Science.gov

Sample records for activated dislocation motion

  1. Dislocation motion and instability

    NASA Astrophysics Data System (ADS)

    Zhu, Yichao; Chapman, Stephen Jonathan; Acharya, Amit

    2013-08-01

    The Peach-Koehler expression for the stress generated by a single (non-planar) curvilinear dislocation is evaluated to calculate the dislocation self stress. This is combined with a law of motion to give the self-induced motion of a general dislocation curve. A stability analysis of a rectilinear, uniformly translating dislocation is then performed. The dislocation is found to be susceptible to a helical instability, with the maximum growth rate occurring when the dislocation is almost, but not exactly, pure screw. The non-linear evolution of the instability is determined numerically, and implications for slip band formation and non-Schmid behavior in yielding are discussed.

  2. Thermally Activated Motion of a Screw Dislocation Overcoming the Peierls Potential for Prismatic Slip in an hcp Lattice

    NASA Astrophysics Data System (ADS)

    Edagawa, Keiichi; Suzuki, Takayoshi; Takeuchi, Shin

    1998-07-01

    The prismatic slip in hcp metals has been studied by calculating the thermally activated motion of a 1/3[11\\bar{2}0] screw dislocation in a two-dimensional Peierls potential assumed in the (11\\bar{2}0) plane. The kink pair formation process for the transition of the dislocation from a stable position to another under applied stress has been investigated and the activation energies for the two types of transitions constituting the prismatic slip have been calculated. Using the activation energies, the critical flow stress τc has been deduced as a function of the direction of the applied stress χ and temperature. The calculated τc χ relations deviate significantly from the Schmid law and well reproduce the deviation relation observed in the experimental data of Ti. The deviation from the Schmid law originates in a structural feature of the hcp lattice itself, i.e., a zigzag arrangement along the prismatic plane of atomic rows.

  3. Strain localization in ultramylonitic marbles by simultaneous activation of dislocation motion and grain boundary sliding (Syros, Greece)

    NASA Astrophysics Data System (ADS)

    Rogowitz, A.; White, J. C.; Grasemann, B.

    2016-03-01

    Extreme strain localization occurred in the centre of the cross-cutting element of a flanking structure in almost pure calcite marbles from Syros, Greece. At the maximum displacement of 120 cm along the cross-cutting element, evidence of grain size sensitive deformation mechanisms can be found in the ultramylonitic marbles, which are characterized by (1) an extremely small grain size ( ˜ 3 µm), (2) grain boundary triple junctions with nearly 120° angles, (3) a weak crystallographic preferred orientation with very low texture index (J = 1.4), (4) a random misorientation angle distribution curve and (5) the presence of small cavities. Using transmission electron microscopy, a deformation sequence is observed comprising recrystallization dominantly by bulging, resulting in the development of the fine-grained ultramylonite followed by the development of a high dislocation density ( ˜ 1013 m-2) with ongoing deformation of the fine-grained ultramylonite. The arrangement of dislocations in the extremely fine-grain-sized calcite differs from microstructures created by classical dislocation creep mediated by combined glide and thermally activated climb. Instead, it exhibits extensive glide and dislocation networks characteristic of recovery accommodated by cross-slip and network-assisted dislocation movement without formation of idealized subgrain walls. The enabling of grain boundary sliding to dislocation activity is deemed central to initiating and sustaining strain softening and is argued to be an important strain localization process in calcite rocks, even at a high strain rate ( ˜ 10-9 s-1) and low temperature (300 °C).

  4. Strain localization in ultramylonitic marbles by simultaneous activation of dislocation motion and grain boundary sliding (Syros, Greece)

    NASA Astrophysics Data System (ADS)

    Rogowitz, A.; White, J. C.; Grasemann, B.

    2015-09-01

    Extreme strain localization occurred in the center of the cross-cutting element of a flanking structure in almost pure calcite marbles from Syros, Greece. At the maximum displacement of 120 cm along the cross-cutting element evidence of grain size sensitive deformation mechanisms can be found in the ultramylonitic marbles, which are characterized by (1) an extremely small grain size (∼3 μm), (2) grain boundary triple junctions with nearly 120° angles, (3) a weak crystallographic preferred orientation with very low texture index (J=1.4), (4) a random misorientation angle distribution curve and (5) the presence of small cavities. Using transmission electron microscopy a deformation sequence is observed comprising, first recrystallization by bulging resulting in the development of the fine-grained ultramylonite followed by the evolution of a high dislocation density (∼1013 m-2) with ongoing deformation of the fine-grained ultramylonite. The arrangement of dislocations in the extremely fine grain sized calcite differs from microstructures created by classical dislocation creep mediated by combined glide and thermally activated climb. Instead, it exhibits extensive glide and dislocation networks characteristic of recovery accommodated by cross-slip and network-assisted dislocation movement without formation of idealized subgrain walls. The enabling of grain boundary sliding to dislocation activity is deemed central to initiating and sustaining strain softening and is argued to be an important strain localization process in calcite rocks, even at high strain rate (10-9 s-1) and low temperature (300 °C).

  5. Kink pair production and dislocation motion

    PubMed Central

    Fitzgerald, S. P.

    2016-01-01

    The motion of extended defects called dislocations controls the mechanical properties of crystalline materials such as strength and ductility. Under moderate applied loads, this motion proceeds via the thermal nucleation of kink pairs. The nucleation rate is known to be a highly nonlinear function of the applied load, and its calculation has long been a theoretical challenge. In this article, a stochastic path integral approach is used to derive a simple, general, and exact formula for the rate. The predictions are in excellent agreement with experimental and computational investigations, and unambiguously explain the origin of the observed extreme nonlinearity. The results can also be applied to other systems modelled by an elastic string interacting with a periodic potential, such as Josephson junctions in superconductors. PMID:28004834

  6. Kink pair production and dislocation motion

    NASA Astrophysics Data System (ADS)

    Fitzgerald, S. P.

    2016-12-01

    The motion of extended defects called dislocations controls the mechanical properties of crystalline materials such as strength and ductility. Under moderate applied loads, this motion proceeds via the thermal nucleation of kink pairs. The nucleation rate is known to be a highly nonlinear function of the applied load, and its calculation has long been a theoretical challenge. In this article, a stochastic path integral approach is used to derive a simple, general, and exact formula for the rate. The predictions are in excellent agreement with experimental and computational investigations, and unambiguously explain the origin of the observed extreme nonlinearity. The results can also be applied to other systems modelled by an elastic string interacting with a periodic potential, such as Josephson junctions in superconductors.

  7. Interfacial dislocation motion and interactions in single-crystal superalloys

    SciTech Connect

    Liu, B.; Raabe, D.; Roters, F.; Arsenlis, A.

    2014-10-01

    The early stage of high-temperature low-stress creep in single-crystal superalloys is characterized by the rapid development of interfacial dislocation networks. Although interfacial motion and dynamic recovery of these dislocation networks have long been expected to control the subsequent creep behavior, direct observation and hence in-depth understanding of such processes has not been achieved. Incorporating recent developments of discrete dislocation dynamics models, we simulate interfacial dislocation motion in the channel structures of single-crystal superalloys, and investigate how interfacial dislocation motion and dynamic recovery are affected by interfacial dislocation interactions and lattice misfit. Different types of dislocation interactions are considered: self, collinear, coplanar, Lomer junction, glissile junction, and Hirth junction. The simulation results show that strong dynamic recovery occurs due to the short-range reactions of collinear annihilation and Lomer junction formation. The misfit stress is found to induce and accelerate dynamic recovery of interfacial dislocation networks involving self-interaction and Hirth junction formation, but slow down the steady interfacial motion of coplanar and glissile junction forming dislocation networks. The insights gained from these simulations on high-temperature low-stress creep of single-crystal superalloys are also discussed.

  8. Dislocation

    MedlinePlus

    Joint dislocation ... It may be hard to tell a dislocated joint from a broken bone . Both are emergencies that ... to repair a ligament that tears when the joint is dislocated is needed. Injuries to nerves and ...

  9. Local decomposition induced by dislocation motions inside precipitates in an Al-alloy

    PubMed Central

    Yang, B.; Zhou, Y. T.; Chen, D.; Ma, X. L.

    2013-01-01

    Dislocations in crystals are linear crystallographic defects, which move in lattice when crystals are plastically deformed. Motion of a partial dislocation may remove or create stacking fault characterized with a partial of a lattice translation vector. Here we report that motion of partial dislocations inside an intermetallic compound result in a local composition deviation from its stoichiometric ratio, which cannot be depicted with any vectors of the primary crystal. Along dislocation slip bands inside the deformed Al2Cu particles, redistribution of Cu and Al atoms leads to a local decomposition and collapse of the original crystal structure. This finding demonstrates that dislocation slip may induce destabilization in complex compounds, which is fundamentally different from that in monometallic crystals. This phenomenon of chemical unmixing of initially homogeneous multicomponent solids induced by dislocation motion might also have important implications for understanding the geologic evolvement of deep-focus peridotites in the Earth. PMID:23301160

  10. Structure, stability, and motion of dislocations in double-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, Kai-Wang; Li, Zhong-Qiu; Wu, Jian; Peng, Xiang-Yang; Tan, Xin-Jun; Sun, Li-Zhong; Zhong, Jian-Xin

    2012-10-01

    In this paper, a novel double-wall carbon nanotube (DWCNT) with both edge and screw dislocations is studied by using the molecular dynamics (MD) method. The differences between two adjacent tubule indexes of armchair and zigzag nanotubes are determined to be 5 and 9, respectively, by taking into account the symmetry, integrality, and thermal stability of the composite structures. It is found that melting first occurs near the dislocations, and the melting temperatures of the dislocated armchair and zigzag DWCNTs are around 2600 K—2700 K. At the pre-melting temperatures, the shrink of the dislocation loop, which is comprised of edge and screw dislocations, implies that the composite dislocation in DWCNTs has self-healing ability. The dislocated DWCNTs first fracture at the edge dislocations, which induces the entire break in axial tensile test. The dislocated DWCNTs have a smaller fracture strength compared to the perfect DWCNTs. Our results not only match with the dislocation glide of carbon nanotubes (CNTs) in experiments, but also can free from the electron beam radiation under experimental conditions observed by the high resolution transmission electron microscope (HRTEM), which is deemed to cause the motion of dislocation loop.

  11. Twin Boundaries merely as Intrinsically Kinematic Barriers for Screw Dislocation Motion in FCC Metals

    PubMed Central

    Zhang, Jiayong; Zhang, Hongwu; Ye, Hongfei; Zheng, Yonggang

    2016-01-01

    Metals with nanoscale twins have shown ultrahigh strength and excellent ductility, attributed to the role of twin boundaries (TBs) as strong barriers for the motion of lattice dislocations. Though observed in both experiments and simulations, the barrier effect of TBs is rarely studied quantitatively. Here, with atomistic simulations and continuum based anisotropic bicrystal models, we find that the long-range interaction force between coherent TBs and screw dislocations is negligible. Further simulations of the pileup behavior of screw dislocations in front of TBs suggest that screw dislocations can be blocked kinematically by TBs due to the change of slip plane, leading to the pileup of subsequent dislocations with the elastic repulsion actually from the pinned dislocation in front of the TB. Our results well explain the experimental observations that the variation of yield strength with twin thickness for ultrafine-grained copper follows the Hall-Petch relationship. PMID:26961273

  12. Twin Boundaries merely as Intrinsically Kinematic Barriers for Screw Dislocation Motion in FCC Metals

    NASA Astrophysics Data System (ADS)

    Zhang, Jiayong; Zhang, Hongwu; Ye, Hongfei; Zheng, Yonggang

    2016-03-01

    Metals with nanoscale twins have shown ultrahigh strength and excellent ductility, attributed to the role of twin boundaries (TBs) as strong barriers for the motion of lattice dislocations. Though observed in both experiments and simulations, the barrier effect of TBs is rarely studied quantitatively. Here, with atomistic simulations and continuum based anisotropic bicrystal models, we find that the long-range interaction force between coherent TBs and screw dislocations is negligible. Further simulations of the pileup behavior of screw dislocations in front of TBs suggest that screw dislocations can be blocked kinematically by TBs due to the change of slip plane, leading to the pileup of subsequent dislocations with the elastic repulsion actually from the pinned dislocation in front of the TB. Our results well explain the experimental observations that the variation of yield strength with twin thickness for ultrafine-grained copper follows the Hall-Petch relationship.

  13. Twin Boundaries merely as Intrinsically Kinematic Barriers for Screw Dislocation Motion in FCC Metals.

    PubMed

    Zhang, Jiayong; Zhang, Hongwu; Ye, Hongfei; Zheng, Yonggang

    2016-03-10

    Metals with nanoscale twins have shown ultrahigh strength and excellent ductility, attributed to the role of twin boundaries (TBs) as strong barriers for the motion of lattice dislocations. Though observed in both experiments and simulations, the barrier effect of TBs is rarely studied quantitatively. Here, with atomistic simulations and continuum based anisotropic bicrystal models, we find that the long-range interaction force between coherent TBs and screw dislocations is negligible. Further simulations of the pileup behavior of screw dislocations in front of TBs suggest that screw dislocations can be blocked kinematically by TBs due to the change of slip plane, leading to the pileup of subsequent dislocations with the elastic repulsion actually from the pinned dislocation in front of the TB. Our results well explain the experimental observations that the variation of yield strength with twin thickness for ultrafine-grained copper follows the Hall-Petch relationship.

  14. Thermal Activation of Dislocations in Large Scale Obstacle Bypass

    SciTech Connect

    Martinez Saez, Enrique; Sobie, Cameron; Wen, Wei; Capolungo, Laurent; Patra, Anirban; McDowell, David L.; Tome, Carlos

    2016-08-18

    Irradiation-created defects diffuse and agglomerate presenting obstacles for the dislocation motion (both glide and climb). This effect leads to hardening and loss of toughness, which might drive the system to failure.

  15. Singular orientations and faceted motion of dislocations in body-centered cubic crystals.

    PubMed

    Kang, Keonwook; Bulatov, Vasily V; Cai, Wei

    2012-09-18

    Dislocation mobility is a fundamental material property that controls strength and ductility of crystals. An important measure of dislocation mobility is its Peierls stress, i.e., the minimal stress required to move a dislocation at zero temperature. Here we report that, in the body-centered cubic metal tantalum, the Peierls stress as a function of dislocation orientation exhibits fine structure with several singular orientations of high Peierls stress-stress spikes-surrounded by vicinal plateau regions. While the classical Peierls-Nabarro model captures the high Peierls stress of singular orientations, an extension that allows dislocations to bend is necessary to account for the plateau regions. Our results clarify the notion of dislocation kinks as meaningful only for orientations within the plateau regions vicinal to the Peierls stress spikes. These observations lead us to propose a Read-Shockley type classification of dislocation orientations into three distinct classes-special, vicinal, and general-with respect to their Peierls stress and motion mechanisms. We predict that dislocation loops expanding under stress at sufficiently low temperatures, should develop well defined facets corresponding to two special orientations of highest Peierls stress, the screw and the M111 orientations, both moving by kink mechanism. We propose that both the screw and the M111 dislocations are jointly responsible for the yield behavior of BCC metals at low temperatures.

  16. Singular orientations and faceted motion of dislocations in body-centered cubic crystals

    PubMed Central

    Kang, Keonwook; Bulatov, Vasily V.; Cai, Wei

    2012-01-01

    Dislocation mobility is a fundamental material property that controls strength and ductility of crystals. An important measure of dislocation mobility is its Peierls stress, i.e., the minimal stress required to move a dislocation at zero temperature. Here we report that, in the body-centered cubic metal tantalum, the Peierls stress as a function of dislocation orientation exhibits fine structure with several singular orientations of high Peierls stress—stress spikes—surrounded by vicinal plateau regions. While the classical Peierls-Nabarro model captures the high Peierls stress of singular orientations, an extension that allows dislocations to bend is necessary to account for the plateau regions. Our results clarify the notion of dislocation kinks as meaningful only for orientations within the plateau regions vicinal to the Peierls stress spikes. These observations lead us to propose a Read-Shockley type classification of dislocation orientations into three distinct classes—special, vicinal, and general—with respect to their Peierls stress and motion mechanisms. We predict that dislocation loops expanding under stress at sufficiently low temperatures, should develop well defined facets corresponding to two special orientations of highest Peierls stress, the screw and the M111 orientations, both moving by kink mechanism. We propose that both the screw and the M111 dislocations are jointly responsible for the yield behavior of BCC metals at low temperatures. PMID:22949701

  17. Dislocations

    MedlinePlus

    ... Attempting to move or jam a dislocated bone back in can damage blood vessels, muscles, ligaments, and nerves. Apply an ice pack. Ice can ease swelling and pain in and around the joint. Use ibuprofen or ...

  18. Threading and misfit-dislocation motion in molecular-beam epitaxy-grown HgCdTe epilayers

    NASA Astrophysics Data System (ADS)

    Carmody, M.; Lee, D.; Zandian, M.; Phillips, J.; Arias, J.

    2003-07-01

    Lattice mismatch between the substrate and the absorber layer in single-color HgCdTe infrared (IR) detectors and between band 1 and band 2 in two-color detectors results in the formation of crosshatch lines on the surface and an array of misfit dislocations at the epi-interfaces. Threading dislocations originating in the substrate can also bend into the interface plane and result in misfit dislocations because of the lattice mismatch. The existence of dislocations threading through the junction region of HgCdTe IR-photovoltaic detectors can greatly affect device performance. High-quality CdZnTe substrates and controlled molecular-beam epitaxy (MBE) growth of HgCdTe can result in very low threading-dislocation densities as measured by the etch-pit density (EPD ˜ 104cm-2). However, dislocation gettering to regions of high stress (such as etched holes, voids, and implanted-junction regions) at elevated-processing temperatures can result in a high density of dislocations in the junction region that can greatly reduce detector performance. We have performed experiments to determine if the dislocations that getter to these regions of high stress are misfit dislocations at the substrate/absorber interface that have a threading component extending to the upper surface of the epilayer, or if the dislocations originate at the cap/absorber interface as misfit dislocations. The preceding mechanisms for dislocation motion are discussed in detail, and the possible diode-performance consequences are explored.

  19. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Recombination-induced motion of dislocations in III-V compounds

    NASA Astrophysics Data System (ADS)

    Schreiber, J.; Leipner, H. S.

    1988-11-01

    The methods of in situ cathodoluminescence and scanning electron microscopy were used in a study of stimulated dislocation glide. Dislocations generated by deliberate surface damage were found to be highly mobile when excited above a certain threshold. A study was made of the dependence of the glide velocity on the excitation rate and the first quantitative results on low-temperature dislocation motion are reported.

  20. Strengthening effects of various grain boundaries with nano-spacing as barriers of dislocation motion from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Yuan, FuPing

    2017-03-01

    Strengthening in metals is traditionally achieved through the controlled creation of various grain boundaries (GBs), such as low-angle GBs, high-angle GBs, and twin boundaries (TBs). In the present study, a series of large-scale molecular dynamics simulations with spherical nanoindentation and carefully designed model were conducted to investigate and compare the strengthening effects of various GBs with nano-spacing as barriers of dislocation motion. Simulation results showed that high-angle twist GBs and TBs are similar barriers and low-angle twist GBs are less effective in obstructing dislocation motion. Corresponding atomistic mechanisms were also given. At a certain indentation depth, dislocation transmission and dislocation nucleation from the other side of boundaries were observed for low-angle twist GBs, whereas dislocations were completely blocked by high-angle twist GBs and TBs at the same indentation depth. The current findings should provide insights for comprehensive understanding of the strengthening effects of various GBs at nanoscale.

  1. Upscaling a Model for the Thermally-Driven Motion of Screw Dislocations

    NASA Astrophysics Data System (ADS)

    Hudson, T.

    2017-04-01

    We formulate and study a stochastic model for the thermally-driven motion of interacting straight screw dislocations in a cylindrical domain with a convex polygonal cross-section. Motion is modelled as a Markov jump process, where waiting times for transitions from state to state are assumed to be exponentially distributed with rates expressed in terms of the potential energy barrier between the states. Assuming the energy of the system is described by a discrete lattice model, a precise asymptotic description of the energy barriers between states is obtained. Through scaling of the various physical constants, two dimensionless parameters are identified which govern the behaviour of the resulting stochastic evolution. In an asymptotic regime where these parameters remain fixed, the process is found to satisfy a Large Deviations Principle. A sufficiently explicit description of the corresponding rate functional is obtained such that the most probable path of the dislocation configuration may be described as the solution of Discrete Dislocation Dynamics with an explicit anisotropic mobility which depends on the underlying lattice structure.

  2. Statistical description of the motion of dislocation kinks in a random field of impurities adsorbed by a dislocation

    SciTech Connect

    Petukhov, B. V.

    2010-01-15

    A model has been proposed for describing the influence of impurities adsorbed by dislocation cores on the mobility of dislocation kinks in materials with a high crystalline relief (Peierls barriers). The delay time spectrum of kinks at statistical fluctuations of the impurity density has been calculated for a sufficiently high energy of interaction between impurities and dislocations when the migration potential is not reduced to a random Gaussian potential. It has been shown that fluctuations in the impurity distribution substantially change the character of the migration of dislocation kinks due to the slow decrease in the probability of long delay times. The dependences of the position of the boundary of the dynamic phase transition to a sublinear drift of kinks x {proportional_to} t{sup {delta}} ({delta} {sigma} 1) and the characteristics of the anomalous mobility on the physical parameters (stress, impurity concentration, experimental temperature, etc.) have been calculated.

  3. The activation energy for dislocation nucleation at a crack

    NASA Astrophysics Data System (ADS)

    Rice, James R.; Beltz, Glenn E.

    1994-02-01

    T HE ACTIVATION energy for dislocation nucleation from a stressed crack tip is calculated within the Peierls framework, in which a periodic shear stress vs displacement relation is assumed to hold on a slip plane emanating from the crack tip. Previous results have revealed that the critical G (energy release rate corresponding to the "screened" crack tip stress field) for dislocation nucleation scales with γ us (the unstable stacking energy), in an analysis which neglects any coupling between tension and shear along the slip plane. That analysis represents instantaneous nucleation and takes thermal effects into account only via the weak temperature dependence of the elastic constants. In this work, the energy required to thermally activate a stable, incipient dislocation into its unstable "saddle-point" configuration is directly calculated for loads less than that critical value. We do so only with the simplest case, for which the slip plane is a prolongation of the crack plane. A first calculation reported is 2D in nature, and hence reveals an activation energy per unit length. A more realistic scheme for thermal activation involves the emission of a dislocation loop, an inherently 3D phenomenon. Asymptotic calculations of the activation energy for loads close to the critical load are performed in 2D and in 3D. It is found that the 3D activation energy generally corresponds to the 2D activation energy per unit length multiplied by about 5-10 Burgers vectors (but by as many as 17 very near to the critical loading). Implications for the emission of dislocations in copper, α-iron, and silicon at elevated temperature are discussed. The effects of thermal activation are very significant in lowering the load for emission. Also, the appropriate activation energy to correspond to molecular dynamics simulations of crack tips is discussed. Such simulations, as typically carried out with only a few atomic planes in a periodic repeat direction parallel to the crack tip, are

  4. 20 CFR 663.120 - Are displaced homemakers eligible for dislocated worker activities under WIA?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop Delivery... the adult program....

  5. 20 CFR 663.120 - Are displaced homemakers eligible for dislocated worker activities under WIA?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop Delivery... the adult program....

  6. Thermally activated transport of a dislocation loop within an elastic model

    NASA Astrophysics Data System (ADS)

    Ohsawa, Kazuhito; Kuramoto, Eiichi

    2007-08-01

    We report thermally activated transport of a dislocation loop in terms of a line tension model, where the dislocation line is assumed to be a flexible string. According to conventional rate theory, the features of thermal activation are determined by the saddle-point geometry in high dimensional configuration space. If the circumference of a dislocation loop L is longer than a critical length Lc, the selected saddle-point configuration is the well known double-kink type solution. On the other hand, the manner of the thermal activation of a dislocation loop shorter than Lc is rather point-defect-like. In the present work, we pay attention to the temperature dependence of transition rate which is represented such as ν0∗exp(-E/kT). The pre-exponential factor depends on temperature like ν0∗˜T for sufficiently long dislocation loops on the basis of the analysis.

  7. Thermally-Active Screw Dislocations in Si Nanowires and Nanotubes

    NASA Astrophysics Data System (ADS)

    Dumitrica, Traian; Xiong, Shiyun; Ma, Jihong; Volz, Sebastian

    2014-03-01

    New properties appear when nanomaterials contain dislocations. Understanding whether these features, which arise naturally during growth, are beneficial or problematic becomes essential for developing applications. Here we investigate 110 Si nanowire and nanotube structures containing an axial screw dislocation, as described by objective molecular dynamics coupled with the classical Tersoff potential. By means of direct nonequilibrium molecular dynamics simulations, we uncover significant reductions in thermal conductivity when nanostructures contain axial screw dislocations with closed and open cores. Analysis based on the atomistic Green function method reveals that in nanowires, the effect originates largely in the phonon-phonon scattering due to the enhanced anharmonicity introduced by highly distorted core region of the dislocation. In nanotubes, the inner surface compensates effectively for the missing core region. The uncovered effect can act in combination with other already known thermal conductivity limiting mechanisms, and thus can enable the further optimization of the figure of merit for a new family of complex thermoelectric nanomaterials.

  8. Computer simulation of the motion of a straight dislocation line in concentrated solid solutions. II. [in fcc alloys

    NASA Technical Reports Server (NTRS)

    Kuo, C. T. K.; Arsenault, R. J.

    1977-01-01

    An investigation was undertaken to determine if the size and modulus interaction of a solute atom with a screw dislocation and the modulus interaction with an edge dislocation contributed to strengthening, in addition to the size interaction with an edge dislocation. The results indicate that the size interaction between solute atom and an edge dislocation accounts for most of the solid solution strengthening in f.c.c. alloys. The contribution to the yield stress from the modulus interaction with an edge dislocation is less than 15%. The interaction between a solute atom and a screw dislocation is much less than that between a solute atom and an edge dislocation.

  9. On the scaling behavior of hardness with ligament diameter of nanoporous-Au: Constrained motion of dislocations along the ligaments

    SciTech Connect

    Viswanath, R. N.; Polaki, S. R.; Rajaraman, R.; Abhaya, S.; Chirayath, V. A.; Amarendra, G.; Sundar, C. S.

    2014-06-09

    The scaling behavior of hardness with ligament diameter and vacancy defect concentration in nanoporous Au (np-Au) has been investigated using a combination of Vickers Hardness, Scanning electron microscopy, and positron lifetime measurements. It is shown that for np-Au, the hardness scales with the ligament diameter with an exponent of −0.3, that is, at variance with the conventional Hall-Petch exponent of −0.5 for bulk systems, as seen in the controlled experiments on cold worked Au with varying grain size. The hardness of np-Au correlates with the vacancy concentration C{sub V} within the ligaments, as estimated from positron lifetime experiments, and scales as C{sub V}{sup 1/2}, pointing to the interaction of dislocations with vacancies. The distinctive Hall-Petch exponent of −0.3 seen for np-Au, with ligament diameters in the range of 5–150 nm, is rationalized by invoking the constrained motion of dislocations along the ligaments.

  10. Variation of dislocation etch-pit geometry: An indicator of bulk microstructure and recombination activity in multicrystalline silicon

    NASA Astrophysics Data System (ADS)

    Castellanos, S.; Kivambe, M.; Hofstetter, J.; Rinio, M.; Lai, B.; Buonassisi, T.

    2014-05-01

    Dislocation clusters in multicrystalline silicon limit solar cell performance by decreasing minority carrier diffusion length. Studies have shown that the recombination strength of dislocation clusters can vary by up to two orders of magnitude, even within the same wafer. In this contribution, we combine a surface-analysis approach with bulk characterization techniques to explore the underlying root cause of variations in recombination strength among different clusters. We observe that dislocation clusters with higher recombination strength consist of dislocations with a larger variation of line vector, correlated with a higher degree of variation in dislocation etch-pit shapes (ellipticities). Conversely, dislocation clusters exhibiting the lowest recombination strength contain mostly dislocations with identical line vectors, resulting in very similar etch-pit shapes. The disorder of dislocation line vector in high-recombination clusters appears to be correlated with impurity decoration, possibly the cause of the enhanced recombination activity. Based on our observations, we conclude that the relative recombination activity of different dislocation clusters in the device may be predicted via an optical inspection of the distribution and shape variation of dislocation etch pits in the as-grown wafer.

  11. Parallel Dislocation Simulator

    SciTech Connect

    2006-10-30

    ParaDiS is software capable of simulating the motion, evolution, and interaction of dislocation networks in single crystals using massively parallel computer architectures. The software is capable of outputting the stress-strain response of a single crystal whose plastic deformation is controlled by the dislocation processes.

  12. Knee Dislocations

    PubMed Central

    Schenck, Robert C.; Richter, Dustin L.; Wascher, Daniel C.

    2014-01-01

    Background: Traumatic knee dislocation is becoming more prevalent because of improved recognition and increased exposure to high-energy trauma, but long-term results are lacking. Purpose: To present 2 cases with minimum 20-year follow-up and a review of the literature to illustrate some of the fundamental principles in the management of the dislocated knee. Study Design: Review and case reports. Methods: Two patients with knee dislocations who underwent multiligamentous knee reconstruction were reviewed, with a minimum 20-year follow-up. These patients were brought back for a clinical evaluation using both subjective and objective measures. Subjective measures include the following scales: Lysholm, Tegner activity, visual analog scale (VAS), Short Form–36 (SF-36), International Knee Documentation Committee (IKDC), and a psychosocial questionnaire. Objective measures included ligamentous examination, radiographic evaluation (including Telos stress radiographs), and physical therapy assessment of function and stability. Results: The mean follow-up was 22 years. One patient had a vascular injury requiring repair prior to ligament reconstruction. The average assessment scores were as follows: SF-36 physical health, 52; SF-36 mental health, 59; Lysholm, 92; IKDC, 86.5; VAS involved, 10.5 mm; and VAS uninvolved, 2.5 mm. Both patients had excellent stability and were functioning at high levels of activity for their age (eg, hiking, skydiving). Both patients had radiographic signs of arthritis, which lowered 1 subject’s IKDC score to “C.” Conclusion: Knee dislocations have rare long-term excellent results, and most intermediate-term studies show fair to good functional results. By following fundamental principles in the management of a dislocated knee, patients can be given the opportunity to function at high levels. Hopefully, continued advances in the evaluation and treatment of knee dislocations will improve the long-term outcomes for these patients in the

  13. Behavior of dislocations in silicon

    SciTech Connect

    Sumino, Koji

    1995-08-01

    A review is given of dynamic behavior of dislocations in silicon on the basis of works of the author`s group. Topics taken up are generation, motion and multiplication of dislocations as affected by oxygen impurities and immobilization of dislocations due to impurity reaction.

  14. Supersonic Dislocation Bursts in Silicon

    DOE PAGES

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; ...

    2016-06-06

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolutionmore » we successfully predict a dislocation density of 1.5 x 10(12) cm(-2) within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.« less

  15. Supersonic Dislocation Bursts in Silicon

    SciTech Connect

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; Meyers, M. A.

    2016-06-06

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 x 10(12) cm(-2) within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.

  16. Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun

    2013-05-01

    Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.

  17. Elbow Dislocations in Contact Sports.

    PubMed

    Morris, Mark S; Ozer, Kagan

    2017-02-01

    Elbow dislocations are more common in athletes than in the general population. Simple elbow dislocations should be managed with early range of motion and early return to sport, even with high-level contact athletes. Patients with instability on examination or with complex elbow dislocations may require surgical intervention. Overall, the outcomes after simple elbow dislocations are excellent and athletes should be able to return to play without significant limitations.

  18. [Elbow dislocation].

    PubMed

    de Pablo Márquez, B; Castillón Bernal, P; Bernaus Johnson, M C; Ibañez Aparicio, N M

    2017-03-09

    Elbow dislocation is the most frequent dislocation in the upper limb after shoulder dislocation. Closed reduction is feasible in outpatient care when there is no associated fracture. A review is presented of the different reduction procedures.

  19. Electromechanical simulations of dislocations

    NASA Astrophysics Data System (ADS)

    Skiba, Oxana; Gracie, Robert; Potapenko, Stanislav

    2013-04-01

    Improving the reliability of micro-electronic devices depends in part on developing a more in-depth understanding of dislocations because dislocations are barriers to charge carriers. To this end, the quasi-static simulation of discrete dislocations dynamics in materials under mechanical and electrical loads is presented. The simulations are based on the extended finite element method, where dislocations are modelled as internal discontinuities. The strong and weak forms of the boundary value problem for the coupled system are presented. The computation of the Peach-Koehler force using the J-integral is discussed. Examples to illustrate the accuracy of the simulations are presented. The motion of the network of the dislocations under different electrical and mechanical loads is simulated. It was shown that even in weak piezoelectric materials the effect of the electric field on plastic behaviour is significant.

  20. Self-similarity in active colloid motion

    NASA Astrophysics Data System (ADS)

    Constant, Colin; Sukhov, Sergey; Dogariu, Aristide

    The self-similarity of displacements among randomly evolving systems has been used to describe the foraging patterns of animals and predict the growth of financial systems. At micron scales, the motion of colloidal particles can be analyzed by sampling their spatial displacement in time. For self-similar systems in equilibrium, the mean squared displacement increases linearly in time. However, external forces can take the system out of equilibrium, creating active colloidal systems, and making this evolution more complex. A moment scaling spectrum of the distribution of particle displacements quantifies the degree of self-similarity in the colloid motion. We will demonstrate that, by varying the temporal and spatial characteristics of the external forces, one can control the degree of self-similarity in active colloid motion.

  1. Giant Optical Activity of Quantum Dots, Rods, and Disks with Screw Dislocations

    PubMed Central

    Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Noskov, Roman E.; Ginzburg, Pavel; Gun’ko, Yurii K.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2015-01-01

    For centuries mankind has been modifying the optical properties of materials: first, by elaborating the geometry and composition of structures made of materials found in nature, later by structuring the existing materials at a scale smaller than the operating wavelength. Here we suggest an original approach to introduce optical activity in nanostructured materials, by theoretically demonstrating that conventional achiral semiconducting nanocrystals become optically active in the presence of screw dislocations, which can naturally develop during the nanocrystal growth. We show the new properties to emerge due to the dislocation-induced distortion of the crystal lattice and the associated alteration of the nanocrystal’s electronic subsystem, which essentially modifies its interaction with external optical fields. The g-factors of intraband transitions in our nanocrystals are found comparable with dissymmetry factors of chiral plasmonic complexes, and exceeding the typical g-factors of chiral molecules by a factor of 1000. Optically active semiconducting nanocrystals—with chiral properties controllable by the nanocrystal dimensions, morphology, composition and blending ratio—will greatly benefit chemistry, biology and medicine by advancing enantiomeric recognition, sensing and resolution of chiral molecules. PMID:26424498

  2. Dislocation climb models from atomistic scheme to dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Niu, Xiaohua; Luo, Tao; Lu, Jianfeng; Xiang, Yang

    2017-02-01

    We develop a mesoscopic dislocation dynamics model for vacancy-assisted dislocation climb by upscalings from a stochastic model on the atomistic scale. Our models incorporate microscopic mechanisms of (i) bulk diffusion of vacancies, (ii) vacancy exchange dynamics between bulk and dislocation core, (iii) vacancy pipe diffusion along the dislocation core, and (iv) vacancy attachment-detachment kinetics at jogs leading to the motion of jogs. Our mesoscopic model consists of the vacancy bulk diffusion equation and a dislocation climb velocity formula. The effects of these microscopic mechanisms are incorporated by a Robin boundary condition near the dislocations for the bulk diffusion equation and a new contribution in the dislocation climb velocity due to vacancy pipe diffusion driven by the stress variation along the dislocation. Our climb formulation is able to quantitatively describe the translation of prismatic loops at low temperatures when the bulk diffusion is negligible. Using this new formulation, we derive analytical formulas for the climb velocity of a straight edge dislocation and a prismatic circular loop. Our dislocation climb formulation can be implemented in dislocation dynamics simulations to incorporate all the above four microscopic mechanisms of dislocation climb.

  3. Intestinal motor activity, endoluminal motion and transit.

    PubMed

    de Iorio, F; Malagelada, C; Azpiroz, F; Maluenda, M; Violanti, C; Igual, L; Vitrià, J; Malagelada, J-R

    2009-12-01

    A programme for evaluation of intestinal motility has been recently developed based on endoluminal image analysis using computer vision methodology and machine learning techniques. Our aim was to determine the effect of intestinal muscle inhibition on wall motion, dynamics of luminal content and transit in the small bowel. Fourteen healthy subjects ingested the endoscopic capsule (Pillcam, Given Imaging) in fasting conditions. Seven of them received glucagon (4.8 microg kg(-1) bolus followed by a 9.6 microg kg(-1) h(-1) infusion during 1 h) and in the other seven, fasting activity was recorded, as controls. This dose of glucagon has previously shown to inhibit both tonic and phasic intestinal motor activity. Endoluminal image and displacement was analyzed by means of a computer vision programme specifically developed for the evaluation of muscular activity (contractile and non-contractile patterns), intestinal contents, endoluminal motion and transit. Thirty-minute periods before, during and after glucagon infusion were analyzed and compared with equivalent periods in controls. No differences were found in the parameters measured during the baseline (pretest) periods when comparing glucagon and control experiments. During glucagon infusion, there was a significant reduction in contractile activity (0.2 +/- 0.1 vs 4.2 +/- 0.9 luminal closures per min, P < 0.05; 0.4 +/- 0.1 vs 3.4 +/- 1.2% of images with radial wrinkles, P < 0.05) and a significant reduction of endoluminal motion (82 +/- 9 vs 21 +/- 10% of static images, P < 0.05). Endoluminal image analysis, by means of computer vision and machine learning techniques, can reliably detect reduced intestinal muscle activity and motion.

  4. Collective Dislocation Dynamics and Avalanches during Fatigue of Aluminum

    NASA Astrophysics Data System (ADS)

    Rhouma, W. Ben; Deschanel, S.; Weiss, J.

    2011-09-01

    We present a study of collective dislocation dynamics and plasticity during fatigue of pure Aluminum from the analysis of continuous and discrete acoustic emission (AE). The three stages of macroscopic fatigue behavior (strain-hardening, shakedown, and strain softening) are clearly differentiated in terms of AE. During the first loading cycles, collective dislocation dynamics consists in dislocation avalanches of various sizes and clustered in time. Once a microstructure of dislocation cells and walls is formed, the spreading of such avalanches is restrained, and the discrete AE strongly decreases. Instead, a symmetrical (tension-compression) continuous AE, maximal at plastic yield, is observed, likely associated to a superposition of numerous, small and uncorrelated motions such as dislocation loops initiation from cell walls. However, some discrete AE activity remains during shakedown, a possible signature of sudden rearrangements of the microstructure occurring at scales larger than its wavelength. Finally, the onset of strain softening is associated to a strong increase of discrete AE, in relation with microcracking. Our results suggest that collective dislocation instabilities and the emergence of a dislocation microstructure are interrelated, and challenge future numerical modeling developments of dislocation assemblies.

  5. Management of an Uncomplicated Posterior Elbow Dislocation

    PubMed Central

    Blackard, Douglas; Sampson, Jo-Ann

    1997-01-01

    Objective: To present a case of an uncomplicated posterior elbow dislocation in a US World Cup athlete and discuss her rehabilitation. Background: Traditional protocol for management of this injury has been splint immobilization for several weeks, but research suggests a shortened duration of immobilization and early active motion. Differential Diagnosis: Elbow dislocation with possible fracture. Treatment: The dislocation was reduced and a compression bandage and sling were applied. The sports medicine staff and athlete determined that rehabilitation would involve limited immobilization with a posterior splint. Also, active range-of- motion exercises were to be incorporated early in the range-of- motion program to decrease pain at the articulation. Uniqueness: The athlete was not immobilized and her aggressive five-phase rehabilitation program progressed according to decrease in inflammation and increase in range of motion and strength. Conclusions: Shortened immobilization and return to World Championship competition 6 weeks postinjury had no longterm adverse effects on the athlete. ImagesFig 1.Fig 2.Fig 3.Fig 4.Fig. 5. PMID:16558436

  6. Dislocation Multi-junctions and Strain Hardening

    SciTech Connect

    Bulatov, V; Hsiung, L; Tang, M; Arsenlis, A; Bartelt, M; Cai, W; Florando, J; Hiratani, M; Rhee, M; Hommes, G; Pierce, T; Diaz de la Rubia, T

    2006-06-20

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects--dislocations. First theorized in 1934 to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed only two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening: a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions tying dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed hereafter multi-junctions. The existence of multi-junctions is first predicted by Dislocation Dynamics (DD) and atomistic simulations and then confirmed by the transmission electron microscopy (TEM) experiments in single crystal molybdenum. In large-scale Dislocation Dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in BCC crystals.

  7. Dislocation multi-junctions and strain hardening.

    PubMed

    Bulatov, Vasily V; Hsiung, Luke L; Tang, Meijie; Arsenlis, Athanasios; Bartelt, Maria C; Cai, Wei; Florando, Jeff N; Hiratani, Masato; Rhee, Moon; Hommes, Gregg; Pierce, Tim G; de la Rubia, Tomas Diaz

    2006-04-27

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects called dislocations. First proposed theoretically in 1934 (refs 1-3) to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening, a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions that tie the dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed 'multi-junctions'. We first predict the existence of multi-junctions using dislocation dynamics and atomistic simulations and then confirm their existence by transmission electron microscopy experiments in single-crystal molybdenum. In large-scale dislocation dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication, thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in body-centred cubic crystals.

  8. Thermally activated dislocation creep model for primary water stress corrosion cracking of NiCrFe alloys

    SciTech Connect

    Hall, M.M., Jr

    1995-12-31

    There is a growing awareness that awareness that environmentally assisted creep plays an important role in integranular stress corrosion cracking (IGSCC) of NiCrFe alloys in the primary coolant water environment of a pressurized water reactor (PWR). The expected creep mechanism is the thermally activated glide of dislocations. This mode of deformation is favored by the relatively low temperature of PWR operation combined with the large residual stresses that are most often identified as responsible for the SCC failure of plant components. Stress corrosion crack growth rate (CGR) equations that properly reflect the influence of this mechanism of crack tip deformation are required for accurate component life predictions. A phenomenological IGSCC-CGR model, which is based on an apriori assumption that the IGSCC-CGR is controlled by a low temperature dislocation creep mechanism, is developed in this report. Obstacles to dislocation creep include solute atoms such as carbon, which increase the lattice friction force, and forest dislocations, which can be introduced by cold prestrain. Dislocation creep also may be environmentally assisted due to hydrogen absorption at the crack tip. The IGSCC-CGR model developed here is based on an assumption that crack growth occurs by repeated fracture events occurring within an advancing crack-tip creep-fracture zone. Thermal activation parameters for stress corrosion cracking are obtained by fitting the CGR model to IGSCC-CGR data obtained on NiCrFe alloys, Alloy X-750 and Alloy 600. These IGSCC-CGR activation parameters are compared to activation parameters obtained from creep and stress relaxation tests. Recently reported CGR data, which exhibit an activation energy that depends on yield stress and the applied stress intensity factor, are used to benchmark the model. Finally, the effects of matrix carbon concentration, grain boundary carbides and absorbed hydrogen concentration are discussed within context of the model.

  9. Active functional restoration and work hardening program returns patient with 2½-year-old elbow fracture-dislocation to work after 6 months: a case report

    PubMed Central

    Teperman, Lorne J

    2002-01-01

    The rehabilitation of elbow fracture and dislocation is not generally considered a mainstream chiropractic concern. The clinician who is able to successfully manage the elbow articulation will rely upon his/her knowledge of functional anatomy, pathobiomechanics, history and examination principles, when selecting the appropriate treatment available. A case is presented of an individual that sustained a radial head fracture and dislocation following a motor vehicle accident. Subsequent to receiving 1½ years of physiotherapy for post-surgical complications (decreased range of motion, pain, stiffness and tingling to the 4th and 5th fingers), the patient was referred to a multidisciplinary clinic for a Work Hardening/Conditioning Program. This article discusses the need for active functional restoration vs. passive therapy, work hardening regimens and outcome measures. After 6 months of rehabilitation and 3 years following his motor vehicle accident, the patient has successfully returned to his previous work environment. A summary of the sequential steps in providing appropriate management has been provided.

  10. The relationship between strain geometry and geometrically necessary dislocations

    NASA Astrophysics Data System (ADS)

    Hansen, Lars; Wallis, David

    2016-04-01

    The kinematics of past deformations are often a primary goal in structural analyses of strained rocks. Details of the strain geometry, in particular, can help distinguish hypotheses about large-scale tectonic phenomena. Microstructural indicators of strain geometry have been heavily utilized to investigate large-scale kinematics. However, many of the existing techniques require structures for which the initial morphology is known, and those structures must undergo the same deformation as imposed macroscopically. Many deformed rocks do not exhibit such convenient features, and therefore the strain geometry is often difficult (if not impossible) to ascertain. Alternatively, crystallographic textures contain information about the strain geometry, but the influence of strain geometry can be difficult to separate from other environmental factors that might affect slip system activity and therefore the textural evolution. Here we explore the ability for geometrically necessary dislocations to record information about the deformation geometry. It is well known that crystallographic slip due to the motion of dislocations yields macroscopic plastic strain, and the mathematics are established to relate dislocation glide on multiple slip systems to the strain tensor of a crystal. This theoretical description generally assumes that dislocations propagate across the entire crystal. However, at any point during the deformation, dislocations are present that have not fully transected the crystal, existing either as free dislocations or as dislocations organized into substructures like subgrain boundaries. These dislocations can remain in the lattice after deformation if the crystal is quenched sufficiently fast, and we hypothesize that this residual dislocation population can be linked to the plastic strain geometry in a quantitative manner. To test this hypothesis, we use high-resolution electron backscatter diffraction to measure lattice curvatures in experimentally deformed

  11. Using Kinesthetic Activities to Teach Ptolemaic and Copernican Retrograde Motion

    ERIC Educational Resources Information Center

    Richards, Ted

    2012-01-01

    This paper describes a method for teaching planetary retrograde motion, and the Ptolemaic and Copernican accounts of retrograde motion, by means of a series kinesthetic learning activities (KLAs). In the KLAs described, the students literally walk through the motions of the planets in both systems. A retrospective statistical analysis shows that…

  12. Evolution of grain structure and recombination active dislocations in extraordinary tall conventional and high performance multi-crystalline silicon ingots

    NASA Astrophysics Data System (ADS)

    Trempa, M.; Kupka, I.; Kranert, C.; Lehmann, T.; Reimann, C.; Friedrich, J.

    2017-02-01

    In this work one high performance multi-crystalline silicon ingot and one conventional multi-crystalline silicon ingot, each with an extraordinary ingot height of 710 mm, were replicated by the successive growth of eight G1 ingots to evaluate the potential advantage of extraordinary tall HPM ingots in industrial production. By analyzing different grain structure parameters like mean grain size, grain orientation and grain boundary type distribution as well as the recombination active dislocation area over the complete ingot height, it was observed that the material properties strongly differ in the initial state of growth for the two material types. However, at ingot heights above 350 mm, the difference has vanished and the grain structure properties for both materials appear similar. It is shown that the evolution of the grain structure in both material types can be explained by the same grain selection and grain boundary generation/annihilation mechanisms whereas the current grain structure determines which mechanisms are the most dominant at a specific ingot height. Since the grain structure directly influences the dislocation content in the silicon material, also the recombination active dislocation area becomes equal in high performance and conventional multi-crystalline silicon material at ingot heights above 350 mm. From these results it is concluded that the advantage of high performance silicon material is limited to the first grown 350 mm of the ingot.

  13. People can understand descriptions of motion without activating visual motion brain regions

    PubMed Central

    Dravida, Swethasri; Saxe, Rebecca; Bedny, Marina

    2013-01-01

    What is the relationship between our perceptual and linguistic neural representations of the same event? We approached this question by asking whether visual perception of motion and understanding linguistic depictions of motion rely on the same neural architecture. The same group of participants took part in two language tasks and one visual task. In task 1, participants made semantic similarity judgments with high motion (e.g., “to bounce”) and low motion (e.g., “to look”) words. In task 2, participants made plausibility judgments for passages describing movement (“A centaur hurled a spear … ”) or cognitive events (“A gentleman loved cheese …”). Task 3 was a visual motion localizer in which participants viewed animations of point-light walkers, randomly moving dots, and stationary dots changing in luminance. Based on the visual motion localizer we identified classic visual motion areas of the temporal (MT/MST and STS) and parietal cortex (inferior and superior parietal lobules). We find that these visual cortical areas are largely distinct from neural responses to linguistic depictions of motion. Motion words did not activate any part of the visual motion system. Motion passages produced a small response in the right superior parietal lobule, but none of the temporal motion regions. These results suggest that (1) as compared to words, rich language stimuli such as passages are more likely to evoke mental imagery and more likely to affect perceptual circuits and (2) effects of language on the visual system are more likely in secondary perceptual areas as compared to early sensory areas. We conclude that language and visual perception constitute distinct but interacting systems. PMID:24009592

  14. Instabilities, motion and deformation of active fluid droplets

    NASA Astrophysics Data System (ADS)

    Whitfield, Carl A.; Hawkins, Rhoda J.

    2016-12-01

    We consider two minimal models of active fluid droplets that exhibit complex dynamics including steady motion, deformation, rotation and oscillating motion. First we consider a droplet with a concentration of active contractile matter adsorbed to its boundary. We analytically predict activity driven instabilities in the concentration profile, and compare them to the dynamics we find from simulations. Secondly, we consider a droplet of active polar fluid of constant concentration. In this system we predict, motion and deformation of the droplets in certain activity ranges due to instabilities in the polarisation field. Both these systems show spontaneous transitions to motility and deformation which resemble dynamics of the cell cytoskeleton in animal cells.

  15. Using Kinesthetic Activities to Teach Ptolemaic and Copernican Retrograde Motion

    NASA Astrophysics Data System (ADS)

    Richards, Ted

    2012-06-01

    This paper describes a method for teaching planetary retrograde motion, and the Ptolemaic and Copernican accounts of retrograde motion, by means of a series kinesthetic learning activities (KLAs). In the KLAs described, the students literally walk through the motions of the planets in both systems. A retrospective statistical analysis shows that students who participated in these activities performed better on examination questions pertaining to retrograde motion than students who did not. Potential explanations for this result, including the breaking of classroom routine, the effect of body movement on conceptual memory, and egocentric spatial proprioception, are considered.

  16. Determination of the activation enthalpy for migration of dislocations in plastically deformed 8006 Al-alloy by positron annihilation lifetime technique

    NASA Astrophysics Data System (ADS)

    Salah, Mohammed; Abdel-Rahman, M.; Badawi, Emad A.; Abdel-Rahman, M. A.

    2016-06-01

    The activation enthalpy for migration of dislocations of plastically deformed 8006 Al-alloy was investigated by positron annihilation lifetime technique. Plastic deformation using a hydraulic press produces mainly dislocations and may produce point defects. The type of defect was studied by isochronal annealing which determines the temperature range of recovery of each type. Only one type of defect (dislocations) was observed for the investigated sample and was found to be recovered within the range 455-700 K. Isothermal annealing by slow cooling was performed through this range and used in determination of the activation enthalpy of migration of dislocations which was found to be 0.26 ± 0.01 eV.

  17. Dislocation kink-pair energetics and pencil glide in body-centered-cubic crystals.

    PubMed

    Ngan, A H; Wen, M

    2001-08-13

    When body-centered-cubic crystals undergo plastic deformation, the slip planes are often noncrystallographic. By performing atomistic simulation on the activation pathway of dislocation jumps in bcc iron, we show that the main reason for bcc crystals to exhibit this phenomenon is that one type of kink pair has significantly lower energy than all the other types on the same slip plane. Dislocation motion therefore cannot continue on the same slip plane, and the dislocation has to cross slip onto an intersecting slip plane after each atomic jump. Thus in the long run, the average slip plane would be zigzag and noncrystallographic.

  18. Multiscale modeling of dislocation-precipitate interactions in Fe: From molecular dynamics to discrete dislocations.

    PubMed

    Lehtinen, Arttu; Granberg, Fredric; Laurson, Lasse; Nordlund, Kai; Alava, Mikko J

    2016-01-01

    The stress-driven motion of dislocations in crystalline solids, and thus the ensuing plastic deformation process, is greatly influenced by the presence or absence of various pointlike defects such as precipitates or solute atoms. These defects act as obstacles for dislocation motion and hence affect the mechanical properties of the material. Here we combine molecular dynamics studies with three-dimensional discrete dislocation dynamics simulations in order to model the interaction between different kinds of precipitates and a 1/2〈111〉{110} edge dislocation in BCC iron. We have implemented immobile spherical precipitates into the ParaDis discrete dislocation dynamics code, with the dislocations interacting with the precipitates via a Gaussian potential, generating a normal force acting on the dislocation segments. The parameters used in the discrete dislocation dynamics simulations for the precipitate potential, the dislocation mobility, shear modulus, and dislocation core energy are obtained from molecular dynamics simulations. We compare the critical stresses needed to unpin the dislocation from the precipitate in molecular dynamics and discrete dislocation dynamics simulations in order to fit the two methods together and discuss the variety of the relevant pinning and depinning mechanisms.

  19. Simple Elbow Dislocation.

    PubMed

    Armstrong, April

    2015-11-01

    Simple elbow dislocation refers to those elbow dislocations that do not involve an osseous injury. A complex elbow dislocation refers to an elbow that has dislocated with an osseous injury. Most simple elbow dislocations are treated nonoperatively. Understanding the importance of the soft tissue injury following a simple elbow dislocation is a key to being successful with treatment.

  20. Activation volume for dislocation creep of forsterite and of iron-free enstatite

    NASA Astrophysics Data System (ADS)

    Bystricky, M.; Bejina, F.; Baticle, J.

    2013-12-01

    A good knowledge of the mechanical behavior of olivine and enstatite at high pressure and high temperature is essential to model Earth upper mantle dynamics. In this study, we have performed deformation experiments on forsterite and on iron-free enstatite polycrystalline aggregates at upper mantle pressures and temperatures. Fine-grained forsterite powders were obtained by crushing a commercial forsterite in WC or zirconia grinders and dried at high temperature. Enstatite powders were synthesized by solid state reaction between mixed fine-grained powders of silica and forsterite in a conventional furnace. The powders were sintered by Spark Plasma Sintering (SPS) at 1000-1300°C and 100 MPa. We obtained aggregates with very low porosities (>99% dense), low water content and well equilibrated microstructures with mean grain sizes of a few microns. Compression deformation experiments were conducted on both types of aggregates in a D-DIA apparatus coupled with synchrotron white X-ray beam at the X17-B2 beamline at the National Synchrotron Light Source (Brookhaven National Laboratory, NY, USA). Strain and stress were measured in situ during deformation. Macroscopic strains were determined by measurements of sample shortening on X-ray radiographies. Stress and pressure were determined from the analysis of 5 to 8 diffraction peaks in the X-ray diffractograms of forsterite or enstatite collected on detectors arranged in different orientations with respect to the maximum principal stress. Experiments were performed at pressures between 3 and 11 GPa and temperatures ranging from 1100 to 1300°C. 14 different samples were deformed to total strains of up to 30% with deformation rates ranging from 8 10-6 to 6 10-5 s-1. Microstructures analyzed using high resolution SEM showed features characteristic of dislocation creep. Analysis of the deformation data for forsterite at 5-7 GPa yielded a stress exponent of 2.5 to 3 at different temperatures, similar to values obtained at room

  1. Pediatric complex divergent elbow dislocation.

    PubMed

    van Wagenberg, Jan-Maarten F; van Huijstee, Pieter J; Verhofstad, Michiel H J

    2011-01-01

    A divergent dislocation of the elbow is a very rare injury, and only a few cases have been described in the literature. It is characterized as a dorsal dislocation of the ulnohumeral joint combined with a lateral dislocation of the proximal radius. All three articulations of the elbow joint are involved. Like in our case, it can be accompanied by an avulsion fracture of the coronoid and a distal radius fracture. For correct understanding of the injury, proper radiographic studies are imperative. In contrast to some earlier reports that advise a conservative approach, we performed a very aggressive operative treatment. To ensure anatomic reconstruction of the elbow, surgical exposure of the various injuries was performed first. After gross reduction of the joint dislocation, definitive osteosynthesis of the distal radius fracture was performed. Subsequently, the coronoid process and lateral collateral ligament could be repaired anatomically, improving the stability of the elbow. An uneventful recovery with excellent elbow motion and stability was achieved.

  2. Dislocated Shoulder

    MedlinePlus

    ... gradual rehabilitation program designed to restore range of motion, strength and stability to your shoulder joint. If ... when the pain improves. Maintain the range of motion of your shoulder. After one or two days, ...

  3. Enabling Strain Hardening Simulations with Dislocation Dynamics

    SciTech Connect

    Arsenlis, A; Cai, W

    2006-12-20

    Numerical algorithms for discrete dislocation dynamics simulations are investigated for the purpose of enabling strain hardening simulations of single crystals on massively parallel computers. The algorithms investigated include the /(N) calculation of forces, the equations of motion, time integration, adaptive mesh refinement, the treatment of dislocation core reactions, and the dynamic distribution of work on parallel computers. A simulation integrating all of these algorithmic elements using the Parallel Dislocation Simulator (ParaDiS) code is performed to understand their behavior in concert, and evaluate the overall numerical performance of dislocation dynamics simulations and their ability to accumulate percents of plastic strain.

  4. Molecular Dynamics Simulations of Dislocation Activity in Single-Crystal and Nanocrystalline Copper Doped with Antimony

    NASA Astrophysics Data System (ADS)

    Rajgarhia, Rahul K.; Spearot, Douglas E.; Saxena, Ashok

    2010-04-01

    Recent experimental and simulation results have indicated that high-temperature grain growth in nanocrystalline (NC) materials can be suppressed by introducing dopant atoms at the grain boundaries. However, the influence of grain boundary dopants on the mechanical behavior of stabilized NC materials is less clear. In this work, molecular dynamics (MD) simulations are used to study the impact of very low dopant concentrations (<1.0 at. pct Sb) on plastic deformation in single-crystal and NC Cu. A new interatomic potential for low Sb concentration Cu-Sb solid-solution alloys is used to model dopant/host and dopant/dopant interatomic interactions within the MD framework. In single-crystal models, the strained regions around the Sb atoms act as heterogeneous sources for partial dislocation nucleation; the stress associated with this process decreases with increasing Sb concentration. In NC models, MD simulations indicate that Sb dopants randomly dispersed at the grain boundaries cause an increase in the flow stress in NC Cu, implying that Sb atoms at the grain boundaries retard both grain boundary sliding and dislocation nucleation from grain boundary regions.

  5. Density of dislocations in CdHgTe heteroepitaxial structures on GaAs(013) and Si(013) substrates

    NASA Astrophysics Data System (ADS)

    Sidorov, Yu. G.; Yakushev, M. V.; Varavin, V. S.; Kolesnikov, A. V.; Trukhanov, E. M.; Sabinina, I. V.; Loshkarev, I. D.

    2015-11-01

    Epitaxial layers of Cd x Hg1- x Te (MCT) on GaAs(013) and Si(013) substrates were grown by molecular beam epitaxy. The introduction of ZnTe and CdTe intermediate layers into the structures made it possible to retain the orientation close to that of the substrate in MCT epitaxial layers despite the large mismatch between the lattice parameters. The structures were investigated using X-ray diffraction and transmission electron microscopy. The dislocation families predominantly removing the mismatch between the lattice parameters were found. Transmission electron microscopy revealed Γ-shaped misfit dislocations (MDs), which facilitated the annihilation of threading dislocations. The angles of rotation of the lattice due to the formation of networks of misfit dislocations were measured. It was shown that the density of threading dislocations in the active region of photodiodes is primarily determined by the network of misfit dislocations formed in the MCT/CdTe heterojunction. A decrease in the density of threading dislocations in the MCT film was achieved by cyclic annealing under conditions of the maximally facilitated nonconservative motion of dislocations. The dislocation density was determined from the etch pits.

