over numerous short asymmetric cycles due to the production of entropy via interactions among different species. This is one of the very few scenarios of inflation which provides a nonsingular geodesically complete space-time and does not require any ``reheating'' mechanism. A special thanks to Loyola University for an excellent community to help this project grow.

  15. A highly efficient Mukaiyama-Mannich reaction of N-Boc isatin ketimines and other active cyclic ketimines using difluoroenol silyl ethers catalyzed by Ph3PAuOTf.

    PubMed

    Yu, Jin-Sheng; Zhou, Jian

    2015-12-07

    Ph3PAuOTf is identified as a powerful catalyst for the addition of difluoroenol silyl ethers to N-Boc isatin ketimines and other two kinds of active cyclic ketimines. This represents the first Au(i)-catalyzed Mukaiyama-Mannich reaction, and the corresponding non-fluorinated enol silyl ether proves to be even much more reactive under the same conditions. This method paves the way to the total synthesis of difluoromethylated analogues of AG-041R, a gastrin/CCK-B receptor antagonist.

  16. Ligand versus Complex: C-F and C-H Bond Activation of Polyfluoroaromatics at a Cyclic (Alkyl)(Amino)Carbene.

    PubMed

    Paul, Ursula S D; Radius, Udo

    2017-03-17

    C-F and C-H bond activation reactions of polyfluoroaromatics at the cyclic (alkyl)(amino)carbene (cAAC) cAAC(methyl) (1) are reported. Studies on the C-F bond activation using the cAAC-stabilized nickel(0) complex [Ni(cAAC(methyl) )2 ] (2) have shown that 2 does not react with fluorinated arenes. However, these investigations led to the observation of C-F bond cleavage of perfluorinated arenes by the carbene ligand cAAC(methyl) (1) itself. The reaction of 1 with C6 F6 , C6 F5 -C6 F5 , C6 F5 -CF3 , and C5 F5 N afforded the insertion products of cAAC into one of the C-F bonds of the substrate, that is, the C-F bond activation products (cAAC(methyl) )F(Ar(f) ) (Ar(f) =C6 F5 4 a, C6 F4 -C6 F5 4 b, C6 F4 -CF3 4 c, C5 F4 N 4 d). These products decompose readily upon heating to 80 °C within a few hours in solution with formation of ionic iminium salts [(cAAC(methyl) )(Ar(f) )][X] 6 a-d or neutral alkenyl perfluoroaryl imine compounds 7 a-d. The compounds (cAAC(methyl) )F(Ar(f) ) 4 a-d readily transfer fluoride, which has been exemplified by the fluoride transfer of all compounds using BF3 etherate as fluoride acceptor. Fluoride transfer has also been achieved starting from (cAAC(methyl) )F(C6 F4 -CF3 ) (4 c) or (cAAC(methyl) )F(C5 F4 N) (4 d) to other selected substrates such as trimethylchlorosilane, benzoyl chloride and tosyl chloride. Instead of C-F bond activation, insertion of the cAAC into the C-H bond was observed if 1 was treated with the partially fluorinated arenes C6 F5 H, 1,2,4,5-C6 F4 H2 , 1,3,5-C6 F3 H3 , and 1,3-C6 F2 H4 . The compounds (cAAC(methyl) )H(Ar(f) ) (Ar(f) =C6 F5 12 e, 2,3,5,6-C6 F4 H 12 f, 2,4,6-C6 F3 H2 12 g and 2,6-C6 F2 H3 12 h) have been isolated in good yields and have been characterized including X-ray analysis. Fluorobenzene C6 FH5 (pKa ≈37), the least C-H acidic fluoroarene used in this study, does not react. In order to investigate the scope and limitations of this type of cAAC C-H bond activation

  17. Diiron species containing a cyclic P(Ph)2N(Ph)2 diphosphine related to the [FeFe]H2ases active site.

    PubMed

    Lounissi, Sondès; Capon, Jean-François; Gloaguen, Frédéric; Matoussi, Fatma; Pétillon, François Y; Schollhammer, Philippe; Talarmin, Jean

    2011-01-21

    A new dissymmetrically disubstituted diiron dithiolate species, [Fe(2)(CO)(4)(κ(2)-P(Ph)(2)N(Ph)(2))(μ-pdt)] (pdt = S(CH(2))(3)S), was prepared by using a flexible cyclic base-containing diphosphine, 1,3,5,7-tetraphenyl 1,5-diaza-3,7-diphosphacyclooctane (P(Ph)(2)N(Ph)(2) = {PhPCH(2)NPh}(2)). Preliminary investigations of proton and electron transfers on the diiron system have been done.

  18. Cell reorientation under cyclic stretching

    PubMed Central

    Livne, Ariel; Bouchbinder, Eran; Geiger, Benjamin

    2014-01-01

    Mechanical cues from the extracellular microenvironment play a central role in regulating the structure, function and fate of living cells. Nevertheless, the precise nature of the mechanisms and processes underlying this crucial cellular mechanosensitivity remains a fundamental open problem. Here we provide a novel framework for addressing cellular sensitivity and response to external forces by experimentally and theoretically studying one of its most striking manifestations – cell reorientation to a uniform angle in response to cyclic stretching of the underlying substrate. We first show that existing approaches are incompatible with our extensive measurements of cell reorientation. We then propose a fundamentally new theory that shows that dissipative relaxation of the cell’s passively-stored, two-dimensional, elastic energy to its minimum actively drives the reorientation process. Our theory is in excellent quantitative agreement with the complete temporal reorientation dynamics of individual cells, measured over a wide range of experimental conditions, thus elucidating a basic aspect of mechanosensitivity. PMID:24875391

  19. Cell reorientation under cyclic stretching

    NASA Astrophysics Data System (ADS)

    Livne, Ariel; Bouchbinder, Eran; Geiger, Benjamin

    2014-05-01

    Mechanical cues from the extracellular microenvironment play a central role in regulating the structure, function and fate of living cells. Nevertheless, the precise nature of the mechanisms and processes underlying this crucial cellular mechanosensitivity remains a fundamental open problem. Here we provide a novel framework for addressing cellular sensitivity and response to external forces by experimentally and theoretically studying one of its most striking manifestations—cell reorientation to a uniform angle in response to cyclic stretching of the underlying substrate. We first show that existing approaches are incompatible with our extensive measurements of cell reorientation. We then propose a fundamentally new theory that shows that dissipative relaxation of the cell’s passively-stored, two-dimensional, elastic energy to its minimum actively drives the reorientation process. Our theory is in excellent quantitative agreement with the complete temporal reorientation dynamics of individual cells measured over a wide range of experimental conditions, thus elucidating a basic aspect of mechanosensitivity.

  20. Cyclic generalized projection MRI.

    PubMed

    Sarty, Gordon E

    2015-04-01

    Progress in the development of portable MRI hinges on the ability to use lightweight magnets that have non-uniform magnetic fields. An image encoding method and mathematical procedure for recovering the image from the NMR signal from non-uniform magnets with closed isomagnetic contours is given. Individual frequencies in an NMR signal from an object in a non-uniform magnetic field give rise to integrals of the object along contours of constant magnetic field: generalized projections. With closed isomagnetic field contours a simple, cyclic, direct reconstruction of the image from the generalized projections is possible when the magnet and RF transmit coil are held fixed relative to the imaged object while the RF receive coil moves. Numerical simulations, using the Shepp and Logan mathematical phantom, were completed to show that the mathematical method works and to illustrate numerical limitations. The method is numerically verified and exact reconstruction demonstrated for discrete mathematical image phantoms. Correct knowledge of the RF receive field is necessary or severe image distortions will result. The cyclic mathematical reconstruction method presented here will be useful for portable MRI schemes that use non-uniform magnets with closed isomagnetic contours along with mechanically or electronically moving the RF receive coils.

  1. [Asthma and cyclic neutropenia].

    PubMed

    Salazar Cabrera, A N; Berrón Pérez, R; Ortega Martell, J A; Onuma Takane, E

    1996-01-01

    We report a male with history of recurrent infections (recurrent oral aphtous disease [ROAD], middle ear infections and pharyngo amigdalitis) every 3 weeks since he was 7 months old. At the age of 3 years cyclic neutropenia was diagnosed with cyclic fall in the total neutrophil count in blood smear every 21 days and prophylactic antimicrobial therapy was indicated. Episodic events every 3 weeks of acute asthma and allergic rhinitis were detected at the age of 6 years old and specific immunotherapy to Bermuda grass was given during 3 years with markedly improvement in his allergic condition but not in the ROAD. He came back until the age of 16 with episodic acute asthma and ROAD. The total neutrophil count failed to 0 every 21 days and surprisingly the total eosinophil count increased up to 2,000 at the same time, with elevation of serum IgE (412 Ul/mL). Specific immunotherapy to D.pt. and Aller.a. and therapy with timomodulin was indicated. After 3 months we observed clinical improvement in the asthmatic condition and the ROAD disappeared, but the total neutrophil count did not improve. We present this case as a rare association between 2 diseases with probably no etiological relationship but may be physiopatological that could help to understand more the pathogenesis of asthma.

  2. Variation potential influence on photosynthetic cyclic electron flow in pea

    PubMed Central

    Sukhov, Vladimir; Surova, Lyubov; Sherstneva, Oksana; Katicheva, Lyubov; Vodeneev, Vladimir

    2015-01-01

    Cyclic electron flow is an important component of the total photosynthetic electron flow and participates in adaptation to the action of stressors. Local leaf stimulation induces electrical signals, including variation potential (VP), which inactivate photosynthesis; however, their influence on cyclic electron flow has not been investigated. The aim of this study was to investigate VP's influence on cyclic electron flow in pea (Pisum sativum L.). VP was induced in pea seedling leaves by local heating and measured in an adjacent, undamaged leaf by extracellular electrodes. CO2 assimilation was measured using a portable gas exchange measuring system. Photosystem I and II parameters were investigated using a measuring system for simultaneous assessment of P700 oxidation and chlorophyll fluorescence. Heating-induced VP reduced CO2 assimilation and electron flow through photosystem II. In response, cyclic electron flow rapidly decreased and subsequently slowly increased. Slow increases in cyclic flow were caused by decreased electron flow through photosystem II, which was mainly connected with VP-induced photosynthetic dark stage inactivation. However, direct influence by VP on photosystem I also participated in activation of cyclic electron flow. Thus, VP, induced by local leaf-heating, activated cyclic electron flow in undamaged leaves. This response was similar to photosynthetic changes observed under the direct action of stressors. Possible mechanisms of VP's influence on cyclic flow were discussed. PMID:25610447

  3. Kaurenoic acid from Sphagneticola trilobata Inhibits Inflammatory Pain: effect on cytokine production and activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway.

    PubMed

    Mizokami, Sandra S; Arakawa, Nilton S; Ambrosio, Sergio R; Zarpelon, Ana C; Casagrande, Rubia; Cunha, Thiago M; Ferreira, Sergio H; Cunha, Fernando Q; Verri, Waldiceu A

    2012-05-25

    Kaurenoic acid [ent-kaur-16-en-19-oic acid (1)] is a diterpene present in several plants including Sphagneticola trilobata. The only documented evidence for its antinociceptive effect is that it inhibits the writhing response induced by acetic acid in mice. Therefore, the analgesic effect of 1 in different models of pain and its mechanisms in mice were investigated further. Intraperitoneal and oral treatment with 1 dose-dependently inhibited inflammatory nociception induced by acetic acid. Oral treatment with 1 also inhibited overt nociception-like behavior induced by phenyl-p-benzoquinone, complete Freund's adjuvant (CFA), and both phases of the formalin test. Compound 1 also inhibited acute carrageenin- and PGE(2)-induced and chronic CFA-induced inflammatory mechanical hyperalgesia. Mechanistically, 1 inhibited the production of the hyperalgesic cytokines TNF-α and IL-1β. Furthermore, the analgesic effect of 1 was inhibited by l-NAME, ODQ, KT5823, and glybenclamide treatment, demonstrating that such activity also depends on activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway, respectively. These results demonstrate that 1 exhibits an analgesic effect in a consistent manner and that its mechanisms involve the inhibition of cytokine production and activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway.

  4. Structure-activity relationships of cyclic lactam analogues of alpha-melanocyte-stimulating hormone (alpha-MSH) targeting the human melanocortin-3 receptor.

    PubMed

    Mayorov, Alexander V; Cai, Minying; Palmer, Erin S; Dedek, Matthew M; Cain, James P; Van Scoy, April R; Tan, Bahar; Vagner, Josef; Trivedi, Dev; Hruby, Victor J

    2008-01-24

    A variety of dicarboxylic acid linkers introduced between the alpha-amino group of Pro(6) and the -amino group of Lys(10) of the cyclic lactam alpha-melanocyte-stimulating hormone (alpha-MSH)-derived Pro(6)-D-Phe(7)/D-Nal(2')(7)-Arg(8)-Trp(9)-Lys(10)-NH2 pentapeptide template lead to nanomolar range and selective hMC3R agonists and antagonists. Replacement of the Pro(6) residue and the dicarboxylic acid linker with 2,3-pyrazine-dicarboxylic acid furnished a highly selective nanomolar range hMC3R partial agonist (analogue 12, c[CO-2,3-pyrazine-CO-D-Phe-Arg-Trp-Lys]-NH2, EC50 = 27 nM, 70% max cAMP) and an hMC3R antagonist (analogue 13, c[CO-2,3-pyrazine-CO-D-Nal(2')-Arg-Trp-Lys]-NH2, IC50 = 23 nM). Modeling experiments suggest that 2,3-pyrazinedicarboxylic acid stabilizes a beta-turn-like structure with the D-Phe/D-Nal(2') residues, which explains the high potency of the corresponding peptides. Placement of a Nle residue in position 6 produced a hMC3R/hMC5R antagonist (analogue 15, c[CO-(CH 2)2-CO-Nle-D-Nal(2')-Arg-Trp-Lys]-NH2, IC50 = 12 and 17 nM, respectively), similarly to the previously described cyclic gamma-melanocyte-stimulating hormone (gamma-MSH)-derived hMC3R/hMC5R antagonists. These newly developed melanotropins will serve as critical biochemical tools for elucidating the full spectrum of functions performed by the physiologically important melanocortin-3 receptor.

  5. Structure–Activity Relationships of Cyclic Lactam Analogues of α-Melanocyte-Stimulating Hormone (α-MSH) Targeting the Human Melanocortin-3 Receptor

    PubMed Central

    Mayorov, Alexander V.; Cai, Minying; Palmer, Erin S.; Dedek, Matthew M.; Cain, James P.; Van Scoy, April R.; Tan, Bahar; Vagner, Josef; Trivedi, Dev; Hruby, Victor J.

    2008-01-01

    A variety of dicarboxylic acid linkers introduced between the α-amino group of Pro6 and the ε-amino group of Lys10 of the cyclic lactam α-melanocyte-stimulating hormone (α-MSH)-derived Pro6-D-Phe7/D-Nal(2′)7-Arg8-Trp9-Lys10-NH2 pentapeptide template lead to nanomolar range and selective hMC3R agonists and antagonists. Replacement of the Pro6 residue and the dicarboxylic acid linker with 2,3-pyrazine-dicarboxylic acid furnished a highly selective nanomolar range hMC3R partial agonist (analogue 12, c[CO-2,3-pyrazine-CO-D-Phe-Arg-Trp-Lys]-NH2, EC50 = 27 nM, 70% max cAMP) and an hMC3R antagonist (analogue 13, c[CO-2,3-pyrazine-CO-D-Nal(2′)-Arg-Trp-Lys]-NH2, IC50 = 23 nM). Modeling experiments suggest that 2,3-pyrazinedicarboxylic acid stabilizes a β-turn-like structure with the D-Phe/D-Nal(2′) residues, which explains the high potency of the corresponding peptides. Placement of a Nle residue in position 6 produced a hMC3R/hMC5R antagonist (analogue 15, c[CO-(CH2)2-CO-Nle-D-Nal(2′)-Arg-Trp-Lys]-NH2, IC50 = 12 and 17 nM, respectively), similarly to the previously described cyclic γ-melanocyte-stimulating hormone (γ-MSH)-derived hMC3R/hMC5R antagonists. These newly developed melanotropins will serve as critical biochemical tools for elucidating the full spectrum of functions performed by the physiologically important melanocortin-3 receptor. PMID:18088090

  6. Microgravity changes in heart structure and cyclic-AMP metabolism

    NASA Technical Reports Server (NTRS)

    Philpott, D. E.; Fine, A.; Kato, K.; Egnor, R.; Cheng, L.

    1985-01-01

    The effects of microgravity on cardiac ultrastructure and cyclic AMP metabolism in tissues of rats flown on Spacelab 3 are reported. Light and electron microscope studies of cell structure, measurements of low and high Km phosphodiesterase activity, cyclic AMP-dependent protein kinase activity, and regulatory subunit compartmentation show significant deviations in flight animals when compared to ground controls. The results indicate that some changes have occurred in cellular responses associated with catecholamine receptor interactions and intracellular signal processing.

  7. Kinetic study on Michael-type reactions of β-nitrostyrenes with cyclic secondary amines in acetonitrile: transition-state structures and reaction mechanism deduced from negative enthalpy of activation and analyses of LFERs.

    PubMed

    Um, Ik-Hwan; Kang, Ji-Sun; Park, Jong-Yoon

    2013-06-07

    A kinetic study is reported for the Michael-type reactions of X-substituted β-nitrostyrenes (1a-j) with a series of cyclic secondary amines in MeCN. The plots of pseudo-first-order rate constant k(obsd) vs [amine] curve upward, indicating that the reactions proceed through catalyzed and uncatalyzed routes. The dissection of k(obsd) into Kk2 and Kk3 (i.e., the rate constants for the uncatalyzed and catalyzed routes, respectively) revealed that Kk3 is much larger than Kk2, implying that the reactions proceed mainly through the catalyzed route when [amine] > 0.01 M. Strikingly, the reactivity of β-nitrostyrene (1g) toward piperidine decreases as the reaction temperature increases. Consequently, a negative enthalpy of activation is obtained, indicating that the reaction proceeds through a relatively stable intermediate. The Brønsted-type plots for the reactions of 1g are linear with β(nuc) = 0.51 and 0.61, and the Hammett plots for the reactions of 1a-j are also linear with ρX = 0.84 and 2.10 for the uncatalyzed and catalyzed routes, respectively. The reactions are concluded to proceed through six-membered cyclic transition states for both the catalyzed and uncatalyzed routes. The effects of the substituent X on reactivity and factors influencing β(nuc) and ρX obtained in this study are discussed.

  8. Antitumoral cyclic peptide analogues of chlamydocin.

    PubMed

    Bernardi, E; Fauchere, J L; Atassi, G; Viallefont, P; Lazaro, R

    1993-01-01

    A series of cyclic tetrapeptides bearing the bioactive alkylating group on an epsilon-amino-lysyl function have been examined for their antitumoral activity on L1210 and P388 murine leukemia cell lines. One analogue belonging to the chlamydocin family and bearing a beta-chloroethylnitrosourea group was found to be potent at inhibiting L1210 cell proliferation and had a higher therapeutic index than the reference compound bis-beta-chloroethylnitrosourea (BCNU) on the in vivo P388-induced leukemia model.

  9. Ethanol-induced loss of brain cyclic AMP binding proteins: correlation with growth suppression

    SciTech Connect

    Pennington, S.; Kalmus, G.

