Science.gov

Sample records for activated double bond

  1. Electrostatic and Charge-Induced Methane Activation by a Concerted Double C-H Bond Insertion.

    PubMed

    Geng, Caiyun; Li, Jilai; Weiske, Thomas; Schlangen, Maria; Shaik, Sason; Schwarz, Helmut

    2017-02-01

    A mechanistically unique, simultaneous activation of two C-H bonds of methane has been identified during the course of its reaction with the cationic copper carbide, [Cu-C](+). Detailed high-level quantum chemical calculations support the experimental findings obtained in the highly diluted gas phase using FT-ICR mass spectrometry. The behavior of [Cu-C](+)/CH4 contrasts that of [Au-C](+)/CH4, for which a stepwise bond-activation scenario prevails. An explanation for the distinct mechanistic differences of the two coinage metal complexes is given. It is demonstrated that the coupling of [Cu-C](+) with methane to form ethylene and Cu(+) is modeled very well by the reaction of a carbon atom with methane mediated by an oriented external electric field of a positive point charge.

  2. The Reductive Activation of CO2 Across a Ti=Ti Double Bond: Synthetic, Structural, and Mechanistic Studies

    PubMed Central

    2015-01-01

    The reactivity of the bis(pentalene)dititanium double-sandwich compound Ti2Pn†2 (1) (Pn† = 1,4-{SiiPr3}2C8H4) with CO2 is investigated in detail using spectroscopic, X-ray crystallographic, and computational studies. When the CO2 reaction is performed at −78 °C, the 1:1 adduct 4 is formed, and low-temperature spectroscopic measurements are consistent with a CO2 molecule bound symmetrically to the two Ti centers in a μ:η2,η2 binding mode, a structure also indicated by theory. Upon warming to room temperature the coordinated CO2 is quantitatively reduced over a period of minutes to give the bis(oxo)-bridged dimer 2 and the dicarbonyl complex 3. In situ NMR studies indicated that this decomposition proceeds in a stepwise process via monooxo (5) and monocarbonyl (7) double-sandwich complexes, which have been independently synthesized and structurally characterized. 5 is thermally unstable with respect to a μ-O dimer in which the Ti–Ti bond has been cleaved and one pentalene ligand binds in an η8 fashion to each of the formally TiIII centers. The molecular structure of 7 shows a “side-on” bound carbonyl ligand. Bonding of the double-sandwich species Ti2Pn2 (Pn = C8H6) to other fragments has been investigated by density functional theory calculations and fragment analysis, providing insight into the CO2 reaction pathway consistent with the experimentally observed intermediates. A key step in the proposed mechanism is disproportionation of a mono(oxo) di-TiIII species to yield di-TiII and di-TiIV products. 1 forms a structurally characterized, thermally stable CS2 adduct 8 that shows symmetrical binding to the Ti2 unit and supports the formulation of 4. The reaction of 1 with COS forms a thermally unstable complex 9 that undergoes scission to give mono(μ-S) mono(CO) species 10. Ph3PS is an effective sulfur transfer agent for 1, enabling the synthesis of mono(μ-S) complex 11 with a double-sandwich structure and bis(μ-S) dimer 12 in which the Ti

  3. The Reductive Activation of CO2 Across a Ti=Ti Double Bond: Synthetic, Structural, and Mechanistic Studies.

    PubMed

    Kilpatrick, Alexander F R; Green, Jennifer C; Cloke, F Geoffrey N

    2015-10-26

    The reactivity of the bis(pentalene)dititanium double-sandwich compound Ti2Pn(†)2 (1) (Pn(†) = 1,4-{Si(i)Pr3}2C8H4) with CO2 is investigated in detail using spectroscopic, X-ray crystallographic, and computational studies. When the CO2 reaction is performed at -78 °C, the 1:1 adduct 4 is formed, and low-temperature spectroscopic measurements are consistent with a CO2 molecule bound symmetrically to the two Ti centers in a μ:η(2),η(2) binding mode, a structure also indicated by theory. Upon warming to room temperature the coordinated CO2 is quantitatively reduced over a period of minutes to give the bis(oxo)-bridged dimer 2 and the dicarbonyl complex 3. In situ NMR studies indicated that this decomposition proceeds in a stepwise process via monooxo (5) and monocarbonyl (7) double-sandwich complexes, which have been independently synthesized and structurally characterized. 5 is thermally unstable with respect to a μ-O dimer in which the Ti-Ti bond has been cleaved and one pentalene ligand binds in an η(8) fashion to each of the formally Ti(III) centers. The molecular structure of 7 shows a "side-on" bound carbonyl ligand. Bonding of the double-sandwich species Ti2Pn2 (Pn = C8H6) to other fragments has been investigated by density functional theory calculations and fragment analysis, providing insight into the CO2 reaction pathway consistent with the experimentally observed intermediates. A key step in the proposed mechanism is disproportionation of a mono(oxo) di-Ti(III) species to yield di-Ti(II) and di-Ti(IV) products. 1 forms a structurally characterized, thermally stable CS2 adduct 8 that shows symmetrical binding to the Ti2 unit and supports the formulation of 4. The reaction of 1 with COS forms a thermally unstable complex 9 that undergoes scission to give mono(μ-S) mono(CO) species 10. Ph3PS is an effective sulfur transfer agent for 1, enabling the synthesis of mono(μ-S) complex 11 with a double-sandwich structure and bis(μ-S) dimer 12 in which

  4. Theoretical study of activation C sbnd C double bond of C 2H 4 by CrO2+ in gas phase

    NASA Astrophysics Data System (ADS)

    Wang, Yong-Cheng; Chen, Xiao-Xia

    2006-05-01

    The gas-phase reaction of activation C sbnd C double bond of C 2H 4 by CrO2+(2A1/4A″) has been investigated using density functional theory (DFT) at the UB3LYP/6-311++G (3df, 3pd)//6-311G(2d, p) level. The calculation results show that the reaction experiences a rearranged process. On the basis of Hammond postulate, this is a typical 'two-state reactivity' (TSR) reaction. The involving crossing between the potential energy surfaces is discussed by means of the intrinsic reaction coordinate (IRC) approach used by Yoshizawa et al., and a crossing point (CP) is located. In addition, the orbital interaction analysis of activation C sbnd C bond is carried out by fragment molecular orbital (FMO), and compared with the DCD model.

  5. A History of the Double-Bond Rule

    NASA Astrophysics Data System (ADS)

    Hoogenboom, Bernard E.

    1998-05-01

    The tautomeric polar systems recognized by Laar in 1886 contain an active atom that appeared to migrate from its original position. The tautomeric systems are of a general structural form and can be represented as X=Y-Z-A. Later workers recognized the same bond weakening effect in a variety of organic structures in which atom A is halogen, hydrogen, carbon, or nitrogen. Hermann Staudinger recognized the weakness of that bond, an allyl bond, in hydrocarbons and exploited the behavior for the preparation of isoprene from terpene hydrocarbons. In 1922 he formulated a generality, a rule, regarding the allyl bond reactivity He noted that natural rubber also decomposed to form isoprene and therefore concluded that natural rubber is an unsaturated hydrocarbon, that isoprene units in natural rubber represent weakly held allyl substituents, and that natural rubber is a macromolecular combination of isoprene units. From his different experience as an industrial chemist, Otto Schmidt recognized the same bond weakening effect in hydrocarbons and in 1932 postulated the "Double-Bond Rule," stating that the presence of a double bond in a hydrocarbon has an alternating strengthening and weakening effect on single bonds throughout the molecule, diminishing with distance from the double bond. Schmidt not only understood the practical benefit of this rule, but he also offered an explanation for the Rule on theoretical grounds. Novel in its time, his theoretical explanation did not find popular acceptance, despite his considerable efforts to promote it in the literature. His concept of the Rule was supplanted by the new theory of resonance devised by Pauling and Wheland and by the implied notion of the stabilization of products by delocalization effects.

  6. Understanding Rotation about a C=C Double Bond

    ERIC Educational Resources Information Center

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-01-01

    The study focuses on the process and energetic cost of twisting around a C=C double bond and provides instructors with a simple vehicle for rectifying the common misrepresentation of C=C double bonds as rigid and inflexible. Discussions of cis and trans isomers of cycloalkenes are a good entry point for introducing students to the idea of a…

  7. Investigation of double bond conversion, mechanical properties, and antibacterial activity of dental resins with different alkyl chain length quaternary ammonium methacrylate monomers (QAM).

    PubMed

    He, Jingwei; Söderling, Eva; Vallittu, Pekka K; Lassila, Lippo V J

    2013-01-01

    In order to endow dental resin with antibacterial activity, a series of antibacterial quaternary ammonium methacrylate monomers (QAM) with different substituted alkyl chain length (from 10 to 18) were incorporated into commonly used 2,2-bis[4-(2'-hydroxy-3'-methacryloyloxy-propoxy)-phenyl]propane (Bis-GMA)/triethyleneglycol dimethacrylate (TEGDMA) (50 wt/50 wt) dental resin as immobilized antibacterial agents. Double bond conversion (DC), flexural strength (FS) and modulus (FM), and young and mature biofilms inhibition effectiveness of prepared dental resins were studied and Bis-GMA/TEGDMA without QAM was used as reference. Results showed that there was no significant difference on DC, FS, and FM between copolymer with and without 5 wt% QAM. Substituted alkyl chain length of QAM had no influence on DC, FS, and FM of copolymer, but had influence on antibacterial activity of copolymer. Antibacterial activity of copolymer increased with increasing of substituted alkyl chain length of QAM, and the sequence followed as 5%C10 < 5%C11 ≈ 5%C12 < 5%C16 ≈ 5%C18. Copolymers containing C18 and C16 had the best inhibition effectiveness on both young biofilm and mature biofilm, copolymers containing C12 and C11 only had inhibition effectiveness on young biofilm and copolymer containing C10 had none inhibition effectiveness on neither young biofilm nor mature biofilm.

  8. Computational study of the double C-Cl bond activation of dichloromethane and phosphine alkylation at [CoCl(PR3)3].

    PubMed

    Algarra, Andrés G; Braunstein, Pierre; Macgregor, Stuart A

    2013-03-28

    Density functional theory calculations have been employed to model the double C-Cl bond activation of CH(2)Cl(2) at [CoCl(PR(3))(3)] to give [CoCl(3)(CH(2)PR(3))(PR(3))(2)]. Calculations incorporating dichloromethane solution (PCM approach) on a [CoCl(PMe(3))(3)] model system showed the two C-Cl cleavage steps to involve different mechanisms. The first C-Cl cleavage step occurs on the triplet surface and proceeds via Cl abstraction with a barrier of 19.1 kcal mol(-1). Radical recombination would then give singlet mer,trans-[CoCl(2)(CH(2)Cl)(PMe(3))(3)] with an overall free energy change of +1.8 kcal mol(-1). Alternative C-Cl activation processes based on nucleophilic attack by the Co centre at dichloromethane with loss of Cl(-) have significantly higher barriers. The second C-Cl cleavage occurs via nucleophilic attack of PMe(3) at the CH(2)Cl ligand with formation of a new P-C bond and displacement of Cl(-). This may either occur in an intermolecular fashion (after prior PMe(3) dissociation) or intramolecularly. Both processes have similar barriers of ca. 12 kcal mol(-1). The comproportionation of [CoCl(3)(CH(2)PMe(3))(PMe(3))(2)] with [CoCl(PMe(3))(3)] to give [CoCl(2)(CH(2)PMe(3))(PMe(3))], [CoCl(2)(PMe(3))(2)] and 2 PMe(3) is computed to be strongly exergonic, consistent with the observation of this process in analogous experimental systems.

  9. Bis(alkyl) rare-earth complexes coordinated by bulky tridentate amidinate ligands bearing pendant Ph2P[double bond, length as m-dash]O and Ph2P[double bond, length as m-dash]NR groups. Synthesis, structures and catalytic activity in stereospecific isoprene polymerization.

    PubMed

    Rad'kova, Natalia Yu; Tolpygin, Aleksei O; Rad'kov, Vasily Yu; Khamaletdinova, Nadia M; Cherkasov, Anton V; Fukin, Georgi K; Trifonov, Alexander A

    2016-11-22

    A series of new tridentate amidines 2-[Ph2P[double bond, length as m-dash]X]C6H4NHC(tBu)[double bond, length as m-dash]N(2,6-R2C6H3) (X = O, R = iPr (1); X = S, R = Me (2); X = NPh, R = Me (3); X = N(2,6-Me2C6H3), R = Me (4)) bearing various types of donor Ph2P[double bond, length as m-dash]X groups in a pendant chain was synthesized. Bis(alkyl) complexes {2-[Ph2P[double bond, length as m-dash]X]C6H4NC(tBu)N(2,6-R2C6H3)}Ln(CH2SiMe3)2 (Ln = Y, X = O, R = iPr (5); Ln = Er, X = O, R = iPr (6); Ln = Lu, X = O, R = iPr (7); Ln = Y, X = NPh, R = Me (8); Ln = Lu, X = NPh, R = Me (9); Ln = Lu, X = N(2,6-Me2C6H3), R = Me (10)) were prepared using alkane elimination reactions of 1, 3 and 4 with Ln(CH2SiMe3)3(THF)2 (Ln = Y, Er, Lu) in toluene and were isolated in 45 (5), 62 (6), 56 (7), 65 (8), 60 (9), and 60 (10) % yields respectively. The X-ray diffraction studies showed that complexes 6-8 are solvent free and feature intramolecular coordination of the P[double bond, length as m-dash]X (X = O, NPh) group to the lanthanide ions. The ternary systems 5-10/borate/AlR3 (borate = [PhNHMe2][B(C6F5)4], [Ph3C][B(C6F5)4], AlR3 = AliBu3, AliBu2H; molar ratio = 1/1/10 or 1/1/1, toluene) proved to be active in isoprene polymerization and enable complete conversion of 1000-10 000 equivalents of the monomer into a polymer at 25 °C within 0.5-24 h affording polyisoprenes with polydispersities Mw/Mn = 1.22-3.18. A comparative study of the catalytic performance of the bis(alkyl) complexes coordinated by tridentate amidinate ligands containing different pendant donor groups demonstrated that replacement of the Ph2P[double bond, length as m-dash]O group by Ph2P[double bond, length as m-dash]NPh leads to a switch of stereoselectivity in isoprene polymerization from cis-1,4 (up to 98.5%) to trans-1,4 (up to 84.8%). And conversely introduction of methyl substituents in the 2,6 positions of the phenyl group of the Ph2P[double bond, length as m-dash]NPh fragment allows us to restore the 1,4-cis

  10. Pinpointing double bonds in lipids by Paternò-Büchi reactions and mass spectrometry.

    PubMed

    Ma, Xiaoxiao; Xia, Yu

    2014-03-03

    The positions of double bonds in lipids play critical roles in their biochemical and biophysical properties. In this study, by coupling Paternò-Büchi (P-B) reaction with tandem mass spectrometry, we developed a novel method that can achieve confident, fast, and sensitive determination of double bond locations within various types of lipids. The P-B reaction is facilitated by UV irradiation of a nanoelectrospray plume entraining lipids and acetone. Tandem mass spectrometry of the on-line reaction products via collision activation leads to the rupture of oxetane rings and the formation of diagnostic ions specific to the double bond location.

  11. Theoretical characterization of the sulfilimine bond: Double or single?

    NASA Astrophysics Data System (ADS)

    Pichierri, Fabio

    2010-03-01

    Using quantum mechanical calculations in combination with AIM and NBO analyses, we investigate the properties of the sulfilimine bond, which has been recently detected in collagen IV [Vanacore et al., Science 325 (2009) 1230]. Contrary to the general belief that this is a double bond, -N dbnd S<, our analysis of the wavefunction of a model compound indicates it being a coordinate covalent (dative) single bond, -N ← S<, with a strong polarization towards nitrogen.

  12. Intermolecular cross-double-michael addition between nitro and carbonyl activated olefins as a new approach in C-C bond formation.

    PubMed

    Sun, Xiaohua; Sengupta, Sujata; Petersen, Jeffrey L; Wang, Hong; Lewis, James P; Shi, Xiaodong

    2007-10-25

    A novel intermolecular cross-double-Michael addition between nitro and carbonyl activated olefins has been developed through Lewis base catalysis. The reaction took place with a large group of beta-alkyl nitroalkenes and alpha,beta-unsaturated ketone/esters, producing an allylic nitro compound in good to excellent yields.

  13. Understanding Rotation about a C=C Double Bond

    NASA Astrophysics Data System (ADS)

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-09-01

    In this article, twisting about the C=C double bond and the consequential pyramidalization of sp 2 carbon atoms in alkenes were examined in a molecular modeling study using trans -2-butene as a model system. According to our trans -2-butene model and other similar work, most of the strength of a π bond is retained upon twisting, even for remarkably large C C=C C dihedral angles (up to 90°). The phenomenon of sp 2 carbon atom pyramidalization and preservation of π bond strength upon twisting a C=C double bond is well established in the literature, but is rarely discussed in introductory textbooks. This absence is noteworthy because profound manifestations of this effect do occur in compounds that are covered in an introductory organic chemistry curriculum. We present a simple method of introducing the concept of a flexible C=C π bond into beginning organic chemistry courses. We report the energetic demands of partial twisting about the C=C bond in 2-butene as calculated using DFT, LMP2, and MCSCF methods. Finally, using the results of these calculations, we assessed the degree of strain introduced by the twisted nature of the C=C bond in trans cycloalkenes.

  14. Free radical addition of butanethiol to vegetable oil double bonds.

    PubMed

    Bantchev, Grigor B; Kenar, James A; Biresaw, Girma; Han, Moon Gyu

    2009-02-25

    Butanethiol was used in ultraviolet-initiated thiol-ene reaction with canola and corn oils to produce sulfide-modified vegetable oils (SMVO). The crude SMVO product was successfully purified by solvent extraction, vacuum evaporation, and silica gel chromatography. The SMVO products were characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy. Further product characterization and analysis was conducted using GC and GC-MS on the fatty acid methyl esters obtained by the transesterification of the SMVO products. Investigation of the effect of reaction conditions showed that high yield and high conversion of double bonds into thiol were favored at low reaction temperatures and high butanethiol/vegetable oil ratios. Canola and corn oils gave similar double-bond conversions and yields of the desired SMVO product even though they have big differences in the relative numbers of single and multiple double bonds in their structures. Under best reaction conditions, up to 97% of double-bond conversion and 61% isolated yields of the purified SMVO products were attained.

  15. Disulfide Bond Requirements for Active Wnt Ligands*

    PubMed Central

    MacDonald, Bryan T.; Hien, Annie; Zhang, Xinjun; Iranloye, Oladoyin; Virshup, David M.; Waterman, Marian L.; He, Xi

    2014-01-01

    Secreted Wnt lipoproteins are cysteine-rich and lipid-modified morphogens that bind to the Frizzled (FZD) receptor and LDL receptor-related protein 6 (LRP6). Wnt engages FZD through protruding thumb and index finger domains, which are each assembled from paired β strands secured by disulfide bonds and grasp two sides of the FZD ectodomain. The importance of Wnt disulfide bonds has been assumed but uncharacterized. We systematically analyzed cysteines and associated disulfide bonds in the prototypic Wnt3a. Our data show that mutation of any individual cysteine of Wnt3a results in covalent Wnt oligomers through ectopic intermolecular disulfide bond formation and diminishes/abolishes Wnt signaling. Although individual cysteine mutations in the amino part of the saposin-like domain and in the base of the index finger are better tolerated and permit residual Wnt3a secretion/activity, those in the amino terminus, the thumb, and at the tip of the index finger are incompatible with secretion and/or activity. A few select double cysteine mutants based on the disulfide bond pattern restore Wnt secretion/activity. Further, a double cysteine mutation at the index finger tip results in a Wnt3a with normal secretion but minimal FZD binding and dominant negative properties. Our results experimentally validate predictions from the Wnt crystal structure and highlight critical but different roles of the saposin-like and cytokine-like domains, including the thumb and the index finger in Wnt folding/secretion and FZD binding. Finally, we modified existing expression vectors for 19 epitope-tagged human WNT proteins by removal of a tag-supplied ectopic cysteine, thereby generating tagged WNT ligands active in canonical and non-canonical signaling. PMID:24841207

  16. [Determination of double bonds in olive and sunflower oils by ozonize method].

    PubMed

    Evteeva, N M

    2007-01-01

    Kinetics of spending double bonds of tocotherol and accumulation of peroxides during oxidation of olive and sunflower oils were investigated. Date on spending double bonds during oxidation of commercial oils were measured for the first time.

  17. Stress analysis of adhesive bonded stiffener plates and double joints

    NASA Technical Reports Server (NTRS)

    Yuceoglu, U.; Updike, D. P.

    1975-01-01

    The general problem of adhesive bonded stiffener plates and double joints of dissimilar orthotropic adherends with transverse shear deformations are analyzed. Adhesive layers are assumed to be of an isotropic, elastic and relatively flexible material. It is shown that the stress distributions in the adhesive layers are very much dependent on the bending deformations in adherends. Also, it is found that, in the adhesive layer, maximum transverse normal stress is, in many cases, larger than the longitudinal shear stress and that both occur at the edge of the joint. The general method of solution developed is applied to several practical examples.

  18. α-Halogenoacetanilides as hydrogen-bonding organocatalysts that activate carbonyl bonds: fluorine versus chlorine and bromine.

    PubMed

    Koeller, Sylvain; Thomas, Coralie; Peruch, Fréderic; Deffieux, Alain; Massip, Stéphane; Léger, Jean-Michel; Desvergne, Jean-Pierre; Milet, Anne; Bibal, Brigitte

    2014-03-03

    α-Halogenoacetanilides (X=F, Cl, Br) were examined as H-bonding organocatalysts designed for the double activation of CO bonds through NH and CH donor groups. Depending on the halide substituents, the double H-bond involved a nonconventional CH⋅⋅⋅O interaction with either a HCXn (n=1-2, X=Cl, Br) or a HCAr bond (X=F), as shown in the solid-state crystal structures and by molecular modeling. In addition, the catalytic properties of α-halogenoacetanilides were evaluated in the ring-opening polymerization of lactide, in the presence of a tertiary amine as cocatalyst. The α-dichloro- and α-dibromoacetanilides containing electron-deficient aromatic groups afforded the most attractive double H-bonding properties towards CO bonds, with a NH⋅⋅⋅O⋅⋅⋅HCX2 interaction.

  19. Single Molecule Study of Force-Induced Rotation of Carbon-Carbon Double Bonds in Polymers.

    PubMed

    Huang, Wenmao; Zhu, Zhenshu; Wen, Jing; Wang, Xin; Qin, Meng; Cao, Yi; Ma, Haibo; Wang, Wei

    2017-01-24

    Carbon-carbon double bonds (C═C) are ubiquitous in natural and synthetic polymers. In bulk studies, due to limited ways to control applied force, they are thought to be mechanically inert and not to contribute to the extensibility of polymers. Here, we report a single molecule force spectroscopy study on a polymer containing C═C bonds using atomic force microscope. Surprisingly, we found that it is possible to directly observe the cis-to-trans isomerization of C═C bonds at the time scale of ∼1 ms at room temperature by applying a tensile force ∼1.7 nN. The reaction proceeds through a diradical intermediate state, as confirmed by both a free radical quenching experiment and quantum chemical modeling. The force-free activation length to convert the cis C═C bonds to the transition state is ∼0.5 Å, indicating that the reaction rate is accelerated by ∼10(9) times at the transition force. On the basis of the density functional theory optimized structure, we propose that because the pulling direction is not parallel to C═C double bonds in the polymer, stretching the polymer not only provides tension to lower the transition barrier but also provides torsion to facilitate the rotation of cis C═C bonds. This explains the apparently low transition force for such thermally "forbidden" reactions and offers an additional explanation of the "lever-arm effect" of polymer backbones on the activation force for many mechanophores. This work demonstrates the importance of precisely controlling the force direction at the nanoscale to the force-activated reactions and may have many implications on the design of stress-responsive materials.

  20. Radiation Crosslinking of Polyurethane Enhanced by Introducing Terminal Double-Bonds

    NASA Astrophysics Data System (ADS)

    Zhou, Cheng-Fei; Liu, Yang; Jiu, Yong-Bin; Cao, Wei; Zhai, Tong; Wang, Lian-Cai

    2016-05-01

    In this article, the enhanced radiation crosslinking of polyurethane via double-bond capping method were discussed in detail. Meanwhile, the Enhanced radiation crosslinking of polyurethane based on polyimide as hard segment were emphasized. In addition, the preparation of radiation crosslinking foam by introducing terminal double-bond were introduced.

  1. A Simple Visualization of Double Bond Properties: Chemical Reactivity and UV Fluorescence

    ERIC Educational Resources Information Center

    Grayson, Scott M.

    2012-01-01

    A simple, easily visualized thin-layer chromatography (TLC) staining experiment is presented that highlights the difference in reactivity between aromatic double bonds and nonaromatic double bonds. Although the stability of aromatic systems is a major theme in organic chemistry, the concept is rarely reinforced "visually" in the undergraduate…

  2. Carbon-carbon double-bond reductases in nature.

    PubMed

    Huang, Minmin; Hu, Haihong; Ma, Li; Zhou, Quan; Yu, Lushan; Zeng, Su

    2014-08-01

    Reduction of C = C bonds by reductases, found in a variety of microorganisms (e.g. yeasts, bacteria, and lower fungi), animals, and plants has applications in the production of metabolites that include pharmacologically active drugs and other chemicals. Therefore, the reductase enzymes that mediate this transformation have become important therapeutic targets and biotechnological tools. These reductases are broad-spectrum, in that, they can act on isolation/conjugation C = C-bond compounds, α,β-unsaturated carbonyl compounds, carboxylic acids, acid derivatives, and nitro compounds. In addition, several mutations in the reductase gene have been identified, some associated with diseases. Several of these reductases have been cloned and/or purified, and studies to further characterize them and determine their structure in order to identify potential industrial biocatalysts are still in progress. In this study, crucial reductases for bioreduction of C = C bonds have been reviewed with emphasis on their principal substrates and effective inhibitors, their distribution, genetic polymorphisms, and implications in human disease and treatment.

  3. The sEDA(=) and pEDA(=) descriptors of the double bonded substituent effect.

    PubMed

    Mazurek, Andrzej; Dobrowolski, Jan Cz

    2013-05-14

    New descriptors of the double bonded substituent effect, sEDA(=) and pEDA(=), were constructed based on quantum chemical calculations and NBO methodology. They show to what extent the σ and π electrons are donated to or withdrawn from the substituted system by a double bonded substituent. The new descriptors differ from descriptors of the classical substituent effect for which the pz orbital of the ipso carbon atom is engaged in the π-electron system of the two neighboring atoms in the ring. For double bonded substituents, the pz orbital participates in double bond formation with only one external atom. Moreover, the external double bond forces localization of the double bond system of the ring, significantly changing the core molecule. We demonstrated good agreement between our descriptors and the Weinhold and Landis' "natural σ and π-electronegativities": so far only descriptors allowing for evaluation of the substitution effect by a double bonded atom. The equivalency between descriptors constructed for 5- and 6-membered model structures as well as linear dependence/independence of the constructed parameters was discussed. Some interrelations between sEDA(=) and pEDA(=) and the other descriptors of (hetero)cyclic systems such as aromaticity and electron density in the ring and bond critical points were also examined.

  4. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOEpatents

    Hartwig, John F.; Kawatsura, Motoi; Loeber, Oliver

    2002-01-01

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  5. Importance of the sphingosine base double-bond geometry for the structural and thermodynamic properties of sphingomyelin bilayers.

    PubMed

    Janosi, Lorant; Gorfe, Alemayehu

    2010-11-03

    The precise role of the sphingosine base trans double bond for the unique properties of sphingomyelins (SMs), one of the main lipid components in raftlike structures of biological membranes, has not been fully explored. Several reports comparing the hydration, lipid packing, and hydrogen-bonding behaviors of SM and glycerophospholipid bilayers found remarkable differences overall. However, the atomic interactions linking the double-bond geometry with these thermodynamic and structural changes remained elusive. A recent report on ceramides, which differ from SMs only by their hydroxyl headgroup, has shown that replacing the trans double bond of the sphingosine base by cis weakens the hydrogen-bonding potential of these lipids and thereby alters their biological activity. Based on data from extensive (a total 0.75 μs) atomistic molecular dynamics simulations of bilayers composed of all-trans, all-cis, and a trans/cis (4:1 ratio) racemic mixture of sphingomyelin lipids, here we show that the trans configuration allows for the formation of significantly more hydrogen bonds than the cis. The extra hydrogen bonds enabled tighter packing of lipids in the all-trans and trans/cis bilayers, thus reducing the average area per lipid while increasing the chain order and the bilayer thickness. Moreover, fewer water molecules access the lipid-water interface of the all-trans bilayer than of the all-cis bilayer. These results provide the atomic basis for the importance of the natural sphingomyelin trans double-bond conformation for the formation of ordered membrane domains.

  6. A novel palladium-catalyzed hydroalkoxylation of alkenes with a migration of double bond.

    PubMed

    Tan, Jiajing; Zhang, Zuhui; Wang, Zhiyong

    2008-04-21

    A novel palladium-catalyzed addition of alcohols to olefins was developed, in which a migration of double bond was involved. By this new method, a variety of allylic ethers were prepared with moderate to high yields under mild conditions.

  7. Double hydrogen bond mediating self-assembly structure of cyanides on metal surface

    NASA Astrophysics Data System (ADS)

    Wang, Zhongping; Xiang, Feifei; Lu, Yan; Wei, Sheng; Li, Chao; Liu, Xiaoqing; Liu, Lacheng; Wang, Li

    2016-10-01

    Cyanides with different numbers of -C≡N, 1,2,4,5-Tetracyanobenzene (TCNB) and 2,3-Dicyanonaphthalene (2,3-DCN) deposited on Ag(111) and Ag(110) surfaces, have been investigated by room temperature scanning tunneling microscopy (RTSTM), respectively. High resolution STM images show double hydrogen bond is the main driving force to form variety of self-assembly structures, indicating the double hydrogen bond affects the electron distribution of cyanides and leads to a more stable structure with lower energy. In addition, the difference between Ag(111) and Ag(110) surfaces in their lattice structure induces a bigger assembly structural change of 2,3-DCN than that of 1,2,4,5-TCNB, which confirms the fact that the opposite double hydrogen bond formation formed by 1,2,4,5-TCNB is more stable than the neighboring double hydrogen bond formation formed by molecule 2,3-DCN.

  8. Biocatalytic Asymmetric Alkene Reduction: Crystal Structure and Characterization of a Double Bond Reductase from Nicotiana tabacum

    PubMed Central

    2013-01-01

    The application of biocatalysis for the asymmetric reduction of activated C=C is a powerful tool for the manufacture of high-value chemical commodities. The biocatalytic potential of “-ene” reductases from the Old Yellow Enzyme (OYE) family of oxidoreductases is well-known; however, the specificity of these enzymes toward mainly small molecule substrates has highlighted the need to discover “-ene” reductases from different enzymatic classes to broaden industrial applicability. Here, we describe the characterization of a flavin-free double bond reductase from Nicotiana tabacum (NtDBR), which belongs to the leukotriene B4 dehydrogenase (LTD) subfamily of the zinc-independent, medium chain dehydrogenase/reductase superfamily of enzymes. Using steady-state kinetics and biotransformation reactions, we have demonstrated the regio- and stereospecificity of NtDBR against a variety of α,β-unsaturated activated alkenes. In addition to catalyzing the reduction of typical LTD substrates and several classical OYE-like substrates, NtDBR also exhibited complementary activity by reducing non-OYE substrates (i.e., reducing the exocyclic C=C double bond of (R)-pulegone) and in some cases showing an opposite stereopreference in comparison with the OYE family member pentaerythritol tetranitrate (PETN) reductase. This serves to augment classical OYE “-ene” reductase activity and, coupled with its aerobic stability, emphasizes the potential industrial value of NtDBR. Furthermore, we also report the X-ray crystal structures of the holo-, binary NADP(H)-bound, and ternary [NADP+ and 4-hydroxy-3-methoxycinnamaldehyde (9a)-bound] NtDBR complexes. These will underpin structure-driven site-saturated mutagenesis studies aimed at enhancing the reactivity, stereochemistry, and specificity of this enzyme. PMID:27547488

  9. Preparation of tert-butyl-capped polyenes containing up to 15 double bonds

    SciTech Connect

    Knoll, K.; Schrock, R.R. )

    1989-11-27

    7,8-Bis(trifluoromethyl)tricyclo(4.2.2.0{sup 2.5})deca-3,7,9-triene (TCDT) can be ring-opened in a controlled manner by W(CH-t-Bu)(NAr)(O-t-Bu){sub 2} (Ar = 2,6-C{sub 6}H{sub 3}-i-Pr{sub 2}) to give living oligomers from which the metal can be removed in a Wittig-like reaction with pivaldehyde or 4,4-dimethyl-trans-2-pentenal. Mixtures of odd and even polyenes have been analyzed by reversed-phase HPLC methods, and those having as many as 13 double bonds have been isolated by column chromatography on silica gel under dinitrogen at {minus}40{degree}C and characterized by {sup 1}H and {sup 13}C NMR and UV-vis studies. The 17-ene has been observed by HPLC. Polyenes containing more than 17 double bonds are relatively unstable under the reaction and subsequent isolation conditions; those containing between 11 and 15 double bonds decompose thermally progressively more readily. UV-vis and {sup 13}C and {sup 1}H NMR data have been collected and analyzed in detail for the trans(cis,trans){sub x} isomers for x = 1-5 (up to 11 double bonds) and for the odd and even all-trans forms containing up to nine double bonds.

  10. The Double-Bond Configuration of Corynanthean Alkaloids and Its Impact on Monoterpenoid Indole Alkaloid Biosynthesis.

    PubMed

    Eckermann, Ruben; Gaich, Tanja

    2016-04-11

    Experimental evidence is provided for the coherence of the double-bond geometry and the occurrence of "secondary cyclizations" in the biosynthesis of monoterpenoid indole alkaloids. Biosynthetically, akuammiline, C-mavacurine, and Strychnos alkaloids are proposed to be derived from the corynanthean alkaloid geissoschizine, a key intermediate in the biosynthetic pathway of these monoterpenoid indole alkaloids. This process occurs by so-called "secondary cyclizations" from geissoschizine or its derivatives. Although corynanthean alkaloids like geissoschizine incorporate E or Z double bonds located at C19-C20, the alkaloids downstream in the biosynthesis exclusively exhibit the E double bond. This study shows that secondary cyclizations preferentially occur with the E isomer of geissoschizine or its derivatives. This is attributed to the flexibility of the quinolizidine system of the corynanthean alkaloids, which can adopt a cis or trans conformation. For the secondary cyclization to take place, the cis-quinolizidine conformation is required. Experimental evidence supports the hypothesis that the E double bond of geissoschizine induces the cis conformation, whereas the Z double bond induces the trans conformation, which prohibits secondary cyclization of the Z compounds.

  11. 76 FR 12364 - Agency Information Collection Activities: Bonded Warehouse Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Bonded Warehouse... Bonded Warehouse Regulations. This request for comment is being made pursuant to the Paperwork Reduction... concerning the following information collection: Title: Bonded Warehouse Regulations. OMB Number:...

  12. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate.

    PubMed

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-03-02

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances.

  13. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate

    NASA Astrophysics Data System (ADS)

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-03-01

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances.

  14. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate

    PubMed Central

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-01-01

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances. PMID:28252049

  15. Access to B=S and B=Se double bonds via sulfur and selenium insertion into a B-H bond and hydrogen migration.

    PubMed

    Wang, Hao; Zhang, Jianying; Hu, Hongfan; Cui, Chunming

    2010-08-18

    Stable compounds with a boron-chalcogen (S or Se) valence double bond have been prepared via sequences involving insertion of the chalcogen into a B-H bond and subsequent hydrogen migration. X-ray diffraction studies and density functional theory calculations on the resulting compounds provide convincing evidence for the boron-chalcogen multiple bonding.

  16. On the existence of Si-C double bonded graphene-like layers

    NASA Astrophysics Data System (ADS)

    Huda, Muhammad N.; Yan, Yanfa; Al-Jassim, Mowafak M.

    2009-09-01

    Upon analyzing an earlier experimental study by density-functional theory we have shown that graphene-like SiC layers can exist. We found that, for a particular stacking sequence, Si dbnd C double bond was responsible for the much larger interlayer distances observed in synthesized multi-walled SiC nanotubes. The Si/C ratios in SiC layers determine the extent of interlayer distances and bonding nature. It has been also shown that for some intermediate ratios of Si:C and/or with other stacking sequences, a collapse of SiC layers to tetrahedrally bonded system is possible. We have argued that these synthesized Si dbnd C double-bonded multi-wall silicon-carbide nanotubes may provide a pathway for future realization of SiC graphene-like materials.

  17. Double bonding system for deeply impacted tooth--a technic clinic.

    PubMed

    Singh, Gyan P; Tandon, Pradeep; Shastri, Dipti; Verma, Sneh Lata; Verma, Sneh Lata; Verma, Umesh P

    2013-01-01

    Close eruption technique is preferred in deep, buried, intraosseous and labially impacted teeth to provide healthy and fuinctional attached gingiva but in this technique failure of bonded attachment usually means, repeat exposure of the impacted tooth. This article describes an innovative method for bonding two attachments (Double Bonding System) in combination instead of one. It provides the safe and determinate system for ortho-eruption, avoid the trauma of patient from re-exposure and enhance the comfort as well the confidence of the operator.

  18. Reduction of carbon-carbon double bonds using organocatalytically generated diimide.

    PubMed

    Smit, Christian; Fraaije, Marco W; Minnaard, Adriaan J

    2008-12-05

    An efficient method has been developed for the reduction of carbon-carbon double bonds with diimide, catalytically generated in situ from hydrazine hydrate. The employed catalyst is prepared in one step from riboflavin (vitamin B(2)). Reactions are carried out in air and are a valuable alternative when metal-catalyzed hydrogenations are problematic.

  19. 75 FR 68809 - Agency Information Collection Activities: Importation Bond Structure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... Information Collection Activities: Importation Bond Structure AGENCY: U.S. Customs and Border Protection...: Importation Bond Structure. This is a proposed extension and revision of an information collection that was...: Importation Bond Structure. OMB Number: 1651-0050. Form Numbers: 301 and 5297. Abstract: Bonds are used...

  20. Chemical Bond Activation Observed with an X-ray Laser.

    PubMed

    Beye, Martin; Öberg, Henrik; Xin, Hongliang; Dakovski, Georgi L; Dell'Angela, Martina; Föhlisch, Alexander; Gladh, Jörgen; Hantschmann, Markus; Hieke, Florian; Kaya, Sarp; Kühn, Danilo; LaRue, Jerry; Mercurio, Giuseppe; Minitti, Michael P; Mitra, Ankush; Moeller, Stefan P; Ng, May Ling; Nilsson, Anders; Nordlund, Dennis; Nørskov, Jens; Öström, Henrik; Ogasawara, Hirohito; Persson, Mats; Schlotter, William F; Sellberg, Jonas A; Wolf, Martin; Abild-Pedersen, Frank; Pettersson, Lars G M; Wurth, Wilfried

    2016-09-15

    The concept of bonding and antibonding orbitals is fundamental in chemistry. The population of those orbitals and the energetic difference between the two reflect the strength of the bonding interaction. Weakening the bond is expected to reduce this energetic splitting, but the transient character of bond-activation has so far prohibited direct experimental access. Here we apply time-resolved soft X-ray spectroscopy at a free-electron laser to directly observe the decreased bonding-antibonding splitting following bond-activation using an ultrashort optical laser pulse.

  1. Spontaneous and specific activation of chemical bonds in macromolecular fluids.

    PubMed

    Park, Insun; Shirvanyants, David; Nese, Alper; Matyjaszewski, Krzysztof; Rubinstein, Michael; Sheiko, Sergei S

    2010-09-08

    Mechanical activation of chemical bonds typically involves the application of external forces, which implies a broad distribution of bond tensions. We demonstrate that controlling the flow profile of a macromolecular fluid generates and delineates mechanical force concentration, enabling a hierarchical activation of chemical bonds on different length scales from the macroscopic to the molecular. Bond tension is spontaneously generated within brushlike macromolecules as they spread on a solid substrate. The molecular architecture creates an uneven distribution of tension in the covalent bonds, leading to spatially controlled bond scission. By controlling the flow rate and the gradient of the film pressure, one can sever the flowing macromolecules with high precision. Specific chemical bonds are activated within distinct macromolecules located in a defined area of a thin film. Furthermore, the flow-controlled loading rate enables quantitative analysis of the bond activation parameters.

  2. A diabatic state model for double proton transfer in hydrogen bonded complexes.

    PubMed

    McKenzie, Ross H

    2014-09-14

    Four diabatic states are used to construct a simple model for double proton transfer in hydrogen bonded complexes. Key parameters in the model are the proton donor-acceptor separation R and the ratio, D1/D2, between the proton affinity of a donor with one and two protons. Depending on the values of these two parameters the model describes four qualitatively different ground state potential energy surfaces, having zero, one, two, or four saddle points. Only for the latter are there four stable tautomers. In the limit D2 = D1 the model reduces to two decoupled hydrogen bonds. As R decreases a transition can occur from a synchronous concerted to an asynchronous concerted to a sequential mechanism for double proton transfer.

  3. Bonding, Achievement, and Activities: School Bonding, Academic Achievement, and Participation in Extracurricular Activities

    ERIC Educational Resources Information Center

    Howard, Anissa K.; Ziomek-Daigle, Jolie

    2009-01-01

    Utilizing a single-group interrupted time series design (Creswell, 2003), this pilot study examined the relationship between academic achievement, school bonding, and the extracurricular activity participation of "uninvolved" students (n=11) who participated in a voluntary support group at a suburban high school in the southeast. Results…

  4. Using ambient ozone for assignment of double bond position in unsaturated lipids.

    PubMed

    Ellis, Shane R; Hughes, Jessica R; Mitchell, Todd W; in het Panhuis, Marc; Blanksby, Stephen J

    2012-03-07

    Unsaturated lipids deposited onto a range of materials are observed to react with the low concentrations of ozone present in normal laboratory air. Parent lipids and ozonolysis cleavage products are both detected directly from surfaces by desorption electrospray ionisation mass spectrometry (DESI-MS) with the resulting mass spectra providing clear evidence of the double bond position within these molecules. This serendipitous process has been coupled with thin-layer chromatography (TLC) to provide a simple but powerful approach for the detailed structural elucidation of lipids present in complex biological extracts. Lipid extracts from human lens were deposited onto normal phase TLC plates and then developed to separate components according to lipid class. Exposure of the developed plates to laboratory air for ca. 1 h prior to DESI-MS analysis gave rise to ozonolysis products allowing for the unambiguous identification of double bond positions in even low abundant, unsaturated lipids. In particular, the co-localization of intact unsaturated lactosylceramides (LacCer) with products from their oxidative cleavage provide the first evidence for the presence of three isomeric LacCer (d18:0/24:1) species in the ocular lens lipidome, i.e., variants with double bonds at the n-9, n-7 and n-5 positions.

  5. Hydrogen Bonding in 4-AMINOPHENYL Ethanol: a Combined Ir-Uv Double Resonance and Microwave Study

    NASA Astrophysics Data System (ADS)

    Bray, Caitlin; Rivera, Cara Rae; Arsenault, E. A.; Obenchain, Daniel A.; Novick, Stewart E.; Knee, Joseph L.

    2015-06-01

    Both amine and hydroxyl functional groups are present in 4-aminophenyl ethanol (4-AE), and each functional group can form hydrogen bonds with carboxylic acids, such as formic acid and acetic acid. Predicting the structures of such complexes involving 4-AE is rather complex, given the many possible conformations and their similar (and method and basis-dependent) energies. In particular, the carboxyl group, -COOH, can act as both as a hydrogen bond donor or acceptor, or both at once. In this study we report the formic acid - 4-AE hydrogen bonded complex. An infrared-ultraviolet double resonance spectrometer is used to examine the shifts in IR frequencies of 4-AE from the monomer to the complex. Fourier transform microwave spectroscopy is used to determine structures of the species. Results from both experiments are compared to DFT and ab initio results. Time permitting, results of the water complex with 4-AE will also be presented.

  6. Adhesive-bonded double-lap joints. [analytical solutions for static load carrying capacity

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Explicit analytical solutions are derived for the static load carrying capacity of double-lap adhesive-bonded joints. The analyses extend the elastic solution Volkersen and cover adhesive plasticity, adherend stiffness imbalance and thermal mismatch between the adherends. Both elastic-plastic and bi-elastic adhesive representations lead to the explicit result that the influence of the adhesive on the maximum potential bond strength is defined uniquely by the strain energy in shear per unit area of bond. Failures induced by peel stresses at the ends of the joint are examined. This failure mode is particularly important for composite adherends. The explicit solutions are sufficiently simple to be used for design purposes

  7. On the activation of σ-bonds by electric fields: A Valence Bond perspective

    NASA Astrophysics Data System (ADS)

    Rincón, Luis; Mora, Jose R.; Torres, F. Javier; Almeida, Rafael

    2016-09-01

    The activation of non-polar σ -bonds induced by an electric field is studied from the perspective of the Valence Bond theory. As representative examples we study the dissociation of the H-H and C-H bonds of molecular hydrogen and methane, respectively, under the experience of an homogeneous as well as an heterogeneous field oriented along the bond axis. For all cases, the increase in the electric field have similar effects: (i) the stabilization of the potential energy, (ii) an increment of the equilibrium bond length and (iii) the transition from an homolytic dissociation mechanism to an heterolytic one when the bond is subjected under a strong enough field. These general observations are thoroughly explained using a simple Valence Bond model that involve the increment of the resonance energy between the covalent and the ionic structures, and the curve crossing between the two structures after some field strength.

  8. 76 FR 28801 - Agency Information Collection Activities: Bonded Warehouse Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Bonded Warehouse... approval in accordance with the Paperwork Reduction Act: Bonded Warehouse Regulations. This is a proposed..., mechanical, or other technological techniques or other forms of information. Title: Bonded...

  9. Atmospheric chemistry of Z- and E-CF3CH[double bond, length as m-dash]CHCF3.

    PubMed

    Østerstrøm, Freja F; Andersen, Simone Thirstrup; Sølling, Theis I; Nielsen, Ole John; Sulbaek Andersen, Mads P

    2016-12-21

    The atmospheric fates of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 have been studied, investigating the kinetics and the products of the reactions of the two compounds with Cl atoms, OH radicals, OD radicals, and O3. FTIR smog chamber experiments measured: k(Cl + Z-CF3CH[double bond, length as m-dash]CHCF3) = (2.59 ± 0.47) × 10(-11), k(Cl + E-CF3CH[double bond, length as m-dash]CHCF3) = (1.36 ± 0.27) × 10(-11), k(OH + Z-CF3CH[double bond, length as m-dash]CHCF3) = (4.21 ± 0.62) × 10(-13), k(OH + E-CF3CH[double bond, length as m-dash]CHCF3) = (1.72 ± 0.42) × 10(-13), k(OD + Z-CF3CH[double bond, length as m-dash]CHCF3) = (6.94 ± 1.25) × 10(-13), k(OD + E-CF3CH[double bond, length as m-dash]CHCF3) = (5.61 ± 0.98) × 10(-13), k(O3 + Z-CF3CH[double bond, length as m-dash]CHCF3) = (6.25 ± 0.70) × 10(-22), and k(O3 + E-CF3CH[double bond, length as m-dash]CHCF3) = (4.14 ± 0.42) × 10(-22) cm(3) molecule(-1) s(-1) in 700 Torr of air/N2/O2 diluents at 296 ± 2 K. E-CF3CH[double bond, length as m-dash]CHCF3 reacts with Cl atoms to give CF3CHClC(O)CF3 in a yield indistinguishable from 100%. Z-CF3CH[double bond, length as m-dash]CHCF3 reacts with Cl atoms to give (95 ± 10)% CF3CHClC(O)CF3 and (7 ± 1)% E-CF3CH[double bond, length as m-dash]CHCF3. CF3CHClC(O)CF3 reacts with Cl atoms to give the secondary product CF3C(O)Cl in a yield indistinguishable from 100%, with the observed co-products C(O)F2 and CF3O3CF3. The main atmospheric fate for Z- and E-CF3CH[double bond, length as m-dash]CHCF3 is reaction with OH radicals. The atmospheric lifetimes of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 are estimated as 27 and 67 days, respectively. IR absorption cross sections are reported and the global warming potentials (GWPs) of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 for the 100 year time horizon are calculated to be GWP100 = 2 and 7, respectively. This study provides a comprehensive description of the atmospheric fate and impact of Z- and E

  10. Theoretical Analysis of the Effect of C═C Double Bonds on the Low-Temperature Reactivity of Alkenylperoxy Radicals.

    PubMed

    You, Xiaoqing; Chi, Yawei; He, Tanjin

    2016-08-04

    Biodiesel contains a large proportion of unsaturated fatty acid methyl esters. Its combustion characteristics, especially its ignition behavior at low temperatures, have been greatly affected by these C═C double bonds. In this work, we performed a theoretical analysis of the effect of C═C double bonds on the low-temperature reactivity of alkenylperoxy radicals, the key intermediates from the low-temperature combustion of biodiesel. To understand how double bonds affect the fate of peroxy radicals, we selected three representative peroxy radicals from heptane, heptene, and heptadiene having zero, one, and two double C═C bonds, respectively, for study. The potential energy surfaces were explored at the CBS-QB3 level, and the reaction rate constants were computed using canonical/variational transition state theories. We have found that the double bond is responsible for the very different bond dissociation energies of the various types of C-H bonds, which in turn affect significantly the reaction kinetics of alkenylperoxy radicals.

  11. A fusion of the closed-shell coupled cluster singles and doubles method and valence-bond theory for bond breaking.

    PubMed

    Small, David W; Head-Gordon, Martin

    2012-09-21

    Closed-shell coupled cluster singles and doubles (CCSD) is among the most important of electronic-structure methods. However, it fails qualitatively when applied to molecular systems with more than two strongly correlated electrons, such as those with stretched or broken covalent bonds. We show that it is possible to modify the doubles amplitudes to obtain a closed-shell CCSD method that retains the computational cost and desirable features of standard closed-shell CCSD, e.g., correct spin symmetry, size extensivity, orbital invariance, etc., but produces greatly improved energies upon bond dissociation of multiple electron pairs; indeed, under certain conditions the dissociation energies are exact.

  12. Quantum dynamics study of fulvene double bond photoisomerization: The role of intramolecular vibrational energy redistribution and excitation energy

    SciTech Connect

    Blancafort, Lluis; Gatti, Fabien; Meyer, Hans-Dieter

    2011-10-07

    The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.

  13. Restorative resins: hardness and strength vs. quantity of remaining double bonds.

    PubMed

    Asmussen, E

    1982-12-01

    It has been hypothesized that the Wallace indentation hardness of smooth surface resins is a factor of prime importance for the abrasion by food of Class 1 restorations. In the present work factors affecting the hardness of polymers were investigated. In addition the tensile strength of composite resins was measured and related to the catalytic system of the polymer. It was found that for a given composition of the monomer the Wallace hardness number increased with increasing content of inhibitor, decreased with increasing content of peroxide, and was unaffected by changes in the content of amine. The hardness was well correlated with the quantity of double bonds remaining in the polymer. BISGMA-based polymers showed no variation in hardness when the originating monomer varied with respect to content of a bi- or a trifunctional diluting monomer. Light-polymerized polymers were relatively hard as compared to chemically cured materials of adequate setting time. The tensile strength of composite resins was predominantly determined by the monomer content of peroxide and increased herewith. The tensile strength was well correlated with the quantity of remaining double bonds in the constituting polymer.

  14. The direct determination of double bond positions in lipid mixtures by liquid chromatography/in-line ozonolysis/mass spectrometry.

    PubMed

    Sun, Chenxing; Zhao, Yuan-Yuan; Curtis, Jonathan M

    2013-01-31

    The direct determination of double bond positions in unsaturated lipids using in-line ozonolysis-mass spectrometry (O(3)-MS) is described. In this experiment, ozone penetrates through the semi-permeable Teflon AF-2400 tubing containing a flow of a solution of fatty acid methyl esters (FAME). Unsaturated FAME are thus oxidized by the ozone and cleaved at the double bond positions. The ozonolysis products then flow directly into the atmospheric pressure photoionization (APPI) source of a mass spectrometer for analysis. Aldehyde products retaining the methyl ester group are indicative of the double bond positions in unsaturated FAME. For the first time, O(3)-MS is able to couple directly to high performance liquid chromatography (HPLC), making the double bond localization in lipid mixtures possible. The application of LC/O(3)-MS has been demonstrated for a fat sample from bovine adipose tissue. A total of 9 unsaturated FAME including 6 positional isomers were identified unambiguously, without comparison to standards. The in-line ozonolysis reaction apparatus is applicable to most mass spectrometers without instrumental modification; it is also directly compatible with various LC columns. The LC/O(3)-MS method described here is thus a practical, versatile and easy to use new approach to the direct determination of double bond positions in lipids, even in complex mixtures.

  15. On the bonding nature of electron states for the Fe-Mo double perovskite

    NASA Astrophysics Data System (ADS)

    Carvajal, E.; Oviedo-Roa, R.; Cruz-Irisson, M.; Navarro, O.

    2014-05-01

    The electronic transport as well as the effect of an external magnetic field has been investigated on manganese-based materials, spinels and perovskites. Potential applications of double perovskites go from magnetic sensors to electrodes in solid-oxide fuel cells; besides the practical interests, it is known that small changes in composition modify radically the physical properties of double perovskites. We have studied the Sr2FeMoO6 double perovskite compound (SFMO) using first-principles density functional theory. The calculations were done within the generalized gradient approximation (GGA) scheme with the Perdew-Burke-Ernzerhof (PBE) functional. We have made a detailed analysis of each electronic state and the charge density maps around the Fermi level. For the electronic properties of SFMO it was used a primitive cell, for which we found the characteristic half-metallic behavior density of states composed by eg and t2g electrons from Fe and Mo atoms. Those peaks were tagged as bonding or antibonding around the Fermi level at both, valence and conduction bands.

  16. On the bonding nature of electron states for the Fe-Mo double perovskite

    SciTech Connect

    Carvajal, E.; Cruz-Irisson, M.; Oviedo-Roa, R.; Navarro, O.

    2014-05-15

    The electronic transport as well as the effect of an external magnetic field has been investigated on manganese-based materials, spinels and perovskites. Potential applications of double perovskites go from magnetic sensors to electrodes in solid-oxide fuel cells; besides the practical interests, it is known that small changes in composition modify radically the physical properties of double perovskites. We have studied the Sr{sub 2}FeMoO{sub 6} double perovskite compound (SFMO) using first-principles density functional theory. The calculations were done within the generalized gradient approximation (GGA) scheme with the Perdew-Burke-Ernzerhof (PBE) functional. We have made a detailed analysis of each electronic state and the charge density maps around the Fermi level. For the electronic properties of SFMO it was used a primitive cell, for which we found the characteristic half-metallic behavior density of states composed by e{sub g} and t{sub 2g} electrons from Fe and Mo atoms. Those peaks were tagged as bonding or antibonding around the Fermi level at both, valence and conduction bands.

  17. Hydrogen bonds and antiviral activity of benzaldehyde derivatives

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Belkov, M. V.; Shadyro, O. I.; Brinkevich, S. D.; Samovich, S. N.

    2012-09-01

    We have obtained the Fourier transform IR spectra of solutions of benzaldehyde derivatives having different antiviral activities against a herpes virus. We observe a correlation between the presence of hydrogen bonds in the benzaldehyde molecules and the appearance of antiviral properties in the compounds. For compounds having antiviral activity, we have obtained spectral data suggesting the existence of hydrogen bonds of the type C=OṡṡṡH-O and O-HṡṡṡO in the molecules. When the hydrogen atom in the hydroxyl groups are replaced by a methyl group, no intramolecular hydrogen bonds are formed and the compounds lose their antiviral activity.

  18. A search for thermal isomerization of olefins to carbenes: Thermal generations of the silicon-nitrogen double bond

    SciTech Connect

    Zhang, Xianping.

    1990-09-21

    The first part of this thesis will search for the thermal isomerization of olefins to carbenes which is predicted to be a high energy process by calculations and has only been observed in a few strained olefins. The possibility of thermal isomerization of simple olefins to carbenes will be explored. Substitution of a silyl group on the double bond of an olefin allows a potential intermediate which has a {beta}-radical to the silyl group during the cis-trans isomerization. The effects of a trimethylsilyl group on this isomerization are the subject of this study. The second part of this thesis will include the generation and chemistry of intermediates containing a silicon-nitrogen double bond. The isomerization of parent silanimine to the aminosilylene was calculated to be a high energy process. New approaches to the silicon-nitrogen double bond will also be presented. 92 refs., 12 figs., 11 tabs.

  19. Catalytic activation of carbon-carbon bonds in cyclopentanones.

    PubMed

    Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin

    2016-11-24

    In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon-carbon single bonds (C-C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds. The challenge in achieving such activation is the kinetic inertness of C-C bonds and the relative weakness of newly formed carbon-metal bonds. The most common tactic starts with a three- or four-membered carbon-ring system, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C-C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C-C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C-C bond can be activated; this is followed by activation of a carbon-hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones-a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate.

  20. Nuclear magnetic resonance and molecular modeling study of exocyclic carbon-carbon double bond polarization in benzylidene barbiturates

    NASA Astrophysics Data System (ADS)

    Figueroa-Villar, J. Daniel; Vieira, Andreia A.

    2013-02-01

    Benzylidene barbiturates are important materials for the synthesis of heterocyclic compounds with potential for the development of new drugs. The reactivity of benzylidene barbiturates is mainly controlled by their exocyclic carbon-carbon double bond. In this work, the exocyclic double bond polarization was estimated experimentally by NMR and correlated with the Hammett σ values of the aromatic ring substituents and the molecular modeling calculated atomic charge difference. It is demonstrated that carbon chemical shift differences and NBO charge differences can be used to predict their reactivity.

  1. Thermodynamic analysis of chain-melting transition temperatures for monounsaturated phospholipid membranes: dependence on cis-monoenoic double bond position.

    PubMed Central

    Marsh, D

    1999-01-01

    Unsaturated phospholipid is the membrane component that is essential to the dynamic environment needed for biomembrane function. The dependence of the chain-melting transition temperature, T(t), of phospholipid bilayer membranes on the position, n(u), of the cis double bond in the glycerophospholipid sn-2 chain can be described by an expression of the form T(t) = T(t)(c)(1 + h'(c)|n(u) - n(c)|)/(1 + s'(c)|n(u) - n(c)|), where n(c) is the chain position of the double bond corresponding to the minimum transition temperature, T(t)(c), for constant diacyl lipid chain lengths. This implies that the incremental transition enthalpy (and entropy) contributed by the sn-2 chain is greater for whichever of the chain segments, above or below the double-bond position, is the longer. The critical position, n(c), of the double bond is offset from the center of the sn-2 chain by an approximately constant amount, deltan(c) approximately 1. 5 C-atom units. The dependence of the parameters T(t)(c), h'(c), and s'(c) on sn-1 and sn-2 chain lengths can be interpreted consistently when allowance is made for the chain packing mismatch between the sn-1 and sn-2 chains. The length of the sn-2 chain is reduced by approximately 0.8 C-atom units by the cis double bond, in addition to a shortening by approximately 1.3 C-atom units by the bent configuration at the C-2 position. Based on this analysis, a general thermodynamic expression is proposed for the dependence of the chain-melting transition temperature on the position of the cis double bond and on the sn-1 and sn-2 chain lengths. The above treatment is restricted mostly to double-bond positions close to the center of the sn-2 chain. For double bonds positioned closer to the carboxyl or terminal methyl ends of the sn-2 chain, the effects on transition enthalpy can be considerably larger. They may be interpreted by the same formalism, but with different characteristic parameters, h'(c) and s'(c), such that the shorter of the chain segments

  2. Ozone-induced dissociation: elucidation of double bond position within mass-selected lipid ions.

    PubMed

    Thomas, Michael C; Mitchell, Todd W; Harman, David G; Deeley, Jane M; Nealon, Jessica R; Blanksby, Stephen J

    2008-01-01

    Ions formed from lipids during electrospray ionization of crude lipid extracts have been mass-selected within a quadrupole linear ion trap mass spectrometer and allowed to react with ozone vapor. Gas-phase ion-molecule reactions between unsaturated lipid ions and ozone are found to yield two primary product ions for each carbon-carbon double bond within the molecule. The mass-to-charge ratios of these chemically induced fragments are diagnostic of the position of unsaturation within the precursor ion. This novel analytical technique, dubbed ozone-induced dissociation (OzID), can be applied both in series and in parallel with conventional collision-induced dissociation (CID) to provide near-complete structural assignment of unknown lipids within complex mixtures without prior fractionation or derivatization. In this study, OzID is applied to a suite of complex lipid extracts from sources including human lens, bovine kidney, and commercial olive oil, thus demonstrating the technique to be applicable to a broad range of lipid classes including both neutral and acidic glycerophospholipids, sphingomyelins, and triacylglycerols. Gas-phase ozonolysis reactions are also observed with different types of precursor ions including [M+H]+, [M+Li]+, [M+Na]+, and [M-H]-: in each case yielding fragmentation data that allow double bond position to be unambiguously assigned. Within the human lens lipid extract, three sphingomyelin regioisomers, namely SM(d18:0/15Z-24:1), SM(d18:0/17Z-24:1), and SM(d18:0/19Z-24:1), and a novel phosphatidylethanolamine alkyl ether, GPEtn(11Z-18:1e/9Z-18:1), are identified using a combination of CID and OzID. These discoveries demonstrate that lipid identification based on CID alone belies the natural structural diversity in lipid biochemistry and illustrate the potential of OzID as a complementary approach within automated, high-throughput lipid analysis protocols.

  3. Conjugated Double Bonds in Lipid Bilayers: A Molecular Dynamic Simulation Study

    PubMed Central

    Zhao, Guijun; Subbaiah, P. V.; Chiu, See-Wing; Jakobsson, Eric; Scott, H. L.

    2011-01-01

    Conjugated linoleic acids (CLA) are found naturally in dairy products. Two isomers of CLA, that differ only in the location of cis and trans double bonds, are found to have distinct and different biological effects. The cis 9 trans 11 (C9T11) isomer is attributed to have the anti-carcinogenic effects, while the trans 10 cis 12 (T10C12) isomer is believed to be responsible for the anti-obesity effects. Since dietary CLA are incorporated into membrane phospholipids, we have used Molecular Dynamics (MD) simulations to investigate the comparative effects of the two isomers on lipid bilayer structure. Specifically, simulations of phosphatidylcholine lipid bilayers in which the sn-2 chains contained one of the two isomers of CLA were performed. Force field parameters for the torsional potential of double bonds were obtained from ab initio calculations. From the MD trajectories we calculated and compared structural properties of the two lipid bilayers, including areas per molecule, density profiles, thickness of bilayers, tilt angle of tail chains, order parameters profiles, radial distribution function (RDF) and lateral pressure profiles. The main differences found between bilayers of the two CLA isomers, are (1) the order parameter profile for C9T11 has a dip in the middle of sn-2 chain while the profile for T10C12 has a deeper dip close to terminal of sn-2 chain, and (2) the lateral pressure profiles show differences between the two isomers. Our simulation results reveal localized physical structural differences between bilayers of the two CLA isomers that may contribute to different biological effects through differential interactions with membrane proteins or cholesterol. PMID:21320475

  4. Influence of chain length and double bond on the aqueous behavior of choline carboxylate soaps.

    PubMed

    Rengstl, Doris; Diat, Olivier; Klein, Regina; Kunz, Werner

    2013-02-26

    In preceding studies, we demonstrated that choline carboxylates ChC(m) with alkyl chain lengths of m = 12 - 18 are highly water-soluble (for m = 12, soluble up to 93 wt % soap and 0 °C). In addition, choline soaps are featured by an extraordinary lyotropic phase behavior. With decreasing water concentration, the following phases were found: micellar phase (L(1)), discontinuous cubic phase (I(1)' and I(1)"), hexagonal phase (H(1)), bicontinuous cubic phase (V(1)), and lamellar phase (L(α)). The present work is also focused on the lyotropic phase behavior of choline soaps but with shorter alkyl chains or different alkyl chain properties. We have investigated the aqueous phase behavior of choline soaps with C(8) and C(10) chain-lengths (choline octanoate and choline decanoate) and with a C(18) chain-length with a cis-double bond (choline oleate). We found that choline decanoate follows the lyotropic phase behavior of the longer-chain homologues mentioned above. Choline octanoate in water shows no discontinuous cubic phases, but an extended, isotropic micellar solution phase. In addition, choline octanoate is at the limit between a surfactant and a hydrotrope. The double bond in choline oleate leads also to a better solubility in water and a decrease of the solubilization temperature. It also influences the Gaussian curvature of the aggregates which results in a loss of discontinuous cubic phases in the binary phase diagram. The different lyotropic mesophases were identified by the penetration scan technique with polarizing light microscope and visual observations. To clarify the structural behavior small (SAXS) and wide (WAXS) angle X-ray scattering were performed. To further characterize the extended, isotropic micellar solution phase in the binary phase diagram of choline octanoate viscosity and conductivity measurements were also carried out.

  5. Pancake π–π Bonding Goes Double: Unexpected 4e/All-Sites Bonding in Boron- and Nitrogen-Doped Phenalenyls

    SciTech Connect

    Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu; Huang, Jingsong

    2015-06-03

    Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap is distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.

  6. Pancake π–π Bonding Goes Double: Unexpected 4e/All-Sites Bonding in Boron- and Nitrogen-Doped Phenalenyls

    DOE PAGES

    Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu; ...

    2015-06-03

    Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap ismore » distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.« less

  7. Three-Component Azidation of Styrene-Type Double Bonds: Light-Switchable Behavior of a Copper Photoredox Catalyst.

    PubMed

    Fumagalli, Gabriele; Rabet, Pauline T G; Boyd, Scott; Greaney, Michael F

    2015-09-21

    [Cu(dap)2]Cl effectively catalyzes azide addition from the Zhdankin reagent to styrene-type double bonds, and subsequent addition of a third component to the benzylic position. In the presence of light, a photoredox cycle is implicated with polar components such as methanol or bromide adding to a benzylic cation. In the absence of light, by contrast, double azidation takes place to give diazides. Therefore, regioselective double functionalization can be achieved in good to excellent yields, with a switch between light and dark controlling the degree of azidation.

  8. Effect of UVA-activated riboflavin on dentin bonding.

    PubMed

    Cova, A; Breschi, L; Nato, F; Ruggeri, A; Carrilho, M; Tjäderhane, L; Prati, C; Di Lenarda, R; Tay, F R; Pashley, D H; Mazzoni, A

    2011-12-01

    Recent studies have reported collagen cross-linking after exposure to riboflavin followed by ultraviolet-A (UVA) exposure. This study is the first to investigate the effect of a riboflavin-containing primer on adhesive interface stability and dentinal matrix metalloproteinase activity. Human dentin was etched with 35% phosphoric acid, treated with 0.1% riboflavin, exposed to UVA for 2 min, and bonded with a two-step etch-and-rinse adhesive. Adhesive was applied to control specimens without riboflavin/UVA. Specimens were subjected to microtensile bond strength tests and pulled to failure after storage for 24 hrs, 6 mos, or 1 yr. Interfacial nanoleakage was evaluated by light and transmission electron microscopy. To investigate dentinal matrix metalloproteinase activity, we performed correlative zymographic assays on protein extracts obtained from phosphoric-acid-etched dentin powder with or without riboflavin/UVA treatment and XP Bond. Ultraviolet-activated riboflavin treatment increased the immediate bond strength to dentin at all aging intervals (p < 0.05 vs. control) and decreased interfacial nanoleakage in aged specimens (1 yr; p < 0.05). Zymograms revealed that riboflavin/UVA pre-treatment inhibited dentinal matrix metalloproteinase activity (especially MMP-9). In conclusion, dentinal collagen cross-linking induced by riboflavin/UVA increased immediate bond strength, stabilized the adhesive interface, and inhibited dentin matrix metalloproteinases, thereby increasing the durability of resin-dentin bonds.

  9. Effect of UVA-activated Riboflavin on Dentin Bonding

    PubMed Central

    Cova, A.; Breschi, L.; Nato, F.; Ruggeri, A.; Carrilho, M.; Tjäderhane, L.; Prati, C.; Di Lenarda, R.; Tay, F.R.; Pashley, D.H.; Mazzoni, A.

    2011-01-01

    Recent studies have reported collagen cross-linking after exposure to riboflavin followed by ultraviolet-A (UVA) exposure. This study is the first to investigate the effect of a riboflavin-containing primer on adhesive interface stability and dentinal matrix metalloproteinase activity. Human dentin was etched with 35% phosphoric acid, treated with 0.1% riboflavin, exposed to UVA for 2 min, and bonded with a two-step etch-and-rinse adhesive. Adhesive was applied to control specimens without riboflavin/UVA. Specimens were subjected to microtensile bond strength tests and pulled to failure after storage for 24 hrs, 6 mos, or 1 yr. Interfacial nanoleakage was evaluated by light and transmission electron microscopy. To investigate dentinal matrix metalloproteinase activity, we performed correlative zymographic assays on protein extracts obtained from phosphoric-acid-etched dentin powder with or without riboflavin/UVA treatment and XP Bond. Ultraviolet-activated riboflavin treatment increased the immediate bond strength to dentin at all aging intervals (p < 0.05 vs. control) and decreased interfacial nanoleakage in aged specimens (1 yr; p < 0.05). Zymograms revealed that riboflavin/UVA pre-treatment inhibited dentinal matrix metalloproteinase activity (especially MMP-9). In conclusion, dentinal collagen cross-linking induced by riboflavin/UVA increased immediate bond strength, stabilized the adhesive interface, and inhibited dentin matrix metalloproteinases, thereby increasing the durability of resin-dentin bonds. PMID:21940521

  10. The selective activation of a C-F bond with an auxiliary strong Lewis acid: a method to change the activation preference of C-F and C-H bonds.