  6. Patellar Dislocations and Reduction Procedure.

    PubMed

    Ramponi, Denise

    2016-01-01

    Acute patellar dislocations are a common injury occurring in adolescents involved in sports and dancing activities. This injury usually occurs when the knee is in full extension and sustains a valgus stress on the knee. The medial patellofemoral ligament is the medial restraint that assists in stabilizing the patella from lateral dislocations. The patella usually dislocates laterally and is usually not difficult to reduce after patient evaluation and prereduction radiographs. After postreduction radiographs confirm proper position of the patella postreduction and the absence of fractures, the patient is usually treated conservatively with initial immobilization, orthopedic referral, and physical therapy.

  7. Simulation of the active Brownian motion of a microswimmer

    NASA Astrophysics Data System (ADS)

    Volpe, Giorgio; Gigan, Sylvain; Volpe, Giovanni

    2014-07-01

    Unlike passive Brownian particles, active Brownian particles, also known as microswimmers, propel themselves with directed motion and thus drive themselves out of equilibrium. Understanding their motion can provide insight into out-of-equilibrium phenomena associated with biological examples such as bacteria, as well as with artificial microswimmers. We discuss how to mathematically model their motion using a set of stochastic differential equations and how to numerically simulate it using the corresponding set of finite difference equations both in homogenous and complex environments. In particular, we show how active Brownian particles do not follow the Maxwell-Boltzmann distribution—a clear signature of their out-of-equilibrium nature—and how, unlike passive Brownian particles, microswimmers can be funneled, trapped, and sorted.

  8. Reprint of: Dynamics of discrete screw dislocations on glide directions

    NASA Astrophysics Data System (ADS)

    Alicandro, R.; De Luca, L.; Garroni, A.; Ponsiglione, M.

    2016-12-01

    We consider a simple discrete model for screw dislocations in crystals. Using a variational discrete scheme we study the motion of a configuration of dislocations toward low energy configurations. We deduce an effective fully overdamped dynamics that follows the maximal dissipation criterion introduced in Cermelli and Gurtin (1999) and predicts motion along the glide directions of the crystal.

  9. Dynamics of discrete screw dislocations on glide directions

    NASA Astrophysics Data System (ADS)

    Alicandro, R.; De Luca, L.; Garroni, A.; Ponsiglione, M.

    2016-07-01

    We consider a simple discrete model for screw dislocations in crystals. Using a variational discrete scheme we study the motion of a configuration of dislocations toward low energy configurations. We deduce an effective fully overdamped dynamics that follows the maximal dissipation criterion introduced in Cermelli and Gurtin (1999) and predicts motion along the glide directions of the crystal.

  10. Muscle motion and EMG activity in vibration treatment.

    PubMed

    Fratini, Antonio; La Gatta, Antonio; Bifulco, Paolo; Romano, Maria; Cesarelli, Mario

    2009-11-01

    The aim of this study is to highlight the relationship between muscle motion, generated by whole body vibration, and the correspondent electromyographic (EMG) activity and to suggest a new method to customize the stimulation frequency. Simultaneous recordings of EMG and tri-axial accelerations of quadriceps rectus femoris from fifteen subjects undergoing vibration treatments were collected. Vibrations were delivered via a sinusoidal oscillating platform at different frequencies (10-45 Hz). Muscle motion was estimated by processing the accelerometer data. Large EMG motion artifacts were removed using sharp notch filters centred at the vibration frequency and its superior harmonics. EMG-RMS values were computed and analyzed before and after artifact suppression to assess muscular activity. Muscles acceleration amplitude increased with frequency. Muscle displacements revealed a mechanical resonant-like behaviour of the muscle. Resonance frequencies and dumping factors depended on subject. Moreover, RMS of artifact-free EMG was found well correlated (R(2)=0.82) to the actual muscle displacement, while the maximum of the EMG response was found related to the mechanical resonance frequency of muscle. Results showed that maximum muscular activity was found in correspondence to the mechanical resonance of the muscle itself. Assuming the hypothesis that muscle activation is proportional to muscle displacement, treatment optimization (i.e. to choose the best stimulation frequency) could be obtained by simply monitoring local acceleration (resonance), leading to a more effective muscle stimulation. Motion artifact produced an overestimation of muscle activity, therefore its removal was essential.

  11. Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels

    NASA Astrophysics Data System (ADS)

    Liu, Jiabin; Jin, Yongbin; Fang, Xiaoyang; Chen, Chenxu; Feng, Qiong; Liu, Xiaowei; Chen, Yuzeng; Suo, Tao; Zhao, Feng; Huang, Tianlin; Wang, Hongtao; Wang, Xi; Fang, Youtong; Wei, Yujie; Meng, Liang; Lu, Jian; Yang, Wei

    2016-10-01

    Strength and ductility are mutually exclusive if they are manifested as consequence of the coupling between strengthening and toughening mechanisms. One notable example is dislocation strengthening in metals, which invariably leads to reduced ductility. However, this trend is averted in metastable austenitic steels. A one-step thermal mechanical treatment (TMT), i.e. hot rolling, can effectively enhance the yielding strength of the metastable austenitic steel from 322 ± 18 MPa to 675 ± 15 MPa, while retaining both the formability and hardenability. It is noted that no boundaries are introduced in the optimized TMT process and all strengthening effect originates from dislocations with inherited thermal stability. The success of this method relies on the decoupled strengthening and toughening mechanisms in metastable austenitic steels, in which yield strength is controlled by initial dislocation density while ductility is retained by the capability to nucleate new dislocations to carry plastic deformation. Especially, the simplicity in processing enables scaling and industrial applications to meet the challenging requirements of emissions reduction. On the other hand, the complexity in the underlying mechanism of dislocation strengthening in this case may shed light on a different route of material strengthening by stimulating dislocation activities, rather than impeding motion of dislocations.

  12. Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels

    PubMed Central

    Liu, Jiabin; Jin, Yongbin; Fang, Xiaoyang; Chen, Chenxu; Feng, Qiong; Liu, Xiaowei; Chen, Yuzeng; Suo, Tao; Zhao, Feng; Huang, Tianlin; Wang, Hongtao; Wang, Xi; Fang, Youtong; Wei, Yujie; Meng, Liang; Lu, Jian; Yang, Wei

    2016-01-01

    Strength and ductility are mutually exclusive if they are manifested as consequence of the coupling between strengthening and toughening mechanisms. One notable example is dislocation strengthening in metals, which invariably leads to reduced ductility. However, this trend is averted in metastable austenitic steels. A one-step thermal mechanical treatment (TMT), i.e. hot rolling, can effectively enhance the yielding strength of the metastable austenitic steel from 322 ± 18 MPa to 675 ± 15 MPa, while retaining both the formability and hardenability. It is noted that no boundaries are introduced in the optimized TMT process and all strengthening effect originates from dislocations with inherited thermal stability. The success of this method relies on the decoupled strengthening and toughening mechanisms in metastable austenitic steels, in which yield strength is controlled by initial dislocation density while ductility is retained by the capability to nucleate new dislocations to carry plastic deformation. Especially, the simplicity in processing enables scaling and industrial applications to meet the challenging requirements of emissions reduction. On the other hand, the complexity in the underlying mechanism of dislocation strengthening in this case may shed light on a different route of material strengthening by stimulating dislocation activities, rather than impeding motion of dislocations. PMID:27739481

  13. Cross-Split of Dislocations: An Athermal and Rapid Plasticity Mechanism

    PubMed Central

    Kositski, Roman; Kovalenko, Oleg; Lee, Seok-Woo; Greer, Julia R.; Rabkin, Eugen; Mordehai, Dan

    2016-01-01

    The pathways by which dislocations, line defects within the lattice structure, overcome microstructural obstacles represent a key aspect in understanding the main mechanisms that control mechanical properties of ductile crystalline materials. While edge dislocations were believed to change their glide plane only by a slow, non-conservative, thermally activated motion, we suggest the existence of a rapid conservative athermal mechanism, by which the arrested edge dislocations split into two other edge dislocations that glide on two different crystallographic planes. This discovered mechanism, for which we coined a term “cross-split of edge dislocations”, is a unique and collective phenomenon, which is triggered by an interaction with another same-sign pre-existing edge dislocation. This mechanism is demonstrated for faceted α-Fe nanoparticles under compression, in which we propose that cross-split of arrested edge dislocations is resulting in a strain burst. The cross-split mechanism provides an efficient pathway for edge dislocations to overcome planar obstacles. PMID:27185327

  14. Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels.

    PubMed

    Liu, Jiabin; Jin, Yongbin; Fang, Xiaoyang; Chen, Chenxu; Feng, Qiong; Liu, Xiaowei; Chen, Yuzeng; Suo, Tao; Zhao, Feng; Huang, Tianlin; Wang, Hongtao; Wang, Xi; Fang, Youtong; Wei, Yujie; Meng, Liang; Lu, Jian; Yang, Wei

    2016-10-14

    Strength and ductility are mutually exclusive if they are manifested as consequence of the coupling between strengthening and toughening mechanisms. One notable example is dislocation strengthening in metals, which invariably leads to reduced ductility. However, this trend is averted in metastable austenitic steels. A one-step thermal mechanical treatment (TMT), i.e. hot rolling, can effectively enhance the yielding strength of the metastable austenitic steel from 322 ± 18 MPa to 675 ± 15 MPa, while retaining both the formability and hardenability. It is noted that no boundaries are introduced in the optimized TMT process and all strengthening effect originates from dislocations with inherited thermal stability. The success of this method relies on the decoupled strengthening and toughening mechanisms in metastable austenitic steels, in which yield strength is controlled by initial dislocation density while ductility is retained by the capability to nucleate new dislocations to carry plastic deformation. Especially, the simplicity in processing enables scaling and industrial applications to meet the challenging requirements of emissions reduction. On the other hand, the complexity in the underlying mechanism of dislocation strengthening in this case may shed light on a different route of material strengthening by stimulating dislocation activities, rather than impeding motion of dislocations.

  15. Complete dorsal dislocation of the carpal scaphoid with perilunate dorsal dislocation

    PubMed Central

    Kang, Jong Woo; Park, Jong Hoon; Suh, Dong Hun; Park, Jong Woong

    2016-01-01

    Complete dorsal dislocation of the carpal scaphoid combined with dorsal perilunate dislocation is an extremely rare carpal injury. We describe the case of a 23-year-old man who presented with a complete dorsal dislocation of the carpal scaphoid, combined with a perilunate dislocation. Surgical treatment was performed with open reduction and interosseus ligament repair. At 4 years follow up, the patient's wrist pain had completely resolved without limitations of wrist joint motion and without evidence of avascular necrosis of the carpal scaphoid. PMID:27512229

  16. Rehabilitation After Posterolateral Dislocation of the Elbow in a Collegiate Football Player: A Case Report

    PubMed Central

    Uhl, Tim L.; Gould, Michelle; Gieck, Joe H.

    2000-01-01

    Objective: To describe a functional rehabilitation program for a football player with a grade 2 posterolateral elbow dislocation to facilitate early return to competition. Background: Conservative management of a posterior dislocation of the elbow is common. The elbow is the second most frequently dislocated large joint in adults. Two common mechanisms of dislocation are hyperextension and posterolateral rotation. Prolonged immobilization can be detrimental to regaining full range of motion and function of the elbow, whereas early directed rehabilitation may lead to early return to normal function. Differential Diagnosis: Elbow dislocation with medial collateral ligament rupture, elbow subluxation, elbow dislocation with neurovascular compromise, or supracondylar fracture. Treatment: The athlete received immediate care of reduction and immobilization in a 90° posterior splint followed by a radiologic evaluation. Postreduction treatment included a short immobilization period and early initiation of protected active and resistive range-of-motion exercises. The athlete was able to return to full football activities in 3 weeks. He competed for the rest of the season with the elbow braced and taped, with no recurring incidents of instability. Uniqueness: The time to return to full participation was rapid. The medial collateral ligament was intact, as determined by magnetic resonance imaging. The athlete has since been followed for 2 football seasons and has not demonstrated any detrimental effects due to his early return. Conclusions: Early determination of the status of the medial collateral ligament through physical examination or imaging combined with early directed rehabilitation of a posterolateral elbow instability enabled this athlete to respond well. He regained pain-free full range of motion, strength, and function, allowing full participation in football at the Division I level with no recurring incidence of dislocation. Imagesp109-a PMID:16558601

  17. Statistics of Superluminal Motion in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Wei; Fan, Jun-Hui

    2008-08-01

    We have collected an up-to-date sample of 123 superluminal sources (84 quasars, 27 BL Lac objects and 12 galaxies) and calculated the apparent velocities (βapp) for 224 components in the sources with the Λ-CDM model. We checked the relationships between their proper motions, redshifts, βapp and 5 GHz flux densities. Our analysis shows that the radio emission is strongly boosted by the Doppler effect. The superluminal motion and the relativistic beaming boosting effect are, to some extent, the same in active galactic nuclei.

  18. Evolution, Interaction, and Intrinsic Properties of Dislocations in Intermetallics: Anisotropic 3D Dislocation Dynamics Approach

    SciTech Connect

    Chen, Qian

    2008-01-01

    The generation, motion, and interaction of dislocations play key roles during the plastic deformation process of crystalline solids. 3D Dislocation Dynamics has been employed as a mesoscale simulation algorithm to investigate the collective and cooperative behavior of dislocations. Most current research on 3D Dislocation Dynamics is based on the solutions available in the framework of classical isotropic elasticity. However, due to some degree of elastic anisotropy in almost all crystalline solids, it is very necessary to extend 3D Dislocation Dynamics into anisotropic elasticity. In this study, first, the details of efficient and accurate incorporation of the fully anisotropic elasticity into 3D discrete Dislocation Dynamics by numerically evaluating the derivatives of Green's functions are described. Then the intrinsic properties of perfect dislocations, including their stability, their core properties and disassociation characteristics, in newly discovered rare earth-based intermetallics and in conventional intermetallics are investigated, within the framework of fully anisotropic elasticity supplemented with the atomistic information obtained from the ab initio calculations. Moreover, the evolution and interaction of dislocations in these intermetallics as well as the role of solute segregation are presented by utilizing fully anisotropic 3D dislocation dynamics. The results from this work clearly indicate the role and the importance of elastic anisotropy on the evolution of dislocation microstructures, the overall ductility and the hardening behavior in these systems.

  19. Observing shadow motions: resonant activity within the observer's motor system?

    PubMed

    Alaerts, Kaat; Van Aggelpoel, Tinne; Swinnen, Stephan P; Wenderoth, Nicole

    2009-09-25

    Several studies have demonstrated that the human motor cortex is activated by the mere observation of actions performed by others. In the present study, we explored whether the perception of 'impoverished motion stimuli', such as shadow animations, is sufficient to activate motor areas. To do so, transcranial magnetic stimulation (TMS) was applied over the hand area of the primary motor cortex (M1) while subjects observed shadow animations depicting finger motions. Data showed that resonant motor responses in M1 were only found when a biological effector was recognized from the observed shadow animation. Interestingly, M1 responses were similar for observing shadow or real motions. Therefore, the loss of 'pictorial' movement features in a shadow animation appeared to have no effect on motor resonance in M1. In summary, these findings suggest that the 'recognition' of biological motion from sparse visual input is both necessary and sufficient to recruit motor areas. This supports the hypothesis that the motor system is involved in recognizing the actions performed by others.

  20. The Importance of Spatiotemporal Information in Biological Motion Perception: White Noise Presented with a Step-like Motion Activates the Biological Motion Area.

    PubMed

    Callan, Akiko; Callan, Daniel; Ando, Hiroshi

    2017-02-01

    Humans can easily recognize the motion of living creatures using only a handful of point-lights that describe the motion of the main joints (biological motion perception). This special ability to perceive the motion of animate objects signifies the importance of the spatiotemporal information in perceiving biological motion. The posterior STS (pSTS) and posterior middle temporal gyrus (pMTG) region have been established by many functional neuroimaging studies as a locus for biological motion perception. Because listening to a walking human also activates the pSTS/pMTG region, the region has been proposed to be supramodal in nature. In this study, we investigated whether the spatiotemporal information from simple auditory stimuli is sufficient to activate this biological motion area. We compared spatially moving white noise, having a running-like tempo that was consistent with biological motion, with stationary white noise. The moving-minus-stationary contrast showed significant differences in activation of the pSTS/pMTG region. Our results suggest that the spatiotemporal information of the auditory stimuli is sufficient to activate the biological motion area.

  1. The dynamics of an edge dislocation in a ferromagnetic crystals

    NASA Astrophysics Data System (ADS)

    Dezhin, V. V.; Nechaev, V. N.

    2016-08-01

    The system of equations describing the bending vibrations of the dislocation in the ferromagnetic crystal is written. Elastic and magnetostrictive properties of the ferromagnetic crystals are considered isotropic. The linearization of the resulting system produced a relatively small contribution to the magnetization from the influence of dislocation. In the linear approximation of the dislocation displacement system of equation describing vibrations of a ferromagnetic crystal with an edge dislocation is obtained. The equation of motion of an edge dislocation in a ferromagnetic crystal is found.

  2. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  3. Motion.

    ERIC Educational Resources Information Center

    Gerhart, James B.; Nussbaum, Rudi H.

    This monograph was written for the Conference on the New Instructional Materials in Physics held at the University of Washington in summer, 1965. It is intended for use in an introductory course in college physics. It consists of an extensive qualitative discussion of motion followed by a detailed development of the quantitative methods needed to…

  4. A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohan; Acharya, Amit; Walkington, Noel J.; Bielak, Jacobo

    2015-11-01

    We describe a model based on continuum mechanics that reduces the study of a significant class of problems of discrete dislocation dynamics to questions of the modern theory of continuum plasticity. As applications, we explore the questions of the existence of a Peierls stress in a continuum theory, dislocation annihilation, dislocation dissociation, finite-speed-of-propagation effects of elastic waves vis-a-vis dynamic dislocation fields, supersonic dislocation motion, and short-slip duration in rupture dynamics.

  5. Statistics of dislocation pinning at localized obstacles

    SciTech Connect

    Dutta, A.; Bhattacharya, M. Barat, P.

    2014-10-14

    Pinning of dislocations at nanosized obstacles like precipitates, voids, and bubbles is a crucial mechanism in the context of phenomena like hardening and creep. The interaction between such an obstacle and a dislocation is often studied at fundamental level by means of analytical tools, atomistic simulations, and finite element methods. Nevertheless, the information extracted from such studies cannot be utilized to its maximum extent on account of insufficient information about the underlying statistics of this process comprising a large number of dislocations and obstacles in a system. Here, we propose a new statistical approach, where the statistics of pinning of dislocations by idealized spherical obstacles is explored by taking into account the generalized size-distribution of the obstacles along with the dislocation density within a three-dimensional framework. Starting with a minimal set of material parameters, the framework employs the method of geometrical statistics with a few simple assumptions compatible with the real physical scenario. The application of this approach, in combination with the knowledge of fundamental dislocation-obstacle interactions, has successfully been demonstrated for dislocation pinning at nanovoids in neutron irradiated type 316-stainless steel in regard to the non-conservative motion of dislocations. An interesting phenomenon of transition from rare pinning to multiple pinning regimes with increasing irradiation temperature is revealed.

  6. Fast Fourier transform discrete dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Graham, J. T.; Rollett, A. D.; LeSar, R.

    2016-12-01

    Discrete dislocation dynamics simulations have been generally limited to modeling systems described by isotropic elasticity. Effects of anisotropy on dislocation interactions, which can be quite large, have generally been ignored because of the computational expense involved when including anisotropic elasticity. We present a different formalism of dislocation dynamics in which the dislocations are represented by the deformation tensor, which is a direct measure of the slip in the lattice caused by the dislocations and can be considered as an eigenstrain. The stresses arising from the dislocations are calculated with a fast Fourier transform (FFT) method, from which the forces are determined and the equations of motion are solved. Use of the FFTs means that the stress field is only available at the grid points, which requires some adjustments/regularizations to be made to the representation of the dislocations and the calculation of the force on individual segments, as is discussed hereinafter. A notable advantage of this approach is that there is no computational penalty for including anisotropic elasticity. We review the method and apply it in a simple dislocation dynamics calculation.

  7. Thermally activated depinning motion of contact lines in pseudopartial wetting.

    PubMed

    Du, Lingguo; Bodiguel, Hugues; Colin, Annie

    2014-07-01

    We investigate pressure-driven motion of liquid-liquid menisci in circular tubes, for systems in pseudopartial wetting conditions. The originality of this type of wetting lies in the coexistence of a macroscopic contact angle with a wetting liquid film covering the solid surface. Focusing on small capillary numbers, we report observations of an apparent contact angle hysteresis at first sight similar to the standard partial wetting case. However, this apparent hysteresis exhibits original features. We observe very long transient regimes before steady state, up to several hundreds of seconds. Furthermore, in steady state, the velocities are nonzero, meaning that the contact line is not strongly pinned to the surface defects, but are very small. The velocity of the contact line tends to vanish near the equilibrium contact angle. These observations are consistent with the thermally activated depinning theory that has been proposed to describe partial wetting systems on disordered substrates and suggest that a single physical mechanism controls both the hysteresis (or the pinning) and the motion of the contact line. The proposed analysis leads to the conclusion that the depinning activated energy is lower with pseudopartial wetting systems than with partial wetting ones, allowing the direct observation of the thermally activated motion of the contact line.

  8. Motion Sensor Use for Physical Activity Data: Methodological Considerations

    PubMed Central

    McCarthy, Margaret; Grey, Margaret

    2015-01-01

    Background Physical inactivity continues to be a major risk factor for cardiovascular disease, and only one half of adults in the United States meet physical activity (PA) goals. PA data are often collected for surveillance or for measuring change after an intervention. One of the challenges in PA research is quantifying exactly how much and what type of PA is taking place—especially because self-report instruments have inconsistent validity. Objective The purpose is to review the elements to consider when collecting PA data via motion sensors, including the difference between PA and exercise; type of data to collect; choosing the device; length of time to monitor PA; instructions to the participants; and interpretation of the data. Methods The current literature on motion sensor research was reviewed and synthesized to summarize relevant considerations when using a motion sensor to collect PA data. Results Exercise is a division of PA that is structured, planned, and repetitive. Pedometer data includes steps taken, and calculated distance and energy expenditure. Accelerometer data includes activity counts and intensity. The device chosen depends on desired data, cost, validity, and ease of use. Reactivity to the device may influence the duration of data collection. Instructions to participants may vary depending on purpose of the study. Experts suggest pedometer data be reported as steps—since that is the direct output—and distance traveled and energy expenditure are estimated values. Accelerometer count data may be analyzed to provide information on time spent in moderate or vigorous activity. Discussion Thoughtful decision making about PA data collection using motion sensor devices is needed to advance nursing science. PMID:26126065

  9. Assessment of interatomic potentials for atomistic analysis of static and dynamic properties of screw dislocations in W.

    PubMed

    Cereceda, D; Stukowski, A; Gilbert, M R; Queyreau, S; Ventelon, Lisa; Marinica, M-C; Perlado, J M; Marian, J

    2013-02-27

    Screw dislocations in bcc metals display non-planar cores at zero temperature which result in high lattice friction and thermally-activated strain rate behavior. In bcc W, electronic structure molecular statics calculations reveal a compact, non-degenerate core with an associated Peierls stress between 1.7 and 2.8 GPa. However, a full picture of the dynamic behavior of dislocations can only be gained by using more efficient atomistic simulations based on semiempirical interatomic potentials. In this paper we assess the suitability of five different potentials in terms of static properties relevant to screw dislocations in pure W. Moreover, we perform molecular dynamics simulations of stress-assisted glide using all five potentials to study the dynamic behavior of screw dislocations under shear stress. Dislocations are seen to display thermally-activated motion in most of the applied stress range, with a gradual transition to a viscous damping regime at high stresses. We find that one potential predicts a core transformation from compact to dissociated at finite temperature that affects the energetics of kink-pair production and impacts the mechanism of motion. We conclude that a modified embedded-atom potential achieves the best compromise in terms of static and dynamic screw dislocation properties, although at an expense of about ten-fold compared to central potentials.

  10. Collective motion in an active suspension of Escherichia coli bacteria

    NASA Astrophysics Data System (ADS)

    Gachelin, J.; Rousselet, A.; Lindner, A.; Clement, E.

    2014-02-01

    We investigate experimentally the emergence of collective motion in the bulk of an active suspension of Escherichia coli bacteria. When increasing the concentration from a dilute to a semi-dilute regime, we observe a continuous crossover from a dynamical cluster regime to a regime of ‘bio-turbulence’ convection patterns. We measure a length scale characterizing the collective motion as a function of the bacteria concentration. For bacteria fully supplied with oxygen, the increase of the correlation length is almost linear with concentration and at the largest concentrations tested, the correlation length could be as large as 24 bacterial body sizes (or 7-8 when including the flagella bundle). In contrast, under conditions of oxygen shortage the correlation length saturates at a value of around 7 body lengths.

  11. Motion of Euglena gracilis: Active fluctuations and velocity distribution

    NASA Astrophysics Data System (ADS)

    Romanczuk, P.; Romensky, M.; Scholz, D.; Lobaskin, V.; Schimansky-Geier, L.

    2015-07-01

    We study the velocity distribution of unicellular swimming algae Euglena gracilis using optical microscopy and active Brownian particle theory. To characterize a peculiar feature of the experimentally observed distribution at small velocities we use the concept of active fluctuations, which was recently proposed for the description of stochastically self-propelled particles [Romanczuk, P. and Schimansky-Geier, L., Phys. Rev. Lett. 106, 230601 (2011)]. In this concept, the fluctuating forces arise due to internal random performance of the propulsive motor. The fluctuating forces are directed in parallel to the heading direction, in which the propulsion acts. In the theory, we introduce the active motion via the depot model [Schweitzer, et al., Phys. Rev. Lett. 80(23), 5044 (1998)]. We demonstrate that the theoretical predictions based on the depot model with active fluctuations are consistent with the experimentally observed velocity distributions. In addition to the model with additive active noise, we obtain theoretical results for a constant propulsion with multiplicative noise.

  12. Enhanced annealing of the dislocation network under irradiation

    SciTech Connect

    Mordehai, Dan; Martin, Georges

    2011-07-01

    In crystalline metals, the dislocation network is the main source of internal strain, while irradiation steadily injects new sources of internal strain (point defects, defect clusters). As a consequence, the evolution of the dislocation network is driven by irradiation. While the atomistic mechanisms by which the forcing proceeds have long been suggested, namely the partitioning of defect elimination between dislocations and other defect sinks, both in stationary or transient regimes, some of the macroscopic consequences, such as irradiation enhanced dislocation annealing and irradiation driven recrystallization, are left unexplained. In this work we show that dislocation sink strengths for point defects are altered in the presence of neighboring dislocations and their climb motion is coordinated with the dislocation microstructure. A climb model, which takes into account the dislocation network, provides the mechanism for coordinated climb, which is shown to ease dislocation annealing. In particular, we demonstrate that coordinated dislocation climb accelerates the annihilation of dislocation pairs with the opposite sign and the repulsion of dislocations of the same sign, thereby, among other things, promoting the annealing of small-angle tilt boundaries by subgrain rotation.

  13. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture.

    PubMed

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-11-10

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.

  14. Mini hook plate fixation for palmar fracture-dislocation of the proximal interphalangeal joint.

    PubMed

    Komura, Shingo; Yokoi, Tatsuo; Nonomura, Hidehiko

    2011-04-01

    Fracture-dislocations of the proximal interphalangeal joint are challenging to treat, since it is difficult to achieve both rigid fixation and early joint motion simultaneously. Palmar fracture-dislocations of the proximal interphalangeal joint are less frequent injuries and a small number of treatment methods have been reported. We describe here a patient with a chronic palmar fracture-dislocation of the proximal interphalangeal joint, who was treated with a new surgical technique. In the surgery, a mini hook plate that was made by adapting a 1.5 mm AO hand modular system straight plate was used. Despite the thinness of the fragment, rigid fixation was achieved, resulting in early active motion. At final follow up, the active ranges of motion were 0°-100° at the proximal and 0°-80° at the distal interphalangeal joint, and there were no complications. This technique may become a useful surgical method to treat palmar fracture-dislocations of the proximal interphalangeal joint.

  15. Dislocation dynamics in hexagonal close-packed crystals

    DOE PAGES

    Aubry, S.; Rhee, M.; Hommes, G.; ...

    2016-04-14

    Extensions of the dislocation dynamics methodology necessary to enable accurate simulations of crystal plasticity in hexagonal close-packed (HCP) metals are presented. They concern the introduction of dislocation motion in HCP crystals through linear and non-linear mobility laws, as well as the treatment of composite dislocation physics. Formation, stability and dissociation of and other dislocations with large Burgers vectors defined as composite dislocations are examined and a new topological operation is proposed to enable their dissociation. Furthermore, the results of our simulations suggest that composite dislocations are omnipresent and may play important roles both in specific dislocation mechanisms and in bulkmore » crystal plasticity in HCP materials. While fully microscopic, our bulk DD simulations provide wealth of data that can be used to develop and parameterize constitutive models of crystal plasticity at the mesoscale.« less

  16. Dislocation dynamics in hexagonal close-packed crystals

    SciTech Connect

    Aubry, S.; Rhee, M.; Hommes, G.; Bulatov, V. V.; Arsenlis, A.

    2016-04-14

    Extensions of the dislocation dynamics methodology necessary to enable accurate simulations of crystal plasticity in hexagonal close-packed (HCP) metals are presented. They concern the introduction of dislocation motion in HCP crystals through linear and non-linear mobility laws, as well as the treatment of composite dislocation physics. Formation, stability and dissociation of and other dislocations with large Burgers vectors defined as composite dislocations are examined and a new topological operation is proposed to enable their dissociation. Furthermore, the results of our simulations suggest that composite dislocations are omnipresent and may play important roles both in specific dislocation mechanisms and in bulk crystal plasticity in HCP materials. While fully microscopic, our bulk DD simulations provide wealth of data that can be used to develop and parameterize constitutive models of crystal plasticity at the mesoscale.

  17. Fusion of smartphone motion sensors for physical activity recognition.

    PubMed

    Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J M

    2014-06-10

    For physical activity recognition, smartphone sensors, such as an accelerometer and a gyroscope, are being utilized in many research studies. So far, particularly, the accelerometer has been extensively studied. In a few recent studies, a combination of a gyroscope, a magnetometer (in a supporting role) and an accelerometer (in a lead role) has been used with the aim to improve the recognition performance. How and when are various motion sensors, which are available on a smartphone, best used for better recognition performance, either individually or in combination? This is yet to be explored. In order to investigate this question, in this paper, we explore how these various motion sensors behave in different situations in the activity recognition process. For this purpose, we designed a data collection experiment where ten participants performed seven different activities carrying smart phones at different positions. Based on the analysis of this data set, we show that these sensors, except the magnetometer, are each capable of taking the lead roles individually, depending on the type of activity being recognized, the body position, the used data features and the classification method employed (personalized or generalized). We also show that their combination only improves the overall recognition performance when their individual performances are not very high, so that there is room for performance improvement. We have made our data set and our data collection application publicly available, thereby making our experiments reproducible.

  18. Fusion of Smartphone Motion Sensors for Physical Activity Recognition

    PubMed Central

    Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J. M.

    2014-01-01

    For physical activity recognition, smartphone sensors, such as an accelerometer and a gyroscope, are being utilized in many research studies. So far, particularly, the accelerometer has been extensively studied. In a few recent studies, a combination of a gyroscope, a magnetometer (in a supporting role) and an accelerometer (in a lead role) has been used with the aim to improve the recognition performance. How and when are various motion sensors, which are available on a smartphone, best used for better recognition performance, either individually or in combination? This is yet to be explored. In order to investigate this question, in this paper, we explore how these various motion sensors behave in different situations in the activity recognition process. For this purpose, we designed a data collection experiment where ten participants performed seven different activities carrying smart phones at different positions. Based on the analysis of this data set, we show that these sensors, except the magnetometer, are each capable of taking the lead roles individually, depending on the type of activity being recognized, the body position, the used data features and the classification method employed (personalized or generalized). We also show that their combination only improves the overall recognition performance when their individual performances are not very high, so that there is room for performance improvement. We have made our data set and our data collection application publicly available, thereby making our experiments reproducible. PMID:24919015

  19. Speed's Procedure Used to Treat Chronic Elbow Dislocation.

    PubMed

    Thomas, D K

    2015-11-05

    In this report, operative treatment of chronic elbow dislocation using Speed's technique is described. Reports on this phenomenon are infrequent. This clinically important pathology is quite uncommon but impacts negatively on a patient's functionality and normal daily activities. We present the case of a 53-year old woman with a missed diagnosis of elbow dislocation. The patient was unable to function because of pain, stiffness and loss of motion. Her diagnosis was missed in the emergency department and in a general practitioner's office. A correct diagnosis was made three months later. The consultant organized an early date for surgery. The definitive treatment entailed open reduction, VY plasty of triceps and supplementary fixation using K wires through the elbow joint (Speed's Procedure). The occurrence, patho-mechanics, operative technique and its outcome are discussed.

  20. The length change of a dislocation junction in FCC-single crystals under stress

    NASA Astrophysics Data System (ADS)

    Kurinnaya, Raisa; Zgolich, Marina; Starenchenko, Vladimir; Sadritdinova, Gulnora

    2016-01-01

    The product of dislocation reactions among dislocations of non-coplanar slip systems are dislocation junctions. The paper presents the study on the length change of dislocation junctions under stress. It is revealed that dislocation junctions can be destructed by merging of triple dislocation nodes at certain inclination angles of the glide dislocation and the forest dislocation to the junction line and the corresponding lengths of free segments of intersecting dislocations. Dislocation junctions formed at an arbitrary intersection of segments of the reacting dislocation are investigated. The geometry of the intersection of segments of reacting dislocations, at which dislocation junctions are not completely destructed under stress but cease to be an obstacle for further motion of the glide dislocation, is determined. Such junctions remain in the shear zone, presenting an obstacle to other glide dislocations. Conditions under which the length of the dislocation junction increases with an increase in the stress exceeding the original length are found. The formed extended barrier becomes too strong for the acting stress. Higher stresses are required in order to destruct it. The probability of completely destructible junctions under stress, the probability of non-destructible junctions that remain in the shear zone and replenish the density of dislocation debris, as well as the probability of formation of long strong junctions, which are barriers capable of limiting the shear zone, are determined.

  1. Differential brain activity states during the perception and nonperception of illusory motion as revealed by magnetoencephalography.

    PubMed

    Crowe, David A; Leuthold, Arthur C; Georgopoulos, Apostolos P

    2010-12-28

    We studied visual perception using an annular random-dot motion stimulus called the racetrack. We recorded neural activity using magnetoencephalography while subjects viewed variants of this stimulus that contained no inherent motion or various degrees of embedded motion. Subjects reported seeing rotary motion during viewing of all stimuli. We found that, in the absence of any motion signals, patterns of brain activity differed between states of motion perception and nonperception. Furthermore, when subjects perceived motion, activity states within the brain did not differ across stimuli of different amounts of embedded motion. In contrast, we found that during periods of nonperception brain-activity states varied with the amount of motion signal embedded in the stimulus. Taken together, these results suggest that during perception the brain may lock into a stable state in which lower-level signals are suppressed.

  2. Probing the character of ultra-fast dislocations

    SciTech Connect

    Rudd, R. E.; Ruestes, C. J.; Bringa, E. M.; Remington, B. A.; Remington, T. P.; Meyers, M. A.

    2015-11-23

    Plasticity is often controlled by dislocation motion, which was first measured for low pressure, low strain rate conditions decades ago. However, many applications require knowledge of dislocation motion at high stress conditions where the data are sparse, and come from indirect measurements dominated by the effect of dislocation density rather than velocity. Here we make predictions based on atomistic simulations that form the basis for a new approach to measure dislocation velocities directly at extreme conditions using three steps: create prismatic dislocation loops in a near-surface region using nanoindentation, drive the dislocations with a shockwave, and use electron microscopy to determine how far the dislocations moved and thus their velocity at extreme stress and strain rate conditions. We report on atomistic simulations of tantalum that make detailed predictions of dislocation flow, and find that the approach is feasible and can uncover an exciting range of phenomena, such as transonic dislocations and a novel form of loop stretching. Furthermore, the simulated configuration enables a new class of experiments to probe average dislocation velocity at very high applied shear stress.

  3. Probing the character of ultra-fast dislocations

    DOE PAGES

    Rudd, R. E.; Ruestes, C. J.; Bringa, E. M.; ...

    2015-11-23

    Plasticity is often controlled by dislocation motion, which was first measured for low pressure, low strain rate conditions decades ago. However, many applications require knowledge of dislocation motion at high stress conditions where the data are sparse, and come from indirect measurements dominated by the effect of dislocation density rather than velocity. Here we make predictions based on atomistic simulations that form the basis for a new approach to measure dislocation velocities directly at extreme conditions using three steps: create prismatic dislocation loops in a near-surface region using nanoindentation, drive the dislocations with a shockwave, and use electron microscopy tomore » determine how far the dislocations moved and thus their velocity at extreme stress and strain rate conditions. We report on atomistic simulations of tantalum that make detailed predictions of dislocation flow, and find that the approach is feasible and can uncover an exciting range of phenomena, such as transonic dislocations and a novel form of loop stretching. Furthermore, the simulated configuration enables a new class of experiments to probe average dislocation velocity at very high applied shear stress.« less

  4. Probing the character of ultra-fast dislocations

    PubMed Central

    Ruestes, C. J.; Bringa, E. M.; Rudd, R. E.; Remington, B. A.; Remington, T. P.; Meyers, M. A.

    2015-01-01

    Plasticity is often controlled by dislocation motion, which was first measured for low pressure, low strain rate conditions decades ago. However, many applications require knowledge of dislocation motion at high stress conditions where the data are sparse, and come from indirect measurements dominated by the effect of dislocation density rather than velocity. Here we make predictions based on atomistic simulations that form the basis for a new approach to measure dislocation velocities directly at extreme conditions using three steps: create prismatic dislocation loops in a near-surface region using nanoindentation, drive the dislocations with a shockwave, and use electron microscopy to determine how far the dislocations moved and thus their velocity at extreme stress and strain rate conditions. We report on atomistic simulations of tantalum that make detailed predictions of dislocation flow, and find that the approach is feasible and can uncover an exciting range of phenomena, such as transonic dislocations and a novel form of loop stretching. The simulated configuration enables a new class of experiments to probe average dislocation velocity at very high applied shear stress. PMID:26592764

  5. Crew activity and motion effects on the space station

    NASA Technical Reports Server (NTRS)

    Rochon, Brian V.; Scheer, Steven A.

    1987-01-01

    Among the significant sources of internal disturbances that must be considered in the design of space station vibration control systems are the loads induced on the structure from various crew activities. Flight experiment T013, flown on the second manned mission of Skylab, measured force and moment time histories for a range of preplanned crew motions and activities. This experiment has proved itself invaluable as a source of on-orbit crew induced loads that has allowed a space station forcing function data base to be built. This will enable forced response such as acceleration and deflections, attributable to crew activity, to be calculated. The flight experiment, resultant database and structural model pre-processor, analysis examples and areas of combined research shall be described.

  6. Crystal plasticity model for BCC iron atomistically informed by kinetics of correlated kinkpair nucleation on screw dislocation

    NASA Astrophysics Data System (ADS)

    Narayanan, Sankar; McDowell, David L.; Zhu, Ting

    2014-04-01

    The mobility of dislocation in body-centered cubic (BCC) metals is controlled by the thermally activated nucleation of kinks along the dislocation core. By employing a recent interatomic potential and the Nudged Elastic Band method, we predict the atomistic saddle-point state of 1/2<111> screw dislocation motion in BCC iron that involves the nucleation of correlated kinkpairs and the resulting double superkinks. This unique process leads to a single-humped minimum energy path that governs the one-step activation of a screw dislocation to move into the adjacent {110} Peierls valley, which contrasts with the double-humped energy path and the two-step transition predicted by other interatomic potentials. Based on transition state theory, we use the atomistically computed, stress-dependent kinkpair activation parameters to inform a coarse-grained crystal plasticity flow rule. Our atomistically-informed crystal plasticity model quantitatively predicts the orientation dependent stress-strain behavior of BCC iron single crystals in a manner that is consistent with experimental results. The predicted temperature and strain-rate dependencies of the yield stress agree with experimental results in the 200-350 K temperature regime, and are rationalized by the small activation volumes associated with the kinkpair-mediated motion of screw dislocations.

  7. Thermal effects in dislocation theory

    NASA Astrophysics Data System (ADS)

    Langer, J. S.

    2016-12-01

    The mechanical behaviors of polycrystalline solids are determined by the interplay between phenomena governed by two different thermodynamic temperatures: the configurational effective temperature that controls the density of dislocations, and the ordinary kinetic-vibrational temperature that controls activated depinning mechanisms and thus deformation rates. This paper contains a review of the effective-temperature theory and its relation to conventional dislocation theories. It includes a simple illustration of how these two thermal effects can combine to produce a predictive theory of spatial heterogeneities such as shear-banding instabilities. Its main message is a plea that conventional dislocation theories be reformulated in a thermodynamically consistent way so that the vast array of observed behaviors can be understood systematically.

  8. Multiscale Theory of Dislocation Climb.

    PubMed

    Geslin, Pierre-Antoine; Appolaire, Benoît; Finel, Alphonse

    2015-12-31

    Dislocation climb is a ubiquitous mechanism playing a major role in the plastic deformation of crystals at high temperature. We propose a multiscale approach to model quantitatively this mechanism at mesoscopic length and time scales. First, we analyze climb at a nanoscopic scale and derive an analytical expression of the climb rate of a jogged dislocation. Next, we deduce from this expression the activation energy of the process, bringing valuable insights to experimental studies. Finally, we show how to rigorously upscale the climb rate to a mesoscopic phase-field model of dislocation climb. This upscaling procedure opens the way to large scale simulations where climb processes are quantitatively reproduced even though the mesoscopic length scale of the simulation is orders of magnitude larger than the atomic one.

  9. Active motion and load control of floating offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Jalili, Kaveh

    The research in this thesis is focused on stabilization and load reduction of floating offshore wind turbine (FOWT) structures for both the fore-aft (pitch) and side-to-side (roll) directions. Based on the Tuned Mass Damper (TMD) and Active Vane concepts recently proposed, two composite actuation schemes are investigated. The first scheme is to apply the horizontal vane and vertical vane to platform pitch and roll, respectively, resulting in the so-called Double Vane Actuation (DVA) scheme. The second scheme is the combination of the TMD based pitch control and active vertical vane based roll control, resulting in the so-called Hybrid Actuation (HA) scheme. Simulation results of DVA show great reductions of motions and loads in the fore-aft and side-to-side directions. Performance of HA is investigated by extensive simulations based on the IEC61400-3 standard and results show significant and consistent motions and loads reductions in both FA and SS directions.

  10. Active Motion Control of Tetrahymena pyriformis by Galvanotaxis and Geotaxis

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Byun, Doyoung; Kim, Min Jun

    2013-11-01

    Recently, there has been increasing interest in the swimming behavior of microorganisms and biologically inspired micro-robots. These microorganisms naturally accompanied by complex motions. Therefore it is important to understand the flow characteristics as well as control mechanisms. One of eukaryotic cells, the protozoa are a diverse group of unicellular organisms, many of which are motile cilia. Motile cilia are cover on the surface of cell in large numbers and beat in oriented waves. Sequential beating motions of a single cilium form metachronal strokes, producing a propagation wave, and therefore the body is achieved propulsion force. So preliminary studies are achieved to understand the flow induced by swimming microorganisms. Based on hydrodynamic results, the follow study of a few micro-scale protozoa cell, such as the Tetrahymena pyriformis, has provided active or passive control into several external stimuli. In typical control methods, the galvanotaxis and geotaxis were adopted active and passive control, respectively. The validation of galvanotaxis is used DC and AC voltage. In terms of geotaxis, corrugated microstructures were used to control in the microchannel. This research was supported by the Ministry of Education, Science and Technology (MEST, 2011-0016461), National Science Foundation (NSF) CMMI Control Systems Program (#1000255) and Army Research Office (W911NF-11-1-0490).

  11. Flare Activity and Magnetic Helicity Injection By Photospheric Horizontal Motions

    NASA Astrophysics Data System (ADS)

    Moon, Y.-J.; Chae, J.; Choe, G.; Wang, H.; Park, Y. D.; Yun, H. S.; Yurchyshyn, V.; Goode, P. R.

    2002-05-01

    We present observational evidence that the occurrence of homologous flares in an active region is physically related to the injection of magnetic helicity by horizontal photospheric motions. We have analyzed a set of 1 minute cadence magnetograms of NOAA AR 8100 taken over a period of 6.5 hours by Michelson Doppler Imager (MDI) on board Solar and Heliospheric Observatory (SOHO). During this observing time span, seven homologous flares took place in the active region. We have computed the magnetic helicity injection rate into the solar atmosphere by photospheric shearing motions, and found that a significant amount of magnetic helicity was injected during the observing period. In a strong M4.1 flare, the magnetic helicity injection rate impulsively increased and peaked at the same time as the X-ray flux did. The flare X-ray flux integrated over the X-ray emission time strongly correlates with the magnetic helicity injected during the flaring interval. The integrated X-ray flux is found to be a logarithmically increasing function of the injected magnetic helicity. Our results suggest that injection of helicity and abrupt increase of helicity magnitude play a significant role in flare triggering. This work has been supported by NASA grants NAG5-10894 and NAG5-7837, by MURI grant of AFOSR, by the US-Korea Cooperative Science Program (NSF INT-98-16267), by NRL M10104000059-01J000002500 of the Korean government, and by the BK 21 project of the Korean government.

  12. Documenting Western Burrowing Owl Reproduction and Activity Patterns Using Motion-Activated Cameras

    SciTech Connect

    Hall, Derek B.; Greger, Paul D.

    2014-08-01

    We used motion-activated cameras to monitor the reproduction and patterns of activity of the Burrowing Owl (Athene cunicularia) above ground at 45 burrows in south-central Nevada during the breeding seasons of 1999, 2000, 2001, and 2005. The 37 broods, encompassing 180 young, raised over the four years represented an average of 4.9 young per successful breeding pair. Young and adult owls were detected at the burrow entrance at all times of the day and night, but adults were detected more frequently during afternoon/early evening than were young. Motion-activated cameras require less effort to implement than other techniques. Limitations include photographing only a small percentage of owl activity at the burrow; not detecting the actual number of eggs, young, or number fledged; and not being able to track individual owls over time. Further work is also necessary to compare the accuracy of productivity estimates generated from motion-activated cameras with other techniques.

  13. Assessment of hardening due to dislocation loops in bcc iron: Overview and analysis of atomistic simulations for edge dislocations

    NASA Astrophysics Data System (ADS)

    Bonny, G.; Terentyev, D.; Elena, J.; Zinovev, A.; Minov, B.; Zhurkin, E. E.

    2016-05-01

    Upon irradiation, iron based steels used for nuclear applications contain dislocation loops of both < 100 > and ½ < 111 > type. Both types of loops are known to contribute to the radiation hardening and embrittlement of steels. In the literature many molecular dynamics works studying the interaction of dislocations with dislocation loops are available. Recently, based on such studies, a thermo-mechanical model to threat the dislocation - dislocation loop (DL) interaction within a discrete dislocation dynamics framework was developed for ½ < 111 > loops. In this work, we make a literature review of the dislocation - DL interaction in bcc iron. We also perform molecular dynamics simulations to derive the stress-energy function for < 100 > loops. As a result we deliver the function of the activation energy versus activation stress for < 100 > loops that can be applied in a discrete dislocation dynamics framework.

  14. "Conjugate channeling" effect in dislocation core diffusion: carbon transport in dislocated BCC iron.

    PubMed

    Ishii, Akio; Li, Ju; Ogata, Shigenobu

    2013-01-01

    Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction ξ, but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. c is a function of the Burgers vector b, but not ξ, thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility.

  15. “Conjugate Channeling” Effect in Dislocation Core Diffusion: Carbon Transport in Dislocated BCC Iron

    PubMed Central

    Ishii, Akio; Li, Ju; Ogata, Shigenobu

    2013-01-01

    Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction , but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. is a function of the Burgers vector b, but not , thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility. PMID:23593255

  16. Diffusion in different models of active Brownian motion

    NASA Astrophysics Data System (ADS)

    Lindner, B.; Nicola, E. M.

    2008-04-01

    Active Brownian particles (ABP) have served as phenomenological models of self-propelled motion in biology. We study the effective diffusion coefficient of two one-dimensional ABP models (simplified depot model and Rayleigh-Helmholtz model) differing in their nonlinear friction functions. Depending on the choice of the friction function the diffusion coefficient does or does not attain a minimum as a function of noise intensity. We furthermore discuss the case of an additional bias breaking the left-right symmetry of the system. We show that this bias induces a drift and that it generally reduces the diffusion coefficient. For a finite range of values of the bias, both models can exhibit a maximum in the diffusion coefficient vs. noise intensity.

  17. Unwinding motion of a twisted active region filament

    SciTech Connect

    Yan, X. L.; Xue, Z. K.; Kong, D. F.; Liu, J. H.; Xu, C. L.

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  18. Quantification Of 4H- To 3C-Polymorphism In Silicon Carbide (SiC) Epilayers And An Investigation Of Recombination-Enhanced Dislocation Motion In SiC By Optical Emission Microscopy (Oem) Techniques

    NASA Technical Reports Server (NTRS)

    Speer, Kevin M.

    2004-01-01

    quantifying and mapping defects on both the substrate and mesa surfaces, and of quantifying polymorphic changes in the grown materials. In addition, an optical emission microscopy (OEM) system is developed that will facilitate comprehensive study of recombination-enhanced dislocation motion (REDM).

  19. A field theory of piezoelectric media containing dislocations

    SciTech Connect

    Taupin, V. Fressengeas, C.; Ventura, P.; Lebyodkin, M.

    2014-04-14

    A field theory is proposed to extend the standard piezoelectric framework for linear elastic solids by accounting for the presence and motion of dislocation fields and assessing their impact on the piezoelectric properties. The proposed theory describes the incompatible lattice distortion and residual piezoelectric polarization fields induced by dislocation ensembles, as well as the dynamic evolution of these fields through dislocation motion driven by coupled electro-mechanical loading. It is suggested that (i) dislocation mobility may be enhanced or inhibited by the electric field, depending on the polarity of the latter, (ii) plasticity mediated by dislocation motion allows capturing long-term time-dependent properties of piezoelectric polarization. Due to the continuity of the proposed electro-mechanical framework, the stress/strain and polarization fields are smooth even in the dislocation core regions. The theory is applied to gallium nitride layers for validation. The piezoelectric polarization fields associated with bulk screw/edge dislocations are retrieved and surface potential modulations are predicted. The results are extended to dislocation loops.

  20. Convergent and divergent dislocation of the pediatric elbow: two case reports and comprehensive review of literature.

    PubMed

    Parikh, Shital N; Lykissas, Marios G; Mehlman, Charles T; Sands, Steven; Herrera-Soto, Jose; Panchal, Anand; Crawford, Alvin H

    2014-03-01

    Convergent and divergent pediatric elbow dislocations are rare injuries. When properly diagnosed and treated without delay, both types of dislocations have a good prognosis. We describe a case of convergent elbow dislocation in a 16-year-old boy. The patient underwent operative intervention and demonstrated full range of motion at the 4-year follow-up. Our second case describes an 11-year-old boy with a divergent elbow dislocation associated with an ipsilateral distal radius fracture and distal radioulnar joint dislocation. The patient showed full range of motion 1 year after closed reduction and casting and had no residual deformities or abnormalties.

  1. Irreducible posterolateral elbow dislocation.

    PubMed

    Atkinson, Cameron T; Pappas, Nick D; Lee, Donald H

    2014-02-01

    Elbow dislocations are a high-energy traumatic event resulting in loss of congruence of a stable joint. The majority of elbow dislocations can be reduced by closed means and treated conservatively. We present a case of an irreducible elbow dislocation with reduction blocked by the radial head buttonholed through the lateral ligamentous complex. We performed open reduction with release followed by repair of the lateral ligamentous complex. Clinicians need to understand this unique variant of an elbow dislocation to appropriately treat this operative injury.

  2. Discrete dislocations in graphene

    NASA Astrophysics Data System (ADS)

    Ariza, M. P.; Ortiz, M.

    2010-05-01

    In this work, we present an application of the theory of discrete dislocations of Ariza and Ortiz (2005) to the analysis of dislocations in graphene. Specifically, we discuss the specialization of the theory to graphene and its further specialization to the force-constant model of Aizawa et al. (1990). The ability of the discrete-dislocation theory to predict dislocation core structures and energies is critically assessed for periodic arrangements of dislocation dipoles and quadrupoles. We show that, with the aid of the discrete Fourier transform, those problems are amenable to exact solution within the discrete-dislocation theory, which confers the theory a distinct advantage over conventional atomistic models. The discrete dislocations exhibit 5-7 ring core structures that are consistent with observation and result in dislocation energies that fall within the range of prediction of other models. The asymptotic behavior of dilute distributions of dislocations is characterized analytically in terms of a discrete prelogarithmic energy tensor. Explicit expressions for this discrete prelogarithmic energy tensor are provided up to quadratures.

  3. Dislocated shoulder - aftercare

    MedlinePlus

    ... aftercare; Shoulder subluxation - aftercare; Shoulder reduction - aftercare; Glenohumeral joint dislocation ... that connect bone to bone) of the shoulder joint. All of these tissues help keep your arm ...

  4. Quantum dynamics of a single dislocation

    NASA Astrophysics Data System (ADS)

    de Gennes, Pierre-Gilles

    We discuss the zero temperature motions of an edge dislocation in a quantum solid (e.g., He4). If the dislocation has one kink (equal in length to its Burgers vector b) the kink has a creation energy U and can move along the line with a certain transfer integral t. When t and U are of comparable magnitude, two opposite kinks can form an extended bound state, with a size l. The overall shape of the dislocation in the ground state is then associated with a random walk of persistence length l (along the line) and hop sizes b. We also discuss the motions of kinks under an applied shear stress σ: the glide velocity is proportional to exp(-σ*/σ), where σ* is a characteristic stress, controlled by tunneling processes. Mouvements quantiques d'une dislocation. On analyse le mouvement à température nulle d'une dislocation coin dans un solide quantique (He4). La dislocation peut avoir un cran (d'énergie U) dans son plan de glissement. Le cran peut avancer ou reculer le long de la dislocation par effet tunnel, avec une certaine intégrale de transfert t. Deux crans de signe opposé peuvent former un état lié. En présence d'une contrainte extérieure σ, la ligne doit avancer avec une vitesse ~exp(-σ*/σ) où σ* est une contrainte seuil, contrôlée par l'effet tunnel.

  5. Effects of image noise, respiratory motion, and motion compensation on 3D activity quantification in count-limited PET images

    NASA Astrophysics Data System (ADS)

    Siman, W.; Mawlawi, O. R.; Mikell, J. K.; Mourtada, F.; Kappadath, S. C.

    2017-01-01

    The aims of this study were to evaluate the effects of noise, motion blur, and motion compensation using quiescent-period gating (QPG) on the activity concentration (AC) distribution—quantified using the cumulative AC volume histogram (ACVH)—in count-limited studies such as 90Y-PET/CT. An International Electrotechnical Commission phantom filled with low 18F activity was used to simulate clinical 90Y-PET images. PET data were acquired using a GE-D690 when the phantom was static and subject to 1-4 cm periodic 1D motion. The static data were down-sampled into shorter durations to determine the effect of noise on ACVH. Motion-degraded PET data were sorted into multiple gates to assess the effect of motion and QPG on ACVH. Errors in ACVH at AC90 (minimum AC that covers 90% of the volume of interest (VOI)), AC80, and ACmean (average AC in the VOI) were characterized as a function of noise and amplitude before and after QPG. Scan-time reduction increased the apparent non-uniformity of sphere doses and the dispersion of ACVH. These effects were more pronounced in smaller spheres. Noise-related errors in ACVH at AC20 to AC70 were smaller (<15%) compared to the errors between AC80 to AC90 (>15%). The accuracy of ACmean was largely independent of the total count. Motion decreased the observed AC and skewed the ACVH toward lower values; the severity of this effect depended on motion amplitude and tumor diameter. The errors in AC20 to AC80 for the 17 mm sphere were  -25% and  -55% for motion amplitudes of 2 cm and 4 cm, respectively. With QPG, the errors in AC20 to AC80 of the 17 mm sphere were reduced to  -15% for motion amplitudes  <4 cm. For spheres with motion amplitude to diameter ratio  >0.5, QPG was effective at reducing errors in ACVH despite increases in image non-uniformity due to increased noise. ACVH is believed to be more relevant than mean or maximum AC to calculate tumor control and normal tissue complication probability

  6. Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex.

    PubMed

    Wheaton, Kylie J; Thompson, James C; Syngeniotis, Ari; Abbott, David F; Puce, Aina

    2004-05-01

    Activation of premotor and temporoparietal cortex occurs when we observe others movements, particularly relating to objects. Viewing the motion of different body parts without the context of an object has not been systematically evaluated. During a 3T fMRI study, 12 healthy subjects viewed human face, hand, and leg motion, which was not directed at or did not involve an object. Activation was identified relative to static images of the same human face, hand, and leg in both individual subject and group average data. Four clear activation foci emerged: (1) right MT/V5 activated to all forms of viewed motion; (2) right STS activated to face and leg motion; (3) ventral premotor cortex activated to face, hand, and leg motion in the right hemisphere and to leg motion in the left hemisphere; and (4) anterior intraparietal cortex (aIP) was active bilaterally to viewing hand motion and in the right hemisphere leg motion. In addition, in the group data, a somatotopic activation pattern for viewing face, hand, and leg motion occurred in right ventral premotor cortex. Activation patterns in STS and aIP were more complex--typically activation foci to viewing two types of human motion showed some overlap. Activation in individual subjects was similar; however, activation to hand motion also occurred in the STS with a variable location across subjects--explaining the lack of a clear activation focus in the group data. The data indicate that there are selective responses to viewing motion of different body parts in the human brain that are independent of object or tool use.

  7. Metallurgy: Starting and stopping dislocations

    NASA Astrophysics Data System (ADS)

    Minor, Andrew M.

    2015-09-01

    A comparison of dislocation dynamics in two hexagonal close-packed metals has revealed that dislocation movement can vary substantially in materials with the same crystal structure, associated with how the dislocations relax when stationary.

  8. Traumatic proximal tibiofibular dislocation.

    PubMed

    Burgos, J; Alvarez-Montero, R; Gonzalez-Herranz, P; Rapariz, J M

    1997-01-01

    Proximal tibiofibular dislocation is an exceptional lesion. Rarer still is its presentation in childhood. We describe the clinical case of a 6-year-old boy, the victim of a road accident. He had a tibiofibular dislocation associated with a metaphyseal fracture of the tibia.

  9. Evolution of dislocation density and character in hot rolled titanium determined by X-ray diffraction

    SciTech Connect

    Dragomir, I.C. . E-mail: iuliana.cernatescu@mse.gatech.edu; Li, D.S.; Castello-Branco, G.A.; Garmestani, H.; Snyder, R.L.; Ribarik, G.; Ungar, T.

    2005-07-15

    X-ray Peak Profile Analysis was employed to determine the evolution dislocation density and dislocations type in hot rolled commercially pure titanium specimens. It was found that dislocation type is dominating the deformation mechanism at all rolling reduction levels studied here. A good agreement was found between the texture evolution and changes in dislocation slip system activity during the deformation process.