    1987-05-01

    Brain hypoplasia secondary to maternal ethanol consumption is a common fetal defect observed in all models of fetal alcohol syndrome. The molecular mechanism by which ethanol inhibits growth is unknown but has been hypothesized to involve ethanol-induced changes in the activity of cyclic-AMP stimulated protein kinase. Acute and chronic alcohol exposure elevate cyclic AMP level in many tissues, including brain. This increase in cyclic AMP should increase the phosphorylating activity of kinase by increasing the amount of dissociated (active) kinase catalytic subunit. In 7-day embryonic chick brains, ethanol-induced growth suppression was correlated with increased brain cyclic AMP content but neither basal nor cyclic AMP stimulated kinase catalytic activity was increased. However, the levels of cyclic AMP binding protein (kinase regulatory subunit) were significantly lowered by ethanol exposure. Measured as either /sup 3/H cyclic AMP binding or as 8-azido cyclic AM/sup 32/P labeling, ethanol-exposed brains had significantly less cyclic AMP binding activity (51 +/- 14 versus 29 +/- 10 units/..mu..g protein for 8-azido cyclic AMP binding). These findings suggest that ethanol's effect on kinase activity may involve more than ethanol-induced activation of adenylate cyclase.

  10. Analysis of stereoelectronic properties, mechanism of action and pharmacophore of synthetic indolo[2,1-b]quinazoline-6,12-dione derivatives in relation to antileishmanial activity using quantum chemical, cyclic voltammetry and 3-D-QSAR CATALYST procedures.

    PubMed

    Bhattacharjee, Apurba K; Skanchy, David J; Jennings, Barton; Hudson, Thomas H; Brendle, James J; Werbovetz, Karl A

    2002-06-01

    Several indolo[2,1-b]quinazoline-6,12-dione (tryptanthrin) derivatives exhibited remarkable activity at concentrations below 100 ng/mL when tested against in vitro Leishmania donovani amastigotes. The in vitro toxicity studies indicate that the compounds are fairly well tolerated in both macrophage and neuronal lines. An analysis based on qualitative and quantitative structure-activity relationship studies between in vitro antileishmanial activity and molecular electronic structure of 27 analogues of indolo[2,1-b]quinazoline-6,12-dione is presented here by using a combination of semi-empirical AM1 quantum chemical, cyclic voltammetry and a pharmacophore generation (CATALYST) methods. A modest to good correlation is observed between activity and a few calculated molecular properties such as molecular density, octanol-water partition coefficient, molecular orbital energies, and redox potentials. Electron transfer seems to be a plausible path in the mechanism of action of the compounds. A pharmacophore generated by using the 3-D QSAR of CATALYST produced a fairly accurate predictive model of antileishmanial activity of the tryptanthrins. The validity of the pharmacophore model extends to structurally different class of compounds that could open new frontiers for study. The carbonyl group of the five- and six-membered rings in the indolo[2,1-b]quinazoline-6,12-dione skeleton and the electron transfer ability to the carbonyl atom appear to be crucial for activity.

  11. Genetics Home Reference: cyclic neutropenia

    MedlinePlus

    ... infection, neutrophils release neutrophil elastase. This protein then modifies the function of certain cells and proteins to help fight the infection. ELANE gene mutations that cause cyclic neutropenia lead to an ...

  12. Virtual screening using combinatorial cyclic peptide libraries reveals protein interfaces readily targetable by cyclic peptides.

    PubMed

    Duffy, Fergal J; O'Donovan, Darragh; Devocelle, Marc; Moran, Niamh; O'Connell, David J; Shields, Denis C

    2015-03-23

    Protein-protein and protein-peptide interactions are responsible for the vast majority of biological functions in vivo, but targeting these interactions with small molecules has historically been difficult. What is required are efficient combined computational and experimental screening methods to choose among a number of potential protein interfaces worthy of targeting lead macrocyclic compounds for further investigation. To achieve this, we have generated combinatorial 3D virtual libraries of short disulfide-bonded peptides and compared them to pharmacophore models of important protein-protein and protein-peptide structures, including short linear motifs (SLiMs), protein-binding peptides, and turn structures at protein-protein interfaces, built from 3D models available in the Protein Data Bank. We prepared a total of 372 reference pharmacophores, which were matched against 108,659 multiconformer cyclic peptides. After normalization to exclude nonspecific cyclic peptides, the top hits notably are enriched for mimetics of turn structures, including a turn at the interaction surface of human α thrombin, and also feature several protein-binding peptides. The top cyclic peptide hits also cover the critical "hot spot" interaction sites predicted from the interaction crystal structure. We have validated our method by testing cyclic peptides predicted to inhibit thrombin, a key protein in the blood coagulation pathway of important therapeutic interest, identifying a cyclic peptide inhibitor with lead-like activity. We conclude that protein interfaces most readily targetable by cyclic peptides and related macrocyclic drugs may be identified computationally among a set of candidate interfaces, accelerating the choice of interfaces against which lead compounds may be screened.

  13. Phorbol esters modulate cyclic AMP accumulation in porcine thyroid cells

    SciTech Connect

    Emoto, T.; Kasai, K.; Hiraiwa, M.; Shimoda, S.

    1988-01-01

    In cultured porcine thyroid cells, during 60 min incubation phorbol 12-myristate 13-acetate (PMA) had no effect on basal cyclic AMP accumulation and slightly stimulated cyclic AMP accumulation evoked by thyroid stimulating hormone (TSH) or forskolin. Cholera toxin-induced cyclic AMP accumulation was significantly stimulated by PMA. On the other hand, cyclic AMP accumulation evoked by prostaglandin E/sub 1/ or E/sub 2/ (PGE/sub 1/ and PGE/sub 2/) was markedly depressed by simultaneous addition of PMA. These opposing effects of PMA on cyclic AMP accumulation evoked by PGE and cholera toxin were observed in a dose-related fashion, with half-maximal effect of around 10/sup -9/ M in either case. The almost same effects of PMA on cyclic AMP accumulation in basal and stimulated conditions were also observed in freshly prepared thyroid cells. The present study was performed in the presence of phosphodiesterase inhibitor, 3-iso-butyl-1-methylxanthine (IBMX), indicating that PMA affected adenylate cyclase activity. Therefore, it is suggested that PMA may modulate the production of cyclic AMP in response to different stimuli, possibly by affecting several sites in the adenylate cyclase complex in thyroid cells.

  14. Computer Simulation Of Cyclic Oxidation

    NASA Technical Reports Server (NTRS)

    Probst, H. B.; Lowell, C. E.

    1990-01-01

    Computer model developed to simulate cyclic oxidation of metals. With relatively few input parameters, kinetics of cyclic oxidation simulated for wide variety of temperatures, durations of cycles, and total numbers of cycles. Program written in BASICA and run on any IBM-compatible microcomputer. Used in variety of ways to aid experimental research. In minutes, effects of duration of cycle and/or number of cycles on oxidation kinetics of material surveyed.

  15. A unique enhancer element for the trans activator (p40 sup tax ) of human T-cell leukemia virus type I that is distinct from cyclic AMP- and 12-O-tetradecanoylphobol-13-acetate-responsive elements

    SciTech Connect

    Fujisawa, Junichi; Toita, Masami; Yoshida, Mitsuaki )

    1989-08-01

    The trans activator (p40{sup tax}) of human T-cell leukemia virus type I (HTLV-I) is a transcriptional factor that activates the long terminal repeat (LTR) of HTLV-I and interleukin-2 receptor {alpha}. The authors examined the HTLV-I enhancer responsible for tax-mediated trans activation and identified (A/T)(G/C)(G/C)CNNTGACG(T/A) as a plausible tax-responsive element (TRE). The putative TRE in the LTR was found to be different from the elements required for activation by cyclic AMP and 12-O-tetradecanoylphorbol-13-acetate, although these elements overlapped each other. The TRE was also different from a binding site of N-{kappa}B-like factor that was identified was identified in the interleukin-2 receptor {alpha} promoter and human immunodeficiency virus LTR as a TRE. The latter result was further demonstrated by the failure of the NF-{kappa}B sequence to compete with the TRE of the LTR in a protein-binding assay. These findings indicate that tax function and its cascade can modulate activities of various enhancer sequences, which are probably regulated by distinct DNA-binding factors.

  16. Cyclic Nucleotide Signaling in Polycystic Kidney Disease

    PubMed Central

    Wang, Xiaofang; Ward, Christopher J.; Harris, Peter C.; Torres, Vicente E.

    2013-01-01

    Increased levels of 3’–5’-cyclic adenosine monophosphate (cAMP) stimulate cell proliferation and fluid secretion in polycystic kidney disease (PKD). Since hydrolytic capacity of phosphodiesterases (PDE) far exceeds maximum rate of synthesis by adenylyl cyclases (AC), cellular levels of cAMP are more sensitive to PDE inhibition than to AC activity changes. We have used enzymatic, western blot, immunohistochemistry, PCR and biochemical assays to study activity and expression of PDE families and isoforms and expression of downstream effectors of cAMP signaling in wildtype and PKD rat and mouse kidneys. The results indicate: 1) Species specific differences in PDE expression; higher PDE activity in kidneys from mice compared to rats; higher contribution of PDE1, relative to PDE4 and PDE3, to total PDE activity of kidney lysate and lower PDE1, PDE3 and PDE4 activities in murine cystic compared to wildtype kidneys. 2) Reduced levels of several PDE1, PDE3 and PDE4 proteins despite mRNA upregulation, possibly due to increased protein degradation. 3) Increased cGMP levels in polycystic kidneys, suggesting in vivo downregulation of PDE1 activity. 4) Additive stimulatory effect of cAMP and cGMP on cystogenesis in vitro. 5) Upregulation of cAMP-dependent protein kinase (PKA) subunits Iα and IIβ, PKare, CREB-1 mRNA, and CREM, ATF-1 and ICER proteins in cystic compared to wildtype kidneys. In summary, the results of this study suggest that alterations in cyclic nucleotide catabolism may render the cystic epithelium particularly susceptible to factors acting on Gs coupled receptors, account at least in part for the upregulation of cyclic nucleotide signaling in PKD, and contribute substantially to the progression of this disease. PMID:19924104

  17. Investigation of Cyclic Deformation and Fatigue of Polycrystalline Cu under Pure Compression Cyclic Loading Conditions

    NASA Astrophysics Data System (ADS)

    Hsu, Tzu-Yin Jean

    It is commonly accepted that fatigue crack is initiated under tensile fatigue stresses. However, practical examples demonstrate that cracks may also initiate under pure compressive fluctuating loads such as the failures observed in aircraft landing gear frames. However, the mechanism of such failures is rarely investigated. Furthermore, knowledge on cyclic deformation response under pure compressive fatigue condition is also very limited or non-existent. Our recent work already verified that fatigue cracks may nucleate from stress concentration sites under pure compression fatigue, but whether or not a form of stress concentration is always needed to initiate a crack under pure compression fatigue remains uncertain. In this study, compression fatigue tests under different peak stresses were carried out on smooth bars of fully annealed OFHC Copper. The purpose of these tests is to investigate not only the cyclic deformation response but also the possibility of crack nucleation without the stress concentrator. Results showed that overall the cyclic stress-strain response and microstructural evolution of OFHC Copper under pure compression fatigue exhibits rather dissimilar behaviour compared to those under symmetrical fatigue. The specimens hardened rapidly within 10 cycles under pure compression fatigue unlike the gradual cyclic hardening behaviour in symmetrical fatigue with the same peak stress amplitude. Compressive cyclic creep behaviour was also observed under the same testing conditions. Moreover, unlike conventional tension-compression fatigue, only moderate slip activity was detectable on the surface instead of typical PSB features detected from TEM observations. The surface observations has revealed that surface slip bands did not increase in number nor did they become more pronounced in height with increasing number of cycles. In addition, surface roughening by grain boundary extrusion was detected to become more severe as the cycling progressed. Therefore

  18. Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics

    PubMed Central

    Koopmanschap, Gijs; Ruijter, Eelco

    2014-01-01

    Summary In the recent past, the design and synthesis of peptide mimics (peptidomimetics) has received much attention. This because they have shown in many cases enhanced pharmacological properties over their natural peptide analogues. In particular, the incorporation of cyclic constructs into peptides is of high interest as they reduce the flexibility of the peptide enhancing often affinity for a certain receptor. Moreover, these cyclic mimics force the molecule into a well-defined secondary structure. Constraint structural and conformational features are often found in biological active peptides. For the synthesis of cyclic constrained peptidomimetics usually a sequence of multiple reactions has been applied, which makes it difficult to easily introduce structural diversity necessary for fine tuning the biological activity. A promising approach to tackle this problem is the use of multicomponent reactions (MCRs), because they can introduce both structural diversity and molecular complexity in only one step. Among the MCRs, the isocyanide-based multicomponent reactions (IMCRs) are most relevant for the synthesis of peptidomimetics because they provide peptide-like products. However, these IMCRs usually give linear products and in order to obtain cyclic constrained peptidomimetics, the acyclic products have to be cyclized via additional cyclization strategies. This is possible via incorporation of bifunctional substrates into the initial IMCR. Examples of such bifunctional groups are N-protected amino acids, convertible isocyanides or MCR-components that bear an additional alkene, alkyne or azide moiety and can be cyclized via either a deprotection–cyclization strategy, a ring-closing metathesis, a 1,3-dipolar cycloaddition or even via a sequence of multiple multicomponent reactions. The sequential IMCR-cyclization reactions can afford small cyclic peptide mimics (ranging from four- to seven-membered rings), medium-sized cyclic constructs or peptidic macrocycles

  19. M-phase-specific protein kinase from mitotic sea urchin eggs: cyclic activation depends on protein synthesis and phosphorylation but does not require DNA or RNA synthesis.

    PubMed

    Arion, D; Meijer, L

    1989-08-01

    Histone H1 kinase (H1K) undergoes a transient activation at each early M phase of both meiotic and mitotic cell cycles. The mechanisms underlying the transient activation of this protein kinase were investigated in mitotic sea urchin eggs. Translocation of active H1K from particulate to soluble fraction does not seem to be responsible for this activation. H1K activation cannot be accounted for by the transient disappearance of a putative H1K inhibitor present in soluble fractions of homogenates. Aphidicolin, an inhibitor of DNA synthesis, and actinomycin D, an inhibitor of RNA synthesis, do not impede the transient appearance of H1K activity. H1K activation therefore does not require DNA or RNA synthesis. Fertilization triggers a rise in intracellular pH responsible for the increase of protein synthesis. H1K activation is highly dependent on the intracellular pH. Ammonia triggers an increase of intracellular pH and stimulates protein synthesis and H1K activation. Acetate lowers the intracellular pH, decreases protein synthesis, and blocks H1K activation. Protein synthesis is an absolute requirement for H1K activation as demonstrated by their identical sensitivities to emetine concentration and to time of emetine addition. About 60 min after fertilization, H1K activation and cleavage become independent of protein synthesis. The concentration of p34, a homolog of the yeast cdc2 gene product which has been recently shown to be a subunit of H1K, does not vary during the cell cycle and remains constant in emetine-treated cells. H1K activation thus requires the synthesis of either a p34 postranslational modifying enzyme or another subunit. Finally, phosphatase inhibitors and ATP slow down in the in vitro inactivation rate of H1K. These results suggest that a subunit or an activator of H1K is stored as an mRNA in the egg before mitosis and that full activation of H1K requires a phosphorylation.

  20. Adenosine 3':5'-cyclic monophosphate in higher plants: Isolation and characterization of adenosine 3':5'-cyclic monophosphate from Kalanchoe and Agave.

    PubMed

    Ashton, A R; Polya, G M

    1977-07-01

    1.3':5'-Cyclic AMP was extensively purified from Kalanchoe daigremontiana and Agave americana by neutral alumina and anion- and cation-exchange column chromatography. Inclusion of 3':5'-cyclic [8-3H]AMP from the point of tissue extraction permitted calculation of yields. The purification procedure removed contaminating material that was shown to interfere with the 3':5'-cyclic AMP estimation and characterization procedures. 2. The partially purified 3':5'-cyclic AMP was quantified by means of a radiochemical saturation assay using an ox heart 3':5'-cyclic AMP-binding protein and by an assay involving activation of a mammalian protein kinase. 3. The plant 3':5'-cyclic AMP co-migrated with 3':5'-cyclic [8-3H]AMP on cellulose chromatography, poly(ethyleneimine)-cellulose chromatography and silica-gel t.l.c. developed with several solvent systems. 4. The plant 3':5'-cyclic AMP was degraded by ox heart 3':5'-cyclic nucleotide phosphodiesterase at the same rates as authentic 3':5'-cyclic AMP. 1-Methyl-3-isobutylxanthine (1 mM), a specific inhibitor of the 3':5'-cyclic nucleotide phosphodieterase, completely inhibited such degradation. 5. The concentrations of 3':5'-cyclic AMP satisfying the above criteria in Kalanchoe and Agave were 2-6 and 1 pmol/g fresh wt. respectively. Possible bacterial contribution to these analyses was estimated to be less than 0.002pmol/g fresh wt. Evidence for the occurrence of 3':5'-cyclic AMP in plants is discussed.

  1. Synthetic study on carbocyclic analogs of cyclic ADP-ribose, a novel second messenger: an efficient synthesis of cyclic IDP-carbocyclic-ribose.

    PubMed

    Fukuoka, M; Shuto, S; Minakawa, N; Ueno, Y; Matsuda, A

    1999-01-01

    An efficient synthesis of cyclic IDP-carbocyclic-ribose, as a stable mimic for cyclic ADP-ribose, was achieved. 8-Bromo-N1-carbocyclic-ribosylinosine derivative 10, prepared from N1-(2,4-dinitrophenyl)inosine derivative 5 and an optically active carbocyclic amine 6, was converted to 8-bromo-N1-carbocyclic-ribosylinosine bisphosphate derivative 15. Treatment of 15 with I2 in the presence of molecular sieves in pyridine gave the desired cyclic product 16 quantitatively, which was deprotected and reductively debrominated to give the target cyclic IDP-carbocyclic-ribose (3).

  2. Quantifying the cooperative subunit action in a multimeric membrane receptor

    PubMed Central

    Wongsamitkul, Nisa; Nache, Vasilica; Eick, Thomas; Hummert, Sabine; Schulz, Eckhard; Schmauder, Ralf; Schirmeyer, Jana; Zimmer, Thomas; Benndorf, Klaus

    2016-01-01

    In multimeric membrane receptors the cooperative action of the subunits prevents exact knowledge about the operation and the interaction of the individual subunits. We propose a method that permits quantification of ligand binding to and activation effects of the individual binding sites in a multimeric membrane receptor. The power of this method is demonstrated by gaining detailed insight into the subunit action in olfactory cyclic nucleotide-gated CNGA2 ion channels. PMID:26858151

  3. Isoforms of cAMP-dependent protein kinase in the bivalve mollusk Mytilus galloprovincialis: activation by cyclic nucleotides and effect of temperature.

    PubMed

    Bardales, José R; Díaz-Enrich, María J; Ibarguren, Izaskun; Villamarín, J Antonio

    2004-12-01

    Two different isoforms of cAMP-dependent protein kinase (PKA) have been partially purified from the posterior adductor muscle and the mantle tissue of the sea mussel Mytilus galloprovincialis. The holoenzymes contain as regulatory subunit (R) the previously identified isoforms Rmyt1 and Rmyt2, and were named PKAmyt1 and PKAmyt2, respectively. Both cAMP and cGMP can activate these PKA isoforms completely, although they exhibit a sensitivity approximately 100-fold higher for cAMP than for cGMP. When compared to PKAmyt2, the affinity of PKAmyt1 for cAMP and cGMP is 2- and 3.5-fold higher, respectively. The effect of temperature on the protein kinase activity of both PKA isoforms was examined. Temperature changes did not affect significantly the apparent activation constants (Ka) for cAMP. However, the protein kinase activity was clearly modified and a remarkable difference was observed between both PKA isoforms. PKAmyt1 showed a linear Arrhenius plot over the full range of temperature tested, with an activation energy of 15.3+/-1.5 kJ/mol. By contrast, PKAmyt2 showed a distinct break in the Arrhenius plot at 15 degrees C; the activation energy when temperature was above 15 degrees C was 7-fold higher than that of lower temperatures (70.9+/-8.1 kJ/mol vs 10.6+/-6.5 kJ/mol). These data indicate that, above 15 degrees C, PKAmyt2 activity is much more temperature-dependent than that of PKAmyt1. This different behavior would be related to the different role that these isoforms may play in the tissues where they are located.