    PubMed

    Wang, Lin; Sun, Hongjian; Li, Xiaoyan; Fuhr, Olaf; Fenske, Dieter

    2016-11-15

    The selective activation of the C-F bonds in substituted (2,6-difluorophenyl)phenylimines (2,6-F2H3C6-(C[double bond, length as m-dash]NH)-n'-R-C6H4 (n' = 2, R = H (1); n' = 2, R = Me (2); n' = 4, R = tBu (3))) by Fe(PMe3)4 with an auxiliary strong Lewis acid (LiBr, LiI, or ZnCl2) was explored. As a result, iron(ii) halides ((H5C6-(C[double bond, length as m-dash]NH)-2-FH3C6)FeX(PMe3)3 (X = Br (8); Cl (9)) and (n-RH4C6-(C[double bond, length as m-dash]NH)-2'-FH3C6)FeX(PMe3)3 (n = 2, R = Me, X = Br (11); n = 4, R = tBu, X = I (12))) were obtained. Under similar reaction conditions, using LiBF4 instead of LiBr or ZnCl2, the reaction of (2,6-difluorophenyl)phenylimine with Fe(PMe3)4 afforded an ionic complex [(2,6-F2H3C6-(C[double bond, length as m-dash]NH)-H4C6)Fe(PMe3)4](BF4) (10) via the activation of a C-H bond. The method of C-F bond activation with an auxiliary strong Lewis acid is appropriate for monofluoroarylmethanimines. Without the Lewis acid, iron(ii) hydrides ((2-RH4C6-(C[double bond, length as m-dash]NH)-2'-FH3C6)FeH(PMe3)3 (R = H (13); Me (14))) were generated from the reactions of Fe(PMe3)4 with the monofluoroarylmethanimines (2-FH4C6-(C[double bond, length as m-dash]NH)-2'-RC6H4 (R = H (4); Me (5))); however, in the presence of ZnCl2 or LiBr, iron(ii) halides ((2-RH4C6-(C[double bond, length as m-dash]NH)-H4C6)FeX(PMe3)3 (R = H, X = Cl (15); R = Me, X = Br (16))) could be obtained through the activation of a C-F bond. Furthermore, a C-F bond activation with good regioselectivity in (pentafluorophenyl)arylmethanimines (F5C6-(C[double bond, length as m-dash]NH)-2,6-Y2C6H3 (Y = F (6); H (7))) could be realized in the presence of ZnCl2 to produce iron(ii) chlorides ((2,6-Y2H3C6-(C[double bond, length as m-dash]NH)-F4C6)FeCl(PMe3)3 (Y = F (17); H (18))). This series of iron(ii) halides could be used to catalyze the hydrosilylation reaction of aldehydes. Due to the stability of iron(ii) halides to high temperature, the reaction mixture was allowed to be

  11. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.

    PubMed

    Ganguly, Abir; Manahan, Craig C; Top, Deniz; Yee, Estella F; Lin, Changfan; Young, Michael W; Thiel, Walter; Crane, Brian R

    2016-09-06

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions.

  12. Changes in active site histidine hydrogen bonding trigger cryptochrome activation

    PubMed Central

    Ganguly, Abir; Manahan, Craig C.; Top, Deniz; Yee, Estella F.; Lin, Changfan; Young, Michael W.; Thiel, Walter; Crane, Brian R.

    2016-01-01

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa. Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions. PMID:27551082

  13. Methandiide as a non-innocent ligand in carbene complexes: from the electronic structure to bond activation reactions and cooperative catalysis.

    PubMed

    Becker, Julia; Modl, Tanja; Gessner, Viktoria H

    2014-09-01

    The synthesis of a ruthenium carbene complex based on a sulfonyl-substituted methandiide and its application in bond activation reactions and cooperative catalysis is reported. In the complex, the metal-carbon interaction can be tuned between a Ru-C single bond with additional electrostatic interactions and a Ru=C double bond, thus allowing the control of the stability and reactivity of the complex. Hence, activation of polar and non-polar bonds (O-H, H-H) as well as dehydrogenation reactions become possible. In these reactions the carbene acts as a non-innocent ligand supporting the bond activation as nucleophilic center in the 1,2-addition across the metal-carbon double bond. This metal-ligand cooperativity can be applied in the catalytic transfer hydrogenation for the reduction of ketones. This concept opens new ways for the application of carbene complexes in catalysis.

  14. Ultrasonically Activated Diffusion Bonding for Fluidic Control Assembly

    DTIC Science & Technology

    1979-02-01

    commercially available vacuum bell jar. Provisions for elevated temperature operation included an induction heating coil surrounding the welding and...Ultrasonic bonding times of 2 to 4 seconds are orders of magnitude faster than thermally activated bonding and require no furnaces or high vacuum ...sonic spot welding system appropriately modified for use under high vacuum conditions, with a shortened reed member for containment within a

  15. Bent Bonds and Multiple Bonds.

    ERIC Educational Resources Information Center

    Robinson, Edward A.; Gillespie, Ronald J.

    1980-01-01

    Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)

  16. Porcelain laminate veneer restorations bonded with a three-liquid silane bonding agent and a dual-activated luting composite.

    PubMed

    Matsumura, Hideo; Aida, Yukiko; Ishikawa, Yumi; Tanoue, Naomi

    2006-12-01

    This clinical report describes the fabrication and bonding of porcelain laminate veneer restorations in a patient with anterior open spaces. Laminate veneer restorations made of feldspathic porcelain were etched with 5% hydrofluoric acid, rinsed under tap water, ultrasonically cleaned with methanol, and primed with a chemically activated three-liquid silane bonding agent (Clearfil Porcelain Bond). The enamel surfaces were etched with 40% phosphoric acid, rinsed with water, and primed with a two-liquid bonding agent (Clearfil New Bond) that contained a hydrophobic phosphate (10-methacryloyloxydecyl dihydrogen phosphate; MDP). The restorations were bonded with a dual-activated luting composite (Clapearl DC). The veneers have been functioning satisfactorily for an observation period of one year. Combined use of the Clearfil bonding agents and Clapearl DC luting composite is an alternative to conventional materials for seating porcelain laminate veneer restorations, although the system is inapplicable to dentin bonding.

  17. The unexpected mechanism of carbonyl hydrosilylation catalyzed by (Cp)(ArN[double bond, length as m-dash])Mo(H)(PMe(3)).

    PubMed

    Shirobokov, Oleg G; Gorelsky, Serge I; Simionescu, Razvan; Kuzmina, Lyudmila G; Nikonov, Georgii I

    2010-11-07

    Complex (Cp)(ArN[double bond, length as m-dash])Mo(H)(PMe(3)) (2, Ar = 2,6-diisopropylphenyl) catalyzes the hydrosilylation of carbonyls by an unexpected associative mechanism. Complex 2 also reacts with PhSiH(3) by a σ-bond metathesis mechanism to give the silyl derivative (Cp)(ArN[double bond, length as m-dash])Mo(SiH(2)Ph)(PMe(3)).

  18. A novel vitamin D analog with two double bonds in its side chain. A potent inducer of osteoblastic cell differentiation.

    PubMed

    Mahonen, A; Jääskeläinen, T; Mäenpää, P H

    1996-04-12

    EB 1089 (1 alpha,25-dihydroxy-22,24-diene-24,26,27-trihomovitamin D3) is a novel, synthetic analog of calcitriol, characterized by two extra double bonds in its side chain. It is less potent than calcitriol in its calcemic action, but is an order of magnitude more potent in its antiproliferative action. The aim of this study was to determine the ability of EB 1089 to induce the well-known biological effects of calcitriol in MG-63 human osteosarcoma cells (i.e. by inhibiting cell proliferation and by induction of differentiation). Both calcitriol and EB 1089 significantly decreased cell growth after 2 days in culture. At 5 days, however, Eb 1089 was more potent than the natural hormone in inhibiting the proliferation of MG-63 cells. Potent effects of EB 1089 on cell differentiation were also seen in the stimulation of alkaline phosphatase activity, cellular vitamin D receptor mRNA levels, and medium osteocalcin synthesis. EB 1089 was clearly more effective than calcitriol in stimulating alkaline phosphatase activity and osteocalcin synthesis. In gel shift assays, the binding of vitamin D receptor to the composite AP-1 plus vitamin-D responsive promoter region of the human osteocalcin gene after EB 1089 treatment was stronger and longer-lasting than after calcitriol treatment.

  19. THE PROTOTYPE ALUMINUM - CARBON SINGLE, DOUBLE, AND TRIPLE BONDS: Al - CH3, Al = CH2, AND Al. = CH

    SciTech Connect

    Fox, Douglas J.; Ray, Douglas; Rubesin, Philip C.; Schaefer III, Henry F.

    1980-06-01

    Nonempirical quantum mechanical methods have been used to investigate the A{ell}CH{sub 3}, A{ell}CH{sub 2}, and A{ell}CH molecules, which may be considered to represent the simplest aluminum-carbon single, double, and triple bonds. Equilibrium geometries and vibrational frequencies were determined at the self-consistent-field level of theory using double zeta basis set: A{ell}(11s7p/6s4p), C(9s5p/4s2p), H(4s/2s). The {sup 1}A{sub 1} ground state of A{ell}CH{sub 3} has a reasonably conventional A{ell}-C single bond of length 2.013 {angstrom}, compared to 1.96 {angstrom} in the known molecule A{ell}(CH{sub 3}){sub 3}. The CH equilibrium distance is 1.093 {angstrom} and the A{ell}-C-H angle 111.9{sup o}. The structures of three electron states each of A{ell}CH{sub 2} and A{ell}CH were similarly predicted, The interesting result is that the ground state of A{ell}CH{sub 2} does not contain an A{ell}-C double bond, and the ground state of A{ell}CH is not characterized by an A{ell}{triple_bond}C bond. The multiply-bonded electronic states do exist but they lie 21 kcal (A{ell}CH{sub 2}) and 86 kcal (A{ell}CH) above the respective ground states. The dissociation energies of the three ground electronic states are predicted to be 68 kcal (A{ell}CH{sub 3}), 77 kcal (A{ell}CH{sub 2}), and 88 kcal (A{ell}CH), Vibrational frequencies are also predicted for the three molecules, and their electronic structures are discussed with reference to Mulliken populations and dipole moments.

  20. Fabrication of extremely thermal-stable GaN template on Mo substrate using double bonding and step annealing process

    NASA Astrophysics Data System (ADS)

    Qing, Wang; Yang, Liu; Yongjian, Sun; Yuzhen, Tong; Guoyi, Zhang

    2016-08-01

    A new layer transfer technique which comprised double bonding and a step annealing process was utilized to transfer the GaN epilayer from a sapphire substrate to a Mo substrate. Combined with the application of the thermal-stable bonding medium, the resulting two-inch-diameter GaN template showed extremely good stability under high temperature and low stress state. Moreover, no cracks and winkles were observed. The transferred GaN template was suitable for homogeneous epitaxial, thus could be used for the direct fabrication of vertical LED chips as well as power electron devices. It has been confirmed that the double bonding and step annealing technique together with the thermal-stable bonding layer could significantly improve the bonding strength and stress relief, finally enhancing the thermal stability of the transferred GaN template. Project supported by the Guangdong Innovative Research Team Program (No. 2009010044), the China Postdoctoral Science Foundation (No. 2014M562233), the National Natural Science Foundation of Guangdong, China (No. 2015A030312011), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (No. IOSKL2014KF17).

  1. Double Pancake Versus Long Chalcogen-Chalcogen Bonds in Six-Membered C,N,S-Heterocycles.

    PubMed

    Haberhauer, Gebhard; Gleiter, Rolf

    2016-06-13

    The double "pancake" bonding in the dimers of the six-membered heterocycles 1,3-dithia-2,4,6-triazine (4) and 1,3-dithia-2,4-diazine (16) were investigated by means of high-level quantum chemical calculations (B3LYP and CCSD(T)). It was found that the S-S dimers, 20 a and 27, are not the most stable isomers, but the dimers showing short S-N (21 a) and S-C (25, 28) bonds. An investigation of the 5-phenyl-1,3-dithia-2,4,6-triazine (4 b) yields that the syn dimer with two S-S bonds (2.57 Å) is the most stable one. In this dimer, the phenyl groups are placed on top of each other. The additional dispersion energy of the phenyl rings causes a stabilization of the syn-S-S (C2v -like) isomer. As a result, two weak albeit relevant single S-S bonds (2.57 Å) are predicted. These findings contradict the recently published concept of double "pancake" bonding in the dimer 4 b2 .

  2. Transition-metal-catalyzed additions of C-H bonds to C-X (X = N, O) multiple bonds via C-H bond activation.

    PubMed

    Yan, Guobing; Wu, Xiangmei; Yang, Minghua

    2013-09-14

    Chemical transformations via catalytic C-H bond activation have been established as one of the most powerful tools in organic synthetic chemistry. Transition-metal-catalyzed addition reactions of C-H bonds to polar C-X (X = N, O) multiple bonds, such as aldehydes, ketones, imines, isocyanates, nitriles, isocyanides, carbon monoxide and carbon dioxide, have undergone a rapid development in recent years. In this review, recent advances in this active area have been highlighted and their mechanisms have been discussed.

  3. Selenium bond decreases ON resistance of light-activated switch

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Vitrified amorphous selenium bond decreases the ON resistance of a gallium arsenide-silicon light-activated, low-level switch. The switch is used under a pulse condition to prolong switch life and minimize errors due to heating, devitrification, and overdrawing.

  4. 77 FR 6814 - Agency Information Collection Activities: Bonded Warehouse Proprietor's Submission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Bonded Warehouse... the Bonded Warehouse Proprietor's Submission (CBP Form 300). This request for comment is being made... CBP is soliciting comments concerning the following information collection: Title: Bonded...

  5. Friedel-Crafts reaction of benzyl fluorides: selective activation of C-F bonds as enabled by hydrogen bonding.

    PubMed

    Champagne, Pier Alexandre; Benhassine, Yasmine; Desroches, Justine; Paquin, Jean-François

    2014-12-08

    A Friedel-Crafts benzylation of arenes with benzyl fluorides has been developed. The reaction produces 1,1-diaryl alkanes in good yield under mild conditions without the need for a transition metal or a strong Lewis acid. A mechanism involving activation of the C-F bond through hydrogen bonding is proposed. This mode of activation enables the selective reaction of benzylic C-F bonds in the presence of other benzylic leaving groups.

  6. Competitive Low Pressure Oxygen Plasma Interactions with Different= Carbon-Carbon Double Bonds

    NASA Astrophysics Data System (ADS)

    Patiño, P.; Sifontes, A.; Gambús, G.

    1999-10-01

    Recently we have shown advances from reactions of O(^3P) with both, l ong-chain hydrocarbons and refinery residuum. The oxidation products of t he process, a mixture of alcohols, epoxides and carbonyl compounds, might have potential properties as additives in formulating fuels. This work s hows the results of the interactions of an oxygen plasma with double bond s, both olefin and aromatic, in the same compound. The reactions have bee n carried out by making the plasma, created by a high voltage glow discha rge, reach the low vapor pressure surface of liquid 4-phenyl-1-butene. Th is (3 mL) was cooled down to -45 ^oC in a glass reactor, applied power was 24 W, at an oxygen pressure of 20 Pa. Products were analyzed by IR, N MR and mass spectroscopies. Conversions were studied as a function of the reaction time, this ranging from 5 to 120 minutes. At short times the O( ^3P) atoms produced in the discharge only reacted with the alkene fra ction of the hydrocarbon, 4-phenyl-1,2-epoxibutane (52%) and 4-phenyl-bu tanal (48%) being the products. Reactions on the benzene ring were obser ved from about 30 minutes on, the corresponding phenols having being prod uced at ratios ortho:para:meta :: 4:1:0.7. At 120 minutes, the ol efin have been completely oxidized and a low fraction of the non-equivale nt two methylene groups have reacted to produce alcohols and ketones.

  7. C-H bond activation by f-block complexes.

    PubMed

    Arnold, Polly L; McMullon, Max W; Rieb, Julia; Kühn, Fritz E

    2015-01-02

    Most homogeneous catalysis relies on the design of metal complexes to trap and convert substrates or small molecules to value-added products. Organometallic lanthanide compounds first gave a tantalizing glimpse of their potential for catalytic C-H bond transformations with the selective cleavage of one C-H bond in methane by bis(permethylcyclopentadienyl)lanthanide methyl [(η(5) -C5 Me5 )2 Ln(CH3 )] complexes some 25 years ago. Since then, numerous metal complexes from across the periodic table have been shown to selectively activate hydrocarbon C-H bonds, but the challenges of closing catalytic cycles still remain; many f-block complexes show great potential in this important area of chemistry.

  8. Transition Metals Catalyzed Element-Cyano Bonds Activations

    PubMed Central

    Wang, Rui; Falck, John R.

    2014-01-01

    Cyano group as a versatile functionalized intermediate has been explored for several decades, as it readily transfers to many useful functionalization groups such as amine, amide, acid, etc., which make it possess high popularization and use value in organic synthesis. Reactions involved with element-cyano bond cleavage can provide not only a new cyano group but also a freshly functionalized skeleton in one-pot, consequently making it of high importance. The highlights reviewed herein include H-CN, Si-CN, C-CN, B-CN, Sn-CN, Ge-CN, S-CN, Halo-CN, N-CN, and O-CN bonds cleavages and will summarize progress in such an important research area. This review article will focus on transition metal catalyzed reactions involving element-cyano bond activation. PMID:25558119

  9. Functionalization of the benzobicyclo[3.2.1] octadiene skeleton possessing one isolated double bond via photocatalytic oxygenation

    NASA Astrophysics Data System (ADS)

    Vuk, Dragana; Horváth, Ottó; Marinić, Željko; Škorić, Irena

    2016-03-01

    Photocatalytic oxygenation of three phenyl derivatives of a bicyclic skeleton with a free double bond 1a, 1b and 1c were carried out by utilizing a cationic and an anionic manganese(III) porphyrin irradiated in the visible range. While photocatalysis of 1a and 1b led to the formation of the corresponding hydroperoxy derivatives 2 and 3, respectively, (besides unidentified high-molecular-weight products) in the presence of the anionic Mn(III) porphyrin, the cationic photocatalyst proved to be less efficient and less selective with 1a. In the case of 1b, also with the cationic porphyrin, the corresponding hydroperoxy derivative (3) was the main product at a shorter reaction time (2 h), whereas a longer irradiation (4 h) led to the significant formation of a keto derivative (5) with a hydroperoxy substituent and a free double bond at positions deviating from those in the previous products (2 and 3). A dramatic change in the reactivity was observed for the methoxy derivative (1c). It gave only traces of identifiable products by using the anionic photocatalyst, while application of the cationic Mn(III) porphyrin resulted in a relatively efficient formation of an epoxy derivative (6) due to the reaction of the isolated double bond.

  10. Selective oxidation of the double bonds in the 4-phenyl-1,2,4-triazoline-3,5-dione diels-alder adduct of ergosterol acetate.

    PubMed

    Piatak, D M; Swenson, R P

    1984-01-01

    Methods for oxidations at the 6(7)- and 22(23)-double bonds in the phenyltriazoline adduct of ergosterol acetate (I) are described. KMnO4 and OsO4 were found to react with the 6(7)-double bond to yield the 6,7-glycol and osmate ester, respectively. Other reagents (I2/AgOAc, H2O2, m-chloroperbenzoic acid, HCO3H) formed either isomeric epoxides or glycols with the 22(23)-double bond, with the latter two reagents giving their products in quite high yields.

  11. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-04-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen.

  12. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds

    PubMed Central

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-01-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold–gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon–hydrogen bonds with molecular oxygen. PMID:25902034

  13. Transition-state metal aryl bond stability determines regioselectivity in palladium acetate mediated C-H bond activation of heteroarenes.

    PubMed

    Petit, Alban; Flygare, Josh; Miller, Alex T; Winkel, Gerrit; Ess, Daniel H

    2012-07-20

    Density functional calculations reveal that the stability of developing metal aryl bonds in Pd(II)-acetate C-H activation transition states determines regioselectivity in arene and heteroarene compounds. This kinetic-thermodynamic connection explains the general preference for activation of the strongest C-H bond and provides the possibility for regioselectivity prediction.

  14. Double-bridge bonding of aluminium and hydrogen in the crystal structure of gamma-AlH3.

    PubMed

    Yartys, Volodymyr A; Denys, Roman V; Maehlen, Jan Petter; Frommen, Christoph; Fichtner, Maximilian; Bulychev, Boris M; Emerich, Hermann

    2007-02-19

    Aluminum trihydride (alane) is one of the most promising among the prospective solid hydrogen-storage materials, with a high gravimetric and volumetric density of hydrogen. In the present work, the alane, crystallizing in the gamma-AlH3 polymorphic modification, was synthesized and then structurally characterized by means of synchrotron X-ray powder diffraction. This study revealed that gamma-AlH3 crystallizes with an orthorhombic unit cell (space group Pnnm, a = 5.3806(1) A, b = 7.3555(2) A, c = 5.77509(5) A). The crystal structure of gamma-AlH3 contains two types of AlH6 octahedra as the building blocks. The Al-H bond distances in the structure vary in the range of 1.66-1.79 A. A prominent feature of the crystal structure is the formation of the bifurcated double-bridge bonds, Al-2H-Al, in addition to the normal bridge bonds, Al-H-Al. This former feature has not been previously reported for Al-containing hydrides so far. The geometry of the double-bridge bond shows formation of short Al-Al (2.606 A) and Al-H (1.68-1.70 A) bonds compared to the Al-Al distances in Al metal (2.86 A) and Al-H distances for Al atoms involved in the formation of normal bridge bonds (1.769-1.784 A). The crystal structure of gamma-AlH3 contains large cavities between the AlH6 octahedra. As a consequence, the density is 11% less than for alpha-AlH3.

  15. Latex Clearing Protein—an Oxygenase Cleaving Poly(cis-1,4-Isoprene) Rubber at the cis Double Bonds

    PubMed Central

    Hiessl, Sebastian; Böse, Dietrich; Oetermann, Sylvia; Eggers, Jessica; Pietruszka, Jörg

    2014-01-01

    Gordonia polyisoprenivorans strain VH2, a potent rubber-degrading actinomycete, harbors two latex clearing proteins (Lcps), which are known to be essential for the microbial degradation of rubber. However, biochemical information on the exact role of this protein in the degradation of polyisoprene was lacking. In this study, the gene encoding Lcp1VH2 was heterologously expressed in strains of Escherichia coli, the corresponding protein was purified, and its role in rubber degradation was examined by measurement of oxygen consumption as well as by chromatographic and spectroscopic methods. It turned out that active Lcp1VH2 is a monomer and is responsible for the oxidative cleavage of poly(cis-1,4-isoprene) in synthetic as well as in natural rubber by the addition of oxygen (O2) to the cis double bonds. The resulting oligomers possess repetitive isoprene units with aldehyde (CHO-CH2—) and ketone (—CH2-CO-CH3) functional groups at the termini. Two fractions with average isoprene contents of 18 and 10, respectively, were isolated, thus indicating an endocleavage mechanism. The activity of Lcp1VH2 was determined by applying a polarographic assay. Alkenes, acyclic terpenes, or other rubber-like polymers, such as poly(cis-1,4-butadiene) or poly(trans-1,4-isoprene), are not oxidatively cleaved by Lcp1VH2. The pH and temperature optima of the enzyme are at pH 7 and 30°C, respectively. Furthermore, it was demonstrated that active Lcp1VH2 is a Cu(II)-containing oxygenase that exhibits a conserved domain of unknown function which cannot be detected in any other hitherto-characterized enzyme. The results presented here indicate that this domain might represent a new protein family of oxygenases. PMID:24928880

  16. Latex clearing protein-an oxygenase cleaving poly(cis-1,4-isoprene) rubber at the cis double bonds.

    PubMed

    Hiessl, Sebastian; Böse, Dietrich; Oetermann, Sylvia; Eggers, Jessica; Pietruszka, Jörg; Steinbüchel, Alexander

    2014-09-01

    Gordonia polyisoprenivorans strain VH2, a potent rubber-degrading actinomycete, harbors two latex clearing proteins (Lcps), which are known to be essential for the microbial degradation of rubber. However, biochemical information on the exact role of this protein in the degradation of polyisoprene was lacking. In this study, the gene encoding Lcp1VH2 was heterologously expressed in strains of Escherichia coli, the corresponding protein was purified, and its role in rubber degradation was examined by measurement of oxygen consumption as well as by chromatographic and spectroscopic methods. It turned out that active Lcp1VH2 is a monomer and is responsible for the oxidative cleavage of poly(cis-1,4-isoprene) in synthetic as well as in natural rubber by the addition of oxygen (O2) to the cis double bonds. The resulting oligomers possess repetitive isoprene units with aldehyde (CHO-CH2-) and ketone (-CH2-CO-CH3) functional groups at the termini. Two fractions with average isoprene contents of 18 and 10, respectively, were isolated, thus indicating an endocleavage mechanism. The activity of Lcp1VH2 was determined by applying a polarographic assay. Alkenes, acyclic terpenes, or other rubber-like polymers, such as poly(cis-1,4-butadiene) or poly(trans-1,4-isoprene), are not oxidatively cleaved by Lcp1VH2. The pH and temperature optima of the enzyme are at pH 7 and 30°C, respectively. Furthermore, it was demonstrated that active Lcp1VH2 is a Cu(II)-containing oxygenase that exhibits a conserved domain of unknown function which cannot be detected in any other hitherto-characterized enzyme. The results presented here indicate that this domain might represent a new protein family of oxygenases.

  17. Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry.

    PubMed

    Háková, Eva; Vrkoslav, Vladimír; Míková, Radka; Schwarzová-Pecková, Karolina; Bosáková, Zuzana; Cvačka, Josef

    2015-07-01

    A method for localizing double bonds in triacylglycerols using high-performance liquid chromatography-tandem mass spectrometry with atmospheric pressure chemical ionization (APCI) was developed. The technique was based on collision-induced dissociation or pulsed Q collision-induced dissociation of the C3H5N(+•) adducts ([M + 55](+•)) formed in the presence of acetonitrile in the APCI source. The spectra were investigated using a large series of standards obtained from commercial sources and prepared by randomization. The fragmentation spectra made it possible to determine (i) the total number of carbons and double bonds in the molecule, (ii) the number of carbons and double bonds in acyls, (iii) the acyl in the sn-2 position on the glycerol backbone, and (iv) the double-bond positions in acyls. The double-bond positions were determined based on two types of fragments (alpha and omega ions) formed by cleavages of C-C bonds vinylic to the original double bond. The composition of the acyls and their positions on glycerol were established from the masses and intensities of the ions formed by the elimination of fatty acids from the [M + 55](+•) precursor. The method was applied for the analysis of triacylglycerols in olive oil and vernix caseosa.

  18. Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles

    PubMed Central

    Chen, Chen; Weir, Michael D.; Cheng, Lei; Lin, Nancy; Lin-Gibson, Sheng; Chow, Laurence C.; Zhou, Xuedong; Xu, Hockin H. K.

    2015-01-01

    Objectives Recurrent caries at the margins is a primary reason for restoration failure. The objectives of this study were to develop bonding agent with the double benefits of antibacterial and remineralizing capabilities, to investigate the effects of NACP filler level and solution pH on Ca and P ion release from adhesive, and to examine the antibacterial and dentin bond properties. Methods Nanoparticles of amorphous calcium phosphate (NACP) and a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) were synthesized. Scotchbond Multi-Purpose (SBMP) primer and adhesive served as control. DMADDM was incorporated into primer and adhesive at 5% by mass. NACP was incorporated into adhesive at filler mass fractions of 10%, 20%, 30% and 40%. A dental plaque microcosm biofilm model was used to test the antibacterial bonding agents. Calcium (Ca) and phosphate (P) ion releases from the cured adhesive samples were measured vs. filler level and solution pH of 7, 5.5 and 4. Results Adding 5% DMADDM and 10–40% NACP into bonding agent, and water-aging for 28 days, did not affect dentin bond strength, compared to SBMP control at 1 day (p > 0.1). Adding DMADDM into bonding agent substantially decreased the biofilm metabolic activity and lactic acid production. Total microorganisms, total streptococci, and mutans streptococci were greatly reduced for bonding agents containing DMADDM. Increasing NACP filler level from 10% to 40% in adhesive increased the Ca and P ion release by an order of magnitude. Decreasing solution pH from 7 to 4 increased the ion release from adhesive by 6–10 folds. Significance Bonding agents containing antibacterial DMADDM and remineralizer NACP were formulated to have Ca and P ion release, which increased with NACP filler level from 10% to 40% in adhesive. NACP adhesive was “smart” and dramatically increased the ion release at cariogenic pH 4, when these ions would be most-needed to inhibit caries. Therefore, bonding agent

  19. Activation of C-H and B-H bonds through agostic bonding: an ELF/QTAIM insight.

    PubMed

    Zins, Emilie-Laure; Silvi, Bernard; Alikhani, M Esmaïl

    2015-04-14

    Agostic bonding is of paramount importance in C-H bond activation processes. The reactivity of the σ C-H bond thus activated will depend on the nature of the metallic center, the nature of the ligand involved in the interaction and co-ligands, as well as on geometric parameters. Because of their importance in organometallic chemistry, a qualitative classification of agostic bonding could be very much helpful. Herein we propose descriptors of the agostic character of bonding based on the electron localization function (ELF) and Quantum Theory of Atoms in Molecules (QTAIM) topological analysis. A set of 31 metallic complexes taken, or derived, from the literature was chosen to illustrate our methodology. First, some criteria should prove that an interaction between a metallic center and a σ X-H bond can indeed be described as "agostic" bonding. Then, the contribution of the metallic center in the protonated agostic basin, in the ELF topological description, may be used to evaluate the agostic character of bonding. A σ X-H bond is in agostic interaction with a metal center when the protonated X-H basin is a trisynaptic basin with a metal contribution strictly larger than the numerical uncertainty, i.e. 0.01 e. In addition, it was shown that the weakening of the electron density at the X-Hagostic bond critical point with respect to that of X-Hfree well correlates with the lengthening of the agostic X-H bond distance as well as with the shift of the vibrational frequency associated with the νX-H stretching mode. Furthermore, the use of a normalized parameter that takes into account the total population of the protonated basin, allows the comparison of the agostic character of bonding involved in different complexes.

  20. Dependence of bonding interactions in Layered Double Hydroxides on metal cation chemistry

    NASA Astrophysics Data System (ADS)

    Shamim, Mostofa; Dana, Kausik

    2016-12-01

    The evolution of various Infrared bands of Layered Double Hydroxides (LDH) with variable Zn:Al ratio was analyzed to correlate it with the changes in octahedral metal cation chemistry, interlayer carbonate anion and hydroxyl content of LDH. The synthesized phase-pure LDHs were crystallized as hexagonal 2H polytype with a Manasseite structure. The broad and asymmetric hydroxyl stretching region (2400-4000 cm-1) can be deconvoluted into four different bands. With increase in Zn2+:Al3+ metal ratio, the peak position of stretching frequencies of Al3+sbnd OH and carbonate-bridged hydroxyl (water) decrease almost linearly. Individual band's peak position and area under the curve have been successfully correlated with the carbonate and hydroxyl content of LDH. Due to lowering of symmetry of the carbonate anion, the IR-inactive peak νCsbnd O, symm at 1064 cm-1 becomes IR active. The peak position of metal-oxygen bands and carbonate bending modes are practically unaffected by the Zn2+:Al3+ ratio but the area under the individual M-O bands shows a direct correlation.

  1. Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions.

    PubMed

    Chen, Jianzhong; Green, Kari B; Nichols, Kelly K

    2015-08-01

    A series of different types of wax esters (represented by RCOOR') were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS(3) (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2](+), [RCO](+) and [RCO-H2O](+) that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: (1) [RCOOH2](+) for saturated wax esters, (2) [RCOOH2](+), [RCO](+) and [RCO-H2O](+) for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and (3) [RCOOH2](+) and [RCO](+) for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R'](+) and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2](+) ions for all types of wax esters and [R'-2H](+) ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions.

  2. Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions

    PubMed Central

    Chen, Jianzhong; Green, Kari B; Nichols, Kelly K

    2015-01-01

    A series of different types of wax esters (represented by RCOOR′) were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS3 (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2]+, [RCO]+ and [RCO – H2O]+ that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: 1) [RCOOH2]+ for saturated wax esters, 2) [RCOOH2]+, [RCO]+ and [RCO – H2O]+ for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and 3) [RCOOH2]+ and [RCO]+ for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R′]+ and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2]+ ions for all types of wax esters and [R′ – 2H]+ ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions. PMID:26178197

  3. 26 CFR 1.103(n)-2T - Private activity bond defined (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... activity bond” means any industrial development bond or student loan bond the interest on which is exempt... definition of the term “industrial development bond.” See A-17 of this § 1.103(n)-2T for the definition of..., Governmental Unit M issues industrial development bonds to provide an airport, as described in section...

  4. 26 CFR 1.103(n)-2T - Private activity bond defined (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... activity bond” means any industrial development bond or student loan bond the interest on which is exempt... definition of the term “industrial development bond.” See A-17 of this § 1.103(n)-2T for the definition of..., Governmental Unit M issues industrial development bonds to provide an airport, as described in section...

  5. Low-lying singlet states of carotenoids having 8-13 conjugated double bonds as determined by electronic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Nakamura, Ryosuke; Kanematsu, Yasuo; Koyama, Yasushi; Nagae, Hiroyoshi; Nishio, Tomohiro; Hashimoto, Hideki; Zhang, Jian-Ping

    2005-07-01

    Electronic absorption spectra were recorded at room temperature in solutions of carotenoids having different numbers of conjugated double bonds, n = 8-13, including a spheroidene derivatives, neurosporene, spheroidene, lycopene, anhydrorhodovibrin and spirilloxanthin. The vibronic states of 1Bu+(v=0-4), 2Ag-(v=0-3), 3Ag- (0) and 1Bu- (0) were clearly identified. The arrangement of the four electronic states determined by electronic absorption spectroscopy was identical to that determined by measurement of resonance Raman excitation profiles [K. Furuichi et al., Chem. Phys. Lett. 356 (2002) 547] for carotenoids in crystals.

  6. Double bond localization in minor homoallylic fatty acid methyl esters using acetonitrile chemical ionization tandem mass spectrometry.

    PubMed

    Michaud, Anthony L; Diau, Guan-Yeu; Abril, Reuben; Brenna, J Thomas

    2002-08-15

    Double bond position in natural fatty acids is critical to biochemical properties, however, common instrument-based methods cannot locate double bonds in fatty acid methyl esters (FAME), the predominant analysis form of fatty acids. A recently described mass spectrometry (MS) method for locating double bonds in FAME is reported here for the analysis of minor (<1%) components of real FAME mixtures derived from three natural sources; golden algae (Schizochytrium sp.), primate brain white matter, and transgenic mouse liver. Acetonitrile chemical ionization tandem MS was used to determine double bond positions in 39 FAME, most at concentrations well below 1% of all fatty acid methyl esters. FAME identified in golden algae are 14:1n-6, 14:3n-3, 16:1n-7, 16:2n-6, 16:3n-6, 16:3n-3, 16:4n-3, 18:2n-7, 18:3n-7, 18:3n-8, 18:4n-3, 18:4n-5, 20:3n-7, 20:4n-3, 20:4n-5, 20:4n-7, 20:5n-3, and 22:4n-9. Additional FAME identified in primate brain white matter are 20:1n-7, 20:1n-9, 20:2n-7, 20:2n-9, 22:1n-7, 22:1n-9, 22:1n-13, 22:2n-6, 22:2n-7, 22:2n-9, 22:3n-6, 22:3n-7, 22:3n-9, 22:4n-6, 24:1n-7, 24:1n-9, and 24:4n-6. Additional FAME identified in mouse liver are 26:5n-6, 26:6n-3, 28:5n-6, and 28:6n-3. The primate brain 22:3n-7 and algae 18:4n-5 are novel fatty acids. These results demonstrate the usefulness of the technique for analysis of real samples. Tables are presented to aid in interpretation of acetonitrile CIMS/MS spectra.

  7. ELECTRON DONOR ACCEPTOR DESCRIPTORS OF THE SINGLE AND DOUBLE BONDED SUBSTITUENT AND HETEROATOM INCORPORATION EFFECTS. A REVIEW.

    PubMed

    Mazurek, Andrzej

    2016-01-01

    The properties of the series of Electron Donor-Acceptor (EDA) descriptors of classical substituent effect (sEDA(I), pEDA(I)), double bonded substituent effect (sEDA(=), pEDA(=)), heteroatom incorporation effect in monocyclic systems (sEDA(II), pEDA(II)), and in ring-junction position (sEDA(III), pEDA(III)), are reviewed. The descriptors show the amount of electrons donated to or withdrawn from the σ-(sEDA) or π(pEDA) valence orbitals by the substituent or incorporant. The new descriptors are expected to enrich the potency of QSAR analyses in drug design and materials chemistry.

  8. Dynamic 1H-NMR study of unusually high barrier to rotation about the partial Csbnd N double bond in N,N-dimethyl carbamoyl 5-aryloxytetrazoles

    NASA Astrophysics Data System (ADS)

    Movahedifar, Fahimeh; Modarresi-Alam, Ali Reza; Kleinpeter, Erich; Schilde, Uwe

    2017-04-01

    The synthesis of new N,N-dimethyl carbamoyl 5-aryloxytetrazoles have been reported. Their dynamic 1H-NMR via rotation about Csbnd N bonds in moiety of urea group [a; CO-NMe2 and b; (2-tetrazolyl)N-CO rotations] in the solvents CDCl3 (223-333 K) and DMSO (298-363 K) is studied. Accordingly, the free energies of activation, obtained 16.5 and 16.9 kcal mol-1 respectively, attributed to the conformational isomerization about the Me2Nsbnd Cdbnd O bond (a rotation). Moreover, a and b barrier to rotations in 5-((4-methylphenoxy)-N,N-dimethyl-2H-tetrazole-2-carboxamide (P) also were computed at level of B3LYP using 6-311++G** basis set. The optimized geometry parameters are in good agreement with X-ray structure data. The computation of energy barrier for a and b was determined 16.9 and 2.5 kcal mol-1, respectively. The former is completely in agreement with the result obtained via dynamic NMR. X-ray structure analysis data demonstrate that just 2-acylated tetrazole was formed in the case of 5-(p-tolyloxy)-N,N-dimethyl-2H-tetrazole-2-carboxamide. X-ray data also revealed a planar trigonal orientation of the Me2N group which is coplanar to carbonyl group with the partial double-bond Csbnd N character. It also demonstrates the synperiplanar position of Cdbnd O group with tetrazolyl ring. On average, in solution the plane containing carbonyl bond is almost perpendicular to the plane of the tetrazolyl ring (because of steric effects as confirmed by B3LYP/6-311++G**) while the plane containing Me2N group is coplanar with carbonyl bond which is in contrast with similar urea derivatives and it demonstrates the unusually high rotational energy barrier of these compounds.

  9. Transition metal activation and functionalization of carbon-hydrogen bonds

    SciTech Connect

    Jones, W.D.

    1992-06-01

    We are investigating the fundamental thermodynamic and kinetic factors that influence carbon-hydrogen bond activation at homogeneous transition metal centers and the conversion of hydrocarbons into functionalized products of potential use to the chemical industry. Advances have been made in both understanding the interactions of hydrocarbons with metals and in the functionalization of hydrocarbons. We have found that RhCl(PR{sub 3}){sub 2}(CNR) complexes can catalyze the insertion of isonitriles into the C-H bonds or arenes upon photolysis. The mechanism of these reactions was found to proceed by way of initial phosphine dissociation, followed by C-H activation and isonitrile insertion. We have also examined reactions of a series of arenes with (C{sub 5}Me{sub 5})Rh(PMe{sub 3})PhH and begun to map out the kinetic and thermodynamic preferences for arene coordination. The effects of resonance, specifically the differences in the Hueckel energies of the bound vs free ligand, are now believed to fully control the C-H activation/{eta}{sup 2}-coordination equilibria. We have begun to examine the reactions of rhodium isonitrile pyrazolylborates for alkane and arene C-H bond activation. A new, labile, carbodiimide precursor has been developed for these studies. We have completed studies of the reactions of (C{sub 5}Me{sub 5})Rh(PMe{sub 3})H{sub 2} with D{sub 2} and PMe{sub 3} that indicate that both {eta}{sup 5} {yields} {eta}{sup 3} ring slippage and metal to ring hydride migration occur more facilely than thermal reductive elimination of H{sub 2}. We have examined the reactions of heterocycles with (C{sub 5}Me{sub 5})Rh(PMe{sub 3})PhH and found that pyrrole and furan undergo C-H or N-H activation. Thiophene, however, undergoes C-S bond oxidative addition, and the mechanism of activation has been shown to proceed through sulfur coordination prior to C-S insertion.

  10. Car-Parrinello Molecular Dynamics Simulations of Infrared Spectra of Crystalline Vitamin C with Analysis of Double Minimum Proton Potentials for Medium-Strong Hydrogen Bonds.

    PubMed

    Brela, Mateusz Z; Wójcik, Marek J; Boczar, Marek; Witek, Łukasz; Yasuda, Mitsuru; Ozaki, Yukihiro

    2015-06-25

    We studied proton dynamics of a hydrogen bonds of the crystalline l-ascorbic acid. Our approach was based on the Car-Parrinello molecular dynamics. The focal point of our study was simulation of the infrared spectra of l-ascorbic acid associated with the O-H stretching modes that are very sensitive to the strength of hydrogen bonding. In the l-ascorbic acid there are four kinds of hydrogen bonds. We calculated their spectra by using anharmonic approximation and the time course of the dipole moment function as obtained from the Car-Parrinello simulation. The quantization of the nuclear motion of the protons was made to perform detailed analysis of strength and properties of hydrogen bonds. We presented double minimum proton potentials with small value of barriers for medium-strong hydrogen bonds. We have also shown the difference character of medium-strong hydrogen bonds compared to weaker hydrogen bonds in the l-ascorbic acid.

  11. Double bond stereochemistry influences the susceptibility of short-chain isoprenoids and polyprenols to decomposition by thermo-oxidation.

    PubMed

    Molińska, Ewa; Klimczak, Urszula; Komaszyło, Joanna; Derewiaka, Dorota; Obiedziński, Mieczysław; Kania, Magdalena; Danikiewicz, Witold; Swiezewska, Ewa

    2015-04-01

    Isoprenoid alcohols are common constituents of living cells. They are usually assigned a role in the adaptation of the cell to environmental stimuli, and this process might give rise to their oxidation by reactive oxygen species. Moreover, cellular isoprenoids may also undergo various chemical modifications resulting from the physico-chemical treatment of the tissues, e.g., heating during food processing. Susceptibility of isoprenoid alcohols to heat treatment has not been studied in detail so far. In this study, isoprenoid alcohols differing in the number of isoprene units and geometry of the double bonds, β-citronellol, geraniol, nerol, farnesol, solanesol and Pren-9, were subjected to thermo-oxidation at 80 °C. Thermo-oxidation resulted in the decomposition of the tested short-chain isoprenoids as well as medium-chain polyprenols with simultaneous formation of oxidized derivatives, such as hydroperoxides, monoepoxides, diepoxides and aldehydes, and possible formation of oligomeric derivatives. Oxidation products were monitored by GC-FID, GC-MS, ESI-MS and spectrophotometric methods. Interestingly, nerol, a short-chain isoprenoid with a double bond in the cis (Z) configuration, was more oxidatively stable than its trans (E) isomer, geraniol. However, the opposite effect was observed for medium-chain polyprenols, since Pren-9 (di-trans-poly-cis-prenol) was more susceptible to thermo-oxidation than its all-trans isomer, solanesol. Taken together, these results experimentally confirm that both short- and long-chain polyisoprenoid alcohols are prone to thermo-oxidation.

  12. Chemical bonding and dynamic fluxionality of a B15(+) cluster: a nanoscale double-axle tank tread.

    PubMed

    Wang, Ying-Jin; You, Xue-Rui; Chen, Qiang; Feng, Lin-Yan; Wang, Kang; Ou, Ting; Zhao, Xiao-Yun; Zhai, Hua-Jin; Li, Si-Dian

    2016-06-21

    A planar, elongated B15(+) cationic cluster is shown to be structurally fluxional and functions as a nanoscale tank tread on the basis of electronic structure calculations, bonding analyses, and molecular dynamics simulations. The outer B11 peripheral ring behaves like a flexible chain gliding around an inner B4 rhombus core, almost freely at the temperature of 500 K. The rotational energy barrier is only 1.37 kcal mol(-1) (0.06 eV) at the PBE0/6-311+G* level, further refined to 1.66 kcal mol(-1) (0.07 eV) at the single-point CCSD(T)/6-311G*//CCSD/6-311G* level. Two soft vibrational modes of 166.3 and 258.3 cm(-1) are associated with the rotation, serving as double engines for the system. Bonding analysis suggests that the "island" electron clouds, both σ and π, between the peripheral ring and inner core flow and shift continuously during the intramolecular rotation, facilitating the dynamic fluxionality of the system with a small rotational barrier. The B15(+) cluster, roughly 0.6 nm in dimension, is the first double-axle nanoscale tank tread equipped with two engines, which expands the concepts of molecular wheels, Wankel motors, and molecular tanks.

  13. Theoretical in-Solution Conformational/Tautomeric Analyses for Chain Systems with Conjugated Double Bonds Involving Nitrogen(s)

    PubMed Central

    Nagy, Peter I.

    2015-01-01

    Conformational/tautomeric transformations for X=CH–CH=Y structures (X = CH2, O, NH and Y = NH) have been studied in the gas phase, in dichloromethane and in aqueous solutions. The paper is a continuation of a former study where s-cis/s-trans conformational equilibria were predicted for analogues. The s-trans conformation is preferred for the present molecules in the gas phase on the basis of its lowest internal free energy as calculated at the B97D/aug-cc-pvqz and CCSD(T)CBS (coupled-cluster singles and doubles with non-iterative triples extrapolated to the complete basis set) levels. Transition state barriers are of 29–36 kJ/mol for rotations about the central C–C bonds. In solution, an s-trans form is still favored on the basis of its considerably lower internal free energy compared with the s-cis forms as calculated by IEF-PCM (integral-equation formalism of the polarizable continuum dielectric solvent model) at the theoretical levels indicated. A tetrahydrate model in the supermolecule/continuum approach helped explore the 2solute-solvent hydrogen bond pattern. The calculated transition state barrier for rotation about the C–C bond decreased to 27 kJ/mol for the tetrahydrate. Considering explicit solvent models, relative solvation free energies were calculated by means of the free energy perturbation method through Monte Carlo simulations. These calculated values differ remarkably from those by the PCM approach in aqueous solution, nonetheless the same prevalent conformation was predicted by the two methods. Aqueous solution structure-characteristics were determined by Monte Carlo. Equilibration of conformers/tautomers through water-assisted double proton-relay is discussed. This mechanism is not viable, however, in non-protic solvents where the calculated potential of mean force curve does not predict remarkable solute dimerization and subsequent favorable orientation. PMID:25984602

  14. A density functional theory for association of fluid molecules with a functionalized surface: fluid-wall single and double bonding

    NASA Astrophysics Data System (ADS)

    Haghmoradi, Amin; Wang, Le; Chapman, Walter G.

    2017-02-01

    In this manuscript we extend Wertheim’s two-density formalism beyond its first order to model a system of fluid molecules with a single association site close to a planar hard wall with association sites on its surface in a density functional theory framework. The association sites of the fluid molecules are small enough that they can form only one bond, while the wall association sites are large enough to bond with more than one fluid molecule. The effects of temperature and of bulk fluid and wall site densities on the fluid density profile, extent of association, and competition between single and double bonding of fluid segments at the wall sites versus distance from the wall are presented. The theory predictions are compared with new Monte Carlo simulation results and they are in good agreement. The theory captures the surface coverage over wide ranges of temperature and bulk density by introducing the effect of steric hindrance in fluid association at a wall site.

  15. A theoretical view on CrO2+-mediated C-H bond activation in ethane

    NASA Astrophysics Data System (ADS)

    Tong, YongChun; Zhang, XiaoYong; Wang, QingYun; Xu, XinJian; Wang, YongCheng

    2015-06-01

    The gas-phase reaction of C-H bond activation in ethane by CrO2+ has been investigated using density functional theory (DFT) at the UB3LYP/6-311G(2d,p) level. Our results reveal that the activation process is actually a spin-forbidden reaction. The involved crossing point between the doublet and quartet potential energy surfaces (PES) has been discussed by two well-known methods, i.e., intrinsic reaction coordinate (IRC) approach for crossing point (CP) and Harvey's algorithm for minimum energy crossing point (MECP). The obtained single ( P1ISC = 2.48 × 10-3) and double ( P1ISC = 4.95 × 10-3) passes estimated at MECP show that the intersystem crossing (ISC) occurs with a little probability. The C-H bond activation processes should proceed to be endothermic by 73.16 kJ/mol on the doublet surface without any spin change.

  16. New surface-active comonomer for adhesive bonding.

    PubMed

    Bowen, R L; Bennett, P S; Groh, R J; Farahani, M; Eichmiller, F C

    1996-01-01

    Previous studies have indicated that chemical and physical characteristics of aromatic amines can be influenced by the nature of their substituents. The experimental question examined in the present study relates to the effects of replacing specific hydrogen atoms with methyl groups in a surface-active comonomer utilized in adhesive bonding protocols. N-2-propionic acid-N-3-(2-hydroxy-1-methacryloxy)propyl-3,5-dimethylaniline sodium salt (N35A) was synthesized by an addition reaction of glycidyl methacrylate with the sodium salt of N-reaction of glycidyl methacrylate with the sodium salt of N-(3,5-dimethylphenyl)alanine, which was formed by alkaline hydrolysis of ethyl-N-(3,5-dimethylphenyl)alanate that was prepared by condensation of ethyl-2-bromopropionate with 3,5-dimethylaniline. 1H and 13C NMR spectra and analysis by mass spectroscopy were consistent with N35A after it had been recrystallized from acetone. Color stability and adhesion-promoting capability of N35A were compared with those of N-2-acetic acid-N-3-(2-hydroxy-1-methacryloxy)propyl-4-methylanaline sodium salt (Na-NTG-GMA), the latter being widely used in commercial bonding formulations. Both N35A and Na-NTG-GMA polymerized within a few minutes at 23 degrees C when dissolved in aliquots from a stock solution containing benzene 85 wt%, ethanol 14 wt%, and benzoyl peroxide 1.0 wt%; but with each at 0.018 molal concentration, the N35A suspension was more color-stable than that of the Na-NTG-GMA. In the protocol used, shear bond strengths of a hybrid composite to human dentin with N35A were 30.2 MPa, SD = 7.5 MPa, and with Na-NTG-GMA, 29.7 MPa, SD = 11.8 MPa(n = 7 each; t test, p = 0.93).

  17. Chemically Non-Innocent Cyclic (Alkyl)(Amino)Carbenes: Ligand Rearrangement, C-H and C-F Bond Activation.

    PubMed

    Turner, Zoë R

    2016-08-01

    A cyclic (alkyl)(amino)carbene (CAAC) was found to undergo unprecedented rearrangements and transformations of its core structure in the presence of Group 1 and 2 metals. Although the carbene was also found to be prone to intramolecular C-H activation, it was competent for intermolecular activation of a variety of sp-, sp(2) -, and sp(3) -hybridized C-H bonds. Double C-F activation of hexafluorobenzene was also observed in this work. These processes all hold relevance to the role of these carbenes in catalysis, as well as to their use in the synthesis of new and unusual main group or transition metal complexes.

  18. A study on Zr-Ir multiple bonding active for C-H bond cleavage.

    PubMed

    Oishi, Masataka; Oshima, Masato; Suzuki, Hiroharu

    2014-07-07

    Zr-Ir hydrido complexes with ansa-(cyclopentadienyl)(amide) as the supporting ligand in the zirconium fragment, e.g., (L(1)ZrR)(Cp*Ir)(μ-H)3 [L(1) = Me2Si(η(5)-C5Me4)(N(t)Bu), R = Cl (5), Ph (7), Me (10), alkyl, and aryl] were designed, synthesized, and isolated as tractable early-late heterodinuclear complexes. Despite the presence of the three supporting hydride ligands, Zr-Ir distances in the crystal structures of 5, alkyl, and aryl complexes [2.74-2.76 Å] were slightly longer than the sum of the element radii of Zr and Ir [2.719 Å]. These hydrocarbyl complexes displayed the thermolytic C-H activation of a variety of aromatic compounds and several organometallic compounds. Also, the substrate scope and limitation in the Zr-Ir system were studied. The regiochemical outcomes during the C-H activation of pyridine derivatives and methoxyarenes suggested the in situ generation of a Lewis acidic active intermediate, i.e., (L(1)Zr)(Cp*IrH2) (III). The existence of III and relevant σ-complex intermediates {L(1)Zr(η(2)-R-H)}(Cp*IrH2) (IIR) (R = Me, Ph) in the ligand exchange was demonstrated by the direct isolation of a Et3PO-adduct of III (39b) from 7 and kinetic studies. The structure of the direct Zr-Ir bonds in IIPh, IIMe, III, and 39b were probed using computational studies. The unprecedented strong M-M' interactions in the early-late heterobimetallic (ELHB) complexes have been proposed herein.

  19. Biotransformation of the double bond in allyl glycidyl ether to an epoxide ring. Evidence from hemoglobin adducts in mice.

    PubMed

    Pérez, H L; Osterman-Golkar, S

    2000-02-15

    Allyl glycidyl ether (AGE) is used industrially in the production of various epoxy resins. The compound is mutagenic and evidence for carcinogenicity in mice and rats has been reported. A previous study in mice showed that AGE reacts directly, without metabolic activation, with N-terminal valine in hemoglobin to form adducts (AGEVal). Metabolism of AGE may lead to formation of diglycidyl ether (I) through epoxidation of the double bond or 1-allyloxy-2,3-dihydroxypropane (II) through hydrolysis of the epoxide ring. 2,3-Dihydroxypropyl glycidyl ether (III) may be formed either by hydrolysis of I or epoxidation of II. The main aim of the present study was to investigate if AGE is metabolized to the reactive epoxides I or III by analysis of adducts with hemoglobin. Nine male mice (C3H/Hej) were administered AGE dissolved in tricaprylin, 4 mg/mouse, by intraperitoneal (i.p.) injection. Eleven male mice were administered 4 mg/mouse of AGE dissolved in acetone, by skin application. Adducts of I or III with N-terminal valine, N-(2-hydroxy-3-(2,3-dihydroxy)propyloxy)propylvaline (diOHPrGEVal), were demonstrated in mice administered AGE by i.p. injection. The levels were in the range 1600-5600 pmol/g globin. The level of diOHPrGEVal in mice administered AGE by skin application (n = 5) was below the detection limit of the analytical method, 20 pmol/g globin. The level of AGEVal, analyzed in mice administered AGE by skin application (n = 6), was about 20 pmol/g globin (median value), as compared with 1600 pmol/g globin previously found in mice administered AGE by i.p. injection. Neither AGEVal nor diOHPrGEVal were detected in control animals. Both adducts were analyzed using a modified Edman method for derivatization and using gas chromatography/tandem mass spectrometry for detection. The hydroxyl groups of the Edman derivative of diOHPrGEVal were protected by acetylation.

  20. Construction of hybrid material with double chemical bond from functional bridge ligand: Molecular modification, lotus root-like micromorphology and strong luminescence

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Sui, Yu-Long

    2006-07-01

    Modifying benzoic acid with a cross-linking molecule (3-aminopropyl)triethoxysilane (abbreviated as APES), a fictional molecular bridge with double reactivity was achieved by the amidation reaction between them. Then the modified functional molecule, which behaving as a bridge, both coordinate with terbium ion through amide's oxygen atom and form the Si-O chemical bond in an in situ sol-gel process with matrix precursor (tetraethoxysilane, TEOS). As a result, a novel molecular hybrid material (Tb-BA-APES) with double chemical bond (Tb-O coordination bond and Si-O covalent bond) was constructed. The strong luminescence of Tb 3+ substantiates optimum energy couple and effective intramolecular energy transfer between the triplet state energy of modified ligand bridge and emissive energy level of Tb 3+. Especially SEM of the molecular hybrid material exhibits unexpected microlotus root-like pore morphology.

  1. [The content of individual fatty acids and numbers of double bonds, insulin, C-peptide and unesterified fatty acids in blood plasma in testing tolerance to glucose].

    PubMed

    Titov, V N; Sazhina, N N; Aripovskiĭ, A V; Evteeva, N M; Tkhagalizhokova, É M; Parkhimovich, R M

    2014-10-01

    The glucose tolerance test demonstrates that content of unesterified fatty acids in blood plasma decreases up to three times and the content of oleic and linoleic acids is more decreased in the pool of fatty acids lipids. Out of resistance to insulin, hormone secretion increases up to three times. The decreasing of level of individual fatty acids occurs in a larger extent. Under resistance to insulin secretion of insulin is increasing up to eight times. The decreasing of level of each fatty acid is less expressed. The effect of insulin reflects decreasing of content of double bonds in blood plasma. The number of double bonds characterizes the degree of unsaturation of fatty acids in lipids of blood plasma. The higher number of double bonds is in the pool of unesterified fatty acids the more active is the effect of insulin. The hyper-secretion of insulin is directly proportional to content of palmitic fatty acid in lipids of blood plasma on fasting. According the phylogenetic theory of general pathology, the effect of insulin on metabolism of glucose is mediated by fatty acids. The insulin is blocking lipolysis in insulin-depended subcutaneous adipocytes and decreases content of unesterified fatty acids in blood plasma. The insulin is depriving all cells of possibility to absorb unesterified fatty acids and "forces" them to absorb glucose increasing hereby number of GLUT4 on cell membrane. The resistance to insulin is manifested in high concentration of unesterfied fatty acids, hyperinsulinemia, hyperalbuminemia and increasing of concentration of C-reactive protein-monomer. The resistance to insulin is groundlessly referred to as a symptom of diabetes mellitus type II. The resistance to insulin is only a functional disorder lasting for years. It can be successfully arrested. The diabetes mellitus is developed against the background of resistance to insulin only after long-term hyper-secretion of insulin and under emaciation and death of β-cells. The diabetes

  2. A monotopic aluminum telluride with an Al=Te double bond stabilized by N-heterocyclic carbenes

    PubMed Central

    Franz, Daniel; Szilvási, Tibor; Irran, Elisabeth; Inoue, Shigeyoshi

    2015-01-01

    Aluminum chalcogenides are mostly encountered in the form of bulk aluminum oxides that are structurally diverse but typically consist of networks with high lattice energy in which the chalcogen atoms bridge the metal centres. This makes their molecular congeners difficult to synthesize because of a pronounced tendency for oligomerization. Here we describe the isolation of the monotopic aluminum chalcogenide (LDipN)AlTe(LEt)2 (LDip=1,3-(2,6-diisopropylphenyl)-imidazolin-2-imine, LEt=1,3-diethyl-4,5-dimethyl-imidazolin-2-ylidene). Unique features of (LDipN)AlTe(LEt)2 are the terminal position of the tellurium atom, the shortest aluminum–tellurium distance hitherto reported for a molecular complex and the highest bond order reported for an interaction between these elements, to the best of our knowledge. At elevated temperature (LDipN)AlTe(LEt)2 equilibrates with dimeric {(LDipN)AlTe(LEt)}2 in which the chalcogen atoms assume their common role as bridges between the metal centres. These findings demonstrate that (LDipN)AlTe(LEt)2 comprises the elusive Al=Te double bond in the form of an N-heterocyclic carbene-stabilized species. PMID:26612781

  3. Energy and structure of bonds in the interaction of organic anions with layered double hydroxide nanosheets: A molecular dynamics study

    PubMed Central

    Tsukanov, A.A.; Psakhie, S.G.

    2016-01-01

    The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered. PMID:26817816

  4. Energy and structure of bonds in the interaction of organic anions with layered double hydroxide nanosheets: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Tsukanov, A. A.; Psakhie, S. G.

    2016-01-01

    The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered.

  5. Carbon–carbon bond activation of cyclobutenones enabled by the addition of chiral organocatalyst to ketone

    PubMed Central

    Li, Bao-Sheng; Wang, Yuhuang; Jin, Zhichao; Zheng, Pengcheng; Ganguly, Rakesh; Chi, Yonggui Robin

    2015-01-01

    The activation of carbon–carbon (C–C) bonds is an effective strategy in building functional molecules. The C–C bond activation is typically accomplished via metal catalysis, with which high levels of enantioselectivity are difficult to achieve due to high reactivity of metal catalysts and the metal-bound intermediates. It remains largely unexplored to use organocatalysis for C–C bond activation. Here we describe an organocatalytic activation of C–C bonds through the addition of an NHC to a ketone moiety that initiates a C–C single bond cleavage as a key step to generate an NHC-bound intermediate for chemo- and stereo-selective reactions. This reaction constitutes an asymmetric functionalization of cyclobutenones using organocatalysts via a C–C bond activation process. Structurally diverse and multicyclic compounds could be obtained with high optical purities via an atom and redox economic process. PMID:25652912

  6. 75 FR 50772 - Agency Information Collection Activities: Importation Bond Structure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... Structure AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ] ACTION: 60-Day... concerning the: Importation Bond Structure. This request for comment is being made pursuant to the Paperwork...: Title: Importation Bond Structure. OMB Number: 1651-0050. Form Numbers: 301 and 5297. Abstract:...

  7. 78 FR 75576 - Agency Information Collection Activities: Importation Bond Structure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... Structure AGENCY: U.S. Customs and Border Protection (CBP), Department of Homeland Security. ACTION: 60-day... Importation Bond Structure. This request for comment is being made pursuant to the Paperwork Reduction Act of... Structure. OMB Number: 1651-0050. Form Number: CBP Forms 301 and 5297. Abstract: Bonds are used to...

  8. Stability of Criegee intermediates formed by ozonolysis of different double bonds.

    PubMed

    Kalinowski, Jaroslaw; Heinonen, Petri; Kilpeläinen, Ilkka; Räsänen, Markku; Gerber, R Benny

    2015-03-19

    The formation of Criegee intermediates by ozonolysis of different species containing C═N and C═P bonds is studied computationally. Electronic structure calculations are carried out for the energetics of ozonolysis, and the lifetime of the Criegee intermediate formed is computed by transition state theory. All calculations are carried out for formation of CH2OO, the simplest Criegee intermediate. Extremely large differences are found for the lifetime of CH2OO depending on the specific C═N, C═P, and C═C precursor, due to the great variations in the exoergicity of the ozonolysis. The largest lifetimes of CH2OO are found to be up to a millisecond range for a Schiff base precursor, being orders of magnitude greater than for C═C and C═P precursors at the same conditions. The results provide insights into the role of the precursor in determining the stability of the Criegee species formed and suggest an approach for preparing Criegee intermediates of relatively long lifetimes.

  9. Emerging concepts of laser-activated nanoparticles for tissue bonding

    NASA Astrophysics Data System (ADS)

    Matteini, Paolo; Ratto, Fulvio; Rossi, Francesca; Pini, Roberto

    2012-01-01

    We report recent achievements and future perspectives of minimally invasive bonding of biological tissues triggered by laser light. In particular, we review new advancements in the biomedical exploitation of near-infrared absorbing gold nanoparticles as an original solution for the photothermal closure of surgical incisions. Advanced concepts of laser tissue bonding involving the application of hybrid nanocomposites obtained by inclusion of nanochromophores into biopolymer scaffolds are also introduced. The perspectives of tissue bonding are discussed in the following aspects: (1) tissue bonding with highly-stabilized nanochromophores, (2) enhanced tissue bonding with patterned nanocomposites, (3) real-time monitoring of temperature distributions, (4) tracking of tissue regeneration based on the optical resonances of gold nanoparticles.

  10. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    SciTech Connect

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has

  11. Reactivity of mononuclear alkylperoxo copper(II) complex. O-O bond cleavage and C-H bond activation.

    PubMed

    Kunishita, Atsushi; Ishimaru, Hirohito; Nakashima, Satoru; Ogura, Takashi; Itoh, Shinobu

    2008-04-02

    A detailed reactivity study has been carried out for the first time on a new mononuclear alkylperoxo copper(II) complex, which is generated by the reaction of copper(II) complex supported by the bis(pyridylmethyl)amine tridentate ligand containing a phenyl group at the 6-position of the pyridine donor groups and cumene hydroperoxide (CmOOH) in CH3CN. The cumylperoxo copper(II) complex thus obtained has been found to undergo homolytic cleavage of the O-O bond and induce C-H bond activation of exogenous substrates, providing important insights into the catalytic mechanism of copper monooxygenases.

  12. Copper-catalyzed double C-S bonds formation via different paths: synthesis of benzothiazoles from N-benzyl-2-iodoaniline and potassium sulfide.

    PubMed

    Zhang, Xiaoyun; Zeng, Weilan; Yang, Yuan; Huang, Hui; Liang, Yun

    2014-02-07

    A new, highly efficient procedure for the synthesis of benzothiazoles from easily available N-benzyl-2-iodoaniline and potassium sulfide has been developed. The results show copper-catalyzed double C-S bond formation via a traditional cross-coupling reaction and an oxidative cross-coupling reaction.

  13. Simple but Stronger UO, Double but Weaker UNMe Bonds: The Tale Told by Cp2UO and Cp2UNR

    SciTech Connect

    LPCNO, CNRS-UPS-INSA, INSA Toulouse; Institut Charles Gerhardt, CNRS, Universite Montpellier; Laboratoire de Chimie et Physique Quantiques, CNRS, IRSAMC, Universite Paul Sabatier; Andersen, Richard; Barros, Noemi; Maynau, Daniel; Maron, Laurent; Eisenstein, Odile; Zi, Guofu; Andersen, Richard

    2007-06-27

    The free energies of reaction and the activation energies are calculated, with DFT (B3PW91) and small RECP (relativistic core potential) for uranium, for the reaction of Cp2UNMe and Cp2UO with MeCCMe and H3Si-Cl that yields the corresponding addition products. CAS(2,7) and DFT calculations on Cp2UO and Cp2UNMe give similar results, which validates the use of DFT calculations in these cases. The calculated results mirror the experimental reaction of [1,2,4-(CMe3)3C5H2]2UNMe with dimethylacetylene and [1,2,4-(CMe3)3C5H2]2UO with Me3SiCl. The net reactions are controlled by the change in free energy between the products and reactants, not by the activation energies, and therefore by the nature of the UO and UNMe bonds in the initial and final states. A NBO analysis indicates that the U-O interaction in Cp2UO is composed of a single U-O bond with three lone pairs of electrons localized on oxygen, leading to a polarized U-O fragment. In contrast, the U-NMe interaction in Cp2UNMe is composed of a and component and a lone pairof electrons localized on the nitrogen, resulting in a less polarized UNMe fragment, in accord with the lower electronegativity of NMe relative to O. The strongly polarized U(+)-O(-) bond is calculated to be about 70 kcal mol-1 stronger than the less polarized U=NMe bond.

  14. Solvent effects on the a sub g C double bond C stretching mode in the 2 sup 1 A sub g sup minus excited state of. beta. -carotene and two derivatives: Picosecond time-resolved resonance Raman spectroscopy

    SciTech Connect

    Noguchi, T.; Hayashi, H. Univ. of Tokyo ); Tasumi, M. ); Atkinson, G.H. Hebrew Univ., Jerusalem )

    1991-04-18

    Picosecond time-resolved resonance Raman spectra in the C{double bond}C stretching region are presented for {beta}-carotene and two of its derivatives, {beta}-apo-8{prime}-carotenal and ethyl {beta}-apo-8{prime}-carotenoate. The solvent effects on the Franck-Condon-active a{sub g} C{double bond}C stretching mode in the {sup 1}A{sub g}{sup {minus}} ground state (S{sub 0}) and the 2{sup 1}A{sub g}{sup {minus}} excited state (S{sub 1}) of each carotenoid are described. The C{double bond}C stretching frequencies in S{sub 1} are affected by the solvent and show a correlation with the absorption maxima of the S{sub 2} ({sup 1}B{sub u}{sup +}) {l arrow} S{sub 0} transition, while those in S{sub 0} are not significantly affected. These results are interpreted in terms of the vibronic coupling among the S{sub 0}, S{sub 1}, and S{sub 2} electronic states, the solvent effect on the energy of the S{sub 1} and S{sub 2} states, and the structures of carotenoid molecules.

  15. Radical formation in the FMN-photosensitized reactions of unsaturated fatty acids bearing double bonds at different positions.

    PubMed

    Nishihama, Nao; Iwahashi, Hideo

    2016-08-15

    Although the reaction mechanisms through which flavin mononucleotide works as an endogenous photosensitizer have been investigated (Baier et al., 2006; Edwards and Silva, 2001; Pajares et al., 2001; Criado et al., 2003; Massad et al., 2008) [23-27], few studies have been performed for the reactions of flavin mononucleotide with unsaturated fatty acids. To examine the reactions of flavin mononucleotide with unsaturated fatty acids bearing a double bond at different positions, an electron spin resonance, a high performance liquid chromatography-electron spin resonance and a high performance liquid chromatography-electron spin resonance-mass spectrometry were employed. The control reaction mixtures contained 25μmolL(-1) of flavin mononucleotide, 1.0mmolL(-1) of FeSO4(NH4)2SO4, 10mmolL(-1) of cholic acid, 30mmolL(-1) of phosphate buffer (pH 7.4) and 0.1molL(-1) of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone in deuterium oxide. In addition, it also contained 4.3mmolL(-1) of one of the following: (z)-11-octadecenoic acid, (z)-6-octadecenoic acid, (z)-9-octadecenoic acid or (z, z)-9, 12-octadecadienoic acid. The control reaction mixtures without FeSO4(NH4)2SO4 and α-(4-pyridyl-1-oxide)-N-tert-butylnitrone were exposed to the visible light at 436nm (7.8Jcm(-2)). After the irradiation, α-(4-pyridyl-1-oxide)-N-tert-butylnitrone was added. The reactions started from adding FeSO4(NH4)2SO4 and performed at 25°C for 1min. Electron spin resonance measurements of the control reaction mixtures showed prominent signals (α(N)=1.58mT and α(Hβ)=0.26mT). High performance liquid chromatography-electron spin resonance analyses of the control reaction mixtures showed prominent peaks at the retention times of 31.1min {(z)-6-octadecenoic acid}, 39.6min {(z)-9-octadecenoic acid}, 44.9min {(z)-11-octadecenoic acid} and 40.2min {(z, z)-9, 12-octadecadienoic acid}. High performance liquid chromatography-electron spin resonance-mass analyses of the control reaction mixtures showed that 4

  16. A method of coupling the Paternò-Büchi reaction with direct infusion ESI-MS/MS for locating the C[double bond, length as m-dash]C bond in glycerophospholipids.