  10. Effective mobility of dislocations from systematic coarse-graining

    NASA Astrophysics Data System (ADS)

    Kooiman, M.; Hütter, M.; Geers, MGD

    2015-06-01

    The dynamics of large amounts of dislocations governs the plastic response of crystalline materials. In this contribution we discuss the relation between the mobility of discrete dislocations and the resulting flow rule for coarse-grained dislocation densities. The mobilities used in literature on these levels are quite different, for example in terms of their intrinsic the stress dependence. To establish the relation across the scales, we have derived the macroscopic evolution equations of dislocation densities from the equations of motion of individual dislocations by means of systematic coarse-graining. From this, we can identify a memory kernel relating the driving force and the flux of dislocations. This kernel can be considered as an effective macroscopic mobility with two contributions; a direct contribution related to the overdamped motion of individual dislocations, and an emergent contribution that arises from time correlations of fluctuations in the Peach-Koehler force. Scaling analysis shows that the latter contribution is dominant for dislocations in metals at room temperature. We also discuss several concerns related to the separation of timescales.

  11. On Dislocation Glide in Planetary Interiors

    NASA Astrophysics Data System (ADS)

    Cordier, P.; Carrez, P.; Gouriet, K.; Kraych, A.; Ritterbex, S.

    2015-12-01

    The dynamics of hot planets depends strongly on how heat is transported to their surfaces through large scale convection flows. This is ultimately controlled by the rheology of high-pressure phases under extreme conditions. Whenever solid rocks are concerned, plastic flow results from the propagation of crystal defects (point defects, dislocations, grain boundaries). In this presentation we focus on the role of pressure on dislocation glide which is usually the most efficient strain-producing mechanism. Dislocation glide is assessed through multiscale numerical modeling. First, dislocations are modeled at the atomic scale based on first-principles calculations to incorporate the influence of pressure. Then the mobility law of dislocation at finite temperature is modeled by describing thermally-activated mechanisms for dislocation glide based on the kink-pair model. Then the flow stress at the grain scale is deduced either from application of the Orowan equation or by dislocation dynamics modeling. This approach is applied to wadsleyite, ringwoodite, bridgmanite and post-perovskite. Mechanical properties are either calculated at laboratory strain-rates to be compared with experiments when available or at mantle strain-rate to assess their efficiency under natural conditions.

  12. High-temperature discrete dislocation plasticity

    NASA Astrophysics Data System (ADS)

    Keralavarma, S. M.; Benzerga, A. A.

    2015-09-01

    A framework for solving problems of dislocation-mediated plasticity coupled with point-defect diffusion is presented. The dislocations are modeled as line singularities embedded in a linear elastic medium while the point defects are represented by a concentration field as in continuum diffusion theory. Plastic flow arises due to the collective motion of a large number of dislocations. Both conservative (glide) and nonconservative (diffusion-mediated climb) motions are accounted for. Time scale separation is contingent upon the existence of quasi-equilibrium dislocation configurations. A variational principle is used to derive the coupled governing equations for point-defect diffusion and dislocation climb. Superposition is used to obtain the mechanical fields in terms of the infinite-medium discrete dislocation fields and an image field that enforces the boundary conditions while the point-defect concentration is obtained by solving the stress-dependent diffusion equations on the same finite-element grid. Core-level boundary conditions for the concentration field are avoided by invoking an approximate, yet robust kinetic law. Aspects of the formulation are general but its implementation in a simple plane strain model enables the modeling of high-temperature phenomena such as creep, recovery and relaxation in crystalline materials. With emphasis laid on lattice vacancies, the creep response of planar single crystals in simple tension emerges as a natural outcome in the simulations. A large number of boundary-value problem solutions are obtained which depict transitions from diffusional to power-law creep, in keeping with long-standing phenomenological theories of creep. In addition, some unique experimental aspects of creep in small scale specimens are also reproduced in the simulations.

  13. A triboelectric motion sensor in wearable body sensor network for human activity recognition.

    PubMed

    Hui Huang; Xian Li; Ye Sun

    2016-08-01

    The goal of this study is to design a novel triboelectric motion sensor in wearable body sensor network for human activity recognition. Physical activity recognition is widely used in well-being management, medical diagnosis and rehabilitation. Other than traditional accelerometers, we design a novel wearable sensor system based on triboelectrification. The triboelectric motion sensor can be easily attached to human body and collect motion signals caused by physical activities. The experiments are conducted to collect five common activity data: sitting and standing, walking, climbing upstairs, downstairs, and running. The k-Nearest Neighbor (kNN) clustering algorithm is adopted to recognize these activities and validate the feasibility of this new approach. The results show that our system can perform physical activity recognition with a successful rate over 80% for walking, sitting and standing. The triboelectric structure can also be used as an energy harvester for motion harvesting due to its high output voltage in random low-frequency motion.

  14. Chirality in microswimmer motion: From circle swimmers to active turbulence

    NASA Astrophysics Data System (ADS)

    Löwen, Hartmut

    2016-11-01

    In this minireview, recent progress in our understanding of the basic physical principles of microswimmers which perform a motion characterized by chirality is summarized. We discuss both the chiral motion of a single circle swimmer and the occurrence of bacterial turbulence where swirls of different chirality are formed spontaneously in an interacting ensemble of linear microswimmers. Some recent highlights in this context as obtained by theory, simulation and experiment are summarized and briefly discussed.

  15. Unsteady aerodynamic modeling for arbitrary motions. [for active control techniques

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Results indicating that unsteady aerodynamic loads derived under the assumption of simple harmonic motions executed by airfoil or wing can be extended to arbitrary motions are summarized. The generalized Theodorsen (1953) function referable to loads due to simple harmonic oscillations of a wing section in incompressible flow, the Laplace inversion integral for unsteady aerodynamic loads, calculations of root loci of aeroelastic loads, and analysis of generalized compressible transient airloads are discussed.

  16. Continuum Theory of Dislocations: Cell Structure Formation

    NASA Astrophysics Data System (ADS)

    Limkumnerd, Surachate; Sethna, James P.

    2005-03-01

    Line-like topological defects inside metals are called dislocations. These dislocations in late stages of hardening form patterns called cell structures. We are developing a mesoscale theory for the formation of cell structures that systematically derives the order parameter fields and evolution laws from the conserved topological Burgers vector density or the Nye dislocation tensor. (In classical plasticity theories, describing scales large compared to these cells, one normally bypasses the complicated motions of the dislocations by supplying yield surface and plastic hardening function in order to determine the evolution of state variables.) Using Landau approach and a closure approximation, an evolution equation for the dislocation density tensor is obtained by employing simple symmetry arguments and the constraint that the elastic energy must decrease with time at fixed stress. The evolution laws lead to singularity formation at finite times, which we expect will be related to the formation of cell walls. Implementation of finite difference simulations using the upwind scheme and the results in one and higher dimensions will be discussed.

  17. Bilateral traumatic hip dislocation associated with sacro-iliac dislocation.

    PubMed

    Galois, L; Meuley, E; Pfeffer, F; Mainard, D; Delagoutte, J P

    We report a rare injury in an 18-year-old woman who sustained posterior bilateral hip dislocation with sacro-iliac dislocation after a high energy motor vehicle accident. She was treated by closed reduction and skeletal traction. Bilateral traumatic hip dislocation is an uncommon occurrence. Rarer still is bilateral traumatic hip dislocation associated with sacro-iliac dislocation because it combines two different mechanisms of trauma. (Hip International 2002; 1: 47-9).

  18. The effects of a single game of rugby on active cervical range of motion.

    PubMed

    Lark, Sally D; McCarthy, Peter W

    2009-03-01

    The cumulative effect of playing rugby over many years decreases active cervical range of motion, especially in the forwards. This in itself should influence long-term neck care; however, it leaves the important question of how noticeable the acute effects of active cervical range of motion are following a single game. The active cervical range of motion was measured in 21 elite rugby players (mean age 24.4 +/- 4.3 years; average professional career of 7 +/- 3.4 years) before and after a single game of rugby at the start of the season. The active cervical range of motion was recorded in flexion, extension, left and right side flexion, plus left and right rotation using a cervical range of motion device. The results show generally decreased active cervical range of motion from before to after a game independent of position played. Rugby backs had significantly (P < 0.05) reduced active cervical range of motion in flexion, while forwards were affected in extension and left lateral flexion (P < 0.05). These results highlight that a single game of rugby can reduce functional capacity of the neck (active cervical range of motion), and the affected neck movement appears to be related to the role of positional play. The authors suggest that neck training and muscle damage repair should be an important part of a rugby player's post-game recovery to limit the reduction in functional capacity.

  19. Obesity effect on male active joint range of motion.

    PubMed

    Park, Woojin; Ramachandran, Jaiganesh; Weisman, Paul; Jung, Eui S

    2010-01-01

    Despite the prevalence of obesity, how obesity affects human physical capabilities is not well documented. As an effort toward addressing this, the current study investigated the obesity effect on joint range of motion (RoM) based on data collected from 20 obese and 20 non-obese males. In total, 30 inter-segmental motions occurring at the shoulder, elbow, knee and ankle joints and lumbar and cervical spine areas were examined. The obesity effect was found to be non-uniform across the joint motions. Obesity significantly reduced RoM for nine of the 30 motions: shoulder extensions and adductions, lumbar spine extension and lateral flexions and knee flexions. The largest significant RoM reduction was 38.9% for the left shoulder adduction. The smallest was 11.1% for the right knee flexion. The obesity-associated RoM reductions appear to be mainly due to the mechanical interposition and obstruction of inter-segmental motions caused by excess fat in the obese body. STATEMENT OF RELEVANCE: Currently, obesity is prevalent worldwide and its prevalence is expected to increase continually in the near future. This study empirically characterised the obesity effects on joint RoM to provide better understanding of the physical capabilities of the obese. The study findings will facilitate designing man-artefact systems that accommodate obese individuals.

  20. Hydrogenated vacancies lock dislocations in aluminium

    PubMed Central

    Xie, Degang; Li, Suzhi; Li, Meng; Wang, Zhangjie; Gumbsch, Peter; Sun, Jun; Ma, Evan; Li, Ju; Shan, Zhiwei

    2016-01-01

    Due to its high diffusivity, hydrogen is often considered a weak inhibitor or even a promoter of dislocation movements in metals and alloys. By quantitative mechanical tests in an environmental transmission electron microscope, here we demonstrate that after exposing aluminium to hydrogen, mobile dislocations can lose mobility, with activating stress more than doubled. On degassing, the locked dislocations can be reactivated under cyclic loading to move in a stick-slip manner. However, relocking the dislocations thereafter requires a surprisingly long waiting time of ∼103 s, much longer than that expected from hydrogen interstitial diffusion. Both the observed slow relocking and strong locking strength can be attributed to superabundant hydrogenated vacancies, verified by our atomistic calculations. Vacancies therefore could be a key plastic flow localization agent as well as damage agent in hydrogen environment. PMID:27808099

  1. Hydrogenated vacancies lock dislocations in aluminium

    NASA Astrophysics Data System (ADS)

    Xie, Degang; Li, Suzhi; Li, Meng; Wang, Zhangjie; Gumbsch, Peter; Sun, Jun; Ma, Evan; Li, Ju; Shan, Zhiwei

    2016-11-01

    Due to its high diffusivity, hydrogen is often considered a weak inhibitor or even a promoter of dislocation movements in metals and alloys. By quantitative mechanical tests in an environmental transmission electron microscope, here we demonstrate that after exposing aluminium to hydrogen, mobile dislocations can lose mobility, with activating stress more than doubled. On degassing, the locked dislocations can be reactivated under cyclic loading to move in a stick-slip manner. However, relocking the dislocations thereafter requires a surprisingly long waiting time of ~103 s, much longer than that expected from hydrogen interstitial diffusion. Both the observed slow relocking and strong locking strength can be attributed to superabundant hydrogenated vacancies, verified by our atomistic calculations. Vacancies therefore could be a key plastic flow localization agent as well as damage agent in hydrogen environment.

  2. Postural activity and motion sickness during video game play in children and adults.

    PubMed

    Chang, Chih-Hui; Pan, Wu-Wen; Tseng, Li-Ya; Stoffregen, Thomas A

    2012-03-01

    Research has confirmed that console video games give rise to motion sickness in many adults. During exposure to console video games, there are differences in postural activity (movement of the head and torso) between participants who later experience motion sickness and those who do not, confirming a prediction of the postural instability theory of motion sickness. Previous research has not addressed relations between video games, movement and motion sickness in children. We evaluated the nauseogenic properties of a commercially available console video game in both adults and 10-year-old children. Individuals played the game for up to 50 min and were instructed to discontinue immediately if they experienced any symptoms of motion sickness, however mild. During game play, we monitored movement of the head and torso. Motion sickness was reported by 67% of adults and by 56% of children; these rates did not differ. As a group, children moved more than adults. Across age groups, the positional variability of the head and torso increased over time during game play. In addition, we found differences in movement between participants who later reported motion sickness and those who did not. Some of these differences were general across age groups but we also found significant differences between the movement of adults and children who later reported motion sickness. The results confirm that console video games can induce motion sickness in children and demonstrate that changes in postural activity precede the onset of subjective symptoms of motion sickness in children.

  3. Effective temperature and spontaneous collective motion of active matter

    NASA Astrophysics Data System (ADS)

    Wang, Shenshen; Wolynes, Peter

    2012-02-01

    Spontaneous directed motion, a hallmark of cell biology, is unusual in classical statistical physics. Here we study, using both numerical and analytical methods, organized motion in models of the cytoskeleton in which constituents are driven by energy-consuming motors. Although systems driven by small-step motors are described by an effective temperature and are thus quiescent, at higher order in step size, both homogeneous and inhomogeneous, flowing and oscillating behavior emerges. Motors that respond with a negative susceptibility to imposed forces lead to an apparent negative temperature system in which beautiful structures form resembling the asters seen in cell division.

  4. Dislocation gliding and cross-hatch morphology formation in AIII-BV epitaxial heterostructures

    SciTech Connect

    Kovalskiy, V. A. Vergeles, P. S.; Eremenko, V. G.; Fokin, D. A.

    2014-12-08

    An approach for understanding the origin of cross-hatch pattern (CHP) on the surface of lattice mismatched GaMnAs/InGaAs samples grown on GaAs (001) substrates is developed. It is argued that the motion of threading dislocations in the (111) slip planes during the relaxation of InGaAs buffer layer is more complicated process and its features are similar to the ones of dislocation half-loops gliding in plastically deformed crystals. The heterostructures were characterized by atomic force microscopy and electron beam induced current (EBIC). Detailed EBIC experiments revealed contrast features, which cannot be accounted for by the electrical activity of misfit dislocations at the buffer/substrate interface. We attribute these features to specific extended defects (EDs) generated by moving threading dislocations in the partially relaxed InGaAs layers. We believe that the core topology, surface reconstruction, and elastic strains from these EDs accommodated in slip planes play an important role in the CHP formation. The study of such electrically active EDs will allow further understanding of degradation and changes in characteristics of quantum devices based on strained heterostructures.

  5. The effects of Juchumseogi and Juchumseo Jireugi motions of taekwondo on muscle activation of paraspinal muscles.

    PubMed

    Baek, Jongmyeng; Lee, Jaeseok; Kim, Jonghyun; Kim, Jeonghun; Han, Dongwook; Byun, Sunghak

    2015-09-01

    [Purpose] The purpose of this study is to examine the effects of Juchumseogi and Juchumseo Jireugi motions on muscle activation of the paraspinal muscles. [Subjects] The subjects of this study were 20 healthy male students who listened to an explanation of the study methods and the purpose of the experiment, and agreed to participate in the study. [Methods] Muscle activation measurements of the paraspinal muscles at C3, T7, and L3 were taken while standing still and while performing Juchumseogi and Juchumseo Jireugi movements. The Juchumseogi and Juchumseo Jireugi motions were performed 3 times, and its mean value was used for analysis. [Results] The right and left muscle activation of paraspinal muscles induced by Juchumseogi and Juchumseo Jireugi motions in C3 and T7 were significantly higher than those induced by just standing. Muscle activation of paraspinal muscles induced by Juchumseo Jireugi motions in C3, T7, and L3 were significantly higher than those induced by Juchumseogi alone. The right and left muscle activation of paraspinal muscles induced by Juchumseo Jireugi motion in C3, T7, and L3 were significantly higher than those induced by standing and Juchumseogi alone. [Conclusion] This study demonstrated that Juchumseogi and Juchumseo Jireugi motions of Taekwondo could increase muscle activation of paraspinal muscles, and Juchumseo Jireugi motions were more effective for enhancing muscle activation of paraspinal muscles.

  6. The effects of Juchumseogi and Juchumseo Jireugi motions of taekwondo on muscle activation of paraspinal muscles

    PubMed Central

    Baek, Jongmyeng; Lee, Jaeseok; Kim, Jonghyun; Kim, Jeonghun; Han, Dongwook; Byun, Sunghak

    2015-01-01

    [Purpose] The purpose of this study is to examine the effects of Juchumseogi and Juchumseo Jireugi motions on muscle activation of the paraspinal muscles. [Subjects] The subjects of this study were 20 healthy male students who listened to an explanation of the study methods and the purpose of the experiment, and agreed to participate in the study. [Methods] Muscle activation measurements of the paraspinal muscles at C3, T7, and L3 were taken while standing still and while performing Juchumseogi and Juchumseo Jireugi movements. The Juchumseogi and Juchumseo Jireugi motions were performed 3 times, and its mean value was used for analysis. [Results] The right and left muscle activation of paraspinal muscles induced by Juchumseogi and Juchumseo Jireugi motions in C3 and T7 were significantly higher than those induced by just standing. Muscle activation of paraspinal muscles induced by Juchumseo Jireugi motions in C3, T7, and L3 were significantly higher than those induced by Juchumseogi alone. The right and left muscle activation of paraspinal muscles induced by Juchumseo Jireugi motion in C3, T7, and L3 were significantly higher than those induced by standing and Juchumseogi alone. [Conclusion] This study demonstrated that Juchumseogi and Juchumseo Jireugi motions of Taekwondo could increase muscle activation of paraspinal muscles, and Juchumseo Jireugi motions were more effective for enhancing muscle activation of paraspinal muscles. PMID:26504295

  7. Marker-less reconstruction of dense 4-D surface motion fields using active laser triangulation for respiratory motion management.

    PubMed

    Bauer, Sebastian; Berkels, Benjamin; Ettl, Svenja; Arold, Oliver; Hornegger, Joachim; Rumpf, Martin

    2012-01-01

    To manage respiratory motion in image-guided interventions a novel sparse-to-dense registration approach is presented. We apply an emerging laser-based active triangulation (AT) sensor that delivers sparse but highly accurate 3-D measurements in real-time. These sparse position measurements are registered with a dense reference surface extracted from planning data. Thereby a dense displacement field is reconstructed which describes the 4-D deformation of the complete patient body surface and recovers a multi-dimensional respiratory signal for application in respiratory motion management. The method is validated on real data from an AT prototype and synthetic data sampled from dense surface scans acquired with a structured light scanner. In a study on 16 subjects, the proposed algorithm achieved a mean reconstruction accuracy of +/- 0.22 mm w.r.t. ground truth data.

  8. Modal analysis of dislocation vibration and reaction attempt frequency

    DOE PAGES

    Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; ...

    2017-02-04

    Transition state theory is a fundamental approach for temporal coarse-graining. It estimates the reaction rate for a transition processes by quantifying the activation free energy and attempt frequency for the unit process. To calculate the transition rate of a gliding dislocation, the attempt frequency is often obtained from line tension estimates of dislocation vibrations, a highly simplified model of dislocation behavior. This work revisits the calculation of attempt frequency for a dislocation bypassing an obstacle, in this case a self-interstitial atom (SIA) loop. First, a direct calculation of the vibrational characteristics of a finite pinned dislocation segment is compared tomore » line tension estimates before moving to the more complex case of dislocation-obstacle bypass. The entropic factor associated with the attempt frequency is calculated for a finite dislocation segment and for an infinite glide dislocation interacting with an SIA loop. Lastly, it is found to be dislocation length independent for three cases of dislocation-self interstitial atom (SIA) loop interactions.« less

  9. Linking Nanoscales and Dislocation Shielding to the Ductile-Brittle Transition of Silicon

    NASA Astrophysics Data System (ADS)

    Hintsala, Eric; Teresi, Claire; Gerberich, William W.

    2016-12-01

    The ductile-brittle transition of nano/microscale silicon is explored at low-temperature, high stress conditions. A pathway to eventual mechanism maps describing this ductile-brittle transition behavior using sample size, strain rate, and temperature is outlined. First, a discussion of variables controlling the BDT in silicon is given and discussed in the context of development of eventual modeling that could simultaneously incorporate all their effects. For description of energy dissipation by dislocation nucleation from a crack tip, three critical input parameters are identified: the effective stress, activation volume, and activation energy for dislocation motion. These are discussed individually relating to the controlling variables for the BDT. Lastly, possibilities for measuring these parameters experimentally are also described.

  10. Photothermally Activated Motion and Ignition Using Aluminum Nanoparticles

    DTIC Science & Technology

    2013-01-17

    In comparison with alternative sources such as spark ignition,19 laser igni- tion,20 plasma ignition,21 plasma -assisted combustion,22 and combustion...energy-dispersive X-ray spectroscopy measurements of motion-only and afterignition products confirm significant Al oxidation occurs through sintering ...significant Al oxidation occurs through sintering and bursting after the flash exposure. Simulations suggest local heat generation is enhanced by LSPR. The

  11. Sunspots motions in the 22^nd cycle of activity

    NASA Astrophysics Data System (ADS)

    Tomic, A. S.; Vince, I.

    2006-08-01

    We handled approximately 30 000 rows with data for 5744 sunspots, obtained on Debrecen Heliophysical Observatory, for years 1986-1989 and 1993-1995. By method of last squares we solved for each spot inverse relations between time of observation, angular distance from central meridian and latitude. On this way were obtained mean equatorial and mean meridional motion, giving parameters of rotation for 90 latitude zones width of one degree. The averaged sideral equatorial angular speed of rotation: omega = 2.91+/-0.01[micro rad/ day], and: A = -0.65+/-0/01 [micro rad/day] were obtained. Solving second inverse problem - Busso's equation, were derived characteristic equatorial periods for different latitudes, from sunspots meridional motion. We obtained values between 32 day on the pole, and 400 years for latitude 2.5 degree. Also, covariance of spot motions along equator and meridian is calculated for all 5744 spots in 90 degree of latitude, which fully confirmed Ward's model of angular moment transport.

  12. Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction

    NASA Technical Reports Server (NTRS)

    Sim, Ben W.; Potsdam, Mark; Kitaplioglu, Cahit; LeMasurier, Philip; Lorber, Peter; Andrews, Joseph

    2012-01-01

    A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels.

  13. Reactions between a <111> screw dislocation and <100> interstitial dislocation loops in alpha-iron modelled at atomic-scale

    SciTech Connect

    Terentyev, Dmitry; Bacon, David J; Osetskiy, Yury N

    2010-03-01

    Interstitial dislocation loops with Burgers vector of <100> type are observed in {alpha}-iron irradiated by neutrons or heavy ions, and their population increases with increasing temperature. Their effect on motion of a 1/2<111> edge dislocation was reported earlier 1. Results are presented of a molecular dynamics study of interactions between a 1/2<111> screw dislocation and <100> loops in iron at temperature in the range 100 to 600 K. A variety of reaction mechanisms and outcomes are observed and classified in terms of the resulting dislocation configuration and the maximum stress required for the dislocation to break away. The highest obstacle resistance arises when the loop is absorbed to form a helical turn on the screw dislocation line, for the dislocation cannot glide away until the turn closes and a loop is released with the same Burgers vector as the line. Other than one situation found, in which no dislocation-loop reaction occurs, the weakest obstacle strength is found when the original <100> loop is restored at the end of the reaction. The important role of the cross-slip and the influence of model boundary conditions are emphasised and demonstrated by examples.

  14. Comparison of dislocation density tensor fields derived from discrete dislocation dynamics and crystal plasticity simulations of torsion

    SciTech Connect

    Jones, Reese E.; Zimmerman, Jonathan A.; Po, Giacomo; Mandadapu, Kranthi

    2016-02-01

    Accurate simulation of the plastic deformation of ductile metals is important to the design of structures and components to performance and failure criteria. Many techniques exist that address the length scales relevant to deformation processes, including dislocation dynamics (DD), which models the interaction and evolution of discrete dislocation line segments, and crystal plasticity (CP), which incorporates the crystalline nature and restricted motion of dislocations into a higher scale continuous field framework. While these two methods are conceptually related, there have been only nominal efforts focused at the global material response that use DD-generated information to enhance the fidelity of CP models. To ascertain to what degree the predictions of CP are consistent with those of DD, we compare their global and microstructural response in a number of deformation modes. After using nominally homogeneous compression and shear deformation dislocation dynamics simulations to calibrate crystal plasticity ow rule parameters, we compare not only the system-level stress-strain response of prismatic wires in torsion but also the resulting geometrically necessary dislocation density fields. To establish a connection between explicit description of dislocations and the continuum assumed with crystal plasticity simulations we ascertain the minimum length-scale at which meaningful dislocation density fields appear. Furthermore, our results show that, for the case of torsion, that the two material models can produce comparable spatial dislocation density distributions.

  15. Comparison of dislocation density tensor fields derived from discrete dislocation dynamics and crystal plasticity simulations of torsion

    DOE PAGES

    Jones, Reese E.; Zimmerman, Jonathan A.; Po, Giacomo; ...

    2016-02-01

    Accurate simulation of the plastic deformation of ductile metals is important to the design of structures and components to performance and failure criteria. Many techniques exist that address the length scales relevant to deformation processes, including dislocation dynamics (DD), which models the interaction and evolution of discrete dislocation line segments, and crystal plasticity (CP), which incorporates the crystalline nature and restricted motion of dislocations into a higher scale continuous field framework. While these two methods are conceptually related, there have been only nominal efforts focused at the global material response that use DD-generated information to enhance the fidelity of CPmore » models. To ascertain to what degree the predictions of CP are consistent with those of DD, we compare their global and microstructural response in a number of deformation modes. After using nominally homogeneous compression and shear deformation dislocation dynamics simulations to calibrate crystal plasticity ow rule parameters, we compare not only the system-level stress-strain response of prismatic wires in torsion but also the resulting geometrically necessary dislocation density fields. To establish a connection between explicit description of dislocations and the continuum assumed with crystal plasticity simulations we ascertain the minimum length-scale at which meaningful dislocation density fields appear. Furthermore, our results show that, for the case of torsion, that the two material models can produce comparable spatial dislocation density distributions.« less

  16. Acute patellar dislocation with multiple ligament injuries after knee dislocation and single session reconstruction.

    PubMed

    Gormeli, Gokay; Gormeli, Cemile Ayse; Karakaplan, Mustafa; Gurbuz, Sukru; Ozdemir, Zeynep; Ozer, Mustafa

    2016-06-01

    Knee dislocation is a relatively rare condition of all orthopaedic injuries. Accompanying multiple ligament injuries are common after knee dislocations. A 41-year-old male presented to the emergency department suffering from right knee dislocation in June 2013. The patient had anterior cruciate ligament, medial collateral ligament (MCL), medial patellofemoral ligament (MPFL) rupture, and lateral meniscal tear. A single-bundle anatomic reconstruction, medial collateral ligament reconstruction, medial patellofemoral ligament reconstruction and meniscus repair were performed in single session. At twelve months follow-up; there was 160º flexion and 10° extension knee range of motion. Lysholm knee score was 90. Extensive forces can cause both MCL and MPFL injury due to overload and the anatomical relationship between these two structures. Therefore, patients with valgus instability should be evaluated for both MPFL and MCL tears to facilitate successful treatment.

  17. Atomistic simulations of dislocation pileup: Grain boundaries interaction

    DOE PAGES

    Wang, Jian

    2015-05-27

    Here, using molecular dynamics (MD) simulations, we studied the dislocation pileup–grain boundary (GB) interactions. Two Σ11 asymmetrical tilt grain boundaries in Al are studied to explore the influence of orientation relationship and interface structure on dislocation activities at grain boundaries. To mimic the reality of a dislocation pileup in a coarse-grained polycrystalline, we optimized the dislocation population in MD simulations and developed a predict-correct method to create a dislocation pileup in MD simulations. MD simulations explored several kinetic processes of dislocations–GB reactions: grain boundary sliding, grain boundary migration, slip transmission, dislocation reflection, reconstruction of grain boundary, and the correlation ofmore » these kinetic processes with the available slip systems across the GB and atomic structures of the GB.« less

  18. Atomistic simulations of dislocation pileup: Grain boundaries interaction

    SciTech Connect

    Wang, Jian

    2015-05-27

    Here, using molecular dynamics (MD) simulations, we studied the dislocation pileup–grain boundary (GB) interactions. Two Σ11 asymmetrical tilt grain boundaries in Al are studied to explore the influence of orientation relationship and interface structure on dislocation activities at grain boundaries. To mimic the reality of a dislocation pileup in a coarse-grained polycrystalline, we optimized the dislocation population in MD simulations and developed a predict-correct method to create a dislocation pileup in MD simulations. MD simulations explored several kinetic processes of dislocations–GB reactions: grain boundary sliding, grain boundary migration, slip transmission, dislocation reflection, reconstruction of grain boundary, and the correlation of these kinetic processes with the available slip systems across the GB and atomic structures of the GB.

  19. 20 CFR 663.115 - What are the eligibility criteria for core services for dislocated workers in the adult and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... services for dislocated workers in the adult and dislocated worker programs? 663.115 Section 663.115 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker...

  20. Motion sickness susceptibility in parabolic flight and velocity storage activity

    NASA Technical Reports Server (NTRS)

    Dizio, Paul; Lackner, James R.

    1991-01-01

    In parabolic flight experiments, postrotary nystagmus is as found to be differentially suppressed in free fall (G) and in a high gravitoinertial force (1.8 G) background relative to 1 G. In addition, the influence of postrotary head movements on nystagmus suppression was found to be contingent on G-dependency of the velocity storage and dumping mechanisms. Here, susceptibility to motion sickness during head movements in 0 G and 1.8 G was rank-correlated with the following: (1) the decay time constant of the slow phase velocity of postrotary nystagmus under 1 G, no head movement, baseline conditions, (2) the extent of time constant reduction elicited in 0 G and 1.8 G; (3) the extent of time constant reduction elicited by head tilts in 1 G; and (4) changes in the extent of time constants reduction in 0 G and 1.8 G over repeated tests. Susceptibility was significantly correlated with the extent to which a head movement reduced the time constant in 1 G, was weakly correlated with the baseline time constant, but was not correlated with the extent of reduction in 0 G or 1.8 G. This pattern suggests a link between mechanisms evoking symptoms of space motion sickness and the mechanisms of velocity storage and dumping. Experimental means of evaluating this link are described.

  1. Dislocated Worker Project.

    ERIC Educational Resources Information Center

    1988

    Due to the severe economic decline in the automobile manufacturing industry in southeastern Michigan, a Dislocated Workers Program has been developed through the partnership of the Flint Area Chamber of Commerce, three community colleges, the National Center for Research in Vocational Education, the Michigan State Department of Education, the…

  2. Elbow fractures and dislocations.

    PubMed

    Little, Kevin J

    2014-07-01

    Elbow fractures are common in pediatric patients. Most injuries to the pediatric elbow are stable and require simple immobilization; however, more severe fractures can occur, often requiring operative stabilization and/or close monitoring. This article highlights the common fractures and dislocations about the pediatric elbow and discusses the history, evaluation, and treatment options for specific injuries.

  3. Tracking of EEG activity using motion estimation to understand brain wiring.

    PubMed

    Nisar, Humaira; Malik, Aamir Saeed; Ullah, Rafi; Shim, Seong-O; Bawakid, Abdullah; Khan, Muhammad Burhan; Subhani, Ahmad Rauf

    2015-01-01

    The fundamental step in brain research deals with recording electroencephalogram (EEG) signals and then investigating the recorded signals quantitatively. Topographic EEG (visual spatial representation of EEG signal) is commonly referred to as brain topomaps or brain EEG maps. In this chapter, full search full search block motion estimation algorithm has been employed to track the brain activity in brain topomaps to understand the mechanism of brain wiring. The behavior of EEG topomaps is examined throughout a particular brain activation with respect to time. Motion vectors are used to track the brain activation over the scalp during the activation period. Using motion estimation it is possible to track the path from the starting point of activation to the final point of activation. Thus it is possible to track the path of a signal across various lobes.

  4. Move with Science: Energy, Force, & Motion. An Activities-Based Teacher's Guide.

    ERIC Educational Resources Information Center

    Beven, Roy Q.

    The secondary school level activities contained in this book use the subject of transportation to teach the basic concepts of physics and several areas of human biology. The material is organized into sections including curriculum design, activities, background readings, and resources. Activities focus on such topics as notions of motion stability…

  5. Interfacial diffusion in high-temperature deformation of composites: A discrete dislocation plasticity investigation

    NASA Astrophysics Data System (ADS)

    Shishvan, Siamak S.; Pollock, Tresa M.; McMeeking, Robert M.; Deshpande, Vikram S.

    2017-01-01

    We present a discrete dislocation plasticity (DDP) framework to analyse the high temperature deformation of multi-phase materials (composites) comprising a matrix and inclusions. Deformation of the phases is by climb-assisted glide of the dislocations while the particles can also deform due to stress-driven interfacial diffusion. The general framework is used to analyse the uniaxial tensile deformation of a composite comprising elastic particles with dislocation plasticity only present in the matrix phase. When dislocation motion is restricted to only glide within the matrix a strong size effect of the composite strength is predicted with the strength increasing with decreasing unit cell size due to dislocations forming pile-ups against the matrix/particle interface. Interfacial diffusion decreases the composite strength as it enhances the elongation of the elastic particles along the loading direction. When dislocation motion occurs by climb-assisted glide within the matrix the size effect of the strength is reduced as dislocations no longer arrange high energy pile-up structures but rather form lower energy dislocation cell networks. While interfacial diffusion again reduces the composite strength, in contrast to continuum plasticity predictions, the elongation of the particles is almost independent of the interfacial diffusion constant. Rather, in DDP the reduction in composite strength due to interfacial diffusion is a result of changes in the dislocation structures within the matrix and the associated enhanced dislocation climb rates in the matrix.

  6. Transtriquetral perihamate fracture-dislocation: case report.

    PubMed

    Moraes, Frederico Barra de; Ferreira, Rodrigo Cunha; Geraldino, Stéphanie Zago; Farias, Renato Silva; Silva, Ricardo Pereira da; Kuwae, Mário Yoshihide

    2016-01-01

    The wrist is a region that is very vulnerable to injuries of the extremities. Among these injuries, fractures of the pyramidal bone (or triquetrum) in association with dislocation of the hamate and carpal instability are uncommon. They are generally correlated with high-energy trauma and may be associated with neurovascular deficits, muscle-tendon disorders, skin lesions or injuries to other carpal bones. Thus, in this report, one of these rare cases of transtriquetral perihamate fracture-dislocation with carpal instability is presented, diagnosed by means of radiography on the right wrist of the patient who presented pain, edema and limitation of flexion-extension of the carpus after trauma to the region. The stages of attending to the case are described, from the initial consultation to the surgical treatment and physiotherapy, which culminated in restoration of the strength and range of motion of the wrist.

  7. Dislocation Structure and Mobility in hcp ^{4}He.

    PubMed

    Landinez Borda, Edgar Josué; Cai, Wei; de Koning, Maurice

    2016-07-22

    Using path-integral Monte Carlo simulations, we assess the core structure and mobility of the screw and edge basal-plane dislocations in hcp ^{4}He. Our findings provide key insights into recent interpretations of giant plasticity and mass flow junction experiments. First, both dislocations are dissociated into nonsuperfluid Shockley partial dislocations separated by ribbons of stacking fault, suggesting that they are unlikely to act as one-dimensional channels that may display Lüttinger-liquid-like behavior. Second, the centroid positions of the partial cores are found to fluctuate substantially, even in the absence of applied shear stresses. This implies that the lattice resistance to motion of the partial dislocations is negligible, consistent with the recent experimental observations of giant plasticity. Further results indicate that both the structure of the partial cores and the zero-point fluctuations play a role in this extreme mobility.

  8. Dislocation Structure and Mobility in hcp He4

    DOE PAGES

    Landinez Borda, Edgar Josue; Cai, Wei; de Koning, Maurice

    2016-07-20

    We assess the core structure and mobility of the screw and edge basal-plane dislocations in hcp 4He using path-integral Monte Carlo simulations. Our findings provide key insights into recent interpretations of giant plasticity and mass flow junction experiments. First, both dislocations are dissociated into nonsuperfluid Shockley partial dislocations separated by ribbons of stacking fault, suggesting that they are unlikely to act as one-dimensional channels that may display Lüttinger-liquid-like behavior. Second, the centroid positions of the partial cores are found to fluctuate substantially, even in the absence of applied shear stresses. This implies that the lattice resistance to motion of themore » partial dislocations is negligible, consistent with the recent experimental observations of giant plasticity. Our results indicate that both the structure of the partial cores and the zero-point fluctuations play a role in this extreme mobility.« less

  9. Student expectations in a group learning activity on harmonic motion

    NASA Astrophysics Data System (ADS)

    Kaczynski, Adam; Wittmann, Michael C.

    2013-01-01

    Students in a sophomore-level mechanics course participated in a new group learning activity that was intended to support model-building and finding coherence between multiple representations in the context of an underdamped harmonic system. Not all of the student groups framed the activity in the same way, and many attempted tasks that existed outside of the prompts of the activity. For one group, this meant that instead of providing a rich verbal description, they framed the activity as finding a mathematical expression.

  10. The visual perception of natural motion: abnormal task-related neural activity in DYT1 dystonia.

    PubMed

    Sako, Wataru; Fujita, Koji; Vo, An; Rucker, Janet C; Rizzo, John-Ross; Niethammer, Martin; Carbon, Maren; Bressman, Susan B; Uluğ, Aziz M; Eidelberg, David

    2015-12-01

    Although primary dystonia is defined by its characteristic motor manifestations, non-motor signs and symptoms have increasingly been recognized in this disorder. Recent neuroimaging studies have related the motor features of primary dystonia to connectivity changes in cerebello-thalamo-cortical pathways. It is not known, however, whether the non-motor manifestations of the disorder are associated with similar circuit abnormalities. To explore this possibility, we used functional magnetic resonance imaging to study primary dystonia and healthy volunteer subjects while they performed a motion perception task in which elliptical target trajectories were visually tracked on a computer screen. Prior functional magnetic resonance imaging studies of healthy subjects performing this task have revealed selective activation of motor regions during the perception of 'natural' versus 'unnatural' motion (defined respectively as trajectories with kinematic properties that either comply with or violate the two-thirds power law of motion). Several regions with significant connectivity changes in primary dystonia were situated in proximity to normal motion perception pathways, suggesting that abnormalities of these circuits may also be present in this disorder. To determine whether activation responses to natural versus unnatural motion in primary dystonia differ from normal, we used functional magnetic resonance imaging to study 10 DYT1 dystonia and 10 healthy control subjects at rest and during the perception of 'natural' and 'unnatural' motion. Both groups exhibited significant activation changes across perceptual conditions in the cerebellum, pons, and subthalamic nucleus. The two groups differed, however, in their responses to 'natural' versus 'unnatural' motion in these regions. In healthy subjects, regional activation was greater during the perception of natural (versus unnatural) motion (P < 0.05). By contrast, in DYT1 dystonia subjects, activation was relatively greater

  11. Classification of upper limb motions from around-shoulder muscle activities: hand biofeedback.

    PubMed

    González, Jose; Horiuchi, Yuse; Yu, Wenwei

    2010-05-28

    Mining information from EMG signals to detect complex motion intention has attracted growing research attention, especially for upper-limb prosthetic hand applications. In most of the studies, recordings of forearm muscle activities were used as the signal sources, from which the intention of wrist and hand motions were detected using pattern recognition technology. However, most daily-life upper limb activities need coordination of the shoulder-arm-hand complex, therefore, relying only on the local information to recognize the body coordinated motion has many disadvantages because natural continuous arm-hand motions can't be realized. Also, achieving a dynamical coupling between the user and the prosthesis will not be possible. This study objective was to investigate whether it is possible to associate the around-shoulder muscles' Electromyogram (EMG) activities with the different hand grips and arm directions movements. Experiments were conducted to record the EMG of different arm and hand motions and the data were analyzed to decide the contribution of each sensor, in order to distinguish the arm-hand motions as a function of the reaching time. Results showed that it is possible to differentiate hand grips and arm position while doing a reaching and grasping task. Also, these results are of great importance as one step to achieve a close loop dynamical coupling between the user and the prosthesis.

  12. Re-dislocation after corrective osteotomy for chronic dislocation of the radial head in children.

    PubMed

    Suzuki, T; Seki, A; Nakamura, T; Ikegami, H; Takayama, S; Nakamura, M; Matsumoto, M; Sato, K

    2015-11-01

    This retrospective study was designed to evaluate the outcomes of re-dislocation of the radial head after corrective osteotomy for chronic dislocation. A total of 12 children with a mean age of 11 years (5 to 16), with further dislocation of the radial head after corrective osteotomy of the forearm, were followed for a mean of five years (2 to 10). Re-operations were performed for radial head re-dislocation in six children, while the other six did not undergo re-operation ('non-re-operation group'). The active range of movement (ROM) of their elbows was evaluated before and after the first operation, and at the most recent follow-up. In the re-operation group, there were significant decreases in extension, pronation, and supination when comparing the ROM following the corrective osteotomy and following re-operation (p < 0.05). The children who had not undergone re-operation achieved a better ROM than those who had undergone re-operation. There was a significant difference in mean pronation (76° vs 0°) between the non- re-operation and the re-operation group (p = 0.002), and a trend towards increases in mean flexion (133° vs 111°), extension (0° vs 23°), and supination (62° vs 29°). We did not find a clear benefit for re-operation in children with a re-dislocation following corrective osteotomy for chronic dislocation of the radial head.

  13. Dislocation pileup as a representation of strain accumulation on a strike-slip fault

    USGS Publications Warehouse

    Savage, J.C.

    2006-01-01

    The conventional model of strain accumulation on a vertical transform fault is a discrete screw dislocation in an elastic half-space with the Burgers vector of the dislocation increasing at the rate of relative plate motion. It would be more realistic to replace that discrete dislocation by a dislocation distribution, presumably a pileup in which the individual dislocations are in equilibrium. The length of the pileup depends upon the applied stress and the amount of slip that has occurred at depth. I argue here that the dislocation pileup (the transition on the fault from no slip to slip at the full plate rate) occupies a substantial portion of the lithosphere thickness. A discrete dislocation at an adjustable depth can reproduce the surface deformation profile predicted by a pileup so closely that it will be difficult to distinguish between the two models. The locking depth (dislocation depth) of that discrete dislocation approximation is substantially (???30%) larger than that (depth to top of the pileup) in the pileup model. Thus, in inverting surface deformation data using the discrete dislocation model, the locking depth in the model should not be interpreted as the true locking depth. Although dislocation pileup models should provide a good explanation of the surface deformation near the fault trace, that explanation may not be adequate at greater distances from the fault trace because approximating the expected horizontally distributed deformation at subcrustal depths by uniform slip concentrated on the fault is not justified.

  14. Design of a continuous passive and active motion device for hand rehabilitation.

    PubMed

    Birch, B; Haslam, E; Heerah, I; Dechev, N; Park, E J

    2008-01-01

    This paper presents the design of a novel, portable device for hand rehabilitation. The device provides for CPM (continuous passive motion) and CAM (continuous active motion) hand rehabilitation for patients recovering from damage such as flexor tendon repair and strokes. The device is capable of flexing/extending the MCP (metacarpophalangeal) and PIP (proximal interphalangeal) joints through a range of motion of 0 degrees to 90 degrees for both the joints independently. In this way, typical hand rehabilitation motions such as intrinsic plus, intrinsic minus, and a fist can be achieved without the need of any splints or attachments. The CPM mode is broken into two subgroups. The first mode is the use of preset waypoints for the device to cycle through. The second mode involves motion from a starting position to a final position, but senses the torque from the user during the cycle. Therefore the user can control the ROM by resisting when they are at the end of the desired motion. During the CPM modes the device utilizes a minimum jerk trajectory model under PD control, moving smoothly and accurately between preselected positions. CAM is the final mode where the device will actively resist the movement of the user. The user moves from a start to end position while the device produces a torque to resist the motion. This active resistance motion is a unique ability designed to mimic the benefits of a human therapist. Another unique feature of the device is its ability to independently act on both the MCP and PIP joints. The feedback sensing built into the device makes it capable of offering a wide and flexible range of rehabilitation programs for the hand.

  15. Effects of eating on vection-induced motion sickness, cardiac vagal tone, and gastric myoelectric activity

    NASA Technical Reports Server (NTRS)

    Uijtdehaage, S. H.; Stern, R. M.; Koch, K. L.

    1992-01-01

    This study investigated the effect of food ingestion on motion sickness severity and its physiological mechanisms. Forty-six fasted subjects were assigned either to a meal group or to a no-meal group. Electrogastrographic (EGG) indices (normal 3 cpm activity and abnormal 4-9 cpm tachyarrhythmia) and respiratory sinus arrhythmia (RSA) were measured before and after a meal and during a subsequent exposure to a rotating drum in which illusory self-motion was induced. The results indicated that food intake enhanced cardiac parasympathetic tone (RSA) and increased gastric 3 cpm activity. Postprandial effects on motion sickness severity remain equivocal due to group differences in RSA baseline levels. During drum rotation, dysrhythmic activity of the stomach (tachyarrhythmia) and vagal withdrawal were observed. Furthermore, high levels of vagal tone prior to drum rotation predicted a low incidence of motion sickness symptoms, and were associated positively with gastric 3 cpm activity and negatively with tachyarrhythmia. These data suggest that enhanced levels of parasympathetic activity can alleviate motion sickness symptoms by suppressing, in part, its dysrhythmic gastric underpinnings.

  16. Neglected isolated scaphoid dislocation

    PubMed Central

    Baek, Jong-Ryoon; Cho, Seung Hyun; Lee, Yong Seuk; Roh, Young Hak

    2016-01-01

    The authors present a case of isolated scaphoid dislocation in a 40-year-old male that was undiagnosed for 2 months. The patient was treated by open reduction, Kirschner wire fixation, interosseous ligament repair using a suture anchor and Blatt's dorsal capsulodesis. At 6 years followup, his radiographs of wrist showed a normal carpal alignment with a scapholunate gap of 3 mm and no evidence of avascular necrosis (AVN) of the scaphoid. PMID:27904228

  17. 20 CFR 663.105 - When must adults and dislocated workers be registered?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false When must adults and dislocated workers be... LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop Delivery System § 663.105 When must adults...

  18. 20 CFR 663.105 - When must adults and dislocated workers be registered?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false When must adults and dislocated workers be... LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop Delivery System § 663.105 When...

  19. 20 CFR 663.105 - When must adults and dislocated workers be registered?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false When must adults and dislocated workers be... LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop Delivery System § 663.105 When...

  20. 20 CFR 663.105 - When must adults and dislocated workers be registered?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false When must adults and dislocated workers be... LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop Delivery System § 663.105 When...

  1. Your Students Can Be Rocket Scientists! A Galaxy of Great Activities about Astronauts, Gravity, and Motion.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1994-01-01

    Presents activities for a springtime Space Day that can teach students about astronauts, gravity, and motion. Activities include creating a paper bag spacecraft to study liftoff and having students simulate gravity's effects by walking in various manners and recording pulse rates. A list of resources is included. (SM)

  2. Activation of nanoscale allosteric protein domain motion revealed by neutron spin echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Bu, Zimei; Farago, Bela; Callaway, David

    2012-02-01

    NHERF1 is a multi-domain scaffolding protein that assembles the signaling complexes, and regulates the cell surface expression and endocytic recycling of a variety of membrane proteins. The ability of the two PDZ domains in NHERF1 to assemble protein complexes is allosterically modulated by a membrane-cytoskeleton linker protein ezrin, whose binding site is located as far as 110 angstroms away from the PDZ domains. Here, using neutron spin echo (NSE) spectroscopy, selective deuterium labeling, and theoretical analyses, we reveal the activation of interdomain motion in NHERF1 on nanometer length scales and on sub-microsecond time scales upon forming a complex with ezrin. We show that a much simplified coarse-grained model is sufficient to describe inter-domain motion of a multi-domain protein or protein complex. We expect that future NSE experiments will benefit by exploiting our approach of selective deuteration to resolve the specific domain motions of interest from a plethora of global translational and rotational motions. The results demonstrate that propagation of allosteric signals to distal sites involves the activation of long-range coupled domain motions on submicrosecond time scales, and that these coupled motions can be distinguished and characterized by NSE.

  3. Morphometrical investigations on the reproductive activity of the ovaries in rats subjected to immobilization and to motion activity

    NASA Technical Reports Server (NTRS)

    Konstantinov, N.; Cheresharov, L.; Toshkova, S.

    1982-01-01

    Wistar-strain white female rats were divided into three groups, with the first group subjected to motion loading, the second used as control, and the third group was immobilized. A considerable reduction in numbers of corpora lutea was observed in the immobilized group, together with smaller numbers of embryos, high percent of embryo mortality, fetal growth retardation, and endometrium disorders. The control group showed no deviation from normal conditions, and there was slight improvement in reproductive activity of animals under motion loading.

  4. Spontaneous Motion in Hierarchically Assembled Active Cellular Materials

    NASA Astrophysics Data System (ADS)

    Chen, Daniel

    2013-03-01

    With exquisite precision and reproducibility, cells orchestrate the cooperative action of thousands of nanometer-sized molecular motors to carry out mechanical tasks at much larger length scales, such as cell motility, division and replication. Besides their biological importance, such inherently far-from-equilibrium processes are an inspiration for the development of soft materials with highly sought after biomimetic properties such as autonomous motility and self-healing. I will describe our exploration of such a class of biologically inspired soft active materials. Starting from extensile bundles comprised of microtubules and kinesin, we hierarchically assemble active analogs of polymeric gels, liquid crystals and emulsions. At high enough concentration, microtubule bundles form an active gel network capable of generating internally driven chaotic flows that enhance transport and fluid mixing. When confined to emulsion droplets, these 3D networks buckle onto the water-oil interface forming a dense thin film of bundles exhibiting cascades of collective buckling, fracture, and self-healing driven by internally generated stresses from the kinesin clusters. When compressed against surfaces, this active nematic cortex exerts traction stresses that propel the locomotion of the droplet. Taken together, these observations exemplify how assemblies of animate microscopic objects exhibit collective biomimetic properties that are fundamentally distinct from those found in materials assembled from inanimate building blocks. These assemblies, in turn, enable the generation of a new class of materials that exhibit macroscale flow phenomena emerging from nanoscale components.

  5. Palmar divergent dislocation of scaphoid and lunate.

    PubMed

    Kang, Ho-Jung; Shim, Dong-Joon; Hahn, Soo-Bong; Kang, Eung-Shick

    2003-12-30

    A 28-year-old man presented with a palmar divergent dislocation of the scaphoid and lunate. He was treated with an open reduction and an internal fixation with two Kirschner's wires after the 25th day of trauma due to a neurological injury. The results were satisfactory after 18 months follow up without any evidence of avascular necrosis and traumatic arthritis of the scaphoid and lunate. The patient had no limitation in motion or intermittent wrist pain. We reported this case with a brief review of relevant literatures.

  6. Activation of the Human MT Complex by Motion in Depth Induced by a Moving Cast Shadow

    PubMed Central

    Katsuyama, Narumi; Usui, Nobuo; Taira, Masato

    2016-01-01

    A moving cast shadow is a powerful monocular depth cue for motion perception in depth. For example, when a cast shadow moves away from or toward an object in a two-dimensional plane, the object appears to move toward or away from the observer in depth, respectively, whereas the size and position of the object are constant. Although the cortical mechanisms underlying motion perception in depth by cast shadow are unknown, the human MT complex (hMT+) is likely involved in the process, as it is sensitive to motion in depth represented by binocular depth cues. In the present study, we examined this possibility by using a functional magnetic resonance imaging (fMRI) technique. First, we identified the cortical regions sensitive to the motion of a square in depth represented via binocular disparity. Consistent with previous studies, we observed significant activation in the bilateral hMT+, and defined functional regions of interest (ROIs) there. We then investigated the activity of the ROIs during observation of the following stimuli: 1) a central square that appeared to move back and forth via a moving cast shadow (mCS); 2) a segmented and scrambled cast shadow presented beside the square (sCS); and 3) no cast shadow (nCS). Participants perceived motion of the square in depth in the mCS condition only. The activity of the hMT+ was significantly higher in the mCS compared with the sCS and nCS conditions. Moreover, the hMT+ was activated equally in both hemispheres in the mCS condition, despite presentation of the cast shadow in the bottom-right quadrant of the stimulus. Perception of the square moving in depth across visual hemifields may be reflected in the bilateral activation of the hMT+. We concluded that the hMT+ is involved in motion perception in depth induced by moving cast shadow and by binocular disparity. PMID:27597999

  7. Activation of the Human MT Complex by Motion in Depth Induced by a Moving Cast Shadow.

    PubMed

    Katsuyama, Narumi; Usui, Nobuo; Taira, Masato

    2016-01-01

    A moving cast shadow is a powerful monocular depth cue for motion perception in depth. For example, when a cast shadow moves away from or toward an object in a two-dimensional plane, the object appears to move toward or away from the observer in depth, respectively, whereas the size and position of the object are constant. Although the cortical mechanisms underlying motion perception in depth by cast shadow are unknown, the human MT complex (hMT+) is likely involved in the process, as it is sensitive to motion in depth represented by binocular depth cues. In the present study, we examined this possibility by using a functional magnetic resonance imaging (fMRI) technique. First, we identified the cortical regions sensitive to the motion of a square in depth represented via binocular disparity. Consistent with previous studies, we observed significant activation in the bilateral hMT+, and defined functional regions of interest (ROIs) there. We then investigated the activity of the ROIs during observation of the following stimuli: 1) a central square that appeared to move back and forth via a moving cast shadow (mCS); 2) a segmented and scrambled cast shadow presented beside the square (sCS); and 3) no cast shadow (nCS). Participants perceived motion of the square in depth in the mCS condition only. The activity of the hMT+ was significantly higher in the mCS compared with the sCS and nCS conditions. Moreover, the hMT+ was activated equally in both hemispheres in the mCS condition, despite presentation of the cast shadow in the bottom-right quadrant of the stimulus. Perception of the square moving in depth across visual hemifields may be reflected in the bilateral activation of the hMT+. We concluded that the hMT+ is involved in motion perception in depth induced by moving cast shadow and by binocular disparity.

  8. [Congenital knee dislocation: case report].

    PubMed

    Arvinius, C; Luque, R; Díaz-Ceacero, C; Marco, F

    2016-01-01

    Congenital knee dislocation is an infrequent condition with unknown etiology. In some cases it occurs as an isolated condition, while in others it coexists with associated conditions or syndromes. The treatment of congenital knee dislocation is driven by the severity and flexibility of the deformity. The literature includes from serial casting or the Pavlik harness to quadriceps tendon plasty or femoral osteotomies. We report herein the case of a congenital dislocation treated with serial casting with a good outcome.

  9. Dislocation Diffusion in Metallic Materials

    DTIC Science & Technology

    2011-09-08

    DATES COVERED (From - To) April 1,2007-March 31, 2010 4. TITLE AND SUBTITLE Dislocation Diffusion in Metallic Materials 5a. CONTRACT NUMBER...SUPPLEMENTARY NOTES 14. ABSTRACT The goals of this project were: (1) perform a fundamental study of atomic diffusion along dislocation cores in metals and...alloys, (2) develop new methods for the calculation of dislocation diffusion coefficients as functions of temperature and chemical composition and (3

  10. Active experiments and single ion motion in the magnetotail

    NASA Astrophysics Data System (ADS)

    Rothwell, P. L.; Yates, G. K.

    1983-07-01

    Analytic solutions to the Lorentz equation which indicate that the magnetic field in the plasma sheet focuses selected ions from the plasma sheet boundaries on the neutral sheet are obtained. The kinetic energy of these ions usually exceeds the threshold energy required for the ion tearing mode instability. Two active experiments based on this effect are proposed. Heavy ions injected towards dusk on the plasma sheet boundary would become focused on the neutral sheet and perhaps trigger the ion tearing mode. A boundary perturbation, such as a thermal chemical release, that locally enhances the boundary turbulence level could be introduced, causing sufficient ksq = 1 ions to be focused on the neutral sheet to trigger the ion tearing mode.

  11. Open Galeazzi fracture with ipsilateral elbow dislocation.

    PubMed

    Adanır, Oktay; Yüksel, Serdar; Beytemur, Ozan; Güleç, M Akif

    2016-08-01

    Combination of the Galeazzi fracture and dislocation of the elbow joint in same extremity is very rare. In this article, we report a 26-year-old male patient with a posterolateral dislocation of the elbow and ipsilateral volar type Galeazzi fracture. We performed closed reduction for the elbow dislocation during admission to the emergency department. Patient was taken to the operating room in the sixth hour of his application to emergency department and open wound on the ulnovolar region of the wrist was closed primarily after irrigation and debridement. We performed open reduction and internal fixation of the radial fracture with a dynamic compression plate. After fixation, we evaluated the stability of the elbow joint and distal radioulnar joint. Distal radioulnar joint was unstable under fluoroscopic examination and fixed with one 1.8 mm Kirschner wire in a pronated position. Then, elbow joint was stable. One year after surgery, patient had no pain or sings of instability. At the last follow-up, range of motion of the elbow was 10°-135° and forearm pronation and supination were 70°.

  12. Direct observation of individual dislocation interaction processes with grain boundaries

    PubMed Central

    Kondo, Shun; Mitsuma, Tasuku; Shibata, Naoya; Ikuhara, Yuichi

    2016-01-01

    In deformation processes, the presence of grain boundaries has a crucial influence on dislocation behavior; these boundaries drastically change the mechanical properties of polycrystalline materials. It has been considered that grain boundaries act as effective barriers for dislocation glide, but the origin of this barrier-like behavior has been a matter of conjecture for many years. We directly observe how the motion of individual dislocations is impeded at well-defined high-angle and low-angle grain boundaries in SrTiO3, via in situ nanoindentation experiments inside a transmission electron microscope. Our in situ observations show that both the high-angle and low-angle grain boundaries impede dislocation glide across them and that the impediment of dislocation glide does not simply originate from the geometric effects; it arises as a result of the local structural stabilization effects at grain boundary cores as well, especially for low-angle grain boundaries. The present findings indicate that simultaneous consideration of both the geometric effects and the stabilization effects is necessary to quantitatively understand the dislocation impediment processes at grain boundaries. PMID:27847862

  13. Primary total elbow replacement in a patient with old unreduced complex posterior elbow dislocation.

    PubMed

    Kanakaraddi, Sandeep

    2013-01-01

    A 65-year-old female presented with history of a fall on an outstretched hand 2 months back and with complaints of pain, limitation of movement of right elbow, and inability to carry out her daily routine activities. On examination, there was swelling and tenderness at the elbow, three point relation was altered, had fixed flexion deformity of 50° with range of motion from 50° to 60°. Radiographs showed neglected old unreduced posterior elbow dislocation, fractures of radial head, and coronoid process. Patient was treated with total elbow replacement using 3rd generation sloppy hinged elbow prosthesis. At 3 weeks, range of motion was from 30° to 120°. At 6 weeks follow-up, patient was able to do her routine activities independently with ROM of 20° to 140° and minimum pain.