  4. Niobium-silica catalysts for the selective epoxidation of cyclic alkenes: the generation of the active site by grafting niobocene dichloride.

    PubMed

    Tiozzo, Cristina; Bisio, Chiara; Carniato, Fabio; Gallo, Alessandro; Scott, Susannah L; Psaro, Rinaldo; Guidotti, Matteo

    2013-08-28

    Niobium-containing silica materials obtained by deposition via liquid-phase grafting or dry impregnation of niobocene(iv) dichloride are active and selective catalysts in the epoxidation of alkenes in the presence of aqueous hydrogen peroxide. The generation of the catalytically-active Nb species was followed step-by-step, and investigated using a combined DR-UV-Vis, NIR, Raman, XRD, XANES and EXAFS analyses. At the end of the grafting procedure, the nature of the surface active species can be described as an oxo-Nb(v) site, tripodally grafted onto the silica surface in close proximity to other Nb(v) centres. The liquid-phase methodology provides a better dispersion of the metal sites onto the siliceous support than the dry-impregnation approach. The niobium-silica catalysts were then tested in the epoxidation of cyclohexene and 1-methylcyclohexene, as model substrates.

  5. Daily rhythm in pineal phosphodiesterase (PDE) activity reflects adrenergic/3',5'-cyclic adenosine 5'-monophosphate induction of the PDE4B2 variant.

    PubMed

    Kim, Jong-So; Bailey, Michael J; Ho, Anthony K; Møller, Morten; Gaildrat, Pascaline; Klein, David C

    2007-04-01

    The pineal gland is a photoneuroendocrine transducer that influences circadian and circannual dynamics of many physiological functions via the daily rhythm in melatonin production and release. Melatonin synthesis is stimulated at night by a photoneural system through which pineal adenylate cyclase is adrenergically activated, resulting in an elevation of cAMP. cAMP enhances melatonin synthesis through actions on several elements of the biosynthetic pathway. cAMP degradation also appears to increase at night due to an increase in phosphodiesterase (PDE) activity, which peaks in the middle of the night. Here, it was found that this nocturnal increase in PDE activity results from an increase in the abundance of PDE4B2 mRNA (approximately 5-fold; doubling time, approximately 2 h). The resulting level is notably higher (>6-fold) than in all other tissues examined, none of which exhibit a robust daily rhythm. The increase in PDE4B2 mRNA is followed by increases in PDE4B2 protein and PDE4 enzyme activity. Results from in vivo and in vitro studies indicate that these changes are due to activation of adrenergic receptors and a cAMP-dependent protein kinase A mechanism. Inhibition of PDE4 activity during the late phase of adrenergic stimulation enhances cAMP and melatonin levels. The evidence that PDE4B2 plays a negative feedback role in adrenergic/cAMP signaling in the pineal gland provides the first proof that cAMP control of PDE4B2 is a physiologically relevant control mechanism in cAMP signaling.

  6. Mechanisms of lung neutrophil activation after hemorrhage or endotoxemia: roles of reactive oxygen intermediates, NF-kappa B, and cyclic AMP response element binding protein.

    PubMed

    Shenkar, R; Abraham, E

    1999-07-15

    Acute inflammatory lung injury occurs frequently in the setting of severe infection or blood loss. Accumulation of activated neutrophils in the lungs and increased pulmonary proinflammatory cytokine levels are major characteristics of acute lung injury. In the present experiments, we examined mechanisms leading to neutrophil accumulation and activation in the lungs after endotoxemia or hemorrhage. Levels of IL-1 beta, TNF-alpha, and macrophage inflammatory protein-2 mRNA were increased in lung neutrophils from endotoxemic or hemorrhaged mice compared with those present in lung neutrophils from control mice or in peripheral blood neutrophils from endotoxemic, hemorrhaged, or control mice. The transcriptional regulatory factors NF-kappa B and cAMP response element binding protein were activated in lung but not blood neutrophils after hemorrhage or endotoxemia. Xanthine oxidase inhibition, achieved by feeding allopurinol or tungsten-containing diets, did not affect neutrophil trafficking to the lungs after hemorrhage or endotoxemia. Xanthine oxidase inhibition did prevent hemorrhage- but not endotoxemia-induced increases in proinflammatory cytokine expression among lung neutrophils. Hemorrhage- or endotoxemia-associated activation of NF-kappa B in lung neutrophils was not affected by inhibition of xanthine oxidase. cAMP response element binding protein activation was increased after hemorrhage, but not endotoxemia, in mice fed xanthine oxidase-inhibiting diets. Our results indicate that xanthine oxidase modulates cAMP response element binding protein activation and proinflammatory cytokine expression in lung neutrophils after hemorrhage, but not endotoxemia. These findings suggest that the mechanisms leading to acute inflammatory lung injury after hemorrhage differ from those associated with endotoxemia.

  7. Cellulose production, activated by cyclic di-GMP through BcsA and BcsZ, is a virulence factor and an essential determinant of the three-dimensional architectures of biofilms formed by Erwinia amylovora Ea1189.

    PubMed

    Castiblanco, Luisa F; Sundin, George W

    2016-10-18

    Bacterial biofilms are multicellular aggregates encased in an extracellular matrix mainly composed of exopolysaccharides (EPSs), protein and nucleic acids, which determines the architecture of the biofilm. Erwinia amylovora Ea1189 forms a biofilm inside the xylem of its host, which results in vessel plugging and water transport impairment. The production of the EPSs amylovoran and levan is critical for the formation of a mature biofilm. In addition, cyclic dimeric GMP (c-di-GMP) has been reported to positively regulate amylovoran biosynthesis and biofilm formation in E. amylovora Ea1189. In this study, we demonstrate that cellulose is synthesized by E. amylovora Ea1189 and is a major modulator of the three-dimensional characteristics of biofilms formed by this bacterium, and also contributes to virulence during systemic host invasion. In addition, we demonstrate that the activation of cellulose biosynthesis in E. amylovora is a c-di-GMP-dependent process, through allosteric binding to the cellulose catalytic subunit BcsA. We also report that the endoglucanase BcsZ is a key player in c-di-GMP activation of cellulose biosynthesis. Our results provide evidence of the complex composition of the extracellular matrix produced by E. amylovora and the implications of cellulose biosynthesis in shaping the architecture of the biofilm and in the expression of one of the main virulence phenotypes of this pathogen.

  8. Mechanical stimulation of cyclic tensile strain induces reduction of pluripotent related gene expressions via activation of Rho/ROCK and subsequent decreasing of AKT phosphorylation in human induced pluripotent stem cells

    SciTech Connect

    Teramura, Takeshi; Takehara, Toshiyuki; Onodera, Yuta; Nakagawa, Koichi; Hamanishi, Chiaki; Fukuda, Kanji

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Mechanical stimulation is an important factor for regulation of stem cell fate. Black-Right-Pointing-Pointer Cyclic stretch to human induced pluripotent stem cells activated small GTPase Rho. Black-Right-Pointing-Pointer Rho-kinase activation attenuated pluripotency via inhibition of AKT activation. Black-Right-Pointing-Pointer This reaction could be reproduced only by transfection of dominant active Rho. Black-Right-Pointing-Pointer Rho/ROCK are important molecules in mechanotransduction and control of stemness. -- Abstract: Mechanical stimulation has been shown to regulate the proliferation and differentiation of stem cells. However, the effects of the mechanical stress on the stemness or related molecular mechanisms have not been well determined. Pluripotent stem cells such as embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are used as good materials for cell transplantation therapy and research of mammalian development, since they can self-renew infinitely and differentiate into various cell lineages. Here we demonstrated that the mechanical stimulation to human iPS cells altered alignment of actin fibers and expressions of the pluripotent related genes Nanog, POU5f1 and Sox2. In the mechanically stimulated iPS cells, small GTPase Rho was activated and interestingly, AKT phosphorylation was decreased. Inhibition of Rho-associated kinase ROCK recovered the AKT phosphorylation and the gene expressions. These results clearly suggested that the Rho/ROCK is a potent primary effector of mechanical stress in the pluripotent stem cells and it participates to pluripotency-related signaling cascades as an upper stream regulator.

  9. Muscarinic receptor-independent activation of cyclic adenosine monophosphate-dependent protein kinase in rostral ventrolateral medulla underlies the sympathoexcitatory phase of cardiovascular responses during mevinphos intoxication in the rat.

    PubMed

    Tsai, Ching-Yi; Wu, Carol H Y; Chan, Samuel H H; Chang, Alice Y W

    2007-05-01

    As inhibitors of acetylcholinesterase, clinical presentations of poisoning from organophosphate compounds are generally believed to entail overstimulation by the accumulated acetylcholine on muscarinic receptors at peripheral and central synapses. That some patients still yielded to acute organophosphate poisoning despite repeated dosing of atropine suggests that cellular mechanisms that are independent of muscarinic receptor activation may also be engaged in organophosphate poisoning. The present study was undertaken to test the hypothesis that muscarinic receptor-independent activation of cyclic adenosine monophosphate-dependent protein kinase A (PKA) in rostral ventrolateral medulla (RVLM), a medullary site where sympathetic vasomotor tone originates and where the organophosphate poison mevinphos (Mev) acts, is involved in the cardiovascular responses exhibited during organophosphate intoxication. In Sprague-Dawley rats, microinjection bilaterally of Mev (10 nmol) into the RVLM significantly augmented PKA activity in ventrolateral medulla that was not antagonized by coadministration of an equimolar concentration (1 nmol) of atropine or selective muscarinic receptor type M1 (pirenzepine), M2 (methoctramine), M3 (4-diphenyl-acetoxy-N-dimethylpiperidinium), or M4 (tropicamide) inhibitor. Comicroinjection of two selective PKA antagonists (100 pmol), N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide and (9R,10S,12S)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolol[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-1][1,6]benzodiazocine-10-carboxylic acid, significantly blunted the initial sympathoexcitatory cardiovascular response and the accompanying augmentation of nitric oxide synthase (NOS I) expression in the ventrolateral medulla exhibited during Mev intoxication; the secondary sympathoinhibitory phase and associated elevation in NOS II expression were unaffected. We conclude that whereas a muscarinic receptor-independent augmentation of PKA

  10. Cyclic AMP system in muscle tissue during prolonged hypokinesia

    NASA Technical Reports Server (NTRS)

    Antipenko, Y. A.; Bubeyev, Y. A.; Korovkin, B. F.; Mikhaleva, N. P.

    1980-01-01

    Components of the cyclic Adenosine-cyclic-35-monophosphate (AMP) system in the muscle tissue of white rats were studied during 70-75 days of hypokinesia, created by placing the animals in small booths which restricted their movements, and during the readaptation period. In the initial period, cyclic AMP levels and the activities of phosphodiesterase and adenylate cyclase in muscle tissue were increased. The values for these indices were roughly equal for controls and experimental animals during the adaptation period, but on the 70th day of the experiment cAMP levels dropped, phosphodiesterase activity increased, and the stimulative effect of epinephrine on the activity of adenylate cyclase decreased. The indices under study normalized during the readaptation period.

  11. Spatial Memory in the Morris Water Maze and Activation of Cyclic AMP Response Element-Binding (CREB) Protein within the Mouse Hippocampus

    ERIC Educational Resources Information Center

    Porte, Yves; Buhot, Marie Christine; Mons, Nicole E.

    2008-01-01

    We investigated the spatio-temporal dynamics of learning-induced cAMP response element-binding protein activation/phosphorylation (pCREB) in mice trained in a spatial reference memory task in the water maze. Using immunohistochemistry, we examined pCREB immunoreactivity (pCREB-ir) in hippocampal CA1 and CA3 and related brain structures. During the…

  12. [Stimulating effect of human chorionic gonadotropin on the activity of guanidinoacetate-N-methyltransferase of rat testes: role of cyclic AMP].

    PubMed

    Karelin, A A; Mardashev, S R

    1977-01-01

    A study was made of the influence of human chorionic gonadotropin (HCGT) on the activity of guanidineacetate-N-methyltranspherase in human testes. Guanidineacetate-methyltranspherase proved to be stimulated in the testes of the sexually immature rats in vivo under the action of HCGT on the 19th day after birth and from the 24th to the 27th day after birth. The activity of the enzyme was also increased in adult rats weighing 35--40 g. The activity of guanidineacetate-methyltranspherase in the testes of rats was particularly sharply stimulated after a single administration of N6-O2'-dibutiryladenosine-3',5'-cyclophosphate against the background of a preliminary treatment of rats with HCGT for a period of 5 days. The enzyme stimulation induced by combined treatment of rats with HCGT and N6-O2'-dibutiryladenosine-3',5'-cyclophosphate was prevented by the administration of cycloheximide and actinomycine D. The activity of the enzyme decreased after the incubation of the rat testes tissue homogenate with HCGT.

  13. CCAAT/enhancer-binding protein delta activates insulin-like growth factor-I gene transcription in osteoblasts. Identification of a novel cyclic AMP signaling pathway in bone

    NASA Technical Reports Server (NTRS)

    Umayahara, Y.; Ji, C.; Centrella, M.; Rotwein, P.; McCarthy, T. L.

    1997-01-01

    Insulin-like growth factor-I (IGF-I) plays a key role in skeletal growth by stimulating bone cell replication and differentiation. We previously showed that prostaglandin E2 (PGE2) and other cAMP-activating agents enhanced IGF-I gene transcription in cultured primary rat osteoblasts through promoter 1, the major IGF-I promoter, and identified a short segment of the promoter, termed HS3D, that was essential for hormonal regulation of IGF-I gene expression. We now demonstrate that CCAAT/enhancer-binding protein (C/EBP) delta is a major component of a PGE2-stimulated DNA-protein complex involving HS3D and find that C/EBPdelta transactivates IGF-I promoter 1 through this site. Competition gel shift studies first indicated that a core C/EBP half-site (GCAAT) was required for binding of a labeled HS3D oligomer to osteoblast nuclear proteins. Southwestern blotting and UV-cross-linking studies showed that the HS3D probe recognized a approximately 35-kDa nuclear protein, and antibody supershift assays indicated that C/EBPdelta comprised most of the PGE2-activated gel-shifted complex. C/EBPdelta was detected by Western immunoblotting in osteoblast nuclear extracts after treatment of cells with PGE2. An HS3D oligonucleotide competed effectively with a high affinity C/EBP site from the rat albumin gene for binding to osteoblast nuclear proteins. Co-transfection of osteoblast cell cultures with a C/EBPdelta expression plasmid enhanced basal and PGE2-activated IGF-I promoter 1-luciferase activity but did not stimulate a reporter gene lacking an HS3D site. By contrast, an expression plasmid for the related protein, C/EBPbeta, did not alter basal IGF-I gene activity but did increase the response to PGE2. In osteoblasts and in COS-7 cells, C/EBPdelta, but not C/EBPbeta, transactivated a reporter gene containing four tandem copies of HS3D fused to a minimal promoter; neither transcription factor stimulated a gene with four copies of an HS3D mutant that was unable to bind osteoblast

  14. Color visualization of cyclic magnitudes

    NASA Astrophysics Data System (ADS)

    Restrepo, Alfredo; Estupiñán, Viviana

    2014-02-01

    We exploit the perceptual, circular ordering of the hues in a technique for the visualization of cyclic variables. The hue is thus meaningfully used for the indication of variables such as the azimuth and the units of the measurement of time. The cyclic (or circular) variables may be both of the continuous type or the discrete type; among the first there is azimuth and among the last you find the musical notes and the days of the week. A correspondence between the values of a cyclic variable and the chromatic hues, where the natural circular ordering of the variable is respected, is called a color code for the variable. We base such a choice of hues on an assignment of of the unique hues red, yellow, green and blue, or one of the 8 even permutations of this ordered list, to 4 cardinal values of the cyclic variable, suitably ordered; color codes based on only 3 cardinal points are also possible. Color codes, being intuitive, are easy to remember. A possible low accuracy when reading instruments that use this technique is compensated by fast, ludic and intuitive readings; also, the use of a referential frame makes readings precise. An achromatic version of the technique, that can be used by dichromatic people, is proposed.

  15. Buffering in cyclic gene networks

    NASA Astrophysics Data System (ADS)

    Glyzin, S. D.; Kolesov, A. Yu.; Rozov, N. Kh.

    2016-06-01

    We consider cyclic chains of unidirectionally coupled delay differential-difference equations that are mathematical models of artificial oscillating gene networks. We establish that the buffering phenomenon is realized in these system for an appropriate choice of the parameters: any given finite number of stable periodic motions of a special type, the so-called traveling waves, coexist.

  16. Glucose Evokes Rapid Ca2+ and Cyclic AMP Signals by Activating the Cell-Surface Glucose-Sensing Receptor in Pancreatic β-Cells.

    PubMed

    Nakagawa, Yuko; Nagasawa, Masahiro; Medina, Johan; Kojima, Itaru

    2015-01-01

    Glucose is a primary stimulator of insulin secretion in pancreatic β-cells. High concentration of glucose has been thought to exert its action solely through its metabolism. In this regard, we have recently reported that glucose also activates a cell-surface glucose-sensing receptor and facilitates its own metabolism. In the present study, we investigated whether glucose activates the glucose-sensing receptor and elicits receptor-mediated rapid actions. In MIN6 cells and isolated mouse β-cells, glucose induced triphasic changes in cytoplasmic Ca(2+) concentration ([Ca(2+)]c); glucose evoked an immediate elevation of [Ca(2+)]c, which was followed by a decrease in [Ca(2+)]c, and after a certain lag period it induced large oscillatory elevations of [Ca(2+)]c. Initial rapid peak and subsequent reduction of [Ca(2+)]c were independent of glucose metabolism and reproduced by a nonmetabolizable glucose analogue. These signals were also blocked by an inhibitor of T1R3, a subunit of the glucose-sensing receptor, and by deletion of the T1R3 gene. Besides Ca(2+), glucose also induced an immediate and sustained elevation of intracellular cAMP ([cAMP]c). The elevation of [cAMP]c was blocked by transduction of the dominant-negative Gs, and deletion of the T1R3 gene. These results indicate that glucose induces rapid changes in [Ca(2+)]c and [cAMP]c by activating the cell-surface glucose-sensing receptor. Hence, glucose generates rapid intracellular signals by activating the cell-surface receptor.