    PubMed

    Stinson, Craig A; Xia, Yu

    2016-06-21

    Tandem mass spectrometry (MS/MS) coupled with soft ionization is established as an essential platform for lipid analysis; however, determining high order structural information, such as the carbon-carbon double bond (C[double bond, length as m-dash]C) location, remains challenging. Recently, our group demonstrated a method for sensitive and confident lipid C[double bond, length as m-dash]C location determination by coupling online the Paternò-Büchi (PB) reaction with nanoelectrospray ionization (nanoESI) and MS/MS. Herein, we aimed to expand the scope of the PB reaction for lipid analysis by enabling the reaction with infusion ESI-MS/MS at much higher flow rates than demonstrated in the nanoESI setup (∼20 nL min(-1)). In the new design, the PB reaction was effected in a fused silica capillary solution transfer line, which also served as a microflow UV reactor, prior to ESI. This setup allowed PB reaction optimization and kinetics studies. Under optimized conditions, a maximum of 50% PB reaction yield could be achieved for a standard glycerophosphocholine (PC) within 6 s of UV exposure over a wide flow rate range (0.1-10 μL min(-1)). A solvent composition of 7 : 3 acetone : H2O (with 1% acid or base modifier) allowed the highest PB yields and good lipid ionization, while lower yields were obtained with an addition of a variety of organic solvents. Radical induced lipid peroxidation was identified to induce undesirable side reactions, which could be effectively suppressed by eliminating trace oxygen in the solution via N2 purge. Finally, the utility of coupling the PB reaction with infusion ESI-MS/MS was demonstrated by analyzing a yeast polar lipid extract where C[double bond, length as m-dash]C bond locations were revealed for 35 glycerophospholipids (GPs).

  17. The Stereoselective Formation of Bicyclic Enamines with Bridgehead Unsaturation via Tandem C-H Bond Activation/Alkenylation/Electrocyclization

    SciTech Connect

    Ellman, Jonathan A.; Yotphan, Sirilata; Bergman, Robert

    2007-12-10

    Rhodium-catalyzed intermolecular C-H activation of {alpha}, {beta}-unsaturated imines in the presence of alkynes leads to a tandem process in which coupling to the alkyne occurs at the {beta}-C-H bond of the imine, followed by electrocyclization of the resulting azatriene intermediates to give dihydropyridines (eq 1). Consideration of the intramolecular version of this overall transformation (Scheme 1) raises interesting regiochemical issues. For example in a compound such as 1, where the nitrogen and alkyne are connected by a 4-carbon tether, the presumed first-formed hydrido(vinyl)rhodium function can add to the triple bond in a 1,2-fashion, producing complex 2 with a new endocyclic double bond. Alternatively, addition might occur in a 2,1-fashion, leading to product 4 with an exocyclic double bond. We now wish to report that this intramolecular cyclization occurs smoothly at 100 C, and the exocyclic double bond route is exclusively followed. Remarkably, products such as 4 do not resist further cyclization. Even though both the transition state for this process and the resulting product are presumably strained, the overall transformation leads to good yields of unusual bridgehead doubly-bonded enamines such as 5. The unique chemistry of conjugated enamine 5 is consistent with the increased strain of this molecule as well as with inhibited conjugation between the nitrogen lone pair and the adjacent double bond (vida infra). We began our investigation into the C-H activation/cyclization of alkyne-tethered imine 1 by extensive screening of transition metal catalysts for this process. Rhodium-based catalysts were found to be the most efficient (Table 1), leading exclusively to the bridgehead dienamine; none of the catalysts that were employed in the screening led to quinolizidine 3 or to the product of intramolecular Diels-Alder reaction. The optimized reaction conditions employ the electron-rich monophosphine ligand (p-NMe{sub 2})PhPEt{sub 2} in 1:1 ratio relative

  18. Female Adolescents' Delinquent Activity: The Intersection of Bonds to Parents and Reputation Enhancement

    ERIC Educational Resources Information Center

    Kerpelman, Jennifer L.; Smith-Adcock, Sondra

    2005-01-01

    According to the reputation enhancement theory, social bonds influence adolescents' delinquent activity indirectly through the reputations they select. Findings from the current study of a school-based sample of female adolescents indicate that bonds to parents affect reputation enhancement beliefs, which, in turn, predict delinquent activity.…

  19. 26 CFR 1.103(n)-3T - Private activity bond limit (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Private activity bond limit (temporary). 1.103(n)-3T Section 1.103(n)-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY....103(n)-3T Private activity bond limit (temporary). Q-1: What is the “State ceiling”? A-1: In...

  20. Making Fe(BPBP)-catalyzed C-H and C[double bond, length as m-dash]C oxidations more affordable.

    PubMed

    Yazerski, Vital A; Spannring, Peter; Gatineau, David; Woerde, Charlotte H M; Wieclawska, Sara M; Lutz, Martin; Kleijn, Henk; Gebbink, Robertus J M Klein

    2014-04-07

    The limited availability of catalytic reaction components may represent a major hurdle for the practical application of many catalytic procedures in organic synthesis. In this work, we demonstrate that the mixture of isomeric iron complexes [Fe(OTf)2(mix-BPBP)] (mix-1), composed of Λ-α-[Fe(OTf)2(S,S-BPBP)] (S,S-1), Δ-α-[Fe(OTf)2(R,R-BPBP)] (R,R-1) and Δ/Λ-β-[Fe(OTf)2(R,S-BPBP)] (R,S-1), is a practical catalyst for the preparative oxidation of various aliphatic compounds including model hydrocarbons and optically pure natural products using hydrogen peroxide as an oxidant. Among the species present in mix-1, S,S-1 and R,R-1 are catalytically active, act independently and represent ca. 75% of mix-1. The remaining 25% of mix-1 is represented by mesomeric R,S-1 which nominally plays a spectator role in both C-H and C[double bond, length as m-dash]C bond oxidation reactions. Overall, this mixture of iron complexes displays the same catalytic profile as its enantiopure components that have been previously used separately in sp(3) C-H oxidations. In contrast to them, mix-1 is readily available on a multi-gram scale via two high yielding steps from crude dl/meso-2,2'-bipyrrolidine. Next to its use in C-H oxidation, mix-1 is active in chemospecific epoxidation reactions, which has allowed us to develop a practical catalytic protocol for the synthesis of epoxides.

  1. Calculation of activation energies for hydrogen-atom abstractions by radicals containing carbon triple bonds

    NASA Technical Reports Server (NTRS)

    Brown, R. L.; Laufer, A. H.

    1981-01-01

    Activation energies are calculated by the bond-energy-bond-order (BEBO) and the bond-strength-bond-length (BSBL) methods for the reactions of C2H radicals with H2, CH4, and C2H6 and for the reactions of CN radicals with H2 and CH4. The BSBL technique accurately predicts the activation energies for these reactions while the BEBO method yields energies averaging 9 kcal higher than those observed. A possible reason for the disagreement is considered.

  2. Ribosomal crystallography: peptide bond formation, chaperone assistance and antibiotics activity.

    PubMed

    Yonath, Ada

    2005-08-31

    The peptidyl transferase center (PTC) is located in a protein free environment, thus confirming that the ribosome is a ribozyme. This arched void has dimensions suitable for accommodating the 3' ends of the A-and the P-site tRNAs, and is situated within a universal sizable symmetry-related region that connects all ribosomal functional centers involved in amino-acid polymerization. The linkage between the elaborate PTC architecture and the A-site tRNA position revealed that the A- to P-site passage of the tRNA 3' end is performed by a rotatory motion, which leads to stereochemistry suitable for peptide bond formation and for substrate mediated catalysis, thus suggesting that the PTC evolved by gene-fusion. Adjacent to the PTC is the entrance of the protein exit tunnel, shown to play active roles in sequence-specific gating of nascent chains and in responding to cellular signals. This tunnel also provides a site that may be exploited for local co-translational folding and seems to assist in nascent chain trafficking into the hydrophobic space formed by the first bacterial chaperone, the trigger factor. Many antibiotics target ribosomes. Although the ribosome is highly conserved, subtle sequence and/or conformational variations enable drug selectivity, thus facilitating clinical usage. Comparisons of high-resolution structures of complexes of antibiotics bound to ribosomes from eubacteria resembling pathogens, to an archaeon that shares properties with eukaryotes and to its mutant that allows antibiotics binding, demonstrated the unambiguous difference between mere binding and therapeutical effectiveness. The observed variability in antibiotics inhibitory modes, accompanied by the elucidation of the structural basis to antibiotics mechanism justifies expectations for structural based improved properties of existing compounds as well as for the development of novel drugs.

  3. Novel Odd-Chain Fatty Acids with a Terminal Double Bond in Ovaries of the Limpet Cellana toreuma.

    PubMed

    Kawashima, Hideki; Ohnishi, Masao

    2017-04-01

    Our previous study characterized highly diverse dienoic fatty acids (FA), in particular an uncommon non-methylene-interrupted (NMI) FA, in the ovaries of the Japanese limpet Cellana toreuma belonging to the archaeogastropods, but many minor chemically unidentified FA remain. In this study, among previously unidentified FA (less than 0.1% of total FA), four novel NMI FA with a terminal double bond [7,18-nonadecadienoic (19:2Δ7,18), 11,18-nonadecadienoic (19:2Δ11,18), 7,20-heneicosadienoic (21:2Δ7,20), and 11,20-heneicosadienoic (21:2Δ11,20) acids] were found, along with known 14-pentadecenoic (15:1Δ14), 16-heptadecenoic (17:1Δ16), and 9,18-nonadecadienoic (19:2Δ9,18) acids, based on capillary GC-MS of their methyl esters, 3-pyridylcarbinol derivatives, and argentation thin-layer chromatography. From our findings, possible biosynthetic pathways for the novel FA are discussed.

  4. Aborted double bicycle-pedal isomerization with hydrogen bond breaking is the primary event of bacteriorhodopsin proton pumping.

    PubMed

    Altoè, Piero; Cembran, Alessandro; Olivucci, Massimo; Garavelli, Marco

    2010-11-23

    Quantum mechanics/molecular mechanics calculations based on ab initio multiconfigurational second order perturbation theory are employed to construct a computer model of Bacteriorhodopsin that reproduces the observed static and transient electronic spectra, the dipole moment changes, and the energy stored in the photocycle intermediate K. The computed reaction coordinate indicates that the isomerization of the retinal chromophore occurs via a complex motion accounting for three distinct regimes: (i) production of the excited state intermediate I, (ii) evolution of I toward a conical intersection between the excited state and the ground state, and (iii) formation of K. We show that, during stage ii, a space-saving mechanism dominated by an asynchronous double bicycle-pedal deformation of the C10═C11─C12═C13─C14═N moiety of the chromophore dominates the isomerization. On this same stage a N─H/water hydrogen bond is weakened and initiates a breaking process that is completed during stage iii.

  5. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    PubMed Central

    Ilg, Andrea; Bruno, Mark; Beyer, Peter; Al-Babili, Salim

    2014-01-01

    The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. PMID:25057464

  6. Surface-Controlled Mono/Diselective ortho C-H Bond Activation.

    PubMed

    Li, Qing; Yang, Biao; Lin, Haiping; Aghdassi, Nabi; Miao, Kangjian; Zhang, Junjie; Zhang, Haiming; Li, Youyong; Duhm, Steffen; Fan, Jian; Chi, Lifeng

    2016-03-02

    One of the most charming and challenging topics in organic chemistry is the selective C-H bond activation. The difficulty arises not only from the relatively large bond-dissociation enthalpy, but also from the poor reaction selectivity. In this work, Au(111) and Ag(111) surfaces were used to address ortho C-H functionalization and ortho-ortho couplings of phenol derivatives. More importantly, the competition between dehydrogenation and deoxygenation drove the diversity of reaction pathways of phenols on surfaces, that is, diselective ortho C-H bond activation on Au(111) surfaces and monoselective ortho C-H bond activation on Ag(111) surfaces. The mechanism of this unprecedented phenomenon was extensively explored by scanning tunneling microscopy, density function theory, and X-ray photoelectron spectroscopy. Our findings provide new pathways for surface-assisted organic synthesis via the mono/diselective C-H bond activation.

  7. Rhodium mediated bond activation: from synthesis to catalysis

    SciTech Connect

    Ho, Hung-An

    2012-01-01

    Recently, our lab has developed monoanionic tridentate ligand, ToR, showing the corresponding coordination chemistry and catalyst reactivity of magnesium, zirconium, zinc and iridium complexes. This thesis details synthetic chemistry, structural study and catalytic reactivity of the ToR-supported rhodium compounds. Tl[ToR] has been proved to be a superior ligand transfer agent for synthesizing rhodium complexes. The salt metathesis route of Tl[ToM] with [Rh(μ-Cl)(CO)]2 and [Rh(μ- Cl)(COE)]2 gives ToMRh(CO)2 (2.2) and ToMRhH(β3-C8H13) (3.1) respectively while Tl[ToM] with [Rh(μ-Cl)(CO)]2 affords ToPRh(CO)2 (2.3). 2.2 reacts with both strong and weak electrophiles, resulting in the oxazoline N-attacked and the metal center-attacked compounds correspondingly. Using one of the metal center-attacked electrophiles, 2.3 was demonstrated to give high diastereoselectivity. Parallel to COE allylic C-H activation complex 3.1, the propene and allylbenzene allylic C-H activation products have also been synthesized. The subsequent functionalization attempts have been examined by treating with Brønsted acids, Lewis acids, electrophiles, nucleophiles, 1,3-dipolar reagents and reagents containing multiple bonds able to be inserted. Various related complexes have been obtained under these conditions, in which one of the azide insertion compounds reductively eliminates to give an allylic functionalization product stoichiometrically. 3.1 reacts with various primary alcohols to give the decarbonylation dihydride complex ToMRh(H)2CO (4.1). 4.1 shows catalytic reactivity for primary alcohol decarbonylation under a photolytic condition. Meanwhile, 2.2 has been found to be more reactive than 4.1 for catalytic alcohol decarbonylation under the same condition. Various complexes and primary

  8. Activation of C-H bond in methane by Pd atom from the bonding evolution theory perspective.

    PubMed

    Nizovtsev, Anton S

    2013-08-15

    We report detailed study focused on the electron density redistribution during the simple oxidative addition reaction being the crucial stage of various catalytic processes. The bonding evolution theory based on the electron localization function and Thom's catastrophe theory shows that activation of methane's C-H bond by Pd atom consist of six elementary steps. The important feature revealed is the pronounced reorganization of Pd's outer core maxima corresponding to N-shell electrons of metal. Electronic rearrangements identified in this model reaction are likely to be the case in the more complex reactions of the same type involving transition metal compounds and, in principle, can be observed by modern ultrafast spectroscopy and diffraction techniques.

  9. Phosphate-intercalated Ca-Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate

    SciTech Connect

    Woo, Myong A.; Woo Kim, Tae; Paek, Mi-Jeong; Ha, Hyung-Wook; Choy, Jin-Ho; Hwang, Seong-Ju

    2011-01-15

    The nitrate-form of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) was synthesized via co-precipitation method, and its phosphate-intercalates were prepared by ion-exchange reaction. According to X-ray diffraction analysis, the Ca-Fe-LDH-NO{sub 3}{sup -} compound and its H{sub 2}PO{sub 4}{sup -}-intercalate showed hexagonal layered structures, whereas the ion-exchange reaction with HPO{sub 4}{sup 2-} caused a frustration of the layer ordering of LDH. Fe K-edge X-ray absorption spectroscopy clearly demonstrated that the Ca-Fe-LDH lattice with trivalent iron ions was well-maintained after the ion-exchange with HPO{sub 4}{sup 2-} and H{sub 2}PO{sub 4}{sup -}. Under acidic conditions, phosphate ions were slowly released from the Ca-Fe-LDH lattice and the simultaneous release of hydroxide caused the neutralization of acidic media. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. This study strongly suggested that Ca-Fe-LDH is applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil. -- Graphical abstract: We synthesized phosphate-intercalated Ca-Fe-LDH materials that can act as bifunctional inorganic vectors for the slow release of phosphate fertilizer and also the neutralization of acid soil. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. Display Omitted Research Highlights: {yields} The phosphate forms of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) were synthesized via co-precipitation method. The crystal structure, bonding character, and release kinetics of phosphate of the phosphate-intercalates were investigated. These Ca-Fe-LDH materials are applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil.

  10. Revealing the nature of the active site on the carbon catalyst for C-H bond activation.

    PubMed

    Sun, XiaoYing; Li, Bo; Su, Dangsheng

    2014-09-28

    A reactivity descriptor for the C-H bond activation on the nanostructured carbon catalyst is proposed. Furthermore the calculations reveal that the single ketone group can be an active site in ODH reaction.

  11. Origin of the 900 cm{sup −1} broad double-hump OH vibrational feature of strongly hydrogen-bonded carboxylic acids

    SciTech Connect

    Van Hoozen, Brian L.; Petersen, Poul B.

    2015-03-14

    Medium and strong hydrogen bonds are common in biological systems. Here, they provide structural support and can act as proton transfer relays to drive electron and/or energy transfer. Infrared spectroscopy is a sensitive probe of molecular structure and hydrogen bond strength but strongly hydrogen-bonded structures often exhibit very broad and complex vibrational bands. As an example, strong hydrogen bonds between carboxylic acids and nitrogen-containing aromatic bases commonly display a 900 cm{sup −1} broad feature with a remarkable double-hump structure. Although previous studies have assigned this feature to the OH, the exact origin of the shape and width of this unusual feature is not well understood. In this study, we present ab initio calculations of the contributions of the OH stretch and bend vibrational modes to the vibrational spectrum of strongly hydrogen-bonded heterodimers of carboxylic acids and nitrogen-containing aromatic bases, taking the 7-azaindole—acetic acid and pyridine—acetic acid dimers as examples. Our calculations take into account coupling between the OH stretch and bend modes as well as how both of these modes are affected by lower frequency dimer stretch modes, which modulate the distance between the monomers. Our calculations reproduce the broadness and the double-hump structure of the OH vibrational feature. Where the spectral broadness is primarily caused by the dimer stretch modes strongly modulating the frequency of the OH stretch mode, the double-hump structure results from a Fermi resonance between the out of the plane OH bend and the OH stretch modes.

  12. Metal-free oxidative olefination of primary amines with benzylic C-H bonds through direct deamination and C-H bond activation.

    PubMed

    Gong, Liang; Xing, Li-Juan; Xu, Tong; Zhu, Xue-Ping; Zhou, Wen; Kang, Ning; Wang, Bin

    2014-09-14

    An oxidative olefination reaction between aliphatic primary amines and benzylic sp(3) C-H bonds has been achieved using N-bromosuccinimide as catalyst and tert-butyl hydroperoxide as oxidant. The olefination proceeds under mild metal-free conditions through direct deamination and benzylic C-H bond activation, and provides easy access to biologically active 2-styrylquinolines with (E)-configuration.

  13. 29 CFR 2580.412-8 - The nature of the duties or activities to which the bonding requirement relates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false The nature of the duties or activities to which the bonding... BENEFITS SECURITY ADMINISTRATION, DEPARTMENT OF LABOR TEMPORARY BONDING RULES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES Scope and Form of the Bond § 2580.412-8 The nature...

  14. 29 CFR 2580.412-8 - The nature of the duties or activities to which the bonding requirement relates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 9 2011-07-01 2011-07-01 false The nature of the duties or activities to which the bonding... BENEFITS SECURITY ADMINISTRATION, DEPARTMENT OF LABOR TEMPORARY BONDING RULES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES Scope and Form of the Bond § 2580.412-8 The nature...

  15. Q-Band Electron-Nuclear Double Resonance Reveals Out-of-Plane Hydrogen Bonds Stabilize an Anionic Ubisemiquinone in Cytochrome bo3 from Escherichia coli.

    PubMed

    Sun, Chang; Taguchi, Alexander T; Vermaas, Josh V; Beal, Nathan J; O'Malley, Patrick J; Tajkhorshid, Emad; Gennis, Robert B; Dikanov, Sergei A

    2016-10-11

    The respiratory cytochrome bo3 ubiquinol oxidase from Escherichia coli has a high-affinity ubiquinone binding site that stabilizes the one-electron reduced ubisemiquinone (SQH), which is a transient intermediate during the electron-mediated reduction of O2 to water. It is known that SQH is stabilized by two strong hydrogen bonds from R71 and D75 to ubiquinone carbonyl oxygen O1 and weak hydrogen bonds from H98 and Q101 to O4. In this work, SQH was investigated with orientation-selective Q-band (∼34 GHz) pulsed (1)H electron-nuclear double resonance (ENDOR) spectroscopy on fully deuterated cytochrome (cyt) bo3 in a H2O solvent so that only exchangeable protons contribute to the observed ENDOR spectra. Simulations of the experimental ENDOR spectra provided the principal values and directions of the hyperfine (hfi) tensors for the two strongly coupled H-bond protons (H1 and H2). For H1, the largest principal component of the proton anisotropic hfi tensor Tz' = 11.8 MHz, whereas for H2, Tz' = 8.6 MHz. Remarkably, the data show that the direction of the H1 H-bond is nearly perpendicular to the quinone plane (∼70° out of plane). The orientation of the second strong hydrogen bond, H2, is out of plane by ∼25°. Equilibrium molecular dynamics simulations on a membrane-embedded model of the cyt bo3 QH site show that these H-bond orientations are plausible but do not distinguish which H-bond, from R71 or D75, is nearly perpendicular to the quinone ring. Density functional theory calculations support the idea that the distances and geometries of the H-bonds to the ubiquinone carbonyl oxygens, along with the measured proton anisotropic hfi couplings, are most compatible with an anionic (deprotonated) ubisemiquinone.

  16. Identification of active sites in amidase: Evolutionary relationship between amide bond- and peptide bond-cleaving enzymes

    PubMed Central

    Kobayashi, Michihiko; Fujiwara, Yoshie; Goda, Masahiko; Komeda, Hidenobu; Shimizu, Sakayu

    1997-01-01

    Mainly based on various inhibitor studies previously performed, amidases came to be regarded as sulfhydryl enzymes. Not completely satisfied with this generally accepted interpretation, we performed a series of site-directed mutagenesis studies on one particular amidase of Rhodococcus rhodochrous J1 that was involved in its nitrile metabolism. For these experiments, the recombinant amidase was produced as the inclusion body in Escherichia coli to greatly facilitate its recovery and subsequent purification. With regard to the presumptive active site residue Cys203, a Cys203 → Ala mutant enzyme still retained 11.5% of the original specific activity. In sharp contrast, substitutions in certain other positions in the neighborhood of Cys203 had a far more dramatic effect on the amidase. Glutamic acid substitution of Asp191 reduced the specific activity of the mutant enzyme to 1.33% of the wild-type activity. Furthermore, Asp191 → Asn substitution as well as Ser195 → Ala substitution completely abolished the specific activity. It would thus appear that, among various conserved residues residing within the so-called signature sequence common to all amidases, the real active site residues are Asp191 and Ser195 rather than Cys203. Inasmuch as an amide bond (CO-NH2) in the amide substrate is not too far structurally removed from a peptide bond (CO-NH-), the signature sequences of various amidases were compared with the active site sequences of various types of proteases. It was found that aspartic acid and serine residues corresponding to Asp191 and Ser195 of the Rhodococcus amidase are present within the active site sequences of aspartic proteinases, thus suggesting the evolutionary relationship between the two. PMID:9342349

  17. 26 CFR 1.103(n)-1T - Limitation on aggregrate amount of private activity bonds (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... activity bonds (temporary). 1.103(n)-1T Section 1.103(n)-1T Internal Revenue INTERNAL REVENUE SERVICE... Excluded from Gross Income § 1.103(n)-1T Limitation on aggregrate amount of private activity bonds (temporary). Q-1: What does section 103(n) provide? A-1: Interest on an issue of private activity bonds...

  18. 26 CFR 1.103(n)-1T - Limitation on aggregrate amount of private activity bonds (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... activity bonds (temporary). 1.103(n)-1T Section 1.103(n)-1T Internal Revenue INTERNAL REVENUE SERVICE... Excluded from Gross Income § 1.103(n)-1T Limitation on aggregrate amount of private activity bonds (temporary). Q-1: What does section 103(n) provide? A-1: Interest on an issue of private activity bonds...

  19. 26 CFR 1.103(n)-1T - Limitation on aggregrate amount of private activity bonds (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... activity bonds (temporary). 1.103(n)-1T Section 1.103(n)-1T Internal Revenue INTERNAL REVENUE SERVICE... Excluded from Gross Income § 1.103(n)-1T Limitation on aggregrate amount of private activity bonds (temporary). Q-1: What does section 103(n) provide? A-1: Interest on an issue of private activity bonds...

  20. 26 CFR 1.103(n)-1T - Limitation on aggregrate amount of private activity bonds (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... activity bonds (temporary). 1.103(n)-1T Section 1.103(n)-1T Internal Revenue INTERNAL REVENUE SERVICE... Excluded from Gross Income § 1.103(n)-1T Limitation on aggregrate amount of private activity bonds (temporary). Q-1: What does section 103(n) provide? A-1: Interest on an issue of private activity bonds...

  1. 26 CFR 1.103(n)-1T - Limitation on aggregrate amount of private activity bonds (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... activity bonds (temporary). 1.103(n)-1T Section 1.103(n)-1T Internal Revenue INTERNAL REVENUE SERVICE... Excluded from Gross Income § 1.103(n)-1T Limitation on aggregrate amount of private activity bonds (temporary). Q-1: What does section 103(n) provide? A-1: Interest on an issue of private activity bonds...

  2. 26 CFR 1.147-1 - Other requirements applicable to certain private activity bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Overview. Interest on a private activity bond is not excludable from gross income under section 103(a... the rules limiting use of proceeds to acquire land or existing property under sections 147(c) (1)...

  3. Room-temperature bonding method for polymer substrate of flexible electronics by surface activation using nano-adhesion layers

    NASA Astrophysics Data System (ADS)

    Matsumae, Takashi; Fujino, Masahisa; Suga, Tadatomo

    2015-10-01

    A sealing method for polymer substrates to be used in flexible electronics is studied. For this application, a low-temperature sealing method that achieves flexible bonding of inorganic bonding material is required, but no conventional technique satisfies these requirements simultaneously. In this study, a new polymer bonding method using thin Si and Fe layers and the surface activated bonding (SAB) method are applied to bond poly(ethylene naphthalate) (PEN) films to each other. PEN films can be bonded via the proposed method without voids at room temperature, and the bonded samples are bendable. The adhesion strength of the bonded samples is so strong that fracture occurs in the polymer bulk rather than at the bond interface. Investigations of the bonded samples by transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR) reveal that bonding is achieved by chemical interactions between the polymer surface and deposited atoms.

  4. Activation of C-H bonds in nitrones leads to iridium hydrides with antitumor activity.

    PubMed

    Song, Xiaoda; Qian, Yong; Ben, Rong; Lu, Xiang; Zhu, Hai-Liang; Chao, Hui; Zhao, Jing

    2013-08-22

    We report the design and synthesis of a series of new cyclometalated iridium hydrides derived from the C-H bond activation of aromatic nitrones and the biological evaluation of these iridium hydrides as antitumor agents. The nitrone ligands are based on the structure of a popular antioxidant, α-phenyl-N-tert-butylnitrone (PBN). Compared to cisplatin, the iridium hydrides exhibit excellent antitumor activity on HepG2 cells. The metal-coordinated compound with the most potent anticancer activity, 2f, was selected for further analysis because of its ability to induce apoptosis and interact with DNA. During in vitro studies and in vivo efficacy analysis with tumor xenograft models in Institute of Cancer Research (ICR) mice, complex 2f exhibited antitumor activity that was markedly superior to that of cisplatin. Our results suggest, for the first time, that metal hydrides could be a new type of metal-based antitumor agent.

  5. Surface-Bonded Antimicrobial Activity of an Organosilicon Quaternary Ammonium Chloride

    PubMed Central

    Isquith, A. J.; Abbott, E. A.; Walters, P. A.

    1972-01-01

    The hydrolysis product of 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride exhibited antimicrobial activity against a broad range of microorganisms while chemically bonded to a variety of surfaces. The chemical was not removed from surfaces by repeated washing with water, and its antimicrobial activity could not be attributed to a slow release of the chemical, but rather to the surface-bonded chemical. Images PMID:4650597

  6. Active Spacecraft Potential Control: Results From the Double Star Project

    NASA Astrophysics Data System (ADS)

    Torkar, K.; Fazakerley, A.; Steiger, W.

    2006-10-01

    The ion emitter instrument "active spacecraft potential control" (ASPOC) has been used successfully in several magnetospheric missions including the European Space Agency Cluster Project. An improved version has been developed for the equatorial spacecraft of the Chinese-European Double Star mission (TC-1) launched in December 2003. The modifications include a new design of the ion emitter modules. As a result, higher currents than in previous missions can be achieved. The main objective of the investigation is the reduction of positive spacecraft potential in order to minimize perturbations to the plasma measurements onboard, in particular to the plasma electron instrument PEACE. These data show an almost complete suppression of photoelectrons when ASPOC is emitting at 30- to 50-muA beam current. The angular distribution of the electrons in the presence of the ion beam is investigated in detail. The measurement of ambient electron distributions is highly improved.

  7. New approaches to organocatalysis based on C–H and C–X bonding for electrophilic substrate activation

    PubMed Central

    2016-01-01

    Hydrogen bond donor catalysis represents a rapidly growing subfield of organocatalysis. While traditional hydrogen bond donors containing N–H and O–H moieties have been effectively used for electrophile activation, activation based on other types of non-covalent interactions is less common. This mini review highlights recent progress in developing and exploring new organic catalysts for electrophile activation through the formation of C–H hydrogen bonds and C–X halogen bonds. PMID:28144357

  8. Novel biohybrids of layered double hydroxide and lactate dehydrogenase enzyme: Synthesis, characterization and catalytic activity studies

    NASA Astrophysics Data System (ADS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Hidouri, Slah; Namour, Philippe; Jaffrezic-Renault, Nicole; Ben Haj Amara, Abdesslem

    2016-02-01

    The present work introduces new biohybrid materials involving layered double hydroxides (LDH) and biomolecule such as enzyme to produce bioinorganic system. Lactate dehydrogenase (Lac Deh) has been chosen as a model enzyme, being immobilized onto MgAl and ZnAl LDH materials via direct ion-exchange (adsorption) and co-precipitation methods. The immobilization efficiency was largely dependent upon the immobilization methods. A comparative study shows that the co-precipitation method favors the immobilization of great and tunable amount of enzyme. The structural behavior, chemical bonding composition and morphology of the resulting biohybrids were determined by X-ray diffraction (XRD) study, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM), respectively. The free and immobilized enzyme activity and kinetic parameters were also reported using UV-Visible spectroscopy. However, the modified LDH materials showed a decrease in crystallinity as compared to the unmodified LDH. The change in activity of the immobilized lactate dehydrogenase was considered to be due, to the reduced accessibility of substrate molecules to the active sites of the enzyme and the partial conformational change of the Lac Deh molecules as a result of the immobilization way. Finally, it was proven that there is a correlation between structure/microstructure and enzyme activity dependent on the immobilization process.

  9. Time resolved studies of bond activation by organometallic complexes

    SciTech Connect

    Wilkens, Matthew J.

    1998-05-01

    In 1971, Jetz and Graham discovered that the silicon-hydrogen bond in silanes could be broken under mild photochemical conditions in the presence of certain transition metal carbonyls. Such reactions fall within the class of oxidative addition. A decade later, similar reactivity was discovered in alkanes. In these cases a C-H bond in non-functionalized alkanes was broken through the oxidative addition of Cp*Ir(H)2L (Cp* = (CH3)5C5, L = PPh3, Ph = C6H5) to form Cp*ML(R)(H) or of Cp*Ir(CO)2 to form Cp*Ir(CO)(R)(H). These discoveries opened an entirely new field of research, one which naturally included mechanistic studies aimed at elucidating the various paths involved in these and related reactions. Much was learned from these experiments but they shared the disadvantage of studying under highly non-standard conditions a system which is of interest largely because of its characteristics under standard conditions. Ultrafast time-resolved IR spectroscopy provides an ideal solution to this problem; because it allows the resolution of chemical events taking place on the femto-through picosecond time scale, it is possible to study this important class of reactions under the ambient conditions which are most of interest to the practicing synthetic chemist. Certain of the molecules in question are particularly well-suited to study using the ultrafast IR spectrophotometer described in the experimental section because they contain one or more carbonyl ligands.

  10. Energetics of tert-butoxyl addition reaction to norbornadiene: a method for estimating the pi-bond strength of a carbon-carbon double bond.

    PubMed

    Nunes, Paulo M; Estácio, Sílvia G; Lopes, Gustavo T; Agapito, Filipe; Santos, Rui C; Costa Cabral, Benedito J; Borges dos Santos, Rui M; Martinho Simões, José A

    2009-06-11

    The energetics of tert-butoxyl radical addition reaction to norbornadiene was investigated by time-resolved photoacoustic calorimetry (TR-PAC). The result, together with the C-O bond dissociation enthalpy (BDE) in the addition product, allowed us to calculate the pi-bond dissociation enthalpy in norbornadiene. Quantum chemistry (QC) methods were also used to obtain several enthalpies of reaction of the addition of oxygen-centered radicals to alkenes. The pi-bond dissociation enthalpies in these molecules were calculated by a procedure similar to that used in the case of norbornadiene and were compared with the pi-BDE values obtained by the method proposed by Benson. These two different approaches yield similar values for the pi-BDEs in alkenes, indicating that the addition method proposed in the present study is a valid way to derive that quantity. The influence of strain in the pi-BDEs of cyclic alkenes was investigated and allowed us to justify the difference between the pi-BDE in norbornene and norbornadiene. Finally, the thermochemistry of the addition and abstraction reactions involving these two molecules and tert-butoxyl radical was analyzed.

  11. Study of double bond equivalents and the numbers of carbon and oxygen atom distribution of dissolved organic matter with negative-mode FT-ICR MS.

    PubMed

    Bae, EunJung; Yeo, In Joon; Jeong, Byungkwan; Shin, Yongsik; Shin, Kyung-Hoon; Kim, Sunghwan

    2011-06-01

    A strong linear relationship was observed between the average double bond equivalence (DBE) and the ratio of carbon to oxygen atoms in oxygenated compounds of dissolved organic matter (DOM). Data were acquired by a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS), equipped with a negative-mode electrospray ionization source. The slope and y-intercepts extracted from the linear relationship can be used to compare DOM samples originating from different locations. Significant differences in these parameters were observed between inland riverine and offshore coastal DOM samples. Offshore coastal DOM molecules underwent a change of one DBE for each removal or addition of two oxygen atoms. This suggested the existence of multiple carboxyl groups, each of which contains a double bond and two oxygen atoms. Inland riverine samples exhibited a change of ~1.5 DBE following the addition or removal of two oxygen atoms. This extra change in DBE was attributed to cyclic structures or unsaturated chemical bonds. The DBE value with maximum relative abundance and the minimum DBE value for each class of oxygenated compounds showed that approximately two oxygen atoms contributed to a unity change in DBE. The qualitative analyses given here are in a good agreement with results obtained from analyses using orthogonal analytical techniques. This study demonstrates that DBE and the carbon number distribution, observed by high resolution mass spectrometry, can be valuable in elucidating and comparing structural features of oxygenated molecules of DOM.

  12. Pd-Catalyzed Autotandem Reactions with N-Tosylhydrazones. Synthesis of Condensed Carbo- and Heterocycles by Formation of a C-C Single Bond and a C═C Double Bond on the Same Carbon Atom.

    PubMed

    Paraja, Miguel; Valdés, Carlos

    2017-04-05

    A new Pd-catalyzed autotandem reaction is introduced that consists of the cross-coupling of a benzyl bromide with a N-tosylhydrazone followed by an intramolecular Heck reaction with an aryl bromide. During the process, a single and a double C-C bond are formed on the same carbon atom. Two different arrangements for the reactive functional groups are possible, rendering great flexibility to the transformation. The same strategy led to 9-methylene-9H-fluorenes, 9-methylene-9H-xanthenes, 9-methylene-9,10-dihydroacridines, and also dihydropyrroloisoquinoline and dihydroindoloisoquinoline derivatives.

  13. MZI optical isolator with Si-wire waveguides by surface-activated direct bonding.

    PubMed

    Shoji, Yuya; Ito, Masatoshi; Shirato, Yuya; Mizumoto, Tetsuya

    2012-07-30

    We fabricate a Mach-Zehnder interferometer-based optical isolator using a silicon-wire waveguide with magneto-optic garnet cladding using direct bonding techniques. Using Si-wire waveguides, the size of the device is greatly reduced from that of our previous device. We investigate surface-activated direct bonding with nitrogen plasma treatment, which shows better bonding results than oxygen plasma treatment. A large magneto-optic phase shift of 0.8π and an optical isolation of 18 dB are obtained at a wavelength of 1322 nm.

  14. Low-cost bump bonding activities at CERN

    NASA Astrophysics Data System (ADS)

    Vähänen, S.; Tick, T.; Campbell, M.

    2010-11-01

    Conventional bumping processes used in the fabrication of hybrid pixel detectors for High Energy Physics (HEP) experiments use electroplating for Under Bump Metallization (UBM) and solder bump deposition. This process is laborious, involves time consuming photolithography and can only be performed using whole wafers. Electroplating has been found to be expensive when used for the low volumes which are typical of HEP experiments. In the low-cost bump bonding development work, electroless deposition technology of UBM is studied as an alternative to the electroplating process in the bump size / pitch window beginning from 20 μm / 50 μm. Electroless UBM deposition used in combination with solder transfer techniques has the potential to significantly lower the cost of wafer bumping without requiring increased wafer volumes. A test vehicle design of sensor and readout chip, having daisy chains and Kelvin bump structures, was created to characterize the flip chip process with electroless UBM. Two batches of test vehicle wafers were manufactured with different bump pad metallization. Batch #1 had AlSi(1%) metallization, which is similar to the one used on sensor wafers, and Batch #2 had AlSi(2%)Cu(1%) metallization, which is very similar to the one used on readout wafers. Electroless UBMs were deposited on both wafer batches. In addition, electroplated Ni UBM and SnPb solder bumps were grown on the test sensor wafers. Test assemblies were made by flip chip bonding the solder-bumped test sensors against the test readout chips with electroless UBMs. Electrical yields and individual joint resistances were measured from assemblies, and the results were compared to a well known reference technique based on electroplated solder bumps structures on both chips. The electroless UBMs deposited on AlSi(2%)Cu(1%) metallization showed excellent electrical yields and small tolerances in individual joint resistance. The results from the UBMs deposited on AlSi(1%) metallization were non

  15. Effect of water-ageing on dentine bond strength and anti-biofilm activity of bonding agent containing new monomer dimethylaminododecyl methacrylate

    PubMed Central

    Zhang, Ke; Cheng, Lei; Wu, Eric J.; Weir, Michael D.; Bai, Yuxing; Xu, Hockin H. K.

    2013-01-01

    Objectives The objectives of this study were to develop bonding agent containing a new antibacterial monomer dimethylaminododecyl methacrylate (DMADDM) as well as nanoparticles of silver (NAg) and nanoparticles of amorphous calcium phosphate (NACP), and to investigate the effects of water-ageing for 6 months on dentine bond strength and anti-biofilm properties for the first time. Methods Four bonding agents were tested: Scotchbond Multi-Purpose (SBMP) Primer and Adhesive control; SBMP + 5% DMADDM; SBMP + 5% DMADDM + 0.1% NAg; and SBMP + 5% DMADDM + 0.1% NAg with 20% NACP in adhesive. Specimens were water-aged for 1 d and 6 months at 37 °C. Then the dentine shear bond strengths were measured. A dental plaque microcosm biofilm model was used to inoculate bacteria on water-aged specimens and to measure metabolic activity, colony-forming units (CFUs), and lactic acid production. Results Dentine bond strength showed a 35% loss in 6 months of water-ageing for SBMP control (mean ± sd; n = 10); in contrast, the new antibacterial bonding agents showed no strength loss. The DMADDM–NAg–NACP containing bonding agent imparted a strong antibacterial effect by greatly reducing biofilm viability, metabolic activity and acid production. The biofilm CFU was reduced by more than two orders of magnitude, compared to SBMP control. Furthermore, the DMADDM–NAg–NACP bonding agent exhibited a long-term antibacterial performance, with no significant difference between 1 d and 6 months (p > 0.1). Conclusions Incorporating DMADDM–NAg–NACP in bonding agent yielded potent and long-lasting antibacterial properties, and much stronger bond strength after 6 months of water-ageing than a commercial control. The new antibacterial bonding agent is promising to inhibit biofilms and caries at the margins. The method of DMADDM–NAg–NACP incorporation may have a wide applicability to other adhesives, cements and composites. PMID:23583528

  16. Collision-induced dissociation of fatty acid [M - 2H + Na]- ions: charge-directed fragmentation and assignment of double bond position.

    PubMed

    Thomas, Michael C; Altvater, Jens; Gallagher, Thomas J; Nette, Geoffrey W

    2014-11-01

    The collision-induced dissociation (CID) of cationic fatty acid-metal ion complexes has been extensively studied and, in general, provides rich structural information. In particular, charge-remote fragmentation processes are commonly observed allowing the assignment of double bond position. In a previous manuscript, we presented two methods to doubly deprotonate polyunsaturated fatty acids to form anionic fatty acid-sodium ion complexes, referred to as [M - 2H + Na] (-) ions. In the current manuscript, the CID behavior of these [M - 2H + Na] (-) ions is investigated for the first time. Significantly, we also present a deuterium-labeling experiment, which excludes the possibility that deprotonation occurs predominately at the α-carbon in the formation of fatty acid [M - H + NaF](-) ions. This supports our original proposal where deprotonation occurs at the bis-allylic positions of polyunsaturated fatty acids. CID spectra of polyunsaturated fatty acid [M - 2H + Na](-) ions display abundant product ions arising from acyl chain cleavages. Through the examination of fatty acid isomers, it is demonstrated that double bond position may be unequivocally determined for methylene-interrupted polyunsaturated fatty acids with three or more carbon-carbon double bonds. In addition, CID of [M - 2H + Na](-) ions was applied to 18:3 isomers of Nannochloropsis oculata and three isomers were tentatively identified: ∆(9,12,15)18:3, ∆(6,9,12)18:3, and ∆(5,8,11)18:3. We propose that structurally-informative product ions are formed via charge-driven fragmentation processes at the site of the resonance-stabilized carbanion as opposed to charge-remote fragmentation processes, which could be inferred if deprotonation occurred predominately at the α-carbon.

  17. The role of the trans double bond in skin barrier sphingolipids: permeability and infrared spectroscopic study of model ceramide and dihydroceramide membranes.

    PubMed

    Skolová, Barbora; Jandovská, Kateřina; Pullmannová, Petra; Tesař, Ondřej; Roh, Jaroslav; Hrabálek, Alexandr; Vávrová, Kateřina

    2014-05-20

    Dihydroceramides (dCer) are members of the sphingolipid family that lack the C4 trans double bond in their sphingoid backbone. In addition to being precursors of ceramides (Cer) and phytoceramides, dCer have also been found in the extracellular lipid membranes of the epidermal barrier, the stratum corneum. However, their role in barrier homeostasis is not known. We studied how the lack of the trans double bond in dCer compared to Cer influences the permeability, lipid chain order, and packing of multilamellar membranes composed of the major skin barrier lipids: (d)Cer, fatty acids, cholesterol, and cholesteryl sulfate. The permeability of the membranes with long-chain dCer was measured using various markers and was either comparable to or only slightly greater than (by up to 35%, not significant) that of the Cer membranes. The dCer were less sensitive to acyl chain shortening than Cer (the short dCer membranes were up to 6-fold less permeable that the corresponding short Cer membranes). Infrared spectroscopy showed that long dCer mixed less with fatty acids but formed more thermally stable ordered domains than Cer. The key parameter explaining the differences in permeability in the short dCer and Cer was the proportion of the orthorhombic phase. Our results suggest that the presence of the trans double bond in Cer is not crucial for the permeability of skin lipid membranes and that dCer may be underappreciated members of the stratum corneum lipid barrier that increase its heterogeneity.

  18. Cu-catalyzed cross-dehydrogenative coupling: A versatile strategy for C-C bond formations via the oxidative activation of sp3 C-H bonds

    NASA Astrophysics Data System (ADS)

    Li, Zhiping; Bohle, D. Scott; Li, Chao-Jun

    2006-06-01

    Cu-catalyzed cross-dehydrogenative coupling (CDC) methodologies were developed based on the oxidative activation of sp3 C-H bonds adjacent to a nitrogen atom. Various sp, sp2, and sp3 C-H bonds of pronucleophiles were used in the Cu-catalyzed CDC reactions. Based on these results, the mechanisms of the CDC reactions also are discussed. C-H activation | catalysis | Baylis-Hillman reaction | Mannich reaction | Friedel-Crafts reaction

  19. Hydrolysis activities of the particle of agarose-Ce4+ complex for compounds containing phosphodiester or peptide bonds

    NASA Astrophysics Data System (ADS)

    Yu, Lina; Wang, Dongfeng; Su, Lin; Luo, Yi; Sun, Liping; Xue, Changhu

    2005-07-01

    Hydrolysis activities of PACC (particle of agarose-Ce4+ complex, newly made through double emulsification) for compounds containing phosphodiester or peptide bonds were studied. The results showed that PACC could hydrolyze organophosphorous pesticides not only in water but also in vegetable juice or tea extract. Hydrolysis rates of methamidophos, omethoate and chlorpyrifos in water are 32.39%, 27.12% and 46.62% respectively, those of chlorpyrifos and methamidophos in mung sprout juice 38.28% and 35.45% respectively, and that of chlorpyrifos in tea extract 59.76%. Hydrolysis rates of BSA (bovine serum albumin) in water and protein in tea extract by PACC increase by 54.30% and 86.46% respectively as compared with the control.

  20. Infrared spectroscopic studies on 4-amino-6-oxopyrimidine in a low-temperature Xe matrix and crystalline polymorphs composed of double hydrogen-bonded ribbons

    NASA Astrophysics Data System (ADS)

    Ohyama, Kazuko; Goto, Kenta; Shinmyozu, Teruo; Yamamoto, Norifumi; Iizumi, Shota; Miyagawa, Masaya; Nakata, Munetaka; Sekiya, Hiroshi

    2014-03-01

    Infrared (IR) spectra of the enol and keto forms of 4-amino-6-oxopyrimidine (AOP) isolated in a low-temperature Xe matrix were recorded, where the change from the keto to the enol form was found to be induced by UV irradiation (λ > 270 nm). On the other hand, the hydrated crystal of AOP exhibited a similar IR spectrum to the anhydrous crystal by dehydration, suggesting that the dehydrated and anhydrous crystals are polymorphs. It has been found from the IR spectral analyses that the AOP crystal is dominated by infinite double H-bonded ribbons, which has been supported by quantum chemical calculations.

  1. Resolution of concerted versus sequential mechanisms in photo-induced double-proton transfer reaction in 7-azaindole H-bonded dimer

    PubMed Central

    Catalán, Javier; del Valle, Juan Carlos; Kasha, Michael

    1999-01-01

    The experimental and theoretical bases for a synchronous or concerted double-proton transfer in centro-symmetric H-bonded electronically excited molecular dimers are presented. The prototype model is the 7-azaindole dimer. New research offers confirmation of a concerted mechanism for excited-state biprotonic transfer. Recent femtosecond photoionization and coulombic explosion techniques have given rise to time-of-flight MS observations suggesting sequential two-step biprotonic transfer for the same dimer. We interpret the overall species observed in the time-of-flight experiments as explicable without conflict with the concerted mechanism of proton transfer. PMID:10411876

  2. Selective reduction of C=C double bonds in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of microcystins.

    PubMed

    Deleuze, Christelle; De Pauw, Edwin; Quinton, Loic

    2010-01-01

    Cyanobacteria are photosynthetic bacteria encountered in various aquatic environments. Some of them are able to produce powerful toxins called cyanotoxins. Among cyanotoxins, microcystins (MCs) constitute a group of closely related cyclic heptapeptides. Their sequences are made up of classical amino acids as well as post- translational modified ones. Interestingly, in vivo metabolism of microcystins seems to be greatly dependent on various minor structural differences and particularly those of the seventh amino acid, which can be either dehydroalanine (or a derivative), dehydroaminobutyric acid (or a derivative), serine or alanine. As a consequence, microcystins have been classified on the basis of the nature of this singular amino acid. A major difficulty in the classification of such toxins is that some of them share the same molecular masses and the same molecular formulas. Consequently, a simple mass measurement is not sufficient to determine the structure and the class of a toxin of interest. Heavy and expensive techniques are used to classify them, such as multi-dimensional nuclear magnetic resonance and amino acid analysis. In this work, a new matrix-assisted laser desorption/ionization time-of-flight method leading to an easy classification of MCs is proposed. The methodology relies on the reductive properties of the matrix 1,5-diaminonaphtalene (1,5-DAN) which appears to be able to selectively reduce the double carbon-carbon bond belonging to the seventh amino acid. Moreover, the yield of reduction seems to be influenced by the degree of substitution of this double bond, allowing a discrimination between dehydroalanine and dehydroaminobutyric acid. This selective reduction was confirmed by the study of three synthetic peptides by mass spectrometry and tandem mass spectrometry. According to these results, the use of reductive matrices seems to be promising in the study of microcystins and in their classification. More generally, 1,5-DAN allows the selective

  3. Reactions of organoaluminum compounds with acetylene as a method for the synthesis of aliphatic derivatives with a z-disubstituted double bond

    SciTech Connect

    Andreeva, N.I.; Kuchin, A.V.; Tolstikov, G.A.

    1985-11-01

    This paper develops a method for the synthesis of aliphatic compounds with a Z-disubstituted double bond, which are important synthons for the preparation of such natural products as insect pheromones, aromatic principles, etc. In the carbalumination reaction of acetylene Z-alkenyldialkylaluminums are formed selectively. A-Alkenyldialkylaluminums are highly reactive and can readily be converted into Z-allyl alcohols and their ethers, and into Z-iodovinyl derivatives. By the reactions of vinyl organoaluminum compounds with the complex CH/sub 3/COClhaAlCl/sub 3/ E-conjugated ketones were obtained.

  4. A Facile Method to Prepare Double-Layer Isoporous Hollow Fiber Membrane by In Situ Hydrogen Bond Formation in the Spinning Line.

    PubMed

    Noor, Nazia; Koll, Joachim; Radjabian, Maryam; Abetz, Clarissa; Abetz, Volker

    2016-03-01

    A double-layer hollow fiber is fabricated where an isoporous surface of polystyrene-block-poly(4-vinylpyridine) is fixed on a support layer by co-extrusion. Due to the sulfonation of the support layer material, delamination of the two layers is suppressed without increasing the number of subsequent processing steps for isoporous composite membrane formation. Electron microscope-energy-dispersive X-ray spectroscopy images unveil the existence of a high sulfur concentration in the interfacial region by which in-process H-bond formation between the layers is evidenced. For the very first time, our study reports a facile method to fabricate a sturdy isoporous double-layer hollow fiber.

  5. The effects of hydrogen bonds on metal-mediated O2 activation and related processes

    PubMed Central

    Shook, Ryan L.; Borovik, A. S.

    2009-01-01

    Hydrogen bonds stabilize and direct chemistry performed by metalloenzymes. With inspiration from enzymes, we will utilize an approach that incorporates intramolecular hydrogen bond donors to determine their effects on the stability and reactivity of metal complexes. Our premise is that control of secondary coordination sphere interactions will promote new function in synthetic metal complexes. Multidentate ligands have been developed that create rigid organic structures around metal ions. These ligands place hydrogen bond (H-bond) donors proximal to the metal centers, forming specific microenvironments. One distinguishing attribute of these systems is that site-specific modulations in structure can be readily accomplished, in order to evaluate correlations with reactivity. A focus of this research is consideration of dioxygen binding and activation by metal complexes, including developing structure–function relationships in metal-assisted oxidative catalysis. PMID:19082087

  6. Sticker Bonding.

    ERIC Educational Resources Information Center

    Frazier, Laura Corbin

    2000-01-01

    Introduces a science activity on the bonding of chemical compounds. Assigns students the role of either a cation or anion and asks them to write the ions they may bond with. Assesses students' understanding of charge, bonding, and other concepts. (YDS)

  7. Activation of remote meta-C-H bonds assisted by an end-on template.

    PubMed

    Leow, Dasheng; Li, Gang; Mei, Tian-Sheng; Yu, Jin-Quan

    2012-06-27

    Functionalization of unactivated carbon-hydrogen (C-H) single bonds is an efficient strategy for rapid generation of complex molecules from simpler ones. However, it is difficult to achieve selectivity when multiple inequivalent C-H bonds are present in the target molecule. The usual approach is to use σ-chelating directing groups, which lead to ortho-selectivity through the formation of a conformationally rigid six- or seven-membered cyclic pre-transition state. Despite the broad utility of this approach, proximity-driven reactivity prevents the activation of remote C-H bonds. Here we report a class of easily removable nitrile-containing templates that direct the activation of distal meta-C-H bonds (more than ten bonds away) of a tethered arene. We attribute this new mode of C-H activation to a weak 'end-on' interaction between the linear nitrile group and the metal centre. The 'end-on' coordination geometry relieves the strain of the cyclophane-like pre-transition state of the meta-C-H activation event. In addition, this template overrides the intrinsic electronic and steric biases as well as ortho-directing effects with two broadly useful classes of arene substrates (toluene derivatives and hydrocinnamic acids).

  8. Biological Activity Predictions and Hydrogen Bonding Analysis in Quinolines

    NASA Astrophysics Data System (ADS)

    Gupta, Palvi; Kamni

    The paper has been designed to make a comprehensive review of a particular series of organic molecular assembly in the form of compendium. An overview of general description of fifteen quinoline derivatives has been given. The biological activity spectra of quinoline derivatives have been correlated on structure activity relationships base which provides the different Pa (possibility of activity) and Pi (possibility of inactivity) values. Expositions of the role of intermolecular interactions in the identified derivatives have been discussed with the standard distance and angle cut-off criteria criteria as proposed by Desiraju and Steiner (1999) in an International monogram on crystallography. Distance-angle scatter plots for intermolecular interactions are presented for a better understanding of the packing interactions which exist in quinoline derivatives.

  9. 29 CFR 2580.412-8 - The nature of the duties or activities to which the bonding requirement relates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 9 2012-07-01 2012-07-01 false The nature of the duties or activities to which the bonding requirement relates. 2580.412-8 Section 2580.412-8 Labor Regulations Relating to Labor (Continued) EMPLOYEE... INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES Scope and Form of the Bond § 2580.412-8 The nature...

  10. 29 CFR 2580.412-8 - The nature of the duties or activities to which the bonding requirement relates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 9 2014-07-01 2014-07-01 false The nature of the duties or activities to which the bonding requirement relates. 2580.412-8 Section 2580.412-8 Labor Regulations Relating to Labor (Continued) EMPLOYEE... INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES Scope and Form of the Bond § 2580.412-8 The nature...

  11. 29 CFR 2580.412-8 - The nature of the duties or activities to which the bonding requirement relates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 9 2013-07-01 2013-07-01 false The nature of the duties or activities to which the bonding requirement relates. 2580.412-8 Section 2580.412-8 Labor Regulations Relating to Labor (Continued) EMPLOYEE... INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES Scope and Form of the Bond § 2580.412-8 The nature...

  12. Biological activity predictions, crystallographic comparison and hydrogen bonding analysis of cholane derivatives.

    PubMed

    Rajnikant; Dinesh; Chand, Bhavnaish

    2007-12-01

    A total of eighteen molecules of cholane derivatives (I-XVIII) (a series of steroids) have been included to predict their pharmacological effects, specific mechanisms of action, known toxicities, drug-likeness, etc, by using the statistics of multilevel neighbourhoods of atoms (MNA) descriptors for active and inactive fragments. The biological activity spectra for substances have been correlated on SAR base (structure-activity relationships data and knowledge base), which provides the different P(a) (possibility of activity) and P(i) (possibility of inactivity). Most of the probable activities have been characterized by P(a) and P(i) values, which depict that all the molecules have high value of teratogen activity. The Lipinski's thumb rule predicts that all the cholane derivatives have stronger preponderance for "cancer-like-drug" molecules and some of their related analogous have entered in the ANCI (American National Cancer Institute) database. Some selected bond distances and bond angles of interest have been taken into account and deviation of bond distances/bond angles, vis-a-vis the substitutional group and X-H...A intra/intermolecular hydrogen bonds has been discussed in detail. X-H...A intra and intermolecular hydrogen bonds in the molecules have been described with the standard distance and angle cut-off criteria. D-theta and d-theta. scatter plots for intra- and intermolecular interactions are presented for better understanding of packing interactions existing among these derivatives. There exists only one C-H...O intramolecular bifurcated hydrogen bond. while high tendency of intermolecular bifurcated hydrogen bonds based on a defined O-H...O has been observed, in which O atom acts as a prototype donor as well as acceptor. The frequency of occurrence of C-H...O hydrogen bonds is predominant (i.e. 85.7%) in intramolecular interactions, whereas in intermolecular interactions, frequency of occurrence for O-H...O interactions is 62.9%. Solvent

  13. [Hydrogen induced C-C, C-N, and C-S bond activities on Pi and Ni surfaces]: Summary

    SciTech Connect

    Gland, J.L.

    1994-12-31

    This document summarizes research applied to chemical bond activation studies. Topics summarized include: Carbon nitrogen bonds experimentation with aniline on Ni(111), Mi(100), and Pt(111) surfaces; carbon sulfur bonds experimentation with methanethiol, phenylthiol, and dimethyl disulfide on Pt(111) and Ni(111) surfaces; carbon-carbon bonds experimentation on Ni(100), Ni(111) and Pt(111) surfaces; and in-situ fluorescence yield near edge spectroscopy.

  14. Differential roles of internal and terminal double bonds in docosahexaenoic acid: Comparative study of cytotoxicity of polyunsaturated fatty acids to HT-29 human colorectal tumor cell line.

    PubMed

    Sato, Satoshi B; Sato, Sho; Kawamoto, Jun; Kurihara, Tatsuo

    2011-01-01

    The role of the double bonds in docosahexaenoic acid (22:6(Δ4,7,10,13,16,19); DHA) in cytotoxic lipid peroxidation was studied in a superoxide dismutase-defective human colorectal tumor cell line, HT-29. In a conventional culture, DHA and other polyunsaturated fatty acids (PUFAs) were found to induce acute lipid peroxidation and subsequent cell death. PUFAs that lack one or both the terminal double bonds (Δ19 and Δ4) but share Δ7,10,13,16 such as 22:5(Δ7,10,13,16,19), 22:5(Δ4,7,10,13,16), and 22:4(Δ7,10,13,16) were more effective than DHA. Lipid peroxidation and cell death were completely inhibited, except by 22:4(Δ7,10,13,16) when radical-mediated reactions were suppressed by culturing cells in 2% O(2) in the presence of vitamin E. DHA and C22:5 PUFAs but not 22:4(Δ7,10,13,16) were efficiently incorporated in phosphatidylinositol, regardless of the culturing conditions. These and other results suggested that the internal unsaturations Δ7,10,13,16 were sensitive to lipid peroxidation, whereas the terminal ones Δ19 and Δ4 appeared to be involved in assimilation into phospholipids.

  15. Unveiling of novel regio-selective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono- and di-hydroxy fatty acids.

    PubMed

    Kim, Kyoung-Rok; Oh, Hye-Jin; Park, Chul-Soon; Hong, Seung-Hye; Park, Ji-Young; Oh, Deok-Kun

    2015-11-01

    The aim of this study is the first time demonstration of cis-12 regio-selective linoleate double-bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis-9 and cis-12 double-bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio-selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13-dihydroxyoctadecanoic acid biosynthesis. Linoleate 13-hydratase (LHT-13) selectively converted 10 mM linoleic acid to 13S-hydroxy-9(Z)-octadecenoic acid with high titer (8.1 mM) and yield (81%). Our study will expand knowledge for microbial fatty acid-hydroxylation enzymes and facilitate the designed production of the regio-selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks.

  16. Determination of the bond-angle distribution in vitreous B{sub 2}O{sub 3} by {sup 11}B double rotation (DOR) NMR spectroscopy

    SciTech Connect

    Hung, I.; Howes, A.P.; Parkinson, B.G.; Anupold, T.; Samoson, A.; Brown, S.P.; Harrison, P.F.; Holland, D.; Dupree, R.

    2009-09-15

    The B-O-B bond angle distributions for both ring and non-ring boron sites in vitreous B{sub 2}O{sub 3} have been determined by {sup 11}B double rotation (DOR) NMR and multiple-quantum (MQ) DOR NMR. The [B{sub 3}O{sub 6}] boroxol rings are observed to have a mean internal B-O-B angle of 120.0+-0.7 deg. with a small standard deviation, sigma{sub R}=3.2+-0.4 deg., indicating that the rings are near-perfect planar, hexagonal structures. The rings are linked predominantly by non-ring [BO{sub 3}] units, which share oxygens with the boroxol ring, with a mean B{sub ring}-O-B{sub non-ring} angle of 135.1+-0.6 deg. and sigma{sub NR}=6.7+-0.4 deg. In addition, the fraction of boron atoms, f, which reside in the boroxol rings has been measured for this sample as f=0.73+-0.01. - Graphical abstract: Connectivities and B-O-B bond angle distributions of ring and non-ring boron atoms in v-B{sub 2}O{sub 3} have been determined by {sup 11}B double rotation (DOR) NMR, multiple-quantum (MQ) DOR NMR and spin-diffusion DOR. Near-perfect planar, hexagonal [B{sub 3}O{sub 6}] boroxol rings are shown to be present. Display Omitted

  17. Sequential and selective hydrogenation of the C(alpha)-C(beta) and M-C(alpha) double bonds of an allenylidene ligand coordinated to osmium: new reaction patterns between an allenylidene complex and alcohols.

    PubMed

    Bolaño, Tamara; Castarlenas, Ricardo; Esteruelas, Miguel A; Oñate, Enrique

    2007-07-18

    Complex [OsH(=C=C=CPh2)(CH3CN)2(PiPr3)2]BF4 (1) reacts with primary and secondary alcohols to give the corresponding dehydrogenated alcohols and the hydride-carbene derivative [OsH(=CHCH=CPh2)(CH3CN)2(PiPr3)2]BF4 (2), as a result of hydrogen transfer reactions from the alcohols to the Calpha-Cbeta double bond of the allenylidene ligand of 1. The reactions with phenol and t-butanol, which do not contain any beta-hydrogen, afford the alkoxy-hydride-carbyne complexes [OsH(OR)(CCH=CPh2)(CH3CN)(PiPr3)2]BF4 (R = Ph (3), tBu (4)), as a consequence of the 1,3-addition of the O-H bond of the alcohols to the metallic center and the Cbeta atom of the allenylidene of 1. On the basis of the reactions of 1 with these tertiary alcohols, deuterium labeling experiments, and DFT calculations, the mechanism of the hydrogenation is proposed. In acetonitrile under reflux, the Os-C double bond of 2 undergoes hydrogenation to give 1,1-diphenylpropene and [Os{CH2CH(CH3)PiPr2(CH3CN)3(PiPr3)]BF4 (11), containing a metalated phosphine ligand. This reaction is a first-order process with activation parameters of DeltaH = 89.0 +/- 6.3 kJ mol-1 and DeltaS = -43.5 +/- 9.6 J mol-1 K-1. The X-ray structures of 2 and 3 are also reported.

  18. Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (DOPC) bilayers by x-ray diffraction using specific bromination of the double-bonds: effect of hydration.

    PubMed Central

    Hristova, K; White, S H

    1998-01-01

    Changes in the structure of the hydrocarbon core (HC) of fluid lipid bilayers can reveal how bilayers respond to the partitioning of peptides and other solutes (Jacobs, R. E., and S. H. White. 1989. Biochemistry. 28:3421-3437). The structure of the HC of dioleoylphosphocholine (DOPC) bilayers can be determined from the transbilayer distribution of the double-bonds (Wiener, M. C., and S. H. White. 1992. Biophys. J. 61:434-447). This distribution, representing the time-averaged projection of the double-bond positions onto the bilayer normal (z), can be obtained by means of neutron diffraction and double-bond specific deuteration (Wiener, M. C., G. I. King, and S. H. White. 1991. Biophys. J. 60:568-576). For fully resolved bilayer profiles, a close approximation of the distribution could be obtained by x-ray diffraction and isomorphous bromine labeling at the double-bonds of the DOPC sn-2 acyl chain (Wiener, M. C., and S. H. White. 1991. Biochemistry. 30:6997-7008). We have modified the bromine-labeling approach in a manner that permits determination of the distribution in under-resolved bilayer profiles observed at high water contents. We used this new method to determine the transbilayer distribution of the double-bond bromine labels of DOPC over a hydration range of 5.4 to 16 waters per lipid, which reveals how the HC structure changes with hydration. We found that the transbilayer distributions of the bromines can be described by a pair of Gaussians of 1/e half-width A(Br) located at z = +Z(Br) relative to the bilayer center. For hydrations from 5.4 waters up to 9.4 waters per lipid, Z(Br) decreases from 7.97 +/- 0.27 A to 6.59 +/- 0.15 A, while A(Br) increased from 4.62 +/- 0.62 A to 5.92 +/- 0.37 A, consistent with the expected hydration-induced decrease in HC thickness and increase in area per lipid. After the phosphocholine hydration shell was filled at approximately 12 waters per lipid, we observed a shift in Z(Br) to approximately 7.3 A, indicative of a

  19. Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (DOPC) bilayers by x-ray diffraction using specific bromination of the double-bonds: effect of hydration.

    PubMed

    Hristova, K; White, S H

    1998-05-01

    Changes in the structure of the hydrocarbon core (HC) of fluid lipid bilayers can reveal how bilayers respond to the partitioning of peptides and other solutes (Jacobs, R. E., and S. H. White. 1989. Biochemistry. 28:3421-3437). The structure of the HC of dioleoylphosphocholine (DOPC) bilayers can be determined from the transbilayer distribution of the double-bonds (Wiener, M. C., and S. H. White. 1992. Biophys. J. 61:434-447). This distribution, representing the time-averaged projection of the double-bond positions onto the bilayer normal (z), can be obtained by means of neutron diffraction and double-bond specific deuteration (Wiener, M. C., G. I. King, and S. H. White. 1991. Biophys. J. 60:568-576). For fully resolved bilayer profiles, a close approximation of the distribution could be obtained by x-ray diffraction and isomorphous bromine labeling at the double-bonds of the DOPC sn-2 acyl chain (Wiener, M. C., and S. H. White. 1991. Biochemistry. 30:6997-7008). We have modified the bromine-labeling approach in a manner that permits determination of the distribution in under-resolved bilayer profiles observed at high water contents. We used this new method to determine the transbilayer distribution of the double-bond bromine labels of DOPC over a hydration range of 5.4 to 16 waters per lipid, which reveals how the HC structure changes with hydration. We found that the transbilayer distributions of the bromines can be described by a pair of Gaussians of 1/e half-width A(Br) located at z = +Z(Br) relative to the bilayer center. For hydrations from 5.4 waters up to 9.4 waters per lipid, Z(Br) decreases from 7.97 +/- 0.27 A to 6.59 +/- 0.15 A, while A(Br) increased from 4.62 +/- 0.62 A to 5.92 +/- 0.37 A, consistent with the expected hydration-induced decrease in HC thickness and increase in area per lipid. After the phosphocholine hydration shell was filled at approximately 12 waters per lipid, we observed a shift in Z(Br) to approximately 7.3 A, indicative of a

  20. Effect of bonding on the performance of a piezoactuator-based active control system

    NASA Technical Reports Server (NTRS)

    Baz, A.; Poh, S.

    1987-01-01

    The utilization of piezoelectric actuators in controlling the structural vibrations of flexible beams is studied. A Modified Independent Modal Space Control (MIMSC) method is devised to select the optimal location, control gains and excitation voltage of the piezoelectric actuators in a way that would minimize the amplitudes of vibrations of beams to which these actuators are bonded, as well as the input control energy necessary to suppress these vibrations. The presented method accounts for the effects that the piezoelectric actuators and the bonding layers have on changing the elastic and inertial properties of the flexible beams. Numerical examples are presented to illustrate the application of the MIMSC method and to demonstrate the effect of the physical and geometrical properties of the bonding layer on the dynamic performance of the actively controlled beams. The obtained results emphasize the importance of the devised method in designing more realistic active control systems for flexible beams, in particular, and large flexible structures in general.

  1. Mechanism of a C-H bond activation reaction in room-temperature alkane solution

    SciTech Connect

    Bromberg, S.E.; Yang, H.; Asplund, M.C.

    1997-10-10

    Chemical reactions that break alkane carbon-hydrogen (C-H) bonds are normally carried out under conditions of high temperature and pressure because these bonds are extremely strong ({approx} 100 kilocalories per mole), but certain metal complexes can activate C-H bonds in alkane solution under the mild conditions of room temperature and pressure. Time-resolved infrared experiments probing the initial femtosecond dynamics through the nano- and microsecond kinetics to the final stable products have been used to generate a detailed picture of the C-H activation reaction. Structures of all of the intermediates involved in the reaction of Tp*Rh(CO){sub 2} (Tp* = HB-Pz{sub 3}*, Pz* = 3,5-di-methylpyrazolyl) in alkane solution have been identified and assigned, and energy barriers for each reaction step from solvation to formation of the final alkyl hydride product have been estimated from transient lifetimes. 27 refs., 6 figs.

  2. The mechanism of a C-H Bond Activation reaction in roomtemperature alkane solution

    SciTech Connect

    Bromberg, Steven E.; Yang, Haw; Asplund, Matthew C.; Lian, T.; McNamara, B.K.; Kotz, K.T.; Yeston, J.S.; Wilkens, M.; Frei, H.; Bergman,Robert G.; Harris, C.B.

    1997-07-31

    Chemical reactions that break alkane carbon-hydrogen (C-H) bonds are normally carried out under conditions of high temperature and pressure because these bonds are extremely strong ({approx}100 kilocalories per mole), but certain metal complexes can activate C-H bonds in alkane solution under the mild conditions of room temperature and pressure. Time-resolved infrared experiments probing the initial femtosecond dynamics through the nano- and microsecond kinetics to the final stable products have been used to generate a detailed picture of the C-H activation reaction. Structures of all of the intermediates involved in the reaction of Tp*Rh(CO)2 (Tp* = HB-Pz3*, Pz* = 3,5-dimethylpyrazolyl) in alkane solution have been identified and assigned, and energy barriers for each reaction step from solvation to formation of the final alkylhydride product have been estimated from transient lifetimes.