  14. Investigation of dislocations in Nb-doped SrTiO3 by electron-beam-induced current and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Sekiguchi, Takashi; Li, Jianyong; Ito, Shun; Yi, Wei; Ogura, Atsushi

    2015-03-01

    This paper aims to clarify the electrical activities of dislocations in Nb-doped SrTiO3 substrates and the role of dislocations in the resistance switching phenomenon in Pt/SrTiO3 Schottky contacts. The electrical activities of dislocations have been studied by electron-beam-induced current (EBIC) technique. EBIC has found that dislocations can exhibit dark or bright contrast depending on their character and band bending condition. The character of dislocations has been analysed based on chemical etching and transmission electron microscopy. These data suggested that not all the dislocations contribute to the switching phenomenon. The active dislocations for resistance switching were discussed.

  15. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors.

    PubMed

    Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J M

    2016-03-24

    The position of on-body motion sensors plays an important role in human activity recognition. Most often, mobile phone sensors at the trouser pocket or an equivalent position are used for this purpose. However, this position is not suitable for recognizing activities that involve hand gestures, such as smoking, eating, drinking coffee and giving a talk. To recognize such activities, wrist-worn motion sensors are used. However, these two positions are mainly used in isolation. To use richer context information, we evaluate three motion sensors (accelerometer, gyroscope and linear acceleration sensor) at both wrist and pocket positions. Using three classifiers, we show that the combination of these two positions outperforms the wrist position alone, mainly at smaller segmentation windows. Another problem is that less-repetitive activities, such as smoking, eating, giving a talk and drinking coffee, cannot be recognized easily at smaller segmentation windows unlike repetitive activities, like walking, jogging and biking. For this purpose, we evaluate the effect of seven window sizes (2-30 s) on thirteen activities and show how increasing window size affects these various activities in different ways. We also propose various optimizations to further improve the recognition of these activities. For reproducibility, we make our dataset publicly available.

  16. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors

    PubMed Central

    Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J. M.

    2016-01-01

    The position of on-body motion sensors plays an important role in human activity recognition. Most often, mobile phone sensors at the trouser pocket or an equivalent position are used for this purpose. However, this position is not suitable for recognizing activities that involve hand gestures, such as smoking, eating, drinking coffee and giving a talk. To recognize such activities, wrist-worn motion sensors are used. However, these two positions are mainly used in isolation. To use richer context information, we evaluate three motion sensors (accelerometer, gyroscope and linear acceleration sensor) at both wrist and pocket positions. Using three classifiers, we show that the combination of these two positions outperforms the wrist position alone, mainly at smaller segmentation windows. Another problem is that less-repetitive activities, such as smoking, eating, giving a talk and drinking coffee, cannot be recognized easily at smaller segmentation windows unlike repetitive activities, like walking, jogging and biking. For this purpose, we evaluate the effect of seven window sizes (2–30 s) on thirteen activities and show how increasing window size affects these various activities in different ways. We also propose various optimizations to further improve the recognition of these activities. For reproducibility, we make our dataset publicly available. PMID:27023543

  17. Parkinson-Related Changes of Activation in Visuomotor Brain Regions during Perceived Forward Self-Motion

    PubMed Central

    van der Hoorn, Anouk; Renken, Remco J.; Leenders, Klaus L.; de Jong, Bauke M.

    2014-01-01

    Radial expanding optic flow is a visual consequence of forward locomotion. Presented on screen, it generates illusionary forward self-motion, pointing at a close vision-gait interrelation. As particularly parkinsonian gait is vulnerable to external stimuli, effects of optic flow on motor-related cerebral circuitry were explored with functional magnetic resonance imaging in healthy controls (HC) and patients with Parkinson’s disease (PD). Fifteen HC and 22 PD patients, of which 7 experienced freezing of gait (FOG), watched wide-field flow, interruptions by narrowing or deceleration and equivalent control conditions with static dots. Statistical parametric mapping revealed that wide-field flow interruption evoked activation of the (pre-)supplementary motor area (SMA) in HC, which was decreased in PD. During wide-field flow, dorsal occipito-parietal activations were reduced in PD relative to HC, with stronger functional connectivity between right visual motion area V5, pre-SMA and cerebellum (in PD without FOG). Non-specific ‘changes’ in stimulus patterns activated dorsolateral fronto-parietal regions and the fusiform gyrus. This attention-associated network was stronger activated in HC than in PD. PD patients thus appeared compromised in recruiting medial frontal regions facilitating internally generated virtual locomotion when visual motion support falls away. Reduced dorsal visual and parietal activations during wide-field optic flow in PD were explained by impaired feedforward visual and visuomotor processing within a magnocellular (visual motion) functional chain. Compensation of impaired feedforward processing by distant fronto-cerebellar circuitry in PD is consistent with motor responses to visual motion stimuli being either too strong or too weak. The ‘change’-related activations pointed at covert (stimulus-driven) attention. PMID:24755754

  18. Generalized analysis of thermally activated domain-wall motion in Co/Pt multilayers

    NASA Astrophysics Data System (ADS)

    Emori, Satoru; Umachi, Chinedum K.; Bono, David C.; Beach, Geoffrey S. D.

    2015-03-01

    Thermally activated domain-wall (DW) motion driven by magnetic field and electric current is investigated experimentally in out-of-plane magnetized Pt(Co/Pt)3 multilayers. We directly extract the thermal activation energy barrier for DW motion and observe the dynamic regimes of creep, depinning, and viscous flow. Further analysis reveals that the activation energy must be corrected with a factor dependent on the Curie temperature, and we derive a generalized Arrhenius-like equation governing thermally activated motion. By using this generalized equation, we quantify the efficiency of current-induced spin torque in assisting DW motion. Current produces no effect aside from Joule heating in the multilayer with 7-Å thick Co layers, whereas it generates a finite spin torque on DWs in the multilayer with atomically thin 3-Å Co layers. These findings suggest that conventional spin-transfer torques from in-plane spin-polarized current do not drive DWs in ultrathin Co/Pt multilayers.

  19. Misfit dislocations in epitaxy

    NASA Astrophysics Data System (ADS)

    van der Merwe, Jan H.

    2002-08-01

    This article on epitaxy highlights the following: the definition and some historical milestones; the introduction by Frenkel and Kontorowa (FK) of a truncated Fourier series to model the periodic interaction at crystalline interfaces; the invention by Frank and van der Merwe (FvdM)—using the FK model—of (interfacial) misfit dislocations as an important mechanism in accommodating misfit at epilayer-substrate interfaces; the generalization of the FvdM theory to multilayers; the application of the parabolic model by Jesser and van der Merwe to describe, for growing multilayers and superlattices, the impact of Fourier coefficients in the realization of epitaxial orientations and the stability of modes of misfit accommodation; the involvement of intralayer interaction in the latter—all features that impact on the attainment of perfection in crystallinity of thin films, a property that is so vital in the fabrication of useful uniformly thick epilayers (uniformity being another technological requirement), which also depends on misfit accommodation through the interfacial energy that function strongly in the criterion for growth modes, proposed by Bauer; and the ingenious application of the Volterra model by Matthews and others to describe misfit accommodation by dislocations in growing epilayers.

  20. Dislocation-Based Si-Nanodevices

    NASA Astrophysics Data System (ADS)

    Reiche, Manfred; Kittler, Martin; Buca, Dan; Hähnel, Angelika; Zhao, Qing-Tai; Mantl, Siegfried; Gösele, Ulrich

    2010-04-01

    The realization of defined dislocation networks by hydrophobic wafer bonding allows the electrical characterization of individual dislocations. The present paper investigates the properties of such dislocations in samples containing high dislocations densities down to only six dislocations. The current induced by a single dislocation is determined by extrapolation of the current measured for various dislocation densities. Based on our present and previously reported analyses the electronic properties of individual dislocations can be inferred. The investigations show that dislocations in the channel of metal-oxide-semiconductor field-effect transistors (MOSFETs) result in increasing drain currents even at low drain and gate voltages. Because a maximum increase of the current is obtained if a single dislocation is present in the channel, arrays of MOSFETs each containing only one dislocation could be realized on the nanometer scale. The distance of the dislocations can be well controlled by wafer bonding techniques.

  1. Dislocation of the Elbow: A Retrospective Multicentre Study of 86 Patients

    PubMed Central

    de Haan, Jeroen; Schep, Niels W.L; Zengerink, Imme; van Buijtenen, Jesse; Tuinebreijer, Wim E; den Hartog, Dennis

    2010-01-01

    The objective of this retrospective multicentre cohort study was to prospectively assess the long-term functional outcomes of simple and complex elbow dislocations. We analysed the hospital and outpatient records of 86 patients between 01.03.1999 and 25.02.2009 with an elbow dislocation. After a mean follow-up of 3.3 years, all patients were re-examined at the outpatient clinic for measurement of different outcomes. The mean range of motion was ROM 135.5°. The Mayo elbow performance index (MEPI) scored an average of 91.9 (87.5% of the patients were rated excellent or good). The average Quick disabilities of the arm, shoulder and hand (Quick- DASH) score was 9.7, the sports/music score 11.5 and work score 6.1. The Oxford function score was 75.7, Oxford pain score 75.2 and Oxford social-psychological score 73.9. Elbow dislocation is a mild disease and generally, the outcome is excellent. Functional results might improve with early active movements. PMID:20352027

  2. Prospective Real-Time Correction for Arbitrary Head Motion Using Active Markers

    PubMed Central

    Ooi, Melvyn B.; Krueger, Sascha; Thomas, William J.; Swaminathan, Srirama V.; Brown, Truman R.

    2011-01-01

    Patient motion during an MRI exam can result in major degradation of image quality, and is of increasing concern due to the aging population and its associated diseases. This work presents a general strategy for real-time, intra-image compensation of rigid-body motion that is compatible with multiple imaging sequences. Image quality improvements are established for structural brain MRI acquired during volunteer motion. A headband integrated with three active markers is secured to the forehead. Prospective correction is achieved by interleaving a rapid track-and-update module into the imaging sequence. For every repetition of this module, a short tracking pulse-sequence re-measures the marker positions; during head motion, the rigid-body transformation that realigns the markers to their initial positions is fed back to adaptively update the image-plane – maintaining it at a fixed orientation relative to the head – before the next imaging segment of k-space is acquired. In cases of extreme motion, corrupted lines of k-space are rejected and re-acquired with the updated geometry. High precision tracking measurements (0.01 mm) and corrections are accomplished in a temporal resolution (37 ms) suitable for real-time application. The correction package requires minimal additional hardware and is fully integrated into the standard user interface, promoting transferability to clinical practice. PMID:19488989

  3. Population variability in the Active Brownian Particle model of Daphnia motions

    NASA Astrophysics Data System (ADS)

    Moss, Frank; Erdmann, Udo; Schimansky-Geier, Lutz; Ordmann, Anke

    2004-03-01

    Three characteristic motions of foraging biological agents are predicted by the Active Brownian Particle model [1]. These are random motions about the minimum of a central attracting potential, a bifurcation to bidirectional circular motions about the axis of symmetry of the potential, and a transition to vortex motion. All three can be observed in swarms of the zooplankton Daphnia swimming in light fields. Here we focus on the bidirectional circular motions in 2-D space [1]. The mean radii, as well as other characteristics of the paths, are determined by three strength parameters appropriate to individual Daphnia: energy uptake from the medium, metabolistic drain, and dissipation due to movement. It is shown that individual variability can be represented by distributions of these strength parameters. Conditions for which the experimental data are best described by the model are discussed. [1] U. Erdmann, W. Ebeling and V. S. Anishchenko, Excitation of rotational modes in two-dimensional systems of driven Brownian particles. Phys. Rev. E 65, 061106 (2002)

  4. Active contour-based visual tracking by integrating colors, shapes, and motions.

    PubMed

    Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen

    2013-05-01

    In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame.

  5. On the relationship between photospheric footpoint motions and coronal heating in solar active regions

    SciTech Connect

    Van Ballegooijen, A. A.; Asgari-Targhi, M.; Berger, M. A.

    2014-05-20

    Coronal heating theories can be classified as either direct current (DC) or alternating current (AC) mechanisms, depending on whether the coronal magnetic field responds quasi-statically or dynamically to the photospheric footpoint motions. In this paper we investigate whether photospheric footpoint motions with velocities of 1-2 km s{sup –1} can heat the corona in active regions, and whether the corona responds quasi-statically or dynamically to such motions (DC versus AC heating). We construct three-dimensional magnetohydrodynamic models for the Alfvén waves and quasi-static perturbations generated within a coronal loop. We find that in models where the effects of the lower atmosphere are neglected, the corona responds quasi-statically to the footpoint motions (DC heating), but the energy flux into the corona is too low compared to observational requirements. In more realistic models that include the lower atmosphere, the corona responds more dynamically to the footpoint motions (AC heating) and the predicted heating rates due to Alfvén wave turbulence are sufficient to explain the observed hot loops. The higher heating rates are due to the amplification of Alfvén waves in the lower atmosphere. We conclude that magnetic braiding is a highly dynamic process.

  6. Thermally activated step motion observed by HREM at a (113) symmetric tilt grain boundary in Al.

    SciTech Connect

    Merkle, K. L.; Thompson, L. J.; Phillipp, F.; Materials Science Division; Max-Planck-Inst.

    2002-11-01

    Grain-boundary migration is demonstrated to proceed by lateral propagation of a small step in a (113), [110] symmetric Al tilt grain-boundary. In-situ high-resolution (transmission) electron microscopy (HREM) at 523K allowed the study of atomic-scale detail at video rates during the migration process. The grain-boundary translational states on both sides of the step are identical, which leads to a step dislocation. This defect can move laterally by a combination of climb and glide. Dynamic HREM images indicate considerable atomic agitation within the dislocation core. A detailed temporal analysis of the step movements shows small random displacements of the dislocation core.

  7. MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: Phantom study

    SciTech Connect

    Huang, Chuan; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong; Ackerman, Jerome L.; Petibon, Yoann

    2014-04-15

    Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic{sup 18}F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R{sup 2} = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast.

  8. Spontaneous Late Intraocular Lens and Capsule Tension Ring Dislocation

    PubMed Central

    Koçak Altıntaş, Ayşe Gül; Omay, Aslıhan Esra; Çelik, Selda

    2017-01-01

    In this report, three cases with pseudoexfoliation (PEX) and advanced age with spontaneous intraocular lens (IOL) and capsule tension ring (CTR) dislocation were presented. All of our cases experienced progressive vision loss without an episode of strenuous physical activity, trauma, or any other ocular disease. Spontaneous dislocation was observed 2.5 to 8 years after uneventful phacosurgery. Each patient underwent complete IOL and CTR removal combined with anterior chamber IOL implantation. No complications were noticed during follow-up. As a result, capsule tension ring does not prevent late IOL dislocation after uncomplicated phacosurgery in the presence of PEX. Therefore, close follow-up is essential for patients with PEX.

  9. [How I Treat. An Anterior Temporomandibular Joint Dislocation].

    PubMed

    Gilon, Y; Johnen, J; Nizet, J L

    2015-09-01

    Anterior dislocation of the temporomandibular joint is not uncommon and requires prompt management. A defect of dislocation reduction can lead to severe functional impairment of a complex, and often active joint. The diagnosis is clinical and relatively obvious. It is made by the frontline medical team, general practitioner or emergency doctor. Recurrent cases are a matter for maxillofacial surgeons. This article describes a conventional technique for anterior dislocation reduction, to achieve urgently. The second part of the article deals with the specialized surgical treatment of relapsing forms.

  10. Complicated Congenital Dislocation of the Knee: A Case Report

    PubMed Central

    Madadi, Firooz; Tahririan, Mohammad A.; Karami, Mohsen; Madadi, Firoozeh

    2016-01-01

    Congenital dislocation of the knee (CDK) is a rare disorder. We report the case of a 7-year-old girl with bilateral knee stiffness, marked anterior bowing of both legs, and inability to walk without aid. Radiologic investigation revealed bilateral knee joint dislocation accompanied by severe anterior bowing of both tibia proximally and posterior bowing of both femur distally, demonstrating a complicated congenital knee dislocation. Two-staged open reduction with proximal tibial osteotomy was performed to align the reduced knee joints. The patient was completely independent in her daily activities after surgical correction. PMID:27847857

  11. Active vibration isolation of macro-micro motion stage disturbances using a floating stator platform

    NASA Astrophysics Data System (ADS)

    Zhang, Lufan; Long, Zhili; Cai, Jiandong; Liu, Yang; Fang, Jiwen; Wang, Michael Yu

    2015-10-01

    Macro-micro motion stage is mainly applied in microelectronics manufacturing to realize a high-acceleration, high-speed and nano-positioning motion. The high acceleration and nano-positioning accuracy would be influenced by the vibration of the motion stage. In the paper, a concept of floating stage is introduced in the macro-micro motion for isolating vibration disturbances. The design model of the floating stage is established and its theoretical analyses including natural frequency, transient and frequency response analyses are investigated, in order to demonstrate the feasibility of the floating stator platform as a vibration isolator for the macro-micro motion stage. Moreover, an optimal design of the floating stator is conducted and then verified by experiments. In order to characterize and quantify the performance of isolation obtained from the traditional fixed stator and the floating stator, the acceleration responses at different accelerations, speeds and displacements are measured in x, y and z directions. The theoretical and experimental analyses in time and frequency domains indicate that the floating stator platform is effective to actively isolate the vibration in the macro-micro motion stage. In macro-micro motion stage, high acceleration motion is provided by VCM. Vibration is induced from VCM, that is, VCM is a source system, the vibration response or force is felt by a receiver system. Generally, VCM is fixed on the base, which means that the base is the receiver system which absorbs or transfers the vibration. However, the vibration cannot completely disappear and the base vibration is inevitable. In the paper, a floated stator platform as isolation system is developed to decrease or isolate vibration between VCM and base. The floated stator platform consists of damper, stopper, floated lock, spring, limiter, sub base, etc. Unlike the traditional stator of VCM fixed on the base, the floated stator can be moved on the linear guide under vibration

  12. Elbow dislocation with irreparable fracture radial head

    PubMed Central

    Tanna, Dilip

    2013-01-01

    Background: Treatment of elbow dislocation with irreparable radial head fracture needs replacement of radial head to achieve stability of elbow. An alternate method in cases of elbow dislocation with radial head fracture can be resection of radial head with repair of medial collateral ligament. We report a retrospective analysis of cases of elbow dislocation with irreparable radial head treated by excision head of radius and repair of MCL. Materials and Methods: Nine patients of elbow dislocation with associated irreparable fractures of the head of the radius were included in this analysis (6 F:3 M, Age: 35-47 years). Radial head excision was done through the lateral approach and MCL was sutured using no 3 Ethibond using medial approach. Above elbow plaster was given for 6 weeks and gradual mobilization was done thereafter. All patients were assessed at final followup using Mayo elbow performance score (MEPS). Results: Mean followup was 19.55 ± 7.12 months (range 14-36 months). There was no extension deficit when compared to opposite side with mean range of flexion of 138.8° ± 6.97° (range 130 -145°). Mean pronation was 87.7° ± 4.4° (range 80-90°) and mean supination was 87.7 ± 4.62° (range 80-90°). The mean MEPS was 98.8 ± 3.33 (range 90-100). No patient had pain, sensory complaints, subluxation or redislocation. All were able to carry out their daily activities without disability. Conclusion: Radial head excision with MCL repair is an acceptable option for treatment of patients with elbow dislocation and irreparable radial head fracture. PMID:23798760

  13. Ab initio study of screw dislocations in Mo and ta: A new picture of plasticity in bcc transition metals

    PubMed

    Ismail-Beigi; Arias

    2000-02-14

    We report the first ab initio density-functional study of <111> screw dislocation cores in the bcc transition metals Mo and Ta. Our results suggest a new picture of bcc plasticity with symmetric and compact dislocation cores, contrary to the presently accepted picture based on continuum and interatomic potentials. Core energy scales in this new picture are in much better agreement with the Peierls energy barriers to dislocation motion suggested by experiments.

  14. Range of Motion Requirements for Upper-Limb Activities of Daily Living

    PubMed Central

    Walters, Lisa Smurr; Cowley, Jeffrey; Wilken, Jason M.; Resnik, Linda

    2016-01-01

    OBJECTIVE. We quantified the range of motion (ROM) required for eight upper-extremity activities of daily living (ADLs) in healthy participants. METHOD. Fifteen right-handed participants completed several bimanual and unilateral basic ADLs while joint kinematics were monitored using a motion capture system. Peak motions of the pelvis, trunk, shoulder, elbow, and wrist were quantified for each task. RESULTS. To complete all activities tested, participants needed a minimum ROM of −65°/0°/105° for humeral plane angle (horizontal abduction–adduction), 0°–108° for humeral elevation, −55°/0°/79° for humeral rotation, 0°–121° for elbow flexion, −53°/0°/13° for forearm rotation, −40°/0°/38° for wrist flexion–extension, and −28°/0°/38° for wrist ulnar–radial deviation. Peak trunk ROM was 23° lean, 32° axial rotation, and 59° flexion–extension. CONCLUSION. Full upper-limb kinematics were calculated for several ADLs. This methodology can be used in future studies as a basis for developing normative databases of upper-extremity motions and evaluating pathology in populations. PMID:26709433

  15. Examining the Magnetic Field Strength and the Horizontal and Vertical Motions in an Emerging Active Region

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hsien; Chen, Yu-Che

    2016-03-01

    Earlier observational studies have used the time evolution of emerging magnetic flux regions at the photosphere to infer their subsurface structures, assuming that the flux structure does not change significantly over the near-surface layer. In this study, we test the validity of this assumption by comparing the horizontal and vertical motions of an emerging active region. The two motions would be correlated if the emerging structure is rigid. The selected active region (AR) NOAA 11645 is not embedded in detectable preexisting magnetic field. The observed horizontal motion is quantified by the separation of the two AR polarities and the width of the region. The vertical motion is derived from the magnetic buoyancy theory. Our results show that the separation of the polarities is fastest at the beginning with a velocity of {≈ }4 Mm hr^{-1} and decreases to ≤ 1 Mm hr^{-1} after the main growing phase of flux emergence. The derived thick flux-tube buoyant velocity is between 1 and 3 Mm hr^{-1}, while the thin flux-tube approximation results in an unreasonably high buoyant velocity, consistent with the expectation that the approximation is inappropriate at the surface layer. The observed horizontal motion is not found to directly correlate with either the magnetic field strength or the derived buoyant velocities. However, the percentage of the horizontally oriented fields and the temporal derivatives of the field strength and the buoyant velocity show some positive correlations with the separation velocity. The results of this study imply that the assumption that the emerging active region is the cross section of a rising flux tube whose structure can be considered rigid as it rises through the near-surface layer should be taken with caution.

  16. Open glenohumeral dislocation: skeletonization of the proximal humerus without associated fracture.

    PubMed

    Maroney, Samuel S; Devinney, D Scott

    2011-11-09

    Shoulder dislocations are common injuries. In the realm of high-energy trauma, enough force can be dissipated to violate the entire soft tissue envelope surrounding the shoulder girdle, generating an open injury. This article presents a case of a young man involved in a motorcycle accident in which he sustained an open glenohumeral dislocation with complete skeletonization of the proximal humerus. There were no associated fractures with his injury. Our patient underwent staged irrigation and debridement of his shoulder with delayed tendoligamentous reconstruction of the skeletonized proximal humerus. After reconstruction, he was immobilized for 3 weeks and then began a progressive shoulder rehabilitation protocol. He healed with no evidence of infection, residual instability, or avascular necrosis at his 4-month follow-up examination. At that point, he had regained functional use of his shoulder for activities of daily living and had no pain. His range of active motion was limited to 90° of flexion and abduction, 0° of external rotation, and internal rotation to the L4. He had complete resolution of a sensory and motor axillary neuropraxia that resulted from his initial injury. It was felt that the patient had potential for continued gains in range of motion and strength.Our patient is only the second description of an open glenohumeral dislocation with no associated fractures of the proximal humerus. This skeletonization of the proximal humerus represents a complex soft tissue injury that severely compromises the functional capacity of the shoulder. Understanding the nature of the injury and the involved structures and maintaining a sound treatment algorithm allow orthopedic surgeons to maximize the patient's functional outcome.

  17. Direction of Biological Motion Affects Early Brain Activation: A Link with Social Cognition

    PubMed Central

    Pegna, Alan John; Gehring, Elise; Meyer, Georg; Del Zotto, Marzia

    2015-01-01

    A number of EEG studies have investigated the time course of brain activation for biological movement over this last decade, however the temporal dynamics of processing are still debated. Moreover, the role of direction of movement has not received much attention even though it is an essential component allowing us to determine the intentions of the moving agent, and thus permitting the anticipation of potential social interactions. In this study, we examined event-related responses (ERPs) in 15 healthy human participants to light point walkers and their scrambled counterparts, whose movements occurred either in the radial or in the lateral plane. Compared to scrambled motion (SM), biological motion (BM) showed an enhanced negativity between 210 and 360ms. A source localization algorithm (sLORETA) revealed that this was due to an increase in superior and middle temporal lobe activity. Regarding direction, we found that radial BM produced an enhanced P1 compared to lateral BM, lateral SM and radial SM. This heightened P1 was due to an increase in activity in extrastriate regions, as well as in superior temporal, medial parietal and medial prefrontal areas. This network is known to be involved in decoding the underlying intentionality of the movement and in the attribution of mental states. The social meaning signaled by the direction of biological motion therefore appears to trigger an early response in brain activity. PMID:26121591

  18. Coupling of postural activity with motion of a ship at sea.

    PubMed

    Varlet, Manuel; Bardy, Benoît G; Chen, Fu-Chen; Alcantara, Cristina; Stoffregen, Thomas A

    2015-05-01

    On land, body sway during stance becomes coupled with imposed oscillations of the illuminated environment or of the support surface. This coupling appears to have the function of stabilizing the body relative to the illuminated or inertial environment. In previous research, the stimulus has been limited to motion in a single axis. Little is known about our ability to couple postural activity with complex, multi-axis oscillations. On a ship at sea, we evaluated postural activity using measures of body movement, as such, and we separately evaluated a direct measure of coupling between body movement and ship motion. Participants were tested while facing fore-aft and athwartship. We compared postural activity between participants who had been seasick at the beginning of the voyage and those who had not. Coupling of postural activity with ship motion differed between body axes as a function of body orientation relative to the ship. In addition, coupling differed between participants who had been seasick at the beginning of the voyage and those who had not. We discuss the results in terms of implications for general theories of postural control, and for prediction of susceptibility to seasickness in individuals.

  19. Mechanism and energetics of 〈c + a〉 dislocation cross-slip in hcp metals.

    PubMed

    Wu, Zhaoxuan; Curtin, W A

    2016-10-04

    Hexagonal close-packed (hcp) metals such as Mg, Ti, and Zr are lightweight and/or durable metals with critical structural applications in the automotive (Mg), aerospace (Ti), and nuclear (Zr) industries. The hcp structure, however, brings significant complications in the mechanisms of plastic deformation, strengthening, and ductility, and these complications pose significant challenges in advancing the science and engineering of these metals. In hcp metals, generalized plasticity requires the activation of slip on pyramidal planes, but the structure, motion, and cross-slip of the associated [Formula: see text] dislocations are not well established even though they determine ductility and influence strengthening. Here, atomistic simulations in Mg reveal the unusual mechanism of [Formula: see text] dislocation cross-slip between pyramidal I and II planes, which occurs by cross-slip of the individual partial dislocations. The energy barrier is controlled by a fundamental step/jog energy and the near-core energy difference between pyramidal [Formula: see text] dislocations. The near-core energy difference can be changed by nonglide stresses, leading to tension-compression asymmetry and even a switch in absolute stability from one glide plane to the other, both features observed experimentally in Mg, Ti, and their alloys. The unique cross-slip mechanism is governed by common features of the generalized stacking fault energy surfaces of hcp pyramidal planes and is thus expected to be generic to all hcp metals. An analytical model is developed to predict the cross-slip barrier as a function of the near-core energy difference and applied stresses and quantifies the controlling features of cross-slip and pyramidal I/II stability across the family of hcp metals.

  20. Mechanism and energetics of dislocation cross-slip in hcp metals

    NASA Astrophysics Data System (ADS)

    Wu, Zhaoxuan; Curtin, W. A.

    2016-10-01

    Hexagonal close-packed (hcp) metals such as Mg, Ti, and Zr are lightweight and/or durable metals with critical structural applications in the automotive (Mg), aerospace (Ti), and nuclear (Zr) industries. The hcp structure, however, brings significant complications in the mechanisms of plastic deformation, strengthening, and ductility, and these complications pose significant challenges in advancing the science and engineering of these metals. In hcp metals, generalized plasticity requires the activation of slip on pyramidal planes, but the structure, motion, and cross-slip of the associated dislocations are not well established even though they determine ductility and influence strengthening. Here, atomistic simulations in Mg reveal the unusual mechanism of dislocation cross-slip between pyramidal I and II planes, which occurs by cross-slip of the individual partial dislocations. The energy barrier is controlled by a fundamental step/jog energy and the near-core energy difference between pyramidal dislocations. The near-core energy difference can be changed by nonglide stresses, leading to tension-compression asymmetry and even a switch in absolute stability from one glide plane to the other, both features observed experimentally in Mg, Ti, and their alloys. The unique cross-slip mechanism is governed by common features of the generalized stacking fault energy surfaces of hcp pyramidal planes and is thus expected to be generic to all hcp metals. An analytical model is developed to predict the cross-slip barrier as a function of the near-core energy difference and applied stresses and quantifies the controlling features of cross-slip and pyramidal I/II stability across the family of hcp metals.

  1. Buckling of dislocation in graphene

    NASA Astrophysics Data System (ADS)

    Yao, Yin; Wang, Shaofeng; Bai, Jianhui; Wang, Rui

    2016-10-01

    The buckling of dislocation in graphene is discussed through the lattice theory of dislocation and elastic theory. The approximate solution of the buckling is obtained based on the inner stress distribution caused by different structure of dislocations and is proved to be suitable by the simulation. The position of the highest buckling is predicted to be at the vertex of the pentagon far away from the heptagon. The buckling is strongly influenced by the internal stress and the distance between the extrusive area and stretching area, as well as the critical stress σc. The SW defect is proved to be unbuckled due to its strong interaction between extrusion and stretching.

  2. Quenched dislocation enhanced supersolid ordering.

    PubMed

    Toner, John

    2008-01-25

    I show using Landau theory that quenched dislocations can facilitate the supersolid to normal solid transition, making it possible for the transition to occur even if it does not in a dislocation-free crystal. I make detailed predictions for the dependence of the supersolid to normal solid transition temperature T_{c}(L), superfluid density rho_{S}(T,L), and specific heat C(T,L) on temperature T and dislocation spacing L, all of which can be tested against experiments. The results should also be applicable to an enormous variety of other systems, including, e.g., ferromagnets.

  3. The cerebral activity related to the visual perception of forward motion in depth.

    PubMed

    de Jong, B M; Shipp, S; Skidmore, B; Frackowiak, R S; Zeki, S

    1994-10-01

    We have used the technique of PET to chart the areas of human cerebral cortex specifically responsive to an optical flow stimulus simulating forward motion in depth over a flat horizontal surface. The optical flow display contained about 2000 dots accelerating in radial directions away from the focus of expansion, which subjects fixated at the centre of the display monitor. Dots remained of constant size, but their density decreased from the horizon, lying across the middle of the screen, to the foreground at the lower screen margin; the top half of the display was void. For the control stimulus the dot motions were randomized, removing any sensation of motion in depth and diminishing the impression of a flat terrain. Comparison of the regional cerebral blood flow (rCBF) elicited by the optical flow and control stimuli was thus intended to reveal any area selectively responsive to the radial velocity field that is characteristic of optical flow in its simplest natural form. Six subjects were scanned, and analysed as a group. Four subjects were analysed as individuals, their PET data being co-registered with MRIs of the cerebrum to localize rCBF changes to individual gyri and sulci. There were three main areas of activation associated with optical flow: the dorsal cuneus (area V3) and the latero-posterior precuneus (or superior parietal lobe) in the right hemisphere, and the occipito-temporal ventral surface, in the region of the fusiform gyrus, in both hemispheres. There was no significant activation of V1/V2, nor of V5. These results show that higher stages of motion take place in both the 'dorsal' and 'ventral' visual pathways, as these are commonly conceived, and that both may be fed by area V3. The information potentially derivable from optical flow concerns the direction of heading, and the layout of the visual environment, a form of three-dimensional structure-from-motion. The perceptual division of labour between the various activated areas cannot be

  4. Automatic active space selection for the similarity transformed equations of motion coupled cluster method

    NASA Astrophysics Data System (ADS)

    Dutta, Achintya Kumar; Nooijen, Marcel; Neese, Frank; Izsák, Róbert

    2017-02-01

    An efficient scheme for the automatic selection of an active space for similarity transformed equations of motion (STEOM) coupled cluster method is proposed. It relies on state averaged configuration interaction singles (CIS) natural orbitals and makes it possible to use STEOM as a black box method. The performance of the new scheme is tested for singlet and triplet valence, charge transfer, and Rydberg excited states.

  5. [Elbow dislocation in childhood. Long-term observational study].

    PubMed

    Frongia, G; Günther, P; Romero, P; Kessler, M; Holland-Cunz, S

    2012-02-01

    Traumatic dislocation of the elbow is rare in children with an incidence of 3-6% of all elbow injuries. In the literature the outcome after elbow dislocation in childhood is rarely discussed. In the present study 33 children treated in our clinic from 2001 to 2008 with an acute traumatic dislocation of the elbow were retrospectively included. All events were unilateral whereby 1 child (3%) showed a recurrence of elbow dislocation after 9 weeks, 30% had a pure dislocation, 70% had a concomitant fracture, 55% showed a fracture of the medial epicondyle, 6% a fracture of the lateral epicondyle and 9% a further fracture. Of the fractures 83% required open reduction with osteosynthesis. After an average of 4.5 years 20 children (61%) were clinically examined. There were no instabilities of the joint and only minor clinical limitations of the range of motion. The established Mayo elbow performance score showed good to excellent results for all children. Despite severe joint trauma with frequently accompanying fractures, post-traumatic functional deficits are rarely limiting, independent of the accompanying fracture. The frequency of recurrence is low and instabilities were not seen.

  6. Dislocation dynamics simulations of plasticity at small scales

    SciTech Connect

    Zhou, Caizhi

    2010-01-01

    As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this research is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.

  7. Atomic-scale investigation of point defects and hydrogen-solute atmospheres on the edge dislocation mobility in alpha iron

    NASA Astrophysics Data System (ADS)

    Bhatia, M. A.; Groh, S.; Solanki, K. N.

    2014-08-01

    to dislocation motion as the dislocation moves though the hydrogen-solute atmospheres. With this systematic, atomistic study of the edge dislocation with various point defects, we show significant increase in obstacle strengths in addition to an increase in the local dislocation velocity during interaction with solute atmospheres. The results have implications for constitutive development and modeling of the hydrogen effect on dislocation mobility and deformation in metals.

  8. Conical Euler simulation and active suppression of delta wing rocking motion

    NASA Technical Reports Server (NTRS)

    Lee, Elizabeth M.; Batina, John T.

    1990-01-01

    A conical Euler code was developed to study unsteady vortex-dominated flows about rolling highly-swept delta wings, undergoing either forced or free-to-roll motions including active roll suppression. The flow solver of the code involves a multistage Runge-Kutta time-stepping scheme which uses a finite volume spatial discretization of the Euler equations on an unstructured grid of triangles. The code allows for the additional analysis of the free-to-roll case, by including the rigid-body equation of motion for its simultaneous time integration with the governing flow equations. Results are presented for a 75 deg swept sharp leading edge delta wing at a freestream Mach number of 1.2 and at alpha equal to 10 and 30 deg angle of attack. A forced harmonic analysis indicates that the rolling moment coefficient provides: (1) a positive damping at the lower angle of attack equal to 10 deg, which is verified in a free-to-roll calculation; (2) a negative damping at the higher angle of attack equal to 30 deg at the small roll amplitudes. A free-to-roll calculation for the latter case produces an initially divergent response, but as the amplitude of motion grows with time, the response transitions to a wing-rock type of limit cycle oscillation. The wing rocking motion may be actively suppressed, however, through the use of a rate-feedback control law and antisymmetrically deflected leading edge flaps. The descriptions of the conical Euler flow solver and the free-to-roll analysis are presented. Results are also presented which give insight into the flow physics associated with unsteady vortical flows about forced and free-to-roll delta wings, including the active roll suppression of this wing-rock phenomenon.

  9. 20 CFR 663.115 - What are the eligibility criteria for core services for dislocated workers in the adult and...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... services for dislocated workers in the adult and dislocated worker programs? 663.115 Section 663.115 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and...

  10. 20 CFR 663.115 - What are the eligibility criteria for core services for dislocated workers in the adult and...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... services for dislocated workers in the adult and dislocated worker programs? 663.115 Section 663.115 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and...

  11. 20 CFR 663.115 - What are the eligibility criteria for core services for dislocated workers in the adult and...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... services for dislocated workers in the adult and dislocated worker programs? 663.115 Section 663.115 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and...

  12. How Point Defects and Dislocations Drive Flow in the Deep Mantle

    NASA Astrophysics Data System (ADS)

    Cordier, P.; Boioli, F.; Carrez, P.; Gouriet, K.; Hirel, P.; Kraych, A.; Ritterbex, S.

    2015-12-01

    Large scale flows which are responsible for the dynamics of planetary interiors rely ultimately on the motion of lattice defects: point defects, dislocations, grain boundaries. A description of the defects at the atomic scale is necessary to describe how their mobility depend on pressure, temperature, stress. A key stage in multiscale numerical modeling is the description of the collective behavior of defects which depends not only on their mobilities, but also on their interactions. Creep mechanisms usually involve interaction between different kind of defects. In diffusion creep, grain boundaries are sources and sinks for point defects. In dislocation creep dislocations not only glide, but also climb by emitting absorbing point defects. In this presentation we describe new results on the interaction between point defects and dislocations in mantle minerals and how dislocation mobilities are affected resulting in novel deformation mechanisms in the lower mantle.

  13. Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation

    NASA Astrophysics Data System (ADS)

    Lehtinen, O.; Kurasch, S.; Krasheninnikov, A. V.; Kaiser, U.

    2013-06-01

    Dislocations, one of the key entities in materials science, govern the properties of any crystalline material. Thus, understanding their life cycle, from creation to annihilation via motion and interaction with other dislocations, point defects and surfaces, is of fundamental importance. Unfortunately, atomic-scale investigations of dislocation evolution in a bulk object are well beyond the spatial and temporal resolution limits of current characterization techniques. Here we overcome the experimental limits by investigating the two-dimensional graphene in an aberration-corrected transmission electron microscope, exploiting the impinging energetic electrons both to image and stimulate atomic-scale morphological changes in the material. The resulting transformations are followed in situ, atom-by-atom, showing the full life cycle of a dislocation from birth to annihilation. Our experiments, combined with atomistic simulations, reveal the evolution of dislocations in two-dimensional systems to be governed by markedly long-ranging out-of-plane buckling.

  14. Superior results with continuous passive motion compared to active motion after periosteal transplantation. A retrospective study of human patella cartilage defect treatment.

    PubMed

    Alfredson, H; Lorentzon, R

    1999-01-01

    Fifty-seven consecutive patients (33 men and 24 women), with a mean age of 32 years (range 16-53 years), who suffered from an isolated full-thickness cartilage defect of the patella and disabling knee pain of long duration, were treated by autologous periosteal transplantation to the cartilage defect. The first 38 consecutive patients (group A) were postoperatively treated with continuous passive motion (CPM), and the next 19 consecutive patients (group B) were treated with active motion for the first 5 days postoperatively. In both groups, the initial regimens were followed by active motion, slowly progressive strength training, and slowly progressive weight bearing. In group A, after a mean follow-up of 51 months (range 33-92 months), 29 patients (76%) were graded as excellent or good, 7 patients (19%) were graded as fair, and 2 patients (5%) were graded as poor. In group B, after a mean follow-up of 21 months (range 14-28 months), 10 patients (53%) were graded as excellent or good, 6 patients (32%) were graded as fair, and 3 patients (15%) were graded as poor. Altogether, nine of the fair or poor cases (50%) were diagnosed with chondromalacia of the patella. Our results, after performing autologous periosteal transplantation in patients with full-thickness cartilage defects of the patella and disabling knee pain, are good if CPM is used postoperatively. The clinical results using active motion postoperatively are not acceptable, especially not in patients with chondromalacia of the patella.

  15. Dislocation sources in ordered intermetallics

    SciTech Connect

    Yoo, M.H.; Appel, F.; Wagner, R.; Mecking, H.

    1996-09-01

    An overview on the current understanding of dislocation sources and multiplication mechanisms is made for ordered intermetallic alloys of the L1{sub 2}, B2, and D0{sub 19} structures. In L1{sub 2} alloys, a large disparity of edge/screw segments in their relative mobility reduces the efficiency of a Frank-Read Type multiplication mechanism. In Fe-40%Al of the B2 structure, a variety of dislocation sources are available for <111> slip, including ones resulting from condensation of thermal vacancies. In NiAl with the relatively high APB energy, <100> dislocations may result from the dislocation decomposition reactions, the prismatic punching out from inclusion particles, and/or steps and coated layers of the surface. Internal interfaces often provide sites for dislocation multiplication, e.g., grain boundaries, sub-boundaries in Ni{sub 3}Ga, NiAl and Ti{sub 3}Al, and antiphase domain boundaries in Ti{sub 3}Al. As for the crack tip as a dislocation source, extended SISFs trailed by super-Shockley partials emanating form the cracks in Ni{sub 3}Al and Co{sub 3}Ti are discussed in view of a possible toughening mechanism.

  16. Convergence in full motion video processing, exploitation, and dissemination and activity based intelligence

    NASA Astrophysics Data System (ADS)

    Phipps, Marja; Lewis, Gina

    2012-06-01

    Over the last decade, intelligence capabilities within the Department of Defense/Intelligence Community (DoD/IC) have evolved from ad hoc, single source, just-in-time, analog processing; to multi source, digitally integrated, real-time analytics; to multi-INT, predictive Processing, Exploitation and Dissemination (PED). Full Motion Video (FMV) technology and motion imagery tradecraft advancements have greatly contributed to Intelligence, Surveillance and Reconnaissance (ISR) capabilities during this timeframe. Imagery analysts have exploited events, missions and high value targets, generating and disseminating critical intelligence reports within seconds of occurrence across operationally significant PED cells. Now, we go beyond FMV, enabling All-Source Analysts to effectively deliver ISR information in a multi-INT sensor rich environment. In this paper, we explore the operational benefits and technical challenges of an Activity Based Intelligence (ABI) approach to FMV PED. Existing and emerging ABI features within FMV PED frameworks are discussed, to include refined motion imagery tools, additional intelligence sources, activity relevant content management techniques and automated analytics.

  17. On the hierarchy of interfacial dislocation structure

    NASA Astrophysics Data System (ADS)

    Balluffi, R. W.; Olson, G. B.

    1985-04-01

    Many different types of dislocations have been defined in dislocation models for grain boundaries and interphase boundaries. It is emphasized that there is no unique dislocation model for a boundary, and that the formal dislocation content depends upon the choice of the lattice correspondence relating the adjoining lattices. However, it is concluded that no problems of real physical significance arise from this lack of uniqueness. “Best≓, or most useful, descriptions often exist, and these are discussed. A hierarchy consisting of four different types of interfacial dislocations may be distinguished, which is useful in describing the dislocation content of interfaces. These entities are termed: (1) primary interfacial dislocations; (2) secondary interfacial dislocations; (3) coherency interfacial dislocations; and (4) translational interfacial dislocations. While there may be a lack of agreement on terminology in the literature, it is believed that these dislocation types are distinguishable and play unique roles in useful dislocation models for interfaces. Detailed descriptions of these dislocation types are given, and actual examples in real interfaces are presented. It is concluded that dislocation descriptions of interface structures become of purely formal significance in the limit of fully incoherent interfaces since the cores are then delocalized. The utility of various dislocation descriptions therefore depends on the degree to which various types of local coherency exist.

  18. Arm position influences the activation patterns of trunk muscles during trunk range-of-motion movements.

    PubMed

    Siu, Aaron; Schinkel-Ivy, Alison; Drake, Janessa Dm

    2016-10-01

    To understand the activation patterns of the trunk musculature, it is also important to consider the implications of adjacent structures such as the upper limbs, and the muscles that act to move the arms. This study investigated the effects of arm positions on the activation patterns and co-activation of the trunk musculature and muscles that move the arm during trunk range-of-motion movements (maximum trunk axial twist, flexion, and lateral bend). Fifteen males and fifteen females, asymptomatic for low back pain, performed maximum trunk range-of-motion movements, with three arm positions for axial twist (loose, crossed, abducted) and two positions for flexion and lateral bend (loose, crossed). Electromyographical data were collected for eight muscles bilaterally, and activation signals were cross-correlated between trunk muscles and the muscles that move the arms (upper trapezius, latissimus dorsi). Results revealed consistently greater muscle co-activation (higher cross-correlation coefficients) between the trunk muscles and upper trapezius for the abducted arm position during maximum trunk axial twist, while results for the latissimus dorsi-trunk pairings were more dependent on the specific trunk muscles (either abdominal or back) and latissimus dorsi muscle (either right or left side), as well as the range-of-motion movement. The findings of this study contribute to the understanding of interactions between the upper limbs and trunk, and highlight the influence of arm positions on the trunk musculature. In addition, the comparison of the present results to those of individuals with back or shoulder conditions may ultimately aid in elucidating underlying mechanisms or contributing factors to those conditions.

  19. Early active motion protocol following open reduction internal fixation of the scaphoid: A pilot study.

    PubMed

    Dunn, J-C; Kusnezov, N; Fares, A; Buccino, Z; Esquivel, D; Mitchell, J

    2017-02-01

    Scaphoid fractures are common injuries which traditionally have been treated with long periods of immobilization even after open reduction and internal fixation (ORIF). The purpose of this pilot investigation was two-fold: 1) describe a precise postoperative Early Active Motion (EAM) rehabilitation protocol following ORIF of scaphoid fractures and 2) record the outcomes of the EAM protocol. Eight consecutive patients having undergone ORIF of the scaphoid were enrolled in the EAM and followed for a minimum of 1 year. At 12 weeks, Disabilities of the Arm Shoulder and Hand (DASH) score, Mayo Wrist score, and range of motion values were obtained. At 1 year, a telephone survey was conducted and several data points were obtained including DASH and Mayo Wrist score, number of push-ups, satisfaction with surgery and ability to remain on active duty. All 8 patients were male, on active duty, with an average age of 26 years. Two patients used tobacco products and none had major health problems. All patients completed the EAM protocol and obtained CT; all CT exams demonstrated healing at 8 weeks. At 12 weeks postoperatively, the average DASH score was 8.8±16 (range: 0-47.5), Mayo wrist score was 88±10 (range: 75-100) and range of motion nearly symmetrical. At a mean final follow-up of 15.4 months postoperatively, the average DASH score was 1.1±1.7 (Range: 0-4.5), Mayo wrist score was 97.5±4 (range 90-100), average number of push-ups was 57 (40-70) at the prior Army Physical Fitness Test. All patients were satisfied with surgery and all remained on active duty at 1 year. There were no reported complications. The EAM protocol following scaphoid fracture ORIF is safe and effective. The EAM can reliably return patients back to high demand activity earlier than a traditional protocol.

  20. Ice motion and seismic activity on a steep temporate glacier tongue

    NASA Astrophysics Data System (ADS)

    Dalban Canassy, Pierre; Faillettaz, Jerome; Funk, Martin

    2010-05-01

    Ice motion and seismic activity on a steep temporate glacier (Triftgletscher, Bernese Alps, Switzerland) Pierre Dalban Canassy*, Jerome Faillettaz* and Martin Funk* * Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, CH-8092 Zurich, Switzerland (dalban@vaw.baug.ethz.ch) In the last 15 years Triftgletscher (Bernese Alps, Switzerland) has substantially retreated (several hundreds of meters) from the riegel and a proglacial lake containing 6.106 m3 water has been formed in the glacier forefield. Because of the glacier retreat, especially the thinning of the lower flat tongue, the stability of the steep section behind it is affected. The consequence is that the likelihood of large ice avalanches starting from the steep section will increase. The recent intensive glacier thinning in the lower tongue area of 6-10 m.a-1 has even worsened the situation because the runout path of the ice avalanches has become steeper. Ice avalanches with several millions of m3 triggering impulse waves by plunguing into the lake can be the consequence. The aim of our study is to improve the understanding of the mechanisms leading to such instabilities and to develop a predictive method based on both seismic and photogrammetric surveys. The seismic recording is performed with help of 3 geophones installed on the rock on both sides of the serac fall allowing a continuous record. We are able to highlight seismic events by applying an automatic detection procedure, to locate their sources and also to evaluate the released energy of each detected icequake. The most part of these events are due to crack openings and falls of ice chunks, but we could also isolate specific events corresponding to stick-slip motions. The latter seem to play a significant role in the destabilization of the ice mass and represent valuable precursors to break-off episodes. The 2D picture analysis is achieved by analysing photographs taken every day at the same time by an automatic camera installed in

  1. Cross Slip of Dislocation Loops in GaN Under Shear

    DTIC Science & Technology

    2014-03-01

    systems unique to hexagonal close-packed ( hcp ) and wurtzite crystals. Therefore, it is important to understand cross slip of dislo- cations in GaN to...dislocations on different planes for hcp metals [24]. Table 2 The drag coefficients as functions of slip plane for screw (Bs) and edge (Be...plane. The mobility values are qualitatively con- sistent with earlier reports of dislocation motion in hcp - based structures. Staroselsky and Anand’s

  2. Impact of Physical Activity in Cardiovascular and Musculoskeletal Health: Can Motion Be Medicine?

    PubMed Central

    Curtis, Gannon L.; Chughtai, Morad; Khlopas, Anton; Newman, Jared M.; Khan, Rafay; Shaffiy, Shervin; Nadhim, Ali; Bhave, Anil; Mont, Michael A.

    2017-01-01

    Physical activity is a well-known therapeutic tool for various types of medical conditions, including vasculopathic diseases such as coronary artery disease, stroke, type 2 diabetes, and obesity. Additionally, increased physical activity has been proposed as a therapy to improve musculoskeletal health; however, there are conflicting reports about physical activity potentially leading to degenerative musculoskeletal disease, especially osteoarthritis (OA). Additionally, although physical activity is known to have its benefits, it is unclear as to what amount of physical activity is the most advantageous. Too much, as well as not enough exercise can have negative consequences. This could impact how physicians advise their patients about exercise intensity. Multiple studies have evaluated the effect of physical activity on various aspects of health. However, there is a paucity of systematic studies which review cardiovascular and musculoskeletal health as outcomes. Therefore, the purpose of this review was to assess how physical activity impacts these aspects of health. Specifically, we evaluated the effect of various levels of physical activity on: 1) cardiovascular and 2) musculoskeletal health. The review revealed that physical activity may decrease cardiovascular disease and improve OA symptoms, and therefore, motion can be considered a “medicine”. However, because heavy activity can potentially lead to increased OA risk, physicians should advise their patients that excessive activity can also potentially impact their health negatively, and should be done in moderation, until further study. PMID:28392856

  3. Fractures and Dislocations About the Elbow and Their Adverse Sequelae: Contemporary Perspectives.

    PubMed

    Horrigan, Patrick; Braman, Jonathan P; Harrison, Alicia

    2016-01-01

    Fractures and dislocations of the elbow can result in adverse outcomes. The elbow is a unique joint that allows for great mobility but is predisposed to instability, either simple or complex, in traumatic settings. Even simple elbow instability, in which no fracture is present, may be associated with tremendous soft-tissue injury. Surgical treatment is often required for complex instability in which various fractures are present. The treatment goals for fixation of elbow fractures and dislocations include stable fracture fixation, a stable concentrically reduced joint, and early range of motion. Continued pain, stiffness, and instability as well as heterotopic ossification are common sequelae of elbow fractures and dislocations.

  4. Movement of basal plane dislocations in GaN during electron beam irradiation

    SciTech Connect

    Yakimov, E. B.; Vergeles, P. S.; Polyakov, A. Y.; Lee, In-Hwan; Pearton, S. J.

    2015-03-30

    The movement of basal plane segments of dislocations in low-dislocation-density GaN films grown by epitaxial lateral overgrowth as a result of irradiation with the probing beam of a scanning electron microscope was detected by means of electron beam induced current. Only a small fraction of the basal plane dislocations was susceptible to such changes and the movement was limited to relatively short distances. The effect is explained by the radiation enhanced dislocation glide for dislocations pinned by two different types of pinning sites: a low-activation-energy site and a high-activation-energy site. Only dislocation segments pinned by the former sites can be moved by irradiation and only until they meet the latter pinning sites.

  5. Modeling meiotic chromosome pairing: nuclear envelope attachment, telomere-led active random motion, and anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Marshall, Wallace F.; Fung, Jennifer C.

    2016-04-01

    The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by unattached chromosomes, but that randomly directed active forces applied to the telomeres speed up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions.

  6. Predicting muscle activation patterns from motion and anatomy: modelling the skull of Sphenodon (Diapsida: Rhynchocephalia)

    PubMed Central

    Curtis, Neil; Jones, Marc E. H.; Evans, Susan E.; Shi, JunFen; O'Higgins, Paul; Fagan, Michael J.

    2010-01-01

    The relationship between skull shape and the forces generated during feeding is currently under widespread scrutiny and increasingly involves the use of computer simulations such as finite element analysis. The computer models used to represent skulls are often based on computed tomography data and thus are structurally accurate; however, correctly representing muscular loading during food reduction remains a major problem. Here, we present a novel approach for predicting the forces and activation patterns of muscles and muscle groups based on their known anatomical orientation (line of action). The work was carried out for the lizard-like reptile Sphenodon (Rhynchocephalia) using a sophisticated computer-based model and multi-body dynamics analysis. The model suggests that specific muscle groups control specific motions, and that during certain times in the bite cycle some muscles are highly active whereas others are inactive. The predictions of muscle activity closely correspond to data previously recorded from live Sphenodon using electromyography. Apparent exceptions can be explained by variations in food resistance, food size, food position and lower jaw motions. This approach shows considerable promise in advancing detailed functional models of food acquisition and reduction, and for use in other musculoskeletal systems where no experimental determination of muscle activity is possible, such as in rare, endangered or extinct species. PMID:19474084

  7. Modeling meiotic chromosome pairing: nuclear envelope attachment, telomere-led active random motion, and anomalous diffusion

    PubMed Central

    Marshall, Wallace F.; Fung, Jennifer C.

    2016-01-01

    The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by un-attached chromosomes, but that randomly-directed active forces applied to the telomeres speeds up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions. PMID:27046097

  8. Understanding Preferences for Treatment After Hypothetical First-Time Anterior Shoulder Dislocation: Surveying an Online Panel Utilizing a Novel Shared Decision-Making Tool

    PubMed Central

    Streufert, Ben; Reed, Shelby D.; Orlando, Lori A.; Taylor, Dean C.; Huber, Joel C.; Mather, Richard C.

    2017-01-01

    Background: Although surgical management of a first-time anterior shoulder dislocation (FTASD) can reduce the risk of recurrent dislocation, other treatment characteristics, costs, and outcomes are important to patients considering treatment options. While patient preferences, such as those elicited by conjoint analysis, have been shown to be important in medical decision-making, the magnitudes or effects of patient preferences in treating an FTASD are unknown. Purpose: To test a novel shared decision-making tool after sustained FTASD. Specifically measured were the following: (1) importance of aspects of operative versus nonoperative treatment, (2) respondents’ agreement with results generated by the tool, (3) willingness to share these results with physicians, and (4) association of results with choice of treatment after FTASD. Study Design: Cross-sectional study; Level of evidence, 3. Methods: A tool was designed and tested using members of Amazon Mechanical Turk, an online panel. The tool included an adaptive conjoint analysis exercise, a method to understand individuals’ perceived importance of the following attributes of treatment: (1) chance of recurrent dislocation, (2) cost, (3) short-term limits on shoulder motion, (4) limits on participation in high-risk activities, and (5) duration of physical therapy. Respondents then chose between operative and nonoperative treatment for hypothetical shoulder dislocation. Results: Overall, 374 of 501 (75%) respondents met the inclusion criteria, of which most were young, active males; one-third reported prior dislocation. From the conjoint analysis, the importance of recurrent dislocation and cost of treatment were the most important attributes. A substantial majority agreed with the tool’s ability to generate representative preferences and indicated that they would share these preferences with their physician. Importance of recurrence proved significantly predictive of respondents’ treatment choices

  9. Bilateral posterior shoulder dislocation after electrical shock: A case report

    PubMed Central

    Ketenci, Ismail Emre; Duymus, Tahir Mutlu; Ulusoy, Ayhan; Yanik, Hakan Serhat; Mutlu, Serhat; Durakbasa, Mehmet Oguz

    2015-01-01

    Introduction Posterior dislocation of the shoulder is a rare and commonly missed injury. Unilateral dislocations occur mostly due to trauma. Bilateral posterior shoulder dislocations are even more rare and result mainly from epileptic seizures. Electrical injury is a rare cause of posterior shoulder dislocation. Injury mechanism in electrical injury is similar to epileptic seizures, where the shoulder is forced to internal rotation, flexion and adduction. Presentation of case This report presents a case of bilateral posterior shoulder dislocation after electrical shock. We were able to find a few individual case reports describing this condition. The case was acute and humeral head impression defects were minor. Our treatment in this case consisted of closed reduction under general anesthesia and applying of orthoses which kept the shoulders in abduction and external rotation. A rehabilitation program was begun after 3 weeks of immobilization. After 6 months of injury the patient has returned to work. 20 months postoperatively, at final follow-up, he was painless and capable of performing all of his daily activities. Discussion The amount of bilateral shoulder dislocations after electrical injury is not reported but is known to be very rare. The aim of this case presentation is to report an example for this rare entity, highlight the difficulties in diagnosis and review the treatment options. Conclusion Physical examination and radiographic evaluation are important for quick and accurate diagnosis. PMID:26904192

  10. Active breathing control (ABC): Determination and reduction of breathing-induced organ motion in the chest

    SciTech Connect

    Gagel, Bernd . E-mail: BGagel@UKAachen.de; Demirel, Cengiz M.P.; Kientopf, Aline; Pinkawa, Michael; Piroth, Marc; Stanzel, Sven; Breuer, Christian; Asadpour, Branka; Jansen, Thomas; Holy, Richard; Wildberger, Joachim E.; Eble, Michael J.

    2007-03-01

    Purpose: Extensive radiotherapy volumes for tumors of the chest are partly caused by interfractional organ motion. We evaluated the feasibility of respiratory observation tools using the active breathing control (ABC) system and the effect on breathing cycle regularity and reproducibility. Methods and Materials: Thirty-six patients with unresectable tumors of the chest were selected for evaluation of the ABC system. Computed tomography scans were performed at various respiratory phases starting at the same couch position without patient movement. Threshold levels were set at minimum and maximum volume during normal breathing cycles and at a volume defined as shallow breathing, reflecting the subjective maximal tolerable reduction of breath volume. To evaluate the extent of organ movement, 13 landmarks were considering using commercial software for image coregistration. In 4 patients, second examinations were performed during therapy. Results: Investigating the differences in a normal breathing cycle versus shallow breathing, a statistically significant reduction of respiratory motion in the upper, middle, and lower regions of the chest could be detected, representing potential movement reduction achieved through reduced breath volume. Evaluating interfraction reproducibility, the mean displacement ranged between 0.24 mm (chest wall/tracheal bifurcation) to 3.5 mm (diaphragm) for expiration and shallow breathing and 0.24 mm (chest wall) to 5.25 mm (diaphragm) for normal inspiration. Conclusions: By modifying regularity of the respiratory cycle through reduction of breath volume, a significant and reproducible reduction of chest and diaphragm motion is possible, enabling reduction of treatment planning margins.