  17. Investigation of Cyclic Deformation and Fatigue of Polycrystalline Cu under Pure Compression Cyclic Loading Conditions

    NASA Astrophysics Data System (ADS)

    Hsu, Tzu-Yin Jean

    It is commonly accepted that fatigue crack is initiated under tensile fatigue stresses. However, practical examples demonstrate that cracks may initiate under pure compressive fluctuating loads, e.g. the failures observed in aircraft landing gear frames. As the mechanism of such failures is rarely investigated, there is very limited or non-existent knowledge pool on cyclic deformation response under pure compressive fatigue condition. Our recent work verified that fatigue cracks may nucleate from stress concentration sites under pure compression fatigue, but whether or not a form of stress concentration is always needed to initiate a crack remains uncertain. In this study, compression fatigue tests under different peak stresses were carried out on smooth bars of fully annealed OFHC Copper. The purpose of these tests is to investigate not only the cyclic deformation response but also the possibility of crack nucleation without the stress concentrator. Results showed that overall the cyclic stress-strain response and microstructural evolution of OFHC Copper under pure compression fatigue exhibits rather dissimilar behaviour compared to those under symmetrical fatigue. The specimens hardened rapidly within 10 cycles under pure compression fatigue unlike the gradual cyclic hardening behaviour in symmetrical fatigue with the same peak stress amplitude. Compressive cyclic creep behaviour was also observed. Moreover, TEM observation showed that only moderate slip activity was detectable on the surface instead of typical PSB features. The surface observations revealed that surface slip bands did not increase in number nor height as cycling progressed. In addition, surface roughening by grain boundary extrusion was detected to become more severe with further cycling. Therefore, the plastic strain accommodated within the samples was not mainly related to dislocation activities. Instead, the mechanism of cyclic creep response for pure compression fatigue was correlated and

  18. Synergistic action of cyclic GMP on catecholamine-induced chloride current in guinea-pig ventricular cells.

    PubMed Central

    Ono, K; Tareen, F M; Yoshida, A; Noma, A

    1992-01-01

    1. Effects of cyclic GMP on the catecholamine-induced chloride current (ICl) were studied using the whole-cell patch-clamp technique combined with internal perfusion in single ventricular myocytes dispersed from guinea-pig heart. 2. When ICl was activated by submaximal doses of isoprenaline (0.01-0.1 microM), adrenaline (0.5-1 microM) and histamine (0.2-0.5 microM), intracellular dialysis with cyclic GMP (10-100 microM) induced an extra increase of ICl. No further increase of ICl was induced by cyclic GMP when ICl was maximally activated. In the absence of agonists, cyclic GMP failed to induce ICl. 3. The enhancement by cyclic GMP was also observed when ICl was activated by external application of 0.2-1.0 microM-forskolin or by internal dialysis with a pipette solution containing 50-200 microM-cyclic AMP. 4. In contrast to cyclic GMP, 10-1000 microM-dibutyryl cyclic GMP and 8-bromo-cyclic GMP were ineffective in modifying ICl. 5. Milrinone (1-10 microM), a specific inhibitor of a kind of phosphodiesterase which is inhibited by cyclic GMP, also enhanced ICl activated by submaximal doses of isoprenaline. Milrinone itself did not activate ICl. 6. When ICl was enhanced by 5 microM-milrinone, an additional application of cyclic GMP failed to increase ICl. In the presence of cyclic GMP, milrinone failed to enhance ICl. 7. The above findings on ICl are analogous to the enhancement by cyclic GMP of the beta-adrenergic stimulation of the Ca2+ current reported in the same preparation, and support the hypothesis that in mammalian cardiac cells cyclic GMP potentiates elevation of cyclic AMP induced by beta-adrenergic agents, and thereby increases the amplitudes of ionic currents. PMID:1281506

  19. Adenosine 3',5-cyclic monophosphate phosphodiesterase activity in granulosa cells from Booroola x Romney ewes with and without the F gene.

    PubMed

    McNatty, K P; Heath, D A; Lun, S; Hudson, N L

    1989-02-01

    Granulosa cells from ovarian follicles (greater than or equal to 1 mm diameter) in Booroola ewes which are homozygous (FF) or heterozygous (F+) for the F gene have previously been shown to produce significantly more cAMP in response to FSH or LH than those from similar sized follicles in ewes without the F gene (++). The aim of these studies was to test whether these F gene-specific differences arose because of differences in cAMP-phosphodiesterase (cAMP-PDE) activity. In the first study using 1 mumol cAMP/l as substrate, no F gene-specific effects were noted in cAMP-PDE activity in granulosa cells from small (1-2.5 mm diameter, n = 4 per genotype) or large (greater than or equal to 3 mm diameter, n = 4 per genotype) follicles from FF, F+ or ++ ewes, despite F gene-specific effects in FSH (1 microgram/ml)- and LH (0.1 microgram/ml)-induced cAMP accumulation in these same cell preparations. The overall mean levels of cAMP-PDE across all genotypes in cells from small and large follicles were 0.47 +/- 0.04 (S.E.M., n = 12) and 0.28 +/- 0.03 pmol cAMP/10(6) cells per min respectively; the mean PDE activity in cells from small follicles was significantly (P less than 0.05) higher compared with that in cells from large follicles. In a second study, granulosa cells from each genotype were pooled over all follicle sizes (greater than or equal to 1 mm diameter, one pool per genotype) and the rates of cAMP hydrolysis tested over a range of substrate concentrations (0-16 mumol/l) but no gene-specific differences with respect to the Michaelis constant and maximum velocity were noted.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Cyclic Catamenial Dermatoses

    PubMed Central

    Hermanns-Lê, Trinh; Hermanns, Jean-François; Lesuisse, Marianne; Piérard, Gérald E.

    2013-01-01

    Circulating sex hormones follow major fluctuations during the ovarian cycle. The so-called premenstrual syndrome represents a global condition grouping the diversity of catamenial disorders. At the skin level, the sebaceous gland activity is obviously modulated by these endocrine fluctuations. In addition, a series of pathological manifestations take place simultaneously in some women. Among them, the most frequent skin condition is represented by catamenial acne. Concurrently, the autoimmune progesterone dermatitis refers to a diversity of skin alterations resulting from an immune reaction to progesterone. It is present under variable clinical aspects. A series of other recurrent skin conditions are not specifically induced but are merely exacerbated at the end of the ovarian cycle. PMID:24199187

  1. Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene.

    PubMed

    Singh, Priyanka; Shukla, Ravindra; Prakash, Bhanu; Kumar, Ashok; Singh, Shubhra; Mishra, Prashant Kumar; Dubey, Nawal Kishore

    2010-06-01

    The study deals with antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima and Citrus sinensis essential oils (EOs) and their phytochemical composition. The EOs were obtained by hydrodistillation and their chemical profile was determined through GC and GC-MS analysis. Both the EOs and their 1:1 combination showed broad fungitoxic spectrum against different food contaminating moulds. The EOs and their combination completely inhibited aflatoxin B(1) (AFB(1)) production at 500 ppm, whereas, DL-limonene, the major component of EOs showed better antiaflatoxigenic efficacy even at 250 ppm. Both the oils exhibited antioxidant activity as DPPH free radical scavenger in dose dependent manner. The IC(50) for radical scavenging efficacy of C. maxima and C. sinensis oils were to be 8.84 and 9.45 microl ml(-1), respectively. The EOs were found non-mammalian toxic showing high LD(50) for mice (oral, acute). The oils may be recommended as safe plant based antimicrobials as well as antioxidants for enhancement of shelf life of food commodities by checking their fungal infestation, aflatoxin production as well as lipid peroxidation.

  2. Cyclic peptide therapeutics: past, present and future.

    PubMed

    Zorzi, Alessandro; Deyle, Kaycie; Heinis, Christian

    2017-02-26

    Cyclic peptides combine several favorable properties such as good binding affinity, target selectivity and low toxicity that make them an attractive modality for the development of therapeutics. Over 40 cyclic peptide drugs are currently in clinical use and around one new cyclic peptide drug enters the market every year on average. The vast majority of clinically approved cyclic peptides are derived from natural products, such as antimicrobials or human peptide hormones. New powerful techniques based on rational design and in vitro evolution have enabled the de novo development of cyclic peptide ligands to targets for which nature does not offer solutions. A look at the cyclic peptides currently under clinical evaluation shows that several have been developed using such techniques. This new source for cyclic peptide ligands introduces a freshness to the field, and it is likely that de novo developed cyclic peptides will be in clinical use in the near future.

  3. A homogeneous immunoassay for cyclic nucleotides based on chemiluminescence energy transfer.

    PubMed Central

    Campbell, A K; Patel, A

    1983-01-01

    A chemiluminescent derivative of cyclic AMP, aminobutylethylisoluminol succinyl cyclic AMP (ABEI-scAMP), was synthesized in order to develop a homogeneous immunoassay based on non-radiative energy transfer. ABEI-scAMP was chemiluminescent (5.1 X 10(18) luminescent counts X mol-1 at pH 13), pure (greater than 95%) stable and immunologically active. A conventional immunoassay was established using ABEI-scAMP and a solid-phase anti-(cyclic AMP) immunoglobulin G which could detect cyclic AMP at least down to 25fmol. A homogeneous immunoassay for cyclic AMP was established by measuring the shift in wavelength from 460 to 525nm which occurred when ABEI-scAMP was bound to fluorescein-labelled anti-(cyclic AMP) immunoglobulin G. The assay was at least as sensitive as the conventional radioimmunoassay using cyclic [3H]AMP and could measure cyclic AMP over the range 1-1000nM. The homogeneous chemiluminescent energy transfer assay was also able to quantify the association and dissociation of antibody-antigen complexes. Chemiluminescence energy transfer occurred between fluorescein-labelled antibodies and several other ABEI-labelled antigens (Mr values 314-150000) including progesterone, cyclic GMP, complement component C9 and immunoglobulin G. The results provide a homogeneous immunoassay capable of measuring free cyclic AMP under conditions likely to exist inside cells. PMID:6316935

  4. New group 6 metal carbonyl complexes with 4,5-dimethyl-N,N-bis(pyridine-2-yl-methylene)benzene-1,2-diimine Schiff base: Synthesis, spectral, cyclic voltammetry and biological activity studies

    NASA Astrophysics Data System (ADS)

    Mohamed, Rania G.; Elantabli, Fatma M.; Helal, Nadia H.; El-Medani, Samir M.

    2015-04-01

    Thermal reaction of M(CO)6 (M = Cr, Mo or W) with a Schiff base (DMPA) derived from the condensation of 4,5-dimethyl-1,2-phenylenediamine and pyridine-2-carboxaldehyde in THF in absence and presence of a secondary ligand; 2-aminobenzimidazole (Abz), thiourea (Tu) or 2-(2‧-pyridyl)benzimidazole (pybz) were studied. The reaction of Cr(CO)6 gave the four complexes Cr2(CO)2(DMPA)2; 1, Cr(DMPA)2(Abz)2; 2, Cr2(CO)4(DMPA)2(Tu)2; 3 and Cr(DMPA)2(Pybz); 4, while the thermal reaction of Mo(CO)6 resulted in the formation of the two complexes Mo2(O)6(DMPA)2; 5, and Mo2(O)2(CO)2(DMPA)2(Tu)2; 6. Thermal reaction of W(CO)6 and the Schiff base DMPA gave the complex W(O)2(DMPA)2; 7. The ligand DMPA and its metal complexes have been reported and characterized based on elemental analyses, IR, 1H NMR, magnetic measurements, and thermal analysis. Cyclic voltammetry and biological activity were also investigated.

  5. New group 6 metal carbonyl complexes with 4,5-dimethyl-N,N-bis(pyridine-2-yl-methylene)benzene-1,2-diimine Schiff base: synthesis, spectral, cyclic voltammetry and biological activity studies.

    PubMed

    Mohamed, Rania G; Elantabli, Fatma M; Helal, Nadia H; El-Medani, Samir M

    2015-04-15

    Thermal reaction of M(CO)6 (M=Cr, Mo or W) with a Schiff base (DMPA) derived from the condensation of 4,5-dimethyl-1,2-phenylenediamine and pyridine-2-carboxaldehyde in THF in absence and presence of a secondary ligand; 2-aminobenzimidazole (Abz), thiourea (Tu) or 2-(2'-pyridyl)benzimidazole (pybz) were studied. The reaction of Cr(CO)6 gave the four complexes Cr2(CO)2(DMPA)2; 1, Cr(DMPA)2(Abz)2; 2, Cr2(CO)4(DMPA)2(Tu)2; 3 and Cr(DMPA)2(Pybz); 4, while the thermal reaction of Mo(CO)6 resulted in the formation of the two complexes Mo2(O)6(DMPA)2; 5, and Mo2(O)2(CO)2(DMPA)2(Tu)2; 6. Thermal reaction of W(CO)6 and the Schiff base DMPA gave the complex W(O)2(DMPA)2; 7. The ligand DMPA and its metal complexes have been reported and characterized based on elemental analyses, IR, (1)H NMR, magnetic measurements, and thermal analysis. Cyclic voltammetry and biological activity were also investigated.

  6. Results on Cyclic Signal Processing Systems,

    DTIC Science & Technology

    1998-01-01

    8] Vaidyanathan, P. P. Multirate systems and filter banks , Prentice Hall, 1993. [9] Vaidyanathan, P. P., and Kirac, A. "Theory of cyclic filter ...91125 Abstract We present a state space description for cyclic LTI sys- tems which find applications in cyclic filter banks and wavelets. We also...in a unified way by using the realization matrix defined by the state space description. 1. INTRODUCTION Cyclic digital filters and filter banks

  7. Battacin (Octapeptin B5), a New Cyclic Lipopeptide Antibiotic from Paenibacillus tianmuensis Active against Multidrug-Resistant Gram-Negative Bacteria

    PubMed Central

    Qian, Chao-Dong; Teng, Yi; Zhao, Wen-Peng; Li, Ou; Fang, Sheng-Guo; Huang, Zhao-Hui; Gao, Hai-Chun

    2012-01-01

    Hospital-acquired infections caused by drug-resistant bacteria are a significant challenge to patient safety. Numerous clinical isolates resistant to almost all commercially available antibiotics have emerged. Thus, novel antimicrobial agents, specifically those for multidrug-resistant Gram-negative bacteria, are urgently needed. In the current study, we report the isolation, structure elucidation, and preliminary biological characterization of a new cationic lipopeptide antibiotic, battacin or octapeptin B5, produced from a Paenibacillus tianmuensis soil isolate. Battacin kills bacteria in vitro and has potent activity against Gram-negative bacteria, including multidrug-resistant and extremely drug-resistant clinical isolates. Hospital strains of Escherichia coli and Pseudomonas aeruginosa are the pathogens most sensitive to battacin, with MICs of 2 to 4 μg/ml. The ability of battacin to disrupt the outer membrane of Gram-negative bacteria is comparable to that of polymyxin B, the last-line therapy for infections caused by antibiotic-resistant Gram-negative bacteria. However, the capacity of battacin to permeate bacterial plasma membranes is less extensive than that of polymyxin B. The bactericidal kinetics of battacin correlate with the depolarization of the cell membrane, suggesting that battacin kills bacteria by disrupting the cytoplasmic membrane. Other studies indicate that battacin is less acutely toxic than polymyxin B and has potent in vivo biological activity against E. coli. Based on the findings of the current study, battacin may be considered a potential therapeutic agent for the treatment of infections caused by antibiotic-resistant Gram-negative bacteria. PMID:22183171

  8. Nocturnal accumulation of cyclic 3',5'-guanosine monophosphate (cGMP) in the chick pineal organ is dependent on activation of guanylyl cyclase-B.

    PubMed

    Olcese, J; Majora, C; Stephan, A; Müller, D

    2002-01-01

    The role of cGMP in the avian pineal is not well understood. Although the light-sensitive secretion of melatonin is a well-known output of the circadian oscillator, pharmacologically elevated cGMP levels do not result in altered melatonin secretory amplitude or phase. This suggests that pineal cGMP signalling does not couple the endogenous circadian oscillator to the expression of melatonin rhythms. Nonetheless, the free-running rhythm of cGMP signalling implies a link to the circadian oscillator in chick pinealocytes. As the circadian rhythm of cGMP levels in vitro is not altered by pharmacological inhibition of phosphodiesterase activity, we infer that the synthesis, rather than the degradation of cGMP, is under circadian control. In vitro experiments with the nitric oxide synthase (NOS) inhibitor NG-nitro-L-arginine as well as with an inhibitor of the NO-sensitive soluble guanylyl cyclase (sGC), showed that the NOS-sGC pathway does not play a major role in the circadian control of cGMP generation. In organ culture experiments, we demonstrated that C-type natriuretic peptide (CNP), but not atrial natriuretic peptide (ANP), elevated daytime levels of cGMP. As CNP acts on the membrane guanylyl cyclase isoform B (GC-B), which is expressed at very high levels in mammalian pineals, we investigated the effect of the membrane GC-specific inhibitor HS-142 on chick pineal cGMP levels. CNP-induced daytime cGMP levels were reduced by HS-142. More importantly, 'spontaneously' high nocturnal levels of cGMP in vitro were reduced to daytime levels by acute addition of HS-142. These data implicate endogenous nocturnal CNP release and subsequent activation of GC-B as the major input driving cGMP synthesis in the chick pineal organ.

  9. Cocatalyst-Free Hybrid Ionic Liquid (IL)-Based Porous Materials for Efficient Synthesis of Cyclic Carbonates through a Cooperative Activation Pathway.

    PubMed

    Jayakumar, Sanjeevi; Li, He; Zhao, Yaopeng; Chen, Jian; Yang, Qihua

    2017-03-02

    Cocatalyst-free ionic liquid (IL)-based porous polymers (Px -Vy -OHz R) functionalized with an intermolecular hydroxyl group were prepared by means of radical copolymerization of 1-butyl-3-vinylimidazolium bromide, (4-vinylphenyl)methanol (VBzOH), and divinylbenzene (DVB) under solvothermal conditions. As the ratio of 4-vinylphenylmethanol in the initial mixture increased, the content of the hydroxyl groups in the polymer increased from 3.35 to 5.35 mmol g(-1) and the Brunauer-Emmett-Teller (BET) surface area of the polymer decreased sharply from 365 to 2.5 m(2)  g(-1) . In the carbonation of CO2 and epoxides, the turnover frequency (TOF) of Px -Vy -OHz R increased gradually from 25 to 67 h(-1) as the OH ratio increased irrespective of the sharp decrease in BET surface area, which suggests the existence of a cooperative activation effect between OH and ILs. To obtain a high OH content while still maintaining a high BET surface area, hybrid porous materials (SBA-[Vx OHy ]R-n) were prepared by means of copolymerization of 1-ethyl-3-vinylimidazolium bromide and 4-vinylphenylmethanol in the mesopores of SBA-15. SBA-[Vx OHy ]R-n was more active than its polymer counterpart (TOF: 188 versus 71 h(-1) ) in the cycloaddition of CO2 with propyl oxide owing to the combined effect of the high BET surface area and the high OH content. The hybridization of mesoporous materials with polymers represents an efficient strategy for the preparation of high-performance solid catalysts for chemical transformations.

  10. Radioiodination of Aryl-Alkyl Cyclic Sulfates

    PubMed Central

    Mushti, Chandra; Papisov, Mikhail I.

    2015-01-01

    Among the currently available positron emitters suitable for Positron Emission Tomography (PET), 124I has the longest physical half-life (4.2 days). The long half-life and well-investigated behavior of iodine in vivo makes 124I very attractive for pharmacological studies. In this communication, we describe a simple yet effective method for the synthesis of novel 124I labeled compounds intended for PET imaging of arylsulfatase activity in vivo. Arylsulfatases have important biological functions, and genetic deficiencies of such functions require pharmacological replacement, the efficacy of which must be properly and non-invasively evaluated. These enzymes, even though their natural substrates are mostly of aliphatic nature, hydrolyze phenolic sulfates to phenol and sulfuric acid. The availability of [124I]iodinated substrates is expected to provide a PET-based method for measuring their activity in vivo. The currently available methods of synthesis of iodinated arylsulfates usually require either introducing of a protected sulfate ester early in the synthesis or introduction of sulfate group at the end of synthesis in a separate step. The described method gives the desired product in one step from an aryl-alkyl cyclic sulfate. When treated with iodide, the source cyclic sulfate opens with substitution of iodide at the alkyl center and gives the desired arylsulfate monoester. PMID:23135631

  11. Rethinking progesterone regulation of female reproductive cyclicity.

    PubMed

    Kubota, Kaiyu; Cui, Wei; Dhakal, Pramod; Wolfe, Michael W; Rumi, M A Karim; Vivian, Jay L; Roby, Katherine F; Soares, Michael J

    2016-04-12

    The progesterone receptor (PGR) is a ligand-activated transcription factor with key roles in the regulation of female fertility. Much has been learned of the actions of PGR signaling through the use of pharmacologic inhibitors and genetic manipulation, using mouse mutagenesis. Characterization of rats with a null mutation at the Pgr locus has forced a reexamination of the role of progesterone in the regulation of the female reproductive cycle. We generated two Pgr mutant rat models, using genome editing. In both cases, deletions yielded a null mutation resulting from a nonsense frame-shift and the emergence of a stop codon. Similar to Pgr null mice, Pgr null rats were infertile because of deficits in sexual behavior, ovulation, and uterine endometrial differentiation. However, in contrast to the reported phenotype of female mice with disruptions in Pgr signaling, Pgr null female rats exhibit robust estrous cycles. Cyclic changes in vaginal cytology, uterine histology, serum hormone levels, and wheel running activity were evident in Pgr null female rats, similar to wild-type controls. Furthermore, exogenous progesterone treatment inhibited estrous cycles in wild-type female rats but not in Pgr-null female rats. As previously reported, pharmacologic antagonism supports a role for PGR signaling in the regulation of the ovulatory gonadotropin surge, a result at variance with experimentation using genetic ablation of PGR signaling. To conclude, our findings in the Pgr null rat challenge current assumptions and prompt a reevaluation of the hormonal control of reproductive cyclicity.