  3. Disulfide Bond Formation and Activation of Escherichia coli β-Galactosidase under Oxidizing Conditions

    PubMed Central

    Seras-Franzoso, Joaquin; Affentranger, Roman; Ferrer-Navarro, Mario; Daura, Xavier; Villaverde, Antonio

    2012-01-01

    Escherichia coli β-galactosidase is probably the most widely used reporter enzyme in molecular biology, cell biology, and biotechnology because of the easy detection of its activity. Its large size and tetrameric structure make this bacterial protein an interesting model for crystallographic studies and atomic mapping. In the present study, we investigate a version of Escherichia coli β-galactosidase produced under oxidizing conditions, in the cytoplasm of an Origami strain. Our data prove the activation of this microbial enzyme under oxidizing conditions and clearly show the occurrence of a disulfide bond in the β-galactosidase structure. Additionally, the formation of this disulfide bond is supported by the analysis of a homology model of the protein that indicates that two cysteines located in the vicinity of the catalytic center are sufficiently close for disulfide bond formation. PMID:22286993

  4. Palladium(II)-Catalyzed C-H Bond Activation/C-C and C-O Bond Formation Reaction Cascade: Direct Synthesis of Coumestans.

    PubMed

    Neog, Kashmiri; Borah, Ashwini; Gogoi, Pranjal

    2016-12-02

    A palladium catalyzed cascade reaction of 4-hydroxycoumarins and in situ generated arynes has been developed for the direct synthesis of coumestans. This cascade strategy proceeds via C-H bond activation/C-O and C-C bond formations in a single reaction vessel. This methodology affords moderate to good yields of coumestans and is tolerant of a variety of functional groups including halide. The methodology was applied to the synthesis of natural product flemichapparin C.

  5. Diffusion Bonding Beryllium to Reduced Activation Ferritic Martensitic Steel: Development of Processes and Techniques

    NASA Astrophysics Data System (ADS)

    Hunt, Ryan Matthew

    Only a few materials are suitable to act as armor layers against the thermal and particle loads produced by magnetically confined fusion. These candidates include beryllium, tungsten, and carbon fiber composites. The armor layers must be joined to the plasma facing components with high strength bonds that can withstand the thermal stresses resulting from differential thermal expansion. While specific joints have been developed for use in ITER (an experimental reactor in France), including beryllium to CuCrZr as well as tungsten to stainless steel interfaces, joints specific to commercially relevant fusion reactors are not as well established. Commercial first wall components will likely be constructed front Reduced Activation Ferritic Martensitic (RAFM) steel, which will need to be coating with one of the three candidate materials. Of the candidates, beryllium is particularly difficult to bond, because it reacts during bonding with most elements to form brittle intermetallic compounds. This brittleness is unacceptable, as it can lead to interface crack propagation and delamination of the armor layer. I have attempted to overcome the brittle behavior of beryllium bonds by developing a diffusion bonding process of beryllium to RAFM steel that achieves a higher degree of ductility. This process utilized two bonding aids to achieve a robust bond: a. copper interlayer to add ductility to the joint, and a titanium interlayer to prevent beryllium from forming unwanted Be-Cu intermetallics. In addition, I conducted a series of numerical simulations to predict the effect of these bonding aids on the residual stress in the interface. Lastly, I fabricated and characterized beryllium to ferritic steel diffusion bonds using various bonding parameters and bonding aids. Through the above research, I developed a process to diffusion bond beryllium to ferritic steel with a 150 M Pa tensile strength and 168 M Pa shear strength. This strength was achieved using a Hot Isostatic

  6. A computational study on the N-heterocyclic carbene-catalyzed Csp(2)-Csp(3) bond activation/[4+2] cycloaddition cascade reaction of cyclobutenones with imines: a new application of the conservation principle of molecular orbital symmetry.

    PubMed

    Wang, Yang; Wu, Bohua; Zhang, Haoyang; Wei, Donghui; Tang, Mingsheng

    2016-07-20

    A comprehensive density functional theory (DFT) investigation has been performed to interrogate the mechanisms and stereoselectivities of the Csp(2)-Csp(3) single bond activation of cyclobutenones and their [4+2] cycloaddition reaction with imines via N-heterocyclic carbene (NHC) organocatalysis. According to our calculated results, the fundamental reaction pathway contains four steps: nucleophilic addition of NHC to cyclobutenone, C-C bond cleavage for the formation of an enolate intermediate, [4+2] cycloaddition of the enolate intermediate with isatin imine, and the elimination of the NHC catalyst. In addition, the calculated results also reveal that the second reaction step is the rate-determining step, whereas the third step is the regio- and stereo-selectivity determining step. For the regio- and stereo-selectivity determining step, all four possible attack modes were considered. The addition of the C[double bond, length as m-dash]N bond in isatin imine to the dienolate intermediate is more energy favorable than the addition of the C[double bond, length as m-dash]O bond to a dienolate intermediate. Moreover, the Re face addition of the C[double bond, length as m-dash]N bond in isatin imine to the Re face of the dienolate intermediate leading to the SS configuration N-containing product was demonstrated to be most energy favorable, which is mainly due to the stronger second-order perturbation energy value in the corresponding transition state. Furthermore, by tracking the frontier molecular orbital (FMO) changes in the rate-determining C-C bond cleavage step, we found that the reaction obeys the conservation principle of molecular orbital symmetry. We believe that the present work would provide valuable insights into this kind of reaction.

  7. 78 FR 66038 - Agency Information Collection Activities: Application for Exportation of Articles Under Special Bond

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... SECURITY U. S. Customs and Border Protection Agency Information Collection Activities: Application for Exportation of Articles Under Special Bond AGENCY: U.S. Customs and Border Protection, Department of Homeland...: 1651-0004. SUMMARY: U.S. Customs and Border Protection (CBP) of the Department of Homeland...

  8. 77 FR 26024 - Agency Information Collection Activities: Bonded Warehouse Proprietor's Submission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... Management and Budget. Comments should be addressed to the OMB Desk Officer for U.S. Customs and Border... Doc No: 2012-10522] DEPARTMENT OF HOMELAND SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Bonded Warehouse Proprietor's Submission AGENCY: U.S. Customs and...

  9. 26 CFR 1.103(n)-3T - Private activity bond limit (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... City Q in any prior year made a carryforward election for the pollution control facility, (v) The... containing constitutional home rule cities. Q-2: What is the private activity bond limit for a State agency... create an issuing authority empowered to issue obligations to provide pollution control facilities...

  10. 26 CFR 1.103(n)-3T - Private activity bond limit (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... City Q in any prior year made a carryforward election for the pollution control facility, (v) The... containing constitutional home rule cities. Q-2: What is the private activity bond limit for a State agency... create an issuing authority empowered to issue obligations to provide pollution control facilities...

  11. Hydrogen-bond-assisted activation of allylic alcohols for palladium-catalyzed coupling reactions.

    PubMed

    Gumrukcu, Yasemin; de Bruin, Bas; Reek, Joost N H

    2014-03-01

    We report direct activation of allylic alcohols using a hydrogen-bond-assisted palladium catalyst and use this for alkylation and amination reactions. The novel catalyst comprises a palladium complex based on a functionalized monodentate phosphoramidite ligand in combination with urea additives and affords linear alkylated and aminated allylic products selectively. Detailed kinetic analysis show that oxidative addition of the allyl alcohol is the rate-determining step, which is facilitated by hydrogen bonds between the alcohol, the ligand functional group, and the additional urea additive.

  12. Effect of activation mode on shear bond strength of metallic brackets.

    PubMed

    Correr, Américo Bortolazzo; Costa, Ana Rosa; Lucato, Adriana Simoni; Vedovello, Silvia Amélia; Valdrighi, Heloísa Cristina; Vedovello Filho, Mário; Correr-Sobrinho, Lourenço

    2013-01-01

    The aim of this study was to evaluate the shear bond strength (SBS) of metallic orthodontic brackets bonded to bovine teeth using light-activated or chemically activated composite resins. One hundred and twenty bovine mandibular incisors were divided into 6 groups (n=20), according to the bonding materials: Transbond XT (T); Enforce Dual (ED); Enforce chemical (EC); Enforce Light-activated (EL); Concise Orthodontic (C); and RelyX Unicem Capsule (UN). Metallic brackets were positioned and firmly bonded to the teeth. Light-activation for T, ED, EL and UN was carried out with four exposures on each side of the bracket with 20 s total exposure times using XL2500 (3M ESPE). EC and C were chemically cured. Next, all specimens were stored in deionized water at 37 °C for 24 h. The shear bond strength was carried out at a crosshead speed of 1.0 mm/min. Data were subjected to one-way ANOVA and Tukey's test (α=0.05). The adhesive remnant index (ARI) was evaluated at 8× magnification. C (17.72 ± 4.45) presented significantly higher SBS means (in MPa) than the other groups (p<0.05), followed by EC (11.97 ± 5.77) and ED (10.57 ± 1.32). EL (5.39 ± 1.06) and UN (4.32 ± 1.98) showed the lowest SBS means, while T (9.09 ± 2.56) showed intermediate values. For ARI, there was a predominance of score 0 for EC, C and UN, and score 3 for T, ED and EL. In conclusion, the activation mode influenced the SBS.

  13. [The titration of double bonds in fatty acids of blood plasma in patients in testing of glucose tolerance].

    PubMed

    Titov, V N; Sazhina, N N; Evteeva, N M; Aripovskiĭ, A V; Tkhagalizhokova, E M

    2015-01-01

    The article deals with per oral glucose tolerance test applied to 20 patients with arterial hypertension. The blood plasma was analyzed to detect content of individual fatty acids, double bounds, glucose, insulin and metabolites of fatty acids. In patients with different resistance to insulin content of non-etherized fatty acids decreased approximatively up to 3 times. Without insulin resistance secretion of insulin in 2 hours after glucose load increased up to 3 times and content of individual fatty acids decreases in greater extent. Under insulin resistance secretion of insulin increases up to 8 times and decreasing of content of fatty acids is less expressed. The decrease in blood plasma of content of oleic and linoleic fatty acids and double bounds reflects effectiveness of effect of insulin--blockade of hydrolysis of triglycerides in subcutaneous adipocytes. The concentration of insulin positively correlates with initial content of palmitic fatty acid in the pool of lipids of blood plasma.

  14. Bond slip detection of concrete-encased composite structure using shear wave based active sensing approach

    NASA Astrophysics Data System (ADS)

    Zeng, Lei; Parvasi, Seyed Mohammad; Kong, Qingzhao; Huo, Linsheng; Lim, Ing; Li, Mo; Song, Gangbing

    2015-12-01

    Concrete-encased composite structure exhibits improved strength, ductility and fire resistance compared to traditional reinforced concrete, by incorporating the advantages of both steel and concrete materials. A major drawback of this type of structure is the bond slip introduced between steel and concrete, which directly reduces the load capacity of the structure. In this paper, an active sensing approach using shear waves to provide monitoring and early warning of the development of bond slip in the concrete-encased composite structure is proposed. A specimen of concrete-encased composite structure was investigated. In this active sensing approach, shear mode smart aggregates (SAs) embedded in the concrete act as actuators and generate desired shear stress waves. Distributed piezoceramic transducers installed in the cavities of steel plates act as sensors and detect the wave response from shear mode SAs. Bond slip acts as a form of stress relief and attenuates the wave propagation energy. Experimental results from the time domain analysis clearly indicate that the amplitudes of received signal by lead zirconate titanate sensors decreased when bond slip occurred. In addition, a wavelet packet-based analysis was developed to compute the received signal energy values, which can be used to determine the initiation and development of bond slip in concrete-encased composite structure. In order to establish the validity of the proposed method, a 3D finite element analysis of the concrete-steel bond model is further performed with the aid of the commercial finite element package, Abaqus, and the numerical results are compared with the results obtained in experimental study.

  15. 26 CFR 1.103(n)-2T - Private activity bond defined (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...(n)-2T Section 1.103(n)-2T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY....103(n)-2T Private activity bond defined (temporary). Q-1: What is the definition of the term “private activity bond”? A-1: In general, for purposes of §§ 1.103(n)-1T through 1.103(n)-6T, the term...

  16. The active site of hen egg-white lysozyme: flexibility and chemical bonding

    SciTech Connect

    Held, Jeanette Smaalen, Sander van

    2014-04-01

    Chemical bonding at the active site of lysozyme is analyzed on the basis of a multipole model employing transferable multipole parameters from a database. Large B factors at low temperatures reflect frozen-in disorder, but therefore prevent a meaningful free refinement of multipole parameters. Chemical bonding at the active site of hen egg-white lysozyme (HEWL) is analyzed on the basis of Bader’s quantum theory of atoms in molecules [QTAIM; Bader (1994 ▶), Atoms in Molecules: A Quantum Theory. Oxford University Press] applied to electron-density maps derived from a multipole model. The observation is made that the atomic displacement parameters (ADPs) of HEWL at a temperature of 100 K are larger than ADPs in crystals of small biological molecules at 298 K. This feature shows that the ADPs in the cold crystals of HEWL reflect frozen-in disorder rather than thermal vibrations of the atoms. Directly generalizing the results of multipole studies on small-molecule crystals, the important consequence for electron-density analysis of protein crystals is that multipole parameters cannot be independently varied in a meaningful way in structure refinements. Instead, a multipole model for HEWL has been developed by refinement of atomic coordinates and ADPs against the X-ray diffraction data of Wang and coworkers [Wang et al. (2007), Acta Cryst. D63, 1254–1268], while multipole parameters were fixed to the values for transferable multipole parameters from the ELMAM2 database [Domagala et al. (2012), Acta Cryst. A68, 337–351] . Static and dynamic electron densities based on this multipole model are presented. Analysis of their topological properties according to the QTAIM shows that the covalent bonds possess similar properties to the covalent bonds of small molecules. Hydrogen bonds of intermediate strength are identified for the Glu35 and Asp52 residues, which are considered to be essential parts of the active site of HEWL. Furthermore, a series of weak C

  17. Activation of carbon dioxide by a terminal uranium-nitrogen bond in the gas-phase: a demonstration of the principle of microscopic reversibility.

    PubMed

    Dau, Phuong D; Armentrout, P B; Michelini, Maria C; Gibson, John K

    2016-03-14

    Activation of CO2 is demonstrated by its spontaneous dissociative reaction with the gas-phase anion complex NUOCl2(-), which can be considered as NUO(+) coordinated by two chloride anion ligands. This reaction was previously predicted by density functional theory to occur exothermically, without barriers above the reactant energy. The present results demonstrate the validity of the prediction of microscopic reversibility, and provide a rare case of spontaneous dissociative addition of CO2 to a gas-phase complex. The activation of CO2 by NUOCl2(-) proceeds by conversion of a U[triple bond, length as m-dash]N bond to a U[double bond, length as m-dash]O bond and creation of an isocyanate ligand to yield the complex UO2(NCO)Cl2(-), in which uranyl, UO2(2+), is coordinated by one isocyanate and two chloride anion ligands. This activation of CO2 by a uranium(vi) nitride complex is distinctive from previous reports of oxidative insertion of CO2 into lower oxidation state U(iii) or U(iv) solid complexes, during which both C-O bonds remain intact. This unusual observation of spontaneous addition and activation of CO2 by NUOCl2(-) is a result of the high oxophilicity of uranium. If the computed Gibbs free energy of the reaction pathway, rather than the energy, is considered, there are barriers above the reactant asymptotes such that the observed reaction should not proceed under thermal conditions. This result provides a demonstration that energy rather than Gibbs free energy determines reactivity under low-pressure bimolecular conditions.

  18. Addition of quadricyclane to C[sub 60]: Easy access to fullerene derivatives bearing a reactive double bond in the side chain

    SciTech Connect

    Prato, M. ); Maggini, M.; Scorrano, G. ); Lucchini, V. )

    1993-07-02

    The reaction of C[sub 60] with quadricyclane gives a stable 6,6 adduct which has been spectroscopically characterized. The double bond of the [2.2.1]bicycloheptene moiety reacts readily with electrophiles (e.g., PhSCl). Soon after the isolation and characterization of fullerene C[sub 60], the electrophilic character of this carbon cluster was disclosed by both experimental and theoretical results. Additions of several electrophiles to C[sub 60] have also been reported, but the conditions necessary for these reactions to occur led often to inseparable mixtures of products of multiple addition. In order to allow a controlled addition of electrophiles and to enrich the chemistry of functionalization, C[sub 60] has to be structurally modified. Herein the authors report a simple cycloaddition approach to a stable and characterizable C[sub 60] derivative, in which the incorporated olefinic moiety shows high reactivity toward electrophiles. 3 figs.

  19. Chitosan-Copper (II) complex as antibacterial agent: synthesis, characterization and coordinating bond- activity correlation study

    NASA Astrophysics Data System (ADS)

    Mekahlia, S.; Bouzid, B.

    2009-11-01

    The antimicrobial activity of chitosan is unstable and sensitive to many factors such as molecular weight. Recent investigations showed that low molecular weight chitosan exhibited strong bactericidal activities compared to chitosan with high molecular weight. Since chitosan degradation can be caused by the coordinating bond, we attempt to synthesize and characterize the chitosan-Cu (II) complex, and thereafter study the coordinating bond effect on its antibacterial activity against Salmonella enteritidis. Seven chitosan-copper complexes with different copper contents were prepared and characterized by FT-IR, UV-vis, XRD and atomic absorption spectrophotometry (AAS). Results indicated that for chitosan-Cu (II) complexes with molar ratio close to 1:1, the inhibition rate reached 100%.

  20. Highly dispersed buckybowls as model carbocatalysts for C–H bond activation

    DOE PAGES

    Soykal, I. Ilgaz; Wang, Hui; Park, Jewook; ...

    2015-03-19

    Buckybowl fractions dispersed on mesoporous silica constitute an ideal model for studying the catalysis of graphitic forms of carbon since the dispersed carbon nanostructures contain a high ratio of edge defects and curvature induced by non-six-membered rings. Dispersion of the active centers on an easily accessible high surface area material allowed for high density of surface active sites associated with oxygenated structures. This report illustrates a facile method of creating model polycyclic aromatic nano-structures that are not only active for alkane C-H bond activation and oxidative dehydrogenation but also can be practical catalysts to be eventually used in industry.

  1. Solution structure and activity of the synthetic four-disulfide bond Mediterranean mussel defensin (MGD-1).

    PubMed

    Yang, Y S; Mitta, G; Chavanieu, A; Calas, B; Sanchez, J F; Roch, P; Aumelas, A

    2000-11-28

    MGD-1 is a 39-residue defensin-like peptide isolated from the edible Mediterranean mussel, Mytilus galloprovincialis. This peptide is characterized by the presence of four disulfide bonds. We report here its solid-phase synthesis and an easy way to improve the yield of the four native disulfide bonds. Synthetic and native MGD-1 display similar antibacterial activity, suggesting that the hydroxylation of Trp28 observed in native MGD-1 is not involved in the antimicrobial effect. The three-dimensional solution structure of MGD-1 has been established using (1)H NMR and mainly consists of a helical part (Asn7-Ser16) and two antiparallel beta-strands (Arg20-Cys25 and Cys33-Arg37), together giving rise to the common cystine-stabilized alpha-beta motif frequently observed in scorpion toxins. In MGD-1, the cystine-stabilized alpha-beta motif is stabilized by four disulfide bonds (Cys4-Cys25, Cys10-Cys33, Cys14-Cys35, and Cys21-Cys38), instead of by the three disulfide bonds commonly found in arthropod defensins. Except for the Cys21-Cys38 disulfide bond which is solvent-exposed, the three others belong to the particularly hydrophobic core of the highly constrained structure. Moreover, the C4-P5 amide bond in the cis conformation characterizes the MGD-1 structure. MGD-1 and insect defensin A possess similar bactericidal anti-Gram-positive activity, suggesting that the fourth disulfide bond of MGD-1 is not essential for the biological activity. In agreement with the general features of antibacterial peptides, the MGD-1 and defensin A structures display a typical distribution of positively charged and hydrophobic side chains. The positively charged residues of MGD-1 are located in three clusters. For these two defensin peptides isolated from insects and mollusks, it appears that the rather well conserved location of certain positively charged residues and of the large hydrophobic cluster are enough to generate the bactericidal potency and the Gram-positive specificity.

  2. Vibration analysis of bonded double-FGM viscoelastic nanoplate systems based on a modified strain gradient theory incorporating surface effects

    NASA Astrophysics Data System (ADS)

    Jamalpoor, Ali; Kiani, Ali

    2017-03-01

    On the basis of the modified strain gradient theory, the present paper deals with the theoretical analysis of the free vibration of coupled double-FGM viscoelastic nanoplates by Kelvin-Voigt visco-Pasternak medium. To establish static equilibrium of atoms on the each nanoplate surface, the effects of the surface layers are considered. The properties of material in the thickness direction vary according to the power low distribution. Kirchhoff plate assumption and Hamilton's variational principle are employed to achieve the partial differential equations for three different cases of vibration (out-of-phase, in-phase, and one nanoplate of the system being stationary) and corresponding boundary conditions. Navier's approach which satisfies the simply supported boundary conditions applied to analytically investigate the size effect on the natural frequencies of double-FGM viscoelastic nanoplate systems. Numerical studies are carried out to illustrate the influence of viscoelastic damping structural of the nanoplates, damping coefficient of the visco-Pasternak medium, independent length scale parameter, aspect ratio, surface properties, and other factors on the frequency behavior system. Some numerical results of this research illustrate that the frequencies may increase or decrease with respect to the sign of the surface properties of FGMs.

  3. Metal composition of layered double hydroxides (LDHs) regulating ClO(-)4 adsorption to calcined LDHs via the memory effect and hydrogen bonding.

    PubMed

    Lin, Yajie; Fang, Qile; Chen, Baoliang

    2014-03-01

    A series of calcined carbonate layered double hydroxides (CLDHs) with various metal compositions and different M(2+)/M(3+) ratios were prepared as adsorbents for perchlorate. Adsorption isotherms fit Langmuir model well, and the adsorption amount followed the order of MgAl-CLDHs ≥ MgFe-CLDHs > ZnAl-CLDHs. The isotherms of MgAl-CLDHs and MgFe-CLDHs displayed a two-step shape at low and high concentration ranges and increased with an increase in the M(2+)/M(3+) ratio from 2 to 4. The two-step isotherm was not observed for ZnAl-CLDHs, and the adsorption was minimally affected by the M(2+)/M(3+) ratio. The LDHs, CLDHs and the reconstructed samples were characterized by X-ray diffraction, SEM, FT-IR and Raman spectra to delineate the analysis of perchlorate adsorption mechanisms. The perchlorate adsorption of MgAl-CLDHs and MgFe-CLDHs was dominated by the structural memory effect and the hydrogen bonds between the free hydroxyl groups on the reconstructed-LDHs and the oxygen atoms of the perchlorates. For ZnAl-CLDHs, the perchlorate adsorption was controlled by the structural memory effect only, as the hydroxyl groups on the hydroxide layers preferred to form strong hydrogen bonds with carbonate over perchlorate, which locked the intercalated perchlorate into a more confined nano-interlayer. Several distinct binding mechanisms of perchlorate by CLDHs with unique M(2+) ions were proposed.

  4. Carbon-Carbon Bond Cleavage in Activation of the Prodrug Nabumetone

    PubMed Central

    Varfaj, Fatbardha; Zulkifli, Siti N. A.; Park, Hyoung-Goo; Challinor, Victoria L.; De Voss, James J.

    2014-01-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs. PMID:24584631

  5. Carbon-carbon bond cleavage in activation of the prodrug nabumetone.

    PubMed

    Varfaj, Fatbardha; Zulkifli, Siti N A; Park, Hyoung-Goo; Challinor, Victoria L; De Voss, James J; Ortiz de Montellano, Paul R

    2014-05-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs.

  6. Palladium-Catalyzed Dearomative Cyclocarbonylation by C-N Bond Activation.

    PubMed

    Yu, Hui; Zhang, Guoying; Huang, Hanmin

    2015-09-07

    A fundamentally novel approach to bioactive quinolizinones is based on the palladium-catalyzed intramolecular cyclocarbonylation of allylamines. [Pd(Xantphos)I2 ], which features a very large bite angle, has been found to facilitate the rapid carbonylation of azaarene-substituted allylamines into bioactive quinolizinones in good to excellent yields. This transformation represents the first dearomative carbonylation and is proposed to proceed by palladium-catalyzed CN bond activation, dearomatization, CO insertion, and a Heck reaction.

  7. Asymmetric Intramolecular Alkylation of Chiral Aromatic Imines via Catalytic C-H Bond Activation

    SciTech Connect

    Watzke, Anja; Wilson, Rebecca; O'Malley, Steven; Bergman, Robert; Ellman, Jonathan

    2007-04-16

    The asymmetric intramolecular alkylation of chiral aromatic aldimines, in which differentially substituted alkenes are tethered meta to the imine, was investigated. High enantioselectivities were obtained for imines prepared from aminoindane derivatives, which function as directing groups for the rhodium-catalyzed C-H bond activation. Initial demonstration of catalytic asymmetric intramolecular alkylation also was achieved by employing a sterically hindered achiral imine substrate and catalytic amounts of a chiral amine.

  8. Nickel-catalyzed Csp2-Csp3 bond formation by carbon-fluorine activation.

    PubMed

    Sun, Alex D; Leung, Kaylyn; Restivo, Anita D; LaBerge, Nicole A; Takasaki, Harumi; Love, Jennifer A

    2014-03-10

    We report herein a general catalytic method for Csp(2)-Csp(3) bond formation through C-F activation. The process uses an inexpensive nickel complex with either diorganozinc or alkylzinc halide reagents, including those with β-hydrogen atoms. A variety of fluorine substitution patterns and functional groups can be readily incorporated. Sequential reactions involving different precatalysts and coupling partners permit the synthesis of densely functionalized fluorinated building blocks.

  9. Intramolecular hydroalkoxylation of non-activated C=C bonds catalysed by zeolites: an experimental and theoretical study.

    PubMed

    Pérez-Mayoral, Elena; Matos, Ines; Nachtigall, Petr; Položij, Miroslav; Fonseca, Isabel; Vitvarová-Procházková, Dana; Čejka, Jiří

    2013-06-01

    The high activity and selectivity of zeolites in the cyclisation of unsaturated alcohols is reported for the first time; the details of a reaction mechanism based on quantum chemical calculations are also provided. The high efficiency of zeolites MFI, BEA and FAU in the cyclisation of unsaturated alcohols (cis-decen-1-ol, 6-methylhept-5-en-2-ol and 2-allylphenol) to afford oxygen-containing heterocyclic rings is demonstrated. The best catalytic performance is found for zeolites with the optimum concentration of Brønsted acid sites (ca. 0.2 mmol g(-1)) and the minimum number of Lewis acid sites. It is proposed that the efficiency of the catalysts is reduced by the existence of the so-called dual site, at which a molecule of unsaturated alcohol can simultaneously interact with two acid sites (an OH group with one and the double bond with the other Brønsted site), which increases the interaction strength. The formation of such adsorption complexes leads to a decrease in the catalyst activity because of (i) an increase in the reaction barrier, (ii) an unfavourable conformation and (iii) diffusion limitations. A new procedure for the preparation of tetrahydrofurans and pyrans over zeolite catalysts provides important oxygen-containing heterocycles with numerous applications.

  10. Silylations of Arenes with Hydrosilanes: From Transition-Metal-Catalyzed C¢X Bond Cleavage to Environmentally Benign Transition-Metal-Free C¢H Bond Activation.

    PubMed

    Xu, Zheng; Xu, Li-Wen

    2015-07-08

    The construction of carbon-silicon bonds is highlighted as an exciting achievement in the field of organosilicon chemistry and green chemistry. Recent developments in this area will enable the sustainable chemical conversion of silicon resources into synthetically useful compounds. Especially, the catalytic silylation through C¢H bond activation without directing groups and hydrogen acceptors is one of the most challenging topics in organic chemistry and green chemistry. These remarkable findings on catalytic silylation can pave the way to a more environmentally benign utilization of earth-abundant silicon-based resources in synthetic chemistry.

  11. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4, C2H3F, and 1,1-C2H2F2) near and above threshold

    DOE PAGES

    Gaire, B.; Gatton, A. S.; Wiegandt, F.; ...

    2016-09-14

    We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinatedmore » molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.« less

  12. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4, C2H3F, and 1,1-C2H2F2) near and above threshold

    SciTech Connect

    Gaire, B.; Gatton, A. S.; Wiegandt, F.; Neff, J.; Janke, C.; Zeller, S.; Reedy, D.; Rajput, J.; Ben-Itzahk, I.; Landers, A. L.; Belkacem, A.; Weber, Th.

    2016-09-14

    We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinated molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.

  13. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4 , C2H3F , and 1 ,1 -C2H2F2 ) near and above threshold

    NASA Astrophysics Data System (ADS)

    Gaire, B.; Gatton, A.; Wiegandt, F.; Neff, J.; Janke, C.; Zeller, S.; Reedy, D.; Rajput, J.; Ben-Itzhak, I.; Landers, A. L.; Belkacem, A.; Weber, Th.

    2016-09-01

    We investigate bond-rearrangement driven by photo-double-ionization (PDI) near and above the double-ionization threshold in a sequence of carbon-carbon double-bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy method to resolve all photo-double-ionization events leading to two-ion fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of no, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing, as evident by the reordering of the threshold energies of the PDI in the fluorinated molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molecules and drives bond rearrangement during the dissociation process. The energy sharing and the relative angle between the three-dimensional momentum vectors of the two electrons enable us to distinguish between knockout and other ionization mechanisms of the PDI processes.

  14. 26 CFR 1.103(n)-4T - Elective carryforward of unused private activity bond limit (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... bond limit (temporary). 1.103(n)-4T Section 1.103(n)-4T Internal Revenue INTERNAL REVENUE SERVICE... Excluded from Gross Income § 1.103(n)-4T Elective carryforward of unused private activity bond limit... carryforward for any one or more projects described in A-5 of this § 1.103(n)-4T (carryforward projects)....

  15. 26 CFR 1.103(n)-4T - Elective carryforward of unused private activity bond limit (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... bond limit (temporary). 1.103(n)-4T Section 1.103(n)-4T Internal Revenue INTERNAL REVENUE SERVICE... Excluded from Gross Income § 1.103(n)-4T Elective carryforward of unused private activity bond limit... carryforward for any one or more projects described in A-5 of this § 1.103(n)-4T (carryforward projects)....

  16. B-H activation and H-H formation: two consecutive heterolytic processes on an osmium-hydrogensulfide bond.

    PubMed

    Esteruelas, Miguel A; López, Ana M; Mora, Malka; Oñate, Enrique

    2013-09-04

    Heterolytic B-H activation and H-H formation on an Os-SH bond give borylthiolate-dihydrogen derivatives. These species exchange borylthiol by borane to afford σ-borane derivatives or release H2 and undergo a hydride-boryl exchange to yield boryl-hydrogensulfide complexes depending on the boryl group bonded to the sulfur atom.

  17. 26 CFR 1.103(n)-4T - Elective carryforward of unused private activity bond limit (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... bond limit (temporary). 1.103(n)-4T Section 1.103(n)-4T Internal Revenue INTERNAL REVENUE SERVICE... Excluded from Gross Income § 1.103(n)-4T Elective carryforward of unused private activity bond limit... carryforward for any one or more projects described in A-5 of this § 1.103(n)-4T (carryforward projects)....

  18. A theoretical study of molecular structure, optical properties and bond activation of energetic compound FOX-7 under intense electric fields

    NASA Astrophysics Data System (ADS)

    Tao, Zhiqiang; Wang, Xin; Wei, Yuan; Lv, Li; Wu, Deyin; Yang, Mingli

    2017-02-01

    Molecular structure, vibrational and electronic absorption spectra, chemical reactivity of energetic compound FOX-7, one of the most widely used explosives, were studied computationally in presence of an electrostatic field of 0.01-0.05 a.u. The Csbnd N bond, which usually triggers the decomposition of FOX-7, is shortened/elongated under a parallel/antiparallel field. The Csbnd N bond activation energy varies with the external electric field, decreasing remarkably with the field strength in regardless of the field direction. This is attributed to two aspects: the bond weakening by the field parallel to the Csbnd N bond and the stabilization effect on the transition-state structure by the field antiparallel to the bond. The variations in the structure and property of FOX-7 under the electric fields were further analyzed with its distributional polarizability, which is dependent on the charge transfer characteristics through the Csbnd N bond.

  19. Phosphate-intercalated Ca-Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate

    NASA Astrophysics Data System (ADS)

    Woo, Myong A.; Woo Kim, Tae; Paek, Mi-Jeong; Ha, Hyung-Wook; Choy, Jin-Ho; Hwang, Seong-Ju

    2011-01-01

    The nitrate-form of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) was synthesized via co-precipitation method, and its phosphate-intercalates were prepared by ion-exchange reaction. According to X-ray diffraction analysis, the Ca-Fe-LDH-NO 3- compound and its H 2PO 4--intercalate showed hexagonal layered structures, whereas the ion-exchange reaction with HPO 42- caused a frustration of the layer ordering of LDH. Fe K-edge X-ray absorption spectroscopy clearly demonstrated that the Ca-Fe-LDH lattice with trivalent iron ions was well-maintained after the ion-exchange with HPO 42- and H 2PO 4-. Under acidic conditions, phosphate ions were slowly released from the Ca-Fe-LDH lattice and the simultaneous release of hydroxide caused the neutralization of acidic media. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. This study strongly suggested that Ca-Fe-LDH is applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil.

  20. Is the peptide bond formation activated by Cu(2+) interactions? Insights from density functional calculations.

    PubMed

    Rimola, A; Rodríguez-Santiago, L; Ugliengo, P; Sodupe, M

    2007-05-24

    The catalytic role that Cu(2+) cations play in the peptide bond formation has been addressed by means of density functional calculations. First, the Cu(2+)-(glycine)2 --> Cu(2+)-(glycylglycine) + H2O reaction was investigated since mass spectrometry low collision activated dissociation (CAD) spectra of Cu(2+)-(glycine)2 led to the elimination of a water molecule, which suggested that an intracomplex peptide bond formation might have occurred. Results show that this intracomplex condensation is associated to a very high free energy barrier (97 kcal mol(-1)) and reaction free energy (66 kcal mol(-1)) because of the loss of metal coordination during the reaction. Second, on the basis of the salt-induced peptide formation theory, the condensation reaction between two glycines was studied in aqueous solution using discrete water molecules and the conductor polarized continuum model (CPCM) continuous method. It is found that the synergy between the interaction of glycines with Cu(2+) and the presence of water molecules acting as proton-transfer helpers significantly lower the activation barrier (from 55 kcal/mol for the uncatalyzed system to 20 kcal/mol for the Cu(2+) solvated system) which largely favors the formation of the peptide bond.

  1. Time resolved infrared studies of C-H bond activation by organometallics

    SciTech Connect

    Asplund, M.C. |

    1998-06-01

    This work describes how step-scan Fourier Transform Infrared spectroscopy and visible and near infrared ultrafast lasers have been applied to the study of the photochemical activation of C-H bonds in organometallic systems, which allow for the selective breaking of C-H bonds in alkanes. The author has established the photochemical mechanism of C-H activation by Tp{sup *}Rh(CO){sub 2}(Tp{sup *} = HB-Pz{sup *}{sub 3}, Pz = 3,5-dimethylpyrazolyl) in alkane solution. The initially formed monocarbonyl forms a weak solvent complex, which undergoes a change in Tp{sup *} ligand connectivity. The final C-H bond breaking step occurs at different time scales depending on the structure of the alkane. In linear solvents, the time scale is <50 ns and cyclic alkanes is {approximately}200 ps. The reactivity of the Tp{sup *}Rh(CO){sub 2} system has also been studied in aromatic solvents. Here the reaction proceeds through two different pathways, with very different time scales. The first proceeds in a manner analogous to alkanes and takes <50 ns. The second proceeds through a Rh-C-C complex, and takes place on a time scale of 1.8 {micro}s.

  2. Mercury Detoxification by Bacteria: Simulations of Transcription Activation and Mercury-Carbon Bond Cleavage

    SciTech Connect

    Guo, Hao-Bo; Parks, Jerry M; Johs, Alexander; Smith, Jeremy C

    2011-01-01

    In this chapter, we summarize recent work from our laboratory and provide new perspective on two important aspects of bacterial mercury resistance: the molecular mechanism of transcriptional regulation by MerR, and the enzymatic cleavage of the Hg-C bond in methylmercury by the organomercurial lyase, MerB. Molecular dynamics (MD) simulations of MerR reveal an opening-and-closing dynamics, which may be involved in initiating transcription of mercury resistance genes upon Hg(II) binding. Density functional theory (DFT) calculations on an active-site model of the enzyme reveal how MerB catalyzes the Hg-C bond cleavage using cysteine coordination and acid-base chemistry. These studies provide insight into the detailed mechanisms of microbial gene regulation and defense against mercury toxicity.

  3. Hydrogen induced C-C, C-N, and C-S bond activation on Pt and Ni surfaces

    SciTech Connect

    Gland, J.L.

    1992-12-01

    The work has focussed on hydrogen induced bond activation in adsorbed organic molecules and intermediates containin C-S and C-N and C-C bonds on Ni(100), Ni(111), and Pt(111) surfaces. Fluorescence Yield Near Edge Spectroscopy (FYNES) above the carbon K edge was used for adsorbed organic reactants and in-situ kinetic studies of bond activation. Results indicate that the activation is enhanced on Ni relative to Pt. Methylthiolate and methylamine adsorbed on Pt(111) were studied.

  4. Hydrogen induced C-C, C-N, and C-S bond activation on Pt and Ni surfaces

    SciTech Connect

    Gland, J.L.

    1992-01-01

    The work has focussed on hydrogen induced bond activation in adsorbed organic molecules and intermediates containin C-S and C-N and C-C bonds on Ni(100), Ni(111), and Pt(111) surfaces. Fluorescence Yield Near Edge Spectroscopy (FYNES) above the carbon K edge was used for adsorbed organic reactants and in-situ kinetic studies of bond activation. Results indicate that the activation is enhanced on Ni relative to Pt. Methylthiolate and methylamine adsorbed on Pt(111) were studied.

  5. C-H Bond Activation/Arylation Catalyzed by Arene-Ruthenium-Aniline Complexes in Water.

    PubMed

    Binnani, Chinky; Tyagi, Deepika; Rai, Rohit K; Mobin, Shaikh M; Singh, Sanjay K

    2016-11-07

    Water-soluble arene-ruthenium complexes coordinated with readily available aniline-based ligands were successfully employed as highly active catalysts in the C-H bond activation and arylation of 2-phenylpyridine with aryl halides in water. A variety of (hetero)aryl halides were also used for the ortho-C-H bond arylation of 2-phenylpyridine to afford the corresponding ortho- monoarylated products as major products in moderate to good yields. Our investigations, including time-scaled NMR spectroscopy and mass spectrometry studies, evidenced that the coordinating aniline-based ligands, having varying electronic and steric properties, had a significant influence on the catalytic activity of the resulting arene-ruthenium-aniline-based complexes. Moreover, mass spectrometry identification of the cycloruthenated species, {(η(6) -arene)Ru(κ(2) -C,N-phenylpyridine)}(+) , and several ligand-coordinated cycloruthenated species, such as [(η(6) -arene)Ru(4-methylaniline)(κ(2) -C,N-phenylpyridine)](+) , found during the reaction of 2-phenylpyridine with the arene-ruthenium-aniline complexes further authenticated the crucial roles of these species in the observed highly active and tuned catalyst. At last, the structures of a few of the active catalysts were also confirmed by single-crystal X-ray diffraction studies.

  6. Optically and biologically active mussel protein-coated double-walled carbon nanotubes.

    PubMed

    Jung, Yong Chae; Muramatsu, Hiroyuki; Fujisawa, Kazunori; Kim, Jin Hee; Hayashi, Takuya; Kim, Yoong Ahm; Endo, Morinobu; Terrones, Mauricio; Dresselhaus, Mildred S

    2011-12-02

    A method of dispersing strongly bundled double-walled carbon nanotubes (DWNTs) via a homogeneous coating of mussel protein in an aqueous solution is presented. Optical activity, mechanical strength, as well as electrical conductivity coming from the nanotubes and the versatile biological activity from the mussel protein make mussel-coated DWNTs promising as a multifunctional scaffold and for anti-fouling materials.

  7. Ultrafast studies of organometallic photochemistry: The mechanism of carbon-hydrogen bond activation in solution

    SciTech Connect

    Bromberg, S.E.

    1998-05-01

    When certain organometallic compounds are photoexcited in room temperature alkane solution, they are able to break or activate the C-H bonds of the solvent. Understanding this potentially practical reaction requires a detailed knowledge of the entire reaction mechanism. Because of the dynamic nature of chemical reactions, time-resolved spectroscopy is commonly employed to follow the important events that take place as reactants are converted to products. For the organometallic reactions examined here, the electronic/structural characteristics of the chemical systems along with the time scales for the key steps in the reaction make ultrafast UV/Vis and IR spectroscopy along with nanosecond Step-Scan FTIR spectroscopy the ideal techniques to use for this study. An initial study of the photophysics of (non-activating) model metal carbonyls centering on the photodissociation of M(CO){sub 6} (M = Cr, W, Mo) was carried out in alkane solutions using ultrafast IR spectroscopy. Next, picosecond UV/vis studies of the C-H bond activation reaction of Cp{sup *}M(CO){sub 2} (M = Rh, Ir), conducted in room temperature alkane solution, are described in an effort to investigate the origin of the low quantum yield for bond cleavage ({approximately}1%). To monitor the chemistry that takes place in the reaction after CO is lost, a system with higher quantum yield is required. The reaction of Tp{sup *}Rh(CO){sub 2} (Tp{sup *} = HB-Pz{sub 3}{sup *}, Pz{sup *} = 3,5-dimethylpyrazolyl) in alkanes has a quantum yield of {approximately}30%, making time resolved spectroscopic measurements possible. From ultrafast IR experiments, two subsequently formed intermediates were observed. The nature of these intermediates are discussed and the first comprehensive reaction mechanism for a photochemical C-H activating organometallic complex is presented.

  8. Transparent and electrically conductive GaSb/Si direct wafer bonding at low temperatures by argon-beam surface activation

    NASA Astrophysics Data System (ADS)

    Predan, F.; Reinwand, D.; Klinger, V.; Dimroth, F.

    2015-10-01

    Direct wafer bonds of the material system n-GaSb/n-Si have been achieved by means of a low-temperature direct wafer bonding process, enabling an optical transparency of the bonds along with a high electrical conductivity of the boundary layer. In the used technique, the surfaces are activated by sputter-etching with an argon fast-atom-beam (FAB) and bonded in ultra-high vacuum. The bonds were annealed at temperatures between 300 and 400 °C, followed by an optical, mechanical and electrical characterization of the interface. Additionally, the influence of the sputtering on the surface topography of the GaSb was explicitly investigated. Fully bonded wafer pairs with high bonding strengths were found, as no blade could be inserted into the bonds without destroying the samples. The interfacial resistivities of the bonded wafers were significantly reduced by optimizing the process parameters, by which Ohmic interfacial resistivities of less than 5 mΩ cm2 were reached reproducibly. These promising results make the monolithic integration of GaSb on Si attractive for various applications.

  9. Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.

    PubMed

    Ruscic, Branko

    2015-07-16

    Active Thermochemical Tables (ATcT) thermochemistry for the sequential bond dissociations of methane, ethane, and methanol systems were obtained by analyzing and solving a very large thermochemical network (TN). Values for all possible C-H, C-C, C-O, and O-H bond dissociation enthalpies at 298.15 K (BDE298) and bond dissociation energies at 0 K (D0) are presented. The corresponding ATcT standard gas-phase enthalpies of formation of the resulting CHn, n = 4-0 species (methane, methyl, methylene, methylidyne, and carbon atom), C2Hn, n = 6-0 species (ethane, ethyl, ethylene, ethylidene, vinyl, ethylidyne, acetylene, vinylidene, ethynyl, and ethynylene), and COHn, n = 4-0 species (methanol, hydroxymethyl, methoxy, formaldehyde, hydroxymethylene, formyl, isoformyl, and carbon monoxide) are also presented. The ATcT thermochemistry of carbon dioxide, water, hydroxyl, and carbon, oxygen, and hydrogen atoms is also included, together with the sequential BDEs of CO2 and H2O. The provenances of the ATcT enthalpies of formation, which are quite distributed and involve a large number of relevant determinations, are analyzed by variance decomposition and discussed in terms of principal contributions. The underlying reasons for periodic appearances of remarkably low and/or unusually high BDEs, alternating along the dissociation sequences, are analyzed and quantitatively rationalized. The present ATcT results are the most accurate thermochemical values currently available for these species.

  10. C-C Bond Activation and Coupling of Propene Induced by la Atom

    NASA Astrophysics Data System (ADS)

    Hewage, Dilrukshi; Tao, Hong; Silva, Ruchira; Kumari, Sudesh; Yang, Dong-Sheng

    2013-06-01

    A series of La(C_nH_m) complexes with n ≤ 6 and m ≤ 12 were produced by the reactions between propene and La in a supersonic molecular beam source. Their formation and structures were investigated using mass-analyzed threshold ionization (MATI) spectroscopy in combination with theoretical calculations. Previously, we identified the formation of La(C_3H_4) and H-La(C_3H_5) through dehydrogenation and metal insertion mechanisms. In this work, we will discuss the formation of La(CH_2) and La(C_4H_6) by La induced C-C bond activation and coupling. La(CH_2) is formed by the C-C bond breakage and 1,2-hydride shift of propene and is a Schrock-type carbene complex. This complex is then coupled with the C=C bond of a second propene molecule to form La(C_4H_6) by removing two hydrogen atoms. The resultant La(C_4H_6) complex was idetified in two low-energy isomeric forms: one was a metallacycle (isomer A) and the other was lanthanum trimethylenemethane (isomer B). Both La(C_4H_6) isomers are in a doublet ground state, with isomer A in C_s point group and isomer B in C_3_v. Adiabatic ionization energies and several vibrational frequencies of the two complexes were obtained from the sharp MATI spectra.

  11. Active site remodelling accompanies thioester bond formation in the SUMO E1

    SciTech Connect

    Olsen, Shaun K.; Capili, Allan D.; Lu, Xuequan; Tan, Derek S.; Lima, Christopher D.

    2010-03-30

    E1 enzymes activate ubiquitin (Ub) and ubiquitin-like (Ubl) proteins in two steps by carboxy-terminal adenylation and thioester bond formation to a conserved catalytic cysteine in the E1 Cys domain. The structural basis for these intermediates remains unknown. Here we report crystal structures for human SUMO E1 in complex with SUMO adenylate and tetrahedral intermediate analogues at 2.45 and 2.6 {angstrom}, respectively. These structures show that side chain contacts to ATP-Mg are released after adenylation to facilitate a 130 degree rotation of the Cys domain during thioester bond formation that is accompanied by remodelling of key structural elements including the helix that contains the E1 catalytic cysteine, the crossover and re-entry loops, and refolding of two helices that are required for adenylation. These changes displace side chains required for adenylation with side chains required for thioester bond formation. Mutational and biochemical analyses indicate these mechanisms are conserved in other E1s.

  12. Active site remodelling accompanies thioester bond formation in the SUMO E1.

    PubMed

    Olsen, Shaun K; Capili, Allan D; Lu, Xuequan; Tan, Derek S; Lima, Christopher D

    2010-02-18

    E1 enzymes activate ubiquitin (Ub) and ubiquitin-like (Ubl) proteins in two steps by carboxy-terminal adenylation and thioester bond formation to a conserved catalytic cysteine in the E1 Cys domain. The structural basis for these intermediates remains unknown. Here we report crystal structures for human SUMO E1 in complex with SUMO adenylate and tetrahedral intermediate analogues at 2.45 and 2.6 A, respectively. These structures show that side chain contacts to ATP.Mg are released after adenylation to facilitate a 130 degree rotation of the Cys domain during thioester bond formation that is accompanied by remodelling of key structural elements including the helix that contains the E1 catalytic cysteine, the crossover and re-entry loops, and refolding of two helices that are required for adenylation. These changes displace side chains required for adenylation with side chains required for thioester bond formation. Mutational and biochemical analyses indicate these mechanisms are conserved in other E1s.

  13. Water-containing hydrogen-bonding network in the active center of channelrhodopsin.

    PubMed

    Ito, Shota; Kato, Hideaki E; Taniguchi, Reiya; Iwata, Tatsuya; Nureki, Osamu; Kandori, Hideki

    2014-03-05

    Channelrhodopsin (ChR) functions as a light-gated ion channel in Chlamydomonas reinhardtii. Passive transport of cations by ChR is fundamentally different from the active transport by light-driven ion pumps such as archaerhodopsin, bacteriorhodopsin, and halorhodopsin. These microbial rhodopsins are important tools for optogenetics, where ChR is used to activate neurons by light, while the ion pumps are used for neural silencing. Ion-transport functions by these rhodopsins strongly depend on the specific hydrogen-bonding networks containing water near the retinal chromophore. In this work, we measured protein-bound water molecules in a chimeric ChR protein of ChR1 (helices A to E) and ChR2 (helices F and G) of Chlamydomonas reinhardtii using low-temperature FTIR spectroscopy at 77 K. We found that the active center of ChR possesses more water molecules (9 water vibrations) than those of other microbial (2-6 water vibrations) and animal (6-8 water vibrations) rhodopsins. We conclude that the protonated retinal Schiff base interacts with the counterion (Glu162) directly, without the intervening water molecule found in proton-pumping microbial rhodopsins. The present FTIR results and the recent X-ray structure of ChR reveal a unique hydrogen-bonding network around the active center of this light-gated ion channel.

  14. Effect of photo-activated disinfection on bond strength of three different root canal sealers

    PubMed Central

    Ok, Evren; Ertas, Huseyin; Saygili, Gokhan; Gok, Tuba

    2014-01-01

    Introduction: The aim of this in vitro study was to evaluate the bond strength of Photo-Activated Disinfection (PAD) system to dentin with different root canal sealers by using a push-out test design. Materials and Methods: A total of 30 extracted mandibular premolar teeth with single and straight roots were used. The crowns were removed and the root canals were prepared by using ProTaper rotary files. The smear layer was removed and the roots were randomly divided into two groups (n = 15) according to the use of PAD system as the final disinfecting agent. Each group was then divided into 6 (n = 5) subgroups and obturated with gutta-percha and 3 different root canal sealers. The groups were Group 1: Sodium hypochlorite (NaOCl) + ethylenediaminetetraacetic acid (EDTA)-AH Plus sealer; Group 2: NaOCl + EDTA + PAD-AH Plus; Group 3: NaOCl + EDTA-Sealapex; Group 4: NaOCl + EDTA + PAD-Sealapex; Group 5: NaOCl + EDTA-mineral trioxide aggregate (MTA)-Fiallapex; and Group 6: NaOCl + EDTA + PAD-MTA-Fillapex. 1-mm thickness horizontal sections (n: 5 × 4 = 20) were sliced for the push-out bond strength measurement. Results: Group 3 and 4 showed significantly lower bond strengths compared with all the other groups (P < 0.05). No statistically significant difference was found among Groups 1, 2 and 5, but there was statistically significant difference between Group 5 and 6 (P < 0.05). Conclusion: This in vitro study indicated that the PAD system adversely affected the bond strength of the MTA Fillapex root canal sealer. PMID:24966752

  15. New light on the Co-C bond activation in B 12-dependent enzymes from density functional theory

    NASA Astrophysics Data System (ADS)

    Andruniow, Tadeusz; Zgierski, Marek Z.; Kozlowski, Pawel M.

    2000-12-01

    Density functional theory (DFT) is applied to the calculation of activation of the Co-C R bond in models of vitamin B 12, B-[Co III(corrin)]-R. It is shown that there is a positive correlation of the bond lengths between the Co atom and the two axial ligands, B and R. The electron donation from axial ligands to the cobalt atom either by electron donating substituents or by a properly oriented external electric field caused by external electric charges is argued to be the main trigger for the activation of the Co-C R bond.

  16. Synthesis of new class of alkyl azarene pyridinium zwitterions via iodine mediated sp3 C-H bond activation.

    PubMed

    Kumar, Atul; Gupta, Garima; Srivastava, Suman

    2011-12-16

    An efficient and conceptually different approach toward C-H bond activation by using iodine mediated sp(3) C-H functionalization for the synthesis of alkyl azaarene pyridinium zwitterions is described. This work has the interesting distinction of being the first synthesis of a new class of alkyl azaarene pyridinium zwitterion via transition-metal-free sp(3) C-H bond activation of an alkyl azaarene.

  17. Highly Active Gold(I)-Silver(I) Oxo Cluster Activating sp³ C-H Bonds of Methyl Ketones under Mild Conditions.

    PubMed

    Pei, Xiao-Li; Yang, Yang; Lei, Zhen; Chang, Shan-Shan; Guan, Zong-Jie; Wan, Xian-Kai; Wen, Ting-Bin; Wang, Quan-Ming

    2015-04-29

    The activation of C(sp(3))-H bonds is challenging, due to their high bond dissociation energy, low proton acidity, and highly nonpolar character. Herein we report a unique gold(I)-silver(I) oxo cluster protected by hemilabile phosphine ligands [OAu3Ag3(PPhpy2)3](BF4)4 (1), which can activate C(sp(3))-H bonds under mild conditions for a broad scope of methyl ketones (RCOCH3, R = methyl, phenyl, 2-methylphenyl, 2-aminophenyl, 2-hydroxylphenyl, 2-pyridyl, 2-thiazolyl, tert-butyl, ethyl, isopropyl). Activation happens via triple deprotonation of the methyl group, leading to formation of heterometallic Au(I)-Ag(I) clusters with formula RCOCAu4Ag4(PPhpy2)4(BF4)5 (PPhpy2 = bis(2-pyridyl)phenylphosphine). Cluster 1 can be generated in situ via the reaction of [OAu3Ag(PPhpy2)3](BF4)2 with 2 equiv of AgBF4. The oxo ion and the metal centers are found to be essential in the cleavage of sp(3) C-H bonds of methyl ketones. Interestingly, cluster 1 selectively activates the C-H bonds in -CH3 rather than the N-H bonds in -NH2 or the O-H bond in -OH which is traditionally thought to be more reactive than C-H bonds. Control experiments with butanone, 3-methylbutanone, and cyclopentanone as substrates show that the auration of the C-H bond of the terminal methyl group is preferred over secondary or tertiary sp(3) C-H bonds; in other words, the C-H bond activation is influenced by steric effect. This work highlights the powerful reactivity of metal clusters toward C-H activation and sheds new light on gold(I)-mediated catalysis.

  18. Temperature-induced melting of double-stranded DNA in the absence and presence of covalently bonded antitumour drugs: insight from molecular dynamics simulations.

    PubMed

    Bueren-Calabuig, Juan A; Giraudon, Christophe; Galmarini, Carlos M; Egly, Jean Marc; Gago, Federico

    2011-10-01

    The difference in melting temperature of a double-stranded (ds) DNA molecule in the absence and presence of bound ligands can provide experimental information about the stabilization brought about by ligand binding. By simulating the dynamic behaviour of a duplex of sequence 5'-d(TAATAACGGATTATT)·5'-d(AATAATCCGTTATTA) in 0.1 M NaCl aqueous solution at 400 K, we have characterized in atomic detail its complete thermal denaturation profile in <200 ns. A striking asymmetry was observed on both sides of the central CGG triplet and the strand separation process was shown to be strongly affected by bonding in the minor groove of the prototypical interstrand crosslinker mitomycin C or the monofunctional tetrahydroisoquinolines trabectedin (Yondelis), Zalypsis and PM01183. Progressive helix unzipping was clearly interspersed with some reannealing events, which were most noticeable in the oligonucleotides containing the monoadducts, which maintained an average of 6 bp in the central region at the end of the simulations. These significant differences attest to the demonstrated ability of these drugs to stabilize dsDNA, stall replication and transcription forks, and recruit DNA repair proteins. This stabilization, quantified here in terms of undisrupted base pairs, supports the view that these monoadducts can functionally mimic a DNA interstrand crosslink.

  19. Temperature-induced melting of double-stranded DNA in the absence and presence of covalently bonded antitumour drugs: insight from molecular dynamics simulations

    PubMed Central

    Bueren-Calabuig, Juan A.; Giraudon, Christophe; Galmarini, Carlos M.; Egly, Jean Marc; Gago, Federico

    2011-01-01

    The difference in melting temperature of a double-stranded (ds) DNA molecule in the absence and presence of bound ligands can provide experimental information about the stabilization brought about by ligand binding. By simulating the dynamic behaviour of a duplex of sequence 5′-d(TAATAACGGATTATT)·5′-d(AATAATCCGTTATTA) in 0.1 M NaCl aqueous solution at 400 K, we have characterized in atomic detail its complete thermal denaturation profile in <200 ns. A striking asymmetry was observed on both sides of the central CGG triplet and the strand separation process was shown to be strongly affected by bonding in the minor groove of the prototypical interstrand crosslinker mitomycin C or the monofunctional tetrahydroisoquinolines trabectedin (Yondelis®), Zalypsis® and PM01183®. Progressive helix unzipping was clearly interspersed with some reannealing events, which were most noticeable in the oligonucleotides containing the monoadducts, which maintained an average of 6 bp in the central region at the end of the simulations. These significant differences attest to the demonstrated ability of these drugs to stabilize dsDNA, stall replication and transcription forks, and recruit DNA repair proteins. This stabilization, quantified here in terms of undisrupted base pairs, supports the view that these monoadducts can functionally mimic a DNA interstrand crosslink. PMID:21727089

  20. Molecular structures and hydrogen bonding in the crystalline hydrates of two flexible double betaines with different quaternary ammonio groups in the adipic acid skeleton

    NASA Astrophysics Data System (ADS)

    Wu, De-Dong; Mak, Thomas C. W.

    1995-12-01

    Crystalline dihydrates of two flexible double betaines -O 2CCH(R)CH 2CH 2CH(R)CO -2 ( 1, R = Me 3N +, 2, R = C 5H 5N +) have been characterized by single-crystal X-ray analysis. Both compounds crystallize in the monoclinic space group {P2 1}/{c} with a = 7.463(4), b = 10.312(6), c = 9.978(5) Å, β = 90.18(5)°, Z = 2 for 1·2H 2O and a = 9.063(2), b = 7.665(1), c = 11.962(1) Å, β = 94.89(1)°, Z = 2 for 2·2H 2O. Both betaine molecules occupy l¯ sites but differ with regard to the orientation of the carboxylate groups and ammonio groups. In each crystal structure, the formation of donor hydrogen bonds from the water molecules to adjacent carboxylate groups gives rise to an infinte two-dimensional network composed of a packing of identical 26-membered rings.

  1. Respective contributions of polar vs enthalpy effects in the addition/fragmentation of mercaptobenzoxazole-derived thiyl radicals and analogues to double bonds.

    PubMed

    Lalevée, J; Allonas, X; Morlet-Savary, F; Fouassier, J P

    2006-10-19

    The formation and the reactivity of three selected sulfur-centered radicals formed from mercaptobenzoxazole, mercaptobenzimidazole, and mercaptobenzothiazole toward four double bonds (methyl acrylate, acrylonitrile, vinyl ether, and vinyl acetate) are investigated. The reversibility of the addition/fragmentation reaction in these widely used photoinitiating systems of radical polymerization was studied, for the first time, through the measurement of the corresponding rate constants by time-resolved laser spectroscopy. The combination of these results with quantum mechanical calculations clearly evidences that, contrary to previous studies on other aryl thiyl radicals, the addition rate constants (ka) are governed here by the polar effects associated with the very high electrophilic character of these radicals. However, interestingly, the back-fragmentation reaction (k-a) is mainly influenced by the enthalpy effects as supported by the relationship between the rate constants and the addition reaction enthalpy DeltaHR. The addition and fragmentation rate constants calculated from the transition state theory (TST) are in satisfactory agreement with the experimental ones. Therefore, molecular orbital (MO) calculations offered new opportunities for a better understanding of the sulfur-centered radical reactivity.

  2. Annulation of Aromatic Imines via Directed C-H BondActivation

    SciTech Connect

    Thalji, Reema K.; Ahrendt, Kateri A.; Bergman, Robert G.; Ellman,Jonathan A.

    2005-04-14

    A directed C-H bond activation approach to the synthesis of indans, tetralins, dihydrofurans, dihydroindoles, and other polycyclic aromatic compounds is presented. Cyclization of aromatic ketimines and aldimines containing alkenyl groups tethered at the meta position relative to the imine directing group has been achieved using (PPh{sub 3}){sub 3}RhCl (Wilkinson's catalyst). The cyclization of a range of aromatic ketimines and aldimines provides bi- and tricyclic ring systems with good regioselectivity. Different ring sizes and substitution patterns can be accessed through the coupling of monosubstituted, 1,1- or 1,2-disubstituted, and trisubstituted alkenes bearing both electron-rich and electron-deficient functionality.

  3. Selective molecular recognition, C-H bond activation, and catalysis in nanoscale reaction vessels

    SciTech Connect

    Fiedler, Dorothea; Leung, Dennis H.; Raymond, Kenneth N.; Bergman, Robert G.

    2004-11-27

    Supramolecular chemistry represents a way to mimic enzyme reactivity by using specially designed container molecules. We have shown that a chiral self-assembled M{sub 4}L{sub 6} supramolecular tetrahedron can encapsulate a variety of cationic guests, with varying degrees of stereoselectivity. Reactive iridium guests can be encapsulated and the C-H bond activation of aldehydes occurs, with the host cavity controlling the ability of substrates to interact with the metal center based upon size and shape. In addition, the host container can act as a catalyst by itself. By restricting reaction space and preorganizing the substrates into reactive conformations, it accelerates the sigmatropic rearrangement of enammonium cations.

  4. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.

    PubMed

    Baker, Thomas A; Liu, Xiaoying; Friend, Cynthia M

    2011-01-07

    Recently, gold has been intensely studied as a catalyst for key synthetic reactions. Gold is an attractive catalyst because, surprisingly, it is highly active and very selective for partial oxidation processes suggesting promise for energy-efficient "green" chemistry. The underlying origin of the high activity of Au is a controversial subject since metallic gold is commonly thought to be inert. Herein, we establish that one origin of the high activity for gold catalysis is the extremely reactive nature of atomic oxygen bound in 3-fold coordination sites on metallic gold. This is the predominant form of O at low concentrations on the surface, which is a strong indication that it is most relevant to catalytic conditions. Atomic oxygen bound to metallic Au in 3-fold sites has high activity for CO oxidation, oxidation of olefins, and oxidative transformations of alcohols and amines. Among the factors identified as important in Au-O interaction are the morphology of the surface, the local binding site of oxygen, and the degree of order of the oxygen overlayer. In this Perspective, we present an overview of both theory and experiments that identify the reactive forms of O and their associated charge density distributions and bond strengths. We also analyze and model the release of Au atoms induced by O binding to the surface. This rough surface also has the potential for O(2) dissociation, which is a critical step if Au is to be activated catalytically. We further show the strong parallels between product distributions and reactivity for O-covered Au at low pressure (ultrahigh vacuum) and for nanoporous Au catalysts operating at atmospheric pressure as evidence that atomic O is the active species under working catalytic conditions when metallic Au is present. We briefly discuss the possible contributions of oxidants that may contain intact O-O bonds and of the Au-metal oxide support interface in Au catalysis. Finally, the challenges and future directions for fully

  5. Analysis of ground reaction force and electromyographic activity of the gastrocnemius muscle during double support.

    PubMed

    Sousa, Andreia S P; Santos, Rubim; Oliveira, Francisco P M; Carvalho, Paulo; Tavares, João Manuel R S

    2012-05-01

    Mechanisms associated with energy expenditure during gait have been extensively researched and studied. According to the double-inverted pendulum model energy expenditure is higher during double support, as lower limbs need to work to redirect the centre of mass velocity. This study looks into how the ground reaction force of one limb affects the muscle activity required by the medial gastrocnemius of the contralateral limb during step-to-step transition. Thirty-five subjects were monitored as to the medial gastrocnemius electromyographic activity of one limb and the ground reaction force of the contralateral limb during double support. After determination of the Pearson correlation coefficient (r), a moderate correlation was observed between the medial gastrocnemius electromyographic activity of the dominant leg and the vertical (Fz) and anteroposterior (Fy) components of ground reaction force of the non-dominant leg (r = 0.797, p < 0.000 1; r = -0.807, p < 0.000 1). A weak and moderate correlation was observed between the medial gastrocnemius electromyographic activity of the non-dominant leg and the Fz and Fy of the dominant leg, respectively (r = 0.442, p = 0.018; r = -0.684 p < 0.000 1). The results obtained suggest that during double support, ground reaction force is associated with the electromyographic activity of the contralateral medial gastrocnemius and that there is an increased dependence between the ground reaction force of the non-dominant leg and the electromyographic activity of the dominant medial gastrocnemius.

  6. Activation of carboxyl group with cyanate: peptide bond formation from dicarboxylic acids.

    PubMed

    Danger, Grégoire; Charlot, Solenne; Boiteau, Laurent; Pascal, Robert

    2012-06-01

    The reaction of cyanate with C-terminal carboxyl groups of peptides in aqueous solution was considered as a potential pathway for the abiotic formation of peptide bonds under the condition of the primitive Earth. The catalytic effect of dicarboxylic acids on cyanate hydrolysis was definitely attributed to intramolecular nucleophilic catalysis by the observation of the 1H-NMR signal of succinic anhydride when reacting succinic acid with KOCN in aqueous solution (pH 2.2-5.5). The formation of amide bonds was noticed when adding amino acids or amino acid derivatives into the solution. The reaction of N-acyl aspartic acid derivatives was observed to proceed similarly and the scope of the cyanate-promoted reaction was analyzed from the standpoint of prebiotic peptide formation. The role of cyanate in activating peptide C-terminus constitutes a proof of principle that intramolecular reactions of adducts of peptides C-terminal carboxyl groups with activating agents represent a pathway for peptide activation in aqueous solution, the relevance of which is discussed in connexion with the issue of the emergence of homochirality.

  7. Femtosecond time resolved infrared studies of Si-H bond activation

    SciTech Connect

    Yang, H.; Kotz, K.T.; Asplund, M.; Bromberg, S.E. |

    1997-12-31

    We report the first time-resolved IR studies of the silane Si-H bond activation mechansim on time-scales from sub-picosecond to nanosecond. It has been accepted that the primary photochemical process following UV irradiation of {eta}{sup 5}-CpMn(CO){sub 3} [A] in room temperature solution is the loss of a CO ligand. By monitoring the time evolution of the CO stretching frequencies, we have observed three distinct pathways for the formation of the activated hydridosilyl complex {eta}{sup 5}-CpMn(CO){sub 2}(H)(SiEt{sub 3}) [B]: (1) direct formation after CO dissociation; (2) formation through an intermediate [C] whose lifetime is about 90 ps; and (3) formation through another intermediate [D] which can be assigned as a solvated dicarbonyl species that eventually rearranges to form B on a time-scale of > 1 ns. Considering possible chemical processes, we have tentatively assigned C as a ring-slipped {eta}{sup 3} species which changes its hapticity from {eta}{sup 3} to {eta}{sup 5} in {approximately}90 ps. Detailed structures of the intermediates are being studied using ab initio electronic structure calculations. Experiments that extend beyond 1 ns and those on Si-H bond activation by other metal complexes such as {eta}{sup 5}-CpRe (CO){sub 3} are underway.

  8. Numerical Comparison of Active Acoustic and Structural Noise Control in a Stiffened Double Wall Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1996-01-01

    The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.

  9. Simulation of the effect of hydrogen bonds on water activity of glucose and dextran using the Veytsman model.

    PubMed

    De Vito, Francesca; Veytsman, Boris; Painter, Paul; Kokini, Jozef L

    2015-03-06

    Carbohydrates exhibit either van der Waals and ionic interactions or strong hydrogen bonding interactions. The prominence and large number of hydrogen bonds results in major contributions to phase behavior. A thermodynamic framework that accounts for hydrogen bonding interactions is therefore necessary. We have developed an extension of the thermodynamic model based on the Veytsman association theory to predict the contribution of hydrogen bonds to the behavior of glucose-water and dextran-water systems and we have calculated the free energy of mixing and its derivative leading to chemical potential and water activity. We compared our calculations with experimental data of water activity for glucose and dextran and found excellent agreement far superior to the Flory-Huggins theory. The validation of our calculations using experimental data demonstrated the validity of the Veytsman model in properly accounting for the hydrogen bonding interactions and successfully predicting water activity of glucose and dextran. Our calculations of the concentration of hydrogen bonds using the Veytsman model were instrumental in our ability to explain the difference between glucose and dextran and the role that hydrogen bonds play in contributing to these differences. The miscibility predictions showed that the Veytsman model is also able to correctly describe the phase behavior of glucose and dextran.

  10. Activation of carbon-hydrogen bonds in alkanes and other organic molecules using organotransition metal complexes

    SciTech Connect

    Bergman, R.G.

    1991-10-01

    We have recently begun to investigate the interaction of C-H activating iridium and rhodium complexes with functionalized organic molecules, to determine the effect of functional groups on the process, as well as to investigate the propensity of Ir and Rh to insert into C-H versus other types of X-H bonds. Recent experiments have demonstrated that xenon liquefied at -70{degrees}C and 10 atm pressure serves as an inert solvent for the C-H oxidative addition reaction. We have been able to prepare and isolate, for the first time, C-H oxidative addition products formed from high-melting solid substrates such as naphthalene, adamantane, and even cubane; the latter case represents the first observation of C-H oxidative addition at a tertiary C-H bond. Liquid xenon has also allowed us to carry out more conveniently the C-H oxidative addition reactions of low-boiling gases that are difficult to liquefy, such as methane. Recently we have also been able to carry out analogous studies in the gas phase. Under these conditions, naked'' rather than solvated Cp*Rh(CO) is formed, and this species reacts with cyclohexane at nearly gas-kinetic rates. Under the conditions, collision between Cp*Rh(CO) and cyclohexane is the slowest step in the overall C-H activation process. In contrast, in solution association of solvent with free Cp*Rh(CO) is so rapid that the step involving C-H bond cleavage in the coordinated alkane complex becomes rate-determining. 3 refs., 5 figs.

  11. Activation of carbon-hydrogen bonds in alkanes and other organic molecules using organotransition metal complexes

    SciTech Connect

    Bergman, R.G.