  11. Respiratory Motion of The Heart and Positional Reproducibility Under Active Breathing Control

    SciTech Connect

    Jagsi, Reshma; Moran, Jean M.; Kessler, Marc L.; Marsh, Robin B. C; Balter, James M.; Pierce, Lori J. . E-mail: ljpierce@umich.edu

    2007-05-01

    Purpose: To reduce cardiotoxicity from breast radiotherapy (RT), innovative techniques are under investigation. Information about cardiac motion with respiration and positional reproducibility under active breathing control (ABC) is necessary to evaluate these techniques. Methods and Materials: Patients requiring loco-regional RT for breast cancer were scanned by computed tomography using an ABC device at various breath-hold states, before and during treatment. Ten patients were studied. For each patient, 12 datasets were analyzed. Mutual information-based regional rigid alignment was used to determine the magnitude and reproducibility of cardiac motion as a function of breathing state. For each scan session, motion was quantified by evaluating the displacement of a point along the left anterior descending artery (LAD) with respect to its position at end expiration. Long-term positional reproducibility was also assessed. Results: Displacement of the LAD was greatest in the inferior direction, moderate in the anterior direction, and lowest in the left-right direction. At shallow breathing states, the average displacement of LAD position was up to 6 mm in the inferior direction. The maximum displacement in any patient was 2.8 cm in the inferior direction, between expiration and deep-inspiration breath hold. At end expiration, the long-term reproducibility (SD) of the LAD position was 3 mm in the A-P, 6 mm in the S-I, and 4 mm in the L-R directions. At deep-inspiration breath hold, long-term reproducibility was 3 mm in the A-P, 7 mm in the S-I, and 3 mm in the L-R directions. Conclusions: These data demonstrate the extent of LAD displacement that occurs with shallow breathing and with deep-inspiration breath hold. This information may guide optimization studies considering the effects of respiratory motion and reproducibility of cardiac position on cardiac dose, both with and without ABC.

  12. Discrete dislocation plasticity analysis of the wedge indentation of films

    NASA Astrophysics Data System (ADS)

    Balint, D. S.; Deshpande, V. S.; Needleman, A.; Van der Giessen, E.

    2006-11-01

    The plane strain indentation of single crystal films on a rigid substrate by a rigid wedge indenter is analyzed using discrete dislocation plasticity. The crystals have three slip systems at ±35.3∘ and 90∘ with respect to the indentation direction. The analyses are carried out for three values of the film thickness, 2, 10 and 50 μm, and with the dislocations all of edge character modeled as line singularities in a linear elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation are incorporated through a set of constitutive rules. Over the range of indentation depths considered, the indentation pressure for the 10 and 50 μm thick films decreases with increasing contact size and attains a contact size-independent value for contact lengths A>4 μm. On the other hand, for the 2 μm films, the indentation pressure first decreases with increasing contact size and subsequently increases as the plastic zone reaches the rigid substrate. For the 10 and 50 μm thick films sink-in occurs around the indenter, while pile-up occurs in the 2 μm film when the plastic zone reaches the substrate. Comparisons are made with predictions obtained from other formulations: (i) the contact size-independent indentation pressure is compared with that given by continuum crystal plasticity; (ii) the scaling of the indentation pressure with indentation depth is compared with the relation proposed by Nix and Gao [1998. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 43, 411-423]; and (iii) the computed contact area is compared with that obtained from the estimation procedure of Oliver and Pharr [1992. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564-1583].

  13. Sternoclavicular dislocation: case report and surgical technique.

    PubMed

    Terra, Bernardo Barcellos; Rodrigues, Leandro Marano; Pádua, David Victoria Hoffmann; Martins, Marcelo Giovanini; Teixeira, João Carlos de Medeiros; De Nadai, Anderson

    2015-01-01

    Sternoclavicular dislocations account for less than 5% of all dislocations of the scapular belt. Most cases of anterior dislocation of the sternoclavicular joint do not present symptoms. However, some patients may develop chronic anterior instability and remain symptomatic, and surgical treatment is indicated in these cases. There is a scarcity of reports in the literature relating to reconstruction using the long palmar tendon in cases of traumatic anterior instability. Although rare, these injuries deserve rapid diagnosis and efficient treatment in order to avoid future complications. The aim of this report was to report on a case of a motocross competitor who developed chronic traumatic anterior instability of the sternoclavicular joint and underwent surgical reconstruction using the autogenous long palmar tendon. The patient was a 33-year-old man with a history of anterior dislocation of the sternoclavicular subsequent to a fall during a maneuver in a motocross competition. Conservative treatment was instituted initially, consisting of use of a functional sling to treat the symptoms for 3 weeks, along with physiotherapeutic rehabilitation for 3 months. We chose to use a modification of the "figure of eight" technique based on the studies by Spencer and Kuhn. A longitudinal incision of approximately 10 cm was made at the level of the sternoclavicular joint. The graft from the ipsilateral long palmar tendon was passed through the orifices in the form of a modified "figure of eight" and its ends were sutured together. The patient was immobilized using an American sling for 4 weeks. After 6 months of follow-up, the patient no longer presented pain or instability when movement of the sternoclavicular joint was required. Minor discomfort and slight prominence of the sternoclavicular joint continued to be present but did not affect the patient's activities. Thus, the patient was able to return to racing 6 months after the operation. Our study presented a case of

  14. Motion and Muscle Activity Are Affected by Instability Location During a Squat Exercise.

    PubMed

    Nairn, Brian C; Sutherland, Chad A; Drake, Janessa D M

    2017-03-01

    Nairn, BC, Sutherland, CA, and Drake, JDM. Motion and muscle activity are affected by instability location during a squat exercise. J Strength Cond Res 31(3): 677-685, 2017-Squat exercise training using instability devices has become increasingly popular for a multitude of reasons. Many devices generate instability at the feet and provide a bottom-up perturbation; however, the effect of a top-down instability device during a squat remains unclear. To induce instability at the upper body, a water-filled cylinder called the Attitube was used. This study analyzed the effects of instability location (top-down, bottom-up, and no instability) during a squat exercise in terms of kinematics and muscle activation. Ten male participants were instrumented with 75 reflective markers to track kinematics of the ankle, knee, hip, trunk, and the Bar/Attitube, and electromyography was recorded from 12 muscles bilaterally. Squats were performed with an Olympic bar on a stable surface, an Olympic bar on a BOSU ball (BALL, bottom-up), and the Attitube on solid ground (TUBE, top-down). The TUBE showed up to 1.5 times reduction in erector spinae activation and up to 1.5 times less trunk flexion while being performed at a slower velocity. There was also higher abdominal activation in the TUBE, with up to 2.8 times greater oblique activation compared with the stable condition. The BALL increased ankle eversion and knee flexion with higher muscle activation in gastrocnemius, biceps femoris, and quadriceps. Overall, changing the location of instability during a squat changed the motion and muscle activation patterns of the trunk and lower extremities. This provides information for future research into rehabilitation, learning proper squat technique, and for specific training scenarios.

  15. Dislocations and other topological oddities

    NASA Astrophysics Data System (ADS)

    Pieranski, Pawel

    2016-03-01

    We will show that the book Dislocations by Jacques Friedel, published half a century ago, can still be recommended, in agreement with the author's intention, as a textbook ;for research students at University and for students at engineering schools as well as for research engineers;. Indeed, today dislocations are known to occur not only in solid crystals but also in many other systems discovered more recently such as colloidal crystals or liquid crystals having periodic structures. Moreover, the concept of dislocations is an excellent starting point for lectures on topological defects occurring in systems equipped with order parameters resulting from broken symmetries: disclinations in nematic or hexatic liquid crystals, dispirations in chiral smectics or disorientations in lyotropic liquid crystals. The discussion of dislocations in Blue Phases will give us an opportunity to call on mind Sir Charles Frank, friend of Jacques Friedel since his Bristol years, who called these ephemeral mesophases ;topological oddities;. Being made of networks of disclinations, Blue Phases are similar to Twist Grain Boundary (TGB) smectic phases, which are made of networks of screw dislocations and whose existence was predicted by de Gennes in 1972 on the basis of the analogy between smectics and superconductors. We will stress that the book by Jacques Friedel contains seeds of this analogy.

  16. Extract the Relational Information of Static Features and Motion Features for Human Activities Recognition in Videos

    PubMed Central

    2016-01-01

    Both static features and motion features have shown promising performance in human activities recognition task. However, the information included in these features is insufficient for complex human activities. In this paper, we propose extracting relational information of static features and motion features for human activities recognition. The videos are represented by a classical Bag-of-Word (BoW) model which is useful in many works. To get a compact and discriminative codebook with small dimension, we employ the divisive algorithm based on KL-divergence to reconstruct the codebook. After that, to further capture strong relational information, we construct a bipartite graph to model the relationship between words of different feature set. Then we use a k-way partition to create a new codebook in which similar words are getting together. With this new codebook, videos can be represented by a new BoW vector with strong relational information. Moreover, we propose a method to compute new clusters from the divisive algorithm's projective function. We test our work on the several datasets and obtain very promising results. PMID:27656199

  17. Circular Motion.

    ERIC Educational Resources Information Center

    Lee, Paul D.

    1995-01-01

    Provides a period-long activity using battery powered cars rolling in a circular motion on a tile floor. Students measure the time and distance as the car moves to derive the equation for centripetal acceleration. (MVL)

  18. On crack nucleation in zinc upon interaction of basal and pyramidal dislocations

    NASA Astrophysics Data System (ADS)

    Fedorov, V. A.; Tyalin, Yu. I.; Tyalina, V. A.

    2010-01-01

    The interaction of intersecting basal and pyramidal dislocation pileups in single-crystal zinc has been analyzed. Different versions of the formation of sessile (1/3[4 bar 2bar 2 3]) and cleavage ([0001]) dislocations (microcrack nuclei) are considered. The merging of the head dislocations in pyramidal pileups is shown to be preferred. The conditions for thermally activated dislocation merging are derived. The conditions for crack opening according to the Gilman-Rozhanskiĭ mechanism are discussed. It is analytically established that the breaking stress, normal to the (0001) plane in the region of microcrack nucleation, exceeds the theoretical strength.

  19. Surface Rebound of Relativistic Dislocations Directly and Efficiently Initiates Deformation Twinning

    NASA Astrophysics Data System (ADS)

    Li, Qing-Jie; Li, Ju; Shan, Zhi-Wei; Ma, Evan

    2016-10-01

    Under ultrahigh stresses (e.g., under high strain rates or in small-volume metals) deformation twinning (DT) initiates on a very short time scale, indicating strong spatial-temporal correlations in dislocation dynamics. Using atomistic simulations, here we demonstrate that surface rebound of relativistic dislocations directly and efficiently triggers DT under a wide range of laboratory experimental conditions. Because of its stronger temporal correlation, surface rebound sustained relay of partial dislocations is shown to be dominant over the conventional mechanism of thermally activated nucleation of twinning dislocations.

  20. Complete acromioclavicular joint dislocation treated with reconstructed ligament by trapezius muscle fascia and observation of fascial metaplasia

    PubMed Central

    Wang, Chaoliang; Huang, Sufang; Wang, Yingzhen; Sun, Xuesheng; Zhu, Tao; Li, Qiang; Lin, Chu

    2015-01-01

    We evaluated the long-term clinical results of acute complete acromioclavicular dislocations treated by reconstruction of the acromioclavicular and coracoclavicular ligament using trapezius muscle fascia. Open reduction and internal fixation was performed using the clavicular hook plate in 12 patients with acute complete acromioclavicular joint dislocation, and the acromioclavicular and coracoclavicular ligaments were reconstructed using trapezius muscle fascia. Radiographic evaluations were conducted postoperatively. We evaluated the functional results with constant scoring system and radiological results at the final follow-up visit. The mean Constant score at the final follow-up visit was 91.67 (range, 81 to 100). The results were excellent in eight patients (66.7%) and good in four patients (33.3%). Three patients with scores from 80 to 90 had mild pain during activity, but this did not affect the range of motion of the shoulder. All patients have returned to their preoperative work without any limitations. Compared with the contralateral side, radiography showed anatomical reposition in the vertical plane in all cases. The hook-plate fixation with ligament reconstruction was successful in treating AC dislocations. The acromioclavicular and coracoclavicular ligament were reconstructed by trapezius muscle fascia that keep the distal clavicle stable both vertically and horizontally after type III injuries. PMID:28352721

  1. Effect of motion on tracer activity determination in CT attenuation corrected PET images: A lung phantom study

    SciTech Connect

    Pevsner, Alex; Nehmeh, Sadek A.; Humm, John L.; Mageras, Gig S.; Erdi, Yusuf E.

    2005-07-15

    Respiratory motion is known to affect the quantitation of {sup 18}FDG uptake in lung lesions. The aim of the study was to investigate the magnitude of errors in tracer activity determination due to motion, and its dependence upon CT attenuation at different phases of the motion cycle. To estimate these errors we have compared maximum activity concentrations determined from PET/CT images of a lung phantom at rest and under simulated respiratory motion. The NEMA 2001 IEC body phantom, containing six hollow spheres with diameters 37, 28, 22, 17, 13, and 10 mm, was used in this study. To mimic lung tissue density, the phantom (excluding spheres) was filled with low density polystyrene beads and water. The phantom spheres were filled with {sup 18}FDG solution setting the target-to-background activity concentration ratio at 8:1. PET/CT data were acquired with the phantom at rest, and while it was undergoing periodic motion along the longitudinal axis of the scanner with a range of displacement being 2 cm, and a period of 5 s. The phantom at rest and in motion was scanned using manufacturer provided standard helical/clinical protocol, a helical CT scan followed by a PET emission scan. The moving phantom was also scanned using a 4D-CT protocol that provides volume image sets at different phases of the motion cycle. To estimate the effect of motion on quantitation of activities in six spheres, we have examined the activity concentration data for (a) the stationary phantom, (b) the phantom undergoing simulated respiratory motion, and (c) a moving phantom acquired with PET/4D-CT protocol in which attenuation correction was performed with CT images acquired at different phases of motion cycle. The data for the phantom at rest and in motion acquired with the standard helical/clinical protocol showed that the activity concentration in the spheres can be underestimated by as much as 75%, depending on the sphere diameter. We have also demonstrated that fluctuations in sphere

  2. Spontaneous divergent elbow dislocation after Sauve-Kapandji procedure.

    PubMed

    Moritomo, Hisao; Izawa, Kazutaka; Murase, Tsuyoshi; Hashimoto, Hideo; Goto, Akira; Masatomi, Takashi

    2003-01-01

    This is a report on an unusual complication of the Sauve-Kapandji procedure in patients with rheumatoid arthritis. Two women with rheumatoid arthritis who previously had an ipsilateral Sauve-Kapandji procedure experienced spontaneous transverse divergent elbow dislocations without evident trauma. Their radiographs showed medial dislocation of the proximal ulna, which was separated from the radial head. The radial head and distal end of the ulnar shaft showed remarkable instability by a pronation and supination motion without the radial and ulnar shafts being separated from each other. Stress radiographic examination showed significant loosening of all ligaments except the medial collateral ligament around the elbow and did not show disruption of the interosseous membrane. A unique chronic twist radioulnar dissociation which consists of gross instability of the radial head and the distal ulna without disruption of the interosseous membrane was considered to cause instability of the humeroulnar joint, which results in medial dislocation of the proximal ulna. This report suggests that there is a direct cause and effect relationship between the residual distal ulnar instability and the development of transverse divergent dislocation of the elbow in patients with rheumatoid arthritis after the Sauve-Kapandji procedure.

  3. Effect of motion smoothness on brain activity while observing a dance: An fMRI study using a humanoid robot.

    PubMed

    Miura, Naoki; Sugiura, Motoaki; Takahashi, Makoto; Sassa, Yuko; Miyamoto, Atsushi; Sato, Shigeru; Horie, Kaoru; Nakamura, Katsuki; Kawashima, Ryuta

    2010-01-01

    Motion smoothness is critical in transmitting implicit information of body action, such as aesthetic qualities in dance performances. We expected that the perception of motion smoothness would be characterized by great intersubject variability deriving from differences in personal backgrounds and attitudes toward expressive body actions. We used functional magnetic resonance imaging and a humanoid robot to investigate the effects of the motion smoothness of expressive body actions and the intersubject variability due to personal attitudes on perceptions during dance observation. The effect of motion smoothness was analyzed by both conventional subtraction analysis and functional connectivity analyses that detect cortical networks reflecting intersubject variability. The results showed that the cortical networks of motion- and body-sensitive visual areas showed increases in activity in areas corresponding with motion smoothness, but the intersubject variability of personal attitudes toward art did not influence these active areas. In contrast, activation of cortical networks, including the parieto-frontal network, has large intersubject variability, and this variability is associated with personal attitudes about the consciousness of art. Thus, our results suggest that activity in the cortical network involved in understanding action is influenced by personal attitudes about the consciousness of art during observations of expressive body actions.

  4. Single crystal plasticity by modeling dislocation density rate behavior

    SciTech Connect

    Hansen, Benjamin L; Bronkhorst, Curt; Beyerlein, Irene; Cerreta, E. K.; Dennis-Koller, Darcie

    2010-12-23

    The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 10{sup 4} s{sup -1}. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. The elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.

  5. Thermal and Kinetic Properties of Motions in a Prominence Activation and Nearby Loop

    NASA Technical Reports Server (NTRS)

    Kucera, Therese; Landi, E.

    2005-01-01

    We perform a quantitative analysis of the thermal properties of a prominence activation and motions in a nearby loop. In order to make measurements of the quickly moving features seen in prominences in the UV we use the SOHO/SUMER spectrograph to take a time series of exposures from a single pointing position, providing a measurement of spectral line properties as a function of time and position along the slit. The lines observed cover a broad range of temperatures from 80,000 - 1.6 million K. These measurements are combined with TRACE movies in transition region and coronal temperature bands to obtain more complete information concerning prominence structure and motions. The resulting observations allow us to analyze the thermal and kinetic energy of the moving sources as functions of time. The loop and prominence are most apparent in lines formed at temperatures below 250,000 K. We find that in most cases the temperature distribution of plasma in a moving feature changes relatively little over time periods of about 20 minutes.

  6. Understanding and Visualizing Multitasking and Task Switching Activities: A Time Motion Study to Capture Nursing Workflow.

    PubMed

    Yen, Po-Yin; Kelley, Marjorie; Lopetegui, Marcelo; Rosado, Amber L; Migliore, Elaina M; Chipps, Esther M; Buck, Jacalyn

    2016-01-01

    A fundamental understanding of multitasking within nursing workflow is important in today's dynamic and complex healthcare environment. We conducted a time motion study to understand nursing workflow, specifically multitasking and task switching activities. We used TimeCaT, a comprehensive electronic time capture tool, to capture observational data. We established inter-observer reliability prior to data collection. We completed 56 hours of observation of 10 registered nurses. We found, on average, nurses had 124 communications and 208 hands-on tasks per 4-hour block of time. They multitasked (having communication and hands-on tasks simultaneously) 131 times, representing 39.48% of all times; the total multitasking duration ranges from 14.6 minutes to 109 minutes, 44.98 minutes (18.63%) on average. We also reviewed workflow visualization to uncover the multitasking events. Our study design and methods provide a practical and reliable approach to conducting and analyzing time motion studies from both quantitative and qualitative perspectives.

  7. Understanding and Visualizing Multitasking and Task Switching Activities: A Time Motion Study to Capture Nursing Workflow

    PubMed Central

    Yen, Po-Yin; Kelley, Marjorie; Lopetegui, Marcelo; Rosado, Amber L.; Migliore, Elaina M.; Chipps, Esther M.; Buck, Jacalyn

    2016-01-01

    A fundamental understanding of multitasking within nursing workflow is important in today’s dynamic and complex healthcare environment. We conducted a time motion study to understand nursing workflow, specifically multitasking and task switching activities. We used TimeCaT, a comprehensive electronic time capture tool, to capture observational data. We established inter-observer reliability prior to data collection. We completed 56 hours of observation of 10 registered nurses. We found, on average, nurses had 124 communications and 208 hands-on tasks per 4-hour block of time. They multitasked (having communication and hands-on tasks simultaneously) 131 times, representing 39.48% of all times; the total multitasking duration ranges from 14.6 minutes to 109 minutes, 44.98 minutes (18.63%) on average. We also reviewed workflow visualization to uncover the multitasking events. Our study design and methods provide a practical and reliable approach to conducting and analyzing time motion studies from both quantitative and qualitative perspectives. PMID:28269924

  8. Vagal control of cardiac electrical activity and wall motion during ventricular fibrillation in large animals.

    PubMed

    Naggar, Isaac; Nakase, Ko; Lazar, Jason; Salciccioli, Louis; Selesnick, Ivan; Stewart, Mark

    2014-07-01

    Vagal inputs control pacemaking and conduction systems in the heart. Anatomical evidence suggests a direct ventricular action, but functional evidence that separates direct and indirect (via the conduction system) vagal actions is less well established. We studied vagus nerve stimulation (VNS) during sinus rhythm and ventricular fibrillation (VF) in pigs and sheep to determine: 1) the range of unilateral and bilateral actions (inotropic and chronotropic) and 2) whether VNS alters left ventricular motion and/or electrical activity during VF, a model of abnormal electrical conduction of the left ventricle that excludes sinus and atrioventricular nodal function. Adult pigs (N=8) and sheep (N=10) were anesthetized with urethane and mechanically ventilated. VNS was performed in animals at 1, 2, 5, 10, 20, 50, and 100Hz for 20s. VF was induced with direct current to the ventricles or occlusion of the left anterior descending coronary artery. In 4 pigs and 3 sheep, left ventricular wall motion was assessed from endocardial excursion in epicardial echocardiography. In sheep and pigs, the best frequency among those tested for VNS during sinus rhythm to produce sustained electrical and mechanical ventricular standstill was 50Hz for unilateral or bilateral stimulation. When applied during VF, bilateral VNS increased the variability of the dominant VF frequency, indicating a direct impact on the excitability of ventricular myocytes, and decreased endocardial excursion by more than 50% during VF. We conclude that the vagus nerve directly modulates left ventricular function independently from its effects on the conduction system.

  9. Development of magnetically preloaded air bearings for a linear slide: active compensation of three degrees of freedom motion errors.

    PubMed

    Ro, Seung-Kook; Kim, Soohyun; Kwak, Yoonkeun; Park, Chun-Hong

    2008-03-01

    This article describes a linear air-bearing stage that uses active control to compensate for its motion errors. The active control is based on preloads generated by magnetic actuators, which were designed to generate nominal preloads for the air bearings using permanent magnets to maintain the desired stiffness while changing the air-bearing clearance by varying the magnetic flux generated by the current in electromagnetic coils. A single-axis linear stage with a linear motor and 240 mm of travel range was built to verify this design concept and used to test its performance. The motion of the table in three directions was controlled with four magnetic actuators driven by current amplifiers and a DSP (Digital Signal Processor)-based digital controller. The motion errors were measured using a laser interferometer combined with a two-probe method, and had 0.085 microm of repeatability for the straightness error. As a result of feed-forward active compensation, the errors were reduced from 1.09 to 0.11 microm for the vertical motion, from 9.42 to 0.18 arcsec for the pitch motion, and from 2.42 to 0.18 arcsec for the roll motion.

  10. Control of a Virtual Vehicle Influences Postural Activity and Motion Sickness

    ERIC Educational Resources Information Center

    Dong, Xiao; Yoshida, Ken; Stoffregen, Thomas A.

    2011-01-01

    Everyday experience suggests that drivers are less susceptible to motion sickness than passengers. In the context of inertial motion (i.e., physical displacement), this effect has been confirmed in laboratory research using whole body motion devices. We asked whether a similar effect would occur in the context of simulated vehicles in a visual…

  11. A Dynamic Discrete Dislocation Plasticity Method for the Dimulation of Plastic Relaxation under Shock Loading

    NASA Astrophysics Data System (ADS)

    Gurrutxaga-Lerma, Benat; Sutton, Adrian; Eakins, Daniel; Balint, Daniel; Dini, Daniele

    2013-06-01

    This talk intends to offer some insight as to how Discrete Dislocation Plasticity (DDP) can be adapted to simulate plastic relaxation processes under weak shock loading and high strain rates. In those circumstances, dislocations are believed to be the main cause of plastic relaxation in crystalline solids. Direct simulation of dislocations as the dynamic agents of plastic relaxation in those cases remains a challenge. DDP, where dislocations are modelled as discrete discontinuities in elastic continuum media, is often unable to adequately simulate plastic relaxation because it treats dislocation motion quasi-statically, thus neglecting the time-dependent nature of the elastic fields and assuming that they instantaneously acquire the shape and magnitude predicted by elastostatics. Under shock loading, this assumption leads to several artefacts that can only be overcome with a fully time-dependent formulation of the elastic fields. In this talk one of such formulations for the creation, annihilation and arbitrary motion of straight edge dislocations will be presented. These solutions are applied in a two-dimensional model of time-dependent plastic relaxation under shock loading, and some relevant results will be presented. EPSRC CDT in Theory and Simulation of Materials

  12. Reducing dislocations in semiconductors utilizing repeated thermal cycling during multistage epitaxial growth

    DOEpatents

    Fan, John C. C.; Tsaur, Bor-Yeu; Gale, Ronald P.; Davis, Frances M.

    1986-12-30

    Dislocation densities are reduced in growing semiconductors from the vapor phase by employing a technique of interrupting growth, cooling the layer so far deposited, and then repeating the process until a high quality active top layer is achieved. The method of interrupted growth, coupled with thermal cycling, permits dislocations to be trapped in the initial stages of epitaxial growth.

  13. Reducing dislocations in semiconductors utilizing repeated thermal cycling during multistage epitaxial growth

    DOEpatents

    Fan, John C. C.; Tsaur, Bor-Yeu; Gale, Ronald P.; Davis, Frances M.

    1992-02-25

    Dislocation densities are reduced in growing semiconductors from the vapor phase by employing a technique of interrupting growth, cooling the layer so far deposited, and then repeating the process until a high quality active top layer is achieved. The method of interrupted growth, coupled with thermal cycling, permits dislocations to be trapped in the initial stages of epitaxial growth.

  14. 20 CFR 663.300 - What are training services for adults and dislocated workers?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What are training services for adults and..., DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Training Services § 663.300 What are training services for adults and dislocated workers? Training...

  15. 20 CFR 663.800 - What are supportive services for adults and dislocated workers?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What are supportive services for adults and..., DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Supportive Services § 663.800 What are supportive services for adults and dislocated workers?...

  16. 20 CFR 663.150 - What core services must be provided to adults and dislocated workers?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false What core services must be provided to adults... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop...

  17. 20 CFR 663.300 - What are training services for adults and dislocated workers?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false What are training services for adults and..., DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Training Services § 663.300 What are training services for adults and dislocated...

  18. 20 CFR 663.150 - What core services must be provided to adults and dislocated workers?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What core services must be provided to adults... ADMINISTRATION, DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop Delivery System §...

  19. 20 CFR 663.150 - What core services must be provided to adults and dislocated workers?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false What core services must be provided to adults... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop...

  20. 20 CFR 663.300 - What are training services for adults and dislocated workers?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false What are training services for adults and..., DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Training Services § 663.300 What are training services for adults and dislocated...

  1. 20 CFR 663.800 - What are supportive services for adults and dislocated workers?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false What are supportive services for adults and..., DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Supportive Services § 663.800 What are supportive services for adults and dislocated...

  2. 20 CFR 663.800 - What are supportive services for adults and dislocated workers?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false What are supportive services for adults and..., DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Supportive Services § 663.800 What are supportive services for adults and dislocated...

  3. 20 CFR 663.800 - What are supportive services for adults and dislocated workers?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What are supportive services for adults and..., DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Supportive Services § 663.800 What are supportive services for adults and dislocated workers?...

  4. 20 CFR 663.150 - What core services must be provided to adults and dislocated workers?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false What core services must be provided to adults... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop...

  5. Dislocation subgrain structures and modeling the plastic hardening of metallic single crystals

    NASA Astrophysics Data System (ADS)

    Hansen, B. L.; Bronkhorst, C. A.; Ortiz, M.

    2010-07-01

    A single crystal plasticity theory for insertion into finite element simulation is formulated using sequential laminates to model subgrain dislocation structures. It is known that local models do not adequately account for latent hardening, as latent hardening is not only a material property, but a nonlocal property (e.g. grain size and shape). The addition of the nonlocal energy from the formation of subgrain structure dislocation walls and the boundary layer misfits provide both latent and self-hardening of a crystal slip. Latent hardening occurs as the formation of new dislocation walls limits motion of new mobile dislocations, thus hardening future slip systems. Self-hardening is accomplished by an evolution of the subgrain structure length scale. The substructure length scale is computed by minimizing the nonlocal energy. The minimization of the nonlocal energy is a competition between the dislocation wall energy and the boundary layer energies. The nonlocal terms are also directly minimized within the subgrain model as they affect deformation response. The geometrical relationship between the dislocation walls and slip planes affecting the dislocation mean free path is taken into account, giving a first-order approximation to shape effects. A coplanar slip model is developed due to requirements while modeling the subgrain structure. This subgrain structure plasticity model is noteworthy as all material parameters are experimentally determined rather than fit. The model also has an inherit path dependence due to the formation of the subgrain structures. Validation is accomplished by comparison with single crystal tension test results.

  6. Strength of metals under vibrations - dislocation-density-function dynamics simulations

    NASA Astrophysics Data System (ADS)

    Cheng, B.; Leung, H. S.; Ngan, A. H. W.

    2015-06-01

    It is well known that ultrasonic vibration can soften metals, and this phenomenon has been widely exploited in industrial applications concerning metal forming and bonding. Recent experiments show that the simultaneous application of oscillatory stresses from audible to ultrasonic frequency ranges can lead to not only softening but also significant dislocation annihilation and subgrain formation in metal samples from the nano- to macro-size range. These findings indicate that the existing understanding of ultrasound softening - that the vibrations either impose additional stress waves to augment the quasi-static applied load, or cause heating of the metal, whereas the metal's intrinsic deformation resistance or mechanism remains unaltered - is far from complete. To understand the softening and the associated enhanced subgrain formation and dislocation annihilation, a new simulator based on the dynamics of dislocation-density functions is employed. This new simulator considers the flux, production and annihilation, as well as the Taylor and elastic interactions between dislocation densities. Softening during vibrations as well as enhanced cell formation is predicted. The simulations reveal the main mechanism for subcell formation under oscillatory loadings to be the enhanced elimination of statistically stored dislocations (SSDs) by the oscillatory stress, leaving behind geometrically necessary dislocations with low Schmid factors which then form the subgrain walls. The oscillatory stress helps the depletion of the SSDs, because the chance for them to meet up and annihilate is increased with reversals of dislocation motions. This is the first simulation effort to successfully predict the cell formation phenomenon under vibratory loadings.

  7. Mechanism and energetics of 〈c + a〉 dislocation cross-slip in hcp metals

    PubMed Central

    Wu, Zhaoxuan; Curtin, W. A.

    2016-01-01

    Hexagonal close-packed (hcp) metals such as Mg, Ti, and Zr are lightweight and/or durable metals with critical structural applications in the automotive (Mg), aerospace (Ti), and nuclear (Zr) industries. The hcp structure, however, brings significant complications in the mechanisms of plastic deformation, strengthening, and ductility, and these complications pose significant challenges in advancing the science and engineering of these metals. In hcp metals, generalized plasticity requires the activation of slip on pyramidal planes, but the structure, motion, and cross-slip of the associated 〈c+a〉 dislocations are not well established even though they determine ductility and influence strengthening. Here, atomistic simulations in Mg reveal the unusual mechanism of 〈c+a〉 dislocation cross-slip between pyramidal I and II planes, which occurs by cross-slip of the individual partial dislocations. The energy barrier is controlled by a fundamental step/jog energy and the near-core energy difference between pyramidal 〈c+a〉 dislocations. The near-core energy difference can be changed by nonglide stresses, leading to tension–compression asymmetry and even a switch in absolute stability from one glide plane to the other, both features observed experimentally in Mg, Ti, and their alloys. The unique cross-slip mechanism is governed by common features of the generalized stacking fault energy surfaces of hcp pyramidal planes and is thus expected to be generic to all hcp metals. An analytical model is developed to predict the cross-slip barrier as a function of the near-core energy difference and applied stresses and quantifies the controlling features of cross-slip and pyramidal I/II stability across the family of hcp metals. PMID:27647908

  8. Disclinations, dislocations, and continuous defects: A reappraisal

    NASA Astrophysics Data System (ADS)

    Kleman, M.; Friedel, J.

    2008-01-01

    Disclinations were first observed in mesomorphic phases. They were later found relevant to a number of ill-ordered condensed-matter media involving continuous symmetries or frustrated order. Disclinations also appear in polycrystals at the edges of grain boundaries; but they are of limited interest in solid single crystals, where they can move only by diffusion climb and, owing to their large elastic stresses, mostly appear in close pairs of opposite signs. The relaxation mechanisms associated with a disclination in its creation, motion, and change of shape involve an interplay with continuous or quantized dislocations and/or continuous disclinations. These are attached to the disclinations or are akin to Nye’s dislocation densities, which are particularly well suited for consideration here. The notion of an extended Volterra process is introduced, which takes these relaxation processes into account and covers different situations where this interplay takes place. These concepts are illustrated by a variety of applications in amorphous solids, mesomorphic phases, and frustrated media in their curved habit space. These often involve disclination networks with specific node conditions. The powerful topological theory of line defects considers only defects stable against any change of boundary conditions or relaxation processes compatible with the structure considered. It can be seen as a simplified case of the approach considered here, particularly suited for media of high plasticity or/and complex structures. It cannot analyze the dynamical properties of defects nor the elastic constants involved in their static properties; topological stability cannot guarantee energetic stability, and sometimes cannot distinguish finer details of the structure of defects.

  9. Relationship between active cervical range of motion and flexion-relaxation ratio in asymptomatic computer workers.

    PubMed

    Yoo, Won-Gyu; Park, Se-Yeon; Lee, Mi-Ra

    2011-01-01

    A high prevalence and incidence of neck and shoulder pain is present in the working population, especially sedentary workers. Recent findings have indicated that the flexion-relaxation (FR) ratio in the cervical erector spinae (CES) muscles might be a significant criteria of neuromuscular impairment and function. Additionally, the active cervical range of motion (ROM) is frequently used for discriminating between individuals with pain and those who are asymptomatic. The purpose of the present study was to examine the relationship between the active cervical ROM and the FR ratio in a sample of regular visual display terminal (VDT) workers. In total, 20 asymptomatic male VDT workers were recruited. Active cervical ROM was measured by a cervical ROM (CROM) instrument. Surface electromyography (EMG) was used to collect myoelectrical signals from the CES muscles, and the FR ratio was calculated for statistical analysis. Pearson correlation coefficients were used to quantify the linear relationship between the active cervical ROM and the FR ratio. The values obtained for the FR ratio in the right CES muscles correlated significantly with the active cervical ROM measured in flexion (r=0.73, p<0.01), left lateral flexion (r=0.64, p<0.01), and left rotation (r=0.60, p<0.01). Flexion (r=0.74, p<0.01) and right lateral flexion (r=0.61, p<0.01) positively correlated with the left FR ratio. Extension and right rotation showed either a very weak or no correlation with the mean value of the right and left FR ratio. Our findings suggested that the cervical FR ratio had a positive correlation with cervical movements, and that changes of the activation patterns in CES demonstrated as cervical FR ratio are associated with reduction of the cervical range of motion including flexion and lateral flexion. In addition, muscular dysfunction of the CES could occur in regular computer workers prior to occurrence of pain; this means that the FR ratio could be used to evaluate the potential

  10. Dopamine Activation Preserves Visual Motion Perception Despite Noise Interference of Human V5/MT

    PubMed Central

    Yousif, Nada; Fu, Richard Z.; Abou-El-Ela Bourquin, Bilal; Bhrugubanda, Vamsee; Schultz, Simon R.

    2016-01-01

    When processing sensory signals, the brain must account for noise, both noise in the stimulus and that arising from within its own neuronal circuitry. Dopamine receptor activation is known to enhance both visual cortical signal-to-noise-ratio (SNR) and visual perceptual performance; however, it is unknown whether these two dopamine-mediated phenomena are linked. To assess this, we used single-pulse transcranial magnetic stimulation (TMS) applied to visual cortical area V5/MT to reduce the SNR focally and thus disrupt visual motion discrimination performance to visual targets located in the same retinotopic space. The hypothesis that dopamine receptor activation enhances perceptual performance by improving cortical SNR predicts that dopamine activation should antagonize TMS disruption of visual perception. We assessed this hypothesis via a double-blinded, placebo-controlled study with the dopamine receptor agonists cabergoline (a D2 agonist) and pergolide (a D1/D2 agonist) administered in separate sessions (separated by 2 weeks) in 12 healthy volunteers in a William's balance-order design. TMS degraded visual motion perception when the evoked phosphene and the visual stimulus overlapped in time and space in the placebo and cabergoline conditions, but not in the pergolide condition. This suggests that dopamine D1 or combined D1 and D2 receptor activation enhances cortical SNR to boost perceptual performance. That local visual cortical excitability was unchanged across drug conditions suggests the involvement of long-range intracortical interactions in this D1 effect. Because increased internal noise (and thus lower SNR) can impair visual perceptual learning, improving visual cortical SNR via D1/D2 agonist therapy may be useful in boosting rehabilitation programs involving visual perceptual training. SIGNIFICANCE STATEMENT In this study, we address the issue of whether dopamine activation improves visual perception despite increasing sensory noise in the visual cortex

  11. Migration of a Broken Kirschner Wire after Surgical Treatment of Acromioclavicular Joint Dislocation

    PubMed Central

    Batın, Sabri; Gürbüz, Kaan; Uzun, Erdal; Kayalı, Cemil; Altay, Taşkın

    2016-01-01

    Kirschner wire (K-wire) is one of the commonly used implants in orthopaedics practice. Migration of the wire is one of the most frequently reported complications after fixation by the K-wire. In particular, it has been reported that a greater range of motion in the shoulder, negative intrathoracic pressure associated with respiration, gravitational force, and muscular activities may cause migration from the upper extremities. In general, thin and long foreign bodies with smooth surfaces that are localized within the tendon sheath and at an upper extremity can migrate more readily and can reach longer distances. Here, we present a patient with long-term migration of a broken K-wire who underwent fixation for acromioclavicular joint dislocation 5 years ago. PMID:28058127

  12. Dynamics of hydrogen, oxygen, and dislocations in yttrium by acoustic spectroscopy

    SciTech Connect

    Cannelli, G.; Cantelli, R.; Cordero, F.; Trequattrini, F.

    1997-06-01

    The nature of the numerous thermally activated processes occurring in yttrium has been investigated by acoustic spectroscopy in polycrystalline samples. The measurements have been carried out between 1.1 and 600 K in the kHz range, varying the concentration of interstitial hydrogen and oxygen in annealed and deformed samples. Four processes have been observed, besides the main dissipation peak around room temperature due to the formation or dissolution of H pairs and that at liquid He temperature attributed to H tunneling. The processes below 300 K have been interpreted in terms of the motion of interstitial hydrogen trapped by oxygen or dragged by dislocations, while the large relaxation detected around 450 K has been attributed to the hopping of oxygen in a solid solution. {copyright} {ital 1997} {ital The American Physical Society}

  13. Aftershock activity of the 2015 Gorkha, Nepal, earthquake determined using the Kathmandu strong motion seismographic array

    NASA Astrophysics Data System (ADS)

    Ichiyanagi, Masayoshi; Takai, Nobuo; Shigefuji, Michiko; Bijukchhen, Subeg; Sasatani, Tsutomu; Rajaure, Sudhir; Dhital, Megh Raj; Takahashi, Hiroaki

    2016-02-01

    The characteristics of aftershock activity of the 2015 Gorkha, Nepal, earthquake (Mw 7.8) were evaluated. The mainshock and aftershocks were recorded continuously by the international Kathmandu strong motion seismographic array operated by Hokkaido University and Tribhuvan University. Full waveform data without saturation for all events enabled us to clarify aftershock locations and decay characteristics. The aftershock distribution was determined using the estimated local velocity structure. The hypocenter distribution in the Kathmandu metropolitan region was well determined and indicated earthquakes located shallower than 12 km depth, suggesting that aftershocks occurred at depths shallower than the Himalayan main thrust fault. Although numerical investigation suggested less resolution for the depth component, the regional aftershock epicentral distribution of the entire focal region clearly indicated earthquakes concentrated in the eastern margin of the major slip region of the mainshock. The calculated modified Omori law's p value of 1.35 suggests rapid aftershock decay and a possible high temperature structure in the aftershock region.

  14. X-RAY ACTIVITY PHASED WITH PLANET MOTION IN HD 189733?

    SciTech Connect

    Pillitteri, I.; Guenther, H. M.; Wolk, S. J.; Kashyap, V. L.; Cohen, O.

    2011-11-01

    We report on the follow-up XMM-Newton observation of the planet-hosting star HD 189733 we obtained in 2011 April. We observe a flare just after the secondary transit of the hot Jupiter. This event shares the same phase and many of the characteristics of the flare we observed in 2009. We suggest that a systematic interaction between planet and stellar magnetic fields when the planet passes close to active regions on the star can lead to periodic variability phased with planetary motion. By means of high-resolution X-ray spectroscopy with the Reflection Grating Spectrometer on board XMM-Newton, we determine that the corona of this star is unusually dense.

  15. Recommended survey designs for occupancy modelling using motion-activated cameras: insights from empirical wildlife data.

    PubMed

    Shannon, Graeme; Lewis, Jesse S; Gerber, Brian D

    2014-01-01

    Motion-activated cameras are a versatile tool that wildlife biologists can use for sampling wild animal populations to estimate species occurrence. Occupancy modelling provides a flexible framework for the analysis of these data; explicitly recognizing that given a species occupies an area the probability of detecting it is often less than one. Despite the number of studies using camera data in an occupancy framework, there is only limited guidance from the scientific literature about survey design trade-offs when using motion-activated cameras. A fuller understanding of these trade-offs will allow researchers to maximise available resources and determine whether the objectives of a monitoring program or research study are achievable. We use an empirical dataset collected from 40 cameras deployed across 160 km(2) of the Western Slope of Colorado, USA to explore how survey effort (number of cameras deployed and the length of sampling period) affects the accuracy and precision (i.e., error) of the occupancy estimate for ten mammal and three virtual species. We do this using a simulation approach where species occupancy and detection parameters were informed by empirical data from motion-activated cameras. A total of 54 survey designs were considered by varying combinations of sites (10-120 cameras) and occasions (20-120 survey days). Our findings demonstrate that increasing total sampling effort generally decreases error associated with the occupancy estimate, but changing the number of sites or sampling duration can have very different results, depending on whether a species is spatially common or rare (occupancy = ψ) and easy or hard to detect when available (detection probability = p). For rare species with a low probability of detection (i.e., raccoon and spotted skunk) the required survey effort includes maximizing the number of sites and the number of survey days, often to a level that may be logistically unrealistic for many studies. For common species with

  16. Active range of motion outcomes after reconstruction of burned wrist and hand deformities.

    PubMed

    Afifi, Ahmed M; Mahboub, Tarek A; Ibrahim Fouad, Amr; Azari, Kodi; Khalil, Haitham H; McCarthy, James E

    2016-06-01

    This works aim is to evaluate the efficacy of skin grafts and flaps in reconstruction of post-burn hand and wrist deformities. A prospective study of 57 burn contractures of the wrist and dorsum of the hand was performed. Flaps were used only if there was a non-vascularized structure after contracture release, otherwise a skin graft was used. Active range of motion (ROM) was used to assess hand function. The extension deformity cohort uniformly underwent skin graft following contracture release with a mean improvement of 71 degrees (p<0.0001). The flexion deformity cohort was treated with either skin grafts (8 patients) or flaps (9 patients) with a mean improvement of 44 degrees (p<0.0001). Skin grafts suffice for dorsal hand contractures to restore functional wrist ROM. For flexion contractures, flaps were more likely for contractures >6 months. Early release of burn contracture is advisable to avoid deep structure contracture.

  17. Thermal activation of 'allosteric-like' large-scale motions in a eukaryotic Lactate Dehydrogenase.

    PubMed

    Katava, Marina; Maccarini, Marco; Villain, Guillaume; Paciaroni, Alessandro; Sztucki, Michael; Ivanova, Oxana; Madern, Dominique; Sterpone, Fabio

    2017-01-23

    Conformational changes occurring during the enzymatic turnover are essential for the regulation of protein functionality. Individuating the protein regions involved in these changes and the associated mechanical modes is still a challenge at both experimental and theoretical levels. We present here a detailed investigation of the thermal activation of the functional modes and conformational changes in a eukaryotic Lactate Dehydrogenase enzyme (LDH). Neutron Spin Echo spectroscopy and Molecular Dynamics simulations were used to uncover the characteristic length- and timescales of the LDH nanoscale motions in the apo state. The modes involving the catalytic loop and the mobile region around the binding site are activated at room temperature, and match the allosteric reorganisation of bacterial LDHs. In a temperature window of about 15 degrees, these modes render the protein flexible enough and capable of reorganising the active site toward reactive configurations. On the other hand an excess of thermal excitation leads to the distortion of the protein matrix with a possible anti-catalytic effect. Thus, the temperature activates eukaryotic LDHs via the same conformational changes observed in the allosteric bacterial LDHs. Our investigation provides an extended molecular picture of eukaryotic LDH's conformational landscape that enriches the static view based on crystallographic studies alone.

  18. Thermal activation of ‘allosteric-like’ large-scale motions in a eukaryotic Lactate Dehydrogenase

    PubMed Central

    Katava, Marina; Maccarini, Marco; Villain, Guillaume; Paciaroni, Alessandro; Sztucki, Michael; Ivanova, Oxana; Madern, Dominique; Sterpone, Fabio

    2017-01-01

    Conformational changes occurring during the enzymatic turnover are essential for the regulation of protein functionality. Individuating the protein regions involved in these changes and the associated mechanical modes is still a challenge at both experimental and theoretical levels. We present here a detailed investigation of the thermal activation of the functional modes and conformational changes in a eukaryotic Lactate Dehydrogenase enzyme (LDH). Neutron Spin Echo spectroscopy and Molecular Dynamics simulations were used to uncover the characteristic length- and timescales of the LDH nanoscale motions in the apo state. The modes involving the catalytic loop and the mobile region around the binding site are activated at room temperature, and match the allosteric reorganisation of bacterial LDHs. In a temperature window of about 15 degrees, these modes render the protein flexible enough and capable of reorganising the active site toward reactive configurations. On the other hand an excess of thermal excitation leads to the distortion of the protein matrix with a possible anti-catalytic effect. Thus, the temperature activates eukaryotic LDHs via the same conformational changes observed in the allosteric bacterial LDHs. Our investigation provides an extended molecular picture of eukaryotic LDH’s conformational landscape that enriches the static view based on crystallographic studies alone. PMID:28112231

  19. Management of Acute Patellar Dislocation: A Case Report

    PubMed Central

    Enix, Dennis E.; Sudkamp, Kasey; Scali, Frank; Keating, Robbyn; Welk, Aaron

    2015-01-01

    Objective The purpose of this case study is to describe the evaluation and management of patellar dislocations and the different approaches used from providers in different countries. Clinical Features An individual dislocated her left patella while traveling abroad and received subsequent care in Thailand, China, and the United States. Intervention and Outcome Nonoperative treatment protocols including manual closed reduction of the patella, casting of the leg, and rehabilitation exercises were employed. Conclusion Receipt of care when abroad can be challenging. The patient’s knee range of motion and pain continued to improve when she was diligent about performing the home exercise program. This case highlights the importance of a thorough examination, a proper regimen of care, and patient counseling to ensure a full recovery and minimize the chance of re-injury. PMID:26778935

  20. Paediatric biepicondylar elbow fracture dislocation - a case report

    PubMed Central

    2010-01-01

    Paediatric elbow biepicondylar fracture dislocations are very rare injuries and have been only published in two independent case reviews. We report a case of 13 years old boy, who sustained this unusual injury after a fall on outstretched hand resulting in an unstable elbow fracture dislocation. Closed reduction was performed followed by delayed ORIF (Open Reduction and Internal Fixation) with K wires. Final follow-up at 14 weeks revealed a stable elbow and satisfactory function with full supination-pronation, range of motion from 0°-120° of flexion and normal muscle strength. This type of injury needs operative treatment and fixation to restore stability and return to normal or near normal elbow function. The method of fixation (screws or K wires) may depend on size and number of fracture fragments. PMID:20950437

  1. Paediatric biepicondylar elbow fracture dislocation - a case report.

    PubMed

    Meta, Mahendrakumar; Miller, David

    2010-10-15

    Paediatric elbow biepicondylar fracture dislocations are very rare injuries and have been only published in two independent case reviews. We report a case of 13 years old boy, who sustained this unusual injury after a fall on outstretched hand resulting in an unstable elbow fracture dislocation. Closed reduction was performed followed by delayed ORIF (Open Reduction and Internal Fixation) with K wires. Final follow-up at 14 weeks revealed a stable elbow and satisfactory function with full supination-pronation, range of motion from 0°-120° of flexion and normal muscle strength. This type of injury needs operative treatment and fixation to restore stability and return to normal or near normal elbow function. The method of fixation (screws or K wires) may depend on size and number of fracture fragments.

  2. Predicting plasticity with soft vibrational modes: from dislocations to glasses.

    PubMed

    Rottler, Jörg; Schoenholz, Samuel S; Liu, Andrea J

    2014-04-01

    We show that quasilocalized low-frequency modes in the vibrational spectrum can be used to construct soft spots, or regions vulnerable to rearrangement, which serve as a universal tool for the identification of flow defects in solids. We show that soft spots not only encode spatial information, via their location, but also directional information, via directors for particles within each soft spot. Single crystals with isolated dislocations exhibit low-frequency phonon modes that localize at the core, and their polarization pattern predicts the motion of atoms during elementary dislocation glide in two and three dimensions in exquisite detail. Even in polycrystals and disordered solids, we find that the directors associated with particles in soft spots are highly correlated with the direction of particle displacements in rearrangements.

  3. Scale dependence of interface dislocation storage governing the frictional sliding of single asperities

    NASA Astrophysics Data System (ADS)

    Gao, Zhiwen; Zhang, Wei; Gao, Yanfei

    2016-08-01

    Single-asperity friction tests have found a critical dependence of friction stress on the nanoscale contact size, as successfully explained by the nucleation of interface dislocations as opposed to concurrent sliding of all the interfacial atoms in contact. Modeling and simulation results, however, vary when the motion and interactions of multiple dislocations dominate at a larger scale regime. A Rice-Peierls framework is employed to investigate the multiplication and storage of interface dislocations, and the critical conditions for dislocation initiation and steady-state gliding are determined numerically. Our findings identify the key parameters that govern various friction mechanisms in the Hurtado-Kim and Deshpande-Needleman-van der Giessen models.

  4. LDA Calculations of Dislocation Mobility in Fe & Mo

    SciTech Connect

    Murray S. Daw; Daryl Chrzan

    2007-07-13

    This Project was a collaborative effort between Murray Daw (Clemson) and Daryl Chrzan (LBNL/UCB). The main goal of this project was to accomplish the first-ever first principles calculations of the structure of the screw dislocation in Fe and to study the effects of stress and magnetization. The calculations were completed and reported at conferences. During the work on this project, the collaboration also tackled an important related question - the effect of periodic boundary conditions in dislocation dalculations on the stress-state. The solution to the problem for this particular case has had much broader impact than the specific results of the calculation in iron. This technique was published in Computational Materials Science, and has been applied recently to the study of dislocations on nanotubes (submitted). Finally, the collaboration considered the application of scaling formalism to a simple problem of dislocation emission from a single, stress-actived source. The result is a very elegant, compact solution to a simple textbook problem, which was published in Phil Mag. This result lays the foundation for continuing work on applying scaling formalism to dynamics of more complex dislocation problems.

  5. Spinal Motion and Muscle Activity during Active Trunk Movements – Comparing Sheep and Humans Adopting Upright and Quadrupedal Postures

    PubMed Central

    Valentin, Stephanie; Licka, Theresia F.

    2016-01-01

    Sheep are used as models for the human spine, yet comparative in vivo data necessary for validation is limited. The purpose of this study was therefore to compare spinal motion and trunk muscle activity during active trunk movements in sheep and humans. Three-dimensional kinematic data as well as surface electromyography (sEMG) of spinal flexion and extension was compared in twenty-four humans in upright (UR) and 4-point kneeling (KN) postures and in 17 Austrian mountain sheep. Kinematic markers were attached over the sacrum, posterior iliac spines, and spinous and transverse processes of T5, T8, T11, L2 and L5 in humans and over the sacrum, tuber sacrale, T5, T8, T12, L3 and L7 in sheep. The activity of erector spinae (ES), rectus abdominis (RA), obliquus externus (OE), and obliquus internus (OI) were collected. Maximum sEMG (MOE) was identified for each muscle and trial, and reported as a percentage (MOE%) of the overall maximally observed sEMG from all trials. Spinal range of motion was significantly smaller in sheep compared to humans (UR / KN) during flexion (sheep: 6–11°; humans 12–34°) and extension (sheep: 4°; humans: 11–17°). During extension, MOE% of ES was greater in sheep (median: 77.37%) than UR humans (24.89%), and MOE% of OE and OI was greater in sheep (OE 76.20%; OI 67.31%) than KN humans (OE 21.45%; OI 19.34%), while MOE% of RA was lower in sheep (21.71%) than UR humans (82.69%). During flexion, MOE% of RA was greater in sheep (83.09%) than humans (KN 47.42%; UR 41.38%), and MOE% of ES in sheep (45.73%) was greater than KN humans (14.45%), but smaller than UR humans (72.36%). The differences in human and sheep spinal motion and muscle activity suggest that caution is warranted when ovine data are used to infer human spine biomechanics. PMID:26741136

  6. Evolution of geometrically necessary dislocation density from computational dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Guruprasad, P. J.; Benzerga, A. A.

    2009-07-01

    This paper presents a method for calculating GND densities in dislocation dynamics simulations. Evolution of suitably defined averages of GND density as well as maps showing the spatial nonuniform distribution of GNDs are analyzed under uniaxial loading. Focus is laid on the resolution dependence of the very notion of GND density, its dependence upon physical dimensions of plastically deformed specimens and its sensitivity to initial conditions. Acknowledgments Support from the National Science Foundation (CMMI-0748187) is gratefully acknowledged.

  7. Solute drag on perfect and extended dislocations

    NASA Astrophysics Data System (ADS)

    Sills, R. B.; Cai, W.

    2016-04-01

    The drag force exerted on a moving dislocation by a field of mobile solutes is studied in the steady state. The drag force is numerically calculated as a function of the dislocation velocity for both perfect and extended dislocations. The sensitivity of the non-dimensionalized force-velocity curve to the various controlling parameters is assessed, and an approximate analytical force-velocity expression is given. A non-dimensional parameter S characterizing the strength of the solute-dislocation interaction, the background solute fraction ?, and the dislocation character angle ?, are found to have the strongest influence on the force-velocity curve. Within the model considered here, a perfect screw dislocation experiences no solute drag, but an extended screw dislocation experiences a non-zero drag force that is about 10 to 30% of the drag on an extended edge dislocation. The solutes can change the spacing between the Shockley partials in both stationary and moving extended dislocations, even when the stacking fault energy remains unaltered. Under certain conditions, the solutes destabilize an extended dislocation by either collapsing it into a perfect dislocation or causing the partials to separate unboundedly. It is proposed that the latter instability may lead to the formation of large faulted areas and deformation twins in low stacking fault energy materials containing solutes, consistent with experimental observations of copper and stainless steel containing hydrogen.

  8. Theory of interacting dislocations on cylinders

    NASA Astrophysics Data System (ADS)

    Amir, Ariel; Paulose, Jayson; Nelson, David R.

    2013-04-01

    We study the mechanics and statistical physics of dislocations interacting on cylinders, motivated by the elongation of rod-shaped bacterial cell walls and cylindrical assemblies of colloidal particles subject to external stresses. The interaction energy and forces between dislocations are solved analytically, and analyzed asymptotically. The results of continuum elastic theory agree well with numerical simulations on finite lattices even for relatively small systems. Isolated dislocations on a cylinder act like grain boundaries. With colloidal crystals in mind, we show that saddle points are created by a Peach-Koehler force on the dislocations in the circumferential direction, causing dislocation pairs to unbind. The thermal nucleation rate of dislocation unbinding is calculated, for an arbitrary mobility tensor and external stress, including the case of a twist-induced Peach-Koehler force along the cylinder axis. Surprisingly rich phenomena arise for dislocations on cylinders, despite their vanishing Gaussian curvature.

  9. Dynamic analysis of astronaut motions in microgravity: Applications for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Newman, Dava J.

    1995-01-01

    Simulations of astronaut motions during extravehicular activity (EVA) tasks were performed using computational multibody dynamics methods. The application of computational dynamic simulation to EVA was prompted by the realization that physical microgravity simulators have inherent limitations: viscosity in neutral buoyancy tanks; friction in air bearing floors; short duration for parabolic aircraft; and inertia and friction in suspension mechanisms. These limitations can mask critical dynamic effects that later cause problems during actual EVA's performed in space. Methods of formulating dynamic equations of motion for multibody systems are discussed with emphasis on Kane's method, which forms the basis of the simulations presented herein. Formulation of the equations of motion for a two degree of freedom arm is presented as an explicit example. The four basic steps in creating the computational simulations were: system description, in which the geometry, mass properties, and interconnection of system bodies are input to the computer; equation formulation based on the system description; inverse kinematics, in which the angles, velocities, and accelerations of joints are calculated for prescribed motion of the endpoint (hand) of the arm; and inverse dynamics, in which joint torques are calculated for a prescribed motion. A graphical animation and data plotting program, EVADS (EVA Dynamics Simulation), was developed and used to analyze the results of the simulations that were performed on a Silicon Graphics Indigo2 computer. EVA tasks involving manipulation of the Spartan 204 free flying astronomy payload, as performed during Space Shuttle mission STS-63 (February 1995), served as the subject for two dynamic simulations. An EVA crewmember was modeled as a seven segment system with an eighth segment representing the massive payload attached to the hand. For both simulations, the initial configuration of the lower body (trunk, upper leg, and lower leg) was a neutral

  10. Surgical hip dislocation for treatment of cam femoroacetabular impingement

    PubMed Central

    Chaudhary, Milind M; Chaudhary, Ishani M; Vikas, KN; KoKo, Aung; Zaw, Than; Siddhartha, A

    2015-01-01

    Background: Cam femoroacetabular impingement is caused by a misshapen femoral head with a reduced head neck offset, commonly in the anterolateral quadrant. Friction in flexion, adduction and internal rotation causes limitation of the hip movements and pain progressively leading to labral and chondral damage and osteoarthritis. Surgical hip dislocation described by Ganz permits full exposure of the hip without damaging its blood supply. An osteochondroplasty removes the bump at the femoral head neck junction to recreate the offset for impingement free movement. Materials and Methods: Sixteen patients underwent surgery with surgical hip dislocation for the treatment of cam femoroacetabular impingement by open osteochondroplasty over last 6 years. Eight patients suffered from sequelae of avascular necrosis (AVN). Three had a painful dysplastic hip. Two had sequelae of Perthes disease. Three had combined cam and pincer impingement caused by retroversion of acetabulum. All patients were operated by the trochanteric flip osteotomy with attachments of gluteus medius and vastus lateralis, dissection was between the piriformis and gluteus minimus preserving the external rotators. Z-shaped capsular incision and dislocation of the hip was done in external rotation. Three cases also had subtrochanteric osteotomy. Two cases of AVN also had an intraarticular femoral head reshaping osteotomy. Results: Goals of treatment were achieved in all patients. No AVN was detected after a 6 month followup. There were no trochanteric nonunions. Hip range of motion improved in all and Harris hip score improved significantly in 15 of 16 cases. Mean alpha angle reduced from 86.13° (range 66°–108°) to 46.35° (range 39°–58°). Conclusion: Cam femoroacetabular Impingement causing pain and limitation of hip movements was treated by open osteochondroplasty after surgical hip dislocation. This reduced pain, improved hip motion and gave good to excellent results in the short term. PMID

  11. Comparison of electromyographic activity and range of neck motion in violin students with and without neck pain during playing.