  12. 1,25-dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter.

    PubMed

    Yuan, Weihua; Pan, Wei; Kong, Juan; Zheng, Wei; Szeto, Frances L; Wong, Kari E; Cohen, Ronald; Klopot, Anna; Zhang, Zhongyi; Li, Yan Chun

    2007-10-12

    We have shown that 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) down-regulates renin expression. To explore the molecular mechanism, we analyzed the mouse Ren-1c gene promoter by luciferase reporter assays. Deletion analysis revealed two DNA fragments from -2,725 to -2,647 (distal fragment) and from -117 to +6 (proximal fragment) that are sufficient to mediate the repression. Mutation of the cAMP response element (CRE) in the distal fragment blunted forskolin stimulation as well as 1,25(OH)(2)D(3) inhibition of the transcriptional activity, suggesting the involvement of CRE in 1,25(OH)(2)D(3)-induced suppression. EMSA revealed that 1,25(OH)(2)D(3) markedly inhibited nuclear protein binding to the CRE in the promoter. ChIP and GST pull-down assays demonstrated that liganded VDR blocked the binding of CREB to the CRE by directly interacting with CREB with the ligand-binding domain, and the VDR-mediated repression can be rescued by CREB, CBP, or p300 overexpression. These data indicate that 1,25(OH)(2)D(3) suppresses renin gene expression at least in part by blocking the formation of CRE-CREB-CBP complex.

  13. Sources of Water to Wells for Transient Cyclic Systems

    USGS Publications Warehouse

    Reilly, T.E.; Pollock, D.W.

    1996-01-01

    Many state agencies are currently (1995) developing wellhead protection programs. The thrust of some of these programs is to protect water supplies by determining the areas contributing recharge to water-supply wells and by specifying regulations to minimize the opportunity for contamination of the recharge water by activities at the land surface. The area contributing recharge to a discharging well is the surface area at the water table through which the water flowing to the well entered the ground-water system. In the analyses of ground-water flow systems, steady-state average conditions are commonly used to simplify the problem and make a solution tractable. However, recharge is usually cyclic in nature, with seasonal cycles and longer term climatic cycles. The effect of these cyclic stresses on the area contributing recharge to wells is quantitatively analyzed for a hypothetical alluvial valley aquifer system that is representative of a large class of ground-water systems that are extensively developed for water supply. The analysis shows that, in many cases, these cyclic changes in the recharge rates do not significantly affect the location and size of the areas contributing recharge to wells. The ratio of the mean travel time to the length of the cyclic stress period appears to be an indicator of whether the transient effects of the cyclic stress must be explicitly represented in the analysis of contributing areas to wells. For the cases examined, if the ratio of the mean travel time to the period of the cyclic stress was much greater than one, then the transient area contributing recharge to wells was similar to the area calculated using an average steady-state condition. However, cyclic stresses on systems with ratios less than one do have an effect on the location and size of the areas contributing recharge to wells.

  14. Effect of gallium-porphyrin analogue ATX-70 on nitroxide formation from a cyclic secondary amine by ultrasound: On the mechanism of sonodynamic activation

    SciTech Connect

    Miyoshi, N.; Misik, V.; Riesz, P.

    1995-08-01

    Sonodynamic therapy is a promising new modality for cancer treatment based on the synergistic effect on tumor cell killing by combination of a drug (typically a photosensitizer) and ultra-sound. The mechanism of sonodynamic action was suggested to involve photoexcitation of the sensitizer by sonoluminescent light, with subsequent formation of singlet oxygen. In this work we studied the aqueous sonsochemical reactions of the gallium-porphyrin derivative ATX-70, one of the most active sonodynamic agents found, using 50 kHz ultrasound. The experiments were carried out in the presence of 2,2,6,6-tetramethyl-4-piperidone hydrochloride (TMP), which reacts with singlet oxygen or {degrees}OH radicals to give the EPR-detectable nitroxide 2,2,6,6-tetramethyl-piperidone-N-oxyl (TMP-NO). Recently it has been suggested that the enhancement of TMP-NO yields in the presence of aqueous solutions of ATX-70 exposed to ultrasound was evidence for the formation of singlet oxygen in the system. Our results show that the surfactant cetyltrimethylammonium bromide (CTAB) can mimic the ATX-70-induced increase in the TMP-NO signal, but it fails to reproduce the behavior of ATX-70 in D{sub 2}O: while the yields of TMP-NO in the presence of ATX-70 increase in D{sub 2}O, the opposite effect was found with the surfactant CTAB. However, our data show that the increased TMP-NO yields in D{sub 2}O are paralleled by an increased concentration of ATX-70 dimer, a form that is inactive in the photochemical generation of singlet oxygen. Finding the ATX-70-dependent enhancement of the TMP-NO signal was highest at {approximately} 20% O{sub 2}, in both N{sub 2}/O{sub 2} and argon/O{sub 2} mixtures, and decreased with increasing oxygen concentration is not compatible with the singlet oxygen mechanism. Finally, results on the temperature dependence of the ATX-70-induced formation of TMP-NO are not consistent with the photochemical excitation of ATX-70 by sonoluminescent light. 44 refs., 10 figs., 1 tab.

  15. The nuclear corepressors NCoR and SMRT are key regulators of both ligand- and 8-bromo-cyclic AMP-dependent transcriptional activity of the human progesterone receptor.

    PubMed

    Wagner, B L; Norris, J D; Knotts, T A; Weigel, N L; McDonnell, D P

    1998-03-01

    Previously, we defined a novel class of ligands for the human progesterone receptor (PR) which function as mixed agonists. These compounds induce a conformational change upon binding the receptor that is different from those induced by agonists and antagonists. This establishes a correlation between the structure of a ligand-receptor complex and its transcriptional activity. In an attempt to define the cellular components which distinguish between different ligand-induced PR conformations, we have determined, by using a mammalian two-hybrid assay, that the nuclear receptor corepressor (NCoR) and the silencing mediator for retinoid and thyroid hormone receptor (SMRT) differentially associate with PR depending upon the class of ligand bound to the receptor. Specifically, we observed that the corepressors preferentially associate with antagonist-occupied PR and that overexpression of these corepressors suppresses the partial agonist activity of antagonist-occupied PR. Binding studies performed in vitro, however, reveal that recombinant SMRT can interact with PR in a manner which is not influenced by the nature of the bound ligand. Thus, the inability of SMRT or NCoR to interact with agonist-activated PR when assayed in vivo may relate more to the increased affinity of PR for coactivators, with a subsequent displacement of corepressors, than to an inherent low affinity for the corepressor proteins. Previous work from other groups has shown that 8-bromo-cyclic AMP (8-bromo-cAMP) can convert the PR antagonist RU486 into an agonist and, additionally, can potentiate the transcriptional activity of agonist-bound PR. In this study, we show that exogenous expression of NCoR or SMRT suppresses all 8-bromo-cAMP-mediated potentiation of PR transcriptional activity. Further analysis revealed that 8-bromo-cAMP addition decreases the association of NCoR and SMRT with PR. Thus, we propose that 8-bromo-cAMP-mediated potentiation of PR transcriptional activity is due, at least in part

  16. The Nuclear Corepressors NCoR and SMRT Are Key Regulators of Both Ligand- and 8-Bromo-Cyclic AMP-Dependent Transcriptional Activity of the Human Progesterone Receptor

    PubMed Central

    Wagner, Brandee L.; Norris, John D.; Knotts, Trina A.; Weigel, Nancy L.; McDonnell, Donald P.

    1998-01-01

    Previously, we defined a novel class of ligands for the human progesterone receptor (PR) which function as mixed agonists. These compounds induce a conformational change upon binding the receptor that is different from those induced by agonists and antagonists. This establishes a correlation between the structure of a ligand-receptor complex and its transcriptional activity. In an attempt to define the cellular components which distinguish between different ligand-induced PR conformations, we have determined, by using a mammalian two-hybrid assay, that the nuclear receptor corepressor (NCoR) and the silencing mediator for retinoid and thyroid hormone receptor (SMRT) differentially associate with PR depending upon the class of ligand bound to the receptor. Specifically, we observed that the corepressors preferentially associate with antagonist-occupied PR and that overexpression of these corepressors suppresses the partial agonist activity of antagonist-occupied PR. Binding studies performed in vitro, however, reveal that recombinant SMRT can interact with PR in a manner which is not influenced by the nature of the bound ligand. Thus, the inability of SMRT or NCoR to interact with agonist-activated PR when assayed in vivo may relate more to the increased affinity of PR for coactivators, with a subsequent displacement of corepressors, than to an inherent low affinity for the corepressor proteins. Previous work from other groups has shown that 8-bromo-cyclic AMP (8-bromo-cAMP) can convert the PR antagonist RU486 into an agonist and, additionally, can potentiate the transcriptional activity of agonist-bound PR. In this study, we show that exogenous expression of NCoR or SMRT suppresses all 8-bromo-cAMP-mediated potentiation of PR transcriptional activity. Further analysis revealed that 8-bromo-cAMP addition decreases the association of NCoR and SMRT with PR. Thus, we propose that 8-bromo-cAMP-mediated potentiation of PR transcriptional activity is due, at least in part

  17. Cyclic Pursuit in Three Dimensions

    DTIC Science & Technology

    2010-12-17

    A three-dimensional version of the motion camouflage pursuit 49th IEEE Conference on Decision and Control December 15-17, 2010 Hilton Atlanta Hotel ...show that Θ is a constant value on MCB(a). Proposition 4: Consider a two-particle system operating on MCB(a) according to the closed-loop mutual CB...illustrate various types of trajectories in terms of initial conditions (` and Θ) and parameter values (a+ and a−). In our planar discussion of cyclic

  18. Cyclic Deformation in Metallic Glasses.

    PubMed

    Sha, Z D; Qu, S X; Liu, Z S; Wang, T J; Gao, H

    2015-10-14

    Despite the utmost importance and decades of experimental studies on fatigue in metallic glasses (MGs), there has been so far little or no atomic-level understanding of the mechanisms involved. Here we perform molecular dynamics simulations of tension-compression fatigue in Cu50Zr50 MGs under strain-controlled cyclic loading. It is shown that the shear band (SB) initiation under cyclic loading is distinctly different from that under monotonic loading. Under cyclic loading, SB initiation takes place when aggregates of shear transformation zones (STZs) accumulating at the MG surface reach a critical size comparable to the SB width, and the accumulation of STZs follows a power law with rate depending on the applied strain. It is further shown that almost the entire fatigue life of nanoscale MGs under low cycle fatigue is spent in the SB-initiation stage, similar to that of crystalline materials. Furthermore, a qualitative investigation of the effect of cycling frequency on the fatigue behavior of MGs suggests that higher cycling frequency leads to more cycles to failure. The present study sheds light on the fundamental fatigue mechanisms of MGs that could be useful in developing strategies for their engineering applications.

  19. Plant cyclic nucleotide signalling: facts and fiction.

    PubMed

    Martinez-Atienza, Juliana; Van Ingelgem, Carl; Roef, Luc; Maathuis, Frans Jm

    2007-11-01

    The presence of the cyclic nucleotides 3',5'-cyclic adenyl monophosphate (cAMP) and 3',5'-cyclic guanyl monophosphate (cGMP) in plants is now generally accepted. In addition, cAMP and cGMP have been implicated in the regulation of important plant processes such as stomatal functioning, monovalent and divalent cation fluxes, chloroplast development, gibberellic acid signalling, pathogen response and gene transcription. However, very little is known regarding the components of cyclic nucleotide signalling in plants. In this addendum, the evidence for specific mechanisms of plant cyclic nucleotide signalling is evaluated and discussed.

  20. Regulation of the laminin beta 1 (LAMB1), retinoic acid receptor beta, and bone morphogenetic protein 2 genes in mutant F9 teratocarcinoma cell lines partially deficient in cyclic AMP-dependent protein kinase activity.

    PubMed

    Shen, J; Li, C; Gudas, L J

    1997-12-01

    We stably transfected a gene encoding a dominant negative regulatory subunit of cyclic AMP (cAMP)-dependent protein kinase A (PKA) into F9 cells and generated cell lines partially deficient in PKA activity (DN16 and DN19). In these cell lines, the retinoic acid (RA) receptor beta and laminin beta(1) chain (LAMB1) genes were regulated normally by RA alone, indicating that in the absence of exogenous modulation of cAMP levels, the PKA signaling pathway does not seem to play a major role in the RA-associated regulation of these genes. However, alterations in gene regulation were observed when the mutant cell lines were treated with a combination of RA and cAMP analogues. Moreover, in the DN16 cell line, which exhibits the lowest PKA activity among the mutant cell lines [22% of wild type (WT) at 1 microM cAMP], there was a significant decrease in the cAMP-associated activation of the LAMB1 gene DNase I hypersensitivity site 2 enhancer, as measured by chloramphenicol acetyl transferase assays. Using electrophoretic mobility shift assays, less protein binding was observed at one of the motifs (C2) within this enhancer region in the DN16 cells as compared to the F9 WT cells after treatment of the cells with RA and cAMP analogues for 24 h. Furthermore, no increase in C2 binding was observed when extracts from RA-treated F9 ST or DN16 cells were subjected to in vitro phosphorylation, suggesting that PKA is involved in the induction of the C2-binding protein in RA-treated cells. In contrast to the results with RA receptor beta and LAMB1, the effects of cAMP analogues on the RA-associated regulation of the bone morphogenetic protein 2 gene were not altered in the cell lines that exhibited reduced PKA activity. These results suggest that a partial reduction in PKA activity is not sufficient to abrogate the effects of cAMP analogues on all of the genes regulated by RA.

  1. Cyclic phosphatidic acid - a unique bioactive phospholipid.

    PubMed

    Fujiwara, Yuko

    2008-09-01

    Cyclic phosphatidic acid (CPA) is a naturally occurring analog of the growth factor-like phospholipid mediator, lysophosphatidic acid (LPA). The sn-2 hydroxy group of CPA forms a 5-membered ring with the sn-3 phosphate. CPA affects numerous cellular functions, including anti-mitogenic regulation of the cell cycle, induction of stress fiber formation, inhibition of tumor cell invasion and metastasis, and regulation of differentiation and survival of neuronal cells. Interestingly, many of these cellular responses caused by CPA oppose those of LPA despite the activation of apparently overlapping receptor populations. Since the early 1990s, studies on CPA actions gradually developed, and we are now beginning to understand the importance of this lipid. In this review, we focus on the current knowledge about CPA, including enzymatic formation of CPA, unique biological activities and biological targets of CPA, and we also explore metabolically stabilized CPA analogs.

  2. Cyclical components of local rainfall data

    NASA Astrophysics Data System (ADS)

    Mentz, R. P.; D'Urso, M. A.; Jarma, N. M.; Mentz, G. B.

    2000-02-01

    This paper reports on the use of a comparatively simple statistical methodology to study local short time series rainfall data. The objective is to help in agricultural planning, by diminishing the risks associated with some uncertainties affecting this business activity.The analysis starts by assuming a model of unobservable components, trend, cycle, seasonal and irregular, that is well known in many areas of application. When series are in the realm of business and economics, the statistical methods popularized by the US Census Bureau US National Bureau of Economic Research are used for seasonal and cyclical estimation, respectively. The flexibility of these methods makes them good candidates to be applied in the meteorological context, and this is done in this paper for a selection of monthly rainfall time series.Use of the results to help in analysing and forecasting cyclical components is emphasized. The results are interesting. An agricultural entrepreneur, or a group of them located in a single geographical region, will profit by systematically collecting information (monthly in our work) about rainfall, and adopting the scheme of analysis described in this paper.

  3. [Effect of cyclic somatostatin on ethanol-induced hypoglycemia].

    PubMed

    Piccardo, M G; Marchetti, A M; Breda, E

    1979-06-30

    The authors examined the activity of the cyclic Somatostatin on Ethanol hypoglycemia. While the peptide is capable of increasing the plasma glucose levels of hypoglicemia starved rats, it does not increase the levels of plasma glucose in normal rats under the action of ethanol perfusion.

  4. Antifungal cyclic peptides from the marine sponge Microscleroderma herdmani

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Screening natural product extracts from National Cancer Institute Open Repository for antifungal discovery afforded hits for bioassay-guided fractionation. Upon LC-MS analysis of column fractions with antifungal activities to generate information on chemical structure, two new cyclic hexapeptides, m...

  5. Cyclic tensile strain upregulates collagen synthesis in isolated tendon fascicles

    SciTech Connect

    Screen, Hazel R.C. . E-mail: H.R.C.Screen@qmul.ac.uk; Shelton, Julia C.; Bader, Dan L.; Lee, David A.

    2005-10-21

    Mechanical stimulation has been implicated as an important regulatory factor in tendon homeostasis. In this study, a custom-designed tensile loading system was used to apply controlled mechanical stimulation to isolated tendon fascicles, in order to examine the effects of 5% cyclic tensile strain at 1 Hz on cell proliferation and matrix synthesis. Sample viability and gross structural composition were maintained over a 24 h loading period. Data demonstrated no statistically significant differences in cell proliferation or glycosaminoglycan production, however, collagen synthesis was upregulated with the application of cyclic tensile strain over the 24 h period. Moreover, a greater proportion of the newly synthesised matrix was retained within the sample after loading. These data provide evidence of altered anabolic activity within tendon in response to mechanical stimuli, and suggest the importance of cyclic tensile loading for the maintenance of the collagen hierarchy within tendon.