    1991-10-01

    We have recently begun to investigate the interaction of C-H activating iridium and rhodium complexes with functionalized organic molecules, to determine the effect of functional groups on the process, as well as to investigate the propensity of Ir and Rh to insert into C-H versus other types of X-H bonds. Recent experiments have demonstrated that xenon liquefied at -70{degrees}C and 10 atm pressure serves as an inert solvent for the C-H oxidative addition reaction. We have been able to prepare and isolate, for the first time, C-H oxidative addition products formed from high-melting solid substrates such as naphthalene, adamantane, and even cubane; the latter case represents the first observation of C-H oxidative addition at a tertiary C-H bond. Liquid xenon has also allowed us to carry out more conveniently the C-H oxidative addition reactions of low-boiling gases that are difficult to liquefy, such as methane. Recently we have also been able to carry out analogous studies in the gas phase. Under these conditions, ``naked`` rather than solvated Cp*Rh(CO) is formed, and this species reacts with cyclohexane at nearly gas-kinetic rates. Under the conditions, collision between Cp*Rh(CO) and cyclohexane is the slowest step in the overall C-H activation process. In contrast, in solution association of solvent with free Cp*Rh(CO) is so rapid that the step involving C-H bond cleavage in the coordinated alkane complex becomes rate-determining. 3 refs., 5 figs.

  12. The behavior of pyrrolyl ligands within the rare-earth metal alkyl complexes. Insertion of C=N and C=O double bonds into Ln-sigma-C bonds.

    PubMed

    Yang, Yi; Cui, Dongmei; Chen, Xuesi

    2010-04-28

    This paper presents some unusual reactions of lanthanide tris(alkyl)s or lanthanide mono-Cp' (Cp' = (C(5)Me(4))SiMe(3)) bis(alkyl)s with pyrrolyl ligands, and the eta(5)- or eta(1)-coordination mode of the pyrrolyl ring, as well as C=N and C=O double bonds insertion into Ln-sigma-C moities. N,N,O-tridentate ligand HL(1), 2-(2-CH(3)OC(6)H(3)N=CH)-C(4)H(3)NH, was prepared. Treatment of HL(1) with rare-earth metal tris(alkyl)s, Ln(CH(2)SiMe(3))(3)(THF)(2), generated centrosymmetric bimetallic (pyrrolylaldiminato)lanthanide mono(alkyl) complexes [{2-(2-CH(3)OC(6)H(3)NC(H)R)-C(4)H(3)N}LnR](2) (1a: Ln = Y; 1b: Ln = Lu) (R = CH(2)SiMe(3)). In this process, HL(1) was deprotonated by the metal alkyl and its imino C=N group was deactivated by the intramolecular alkylation, generating dianionic species that bridged the two metal alkyl units in eta(5)/eta(1):kappa(1) modes. When the reaction was carried out in dimethoxyethane (DME), asymmetric complex [2-(2-CH(3)OC(6)H(3)NC(H)R)-C(4)H(3)N](2)Y(2)R(2)(DME) (2) was given. Furthermore, the reaction of alkyl complex 1b and benzophenone (Ph(2)C=O) afforded alkyl-insertion product [{2-(2-CH(3)OC(6)H(3)NC(H)R)-C(4)H(3)N}LuOC(R)Ph(2)](2) (3). Both the intermolecular alkylation and the pyrrole's behavior as the hetero-cyclopentadienyl ligand were also observed in complexes 2 and 3. HL(1) reacted with (eta(5)-Cp')Y(CH(2)SiMe(3))(2)(THF) (E) to form a mixed ligands supported alkyl complex [(eta(5)-Cp')(L(1))]Y(CH(2)SiMe(3))(THF) (4), whilst complex E was treated with 2-(2,6-iPr(2)C(6)H(3)N=CH)-C(4)H(3)NH (HL(2)) to yield [(eta(5)-Cp')(L(2))]Y(CH(2)SiMe(3))(THF) (5). However, reaction of E and 2-(Me(2)NCH(2))-C(4)H(3)NH (HL(3)) afforded Y[(eta(5)-Cp')(L(3))(2)] (6), and ligand redistribution was found in this process. The molecular structures of complexes 5 and 6 were confirmed by X-ray diffraction, which indicated that the C=N double bond survived and the pyrrolyl ring coordinated to the metal center in eta(1)-mode.

  13. Reversible methanol addition to copper Schiff base complexes: a kinetic, structural and spectroscopic study of reactions at azomethine C[double bond, length as m-dash]N bonds.

    PubMed

    Zhang, Wuyu; Saraei, Nina; Nie, Hanlin; Vaughn, John R; Jones, Alexis S; Mashuta, Mark S; Buchanan, Robert M; Grapperhaus, Craig A

    2016-10-12

    The reversible methanolysis of an azomethine C[double bond, length as m-dash]N in a series of copper(ii) Schiff base complexes has been investigated through combined spectroscopic, structural, and kinetic studies. Pentadentate copper(ii) complexes [L1-Cu(X)]Y (L1 = 1,2-bis[(1-methyl-2-imidazolyl)methyleneamino]ethane; X = Y = ClO4(-) (1); X = Y = TfO(-) (2); X = Y = BF4(-) (3); X = H2O, Y = (ClO4(-))2 (4) spontaneously add methanol in a ligand centered reaction to yield stable, isolable hemiaminal ether product complexes 5-8. In methanol free solution, 5-8 spontaneously release alcohol to regenerate 1-4. The methanol addition reaction is first-order in methanol and first-order in complex with second-order rate constants varying from 1.1 × 10(-4) to 187 × 10(-4) M(-1) s(-1) dependent on the donor ability of the axial ligand. Rate constants for methanol elimination vary from 0.67 to 3.7 × 10(-4) s(-1) with dependence on the counterion and water content of the solvent. Equilibrium constants for methanolysis range from 1.5 to 51 M(-1). Structural comparisons of the Schiff base complexes 1-4 and the hemiaminal ether complexes 5-8 suggest methanol addition is favored by the release of ligand strain associated with three planar five-membered chelates in 1-4.

  14. B-H bond activation using an electrophilic metal complex: insights into the reaction pathway.

    PubMed

    Kumar, Rahul; Jagirdar, Balaji R

    2013-01-07

    A highly electrophilic ruthenium center in the [RuCl(dppe)(2)][OTf] complex brings about the activation of the B-H bond in ammonia borane (H(3)N·BH(3), AB) and dimethylamine borane (Me(2)HN·BH(3), DMAB). At room temperature, the reaction between [RuCl(dppe)(2)][OTf] and AB or DMAB results in trans-[RuH(η(2)-H(2))(dppe)(2)][OTf], trans-[RuCl(η(2)-H(2))(dppe)(2)][OTf], and trans-[RuH(Cl)(dppe)(2)], as noted in the NMR spectra. Mixing the ruthenium complex and AB or DMAB at low temperature (198/193 K) followed by NMR spectral measurements as the reaction mixture was warmed up to room temperature allowed the observation of various species formed enroute to the final products that were obtained at room temperature. On the basis of the variable-temperature multinuclear NMR spectroscopic studies of these two reactions, the mechanistic insights for B-H bond activation were obtained. In both cases, the reaction proceeds via an η(1)-B-H moiety bound to the metal center. The detailed mechanistic pathways of these two reactions as studied by NMR spectroscopy are described.

  15. An activated triple bond linker enables 'click' attachment of peptides to oligonucleotides on solid support.

    PubMed

    Wenska, Malgorzata; Alvira, Margarita; Steunenberg, Peter; Stenberg, Asa; Murtola, Merita; Strömberg, Roger

    2011-11-01

    A general procedure, based on a new activated alkyne linker, for the preparation of peptide-oligonucleotide conjugates (POCs) on solid support has been developed. With this linker, conjugation is effective at room temperature (RT) in millimolar concentration and submicromolar amounts. This is made possible since the use of a readily attachable activated triple bond linker enhances the Cu(I) catalyzed 1,3-dipolar cycloaddition ('click' reaction). The preferred scheme for conjugate preparation involves sequential conjugation to oligonucleotides on solid support of (i) an H-phosphonate-based aminolinker; (ii) the triple bond donor p-(N-propynoylamino)toluic acid (PATA); and (iii) azido-functionalized peptides. The method gives conversion of oligonucleotide to the POC on solid support, and only involves a single purification step after complete assembly. The synthesis is flexible and can be carried out without the need for specific automated synthesizers since it has been designed to utilize commercially available oligonucleotide and peptide derivatives on solid support or in solution. Methodology for the ready conversion of peptides into 'clickable' azidopeptides with the possibility of selecting either N-terminus or C-terminus connection also adds to the flexibility and usability of the method. Examples of synthesis of POCs include conjugates of oligonucleotides with peptides known to be membrane penetrating and nuclear localization signals.

  16. Active Site Formation, Not Bond Kinetics, Limits Adhesion Rate between Human Neutrophils and Immobilized Vascular Cell Adhesion Molecule 1

    PubMed Central

    Waugh, Richard E.; Lomakina, Elena B.

    2009-01-01

    Abstract The formation of receptor ligand bonds at the interface between different cells and between cells and substrates is a widespread phenomenon in biological systems. Physical measurements of bond formation rates between cells and substrates have been exploited to increase our understanding of the biophysical mechanisms that regulate bond formation at interfaces. Heretofore, these measurements have been interpreted in terms of simple bimolecular reaction kinetics. Discrepancies between this simple framework and the behavior of neutrophils adhering to surfaces expressing vascular cell adhesion molecule 1 (VCAM-1) motivated the development of a new kinetic framework in which the explicit formation of active bond formation sites (reaction zones) are a prerequisite for bond formation to occur. Measurements of cells interacting with surfaces having a wide range of VCAM-1 concentrations, and for different durations of contact, enabled the determination of novel kinetic rate constants for the formation of reaction zones and for the intrinsic bond kinetics. Comparison of these rates with rates determined previously for other receptor-ligand pairs points to a predominant role of extrinsic factors such as surface topography and accessibility of active molecules to regions of close contact in determining forward rates of bond formation at cell interfaces. PMID:19134479

  17. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity.

    PubMed

    Krause, A; Neitz, S; Mägert, H J; Schulz, A; Forssmann, W G; Schulz-Knappe, P; Adermann, K

    2000-09-01

    We report the isolation and characterization of a novel human peptide with antimicrobial activity, termed LEAP-1 (liver-expressed antimicrobial peptide). Using a mass spectrometric assay detecting cysteine-rich peptides, a 25-residue peptide containing four disulfide bonds was identified in human blood ultrafiltrate. LEAP-1 expression was predominantly detected in the liver, and, to a much lower extent, in the heart. In radial diffusion assays, Gram-positive Bacillus megaterium, Bacillus subtilis, Micrococcus luteus, Staphylococcus carnosus, and Gram-negative Neisseria cinerea as well as the yeast Saccharomyces cerevisiae dose-dependently exhibited sensitivity upon treatment with synthetic LEAP-1. The discovery of LEAP-1 extends the known families of mammalian peptides with antimicrobial activity by its novel disulfide motif and distinct expression pattern.

  18. [2,3]-Wittig rearrangement of enantiomerically enriched 3-substituted 1-propenyloxy-1-phenyl-2-propen-1-yl carbanions: effect of heteroatoms and conjugating groups on planarization of an alpha-oxy-benzylcarbanion through a double bond.

    PubMed

    Sasaki, Michiko; Ikemoto, Hidaka; Kawahata, Masatoshi; Yamaguchi, Kentaro; Takeda, Kei

    2009-01-01

    Don't get trapped: The effect of conjugating electron-withdrawing groups and alpha-anion-stabilizing heteroatom substituents on configurational stability of chiral carbanions through a double bond was examined on the basis of extent of chirality transfer in intramolecular trapping in [2,3]-Wittig rearrangement of chiral 3-substituted 1-propenyloxy-1-phenyl-2-propen-1-yl carbanions (see scheme).The effect of conjugating electron-withdrawing groups and alpha-anion-stabilizing heteroatom substituents on configurational stability of chiral carbanions through a double bond was examined on the basis of extent of chirality transfer in intramolecular trapping in [2,3]-Wittig rearrangement of chiral 3-substituted 1-propenyloxy-1-phenyl-2-propen-1-yl carbanions.

  19. Properties of Ce-activated alkali-lutetium double phosphate scintillators

    SciTech Connect

    Wiśniewski, D.; Wojtowicz, A. J.; Boatner, Lynn A

    2010-01-01

    The scintillation properties of Ce-activated alkali-lutetium double phosphate single crystals that vary with the alkali ion type and activation level are summarized and compared. The materials investigated here have been identified as fast and efficient scintillators for the detection of x-ray and radiation, and in case of Li3Lu(PO4)2:Ce, for thermal neutron detection as well.

  20. Physical mechanisms of active control of sound transmission through rib stiffened double-panel structure

    NASA Astrophysics Data System (ADS)

    Ma, Xiyue; Chen, Kean; Ding, Shaohu; Yu, Haoxin

    2016-06-01

    This paper presents an analytical investigation on physical mechanisms of actively controlling sound transmission through a rib stiffened double-panel structure using point source in the cavity. The combined modal expansion and vibro-acoustic coupling methods are applied to establish the theoretical model of such active structure. Under the condition of minimizing radiated power of the radiating ribbed plate, the physical mechanisms are interpreted in detail from the point of view of modal couplings similar as that used in existed literatures. Results obtained demonstrate that the rule of sound energy transmission and the physical mechanisms for the rib stiffened double-panel structure are all changed, and affected by the coupling effects of the rib when compared with the analytical results obtained for unribbed double-panel case. By taking the coupling effects of the rib into considerations, the cavity modal suppression and rearrangement mechanisms obtained in existed investigations are modified and supplemented for the ribbed plate case, which gives a clear interpretation for the physical nature involved in the active rib stiffened double-panel structure.

  1. A case of colorectal cancer with double-activating epidermal growth factor receptor mutations.

    PubMed

    Rai, Kammei; Fujiwara, Keiichi; Tsushima, Mizuho; Kudo, Kenichiro; Mizuta, Makoto; Matsuo, Kiyoshi; Yonei, Toshiro; Yamadori, Ichiro; Kiura, Katsuyuki; Sato, Toshio

    2011-09-01

    We describe the case of a 72-year-old woman with locally advanced lung tumor mimicking primary lung cancer. She was diagnosed with rectal cancer at the age of 65 years and was initially treated with platinum-based chemotherapy and thoracic irradiation as a treatment for primary lung cancer. One year later, a thyroid tumor was detected in her right thyroid lobe and was confirmed to have metastasized from rectal cancer based on pathological findings. Therefore, we suspected that she had metachronous double cancers and treated her with conventional chemotherapy for colorectal cancer. However, new life-threatening multiple lung metastases appeared. We treated her with the drug erlotinib because additional genetic analysis against primary lung tumor revealed typical double-activating epidermal growth factor receptor mutations. Histological review by immunostaining concluded that the primary lung tumor was composed of metastatic tumors from rectal cancer. In addition, genetic analysis revealed that the primary rectal cancer contained nearly the same types of double-activating epidermal growth factor receptor mutations as were present in the lung tumor. This is the first report of a case of rectal adenocarcinoma with double-activating epidermal growth factor receptor mutations.

  2. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    DOE PAGES

    Welz, Oliver; Savee, John D.; Osborn, David L.; ...

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. Thesemore » results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce low-temperature reactivity during autoignition.« less

  3. 78 FR 49761 - Agency Information Collection Activities: Application for Exportation of Articles Under Special Bond

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... Exportation of Articles Under Special Bond AGENCY: U.S. Customs and Border Protection, Department of Homeland... information collection requirement concerning the Application for Exportation of Articles under Special Bond... Articles Under Special Bond. OMB Number: 1651-0004. Form Number: CBP Form 3495. Abstract: CBP Form...

  4. 75 FR 61162 - Agency Information Collection Activities: Application for Exportation of Articles Under Special Bond

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... Exportation of Articles Under Special Bond AGENCY: U.S. Customs and Border Protection, Department of Homeland... Exportation of Articles under Special Bond (CBP Form 3495). This is a proposed extension of an information... Exportation of Articles under Special Bond. OMB Number: 1651-0004. Form Number: Form 3495. Abstract:...

  5. 75 FR 47608 - Agency Information Collection Activities: Application for Exportation of Articles under Special Bond

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... Exportation of Articles under Special Bond AGENCY: U.S. Customs and Border Protection, Department of Homeland... requirement concerning the: Application for Exportation of Articles under Special Bond. This request for...: Title: Application for Exportation of Articles under Special Bond. OMB Number: 1651-0004. Form...

  6. 26 CFR 1.103(n)-3T - Private activity bond limit (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... V empowered Authority Z to issue industrial development bonds on behalf of the three States and to... industrial development bonds to provide a pollution control facility described in section 103(b)(4)(F) for... the County to issue $25 million of industrial development bonds for its project during calendar...

  7. 26 CFR 1.103(n)-3T - Private activity bond limit (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... V empowered Authority Z to issue industrial development bonds on behalf of the three States and to... industrial development bonds to provide a pollution control facility described in section 103(b)(4)(F) for... the County to issue $25 million of industrial development bonds for its project during calendar...

  8. Activation of CO and CO2 on homonuclear boron bonds of fullerene-like BN cages: first principles study

    PubMed Central

    Sinthika, S.; Kumar, E. Mathan; Surya, V. J.; Kawazoe, Y.; Park, Noejung; Iyakutti, K.; Thapa, Ranjit

    2015-01-01

    Using density functional theory we investigate the electronic and atomic structure of fullerene-like boron nitride cage structures. The pentagonal ring leads to the formation of homonuclear bonds. The homonuclear bonds are also found in other BN structures having pentagon line defect. The calculated thermodynamics and vibrational spectra indicated that, among various stable configurations of BN-60 cages, the higher number of homonuclear N-N bonds and lower B:N ratio can result in the more stable structure. The homonuclear bonds bestow the system with salient catalytic properties that can be tuned by modifying the B atom bonding environment. We show that homonuclear B-B (B2) bonds can anchor both oxygen and CO molecules making the cage to be potential candidates as catalyst for CO oxidation via Langmuir–Hinshelwood (LH) mechanism. Moreover, the B-B-B (B3) bonds are reactive enough to capture, activate and hydrogenate CO2 molecules to formic acid. The observed trend in reactivity, viz B3 > B2 > B1 is explained in terms of the position of the boron defect state relative to the Fermi level. PMID:26626147

  9. Carbon–Hydrogen Bond Activation, C–N Bond Coupling, and Cycloaddition Reactivity of a Three-Coordinate Nickel Complex Featuring a Terminal Imido Ligand

    PubMed Central

    2015-01-01

    The three-coordinate imidos (dtbpe)Ni=NR (dtbpe = tBu2PCH2CH2PtBu2, R = 2,6-iPr2C6H3, 2,4,6-Me3C6H2 (Mes), and 1-adamantyl (Ad)), which contain a legitimate Ni–N double bond as well as basic imido nitrogen based on theoretical analysis, readily deprotonate HC≡CPh to form the amide acetylide species (dtbpe)Ni{NH(Ar)}(C≡CPh). In the case of R = 2,6-iPr2C6H3, reductive carbonylation results in formation of the (dtbpe)Ni(CO)2 along with the N–C coupled product keteneimine PhCH=C=N(2,6- iPr2C6H3). Given the ability of the Ni=N bond to have biradical character as suggested by theoretical analysis, H atom abstraction can also occur in (dtbpe)Ni=N{2,6-iPr2C6H3} when this species is treated with HSn(nBu)3. Likewise, the microscopic reverse reaction—conversion of the Ni(I) anilide (dtbpe)Ni{NH(2,6-iPr2C6H3)} to the imido (dtbpe)Ni=N{2,6-iPr2C6H3}—is promoted when using the radical Mes*O• (Mes* = 2,4,6-tBu3C6H2). Reactivity studies involving the imido complexes, in particular (dtbpe)Ni=N{2,6-iPr2C6H3}, are also reported with small, unsaturated molecules such as diphenylketene, benzylisocyanate, benzaldehyde, and carbon dioxide, including the formation of C–N and N–N bonds by coupling reactions. In addition to NMR spectroscopic data and combustion analysis, we also report structural studies for all the cycloaddition reactions involving the imido (dtbpe)Ni=N{2,6-iPr2C6H3}. PMID:25437507

  10. Role of peptide bond in the realization of biological activity of short peptides.

    PubMed

    Khavinson, V Kh; Tarnovskaya, S I; Lin'kova, N S; Chervyakova, N A; Nichik, T E; Elashkina, E V; Chalisova, N I

    2015-02-01

    We performed a comparative analysis of biological activity of Lys-Glu peptide and its amino acid constituents. It was established that Lys-Glu stimulated proliferation of splenic cells in organotypic culture, while the mixture of glutamic acid and lysine inhibited culture growth. Using the method of molecular docking, we showed that glutamic acid, lysine, and Lys-Glu peptide can interact with different DNA sequences. The energy of interaction and the most beneficial localization of glutamic acid, lysine, and Lys-Glu peptide in DNA molecule was calculated. We demonstrated the interaction of the peptide and amino acids with DNA along the minor groove. The energy of DNA interaction with the peptide is higher than with individual amino acids. The peptide bonds increase the interaction of Lys-Glu peptide with DNA, which potentiates the biological effect on cell proliferation in organotypic culture of splenic cells.

  11. Annealing effects on recombinative activity of nickel at direct silicon bonded interface

    SciTech Connect

    Kojima, Takuto Ohshita, Yoshio; Yamaguchi, Masafumi

    2015-09-15

    By performing capacitance transient analyses, the recombination activity at a (110)/(100) direct silicon bonded (DSB) interface contaminated with nickel diffused at different temperatures, as a model of grain boundaries in multicrystalline silicon, was studied. The trap level depth from the valence band, trap density of states, and hole capture cross section peaked at an annealing temperature of 300 °C. At temperatures ⩾400 °C, the hole capture cross section increased with temperature, but the density of states remained unchanged. Further, synchrotron-based X-ray analyses, microprobe X-ray fluorescence (μ-XRF), and X-ray absorption near edge structure (XANES) analyses were performed. The analysis results indicated that the chemical phase after the sample was annealed at 200 °C was a mixture of NiO and NiSi{sub 2}.

  12. Polyhydrides of Platinum Group Metals: Nonclassical Interactions and σ-Bond Activation Reactions.

    PubMed

    Esteruelas, Miguel A; López, Ana M; Oliván, Montserrat

    2016-08-10

    The preparation, structure, dynamic behavior in solution, and reactivity of polyhydride complexes of platinum group metals, described during the last three decades, are contextualized from both organometallic and coordination chemistry points of view. These compounds, which contain dihydrogen, elongated dihydrogen, compressed dihydride, and classical dihydride ligands promote the activation of B-H, C-H, Si-H, N-H, O-H, C-C, C-N, and C-F, among other σ-bonds. In this review, it is shown that, unlike other more mature areas, the chemistry of polyhydrides offers new exciting conceptual challenges and at the same time the possibility of interacting with other fields including the conversion and storage of regenerative energy, organic synthetic chemistry, drug design, and material science. This wide range of possible interactions foresees promising advances in the near future.

  13. Annealing effects on recombinative activity of nickel at direct silicon bonded interface

    NASA Astrophysics Data System (ADS)

    Kojima, Takuto; Ohshita, Yoshio; Yamaguchi, Masafumi

    2015-09-01

    By performing capacitance transient analyses, the recombination activity at a (110)/(100) direct silicon bonded (DSB) interface contaminated with nickel diffused at different temperatures, as a model of grain boundaries in multicrystalline silicon, was studied. The trap level depth from the valence band, trap density of states, and hole capture cross section peaked at an annealing temperature of 300 °C. At temperatures ⩾400 °C, the hole capture cross section increased with temperature, but the density of states remained unchanged. Further, synchrotron-based X-ray analyses, microprobe X-ray fluorescence (μ-XRF), and X-ray absorption near edge structure (XANES) analyses were performed. The analysis results indicated that the chemical phase after the sample was annealed at 200 °C was a mixture of NiO and NiSi2.

  14. Oxygen activation and intramolecular C-H bond activation by an amidate-bridged diiron(II) complex.

    PubMed

    Jones, Matthew B; Hardcastle, Kenneth I; Hagen, Karl S; MacBeth, Cora E

    2011-07-18

    A diiron(II) complex containing two μ-1,3-(κN:κO)-amidate linkages has been synthesized using the 2,2',2''-tris(isobutyrylamido)triphenylamine (H(3)L(iPr)) ligand. The resulting diiron complex, 1, reacts with dioxygen (or iodosylbenzene) to effect intramolecular C-H bond activation at the methine position of the ligand isopropyl group. The ligand-activated product, 2, has been isolated and characterized by a variety of methods including X-ray crystallography. Electrospray ionization mass spectroscopy of 2 prepared from(18)O(2) was used to confirm that the oxygen atom incorporated into the ligand framework is derived from molecular oxygen.

  15. Using Unnatural Amino Acids to Probe the Energetics of Oxyanion Hole Hydrogen Bonds in the Ketosteroid Isomerase Active Site

    PubMed Central

    2015-01-01

    Hydrogen bonds are ubiquitous in enzyme active sites, providing binding interactions and stabilizing charge rearrangements on substrate groups over the course of a reaction. But understanding the origin and magnitude of their catalytic contributions relative to hydrogen bonds made in aqueous solution remains difficult, in part because of complexities encountered in energetic interpretation of traditional site-directed mutagenesis experiments. It has been proposed for ketosteroid isomerase and other enzymes that active site hydrogen bonding groups provide energetic stabilization via “short, strong” or “low-barrier” hydrogen bonds that are formed due to matching of their pKa or proton affinity to that of the transition state. It has also been proposed that the ketosteroid isomerase and other enzyme active sites provide electrostatic environments that result in larger energetic responses (i.e., greater “sensitivity”) to ground-state to transition-state charge rearrangement, relative to aqueous solution, thereby providing catalysis relative to the corresponding reaction in water. To test these models, we substituted tyrosine with fluorotyrosines (F-Tyr’s) in the ketosteroid isomerase (KSI) oxyanion hole to systematically vary the proton affinity of an active site hydrogen bond donor while minimizing steric or structural effects. We found that a 40-fold increase in intrinsic F-Tyr acidity caused no significant change in activity for reactions with three different substrates. F-Tyr substitution did not change the solvent or primary kinetic isotope effect for proton abstraction, consistent with no change in mechanism arising from these substitutions. The observed shallow dependence of activity on the pKa of the substituted Tyr residues suggests that the KSI oxyanion hole does not provide catalysis by forming an energetically exceptional pKa-matched hydrogen bond. In addition, the shallow dependence provides no indication of an active site electrostatic

  16. The role of group 14 element hydrides in the activation of C-H bonds in cyclic olefins.

    PubMed

    Summerscales, Owen T; Caputo, Christine A; Knapp, Caroline E; Fettinger, James C; Power, Philip P

    2012-09-05

    Formally, triple-bonded dimetallynes ArEEAr [E = Ge (1), Sn (2); Ar = C(6)H(3)-2,6-(C(6)H(3)-2,6-(i)Pr(2))(2)] have been previously shown to activate aliphatic, allylic C-H bonds in cyclic olefins, cyclopentadiene (CpH), cyclopentene (c-C(5)H(8)) and 1,4-cyclohexadiene, with intriguing selectivity. In the case of the five-membered carbocycles, cyclopentadienyl species ArECp [E = Ge (3), Sn (4)] are formed. In this study, we examine the mechanisms for activation of CpH and c-C(5)H(8) using experimental methods and describe a new product found from the reaction between 1 and c-C(5)H(8), an asymmetrically substituted digermene ArGe(H)Ge(c-C(5)H(9))Ar (5), crystallized in 46% yield. This compound contains a hydrogenated cyclopentyl moiety and is found to be produced in a 3:2 ratio with 3, explaining the fate of the liberated H atoms following triple C-H activation. We show that when these C-H activation reactions are carried out in the presence of tert-butyl ethylene (excess), compounds {ArE(CH(2)CH(2)tBu)}(2) [E = Ge(8), Sn(9)] are obtained in addition to ArECp; in the case of CpH, the neohexyl complexes replace the production of H(2) gas, and for c-C(5)H(8) they displace cyclopentyl product 5 and account for all the hydrogen removed in the dehydroaromatization reactions. To confirm the source of 8 and 9, it was demonstrated that these molecules are formed cleanly between the reaction of (ArEH)(2) [E = Ge(6), Sn(7)] and tert-butyl ethylene, new examples of noncatalyzed hydro-germylation and -stannylation. Therefore, the presence of transient hydrides of the type 6 and 7 can be surmised to be reactive intermediates in the production of 3 and 4, along with H(2), from 1 and 2 and CpH (respectively), or the formation of 3 and 5 from 1. The reaction of 6 or 7 with CpH gave 3 or 4, respectively, with concomitant H(2) evolution, demonstrating the basic nature of these low-valent group 14 element hydrides and their key role in the 'cascade' of C-H activation steps

  17. In vitro evaluation of a moisture-active adhesive for indirect bonding.

    PubMed

    Klocke, Arndt; Shi, Jianmin; Kahl-Nieke, Bärbel; Bismayer, Ulrich

    2003-12-01

    The aim of this in vitro investigation was to evaluate bond strength for a cyanoacrylate adhesive in combination with an indirect bonding technique. Eighty bovine permanent mandibular incisors were randomly divided into four groups of 20 teeth each. The influence of two factors on shear bond strength was investigated: (1) type of adhesive (Smartbond cyanoacrylate, Sondhi Rapid Set composite sealant) and (2) time of debonding (30 minutes and 24 hours after bonding). Stainless steel mesh-based brackets were used. Although, bond strength was not significantly different for the two debonding time periods, significantly lower bond strength measurements were found for the cyanoacrylate adhesive (P < .001). The mean bond strength for the cyanoacrylate adhesive group was 5.44 +/- 1.65 MPa for debonding 30 minutes and 6.92 +/- 1.48 MPa for debonding 24 hours after the bonding procedure vs 16.16 +/- 5.25 MPa and 14.98 +/- 2.85 MPa for the composite adhesive groups debonded at 30 minutes and 24 hours, respectively. The Weibull analysis indicated that there was an increased risk of bond failure at clinically relevant levels of stress for indirect bonding with the cyanoacrylate adhesive.

  18. Platinum(0)-mediated C-O bond activation of ethers via an SN2 mechanism.

    PubMed

    Ortuño, Manuel A; Jasim, Nasarella A; Whitwood, Adrian C; Lledós, Agustí; Perutz, Robin N

    2016-11-29

    A computational study of the C(methyl)-O bond activation of fluorinated aryl methyl ethers by a platinum(0) complex Pt(PCyp3)2 (Cyp = cyclopentyl) (N. A. Jasim, R. N. Perutz, B. Procacci and A. C. Whitwood, Chem. Commun., 2014, 50, 3914) demonstrates that the reaction proceeds via an SN2 mechanism. Nucleophilic attack of Pt(0) generates an ion pair consisting of a T-shaped platinum cation with an agostic interaction with a cyclopentyl group and a fluoroaryloxy anion. This ion-pair is converted to a 4-coordinate Pt(ii) product trans-[PtMe(OAr(F))(PCyp3)2]. Structure-reactivity correlations are fully consistent with this mechanism. The Gibbs energy of activation is calculated to be substantially higher for aryl methyl ethers without fluorine substituents and higher still for alkyl methyl ethers. These conclusions are in accord with the experimental results. Further support was obtained in an experimental study of the reaction of Pt(PCy3)2 with 2,3,5,6-tetrafluoro-4-allyloxypyridine yielding the salt of the Pt(η(3)-allyl) cation and the tetrafluoropyridinolate anion [Pt(PCy3)2(η(3)-allyl)][OC5NF4]. The calculated activation energy for this reaction is significantly lower than that for fluorinated aryl methyl ethers.

  19. Graphene Oxide Catalyzed C-H Bond Activation: The Importance Oxygen Functional Groups for Biaryl Construction

    SciTech Connect

    Gao, Yongjun; Tang, Pei; Zhou, Hu; Zhang, Wei; Yang, Hanjun; Yan, Ning; Hu, Gang; Mei, Donghai; Wang, Jianguo; Ma, Ding

    2016-02-24

    A heterogeneous, inexpensive and environment-friendly carbon catalytic system was developed for the C-H bond arylation of benzene resulting in the subsequent formation of biaryl compounds. The oxygen-containing groups on these graphene oxide sheets play an essential role in the observed catalytic activity. The catalytic results of model compounds and DFT calculations show that these functional groups promote this reaction by stabilization and activation of K ions at the same time of facilitating the leaving of I. And further mechanisms studies show that it is the charge induced capabilities of oxygen groups connected to specific carbon skeleton together with the giant π-reaction platform provided by the π-domain of graphene that played the vital roles in the observed excellent catalytic activity. D. Mei acknowledges the support from the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory.

  20. Fractionation factors and activation energies for exchange of the low barrier hydrogen bonding proton in peptidyl trifluoromethyl ketone complexes of chymotrypsin.

    PubMed

    Lin, J; Westler, W M; Cleland, W W; Markley, J L; Frey, P A

    1998-12-08

    NMR investigations have been carried out of complexes between bovine chymotrypsin Aalpha and a series of four peptidyl trifluoromethyl ketones, listed here in order of increasing affinity for chymotrypsin: N-Acetyl-L-Phe-CF3, N-Acetyl-Gly-L-Phe-CF3, N-Acetyl-L-Val-L-Phe-CF3, and N-Acetyl-L-Leu-L-Phe-CF3. The D/H fractionation factors (phi) for the hydrogen in the H-bond between His 57 and Asp 102 (His 57-Hdelta1) in these four complexes at 5 degreesC were in the range phi = 0.32-0.43, expected for a low-barrier hydrogen bond. For this series of complexes, measurements also were made of the chemical shifts of His 57-Hepsilon1 (delta2,2-dimethylsilapentane-5-sulfonic acid 8.97-9. 18), the exchange rate of the His 57-Hdelta1 proton with bulk water protons (284-12.4 s-1), and the activation enthalpies for this hydrogen exchange (14.7-19.4 kcal.mol-1). It was found that the previously noted correlations between the inhibition constants (Ki 170-1.2 microM) and the chemical shifts of His 57-Hdelta1 (delta2, 2-dimethylsilapentane-5-sulfonic acid 18.61-18.95) for this series of peptidyl trifluoromethyl ketones with chymotrypsin [Lin, J., Cassidy, C. S. & Frey, P. A. (1998) Biochemistry 37, 11940-11948] could be extended to include the fractionation factors, hydrogen exchange rates, and hydrogen exchange activation enthalpies. The results support the proposal of low barrier hydrogen bond-facilitated general base catalysis in the addition of Ser 195 to the peptidyl carbonyl group of substrates in the mechanism of chymotrypsin-catalyzed peptide hydrolysis. Trends in the enthalpies for hydrogen exchange and the fractionation factors are consistent with a strong, double-minimum or single-well potential hydrogen bond in the strongest complexes. The lifetimes of His 57-Hdelta1, which is solvent shielded in these complexes, track the strength of the hydrogen bond. Because these lifetimes are orders of magnitude shorter than those of the complexes themselves, the enzyme must have a

  1. Comparative Assessment of DFT Performances in Ru- and Rh-Promoted σ-Bond Activations.

    PubMed

    Sun, Yuanyuan; Hu, Lianrui; Chen, Hui

    2015-04-14

    In this work, the performances of 19 density functional theory (DFT) methods are calibrated comparatively on Ru- and Rh-promoted σ-bond (C-H, O-H, and H-H) activations. DFT calibration reference is generated from explicitly correlated coupled cluster CCSD(T)-F12 calculations, and the 4s4p core-valence correlation effect of the two 4d platinum group transition metals is also included. Generally, the errors of DFT methods for calculating energetics of Ru-/Rh-mediated reactions appear to correlate more with the magnitude of energetics itself than other factors such as metal identity. For activation energy calculations, the best performing functionals for both Ru and Rh systems are MN12SX < CAM-B3LYP < M06-L < MN12L < M06 < ωB97X < B3LYP < LC-ωPBE (in the order of increasing mean unsigned deviations, MUDs, of less than 2 kcal/mol). For reaction energy calculations, best functionals with MUDs less than 2 kcal/mol are PBE0 < CAM-B3LYP ≈ N12SX. The effect of the DFT empirical dispersion correction on the performance of the DFT methods is beneficial for most density functionals tested in this work, reducing their MUDs to different extents. After including empirical dispersion correction, ωB97XD, B3LYP-D3, and CAM-B3LYP-D3 (PBE0-D3, B3LYP-D3, and ωB97XD) are the three best performing DFs for activation energy (reaction energy) calculations, from which B3LYP-D3 and ωB97XD can notably be recommended uniformly for both the reaction energy and reaction barrier calculations. The good performance of B3LYP-D3 in quantitative description of the energetic trends further adds value to B3LYP-D3 and singles this functional out as a reasonable choice in the Ru/Rh-promoted σ-bond activation processes.

  2. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

    SciTech Connect

    Lewis, Jared; Bergman, Robert; Ellman, Jonathan

    2008-02-04

    Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct funtionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes their work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. They initially discovered an intramolecular Rh-catalyzed C-2-alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. They then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, they discovered that a novel substrate-derived Rh-N-heterocyclic carbene (NHC) complex was involved as an intermediate. They then synthesized analogous Rh-NHC complexes directly by treating precursors to the intermediate [RhCl(PCy{sub 3}){sub 2}] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazolein, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy{sub 3}){sub 2} fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid co-catalysts accelerate the alkylation, they developed conditions that efficiently and intermolecularly alkylate a variety of

  3. Effect of three adhesive primers on the bond strengths of four light-activated opaque resins to noble alloy.

    PubMed

    Yoshida, K; Kamada, K; Taira, Y; Atsuta, M

    2001-02-01

    The effect of commercial adhesive primers for noble metals on the bond strength of light-activated opaque resin has not been determined. This study evaluated the effect of three adhesive primers on the shear bond strengths of each of the four light-activated opaque resins to silver--palladium--copper--gold (Ag--Pd--Cu--Au) alloy. The adhesive primers Alloy Primer (AP), Metal Primer II (MPII) and Metaltite(MT) were used. Four commercial light-activated opaque resins (Axis (AX), Cesead II (CEII), Dentacolor(DE) and Solidex (SO) were used to bond a light-activated resin-veneered composite to Ag--Pd--Cu--Au alloy. The specimens were stored in water at 37 degrees C for 24 h and then immersed alternatively in water baths at 4 and 60 degrees C for 1 min each for up to 20,000 thermal cycles before shear mode testing at a cross-head speed of 0.5 mm min(-1). All the primers examined improved the shear bond strength between opaque resin and Ag--Pd--Cu--Au alloy compared with non-primed specimens prior to thermal cycling. After 20,000 thermal cycles, the bond strengths of combined use of AP and DE and that of MT and each of AX, CE or DE were significantly greater than any other groups. Significant difference was observed between the bond strengths at thermal cycles 0 and 20,000, with the combined use of MT and DE. With the combination of appropriate adhesive metal primers and light-activated opaque resins, complicated surface preparations of metal frameworks of resin-veneered prostheses that are composed of casting Ag-Pd-Cu-Au alloy may be negligible.

  4. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    SciTech Connect

    Welz, Oliver; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. These results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce

  5. Merging allylic C-H bond activation and C-C bond cleavage en route to the formation of a quaternary carbon stereocenter in acyclic systems.

    PubMed

    Vasseur, Alexandre; Marek, Ilan

    2017-01-01

    This protocol describes a diastereoselective approach for the synthesis of complex molecular architectures containing two stereogenic centers in a 1,4 relationship, one of which being an all-carbon quaternary stereogenic center. Such molecules could be intermediates in the synthesis of steroids, for example. Conceived as a single-flask synthetic sequence from ω-ene cyclopropanes, the protocol involves a concerted allylic C-H and C-C bond activation promoted by the Negishi reagent (Cp2Zr(η(2)-butene)). This zirconium-promenade-based procedure affords bifunctionalized products in high diastereomeric ratios after reaction of ω-ene cyclopropanes with the Negishi complex, followed by a thermal treatment and sequential addition of two different electrophiles. The method proves to be particularly efficient when carbonyl compounds are used as first electrophiles and hydrogen or elemental halides are used as second electrophiles. In addition, it offers the opportunity to create new C-C bonds via remote functionalization of a (sp(3))-C-H bond, a result of a copper or copper/palladium transmetalation step that extends the scope of the process to alkyl, acyl and aromatic halide compounds as second electrophiles. The typical described protocol allows the synthesis of the highly diastereo-enriched 2-((1R*,2S*)-2-butyl-2 propylcyclopropyl)ethanol and may provide a new entry to access complex molecular segments of natural products such as steroids or C30 botryococcene. It requires a simple reaction setup and takes ∼18.5 h to run the reaction and 2 h for isolation and purification.

  6. Active Metal Brazing and Adhesive Bonding of Titanium to C/C Composites for Heat Rejection System

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, Tarah; Cerny, Jennifer

    2006-01-01

    Robust assembly and integration technologies are critically needed for the manufacturing of heat rejection system (HRS) components for current and future space exploration missions. Active metal brazing and adhesive bonding technologies are being assessed for the bonding of titanium to high conductivity Carbon-Carbon composite sub components in various shapes and sizes. Currently a number of different silver and copper based active metal brazes and adhesive compositions are being evaluated. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). Several mechanical tests have been employed to ascertain the effectiveness of different brazing and adhesive approaches in tension and in shear that are both simple and representative of the actual system and relatively straightforward in analysis. The results of these mechanical tests along with the fractographic analysis will be discussed. In addition, advantages, technical issues and concerns in using different bonding approaches will also be presented.

  7. Exocyclic push-pull conjugated compounds. Part 3. An experimental NMR and theoretical MO ab initio study of the structure, the electronic properties and barriers to rotation about the exocyclic partial double bond in 2- exo-methylene- and 2-cyanoimino-quinazolines and -benzodiazepines

    NASA Astrophysics Data System (ADS)

    Benassi, R.; Bertarini, C.; Hilfert, L.; Kempter, G.; Kleinpeter, E.; Spindler, J.; Taddei, F.; Thomas, S.

    2000-03-01

    The structure of a number of 2- exo-methylene substituted quinazolines and benzodiazepines, respectively, 1, 3a, b, 4( X=-CN, -COOEt ) and their 2-cyanoimino substituted analogues 2, 3c, d( X=-CN, -SO 2C 6H 4-Me (p) was completely assigned by the whole arsenal of 1D and 2D NMR spectroscopic methods. The E/ Z isomerism at the exo-cyclic double bond was determined by both NMR spectroscopy and confirmed by ab initio quantum chemical calculations; the Z isomer is the preferred one, its amount proved dependent on steric hindrance. Due to the push-pull effect in this part of the molecules the restricted rotation about the partial C 2,C 11 and C 2,N 11 double bonds, could also be studied and the barrier to rotation measured by dynamic NMR spectroscopy. The free energies of activation of this dynamic process proved very similar along the compounds studied but being dependent on the polarity of the solvent. Quantum chemical calculations at the ab initio level were employed to prove the stereochemistry at the exo-cyclic partial double bonds of 1- 4, to calculate the barriers to rotation but also to discuss in detail both the ground and the transition state of the latter dynamic process in order to better understand electronic, inter- and intramolecular effects on the barrier to rotation which could be determined experimentally. In the cyanoimino substituted compounds 2, 3c, d, the MO ab initio calculations evidence the isomer interconversion to be better described by the internal rotation process than by the lateral shift mechanism.

  8. Unexpected intermediates and products in the C-F bond activation of tetrafluorobenzenes with a bis(triethylphosphine)nickel synthon: direct evidence of a rapid and reversible C-H bond activation by Ni(0).

    PubMed

    Johnson, Samuel A; Huff, Carla W; Mustafa, Ferheen; Saliba, Mark

    2008-12-24

    The reaction of (PEt(3))(2)Ni(eta(2)-C(14)H(10)), a source of the reactive Ni(PEt(3))(2) moiety, with 1,2,4,5-F(4)C(6)H(2) yields a mixture of three C-F bond activation products that include the unexpected products (PEt(3))(2)NiF-2,3,5,6-F(4)C(6)H and (PEt(3))(2)NiF-2,3,5-F(3)C(6)H(2). Monitoring the reaction mixture via (19)F and (1)H NMR also reveals the presence of the C-H bond activation product, (PEt(3))(2)NiH-2,3,5,6-F(4)C(6)H which is produced in a rapid equilibrium reaction. This observation provides insight into the steps necessary to modify nickel complexes for selective C-F bond activation in a variety of polyfluorinated aromatic substrates, but also expands the potential of simple nickel compounds for C-H bond activation and functionalization reactions.

  9. The effect of methyl-donated hydrogen bonding on active site conformations of hyaluronate lyase

    NASA Astrophysics Data System (ADS)

    Migues, Angela N.; Vergenz, Robert A.; Moore, Kevin B.

    2010-03-01

    Geometric evidence shows a val-A252 methyl-donated (MD) hydrogen bond (HB) in hyaluronate lyase (Streptococcus pneumoniae) interacts with nearby NH--O and OH--O HBs, distorting active-site helical structure. Results for model fragment A248-254 are based on experimental heavy atom positions with ab initio hydrogen atoms. The MDHB, with (H-O distance, donor-H-O angle) = (2.3å; 174^o), exhibits more favorable geometry than thr-A253 OH--O HB (1.8å; 170^o) to the same ala-249 C=O. Consequently, thr-253 N-H--O interaction is forced closer to lys-250 C=O than ala-249 C=O(2.6 versus 2.7å). A novel method has been developed to quantify the effects of atomic diplacements on motions of neighboring helices. A coordinate system was established to track the movement of specific residues and to ascertain the effect of such motions on active site conformations.

  10. The role of short-range Cys171-Cys178 disulfide bond in maintaining cutinase active site integrity: A molecular dynamics simulation

    SciTech Connect

    Matak, Mehdi Youssefi; Moghaddam, Majid Erfani

    2009-12-11

    Understanding structural determinants in enzyme active site integrity can provide a good knowledge to design efficient novel catalytic machineries. Fusarium solani pisi cutinase with classic triad Ser-His-Asp is a promising enzyme to scrutinize these structural determinants. We performed two MD simulations: one, with the native structure, and the other with the broken Cys171-Cys178 disulfide bond. This disulfide bond stabilizes a turn in active site on which catalytic Asp175 is located. Functionally important H-bonds and atomic fluctuations in catalytic pocket have been changed. We proposed that this disulfide bond within active site can be considered as an important determinant of cutinase active site structural integrity.

  11. Native disulfide bonds in plasma retinol-binding protein are not essential for all-trans-retinol-binding activity.

    PubMed

    Reznik, Gabriel O; Yu, Yong; Tarr, George E; Cantor, Charles R

    2003-01-01

    A human plasma retinol-binding protein (RBP) mutant, named RBP-S, has been designed and produced in which the six native cysteine residues, involved in the formation of three disulfide bonds, have been replaced with serine. A hexa-histidine tag was also added to the C-terminus of RBP for ease of purification. The removal of the disulfide bonds led to a decrease in the affinity of RBP for all trans-retinol. Data indicates all-trans-retinol binds RBP and RBP-S with Kd = 4 x 10(-8) M and 1 x 10(-7) M, respectively, at approximately 20 degrees C. RBP-S has reduced stability as compared to natural RBP below pH 8.0 and at room temperature. Circular dichroism in the far-UV shows that there is a relaxation of the RBP structure upon the removal of its disulfide bonds. Circular dichroism in the near-UV shows that in the absence of the disulfide bonds, the optical activity of RBP is higher in the 310-330 nm than in the 280-290 nm range. This work suggests that the three native disulfide bonds aid in the folding of RBP but are not essential to produce a soluble, active protein.

  12. Approach to In- Situ Producing Reinforcing Phase Within an Active-Transient Liquid Phase Bond Seam for Aluminum Matrix Composite

    NASA Astrophysics Data System (ADS)

    Zhang, Guifeng; Liao, Xianjin; Chen, Bo; Zhang, Linjie; Zhang, Jianxun

    2015-06-01

    To optimize the braze composition design route for aluminum matrix composite, the feasibility of in situ producing reinforcing phase within the transient liquid phase bond seam matrix, by adding active melting point increaser (MPI, e.g., Ti) together with general melting point depressant (MPD, e.g., Cu) into the interlayer, was demonstrated. For SiC p /A356 composite, by comparing the wettability, joint microstructure, joint shear strength, and fracture path for the developed Al-19Cu-1Ti, Al-19Cu, Al-33Cu-1Ti, Al-33Cu (wt pct), and commercial Cu foils as interlayer, the feasibility of in situ producing reinforcing phase within the bond seam by adding Ti was demonstrated. Especially for Al-19Cu-1Ti active braze, small and dispersed ternary aluminide of Al-Si-Ti phase was obtained within the bond seam as in situ reinforcement, leading to a favorable fracture path within SiC p /A356, not along the initial interface or within the bond seam. For the formation mechanism of the in situ reinforcing phase of MPI-containing intermetallic compound within the bond seam, a model of repeating concentration-precipitation-termination-engulfment during isothermal solidification is proposed.

  13. X-ray Crystal Structure of a Metalled Double-Helix Generated by Infinite and Consecutive C*-Ag(I) -C* (C*:N(1) -Hexylcytosine) Base Pairs through Argentophilic and Hydrogen Bond Interactions.

    PubMed

    Terrón, Angel; Moreno-Vachiano, Blas; Bauzá, Antonio; García-Raso, Angel; Fiol, Juan Jesús; Barceló-Oliver, Miquel; Molins, Elies; Frontera, Antonio

    2017-02-10

    The synthesis of a metalled double-helix containing exclusively silver-mediated C*-C* base pairs is reported herein (C*=N(1) hexylcytosine). Remarkably, it is the first crystal structure containing infinite and consecutive C*-Ag(I) -C* base pairs that form a double helix. The Ag(I) ion occupies the center between two C* residues with N(3)-Ag bond lengths of 2.1 Å and short Ag(I) -Ag(I) distances (3.1 Å) suggesting an interesting argentophilic attraction as a stabilization source of the helical disposition. The solid-state structure is further stabilized by metal-mediated base-pairs, hydrogen bonding and π-stacking interactions. Moreover, the angle N(3)-Ag-N(3) is almost linear in the [Ag(N(1) hexylcytosine)2 ](+) motif and the bases are not coplanar, thus generating a double-strand helical aggregate in the solid state. The noncovalent and argentophilic interactions have been rationalized based on DFT calculations.

  14. C-H bond activation of methane in aqueous solution: a hybrid quantum mechanical/effective fragment potential study.

    PubMed

    Da Silva, Júlio C S; Rocha, Willian R

    2011-12-01

    In this study, we investigated the C-H bond activation of methane catalyzed by the complex [PtCl(4)](2-), using the hybrid quantum mechanical/effective fragment potential (EFP) approach. We analyzed the structures, energetic properties, and reaction mechanism involved in the elementary steps that compose the catalytic cycle of the Shilov reaction. Our B3LYP/SBKJC/cc-pVDZ/EFP results show that the methane activation may proceed through two pathways: (i) electrophilic addition or (ii) direct oxidative addition of the C-H bond of the alkane. The electrophilic addition pathway proceeds in two steps with formation of a σ-methane complex, with a Gibbs free energy barrier of 24.6 kcal mol(-1), followed by the cleavage of the C-H bond, with an energy barrier of 4.3 kcal mol(-1) . The activation Gibbs free energy, calculated for the methane uptake step was 24.6 kcal mol(-1), which is in good agreement with experimental value of 23.1 kcal mol(-1) obtained for a related system. The results shows that the activation of the C-H bond promoted by the [PtCl(4)](2-) catalyst in aqueous solution occurs through a direct oxidative addition of the C-H bond, in a single step, with an activation free energy of 25.2 kcal mol(-1), as the electrophilic addition pathway leads to the formation of a σ-methane intermediate that rapidly undergoes decomposition. The inclusion of long-range solvent effects with polarizable continuum model does not change the activation energies computed at the B3LYP/SBKJC/cc-pVDZ/EFP level of theory significantly, indicating that the large EFP water cluster used, obtained from Monte Carlo simulations and analysis of the center-of-mass radial pair distribution function, captures the most important solvent effects.

  15. Palladium-catalyzed cross-coupling of aryl fluorides with N-tosylhydrazones via C-F bond activation.

    PubMed

    Luo, Haiqing; Wu, Guojiao; Xu, Shuai; Wang, Kang; Wu, Chaoqiang; Zhang, Yan; Wang, Jianbo

    2015-09-04

    A palladium-catalyzed cross-coupling reaction of electron-deficient aryl fluorides with aryl N-tosylhydrazones has been reported. Mechanistically, this approach involves C-F bond activation and migratory insertion of palladium carbene as the two key steps.

  16. Palladium-catalyzed oxidative arylalkylation of activated alkenes: dual C-H bond cleavage of an arene and acetonitrile.

    PubMed

    Wu, Tao; Mu, Xin; Liu, Guosheng

    2011-12-23

    Not one but two: The title reaction proceeds through the dual C-H bond cleavage of both aniline and acetonitrile. The reaction affords a variety of cyano-bearing indolinones in excellent yield. Mechanistic studies demonstrate that this reaction involves a fast arylation of the olefin and a rate-determining C-H activation of the acetonitrile.

  17. Carbon-hydrogen bond activation of aromatic imines by (Cp{sup *}{sub 2}SmH){sub 2}

    SciTech Connect

    Radu, N.S.; Buchwald, S.L.; Scott, B.; Burns, C.J.

    1996-09-17

    Treatment of (Cp{sup *}{sub 2}SmH){sub 2} with 2-phenyl-1-pyrroline forms product 1, via ortho-metalation. Complex 1 was characterized spectroscopically and by single-crystal X-ray diffraction. The C-H bond activation reaction also occurs for acyclic aromatic ketimines and aldimines. 30 refs., 1 fig.

  18. Antioxidant activity of phenolic and related compounds: a density functional theory study on the O-H bond dissociation enthalpy.

    PubMed

    Giacomelli, Cristiano; Miranda, Fabio da Silva; Gonçalves, Norberto Sanches; Spinelli, Almir

    2004-01-01

    We report here on calculations at the hybrid DFT/HF (B3-LYP/6-31G(d, p)) level of the O-H bond dissociation enthalpy (O-H BDE) of phenylpropenoic acids (caffeic, ferulic, p-coumaric and cinnamic) and phenolic acids and related compounds (gallic, methylgallate, vanillic and gentisic) in order to gain insight into the understanding of structure-antioxidant activity relationships. The results were correlated and discussed mainly on the basis of experimental data in a companion work (Galato D, Giacomelli C, Ckless K, Susin MF, Vale RMR, Spinelli A. Antioxidant capacity of phenolic and related compounds: correlation among electrochemical, visible spectroscopy methods and structure-antioxidant activity. Redox Report 2001; 6: 243-250). The O-H BDE values showed remarkable dependence on the hydroxyl position in the benzene ring and the existence of additional interaction due to hydrogen bonding. For parent molecules, the experimental antioxidant activity (AA) order was properly obeyed only when intramolecular hydrogen bonding was present in the radicalized structures of o-dihydroxyl moieties. In structurally related compounds, excellent correlation with experimental data was in general observed (0.64 < rho < 0.99). However, it is shown that excellent correlation can also be obtained for this series of compounds considering p-radicalized structures which were not stabilized by intramolecular hydrogen bonding, but this had no physical meaning. These findings suggested that the antioxidant activity evaluation of phenolic and related compounds must take into consideration the characteristics of each particular compound.

  19. Active ion emission onboard the Double Star TC-1 spacecraft - results from initial science operations

    NASA Astrophysics Data System (ADS)

    Torkar, K.; Steiger, W.; Narheim, B. T.; Svenes, K.; Fehringer, M.; Escoubet, C. P.; Fazakerley, A. N.; Zhao, H.

    An ion emitter instrument ASPOC (Active Spacecraft Potential Control) belongs to the payload of the Chinese-European Double Star mission (TC-1) launched in December 2003. The instrument is a further development to the ones flown in the Cluster mission. Its objective is a reduction of the spacecraft potential in order to minimise the perturbations to the plasma measurements on board. The operation of the scientific payload began after commissioning in February 2004. Comparisons to Cluster are being made based on data from the first half year of the Double Star mission. The enhanced capabilities of the instrument allow to achieve even lower potentials than on Cluster. Differences to Cluster can also be expected because of the plasma environment at the equatorial orbit of TC-1. The effects of spacecraft potential control on the electron measurements by the instrument PEACE as observed during the first months of science operations are discussed.

  20. DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. II. THE CASE OF EQUAL PEAKS

    SciTech Connect

    Smith, K. L.; Shields, G. A.; Salviander, S.; Stevens, A. C.; Rosario, D. J. E-mail: shields@astro.as.utexas.edu E-mail: acs0196@mail.utexas.edu

    2012-06-10

    Active galactic nuclei (AGNs) with double-peaked narrow lines (DPAGNs) may be caused by kiloparsec-scale binary AGNs, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGNs in which the two narrow-line components have closely similar intensity as being especially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGNs from Smith et al., the 'equal-peaked' objects (EPAGNs) have [Ne V]/[O III]ratios lower than for a control sample of non-double-peaked AGNs. This is unexpected for a pair of normal AGNs in a galactic merger, but may be consistent with [O III] emission from a rotating ring with relatively little gas at small radii. Also, [O III]/H{beta} ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.

  1. Origin of the catalytic activity of bovine seminal ribonuclease against double-stranded RNA

    NASA Technical Reports Server (NTRS)

    Opitz, J. G.; Ciglic, M. I.; Haugg, M.; Trautwein-Fritz, K.; Raillard, S. A.; Jermann, T. M.; Benner, S. A.

    1998-01-01

    Bovine seminal ribonuclease (RNase) binds, melts, and (in the case of RNA) catalyzes the hydrolysis of double-stranded nucleic acid 30-fold better under physiological conditions than its pancreatic homologue, the well-known RNase A. Reported here are site-directed mutagenesis experiments that identify the sequence determinants of this enhanced catalytic activity. These experiments have been guided in part by experimental reconstructions of ancestral RNases from extinct organisms that were intermediates in the evolution of the RNase superfamily. It is shown that the enhanced interactions between bovine seminal RNase and double-stranded nucleic acid do not arise from the increased number of basic residues carried by the seminal enzyme. Rather, a combination of a dimeric structure and the introduction of two glycine residues at positions 38 and 111 on the periphery of the active site confers the full catalytic activity of bovine seminal RNase against duplex RNA. A structural model is presented to explain these data, the use of evolutionary reconstructions to guide protein engineering experiments is discussed, and a new variant of RNase A, A(Q28L K31C S32C D38G E111G), which contains all of the elements identified in these experiments as being important for duplex activity, is prepared. This is the most powerful catalyst within this subfamily yet observed, some 46-fold more active against duplex RNA than RNase A.

  2. Consequences of metal-oxide interconversion for C-H bond activation during CH4 reactions on Pd catalysts.

    PubMed

    Chin, Ya-Huei Cathy; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2013-10-16

    Mechanistic assessments based on kinetic and isotopic methods combined with density functional theory are used to probe the diverse pathways by which C-H bonds in CH4 react on bare Pd clusters, Pd cluster surfaces saturated with chemisorbed oxygen (O*), and PdO clusters. C-H activation routes change from oxidative addition to H-abstraction and then to σ-bond metathesis with increasing O-content, as active sites evolve from metal atom pairs (*-*) to oxygen atom (O*-O*) pairs and ultimately to Pd cation-lattice oxygen pairs (Pd(2+)-O(2-)) in PdO. The charges in the CH3 and H moieties along the reaction coordinate depend on the accessibility and chemical state of the Pd and O centers involved. Homolytic C-H dissociation prevails on bare (*-*) and O*-covered surfaces (O*-O*), while C-H bonds cleave heterolytically on Pd(2+)-O(2-) pairs at PdO surfaces. On bare surfaces, C-H bonds cleave via oxidative addition, involving Pd atom insertion into the C-H bond with electron backdonation from Pd to C-H antibonding states and the formation of tight three-center (H3C···Pd···H)(‡) transition states. On O*-saturated Pd surfaces, C-H bonds cleave homolytically on O*-O* pairs to form radical-like CH3 species and nearly formed O-H bonds at a transition state (O*···CH3(•)···*OH)(‡) that is looser and higher in enthalpy than on bare Pd surfaces. On PdO surfaces, site pairs consisting of exposed Pd(2+) and vicinal O(2-), Pd(ox)-O(ox), cleave C-H bonds heterolytically via σ-bond metathesis, with Pd(2+) adding to the C-H bond, while O(2-) abstracts the H-atom to form a four-center (H3C(δ-)···Pd(ox)···H(δ+)···O(ox))(‡) transition state without detectable Pd(ox) reduction. The latter is much more stable than transition states on *-* and O*-O* pairs and give rise to a large increase in CH4 oxidation turnover rates at oxygen chemical potentials leading to Pd to PdO transitions. These distinct mechanistic pathways for C-H bond activation, inferred from theory

  3. Consequences of Metal–Oxide Interconversion for C–H Bond Activation during CH₄ Reactions on Pd Catalysts

    SciTech Connect

    Chin, Ya-Huei; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2013-10-01

    Mechanistic assessments based on kinetic and isotopic methods combined with density functional theory are used to probe the diverse pathways by which C-H bonds in CH₄ react on bare Pd clusters, Pd cluster surfaces saturated with chemisorbed oxygen (O*), and PdO clusters. C-H activation routes change from oxidative addition to Habstraction and then to σ-bond metathesis with increasing O-content, as active sites evolve from metal atom pairs (*-*) to oxygen atom (O*-O*) pairs and ultimately to Pd cationlattice oxygen pairs (Pd2+-O2-) in PdO. The charges in the CH₃ and H moieties along the reaction coordinate depend on the accessibility and chemical state of the Pd and O centers involved. Homolytic C-H dissociation prevails on bare (*-*) and O*- covered surfaces (O*-O*), while C-H bonds cleave heterolytically on Pd2+-O2- pairs at PdO surfaces. On bare surfaces, C-H bonds cleave via oxidative addition, involving Pd atom insertion into the C-H bond with electron backdonation from Pd to C-H antibonding states and the formation of tight three-center (H₃C···Pd···H)‡ transition states. On O*-saturated Pd surfaces, C-H bonds cleave homolytically on O*-O* pairs to form radical-like CH3 species and nearly formed O-H bonds at a transition state (O*···CH3 •···*OH)‡ that is looser and higher in enthalpy than on bare Pd surfaces. On PdO surfaces, site pairs consisting of exposed Pd2+ and vicinal O2-, Pdox-Oox, cleave C-H bonds heterolytically via σ-bond metathesis, with Pd2+ adding to the C-H bond, while O2- abstracts the H-atom to form a four-center (H3Cδ-···Pdox···Hδ+···Oox) transition state without detectable Pdox reduction. The latter is much more stable than transition states on *-* and O*-O* pairs and give rise to a large increase in CH₄ oxidation turnover rates at oxygen chemical

  4. Neutral redox-active hydrogen- and halogen-bonding [2]rotaxanes for the electrochemical sensing of chloride.

    PubMed

    Lim, Jason Y C; Cunningham, Matthew J; Davis, Jason J; Beer, Paul D

    2014-12-14

    The first examples of redox-active ferrocene-functionalised neutral [2]rotaxanes have been synthesised via chloride anion templation. (1)H NMR spectroscopic titrations reveal that these [2]rotaxane host systems recognize chloride selectively over other halides and oxoanions in highly-competitive aqueous media. By replacing the hydrogen bonding prototriazole units of the rotaxane axle component with iodotriazole halogen bond-donor groups, the degree of chloride selectivity of the [2]rotaxanes is modulated. Electrochemical voltammetric experiments demonstrate that the rotaxanes can sense chloride via cathodic perturbations of the respective rotaxanes' ferrocene-ferrocenium redox-couple upon anion addition.

  5. Electrochemical reduction of carbon fluorine bond in 4-fluorobenzonitrile Mechanistic analysis employing Marcus Hush quadratic activation-driving force relation

    NASA Astrophysics Data System (ADS)

    Muthukrishnan, A.; Sangaranarayanan, M. V.

    2007-10-01

    The reduction of carbon-fluorine bond in 4-fluorobenzonitrile in acetonitrile as the solvent, is analyzed using convolution potential sweep voltammetry and the dependence of the transfer coefficient on potential is investigated within the framework of Marcus-Hush quadratic activation-driving force theory. The validity of stepwise mechanism is inferred from solvent reorganization energy estimates as well as bond length calculations using B3LYP/6-31g(d) method. A novel method of estimating the standard reduction potential of the 4-fluorobenzonitrile in acetonitrile is proposed.

  6. Papain-catalyzed peptide bond formation: enzyme-specific activation with guanidinophenyl esters.

    PubMed

    de Beer, Roseri J A C; Zarzycka, Barbara; Amatdjais-Groenen, Helene I V; Jans, Sander C B; Nuijens, Timo; Quaedflieg, Peter J L M; van Delft, Floris L; Nabuurs, Sander B; Rutjes, Floris P J T

    2011-09-19

    The substrate mimetics approach is a versatile method for small-scale enzymatic peptide-bond synthesis in aqueous systems. The protease-recognized amino acid side chain is incorporated in an ester leaving group, the substrate mimetic. This shift of the specific moiety enables the acceptance of amino acids and peptide sequences that are normally not recognized by the enzyme. The guanidinophenyl group (OGp), a known substrate mimetic for the serine proteases trypsin and chymotrypsin, has now been applied for the first time in combination with papain, a cheap and commercially available cysteine protease. To provide insight in the binding mode of various Z-X(AA)-OGp esters, computational docking studies were performed. The results strongly point at enzyme-specific activation of the OGp esters in papain through a novel mode of action, rather than their functioning as mimetics. Furthermore, the scope of a model dipeptide synthesis was investigated with respect to both the amino acid donor and the nucleophile. Molecular dynamics simulations were carried out to prioritize 22 natural and unnatural amino acid donors for synthesis. Experimental results correlate well with the predicted ranking and show that nearly all amino acids are accepted by papain.

  7. CHEMICAL ACTIVATION OF MOLECULES BY METALS: EXPERIMENTAL STUDIES OF ELECTRON DISTRIBUTIONS AND BONDING

    SciTech Connect

    LICHTENBERGER, DENNIS L.

    2002-03-26

    This research program is directed at obtaining detailed experimental information on the electronic interactions between metals and organic molecules. These interactions provide low energy pathways for many important chemical and catalytic processes. A major feature of the program is the continued development and application of our special high-resolution valence photoelectron spectroscopy (UPS), and high-precision X-ray core photoelectron spectroscopy (XPS) instrumentation for study of organometallic molecules in the gas phase. The study involves a systematic approach towards understanding the interactions and activation of bound carbonyls, C-H bonds, methylenes, vinylidenes, acetylides, alkenes, alkynes, carbenes, carbynes, alkylidenes, alkylidynes, and others with various monometal, dimetal, and cluster metal species. Supporting ligands include -aryls, alkoxides, oxides, and phosphines. We are expanding our studies of both early and late transition metal species and electron-rich and electron-poor environments in order to more completely understand the electronic factors that serve to stabilize particular organic fragments and intermediates on metals. Additional new directions for this program are being taken in ultra-high vacuum surface UPS, XPS, scanning tunneling microscopy (STM) and atomic force microscopy (AFM) experiments on both physisorbed and chemisorbed organometallic thin films. The combination of these methods provides additional electronic structure information on surface-molecule and molecule-molecule interactions. A very important general result emerging from this program is the identification of a close relationship between the ionization energies of the species and the thermodynamics of the chemical and catalytic reactions of these systems.

  8. Intermolecular hydrogen bonds in hetero-complexes of biologically active aromatic molecules probed by the methods of vibrational spectroscopy.

    PubMed

    Semenov, M A; Blyzniuk, Iu N; Bolbukh, T V; Shestopalova, A V; Evstigneev, M P; Maleev, V Ya

    2012-09-01

    By the methods of vibrational spectroscopy (Infrared and Raman) the investigation of the hetero-association of biologically active aromatic compounds: flavin-mononucleotide (FMN), ethidium bromide (EB) and proflavine (PRF) was performed in aqueous solutions. It was shown that between the functional groups (CO and NH(2)) the intermolecular hydrogen bonds are formed in the hetero-complexes FMN-EB and FMN-PRF, additionally stabilizing these structures. An estimation of the enthalpy of Н-bonding obtained from experimental shifts of carbonyl vibrational frequencies has shown that the H-bonds do not dominate in the magnitude of experimentally measured total enthalpy of the hetero-association reactions. The main stabilization is likely due to intermolecular interactions of the molecules in these complexes and their interaction with water environment.

  9. Comprehensive investigation of sequential plasma activated Si/Si bonded interfaces for nano-integration on the wafer scale.

    PubMed

    Kibria, M G; Zhang, F; Lee, T H; Kim, M J; Howlader, M M R

    2010-04-02

    The sequentially plasma activated bonding of silicon wafers has been investigated to facilitate the development of chemical free, room temperature and spontaneous bonding required for nanostructure integration on the wafer scale. The contact angle of the surface and the electrical and nanostructural behavior of the interface have been studied. The contact angle measurements show that the sequentially plasma (reactive ion etching plasma followed by microwave radicals) treated surfaces offer highly reactive and hydrophilic surfaces. These highly reactive surfaces allow spontaneous integration at the nanometer scale without any chemicals, external pressure or heating. Electrical characteristics show that the current transportation across the nanobonded interface is dependent on the plasma parameters. High resolution transmission electron microscopy results confirm nanometer scale bonding which is needed for the integration of nanostructures. The findings can be applied in spontaneous integration of nanostructures such as nanowires/nanotubes/quantum dots on the wafer scale.

  10. Intermolecular hydrogen bonds in hetero-complexes of biologically active aromatic molecules probed by the methods of vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Semenov, M. A.; Blyzniuk, Iu. N.; Bolbukh, T. V.; Shestopalova, A. V.; Evstigneev, M. P.; Maleev, V. Ya.

    2012-09-01

    By the methods of vibrational spectroscopy (Infrared and Raman) the investigation of the hetero-association of biologically active aromatic compounds: flavin-mononucleotide (FMN), ethidium bromide (EB) and proflavine (PRF) was performed in aqueous solutions. It was shown that between the functional groups (Cdbnd O and NH2) the intermolecular hydrogen bonds are formed in the hetero-complexes FMN-EB and FMN-PRF, additionally stabilizing these structures. An estimation of the enthalpy of Н-bonding obtained from experimental shifts of carbonyl vibrational frequencies has shown that the H-bonds do not dominate in the magnitude of experimentally measured total enthalpy of the hetero-association reactions. The main stabilization is likely due to intermolecular interactions of the molecules in these complexes and their interaction with water environment.

  11. Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity.