    PubMed

    Park, Kyue-nam; Kwon, Oh-yun; Ha, Sung-min; Kim, Su-jung; Choi, Hyun-jung; Weon, Jong-hyuck

    2012-12-01

    Neck pain is common in violin students during a musical performance. The purpose of this study was to compare electromyographic (EMG) activity in superficial neck muscles with neck motion when playing the violin as well as neck range of motion (ROM) at rest, between violin students with and without neck pain. Nine violin students with neck pain and nine age- and gender-matched subjects without neck pain were recruited. Muscle activity of the bilateral upper trapezius, sternocleidomastoid, and superficial cervical extensor muscles was measured using surface EMG. Kinematic data on neck motion while playing and active neck ROM were also measured using a three-dimensional motion analysis system. Independent t-tests were used to compare EMG activity with kinematic data between groups. These analyses revealed that while playing, both the angle of left lateral bending and leftward rotation of the cervical spine were significantly greater in the neck pain group than among those without neck pain. Similarly, EMG activity of the left upper trapezius, both cervical extensors, and both sternocleidomastoid muscles were significantly greater in the neck pain group. The active ROM of left axial rotation was significantly lower in the neck pain group. These results suggest that an asymmetric playing posture and the associated increased muscle activity as well as decreased neck axial rotation may contribute to neck pain in violin students.

  12. Irreducible anterior dislocation of the elbow without associated fracture.

    PubMed

    Gyawali, Gopal Prasad; Pokharel, Bishnu; Pokharel, Rohit Kumar

    2013-01-01

    Anterior dislocation of the elbow joint is a rare entity and is usually associated with injuries to surrounding bony and soft tissues. Simple dislocation of the joint is managed conservatively. An eight years old girl had traumatic anterior dislocation of the elbow joint with intact distal neurovascular status. X-rays showed no associated bony injury. Close reductions failed. Per operative findings showed no intra-articular fracture and the radial head was button holed into the anterior joint capsule. Reduction was achieved openly and maintained in a posterior slab for four weeks. Active and assisted mobilization started after removal of the slab. At ten month follow-up there was almost full range of movement of the joint.

  13. Interaction between phase transformations and dislocations at the nanoscale. Part 1. General phase field approach

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; Javanbakht, Mahdi

    2015-09-01

    Thermodynamically consistent, three-dimensional (3D) phase field approach (PFA) for coupled multivariant martensitic transformations (PTs), including cyclic PTs, variant-variant transformations (i.e., twinning), and dislocation evolution is developed at large strains. One of our key points is in the justification of the multiplicative decomposition of the deformation gradient into elastic, transformational, and plastic parts. The plastic part includes four mechanisms: dislocation motion in martensite along slip systems of martensite and slip systems of austenite inherited during PT and dislocation motion in austenite along slip systems of austenite and slip systems of martensite inherited during reverse PT. The plastic part of the velocity gradient for all these mechanisms is defined in the crystal lattice of the austenite utilizing just slip systems of austenite and inherited slip systems of martensite, and just two corresponding types of order parameters. The explicit expressions for the Helmholtz free energy and the transformation and plastic deformation gradients are presented to satisfy the formulated conditions related to homogeneous thermodynamic equilibrium states of crystal lattice and their instabilities. In particular, they result in a constant (i.e., stress- and temperature-independent) transformation deformation gradient and Burgers vectors. Thermodynamic treatment resulted in the determination of the driving forces for change of the order parameters for PTs and dislocations. It also determined the boundary conditions for the order parameters that include a variation of the surface energy during PT and exit of dislocations. Ginzburg-Landau equations for dislocations include variation of properties during PTs, which in turn produces additional contributions from dislocations to the Ginzburg-Landau equations for PTs. A complete system of coupled PFA and mechanics equations is presented. A similar theory can be developed for PFA to dislocations and other

  14. Thermal effects in dislocation theory. II. Shear banding

    NASA Astrophysics Data System (ADS)

    Langer, J. S.

    2017-01-01

    The thermodynamic dislocation theory presented in previous papers is used here to describe shear-banding instabilities. Central ingredients of the theory are a thermodynamically defined effective configurational temperature and a formula for the plastic strain rate determined by thermally activated depinning of entangled dislocations. This plastic strain rate is extremely sensitive to variations of the stress and the ordinary temperature. As a result of this sensitivity, the system undergoes rapid shear banding instabilities when ordinary thermal relaxation is slow. It also undergoes rapid changes from elastic to plastic behaviors at yielding transitions.

  15. Low-energy anterior hip dislocation in a dancer.

    PubMed

    Stein, Drew A; Polatsch, Daniel B; Gidumal, Ramesh; Rose, Donald J

    2002-10-01

    In this article, we report the case of a healthy young woman who sustained an anterior hip dislocation while participating in a noncontact activity (ballet dancing). The patient's atraumatic dislocation failed closed reduction secondary to interposition of anterior capsule and rectus femoris muscle. Open reduction using a Smith-Petersen approach was concentric and stable. Postinjury femoral nerve neuropraxia resolved within 6 weeks. At 2-year follow-up, the patient was without complications of the injury-including avascular necrosis and posttraumatic arthritis. She returned to dancing and is now asymptomatic.

  16. Predicting dislocation climb and creep from explicit atomistic details.

    PubMed

    Kabir, Mukul; Lau, Timothy T; Rodney, David; Yip, Sidney; Van Vliet, Krystyn J

    2010-08-27

    Here we report kinetic Monte Carlo simulations of dislocation climb in heavily deformed, body-centered cubic iron comprising a supersaturation of vacancies. This approach explicitly incorporates the effect of nonlinear vacancy-dislocation interaction on vacancy migration barriers as determined from atomistic calculations, and enables observations of diffusivity and climb over time scales and temperatures relevant to power-law creep. By capturing the underlying microscopic physics, the calculated stress exponents for steady-state creep rates agree quantitatively with the experimentally measured range, and qualitatively with the stress dependence of creep activation energies.

  17. Lateral patellar dislocation: mechanism of disease, radiographic presentation, and management.

    PubMed

    Abramov, Michael; Stock, Harlan

    2013-04-01

    Lateral patellar dislocation is a common injury occurring in young active adults. The mechanism is that of twisting injury to the knee on a planted foot with valgus stress. Several predisposing factors, including femoral trochlear dysplasia, patella alta, and lateralization of the tibial tuberosity, contribute to patellar instability and lateral patellar dislocation. Magnetic resonance (MR) imaging of the knee is the modality of choice to evaluate underlying bone contusion patterns, associated soft-tissue injuries, and additional complex ligamentous and osteochondral injuries, many of which are not apparent on conventional radiographs.

  18. Electromyographic Activity of Scapular Muscle Control in Free-Motion Exercise

    PubMed Central

    Nakamura, Yukiko; Tsuruike, Masaaki; Ellenbecker, Todd S.

    2016-01-01

    Context:  The appropriate resistance intensity to prescribe for shoulder rehabilitative exercise is not completely known. Excessive activation of the deltoid and upper trapezius muscles could be counterproductive for scapulohumeral rhythm during humeral elevation. Objective:  To identify the effects of different exercise intensities on the scapular muscles during a free-motion “robbery” exercise performed in different degrees of shoulder abduction in seated and standing positions. Design:  Descriptive laboratory study. Setting:  Kinesiology Adapted Physical Education Laboratory. Patients or Other Participants:  A total of 15 healthy male college students (age = 20.5 ± 2.2 years, height = 174.5 ± 5.3 cm, mass = 63.8 ± 6.0 kg). Intervention(s):  Participants performed 5 repetitions of a randomized exercise sequence of the robbery exercise in 2 body positions (seated, standing), 2 shoulder-abducted positions (W [20°], 90/90 [90°]) at 3 intensities (0%, 3%, and 7% body weight). Main Outcome Measure(s):  Electromyographic (EMG) activity of the upper trapezius, lower trapezius, serratus anterior, anterior deltoid, and infraspinatus muscles of the upper extremity was collected. All EMG activities were normalized by the maximal voluntary isometric contraction of each corresponding muscle (%). Results:  The serratus anterior, anterior deltoid, and infraspinatus EMG activities were greater at 7% body weight in the seated position compared with the standing position (P < .05). The EMG activities in all 5 muscles were greater in the 90/90 position than in the W position (P < .05). Conclusions:  Scapular muscle activity modulated relative to changes in body posture and resistance intensity. These findings will enable clinicians to prescribe the appropriate level of exercise intensity and positioning during shoulder rehabilitation. PMID:26986055

  19. Detection of (in)activity periods in human body motion using inertial sensors: a comparative study.

    PubMed

    Olivares, Alberto; Ramírez, Javier; Górriz, Juan M; Olivares, Gonzalo; Damas, Miguel

    2012-01-01

    Determination of (in)activity periods when monitoring human body motion is a mandatory preprocessing step in all human inertial navigation and position analysis applications. Distinction of (in)activity needs to be established in order to allow the system to recompute the calibration parameters of the inertial sensors as well as the Zero Velocity Updates (ZUPT) of inertial navigation. The periodical recomputation of these parameters allows the application to maintain a constant degree of precision. This work presents a comparative study among different well known inertial magnitude-based detectors and proposes a new approach by applying spectrum-based detectors and memory-based detectors. A robust statistical comparison is carried out by the use of an accelerometer and angular rate signal synthesizer that mimics the output of accelerometers and gyroscopes when subjects are performing basic activities of daily life. Theoretical results are verified by testing the algorithms over signals gathered using an Inertial Measurement Unit (IMU). Detection accuracy rates of up to 97% are achieved.

  20. Detection of (In)activity Periods in Human Body Motion Using Inertial Sensors: A Comparative Study

    PubMed Central

    Olivares, Alberto; Ramírez, Javier; Górriz, Juan M.; Olivares, Gonzalo; Damas, Miguel

    2012-01-01

    Determination of (in)activity periods when monitoring human body motion is a mandatory preprocessing step in all human inertial navigation and position analysis applications. Distinction of (in)activity needs to be established in order to allow the system to recompute the calibration parameters of the inertial sensors as well as the Zero Velocity Updates (ZUPT) of inertial navigation. The periodical recomputation of these parameters allows the application to maintain a constant degree of precision. This work presents a comparative study among different well known inertial magnitude-based detectors and proposes a new approach by applying spectrum-based detectors and memory-based detectors. A robust statistical comparison is carried out by the use of an accelerometer and angular rate signal synthesizer that mimics the output of accelerometers and gyroscopes when subjects are performing basic activities of daily life. Theoretical results are verified by testing the algorithms over signals gathered using an Inertial Measurement Unit (IMU). Detection accuracy rates of up to 97% are achieved. PMID:22778613

  1. Active Deformation in the Overriding Plate Associated with Temporal Changes of the Philippine Sea Plate Motion

    NASA Astrophysics Data System (ADS)

    Ishiyama, T.; Sato, H.; Van Horne, A.

    2015-12-01

    We present detailed geologic evidence linking changes over time in Philippine Sea plate (PHS) motion and intracontinental deformation in central and southwest (SW) Japan during the Pliocene and after. In the early Pliocene, subduction of the PHS plate under SW Japan restarted in a northerly direction after period of deceleration or cessation. Later, motion changed to a more westerly direction. Corresponding geological changes found in the overriding plate include unconformities in the forearc basins, changes in slip sense on faults, depocenter migration, re-organization of drainage systems and volcanism. Quaternary intraplate deformation is prominent north of the Median Tectonic Line (MTL) inactive segment, above a shallow flat slab. In contrast, less Quaternary tectonic activity is found north of the MTL active segment which lies over a steadily-slipping portion of the subducting slab that behaves as a less-deformed rigid block. Depocenters and active thrusting have migrated north/northwestward over the past 5 My above the shallow flat slab segment of the PHS. We reconstructed the Plio-Pleistocene migration history using Neogene stratigraphy and shallow seismic reflection profiles. We see shallow PHS slab contact with the lower continental crust in our deep seismic reflection profiles, which may explain its enhanced downward drag of the overriding plate and synchronous strong compression in the crust. We find evidence of more westerly PHS plate subduction since the middle Pleistocene in (1) unconformities in the Kumano forearc basin deposits in SW Japan, (2) drastic stream captures in Shikoku, and (3) concordant changes in fault slip sense from thrust to dextral slip along the MTL. Oblique subduction could have induced stronger horizontal stress in the overriding plate above the shallow flat slab which could account for the increasing geologic slip rate observed on active structures. During four repetitions of megathrust earthquake sequences since the 17th century

  2. Simultaneous shoulder and elbow dislocation.

    PubMed

    Cobanoğlu, Mutlu; Yumrukcal, Feridun; Karataş, Cengiz; Duygun, Fatih

    2014-05-23

    Ipsilateral shoulder and elbow dislocation is very rare and only six articles are present in the literature mentioning this kind of a complex injury. With this presentation we aim to emphasise the importance of assessing the adjacent joints in patients with trauma in order not to miss any accompanying pathologies. We report a case of a 43-year-old female patient with ipsilateral right shoulder and elbow dislocation treated conservatively. The patient reported elbow pain when first admitted to emergency service but she was diagnosed with simultaneous ipsilateral shoulder and elbow injury and treated conservatively. As a more painful pathology may mask the additional ones, one should hasten to help before performing a complete evaluation. Any harm caused to the patient due to this reason would not be a complication but a malpractice.

  3. Simultaneous shoulder and elbow dislocation

    PubMed Central

    Çobanoğlu, Mutlu; Yumrukcal, Feridun; Karataş, Cengiz; Duygun, Fatih

    2014-01-01

    Ipsilateral shoulder and elbow dislocation is very rare and only six articles are present in the literature mentioning this kind of a complex injury. With this presentation we aim to emphasise the importance of assessing the adjacent joints in patients with trauma in order not to miss any accompanying pathologies. We report a case of a 43-year-old female patient with ipsilateral right shoulder and elbow dislocation treated conservatively. The patient reported elbow pain when first admitted to emergency service but she was diagnosed with simultaneous ipsilateral shoulder and elbow injury and treated conservatively. As a more painful pathology may mask the additional ones, one should hasten to help before performing a complete evaluation. Any harm caused to the patient due to this reason would not be a complication but a malpractice. PMID:24859563

  4. A parallelogram-based compliant remote-center-of-motion stage for active parallel alignment.

    PubMed

    Qu, Jianliang; Chen, Weihai; Zhang, Jianbin

    2014-09-01

    Parallel alignment stage with remote-center-of-motion (RCM) is of key importance in precision out-of-plane aligning since it can eliminate the harmful lateral displacement generated at the output platform. This paper presents the development of a parallelogram-based compliant RCM stage for active parallel alignment. Different from conventional parallelogram-based RCM mechanism, the proposed stage is designed with compliant mechanisms, which endows the stage with many attractive merits when used in precision micro-/nanomanipulations. A symmetric double-parallelogram mechanism (SDPM) based on flexure hinges is developed as the rotary guiding component to realize desired RCM function. Due to the geometrical constraint of the SDPM, the operating space of the stage can be easily adjusted by bending the input links without loss of rotational precision. The stage is driven by a piezoelectric actuator and its output motion is measured by non-contact displacement sensors. Based on pseudo-rigid-body simplification method, the analytical models predicting kinematics, statics, and dynamics of the RCM stage have been established. Besides, the dimensional optimization is conducted in order to maximize the first resonance frequency of the stage. After that, finite element analysis is conducted to validate the established models and the prototype of the stage is fabricated for performance tests. The experimental results show that the developed RCM stage has a rotational range of 1.45 mrad while the maximum center shift of the RCM point is as low as 1 μm, which validate the effectiveness of the proposed scheme.

  5. [Arthrography in congenital hip dislocation].

    PubMed

    Sipukhin, Ia M; Bazlova, E S; Cheberiak, N V

    1992-01-01

    The paper is concerned with the results of contrast arthrography in 73 children with hip joint dysplasia, among which true dislocations prevailed (70 patients). In addition to bone alterations, arthrography revealed various soft tissue changes like hypertrophy and deformity of limbus, soft tissue interposition, separation of the articular sac with the presence of an isthmus, disintegration of articular cartilages. These findings are used to define indications for surgical intervention as well as for planning the area of operation.

  6. Ground Motion Simulation for a Large Active Fault System using Empirical Green's Function Method and the Strong Motion Prediction Recipe - a Case Study of the Noubi Fault Zone -

    NASA Astrophysics Data System (ADS)

    Kuriyama, M.; Kumamoto, T.; Fujita, M.

    2005-12-01

    propagation. Moreover, it was clarified that the horizontal velocities by assuming the cascade model was underestimated more than one standard deviation of empirical relation by Si and Midorikawa (1999). The scaling and cascade models showed an approximately 6.4-fold difference for the case, in which the rupture started along the southeastern edge of the Umehara Fault at observation point GIF020. This difference is significantly large in comparison with the effect of different rupture starting points, and shows that it is important to base scenario earthquake assumptions on active fault datasets before establishing the source characterization model. The distribution map of seismic intensity for the 1891 Noubi Earthquake also suggests that the synthetic waveforms in the southeastern Noubi Fault zone may be underestimated. Our results indicate that outer fault parameters (e.g., earthquake moment) related to the construction of scenario earthquakes influence strong motion prediction, rather than inner fault parameters such as the rupture starting point. Based on these methods, we will predict strong motion for approximately 140 to 150 km of the Itoigawa-Shizuoka Tectonic Line.

  7. Dislocated Workers and Midcareer Retraining in Other Industrial Nations.

    ERIC Educational Resources Information Center

    Bendick, Marc, Jr.

    Market-oriented industrial nations other than the United States have experienced rapid structural changes in their economies and reemployment problems among dislocated midcareer workers. The Swedish active labor market approach is a socialized one. This system has been criticized for excessive reliance on microeconomic labor market programs to…

  8. Atomistic mechanisms of intermittent plasticity in metals: Dislocation avalanches and defect cluster pinning

    NASA Astrophysics Data System (ADS)

    Niiyama, Tomoaki; Shimokawa, Tomotsugu

    2015-02-01

    Intermittent plastic deformation in crystals with power-law behaviors has been reported in previous experimental studies. The power-law behavior is reminiscent of self-organized criticality, and mesoscopic models have been proposed that describe this behavior in crystals. In this paper, we show that intermittent plasticity in metals under tensile deformation can be observed in molecular dynamics models, using embedded atom method potentials for Ni, Cu, and Al. Power-law behaviors of stress drop and waiting time of plastic deformation events are observed. It is shown that power-law behavior is due to dislocation avalanche motions in Cu and Ni. A different mechanism of dislocation pinning is found in Al. These different stress relaxation mechanisms give different power-law exponents. We propose a probabilistic model to describe the novel dislocation motion in Al and analytically deduce the power-law behavior.

  9. Atomistic mechanisms of intermittent plasticity in metals: dislocation avalanches and defect cluster pinning.

    PubMed

    Niiyama, Tomoaki; Shimokawa, Tomotsugu

    2015-02-01

    Intermittent plastic deformation in crystals with power-law behaviors has been reported in previous experimental studies. The power-law behavior is reminiscent of self-organized criticality, and mesoscopic models have been proposed that describe this behavior in crystals. In this paper, we show that intermittent plasticity in metals under tensile deformation can be observed in molecular dynamics models, using embedded atom method potentials for Ni, Cu, and Al. Power-law behaviors of stress drop and waiting time of plastic deformation events are observed. It is shown that power-law behavior is due to dislocation avalanche motions in Cu and Ni. A different mechanism of dislocation pinning is found in Al. These different stress relaxation mechanisms give different power-law exponents. We propose a probabilistic model to describe the novel dislocation motion in Al and analytically deduce the power-law behavior.

  10. 20 CFR 663.100 - What is the role of the adult and dislocated worker programs in the One-Stop delivery system?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What is the role of the adult and dislocated... AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the...

  11. 20 CFR 663.110 - What are the eligibility criteria for core services for adults in the adult and dislocated worker...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... services for adults in the adult and dislocated worker programs? 663.110 Section 663.110 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated...

  12. 20 CFR 663.110 - What are the eligibility criteria for core services for adults in the adult and dislocated worker...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... services for adults in the adult and dislocated worker programs? 663.110 Section 663.110 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services...

  13. 20 CFR 663.100 - What is the role of the adult and dislocated worker programs in the One-Stop delivery system?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false What is the role of the adult and dislocated... AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services...

  14. 20 CFR 663.100 - What is the role of the adult and dislocated worker programs in the One-Stop delivery system?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false What is the role of the adult and dislocated... AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services...

  15. 20 CFR 663.100 - What is the role of the adult and dislocated worker programs in the One-Stop delivery system?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false What is the role of the adult and dislocated... AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services...

  16. 20 CFR 663.110 - What are the eligibility criteria for core services for adults in the adult and dislocated worker...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... services for adults in the adult and dislocated worker programs? 663.110 Section 663.110 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated...

  17. 20 CFR 663.110 - What are the eligibility criteria for core services for adults in the adult and dislocated worker...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... services for adults in the adult and dislocated worker programs? 663.110 Section 663.110 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated...

  18. Three-dimensional formulation of dislocation climb

    NASA Astrophysics Data System (ADS)

    Gu, Yejun; Xiang, Yang; Quek, Siu Sin; Srolovitz, David J.

    2015-10-01

    We derive a Green's function formulation for the climb of curved dislocations and multiple dislocations in three-dimensions. In this new dislocation climb formulation, the dislocation climb velocity is determined from the Peach-Koehler force on dislocations through vacancy diffusion in a non-local manner. The long-range contribution to the dislocation climb velocity is associated with vacancy diffusion rather than from the climb component of the well-known, long-range elastic effects captured in the Peach-Koehler force. Both long-range effects are important in determining the climb velocity of dislocations. Analytical and numerical examples show that the widely used local climb formula, based on straight infinite dislocations, is not generally applicable, except for a small set of special cases. We also present a numerical discretization method of this Green's function formulation appropriate for implementation in discrete dislocation dynamics (DDD) simulations. In DDD implementations, the long-range Peach-Koehler force is calculated as is commonly done, then a linear system is solved for the climb velocity using these forces. This is also done within the same order of computational cost as existing discrete dislocation dynamics methods.

  19. The Vestibulo-ocular Reflex During Active Head Motion in Chiari II Malformation

    PubMed Central

    Salman, Michael S.; Sharpe, James A.; Lillakas, Linda; Dennis, Maureen; Steinbach, Martin J.

    2008-01-01

    Background Chiari type II malformation (CII) is a developmental anomaly of the cerebellum and brainstem, which are important structures for processing the vestibulo-ocular reflex (VOR). We investigated the effects of the deformity of CII on the angular VOR during active head motion. Methods Eye and head movements were recorded using an infrared eye tracker and magnetic head tracker in 20 participants with CII [11 males, age range 8-19 years, mean (SD) 14.4 (3.2) years]. Thirty-eight age-matched healthy children and adolescents (21 males) constituted the control group. Participants were instructed to ‘look’ in darkness at the position of their thumb, placed 25 cm away, while they made horizontal and vertical sinusoidal head rotations at frequencies of about 0.5 Hz and 2 Hz. Parametric and non-parametric tests were used to compare the two groups. Results The VOR gains, the ratio of eye to head velocities, were abnormally low in two participants with CII and abnormally high in one participant with CII. Conclusion The majority of participants with CII had normal VOR performance in this investigation. However, the deformity of CII can impair the active angular VOR in some patients with CII. Low gain is attributed to brainstem damage and high gain to cerebellar dysfunction. PMID:18973069

  20. Evolution of muscle activity patterns driving motions of the jaw and hyoid during chewing in Gnathostomes.

    PubMed

    Konow, Nicolai; Herrel, Anthony; Ross, Callum F; Williams, Susan H; German, Rebecca Z; Sanford, Christopher P J; Gintof, Chris

    2011-08-01

    Although chewing has been suggested to be a basal gnathostome trait retained in most major vertebrate lineages, it has not been studied broadly and comparatively across vertebrates. To redress this imbalance, we recorded EMG from muscles powering anteroposterior movement of the hyoid, and dorsoventral movement of the mandibular jaw during chewing. We compared muscle activity patterns (MAP) during chewing in jawed vertebrate taxa belonging to unrelated groups of basal bony fishes and artiodactyl mammals. Our aim was to outline the evolution of coordination in MAP. Comparisons of activity in muscles of the jaw and hyoid that power chewing in closely related artiodactyls using cross-correlation analyses identified reorganizations of jaw and hyoid MAP between herbivores and omnivores. EMG data from basal bony fishes revealed a tighter coordination of jaw and hyoid MAP during chewing than seen in artiodactyls. Across this broad phylogenetic range, there have been major structural reorganizations, including a reduction of the bony hyoid suspension, which is robust in fishes, to the acquisition in a mammalian ancestor of a muscle sling suspending the hyoid. These changes appear to be reflected in a shift in chewing MAP that occurred in an unidentified anamniote stem-lineage. This shift matches observations that, when compared with fishes, the pattern of hyoid motion in tetrapods is reversed and also time-shifted relative to the pattern of jaw movement.

  1. Impingement and Dislocation in Total HIP Arthroplasty: Mechanisms and Consequences

    PubMed Central

    Brown, Thomas D; Elkins, Jacob M; Pedersen, Douglas R; Callaghan, John J

    2014-01-01

    In contemporary total hip arthroplasty, instability has been a complication in approximately 2% to 5% of primary surgeries and 5% to 10% of revisions. Due to the reduction in the incidence of wear-induced osteolysis that has been achieved over the last decade, instability now stands as the single most common reason for revision surgery. Moreover, even without frank dislocation, impingement and subluxation are implicated in a set of new concerns arising with advanced bearings, associated with the relatively unforgiving nature of many of those designs. Against that backdrop, the biomechanical factors responsible for impingement, subluxation, and dislocation remain under-investigated relative to their burden of morbidity. This manuscript outlines a 15-year program of laboratory and clinical research undertaken to improve the scientific basis for understanding total hip impingement and dislocation. The broad theme has been to systematically evaluate the role of surgical factors, implant design factors, and patient factors in predisposing total hip constructs to impinge, sublux, and/or dislocate. Because this class of adverse biomechanical events had not lent itself well to study with existing approaches, it was necessary to develop (and validate) a series of new research methodologies, relying heavily on advanced finite element formulations. Specific areas of focus have included identifying the biomechanical challenges posed by dislocation-prone patient activities, quantifying design parameter effects and component surgical positioning effects for conventional metal-on-polyethylene implant constructs, and the impingement/dislocation behavior of non-conventional constructs, quantifying the stabilizing role of the hip capsule (and of surgical repairs of capsule defects), and systematically studying impingement and edge loading of hard-on-hard bearings, fracture of ceramic liners, confounding effects of patient obesity, and subluxation-mediated worsening of third body

  2. Dislocation related droop in InGaN/GaN light emitting diodes investigated via cathodoluminescence

    SciTech Connect

    Pozina, Galia; Ciechonski, Rafal; Bi, Zhaoxia; Samuelson, Lars; Monemar, Bo

    2015-12-21

    Today's energy saving solutions for general illumination rely on efficient white light emitting diodes (LEDs). However, the output efficiency droop experienced in InGaN based LEDs with increasing current injection is a serious limitation factor for future development of bright white LEDs. We show using cathodoluminescence (CL) spatial mapping at different electron beam currents that threading dislocations are active as nonradiative recombination centers only at high injection conditions. At low current, the dislocations are inactive in carrier recombination due to local potentials, but these potentials are screened by carriers at higher injection levels. In CL images, this corresponds to the increase of the dark contrast around dislocations with the injection (excitation) density and can be linked with droop related to the threading dislocations. Our data indicate that reduction of droop in the future efficient white LED can be achieved via a drastic reduction of the dislocation density by using, for example, bulk native substrates.

  3. Dislocation related droop in InGaN/GaN light emitting diodes investigated via cathodoluminescence

    NASA Astrophysics Data System (ADS)

    Pozina, Galia; Ciechonski, Rafal; Bi, Zhaoxia; Samuelson, Lars; Monemar, Bo

    2015-12-01

    Today's energy saving solutions for general illumination rely on efficient white light emitting diodes (LEDs). However, the output efficiency droop experienced in InGaN based LEDs with increasing current injection is a serious limitation factor for future development of bright white LEDs. We show using cathodoluminescence (CL) spatial mapping at different electron beam currents that threading dislocations are active as nonradiative recombination centers only at high injection conditions. At low current, the dislocations are inactive in carrier recombination due to local potentials, but these potentials are screened by carriers at higher injection levels. In CL images, this corresponds to the increase of the dark contrast around dislocations with the injection (excitation) density and can be linked with droop related to the threading dislocations. Our data indicate that reduction of droop in the future efficient white LED can be achieved via a drastic reduction of the dislocation density by using, for example, bulk native substrates.

  4. Transition of dislocation nucleation induced by local stress concentration in nanotwinned copper.

    PubMed

    Lu, N; Du, K; Lu, L; Ye, H Q

    2015-07-16

    Metals with a high density of nanometre-scale twins have demonstrated simultaneous high strength and good ductility, attributed to the interaction between lattice dislocations and twin boundaries. Maximum strength was observed at a critical twin lamella spacing (∼15 nm) by mechanical testing; hence, an explanation of how twin lamella spacing influences dislocation behaviours is desired. Here, we report a transition of dislocation nucleation from steps on the twin boundaries to twin boundary/grain boundary junctions at a critical twin lamella spacing (12-37 nm), observed with in situ transmission electron microscopy. The local stress concentrations vary significantly with twin lamella spacing, thus resulting in a critical twin lamella spacing (∼18 nm) for the transition of dislocation nucleation. This agrees quantitatively with the mechanical test. These results demonstrate that by quantitatively analysing local stress concentrations, a direct relationship can be resolved between the microscopic dislocation activities and macroscopic mechanical properties of nanotwinned metals.

  5. Embedded atom computer simulation of lattice distortion and dislocation core structure and mobility in Fe-Cr alloys

    SciTech Connect

    Farkas, D.; Schon, C.G.; Lima, M.S.F. de; Goldenstein, H.

    1996-01-01

    The atomistic structure of dislocation cores of <111> screw dislocations in disordered Fe-Cr b.c.c. alloys was simulated using embedded atom method potentials and molecular statics computer simulation. The mixed Fe-Cr interatomic potentials used were derived by fitting to the thermodynamic data of the disordered system and the measured lattice parameter changes of Fe upon Cr additions. The potentials predict phase separation as the most stable configuration for the central region of the phase diagram. The next most stable situation is the disordered b.c.c. phase. The structure of the screw 1/2 <111> dislocation core was studied using atomistic computer simulation and an improved visualization method for the representation of the resulting structures. The structure of the dislocation core is different from that typical of 1/2 <111> dislocations in pure b.c.c. materials. The core structure in the alloy tends to lose the threefold symmetry seen in pure b.c.c. materials and the stress necessary to initiate dislocation motion increases with Cr content. The mobility of kinks in these screw dislocations was also simulated and it was found that while the critical stress for kink motion in pure Fe is extremely low, it increases significantly with the addition of Cr. The implications of these differences for mechanical behavior are discussed.

  6. Molecular dynamics simulations of grain boundary migration during recrystallization employing tilt and twist dislocation boundaries to provide the driving pressure

    NASA Astrophysics Data System (ADS)

    Godiksen, R. B. N.; Schmidt, S.; Jensen, D. Juul

    2008-09-01

    Molecular dynamics simulations of grain boundary migration, where the driving pressure P is the excess stored energy due to dislocation structures, have been performed. This represents recrystallization in metals. Two types of dislocation structures have been simulated: (a) tilt dislocation boundaries, where edge dislocations are arranged as parallel arrays, (b) twist dislocation boundaries, where screw dislocations are arranged in interconnected dislocation networks. The velocity v and mobility M of the migrating grain boundaries have been calculated from the simulations. v and M are higher in twist-type simulations than in tilt-type simulations, although the activation energies are similar in the two cases. v ~ P is observed for tilt simulations where the driving pressure is changed by varying the density of dislocation boundaries and for twist simulations where the driving pressure is changed by varying the misorientation across dislocation boundaries. When the misorientations across edge dislocation boundaries are varied, however, the simulations show v ~ P2. It is suggested that this deviation from the usual v ~ P-relationship is due to local interactions between the grain boundary and nearby individual dislocations. Misorientation variations across grain boundaries have also been simulated, but the mobilities show little dependence on this. The present simulations result in mobilities and activation energies that are, respectively, significantly higher and somewhat lower than experimental values. A direct mimic of experimental observations is, however not the purpose of this study. Rather the present simulations are based on idealized dislocation structures and suggest that variations in the dislocation structures may play a dominant role in recrystallization dynamics and that local effects are very important phenomena, essential for the interpretation of recrystallization mechanisms.

  7. Factors predisposing to dislocation of the Thompson hemiarthroplasty: 22 dislocations in 338 patients.

    PubMed

    Pajarinen, Jarkko; Savolainen, Vesa; Tulikoura, Ilkka; Lindahl, Jan; Hirvensalo, Eero

    2003-02-01

    In a series of 338 patients, we have retrospectively analyzed technical and anatomical factors, which may predispose to a dislocation of the Thompson hemiprosthesis. 22 patients (7%) had at least 1 dislocation during the 6-month follow-up. The most significant independent factor predisposing to dislocation was the use of a posterior approach (dislocation rate 16%). We examined the radiographs and data on operations in the 22 patients, using 79 random patients without dislocation as controls. Factors correlating with an increase in the incidence of dislocation were the length of the residual femoral neck > 0.5 cm in short patients (< 165 cm), and considerable change in the postoperative offset of the hip. Acetabular measurements showed no correlation to the dislocation. Our findings suggest that the main factors predicting dislocation are technical and not related to anatomical measurements.

  8. Active morphotectonics related to the upper crustal shortening in the back-arc of the Northeast Japan arc, based on geomorphic terrace deformation and elastic dislocation models for reverse faults

    NASA Astrophysics Data System (ADS)

    Soeda, Y.; Miyauchi, T.

    2009-04-01

    Knowledge of active morphotectonics, the relationship between active faults and morphological evolution, is important for understanding on-going active tectonic processes in the trench-arc system and evaluating the activity of faults. Especially in regions where the main active faults are concealed, such as in the back-arc of the Northeast Japan arc. The Dewa Hills in the back-arc of the Northeast Japan arc is a tectonic uplifted zone parallel to the main direction of the arc, bounded by Kitayuri thrust system (KTS) at western margin. The activity of reverse faults as a result of upper crustal shortening related to the subduction of the Pacific plate beneath the Eurasian plate has affected the morpho-tectonogenesis in the back-arc. This study examines the deep geometry and net slip rate of faults at seismogenic depth in the back-arc, and presents active morphotectonic models related to upper crustal shortening, by analyzing the deformation patterns of topography and geology, and through an examination of elastic dislocation models for reverse faults. The Pleistocene fluvial terraces, a practical geomorphic marker for quantifying crustal movement in the late Quaternary, are developed along some antecedent valleys that truncate the Dewa Hills. Through an investigation of the chronology and correlation of Pleistocene marine and fluvial terraces based on geomorphological and tephrochronological investigations, M terraces correlated with MIS 5 have been widely identified in the back-arc. The maximum uplift rates in the back-arc in the late Quaternary are estimated as 1.0 mm/yr in the Oga Peninsula (Imaizumi 1977; Miyauchi, 1988), and 1.4 mm/yr in the Dewa Hills. The height distribution of geomorphic terraces shows two types of surface deformation patterns in the late Quaternary, and these are produced by the activity of reverse faults: a major deformation unit with a half wavelength of 20-40 km or more, and a secondary deformation unit with a half wavelength of less

  9. Stochastic non-circular motion and outflows driven by magnetic activity in the Galactic bulge region

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji

    2015-12-01

    By performing a global magnetohydrodynamical simulation for the Milky Way with an axisymmetric gravitational potential, we propose that spatially dependent amplification of magnetic fields possibly explains the observed noncircular motion of the gas in the Galactic centre region. The radial distribution of the rotation frequency in the bulge region is not monotonic in general. The amplification of the magnetic field is enhanced in regions with stronger differential rotation, because magnetorotational instability and field-line stretching are more effective. The strength of the amplified magnetic field reaches ≳0.5 mG, and radial flows of the gas are excited by the inhomogeneous transport of angular momentum through turbulent magnetic field that is amplified in a spatially dependent manner. In addition, the magnetic pressure-gradient force also drives radial flows in a similar manner. As a result, the simulated position-velocity diagram exhibits a time-dependent asymmetric parallelogram-shape owing to the intermittency of the magnetic turbulence; the present model provides a viable alternative to the bar-potential-driven model for the parallelogram shape of the central molecular zone. This is a natural extension into the central few 100 pc of the magnetic activity, which is observed as molecular loops at radii from a few 100 pc to 1 kpc. Furthermore, the time-averaged net gas flow is directed outward, whereas the flows are highly time dependent, which we discuss from a viewpoint of the outflow from the bulge.

  10. Experiments on the motion of gas bubbles in turbulence generated by an active grid

    NASA Astrophysics Data System (ADS)

    Poorte, R. E. G.; Biesheuvel, A.

    2002-06-01

    The random motion of nearly spherical bubbles in the turbulent flow behind a grid is studied experimentally. In quiescent water these bubbles rise at high Reynolds number. The turbulence is generated by an active grid of the design of Makita (1991), and can have turbulence Reynolds number R[lambda] of up to 200. Minor changes in the geometry of the grid and in its mode of operation improves the isotropy of the turbulence, compared with that reported by Makita (1991) and Mydlarski & Warhaft (1996). The trajectory of each bubble is measured with high spatial and temporal resolution with a specially developed technique that makes use of a position-sensitive detector. Bubble statistics such as the mean rise velocity and the root-mean-square velocity fluctuations are obtained by ensemble averaging over many identical bubbles. The resulting bubble mean rise velocity is significantly reduced (up to 35%) compared with the quiescent conditions. The vertical bubble velocity fluctuations are found to be non-Gaussian, whereas the horizontal displacements are Gaussian for all times. The diffusivity of bubbles is considerably less than that of fluid particles. These findings are qualitatively consistent with results obtained through theoretical analysis and numerical simulations by Spelt & Biesheuvel (1997).

  11. A framework for activity detection in wide-area motion imagery

    SciTech Connect

    Porter, Reid B; Ruggiero, Christy E; Morrison, Jack D

    2009-01-01

    Wide-area persistent imaging systems are becoming increasingly cost effective and now large areas of the earth can be imaged at relatively high frame rates (1-2 fps). The efficient exploitation of the large geo-spatial-temporal datasets produced by these systems poses significant technical challenges for image and video analysis and data mining. In recent years there has been significant progress made on stabilization, moving object detection and tracking and automated systems now generate hundreds to thousands of vehicle tracks from raw data, with little human intervention. However, the tracking performance at this scale, is unreliable and average track length is much smaller than the average vehicle route. This is a limiting factor for applications which depend heavily on track identity, i.e. tracking vehicles from their points of origin to their final destination. In this paper we propose and investigate a framework for wide-area motion imagery (W AMI) exploitation that minimizes the dependence on track identity. In its current form this framework takes noisy, incomplete moving object detection tracks as input, and produces a small set of activities (e.g. multi-vehicle meetings) as output. The framework can be used to focus and direct human users and additional computation, and suggests a path towards high-level content extraction by learning from the human-in-the-loop.

  12. Three-dimensional kinematic analysis of active cervical spine motion by using a multifaceted marker device.

    PubMed

    Tsunezuka, Hiroaki; Kato, Daishiro; Okada, Satru; Ishihara, Shunta; Shimada, Junichi

    2013-01-01

    Assessing cervical range of motion (CROM) is an important part of the clinical evaluation of patients with conditions such as whiplash syndrome. This study aimed to develop a convenient and accurate system involving multifaceted marker device (MMD)-based assessment of 3-dimensional (3D) dynamic coupled CROM and joint angular velocity. We used an infrared optical tracking system and our newly developed MMD that solved problems such as marker shielding and reflection angle associated with the optical tracking devices and enabled sequential and accurate analysis of the 3D dynamic movement of the polyaxial joint and other structurally complicated joints. The study included 30 asymptomatic young male volunteers (age, 22-27 years). The MMD consisted of 5 surfaces and 5 markers and was attached to the participant's forehead. We measured active CROM (axial rotation, flexion/extension, and lateral bending) and joint angular velocity by the MMD. The MMD was easy to use, safe for patients and operators, could be constructed economically, and generated accurate data such as dynamic coupled CROM and angular velocity.

  13. Compound Dorsal Dislocation of Lunate with Trapezoid Fracture

    PubMed Central

    Kim, Bong-Sung; Grieb, Gerrit; Rhodius, Patrick; Böcker, Arne H.; Stromps, Jan-Philipp; Krämer, Nils Andreas; Pallua, Norbert

    2016-01-01

    We report about a dorsal dislocation of the lunate accompanied by a trapezoid fracture in a 41-year old male patient after a motorcycle accident. The lunate dislocation with no dorsal or volar intercalated segment instability (DISI, VISI) was diagnosed by x-ray whereas the trapezoid fracture was only diagnosable by computed tomography. A closed reduction and internal fixation of the lunate by two Kirschner wires was performed, the trapezoid fracture was conservatively treated. Surgery was followed by immobilization, intense physiotherapy and close follow-up. Even though complaints such as swelling and pain subsided during the course of rehabilitation, partial loss of strength and range of motion remained even after 16 months. In conclusion, a conservative treatment of trapezoid fractures seems to be sufficient in most cases. Closed reduction with K-wire fixation led to an overall satisfactory result in our case. For dorsal lunate dislocations in general, open reduction should be performed when close reduction is unsuccessful or DISI/VISI are observed in radiographs after attempted close reduction. PMID:28176971

  14. A simple model for dislocation emission mediated dynamic nanovoid growth

    NASA Astrophysics Data System (ADS)

    Wilkerson, Justin; Ramesh, K. T.

    2015-06-01

    Failure of ductile metals has long been attributed to the microscopic processes of void nucleation, growth, and finally coalescence leading to fracture. Our traditional view of void nucleation is associated with interface debonding at second-phase particles. However, much of this understanding has been gleaned from observations of quasi-static fracture surfaces. Under more extreme dynamic loading conditions second-phase particles may not necessarily be the dominant source of void nucleating material defects, and a few key experimental observations of laser spall surfaces seem to support this assertion. Here, we motivate an alternative mechanism to the traditional view, namely shock-induced vacancy generation and clustering followed by nanovoid growth mediated by dislocation emission. This mechanism only becomes active at very large stresses, and thus it is desirable to establish a closed-form criterion for the macroscopic stress required to activate dislocation emission in porous materials. Following an approach similar to Lubarda and co-workers, we make use of stability arguments applied to the analytic solutions of the elastic interactions of dislocations and voids to derive the desired criterion. We then propose a dynamic nanovoid growth law that is motivated by the kinetics of dislocation emission. The resulting failure model is validated against a number of molecular dynamics simulations with favorable agreement. Lastly, we make use of our simple model to predict some interesting anomalous behaviors associated with high surface energies and nonlinear elasticity.

  15. Oak Ridge National Laboratory's (ORNL) Weigh-In-Motion (WIM) Configuration and Data Management Activities

    SciTech Connect

    Abercrombie, Robert K; Sheldon, Frederick T; Schlicher, Bob G

    2006-01-01

    The Oak Ridge National Laboratory (ORNL) involvement in the Weigh-in-Motion (WIM) research with both government agencies and private companies dates back to 1989. The discussion here will focus on the US Army's current need for an automated WIM system to weigh and determine the center-of-balance for military wheeled vehicles and cargo and the expanded uses of WIM data. ORNL is addressing configuration and data management issues as they relate to deployments for both military and humanitarian activities. The transition from the previous WIM Gen I to the current Gen II system illustrates a configuration and data management solution that ensures data integration, integrity, coherence and cost effectiveness. Currently, Army units use portable and fixed scales, tape measures, and calculators to determine vehicle axle, total weights and center of balance for vehicles prior to being transshipped via railcar, ship, or airlifted. Manually weighing and measuring all vehicles subject to these transshipment operations is time-consuming, labor-intensive, hazardous and is prone to human errors (e.g., misreading scales and tape measures, calculating centers of balance and wheel, axle, and vehicle weights, recording data, and transferring data from manually prepared work sheets into an electronic data base and aggravated by adverse weather conditions). Additionally, in the context of the military, the timeliness, safety, success, and effectiveness of airborne heavy-drop operations can be significantly improved by the use of an automated system to weigh and determine center of balance of vehicles while they are in motion. The lack of a standardized airlift-weighing system for joint service use also creates redundant weighing requirements at the cost of scarce resources and time. This case study can be judiciously expanded into commercial operations related to safety and enforcement. The WIM program will provide a means for the Army to automatically identify/weigh and monitor

  16. Massively-Parallel Dislocation Dynamics Simulations

    SciTech Connect

    Cai, W; Bulatov, V V; Pierce, T G; Hiratani, M; Rhee, M; Bartelt, M; Tang, M

    2003-06-18

    Prediction of the plastic strength of single crystals based on the collective dynamics of dislocations has been a challenge for computational materials science for a number of years. The difficulty lies in the inability of the existing dislocation dynamics (DD) codes to handle a sufficiently large number of dislocation lines, in order to be statistically representative and to reproduce experimentally observed microstructures. A new massively-parallel DD code is developed that is capable of modeling million-dislocation systems by employing thousands of processors. We discuss the general aspects of this code that make such large scale simulations possible, as well as a few initial simulation results.

  17. Elbow dislocation with ipsilateral distal radius fracture

    PubMed Central

    Meena, Sanjay; Trikha, Vivek; Kumar, Rakesh; Saini, Pramod; Sambharia, Abhishek Kumar

    2013-01-01

    Elbow dislocation associated with ipsilateral distal radius fracture is a rare pattern of injury, although it is common for elbow dislocation and forearm fractures to occur separately. We report a rare case of a 20-year-old male who had a posterior elbow dislocation and ipsilateral distal radius fracture. Elbow dislocation was first reduced in extension and distal radius fracture was then reduced in flexion. Both the injuries were conservatively managed. At 6 months follow-up, the patient had no pain in his elbow and minimal pain in his wrist on heavy lifting and had resumed his work as a laborer. PMID:24082758

  18. Elbow dislocation with ipsilateral distal radius fracture.

    PubMed

    Meena, Sanjay; Trikha, Vivek; Kumar, Rakesh; Saini, Pramod; Sambharia, Abhishek Kumar

    2013-07-01

    Elbow dislocation associated with ipsilateral distal radius fracture is a rare pattern of injury, although it is common for elbow dislocation and forearm fractures to occur separately. We report a rare case of a 20-year-old male who had a posterior elbow dislocation and ipsilateral distal radius fracture. Elbow dislocation was first reduced in extension and distal radius fracture was then reduced in flexion. Both the injuries were conservatively managed. At 6 months follow-up, the patient had no pain in his elbow and minimal pain in his wrist on heavy lifting and had resumed his work as a laborer.

  19. Microdiffraction Analysis of Hierarchical Dislocation Organization

    SciTech Connect

    Barabash, R.I.; Ice, G.E.

    2007-12-19

    This article describes how x-ray microdiffraction is influenced by the number, kind, and organization of dislocations. Particular attention is placed on micro-Laue diffraction, where polychromatic x-rays are diffracted into characteristic Laue patterns that are sensitive to the dislocation content and arrangement. Diffraction is considered for various stages of plastic deformation. For early stages of plastic deformation with random dislocation spacing, the intensity in reciprocal space is redistributed about Laue spots with a length scale proportional to the number of dislocations within the sample volume and with a characteristic shape that depends on the kinds of dislocations and the momentum transfer vector. Unpaired dislocations that contribute to lattice rotations cause the largest redistribution of scattered intensity. In later stages of plastic deformation, strong interactions between individual dislocations cause them to organize into correlated arrangements. Here again, xray diffraction Laue spots are broadened in proportion to the number of excess (unpaired) dislocations inside the wall and to the total number of unpaired walls, but the broadening can be discontinuous. With microdiffraction it is possible to quantitatively test models of dislocation organization.

  20. Congenital dislocation of the patella - clinical case.

    PubMed

    Miguel Sá, Pedro; Raposo, Filipa; Santos Carvalho, Manuel; Alegrete, Nuno; Coutinho, Jorge; Costa, Gilberto

    2016-01-01

    Congenital patellar dislocation is a rare condition in which the patella is permanently dislocated and cannot be reduced manually. The patella develops normally as a sesamoid bone of the femur. This congenital dislocation results from failure of the internal rotation of the myotome that forms the femur, quadriceps muscle and extensor apparatus. It usually manifests immediately after birth, although in some rare cases, the diagnosis may be delayed until adolescence or adulthood. Early diagnosis is important, thereby allowing surgical correction and avoiding late sequelae, including early degenerative changes in the knee. A case of permanent dislocation of the patella is presented here, in a female child aged seven years.

  1. Dislocation mechanism for transformation between cubic ice Ic and hexagonal ice Ih

    NASA Astrophysics Data System (ADS)

    Hondoh, T.

    2015-11-01

    Cubic ice Ic is metastable, yet can form by the freezing of supercooled water, vapour deposition at low temperatures and by depressurizing high-pressure forms of ice. Its structure differs from that of common hexagonal ice Ih in the order its molecular layers are stacked. This stacking order, however, typically has considerable disorder; that is, not purely cubic, but alternating in hexagonal and cubic layers. In time, stacking-disordered ice gradually decreases in cubicity (fraction having cubic structure), transforming to hexagonal ice. But, how does this disorder originate and how does it transform to hexagonal ice? Here we use numerical data on dislocations in hexagonal ice Ih to show that (1) stacking-disordered ice (or Ic) can be viewed as fine-grained polycrystalline ice with a high density of extended dislocations, each a widely extended stacking fault bounded by partial dislocations, and (2) the transformation from ice Ic to Ih is caused by the reaction and motion of these partial dislocations. Moreover, the stacking disorder may be in either a higher stored energy state consisting of a sub-boundary network arrangement of partial dislocations bounding stacking faults, or a lower stored energy state consisting of a grain structure with a high density of stacking faults, but without bounding partial dislocations. Each state transforms to Ih differently, with a duration to fully transform that strongly depends on temperature and crystal grain size. The results are consistent with the observed transformation rates, transformation temperatures and wide range in heat of transformation.

  2. Dislocation Mobility and Anomalous Shear Modulus Effect in ^4He Crystals

    NASA Astrophysics Data System (ADS)

    Malmi-Kakkada, Abdul N.; Valls, Oriol T.; Dasgupta, Chandan

    2017-02-01

    We calculate the dislocation glide mobility in solid ^4He within a model that assumes the existence of a superfluid field associated with dislocation lines. Prompted by the results of this mobility calculation, we study within this model the role that such a superfluid field may play in the motion of the dislocation line when a stress is applied to the crystal. To do this, we relate the damping of dislocation motion, calculated in the presence of the assumed superfluid field, to the shear modulus of the crystal. As the temperature increases, we find that a sharp drop in the shear modulus will occur at the temperature where the superfluid field disappears. We compare the drop in shear modulus of the crystal arising from the temperature dependence of the damping contribution due to the superfluid field, to the experimental observation of the same phenomena in solid ^4He and find quantitative agreement. Our results indicate that such a superfluid field plays an important role in dislocation pinning in a clean solid ^4He at low temperatures and in this regime may provide an alternative source for the unusual elastic phenomena observed in solid ^4He.

  3. Cortical activation associated with determination of depth order during transparent motion perception: A normalized integrative fMRI-MEG study.

    PubMed

    Natsukawa, Hiroaki; Kobayashi, Tetsuo

    2015-10-01

    When visual patterns drifting in different directions and/or at different speeds are superimposed on the same plane, observers perceive transparent surfaces on planes of different depths. This phenomenon is known as transparent motion perception. In this study, cortical activities were measured using functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) to reveal the cortical dynamics associated with determination of depth order during transparent motion perception. In addition, offline eye movement measurements were performed to determine the latencies of the start of both pursuit eye movements and depth attention that are important in determination of the depth order. MEG and fMRI data were analyzed by a normalized integrative fMRI-MEG method that enables reconstruction of time-varying dipole moments of activated regions from MEG signals. Statistical analysis of fMRI data was performed to identify activated regions. The activated regions were used as spatial constraints for the reconstruction using the integrative fMRI-MEG method. We focused on the period between latencies (216-405 ms) determined by eye movement experiment, which are related to determination of the depth order. The results of integrative analysis revealed that significant neural activities were observed in the visual association area, the human middle temporal area, the intraparietal sulcus, the lateral occipital cortex, and the anterior cingulate cortex between 216 and 405 ms. These results suggest that initial eye movement and accompanying cortical activations during focused duration play an important role in determining the depth order during transparent motion perception.

  4. MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: Phantom study1

    PubMed Central

    Huang, Chuan; Ackerman, Jerome L.; Petibon, Yoann; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong

    2014-01-01

    Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic 18F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R2 = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast. PMID:24694141

  5. Quantum dislocations in solid Helium-4

    NASA Astrophysics Data System (ADS)

    Aleinikava, Darya

    In this thesis the following problems on properties of solid 4He are considered: (i) the role of long-range interactions in suppression of dislocation roughening at T = 0; (ii) the combined effect of 3He impurities and Peierls potential on shear modulus softening; (iii) the dislocation superclimb and its connection to the phenomenon of "giant isochoric compressibility"; (iv) non-linear dislocation response to the applied stress and stress-induces dislocation roughening as a I-order phase transition in 1D at finite temperature. First we investigate the effect of long-range interactions on the state of edge dislocation at T = 0. Such interactions are induced by elastic forces of the solid. We found that quantum roughening transition of a dislocation at T = 0 is completely suppressed by arbitrarily small long-range interactions between kinks. A heuristic argument is presented and the result has been verified by numerical Monte-Carlo simulations using Worm Algorithm in J-current model. It was shown that the Peierls potential plays a crucial role in explaining the elastic properties of dislocations, namely shear modulus softening phenomenon. The crossover from T = 0 to finite temperatures leads to intrinsic softening of the shear modulus and is solely controlled by kink typical energy. It was demonstrated that the mechanism, involving only the binding of 3He impurities to the dislocations, requires an unrealistically high concentrations of defects (or impurities) in order to explain the shear modulus phenomenon and therefore an inclusion of Peierls potential in consideration is required. Superclimbing dislocations, that is the edge dislocations with the superfluidity along the core, were investigated. The theoretical prediction that superclimb is responsible for the phenomenon of "giant isochoric compressibility" was confirmed by Monte-Carlo simulations. It was demonstrated that the isochoric compressibility is suppressed at low temperatures. The dependence of

  6. Dislocated interests and climate change

    NASA Astrophysics Data System (ADS)

    Davis, Steven J.; Diffenbaugh, Noah

    2016-06-01

    The predicted effects of climate change on surface temperatures are now emergent and quantifiable. The recent letter by Hansen and Sato (2016 Environ. Res. Lett. 11 034009) adds to a growing number of studies showing that warming over the past four decades has shifted the distribution of temperatures higher almost everywhere, with the largest relative effects on summer temperatures in developing regions such as Africa, South America, southeast Asia, and the Middle East (e.g., Diffenbaugh and Scherer 2011 Clim. Change 107 615-24 Anderson 2011 Clim. Change 108 581; Mahlstein et al 2012 Geophys. Res. Lett. 39 L21711). Hansen and Sato emphasize that although these regions are warming disproportionately, their role in causing climate change—measured by cumulative historical CO2 emissions produced—is small compared to the US and Europe, where the relative change in temperatures has been less. This spatial and temporal mismatch of climate change impacts and the burning of fossil fuels is a critical dislocation of interests that, as the authors note, has ‘substantial implications for global energy and climate policies.’ Here, we place Hansen and Sato’s ‘national responsibilities’ into a broader conceptual framework of problematically dislocated interests, and briefly discuss the related challenges for global climate mitigation efforts.

  7. Treatment of Chronic Acromioclavicular Joint Dislocation in a Paraplegic Patient with the Weaver-Dunn Procedure and a Hook-Plate.

    PubMed

    Godry, Holger; Citak, Mustafa; Königshausen, Matthias; Schildhauer, Thomas A; Seybold, Dominik

    2016-06-27

    In case of patients with spinal cord injury and concomitant acromioclavicular (AC) joint-dislocation the treatment is challenging, as in this special patient group the function of the shoulder joint is critical because patients depend on the upper limb for mobilization and wheelchair-locomotion. Therefore the goal of this study was to examine, if the treatment of chronic AC-joint dislocation using the Weaver-Dunn procedure augmented with a hook-plate in patients with a spinal cord injury makes early postoperative wheelchair mobilization and the wheelchair transfer with full weight-bearing possible. In this case the Weaver-Dunn procedure with an additive hook-plate was performed in a 34-year-old male patient with a complete paraplegia and a posttraumatic chronic AC-joint dislocation. The patient was allowed to perform his wheelchair transfers with full weight bearing on the first post-operative day. The removal of the hook-plate was performed four months after implantation. At the time of follow-up the patient could use his operated shoulder with full range of motion without restrictions in his activities of daily living or his wheel-chair transfers.

  8. Palmar dislocation of scaphoid and lunate.

    PubMed

    Idrissi, Khalid Koulali; Galiua, Farid

    2011-09-28

    A palmar dislocation of scaphoid and lunate is uncommon. We have found only 19 reported cases in the literature. We reported a simultaneous, divergent dislocation. The closed reduction followed by percutaneous pinning has given a good result without avascular necrosis of any carpal bone.

  9. Dislocation generation during early stage sintering.

    NASA Technical Reports Server (NTRS)

    Sheehan, J. E.; Lenel, F. V.; Ansell, G. S.

    1973-01-01

    Discussion of the effects of capillarity-induced stresses on dislocations during early stage sintering. A special version of Hirth's (1963) theoretical calculation procedures modified to describe dislocation nucleation on planes meeting the sintering body's neck surface obliquely is shown to predict plastic flow at stress levels know to exist between micron size metal particles in the early stages of sintering.

  10. Posterior dislocation of the shoulder in athletes.

    PubMed

    Samilson, R L; Prieto, V

    1983-07-01

    Although posterior dislocation of the shoulder is a rare injury in athletes, failure to recognize and properly manage acute dislocation may have serious consequences. The article discusses the incidence, mechanism of injury, classification, pathologic findings, clinical and radiologic diagnosis, and management.

  11. Active control of the attitude motion and structural vibration of a flexible satellite by jet thrusters

    NASA Astrophysics Data System (ADS)

    Lee, Mokin

    A Lagrangian formulation is used to obtain the equations of motion of a flexible satellite in a tree-type geometry. The flexible satellite model is the geosynchronous INSAT-II type satellite with a flexible balance beam and a flexible solar panel attached to the rigid main body. In deriving the equations of motion, the orbital motion, the librational motion, and the structural motion of flexible bodies are involved. The assumed-modes method is used to express the deflections of the flexible structures in the form of a finite series of space-dependent admissible functions multiplied by time-dependent amplitudes. The kinetic energy, potential energy, strain energy, and virtual work of the flexible satellite are evaluated as functions of time in terms of the generalized coordinates. Then, by substituting them into Lagrange's equations for discrete systems, the governing equations of motion of the flexible satellite are obtained as a set of second-order nonlinear ordinary differential equations. The attitude motion and the structural motion of the flexible satellite are coupled motions with one another. Uncontrolled dynamics show that the librational and structural motions are oscillatory and undamped motions. The stability and performance of the flexible satellite needs to be improved by designing control systems. A control objective is proposed to improve the stability and performance for pointing accuracy maneuver by controlling the librational motions and flexible modes simultaneously. For the control objective, a control system is synthesized, using feedback linearization control, thrust determination, thrust management, and pulse-width pulse-frequency modulation. Feedback linearization for second-order nonlinear systems is used to obtain a stable feedback control system for the pointing-accuracy control. A stable feedback control system is obtained by adjusting the diagonal matrices of the linear second-order system. Jet thrusters are used as the primary

  12. Characterization of Geometrically Necessary Dislocation Content with EBSD-Based Continuum Dislocation Microscopy

    NASA Astrophysics Data System (ADS)

    Ruggles, Timothy J.