  6. A reassessment of the modulatory role of cyclic AMP in catecholamine secretion by chromaffin cells.

    PubMed Central

    Parramón, M; González, M P; Oset-Gasque, M J

    1995-01-01

    1. The role of adenosine 3':5'-cyclic monophosphate (cyclic AMP) in the regulation of catecholamine (CA) secretion in chromaffin cells remains equivocal from previous studies. 2. In the present study the effect of this cyclic nucleotide on basal CA secretion, as well as on intracellular calcium and membrane potential has been examined. 3. Forskolin and the permeable cyclic AMP analogue, 8-(4-chlorphenylthio)-adenosine-3'-5' monophosphate cyclic (pClpcAMP), increased basal CA secretion in a dose-dependent manner. The EC50s were 0.43 +/- 0.10 microM for forskolin and 39 +/- 9 microM for pClpcAMP. Other agonists with adenylate cyclase activity such as stimulants of adenosine receptors, beta-adrenoceptors, GABAB receptors and intestinal vasoactive peptide (VIP), also increased basal CA secretion in a highly significant manner. However, when they were added together with forskolin, CA secretion was not affected although an additive increase in cyclic AMP levels was produced. 4. Statistical analysis of the correlation between cyclic AMP levels and CA secretion evoked by these cyclic AMP increasing compounds showed that a significant direct correlation between both parameters existed only when low levels of cyclic AMP were produced by secretagogue stimulation. When the increase in intracellular cyclic AMP concentrations exceeded approximately 8 times the basal cyclic AMP levels the correlation was not significant. These results indicate a dual dose-dependent effect of cyclic AMP on basal CA secretion.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7881750

  7. Ca sup 2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes

    SciTech Connect

    Mery, P-F.; Fischmeister, R. ); Lohmann, S.M.; Walter, U. )

    1991-02-15

    Regulation of cardiac contraction by neurotransmitters and hormones is often correlated with regulation of the L-type Ca{sup 2+}-channel current (I{sub Ca}) through the opposite actions for two second messengers, cyclic AMP and cyclic GMP. While cyclic AMP stimulation of I{sub Ca} is mediated by the activation of cyclic AMP-dependent protein kinase, inhibition of I{sub Ca} by cyclic GMP in frog heart is largely mediated by activation of cyclic AMP phosphodiesterase. The present patch-clamp study reveals that, in rat ventricular cells, cyclic GMP can also regulate I{sub Ca} via activation of endogenous cyclic GMP-dependent protein kinase (cGMP-PK). Indeed, the effect of cyclic GMP on I{sub Ca} was mimicked by intracellular perfusion with the proteolytic active fragment of purified cGMP-PK. Moreover, cGMP-PK immunoreactivity was detected in pure rat ventricular myocytes by using a specific polyclonal antibody. These results demonstrate a dual mechanism for the inhibitory action of cyclic GMP in heart, as well as a physiological role for cGMP-PK in the control of mammalian heart function.

  8. Cyclic GMP and Cilia Motility

    PubMed Central

    Wyatt, Todd A.

    2015-01-01

    Motile cilia of the lungs respond to environmental challenges by increasing their ciliary beat frequency in order to enhance mucociliary clearance as a fundamental tenant of innate defense. One important second messenger in transducing the regulable nature of motile cilia is cyclic guanosine 3′,5′-monophosphate (cGMP). In this review, the history of cGMP action is presented and a survey of the existing data addressing cGMP action in ciliary motility is presented. Nitric oxide (NO)-mediated regulation of cGMP in ciliated cells is presented in the context of alcohol-induced cilia function and dysfunction. PMID:26264028

  9. Advances in targeting cyclic nucleotide phosphodiesterases

    PubMed Central

    Maurice, Donald H.; Ke, Hengming; Ahmad, Faiyaz; Wang, Yousheng; Chung, Jay; Manganiello, Vincent C.

    2014-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants. PMID:24687066

  10. Influence of external uniaxial cyclic strain on oriented fibroblast-seeded collagen gels.

    PubMed

    Berry, Catherine C; Shelton, Julia C; Bader, Dan L; Lee, David A

    2003-08-01

    This study investigates the influence of cyclic tensile strain, applied to fully contracted fibroblast-seeded collagen constructs. The constructs were preloaded to either 2 or 10 mN. The preloaded constructs were subsequently subjected to a further 10% cyclic strain (0-10%) at 1 Hz, using a triangular waveform, or were cultured in the preloaded state. In all cases cellular viability was maintained during the conditioning period. Cell proliferation was enhanced by the application of cyclic strain within constructs preloaded to both 2 and 10 mN. Collagen synthesis was enhanced by cyclic strain within constructs preloaded at 2 mN only. The profile of matrix metalloproteinase (MMP) expression, determined by zymography, was broadly similar in constructs preloaded at 2 mN with or without the application of cyclic strain. By contrast, constructs preloaded at 10 mN and subjected to cyclic strain expressed enhanced levels of staining for latent MMP-1, latent MMP-9, and both latent and active MMP-2, when compared with the other conditioning regimens. The structural stiffness of constructs preloaded at 2 mN and subjected to cyclic strain was enhanced compared with control specimens, reflecting the increase in collagen synthesis. By contrast, the initial failure loads for cyclically strained constructs preloaded at 10 mN were reduced, potentially because of enhanced catabolic activity.

  11. Effects of selective phosphodiesterase inhibition on cyclic AMP hydrolysis in rat cerebral cortical slices.

    PubMed Central

    Challiss, R. A.; Nicholson, C. D.

    1990-01-01

    1. The effects of selective inhibition of phosphodiesterase activities on the concentration and rate of hydrolysis of adenosine 3':5' cyclic-monophosphate (cyclic AMP) in rat cerebral cortical slices has been studied. 2. Isoprenaline caused a rapid, concentration-dependent increase in cyclic AMP concentration to new steady-state levels (basal: 7.1 +/- 0.7; 10 microM isoprenaline: 14.3 +/- 1.4 pmol mg-1 protein). Addition of a beta-adrenoceptor antagonist to isoprenaline-stimulated cerebral cortical slices caused a rapid decrease in cyclic AMP concentration to basal levels (t1/2: 58 +/- 18 s). 3. Preincubation of slices for 30 min with the phosphodiesterase inhibitors 1-methyl-3-isobutylxanthine, denbufylline, rolipram or Ro20,1724 caused concentration-dependent increases in basal and isoprenaline-stimulated cyclic AMP concentrations and decreased the rate of cyclic AMP hydrolysis measured after addition of a beta-adrenoceptor antagonist. However, SKF 94120 and zaprinast had none of these effects. 4. The results are discussed with respect to previous studies of phosphodiesterase isozymic activities isolated from cerebrum and it is suggested that the Ca2+/calmodulin-independent, low Km cyclic AMP phosphodiesterase isozyme, which is selectively inhibited by denbufylline, rolipram and Ro20,1724, and is present in cerebrum is of critical importance to the regulation of cyclic AMP concentration in this tissue. PMID:2158837

  12. [Cyclic Cushing's Syndrome - rare or rarely recognized].

    PubMed

    Kiałka, Marta; Doroszewska, Katarzyna; Mrozińska, Sandra; Milewicz, Tomasz; Stochmal, Ewa

    2015-01-01

    Cyclic Cushing's syndrome is a type of Cushing's disease which is characterized by alternating periods of increasing and decreasing levels of cortisol in the blood. The diagnostic criteria for cyclic Cushing's syndrome are at least three periods of hypercortisolism alternating with at least two episodes of normal levels of serum cortisol concentration. The epidemiology, signs, symptoms, pathogenesis and treatment of cyclic Cushing's syndrome have been discussed.

  13. Cyclic Imide Dioxime: Formation and Hydrolytic Stability

    SciTech Connect

    Kang, S.O.; Vukovic, Sinisa; Custelcean, Radu; Hay, Benjamin

    2012-01-01

    Poly(acrylamidoximes) play an important role in the uranium extraction from seawater. The present work reports solution studies of simple analogs to address the formation and stability of two binding sites present in these polymers, open-chain amidoximes and cyclic imide dioximes, including: 1) conditions that maximize the formation of the cyclic form, 2) existence of a base-induced conversion from open-chain to cyclic form, and 3) degradation under acid and base conditions.

  14. Mechanistic determinants of the directionality and energetics of active export by a heterodimeric ABC transporter

    NASA Astrophysics Data System (ADS)

    Grossmann, Nina; Vakkasoglu, Ahmet S.; Hulpke, Sabine; Abele, Rupert; Gaudet, Rachelle; Tampé, Robert

    2014-11-01

    The ATP-binding cassette (ABC) transporter associated with antigen processing (TAP) participates in immune surveillance by moving proteasomal products into the endoplasmic reticulum (ER) lumen for major histocompatibility complex class I loading and cell surface presentation to cytotoxic T cells. Here we delineate the mechanistic basis for antigen translocation. Notably, TAP works as a molecular diode, translocating peptide substrates against the gradient in a strict unidirectional way. We reveal the importance of the D-loop at the dimer interface of the two nucleotide-binding domains (NBDs) in coupling substrate translocation with ATP hydrolysis and defining transport vectoriality. Substitution of the conserved aspartate, which coordinates the ATP-binding site, decreases NBD dimerization affinity and turns the unidirectional primary active pump into a passive bidirectional nucleotide-gated facilitator. Thus, ATP hydrolysis is not required for translocation per se, but is essential for both active and unidirectional transport. Our data provide detailed mechanistic insight into how heterodimeric ABC exporters operate.

  15. Enhanced catalyst stability for cyclic co methanation operations

    DOEpatents

    Risch, Alan P.; Rabo, Jule A.

    1983-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is thereafter reacted with steam or hydrogen to form methane. Enhanced catalyst stability for long term, cyclic operation is obtained by the incorporation of an alkali or alkaline earth dopant in a silica binding agent added to the catalyst-support additive composition.

  16. Cyclical Dynamics and Control of a Neuromechanical System

    DTIC Science & Technology

    2012-01-01

    block of muscle is forced to change length sinusoidally and is cyclically activated, it is strongly self-stabilizing, even with no sensory feedback...system, which are canonical patterns of activity after a perturbation. We found that when a block of muscle is forced to change length sinusoidally and...releases from muscle filaments. Two muscles in an CPG bodymuscle mechanicslength/velocity dependence proprioception environment Figure 1: Diagram of

  17. Synthesis of chiral cyclic amines via Ir-catalyzed enantioselective hydrogenation of cyclic imines.

    PubMed

    Zhang, Ying; Kong, Duanyang; Wang, Rui; Hou, Guohua

    2017-04-05

    A highly enantioselective hydrogenation of cyclic imines for synthesis of chiral cyclic amines has been realized. With the complex of iridium and (R,R)-f-spiroPhos as the catalyst, a range of cyclic 2-aryl imines were smoothly hydrogenated under mild conditions without any additive to provide the corresponding chiral cyclic amines with excellent enantioselectivities of up to 98% ee. Moreover, this method could be successfully applied to the synthesis of (+)-(6S,10bR)-McN-4612-Z.

  18. Interaction of viscoelastic tissue compliance with lumbar muscles during passive cyclic flexion-extension.

    PubMed

    Olson, Michael W; Li, Li; Solomonow, Moshe

    2009-02-01

    Human and animal models using electromyography (EMG) based methods have hypothesized that viscoelastic tissue properties becomes compromised by prolonged repetitive cyclic trunk flexion-extension which in turn influences muscular activation including the flexion-relaxation phenomenon. Empirical evidence to support this hypothesis, especially the development of viscoelastic tension-relaxation and its associated muscular response in passive cyclic activity in humans, is incomplete. The objective of this study was to examine the response of lumbar muscles to tension-relaxation development of the viscoelastic tissue during prolonged passive cyclic trunk flexion-extension. Activity of the lumbar muscles remained low and steady during the passive exercise session. Tension supplied by the posterior viscoelastic tissues decreased over time without corresponding changes in muscular activity. Active flexion, following the passive flexion session, elicited significant increase in paraspinal muscles EMG together with increase in the median frequency. It was concluded that reduction of tension in the lumbar viscoelastic tissues of humans occurs during cyclic flexion-extension and is compensated by increased activity of the musculature in order to maintain stability. It was also concluded that the ligamento-muscular reflex is inhibited during passive activities but becomes hyperactive following active cyclic flexion, indicating that moment requirements are the controlling variable. It is conceived that prolonged routine exposure to cyclic flexion minimizes the function of the viscoelastic tissues and places increasing demands on the neuromuscular system which over time may lead to a disorder and possible exposure to injury.

  19. Phosphodiesterases: Regulators of cyclic nucleotide signals and novel molecular target for movement disorders.

    PubMed

    Sharma, Sorabh; Kumar, Kushal; Deshmukh, Rahul; Sharma, Pyare Lal

    2013-08-15

    Movement disorders rank among the most common neurological disorders. During the last two decades substantial progress has been made in understanding of the pathological basis of these disorders. Although, several mechanisms have been proposed, downregulation of cyclic nucleotide mediated signaling cascade has consistently been shown to contribute to the striatal dysfunctioning as seen in movement disorders. Thus, counteracting dysregulated cyclic nucleotide signaling has been considered to be beneficial in movement disorders. Cyclic nucleotide phosphodiesterases (PDEs) are the enzymes responsible for the breakdown of cyclic nucleotides and upregulation in PDE activity has been reported in various movement disorders. Thus, PDE inhibition is considered to be a novel strategy to restore cerebral cyclic nucleotide levels and their downstream signalling cascade. Indeed, various PDE inhibitors have been tested pre-clinically and were reported to be neuroprotective in various neurodegenerative disorders associated with movement disabilities. In this review, we have discussed a putative role of PDE inhibitors in movement disorders and associated abnormalities.

  20. A Cyclic Universe Numerically Realized

    NASA Astrophysics Data System (ADS)

    Duhe, William; Biswas, Tirthbar

    2013-04-01

    A unique way of realizing inflation has been proposed recently in the context of cyclic cosmology where the universe grows by a constant factor in each cycle. This leads to an overall exponential growth over many cycles. In a given cycle such a growth is possible if, for instance, ``heavy particles'' can decay into radiation (photons) leading to an increase in entropy. However, to sustain this mechanism over successive cycles, it is crucial to reproduce the heavy particles back through quantum scattering processes and re-establish thermal equilibrium between all the species. We attempt to prove the viability of a ``multiple bang'' scenario to produce known cosmological data as well as use it to predict fluctuations in the upcoming higher resolution plank telescope data. This paradigm opens doors for new investigations into the principles surrounding the content and origin of the universe.

  1. Cyclic di-GMP allosterically inhibits the CRP-like protein (Clp) of Xanthomonas axonopodis pv. citri.

    PubMed

    Leduc, Jason L; Roberts, Gary P

    2009-11-01

    The protein Clp from Xanthomonas axonopodis pv. citri regulates pathogenesis and is a member of the CRP (cyclic AMP receptor protein) superfamily. We show that unlike the DNA-binding activity of other members of this family, the DNA-binding activity of Clp is allosterically inhibited by its effector and that cyclic di-GMP serves as that effector at physiological concentrations.

  2. Progress in Understanding the Molecular Basis Underlying Functional Diversification of Cyclic Dinucleotide Turnover Proteins.

    PubMed

    Römling, Ute; Liang, Zhao-Xun; Dow, J Maxwell

    2017-03-01

    Cyclic di-GMP was the first cyclic dinucleotide second messenger described, presaging the discovery of additional cyclic dinucleotide messengers in bacteria and eukaryotes. The GGDEF diguanylate cyclase (DGC) and EAL and HD-GYP phosphodiesterase (PDE) domains conduct the turnover of cyclic di-GMP. These three unrelated domains belong to superfamilies that exhibit significant variations in function, and they include both enzymatically active and inactive members, with a subset involved in synthesis and degradation of other cyclic dinucleotides. Here, we summarize current knowledge of sequence and structural variations that underpin the functional diversification of cyclic di-GMP turnover proteins. Moreover, we highlight that superfamily diversification is not restricted to cyclic di-GMP signaling domains, as particular DHH/DHHA1 domain and HD domain proteins have been shown to act as cyclic di-AMP phosphodiesterases. We conclude with a consideration of the current limitations that such diversity of action places on bioinformatic prediction of the roles of GGDEF, EAL, and HD-GYP domain proteins.

  3. Brucella melitensis cyclic di-GMP phosphodiesterase BpdA controls expression of flagellar genes.

    PubMed

    Petersen, Erik; Chaudhuri, Pallab; Gourley, Chris; Harms, Jerome; Splitter, Gary

    2011-10-01

    Brucella melitensis encounters a variety of conditions and stimuli during its life cycle--including environmental growth, intracellular infection, and extracellular dissemination--which necessitates flexibility of bacterial signaling to promote virulence. Cyclic-di-GMP is a bacterial secondary signaling molecule that plays an important role in adaptation to changing environments and altering virulence in a number of bacteria. To investigate the role of cyclic-di-GMP in B. melitensis, all 11 predicted cyclic-di-GMP-metabolizing proteins were separately deleted and the effect on virulence was determined. Three of these cyclic-di-GMP-metabolizing proteins were found to alter virulence. Deletion of the bpdA and bpdB genes resulted in attenuation of virulence of the bacterium, while deletion of the cgsB gene produced a hypervirulent strain. In a Vibrio reporter system to monitor apparent alteration in levels of cyclic-di-GMP, both BpdA and BpdB displayed a phenotype consistent with cyclic-di-GMP-specific phosphodiesterases, while CgsB displayed a cyclic-di-GMP synthase phenotype. Further analysis found that deletion of bpdA resulted in a dramatic decrease in flagellar promoter activities, and a flagellar mutant showed similar phenotypes to the bpdA and bpdB mutant strains in mouse models of infection. These data indicate a potential role for regulation of flagella in Brucella melitensis via cyclic-di-GMP.

  4. Cyclic malyl anthocyanins in Dianthus caryophyllus.

    PubMed

    Nakayama, M; Koshioka, M; Yoshida, H; Kan, Y; Fukui, Y; Koike, A; Yamaguchi, M

    2000-12-01

    3,5-Di-O-(beta-glucopyranosyl) pelargonidin 6''-O-4,6'''-O-1-cyclic malate and a previously reported cyanidin equivalent, 3,5-di-O-(beta-glucopyranosyl) cyanidin 6''-O-4,6'''-O-1-cyclic malate were identified from petals of deep pink and red-purple flower cultivars of Dianthus caryophyllus, respectively.

  5. Cyclic Linearization and Island Repair in Sluicing

    ERIC Educational Resources Information Center

    Qiu, Chunan

    2009-01-01

    Cyclic Linearization is adopted to account for the island repair of Sluicing in English. The extraction of wh-phrase out of certain islands undergoes non-successive-cyclic movement, which yields conflicting ordering statements. The derivation can be rescued by deleting all ordering statements in IP, including those conflicting ones. Two arguments…

  6. Cyclic homology for Hom-associative algebras

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Mohammad; Shapiro, Ilya; Sütlü, Serkan

    2015-12-01

    In the present paper we investigate the noncommutative geometry of a class of algebras, called the Hom-associative algebras, whose associativity is twisted by a homomorphism. We define the Hochschild, cyclic, and periodic cyclic homology and cohomology for this class of algebras generalizing these theories from the associative to the Hom-associative setting.

  7. Enantioselective Conjugate Allylation of Cyclic Enones

    PubMed Central

    Taber, Douglass F.; Gerstenhaber, David A.; Berry, James F.

    2011-01-01

    Enantioselective organocatalytic 1,2-allylation of a cyclic enone followed by anionic oxy-Cope rearrangement delivered the ketone as a mixture of diastereomers. This appears to be a general method for the net enantioselective conjugate allylation of cyclic enones. PMID:21830779

  8. Cyclical modulation of human ventricular repolarization by respiration

    PubMed Central

    Hanson, Ben; Gill, Jaswinder; Western, David; Gilbey, Michael P.; Bostock, Julian; Boyett, Mark R.; Zhang, Henggui; Coronel, Ruben; Taggart, Peter

    2012-01-01

    Background: Respiratory modulation of autonomic input to the sinus node results in cyclical modulation of heart rate, known as respiratory sinus arrhythmia (RSA). We hypothesized that the respiratory cycle may also exert cyclical modulation on ventricular repolarization, which may be separately measurable using local endocardial recordings. Methods and Results: The study included 16 subjects with normal ventricles undergoing routine clinical electrophysiological procedures for supraventricular arrhythmias. Unipolar electrograms were recorded from 10 right and 10 left ventricular endocardial sites. Breathing was voluntarily regulated at 5 fixed frequencies (6, 9, 12, 15, and 30 breaths per min) and heart rate was clamped by RV pacing. Activation-recovery intervals (ARI: a surrogate for APD) exhibited significant (p < 0.025) cyclical variation at the respiratory frequency in all subjects; ARI shortened with inspiration and lengthened with expiration. Peak-to-peak ARI variation ranged from 0–26 ms; the spatial pattern varied with subject. Arterial blood pressure also oscillated at the respiratory frequency (p < 0.025) and lagged behind respiration by between 1.5 s and 0.65 s from slowest to fastest breathing rates respectively. Systolic oscillation amplitude was significantly greater than diastolic (14 ± 5 vs. 8 ± 4 mm Hg ± SD, p < 0.001). Conclusions: Observations in humans with healthy ventricles using multiple left and right ventricular endocardial recordings showed that ARI action potential duration (APD) varied cyclically with respiration. PMID:23055983

  9. Solid-phase peptide head-to-side chain cyclodimerization: discovery of C(2)-symmetric cyclic lactam hybrid α-melanocyte-stimulating hormone (MSH)/agouti-signaling protein (ASIP) analogues with potent activities at the human melanocortin receptors.