    PubMed

    Chen, Xiong; Addicoat, Matthew; Jin, Enquan; Zhai, Lipeng; Xu, Hong; Huang, Ning; Guo, Zhaoqi; Liu, Lili; Irle, Stephan; Jiang, Donglin

    2015-03-11

    A series of two-dimensional covalent organic frameworks (2D COFs) locked with intralayer hydrogen-bonding (H-bonding) interactions were synthesized. The H-bonding interaction sites were located on the edge units of the imine-linked tetragonal porphyrin COFs, and the contents of the H-bonding sites in the COFs were synthetically tuned using a three-component condensation system. The intralayer H-bonding interactions suppress the torsion of the edge units and lock the tetragonal sheets in a planar conformation. This planarization enhances the interlayer interactions and triggers extended π-cloud delocalization over the 2D sheets. Upon AA stacking, the resulting COFs with layered 2D sheets amplify these effects and strongly affect the physical properties of the material, including improving their crystallinity, enhancing their porosity, increasing their light-harvesting capability, reducing their band gap, and enhancing their photocatalytic activity toward the generation of singlet oxygen. These remarkable effects on the structure and properties of the material were observed for both freebase and metalloporphyin COFs. These results imply that exploration of supramolecular ensembles would open a new approach to the structural and functional design of COFs.

  12. Linear, planar, and tubular molecular structures constructed by double planar tetracoordinate carbon D2hC2(BeH)4 species via hydrogen-bridged -BeH2Be- bonds.

    PubMed

    Zhao, Xue-Feng; Li, Haixia; Yuan, Cai-Xia; Li, Yan-Qin; Wu, Yan-Bo; Wang, Zhi-Xiang

    2016-01-15

    This computational study identifies the rhombic D2hC2 (BeH)4 (2a) to be a species featuring double planar tetracoordinate carbons (ptCs). Aromaticity and the peripheral BeBeBeBe bonding around CC core contribute to the stabilization of the ptC structure. Although the ptC structure is not a global minimum, its high kinetic stability and its distinct feature of having a bonded C2 core from having two separated carbon atoms in the global minimum and other low-lying minima could make the ptC structure to be preferred if the carbon source is dominated by C2 species. The electron deficiency of the BeH group allows the ptC species to serve as building blocks to construct large/nanostructures, such as linear chains, planar sheets, and tubes, via intermolecular hydrogen-bridged bonds (HBBs). Formation of one HBB bond releases more than 30.0 kcal/mol of energy, implying the highly exothermic formation processes and the possibility to synthesize these nano-size structures.

  13. 77 FR 15378 - Agency Information Collection Activities: Application for Withdrawal of Bonded Stores for Fishing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... permission of the CBP port director for the withdrawal and lading of bonded merchandise (especially alcoholic beverages) for use on board fishing vessels involved in international trade. The applicant must certify...

  14. Double bond in the side chain of 1alpha,25-dihydroxy-22-ene-vitamin D(3) is reduced during its metabolism: studies in chronic myeloid leukemia (RWLeu-4) cells and rat kidney.

    PubMed

    Sunita Rao, D; Balkundi, D; Uskokovic, M R; Tserng, K; Clark, J W; Horst, R L; Satyanarayana Reddy, G

    2001-08-01

    1alpha,25-Dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] is mainly metabolized via the C-24 oxidation pathway and undergoes several side chain modifications which include C-24 hydroxylation, C-24 ketonization, C-23 hydroxylation and side chain cleavage between C-23 and C-24 to form the final product, calcitroic acid. In a recent study we reported that 1alpha,25-dihydroxyvitamin D(2) [1alpha,25(OH)(2)D(2)] like 1alpha,25(OH)(2)D(3), is also converted into the same final product, calcitroic acid. This finding indicated that 1alpha,25(OH)(2)D(2) also undergoes side chain cleavage between C-23 and C-24. As the side chain of 1alpha,25(OH)(2)D(2) when compared to the side chain of 1alpha,25(OH)(2)D(3), has a double bond between C-22 and C-23 and an extra methyl group at C-24 position, it opens the possibility for both (a) double bond reduction and (b) demethylation to occur during the metabolism of 1alpha,25(OH)(2)D(2). We undertook the present study to establish firmly the possibility of double bond reduction in the metabolism of vitamin D(2) related compounds. We compared the metabolism of 1alpha,25-dihydroxy-22-ene-vitamin D(3) [1alpha,25(OH)(2)-22-ene-D(3)], a synthetic vitamin D analog whose side chain differs from that of 1alpha,25(OH)(2)D(3) only through a single modification namely the presence of a double bond between C-22 and C-23. Metabolism studies were performed in the chronic myeloid leukemic cell line (RWLeu-4) and in the isolated perfused rat kidney. Our results indicate that both 1alpha,25(OH)(2)-22-ene-D(3) and 1alpha,25(OH)(2)D(3) are converted into common metabolites namely, 1alpha,24(R),25-trihydroxyvitamin D(3) [1alpha,24(R),25(OH)(3)D(3)], 1alpha,25-dihydroxy-24-oxovitamin D(3) [1alpha,25(OH)(2)-24-oxo-D(3)], 1alpha,23(S),25-trihydroxy-24-oxovitamin D(3) and 1alpha,23-dihydroxy-24,25,26,27-tetranorvitamin D(3). This finding indicates that the double bond in the side chain of 1alpha,25(OH)(2)-22-ene-D(3) is reduced during its metabolism. Along with

  15. The concept of bond order

    NASA Astrophysics Data System (ADS)

    Elliott, Robert J.; Richards, W. Graham

    A method for obtaining precise charge densities in defined regions of space from ab initio molecular wavefunctions is employed to place the concept of bond order on a firm theoretical footing. The bond orders obtained for carbon—carbon bonds in a range of organic compounds are assessed: those for buta-1,3-diene confirm that it consists of essentially localised double and single bonds.

  16. Double-blind study of the actively transported levodopa prodrug XP21279 in Parkinson's disease.

    PubMed

    LeWitt, Peter A; Huff, F Jacob; Hauser, Robert A; Chen, Dan; Lissin, Dmitri; Zomorodi, Katie; Cundy, Kenneth C

    2014-01-01

    The objective of this study was to assess the efficacy, safety, and pharmacokinetics of XP21279-carbidopa in patients with Parkinson's disease who experience motor fluctuations compared with immediate-release carbidopa-levodopa tablets. XP21279 is a levodopa prodrug that is actively absorbed by high-capacity nutrient transporters expressed throughout the gastrointestinal tract and then rapidly converted to levodopa by carboxylesterases. XP21279-carbidopa sustained-release bilayer tablets were developed to overcome pharmacokinetic limitations of levodopa by providing more continuous exposure. Patients with motor fluctuations who required carbidopa-levodopa four or five times daily were optimized for 2 weeks each on carbidopa-levodopa four or five times daily and XP21279-carbidopa three times daily in a randomized sequence. Next, they received each optimized treatment for 2 weeks in a double-blind/double-dummy, randomized sequence. The primary outcome measure was change from baseline in daily off time at the end of each double-blind treatment period. All patients at 2 sites underwent pharmacokinetic analyses. Twenty-eight of 35 enrolled patients completed both double-blind treatments. The mean total daily off time was reduced from baseline by a mean (± standard error) of 2.7 hours (± 0.48 hours) for immediate-release carbidopa-levodopa and 3.0 hours (± 0.57 hours) for XP21279-carbidopa (P = 0.49). Among 11 patients who completed pharmacokinetic sampling on each optimized treatment, the percentage deviation from the mean levodopa concentration was lower (P < 0.05) for XP21279-carbidopa than carbidopa-levodopa. Both treatments had a similar incidence of new or worsening dyskinesias. XP21279-carbidopa administered three times daily produced a reduction in off time similar to that of carbidopa-levodopa administered four or five times daily, and the difference was not statistically significant. XP21279-carbidopa significantly reduced variability in levodopa

  17. Bond Activation by Metal-Carbene Complexes in the Gas Phase.

    PubMed

    Zhou, Shaodong; Li, Jilai; Schlangen, Maria; Schwarz, Helmut

    2016-03-15

    "Bare" metal-carbene complexes, when generated in the gas phase and exposed to thermal reactions under (near) single-collision conditions, exhibit rather unique reactivities in addition to the well-known metathesis and cyclopropanation processes. For example, at room temperature the unligated [AuCH2](+) complex brings about efficient C-C coupling with methane to produce C2Hx (x = 4, 6), and the couple [TaCH2](+)/CO2 gives rise to the generation of the acetic acid equivalent CH2═C═O. Entirely unprecedented is the thermal extrusion of a carbon atom from halobenzenes (X = F, Cl, Br, I) by [MCH2](+) (M = La, Hf, Ta, W, Re, Os) and its coupling with the methylene ligand to deliver C2H2 and [M(X)(C5H5)](+). Among the many noteworthy C-N bond-forming processes, the formation of CH3NH2 from [RhCH2](+)/NH3, the generation of CH2═NH2(+) from [MCH2](+)/NH3 (M = Pt, Au), and the production of [PtCH═NH2](+) from [PtCH2](+)/NH3 are of particular interest. The latter species are likely to be involved as intermediates in the platinum-mediated large-scale production of HCN from CH4/NH3 (the DEGUSSA process). In this context, a few examples are presented that point to the operation of co-operative effects even at a molecular level. For instance, in the coupling of CH4 with NH3 by the heteronuclear clusters [MPt](+) (M = coinage metal), platinum is crucial for the activation of methane, while the coinage metal M controls the branching ratio between the C-N bond-forming step and unwanted soot formation. For most of the gas-phase reactions described in this Account, detailed mechanistic insight has been derived from extensive computational work in conjunction with time-honored labeling and advanced mass-spectrometry-based experiments, and often a coherent description of the experimental findings has been achieved. As for some transition metals, in particular those from the third row, the metal-carbene complexes can be formed directly from methane, coupling of the so

  18. Synthesis and Characterization of Layered Double Hydroxides Containing Optically Active Transition Metal Ion

    NASA Astrophysics Data System (ADS)

    Tyagi, S. B.; Kharkwal, Aneeta; Nitu; Kharkwal, Mamta; Sharma, Raghunandan

    2017-01-01

    The acetate intercalated layered double hydroxides of Zn and Mn, have been synthesized by chimie douce method. The materials were characterized by XRD, TGA, CHN, IR, XPS, SEM-EDX and UV-visible spectroscopy. The photoluminescence properties was also studied. The optical properties of layered hydroxides are active transition metal ion dependent, particularly d1-10 system plays an important role. Simultaneously the role of host - guest orientation has been considered the basis of photoluminescence. Acetate ion can be exchanged with iodide and sulphate ions. The decomposed product resulted the pure phase Mn doped zinc oxide are also reported.

  19. Active Control of Vibrations and Noise of Double Wall Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    Wang, C.-Y.; Vaicaitis, R.

    1998-10-01

    Active control of vibrations and noise transmissions of double wall composite cylindrical shells using pairs of spatially discrete piezoelectric actuators is investigated. The velocity feedback and sound pressure rate feedback control procedures are developed. The inner and outer shells which are separated by a soft core are modelled by Love's thin shell theory for laminate composite materials and the inputs are taken as stationary random pressures and/or random point forces. A galerkin-like procedure is used to obtain solutions of the governing structural-acoustic equations. Parametric studies are performed to demonstrate the effect of actuator placement, actuator size, control gains, spillover, structural and acoustic damping characteristics

  20. Carbon-Hydrogen (C-H) Bond Activation at PdIV: A Frontier in C–H Functionalization Catalysis

    PubMed Central

    Topczewski, Joseph J.; Sanford, Melanie S.

    2014-01-01

    The direct functionalization of carbon-hydrogen (C-H) bonds has emerged as a versatile strategy for the synthesis and derivatization of organic molecules. Among the methods for C-H bond activation, catalytic processes that utilize a PdII/PdIV redox cycle are increasingly common. The C-H activation step in most of these catalytic cycles is thought to occur at a PdII centre. However, a number of recent reports have suggested the feasibility of C-H cleavage occurring at PdIV complexes. Importantly, these latter processes often result in complementary reactivity and selectivity relative to analogous transformations at PdII. This Mini Review highlights proposed examples of C-H activation at PdIV centres. Applications of this transformation in catalysis as well as mechanistic details obtained from stoichiometric model studies are discussed. Furthermore, challenges and future perspectives for the field are reviewed. PMID:25544882

  1. Activation of Propane C-H and C-C Bonds by Gas-Phase Pt Atom: A Theoretical Study

    PubMed Central

    Li, Fang-Ming; Yang, Hua-Qing; Ju, Ting-Yong; Li, Xiang-Yuan; Hu, Chang-Wei

    2012-01-01

    The reaction mechanism of the gas-phase Pt atom with C3H8 has been systematically investigated on the singlet and triplet potential energy surfaces at CCSD(T)//BPW91/6-311++G(d, p), Lanl2dz level. Pt atom prefers the attack of primary over secondary C-H bonds in propane. For the Pt + C3H8 reaction, the major and minor reaction channels lead to PtC3H6 + H2 and PtCH2 + C2H6, respectively, whereas the possibility to form products PtC2H4 + CH4 is so small that it can be neglected. The minimal energy reaction pathway for the formation of PtC3H6 + H2, involving one spin inversion, prefers to start at the triplet state and afterward proceed along the singlet state. The optimal C-C bond cleavages are assigned to C-H bond activation as the first step, followed by cleavage of a C-C bond. The C-H insertion intermediates are kinetically favored over the C-C insertion intermediates. From C-C to C-H oxidative insertion, the lowering of activation barrier is mainly caused by the more stabilizing transition state interaction ΔE≠int, which is the actual interaction energy between the deformed reactants in the transition state. PMID:22942766

  2. The Nature of Activated Non-classical Hydrogen Bonds: A Case Study on Acetylcholinesterase-Ligand Complexes.

    PubMed

    Berg, Lotta; Mishra, Brijesh Kumar; Andersson, C David; Ekström, Fredrik; Linusson, Anna

    2016-02-18

    Molecular recognition events in biological systems are driven by non-covalent interactions between interacting species. Here, we have studied hydrogen bonds of the CH⋅⋅⋅Y type involving electron-deficient CH donors using dispersion-corrected density functional theory (DFT) calculations applied to acetylcholinesterase-ligand complexes. The strengths of CH⋅⋅⋅Y interactions activated by a proximal cation were considerably strong; comparable to or greater than those of classical hydrogen bonds. Significant differences in the energetic components compared to classical hydrogen bonds and non-activated CH⋅⋅⋅Y interactions were observed. Comparison between DFT and molecular mechanics calculations showed that common force fields could not reproduce the interaction energy values of the studied hydrogen bonds. The presented results highlight the importance of considering CH⋅⋅⋅Y interactions when analysing protein-ligand complexes, call for a review of current force fields, and opens up possibilities for the development of improved design tools for drug discovery.

  3. Physiological Brain Activity Causes DNA Double Strand Breaks in Neurons — Exacerbation by Amyloid-β

    PubMed Central

    Suberbielle, Elsa; Sanchez, Pascal E.; Kravitz, Alexxai V.; Wang, Xin; Ho, Kaitlyn; Eilertson, Kirsten; Devidze, Nino; Kreitzer, Anatol C.; Mucke, Lennart

    2013-01-01

    We show that a natural behavior, exploration of a novel environment, causes DNA double-strand breaks (DSBs) in neurons of young adult wildtype mice. DSBs occurred in multiple brain regions, were most abundant in the dentate gyrus, which is involved in spatial learning and memory, and were repaired within 24 hours. Increasing neuronal activity by sensory or optogenetic stimulation increased neuronal DSBs in relevant but not irrelevant networks. Human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of Alzheimer's disease, had increased neuronal DSBs at baseline and more severe and prolonged DSBs after exploration. Interventions that suppress aberrant neuronal activity and improve memory in hAPP mice normalized their levels of DSBs. Blocking extrasynaptic NMDA-type glutamate receptors prevented amyloid-β (Aβ)-induced DSBs in neuronal cultures. Thus, transient increases in neuronal DSBs occur as a result of physiological brain activity and Aβ exacerbates DNA damage, most likely by eliciting synaptic dysfunction. PMID:23525040

  4. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    SciTech Connect

    Lichtenberger, D.L.

    1991-10-01

    The formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies has been developed into a single equation which unifies the treatment of covalent bonds, ionic bonds, and partially ionic bonds. This relationship has been used to clarify the fundamental thermodynamic information relating to metal-hydrogen, metal-alkyl, and metal-metal bond energies. We have been able to obtain a direct observation and measurement of the stabilization energy provided by the agostic interaction of the C-H bond with the metal. The ionization energies have also been used to correlate the rates of carbonyl substitution reactions of ({eta}{sup 5}-C{sub 5}H{sub 4}X)Rh(CO){sub 2} complexes, and to reveal the electronic factors that control the stability of the transition state. The extent that the electronic features of these bonding interactions transfer to other chemical systems is being investigated in terms of the principle of additivity of ligand electronic effects. Specific examples under study include metal- phosphines, metal-halides, and metallocenes. Especially interesting has been the recent application of these techniques to the characterization of the soccer-ball shaped C{sub 60} molecule, buckminsterfullerene, and its interaction with a metal surface. The high-resolution valence ionizations in the gas phase reveal the high symmetry of the molecule, and studies of thin films of C{sub 60} reveal weak intermolecular interactions. Scanning tunneling and atomic force microscopy reveal the arrangement of spherical molecules on gold substrates, with significant delocalization of charge from the metal surface. 21 refs.

  5. C-O and O-H Bond Activation of Methanole by Lanthanum

    NASA Astrophysics Data System (ADS)

    Silva, Ruchira; Hewage, Dilrukshi; Yang, Dong-Sheng

    2012-06-01

    The interaction between methanol (CH_3OH) molecules and laser-vaporized La atoms resulted in the cleavage of C-O and O-H bonds and the formation of three major products, LaH_2O_2, LaCH_4O_2 and LaC_2H_6O_2, in a supersonic molecular beam. These products were identified by time-of-flight mass spectrometry, and their electronic spectra were obtained using mass-analyzed threshold ionization (MATI) spectroscopy. From the MATI spectra, adiabatic ionization energies of the three complexes were measured to be 40136 (5), 39366 (5) and 38685 (5) cm-1 for LaH_2O_2, LaCH_4O_2 and LaC_2H_6O_2, respectively. The ionization energies of these complexes decrease as the size of the coordinated organic fragments increases. The most active vibrational transitions of all three complexes were observed to be the M-O stretches in the ionic state. A metal-ligand bending mode with a frequency of 127 cm-1 was also observed for [LaH_2O_2]^+. However, the spectra of the other two complexes were less resolved, due to the existence of a large number of low frequency modes, which could be thermally excited even in the supersonic molecular beams, and of multiple rotational isomers formed by the free rotation of the methyl group in these systems. The electronic transitions responsible for the observed spectra were identified as ^1A_1 (C2v) ← ^2A_1 (C2v) for LaH_2O_2 and ^1A (C_1) ← ^2A (C_1) for LaCH_4O_2 and LaC_2H_6O_2.

  6. Electrophilic, Ambiphilic, and Nucleophilic C-H bond Activation. Understanding the electronic continuum of C-H bond activation through transition-state and reaction pathway interaction energy decompositions

    SciTech Connect

    Ess, Daniel H.; Goddard, William A.; Periana, Roy A.

    2010-10-29

    The potential energy and interaction energy profiles for metal- and metal-ligand-mediated alkane C-H bond activation were explored using B3LYP density functional theory (DFT) and the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA). The set of complexes explored range from late transition metal group 10 (Pt and Pd) and group 11 (Au) metal centers to group 7-9 (Ir, Rh, Ru, and W) metal centers as well as a group 3 Sc complex. The coordination geometries, electron metal count (d8, d6, d4, and d0), and ligands (N-heterocycles, O-donor, phosphine, and Cp*) are also diverse. Quantitative analysis using ALMO-EDA of both directions of charge-transfer stabilization (occupied to unoccupied orbital stabilization) energies between the metal-ligand fragment and the coordinated C-H bond in the transition state for cleavage of the C-H bond allows classification of C-H activation reactions as electrophilic, ambiphilic, or nucleophilic on the basis of the net direction of charge-transfer energy stabilization. This bonding pattern transcends any specific mechanistic or bonding paradigm, such as oxidative addition, σ-bond metathesis, or substitution. Late transition metals such as Au(III), Pt(II), Pd(II), and Rh(III) metal centers with N-heterocycle, halide, or O-donor ligands show electrophilically dominated reaction profiles with forward charge-transfer from the C-H bond to the metal, leading to more stabilization than reverse charge transfer from the metal to the C-H bond. Transition states and reaction profiles for d6 Ru(II) and Ir(III) metals with Tp and acac ligands were found to have nearly equal forward and reverse charge-transfer energy stabilization. This ambiphilic region also includes the classically labeled electrophilic cationic species Cp*(PMe3)Ir(Me). Nucleophilic character, where the metal to C-H bond charge-transfer interaction is most stabilizing, was found in

  7. Non-innocent additives in a palladium(II)-catalyzed C-H bond activation reaction: insights into multimetallic active catalysts.

    PubMed

    Anand, Megha; Sunoj, Raghavan B; Schaefer, Henry F

    2014-04-16

    The role of a widely employed additive (AgOAc) in a palladium acetate-catalyzed ortho-C-H bond activation reaction has been examined using the M06 density functional theory. A new hetero-bimetallic Pd-(μ-OAc)3-Ag is identified as the most likely active species. This finding could have far-reaching implications with respect to the notion of the active species in palladium catalysis in the presence of other metal salt additives.

  8. Lamb wave based active damage identification in adhesively bonded composite lap joints

    NASA Astrophysics Data System (ADS)

    Jolly, Prateek

    Bonding composite structures using adhesives offers several advantages over mechanical fastening such as better flow stress, weight saving, improved fatigue resistance and the ability to join dissimilar structures. The hesitation to adopt adhesively bonded composite joints stems from the lack of knowledge regarding damage initiation and propagation mechanisms within the joint. A means of overcoming this hesitation is to continuously monitor damage in the joint. This study proposes a methodology to conduct structural health monitoring (SHM) of an adhesively bonded composite lap joint using acoustic, guided Lamb waves by detecting, locating and predicting the size of damage. Finite element modeling of a joint in both 2D and 3D is used to test the feasibility of the proposed damage triangulation technique. Experimental validation of the methodology is conducted by detecting the presence, location and size of inflicted damage with the use of tuned guided Lamb waves.

  9. Insulin analog with additional disulfide bond has increased stability and preserved activity

    PubMed Central

    Vinther, Tine N; Norrman, Mathias; Ribel, Ulla; Huus, Kasper; Schlein, Morten; Steensgaard, Dorte B; Pedersen, Thomas Å; Pettersson, Ingrid; Ludvigsen, Svend; Kjeldsen, Thomas; Jensen, Knud J; Hubálek, František

    2013-01-01

    Insulin is a key hormone controlling glucose homeostasis. All known vertebrate insulin analogs have a classical structure with three 100% conserved disulfide bonds that are essential for structural stability and thus the function of insulin. It might be hypothesized that an additional disulfide bond may enhance insulin structural stability which would be highly desirable in a pharmaceutical use. To address this hypothesis, we designed insulin with an additional interchain disulfide bond in positions A10/B4 based on Cα-Cα distances, solvent exposure, and side-chain orientation in human insulin (HI) structure. This insulin analog had increased affinity for the insulin receptor and apparently augmented glucodynamic potency in a normal rat model compared with HI. Addition of the disulfide bond also resulted in a 34.6°C increase in melting temperature and prevented insulin fibril formation under high physical stress even though the C-terminus of the B-chain thought to be directly involved in fibril formation was not modified. Importantly, this analog was capable of forming hexamer upon Zn addition as typical for wild-type insulin and its crystal structure showed only minor deviations from the classical insulin structure. Furthermore, the additional disulfide bond prevented this insulin analog from adopting the R-state conformation and thus showing that the R-state conformation is not a prerequisite for binding to insulin receptor as previously suggested. In summary, this is the first example of an insulin analog featuring a fourth disulfide bond with increased structural stability and retained function. PMID:23281053

  10. Diffusion bonding aeroengine components

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. A.; Broughton, T.

    1988-10-01

    The use of diffusion bonding processes at Rolls-Royce for the manufacture of titanium-alloy aircraft engine components and structures is described. A liquid-phase diffusion bonding process called activated diffusion bonding has been developed for the manufacture of the hollow titanium wide chord fan blade. In addition, solid-state diffusion bonding is being used in the manufacture of hollow vane/blade airfoil constructions mainly in conjunction with superplastic forming and hot forming techniques.

  11. Conversion of amides to esters by the nickel-catalysed activation of amide C-N bonds

    NASA Astrophysics Data System (ADS)

    Hie, Liana; Fine Nathel, Noah F.; Shah, Tejas K.; Baker, Emma L.; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K. N.; Garg, Neil K.

    2015-08-01

    Amides are common functional groups that have been studied for more than a century. They are the key building blocks of proteins and are present in a broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to the resonance stability of the amide bond. Although amides can readily be cleaved by enzymes such as proteases, it is difficult to selectively break the carbon-nitrogen bond of an amide using synthetic chemistry. Here we demonstrate that amide carbon-nitrogen bonds can be activated and cleaved using nickel catalysts. We use this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory calculations provide insight into the thermodynamics and catalytic cycle of the amide-to-ester transformation. Our results provide a way to harness amide functional groups as synthetic building blocks and are expected to lead to the further use of amides in the construction of carbon-heteroatom or carbon-carbon bonds using non-precious-metal catalysis.

  12. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks.

    PubMed

    Aymard, François; Bugler, Beatrix; Schmidt, Christine K; Guillou, Emmanuelle; Caron, Pierre; Briois, Sébastien; Iacovoni, Jason S; Daburon, Virginie; Miller, Kyle M; Jackson, Stephen P; Legube, Gaëlle

    2014-04-01

    Although both homologous recombination (HR) and nonhomologous end joining can repair DNA double-strand breaks (DSBs), the mechanisms by which one of these pathways is chosen over the other remain unclear. Here we show that transcriptionally active chromatin is preferentially repaired by HR. Using chromatin immunoprecipitation-sequencing (ChIP-seq) to analyze repair of multiple DSBs induced throughout the human genome, we identify an HR-prone subset of DSBs that recruit the HR protein RAD51, undergo resection and rely on RAD51 for efficient repair. These DSBs are located in actively transcribed genes and are targeted to HR repair via the transcription elongation-associated mark trimethylated histone H3 K36. Concordantly, depletion of SETD2, the main H3 K36 trimethyltransferase, severely impedes HR at such DSBs. Our study thereby demonstrates a primary role in DSB repair of the chromatin context in which a break occurs.

  13. DNA double-strand breaks and ATM activation by transcription-blocking DNA lesions.

    PubMed

    Sordet, Olivier; Nakamura, Asako J; Redon, Christophe E; Pommier, Yves

    2010-01-15

    A taxia telangiectasia mutated (ATM), the deficiency of which causes a severe neurodegenerative disease, is a crucial mediator for the DNA double-strand break (DSB) response. We recently showed that transcription-blocking topoisomerase I cleavage complexes (TOP1cc) produce DSBs related to R-loop formation and activate ATM in post-mitotic neurons and lymphocytes. Here we discuss how TOP1cc can produce transcription arrest with R-loop formation and generate DSBs that activate ATM, as well as data suggesting that those transcription-dependent DSBs tend to form at the IgH locus and at specific genomic sites. We also address the potential roles of ATM in response to transcription-blocking TOP1cc.

  14. Chromospherically active stars. 13: HD 30957: A double lined K dwarf binary

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Dadonas, Virgilijus; Sperauskas, Julius; Vaccaro, Todd R.; Patterson, L. Ronald

    1994-01-01

    HD 30957 is a double-lined spectroscopic binary with a period of 44.395 days and a modest eccentricity of 0.09. The spectral types of the components are K2-3 V and K5 V. The measured v sin i for both components is less than or equal to 3 km/s and the orbital inclination is estimated to be 69 deg. The system is relatively nearby with a parallax of 0.025 sec or a distance of 40 pc. Space motions of the system indicate that it does not belong to any of the known moving groups. Absolute surface fluxes of the Ca II H and K lines have been recomputed and indicate only modest chromospheric activity. If the stars are rotating pseudosynchronously, the lack of light variability is consistent with the value of the critical Rossby number for starspot activity.

  15. Enhanced catalytic activity of sub-nanometer titania clusters confined inside double-wall carbon nanotubes.

    PubMed

    Zhang, Hongbo; Pan, Xiulian; Liu, Jingyue Jimmy; Qian, Weizhong; Wei, Fei; Huang, Yuying; Bao, Xinhe

    2011-07-18

    Sub-nanometer titania clusters have been homogeneously dispersed within double-wall carbon nantubes (DWNTs) with an inner diameter ranging from 1.0 to 1.5 nm. The confined titania exhibits a much higher activity than the titania particles attached on the outside walls of the DWNTs (the outside titania) in the epoxidation of propylene by H(2)O(2). XPS, XANES and Raman spectroscopy data suggest electron transfer from titanium to the inner surfaces of the DWNTs. In contrast, no electron transfer has been observed for the outside titania. We also found that the extent of this confinement-induced electron transfer is temperature dependent. The enhanced activity of the confined titania clusters is likely attributed to their small sizes and the interaction with the DWNT surface. The synthesis method that we developed here can be readily applied to incorporation of other metal/metal oxide nanoparticles into carbon nanotubes.

  16. New seven membered palladacycles: C-Br bond activation of 2-bromo-pyridine derivative by Pd(II).

    PubMed

    Nicasio-Collazo, Juan; Álvarez, Eleuterio; Alvarado-Monzón, José C; Andreu-de-Riquer, Gabriel; Jimenez-Halla, J Oscar C; De León-Rodríguez, Luis M; Merino, Gabriel; Morales, Ubaldo; Serrano, Oracio; López, Jorge A

    2011-12-14

    C-Br bond activation followed by a C-C coupling reaction of the 2-bromo-pyridyl unit of [1-phenyl-2-(6-bromopyridin-2-yl)-benzoimidazole] was performed by Pd(CH(2)CMe(2)-o-C(6)H(4))(η(4)-COD). Two new seven membered palladacycles were obtained. A combined experimental and theoretical DFT study elucidates the mechanism for this reaction.

  17. Functionalization of non-activated C-H bonds in the synthesis of vitamin D metabolites and analogs.

    PubMed

    Moman, Edelmiro

    2014-01-01

    The development of non-microbial methods for the selective functionalization of non-activated C-H bonds has constituted a challenge, with important economical and environmental implications, for chemists for over a century. The present review provides a comprehensive and current compendium that illustrates the power of C-H functionalization and, namely, of remote functionalization strategies, to expeditiously access vitamin D analogs with intricate structures.

  18. The biologically active form of the sea urchin egg receptor for sperm is a disulfide-bonded homo-multimer

    PubMed Central

    1994-01-01

    Since many cell surface receptors exist in their active form as oligomeric complexes, we have investigated the subunit composition of the biologically active sperm receptor in egg plasma membranes from Strongylocentrotus purpuratus. Electrophoretic analysis of the receptor without prior reduction of disulfide bonds revealed that the surface receptor exists in the form of a disulfide-bonded multimer, estimated to be a tetramer. These findings are in excellent agreement with the fact that the NH2-terminus of the extracellular domain of the sperm receptor is rich in cysteine residues. Studies with cross-linking agents of various length and hydrophobicity suggest that no other major protein is tightly associated with the receptor. Given the multimeric structure of the receptor, we investigated the effect of disulfide bond reduction on its biological activity. Because in quantitative bioassays fertilization was found to be inhibited by treatment of eggs with 5 mM dithiothreitol, we undertook more direct studies of the effect of reduction on properties of the receptor. First, we studied the effect of addition of isolated, pure receptor on fertilization. Whereas the non-reduced, native receptor complex inhibited fertilization in a dose- dependent manner, the reduced and alkylated receptor was inactive. Second, we tested the ability of the isolated receptor to mediate binding of acrosome-reacted sperm to polystyrene beads. Whereas beads coated with native receptor bound sperm, those containing reduced and alkylated receptor did not. Thus, these results demonstrate that the biologically active form of the sea urchin sperm receptor consists only of 350 kD subunits and that these must be linked as a multimer via disulfide bonds to produce a complex that is functional in sperm recognition and binding. PMID:8188748

  19. Enantioselective Aminomethylamination of Conjugated Dienes with Aminals Enabled by Chiral Palladium Complex-Catalyzed C-N Bond Activation.

    PubMed

    Liu, Yang; Xie, Yinjun; Wang, Hongli; Huang, Hanmin

    2016-04-06

    A novel highly enantioselective aminomethylamination of conjugated dienes with aminals catalyzed by a chiral palladium complex ligated with BINOL-derived chiral diphosphinite has been successfully developed. This reaction proceeds via a Pd-catalyzed cascade C-N bond activation, aminomethylation, and asymmetric allylic amination reaction under mild reaction conditions, providing a unique and efficient strategy for the synthesis of enantiomerically pure allylic 1,3-diamines.

  20. Easy activation of two C-H bonds of an N-heterocyclic carbene N-methyl group.

    PubMed

    Cabeza, Javier A; del Río, Ignacio; Miguel, Daniel; Sánchez-Vega, M Gabriela

    2005-08-21

    The first trinuclear clusters containing NHC ligands are described; the compound [Ru3(Me2Im)(CO)11](Me2Im=1,3-dimethylimidazol-2-ylidene) is easily converted into [Ru3(mu-H)2(mu3-MeImCH)(CO)9] by a process involving the activation of two C-H bonds of a methyl group that is an example of degradation of a metal-coordinated NHC ligand under mild conditions.

  1. Vapour-induced solid-state C-H bond activation for the clean synthesis of an organopalladium biothiol sensor.

    PubMed

    Monas, Andrea; Užarević, Krunoslav; Halasz, Ivan; Kulcsár, Marina Juribašić; Ćurić, Manda

    2016-10-27

    Room-temperature accelerated aging in the solid state has been applied for atom- and energy-efficient activation of either one or two C-H bonds of azobenzene and methyl orange by palladium(ii) acetate. Organopalladium complexes are prepared in quantitative reactions without potentially harmful side products. Dicyclopalladated methyl orange is water-soluble and is a selective chromogenic biothiol sensor at physiologically-relevant micromolar concentrations in buffered aqueous media.

  2. Homogeneous near surface activity distribution by double energy activation for TLA

    NASA Astrophysics Data System (ADS)

    Takács, S.; Ditrói, F.; Tárkányi, F.

    2007-10-01

    Thin layer activation (TLA) is a versatile tool for activating thin surface layers in order to study real-time the surface loss by wear, corrosion or erosion processes of the activated parts, without disassembling or stopping running mechanical structures or equipment. The research problem is the determination of the irradiation parameters to produce point-like or large area optimal activity-depth distribution in the sample. Different activity-depth profiles can be produced depending on the type of the investigated material and the nuclear reaction used. To produce activity that is independent of the depth up to a certain depth is desirable when the material removed from the surface by wear, corrosion or erosion can be collected completely. By applying dual energy irradiation the thickness of this quasi-constant activity layer can be increased or the deviation of the activity distribution from a constant value can be minimized. In the main, parts made of metals and alloys are suitable for direct activation, but by using secondary particle implantation the wear of other materials can also be studied in a surface range a few micrometers thick. In most practical cases activation of a point-like spot (several mm2) is enough to monitor the wear, corrosion or erosion, but for special problems relatively large surfaces areas of complicated spatial geometry need to be activated uniformly. Two ways are available for fulfilling this task, (1) production of large area beam spot or scanning the beam over the surface in question from the accelerator side, or (2) a programmed 3D movement of the sample from the target side. Taking into account the large variability of tasks occurring in practice, the latter method was chosen as the routine solution in our cyclotron laboratory.

  3. Ultrahigh Enzyme Activity Assembled in Layered Double Hydroxides via Mg(2+)-Allosteric Effector.

    PubMed

    Wang, Min; Huang, Shu-Wan; Xu, Dan; Bao, Wen-Jing; Xia, Xing-Hua

    2015-06-02

    It is well-known that some metal ions could be allosteric effectors of allosteric enzymes to activate/inhibit the catalytic activities of enzymes. In nanobiocatalytic systems constructed based on the positive metal ion-induced allosteric effect, the incorporated enzymes will be activated and thus exhibit excellent catalytic performance. Herein, we present an environmentally friendly strategy to construct a novel allosteric effect-based β-galactosidase/Mg-Al layered double hydroxide (β-gal/Mg-Al-LDH) nanobiocatalytic system via the delamination-reconstruction method. The intercalated β-gal in the LDH galleries changes its conformation significantly due to the Mg(2+)-induced allosteric interactions and other weak interactions, which causes the activation of enzymatic activity. The β-gal/Mg-Al-LDH nanobiocatalytic system shows much higher catalytic activity and affinity toward its substrate and about 30 times higher catalytic reaction velocity than the free β-gal, which suggests that Mg(2+)-induced allosteric effect plays a vital role in the improvement of enzymatic performance.

  4. Increased KGF expression promotes fibroblast activation in a double paracrine manner resulting in cutaneous fibrosis.

    PubMed

    Canady, Johanna; Arndt, Stephanie; Karrer, Sigrid; Bosserhoff, Anja K

    2013-03-01

    Fibrotic disorders of the skin share the characteristic features of increased production and deposition of extracellular matrix components by activated fibroblasts. Their clinical course ranges from benign with localized cutaneous involvement to a systemic, life-threatening disease. The molecular cause for fibroblast activation remains unknown, yet epithelial-mesenchymal interactions draw mounting attention in the research field of fibrogenesis. We examined keratinocyte growth factor (KGF), a crucial molecule in fibroblast-keratinocyte cross talk, exemplarily in keloid and scleroderma, and found its expression to be increased in disease-derived fibroblasts and tissues compared with healthy controls. This overexpression induces fibroblast activation through a double paracrine mode of action. Upon KGF stimulation, the keratinocytes produced and secreted OSM (oncostatin M). Fibroblasts were in turn activated by OSM reacting with the increased expression of collagen type I-α1, fibroblast activation protein, and enhanced migration. The observed increase in collagen expression and fibroblast migration can be traced back to OSM-regulated STAT3 phosphorylation, leading to enhanced urokinase plasminogen activator expression. Hence, we propose a causative loop in the pathogenesis of fibrosing disorders of the skin mediated by the overexpression of KGF in mesenchymal cells.

  5. Interdigitated hydrogen bonds: electrophile activation for covalent capture and fluorescence turn-on detection of cyanide.

    PubMed

    Jo, Junyong; Olasz, András; Chen, Chun-Hsing; Lee, Dongwhan

    2013-03-06

    Hydrogen-bonding promoted covalent modifications are finding useful applications in small-molecule chemical synthesis and detection. We have designed a xanthene-based fluorescent probe 1, in which tightly held acylguanidine and aldehyde groups engage in multiple intramolecular hydrogen bonds within the concave side of the molecule. Such an interdigitated hydrogen bond donor-acceptor (HBD-HBA) array imposes significant energy barriers (ΔG(‡) = 10-16 kcal mol(-1)) for internal bond rotations to assist structural preorganization and effectively polarizes the electrophilic carbonyl group toward a nucleophilic attack by CN(-) in aqueous environment. This covalent modification redirects the de-excitation pathways of the cyanohydrin adduct 2 to elicit a large (>7-fold) enhancement in the fluorescence intensity at λmax = 440 nm. A remarkably faster (> 60-fold) response kinetics of 1, relative to its N-substituted (and therefore "loosely held") analogue 9, provided compelling experimental evidence for the functional role of HBD-HBA interactions in the "remote" control of chemical reactivity, the electronic and steric origins of which were investigated by DFT computational and X-ray crystallographic studies.

  6. Synthesis, surface-active properties, and antimicrobial activities of new double-chain gemini surfactants.

    PubMed

    Murguía, Marcelo C; Vaillard, Victoria A; Sánchez, Victoria G; Conza, José Di; Grau, Ricardo J

    2008-01-01

    A novel series of neutral and cationic dimeric surfactants were prepared involving ketalization reaction, Williamson etherification, and regioselective oxirane ring opening with primary and tertiary alkyl amines. The critical micelle concentration (CMC), effectiveness of surface tension reduction (gamma(CMC)), surface excess concentration (Gamma), and area per molecule at the interface (A) were determined and values indicate that the cationic series is characterized by good surface-active and self-aggregation properties. For the first time, we reported the antimicrobial activities against representative bacteria and fungi for dimeric compounds. The antimicrobial activity was found to be dependent on the target microorganism (Gram-positive bacteria > fungi > Gram-negative bacteria), as well as both the neutral or ionic nature (cationic > neutral) and alkyl chain length (di-C(12) > di-C(18) > di-C(8)) of the compounds. The cationic di-C(12) derivative was found to have equipotent activity to that of benzalkonium chloride (BAC) used as standard.

  7. Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks.

    PubMed

    Sordet, Olivier; Redon, Christophe E; Guirouilh-Barbat, Josée; Smith, Susan; Solier, Stéphanie; Douarre, Céline; Conti, Chiara; Nakamura, Asako J; Das, Benu B; Nicolas, Estelle; Kohn, Kurt W; Bonner, William M; Pommier, Yves

    2009-08-01

    Ataxia telangiectasia mutated (ATM), the deficiency of which causes a severe neurodegenerative disease, is a crucial mediator for the DNA damage response (DDR). As neurons have high rates of transcription that require topoisomerase I (TOP1), we investigated whether TOP1 cleavage complexes (TOP1cc)-which are potent transcription-blocking lesions-also produce transcription-dependent DNA double-strand breaks (DSBs) with ATM activation. We show the induction of DSBs and DDR activation in post-mitotic primary neurons and lymphocytes treated with camptothecin, with the induction of nuclear DDR foci containing activated ATM, gamma-H2AX (phosphorylated histone H2AX), activated CHK2 (checkpoint kinase 2), MDC1 (mediator of DNA damage checkpoint 1) and 53BP1 (p53 binding protein 1). The DSB-ATM-DDR pathway was suppressed by inhibiting transcription and gamma-H2AX signals were reduced by RNase H1 transfection, which removes transcription-mediated R-loops. Thus, we propose that Top1cc produce transcription arrests with R-loop formation and generate DSBs that activate ATM in post-mitotic cells.

  8. A PCR-free fluorescence strategy for detecting telomerase activity via double amplification strategy.

    PubMed

    Zhang, Xiafei; Cheng, Rui; Shi, Zhilu; Jin, Yan

    2016-01-15

    As a universal tumor biomarker, research on the activity and inhibition of telomerase is of great importance for cancer diagnosis and therapy. Although the telomeric repeat amplification protocol (TRAP) has served as a powerful assay for detecting telomerase activity, its application has been significantly limited by amplification related errors and time-consuming procedure. To address the limitations of PCR-based protocol, a dual amplification fluorescence assay was developed for PCR-free detecting telomerase activity. Briefly, we designed an arch-structure DNA probe to specifically control strand displacement reaction and subsequent enzyme-aided amplification. Telomerase substrate (TS) primer was extended by telomerase to form long elongation products which contain several TTAGGG repeat units. So, one elongation product can release more than one trigger DNA (t-DNA) via strand displacement reaction to realize first amplification. Subsequently, t-DNA specifically opened molecular beacon (MB) to restore the fluorescence of MB. Meanwhile, t-DNA was recycled by the aid of nicking endonuclease to continuously open more and more MBs, leading to a second amplification. Owing to the double amplification strategy, the proposed method allowed the measurement of telomerase activity in crude cell extracts equivalent to 5 HeLa cells and 10 CCRF-CEM cells without PCR amplification. Besides, the influence of telomere-binding ligands on the telomerase activity demonstrated that the proposed method holds the potential to evaluate the inhibition efficiency of telomerase inhibitors.

  9. Coordinated nuclease activities counteract Ku at single-ended DNA double-strand breaks

    PubMed Central

    Chanut, Pauline; Britton, Sébastien; Coates, Julia; Jackson, Stephen P.; Calsou, Patrick

    2016-01-01

    Repair of single-ended DNA double-strand breaks (seDSBs) by homologous recombination (HR) requires the generation of a 3′ single-strand DNA overhang by exonuclease activities in a process called DNA resection. However, it is anticipated that the highly abundant DNA end-binding protein Ku sequesters seDSBs and shields them from exonuclease activities. Despite pioneering works in yeast, it is unclear how mammalian cells counteract Ku at seDSBs to allow HR to proceed. Here we show that in human cells, ATM-dependent phosphorylation of CtIP and the epistatic and coordinated actions of MRE11 and CtIP nuclease activities are required to limit the stable loading of Ku on seDSBs. We also provide evidence for a hitherto unsuspected additional mechanism that contributes to prevent Ku accumulation at seDSBs, acting downstream of MRE11 endonuclease activity and in parallel with MRE11 exonuclease activity. Finally, we show that Ku persistence at seDSBs compromises Rad51 focus assembly but not DNA resection. PMID:27641979

  10. Double panel with skyhook active damping control units for control of sound radiation.

    PubMed

    Gardonio, Paolo; Alujević, Neven

    2010-09-01

    This paper presents an experimental study on decentralized velocity feedback control on a double panel consisting of an external aluminum panel and a honeycomb trim panel. The decentralized feedback loops are formed by a 3x3 array of coil-magnet electrodynamic actuators that react off the trim panel and a lightweight stiff frame structure located in the air gap between the two panels. Microelectromechanical systems (MEMS) accelerometers are located on the opposite side of the trim panel in correspondence to the electrodynamic actuators. The grid structure is designed to provide an inertial reference to the actuators. In this way the velocity feedback control loops produce skyhook active damping on the double panel, which minimizes the vibrational response and sound radiation of the trim panel at low audio frequencies. Two configurations are considered where the grid structure is either weakly coupled or strongly coupled to the external panel. Both stability and control performance of the two configurations are analyzed experimentally. The study shows that the control configuration with the weakly coupled grid structure enables the implementation of larger stable feedback control gains, which lead to reductions of the sound radiated by the trim panel between 10 and 30 dB for the first seven resonance peaks.

  11. Preferential activation of primary C-H bonds in the reactions of small alkanes with the diatomic MgO(+*) cation.

    PubMed

    Schröder, Detlef; Roithová, Jana; Alikhani, Esmail; Kwapien, Karolina; Sauer, Joachim

    2010-04-06

    The C-H bond activation of small alkanes by the gaseous MgO(+*) cation is probed by mass spectrometric means. In addition to H-atom abstraction from methane, the MgO(+*) cation reacts with ethane, propane, n- and iso-butane through several pathways, which can all be assigned to the occurrence of initial C-H bond activations. Specifically, the formal C-C bond cleavages observed are assigned to C-H bond activation as the first step, followed by cleavage of a beta-C-C bond concomitant with release of the corresponding alkyl radical. Kinetic modeling of the observed product distributions reveals a high preference of MgO(+*) for the attack of primary C-H bonds. This feature represents a notable distinction of the main-group metal oxide MgO(+*) from various transition-metal oxide cations, which show a clear preference for the attack of secondary C-H bonds. The results of complementary theoretical calculations indicate that the C-H bond activation of larger alkanes by the MgO(+*) cation is subject to pronounced kinetic control.

  12. Mechanism and Stereoselectivity in an Asymmetric N-Heterocyclic Carbene-Catalyzed Carbon-Carbon Bond Activation Reaction.

    PubMed

    Pareek, Monika; Sunoj, Raghavan B

    2016-11-18

    The mechanism and origin of stereoinduction in a chiral N-heterocyclic carbene (NHC) catalyzed C-C bond activation of cyclobutenone has been established using B3LYP-D3 density functional theory computations. The activation of cyclobutenone as an NHC-bound vinyl enolate and subsequent reaction with the electrophilic sulfonyl imine leads to the lactam product. The most preferred stereocontrolling transition state exhibits a number of noncovalent interactions rendering additional stabilization. The computed enantio- and diastereoselectivities are in good agreement with the previous experimental observations.

  13. Foster mother-infant bonding: associations between foster mothers' oxytocin production, electrophysiological brain activity, feelings of commitment, and caregiving quality.

    PubMed

    Bick, Johanna; Dozier, Mary; Bernard, Kristin; Grasso, Damion; Simons, Robert

    2013-01-01

    This study examined the biological processes associated with foster mother-infant bonding. In an examination of foster mother-infant dyads (N = 41, mean infant age = 8.5 months), foster mothers' oxytocin production was associated with their expressions of behavioral delight toward their foster infant and their average P3 response to images of all infant faces in the first 2 months of the relationship. Three months later, foster mothers' oxytocin production was still associated with delight toward their foster infant and was also specifically associated with their P3 response to an image of their foster infant. Similar to biologically related mothers and infants, oxytocin appears to be associated with foster mothers' brain activity and caregiving behavior, with patterns suggestive of bond formation.

  14. The Splitting of Double-component Active Asteroid P/2016 J1 (PANSTARRS)

    NASA Astrophysics Data System (ADS)

    Moreno, F.; Pozuelos, F. J.; Novaković, B.; Licandro, J.; Cabrera-Lavers, A.; Bolin, Bryce; Jedicke, Robert; Gladman, Brett J.; Bannister, Michele T.; Gwyn, Stephen D. J.; Vereš, Peter; Chambers, Kenneth; Chastel, Serge; Denneau, Larry; Flewelling, Heather; Huber, Mark; Schunová-Lilly, Eva; Magnier, Eugene; Wainscoat, Richard; Waters, Christopher; Weryk, Robert; Farnocchia, Davide; Micheli, Marco

    2017-03-01

    We present deep imaging observations, orbital dynamics, and dust-tail model analyses of the double-component asteroid P/2016 J1 (J1-A and J1-B). The observations were acquired at the Gran Telescopio Canarias (GTC) and the Canada–France–Hawaii Telescope (CFHT) from mid-March to late July of 2016. A statistical analysis of backward-in-time integrations of the orbits of a large sample of clone objects of P/2016 J1-A and J1-B shows that the minimum separation between them occurred most likely ∼2300 days prior to the current perihelion passage, i.e., during the previous orbit near perihelion. This closest approach was probably linked to a fragmentation event of their parent body. Monte Carlo dust-tail models show that those two components became active simultaneously ∼250 days before the current perihelion, with comparable maximum loss rates of ∼0.7 and ∼0.5 kg s‑1, and total ejected masses of 8 × 106 and 6 × 106 kg for fragments J1-A and J1-B, respectively. Consequently, the fragmentation event and the present dust activity are unrelated. The simultaneous activation times of the two components and the fact that the activity lasted 6–9 months or longer, strongly indicate ice sublimation as the most likely mechanism involved in the dust emission process.

  15. Voice activity detection in noisy environments based on double-combined fourier transform and line fitting.

    PubMed

    Park, Jinsoo; Kim, Wooil; Han, David K; Ko, Hanseok

    2014-01-01

    A new voice activity detector for noisy environments is proposed. In conventional algorithms, the endpoint of speech is found by applying an edge detection filter that finds the abrupt changing point in a feature domain. However, since the frame energy feature is unstable in noisy environments, it is difficult to accurately find the endpoint of speech. Therefore, a novel feature extraction algorithm based on the double-combined Fourier transform and envelope line fitting is proposed. It is combined with an edge detection filter for effective detection of endpoints. Effectiveness of the proposed algorithm is evaluated and compared to other VAD algorithms using two different databases, which are AURORA 2.0 database and SITEC database. Experimental results show that the proposed algorithm performs well under a variety of noisy conditions.

  16. Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry.

    PubMed

    Tokudome, Yasuaki; Morimoto, Tsuyoshi; Tarutani, Naoki; Vaz, Pedro D; Nunes, Carla D; Prevot, Vanessa; Stenning, Gavin B G; Takahashi, Masahide

    2016-05-24

    Increasing attention has been dedicated to the development of nanomaterials rendering green and sustainable processes, which occur in benign aqueous reaction media. Herein, we demonstrate the synthesis of another family of green nanomaterials, layered double hydroxide (LDH) nanoclusters, which are concentrated (98.7 g/L in aqueous solvent), stably dispersed (transparent sol for >2 weeks), and catalytically active colloids of nano LDHs (isotropic shape with the size of 7.8 nm as determined by small-angle X-ray scattering). LDH nanoclusters are available as colloidal building blocks to give access to meso- and macroporous LDH materials. Proof-of-concept applications revealed that the LDH nanocluster works as a solid basic catalyst and is separable from solvents of catalytic reactions, confirming the nature of nanocatalysts. The present work closely investigates the unique physical and chemical features of this colloid, the formation mechanism, and the ability to act as basic nanocatalysts in benign aqueous reaction systems.

  17. Brain glucose utilization in band heterotopia: synaptic activity of "double cortex".

    PubMed

    De Volder, A G; Gadisseux, J F; Michel, C J; Maloteaux, J M; Bol, A C; Grandin, C B; Duprez, T P; Evrard, P

    1994-11-01

    Regional brain glucose utilization was investigated with positron emission tomography and fluorodeoxyglucose in 2 patients with a seizure disorder associated with diffuse band heterotopia, a condition known as "double cortex." Although 1 patient was examined shortly after the onset of the first seizures, the other had a long history of intractable epilepsy before examination. Magnetic resonance imaging revealed a symmetric and generalized band of ectopic gray matter and an overlying normal-looking cortex, without focal abnormality. Metabolic studies yielded comparable results in both patients, with similar and even higher glucose uptake in the layer of gray matter heterotopia compared to the normal cortex. These data suggest the persistence of some synaptic activity in the heterotopic neurons, which seems unaffected by age or by the time-course of epilepsy.

  18. N-Doped Cationic PAHs by Rh(III)-Catalyzed Double C-H Activation and Annulation of 2-Arylbenzimidazoles with Alkynes.

    PubMed

    Villar, José M; Suárez, Jaime; Varela, Jesús A; Saá, Carlos

    2017-04-07

    A novel class of N-doped cationic PAHs (polycyclic aromatic hydrocarbons) bearing the benzo[c,d]fluoranthene scaffold has been synthesized by the Rh(III)-catalyzed double-oxidative annulation of 2-arylbenzimidazoles with alkynes. The overall process involves a double C-N bond formation through a double C-H/N-H functionalization.The solid-state structures and electronic properties of the new N-doped PAHs were analyzed. These cationic azapolycycles were readily reduced in the presence of LiAlH4 or by the addition of PhLi to give interesting phenyl and diphenylmethanediamine derivatives.

  19. Aniline hydrogenolysis on the Pt(111) single crystal surface: Mechanisms for C-N bond activation

    SciTech Connect

    Huang, S.X.; Gland, J.L.; Fischer, D.A. |

    1993-12-31

    Hydrogenolysis of C-N bond on transition metals is a crucial step in hydrodenitrogenation (HDN) reactions. Despite the overall complexity of HDN processes, the details of important surface reactions can be characterized using model reactions of organonitrogen compounds on single crystal model catalysts. The structure and reactivity of well characterized aniline monolayers on the Pt(111) surface both in vacuum and in the presence of hydrogen is discussed here. Adsorption and reactions of aniline were studied by Gland and Somorjai on the Pt(111) and Pt(100) surfaces, and more recently by Benziger`s group on the Ni(111) and Ni(100) surfaces. On both Pt and Ni surfaces, aniline {pi} bonds through the aromatic ring with its ring parallel to the substrate surface.

  20. Preferential repair of DNA double-strand break at the active gene in vivo.

    PubMed

    Chaurasia, Priyasri; Sen, Rwik; Pandita, Tej K; Bhaumik, Sukesh R

    2012-10-19

    Previous studies have demonstrated transcription-coupled nucleotide/base excision repair. We report here for the first time that DNA double-strand break (DSB) repair is also coupled to transcription. We generated a yeast strain by introducing a homing (Ho) endonuclease cut site followed by a nucleotide sequence for multiple Myc epitopes at the 3' end of the coding sequence of a highly active gene, ADH1. This yeast strain also contains the Ho cut site at the nearly silent or poorly active mating type α (MATα) locus and expresses Ho endonuclease under the galactose-inducible GAL1 promoter. Using this strain, DSBs were generated at the ADH1 and MATα loci in galactose-containing growth medium that induced HO expression. Subsequently, yeast cells were transferred to dextrose-containing growth medium to stop HO expression, and the DSB repair was monitored at the ADH1 and MATα loci by PCR, using the primer pairs flanking the Ho cut sites. Our results revealed a faster DSB repair at the highly active ADH1 than that at the nearly silent MATα locus, hence implicating a transcription-coupled DSB repair at the active gene in vivo. Subsequently, we extended this study to another gene, PHO5 (carrying the Ho cut site at its coding sequence), under transcriptionally active and inactive growth conditions. We found a fast DSB repair at the active PHO5 gene in comparison to its inactive state. Collectively, our results demonstrate a preferential DSB repair at the active gene, thus supporting transcription-coupled DSB repair in living cells.

  1. Insight into the general rule for the activation of the X-H bonds (X = C, N, O, S) induced by chemisorbed oxygen atoms.

    PubMed

    Xing, Bin; Wang, Gui-Chang

    2014-02-14

    Density functional theory calculations are presented for adsorption and dissociation of NH3, H2O, CH3OH, H2S and C2H4 on clean and oxygen atom pre-adsorbed metal surfaces (Cu, Ag, Au, Ni, Pd, Pt, Rh, Ru, Os and Ir). The calculation results indicated that the oxygen-promotion effect depends both on the metallic activity and the character of the X-H bond. On the one hand, for a given reaction on a series metals, a good linear correlation was found between the energy barrier difference of X-H bond breaking on clean and oxygen-covered metals and the binding strength of oxygen on metals, namely an oxygen-promotion effect was favorable to the less active metals but unfavorable to the more active metals. On the other hand, for a series of X-H bond breaking reactions on a given metal, it was found that the promotion effect follows the trend of O-H > N-H > C-H, that is, the O-H bond is most promoted by the oxygen atom. The possible reason is the O-H bond forms the strongest hydrogen bond in the transition state among the X-H bonds investigated in this work. Additionally, it was found that the oxygen coverage has little effect on the X-H bond scission.

  2. THE EFFECT OF DOUBLE VERSUS SINGLE OSCILLATING EXERCISE DEVICES ON TRUNK AND LIMB MUSCLE ACTIVATION

    PubMed Central

    Arora, Shruti; Button, Duane C.; Basset, Fabien A.

    2013-01-01

    Purpose/Background: Proper strengthening of the core and upper extremities is important for muscular health, performance, and rehabilitation. Exercise devices have been developed that attempt to disrupt the center of gravity in order to activate the trunk stabilizing muscles. The objective of this study was to analyze the trunk and shoulder girdle muscle activation with double and single oscillating exercise devices (DOD and SOD respectively) in various planes. Methods: Twelve male subjects performed three interventions using both devices under randomized conditions: single-handed vertical orientation of DOD and SOD to produce 1) medio-lateral oscillation in the frontal plane 2) dorso-ventral oscillation in the sagittal plane and 3) single-handed horizontal orientation for superior and inferior oscillation in the transverse plane. Electromyographic (EMG) activity during the interventions of the anterior deltoid, triceps brachii, biceps brachii, forearm flexors as well as lower abdominal and back stabilizer muscles was collected, and were normalized to maximal voluntary contractions. A two way repeated measures ANOVA (2x3) was conducted to assess the influence of the devices and movement planes on muscle activation. Results: The DOD provided 35.9%, 40.8%, and 52.3% greater anterior deltoid, transverse abdominus (TA)/internal oblique (IO) and lumbo-sacral erector spinae (LSES) activation than did the SOD respectively. Effect size calculations revealed that these differences were of moderate to large magnitude (0.86, 0.48, and 0.61 respectively). There were no significant differences in muscular activation achieved between devices for the triceps brachii, biceps brachii and forearm flexor muscles. Exercise in the transverse plane resulted in 30.5%, 29.5%, and 19.5% greater activation than the sagittal and 21.8%, 17.2%, and 26.3% greater activation than the frontal plane for the anterior deltoid, TA/IO and LSES respectively. Conclusions: A DOD demonstrated greater

  3. Bonding thermoplastic polymers

    DOEpatents

    Wallow, Thomas I.; Hunter, Marion C.; Krafcik, Karen Lee; Morales, Alfredo M.; Simmons, Blake A.; Domeier, Linda A.

    2008-06-24

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  4. Heterolytic Activation of C-H Bonds on Cr(III)-O Surface Sites Is a Key Step in Catalytic Polymerization of Ethylene and Dehydrogenation of Propane.

    PubMed

    Conley, Matthew P; Delley, Murielle F; Núñez-Zarur, Francisco; Comas-Vives, Aleix; Copéret, Christophe

    2015-06-01

    We describe the reactivity of well-defined chromium silicates toward ethylene and propane. The initial motivation for this study was to obtain a molecular understanding of the Phillips polymerization catalyst. The Phillips catalyst contains reduced chromium sites on silica and catalyzes the polymerization of ethylene without activators or a preformed Cr-C bond. Cr(II) sites are commonly proposed active sites in this catalyst. We synthesized and characterized well-defined chromium(II) silicates and found that these materials, slightly contaminated with a minor amount of Cr(III) sites, have poor polymerization activity and few active sites. In contrast, chromium(III) silicates have 1 order of magnitude higher activity. The chromium(III) silicates initiate polymerization by the activation of a C-H bond of ethylene. Density functional theory analysis of this process showed that the C-H bond activation step is heterolytic and corresponds to a σ-bond metathesis type process. The same well-defined chromium(III) silicate catalyzes the dehydrogenation of propane at elevated temperatures with activities similar to those of a related industrial chromium-based catalyst. This reaction also involves a key heterolytic C-H bond activation step similar to that described for ethylene but with a significantly higher energy barrier. The higher energy barrier is consistent with the higher pKa of the C-H bond in propane compared to the C-H bond in ethylene. In both cases, the rate-determining step is the heterolytic C-H bond activation.

  5. Transition metal activation and functionalization of carbon-hydrogen bonds. Progress report, December 1, 1989--November 30, 1992

    SciTech Connect

    Jones, W.D.

    1992-06-01

    We are investigating the fundamental thermodynamic and kinetic factors that influence carbon-hydrogen bond activation at homogeneous transition metal centers and the conversion of hydrocarbons into functionalized products of potential use to the chemical industry. Advances have been made in both understanding the interactions of hydrocarbons with metals and in the functionalization of hydrocarbons. We have found that RhCl(PR{sub 3}){sub 2}(CNR) complexes can catalyze the insertion of isonitriles into the C-H bonds or arenes upon photolysis. The mechanism of these reactions was found to proceed by way of initial phosphine dissociation, followed by C-H activation and isonitrile insertion. We have also examined reactions of a series of arenes with (C{sub 5}Me{sub 5})Rh(PMe{sub 3})PhH and begun to map out the kinetic and thermodynamic preferences for arene coordination. The effects of resonance, specifically the differences in the Hueckel energies of the bound vs free ligand, are now believed to fully control the C-H activation/{eta}{sup 2}-coordination equilibria. We have begun to examine the reactions of rhodium isonitrile pyrazolylborates for alkane and arene C-H bond activation. A new, labile, carbodiimide precursor has been developed for these studies. We have completed studies of the reactions of (C{sub 5}Me{sub 5})Rh(PMe{sub 3})H{sub 2} with D{sub 2} and PMe{sub 3} that indicate that both {eta}{sup 5} {yields} {eta}{sup 3} ring slippage and metal to ring hydride migration occur more facilely than thermal reductive elimination of H{sub 2}. We have examined the reactions of heterocycles with (C{sub 5}Me{sub 5})Rh(PMe{sub 3})PhH and found that pyrrole and furan undergo C-H or N-H activation. Thiophene, however, undergoes C-S bond oxidative addition, and the mechanism of activation has been shown to proceed through sulfur coordination prior to C-S insertion.

  6. Hyperpolarization-Activated Current Induces Period-Doubling Cascades and Chaos in a Cold Thermoreceptor Model.

    PubMed

    Xu, Kesheng; Maidana, Jean P; Caviedes, Mauricio; Quero, Daniel; Aguirre, Pablo; Orio, Patricio

    2017-01-01

    In this article, we describe and analyze the chaotic behavior of a conductance-based neuronal bursting model. This is a model with a reduced number of variables, yet it retains biophysical plausibility. Inspired by the activity of cold thermoreceptors, the model contains a persistent Sodium current, a Calcium-activated Potassium current and a hyperpolarization-activated current (Ih) that drive a slow subthreshold oscillation. Driven by this oscillation, a fast subsystem (fast Sodium and Potassium currents) fires action potentials in a periodic fashion. Depending on the parameters, this model can generate a variety of firing patterns that includes bursting, regular tonic and polymodal firing. Here we show that the transitions between different firing patterns are often accompanied by a range of chaotic firing, as suggested by an irregular, non-periodic firing pattern. To confirm this, we measure the maximum Lyapunov exponent of the voltage trajectories, and the Lyapunov exponent and Lempel-Ziv's complexity of the ISI time series. The four-variable slow system (without spiking) also generates chaotic behavior, and bifurcation analysis shows that this is often originated by period doubling cascades. Either with or without spikes, chaos is no longer generated when the Ih is removed from the system. As the model is biologically plausible with biophysically meaningful parameters, we propose it as a useful tool to understand chaotic dynamics in neurons.

  7. Activating Akt1 mutations alter DNA double strand break repair and radiosensitivity.

    PubMed

    Oeck, S; Al-Refae, K; Riffkin, H; Wiel, G; Handrick, R; Klein, D; Iliakis, G; Jendrossek, V

    2017-02-17

    The survival kinase Akt has clinical relevance to radioresistance. However, its contributions to the DNA damage response, DNA double strand break (DSB) repair and apoptosis remain poorly defined and often contradictory. We used a genetic approach to explore the consequences of genetic alterations of Akt1 for the cellular radiation response. While two activation-associated mutants with prominent nuclear access, the phospho-mimicking Akt1-TDSD and the clinically relevant PH-domain mutation Akt1-E17K, accelerated DSB repair and improved survival of irradiated Tramp-C1 murine prostate cancer cells and Akt1-knockout murine embryonic fibroblasts in vitro, the classical constitutively active membrane-targeted myrAkt1 mutant had the opposite effects. Interestingly, DNA-PKcs directly phosphorylated Akt1 at S473 in an in vitro kinase assay but not vice-versa. Pharmacological inhibition of DNA-PKcs or Akt restored radiosensitivity in tumour cells expressing Akt1-E17K or Akt1-TDSD. In conclusion, Akt1-mediated radioresistance depends on its activation state and nuclear localization and is accessible to pharmacologic inhibition.

  8. Activating Akt1 mutations alter DNA double strand break repair and radiosensitivity

    PubMed Central

    Oeck, S.; Al-Refae, K.; Riffkin, H.; Wiel, G.; Handrick, R.; Klein, D.; Iliakis, G.; Jendrossek, V.

    2017-01-01

    The survival kinase Akt has clinical relevance to radioresistance. However, its contributions to the DNA damage response, DNA double strand break (DSB) repair and apoptosis remain poorly defined and often contradictory. We used a genetic approach to explore the consequences of genetic alterations of Akt1 for the cellular radiation response. While two activation-associated mutants with prominent nuclear access, the phospho-mimicking Akt1-TDSD and the clinically relevant PH-domain mutation Akt1-E17K, accelerated DSB repair and improved survival of irradiated Tramp-C1 murine prostate cancer cells and Akt1-knockout murine embryonic fibroblasts in vitro, the classical constitutively active membrane-targeted myrAkt1 mutant had the opposite effects. Interestingly, DNA-PKcs directly phosphorylated Akt1 at S473 in an in vitro kinase assay but not vice-versa. Pharmacological inhibition of DNA-PKcs or Akt restored radiosensitivity in tumour cells expressing Akt1-E17K or Akt1-TDSD. In conclusion, Akt1-mediated radioresistance depends on its activation state and nuclear localization and is accessible to pharmacologic inhibition. PMID:28209968

  9. Hyperpolarization-Activated Current Induces Period-Doubling Cascades and Chaos in a Cold Thermoreceptor Model

    PubMed Central

    Xu, Kesheng; Maidana, Jean P.; Caviedes, Mauricio; Quero, Daniel; Aguirre, Pablo; Orio, Patricio

    2017-01-01

    In this article, we describe and analyze the chaotic behavior of a conductance-based neuronal bursting model. This is a model with a reduced number of variables, yet it retains biophysical plausibility. Inspired by the activity of cold thermoreceptors, the model contains a persistent Sodium current, a Calcium-activated Potassium current and a hyperpolarization-activated current (Ih) that drive a slow subthreshold oscillation. Driven by this oscillation, a fast subsystem (fast Sodium and Potassium currents) fires action potentials in a periodic fashion. Depending on the parameters, this model can generate a variety of firing patterns that includes bursting, regular tonic and polymodal firing. Here we show that the transitions between different firing patterns are often accompanied by a range of chaotic firing, as suggested by an irregular, non-periodic firing pattern. To confirm this, we measure the maximum Lyapunov exponent of the voltage trajectories, and the Lyapunov exponent and Lempel-Ziv's complexity of the ISI time series. The four-variable slow system (without spiking) also generates chaotic behavior, and bifurcation analysis shows that this is often originated by period doubling cascades. Either with or without spikes, chaos is no longer generated when the Ih is removed from the system. As the model is biologically plausible with biophysically meaningful parameters, we propose it as a useful tool to understand chaotic dynamics in neurons. PMID:28344550

  10. Recent Progress in Visible-Light Photoredox-Catalyzed Intermolecular 1,2-Difunctionalization of Double Bonds via an ATRA-Type Mechanism.

    PubMed

    Courant, Thibaut; Masson, Géraldine

    2016-08-19

    Radical difunctionalizations of alkenes constitute an efficient method for the construction of complex organic molecules. This synopsis focuses on visible-light catalysis, a recent and very promising technological refinement of this class of transformations. Examples taken from the literature illustrate the use of a variety of (metallic or nonmetallic) systems, which allow us to leverage the energy of readily available visible-light radiation to efficiently create some of the most commonly looked for types of bonds (C-X, C-O, C-N, and C-C) under mild conditions and starting from unsaturated substrates.

  11. Uranium azide photolysis results in C-H bond activation and provides evidence for a terminal uranium nitride

    NASA Astrophysics Data System (ADS)

    Thomson, Robert K.; Cantat, Thibault; Scott, Brian L.; Morris, David E.; Batista, Enrique R.; Kiplinger, Jaqueline L.

    2010-09-01

    Uranium nitride [U≡N]x is an alternative nuclear fuel that has great potential in the expanding future of nuclear power; however, very little is known about the U≡N functionality. We show, for the first time, that a terminal uranium nitride complex can be generated by photolysis of an azide (U-N=N=N) precursor. The transient U≡N fragment is reactive and undergoes insertion into a ligand C-H bond to generate new N-H and N-C bonds. The mechanism of this unprecedented reaction has been evaluated through computational and spectroscopic studies, which reveal that the photochemical azide activation pathway can be shut down through coordination of the terminal azide ligand to the Lewis acid B(C6F5)3. These studies demonstrate that photochemistry can be a powerful tool for inducing redox transformations for organometallic actinide complexes, and that the terminal uranium nitride fragment is reactive, cleaving strong C-H bonds.