    Modeling of plasticity is often hampered by the difficulty in accurately characterizing dislocation density on the microscale for real samples. It is particularly difficult to resolve measured dislocation content onto individual dislocation systems at the length scales most commonly of interest in plasticity studies. Traditionally, dislocation content is analyzed at the continuum level using the Nye tensor and the fundamental relation of continuum dislocation theory to interpret information measured by diffraction techniques, typically EBSD or High Resolution EBSD. In this work the established Nye-Kroner method for resolving measured geometrically necessary dislocation content onto individual slip systems is assessed and extended. Two new methods are also presented to relieve the ambiguity of the Nye-Kroner method. One of these methods uses modified classical dislocation equations to bypass the Nye-Kroner relation, and the other estimates the bulk dislocation density via the entry-wise one-norm of the Nye tensor. These methods are validated via a novel simulation of distortion fields around continuum fields of dislocation density based on classical lattice mechanics and then applied to actual HR-EBSD scans of a micro-indented single crystals of nickel and tantalum. Finally, a detailed analysis of the effect of the spacing between points in an EBSD scan (which is related to the step size of the numerical derivatives used in EBSD dislocation microscopy) on geometrically necessary dislocation measurements is conducted.

  13. Using Motion-Sensor Games to Encourage Physical Activity for Adults with Intellectual Disability.

    PubMed

    Taylor, Michael J; Taylor, David; Gamboa, Patricia; Vlaev, Ivo; Darzi, Ara

    2016-01-01

    Adults with Intellectual Disability (ID) are at high risk of being in poor health as a result of exercising infrequently; recent evidence indicates this is often due to there being a lack of opportunities to exercise. This pilot study involved an investigation of the use of motion-sensor game technology to enable and encourage exercise for this population. Five adults (two female; 3 male, aged 34-74 [M = 55.20, SD = 16.71] with ID used motion-sensor games to conduct exercise at weekly sessions at a day-centre. Session attendees reported to have enjoyed using the games, and that they would like to use the games in future. Interviews were conducted with six (four female; two male, aged 27-51 [M = 40.20, SD = 11.28]) day-centre staff, which indicated ways in which the motion-sensor games could be improved for use by adults with ID, and barriers to consider in relation to their possible future implementation. Findings indicate motion-sensor games provide a useful, enjoyable and accessible way for adults with ID to exercise. Future research could investigate implementation of motion-sensor games as a method for exercise promotion for this population on a larger scale.

  14. Glide dislocation nucleation from dislocation nodes at semi-coherent {111} Cu–Ni interfaces

    SciTech Connect

    Shao, Shuai; Wang, Jian; Beyerlein, Irene J.; Misra, Amit

    2015-07-23

    Using atomistic simulations and dislocation theory on a model system of semi-coherent {1 1 1} interfaces, we show that misfit dislocation nodes adopt multiple atomic arrangements corresponding to the creation and redistribution of excess volume at the nodes. We identified four distinctive node structures: volume-smeared nodes with (i) spiral or (ii) straight dislocation patterns, and volume-condensed nodes with (iii) triangular or (iv) hexagonal dislocation patterns. Volume-smeared nodes contain interfacial dislocations lying in the Cu–Ni interface but volume-condensed nodes contain two sets of interfacial dislocations in the two adjacent interfaces and jogs across the atomic layer between the two adjacent interfaces. Finally, under biaxial tension/compression applied parallel to the interface, we show that the nucleation of lattice dislocations is preferred at the nodes and is correlated with the reduction of excess volume at the nodes.

  15. Glide dislocation nucleation from dislocation nodes at semi-coherent {111} Cu–Ni interfaces

    DOE PAGES

    Shao, Shuai; Wang, Jian; Beyerlein, Irene J.; ...

    2015-07-23

    Using atomistic simulations and dislocation theory on a model system of semi-coherent {1 1 1} interfaces, we show that misfit dislocation nodes adopt multiple atomic arrangements corresponding to the creation and redistribution of excess volume at the nodes. We identified four distinctive node structures: volume-smeared nodes with (i) spiral or (ii) straight dislocation patterns, and volume-condensed nodes with (iii) triangular or (iv) hexagonal dislocation patterns. Volume-smeared nodes contain interfacial dislocations lying in the Cu–Ni interface but volume-condensed nodes contain two sets of interfacial dislocations in the two adjacent interfaces and jogs across the atomic layer between the two adjacent interfaces.more » Finally, under biaxial tension/compression applied parallel to the interface, we show that the nucleation of lattice dislocations is preferred at the nodes and is correlated with the reduction of excess volume at the nodes.« less

  16. Microstructural evidence for the transition from dislocation creep to dislocation-accommodated grain boundary sliding in naturally deformed plagioclase

    NASA Astrophysics Data System (ADS)

    Miranda, Elena A.; Hirth, Greg; John, Barbara E.

    2016-11-01

    We use quantitative microstructural analysis including misorientation analysis based on electron backscatter diffraction (EBSD) data to investigate deformation mechanisms of naturally deformed plagioclase in an amphibolite gabbro mylonite. The sample is from lower oceanic crust exposed near the Southwest Indian Ridge, and it has a high ratio of recrystallized matrix grains to porphyroclasts. Microstructures preserved in porphyroclasts suggest that early deformation was achieved principally by dislocation creep with subgrain rotation recrystallization; recrystallized grain (average diameter ∼8 μm) microstructures indicate that subsequent grain boundary sliding (GBS) was active in the continued deformation of the recrystallized matrix. The recrystallized matrix shows four-grain junctions, randomized misorientation axes, and a shift towards higher angles for neighbor-pair misorientations, all indicative of GBS. The matrix grains also exhibit a shape preferred orientation, a weak lattice preferred orientation consistent with slip on multiple slip systems, and intragrain microstructures indicative of dislocation movement. The combination of these microstructures suggest deformation by dislocation-accommodated GBS (DisGBS). Strain localization within the recrystallized matrix was promoted by a transition from grain size insensitive dislocation creep to grain size sensitive GBS, and sustained by the maintenance of a small grain size during superplasticity.

  17. Functional outcomes after fixation of "terrible triad" elbow fracture dislocations.

    PubMed

    Fitzgibbons, Peter G; Louie, Dexter; Dyer, George Sinclair Mitchell; Blazar, Philip; Earp, Brandon

    2014-04-01

    Historically, the published literature on "terrible triad" injuries has shown a high rate of unacceptable results. The use of systematic treatment protocols may improve functional outcome. The authors performed a retrospective study of all patients aged 18 years or older who underwent surgical treatment for "terrible triad" elbow fracture dislocation at their institution over a period 7 years. Surgical treatment involved fixation or replacement of the radial head, repair of the anterior capsule or coronoid fracture in most cases, and repair of the lateral collateral ligament. Outcomes included grip strength, range of motion, Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire score, and a visual analog score for pain as well as radiographic assessment of arthritis, maintenance of reduction, and development of heterotopic ossification. Eighteen patients were identified and 11 enrolled. Seven patients had suture fixation of the coronoid fragment and anterior capsule, 2 had screw fixation, and 2 had no repair of the coronoid. The radial head was replaced in 9 patients and repaired in 1, and a fracture fragment was excised in another. The average follow-up was 38 months. The average arc of motion of the injured elbow was 112° and that of the contralateral elbow was 142°. The average DASH score was 19.7 (scale, 0-100). The average visual analog score for pain was 2.2 (scale, 0-10). No patients had recurrent elbow instability. Three patients underwent further surgical procedures, all for loss of motion. The authors concluded that a systematic approach to the fixation of "terrible triad" elbow fracture dislocations can provide predictable elbow stability and functional range of motion in the medium term.

  18. Dislocation core radii near elastic stability limits

    NASA Astrophysics Data System (ADS)

    Sawyer, C. A.; Morris, J. W., Jr.; Chrzan, D. C.

    2013-04-01

    Recent studies of transition metal alloys with compositions that place them near their limits of elastic stability [e.g., near the body-centered-cubic (BCC) to hexagonal-close-packed (HCP) transition] suggest interesting behavior for the dislocation cores. Specifically, the dislocation core size is predicted to diverge as the stability limit is approached. Here a simple analysis rooted in elasticity theory and the computation of ideal strength is used to analyze this divergence. This analysis indicates that dislocation core radii should diverge as the elastic limits of stability are approached in the BCC, HCP, and face-centered-cubic (FCC) structures. Moreover, external stresses and dislocation-induced stresses also increase the core radii. Density functional theory based total-energy calculations are combined with anisotropic elasticity theory to compute numerical estimates of dislocation core radii.

  19. Acute traumatic posterior elbow dislocation in children.

    PubMed

    Lieber, Justus; Zundel, Sabine M; Luithle, Tobias; Fuchs, Jörg; Kirschner, Hans-Joachim

    2012-09-01

    Traumatic posterior dislocation of the elbow is often associated with significant morbidity and incomplete recovery. The aim of this study was to retrospectively analyse the outcome of 33 children (median age 10.8 years). Patients underwent reduction and assessment of stability under general anaesthesia. Pure dislocations (n=10) were immobilized, whereas unstable fractures (n=23) were stabilized. Refixation of ligaments was performed if stability was not achieved by fracture stabilization alone. Immobilization was continued for 26 (pure dislocations) or 35 days (associated injuries), respectively. Results were excellent (n=9) or good (n=1) after pure dislocation. Results were excellent (n=15), good (n=7) or poor (n=1) in children with associated injuries. Accurate diagnosis, concentric stable reduction of the elbow as well as stable osteosynthesis of displaced fractures are associated with good results in children with acute posterior elbow dislocations.

  20. Bipolar dislocation of the forearm (floating forearm).

    PubMed

    Aşkar, Hüseyin; Ertürk, Cemil; Altay, Mehmet Akif; Akif Altay, Mehmet; Bilge, Ali

    2014-01-01

    Bipolar dislocation of the forearm (floating forearm) is an unusual injury and is therefore often overlooked. We report a 28-year-old male patient who presented at another center with a history of a fall while climbing a tree. The patient's left elbow was treated with closed reduction and immobilization with a long-arm cast brace due to elbow dislocation. However, the patient was admitted with pain and swelling of the wrist to our emergency department the following day. Physical and radiological examination revealed dorsal trans-scaphoid perilunate dislocation. A dorsal incision was performed for open reduction and internal fixation to provide wide surgical exposure. Concomitant occurrence of elbow dislocation and fracture-dislocation of the perilunate is infrequent. Therefore, physicians should be aware of possible additional injuries and current recommended treatment methods.

  1. Internal stresses, dislocation mobility and ductility

    NASA Astrophysics Data System (ADS)

    Saada, G.

    1991-06-01

    The description of plastic deformation must take into account individual mechanisms and heterogeneity of plastic strain. Influence of dislocation interaction with forest dislocations and of cross slip are connected with the organization of dipole walls. The latter are described and their development is explained as a consequence of edge effects. Applications are discussed. La description de la déformation plastique doit prendre en compte les interactions individuelles des dislocations et l'hétérogénéité à grande échelle de la déformation plastique. Les interactions des dislocations mobiles avec la forêt de dislocations, le glissement dévié, ont pour effet la création de parois dipolaires. Celles-ci sont décrites et leur développement est appliqué à partir des effets de bord.

  2. Parallax-sensitive remapping of visual space in occipito-parietal alpha-band activity during whole-body motion

    PubMed Central

    Selen, L. P. J.; Medendorp, W. P.

    2014-01-01

    Despite the constantly changing retinal image due to eye, head, and body movements, we are able to maintain a stable representation of the visual environment. Various studies on retinal image shifts caused by saccades have suggested that occipital and parietal areas correct for these perturbations by a gaze-centered remapping of the neural image. However, such a uniform, rotational, remapping mechanism cannot work during translations when objects shift on the retina in a more complex, depth-dependent fashion due to motion parallax. Here we tested whether the brain's activity patterns show parallax-sensitive remapping of remembered visual space during whole-body motion. Under continuous recording of electroencephalography (EEG), we passively translated human subjects while they had to remember the location of a world-fixed visual target, briefly presented in front of or behind the eyes' fixation point prior to the motion. Using a psychometric approach we assessed the quality of the memory update, which had to be made based on vestibular feedback and other extraretinal motion cues. All subjects showed a variable amount of parallax-sensitive updating errors, i.e., the direction of the errors depended on the depth of the target relative to fixation. The EEG recordings show a neural correlate of this parallax-sensitive remapping in the alpha-band power at occipito-parietal electrodes. At parietal electrodes, the strength of these alpha-band modulations correlated significantly with updating performance. These results suggest that alpha-band oscillatory activity reflects the time-varying updating of gaze-centered spatial information during parallax-sensitive remapping during whole-body motion. PMID:25505108

  3. Parallax-sensitive remapping of visual space in occipito-parietal alpha-band activity during whole-body motion.

    PubMed

    Gutteling, T P; Selen, L P J; Medendorp, W P

    2015-03-01

    Despite the constantly changing retinal image due to eye, head, and body movements, we are able to maintain a stable representation of the visual environment. Various studies on retinal image shifts caused by saccades have suggested that occipital and parietal areas correct for these perturbations by a gaze-centered remapping of the neural image. However, such a uniform, rotational, remapping mechanism cannot work during translations when objects shift on the retina in a more complex, depth-dependent fashion due to motion parallax. Here we tested whether the brain's activity patterns show parallax-sensitive remapping of remembered visual space during whole-body motion. Under continuous recording of electroencephalography (EEG), we passively translated human subjects while they had to remember the location of a world-fixed visual target, briefly presented in front of or behind the eyes' fixation point prior to the motion. Using a psychometric approach we assessed the quality of the memory update, which had to be made based on vestibular feedback and other extraretinal motion cues. All subjects showed a variable amount of parallax-sensitive updating errors, i.e., the direction of the errors depended on the depth of the target relative to fixation. The EEG recordings show a neural correlate of this parallax-sensitive remapping in the alpha-band power at occipito-parietal electrodes. At parietal electrodes, the strength of these alpha-band modulations correlated significantly with updating performance. These results suggest that alpha-band oscillatory activity reflects the time-varying updating of gaze-centered spatial information during parallax-sensitive remapping during whole-body motion.

  4. Judo-related traumatic posterior sternoclavicular joint dislocation in a child.

    PubMed

    Galanis, Nikiforos; Anastasiadis, Prodromos; Grigoropoulou, Foteini; Kirkos, John; Kapetanos, George

    2014-05-01

    Judo is a combat sport with high risk of injury. We present a rare case of traumatic left posterior sternoclavicular (SC) joint dislocation, inflicted to a 12-year-old boy during a judo contest. An extensive literature review did not reveal any case of posterior SC joint dislocation in judo. The patient was treated with closed reduction under general anesthesia. At 2-year follow-up, his left upper extremity had full range of motion, and he did not complain of any residual symptoms. He decided to discontinue judo training; however, he participates in other physically demanding sports. Although not often encountered, posterior SC joint dislocation is a challenging and critical medical problem that can be fatal if not promptly diagnosed and treated on time and should be considered in the differential diagnosis of trauma-related anterior chest pain.

  5. Motion sickness in migraine sufferers.

    PubMed

    Marcus, Dawn A; Furman, Joseph M; Balaban, Carey D

    2005-12-01

    Motion sickness commonly occurs after exposure to actual motion, such as car or amusement park rides, or virtual motion, such as panoramic movies. Motion sickness symptoms may be disabling, significantly limiting business, travel and leisure activities. Motion sickness occurs in approximately 50% of migraine sufferers. Understanding motion sickness in migraine patients may improve understanding of the physiology of both conditions. Recent literature suggests important relationships between the trigeminal system and vestibular nuclei that may have implications for both motion sickness and migraine. Studies demonstrating an important relationship between serotonin receptors and motion sickness susceptibility in both rodents and humans suggest possible new motion sickness prevention therapies.

  6. 20 CFR 663.610 - Does the statutory priority for use of adult funds also apply to dislocated worker funds?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Does the statutory priority for use of adult... TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE... priority for use of adult funds also apply to dislocated worker funds? No, the statutory priority...

  7. 20 CFR 663.610 - Does the statutory priority for use of adult funds also apply to dislocated worker funds?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Does the statutory priority for use of adult... TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE... priority for use of adult funds also apply to dislocated worker funds? No, the statutory priority...

  8. 20 CFR 663.610 - Does the statutory priority for use of adult funds also apply to dislocated worker funds?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Does the statutory priority for use of adult... TRAINING ADMINISTRATION, DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE... adult funds also apply to dislocated worker funds? No, the statutory priority applies to adult funds...

  9. 20 CFR 663.145 - What services are WIA title I adult and dislocated workers formula funds used to provide?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false What services are WIA title I adult and... TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the...

  10. 20 CFR 663.145 - What services are WIA title I adult and dislocated workers formula funds used to provide?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What services are WIA title I adult and... TRAINING ADMINISTRATION, DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop...

  11. 20 CFR 663.145 - What services are WIA title I adult and dislocated workers formula funds used to provide?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false What services are WIA title I adult and... TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the...

  12. 20 CFR 663.145 - What services are WIA title I adult and dislocated workers formula funds used to provide?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false What services are WIA title I adult and... TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the...

  13. 20 CFR 663.610 - Does the statutory priority for use of adult funds also apply to dislocated worker funds?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Does the statutory priority for use of adult... TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE... priority for use of adult funds also apply to dislocated worker funds? No, the statutory priority...

  14. 20 CFR 663.610 - Does the statutory priority for use of adult funds also apply to dislocated worker funds?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Does the statutory priority for use of adult... TRAINING ADMINISTRATION, DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE... adult funds also apply to dislocated worker funds? No, the statutory priority applies to adult funds...

  15. Dissolution kinetics at edge dislocation site of (1 1 1) surface of copper crystals

    NASA Astrophysics Data System (ADS)

    Imashimizu, Y.

    2011-03-01

    For the study of the dissolution kinetics at dislocation site of crystal surface, copper crystals were anodically dissolved under several different conditions of potentiostatic electrolysis by using an electrolytic cell. The overpotential and temperature dependences of the dissolution rates at dislocation-free and edge dislocation sites of (1 1 1) surface were investigated. The experimental results were electrochemically analyzed, and quantitatively discussed by a nucleation model of two-dimensional pit. The critical free energy change for the formation of a two-dimensional pit at edge dislocation site as well as the activation energy at separation of an atom from the active site were estimated. It is concluded that the present estimation of the critical free energy change seems to reasonably consist with the evaluation of the precedent study and also that its value changes in different manners respectively with overpotential and temperature.

  16. Increasing preoperative dislocations and total time of dislocation affect surgical management of anterior shoulder instability

    PubMed Central

    Denard, Patrick J.; Dai, Xuesong; Burkhart, Stephen S.

    2015-01-01

    Purpose: Our purpose was to determine the relationship between number of preoperative shoulder dislocations and total dislocation time and the need to perform bone deficiency procedures at the time of primary anterior instability surgery. Our hypothesis was that need for bone deficiency procedures would increase with the total number and hours of dislocation. Materials and Methods: A retrospective review was performed of primary instability surgeries performed by a single surgeon. Patients with <25% glenoid bone loss were treated with an isolated arthroscopic Bankart repair. Those who also had an engaging Hill-Sachs lesion underwent arthroscopic Bankart repair with remplissage. Patients with >25% glenoid bone loss were treated with Latarjet reconstruction. Number of dislocations and total dislocation time were examined for their relationship with the treatment method. Results: Ten arthroscopic Bankart repairs, 13 arthroscopic Bankart plus remplissage procedures, and 9 Latarjet reconstructions were available for review. Total dislocations (P = 0.012) and total hours of dislocation (P = 0.019) increased from the Bankart, to the remplissage, to the Latarjet groups. Patients with a total dislocation time of 5 h or more were more likely to require a Latarjet reconstruction (P = 0.039). Patients with only 1 preoperative dislocation were treated with an isolated Bankart repair in 64% (7 of 11) of cases, whereas those with 2 or more dislocations required a bone loss procedure in 86% (18 of 21) of cases (P = 0.013). Conclusion: Increasing number of dislocations and total dislocation time are associated with the development of glenoid and humeral head bony lesions that alter surgical management of anterior shoulder instability. The necessity for the addition of a remplissage to an arthroscopic Bankart repair or the use of a Latarjet reconstruction increases with only 1 recurrent dislocation. Level of evidence: Level III, retrospective comparative study. PMID:25709237

  17. A Splitting Scheme for Solving Reaction-Diffusion Equations Modeling Dislocation Dynamics in Materials Subjected to Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Pontes, J.; Walgraef, D.; Christov, C. I.

    2010-11-01

    Strain localization and dislocation pattern formation are typical features of plastic deformation in metals and alloys. Glide and climb dislocation motion along with accompanying production/annihilation processes of dislocations lead to the occurrence of instabilities of initially uniform dislocation distributions. These instabilities result into the development of various types of dislocation micro-structures, such as dislocation cells, slip and kink bands, persistent slip bands, labyrinth structures, etc., depending on the externally applied loading and the intrinsic lattice constraints. The Walgraef-Aifantis (WA) (Walgraef and Aifanits, J. Appl. Phys., 58, 668, 1985) model is an example of a reaction-diffusion model of coupled nonlinear equations which describe 0 formation of forest (immobile) and gliding (mobile) dislocation densities in the presence of cyclic loading. This paper discuss two versions of the WA model and focus on a finite difference, second order in time 1-Nicolson semi-implicit scheme, with internal iterations at each time step and a spatial splitting using the Stabilizing, Correction (Christov and Pontes, Mathematical and Computer Modelling, 35, 87, 2002) for solving the model evolution equations in two dimensions. The results of two simulations are presented. More complete results will appear in a forthcoming paper.

  18. A model emitting dislocation group from crack tip with stress singularity and its application to brittle-ductile transition

    SciTech Connect

    Yokobori, Toshimitsu A.Jr. . Dept. of Mechatronics and Precision Engineering); Isogai, Takeshi; Yokobori, Takeo . School of Science and Engineering)

    1993-05-01

    Taking into account the stress singularity near the crack tip, computer simulation of dislocation emission and motion has been carried out. A model is proposed in which the source emitting the dislocation group is located near by the crack tip. The numerical method has been used by programming to adjust time increment automatically. By this model and the analytical method, the converged solution has been obtained. The main results are as follows: The region where any dislocation does not exist along the slip plane near the stressed source, namely, dislocation free zone (DFZ) is found to appear. Also it has been found that inverse pile-up of dislocation against the tip of DFZ will appear. The formula is obtained correlating the maximum dislocation density with DFZ length. With increase of stress rate and decrease of the value of [mu]/[tau][sup *][sub 0], the inverse pile-up at the tip of DFZ becomes more significant. Based on these results, a new fracture criterion for brittle fracture is proposed assuming critical local stress requisite within DFZ, where high stress concentration is induced by dynamic inverse pile-up of dislocations.

  19. Thermodynamic forces in single crystals with dislocations

    NASA Astrophysics Data System (ADS)

    Van Goethem, Nicolas

    2014-06-01

    A simple model for the evolution of macroscopic dislocation regions in a single crystal is presented. This model relies on maximal dissipation principle within Kröner's geometric description of the dislocated crystal. Mathematical methods and tools from shape optimization theory provide equilibrium relations at the dislocation front, similarly to previous work achieved on damage modelling (J Comput Phys 33(16):5010-5044, 2011). The deformation state variable is the incompatible strain as related to the dislocation density tensor by a relation involving the Ricci curvature of the crystal underlying elastic metric. The time evolution of the model variables follows from a novel interpretation of the Einstein-Hilbert flow in terms of dislocation microstructure energy. This flow is interpreted as the dissipation of non-conservative dislocations, due to the climb mechanism, modelled by an average effect of mesoscopic dislocations moving normal to their glide planes by adding or removing points defects. The model equations are a fourth-order tensor parabolic equation involving the operator "incompatibility," here appearing as a tensorial counterpart of the scalar Laplacian. This work encompasses and generalizes results previously announced (C R Acad Sci Paris Ser I 349:923-927, 2011), with in addition a series of physical interpretations to give a meaning to the newly introduced concepts.

  20. Chronic bilateral dislocation of temporomandibular joint.

    PubMed

    Shakya, S; Ongole, R; Sumanth, K N; Denny, C E

    2010-01-01

    Dislocation of the condyle of the mandible is a common condition that may occur in an acute or chronic form. It is characterised by inability to close the mouth with or without pain. Dislocation has to be differentiated from subluxation which is a self reducible condition. Dislocation can occur in any direction with anterior dislocation being the commonest one. Various predisposing factors have been associated with dislocation like muscle fatigue and spasm, the defect in the bony surface like shallow articular eminence, and laxity of the capsular ligament. People with defect in collagen synthesis like Ehler Danlos syndrome, Marfan syndrome are said to be genetically predisposed to this condition. Various treatment modalities have been used ranging from conservative techniques to surgical methods. Acute dislocations can be reduced manually or with conservative approach and recurrent and chronic cases can be reduced by surgical intervention. Though the dislocation in our case was 4 months a simple manual reduction proved to be successful. We believe that manual reduction can be attempted as first line of treatment prior to surgical intervention.

  1. An unconventional indication of the Sauve' - Kapandji procedure in a radial shaft pseudoarthrosis and chronic DRUJ dislocation: a case report.

    PubMed

    Theodorakis, E; Fanelli, M; Ottolenghi, P; Pappalardo, S

    2013-01-01

    We present a 42-years-old male who developed a radial shaft pseudoartrosis and a chronic DRUJ dislocation/instability, following a Galeazzi fracture. He presented to our Office with a severe inability of wrist and forearm motion. A Sauve'-Kapandji procedure was adopted, performing a lateral approach to the ulna and grafting the excised ulnar block to retrieve radial length at the pseudoarthrosis level. Cancellous bone grafts from the iliac crest were also applied and mixed with autologous platelet rich plasma to promote callus formation. The goal was to create an intentional pseudoarthrosis of the distal ulna combined with a DRUJ arthrodesis, in order to resolve instability and regain forearm pronation/supination. We obtained bone healing, an excellent clinical recovery, and the patient returned to all his previous activities six months after surgery. To our knowledge, this is the first reported case of a radial shaft psudoarthrosis treated with the Sauve'-Kapandji technique.

  2. Posterior dislocation of the elbow as an unusual presentation after a total hip replacement: a case report

    PubMed Central

    Periasamy, Kumar; Meek, Dominic; Crossman, Paul

    2008-01-01

    Introduction Posterior dislocation of the elbow is usually associated with trauma to the joint with a reported incidence of 3%to 6%. Chronic instability is usually symptomatic following the initial injury. Case presentation We report a case of posterior dislocation of the elbow occurring in a patient while using her arm to lift herself using a monkey pole on the second day following a total hip replacement. The dislocation was reduced under sedation in the ward. There were no signs or symptoms suggesting any joint hypermobility syndrome in the patient. Follow up 4 months following the injury revealed a complete recovery in the range of motion and a pain free elbow. There were no signs and symptoms of any instability. Conclusion This is the first time such a case is reported in the literature. It certainly demonstrates that even in the absence of instability a patient can be predisposed to low energy dislocation of the elbow. PMID:18254950

  3. Distribution of distances between dislocations in different types of dislocation substructures in deformed Cu-Al alloys

    SciTech Connect

    Trishkina, L. Zboykova, N.; Koneva, N. Kozlov, E.; Cherkasova, T.

    2016-01-15

    The aim of the investigation was the determination of the statistic description of dislocation distribution in each dislocation substructures component forming after different deformation degrees in the Cu-Al alloys. The dislocation structures were investigated by the transmission diffraction electron microscopy method. In the work the statistic description of distance distribution between the dislocations, dislocation barriers and dislocation tangles in the deformed Cu-Al alloys with different concentration of Al and test temperature at the grain size of 100 µm was carried out. It was established that the above parameters influence the dislocation distribution in different types of the dislocation substructures (DSS): dislocation chaos, dislocation networks without disorientation, nondisoriented and disoriented cells, in the walls and inside the cells. The distributions of the distances between dislocations in the investigated alloys for each DSS type formed at certain deformation degrees and various test temperatures were plotted.

  4. Activated Ion Electron Capture Dissociation (AI ECD) of proteins: synchronization of infrared and electron irradiation with ion magnetron motion.

    PubMed

    Mikhailov, Victor A; Cooper, Helen J

    2009-05-01

    Here, we show that to perform activated ion electron capture dissociation (AI-ECD) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with a CO(2) laser, it is necessary to synchronize both infrared irradiation and electron capture dissociation with ion magnetron motion. This requirement is essential for instruments in which the infrared laser is angled off-axis, such as the Thermo Finnigan LTQ FT. Generally, the electron irradiation time required for proteins is much shorter (ms) than that required for peptides (tens of ms), and the modulation of ECD, AI ECD, and infrared multiphoton dissociation (IRMPD) with ion magnetron motion is more pronounced. We have optimized AI ECD for ubiquitin, cytochrome c, and myoglobin; however the results can be extended to other proteins. We demonstrate that pre-ECD and post-ECD activation are physically different and display different kinetics. We also demonstrate how, by use of appropriate AI ECD time sequences and normalization, the kinetics of protein gas-phase refolding can be deconvoluted from the diffusion of the ion cloud and measured on the time scale longer than the period of ion magnetron motion.

  5. Monteggia fracture-dislocations: A Historical Review

    PubMed Central

    Rehim, Shady A.; Maynard, Mallory A.; Sebastin, Sandeep J.; Chung, Kevin C.

    2014-01-01

    The eponym Monteggia fracture-dislocation originally referred to a fracture of the shaft of the ulna accompanied by anterior dislocation of the radial head that was described by Giovanni Battista Monteggia of Italy in 1814. Subsequently, a further classification system based on the direction of the radial head dislocation and associated fractures of the radius and ulna was proposed by Jose Luis Bado of Uruguay in 1958. This article investigates the evolution of treatment, classification, and outcomes of the Monteggia injury and sheds light on the lives and contributions of Monteggia and Bado. PMID:24792923

  6. [Posterior dislocation of the sternoclavicular joint].

    PubMed

    Mäkinen, Tatu; Madanat, Rami; Heinänen, Mikko; Brinck, Tuomas; Pajarinen, Jarkko

    2013-01-01

    Posterior dislocation of the sternoclavicular joint is a rare injury. It can be associated with life-threatening complications. Computed tomography is the imaging modality of choice with which possible associated injuries can be detected. Acute injuries are managed with closed reduction under general anaesthesia. A fracture-dislocation is inherently more unstable than an isolated dislocation. Surgical treatment is advocated in cases of delayed diagnosis or failed closed reduction. With early diagnosis and treatment, the long-term outcome of this injury is good.

  7. [Conservative treatment of congenital patellar dislocation].

    PubMed

    Zajonz, D; Schumann, E; Wojan, M; Moche, M; Heyde, C-E

    2017-02-01

    This article presents the rare case of a boy who was born in our hospital with valgus deformity and external rotation of the right lower leg because of congenital patellar dislocation. In the case presented a stable repositioning of the patella could be achieved by redressment with a plaster cast and leg brace. During a 4-year follow-up there were no tendencies towards dislocation during the clinical examination and no dislocation events were documented. In selected cases an attempt at conservative repositioning and retention treatment appears to be worthwhile before surgical treatment is indicated.

  8. Intrauterine Temporomandibular Joint Dislocation: Prenatal Sonographic Evaluation

    PubMed Central

    Çil, Ahmet Said; Bozkurt, Murat; Bozkurt, Duygu Kara

    2014-01-01

    Congenital temporomandibular joint (TMJ) diseases are very rare disorders and are usually diagnosed in childhood. Developmental disorders of the TMJ such as hypoplasia, hyperplasia, and aplasia of the TMJ compartments are characterized by TMJ dysfunction. In childhood, these patients experience recurrent dislocation, pain, and malocclusion. We present the case of a 25-week fetus with unilateral TMJ dislocation with fluid retention in the joint diagnosed by ultrasonography. To the best of our knowledge, this is the first case of TMJ dislocation diagnosed by ultrasonographic evaluation during the prenatal period. PMID:23669613

  9. The relationship between the active cervical range of motion and changes in head and neck posture after continuous VDT work.

    PubMed

    Yoo, Won-Gyu; An, Duk-Hyun

    2009-04-01

    This study investigated the relationship between the active cervical range of motion (ROM) and changes in the head and neck posture after continuous visual display terminal (VDT) work. Twenty VDT workers were recruited from laboratories. The active cervical ROM of the participants was measured and videotaped to capture the craniocervical and cervicothoracic angles using a single video camera before and after VDT work. Pearson correlation coefficients were used to quantify the linear relationship between active cervical ROM measurements and the changes in the craniocervical and cervicothoracic angles after continuous VDT work. Active neck extension (r=-0.84, p<0.01) was negatively correlated with the mean craniocervical angle, and active neck flexion (r=-0.82, p<0.01) and left lateral flexion (r=-0.67, p<0.01) were negatively correlated with the mean cervicothoracic angle.

  10. Invited Hand Article: Current Concepts in Treatment of Fracture-Dislocations of the Proximal Interphalangeal Joint

    PubMed Central

    Haase, Steven C.; Chung, Kevin C.

    2014-01-01

    Background Proximal interphalangeal joint fracture-dislocations are common injuries that require expedient and attentive treatment for the best outcomes. Management can range from protective splinting and early mobilization to complex operations. In this review, the current concepts surrounding the managment of these injuries are reviewed. Methods A literature review was performed of all recent articles pertaining to proximal interphalangeal joint fracture-dislocation, with specific focus on middle phalangeal base fractures. Where appropriate, older articles, or articles on closely related injury types were included for completeness. The methodology and outcomes of each study were analyzed. Results When small avulsion fractures are present, good results are routinely obtained with reduction and early mobilization of stable injuries. Strategies for management of the unstable dorsal fracture-dislocation have evolved over time. To provide early stability, a variety of techniques have evolved, including closed, percutaneous, external, and internal fixation methods. Although each of these techniques can be successful in skilled hands, none have been subjected to rigorous, prospective, comparative trials. Volar dislocations fare less well, with significant loss of motion in many studies. Pilon fractures represent the most complicated injuries, and return of normal motion is not expected. Conclusion The best outcomes can be achieved by (1) establishing enough stability to allow early motion, (2) restoring gliding joint motion rather than non-congruent motion, and (3) restoring the articular surface congruity when possible. Although the majority of literature on this topic consists of expert opinion and retrospective case series, the consensus appears to favor less invasive techniques whenever possible. PMID:25415092

  11. Clinical Outcome of Metacarpophalangeal Joint Dislocation of the Thumb in Children: Case Series of 10 Patients

    PubMed Central

    Khursheed, Omar; Haq, Ansarul; Rashid, Shakir; Manzoor, Nazeefa; Shiekh, Sarwar; Mushtaq, Muzaffar

    2016-01-01

    Objectives  Dislocation of the metacarpophalangeal joint of the thumb in children is an uncommon entity. The aim of this study was to evaluate the clinical outcome of pediatric patients with metacarpophalangeal joint dislocation of the thumb. Patients and Methods  Ten pediatric patients with metacarpophalangeal joint dislocation of the thumb were evaluated. Patients were studied prospectively over a period of 3 years. Parameters studied included patient demographics, type of dislocation, management, and any complications. Results  Mean age of patients was 6.8 years (range: 3–12 years). Seven patients underwent closed reduction and three patients were managed by open reduction. Of the total 10 patients, excellent results were obtained in 9 patients. One of the patients who reported on the fourth day of trauma and was managed by open reduction had mild joint stiffness with a range of motion of 10 to 40 degrees at final follow-up. None of these patients had infection or instability. Conclusion  After thorough clinical and radiological examination, closed reduction can be done in incomplete and simple complete dislocations of metacarpophalangeal joint of the thumb. Repeated closed reduction should be avoided in complex complete injuries. Early mobilization is advised to prevent joint stiffness. PMID:27616822

  12. A motion- and sound-activated, 3D-printed, chalcogenide-based triboelectric nanogenerator.

    PubMed

    Kanik, Mehmet; Say, Mehmet Girayhan; Daglar, Bihter; Yavuz, Ahmet Faruk; Dolas, Muhammet Halit; El-Ashry, Mostafa M; Bayindir, Mehmet

    2015-04-08

    A multilayered triboelectric nanogenerator (MULTENG) that can be actuated by acoustic waves, vibration of a moving car, and tapping motion is built using a 3D-printing technique. The MULTENG can generate an open-circuit voltage of up to 396 V and a short-circuit current of up to 1.62 mA, and can power 38 LEDs. The layers of the triboelectric generator are made of polyetherimide nanopillars and chalcogenide core-shell nanofibers.

  13. Traumatic bilateral knee dislocations, unilateral hip dislocation, and contralateral humeral amputation: a case report.

    PubMed

    Voos, James E; Heyworth, Benton E; Piasecki, Dana P; Henn, R Frank; MacGillivray, John D

    2009-02-01

    Bilateral traumatic knee dislocations are a rarity. We report a case of bilateral traumatic knee dislocations with concomitant right hip dislocation and complete traumatic amputation of the left, nondominant upper extremity at the level of the proximal one-third of the humerus. Angiograms revealed no evidence of popliteal artery injury. Orthopedic treatment consisted of immediate reduction of the dislocations and urgent revision amputation of the upper extremity. Staged, bilateral knee ligamentous reconstructions were performed on hospital days 24 and 29, respectively. Despite this constellation of devastating injuries, the patient had a satisfactory outcome. In patients with high-energy hip or knee dislocations, the bilateral hips and knees should be carefully examined to check for associated fractures and/or dislocations.

  14. Fundamentals in generalized elasticity and dislocation theory of quasicrystals: Green tensor, dislocation key-formulas and dislocation loops

    NASA Astrophysics Data System (ADS)

    Lazar, Markus; Agiasofitou, Eleni

    2014-12-01

    The present work provides fundamental quantities in generalized elasticity and dislocation theory of quasicrystals. In a clear and straightforward manner, the three-dimensional Green tensor of generalized elasticity theory and the extended displacement vector for an arbitrary extended force are derived. Next, in the framework of dislocation theory of quasicrystals, the solutions of the field equations for the extended displacement vector and the extended elastic distortion tensor are given; that is, the generalized Burgers equation for arbitrary sources and the generalized Mura-Willis formula, respectively. Moreover, important quantities of the theory of dislocations as the Eshelby stress tensor, Peach-Koehler force, stress function tensor and the interaction energy are derived for general dislocations. The application to dislocation loops gives rise to the generalized Burgers equation, where the displacement vector can be written as a sum of a line integral plus a purely geometric part. Finally, using the Green tensor, all other dislocation key-formulas for loops, known from the theory of anisotropic elasticity, like the Peach-Koehler stress formula, Mura-Willis equation, Volterra equation, stress function tensor and the interaction energy are derived for quasicrystals.

  15. Superolateral dislocation of the condyle: report of a rare case.

    PubMed

    Papadopoulos, H; Edwards, R S

    2010-05-01

    Anterior dislocation of the mandibular condyle is commonly seen in patients with chronic dislocation of their temporomandibular joints. Posterior, superior and lateral dislocation is rare. Superolateral dislocation of an intact condyle, let alone intact mandible is uncommon, usually occurring after a traumatic insult to the mandible. The authors report on such a case, and its management.

  16. Ipsilateral open anterior hip dislocation and open posterior elbow dislocation in an adult.

    PubMed

    Kumar, Sunil; Rathi, Akhilesh; Sehrawat, Sunil; Gupta, Vikas; Talwar, Jatin; Arora, Sumit

    2014-01-01

    Open anterior dislocation of the hip is a very rare injury, especially in adults. It is a hyperabduction, external rotation and extension injury. Its combination with open posterior dislocation of the elbow has not been described in English language-based medical literature. Primary resuscitation, debridement, urgent reduction of dislocation, and adequate antibiotic support resulted in good clinical outcome in our patient. At 18 months follow-up, no signs of avascular necrosis of the femoral head or infection were observed.

  17. Anisotropic Dislocation Line Energy and Crack Tip Dislocation Nucleation in (alpha)RDX

    DTIC Science & Technology

    2013-11-01

    November 2013 Anisotropic Dislocation Line Energy and Crack Tip Dislocation Nucleation in αRDX Lynn B. Munday and Jaroslaw Knap Computational ...public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This work reports on the algorithms used to determine the...anisotropic and isotropic elastic properties of dislocations and their nucleation from a crack tip. The appendix contains a numerical implementation of these

  18. Distributional and regularized radiation fields of non-uniformly moving straight dislocations, and elastodynamic Tamm problem

    NASA Astrophysics Data System (ADS)

    Lazar, Markus; Pellegrini, Yves-Patrick

    2016-11-01

    This work introduces original explicit solutions for the elastic fields radiated by non-uniformly moving, straight, screw or edge dislocations in an isotropic medium, in the form of time-integral representations in which acceleration-dependent contributions are explicitly separated out. These solutions are obtained by applying an isotropic regularization procedure to distributional expressions of the elastodynamic fields built on the Green tensor of the Navier equation. The obtained regularized field expressions are singularity-free, and depend on the dislocation density rather than on the plastic eigenstrain. They cover non-uniform motion at arbitrary speeds, including faster-than-wave ones. A numerical method of computation is discussed, that rests on discretizing motion along an arbitrary path in the plane transverse to the dislocation, into a succession of time intervals of constant velocity vector over which time-integrated contributions can be obtained in closed form. As a simple illustration, it is applied to the elastodynamic equivalent of the Tamm problem, where fields induced by a dislocation accelerated from rest beyond the longitudinal wave speed, and thereafter put to rest again, are computed. As expected, the proposed expressions produce Mach cones, the dynamic build-up and decay of which is illustrated by means of full-field calculations.

  19. A discrete dislocation analysis of mixed mode fracture at bimaterial interfaces

    NASA Astrophysics Data System (ADS)

    O'Day, Michael; Curtin, William

    2004-03-01

    The influence of mode mixity on crack growth and failure at a metal/ceramic bimaterial interface is examined within the discrete dislocation (DD) plasticity framework. In this method, plasticity occurs via the motion of a large number of dislocations embedded in a linearly elastic medium. No plastic constitutive law is required, however a set of rules governing dislocation nucleation, motion and annihilation is necessary. The numerical procedure uses a superposition technique, developed specifically to allow the efficient solution of DD problems with elastic inhomogeneities. An interface crack exists in the unloaded configuration, and a mode independent cohesive zone law characterizes the interface ahead of the crack tip. The influence of mode mixity on crack growth resistance curve (R-curve) behavior is qualitatively similar to continuum plasticity calculations, where increasing mode mixity leads to increasing toughness. However, deviations can arise due to (i) statistical effects, and (ii) the discrete nature of plasticity. Crack blunting, dislocation patterning and the existence of preferential slip planes all emerge naturally from the boundary value problem solution and give insight into observed R-curve trends.

  20. Automated identification and indexing of dislocations in crystal interfaces

    DOE PAGES

    Stukowski, Alexander; Bulatov, Vasily V.; Arsenlis, Athanasios

    2012-10-31

    Here, we present a computational method for identifying partial and interfacial dislocations in atomistic models of crystals with defects. Our automated algorithm is based on a discrete Burgers circuit integral over the elastic displacement field and is not limited to specific lattices or dislocation types. Dislocations in grain boundaries and other interfaces are identified by mapping atomic bonds from the dislocated interface to an ideal template configuration of the coherent interface to reveal incompatible displacements induced by dislocations and to determine their Burgers vectors. Additionally, the algorithm generates a continuous line representation of each dislocation segment in the crystal andmore » also identifies dislocation junctions.« less

  1. Automated identification and indexing of dislocations in crystal interfaces

    SciTech Connect

    Stukowski, Alexander; Bulatov, Vasily V.; Arsenlis, Athanasios

    2012-10-31

    Here, we present a computational method for identifying partial and interfacial dislocations in atomistic models of crystals with defects. Our automated algorithm is based on a discrete Burgers circuit integral over the elastic displacement field and is not limited to specific lattices or dislocation types. Dislocations in grain boundaries and other interfaces are identified by mapping atomic bonds from the dislocated interface to an ideal template configuration of the coherent interface to reveal incompatible displacements induced by dislocations and to determine their Burgers vectors. Additionally, the algorithm generates a continuous line representation of each dislocation segment in the crystal and also identifies dislocation junctions.

  2. Quenched pinning and collective dislocation dynamics

    PubMed Central

    Ovaska, Markus; Laurson, Lasse; Alava, Mikko J.

    2015-01-01

    Several experiments show that crystalline solids deform in a bursty and intermittent fashion. Power-law distributed strain bursts in compression experiments of micron-sized samples, and acoustic emission energies from larger-scale specimens, are the key signatures of the underlying critical-like collective dislocation dynamics - a phenomenon that has also been seen in discrete dislocation dynamics (DDD) simulations. Here we show, by performing large-scale two-dimensional DDD simulations, that the character of the dislocation avalanche dynamics changes upon addition of sufficiently strong randomly distributed quenched pinning centres, present e.g. in many alloys as immobile solute atoms. For intermediate pinning strength, our results adhere to the scaling picture of depinning transitions, in contrast to pure systems where dislocation jamming dominates the avalanche dynamics. Still stronger disorder quenches the critical behaviour entirely. PMID:26024505

  3. Dislocation Glasses: Aging during Relaxation and Coarsening

    SciTech Connect

    Bako, B.; Groma, I.; Gyoergyi, G.; Zimanyi, G. T.

    2007-02-16

    The dynamics of dislocations is reported to exhibit a range of glassy properties. We study numerically various versions of 2D edge dislocation systems, in the absence of externally applied stress. Two types of glassy behavior are identified (i) dislocations gliding along randomly placed, but fixed, axes exhibit relaxation to their spatially disordered stable state; (ii) if both climb and annihilation are allowed, irregular cellular structures can form on a growing length scale before all dislocations annihilate. In all cases both the correlation function and the diffusion coefficient are found to exhibit aging. Relaxation in case (i) is a slow power law, furthermore, in the transient process (ii) the dynamical exponent z{approx_equal}6, i.e., the cellular structure coarsens relatively slowly.

  4. Developmental Dislocation (Dysplasia) of the Hip (DDH)

    MedlinePlus

    ... developmental dysplasia (dislocation) of the hip (DDH), the hip joint has not formed normally. The ball is loose ... be taken to provide detailed pictures of the hip joint. Treatment When DDH is detected at birth, it ...

  5. Anterior elbow dislocation with potential compartment syndrome: a case report.

    PubMed

    Queipo-de-Llano Temboury, Alfonso; Lara, Jorge Mariscal; Fernadez-de-Rota, Antonio; Queipo-de-Llano, Enrique

    2007-03-01

    Anterior elbow dislocation is an infrequent lesion, usually produced by direct trauma to the proximal ulna after a fall on the elbow in flexion, and is often associated with soft tissue injuries. The authors report a case of a complex injury produced by a high-energy trauma in the right arm of a 65-year-old patient. His limb was trapped inside an industrial spin-dryer, resulting in a closed anterior elbow dislocation, diaphyseal ulnar shaft, radial styloid process fractures, and an associated compartment syndrome. The injury mechanism and its treatment are described to better manage the soft tissue injury and early elbow mobilization using the FEARM hinged external fixator. A good result was achieved, with almost complete restoration of the patient's arm functions, and he has returned to his previous working activities.

  6. Incidence of Posttraumatic Shoulder Dislocation in Poland

    PubMed Central

    Szyluk, Karol J.; Jasiński, Andrzej; Mielnik, Michał; Koczy, Bogdan

    2016-01-01

    Background The incidence of shoulder joint dislocation has been estimated at 11–26 per 100 000 population per year. In our opinion, basic epidemiological data need to be continually updated in studies of large populations. To study the incidence of posttraumatic dislocation of the shoulder joint in the Polish population. Material/Methods We retrospectively investigated the entire Polish population between 1 January 2010 and 1 January 2015. To identify the study group, data collected in the electronic database of the National Health Fund were used. The study group was divided into subgroups to detect possible differences in the incidence of shoulder dislocation with regard to age, sex, and season of the year (month) when the dislocation occurred. Results The cumulative size of the study sample was 192.72 million over the 5 years of the study. We identified 51 409 patients with first posttraumatic shoulder dislocation, at a mean age of 50.83 years (SD 21.12), from 0 to 104 years. The incidence of traumatic shoulder dislocations for the entire study group ranged from 24.75/100 000/year (number of posttraumatic shoulder dislocations per 100 000 persons per year) to 29.09/100 000/year, for a mean of 26.69/100 000/year. Conclusions In this study, the overall incidence of first-time posttraumatic shoulder dislocations in the Polish general population was 26.69 per 100 000 persons per year. These results are higher than estimates presented by other authors. It is necessary to study, regularly update, and monitor this problem in the general population. PMID:27777396

  7. Dislocation Content Measured Via 3D HR-EBSD Near a Grain Boundary in an AlCu Oligocrystal

    NASA Technical Reports Server (NTRS)

    Ruggles, Timothy; Hochhalter, Jacob; Homer, Eric

    2016-01-01

    Interactions between dislocations and grain boundaries are poorly understood and crucial to mesoscale plasticity modeling. Much of our understanding of dislocation-grain boundary interaction comes from atomistic simulations and TEM studies, both of which are extremely limited in scale. High angular resolution EBSD-based continuum dislocation microscopy provides a way of measuring dislocation activity at length scales and accuracies relevant to crystal plasticity, but it is limited as a two-dimensional technique, meaning the character of the grain boundary and the complete dislocation activity is difficult to recover. However, the commercialization of plasma FIB dual-beam microscopes have made 3D EBSD studies all the more feasible. The objective of this work is to apply high angular resolution cross correlation EBSD to a 3D EBSD data set collected by serial sectioning in a FIB to characterize dislocation interaction with a grain boundary. Three dimensional high angular resolution cross correlation EBSD analysis was applied to an AlCu oligocrystal to measure dislocation densities around a grain boundary. Distortion derivatives associated with the plasma FIB serial sectioning were higher than expected, possibly due to geometric uncertainty between layers. Future work will focus on mitigating the geometric uncertainty and examining more regions of interest along the grain boundary to glean information on dislocation-grain boundary interaction.

  8. The flexion–rotation test performed actively and passively: a comparison of range of motion in patients with cervicogenic headache

    PubMed Central

    Bravo Petersen, Shannon M.; Vardaxis, Vassilios G.

    2015-01-01

    Limitation in cervical spine range of motion (ROM) is one criterion for diagnosis of cervicogenic headaches (CHs). The flexion–rotation test, when performed passively (FRT-P), has been shown to be a useful test in diagnosis of CH. Few investigations have examined the flexion-rotation test when performed actively (FRT-A) by the individual, and no studies have examined the FRT-A in a symptomatic population. The purpose of this study was to compare ROM during the FRT-A and FRT-P in patients with CH and asymptomatic individuals and to compare ROM between sides for these two versions of the test. Twelve patients with CH and 10 asymptomatic participants were included in the study. An eight-camera Motion Analysis system was used to measure head motion relative to the trunk during the FRT-P and the FRT-A. Cervical rotation ROM was measured in a position of full cervical flexion for both tests. No significant difference was observed between right and left sides for cervical rotation ROM during the FRT-P nor the FRT-A when performed by asymptomatic participants. In patients with CH, a significant difference was observed between sides for the FRT-P (P = 0.014); however, the FRT-A failed to reveal bilateral descrepancy in rotation ROM. PMID:26109826

  9. Traumatic posterior dislocation of hip in children.

    PubMed

    Kutty, S; Thornes, B; Curtin, W A; Gilmore, M F

    2001-02-01

    Traumatic posterior dislocation of the hip joint in children is an uncommon injury. It constitutes a true orthopedic emergency. It makes up over 80% of pediatric hip dislocations. In children, it can occur as a result of minimal trauma, which is attributed to a soft pliable acetabulum and ligamentous laxity. In skeletally mature adolescents, a greater force is required to dislocate the hip joint. Delay in reduction is associated with long-term complications such as avascular necrosis and degenerative arthritis. Avascular necrosis is related to the duration of dislocation. A poorer prognosis is associated with delay in reduction beyond 6 hours, advanced skeletal maturity, or multiple traumas. Prompt reduction minimizes complications. We report two cases of traumatic posterior dislocation of hip in children aged 3 and 14 years. Both were reduced within 6 hours of dislocation, and review at 6 months revealed normal examination and no evidence of any post-traumatic changes. Post-reduction treatment remains without a consensus. This review highlights the clinical presentation, management, and time-sensitive complications of the injury.

  10. Investigation of the Dynamics of a Screw Dislocation in Copper

    NASA Astrophysics Data System (ADS)

    Kolupaeva, S. N.; Petelina, Yu. P.; Polosukhin, K. A.; Petelin, A. E.

    2015-08-01

    A modification of the mathematical model of forming the crystallographic shear band is proposed in which the strength of elastic interaction between all dislocations of the forming dislocation pileups is taken into account in addition to the Peach-Keller force; lattice, impurity, and dislocation friction; linear tension; viscous braking; and intensity of generation of point defects behind kinks. The model is used to investigate the influence of the dislocation density on the time characteristics of the formation of dislocation loops in copper.

  11. Influence of loading control on strain bursts and dislocation avalanches at the nanometer and micrometer scale

    NASA Astrophysics Data System (ADS)

    Cui, Yinan; Po, Giacomo; Ghoniem, Nasr

    2017-02-01

    Through three-dimensional discrete dislocation dynamics simulations, we show that by tuning the mode of external loading, the collective dynamics of dislocations undergo a transition from driven avalanches under stress control to quasiperiodic oscillations under strain control. We directly correlate measured intermittent plastic events with internal dislocation activities and collective dynamics. Under different loading modes, the roles of the weakest dislocation source and the defect population trend are significantly different. This finding raises new possibilities of controlling correlated dislocation activities and obtaining a low defect density in nanostructured devices by tuning external constraints. In addition, the effect of machine stiffness comes to light. The statistical analysis of the burst magnitude is revisited and carefully discussed. Self-organized criticality and scale-free statistics of strain bursts are obeyed under stress control. However, this behavior is shown to break down under strain control. Rapid stress drops under pure strain control force truncation of dislocation avalanches, leading to a dynamical transition to quasiperiodic oscillations.

  12. Using motion-sensor camera technology to infer seasonal activity and thermal niche of the desert tortoise (Gopherus agassizii)

    USGS Publications Warehouse

    Agha, Mickey; Augustine, Benjamin; Lovich, Jeffrey E.; Delaney, David F.; Sinervo, Barry; Murphy, Mason O.; Ennen, Joshua R.; Briggs, Jessica R.; Cooper, Robert J.; Price, Steven J.

    2015-01-01

    Understanding the relationships between environmental variables and wildlife activity is an important part of effective management. The desert tortoise (Gopherus agassizii), an imperiled species of arid environments in the southwest US, may have increasingly restricted windows for activity due to current warming trends. In summer 2013, we deployed 48 motion sensor cameras at the entrances of tortoise burrows to investigate the effects of temperature, sex, and day of the year on the activity of desert tortoises. Using generalized estimating equations, we found that the relative probability of activity was associated with temperature (linear and quadratic), sex, and day of the year. Sex effects showed that male tortoises are generally more active than female tortoises. Temperature had a quadratic effect, indicating that tortoise activity was heightened at a range of temperatures. In addition, we found significant support for interactions between sex and day of the year, and sex and temperature as predictors of the probability of activity. Using our models, we were able to estimate air temperatures and times (days and hours) that were associated with maximum activity during the study. Because tortoise activity is constrained by environmental conditions such as temperature, it is increasingly vital to conduct studies on how tortoises vary their activity throughout the Sonoran Desert to better understand the effects of a changing climate.

  13. Using motion-sensor camera technology to infer seasonal activity and thermal niche of the desert tortoise (Gopherus agassizii).

    PubMed

    Agha, Mickey; Augustine, Benjamin; Lovich, Jeffrey E; Delaney, David; Sinervo, Barry; Murphy, Mason O; Ennen, Joshua R; Briggs, Jessica R; Cooper, Robert; Price, Steven J

    2015-01-01

    Understanding the relationships between environmental variables and wildlife activity is an important part of effective management. The desert tortoise (Gopherus agassizii), an imperiled species of arid environments in the southwest US, may have increasingly restricted windows for activity due to current warming trends. In summer 2013, we deployed 48 motion sensor cameras at the entrances of tortoise burrows to investigate the effects of temperature, sex, and day of the year on the activity of desert tortoises. Using generalized estimating equations, we found that the relative probability of activity was associated with temperature (linear and quadratic), sex, and day of the year. Sex effects showed that male tortoises are generally more active than female tortoises. Temperature had a quadratic effect, indicating that tortoise activity was heightened at a range of temperatures. In addition, we found significant support for interactions between sex and day of the year, and sex and temperature as predictors of the probability of activity. Using our models, we were able to estimate air temperatures and times (days and hours) that were associated with maximum activity during the study. Because tortoise activity is constrained by environmental conditions such as temperature, it is increasingly vital to conduct studies on how tortoises vary their activity throughout the Sonoran Desert to better understand the effects of a changing climate.

  14. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam.

    PubMed

    Jiang, Hong-Ren; Yoshinaga, Natsuhiko; Sano, Masaki

    2010-12-31

    We study self-propulsion of a half-metal coated colloidal particle under laser irradiation. The motion is caused by self-thermophoresis: i.e., absorption of a laser at the metal-coated side of the particle creates local temperature gradient which in turn drives the particle by thermophoresis. To clarify the mechanism, temperature distribution and a thermal slip flow field around a microscale Janus particle are measured for the first time. With measured temperature drop across the particle, the speed of self-propulsion is corroborated with the prediction based on accessible parameters. As an application for driving a micromachine, a microrotor is demonstrated.

  15. Hip range of motion during daily activities in patients with posterior pelvic tilt from supine to standing position.

    PubMed

    Tamura, Satoru; Miki, Hidenobu; Tsuda, Kosuke; Takao, Masaki; Hattori, Asaki; Suzuki, Naoki; Yonenobu, Kazuo; Sugano, Nobuhiko

    2015-04-01

    In most patients with hip disorders, the anterior pelvic plane (APP) sagittal tilt does not change from supine to standing position. However, in some patients, APP sagittal tilt changes more than 10° posteriorly from supine to standing position. The purpose of this study was to both examine APP sagittal tilt and investigate the hip flexion and extension range of motion (ROM) required during daily activities in these atypical patients. Patient-specific 4-dimensional (4D) motion analysis was performed for 50 hips from 44 patients who had undergone total hip arthroplasty. All patients divided into two categories, such as atypical patients for whom the pelvis tilted more than 10° posteriorly from supine to standing position preoperatively (19 hips from 18 patients) and the remaining typical patients (31 hips from 26 patients). The required hip flexion and extension angles did not differ significantly between atypical patients and typical patients. In conclusion, the hip flexion ROM during deep bending activities and hip extension ROM during extension activities required in those atypical patients with pelvic tilt more than 10° backward from supine to standing position did not shift in the direction of extension.

  16. Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making.

    PubMed

    Huk, Alexander C; Shadlen, Michael N

    2005-11-09

    Decision-making often requires the accumulation and maintenance of evidence over time. Although the neural signals underlying sensory processing have been studied extensively, little is known about how the brain accrues and holds these sensory signals to guide later actions. Previous work has suggested that neural activity in the lateral intraparietal area (LIP) of the monkey brain reflects the formation of perceptual decisions in a random dot direction-discrimination task in which monkeys communicate their decisions with eye-movement responses. We tested the hypothesis that decision-related neural activity in LIP represents the time integral of the momentary motion "evidence." By briefly perturbing the strength of the visual motion stimulus during the formation of perceptual decisions, we tested whether this LIP activity reflected a persistent, integrated "memory" of these brief sensory events. We found that the responses of LIP neurons reflected substantial temporal integration. Brief pulses had persistent effects on both the monkeys' choices and the responses of neurons in LIP, lasting up to 800 ms after appearance. These results demonstrate that LIP is involved in neural time integration underlying the accumulation of evidence in this task. Additional analyses suggest that decision-related LIP responses, as well as behavioral choices and reaction times, can be explained by near-perfect time integration that stops when a criterion amount of evidence has been accumulated. Temporal integration may be a fundamental computation underlying higher cognitive functions that are dissociated from immediate sensory inputs or motor outputs.