    PubMed

    Mayorov, Alexander V; Cai, Minying; Palmer, Erin S; Liu, Zhihua; Cain, James P; Vagner, Josef; Trivedi, Dev; Hruby, Victor J

    2010-10-01

    A novel hybrid melanocortin pharmacophore was designed based on the pharmacophores of the agouti-signaling protein (ASIP), an endogenous melanocortin antagonist, and α-melanocyte-stimulating hormone (α-MSH), an endogenous melanocortin agonist. The designed hybrid ASIP/MSH pharmacophore was explored in monomeric cyclic, and cyclodimeric templates. The monomeric cyclic disulfide series yielded peptides with hMC3R-selective non-competitive binding affinities. The direct on-resin peptide lactam cyclodimerization yielded nanomolar range (25-120 nM) hMC1R-selective full and partial agonists in the cyclodimeric lactam series which demonstrates an improvement over the previous attempts at hybridization of MSH and agouti protein sequences. The secondary structure-oriented pharmacophore hybridization strategy will prove useful in development of unique allosteric and orthosteric melanocortin receptor modulators. This report also illustrates the utility of peptide cyclodimerization for the development of novel GPCR peptide ligands.

  10. New antimalarial norterpene cyclic peroxides from Xisha Islands sponge Diacarnus megaspinorhabdosa.

    PubMed

    Yang, Fan; Wang, Ru-Ping; Xu, Bin; Yu, Hao-Bing; Ma, Guo-Yi; Wang, Guang-Fei; Dai, Shu-Wen; Zhang, Wei; Jiao, Wei-Hua; Song, Shao-Jiang; Lin, Hou-Wen

    2016-04-15

    Four new norterpene cyclic peroxides (1-4), together with three known norterpene cyclic peroxides were isolated from the Xisha Islands Sponge Diacarnus megaspinorhabdosa. Their structures were elucidated on the basis of spectroscopic analyses and comparison with the related model compounds. The compounds (1-7) were evaluated for the inhibitory activity against the malaria parasite Plasmodium falciparum, all of them showed significant antimalarial activity with IC50 values in the range of 1.6-8.6 μM.

  11. Ribosomally encoded cyclic peptide toxins from mushrooms.

    PubMed

    Walton, Jonathan D; Luo, Hong; Hallen-Adams, Heather

    2012-01-01

    The cyclic peptide toxins of poisonous Amanita mushrooms are chemically unique among known natural products. Furthermore, they differ from other fungal cyclic peptides in being synthesized on ribosomes instead of by nonribosomal peptide synthetases. Because of their novel structures and biogenic origins, elucidation of the biosynthetic pathway of the Amanita cyclic peptides presents both challenges and opportunities. In particular, a full understanding of the pathway should lead to the ability to direct synthesis of a large number of novel cyclic peptides based on the Amanita toxin scaffold by genetic engineering of the encoding genes. Here, we highlight some of the principal methods for working with the Amanita cyclic peptides and the known steps in their biosynthesis.

  12. Toward structure prediction of cyclic peptides.

    PubMed

    Yu, Hongtao; Lin, Yu-Shan

    2015-02-14

    Cyclic peptides are a promising class of molecules that can be used to target specific protein-protein interactions. A computational method to accurately predict their structures would substantially advance the development of cyclic peptides as modulators of protein-protein interactions. Here, we develop a computational method that integrates bias-exchange metadynamics simulations, a Boltzmann reweighting scheme, dihedral principal component analysis and a modified density peak-based cluster analysis to provide a converged structural description for cyclic peptides. Using this method, we evaluate the performance of a number of popular protein force fields on a model cyclic peptide. All the tested force fields seem to over-stabilize the α-helix and PPII/β regions in the Ramachandran plot, commonly populated by linear peptides and proteins. Our findings suggest that re-parameterization of a force field that well describes the full Ramachandran plot is necessary to accurately model cyclic peptides.

  13. Evidence for a catalytic six-membered cyclic transition state in aminolysis of 4-nitrophenyl 3,5-dinitrobenzoate in acetonitrile: comparative brønsted-type plot, entropy of activation, and deuterium kinetic isotope effects.

    PubMed

    Um, Ik-Hwan; Kim, Min-Young; Bae, Ae-Ri; Dust, Julian M; Buncel, Erwin

    2015-01-02

    A kinetic study for reactions of 4-nitrophenyl 3,5-dinitrobenzoate (1a) with a series of cyclic secondary amines in acetonitrile is reported. Plots of the pseudo-first-order rate constant (kobsd) vs [amine] curve upward, while those of kobsd /[amine] vs [amine] exhibit excellent linear correlations with positive intercepts, indicating that the reaction proceeds through both uncatalyzed and catalyzed routes. Brønsted-type plots for uncatalyzed and catalyzed reactions are linear with βnuc = 1.03 and 0.69, respectively. The ΔH(⧧) and ΔS(⧧) values measured for the catalytic reaction with morpholine are -0.80 kcal/mol and -61.7 cal/(mol K), respectively. The negative ΔH(⧧) with a large negative ΔS(⧧) suggests that the reaction proceeds through a highly ordered transition state (i.e., a six-membered cyclic transition state, which includes a second amine molecule that accepts a proton from the aminium moiety of the zwitterionic tetrahedral intermediate and simultaneously donates a proton to the aryloxyl oxygen of the nucleofuge with concomitant C-OAr bond scission). This proposal is consistent with the smaller βnuc value for the catalyzed reaction as compared to the uncatalyzed reaction. An inverse deuterium kinetic isotope effect (DKIE) value of 0.93 and a contrasting normal primary DKIE value of 3.23 for the uncatalyzed and catalyzed routes, respectively, also support the proposed cyclic transition state.

  14. Copper Regulates Cyclic AMP-Dependent Lipolysis

    PubMed Central

    Krishnamoorthy, Lakshmi; Cotruvo, Joseph A.; Chan, Jefferson; Kaluarachchi, Harini; Muchenditsi, Abigael; Pendyala, Venkata S.; Jia, Shang; Aron, Allegra T.; Ackerman, Cheri M.; Vander Wal, Mark N.; Guan, Timothy; Smaga, Lukas P.; Farhi, Samouil L.; New, Elizabeth J.; Lutsenko, Svetlana; Chang, Christopher J.

    2016-01-01

    Cell signaling relies extensively on dynamic pools of redox-inactive metal ions such as sodium, potassium, calcium, and zinc, but their redox-active transition metal counterparts such as copper and iron have been studied primarily as static enzyme cofactors. Here we report that copper is an endogenous regulator of lipolysis, the breakdown of fat, which is an essential process in maintaining the body's weight and energy stores. Utilizing a murine model of genetic copper misregulation, in combination with pharmacological alterations in copper status and imaging studies in a 3T3-L1 white adipocyte model, we demonstrate that copper regulates lipolysis at the level of the second messenger, cyclic AMP (cAMP), by altering the activity of the cAMP-degrading phosphodiesterase PDE3B. Biochemical studies of the copper-PDE3B interaction establish copper-dependent inhibition of enzyme activity and identify a key conserved cysteine residue within a PDE3-specific loop that is essential for the observed copper-dependent lipolytic phenotype. PMID:27272565

  15. Collagen network strengthening following cyclic tensile loading.

    PubMed

    Susilo, Monica E; Paten, Jeffrey A; Sander, Edward A; Nguyen, Thao D; Ruberti, Jeffrey W

    2016-02-06

    The bulk mechanical properties of tissues are highly tuned to the physiological loads they experience and reflect the hierarchical structure and mechanical properties of their constituent parts. A thorough understanding of the processes involved in tissue adaptation is required to develop multi-scale computational models of tissue remodelling. While extracellular matrix (ECM) remodelling is partly due to the changing cellular metabolic activity, there may also be mechanically directed changes in ECM nano/microscale organization which lead to mechanical tuning. The thermal and enzymatic stability of collagen, which is the principal load-bearing biopolymer in vertebrates, have been shown to be enhanced by force suggesting that collagen has an active role in ECM mechanical properties. Here, we ask how changes in the mechanical properties of a collagen-based material are reflected by alterations in the micro/nanoscale collagen network following cyclic loading. Surprisingly, we observed significantly higher tensile stiffness and ultimate tensile strength, roughly analogous to the effect of work hardening, in the absence of network realignment and alterations to the fibril area fraction. The data suggest that mechanical loading induces stabilizing changes internal to the fibrils themselves or in the fibril-fibril interactions. If such a cell-independent strengthening effect is operational in vivo, then it would be an important consideration in any multiscale computational approach to ECM growth and remodelling.

  16. Mixed Strategies in cyclic competition

    NASA Astrophysics Data System (ADS)

    Intoy, Ben; Pleimling, Michel

    2015-03-01

    Physicists have been using evolutionary game theory to model and simulate cyclically competing species, with applications to lizard mating strategies and competing bacterial strains. However these models assume that each agent plays the same strategy, which is called a pure strategy in game theory, until they are beaten by a better strategy which they immediately adopt. We relax this constraint of an agent playing a single strategy by instead letting the agent pick its strategy randomly from a probability distribution, which is called a mixed strategy in game theory. This scheme is very similar to multiple occupancy models seen in the literature, the major difference being that interactions happen between sites rather than within them. Choosing strategies out of a distribution also has applications to economic/social systems such as the public goods game. We simulate a model of mixed strategy and cylic competition on a one-dimensional lattice with three and four strategies and find interesting spatial and stability properties depending on how discretized the choice of strategy is for the agents. This work is supported by the US National Science Foundation through Grant DMR-1205309.

  17. Asymmetric cyclic evolution in polymerised cosmology

    SciTech Connect

    Hrycyna, Orest; Mielczarek, Jakub; Szydłowski, Marek E-mail: jakub.mielczarek@uj.edu.pl

    2009-12-01

    The dynamical systems methods are used to study evolution of the polymerised scalar field cosmologies with the cosmological constant. We have found all evolutional paths admissible for all initial conditions on the two-dimensional phase space. We have shown that the cyclic solutions are generic. The exact solution for polymerised cosmology is also obtained. Two basic cases are investigated, the polymerised scalar field and the polymerised gravitational and scalar field part. In the former the division on the cyclic and non-cyclic behaviour is established following the sign of the cosmological constant. The value of the cosmological constant is upper bounded purely from the dynamical setting.

  18. Cyclic adenosine 3'-5'-monophosphate (cAMP) exerts proliferative and anti-proliferative effects in pituitary cells of different types by activating both cAMP-dependent protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac).

    PubMed

    Vitali, E; Peverelli, E; Giardino, E; Locatelli, M; Lasio, G B; Beck-Peccoz, P; Spada, A; Lania, A G; Mantovani, G

    2014-03-05

    In the pituitary the activation of cyclic adenosine 3'-5'-monophosphate (cAMP) dependent pathways generates proliferative signals in somatotrophs, whereas in pituitary cells of other lineages its effect remains uncertain. Moreover, the specific role of the two main cAMP effectors, protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac), has not been defined. Aim of this study was to investigate the effect of cAMP on pituitary adenomatous cells proliferation and to identify PKA and Epac differential involvement. We found that cAMP increased DNA synthesis and cyclin D1 expression in somatotropinomas, whereas it reduced both parameters in prolactinomas and nonfunctioning adenomas, these effects being replicated in corresponding cell lines. Moreover, the divergent cAMP effects were mimicked by Epac and PKA analogs, which activated Rap1 and CREB, respectively. In conclusion, we demonstrated that cAMP exerted opposite effects on different pituitary cell types proliferation, these effects being mediated by both Epac and PKA.

  19. The role of anticipatory postural adjustments in interlimb coordination of coupled arm movements in the parasagittal plane: II. Postural activities and coupling coordination during cyclic flexion-extension arm movements, ISO- and ANTI-directionally coupled.

    PubMed

    Baldissera, Fausto G; Esposti, Roberto

    2013-08-01

    When coupling cyclic adduction-abduction movements of the arms in the transverse (horizontal) plane, isodirectional (ISO) coupling is less stable than antidirectional (ANTI) coupling. We proposed that such deficiency stems from the disturbing action that anticipatory postural adjustments exert on ISO coupling. To ascertain if postural adjustments differentiate ISO versus ANTI coupling coordination in other types of cyclic arm movements, we examined flexion-extension oscillations in the parasagittal plane. Oscillations of the right arm alone elicited cyclic Postural Adjustments (PAs) in the left Anterior Deltoid and Posterior Deltoid, which replicated the excitation-inhibition pattern of the prime movers right Anterior Deltoid, right Posterior Deltoid. Cyclic PAs also developed symmetrically in Erector Spinae (RES and LES) and in phase opposition in Ischiocruralis (RIC and LIC), so as to discharge to the ground both an anteroposterior force, Fy, and a moment about the vertical axis, Tz. Oscillations of both arms in ISO coupling induced symmetric PAs in both ES and IC muscles, thus generating a large Fy but no Tz. In ANTI coupling, PAs in RES and LES remained symmetric but smaller in size, while PAs in RIC and LIC were large and opposite in phase, resulting in a large Tz and small Fy. Altogether, PAs would thus favour ISO and hamper ANTI parasagittal movements because (1) in the motor pathways to the prime movers of either arm, a convergence would occur between the voluntary commands and the commands for PAs linked to the movement of the other arm, the two commands having the same sign (excitatory or inhibitory) during ISO and an opposite sign during ANTI; (2) the postural effort of trunk and leg muscles would be higher for generating Tz in ANTI than Fy in ISO. These predictions fit with the finding that coupling stability was lower in ANTI than in ISO, i.e., opposite to horizontal movements. In conclusion, in both parasagittal and horizontal arm movements, the less

  20. Cyclic Peptidomimetics and Pseudopeptides from Multicomponent Reactions

    NASA Astrophysics Data System (ADS)

    Wessjohann, Ludger A.; Rhoden, Cristiano R. B.; Rivera, Daniel G.; Vercillo, Otilie Eichler

    Multicomponent reactions (MCRs) that provide in the final product amides are suitable to produce peptides and peptide-like moieties. The Passerini and Staudinger reactions provide one amide bond, and the Ugi-four-component reaction generates two amides from three or even four (or more) components, respectively. The Ugi-reaction thus is most important to produce peptides and peptoids while the Passerini reaction is useful to generate depsipeptoid moieties. In order to produce cyclic peptides and pseudopeptides, the linear peptidic MCR products have to be cyclized, usually with the help of bifunctional or activatable building blocks. Orthogonal but cyclizable secondary functionalities that need no protection in isonitrile MCRs commonly include alkenes (for ring closing metathesis), azide/alkyne (for Huisgen click reactions) or dienes and enoates (Diels-Alder) etc. If MCR-reactive groups are to be used also for the cyclisation, monoprotected bifunctional building blocks are used and deprotected after the MCR, e.g. for Ugi reactions as Ugi-Deprotection-Cyclisation (UDC). Alternatively one of the former building blocks or functional groups generated by the MCR can be activated. Most commonly these are activated amides (from so-called convertible isonitriles) which can be used e.g. for Ugi-Activation-Cyclisation (UAC) protocols, or most recently for a simultaneous use of both strategies Ugi-Deprotection/Activation-Cyclisation (UDAC). These methods mostly lead to small, medicinally relevant peptide turn mimics. In an opposing strategy, the MCR is rather used as ring-closing reaction, thereby introducing a (di-)peptide moiety. Most recently these processes have been combined to use MCRs for both, linear precursor synthesis and cyclisation. These multiple MCR approaches allow the most efficient and versatile one pot synthesis of macrocyclic pseudopeptides known to date.

  1. Parallel architectures for computing cyclic convolutions

    NASA Technical Reports Server (NTRS)

    Yeh, C.-S.; Reed, I. S.; Truong, T. K.

    1983-01-01

    In the paper two parallel architectural structures are developed to compute one-dimensional cyclic convolutions. The first structure is based on the Chinese remainder theorem and Kung's pipelined array. The second structure is a direct mapping from the mathematical definition of a cyclic convolution to a computational architecture. To compute a d-point cyclic convolution the first structure needs d/2 inner product cells, while the second structure and Kung's linear array require d cells. However, to compute a cyclic convolution, the second structure requires less time than both the first structure and Kung's linear array. Another application of the second structure is to multiply a Toeplitz matrix by a vector. A table is listed to compare these two structures and Kung's linear array. Both structures are simple and regular and are therefore suitable for VLSI implementation.

  2. Cyclic hardening in bundled actin networks.

    PubMed

    Schmoller, K M; Fernández, P; Arevalo, R C; Blair, D L; Bausch, A R

    2010-01-01

    Nonlinear deformations can irreversibly alter the mechanical properties of materials. Most soft materials, such as rubber and living tissues, display pronounced softening when cyclically deformed. Here we show that, in contrast, reconstituted networks of crosslinked, bundled actin filaments harden when subject to cyclical shear. As a consequence, they exhibit a mechano-memory where a significant stress barrier is generated at the maximum of the cyclic shear strain. This unique response is crucially determined by the network architecture: at lower crosslinker concentrations networks do not harden, but soften showing the classic Mullins effect known from rubber-like materials. By simultaneously performing macrorheology and confocal microscopy, we show that cyclic shearing results in structural reorganization of the network constituents such that the maximum applied strain is encoded into the network architecture.

  3. Acute changes in hamstrings musculo-articular dissipative properties induced by cyclic and static stretching.

    PubMed

    Nordez, A; McNair, P; Casari, P; Cornu, C

    2008-05-01

    This study was designed to measure changes in musculo-articular dissipative properties related to viscosity that were induced by passive cyclic and static stretching. Musculo-articular dissipative properties were assessed by calculating a dissipation coefficient using potential elastic energies stored and restituted during cyclic stretching. Eight subjects performed five passive knee extensions/flexions cycles on a Biodex dynamometer at 5 degrees . s (-1) to 80 % of their maximal range of motion before and after a static stretching protocol. Electromyographic activity from the hamstring muscles was monitored and remained constant during cyclic stretching and after static stretching (p > 0.05). The dissipation coefficient decreased during cyclic stretching (- 28.8 +/- 6.0 %, p < 0.001), while it was slightly increased after static stretching (+ 3.8 +/- 5.0 %, p = 0.037). The findings showed that energy stored and energy restituted decreased during cyclic stretching and after static stretching (p < 0.05). During unloading, passive torque remained constant during cyclic stretching, but was decreased after static stretching. The findings indicate that musculo-articular dissipative properties were primarily affected by a single cycle of motion, and were not influenced by static stretching procedures. The decrease in dissipation coefficient following cyclic motion indicates that the musculo-articular system displays thixotropic behavior.

  4. Unusual cyclic terpenoids with terminal pendant prenyl moieties: from occurrence to synthesis.

    PubMed

    Kulcitki, Veaceslav; Harghel, Petru; Ungur, Nicon

    2014-12-01

    The paper reviews the known examples of cyclic terpenoids produced from open chain polyenic precursors by an "unusual" biosynthetic pathway, involving selective electrophilic attack on an internal double bond followed by cyclization. The resulting compounds possess cyclic backbones with pendant terminal prenyl groups. Synthetic approaches applied for the synthesis of such specifically functionalized compounds are also discussed, as well as biological activity of reported representatives.