  12. Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle

    PubMed Central

    Lee, Daeun; Choi, Hyemin; Kim, Ha Hyung; Kim, Ho; Hwang, Jae Sam; Lee, Dong Gun; Kim, Jae Il

    2014-01-01

    Defensins, which are small cationic molecules produced by organisms as part of their innate immune response, share a common structural scaffold that is stabilized by three disulfide bridges. Coprisin is a 43-amino acid defensin-like peptide from Copris tripartitus. Here, we report the intramolecular disulfide connectivity of cysteine-rich coprisin, and show that it is the same as in other insect defensins. The disulfide bond pairings of coprisin were determined by combining the enzymatic cleavage and mass analysis. We found that the loss of any single disulfide bond in coprisin eliminated all antibacterial, but not antifungal, activity. Circular dichroism (CD) analysis showed that two disulfide bonds, Cys20-Cys39 and Cys24-Cys41, stabilize coprisin’s α-helical region. Moreover, a BLAST search against UniProtKB database revealed that coprisin’s α-helical region is highly homologous to those of other insect defensins. [BMB Reports 2014; 47(11): 625-630] PMID:24393527

  13. C-H bond activation enables the rapid construction and late-stage diversification of functional molecules

    NASA Astrophysics Data System (ADS)

    Wencel-Delord, Joanna; Glorius, Frank

    2013-05-01

    The beginning of the twenty-first century has witnessed significant advances in the field of C-H bond activation, and this transformation is now an established piece in the synthetic chemists' toolbox. This methodology has the potential to be used in many different areas of chemistry, for example it provides a perfect opportunity for the late-stage diversification of various kinds of organic scaffolds, ranging from relatively small molecules like drug candidates, to complex polydisperse organic compounds such as polymers. In this way, C-H activation approaches enable relatively straightforward access to a plethora of analogues or can help to streamline the lead-optimization phase. Furthermore, synthetic pathways for the construction of complex organic materials can now be designed that are more atom- and step-economical than previous methods and, in some cases, can be based on synthetic disconnections that are just not possible without C-H activation. This Perspective highlights the potential of metal-catalysed C-H bond activation reactions, which now extend beyond the field of traditional synthetic organic chemistry.

  14. A Highly Reactive Mononuclear Non-Heme Manganese(IV)-Oxo Complex That Can Activate the Strong C-H Bonds of Alkanes

    SciTech Connect

    Wu, Xiujuan; Seo, Mi Sook; Davis, Katherine M; Lee, Yong-Min; Chen, Junying; Cho, Kyung-Bin; Pushkar, Yulia N; Nam, Wonwoo

    2012-03-15

    A mononuclear non-heme manganese(IV)-oxo complex has been synthesized and characterized using various spectroscopic methods. The Mn(IV)-oxo complex shows high reactivity in oxidation reactions, such as C-H bond activation, oxidations of olefins, alcohols, sulfides, and aromatic compounds, and N-dealkylation. In C-H bond activation, the Mn(IV)-oxo complex can activate C-H bonds as strong as those in cyclohexane. It is proposed that C-H bond activation by the non-heme Mn(IV)-oxo complex does not occur via an oxygen-rebound mechanism. The electrophilic character of the non-heme Mn(IV)-oxo complex is demonstrated by a large negative ρ value of ~4.4 in the oxidation of para-substituted thioanisoles.

  15. Computational study on the mechanism and selectivity of C-H bond activation and dehydrogenative functionalization in the synthesis of rhazinilam.

    PubMed

    Ellis, Corey S; Ess, Daniel H

    2011-09-02

    The key platinum mediated C-H bond activation and functionalization steps in the synthesis of (-)-rhazinilam (Johnson, J. A.; Li, N.; Sames, D. J. Am. Chem. Soc. 2002, 124, 6900) were investigated using the M06 and B3LYP density functional approximation methods. This computational study reveals that ethyl group dehydrogenation begins with activation of a primary C-H bond in preference to a secondary C-H bond in an insertion/methane elimination pathway. The C-H activation step is found to be reversible while the methane elimination (reductive elimination) transition state controls rate and diastereoselectivity. The chiral oxazolinyl ligand induces ethyl group selectivity through stabilizing weak interactions between its phenyl group (or cyclohexyl group) and the carboxylate group. After C-H activation and methane elimination steps, Pt-C bond functionalization occurs through β-hydride elimination to give the alkene platinum hydride complex.

  16. Simple Bond Cleavage

    SciTech Connect

    Gary S. Groenewold

    2005-08-01

    Simple bond cleavage is a class of fragmentation reactions in which a single bond is broken, without formation of new bonds between previously unconnected atoms. Because no bond making is involved, simple bond cleavages are endothermic, and activation energies are generally higher than for rearrangement eliminations. The rate of simple bond cleavage reactions is a strong function of the internal energy of the molecular ion, which reflects a loose transition state that resembles reaction products, and has a high density of accessible states. For this reason, simple bond cleavages tend to dominate fragmentation reactions for highly energized molecular ions. Simple bond cleavages have negligible reverse activation energy, and hence they are used as valuable probes of ion thermochemistry, since the energy dependence of the reactions can be related to the bond energy. In organic mass spectrometry, simple bond cleavages of odd electron ions can be either homolytic or heterolytic, depending on whether the fragmentation is driven by the radical site or the charge site. Simple bond cleavages of even electron ions tend to be heterolytic, producing even electron product ions and neutrals.

  17. DNA double-strand breaks activate ATM independent of mitochondrial dysfunction in A549 cells.

    PubMed

    Kalifa, Lidza; Gewandter, Jennifer S; Staversky, Rhonda J; Sia, Elaine A; Brookes, Paul S; O'Reilly, Michael A

    2014-10-01

    Excessive nuclear or mitochondrial DNA damage can lead to mitochondrial dysfunction, decreased energy production, and increased generation of reactive oxygen species (ROS). Although numerous cell signaling pathways are activated when cells are injured, the ataxia telangiectasia mutant (ATM) protein has emerged as a major regulator of the response to both mitochondrial dysfunction and nuclear DNA double-strand breaks (DSBs). Because mitochondrial dysfunction is often a response to excessive DNA damage, it has been difficult to determine whether nuclear and/or mitochondrial DNA DSBs activate ATM independent of mitochondrial dysfunction. In this study, mitochondrial and nuclear DNA DSBs were generated in the A549 human lung adenocarcinoma cell line by infecting with retroviruses expressing the restriction endonuclease PstI fused to a mitochondrial targeting sequence (MTS) or nuclear localization sequence (NLS) and a hemagglutinin antigen epitope tag (HA). Expression of MTS-PstI-HA or NLS-PstI-HA activated the DNA damage response defined by phosphorylation of ATM, the tumor suppressor protein p53 (TP53), KRAB-associated protein (KAP)-1, and structural maintenance of chromosomes (SMC)-1. Phosphorylated ATM and SMC1 were detected in nuclear fractions, whereas phosphorylated TP53 and KAP1 were detected in both mitochondrial and nuclear fractions. PstI also enhanced expression of the cyclin-dependent kinase inhibitor p21 and inhibited cell growth. This response to DNA damage occurred in the absence of detectable mitochondrial dysfunction and excess production of ROS. These findings reveal that DNA DSBs are sufficient to activate ATM independent of mitochondrial dysfunction and suggest that the activated form of ATM and some of its substrates are restricted to the nuclear compartment, regardless of the site of DNA damage.

  18. Ce-PROMOTED Bond Activation of Propene Probed by Mass-Analyzed Threshold Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yuchen; Kumari, Sudesh; Yang, Dong-Sheng

    2016-06-01

    The reaction of Ce + propene (CH2=CH-CH3) was carried out in a laser-ablation supersonic molecular beam source. CeC_2H_2, CeC_3H_4, CeC_3H_6, CeC_4H_6, CeC_6H10, and CeC_6H12 were identified by photoionization time-of-flight mass spectrometric measurements, and their structures and electronic states were investigated with mass-analyzed threshold ionization (MATI) spectroscopy and theoretical calculations. The metal complexes containing two or three carbon atoms were formed by the C-C bond breakage (CeC_2H_2), dehydrogenation (CeC_3H_4), or metal insertion into a C-H bond (CeC_3H_6) of a propene molecule. The larger complexes with four to six carbons are formed through secondary reactions involving C-C bond coupling and dehydrogenation. The ground electronic states of the neutral CeC_2H_2, CeC_3H_4, CeC_3H_6, and CeC_4H_6 complexes are triplets with a 4f16s1 electron configuration on the Ce center, and those of the corresponding ions are doublet with a 4f1 configuration. Their MATI spectra are much more complex than those of the corresponding La species formed in the La + propene reaction previously observed by our group. The spectral complexity arises from possibly multiple electronic transitions due to the existence of a 4f electron of the Ce atom which could be located in any one of the seven f-atomic orbitals or involved in considerable spin-orbit interactions.

  19. Activation of Aromatic C-C Bonds of 2,2'-Bipyridine Ligands.

    PubMed

    Fombona, Sergio; Espinal-Viguri, Maialen; Huertos, Miguel A; Díaz, Jesús; López, Ramón; Menéndez, M Isabel; Pérez, Julio; Riera, Lucía

    2016-11-21

    4,4'-Disubstituted-2,2'-bipyridine ligands coordinated to Mo(II) and Re(I) cationic fragments become dearomatized by an intramolecular nucleophilic attack from a deprotonated N-alkylimidazole ligand in cis disposition. The subsequent protonation of these neutral complexes takes place on a pyridine carbon atom rather than at nitrogen, weakening an aromatic C-C bond and affording a dihydropyridyl moiety. Computational calculations allowed for the rationalization of the formation of the experimentally obtained products over other plausible alternatives.

  20. Actively tunable double-Fano and Ramsey-Fano resonances in photonic molecules and improved sensing performance

    NASA Astrophysics Data System (ADS)

    Li, Jiahua; Yu, Rong; Wu, Ying

    2016-12-01

    Optical Fano resonances are an increasingly important line-shape engineering tool with applications ranging from high-sensitivity sensing and ultrasmall lasers to low-power optical switching or modulating. Here we demonstrate a fully on-chip resonant nanostructure on a photonic crystal molecule platform exhibiting typical double- and Ramsey-Fano resonances, which can be actively controlled by the modification of the blockade transmittance in the waveguide. First, we investigate the transmission spectrum of a coupled double-cavity setting, showing a kind of double-Fano resonance line shape which consists of an asymmetric low-frequency Fano (LF) resonance and a high-frequency Fano (HF) resonance. At the same time, we elucidate the influences of various physical quantities on the generated LF and HF resonances. Second, and more interestingly, we reveal the occurrence of the Ramsey-Fano resonance profile by extending a double-cavity arrangement to a coupled-cavity-array arrangement. This Ramsey-Fano resonance can be attributed to the multiple quantum interference among a variety of light pathways. Finally, as an application, we discuss how to use an asymmetric double-Fano resonance line shape, which features the steep spectral slope, to improve the sensing performance. Our obtained results may stimulate future experimental efforts in controlling the double- and Ramsey-Fano resonance line shapes of this system more accurately.

  1. Double plasmonic profile of tryptophan-silver nano-crystals—Temperature sensing and laser induced antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Roy, Sarita; Basak, Soumen; Ray, Pulak; Dasgupta, Anjan Kr.

    2012-10-01

    Surface plasmon resonance (SPR) for spherical shaped silver nanoparticles showing double maxima at ∼390 nm and ∼520 nm respectively is reported. Self assembly of silver nanoparticles grown on tryptophan template leads to emergence of equal intensity double plasmon resonance (EIDPR). While for rod shaped nano-forms such double plasmon is explainable but for spherical shaped forms, such double plasmon can be explained on the basis of bidirectional formation of silver cluster in which attachment of silver at two nitrogen atom locations of tryptophan molecule seems to be obligatory. The absence of double resonance in case of silver nanoclusters formed with other amino acids or N-acetyl L-tryptophanamide (NATA), where bidirectional sbnd NH2 attachment is not possible, validates the proposed EIDPR mechanism. Electron micrograph of EIDPR particle indicates a bi-periodic fringe pattern indicating unusual crystalline property. Apart from sensing tryptophan, the double plasmon peaks are sensitive to temperature. Furthermore, the particle can be used as a smart killing agent showing bactericidal activity only upon exposure to low power laser.

  2. Synthesis of Active Hexafluoroisopropyl Benzoates through a Hydrogen-Bond-Enabled Palladium(II)-Catalyzed C-H Alkoxycarbonylation Reaction.

    PubMed

    Wang, Yang; Gevorgyan, Vladimir

    2017-03-13

    A Pd(II) -catalyzed ortho C-H alkoxycarbonylation reaction of aryl silanes toward active hexafluoroisopropyl (HFIP) benzoate esters has been developed. This efficient reaction features high selectivity and good functional-group tolerance. Notably, given the general nature of the silyl-tethered directing group, this method delivers products bearing two independently modifiable sites. NMR studies reveal the presence of hydrogen bonding between HFIP and a pyrimidine nitrogen atom of the directing group, and it is thought to be crucial for the success of this alkoxycarbonylation reaction.

  3. Analysis and Simple Circuit Design of Double Differential EMG Active Electrode.

    PubMed

    Guerrero, Federico Nicolás; Spinelli, Enrique Mario; Haberman, Marcelo Alejandro

    2016-06-01

    In this paper we present an analysis of the voltage amplifier needed for double differential (DD) sEMG measurements and a novel, very simple circuit for implementing DD active electrodes. The three-input amplifier that standalone DD active electrodes require is inherently different from a differential amplifier, and general knowledge about its design is scarce in the literature. First, the figures of merit of the amplifier are defined through a decomposition of its input signal into three orthogonal modes. This analysis reveals a mode containing EMG crosstalk components that the DD electrode should reject. Then, the effect of finite input impedance is analyzed. Because there are three terminals, minimum bounds for interference rejection ratios due to electrode and input impedance unbalances with two degrees of freedom are obtained. Finally, a novel circuit design is presented, including only a quadruple operational amplifier and a few passive components. This design is nearly as simple as the branched electrode and much simpler than the three instrumentation amplifier design, while providing robust EMG crosstalk rejection and better input impedance using unity gain buffers for each electrode input. The interference rejection limits of this input stage are analyzed. An easily replicable implementation of the proposed circuit is described, together with a parameter design guideline to adjust it to specific needs. The electrode is compared with the established alternatives, and sample sEMG signals are obtained, acquired on different body locations with dry contacts, successfully rejecting interference sources.

  4. Analysis and Simple Circuit Design of Double Differential EMG Active Electrode.

    PubMed

    Guerrero, Federico Nicolas; Spinelli, Enrique Mario; Haberman, Marcelo Alejandro

    2015-12-22

    In this paper we present an analysis of the voltage amplifier needed for double differential (DD) sEMG measurements and a novel, very simple circuit for implementing DD active electrodes. The three-input amplifier that standalone DD active electrodes require is inherently different from a differential amplifier, and general knowledge about its design is scarce in the literature. First, the figures of merit of the amplifier are defined through a decomposition of its input signal into three orthogonal modes. This analysis reveals a mode containing EMG crosstalk components that the DD electrode should reject. Then, the effect of finite input impedance is analyzed. Because there are three terminals, minimum bounds for interference rejection ratios due to electrode and input impedance unbalances with two degrees of freedom are obtained. Finally, a novel circuit design is presented, including only a quadruple operational amplifier and a few passive components. This design is nearly as simple as the branched electrode and much simpler than the three instrumentation amplifier design, while providing robust EMG crosstalk rejection and better input impedance using unity gain buffers for each electrode input. The interference rejection limits of this input stage are analyzed. An easily replicable implementation of the proposed circuit is described, together with a parameter design guideline to adjust it to specific needs. The electrode is compared with the established alternatives, and sample sEMG signals are obtained, acquired on different body locations with dry contacts, successfully rejecting interference sources.

  5. The MRE11 GAR motif regulates DNA double-strand break processing and ATR activation

    PubMed Central

    Yu, Zhenbao; Vogel, Gillian; Coulombe, Yan; Dubeau, Danielle; Spehalski, Elizabeth; Hébert, Josée; Ferguson, David O; Masson, Jean Yves; Richard, Stéphane

    2012-01-01

    The MRE11/RAD50/NBS1 complex is the primary sensor rapidly recruited to DNA double-strand breaks (DSBs). MRE11 is known to be arginine methylated by PRMT1 within its glycine-arginine-rich (GAR) motif. In this study, we report a mouse knock-in allele of Mre11 that substitutes the arginines with lysines in the GAR motif and generates the MRE11RK protein devoid of methylated arginines. The Mre11RK/RK mice were hypersensitive to γ-irradiation (IR) and the cells from these mice displayed cell cycle checkpoint defects and chromosome instability. Moreover, the Mre11RK/RK MEFs exhibited ATR/CHK1 signaling defects and impairment in the recruitment of RPA and RAD51 to the damaged sites. The MRKRN complex formed and localized to the sites of DNA damage and normally activated the ATM pathway in response to IR. The MRKRN complex exhibited exonuclease and DNA-binding defects in vitro responsible for the impaired DNA end resection and ATR activation observed in vivo in response to IR. Our findings provide genetic evidence for the critical role of the MRE11 GAR motif in DSB repair, and demonstrate a mechanistic link between post-translational modifications at the MRE11 GAR motif and DSB processing, as well as the ATR/CHK1 checkpoint signaling. PMID:21826105

  6. Cockayne syndrome group B protein regulates DNA double-strand break repair and checkpoint activation.

    PubMed

    Batenburg, Nicole L; Thompson, Elizabeth L; Hendrickson, Eric A; Zhu, Xu-Dong

    2015-05-12

    Mutations of CSB account for the majority of Cockayne syndrome (CS), a devastating hereditary disorder characterized by physical impairment, neurological degeneration and segmental premature aging. Here we report the generation of a human CSB-knockout cell line. We find that CSB facilitates HR and represses NHEJ. Loss of CSB or a CS-associated CSB mutation abrogating its ATPase activity impairs the recruitment of BRCA1, RPA and Rad51 proteins to damaged chromatin but promotes the formation of 53BP1-Rif1 damage foci in S and G2 cells. Depletion of 53BP1 rescues the formation of BRCA1 damage foci in CSB-knockout cells. In addition, knockout of CSB impairs the ATM- and Chk2-mediated DNA damage responses, promoting a premature entry into mitosis. Furthermore, we show that CSB accumulates at sites of DNA double-strand breaks (DSBs) in a transcription-dependent manner. The kinetics of DSB-induced chromatin association of CSB is distinct from that of its UV-induced chromatin association. These results reveal novel, important functions of CSB in regulating the DNA DSB repair pathway choice as well as G2/M checkpoint activation.

  7. CpG oligodeoxynucleotides with double stem-loops show strong immunostimulatory activity.

    PubMed

    Yang, Liang; Wu, Xiuli; Wan, Min; Yu, Yue; Yu, Yongli; Wang, Liying

    2013-01-01

    Based on the current understanding of TLR9 recognition of CpG ODN, we have tried to design a series of CpG ODNs that display double stem-loops when being analyzed for their secondary structures using 'mfold web server'. Proliferation of human PBMC and bioassay for IFN production were used as technical platforms in primary screening. Interestingly, two of them, designated as DSL01 and D-SL03, belonging to B class CpG ODN and C class CpG ODN respectively, showed vigorous immunostimulatory activity and were chosen for further tests. Flow cytometry analysis showed that both of them could activate human B cells, NK cells, mononuclear cells and T cells and up-regulate expression of CD80, CD86 and HLA-DR on the surface of subsets in human PBMCs. Furthermore, we demonstrated that those two ODNs potently stimulated proliferation of PBMC/splenocytes obtained from diverse vertebrate species. Noticeably, both of them displayed anti-breast cancer effect in mice when administered by peritumoral injection.

  8. Cockayne syndrome group B protein regulates DNA double-strand break repair and checkpoint activation

    PubMed Central

    Batenburg, Nicole L; Thompson, Elizabeth L; Hendrickson, Eric A; Zhu, Xu-Dong

    2015-01-01

    Mutations of CSB account for the majority of Cockayne syndrome (CS), a devastating hereditary disorder characterized by physical impairment, neurological degeneration and segmental premature aging. Here we report the generation of a human CSB-knockout cell line. We find that CSB facilitates HR and represses NHEJ. Loss of CSB or a CS-associated CSB mutation abrogating its ATPase activity impairs the recruitment of BRCA1, RPA and Rad51 proteins to damaged chromatin but promotes the formation of 53BP1-Rif1 damage foci in S and G2 cells. Depletion of 53BP1 rescues the formation of BRCA1 damage foci in CSB-knockout cells. In addition, knockout of CSB impairs the ATM- and Chk2-mediated DNA damage responses, promoting a premature entry into mitosis. Furthermore, we show that CSB accumulates at sites of DNA double-strand breaks (DSBs) in a transcription-dependent manner. The kinetics of DSB-induced chromatin association of CSB is distinct from that of its UV-induced chromatin association. These results reveal novel, important functions of CSB in regulating the DNA DSB repair pathway choice as well as G2/M checkpoint activation. PMID:25820262

  9. An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder

    SciTech Connect

    Osaka, Tetsuya, Liu, X.; Nojima, Masashi; Momma, Toshiyuki

    1999-05-01

    An electric double layer capacitor (EDLC) was prepared with an activated carbon powder electrode with poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based gel electrolyte. Ethylene carbonate (EC) and propylene carbonate (PC) were used as plasticizer and tetraethylammonium tetrafluoroborate (TEABF{sub 4}) was used as the supporting electrolyte. An optimized gel electrolyte of PVdF-HFP/PC/EC/TEABF{sub 4} - 23/31/35/11 mass ratio exhibited high ionic conductivity of 5 {times} 10{sup {minus}3} S/cm, high electrode capacitance, and good mechanical strength. An electrode consisting of activated carbon (AC) with the gel electrolyte as the binder (AC/PVdF-HFP based gel, 7/3 mass ratio) showed a higher specific capacitance and a lower ion diffusion resistance within the electrode than a carbon electrode, prepared with PVdF-HFP binder without plasticizer. This suggests that an electrode mixed with the gel electrolyte has a lower ion diffusion resistance inside the electrode. The highest specific capacitance of 123 F/g was achieved with an electrode containing AC with a specific surface area of 2500 m{sup 2}/g. A coin-type EDLC cell with optimized components showed excellent cycleability exceeding 10{sup 4} cycles with ca. 100% coulombic efficiency achieved when charging and discharging was repeated between 1.0 and 2.5 V at 1.66 mA/cm{sup 2}.

  10. CdS-pillared CoAl-layered double hydroxide nanosheets with superior photocatalytic activity

    SciTech Connect

    Qiu, Yanqiang; Lin, Bizhou Jia, Fangcao; Chen, Yilin; Gao, Bifen; Liu, Peide

    2015-12-15

    Graphical abstract: - Highlights: • CdS nanocrystals were intercalated into CoAl-LDH interlayer. • The nanohybrid display superior visible-light photocatalytic activity. • A photoexcitation model for the pillared heterostructured system was proposed. - Abstract: A new nanohybrid was synthesized by mixing the positively charged 2D nanosheets of CoAl-layered double hydroxide (CoAl-LDH) and the negatively charged CdS nanosol suspensions. It was revealed that the CdS nanoparticles were intercalated into the interlayer region of CoAl-LDH with a spacing of 2.62 nm. The obtained nanohybrid exhibited a mesoporous texture with an expanded specific surface area of 62 m{sup 2} g{sup −1} and a superior photocatalytic activity in the degradation of acid red with a reaction constant of 1.26 × 10{sup −2} min{sup −1} under visible-light radiation, which is more than 2 times those of his parents CoAl-LDH and CdS.

  11. The significance of disulfide bonding in biological activity of HB-EGF, a mutagenesis approach

    SciTech Connect

    Hoskins, J.T.; Zhou, Z.; Harding, P.A.

    2008-10-31

    A site-directed mutagenesis approach was taken to disrupt each of 3 disulfide bonds within human HB-EGF by substituting serine for both cysteine residues that contribute to disulfide bonding. Each HB-EGF disulfide analogue (HB-EGF-Cys/Ser{sub 108/121}, HB-EGF-Cys/Ser{sub 116/132}, and HB-EGF-Cys/Ser{sub 134/143}) was cloned under the regulation of the mouse metallothionein (MT) promoter and stably expressed in mouse fibroblasts. HB-EGF immunoreactive proteins with M{sub r} of 6.5, 21 and 24 kDa were observed from lysates of HB-EGF and each HB-EGF disulfide analogue. HB-EGF immunohistochemical analyses of each HB-EGF stable cell line demonstrated ubiquitous protein expression except HB-EGF-Cys/Ser{sub 108/121} and HB-EGF-Cys/Ser{sub 116/132} stable cell lines which exhibited accumulated expression immediately outside the nucleus. rHB-EGF, HB-EGF, and HB-EGF{sub 134/143} proteins competed with {sup 125}I-EGF in an A431 competitive binding assay, whereas HB-EGF-Cys/Ser{sub 108/121} and HB-EGF-Cys/Ser{sub 116/132} failed to compete. Each HB-EGF disulfide analogue lacked the ability to stimulate tyrosine phosphorylation of the 170 kDa EGFR. These results suggest that HB-EGF-Cys/Ser{sub 134/143} antagonizes EGFRs.

  12. C-H bond activation of benzene by unsaturated η2-cyclopropene and η2-benzyne complexes of niobium.

    PubMed

    Boulho, Cédric; Oulié, Pascal; Vendier, Laure; Etienne, Michel; Pimienta, Véronique; Locati, Abel; Bessac, Fabienne; Maseras, Feliu; Pantazis, Dimitrios A; McGrady, John E

    2010-10-13

    We report the synthesis of a niobium cyclopropyl complex, Tp(Me2)NbMe(c-C(3)H(5))(MeCCMe), and show that thermal loss of methane from this compound generates an intermediate that is capable of activating both aliphatic and aromatic C-H bonds. Isotopic labeling, trapping studies, a detailed kinetic analysis, and density functional theory all suggest that the active intermediate is an η(2)-cyclopropene complex formed via β-hydrogen abstraction rather than an isomeric cyclopropylidene species. C-H activation chemistry of this type represents a rather unusual reactivity pattern for η(2)-alkene complexes but is favored in this case by the strain in the C(3) ring which prevents the decomposition of the key intermediate via loss of cyclopropene.

  13. Once daily versus three times daily mesalazine granules in active ulcerative colitis: a double-blind, double-dummy, randomised, non-inferiority trial

    PubMed Central

    Kruis, W; Kiudelis, G; Rácz, I; Gorelov, I A; Pokrotnieks, J; Horynski, M; Batovsky, M; Kykal, J; Boehm, S; Greinwald, R; Mueller, R

    2009-01-01

    Objectives: To determine the therapeutic equivalence and safety of once daily (OD) versus three times daily (TID) dosing of a total daily dose of 3 g Salofalk (mesalazine) granules in patients with active ulcerative colitis. Design: A randomised, double-blind, double-dummy, parallel group, multicentre, international, phase III non-inferiority study. Setting: 54 centres in 13 countries. Patients: 380 patients with confirmed diagnosis of established or first attack of ulcerative colitis (clinical activity index (CAI)>4 and endoscopic index ⩾4 at baseline) were randomised and treated. Interventions: 8-week treatment with either 3 g OD or 1 g TID mesalazine granules. Main outcome measures: Clinical remission (CAI⩽4) at study end. Results: 380 patients were evaluable for efficacy and safety by intention-to-treat (ITT); 345 for per protocol (PP) analysis. In the ITT population, 79.1% in the OD group (n = 191) and 75.7% in the TID group (n = 189) achieved clinical remission (p<0.0001 for non-inferiority). Significantly more patients with proctosigmoiditis achieved clinical remission in the OD group (86%; n = 97) versus the TID group (73%; n = 100; p = 0.0298). About 70% of patients in both treatment groups achieved endoscopic remission, and 35% in the OD group and 41% in the TID group achieved histological remission. About 80% of all patients preferred OD dosing. Similar numbers of adverse events occurred in 55 patients (28.8%) in the OD group and in 61 patients (32.3%) in the TID group, indicating that the two dosing regimens were equally safe and well tolerated. Conclusions: OD 3 g mesalazine granules are as effective and safe as a TID 1 g schedule. With respect to the best possible adherence of patients to the treatment, OD dosing of mesalazine should be the preferred application mode in active ulcerative colitis. ClinicalTrials.gov Identifier: NCT00449722 PMID:18832520

  14. Determining chemical reactivity driving biological activity from SMILES transformations: the bonding mechanism of anti-HIV pyrimidines.

    PubMed

    Putz, Mihai V; Dudaş, Nicoleta A

    2013-07-30

    Assessing the molecular mechanism of a chemical-biological interaction and bonding stands as the ultimate goal of any modern quantitative structure-activity relationship (QSAR) study. To this end the present work employs the main chemical reactivity structural descriptors (electronegativity, chemical hardness, chemical power, electrophilicity) to unfold the variational QSAR though their min-max correspondence principles as applied to the Simplified Molecular Input Line Entry System (SMILES) transformation of selected uracil derivatives with anti-HIV potential with the aim of establishing the main stages whereby the given compounds may inhibit HIV infection. The bonding can be completely described by explicitly considering by means of basic indices and chemical reactivity principles two forms of SMILES structures of the pyrimidines, the Longest SMILES Molecular Chain (LoSMoC) and the Branching SMILES (BraS), respectively, as the effective forms involved in the anti-HIV activity mechanism and according to the present work, also necessary intermediates in molecular pathways targeting/docking biological sites of interest.

  15. Reactivity of oxygen radical anions bound to scandia nanoparticles in the gas phase: C-H bond activation.

    PubMed

    Tian, Li-Hua; Meng, Jing-Heng; Wu, Xiao-Nan; Zhao, Yan-Xia; Ding, Xun-Lei; He, Sheng-Gui; Ma, Tong-Mei

    2014-01-20

    The activation of C-H bonds in alkanes is currently a hot research topic in chemistry. The atomic oxygen radical anion (O(-·)) is an important species in C-H activation. The mechanistic details of C-H activation by O(-·) radicals can be well understood by studying the reactions between O(-·) containing transition metal oxide clusters and alkanes. Here the reactivity of scandium oxide cluster anions toward n-butane was studied by using a high-resolution time-of-flight mass spectrometer coupled with a fast flow reactor. Hydrogen atom abstraction (HAA) from n-butane by (Sc2O3)(N)O(-) (N=1-18) clusters was observed. The reactivity of (Sc2O3)(N)O(-) (N=1-18) clusters is significantly sizedependent and the highest reactivity was observed for N=4 (Sc8O13(-)) and 12 (Sc24O37(-)). Larger (Sc2O3)(N)O(-) clusters generally have higher reactivity than the smaller ones. Density functional theory calculations were performed to interpret the reactivity of (Sc2O3)(N)O(-) (N=1-5) clusters, which were found to contain the O(-·) radicals as the active sites. The local charge environment around the O(-·) radicals was demonstrated to control the experimentally observed size-dependent reactivity. This work is among the first to report HAA reactivity of cluster anions with dimensions up to nanosize toward alkane molecules. The anionic O(-·) containing scandium oxide clusters are found to be more reactive than the corresponding cationic ones in the C-H bond activation.

  16. Architecture engineering toward highly active palladium integrated titanium dioxide yolk-double-shell nanoreactor for catalytic applications.

    PubMed

    Liu, Baocang; Wang, Qin; Yu, Shengli; Jing, Peng; Liu, Lixia; Xu, Guangran; Zhang, Jun

    2014-10-21

    Rational design of the hierarchical architecture of a material with well controlled functionality is crucially important for improving its properties. In this paper, we present the general strategies for rationally designing and constructing three types of hierarchical Pd integrated TiO2 double-shell architectures, i.e. yolk-double-shell TiO2 architecture (Pd@TiO2/Pd@TiO2) with yolk-type Pd nanoparticles residing inside the central cavity of the hollow TiO2 structure; ultrafine Pd nanoparticles homogenously dispersed on both the external and internal surfaces of the inner TiO2 shell; and double-shell TiO2 architecture (@TiO2/Pd@TiO2) with Pd nanoparticles solely loaded on the external surface of the inner TiO2 shell, and double-shell TiO2 architecture (@TiO2@Pd@TiO2) with Pd nanoparticles dispersed in the interlayer space of double TiO2 shells, via newly developed Pd(2+) ion-diffusion and Pd sol impregnation methodologies. These architectures are well controlled in structure, size, morphology, and configuration with Pd nanoparticles existing in various locations. Owing to the variable synergistic effects arising from the location discrepancies of Pd nanoparticle in the architectures, they exhibit remarkable variations in catalytic activity. In particular, different from previously reported yolk-shell structures, the obtained yolk-double-shell Pd@TiO2/Pd@TiO2 architecture, which is revealed for the first time, possesses a uniform hierarchical structure, narrow size distribution, and good monodispersibility, and it creates two Pd-TiO2 interfaces on the external and internal surfaces of the inner TiO2 shell, leading to the strongest synergistic effect of Pd nanoparticles with TiO2 shell. Furthermore, the interlayer chamber between the double TiO2 shells connecting with the central cavity of the hollow TiO2 structure through the mesoporous TiO2 wall forms a nanoreactor for enriching the reactants and preventing the deletion of Pd nanoparticles during the reaction, thus

  17. Numerical investigation of sound transmission through double wall cylinders with respect to active noise control

    NASA Technical Reports Server (NTRS)

    Coats, T. J.; Silcox, R. J.; Lester, H. C.

    1993-01-01

    Market pressure for more fuel efficient air travel has led to increased use of turboprop and higher bypass turbofan engines. The low frequency components of propeller, jet and boundary layer noise are difficult to attenuate with conventional passive techniques. Weight and geometric restrictions for sound absorbing meterials limit the amount and type of treatment that may be applied. An active noise control (ANC) method is providing to be an attractive alternative. The approach taken in this paper uses a numerical finite/boundary element method (FEM/BEM) that may be easilty adapted to arbitrary geometries. A double walled cylinder is modeled using commercially available software. The outer shell is modeled as an aluminum cylinder, similar to that of aircraft skins. The inner shell is modeled as a composite material representative of a lightweight, stiff trim panel. Two different inner shell materials are used. The first is representative of current trim structure, the second a much stiffer composite. The primary source is generated by an exterior acoustic monopole. Control fields are generated using normal force inputs to the inner cylindrical shell. A linear least mean square (LMS) algorithm is used to determine amplitudes of control forces that minimize the interior acoustic field. Coupling of acoustic and structural modes and noise reductions are discussed for each of the inner shell materials.

  18. Numerical investigation of sound transmission through double wall cylinders with respect to active noise control

    NASA Astrophysics Data System (ADS)

    Coats, T. J.; Silcox, R. J.; Lester, H. C.

    Market pressure for more fuel efficient air travel has led to increased use of turboprop and higher bypass turbofan engines. The low frequency components of propeller, jet and boundary layer noise are difficult to attenuate with conventional passive techniques. Weight and geometric restrictions for sound absorbing meterials limit the amount and type of treatment that may be applied. An active noise control (ANC) method is providing to be an attractive alternative. The approach taken in this paper uses a numerical finite/boundary element method (FEM/BEM) that may be easilty adapted to arbitrary geometries. A double walled cylinder is modeled using commercially available software. The outer shell is modeled as an aluminum cylinder, similar to that of aircraft skins. The inner shell is modeled as a composite material representative of a lightweight, stiff trim panel. Two different inner shell materials are used. The first is representative of current trim structure, the second a much stiffer composite. The primary source is generated by an exterior acoustic monopole. Control fields are generated using normal force inputs to the inner cylindrical shell. A linear least mean square (LMS) algorithm is used to determine amplitudes of control forces that minimize the interior acoustic field. Coupling of acoustic and structural modes and noise reductions are discussed for each of the inner shell materials.

  19. Application of "hydrogen bonding interaction" in new drug development: design, synthesis, antiviral activity, and SARs of thiourea derivatives.

    PubMed

    Lu, Aidang; Wang, Ziwen; Zhou, Zhenghong; Chen, Jianxin; Wang, Qingmin

    2015-02-11

    A series of simple thiourea derivatives were designed based on the structure of natural product harmine and lead compound and synthesized from amines in one step. The antiviral activity of these thiourea derivatives was evaluated. Most of them exhibited significantly higher anti-TMV activity than commercial plant virucides ribavirin, harmine, and lead compound. The hydrogen bond was found to be important but not the more the better. The optimal compound (R,R)-20 showed the best anti-TMV activity in vitro and in vivo (in vitro activity, 75%/500 μg/mL and 39%/100 μg/mL; inactivation activity, 71%/500 μg/mL and 35%/100 μg/mL; curative activity, 73%/500 μg/mL and 37%/100 μg/mL; protection activity, 69%/500 μg/mL and 33%/100 μg/mL), which is significantly higher than that of Ningnanmycin. The systematic study provides strong evidence that these simple thiourea derivatives could become potential TMV inhibitors.

  20. A double-blind atropine trial for active learning of autonomic function.

    PubMed

    Fry, Jeffrey R; Burr, Steven A

    2011-12-01

    Here, we describe a human physiology laboratory class measuring changes in autonomic function over time in response to atropine. Students use themselves as subjects, generating ownership and self-interest in the learning as well as directly experiencing the active link between physiology and pharmacology in people. The class is designed to concomitantly convey the importance of bias in experimentation by adopting a double-blind placebo-controlled approach. We have used this class effectively in various forms with ∼600 students receiving atropine over the last 16 yr. This class has received favorable feedback from staff and students of medicine, pharmacy, and neuroscience, and we recommend it for such undergraduates. The learning objectives that students are expected to achieve are to be able to 1) know the ethical, safety, and hygiene requirements for using human volunteers as subjects; 2) implement and explain a double-blind placebo-controlled trial; 3) design, agree, and execute a protocol for making (and accurately recording) precise reproducible measurements of pulse rate, pupil diameter, and salivary flow; 4) evaluate the importance of predose periods and measurement consistency to detect effects (including any reversibility) after an intervention; 5) experience direct cause-and-effect relationships integrating physiology with pharmacology in people; 6) calculate appropriate summary statistics to describe the data and determine the data's statistical significance; 7) recognize normal variability both within and between subjects in baseline physiological parameters and also recognize normal variability in response to pharmacological treatment; 8) infer the distribution and role of muscarinic receptors in the autonomic nervous system with respect to the heart, eye, and mouth; 9) identify and explain the clinical significance of differences in effect due to the route and formulation of atropine; 10) produce and deliver a concise oral presentation of

  1. Collision-activated cleavage of a peptide/antibiotic disulfide linkage: possible evidence for intramolecular disulfide bond rearrangement upon collisional activation.

    PubMed

    Fagerquist, Clifton K

    2004-01-01

    Ceftiofur is an important veterinary beta-lactam antibiotic whose bioactive metabolite, desfuroylceftiofur, has a free thiol group. Desfuroylceftiofur (DFC) was reacted with two peptides, [Arg8]-vasopressin and reduced glutathione, both of which have cysteine residues to form disulfide-linked peptide/antibiotic complexes. The products of the reaction, [vasopressin + (DFC-H) + (DFC-H) + H]+, [(vasopressin+H) + (DFC-H) + H]+ and [(glutathione-H) + (DFC-H) + H]+, were analyzed using collision-activated dissociation (CAD) with a quadrupole ion trap tandem mass spectrometer. MS/MS of [vasopressin + (DFC-H) + (DFC-H) + H]+ resulted in facile dissociative loss of one and two covalently bound DFC moieties. Loss of one DFC resulted from either homolytic or heterolytic dissociation of the peptide/antibiotic disulfide bond with equal or unequal partitioning of the two sulfur atoms between the fragment ion and neutral loss. Hydrogen migration preceded heterolytic dissociation. Loss of two DFC moieties from [vasopressin + (DFC-H) + (DFC-H) + H]+ appears to result from collision-activated intramolecular disulfide bond rearrangement (IDBR) to produce cyclic [vasopressin + H]+ (at m/z 1084) as well as other cyclic fragment ions at m/z 1084 +/- 32 and +64. The cyclic structure of these ions could only be inferred as MS/MS may result in rearrangement to non-cyclic structures prior to dissociative loss. IDBR was also detected from MS(3) experiments of [vasopressin + (DFC-H) + (DFC-H) + H]+ fragment ions. MS/MS of [(glutathione-H) + (DFC-H) + H]+ resulted in cleavage of the peptide backbone with retention of the DFC moiety as well as heterolytic cleavage of the peptide/antibiotic disulfide bond to produce the fragment ion: [(DFC-2H) + H]+. These results demonstrate the facile dissociative loss by CAD of DFC moieties covalently attached to peptides through disulfide bonds. Published in 2004 by John Wiley & Sons, Ltd.

  2. Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates.

    PubMed

    Colangelo, Francesco; Messina, Francesco; Cioffi, Raffaele

    2015-12-15

    In this work, an extensive study on the recycling of municipal solid waste incinerator fly ash by means of cold bonding pelletization is presented. The ash comes from an incineration plant equipped with rotary and stoker furnaces, in which municipal, hospital and industrial wastes are treated. Fly ash from waste incineration is classified as hazardous and cannot be utilized or even landfilled without prior treatment. The pelletization process uses cement, lime and coal fly ash as components of the binding systems. This process has been applied to several mixes in which the ash content has been varied from 50% (wt.%) up to a maximum of 70%. An innovative additional pelletization step with only cementitious binder has been performed in order to achieve satisfactory immobilization levels. The obtained lightweight porous aggregates are mostly suitable for recovery in the field of building materials with enhanced sustainability properties. Density, water absorption and crushing strength ranged from 1000 to 1600 kg/m(3), 7 to 16% and 1.3 to 6.2 MPa, respectively, and the second pelletization step increased stabilization efficiency. The feasibility of the process has been analyzed by testing also concrete specimens containing the artificial aggregates, resulting in lightweight concrete of average performance.

  3. The Comparative Studies of Binding Activity of Curcumin and Didemethylated Curcumin with Selenite: Hydrogen Bonding vs Acid-Base Interactions

    NASA Astrophysics Data System (ADS)

    Liao, Jiahn-Haur; Wu, Tzu-Hua; Chen, Ming-Yi; Chen, Wei-Ting; Lu, Shou-Yun; Wang, Yi-Hsuan; Wang, Shao-Pin; Hsu, Yen-Min; Huang, Yi-Shiang; Huang, Zih-You; Lin, Yu-Ching; Chang, Ching-Ming; Huang, Fu-Yung; Wu, Shih-Hsiung

    2015-12-01

    In this report, the in vitro relative capabilities of curcumin (CCM) and didemethylated curcumin (DCCM) in preventing the selenite-induced crystallin aggregation were investigated by turbidity tests and isothermal titration calorimetry (ITC). DCCM showed better activity than CCM. The conformers of CCM/SeO32- and DCCM/SeO32- complexes were optimized by molecular orbital calculations. Results reveal that the selenite anion surrounded by CCM through the H-bonding between CCM and selenite, which is also observed via IR and NMR studied. For DCCM, the primary driving force is the formation of an acid-base adduct with selenite showing that the phenolic OH group of DCCM was responsible for forming major conformer of DCCM. The formation mechanisms of selenite complexes with CCM or DCCM explain why DCCM has greater activity than CCM in extenuating the toxicity of selenite as to prevent selenite-induced lens protein aggregation.

  4. The Comparative Studies of Binding Activity of Curcumin and Didemethylated Curcumin with Selenite: Hydrogen Bonding vs Acid-Base Interactions

    PubMed Central

    Liao, Jiahn-Haur; Wu, Tzu-Hua; Chen, Ming-Yi; Chen, Wei-Ting; Lu, Shou-Yun; Wang, Yi-Hsuan; Wang, Shao-Pin; Hsu, Yen-Min; Huang, Yi-Shiang; Huang, Zih-You; Lin, Yu-Ching; Chang, Ching-Ming; Huang, Fu-Yung; Wu, Shih-Hsiung

    2015-01-01

    In this report, the in vitro relative capabilities of curcumin (CCM) and didemethylated curcumin (DCCM) in preventing the selenite-induced crystallin aggregation were investigated by turbidity tests and isothermal titration calorimetry (ITC). DCCM showed better activity than CCM. The conformers of CCM/SeO32− and DCCM/SeO32− complexes were optimized by molecular orbital calculations. Results reveal that the selenite anion surrounded by CCM through the H-bonding between CCM and selenite, which is also observed via IR and NMR studied. For DCCM, the primary driving force is the formation of an acid-base adduct with selenite showing that the phenolic OH group of DCCM was responsible for forming major conformer of DCCM. The formation mechanisms of selenite complexes with CCM or DCCM explain why DCCM has greater activity than CCM in extenuating the toxicity of selenite as to prevent selenite-induced lens protein aggregation. PMID:26635113

  5. The Comparative Studies of Binding Activity of Curcumin and Didemethylated Curcumin with Selenite: Hydrogen Bonding vs Acid-Base Interactions.

    PubMed

    Liao, Jiahn-Haur; Wu, Tzu-Hua; Chen, Ming-Yi; Chen, Wei-Ting; Lu, Shou-Yun; Wang, Yi-Hsuan; Wang, Shao-Pin; Hsu, Yen-Min; Huang, Yi-Shiang; Huang, Zih-You; Lin, Yu-Ching; Chang, Ching-Ming; Huang, Fu-Yung; Wu, Shih-Hsiung

    2015-12-04

    In this report, the in vitro relative capabilities of curcumin (CCM) and didemethylated curcumin (DCCM) in preventing the selenite-induced crystallin aggregation were investigated by turbidity tests and isothermal titration calorimetry (ITC). DCCM showed better activity than CCM. The conformers of CCM/SeO3(2-) and DCCM/SeO3(2-) complexes were optimized by molecular orbital calculations. Results reveal that the selenite anion surrounded by CCM through the H-bonding between CCM and selenite, which is also observed via IR and NMR studied. For DCCM, the primary driving force is the formation of an acid-base adduct with selenite showing that the phenolic OH group of DCCM was responsible for forming major conformer of DCCM. The formation mechanisms of selenite complexes with CCM or DCCM explain why DCCM has greater activity than CCM in extenuating the toxicity of selenite as to prevent selenite-induced lens protein aggregation.

  6. Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520

    SciTech Connect

    Cheng, X.; Ding, M. D.; Zhang, J.; Guo, Y.; Sun, X. D.; Wang, Y. M.; Kliem, B.; Deng, Y. Y.

    2014-07-10

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s{sup –1}. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.

  7. Formation of a Double-decker Magnetic Flux Rope in the Sigmoidal Solar Active Region 11520

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Ding, M. D.; Zhang, J.; Sun, X. D.; Guo, Y.; Wang, Y. M.; Kliem, B.; Deng, Y. Y.

    2014-07-01

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s-1. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.

  8. Increased Back-Bonding Explains Step-Edge Reactivity and Particle Size Effect for CO Activation on Ru Nanoparticles.

    PubMed

    Foppa, Lucas; Copéret, Christophe; Comas-Vives, Aleix

    2016-12-28

    Carbon monoxide is a ubiquitous molecule, a key feedstock and intermediate in chemical processes. Its adsorption and activation, typically carried out on metallic nanoparticles (NPs), are strongly dependent on the particle size. In particular, small NPs, which in principle contain more corner and step-edge atoms, are surprisingly less reactive than larger ones. Hereby, first-principles calculations on explicit Ru NP models (1-2 nm) show that both small and large NPs can present step-edge sites (e.g., B5 and B6 sites). However, such sites display strong particle-size-dependent reactivity because of very subtle differences in local chemical bonding. State-of-the-art crystal orbital Hamilton population analysis allows a detailed molecular orbital picture of adsorbed CO on step-edges, which can be classified as flat (η(1) coordination) and concave (η(2) coordination) sites. Our analysis shows that the CO π-metal dπ hybrid band responsible for the electron back-donation is better represented by an oxygen lone pair on flat sites, whereas it is delocalized on both C and O atoms on concave sites, increasing the back-bonding on these sites compared to flat step-edges or low-index surface sites. The bonding analysis also rationalizes why CO cleavage is easier on step-edge sites of large NPs compared to small ones irrespective of the site geometry. The lower reactivity of small NPs is due to the smaller extent of the Ru-O interaction in the η(2) adsorption mode, which destabilizes the η(2) transition-state structure for CO direct cleavage. Our findings provide a molecular understanding of the reactivity of CO on NPs, which is consistent with the observed particle size effect.

  9. Ce-PROMOTED Bond Activation of Ethylene Probed by Mass-Analyzed Threshold Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yuchen; Kumari, Sudesh; Cao, Wenjin; Yang, Dong-Sheng

    2015-06-01

    Ce(C_2H_2) and Ce(C_4H_6) complexes were observed in the reaction of Ce atom with ethylene in a supersonic molecular beam source and investigated by mass-analyzed threshold ionization spectroscopy (MATI) and theoretical calculations. Preliminary data analysis shows that Ce(C_2H_2) has a triangle structure (C2v) with Ce binding to C_2H_2 in a two-fold mode and Ce(C_4H_6) has a five-membered metallacyclic structure (Cs) with Ce binding to the two terminal carbon atoms of butadiene. The ground states of both species are triplets with a 4f16s1 Ce-based electron configuration and those of the corresponding ions are doublets from the removal of the 6s1 electron. The Ce(C_2H_2) complex is formed by ethylene dehydrogenation, whereas Ce(C_4H_6) by ethylene dehydrogenation and carbon-carbon bond coupling. The MATI spectra of Ce(C_2H_2) and Ce(C_4H_6) are rather similar to those of the corresponding La complexes previously observed by our group, except that the spectra of the Ce complexes exhibit two electronic transitions with almost identical vibrational intervals. This observation suggests that the existence of a 4f electron results in an increased complexity of the electronic spectra and states of the lanthanide hydrocarbons.

  10. Defluorination of perfluoroolefins by divalent lanthanoid reagents: Activating C-F bonds

    SciTech Connect

    Watson, P.L.; Tulip, T.H.; Williams, I. )

    1990-07-01

    Divalent lanthanoid complexes MCp*{sub 2} {times} L (M = Yb, Eu, Sm; L = diethyl ether or THF; Cp* = {eta}{sup 5}-pentamethylcyclopetadienyl) and YbCp{prime}{sub 2} {times} L (Cp{prime} = {eta}{sup 5}-methylcyclopentadienyl; L = tetrahydrofuran) rapidly abstract fluorine atoms from a variety of perfluoroolefins including perfluoro-2,4-dimethyl-3-ethylpent-2-ene, perfluoro-2,3-dimethylpent-2-ene, and perfluorocyclohexene. Qualitative observation shows that the relative fluorine abstraction reactivity of the four lanthanoid complexes increases with increasingly negative reduction potential for reasonably unhindered fluoroolefin substrates. The Yb(III)/Yb(II) reduction potential of YbCp{prime}{sub 2} solvated in acetonitrile is determined here to be {minus}1.65 V (relative to ferrocene) by cyclic voltammetry. The fully characterized organometallic products from the fluorine atom abstraction reactions are solvated trivalent lanthanoid fluorides MCp*{sub 2}F {times} L (M = Yb, Eu, Sm; L = diethyl ether or THF) and YbCp{prime}{sub 2}F {times} THF. The molecular structures of YbCp*{sub 2}F {times} OEt{sub 2} and YbCp*{sub 2}F {times} THF determined by X-ray crystallography reveal the first terminal lanthanoid-fluoride bonds.

  11. Cooperativity between Al Sites Promotes Hydrogen Transfer and Carbon–Carbon Bond Formation upon Dimethyl Ether Activation on Alumina

    PubMed Central

    2015-01-01

    The methanol-to-olefin (MTO) process allows the conversion of methanol/dimethyl ether into olefins on acidic zeolites via the so-called hydrocarbon pool mechanism. However, the site and mechanism of formation of the first carbon–carbon bond are still a matter of debate. Here, we show that the Lewis acidic Al sites on the 110 facet of γ-Al2O3 can readily activate dimethyl ether to yield CH4, alkenes, and surface formate species according to spectroscopic studies combined with a computational approach. The carbon–carbon forming step as well as the formation of methane and surface formate involves a transient oxonium ion intermediate, generated by a hydrogen transfer between surface methoxy species and coordinated methanol on adjacent Al sites. These results indicate that extra framework Al centers in acidic zeolites, which are associated with alumina, can play a key role in the formation of the first carbon–carbon bond, the initiation step of the industrial MTO process. PMID:27162986

  12. Effects of gas periodic stimulation on key enzyme activity in gas double-dynamic solid state fermentation (GDD-SSF).

    PubMed

    Chen, Hongzhang; Shao, Meixue; Li, Hongqiang

    2014-03-05

    The heat and mass transfer have been proved to be the important factors in air pressure pulsation for cellulase production. However, as process of enzyme secretion, the cellulase formation has not been studied in the view of microorganism metabolism and metabolic key enzyme activity under air pressure pulsation condition. Two fermentation methods in ATPase activity, cellulase productivity, weight lose rate and membrane permeability were systematically compared. Results indicated that gas double-dynamic solid state fermentation had no obviously effect on cell membrane permeability. However, the relation between ATPase activity and weight loss rate was linearly dependent with r=0.9784. Meanwhile, the results also implied that gas periodic stimulation had apparently strengthened microbial metabolism through increasing ATPase activity during gas double-dynamic solid state fermentation, resulting in motivating the production of cellulase by Trichoderma reesei YG3. Therefore, the increase of ATPase activity would be another crucial factor to strengthen fermentation process for cellulase production under gas double-dynamic solid state fermentation.

  13. Testing Geometrical Discrimination within an Enzyme Active Site: Constrained Hydrogen Bonding in the Ketosteroid Isomerase Oxyanion Hole

    PubMed Central

    Sigala, Paul A.; Kraut, Daniel A.; Caaveiro, Jose M. M.; Pybus, Brandon; Ruben, Eliza A.; Ringe, Dagmar; Petsko, Gregory A.; Herschlag, Daniel

    2009-01-01

    Enzymes are classically proposed to accelerate reactions by binding substrates within active site environments that are structurally preorganized to optimize binding interactions with reaction transition states rather than ground states. This is a remarkably formidable task considering the limited 0.1 – 1 Å scale of most substrate rearrangements. The flexibility of active site functional groups along the coordinate of substrate rearrangement, the distance scale on which enzymes can distinguish structural rearrangement, and the energetic significance of discrimination on that scale remain open questions that are fundamental to a basic physical understanding of enzyme active sites and catalysis. We bring together high resolution X-ray crystallography, 1H and 19F NMR spectroscopy, quantum mechanical calculations, and transition state analog binding measurements to test the distance scale on which non-covalent forces can constrain side chain and ligand relaxation or translation along a specific coordinate and the energetic consequences of such geometric constraints within the active site of bacterial ketosteroid isomerase (KSI). Our results strongly suggest that packing and binding interactions within the KSI active site can constrain local side chain reorientation and prevent hydrogen bond shortening by 0.1 Å or less. Further, this constraint has substantial energetic effects on ligand binding and stabilization of negative charge within the oxyanion hole. These results provide evidence that subtle geometric effects, indistinguishable in most X-ray crystallographic structures, can have significant energetic consequences and highlight the importance of using synergistic experimental approaches to dissect enzyme function. PMID:18808119

  14. Signalling pathways involved in the activation of dendritic cells by layered double hydroxide nanoparticles.

    PubMed

    Li, Ang; Qin, Lili; Zhu, Di; Zhu, Rongrong; Sun, Jing; Wang, Shilong

    2010-02-01

    Layered double hydroxide (LDH) nanoparticles are attractive as potential drug vectors for the targeting not only of tissues, but also of intracellular organelles, and particularly the acidic endolysosomes created after cell endocytosis. The purpose of this study was to investigate the ability of LDH nanoparticles designed as vectors to activate dendritic cells (DCs), as measured by various cellular functions. The study also explored the possible signaling pathway through which the LDH nanoparticles exerted their effects on the cellular functions of DCs. First, LDH nanoparticles with different ratios of Mg(OH)(2) to Al(OH)(3) (1:1, 2:1 and 3:1, called R1, R2 and R3 respectively) were optimized and had a hydrodynamic diameter of 57 nm with a zeta potential of +35 mV. Then, the efficient endocytosis of the optimized LDH nanoparticles by bone marrow-derived dendritic cells (MDDCs) was monitored by fluorescence-activated cell sorting. The effect of R1, R2 and R3 on the expression of the pro- and anti-inflammatory cytokines (TNF-alpha, IL-6, and IL-12) and the co-stimulatory molecules (CD40, CD80, CD86, and MHC class II) in MDDCs was examined. The exposure of R1 caused a dose-dependent increase in the expression of TNF-alpha, IL-12, CD86 and CD40, while R2 and R3 did not up-regulate these cytokines and co-stimulatory molecules. Migration assays showed that R1 could increase the migration capacity of DCs to CCL21 and up-regulate the expression of CCR7. Furthermore, we found that R1 significantly increased the NF-kappaB expression in the nucleus (in a dose-dependent manner) and promoted the degradation of total IkappaBalpha levels, indicating that the NF-kappaB signaling pathway might involve in an R1-induced DC activation. Our results suggested that LDH nanoparticles, in the future, may function as a useful vector for ex vivo engineering to promote vaccine delivery in immune cells.

  15. Interaction between the antibiotic spiramycin and a ribosomal complex active in peptide bond formation.

    PubMed

    Dinos, G; Synetos, D; Coutsogeorgopoulos, C

    1993-10-12

    The inhibition of peptide bond formation by spiramycin was studied in an in vitro system derived from Escherichia coli. Peptide bonds are formed between puromycin (S) and Ac-Phe-tRNA, which is a component of complex C, i.e., of the [Ac-Phe-tRNA-70S ribosome-poly(U)] complex, according to the puromycin reaction: C+S (Ks)<==>CS (k3)==>C'+P [Synetos, D., & Coutsogeorgopoulos, C. (1987) Biochim. Biophys. Acta 923, 275-285]. It is shown that spiramycin (A) reacts with complex C and forms the spiramycin complex C*A, which is inactive toward puromycin. C*A is the tightest complex formed between complex C and any of a number of antibiotics, such as chloramphenicol, blasticidin S, lincomycin, or sparsomycin. C*A remains stable following gel chromatography on Sephadex G-200 and sucrose gradient ultracentrifugation. Detailed kinetic study suggests that C*A is formed in a variation of a two-step mechanism in which the initial encounter complex CA is kinetically insignificant and C*A is the product of a conformational change of complex CA according to the equation, C+A (kassoc)<==>(kdissoc) C*A. The rate constants of this reaction (spiramycin reaction) are kassoc = 3.0 x 10(4) M-1 s-1 and kdissoc = 5.0 x 10(-5) s-1. Such values allow the classification of spiramycin as a slow-binding, slowly reversible inhibitor; they also lead to the calculation of an apparent overall dissociation constant equal to 1.8 nM for the C*A complex. Furthermore, they render spiramycin a useful tool in the study of antibiotic action on protein synthesis in vitro. Thus, the spiramycin reaction, in conjunction with the puromycin reaction, is applied (i) to detect a strong preincubation effect exerted by chloramphenicol and lincomycin (this effect constitutes further evidence that these two antibiotics combine with complex C as slow-binding inhibitors) and (ii) to determine the rate constant for the regeneration (k7 = 2.0 x 10(-3) s-1) of complex C from the sparsomycin complex C*I [Theocharis, D. A

  16. Understanding trends in C-H bond activation in heterogeneous catalysis.

    PubMed

    Latimer, Allegra A; Kulkarni, Ambarish R; Aljama, Hassan; Montoya, Joseph H; Yoo, Jong Suk; Tsai, Charlie; Abild-Pedersen, Frank; Studt, Felix; Nørskov, Jens K

    2017-02-01

    While the search for catalysts capable of directly converting methane to higher value commodity chemicals and liquid fuels has been active for over a century, a viable industrial process for selective methane activation has yet to be developed. Electronic structure calculations are playing an increasingly relevant role in this search, but large-scale materials screening efforts are hindered by computationally expensive transition state barrier calculations. The purpose of the present letter is twofold. First, we show that, for the wide range of catalysts that proceed via a radical intermediate, a unifying framework for predicting C-H activation barriers using a single universal descriptor can be established. Second, we combine this scaling approach with a thermodynamic analysis of active site formation to provide a map of methane activation rates. Our model successfully rationalizes the available empirical data and lays the foundation for future catalyst design strategies that transcend different catalyst classes.

  17. Understanding trends in C-H bond activation in heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Latimer, Allegra A.; Kulkarni, Ambarish R.; Aljama, Hassan; Montoya, Joseph H.; Yoo, Jong Suk; Tsai, Charlie; Abild-Pedersen, Frank; Studt, Felix; Nørskov, Jens K.

    2016-10-01

    While the search for catalysts capable of directly converting methane to higher value commodity chemicals and liquid fuels has been active for over a century, a viable industrial process for selective methane activation has yet to be developed. Electronic structure calculations are playing an increasingly relevant role in this search, but large-scale materials screening efforts are hindered by computationally expensive transition state barrier calculations. The purpose of the present letter is twofold. First, we show that, for the wide range of catalysts that proceed via a radical intermediate, a unifying framework for predicting C-H activation barriers using a single universal descriptor can be established. Second, we combine this scaling approach with a thermodynamic analysis of active site formation to provide a map of methane activation rates. Our model successfully rationalizes the available empirical data and lays the foundation for future catalyst design strategies that transcend different catalyst classes.

  18. The Unexpected Reactivity of the Carbon Sites on the Nanostructured Carbon Catalysts towards the C-H Bond Activation from the Analysis of the Aromaticity.

    PubMed

    Sun, XiaoYing; Li, Bo; Su, DangSheng

    2016-06-06

    It is believed that the oxygen groups on the carbon catalysts are responsible for the observed reactivity for C-H bond activations. On the other hand, the oxygen groups also reduce the aromaticity of the host. The loss of the aromaticity increases reactivities of the carbon atoms and they become the active sites for the C-H bond activation. The newly identified C-C site exhibits the comparable catalytic performance in the oxidative dehydrogenation (ODH) of propane compared with the conventional oxygen groups like quinone and ketone. A series of calculations indicate that the aromaticity might be a useful descriptor for the carbon catalysts.

  19. Role of the inner-sphere reorganization in the photoinduced electron transfer reaction of Ru(II) complexes containing imine C=N or Azo N=N double bonds in the ligands

    SciTech Connect

    Maruyama, Mutsuhiro; Kaizu, Youkoh

    1995-04-20

    Photoinduced oxidative and reductive electron transfer (ET) reactions of excited Ru(imin){sub 3}{sup 2+} (imin = 2-(N-methylformimidoyl)pyridine), Ru(imin){sub 2}(CN){sub 2}, and Ru(azpy){sub 3}{sup 2+} (azpy = 2-(phenylazo)pyridine), where imin and azpy contain imine C=N and azo N=N double bonds, respectively, with organic quenchers were investigated in acetonitrile solutions, and their {Delta}G dependencies of the quenching rate constants (k{sub q}) were compared with those of Ru(bpy){sub 3}{sup 2+} (bpy = 2,2`-bipyridine) and Ru(L){sub 2}(CN){sub 2} complexes where L = 4,4`- or 5,5`-dmbpy (dmbpy = dimethyl-2,2`-bipyridine) and phen (phen = 1,10-phenanthroline). The oxidative quenching rate constants of Ru(imin){sub 3}{sup 2+} and Ru(imin){sub 2}(CN){sub 2} are smaller than those of the corresponding bpy, dmbpy, and phen complexes at the same {Delta}G value in the normal region. However, the {Delta}G dependencies of the reductive quenching rate constants of Ru(imin){sub 3}{sup 2+} and Ru(azpy){sub 3}{sup 2+} coincide with that of the corresponding bpy complex. The inner-sphere reorganization ({lambda}{sub in}) caused by the deformation of the C=N bond of imin is considered to be the main reason for the disadvantage of ET in the normal region of the oxidative ET reactions of excited Ru(imin){sub 3}{sup 2+} and Ru(imin){sub 2}(CN){sub 2}. 44 refs., 6 figs., 6 tabs.

  20. Oxidation-promoted activation of a ferrocene C-H bond by a rhodium complex.

    PubMed

    Labande, Agnès; Debono, Nathalie; Sournia-Saquet, Alix; Daran, Jean-Claude; Poli, Rinaldo

    2013-05-14

    The oxidation of a rhodium(I) complex containing a ferrocene-based heterodifunctional phosphine N-heterocyclic carbene (NHC) ligand produces a stable, planar chiral rhodium(III) complex with an unexpected C-H activation on ferrocene. The oxidation of rhodium(I) to rhodium(III) may be accomplished by initial oxidation of ferrocene to ferrocenium and subsequent electron transfer from rhodium to ferrocenium. Preliminary catalytic tests showed that the rhodium(III) complex is active for the Grignard-type arylation of 4-nitrobenzaldehyde via C-H activation of 2-phenylpyridine.

  1. Selective activation of C-F and C-H bonds with iron complexes, the relevant mechanism study by DFT calculations and study on the chemical properties of hydrido iron complex.

    PubMed

    Xu, Xiaofeng; Jia, Jiong; Sun, Hongjian; Liu, Yuxia; Xu, Wengang; Shi, Yujie; Zhang, Dongju; Li, Xiaoyan

    2013-03-14

    The reactions of (2,6-difluorophenyl)phenylmethanone (2,6-F(2)C(6)H(3)-C(=O)-C(6)H(5)) (1) and (2,6-difluorophenyl)phenylmethanimine (2,6-F(2)C(6)H(3)-C(=NH)-C(6)H(5)) (3) with Fe(PMe(3))(4) afforded different selective C-F/C-H bond activation products. The reaction of 1 with Fe(PMe(3))(4) gave rise to bis-chelate iron(II) complex [C(6)H(5)-C(=O)-3-FC(6)H(3))Fe(PMe(3))](2) (2) via C-F bond activation. The reaction of 3 with Fe(PMe(3))(4) delivered chelate hydrido iron(II) complex 2,6-F(2)C(6)H(3)-C(=NH)-C(6)H(4))Fe(H)(PMe(3))(3) (4) through C-H bond activation. The DFT calculations show the detailed elementary steps of the mechanism of formation of hydrido complex 4 and indicate 4 is the kinetically preferred product. Complex 4 reacted with HCl, CH(3)Br and CH(3)I delivered the chelate iron halides (2,6-F(2)C(6)H(3)-C(=NH)-C(6)H(4))Fe(PMe(3))(3)X (X = Cl (5); Br (6); I (7)). A ligand (PMe(3)) replacement by CO of 4 was observed giving (2,6-F(2)C(6)H(3)-C(=NH)-C(6)H(4))Fe(H)(CO)(PMe(3))(2) (8). The chelate ligand exchange occurred through the reaction of 4 with salicylaldehydes. The reaction of 4 with Me(3)SiC[triple bond, length as m-dash]CH afforded (2,6-F(2)C(6)H(3)-C([double bond, length as m-dash]N)-C(6)H(5))Fe(C≡C-SiMe(3))(PMe(3))(3) (11). A reaction mechanism from 4 to 11 was discussed with the support of IR monitoring. The molecular structures of complexes 2, 4, 6, 7, 10 and 11 were determined by X-ray diffraction.

  2. P-P bond activation of P4 tetrahedron by group 13 carbenoid and its bis molybdenum pentacarbonyl adduct.

    PubMed

    Prabusankar, Ganesan; Doddi, Adinarayana; Gemel, Christian; Winter, Manuela; Fischer, Roland A

    2010-09-06

    Activation of white phosphorus with Ga(DDP) (DDP = 2-diiso-propylphenylamino-4-diiso-propylphenylimino-2-pentene) afforded [(DDP)Ga(P(4))] (1) by insertion of the Ga(I) center at one of the six P-P bonded edges of the P(4) tetrahedron. Further reaction of 1 with three equivalents of Mo(CO)(6) results in the formation of [(DDP)Ga(eta(2:1:1)-P(4)){Mo(CO)(5)}(2)] x 2 toluene (2). Compounds 1 and 2 are characterized by (1)H, (13)C, and (31)P NMR spectroscopy, elemental analysis, and single crystal X-ray structural analysis. The solid-state structure of molecule 1 reveals the first example of a structurally characterized GaP(4) core stabilized by a beta-diketiminate ligand. Compound 2 represents a rare type of coordination mode of a gallium supported P(4) butterfly structure.

  3. Modifications on the hydrogen bond network by mutations of Escherichia coli copper efflux oxidase affect the process of proton transfer to dioxygen leading to alterations of enzymatic activities

    SciTech Connect

    Kajikawa, Takao; Kataoka, Kunishige; Sakurai, Takeshi

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Proton transfer pathway to dioxygen in CueO was identified. Black-Right-Pointing-Pointer Glu506 is the key amino acid to transport proton. Black-Right-Pointing-Pointer The Ala mutation at Glu506 formed a compensatory proton transfer pathway. Black-Right-Pointing-Pointer The Ile mutation at Glu506 shut down the hydrogen bond network. -- Abstract: CueO has a branched hydrogen bond network leading from the exterior of the protein molecule to the trinuclear copper center. This network transports protons in the four-electron reduction of dioxygen. We replaced the acidic Glu506 and Asp507 residues with the charged and uncharged amino acid residues. Peculiar changes in the enzyme activity of the mutants relative to the native enzyme indicate that an acidic amino acid residue at position 506 is essential for effective proton transport. The Ala mutation resulted in the formation of a compensatory hydrogen bond network with one or two extra water molecules. On the other hand, the Ile mutation resulted in the complete shutdown of the hydrogen bond network leading to loss of enzymatic activities of CueO. In contrast, the hydrogen bond network without the proton transport function was constructed by the Gln mutation. These results exerted on the hydrogen bond network in CueO are discussed in comparison with proton transfers in cytochrome oxidase.

  4. Hydroxy functionalization of non-activated C-H and C=C bonds: new perspectives for the synthesis of alcohols through biocatalytic processes.

    PubMed

    Gröger, Harald

    2014-03-17

    New perspectives through enzymes: Recent breakthroughs have been achieved in the selective hydroxy functionalization of non-activated C-H and C=C bonds. Enzymes turned out to be suitable catalysts for the ω-hydroxylation of (substituted) alkanes and regioselective hydroxylation of aromatic hydrocarbons with atmospheric oxygen as the oxidant, and the asymmetric addition of water to non-activated alkenes.