  17. FLOWS AND MOTIONS IN MOSS IN THE CORE OF A FLARING ACTIVE REGION: EVIDENCE FOR STEADY HEATING

    SciTech Connect

    Brooks, David H.; Warren, Harry P.

    2009-09-20

    We present new measurements of the time variability of intensity, Doppler, and nonthermal velocities in moss in an active region core observed by the EUV Imaging Spectrometer on Hinode in 2007 June. The measurements are derived from spectral profiles of the Fe XII 195 A line. Using the 2'' slit, we repeatedly scanned 150'' by 150'' in a few minutes. This is the first time it has been possible to make such velocity measurements in the moss, and the data presented are the highest cadence spatially resolved maps of moss Doppler and nonthermal velocities ever obtained in the corona. The observed region produced numerous C- and M-class flares with several occurring in the core close to the moss. The magnetic field was therefore clearly changing in the active region core, so we ought to be able to detect dynamic signatures in the moss if they exist. Our measurements of moss intensities agree with previous studies in that a less than 15% variability is seen over a period of 16 hr. Our new measurements of Doppler and nonthermal velocities reveal no strong flows or motions in the moss, nor any significant variability in these quantities. The results confirm that moss at the bases of high temperature coronal loops is heated quasi-steadily. They also show that quasi-steady heating can contribute significantly even in the core of a flare productive active region. Such heating may be impulsive at high frequency, but if so it does not give rise to large flows or motions.

  18. Influences of Surface and Ionic Properties on Electricity Generation of an Active Transducer Driven by Water Motion.

    PubMed

    Park, Junwoo; Yang, YoungJun; Kwon, Soon-Hyung; Kim, Youn Sang

    2015-02-19

    In this Letter, we discuss the surface, ionic properties, and scale-up potential of an active transducer that generated electricity from natural water motion. When a liquid contacts a solid surface, an electrical double layer (EDL) is always formed at the solid/liquid interface. By modulating the EDL, the active transducer could generate a peak voltage of ∼3 V and a peak power of ∼5 μW. Interestingly, there were specific salinities of solution droplets that showed maximum performance and different characteristics according to the ions' nature. Analyzing the results macroscopically, we tried to figure out the origins of the active transducing precipitated by ions dynamics. Also, we demonstrated the scale-up potential for practical usage by multiple electrode design.

  19. Molecular dynamics simulation of a glissile dislocation interface propagating a martensitic transformation.

    PubMed

    Lill, J V; Broughton, J Q

    2000-06-19

    The method of Parrinello and Rahman is generalized to include slip in addition to deformation of the simulation cell. Equations of motion are derived, and a microscopic expression for traction is introduced. Lagrangian constraints are imposed so that the combination of deformation and slip conform to the invariant plane shear characteristic of martensites. Simulation of a model transformation demonstrates the nucleation and propagation of a glissile dislocation interface.

  20. Chronic transscaphoid, transcapitate perilunate fracture dislocation of the wrist: Fenton's syndrome.

    PubMed

    Marcuzzi, A; Ozben, H; Russomando, A; Petit, A

    2013-04-01

    The authors report about chronic Fenton's syndrome. This rare injury of the wrist is characterized by scapho-capitate fracture accompanied by 180° rotation of the head of capitate and associated perilunate dislocation. Two patients suffering from chronic Fenton's syndrome were treated with pyrocarbon capitate resurfacing prosthesis. Patients were evaluated according to the wrist range of motion, Mayo modified wrist and DASH scores. In conclusion, prosthetic surgery may achieve satisfactory results for this rare and diagnostically challenging syndrome.

  1. Dislocations and Plasticity in bcc Transition Metals at High Pressure

    SciTech Connect

    Yang, L H; Tang, M; Moriarty, J A

    2009-01-23

    Using first-principles electronic structure calculations, quantum-based atomistic simulations and atomistically informed dislocation dynamics (DD) simulations, we have studied individual dislocation behavior and the multiscale modeling of single-crystal plasticity in the prototype bcc transition metals Ta, Mo and V under both ambient and high pressure conditions. The primary focus in this work is on the pressure-dependent structure, mobility and interaction of a/2<111> screw dislocations, which dominate the plastic deformation properties of these materials. At the electronic scale, first-principles calculations of elasticity, ideal strength and generalized stacking fault energy surfaces have been used to validate quantum-based multi-ion interatomic potentials. At the atomistic scale, these potentials have been used in flexible Green's function boundary condition simulations to study the core structure, Peierls stress {tau}{sub P}, thermally activated kink-pair formation and mobility below {tau}{sub P}, and phonon-drag mobility above {tau}{sub P}. These results have then been distilled into analytic velocity laws and used directly in predictive microscale DD simulations of flow stress and resolved yield stress over wide ranges of pressure, temperature and strain rate.

  2. A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine

    NASA Astrophysics Data System (ADS)

    Luscher, D. J.; Addessio, F. L.; Cawkwell, M. J.; Ramos, K. J.

    2017-01-01

    We have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation drag limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation-dislocation interactions. This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.

  3. Influence of dislocations on photovoltaic properties of multicrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    El Ghitani, H.; Pasquinelli, M.; Martinuzzi, S.

    1993-10-01

    The photovoltaic properties of large grained polycrystalline silicon solar cells are mainly affected by the presence of dislocations. Both the recombination of carriers at dislocation (which degrades the photocurrent) and the transport of carriers along the dislocation cores crossing the junction (which increases the dark current) are taken into account. The influence of the density N_dis and recombination activity S_d of dislocations on the short circuit current density J_sc, open circuit voltage V_oc, fill factor FF, and efficiency η are computed. The computed values are compared to experimental results. Les propriétés photovoltaïques des cellules solaires au silicium multicristallin à gros grains, sont principalement affectées par la présence de dislocations. Nous nous intéressons plus particulièrement à la recombinaison des porteurs de charges aux dislocations qui affecte en premier lieu le photocourant et au transport des charges le long du cœur des dislocations traversant la jonction et qui est responsable de l'augmentation du courant d'obscurité. Nous avons modélisé l'influence de la densité de dislocations N_dis et de leur activité recombinante S_d sur les principaux paramètres photovoltaïques (le courant de court-circuit J_sc, la tension de circuit ouvert V_oc, le facteur de forme FF, et le rendement η). Le modèle est ensuite confronté aux résultats expérimentaux.

  4. A Report on the use of Weak-Shock Wave Profiles and 3-D Dislocation Dynamics Simulations for Validation of Dislocation Multiplication and Mobility in the Phonon Drag Regime

    SciTech Connect

    Cazamias, J; Lassila, D; Shehadeh, M; Zbib, H

    2004-02-19

    Dynamically loaded gas gun experiments were performed to validate the predictive capabilities of 3-D dislocation dynamics (DD) code simulations at very high strain rates and dislocation velocities where the phonon drag mechanism will be dominant. Experiments were performed in the weak-shock regime on high-purity Mo single crystals with [001] compression axes. We have also performed shock-recovery experiments and are in the process of analyzing the dislocation structure generated by the weak-shock using transmission electron microscopy (TEM), which will also be used to validate the dislocation structure predicted by the DD simulations. The DD simulations being performed at Washington State University by Prof. H. Zbib and co-workers will be compared to the experimentally measured wave profiles, thereby validating mechanisms of dislocation generation and motion. Some DD simulation results are presented to demonstrate the feasibility of using a combined experimental/simulation effort for the validation of dislocation generation and mobility physics issues in the phonon drag regime.

  5. Dislocation- and crystallographic-dependent photoelectrochemical wet etching of gallium nitride

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Craven, M. D.; Speck, J. S.; Den Baars, S. P.; Hu, E. L.

    2004-04-01

    Polarity and dislocation dependence study of photoelectrochemical wet etching on GaN was carried out on lateral epitaxial overgrown nonpolar (112¯0)a-GaN/(11¯02)r-plane sapphire substrate. This LEO nonpolar GaN sample has low dislocation density Ga- and N-faces exposed horizontally in opposite directions, which can be exposed to identical etching conditions for both polarity and dislocation dependence study. It is observed that N-face GaN is essentially much chemically active than Ga-face GaN, which shows the hexagonal pyramids with {101¯1¯} facets on the etched N face. No obvious etching was observed on Ga face in the same etch condition. As for dislocation dependence, the "wing" (low dislocation density) region was etched faster than the "window" (high dislocation density) region. Smooth etched surfaces were formed with the (1¯1¯22¯) facet as an etch stop plane both on Ga and N-wing region.

  6. Novel Cross-Slip Mechanism of Pyramidal Screw Dislocations in Magnesium

    NASA Astrophysics Data System (ADS)

    Itakura, Mitsuhiro; Kaburaki, Hideo; Yamaguchi, Masatake; Tsuru, Tomohito

    2016-06-01

    Compared to cubic metals, whose primary slip mode includes twelve equivalent systems, the lower crystalline symmetry of hexagonal close-packed metals results in a reduced number of equivalent primary slips and anisotropy in plasticity, leading to brittleness at the ambient temperature. At higher temperatures, the ductility of hexagonal close-packed metals improves owing to the activation of secondary ⟨c +a ⟩ pyramidal slip systems. Thus, understanding the fundamental properties of corresponding dislocations is essential for the improvement of ductility at the ambient temperature. Here, we present the results of large-scale ab initio calculations for ⟨c +a ⟩ pyramidal screw dislocations in magnesium and show that their slip behavior is a stark counterexample to the conventional wisdom that a slip plane is determined by the stacking fault plane of dislocations. A stacking fault between dissociated partial dislocations can assume a nonplanar shape with a negligible energy cost and can migrate normal to its plane by a local shuffling of atoms. Partial dislocations dissociated on a {2 1 ¯ 1 ¯ 2 } plane "slither" in the {01 1 ¯1 } plane, dragging the stacking fault with them in response to an applied shear stress. This finding resolves the apparent discrepancy that both {2 1 ¯1 ¯2 } and {01 1 ¯1 } slip traces are observed in experiments while ab initio calculations indicate that dislocations preferably dissociate in the {2 1 ¯1 ¯2 } planes.

  7. Reconstruction of active regular motion in amoeba extract: dynamic cooperation between sol and gel states.

    PubMed

    Nishigami, Yukinori; Ichikawa, Masatoshi; Kazama, Toshiya; Kobayashi, Ryo; Shimmen, Teruo; Yoshikawa, Kenichi; Sonobe, Seiji

    2013-01-01

    Amoeboid locomotion is one of the typical modes of biological cell migration. Cytoplasmic sol-gel conversion of an actomyosin system is thought to play an important role in locomotion. However, the mechanisms underlying sol-gel conversion, including trigger, signal, and regulating factors, remain unclear. We developed a novel model system in which an actomyosin fraction moves like an amoeba in a cytoplasmic extract. Rheological study of this model system revealed that the actomyosin fraction exhibits shear banding: the sol-gel state of actomyosin can be regulated by shear rate or mechanical force. Furthermore, study of the living cell indicated that the shear-banding property also causes sol-gel conversion with the same order of magnitude as that of shear rate. Our results suggest that the inherent sol-gel transition property plays an essential role in the self-regulation of autonomous translational motion in amoeba.

  8. Complexity reduction in the H.264/AVC using highly adaptive fast mode decision based on macroblock motion activity

    NASA Astrophysics Data System (ADS)

    Abdellah, Skoudarli; Mokhtar, Nibouche; Amina, Serir

    2015-11-01

    The H.264/AVC video coding standard is used in a wide range of applications from video conferencing to high-definition television according to its high compression efficiency. This efficiency is mainly acquired from the newly allowed prediction schemes including variable block modes. However, these schemes require a high complexity to select the optimal mode. Consequently, complexity reduction in the H.264/AVC encoder has recently become a very challenging task in the video compression domain, especially when implementing the encoder in real-time applications. Fast mode decision algorithms play an important role in reducing the overall complexity of the encoder. In this paper, we propose an adaptive fast intermode algorithm based on motion activity, temporal stationarity, and spatial homogeneity. This algorithm predicts the motion activity of the current macroblock from its neighboring blocks and identifies temporal stationary regions and spatially homogeneous regions using adaptive threshold values based on content video features. Extensive experimental work has been done in high profile, and results show that the proposed source-coding algorithm effectively reduces the computational complexity by 53.18% on average compared with the reference software encoder, while maintaining the high-coding efficiency of H.264/AVC by incurring only 0.097 dB in total peak signal-to-noise ratio and 0.228% increment on the total bit rate.

  9. Recurrent elbow dislocation--an uncommon presentation.

    PubMed

    Sunderamoorthy, D; Smith, A; Woods, D A

    2005-09-01

    A 58 year old female attended our A&E department following a fall in the garden with swelling and bruising of the right arm and the elbow. Anteroposterior and lateral radiographs were interpreted as showing a normal elbow joint. A diagnosis of soft tissue injury to the elbow was made and the patient was discharged with advice. She returned 2 days later, did not have an x ray, and again given advice. Three weeks later she was referred back to A&E by the general practitioner with persistent swelling of the elbow. Further radiographs showed a posterolateral dislocation of the elbow. The elbow was reduced under sedation but was subsequently dislocated at follow up, and was treated by external fixator and transolecranon pin. The fixator was removed at 4 weeks and the elbow was then stable. This case highlights that recurrent elbow dislocations due to significant ligament injuries can present in joint and subsequently dislocate. A high index of suspicion is necessary and appropriate referral to the specialist must be made to avoid the morbidity associated with recurrent dislocation. It also emphasises the need to always assess the patient on his or her own merits despite previously normal investigations.

  10. Use of cervical collar in temporomandibular dislocation.

    PubMed

    Jaisani, Mehul R; Pradhan, Leeza; Sagtani, Alok

    2015-06-01

    Dislocation of the temporomandibular joint represents 3 % of all reported dislocated joints. In the last 3 decades many cases of TMJ dislocation have been reported with a wide variety of treatment options ranging from non-surgical conservative approaches to open joint procedures. The question remains whether one method is superior to the others. Conservative treatments are still the option in this part of the continent due to financial constraints and as well as due to availability of skilled manpower. A variety of conservative techniques have been described for reducing dislocations, all of which require 10-14 days of immobilization of the jaw post reduction so as to prevent further episodes of dislocation. Immobilization of the jaw can be done in the form of barrel bandage, barton bandage, head chin cap or maxillomandibular fixation using arch bars. We suggest the use of a cervical collar as a form of post reduction immobilization technique to overcome the inherent disadvantages of conventional forms of immobilization techniques.

  11. Toying with Motion.

    ERIC Educational Resources Information Center

    Galus, Pamela J.

    2002-01-01

    Presents a variety of activities that support the development of an understanding of Newton's laws of motion. Activities use toy cars, mobile roads, and a seat-of-nails. Includes a scoring rubric. (DDR)

  12. Chiral anomaly in Dirac semimetals due to dislocations

    NASA Astrophysics Data System (ADS)

    Chernodub, M. N.; Zubkov, M. A.

    2017-03-01

    The dislocation in Dirac semimetal carries an emergent magnetic flux parallel to the dislocation axis. We show that due to the emergent magnetic field, the dislocation accommodates a single fermion massless mode of the corresponding low-energy one-particle Hamiltonian. The mode is propagating along the dislocation with its spin directed parallel to the dislocation axis. In agreement with the chiral anomaly observed in Dirac semimetals, an external electric field results in the spectral flow of the one-particle Hamiltonian, in pumping of the fermionic quasiparticles out from vacuum, and in creating a nonzero axial (chiral) charge in the vicinity of the dislocation.

  13. High dislocation density of tin induced by electric current

    SciTech Connect

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung; Wu, Albert T.

    2015-12-15

    A dislocation density of as high as 10{sup 17} /m{sup 2} in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10{sup 3} A/ cm{sup 2}. The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining.

  14. Motion mitigation for lung cancer patients treated with active scanning proton therapy

    SciTech Connect

    Grassberger, Clemens; Dowdell, Stephen; Sharp, Greg; Paganetti, Harald

    2015-05-15

    Purpose: Motion interplay can affect the tumor dose in scanned proton beam therapy. This study assesses the ability of rescanning and gating to mitigate interplay effects during lung treatments. Methods: The treatments of five lung cancer patients [48 Gy(RBE)/4fx] with varying tumor size (21.1–82.3 cm{sup 3}) and motion amplitude (2.9–30.6 mm) were simulated employing 4D Monte Carlo. The authors investigated two spot sizes (σ ∼ 12 and ∼3 mm), three rescanning techniques (layered, volumetric, breath-sampled volumetric) and respiratory gating with a 30% duty cycle. Results: For 4/5 patients, layered rescanning 6/2 times (for the small/large spot size) maintains equivalent uniform dose within the target >98% for a single fraction. Breath sampling the timing of rescanning is ∼2 times more effective than the same number of continuous rescans. Volumetric rescanning is sensitive to synchronization effects, which was observed in 3/5 patients, though not for layered rescanning. For the large spot size, rescanning compared favorably with gating in terms of time requirements, i.e., 2x-rescanning is on average a factor ∼2.6 faster than gating for this scenario. For the small spot size however, 6x-rescanning takes on average 65% longer compared to gating. Rescanning has no effect on normal lung V{sub 20} and mean lung dose (MLD), though it reduces the maximum lung dose by on average 6.9 ± 2.4/16.7 ± 12.2 Gy(RBE) for the large and small spot sizes, respectively. Gating leads to a similar reduction in maximum dose and additionally reduces V{sub 20} and MLD. Breath-sampled rescanning is most successful in reducing the maximum dose to the normal lung. Conclusions: Both rescanning (2–6 times, depending on the beam size) as well as gating was able to mitigate interplay effects in the target for 4/5 patients studied. Layered rescanning is superior to volumetric rescanning, as the latter suffers from synchronization effects in 3/5 patients studied. Gating minimizes the

  15. Effects of using an unstable inclined board on active and passive ankle range of motion in patients with ankle stiffness.

    PubMed

    Yoo, Won-Gyu

    2015-07-01

    [Purpose] The present study assessed the effects of using an unstable inclined board on the active and passive ankle range of motion in patients with ankle stiffness. [Subjects] The study included 10 young female patients with ankle stiffness. [Methods] The patients were divided into the following two groups: a group that performed ankle dorsiflexion stretching exercises using a wooden inclined board and a group that performed stretching exercises using an air-cushioned inclined board (unstable inclined board). Active and passive ankle dorsiflexion angles were measured bilaterally using a goniometer. [Results] Both inclined boards significantly increased active and passive ankle dorsiflexion. After performing ankle stretching exercises, active dorsiflexion significantly increased the unstable inclined board compared to that using the wooden inclined board. However, the passive dorsiflexion angles did not differ significantly between the two groups after ankle stretching exercises. [Conclusion] The use of an unstable inclined board might stimulate activation of the ankle dorsiflexors in addition to stretching muscle or tissue. Active ankle dorsiflexion was more effectively improved with stretching exercises using an unstable inclined board than with exercises using a wooden inclined board.

  16. A rare fracture-dislocation of the hip in a gymnast and review of the literature

    PubMed Central

    Mitchell, J. C.; Giannoudis, P. V.; Millner, P. A.; Smith, R. M.

    1999-01-01

    Posterior fracture-dislocation of the hip is an uncommon injury in athletics and leisure activities. It is more commonly seen in high energy motor vehicle accidents and occasionally in high energy sporting activities. A rare case is reported of posterior fracture-dislocation of the hip joint that occurred in a young athlete during gymnastics. This unusual mechanism of injury illustrates the great forces sustained by the hip joint of gymnasts. Early reduction and operative treatment led to a congruent and stable hip joint. After rehabilitation, she returned to light sporting activities after six months. 


 PMID:10450489

  17. Active Flow Control of the Near Wake of an Axisymmetric Body in Prescribed Motion

    NASA Astrophysics Data System (ADS)

    Lambert, Thomas; Vukasinovic, Bojan; Glezer, Ari

    2014-11-01

    Controlled interactions between fluidic actuators and the cross flow over the aft end of a wire-mounted axisymmetric moving wind tunnel bluff body model are exploited for modification of its near wake and thereby its global unsteady aerodynamic loads. The model is supported by eight servo-controlled wires, each including a miniature inline force transducer for measurements of the time-resolved tension. The body moves along a prescribed trajectory controllable in six degrees of freedom using closed loop feedback from an external camera system. Actuation is effected by an integrated azimuthally-segmented array of four aft-facing synthetic jet modules around the perimeter of the tail end. In the present investigations, the aerodynamic loads are controlled during time-periodic axial and rotational motions with varying reduced frequencies of up to 0.259. It is shown that this flow control approach modifies the near wake and induces aerodynamic loads that are comparable to the baseline model dynamic loads. Control of the model's unsteady aerodynamic characteristics may be adopted for in flight stabilization.

  18. Gamma-Band Activities in Mouse Frontal and Visual Cortex Induced by Coherent Dot Motion

    PubMed Central

    Han, Hio-Been; Hwang, Eunjin; Lee, Soohyun; Kim, Min-Shik; Choi, Jee Hyun

    2017-01-01

    A key question within systems neuroscience is to understand how the brain encodes spatially and temporally distributed local features and binds these together into one perceptual representation. Previous works in animal and human have shown that changes in neural synchrony occur during the perceptual processing and these changes are distinguished by the emergence of gamma-band oscillations (GBO, 30–80 Hz, centered at 40 Hz). Here, we used the mouse electroencephalogram to investigate how different cortical areas play roles in perceptual processing by assessing their GBO patterns during the visual presentation of coherently/incoherently moving random-dot kinematogram and static dots display. Our results revealed that GBO in the visual cortex were strongly modulated by the moving dots regardless of the existence of a global dot coherence, whereas GBO in frontal cortex were modulated by coherence of the motion. Moreover, concurrent GBO across the multiple cortical area occur more frequently for coherently moving dots. Taken together, these findings of GBO in the mouse frontal and visual cortex are related to the perceptual binding of local features into a globally-coherent representation, suggesting the dynamic interplay across the local/distributed networks of GBO in the global processing of optic flow. PMID:28252109

  19. Application of Hyperelastic-based Active Mesh Model in Cardiac Motion Recovery

    PubMed Central

    Yousefi-Banaem, Hossein; Kermani, Saeed; Daneshmehr, Alireza; Saneie, Hamid

    2016-01-01

    Considering the nonlinear hyperelastic or viscoelastic nature of soft tissues has an important effect on modeling results. In medical applications, accounting nonlinearity begets an ill posed problem, due to absence of external force. Myocardium can be considered as a hyperelastic material, and variational approaches are proposed to estimate stiffness matrix, which take into account the linear and nonlinear properties of myocardium. By displacement estimation of some points in the four-dimensional cardiac magnetic resonance imaging series, using a similarity criterion, the elementary deformations are estimated, then using the Moore–Penrose inverse matrix approach, all point deformations are obtained. Using this process, the cardiac wall motion is quantized to mechanically determine local parameters to investigate the cardiac wall functionality. This process was implemented and tested over 10 healthy and 20 patients with myocardial infarction. In all patients, the process was able to precisely determine the affected region. The proposed approach was also compared with linear one and the results demonstrated its superiority respect to the linear model. PMID:27563570

  20. Myocardial metabolism, perfusion, wall motion and electrical activity in Duchenne muscular dystrophy

    SciTech Connect

    Perloff, J.K.; Henze, E.; Schelbert, H.R.

    1982-01-01

    The cardiomyopathy of Duchenne's muscular dystrophy originates in the posterobasal left ventricle and extends chiefly to the contiguous lateral wall. Ultrastructural abnormalities in these regions precede connective tissue replacement. We postulated that a metabolic fault coincided with or antedated the subcellular abnormality. Accordingly, regional left ventricular metabolism, perfusion and wall motion were studied using positron computed tomography and metabolic isotopes supplemented by thallium perfusion scans, equilibrium radionuclide angiography and M-mode and two-dimensional echocardiography. To complete the assessment, electrocardiograms, vectorcardiograms, 24 hour taped electrocardiograms and chest x-rays were analyzed. Positron computed tomography utilizing F-18 2-fluoro 2-deoxyglucose (FDG) provided the first conclusive evidence supporting the hypothesis of a premorphologic regional metabolic fault. Thus, cardiac involvement in duchenne dystrophy emerges as a unique form of heart disease, genetically targeting specific regions of ventricular myocardium for initial metabolic and subcellular changes. Reported ultrastructural abnormalities of the impulse and conduction systems provide, at least in part, a basis for the clinically observed sinus node, intraatrial, internodal, AV nodal and infranodal disorders.

  1. Using structure-from-motion for monitoring active lava flows and domes

    NASA Astrophysics Data System (ADS)

    James, Mike R.; Robson, Stuart; Varley, Nick

    2016-04-01

    3-D reconstruction software based on structure-from-motion (SfM) algorithms can substantially reduce the requirements and learning curve for generating topographic data from photographs, and thus offers strong potential for data collection in many dynamic environments. Unfortunately, SfM-based software tends not to provide the rigorous metrics that are used to assess the quality of results in conventional photogrammetry software. Here, we use examples of repeat oblique airborne acquisitions from a volcanic dome (Volcán de Colima, Mexico) and terrestrial time-lapse stereo-photography (Mt. Etna, Sicily) to examine the sensitivity of results to imaging characteristics and SfM processing procedures. At Volcán de Colima, photographs were acquired with a relatively favourable convergent geometry, from an opened window in a light aircraft. However, hazards prevent the deployment of ground control, so the derived topographic shape relies entirely on the image tie points generated automatically by the software. In contrast, at Mt. Etna, control targets could be used but, with only two (mildly convergent) cameras, the image geometry is naturally weaker that at Colima. We use both of these cases to explore some of the challenges involved with understanding the error inherent in projects processed using SfM-based approaches. Results are compared with those achieved using a rigorous close-range photogrammetry package.

  2. Successful Conservative Management of a Dislocated IUD

    PubMed Central

    Inal, Hasan Ali; Ozturk Inal, Zeynep; Alkan, Ender

    2015-01-01

    Background. Intrauterine contraceptive devices (IUDs) are widely utilized all over the world owing to their low cost and high efficacy. Uterine perforation is a rare complication that may occur at IUD insertion resulting in extrauterine location of the IUD. Traditionally, surgical removal of dislocated IUDs has been recommended. Case. A 68-year-old patient who had an IUD (Lippes loop) inserted 32 years ago and whose routine examination incidentally revealed a dislocated IUD in the abdominal cavity. The patient remained asymptomatic during three years of follow-up and the IUD was left in place. Conclusion. Asymptomatic patients, whose vaginal examinations and ultrasonography or X-ray results reveal a dislocated IUD, may benefit from conservative management. PMID:25861494

  3. Crack Tip Dislocation Nucleation in FCC Solids

    NASA Astrophysics Data System (ADS)

    Knap, J.; Sieradzki, K.

    1999-02-01

    We present results of molecular dynamic simulations aimed at examining crack tip dislocation emission in fcc solids. The results are analyzed in terms of recent continuum formulations of this problem. In mode II, Au, Pd, and Pt displayed a new unanticipated mechanism of crack tip dislocation emission involving the creation of a pair of Shockley partials on a slip plane one plane below the crack plane. In mode I, for all the materials examined, Rice's continuum formulation [J. Mech. Phys. Solids 40, 239 (1992)] underestimated the stress intensity for dislocation emission by almost a factor of 2. Surface stress corrections to the emission criterion brought the agreement between continuum predictions and simulations to within 20%.

  4. Chronic Elbow Dislocation: Evaluation and Management.

    PubMed

    Donohue, Kenneth W; Mehlhoff, Thomas L

    2016-07-01

    Chronic elbow dislocation is defined as a dislocation that has remained unreduced for >2 weeks. The soft-tissue and skeletal changes that develop during this time usually prevent successful closed reduction. These changes include the development of extensive intra-articular fibrotic tissue, as well as contracture of the triceps, collateral ligaments, and elbow capsule. Ulnar nerve involvement and associated fractures may also be present. Because treatment of chronic elbow dislocation is challenging, a stepwise approach is used in the evaluation and management of this condition. No large series of data are available to guide treatment. Most patients are treated on the basis of the surgeon's anecdotal experience. Treatment typically involves open reduction, often with the use of hinged external fixators. The role of triceps lengthening or primary collateral ligament reconstruction remains a topic of debate.

  5. Three-dimensional motion estimation using genetic algorithms from image sequence in an active stereo vision system

    NASA Astrophysics Data System (ADS)

    Dipanda, Albert; Ajot, Jerome; Woo, Sanghyuk

    2003-06-01

    This paper proposes a method for estimating 3D rigid motion parameters from an image sequence of a moving object. The 3D surface measurement is achieved using an active stereovision system composed of a camera and a light projector, which illuminates objects to be analyzed by a pyramid-shaped laser beam. By associating the laser rays and the spots in the 2D image, the 3D points corresponding to these spots are reconstructed. Each image of the sequence provides a set of 3D points, which is modeled by a B-spline surface. Therefore, estimating the motion between two images of the sequence boils down to matching two B-spline surfaces. We consider the matching environment as an optimization problem and find the optimal solution using Genetic Algorithms. A chromosome is encoded by concatenating six binary coded parameters, the three angles of rotation and the x-axis, y-axis and z-axis translations. We have defined an original fitness function to calculate the similarity measure between two surfaces. The matching process is performed iteratively: the number of points to be matched grows as the process advances and results are refined until convergence. Experimental results with a real image sequence are presented to show the effectiveness of the method.

  6. Modeling and classifying human activities from trajectories using a class of space-varying parametric motion fields.

    PubMed

    Nascimento, Jacinto C; Marques, Jorge S; Lemos, João M

    2013-05-01

    Many approaches to trajectory analysis, such as clustering or classification, use probabilistic generative models, thus not requiring trajectory alignment/registration. Switched linear dynamical models (e.g., HMMs) have been used in this context, due to their ability to describe different motion regimes. However, these models are not suitable for handling space-dependent dynamics that are more naturally captured by nonlinear models. As is well known, these are more difficult to identify. In this paper, we propose a new way of modeling trajectories, based on a mixture of parametric motion vector fields that depend on a small number of parameters. Switching among these fields follows a probabilistic mechanism, characterized by a field of stochastic matrices. This approach allows representing a wide variety of trajectories and modeling space-dependent behaviors without using global nonlinear dynamical models. Experimental evaluation is conducted in both synthetic and real scenarios. The latter concerning with human trajectory modeling for activity classification, a central task in video surveillance.

  7. Effects of restrictive clothing on lumbar range of motion and trunk muscle activity in young adult worker manual material handling.

    PubMed

    Eungpinichpong, Wichai; Buttagat, Vitsarut; Areeudomwong, Pattanasin; Pramodhyakul, Noppol; Swangnetr, Manida; Kaber, David; Puntumetakul, Rungthip

    2013-11-01

    The objective of this study was to examine the effect of wearing restrictive trousers on lumbar spine movement, trunk muscle activity and low back discomfort (LBD) in simulations of manual material handling (MMH) tasks. Twenty-eight young adults participated in the study performing box lifting, liquid container handling while squatting, and forward reaching while sitting on a task chair when wearing tight pants (sizes too small for the wearer) vs. fit pants (correct size according to anthropometry). Each task was repeated three times and video recordings were used as a basis for measuring lumbar range of motion (LRoM). The response was normalized in terms on baseline hip mobility. Trunk muscle activity of rectus abdominis (RA) and erector spinae (ES) muscles were also measured in each trial and normalized. At the close of each trial, participants rated LBD using a visual analog scale. Results revealed significant effects of both pants and task types on the normalized LRoM, trunk muscle activity and subjective ratings of LBD. The LRoM was higher and trunk muscle (ES) activity was lower for participants when wearing tight pants, as compared to fit pants. Discomfort ratings were significantly higher for tight pants than fit. These results provide guidance for recommendations on work clothing fit in specific types of MMH activities in order to reduce the potential of low-back pain among younger workers in industrial companies.

  8. Global transition path search for dislocation formation in Ge on Si(001)

    NASA Astrophysics Data System (ADS)

    Maras, E.; Trushin, O.; Stukowski, A.; Ala-Nissila, T.; Jónsson, H.

    2016-08-01

    Global optimization of transition paths in complex atomic scale systems is addressed in the context of misfit dislocation formation in a strained Ge film on Si(001). Such paths contain multiple intermediate minima connected by minimum energy paths on the energy surface emerging from the atomic interactions in the system. The challenge is to find which intermediate states to include and to construct a path going through these intermediates in such a way that the overall activation energy for the transition is minimal. In the numerical approach presented here, intermediate minima are constructed by heredity transformations of known minimum energy structures and by identifying local minima in minimum energy paths calculated using a modified version of the nudged elastic band method. Several mechanisms for the formation of a 90° misfit dislocation at the Ge-Si interface are identified when this method is used to construct transition paths connecting a homogeneously strained Ge film and a film containing a misfit dislocation. One of these mechanisms which has not been reported in the literature is detailed. The activation energy for this path is calculated to be 26% smaller than the activation energy for half loop formation of a full, isolated 60° dislocation. An extension of the common neighbor analysis method involving characterization of the geometrical arrangement of second nearest neighbors is used to identify and visualize the dislocations and stacking faults.

  9. Interaction of dislocations with carbon-decorated dislocation loops in bcc Fe: an atomistic study.

    PubMed

    Terentyev, Dmitry; Anento, Napoleón; Serra, Anna

    2012-11-14

    Properties of ferritic Fe-based alloys are highly sensitive to the carbon content dissolved in the matrix because interstitial carbon is known to strongly interact with lattice point defects and dislocations. As a result, the accumulation of radiation defects and its impact on the change of mechanical properties is also affected by the presence of dissolved interstitial carbon. This work contributes to an understanding of how interstitial carbon atoms influence the properties of small dislocation loops, which form directly in collision cascades upon neutron or ion irradiation and are 'invisible' to (i.e. undetectable by) standard experimental techniques applied to reveal nano-structural damage in metals. We have carried out MD simulations to investigate how the trapping of 1/2 inner product 111 dislocation loops at thermally stable carbon-vacancy complexes, known to form under irradiation, affects the interaction of these dislocation loops with dislocations in bcc Fe. We have considered loops of size 1 and 3.5 nm, which represent experimentally invisible and visible defects, respectively. The obtained results point at the strong suppression of the drag of carbon-decorated loops by dislocations. In the case of direct interaction between dislocation and carbon-decorated loops, invisible loops are found to act as obstacles whose strength is at least twice as high compared to that of undecorated ones. Additional strengthening due to the carbon decoration on the visible loops was also regularly registered. The reasons for the additional strengthening have been rationalized and discussed. It is demonstrated that carbon decoration/segregation at dislocation loops affects not only accumulation of radiation damage under prolonged irradiation but also alters the post-irradiation plastic deformation mechanisms. For the first time, we provide evidence that undetectable dislocation loops decorated by carbon do contribute to the radiation hardening.

  10. Geometry of dislocated de Broglie waves

    SciTech Connect

    Holland, P.R.

    1987-04-01

    The geometrical structures implicit in the de Broglie waves associated with a relativistic charged scalar quantum mechanical particle in an external field are analyzed by employing the ray concept of the causal interpretation. It is shown how an osculating Finslerian metric tensor, a torsion tensor, and a tetrad field define respectively the strain, the dislocation density, and the Burgers vector in the natural state of the wave, which is a non-Riemannian space of distant parallelism. A quantum torque determined by the quantum potential is introduced and the example of a screw dislocated wave is discussed.

  11. Mesoscale modeling of dislocations in molecular crystals

    NASA Astrophysics Data System (ADS)

    Lei, Lei; Koslowski, Marisol

    2011-02-01

    Understanding the inelastic deformation of molecular crystals is of fundamental importance to the modeling of the processing of drugs in the pharmaceutical industry as well as to the initiation of detonation in high energy density materials. In this work, we present dislocation dynamics simulations of the deformation of two molecular crystals of interest in the pharmaceutical industry, sucrose and paracetamol. The simulations calculate the yield stress of sucrose and paracetamol in good agreement with experimental observation and predict the anisotropy in the mechanical response observed in these materials. Our results show that dislocation dynamics is an effective tool to study plastic deformation in molecular crystals.

  12. Irreducible posterolateral elbow dislocation: a rare injury.

    PubMed

    Fenelon, Christopher; Zafar, Muhammed M; Sheridan, Gerard Anthony; Kearns, Stephen

    2016-12-30

    Posterolateral dislocation of the elbow is an injury commonly treated in the emergency department by closed reduction. Very rarely it can be irreducible and require open reduction. Only four cases of irreducible posterolateral elbow dislocation have been described in the literature over the past 50 years. We report the case of a 20-year-old man who sustained such an injury. Open reduction was performed and revealed the radial head protruding or 'buttonholing' through the lateral collateral ligament complex. This case highlights that continued closed reduction of the elbow should not be attempted, as a mechanical block to reduction can occur making reduction impossible.

  13. Elbow dislocation with complete triceps avulsion.

    PubMed

    Karuppiah, S V; Knox, D

    2014-01-01

    Radio-ulnar Fracture dislocation of the elbow is a high-energy trauma which can be associated with significant ligamentous injury in adults. We report an unusual triad of injury in a patient with avulsion injury of the triceps. This injury can be thought of as a variant of "terrible triad" with dislocation of radio-ulnar joint, radial head fracture, and medial collateral ligament injury with avulsion of the triceps. Elbow has to be stabilized with early repair of the ligaments for a successful outcome.

  14. Elbow Dislocation with Complete Triceps Avulsion

    PubMed Central

    Karuppiah, S. V.; Knox, D.

    2014-01-01

    Radio-ulnar Fracture dislocation of the elbow is a high-energy trauma which can be associated with significant ligamentous injury in adults. We report an unusual triad of injury in a patient with avulsion injury of the triceps. This injury can be thought of as a variant of “terrible triad” with dislocation of radio-ulnar joint, radial head fracture, and medial collateral ligament injury with avulsion of the triceps. Elbow has to be stabilized with early repair of the ligaments for a successful outcome. PMID:24876982

  15. Rotator Cuff Tear Consequent to Glenohumeral Dislocation.

    PubMed

    Gilotra, Mohit N; Christian, Matthew W; Lovering, Richard M

    2016-08-01

    The patient was a 21-year-old collegiate running back who was tackled during a football game and sustained a posterior glenohumeral dislocation. He was referred to an orthopaedist and presented 3 weeks after the injury, and, following examination, further imaging was ordered by the orthopaedist due to rotator cuff weakness. Magnetic resonance imaging showed a complete tear of the supraspinatus and infraspinatus, as well as a posterior Bankart lesion, a subscapularis tear, and a dislocation of the biceps long head tendon into the reverse Hill-Sachs lesion. J Orthop Sports Phys Ther 2016;46(8):708. doi:10.2519/jospt.2016.0413.

  16. Proximal radioulnar translocation associated with elbow dislocation and radial neck fracture in child: a case report and review of literature.

    PubMed

    Yoon, Hong-Kee; Seo, Gi-Won

    2013-10-01

    Proximal radioulnar translocation with radial neck fracture and elbow dislocation is extremely rare. We report a case of a 5-year-old boy who was presented with elbow dislocation, and proximal radioulnar translocation was diagnosed a day after the injury. Mini-open technique was used to reduce the translocation and radial neck fracture. The patient finally regained full range of elbow motion and forearm rotation. This case had clinical importance in that the reverse instability of the elbow was observed compared with the previous reports.

  17. Activity Classification Using Mobile Phone based Motion Sensing and Distributed Computing.

    PubMed

    Artetxe, Arkaitz; Beristain, Andoni; Kabongo, Luis

    2014-01-01

    In this work we present a system that uses the accelerometer embedded in a mobile phone to perform activity recognition, with the purpose of continuously and pervasively monitoring the users' level of physical activity in their everyday life. Several classification algorithms are analysed and their performance measured, based for 6 different activities, namely walking, running, climbing stairs, descending stairs, sitting and standing. Feature selection has also been explored in order to minimize computational load, which is one of the main concerns given the restrictions of smartphones in terms of processor capabilities and specially battery life.

  18. Changes in the Burgers Vector of Perfect Dislocation Loops without Contact with the External Dislocations

    SciTech Connect

    Arakawa, K.; Hatanaka, M.; Mori, H.; Kuramoto, E.; Ono, K.

    2006-03-31

    We report the observations of a new type of changing process in the Burgers vector of dislocations by in situ transmission electron microscopy. Small interstitial-type perfect dislocation loops in bcc iron with diameters less than approximately 50 nm are transformed from a 1/2<111> loop to another 1/2<111> one or an energetically unfavorable <100> one; furthermore, a <100> loop is transformed to a 1/2<111> one. These transformations occurred on high-energy electron irradiation or simple heating without contact with external dislocations. The origin of these phenomena is discussed.

  19. Gait analysis in low lumbar myelomeningocele patients with unilateral hip dislocation or subluxation.

    PubMed

    Gabrieli, Ana Paula T; Vankoski, Stephen J; Dias, Luciano S; Milani, Carlo; Lourenco, Alexandre; Filho, Jose Laredo; Novak, Robert

    2003-01-01

    The surgical indications for the treatment of unilateral hip dislocations or subluxations in patients with low lumbar myelomeningocele remain highly debatable. This study examines the influence of unilateral hip dislocation or subluxation on the gait of these patients using three-dimensional gait analysis. Twenty patients with a diagnosis of low lumbar myelomeningocele underwent three-dimensional gait analysis. All patients were community ambulators with solid ankle-foot orthoses and crutches who presented with unilateral hip dislocation or subluxation and no scoliosis. The patients were divided in two groups. Group 1 comprised 10 patients who demonstrated either no evidence of hip flexion or adduction contractures or symmetric hip contractures. Group 2 comprised 10 patients with unilateral hip flexion and/or adduction contractures. Pelvic and hip kinematics were assessed to determine the symmetry of motion between the involved and the noninvolved side during walking. Seven patients from group 1 walked with a symmetric gait pattern; only two patients from group 2 walked with a symmetric pattern. Gait symmetry corresponded to the absence of hip contractures or bilateral symmetrical hip contractures and had no relation to the presence of hip dislocation. The authors concluded that reduction of the hip is unnecessary.

  20. Trapping of edge dislocations by a moving smectic-A smectic-B interface

    NASA Astrophysics Data System (ADS)

    Oswald, P.; Lejcek, L.

    1991-09-01

    We analyze how the motion of the edge dislocations of the smectic-A liquid crystal allows the system to relax plastically the stresses that are generated during the growth of the smectic-B plastic crystal. These stresses are both due, to the density difference between the two phases, and to the layer thickness variation at the phase transition. In particular, we calculate under which conditions a dislocation can be trapped by the smectic-B phase. Finally, we suggest that this dynamical trapping is responsible for the very large amount of stacking faults observed by X-ray diffraction. Nous analysons comment le mouvement des dislocations coin du cristal liquide smectique A permet de relaxer plastiquement les contraintes induites par la croissance du cristal plastique smectique B. Ces contraintes sont engendrées à la fois par la différence de densité qui existe entre les deux phases et par la variation d'épaisseur des couches à la transition. Nous calculons en particulier dans quelles conditions une dislocation coin peut être piégée par le smectique B. Enfin, nous suggérons que ce piégeage dynamique est à l'origine de la très forte densité de fautes d'empilement qui est couramment observée aux rayons X dans la phase B.

  1. Dislocations in a vortex lattice and complexity of chlamydomonas ciliary beating

    NASA Astrophysics Data System (ADS)

    Amnuanpol, Sitichoke

    For the first topic the moving dislocations interrupt an orchestrating transport of vortices, leading to the different velocities of vortices at the different parts of a vortex lattice. Since the correlation of displacement grows algebraically in two dimensions rather than logarithmically in three dimensions, we emphasize the movement of edge dislocations on a single copper oxide plane. Effect of moving dislocations is particularly examined in connection to the velocity-force characteristics of vortices. Under the neutrality condition, the density of Burgers vectors of dislocations emerges in the equations of motion of vortices as a source term. Time evolution of the density of Burgers vectors is governed by a Fokker-Planck equation in which the drift and diffusion coefficients describe the interaction of dislocations and the thermal fluctuation, respectively. To find the Green's function of Fokker-Planck equation a perturbation series in the orders of drift coefficient which generally possesses the spatiotemporal dependence is constructed, analogous to the Born series of the time-dependent Schr¨odinger equation. In contrast, the drift coefficient shows up only with the even orders and the sign in a series alternates. Dislocations slow the velocity of vortices below their linear flux flow velocity, like the pinning. Free dislocations are more efficient to slow the velocity of vortices than interacting dislocations. For the second topic the adaptation of Chlamydomonas ciliary beating to light stimulation during its phototaxis is studied by adopting a notion of memory believed to account for the slower responses. The influence of the past ciliary beating on the present one is expressed in terms of memory time estimated by a saturating point of Lipschitz number. Mutant cells seem to possess a memory time longer than wild type cells. Under a dark environment the ciliary beating shows strong time variability suitable for a temporal self-similarity study. The scaling

  2. Effect of dislocations on helium retention in deformed pure iron

    NASA Astrophysics Data System (ADS)

    Gong, Y. H.; Cao, X. Z.; Jin, S. X.; Lu, E. Y.; Hu, Y. C.; Zhu, T.; Kuang, P.; Xu, Q.; Wang, B. Y.

    2016-12-01

    The effects of dislocations created by deformation on helium retention in pure iron, including the helium atoms diffusion along the dislocation line and desorption from dislocation trapping sites, were investigated. The dislocation defect was introduced in specimens by cold-rolling, and then 5 keV helium ions were implanted into the deformed specimens. Slow positron beam technology and thermal desorption spectroscopy were used to investigate the evolution of dislocation defects and the desorption behavior of helium atoms under influence of dislocation. The behaviors of S-E, W-E and S-W plots indicate clearly that lots of helium atoms remain in the deformed specimen and helium atoms combining with dislocation change the distribution of electron density. The helium desorption plot indicates that dislocation accelerates helium desorption at 293 K-600 K and facilitates helium dissociation from HenVm (n/m = 1.8) cluster.

  3. Dislocation of the lens: a complication after cyclocryotherapy.

    PubMed

    Sony, Parul; Sharma, Namrata; Pangtey, Mayank S

    2002-12-01

    An unusual complication is reported of a case of complete dislocation of the lens after cyclocryotherapy in a patient with neovascular glaucoma. To the best of the authors' knowledge, no case of lens dislocation following cyclocryotherapy has previously been reported.

  4. The activL® Artificial Disc: a next-generation motion-preserving implant for chronic lumbar discogenic pain

    PubMed Central

    Yue, James J; Garcia, Rolando; Miller, Larry E

    2016-01-01

    Degeneration of the lumbar intervertebral discs is a leading cause of chronic low back pain in adults. Treatment options for patients with chronic lumbar discogenic pain unresponsive to conservative management include total disc replacement (TDR) or lumbar fusion. Until recently, only two lumbar TDRs had been approved by the US Food and Drug Administration − the Charité Artificial Disc in 2004 and the ProDisc-L Total Disc Replacement in 2006. In June 2015, a next-generation lumbar TDR received Food and Drug Administration approval − the activL® Artificial Disc (Aesculap Implant Systems). Compared to previous-generation lumbar TDRs, the activL® Artificial Disc incorporates specific design enhancements that result in a more precise anatomical match and allow a range of motion that better mimics the healthy spine. The results of mechanical and clinical studies demonstrate that the activL® Artificial Disc results in improved mechanical and clinical outcomes versus earlier-generation artificial discs and compares favorably to lumbar fusion. The purpose of this report is to describe the activL® Artificial Disc including implant characteristics, intended use, surgical technique, postoperative care, mechanical testing, and clinical experience to date. PMID:27274317

  5. The activL(®) Artificial Disc: a next-generation motion-preserving implant for chronic lumbar discogenic pain.

    PubMed

    Yue, James J; Garcia, Rolando; Miller, Larry E

    2016-01-01

    Degeneration of the lumbar intervertebral discs is a leading cause of chronic low back pain in adults. Treatment options for patients with chronic lumbar discogenic pain unresponsive to conservative management include total disc replacement (TDR) or lumbar fusion. Until recently, only two lumbar TDRs had been approved by the US Food and Drug Administration - the Charité Artificial Disc in 2004 and the ProDisc-L Total Disc Replacement in 2006. In June 2015, a next-generation lumbar TDR received Food and Drug Administration approval - the activL(®) Artificial Disc (Aesculap Implant Systems). Compared to previous-generation lumbar TDRs, the activL(®) Artificial Disc incorporates specific design enhancements that result in a more precise anatomical match and allow a range of motion that better mimics the healthy spine. The results of mechanical and clinical studies demonstrate that the activL(®) Artificial Disc results in improved mechanical and clinical outcomes versus earlier-generation artificial discs and compares favorably to lumbar fusion. The purpose of this report is to describe the activL(®) Artificial Disc including implant characteristics, intended use, surgical technique, postoperative care, mechanical testing, and clinical experience to date.

  6. Present-day Block Motions and Strain Accumulation on Active Faults in the Caribbean

    NASA Astrophysics Data System (ADS)

    Symithe, S. J.; Calais, E.; Freed, A. M.

    2014-12-01

    The quasi-frontal subduction of the north and south American plates under the Lesser Antilles and the left and right lateral strike-slip along the northern and southern margins of the Caribbean plate offer the opportunity to study the transition from subduction to strike-slip between major plates. In addition, the segmentation and degree of interplate coupling at the Lesser Antilles subduction is key to our understanding of the earthquake potential of a subduction whose length is similar to the rupture area of the Mw9.0, 2011, Tohoku earthquake in Japan. We used the block modeling approach described in Meade and Loveless (2009) to test the optimal block geometry for the northern, eastern and southern boundaries of the Caribbean plate. We solved for angular velocities for each block/plate and strain accumulation rates for all major faults in the region. Then we calculated the variations in interplate coupling along the subduction plate boundaries using the accumulated strain rates. We tested 11 different block geometries; they are all based on geological evidences unless they are suggested by discrepancies within the GPS and seismological data or by previously published results. We confirm the existence of the micro Gonave plate. The boundary between the Micro-Gonave plate and the Hispaniola crustal block is better suited along the Haitian-Thrust-Belt instead of the Neiba-Matheux fault. The interseismic GPS velocities do not show evidence for a distinct North Lesser Antilles block. We found a totally uncoupled section of the subduction starting from the Puerto-Rico trench to the end of the Lesser Antilles section. All the relative motion of the Caribbean block is lost aseismically along the boundary of that portion of the subduction. While we found strong coupling along the northern Hispaniola section, most of the deformation on this region is being accumulated along intrablock faults with very low strain (~2mm/yr) along the intraplate subduction interface. We also

  7. Objects in Motion

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2008-01-01

    Objects in motion attract children. The following activity helps children explore the motion of bodies riding in a vehicle and safely demonstrates the answer to their questions, "Why do I need a seatbelt?" Children will enjoy moving the cup around, even if all they "see" is a cup rather than understanding it represents a car. They will understand…

  8. Peierls Stress of Dislocations in Molecular Crystal Cyclotrimethylene Trinitramine

    DTIC Science & Technology

    2013-06-04

    inferred from quasi-static simulations. For PRH = 2.14 GPa in a (111) shock, at least five slip systems (with m ≠ 0) remain active. If one considers PRH...1992, 25, 489−496, DOI: 10.1021/ar00023a002. (2) Armstrong, R. W.; Ammon, H . L.; Elban, W. L.; Tsai, D. H . Investigation of Hot-Spot Characteristics...DOI: 10.1063/1.2214639. (5) Cawkwell, M . J.; Ramos, K. J.; Hooks, D. E.; Sewell, T. D. Homogeneous Dislocation Nucleation in Cyclotrimethylene Trinitr

  9. A dislocation density based constitutive model for cyclic deformation

    SciTech Connect

    Estrin, Y.; Braasch, H.; Brechet, Y.

    1996-10-01

    A new constitutive model describing material response to cyclic loading is presented. The model includes dislocation densities as internal variables characterizing the microstructural state of the material. In the formulation of the constitutive equations, the dislocation density evolution resulting from interactions between dislocations in channel-like dislocation patterns is considered. The capabilities of the model are demonstrated for INCONEL 738 LC and Alloy 800H.

  10. Dislocations in magnetohydrodynamic waves in a stellar atmosphere.

    PubMed

    López Ariste, A; Collados, M; Khomenko, E

    2013-08-23

    We describe the presence of wave front dislocations in magnetohydrodynamic waves in stratified stellar atmospheres. Scalar dislocations such as edges and vortices can appear in Alfvén waves, as well as in general magnetoacoustic waves. We detect those dislocations in observations of magnetohydrodynamic waves in sunspots in the solar chromosphere. Through the measured charge of all the dislocations observed, we can give for the first time estimates of the modal contribution in the waves propagating along magnetic fields in solar sunspots.

  11. Interactive modeling activities in the classroom—rotational motion and smartphone gyroscopes

    NASA Astrophysics Data System (ADS)

    Pörn, Ray; Braskén, Mats

    2016-11-01

    The wide-spread availability of smartphones makes them a valuable addition to the measurement equipment in both the physics classroom and the instructional laboratory, encouraging an active interaction between measurements and modeling activities. In this paper we illustrate this interaction by making use of the internal gyroscope of a smartphone to study and measure the rotational dynamics of objects rotating about a fixed axis. The workflow described in this paper has been tested in a classroom setting and found to encourage an exploratory approach to both data collecting and modeling.

  12. The Dislocation of Teaching and Research and the Reconfiguring of Academic Work

    ERIC Educational Resources Information Center

    Locke, William

    2012-01-01

    The relationship between teaching and research is a touchstone in thinking about higher education. However, the last 40 years has seen the "dislocation" of these core academic activities as a result of policy and operational decisions to distinguish the way they are funded, managed, assessed and rewarded. The activities of…

  13. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  14. Longitudinal study of preterm and full-term infants: High-density EEG analyses of cortical activity in response to visual motion.

    PubMed

    Agyei, Seth B; van der Weel, F R Ruud; van der Meer, Audrey L H

    2016-04-01

    Electroencephalogram (EEG) was used to investigate brain electrical activity of full-term and preterm infants at 4 and 12 months of age as a functional response mechanism to structured optic flow and random visual motion. EEG data were recorded with an array of 128-channel sensors. Visual evoked potentials (VEPs) and temporal spectral evolution (TSE, time-dependent amplitude changes) were analysed. VEP results showed a significant improvement in full-term infants' latencies with age for forwards and reversed optic flow but not random visual motion. Full-term infants at 12 months significantly differentiated between the motion conditions, with the shortest latency observed for forwards optic flow and the longest latency for random visual motion, while preterm infants did not improve their latencies with age, nor were they able to differentiate between the motion conditions at 12 months. Differences in induced activities were also observed where comparisons between TSEs of the motion conditions and a static non-flow pattern showed desynchronised theta-band activity in both full-term and preterm infants, with synchronised alpha-beta band activity observed only in the full-term infants at 12 months. Full-term infants at 12 months with a substantial amount of self-produced locomotor experience and neural maturation coupled with faster oscillating cell assemblies, rely on the perception of structured optic flow to move around efficiently in the environment. The poorer responses in the preterm infants could be related to impairment of the dorsal visual stream specialized in the processing of visual motion.

  15. Analyzing Science Activities in Force and Motion Concepts: A Design of an Immersion Unit

    ERIC Educational Resources Information Center

    Ayar, Mehmet C.; Aydeniz, Mehmet; Yalvac, Bugrahan

    2015-01-01

    In this paper, we analyze the science activities offered at 7th grade in the Turkish science and technology curriculum along with addressing the curriculum's original intent. We refer to several science education researchers' ideas, including Chinn & Malhotra's (Science Education, 86:175--218, 2002) theoretical framework and Edelson's (1998)…

  16. Happiness in Motion: Emotions, Well-Being, and Active School Travel

    ERIC Educational Resources Information Center

    Ramanathan, Subha; O'Brien, Catherine; Faulkner, Guy; Stone, Michelle

    2014-01-01

    Background: A pan-Canadian School Travel Planning intervention promoted active school travel (AST). A novel component was exploring emotion, well-being, and travel mode framed by the concept of "sustainable happiness." Relationships between travel mode and emotions, parent perceptions of their child's travel mode on well-being, and…

  17. Dislocation substructure in fatigued duplex stainless steel

    SciTech Connect

    Polak, J. . Lab. de Mecanique de Lille Inst. of Physical Metallurgy, Brno . Academy of Sciences); Degallaix, S. . Lab. de Mecanique de Lille); Kruml, T. . Academy of Sciences)

    1993-12-15

    Cyclic plastic straining of crystalline materials results in the formation of specific dislocation structures. Considerable progress in mapping and understanding internal dislocation structures has been achieved by studying single crystal behavior: however, most structural materials have a polycrystalline structure and investigations of polycrystals in comparison to single crystal behavior of simple metals prove to be very useful in understanding more complex materials. There are some classes of materials, however, with complicated structure which do not have a direct equivalent in single crystalline form. Moreover, the specific dimensions and shapes of individual crystallites play an important role both in the cyclic stress-strain response of these materials and in the formation of their interior structure in cyclic straining. Austenitic-ferritic duplex stainless steel, which is a kind of a natural composite, is a material of this type. The widespread interest in the application of duplex steels is caused by approximately doubled mechanical properties and equal corrosion properties, when compared with classical austenitic stainless steels. Fatigue resistance of these steels as well as the surface damage evolution in cyclic straining have been studied; however, much less is known about the internal substructure development in cyclic straining. In this study the dislocation arrangement in ferritic and austenitic grains of the austenitic-ferritic duplex steel alloyed with nitrogen and cyclically strained with two strain amplitudes, is reported and compared to the dislocation arrangement found in single and polycrystals of austenitic and ferritic materials of a similar composition and with the surface relief produced in cyclic plastic straining.

  18. Tailoring noncollinear magnetism by misfit dislocation lines

    NASA Astrophysics Data System (ADS)

    Finco, Aurore; Hsu, Pin-Jui; Kubetzka, André; von Bergmann, Kirsten; Wiesendanger, Roland

    2016-12-01

    The large epitaxial stress induced by the misfit between a triple atomic layer Fe film and an Ir(111) substrate is relieved by the formation of a dense dislocation line network. Spin-polarized scanning tunneling microscopy investigations show that the strain is locally varying within the Fe film and that this variation affects the magnetic state of the system. Two types of dislocation line regions can be distinguished and both exhibit spin spirals with strain-dependent periods (ranging from 3 to 10 nm ). Using a simple micromagnetic model, we attribute the changes of the period of the spin spirals to variations of the effective exchange coupling in the magnetic film. This assumption is supported by the observed dependence of the saturation magnetic field on the period of the zero-field spin spiral. Moreover, magnetic skyrmions appear in an external magnetic field only in one type of dislocation line area, which we impute to the different pinning properties of the dislocation lines.

  19. Left Dislocation in Near-Native French

    ERIC Educational Resources Information Center

    Donaldson, Bryan

    2011-01-01

    The present study is concerned with the upper limits of SLA--specifically, mastery of the syntax-discourse interface in successful endstate learners of second-language (L2) French (near-native speakers). Left dislocation (LD) is a syntactic means of structuring spoken French discourse by marking topic. Its use requires speakers to coordinate…

  20. Dislocations - Multiple Languages: MedlinePlus

    MedlinePlus

    ... XYZ List of All Topics All Dislocations - Multiple Languages To use the sharing features on this page, please enable JavaScript. Arabic (العربية) French (français) Russian (Русский) Somali (af Soomaali) Spanish (español) Arabic (العربية) ...