  5. Colour cyclic code for Brillouin distributed sensors

    NASA Astrophysics Data System (ADS)

    Le Floch, Sébastien; Sauser, Florian; Llera, Miguel; Rochat, Etienne

    2015-09-01

    For the first time, a colour cyclic coding (CCC) is theoretically and experimentally demonstrated for Brillouin optical time-domain analysis (BOTDA) distributed sensors. Compared to traditional intensity-modulated cyclic codes, the code presents an additional gain of √2 while keeping the same number of sequences as for a colour coding. A comparison with a standard BOTDA sensor is realized and validates the theoretical coding gain.

  6. Cyclic process for producing methane with catalyst regeneration

    DOEpatents

    Frost, Albert C.; Risch, Alan P.

    1980-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. For practical commercial operations utilizing the two-step process of the invention of a cyclic basis, nickel, cobalt, ruthenium, thenium and alloys thereof are especially prepared for use in a metal state, with CO disproportionation being carried out at temperatures up to about 350.degree. C. and with the conversion of active surface carbon to methane being carried out by reaction with steam. The catalyst is employed in such cyclic operations without the necessity for employing a regeneration step as part of each processing cycle. Inactive carbon or coke that tends to form on the catalyst over the course of continuous operations utilizing such cyclic process is effectively and advantageously removed, on a periodic basis, in place of conventional burn off with an inert stream containing a low concentration of oxygen.

  7. Low severity coal liquefaction promoted by cyclic olefins

    SciTech Connect

    Curtis, C.W.

    1992-07-27

    Low severity coal liquefaction allows for solubilization of coal with reduced gas make. These lower severity conditions may result in some selective bond rupture. Promotion of coal solubilization through hydrogen transfer using highly active and effective hydrogen donors is the objective of this study. The highly effective donors being tested are cyclic olefins. Representative cyclic olefins are isotetralin, which is 1,4,5,8-tetrahydronaphthalene, and 1,4,5,8,9,10-hexahydroanthracene. These compounds are hydroaromatics without aromatic rings and have been shown to be highly effective donors. The objective of the work performed in this study during this quarter was to evaluate reaction parameters for low severity liquefaction reactions using the cyclic olefin, hexahydroanthracene, and the aromatic, anthracene. These model compounds were reacted under a variety of conditions to evaluate their reactivity without coal. The reactions were performed under both thermal and catalytic conditions. Finely divided catalysts from different molybdenum precursors were used to determine their activity in promoting hydrogenation and hydrogen transfer at low severity conditions. The catalysts used were Molyvan L, sulfurized oxymolybdenum dithiocarbamate, molybdenum naphthenate, and Molyvan 822, organo molybdenum dithiocarbamate.

  8. Synthesis and biological evaluation of cyclic endomorphin-2 analogs.

    PubMed

    Perlikowska, Renata; do-Rego, Jean Claude; Cravezic, Aurore; Fichna, Jakub; Wyrebska, Anna; Toth, Geza; Janecka, Anna

    2010-02-01

    In our previous paper we reported synthesis and biological activity of two cyclic analogs of endomorphin-2 (EM-2): Tyr-c(Lys-Phe-Phe-Asp)-NH(2) and Tyr-c(Asp-Phe-Phe-Lys)-NH(2), achieved by making an amid bond between Lys and Asp side-chains. The first analog did not bind to the mu-opioid receptor, the affinity of the second one was very low. In the present study, we describe the synthesis of four novel cyclic analogs of similar structure, but with d-amino acids in position 2 (D-Lys or D-Asp). All new analogs displayed high affinity for the mu-opioid receptor, were much more stable than EM-2 in rat brain homogenate and showed remarkable antinociceptive activity after intracerebroventricular (i.c.v.) administration. Analgesic effect of the most potent cyclic analog, Tyr-c(D-Lys-Phe-Phe-Asp)NH(2) was much stronger and longer lasting than that of EM-2. This analog elicited analgesia also after peripheral administration and this effect was reversed by concomitant i.c.v. injection of the mu-opioid antagonist, beta-funaltrexamine, which indicated that antinociception was mediated by the mu-opioid receptor in the brain. Central action of the cyclic analog gives evidence that it was able to cross the blood-brain barrier, most likely due to the increased lipophilicity. Our results demonstrate that cyclization might be a promising strategy to enhance bioavailability of peptides and may serve a role in the development of novel endomorphin analogs with increased therapeutic potential.

  9. Nucleophilic Addition of Organozinc Reagents to 2-Sulfonyl Cyclic Ethers

    PubMed Central

    Kim, Hyoungsu; Kasper, Amanda C.; Moon, Eui Jung; Park, Yongho; Wooten, Ceshea M.; Dewhirst, Mark W.; Hong, Jiyong

    2009-01-01

    A convergent route to the synthesis of manassantins A and B, potent inhibitors of HIF-1, is described. Central to the synthesis is a stereoselective addition of an organozinc reagent to a 2-benzenesulfonyl cyclic ether to achieve the 2,3-cis-3,4-trans-4,5-cis-tetrahydrofuran of the natural products. Preliminary structure—activity relationships suggested that the (R)-configuration at C-7 and C-7″′ is not critical for HIF-1 inhibition. In addition, the hydroxyl group at C-7 and C-7″′ can be replaced with carbonyl group without loss of activity. PMID:19111058

  10. Measuring Cyclic Error in Laser Heterodyne Interferometers

    NASA Technical Reports Server (NTRS)

    Ryan, Daniel; Abramovici, Alexander; Zhao, Feng; Dekens, Frank; An, Xin; Azizi, Alireza; Chapsky, Jacob; Halverson, Peter

    2010-01-01

    An improved method and apparatus have been devised for measuring cyclic errors in the readouts of laser heterodyne interferometers that are configured and operated as displacement gauges. The cyclic errors arise as a consequence of mixing of spurious optical and electrical signals in beam launchers that are subsystems of such interferometers. The conventional approach to measurement of cyclic error involves phase measurements and yields values precise to within about 10 pm over air optical paths at laser wavelengths in the visible and near infrared. The present approach, which involves amplitude measurements instead of phase measurements, yields values precise to about .0.1 microns . about 100 times the precision of the conventional approach. In a displacement gauge of the type of interest here, the laser heterodyne interferometer is used to measure any change in distance along an optical axis between two corner-cube retroreflectors. One of the corner-cube retroreflectors is mounted on a piezoelectric transducer (see figure), which is used to introduce a low-frequency periodic displacement that can be measured by the gauges. The transducer is excited at a frequency of 9 Hz by a triangular waveform to generate a 9-Hz triangular-wave displacement having an amplitude of 25 microns. The displacement gives rise to both amplitude and phase modulation of the heterodyne signals in the gauges. The modulation includes cyclic error components, and the magnitude of the cyclic-error component of the phase modulation is what one needs to measure in order to determine the magnitude of the cyclic displacement error. The precision attainable in the conventional (phase measurement) approach to measuring cyclic error is limited because the phase measurements are af-

  11. The envelope-based cyclic periodogram

    NASA Astrophysics Data System (ADS)

    Borghesani, P.

    2015-06-01

    Cyclostationary analysis has proven effective in identifying signal components for diagnostic purposes. A key descriptor in this framework is the cyclic power spectrum, traditionally estimated by the averaged cyclic periodogram and the smoothed cyclic periodogram. A lengthy debate about the best estimator finally found a solution in a cornerstone work by Antoni, who proposed a unified form for the two families, thus allowing a detailed statistical study of their properties. Since then, the focus of cyclostationary research has shifted towards algorithms, in terms of computational efficiency and simplicity of implementation. Traditional algorithms have proven computationally inefficient and the sophisticated "cyclostationary" definition of these estimators slowed their spread in the industry. The only attempt to increase the computational efficiency of cyclostationary estimators is represented by the cyclic modulation spectrum. This indicator exploits the relationship between cyclostationarity and envelope analysis. The link with envelope analysis allows a leap in computational efficiency and provides a "way in" for the understanding by industrial engineers. However, the new estimator lies outside the unified form described above and an unbiased version of the indicator has not been proposed. This paper will therefore extend the analysis of envelope-based estimators of the cyclic spectrum, proposing a new approach to include them in the unified form of cyclostationary estimators. This will enable the definition of a new envelope-based algorithm and the detailed analysis of the properties of the cyclic modulation spectrum. The computational efficiency of envelope-based algorithms will be also discussed quantitatively for the first time in comparison with the averaged cyclic periodogram. Finally, the algorithms will be validated with numerical and experimental examples.

  12. Review cyclic peptides on a merry-go-round; towards drug design.

    PubMed

    Tapeinou, Anthi; Matsoukas, Minos-Timotheos; Simal, Carmen; Tselios, Theodore

    2015-09-01

    Peptides and proteins are attractive initial leads for the rational design of bioactive molecules. Several natural cyclic peptides have recently emerged as templates for drug design due to their resistance to chemical or enzymatic hydrolysis and high selectivity to receptors. The development of practical protocols that mimic the power of nature's strategies remains paramount for the advancement of novel peptide-based drugs. The de novo design of peptide mimetics (nonpeptide molecules or cyclic peptides) for the synthesis of linear or cyclic peptides has enhanced the progress of therapeutics and diverse areas of science and technology. In the case of metabolically unstable peptide ligands, the rational design and synthesis of cyclic peptide analogues has turned into an alternative approach for improved biological activity.

  13. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Miller, Robert A.; Sudbrack, Chantal K.; Draper, Susan L.; Nesbitt, James A.; Rogers, Richard B.; Telesman, Ignacy; Ngo, Vanda; Healy, Jonathan

    2016-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 degrees Centigrade and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 degrees Centigrade. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. This cyclic oxidation did not impair the coating's resistance to subsequent hot corrosion pitting attack.

  14. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Miller, R. A.; Sudbrack, C. K.; Draper, S. L.; Nesbitt, J.; Telesman, J.; Ngo, V.; Healy, J.

    2015-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 C and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 C. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. The effects of this cyclic oxidation on resistance to subsequent hot corrosion attack were examined.

  15. Is a decrease in cyclic AMP a necessary and sufficient signal for maturation of amphibian oocytes

    SciTech Connect

    Gelerstein, S.; Shapira, H.; Dascal, N.; Yekuel, R.; Oron, Y.

    1988-05-01

    Acetylcholine rapidly lowered the intracellular levels of cyclic AMP in stage 5 and 6 Xenopus laevis oocytes. Acetylcholine alone did not induce oocyte maturation, though it did accelerate maturation induced by progesterone. The effect of acetylcholine on oocyte maturation was independent of extracellular calcium concentration. Adenosine increased cyclic AMP and abolished the progesterone-induced decrease in cyclic AMP levels in follicles and in denuded oocytes. This effect of adenosine was blocked by the Ra purinergic receptor antagonist, theophylline. Despite those effects, adenosine alone induced maturation in stage 6 oocytes and accelerated progesterone-induced maturation in both stage 5 and 6 cells. Adenosine also induced a significant increase in the rate of /sup 45/Ca efflux from oocytes in the presence and the absence of external calcium. We suggest that the activation of cell surface receptors involved in the release of calcium from cellular stores may induce or accelerate oocyte maturation independently of small changes in intracellular cyclic AMP concentration.

  16. Synthesis of cyclic polyesters: effects of alkoxy side chains in salicylaldiminato tin(II) complexes.

    PubMed

    Wongmahasirikun, Phonpimon; Prom-on, Paweenuch; Sangtrirutnugul, Preeyanuch; Kongsaeree, Palangpon; Phomphrai, Khamphee

    2015-07-21

    A new class of salicylaldiminato tin(II) catalysts having different alkoxy side chains has been developed. The ligands were modified to have different lengths and flexibilities such as –(CH2)2– (2a), –(CH2)3– (2b), –(ortho-C6H4)CH2– (2c) and –(CH2)2–O–(CH2)2– (2d). Complexes 2a, b were characterized crystallographically revealing a more constrained environment around the metal in complex 2a. These catalysts are active for the solvent-free polymerization of L-lactide and ε-caprolactone. Complex 2a having a shorter side chain was shown to better promote intramolecular transesterification affording cyclic polylactides and cyclic poly(ε-caprolactone). Complexes 2b and 2d having longer side chains produced cyclic poly(ε-caprolactone) as a major product but failed to give cyclic polylactides.

  17. Combinatorial Library Screening Coupled to Mass Spectrometry to Identify Valuable Cyclic Peptides.

    PubMed

    Camperi, Silvia A; Giudicessi, Silvana L; Martínez-Ceron, María C; Gurevich-Messina, Juan M; Saavedra, Soledad L; Acosta, Gerardo; Cascone, Osvaldo; Erra-Balsells, Rosa; Albericio, Fernando

    2016-06-02

    Combinatorial library screening coupled to mass spectrometry (MS) analysis is a practical approach to identify useful peptides. Cyclic peptides can have high biological activity, selectivity, and affinity for target proteins, and high stability against proteolytic degradation. Here we describe two strategies to prepare combinatorial libraries suitable for MS analysis to accelerate the discovery of cyclic peptide structures. Both approaches use ChemMatrix resin and the linker 4-hydroxymethylbenzoic acid. One strategy involves the synthesis of a one-bead-two-peptides library in which each bead contains both the cyclic peptide and its linear counterpart to facilitate MS analysis. The other protocol is based on the synthesis of a cyclic depsipeptide library in which a glycolamidic ester group is incorporated by adding glycolic acid. After library screening, the ring is opened and the peptide is released simultaneously for subsequent MS analysis. © 2016 by John Wiley & Sons, Inc.

  18. Non-Enzymatic Oligomerization of 3', 5' Cyclic AMP.

    PubMed

    Costanzo, Giovanna; Pino, Samanta; Timperio, Anna Maria; Šponer, Judit E; Šponer, Jiří; Nováková, Olga; Šedo, Ondrej; Zdráhal, Zbyněk; Di Mauro, Ernesto

    2016-01-01

    Recent studies illustrate that short oligonucleotide sequences can be easily produced from nucleotide precursors in a template-free non-enzymatic way under dehydrating conditions, i.e. using essentially dry materials. Here we report that 3',5' cyclic AMP may also serve as a substrate of the reaction, which proceeds under moderate conditions yet with a lower efficiency than the previously reported oligomerization of 3',5' cyclic GMP. Optimally the oligomerization requires (i) a temperature of 80°C, (ii) a neutral to alkaline environment and (iii) a time on the order of weeks. Differences in the yield and required reaction conditions of the oligomerizations utilizing 3',5' cGMP and cAMP are discussed in terms of the crystal structures of the compounds. Polymerization of 3',5' cyclic nucleotides, whose paramount relevance in a prebiotic chemistry context has been widely accepted for decades, supports the possibility that the origin of extant genetic materials might have followed a direct uninterrupted path since its very beginning, starting from non-elaborately pre-activated monomer compounds and simple reactions.

  19. Cyclic Dinucleotide-Controlled Regulatory Pathways in Streptomyces Species

    PubMed Central

    2015-01-01

    The cyclic dinucleotides cyclic 3′,5′-diguanylate (c-di-GMP) and cyclic 3′,5′-diadenylate (c-di-AMP) have emerged as key components of bacterial signal transduction networks. These closely related second messengers follow the classical general principles of nucleotide signaling by integrating diverse signals into regulatory pathways that control cellular responses to changing environments. They impact distinct cellular processes, with c-di-GMP having an established role in promoting bacterial adhesion and inhibiting motility and c-di-AMP being involved in cell wall metabolism, potassium homeostasis, and DNA repair. The involvement of c-dinucleotides in the physiology of the filamentous, nonmotile streptomycetes remained obscure until recent discoveries showed that c-di-GMP controls the activity of the developmental master regulator BldD and that c-di-AMP determines the level of the resuscitation-promoting factor A(RpfA) cell wall-remodelling enzyme. Here, I summarize our current knowledge of c-dinucleotide signaling in Streptomyces species and highlight the important roles of c-di-GMP and c-di-AMP in the biology of these antibiotic-producing, multicellular bacteria. PMID:26216850

  20. Cyclic mechanical stretching promotes migration but inhibits invasion of rat bone marrow stromal cells.

    PubMed

    Zhang, Bingyu; Luo, Qing; Chen, Zhe; Sun, Jinghui; Xu, Baiyao; Ju, Yang; Song, Guanbin

    2015-03-01

    Bone marrow stromal cells (BMSCs, also broadly known as bone marrow-derived mesenchymal stem cells) are multipotent stem cells that have a self-renewal capacity and multilineage differentiation potential. Mechanical stretching plays a vital role in regulating the proliferation and differentiation of BMSCs. However, little is known about the effects of cyclic stretching on BMSC migration and invasion. In this study, using a custom-made cell-stretching device, we studied the effects of cyclic mechanical stretching on rat BMSC migration and invasion using a Transwell Boyden Chamber. The protein secretion of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) was detected by gelatin zymography, and the activation of focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2) was measured by western blot. We found that cyclic mechanical stretching with 10% amplitude at 1Hz frequency for 8h promotes BMSC migration, but reduces BMSC invasion. FAK and ERK1/2 signals were activated in BMSCs after exposure to cyclic stretching. In the presence of the FAK phosphorylation blocker PF573228 or the ERK1/2 phosphorylation blocker PD98059, the cyclic-stretch-promoted migration of BMSCs was completely suppressed. On the other hand, cyclic mechanical stretching reduced the secretion of MMP-2 and MMP-9 in BMSCs, and PF573228 suppressed the cyclic-stretch-reduced secretion of MMP-2 and MMP-9. The decrease of BMSC invasion induced by mechanical stretching is partially restored by PF573228 but remained unaffected by PD98059. Taken together, these data show that cyclic mechanical stretching promotes BMSC migration via the FAK-ERK1/2 signalling pathway, but reduces BMSC invasion by decreasing secretion of MMP-2 and MMP-9 via FAK, independent of the ERK1/2 signal.

  1. On-chip assessment of human primary cardiac fibroblasts proliferative responses to uniaxial cyclic mechanical strain.

    PubMed

    Ugolini, Giovanni Stefano; Rasponi, Marco; Pavesi, Andrea; Santoro, Rosaria; Kamm, Roger; Fiore, Gianfranco Beniamino; Pesce, Maurizio; Soncini, Monica

    2016-04-01

    Cardiac cell function is substantially influenced by the nature and intensity of the mechanical loads the cells experience. Cardiac fibroblasts (CFs) are primarily involved in myocardial tissue remodeling: at the onset of specific pathological conditions, CFs activate, proliferate, differentiate, and critically alter the amount of myocardial extra-cellular matrix with important consequences for myocardial functioning. While cyclic mechanical strain has been shown to increase matrix synthesis of CFs in vitro, the role of mechanical cues in CFs proliferation is unclear. We here developed a multi-chamber cell straining microdevice for cell cultures under uniform, uniaxial cyclic strain. After careful characterization of the strain field, we extracted human heart-derived CFs and performed cyclic strain experiments. We subjected cells to 2% or 8% cyclic strain for 24 h or 72 h, using immunofluorescence to investigate markers of cell morphology, cell proliferation (Ki67, EdU, phospho-Histone-H3) and subcellular localization of the mechanotransduction-associated transcription factor YAP. Cell morphology was affected by cyclic strain in terms of cell area, cell and nuclear shape and cellular alignment. We additionally observed a strain intensity-dependent control of cell growth: a significant proliferation increase occurred at 2% cyclic strain, while time-dependent effects took place upon 8% cyclic strain. The YAP-dependent mechano-transduction pathway was similarly activated in both strain conditions. These results demonstrate a differential effect of cyclic strain intensity on human CFs proliferation control and provide insights into the YAP-dependent mechano-sensing machinery of human CFs.

  2. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading.

    PubMed

    Wu, John Z; Herzog, Walter

    2006-01-01

    Experimental evidence indicates that the biosynthetic activity of chondrocytes is associated with the mechanical environment. For example, excessive, repetitive loading has been found to induce cell death, morphological and cellular damage, as seen in degenerative joint disease, while cyclic, physiological-like