  5. Spectroscopic insights into axial ligation and active-site H-bonding in substrate-bound human heme oxygenase-2.

    PubMed

    Gardner, Jessica D; Yi, Li; Ragsdale, Stephen W; Brunold, Thomas C

    2010-09-01

    Heme oxygenases (HOs) are monooxygenases that catalyze the first step in heme degradation, converting heme to biliverdin with concomitant release of Fe(II) and CO from the porphyrin macrocycle. Two heme oxygenase isoforms, HO-1 and HO-2, exist that differ in several ways, including a complete lack of Cys residues in HO-1 and the presence of three Cys residues as part of heme-regulatory motifs (HRMs) in HO-2. HRMs in other heme proteins are thought to directly bind heme, or to otherwise regulate protein stability or activity; however, it is not currently known how the HRMs exert these effects on HO-2 function. To better understand the properties of this vital enzyme and to elucidate possible roles of its HRMs, various forms of HO-2 possessing distinct alterations to the HRMs were prepared. In this study, variants with Cys265 in a thiol form are compared with those with this residue in an oxidized (part of a disulfide bond or existing as a sulfenate moiety) form. Absorption and magnetic circular dichroism spectroscopic data of these HO-2 variants clearly demonstrate that a new low-spin Fe(III) heme species characteristic of thiolate ligation is formed when Cys265 is reduced. Additionally, absorption, magnetic circular dichroism, and resonance Raman data collected at different temperatures reveal an intriguing temperature dependence of the iron spin state in the heme-HO-2 complex. These findings are consistent with the presence of a hydrogen-bonding network at the heme's distal side within the active site of HO-2 with potentially significant differences from that observed in HO-1.

  6. [Double responses].

    PubMed

    Motté, G; Dinanian, S; Sebag, C; Drieu, L; Slama, M

    1995-12-01

    Double response is a rare electrocardiographic phenomenon requiring two atrioventricular conduction pathways with very different electrophysiological properties. Double ventricular responses are the usual manifestation: an atrial depolarisation (spontaneous or provoked, anticipated or not) is followed by a first ventricular response dependent on an accessory pathway or a rapid nodal pathway and then a second response resulting from sufficiently delayed transmission through a nodal pathway for the ventricles to have recovered their excitability when the second wave of activation reaches them. A simple curiosity when isolated and occurring under unusual conditions, particularly during electrophysiological investigation of the Wolff-Parkinson-White syndrome, the double response may initiate symptomatic non-reentrant junctional tachycardia when associated with nodal duality and repeating from atria in sinus rhythm. The functional incapacity and resistance to antiarrhythmic therapy may require referral for ablation of the slow pathway.

  7. Novel photofunctional multicomponent rare earth (Eu3+, Tb3+, Sm3+ and Dy3+) hybrids with double cross-linking siloxane covalently bonding SiO2/ZnS nanocomposite.

    PubMed

    Yan, Bing; Zhao, Yan; Li, Ya-Juan

    2011-01-01

    Zinc sulfide (ZnS) quantum dot is modified with 3-mercaptopropyltrimethoxysilane (MPTMS) to obtain MPTMS functionalized SiO(2)/ZnS nanocomposite. Novel rare earth/inorganic/organic hybrid materials are prepared by using 3-(triethoxysilyl)-propyl isocyanate (TESPIC) as an organic bridge molecule that can both coordinate to rare earth ions (Eu(3+), Tb(3+), Sm(3+) and Dy(3+)) and form an inorganic Si-O-Si network with SiO(2) ZnS nanocomposite after cohydrolysis and copolycondensation through a sol-gel process. These multicomponent hybrids with double cross-linking siloxane (TESPIC-MPTMS) covalently bonding SiO(2)/ZnS and assistant ligands (Phen = 1,10-phenanthroline, Bipy = 2,2'-bipyridyl) are characterized and especially the photoluminescence properties of them are studied in detail. The luminescent spectra of the hybrids show the dominant excitation of TESPIC-MPTMS-SiO(2)/ZnS unit and the unique emission of rare earth ions, suggesting that TESPIC-MPTMS-SiO(2)/ZnS unit behaves as the main energy donor and effective energy transfer take place between it and rare earth ions. Besides, the luminescent performance of Bipy-RE-TESPIC-MPTM-SiO(2)/ZnS hybrids are superior to that of Phen-RE-TESPIC-MPTMS-SiO(2)/ZnS ones (RE=Eu, Tb, Sm, Dy), which reveals that Bipy or Phen only act as structural ligand within the hybrid systems.

  8. Role of the intra-A-chain disulfide bond of insulin-like peptide 3 in binding and activation of its receptor, RXFP2.

    PubMed

    Zhang, Suode; Hughes, Richard A; Bathgate, Ross A D; Shabanpoor, Fazel; Hossain, M Akhter; Lin, Feng; van Lierop, Bianca; Robinson, Andrea J; Wade, John D

    2010-09-01

    INSL3 is a member of the insulin-IGF-relaxin superfamily and plays a key role in male fetal development and in adult germ cell maturation. It is the cognate ligand for RXFP2, a leucine-rich repeat containing G-protein coupled receptor. To date, and in contrast to our current knowledge of the key structural features that are required for the binding of INSL3 to RXFP2, comparatively little is known about the key residues that are required to elicit receptor activation and downstream cell signaling. Early evidence suggests that these are contained principally within the A-chain. To further explore this hypothesis, we have undertaken an examination of the functional role of the intra-A-chain disulfide bond. Using solid-phase peptide synthesis together with regioselective disulfide bond formation, two analogs of human INSL3 were prepared in which the intra-chain disulfide bond was replaced, one in which the corresponding Cys residues were substituted with the isosteric Ser and the other in which the Cys were removed altogether. Both of these peptides retained nearly full RXFP2 receptor binding but were devoid of cAMP activity (receptor activation), indicating that the intra-A-chain disulfide bond makes a significant contribution to the ability of INSL3 to act as an RXFP2 agonist. Replacement of the disulfide bond with a metabolically stable dicarba bond yielded two isomers of INSL3 that each exhibited bioactivity similar to native INSL3. This study highlights the critical structural role played by the intra-A-chain disulfide bond of INSL3 in mediating agonist actions through the RXFP2 receptor.

  9. Aspects of glycosidic bond formation in aqueous solution: chemical bonding and the role of water.

    PubMed

    Stubbs, John M; Marx, Dominik

    2005-04-22

    A model of the specific acid-catalyzed glycosidic bond formation in liquid water at ambient conditions is studied based on constrained Car-Parrinello ab initio molecular dynamics. Specifically the reaction of alpha-D-glucopyranose and methanol is found to proceed by a D(N)A(N) mechanism. The D(N) step consists of a concerted protonation of the O(1) hydroxyl leaving group; this process results in the breaking of the C(1)-O(1) bond, and oxocarbenium ion formation involving C(1)=O(5). The second step, A(N), is the formation of the C(1)-O(m) glycosidic bond, deprotonation of the methanol hydroxyl group O(m)H(m), and re-formation of the C(1)-O(5) single bond. A focus of this study is the analysis of the electronic structure during this condensed phase reaction relying on both Boys/Wannier localized orbitals and the electron localization function ELF. This analysis allows the clear elucidation of the chemical bonding features of the intermediate bracketed by the D(N) and A(N) steps, which is a non-solvent equilibrated oxocarbenium cation. Most interestingly, it is found that the oxygen in the pyranose ring becomes "desolvated" upon double bond/oxocarbenium formation, whereas it is engaged in the hydrogen-bonded water network before and after this period. This demonstrates that hydrogen bonding and thus the aqueous solvent play an active role in this reaction implying that microsolvation studies in the gas phase, both theoretical and experimental, might lead to qualitatively different reaction mechanisms compared to solution.

  10. Catalysis of hydrolysis and nucleophilic substitution at the P-N bond of phosphoimidazolide-activated nucleotides in phosphate buffers

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Rosenbach, M. T.

    1991-01-01

    Phosphoimidazolide-activated derivatives of guanosine and cytidine 5'-monophosphates, henceforth called ImpN's, exhibit enhanced rates of degradation in the presence of aqueous inorganic phosphate in the range 4.0 < or = pH < or = 8.6. This degradation is been attributed to (i) nucleophilic substitution of the imidazolide and (ii) catalysis of the P-N bond hydrolysis by phosphate. The first reaction results in the formation of nucleoside 5'-diphosphate and the second in nucleoside 5'-monophosphate. Analysis of the observed rates as well as the product ratios as a function of pH and phosphate concentration allow distinction between various mechanistic possibilities. The results show that both H2PO4- and HPO4(2-) participate in both hydrolysis and nucleophilic substitution. Statistically corrected biomolecular rate constants indicate that the dianion is 4 times more effective as a general base than the monoanion, and 8 times more effective as nucleophile. The low Bronsted value beta = 0.15 calculated for these phosphate species, presumed to act as general bases in facilitating water attack, is consistent with the fact that catalysis of the hydrolysis of the P-N bond in ImpN's has not been detected before. The beta nuc = 0.35 calculated for water, H2PO4-, HPO4(2-), and hydroxide acting as nucleophiles indicates a more associative transition state for nucleotidyl (O2POR- with R = nucleoside) transfers than that observed for phosphoryl (PO3(2-)) transfers (beta nuc = 0.25). With respect to the stability/reactivity of ImpN's under prebiotic conditions, our study shows that these materials would not suffer additional degradation due to inorganic phosphate, assuming the concentrations of phosphate, Pi, on prebiotic Earth were similar to those in the present oceans ([Pi] approximately 2.25 micromoles).

  11. A VLBA SEARCH FOR BINARY BLACK HOLES IN ACTIVE GALACTIC NUCLEI WITH DOUBLE-PEAKED OPTICAL EMISSION LINE SPECTRA

    SciTech Connect

    Tingay, S. J.; Wayth, R. B.

    2011-06-15

    We have examined a subset of 11 active galactic nuclei (AGNs) drawn from a sample of 87 objects that possess double-peaked optical emission line spectra, as put forward by Wang et al. and are detectable in the Faint Images of the Radio Sky at Twenty-centimeters (FIRST) survey at radio wavelengths. The double-peaked nature of the optical emission line spectra has been suggested as evidence for the existence of binary black holes in these AGNs, although this interpretation is controversial. We make a simple suggestion that direct evidence of binary black holes in these objects could be searched for in the form of dual sources of compact radio emission associated with the AGNs. To explore this idea, we have used the Very Long Baseline Array to observe these 11 objects from the Wang et al. sample. Of the 11 objects, we detect compact radio emission from two, SDSS J151709+335324 and SDSS J160024+264035. Both objects show single components of compact radio emission. The morphology of SDSS J151709+335324 is consistent with a recent comprehensive multi-wavelength study of this object by Rosario et al. Assuming that the entire sample consists of binary black holes, we would expect of order one double radio core to be detected, based on radio wavelength detection rates from FIRST and very long baseline interferometry surveys. We have not detected any double cores, thus this work does not substantially support the idea that AGNs with double-peaked optical emission lines contain binary black holes. However, the study of larger samples should be undertaken to provide a more secure statistical result, given the estimated detection rates.

  12. Synthesis of a Benzodiazepine-derived Rhodium NHC Complex by C-H Bond Activation

    SciTech Connect

    Bergman, Roberg G.; Gribble, Jr., Michael W.; Ellman, Jonathan A.

    2008-01-30

    The synthesis and characterization of a Rh(I)-NHC complex generated by C-H activation of 1,4-benzodiazepine heterocycle are reported. This complex constitutes a rare example of a carbene tautomer of a 1,4-benzodiazepine aldimine stabilized by transition metal coordination and demonstrates the ability of the catalytically relevant RhCl(PCy{sub 3}){sub 2} fragment to induce NHC-forming tautomerization of heterocycles possessing a single carbene-stabilizing heteroatom. Implications for the synthesis of benzodiazepines and related pharmacophores via C-H functionalization are discussed.

  13. Evidence for disulfide bonds in SR Protein Kinase 1 (SRPK1) that are required for activity and nuclear localization

    PubMed Central

    Koutroumani, Maria; Papadopoulos, Georgios E.; Vlassi, Metaxia; Nikolakaki, Eleni; Giannakouros, Thomas

    2017-01-01

    Serine/arginine protein kinases (SRPKs) phosphorylate Arg/Ser dipeptide-containing proteins that play crucial roles in a broad spectrum of basic cellular processes. The existence of a large internal spacer sequence that separates the bipartite kinase catalytic core is a unique structural feature of SRPKs. Previous structural studies on a catalytically active fragment of SRPK1, which lacks the main part of the spacer domain, revealed that SRPK1 remains in an active state without any post-translational modifications or specific intra-protein interactions, while the spacer domain is depicted as a loop structure, outside the kinase core. Using systematic mutagenesis we now provide evidence that replacement of any individual cysteine residue in the spacer, apart from Cys414, or in its proximal flaking ends of the two kinase catalytic domains has an impact on kinase activity. Furthermore, the cysteine residues are critical for nuclear translocation of SRPK1 in response to genotoxic stress and SRPK1-dependent splicing of a reporter gene. While replacement of Cys207, Cys502 and Cys539 of the catalytic domains is predicted to distort the kinase active structure, our findings suggest that Cys356, Cys386, Cys427 and Cys455 of the spacer domain and Cys188 of the first catalytic domain are engaged in disulfide bridging. We propose that such a network of intramolecular disulfide bonds mediates the bending of the spacer region thus allowing the proximal positioning of the two catalytic subunits which is a prerequisite for SRPK1 activity. PMID:28166275

  14. Structure-Based Insight into the Asymmetric Bioreduction of the C=C Double Bond of α,β-Unsaturated Nitroalkenes by Pentaerythritol Tetranitrate Reductase

    PubMed Central

    Toogood, Helen S.; Fryszkowska, Anna; Hare, Victoria; Fisher, Karl; Roujeinikova, Anna; Leys, David; Gardiner, John M.; Stephens, Gill M.; Scrutton, Nigel S.

    2009-01-01

    Biocatalytic reduction of α- or β-alkyl-β-arylnitroalkenes provides a convenient and efficient method to prepare chiral substituted nitroalkanes. Pentaerythritol tetranitrate reductase (PETN reductase) from Enterobacter cloacae st. PB2 catalyses the reduction of nitroolefins such as 1-nitrocyclohexene (1) with steady state and rapid reaction kinetics comparable to other old yellow enzyme homologues. Furthermore, it reduces 2-aryl-1-nitropropenes (4a-d) to their equivalent (S)-nitropropanes 9a-d. The enzyme shows a preference for the (Z)-isomer of substrates 4a-d, providing almost pure enantiomeric products 9a-d (ees up to > 99%) in quantitative yield, whereas the respective (E)-isomers are reduced with lower enantioselectivity (63-89% ee) and lower product yields. 1-Aryl-2-nitropropenes (5a, b) are also reduced efficiently, but the products (R)-10 have lower optical purities. The structure of the enzyme complex with 1-nitrocyclohexene (1) was determined by X-ray crystallography, revealing two substrate-binding modes, with only one compatible with hydride transfer. Models of nitropropenes 4 and 5 in the active site of PETN reductase predicted that the enantioselectivity of the reaction was dependent on the orientation of binding of the (E)- and (Z)-substrates. This work provides a structural basis for understanding the mechanism of asymmetric bioreduction of nitroalkenes by PETN reductase. PMID:20396603

  15. Asymmetric Desymmetrization via Metal-Free C-F Bond Activation: Synthesis of 3,5-Diaryl-5-fluoromethyloxazolidin-2-ones with Quaternary Carbon Centers.

    PubMed

    Tanaka, Junki; Suzuki, Satoru; Tokunaga, Etsuko; Haufe, Günter; Shibata, Norio

    2016-08-01

    We disclose the first asymmetric activation of a non-activated aliphatic C-F bond in which a conceptually new desymmetrization of 1,3-difluorides by silicon-induced selective C-F bond scission is a key step. The combination of a cinchona alkaloid based chiral ammonium bifluoride catalyst and N,O-bis(trimethylsilyl)acetoamide (BSA) as the silicon reagent enabled the efficient catalytic cycle of asymmetric Csp3 -F bond cleavage under mild conditions with high enantioselectivities. The ortho effect of the aryl group at the prostereogenic center is remarkable. This concept was applied for the asymmetric synthesis of promising agrochemical compounds, 3,5-diaryl-5-fluoromethyloxazolidin-2-ones bearing a quaternary carbon center.

  16. Theoretical study of lanthanide mono cation-mediated C-F bond activation

    NASA Astrophysics Data System (ADS)

    Matsuda, Aya; Mori, Hirotoshi

    2011-02-01

    The potential energy surface corresponding to the reaction of lanthanide mono-cations (Ln +; Ln = Ce-Yb) with CH 3F has been investigated using density functional theory calculations. In the initial step of the C-F activation reaction, Ln + directly coordinates to the F atom of CH 3F, and forms same [Ln⋯F⋯CH 3] + type transition state structures with an accompanying electron-transfer from the Ln + to the F atom. Performing intrinsic reaction coordinate calculations from the transition states, we found that all Ln + reactions can be classified into one of two different reaction mechanisms, "harpoon-like" and "insertion-elimination", which were experimentally proposed by Cohrnel et al. and Konayagi et al., respectively. The two mechanisms have been proposed exclusive to each other. Our results show that both reaction mechanisms are possible in Ln + reaction systems.

  17. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures.

    PubMed

    Christopher, Phillip; Xin, Hongliang; Marimuthu, Andiappan; Linic, Suljo

    2012-12-01

    The field of heterogeneous photocatalysis has almost exclusively focused on semiconductor photocatalysts. Herein, we show that plasmonic metallic nanostructures represent a new family of photocatalysts. We demonstrate that these photocatalysts exhibit fundamentally different behaviour compared with semiconductors. First, we show that photocatalytic reaction rates on excited plasmonic metallic nanostructures exhibit a super-linear power law dependence on light intensity (rate ∝ intensity(n), with n > 1), at significantly lower intensity than required for super-linear behaviour on extended metal surfaces. We also demonstrate that, in sharp contrast to semiconductor photocatalysts, photocatalytic quantum efficiencies on plasmonic metallic nanostructures increase with light intensity and operating temperature. These unique characteristics of plasmonic metallic nanostructures suggest that this new family of photocatalysts could prove useful for many heterogeneous catalytic processes that cannot be activated using conventional thermal processes on metals or photocatalytic processes on semiconductors.

  18. Active vibration reduction of a flexible structure bonded with optimised piezoelectric pairs using half and quarter chromosomes in genetic algorithms

    NASA Astrophysics Data System (ADS)

    Daraji, A. H.; Hale, J. M.

    2012-08-01

    The optimal placement of sensors and actuators in active vibration control is limited by the number of candidates in the search space. The search space of a small structure discretized to one hundred elements for optimising the location of ten actuators gives 1.73 × 1013 possible solutions, one of which is the global optimum. In this work, a new quarter and half chromosome technique based on symmetry is developed, by which the search space for optimisation of sensor/actuator locations in active vibration control of flexible structures may be greatly reduced. The technique is applied to the optimisation for eight and ten actuators located on a 500×500mm square plate, in which the search space is reduced by up to 99.99%. This technique helps for updating genetic algorithm program by updating natural frequencies and mode shapes in each generation to find the global optimal solution in a greatly reduced number of generations. An isotropic plate with piezoelectric sensor/actuator pairs bonded to its surface was investigated using the finite element method and Hamilton's principle based on first order shear deformation theory. The placement and feedback gain of ten and eight sensor/actuator pairs was optimised for a cantilever and clamped-clamped plate to attenuate the first six modes of vibration, using minimization of linear quadratic index as an objective function.

  19. Synthesis of hybrid cellulose nanocomposite bonded with dopamine SiO2/TiO2 and its antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ramesh, Sivalingam; Kim, Gwang-Hoon; Kim, Jaehwan; Kim, Joo-Hyung

    2015-04-01

    Organic-inorganic hybrid material based cellulose was synthesized by the sol-gel approach. The explosion of activity in this area in the past decade has made tremendous progress in industry or academic both fundamental understanding of sol-gel process and applications of new functionalized hybrid materials. In this present research work, we focused on cellulose-dopamine functionalized SiO2/TiO2 hybrid nanocomposite by sol-gel process. The cellulose-dopamine hybrid nanocomposite was synthesized via γ-aminopropyltriethoxysilane (γ-APTES) coupling agent by in-situ sol-gel process. The chemical structure of cellulose-amine functionalized dopamine bonding to cellulose structure with covalent cross linking hybrids was confirmed by FTIR spectral analysis. The morphological analysis of cellulose-dopamine nanoSiO2/TiO2 hybrid nanocomposite materials was characterized by XRD, SEM and TEM. From this different analysis results indicate that the optical transparency, thermal stability, control morphology of cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite. Furthermore cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite was tested against pathogenic bacteria for antimicrobial activity.

  20. Cerium-activated rare-earth orthophosphate and double-phosphate scintillators for x-and gamma-ray detection

    SciTech Connect

    Boatner, Lynn A; Keefer, Lara A; Farmer, James Matthew; Wisniewski, D.; Wojtowicz, A. J.

    2004-01-01

    When activated with an appropriate rare-earth ion (e.g., Ce or Nd), rare-earth orthophosphates of the form REPO4 (where RE = a rare-earth cation) and alkali rare-earth double phosphates of the form A{sub 3}RE(PO{sub 4}){sub 2} (where A = K, Rb, or Cs) are characterized by light yields and decay times that make these materials of interest for radiation-detection applications. Crystals of the compound Rb{sub 3}Lu(PO{sub 4}){sub 2} when activated with {approx}0.1 mol % Ce exhibit a light yield that is {approx}250% that of BGO with a decay time on the order of {approx}40 nsec. The cerium-activated rare-earth orthophosphate LuPO{sub 4}:Ce is also characterized by a high light yield and a relatively fast decay time of {approx}25 nsec. Additionally, the rare-earth orthophosphates are extremely chemically, physically, and thermally durable hosts that recover easily from radiation damage effects. The properties of the rare-earth orthophosphates and double phosphates that pertain to their use as X- and gamma-ray detectors are reviewed. This review includes information related to the use of Nd-doped LuPO{sub 4} as a scintillator with a sufficiently energetic, short-wavelength output ({lambda} = 90 nm) so that it can be used in conjunction with appropriately activated proportional counters. Information is presented on the details of the synthesis, structure, and luminescence properties of lanthanide double phosphates that, when activated with cerium, are efficient scintillators with output wavelengths that are sufficiently long to be well matched to the response of silicon photodiode detectors.

  1. The opportunistic pathogen Pseudomonas aeruginosa activates the DNA double-strand break signaling and repair pathway in infected cells.

    PubMed

    Elsen, Sylvie; Collin-Faure, Véronique; Gidrol, Xavier; Lemercier, Claudie

    2013-11-01

    Highly hazardous DNA double-strand breaks can be induced in eukaryotic cells by a number of agents including pathogenic bacterial strains. We have investigated the genotoxic potential of Pseudomonas aeruginosa, an opportunistic pathogen causing devastating nosocomial infections in cystic fibrosis or immunocompromised patients. Our data revealed that infection of immune or epithelial cells by P. aeruginosa triggered DNA strand breaks and phosphorylation of histone H2AX (γH2AX), a marker of DNA double-strand breaks. Moreover, it induced formation of discrete nuclear repair foci similar to gamma-irradiation-induced foci, and containing γH2AX and 53BP1, an adaptor protein mediating the DNA-damage response pathway. Gene deletion, mutagenesis, and complementation in P. aeruginosa identified ExoS bacterial toxin as the major factor involved in γH2AX induction. Chemical inhibition of several kinases known to phosphorylate H2AX demonstrated that Ataxia Telangiectasia Mutated (ATM) was the principal kinase in P. aeruginosa-induced H2AX phosphorylation. Finally, infection led to ATM kinase activation by an auto-phosphorylation mechanism. Together, these data show for the first time that infection by P. aeruginosa activates the DNA double-strand break repair machinery of the host cells. This novel information sheds new light on the consequences of P. aeruginosa infection in mammalian cells. As pathogenic Escherichia coli or carcinogenic Helicobacter pylori can alter genome integrity through DNA double-strand breaks, leading to chromosomal instability and eventually cancer, our findings highlight possible new routes for further investigations of P. aeruginosa in cancer biology and they identify ATM as a potential target molecule for drug design.

  2. Effect of addition of chitosan to self-etching primer: antibacterial activity and push-out bond strength to radicular dentin

    PubMed Central

    Elsaka, Shaymaa; Elnaghy, Amr

    2012-01-01

    The purpose of this study was to evaluate the antibacterial activity of a modified self-etching primer incorporating chitosan and whether this modification affected the bond strength to radicular dentin. A modified self-etching primer was prepared by adding chitosan solutions at 0.03%, 0.06%, 0.12% and 0.25% (W/W) to RealSeal selfe-tching primer. RealSeal primer without chitosan was used as the control. The antibacterial activity of the modified self-etching primer was evaluated using the direct contact test against Enterococcus faecalis. The bonding ability of the RealSeal system to radicular dentin was evaluated using the push-out bond strength test. The modes of failure were examined under a stereomicroscope. Data were analyzed using analysis of variance (ANOVA) and Tukey's test, with a P-value < 0.05 indicating statistical significance. The results showed that the antibacterial properties of the freshly prepared and aged modified self-etching primer incorporating chitosan exhibited potent antibacterial effect against Enterococcus faecalis compared with the unmodified primer. The RealSeal system with the aged modified self-etching primer incorporating chitosan showed no significant differences in the bond strength as compared with the control (P = 0.99). The findings suggest that modified self-etching primer incorporating chitosan is a promising antibacterial primer which does not adversely affect the bond strength of the RealSeal system to radicular dentin. PMID:23554762

  3. Structure-activity relation of human beta-defensin 3: influence of disulfide bonds and cysteine substitution on antimicrobial activity and cytotoxicity.

    PubMed

    Klüver, Enno; Schulz-Maronde, Sandra; Scheid, Svenja; Meyer, Bernd; Forssmann, Wolf-Georg; Adermann, Knut

    2005-07-19

    Human beta-defensins form a group of cysteine-rich antimicrobial peptides which have been found in epithelial tissue and, more recently, in the male genital tract. They play a role in the defense against microbial pathogens in innate immunity and display additional chemotactic functions in the adaptive immune system. An important characteristic of antimicrobial peptides is that they also exhibit toxic potential on eukaryotic cells. Very little is known about the structure dependence of antimicrobial and cytotoxic effects. We investigated human beta-defensin 3 (hBD-3), a potent broad-spectrum antimicrobial effector peptide, regarding the influence of structural parameters on the antimicrobial and cytotoxic activity. We have established a structure-activity relation of the hBD-3 using synthetic derivatives differing in length, charge, disulfide connectivity, and overall hydrophobicity. The antimicrobial activity of the peptides was compared to the cyctotoxic effects on monocytic THP-1 cells and the hemolytic activity on human erythrocytes. We found that it is not important for antimicrobial and cytotoxic activity whether and how cysteine residues are arranged to form disulfide bonds. Substitution of half-cystinyl residues by tryptophan resulted in increased activities, while other substitutions did not change activity. Correlation of activities with the structural changes demonstrates that the activity on eukaryotic cells appears to depend strongly on the overall hydrophobicity. In contrast, the antimicrobial potency of hBD-3 peptides is determined by the distribution of positively charged amino acid residues and hydrophobic side chains. The results facilitate the understanding of beta-defensin interaction with different cell types and guide the design of antimicrobially active peptides.

  4. Microstructural evolution at the bonding interface during the early-stage infrared active brazing of alumina

    NASA Astrophysics Data System (ADS)

    Shiue, R. K.; Wu, S. K.; O, J. M.; Wang, J. Y.

    2000-10-01

    Infrared brazing of Al2O3 and alloy 42 using a silver-base active braze alloy was investigated at 900 °C for 0 to 300 seconds, with a heating rate of 3000 °C/min. Experimental results show that Ti3(Cu, Al)3O intermetallic with various amounts of Al is observed in the reaction layer and plays an important role in the early stage of reactive wetting. A two-layer structure is observed at the reaction interface brazed at 900 °C for 5 seconds. The reaction layer close to the alumina contains large amounts of Al, so the mass balance of the system is maintained. The growth of the reaction layer is not rate controlled by diffusion within the first 120 seconds. After 120 seconds, the rate controlling mechanism of the reaction layer becomes the diffusion control, satisfying the parabolic law. Dynamic wetting angle measurements using a traditional vacuum furnace at the heating rate of 10 °C/min demonstrate that the wetting angle rapidly decreases within the first 150 seconds, especially 0 to 80 seconds, and eventually stabilizes after 600 seconds.

  5. Activation of a Covalent Enzyme-Substrate Bond by Noncovalent Interaction with an Effector

    PubMed Central

    Malhotra, O. P.; Bernhard, Sidney A.

    1973-01-01

    The absorption spectrum of an activesite specific chromophoric acyl enzyme, sturgeon β-(2-furyl)-acryloyl-glyceraldehyde-3-phosphate dehydrogenase, is reported. This acyl enzyme undergoes all of the catalyzed reactions characteristic of the intermediate of the physiological acyl enzyme, 3-phospho-D-glyceroyl-glyceraldehyde-3-phosphate dehydrogenease. The rates of reactions of both these acyl enzymes depend strongly on the extent of interaction of the acyl enzyme with the oxidized coenzyme, NAD+, even where the “redox” properties of the coenzyme are not required. Likewise, the spectral properties of chromophoric acyl enzyme are affected by the extent of bound NAD. Under the pseudophysiological conditions reported herein, there is a stoichiometric limitation of two furylacryloyl-acyl groups per enzyme molecule containing four covalently-equivalent subunits. The binding of NAD both to the apoenzyme and to the diacyl enzyme is heterogeneous: at low extents of NAD occupancy, NAD binding is stronger. The binding to acyl enzyme can be quantitatively described by an enzyme model involving a tetramer with 2-fold symmetry, and consequently containing equal numbers of two classes of sites. NAD binding to difurylacryloyl-enzyme occurs virtually discretely, first to the two unmodified (tight-binding) sites, followed by looser binding to the two acyl-sites. NAD occupancy at these latter sites transforms the chromophoric acyl spectrum from that characteristic of a model furylacryloyl-thiol ester in H2O to a highly perturbed furylacryloyl spectrum characteristic of monomeric native “active-thiol” furylacryloyl-enzymes. Likewise the acyl reactivity towards arsenolysis depends on the extent of NAD bound to the loose sites. Elimination of the tight binding of NAD to the difurylacryloyl enzyme tetramer by alkylation of the remaining two free SH groups with iodoacetate has no apparent influence on the NAD-dependent furylacryloyl-spectral perturbation at the “two equivalent

  6. Photodegradation of organic contamination in wastewaters by bonding TiO2/single-walled carbon nanotube composites with enhanced photocatalytic activity.

    PubMed

    Zhou, Wei; Pan, Kai; Qu, Yang; Sun, Fanfei; Tian, Chungui; Ren, Zhiyu; Tian, Guohui; Fu, Honggang

    2010-10-01

    Bonding TiO(2)/single-walled carbon nanotube (SWCNT) composites have been successfully synthesized through a facile sol-solvothermal technique. The obtained materials were characterized in detail by XRD, FT-IR, Raman and TEM. The results revealed that TiO(2) and SWNCT linked compactly through ester bonds and thus improved their interfaces. Therefore, the recombination of photogenerated electron-hole pairs was inhibited efficiently, which improved the photocatalytic activity. A reasonable mechanism was proposed to explain its formation. The photocatalytic activity was investigated utilizing rhodamine B and nitrobenzene (NB) as models for organic contamination in wastewaters. Experimental results indicated that this bonding composite exhibited higher photocatalytic activity than that of Degussa P25. The excellent photocatalytic activity could be attributed to larger surface area, smaller crystalline size, and especially the ester bonds, which was further confirmed by surface photovoltage spectroscopy. Furthermore, by adding ()OH scavenger tert-butanol, the obvious decrease of NB photodegradation indicated that NB was oxidized primarily by ()OH. The photodegradation products were identified by GC/MS, further indicating that the degradation proceeded via ()OH oxidation. A possible reaction pathway for the degradation of NB was suggested by the evidence presented in this study.

  7. Energy-efficient green catalysis: supported gold nanoparticle-catalyzed aminolysis of esters with inert tertiary amines by C-O and C-N bond activations.

    PubMed

    Bao, Yong-Sheng; Baiyin, Menghe; Agula, Bao; Jia, Meilin; Zhaorigetu, Bao

    2014-07-18

    Catalyzed by supported gold nanoparticles, an aminolysis reaction between various aryl esters and inert tertiary amines by C-O and C-N bond activations has been developed for the selective synthesis of tertiary amides. Comparison studies indicated that the gold nanoparticles could perform energy-efficient green catalysis at room temperature, whereas Pd(OAc)2 could not.

  8. Discovery of molluscicidal and cercaricidal activities of 3-substituted quinazolinone derivatives by a scaffold hopping approach using a pseudo-ring based on the intramolecular hydrogen bond formation.

    PubMed

    Guo, Wei; Zheng, Lv-Yin; Li, Yong-Dong; Wu, Ren-Miao; Chen, Qiang; Yang, Ding-Qiao; Fan, Xiao-Lin

    2016-06-10

    Discovery of novel topological agents against Oncomelania hupensis snails and cercariae remains a significant challenge in current Schistosomiasis control. A pseudo-ring formed from salicylanilide by an intramolecular hydrogen bond led to the discovery of 3-substituted quinazolinone derivatives which showed a potent molluscicidal and cercaricidal activities.

  9. Enhanced dihydropyridine receptor calcium channel activity restores muscle strength in JP45/CASQ1 double knockout mice

    PubMed Central

    Mosca, Barbara; Delbono, Osvaldo; Messi, Maria Laura; Bergamelli, Leda; Wang, Zhong-Min; Vukcevic, Mirko; Lopez, Ruben; Treves, Susan; Nishi, Miyuki; Takeshima, Hiroshi; Paolini, Cecilia; Martini, Marta; Rispoli, Giorgio; Protasi, Feliciano; Zorzato, Francesco

    2016-01-01

    Muscle strength declines with age in part due to a decline of Ca2+ release from sarcoplasmic reticulum calcium stores. Skeletal muscle dihydropyridine receptors (Cav1.1) initiate muscle contraction by activating ryanodine receptors in the sarcoplasmic reticulum. Cav1.1 channel activity is enhanced by a retrograde stimulatory signal delivered by the ryanodine receptor. JP45 is a membrane protein interacting with Cav1.1 and the sarcoplasmic reticulum Ca2+ storage protein calsequestrin (CASQ1). Here we show that JP45 and CASQ1 strengthen skeletal muscle contraction by modulating Cav1.1 channel activity. Using muscle fibres from JP45 and CASQ1 double knockout mice, we demonstrate that Ca2+ transients evoked by tetanic stimulation are the result of massive Ca2+ influx due to enhanced Cav1.1 channel activity, which restores muscle strength in JP45/CASQ1 double knockout mice. We envision that JP45 and CASQ1 may be candidate targets for the development of new therapeutic strategies against decay of skeletal muscle strength caused by a decrease in sarcoplasmic reticulum Ca2+ content. PMID:23443569

  10. The Disulfide Bond of the Peptide Thanatin Is Dispensible for Its Antimicrobial Activity In Vivo and In Vitro.

    PubMed

    Ma, Bo; Niu, Chao; Zhou, Ying; Xue, Xiaoyan; Meng, Jingru; Luo, Xiaoxing; Hou, Zheng

    2016-07-01

    Thanatin (THA) displays potent antibiotic activity, especially against extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli both in vitro and in vivo, with minimal hemolytic toxicity and satisfactory stability in plasma. However, the high cost of thanatin significantly limits its development and clinical application. To reduce the cost of peptide synthesis, a formulation of cyclic thanatin (C-thanatin) called linear thanatin (L-thanatin) was synthesized and its activity was evaluated in vivo and in vitro Results showed that C-thanatin and L-thanatin MICs did not differ against eight Gram-negative and two Gram-positive bacterial strains. Furthermore, the survival rates of ESBL-producing-E. coli-infected mice were consistent after C-thanatin or L-thanatin treatment at 5 or 10 mg/kg of body weight. Neither C-thanatin nor L-thanatin showed toxicity for human red blood cells (hRBCs) and human umbilical vein endothelial cells (HUVECs) at a concentration as high as 256 μg/ml. Results of circular dichroism spectroscopy indicated that the secondary structure of L-thanatin is extremely similar to that of C-thanatin. Membrane permeabilization and depolarization assays showed that C-thanatin and L-thanatin have similar abilities to permeabilize the outer and inner membranes and to induce membrane depolarization in ESBL-producing E. coli However, neither of them caused significant HUVEC membrane permeability. These findings indicate that the two peptides have similar effects on bacterial cell membranes and that the disulfide bond in thanatin is not essential for its antimicrobial activities in vivo and in vitro L-thanatin is thus a promising low-cost peptide candidate for treating ESBL-producing E. coli infections.

  11. The Disulfide Bond of the Peptide Thanatin Is Dispensible for Its Antimicrobial Activity In Vivo and In Vitro

    PubMed Central

    Ma, Bo; Niu, Chao; Zhou, Ying; Xue, Xiaoyan; Meng, Jingru

    2016-01-01

    Thanatin (THA) displays potent antibiotic activity, especially against extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli both in vitro and in vivo, with minimal hemolytic toxicity and satisfactory stability in plasma. However, the high cost of thanatin significantly limits its development and clinical application. To reduce the cost of peptide synthesis, a formulation of cyclic thanatin (C-thanatin) called linear thanatin (L-thanatin) was synthesized and its activity was evaluated in vivo and in vitro. Results showed that C-thanatin and L-thanatin MICs did not differ against eight Gram-negative and two Gram-positive bacterial strains. Furthermore, the survival rates of ESBL-producing-E. coli-infected mice were consistent after C-thanatin or L-thanatin treatment at 5 or 10 mg/kg of body weight. Neither C-thanatin nor L-thanatin showed toxicity for human red blood cells (hRBCs) and human umbilical vein endothelial cells (HUVECs) at a concentration as high as 256 μg/ml. Results of circular dichroism spectroscopy indicated that the secondary structure of L-thanatin is extremely similar to that of C-thanatin. Membrane permeabilization and depolarization assays showed that C-thanatin and L-thanatin have similar abilities to permeabilize the outer and inner membranes and to induce membrane depolarization in ESBL-producing E. coli. However, neither of them caused significant HUVEC membrane permeability. These findings indicate that the two peptides have similar effects on bacterial cell membranes and that the disulfide bond in thanatin is not essential for its antimicrobial activities in vivo and in vitro. L-thanatin is thus a promising low-cost peptide candidate for treating ESBL-producing E. coli infections. PMID:27161645

  12. Active-site mutants of beta-lactamase: use of an inactive double mutant to study requirements for catalysis.

    PubMed

    Dalbadie-McFarland, G; Neitzel, J J; Richards, J H

    1986-01-28

    We have studied the catalytic activity and some other properties of mutants of Escherichia coli plasmid-encoded RTEM beta-lactamase (EC 3.5.2.6) with all combinations of serine and threonine residues at the active-site positions 70 and 71. (All natural beta-lactamases have conserved serine-70 and threonine-71.) From the inactive double mutant Ser-70----Thr, Thr-71----Ser [Dalbadie-McFarland, G., Cohen, L. W., Riggs, A. D., Morin, C., Itakura, K., & Richards, J. H. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 6409-6413], an active revertant, Thr-71----Ser (i.e., residue 70 in the double mutant had changed from threonine to the serine conserved at position 70 in the wild-type enzyme), was isolated by an approach that allows identification of active revertants in the absence of a background of wild-type enzyme. This mutant (Thr-71----Ser) has about 15% of the catalytic activity of wild-type beta-lactamase. The other possible mutant involving serine and threonine residues at positions 70 and 71 (Ser-70----Thr) shows no catalytic activity. The primary nucleophiles of a serine or a cysteine residue [Sigal, I. S., Harwood, B. G., & Arentzen, R. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 7157-7160] at position 70 thus seem essential for enzymatic activity. Compared to wild-type enzyme, all three mutants show significantly reduced resistance to proteolysis; for the active revertant (Thr-71----Ser), we have also observed reduced thermal stability and reduced resistance to denaturation by urea.

  13. Double-bed-type extraction needle packed with activated-carbon-based sorbents for very volatile organic compounds.

    PubMed

    Ueta, Ikuo; Samsudin, Emi Liana; Mizuguchi, Ayako; Takeuchi, Hayato; Shinki, Takumi; Kawakubo, Susumu; Saito, Yoshihiro

    2014-01-01

    A novel needle-type sample preparation device was developed for the determination of very volatile organic compounds (VVOCs) in gaseous samples by gas chromatography-mass spectrometry (GC-MS). Two types of activated-carbon-based sorbents, Carbopack X and a carbon molecular sieve (CMS), were investigated as the extraction medium. A double-bed-type extraction needle showed successful extraction and desorption performance for all investigated VVOCs, including acetaldehyde, isoprene, pentane, acetone, and ethanol. Sensitive and reliable determination of VVOCs was achieved by systematically optimizing several desorption conditions. In addition, the effects of sample humidity on the extraction and desorption of analytes were investigated with the needle-type extraction devices. Only the CMS packed extraction needle was adversely affected by sample humidity during the desorption process; on the other hand the double-bed-type extraction needle was unaffected by sample humidity. Finally, the developed double-bed-type extraction needle was successfully applied to the analysis of breath VVOCs of healthy subjects.

  14. The Effect of Artificial Aging on The Bond Strength of Heat-activated Acrylic Resin to Surface-treated Nickel-chromium-beryllium Alloy

    PubMed Central

    Al Jabbari, Youssef S.; Zinelis, Spiros; Al Taweel, Sara M.; Nagy, William W.

    2016-01-01

    Purpose The debonding load of heat-activated polymethylmethacrylate (PMMA) denture base resin material to a nickel-chromium-beryllium (Ni-Cr-Be) alloy conditioned by three different surface treatments and utilizing two different commercial bonding systems was investigated. Materials and Methods Denture resin (Lucitone-199) was bonded to Ni-Cr-Be alloy specimens treated with Metal Primer II, the Rocatec system with opaquer and the Rocatec system without opaquer. Denture base resin specimens bonded to non-treated sandblasted Ni-Cr-Be alloy were used as controls. Twenty samples for each treatment condition (80 specimens) were tested. The 80 specimens were divided into two categories, thermocycled and non-thermocycled, containing four groups of ten specimens each. The non-thermocycled specimens were tested after 48 hours’ storage in room temperature water. The thermocycled specimens were tested after 2,000 cycles in 4°C and 55°C water baths. The debonding load was calculated in Newtons (N), and collected data were subjected by non parametric test Kruskal-Wallis One Way Analysis of Variance on Ranks and Dunn’s post hoc test at the α = 0.05. Results The Metal Primer II and Rocatec system without opaquer groups produced significantly higher bond strengths (119.9 and 67.6 N), respectively, than did the sandblasted and Rocatec system with opaquer groups, where the bond strengths were 2.6 N and 0 N, respectively. The Metal Primer II was significantly different from all other groups (P<0.05). The bond strengths of all groups were significantly decreased (P<0.05) after thermocycling. Conclusions Although thermocycling had a detrimental effect on the debonding load of all surface treatments tested, the Metal Primer II system provided higher values among all bonding systems tested, before and after thermocycling. PMID:27335613

  15. Investigating the Gas Kinematics of High-Redshift Active Galactic Nuclei with Double-Peaked Narrow Emission Lines

    NASA Astrophysics Data System (ADS)

    Barrows, Robert S.; Stern, D.; Lacy, C. H. S.; Kennefick, J.; Kennefick, D.; Seigar, M.

    2012-05-01

    Pairs of supermassive black holes (SMBHs) are a natural consequence of galaxy mergers, and these systems are observable when both SMBHs are accreting as active galactic nuclei (AGN). Observational evidence for these AGN pairs (dual AGN) has dramatically increased recently through a combination of spectroscopic selection of candidates from double-peaked optical emission lines and follow-up morphological data. The primary motivation for compiling a sample of dual AGN is for their use in tracing galaxy mergers and in constraining the link between galaxy mergers and AGN enhancement. Therefore, this phenomenon should be investigated at higher redshifts when galaxy mergers were more frequent. Motivated by our detailed analysis of a candidate dual AGN at a relatively high redshift (z=1.175), we have compiled a sample of analogous sources at z>0.80 identified from double-peaked UV emission lines in the Sloan Digital Sky Survey (SDSS). The double-peaked profile can be mimicked by gas-kinematics around a single AGN, including large-scale outflows, which are known to affect the velocity profiles of high-ionization UV emission lines. Through emission line diagnostics, we have taken advantage of access to rest-frame UV emission lines in SDSS quasar spectra, allowing us to investigate the kinematics of the ionized gas. In particular, for each of these sources we have put constraints on the likelihood of a correlation between peak velocity-offset and ionization potential. Such tests will aid in determining which double-peaked emission line sources are most likely the result of an outflow and which are strong dual AGN candidates. This study will both increase the sample size of candidate dual AGN for follow-up observations and extend the sample to higher redshifts.

  16. Organic chemistry: No double bond left behind

    NASA Astrophysics Data System (ADS)

    Sarlah, David

    2016-03-01

    Alkenyl halides are some of the most useful building blocks for synthesizing small organic molecules. A catalyst has now allowed their direct preparation from widely available alkenes using the cross-metathesis reaction. See Article p.459

  17. Crystal and molecular structure of W(eta/sup 2/-HC double bond COAlCl/sub 3/)(CO)(PMe/sub 3/)/sub 3/Cl, a product of the coupling of methylidyne and carbonyl ligands on tungsten

    SciTech Connect

    Churchill, M.R.; Wasserman, H.J.

    1983-01-05

    A single-crystal x-ray diffraction analysis has been performed on the title complex, which was prepared by Holmes and Schrock through AlCl/sub 3/-promoted coupling of W(CH)(PMe/sub 3/)/sub 4/Cl with carbon monoxide. The complex crystallizes in the centrosymmetric monoclinic space group P2/sub 1//c with a = 10.420 (2) A, b = 12.896 (2) A, c = 19.319 (4) A, ..beta.. = 105.880 (15)/sup 0/, V = 2497.1 (9) A/sup 3/, rho(calcd) = 1.73 g cm/sup -3/ for Z = 4, and mol wt = 650.0. Automated four-circle diffractometer intensity data (Syntex P2/sub 1/) were used to solve the structure; refinement led to R/sub F/ = 3.2% and R/sub wF/ = 3.0% for all 4423 unique reflections with 4.0/sup 0/ < 2 theta < 50.0/sup 0/ (Mo K..cap alpha.. radiation). The octahedral coordination environment about the central tungsten atom consists of three meridional PMe/sub 3/ ligands, a terminal carbonyl, a chloride, and an eta/sup 2/-HC double bond COAlCl/sub 3/ ligand. The last is oriented parallel to the carbonyl ligand and is best described as a substituted acetylene with an acetylenic carbon-carbon linkage of 1.316 (6) A and short tungsten-carbon distances of 2.034 (4) and 2.009 (5) A. The aluminum-oxygen distance is 1.751 (3) A; this value represents a significantly stronger Al-O interaction than has been observed in other structures containing Al-O (carbonyl; acyl) linkages.

  18. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces.

    PubMed

    Hibbitts, David; Iglesia, Enrique

    2015-05-19

    Dissociation of the strong bonds in O2, NO, CO, and N2 often involves large activation barriers on low-index planes of metal particles used as catalysts. These kinetic hurdles reflect the noble nature of some metals (O2 activation on Au), the high coverages of co-reactants (O2 activation during CO oxidation on Pt), or the strength of the chemical bonds (NO on Pt, CO and N2 on Ru). High barriers for direct dissociations from density functional theory (DFT) have led to a consensus that "defects", consisting of low-coordination exposed atoms, are required to cleave such bonds, as calculated by theory and experiments for model surfaces at low coverages. Such sites, however, bind intermediates strongly, rendering them unreactive at the high coverages prevalent during catalysis. Such site requirements are also at odds with turnover rates that often depend weakly on cluster size or are actually higher on larger clusters, even though defects, such as corners and edges, are most abundant on small clusters. This Account illustrates how these apparent inconsistencies are resolved through activations of strong bonds assisted by co-adsorbates on crowded low-index surfaces. Catalytic oxidations occur on Au clusters at low temperatures in spite of large activation barriers for O2 dissociation on Au(111) surfaces, leading to proposals that O2 activation requires low-coordination Au atoms or Au-support interfaces. When H2O is present, however, O2 dissociation proceeds with low barriers on Au(111) because chemisorbed peroxides (*OOH* and *HOOH*) form and weaken O-O bonds before cleavage, thus allowing activation on low-index planes. DFT-derived O2 dissociation barriers are much lower on bare Pt surfaces, but such surfaces are nearly saturated with CO* during CO oxidation. A dearth of vacant sites causes O2* to react with CO* to form *OOCO* intermediates that undergo O-O cleavage. NO-H2 reactions occur on Pt clusters saturated with NO* and H*; direct NO* dissociation requires vacant

  19. Yttrium-Assisted C-H and C-C Bond Activation of Ethylene Probed by Mass-Analyzed Threshold Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Jong Hyun; Yang, Dong-Sheng

    2016-06-01

    The reaction between Y atom and ethylene (CH2=CH2) was performed in a laser-ablation supersonic molecular beam source. Y(C2H2), Y(C2H4), and Y(C4H6) were observed by time-of-flight mass spectrometry and investigated with mass-analyzed threshold ionization (MATI) spectroscopy and theoretical calculations. Y(C2H2) is formed by hydrogen elimination, Y(C2H4) by simple association, and La(C4H6) by C-C bond coupling and dehydrogenation. Both Y(C2H2) and Y(C2H4) have a C2v triangular structure with a C=C double bond in Y(C2H2) and a C-C single bond in Y(C2H4). Y(C4H6) has a five-membered metallacyclic structure (Cs) with Y binding to the two terminal carbon atoms of butene, which is the exactly same as that of Y(C4H6) formed in the Y + 1-butene reaction. For all three complexes, ionization has a small effect on the metal-carbon bond lengths because the rejected electron has basically a Y 5s character. The adiabatic ionization energies are measured to be 45679(5) wn for Y(C2H2), 45603(5) wn for Y(C2H4) and 43475(5) wn for Y(C4H6). The metal-ligand stretching frequencies of the three complexes are also measured from the MATI spectra.

  20. Unusual Central Engine Activity in the Double Burst GRB 110709B

    NASA Technical Reports Server (NTRS)

    Zhang, Bin-Bin; Burrows, David N.; Zhang, Bing; Meszaros, Peter; Stratta, Giulia; D'Elia, Valerio; Frederiks, Dmitry; Golenetskii, S.; Cummings, Jay R.; Wang, Xiang-Yu; Falcone, Abraham D.; Barthelmy, Scott D.; Gehrels, Neil

    2011-01-01

    The double burst, GRB 110709B, triggered Swift/BAT twice at 21:32:39 UT and 21:43:45 UT, respectively, on 9 July 2011. This is the first time we observed a GRB with two BAT triggers. In this paper, we present simultaneous Swift and Konus-WIND observations of this unusual GRB and its afterglow. If the two events are from the same physical origin, their different time-dependent spectral evolution suggest they must belong to different episodes of the central engine, which may be a magnetar-to-BH accretion system.

  1. UNUSUAL CENTRAL ENGINE ACTIVITY IN THE DOUBLE BURST GRB 110709B

    SciTech Connect

    Zhang Binbin; Burrows, David N.; Meszaros, Peter; Falcone, Abraham D.; Zhang Bing; Wang Xiangyu; Stratta, Giulia; D'Elia, Valerio; Frederiks, Dmitry; Golenetskii, Sergey; Cummings, Jay R.; Barthelmy, Scott D.; Gehrels, Neil; Norris, Jay P.

    2012-04-01

    The double burst, GRB 110709B, triggered the Swift/Burst Alert Telescope (BAT) twice at 21:32:39 UT and 21:43:45 UT, respectively, on 2011 July 9. This is the first time we observed a gamma-ray burst (GRB) with two BAT triggers. In this paper, we present simultaneous Swift and Konus-WIND observations of this unusual GRB and its afterglow. If the two events originated from the same physical progenitor, their different time-dependent spectral evolution suggests they must belong to different episodes of the central engine, which may be a magnetar-to-BH accretion system.

  2. Surface activated bonding of GaAs and SiC wafers at room temperature for improved heat dissipation in high-power semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Higurashi, Eiji; Okumura, Ken; Nakasuji, Kaori; Suga, Tadatomo

    2015-03-01

    Thermal management of high-power semiconductor lasers is of great importance since the output power and beam quality are affected by the temperature rise of the gain region. Thermal simulations of a vertical-external-cavity surface-emitting laser by a finite-element method showed that the solder layer between the semiconductor thin film consisting of the gain region and a heat sink has a strong influence on the thermal resistance and direct bonding is preferred to achieve effective heat dissipation. To realize thin-film semiconductor lasers directly bonded on a high-thermal-conductivity substrate, surface-activated bonding using an argon fast atom beam was applied to the bonding of gallium arsenide (GaAs) and silicon carbide (SiC) wafers. The GaAs/SiC structure was demonstrated in the wafer scale (2 in. in diameter) at room temperature. The cross-sectional transmission electron microscopy observations showed that void-free bonding interfaces were achieved.

  3. Antibacterial activity of calcium hydroxide combined with chitosan solutions and the outcomes on the bond strength of RealSeal sealer to radicular dentin

    PubMed Central

    Elsaka, Shaymaa Elsayed; Elnaghy, Amr Mohamed

    2012-01-01

    The purpose of this study was to investigate the antibacterial activity of calcium hydroxide [Ca(OH)2] combined with chitosan solutions against Enterococcus faecalis-infected root canal dentin and the effect of this new intracanal medicament on the bond strength of RealSeal sealer to radicular dentin. An experimental intracanal medicament was prepared by mixing different concentrations of chitosan solution (25%, 50%, and 100%, W/V) to Ca(OH)2 powder. Antibacterial activity was evaluated and the total numbers of colony forming units were determined. Bonding ability of RealSeal sealer to radicular dentin was evaluated using push-out bond strength test. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's multiple comparison tests. We found that Ca(OH)2 combined with different concentrations of chitosan solutions showed better antibacterial activity than Ca(OH)2 mixed with saline, without significantly affecting the bond strength of RealSeal sealer to radicular dentin (P > 0.05). The findings suggest that Ca(OH)2 combined with chitosan is a promising intracanal medicament and may be effective in endodontic therapy. PMID:23554749

  4. Double N,B-Type Bidentate Boryl Ligands Enabling a Highly Active Iridium Catalyst for C-H Borylation.

    PubMed

    Wang, Guanghui; Xu, Liang; Li, Pengfei

    2015-07-01

    Boryl ligands hold promise in catalysis due to their very high electron-donating property. In this communication double N,B-type boryl anions were designed as bidentate ligands to promote an sp(2) C-H borylation reaction. A symmetric pyridine-containing tetraaminodiborane(4) compound (1) was readily prepared as the ligand precursor that could be used, in combination with [Ir(OMe)(COD)]2, to in situ generate a highly active catalyst for a broad range of (hetero)arene substrates including highly electron-rich and/or sterically hindered ones. This work provides the first example of a bidentate boryl ligand in supporting homogeneous organometallic catalysis.

  5. Double-stranded RNA-activated protein kinase PKR of fishes and amphibians: Varying the number of double-stranded RNA binding domains and lineage-specific duplications

    PubMed Central

    Rothenburg, Stefan; Deigendesch, Nikolaus; Dey, Madhusudan; Dever, Thomas E; Tazi, Loubna

    2008-01-01

    Background Double-stranded (ds) RNA, generated during viral infection, binds and activates the mammalian anti-viral protein kinase PKR, which phosphorylates the translation initiation factor eIF2α leading to the general inhibition of protein synthesis. Although PKR-like activity has been described in fish cells, the responsible enzymes eluded molecular characterization until the recent discovery of goldfish and zebrafish PKZ, which contain Z-DNA-binding domains instead of dsRNA-binding domains (dsRBDs). Fish and amphibian PKR genes have not been described so far. Results Here we report the cloning and identification of 13 PKR genes from 8 teleost fish and amphibian species, including zebrafish, demonstrating the coexistence of PKR and PKZ in this latter species. Analyses of their genomic organization revealed up to three tandemly arrayed PKR genes, which are arranged in head-to-tail orientation. At least five duplications occurred independently in fish and amphibian lineages. Phylogenetic analyses reveal that the kinase domains of fish PKR genes are more closely related to those of fish PKZ than to the PKR kinase domains of other vertebrate species. The duplication leading to fish PKR and PKZ genes occurred early during teleost fish evolution after the divergence of the tetrapod lineage. While two dsRBDs are found in mammalian and amphibian PKR, one, two or three dsRBDs are present in fish PKR. In zebrafish, both PKR and PKZ were strongly upregulated after immunostimulation with some tissue-specific expression differences. Using genetic and biochemical assays we demonstrate that both zebrafish PKR and PKZ can phosphorylate eIF2α in yeast. Conclusion Considering the important role for PKR in host defense against viruses, the independent duplication and fixation of PKR genes in different lineages probably provided selective advantages by leading to the recognition of an extended spectrum of viral nucleic acid structures, including both dsRNA and Z-DNA/RNA, and

  6. Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F 3/2-->4I 11/2 and 4F 3/2-->4I 13/2 transitions.

    PubMed

    Chang, Y T; Huang, Y P; Su, K W; Chen, Y F

    2008-12-08

    The effective focal lengths of thermal lens in diode-end-pumped continuous-wave Nd:YVO(4) lasers for the (4)F(3/2)-->(4)I(11/2) and (4)F(3/2)-->(4)I(13/2) transitions were determined. The experimental results revealed that the thermal lensing effect for the (4)F(3/2)-->(4)I(11/2) transition can be sufficiently improved by employing a single-end diffusion-bonded Nd:YVO(4) crystal replacing a conventional Nd:YVO(4) crystal. However, using a double-end diffusion-bonded Nd:YVO(4) crystal was a great improvement over a single-end diffusion-bonded Nd:YVO(4) crystal for the (4)F(3/2)-->(4)I(13/2) transition with stronger thermal lensing effect.

  7. Direct Syn Addition of Two Silicon Atoms to a C≡C Triple Bond by Si-Si Bond Activation: Access to Reactive Disilylated Olefins.

    PubMed

    Ahmad, Maha; Gaumont, Annie-Claude; Durandetti, Muriel; Maddaluno, Jacques

    2017-02-20

    A catalytic intramolecular silapalladation of alkynes affords, in good yields and stereoselectively, syn-disilylated heterocycles of different chemical structure and size. When applied to silylethers, this reaction leads to vinylic silanols that undergo a rhodium-catalyzed addition to activated olefins, providing the oxa-Heck or oxa-Michael products, depending on the reaction conditions.

  8. A double mutation of Escherichia coli 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase disrupts six hydrogen bonds with, yet fails to prevent binding of, an isoprenoid diphosphate

    PubMed Central

    Sgraja, Tanja; Kemp, Lauris E.; Ramsden, Nicola; Hunter, William N.

    2005-01-01

    The essential enzyme 2C-methyl-d-erythritol-2,4-cyclodiphosphate (MECP) synthase, found in most eubacteria and the apicomplexan parasites, participates in isoprenoid-precursor biosynthesis and is a validated target for the development of broad-spectrum antimicrobial drugs. The structure and mechanism of the enzyme have been elucidated and the recent exciting finding that the enzyme actually binds diphosphate-containing isoprenoids at the interface formed by the three subunits that constitute the active protein suggests the possibility of feedback regulation of MECP synthase. To investigate such a possibility, a form of the enzyme was sought that did not bind these ligands but which would retain the quaternary structure necessary to create the active site. Two amino acids, Arg142 and Glu144, in Escherichia coli MECP synthase were identified as contributing to ligand binding. Glu144 interacts directly with Arg142 and positions the basic residue to form two hydrogen bonds with the terminal phosphate group of the isoprenoid diphosphate ligand. This association occurs at the trimer interface and three of these arginines interact with the ligand phosphate group. A dual mutation was designed (Arg142 to methionine and Glu144 to leucine) to disrupt the electrostatic attractions between the enzyme and the phosphate group to investigate whether an enzyme without isoprenoid diphosphate could be obtained. A low-resolution crystal structure of the mutated MECP synthase Met142/Leu144 revealed that geranyl diphosphate was retained despite the removal of six hydrogen bonds normally formed with the enzyme. This indicates that these two hydrophilic residues on the surface of the enzyme are not major determinants of isoprenoid binding at the trimer interface but rather that hydrophobic interactions between the hydrocarbon tail and the core of the enzyme trimer dominate ligand binding. PMID:16511114

  9. The Effect of the Electronic Nature of Spectator Ligands in the C-H Bond Activation of Ethylene by Cr(III) Silicates: An ab initio Study.

    PubMed

    Núñez-Zarur, Francisco; Comas-Vives, Aleix

    2015-01-01

    The Phillips catalyst, chromium oxides supported on silica, is one of the most widely used catalysts for the industrial production of polyethylene (PE). We recently synthesized a well-defined mononuclear Cr(III) silicate as active site model of the Phillips catalyst. The catalytic activity of this well-defined catalyst was similar to the industrial Phillips catalyst. We proposed that C-H bond activation of ethylene over a Cr-O bond initiates polymerization in this Cr(III) catalyst. Our results also showed that the presence of a second ethylene olefin in the coordination sphere of Cr decreases the intrinsic energy barrier of the C-H activation of ethylene. In order to understand the effect of this additional ligand in the C-H activation of ethylene by the Cr(III) catalyst, we evaluated the energetics of this step with different spectator ligands (C2H4, C2F4, N2 and CO) coordinated to the Cr center. The Charge Decomposition Analysis (CDA) of the bonding interactions between the Cr(III) catalyst and the ligands showed that the intrinsic energy barrier for the C-H activation of ethylene decreases with the increasing electron-donor properties of the spectator ligand.

  10. Kiloparsec-scale Spatial Offsets in Double-peaked Narrow-line Active Galactic Nuclei. I. Markers for Selection of Compelling Dual Active Galactic Nucleus Candidates

    NASA Astrophysics Data System (ADS)

    Comerford, Julia M.; Gerke, Brian F.; Stern, Daniel; Cooper, Michael C.; Weiner, Benjamin J.; Newman, Jeffrey A.; Madsen, Kristin; Barrows, R. Scott

    2012-07-01

    Merger-remnant galaxies with kiloparsec (kpc) scale separation dual active galactic nuclei (AGNs) should be widespread as a consequence of galaxy mergers and triggered gas accretion onto supermassive black holes, yet very few dual AGNs have been observed. Galaxies with double-peaked narrow AGN emission lines in the Sloan Digital Sky Survey (SDSS) are plausible dual AGN candidates, but their double-peaked profiles could also be the result of gas kinematics or AGN-driven outflows and jets on small or large scales. To help distinguish between these scenarios, we have obtained spatial profiles of the AGN emission via follow-up long-slit spectroscopy of 81 double-peaked narrow-line AGNs in SDSS at 0.03 <= z <= 0.36 using Lick, Palomar, and MMT Observatories. We find that all 81 systems exhibit double AGN emission components with ~kpc projected spatial separations on the sky (0.2 h -1 70 kpc <Δx < 5.5 h -1 70 kpc median Δx = 1.1 h -1 70 kpc), which suggests that they are produced by kiloparsec-scale dual AGNs or kiloparsec-scale outflows, jets, or rotating gaseous disks. Further, the objects split into two subpopulations based on the spatial extent of the double emission components and the correlation between projected spatial separations and line-of-sight velocity separations. These results suggest that the subsample (58+5 - 6%) of the objects with spatially compact emission components may be preferentially produced by dual AGNs, while the subsample (42+6 - 5%) with spatially extended emission components may be preferentially produced by AGN outflows. We also find that for 32+8 - 6% of the sample the two AGN emission components are preferentially aligned with the host galaxy major axis, as expected for dual AGNs orbiting in the host galaxy potential. Our results both narrow the list of possible physical mechanisms producing the double AGN components, and suggest several observational criteria for selecting the most promising dual AGN candidates from the full sample of

  11. KILOPARSEC-SCALE SPATIAL OFFSETS IN DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. I. MARKERS FOR SELECTION OF COMPELLING DUAL ACTIVE GALACTIC NUCLEUS CANDIDATES

    SciTech Connect

    Comerford, Julia M.; Gerke, Brian F.; Cooper, Michael C.; Weiner, Benjamin J.; Newman, Jeffrey A.; Madsen, Kristin; Barrows, R. Scott

    2012-07-01

    Merger-remnant galaxies with kiloparsec (kpc) scale separation dual active galactic nuclei (AGNs) should be widespread as a consequence of galaxy mergers and triggered gas accretion onto supermassive black holes, yet very few dual AGNs have been observed. Galaxies with double-peaked narrow AGN emission lines in the Sloan Digital Sky Survey (SDSS) are plausible dual AGN candidates, but their double-peaked profiles could also be the result of gas kinematics or AGN-driven outflows and jets on small or large scales. To help distinguish between these scenarios, we have obtained spatial profiles of the AGN emission via follow-up long-slit spectroscopy of 81 double-peaked narrow-line AGNs in SDSS at 0.03 {<=} z {<=} 0.36 using Lick, Palomar, and MMT Observatories. We find that all 81 systems exhibit double AGN emission components with {approx}kpc projected spatial separations on the sky (0.2 h{sup -1}{sub 70} kpc <{Delta}x < 5.5 h{sup -1}{sub 70} kpc; median {Delta}x = 1.1 h{sup -1}{sub 70} kpc), which suggests that they are produced by kiloparsec-scale dual AGNs or kiloparsec-scale outflows, jets, or rotating gaseous disks. Further, the objects split into two subpopulations based on the spatial extent of the double emission components and the correlation between projected spatial separations and line-of-sight velocity separations. These results suggest that the subsample (58{sup +5}{sub -6}%) of the objects with spatially compact emission components may be preferentially produced by dual AGNs, while the subsample (42{sup +6}{sub -5}%) with spatially extended emission components may be preferentially produced by AGN outflows. We also find that for 32{sup +8}{sub -6}% of the sample the two AGN emission components are preferentially aligned with the host galaxy major axis, as expected for dual AGNs orbiting in the host galaxy potential. Our results both narrow the list of possible physical mechanisms producing the double AGN components, and suggest several observational

  12. Zymogen activation confers thermodynamic stability on a key peptide bond and protects human cationic trypsin from degradation.

    PubMed

    Szabó, András; Radisky, Evette S; Sahin-Tóth, Miklós

    2014-02-21

    Human cationic trypsinogen, precursor of the digestive enzyme trypsin, can be rapidly degraded to protect the pancreas when pathological conditions threaten, while trypsin itself is impressively resistant to degradation. For either form, degradation is controlled by two necessary initial proteolytic events: cleavage of the Leu81-Glu82 peptide bond by chymotrypsin C (CTRC) and cleavage of the Arg122-Val123 peptide bond by trypsin. Here we demonstrate that the Leu81-Glu82 peptide bond of human cationic trypsin, but not trypsinogen, is thermodynamically stable, such that cleavage by CTRC leads to an equilibrium mixture containing 10% cleaved and 90% uncleaved trypsin. When cleaved trypsin was incubated with CTRC, the Leu81-Glu82 peptide bond was re-synthesized to establish the same equilibrium. The thermodynamic stability of the scissile peptide bond was not dependent on CTRC or Leu-81, as re-synthesis was also accomplished by other proteases acting on mutated cationic trypsin. The Leu81-Glu82 peptide bond is located within a calcium binding loop, and thermodynamic stability of the bond was strictly dependent on calcium and on the calcium-coordinated residue Glu-85. Trypsinolytic cleavage of the Arg122-Val123 site was also delayed in trypsin relative to trypsinogen in a calcium-dependent manner, but for this bond cleavage was modulated by kinetic rather than thermodynamic control. Our results reveal that the trypsinogen to trypsin conformational switch modulates cleavage susceptibility of nick sites by altering both the thermodynamics and kinetics of cleavage to protect human cationic trypsin from premature degradation.

  13. Combined Interactions of Plant Homeodomain and Chromodomain Regulate NuA4 Activity at DNA Double-Strand Breaks

    PubMed Central

    Su, Wen-Pin; Hsu, Sen-Huei; Chia, Li-Chiao; Lin, Jui-Yang; Chang, Song-Bin; Jiang, Zong-da; Lin, Yi-Ju; Shih, Min-Yu; Chen, Yi-Cheng; Chang, Mau-Sun; Yang, Wen-Bin; Hung, Jan-Jong; Hung, Po-Cheng; Wu, Wei-Sheng; Myung, Kyungjae; Liaw, Hungjiun

    2016-01-01

    DNA double-strand breaks (DSBs) represent one of the most threatening lesions to the integrity of genomes. In yeast Saccharomyces cerevisiae, NuA4, a histone acetylation complex, is recruited to DSBs, wherein it acetylates histones H2A and H4, presumably relaxing the chromatin and allowing access to repair proteins. Two subunits of NuA4, Yng2 and Eaf3, can interact in vitro with methylated H3K4 and H3K36 via their plant homeodomain (PHD) and chromodomain. However, the roles of the two domains and how they interact in a combinatorial fashion are still poorly characterized. In this study, we generated mutations in the PHD and chromodomain that disrupt their interaction with methylated H3K4 and H3K36. We demonstrate that the combined mutations in both the PHD and chromodomain impair the NuA4 recruitment, reduce H4K12 acetylation at the DSB site, and confer sensitivity to bleomycin that induces DSBs. In addition, the double mutant cells are defective in DSB repair as judged by Southern blot and exhibit prolonged activation of phospho-S129 of H2A. Cells harboring the H3K4R, H3K4R, K36R, or set1Δ set2Δ mutant that disrupts H3K4 and H3K36 methylation also show very similar phenotypes to the PHD and chromodomain double mutant. Our results suggest that multivalent interactions between the PHD, chromodomain, and methylated H3K4 and H3K36 act in a combinatorial manner to recruit NuA4 and regulate the NuA4 activity at the DSB site. PMID:26564157

  14. A Tethered Ru-S Complex with an Axial Chiral Thiolate Ligand for Cooperative Si-H Bond Activation: Application to Enantioselective Imine Reduction.

    PubMed

    Wübbolt, Simon; Maji, Modhu Sudan; Irran, Elisabeth; Oestreich, Martin

    2017-02-13

    An axial chiral version of the 2,6-dimesitylphenyl group attached to sulfur is reported. Its multistep preparation starts from (S)-binol, and the thiol group is established by a racemization-free thermal Newman-Kwart rearrangement. The new chiral thiolate ligand decorated with one mesityl group is used in the synthesis of a tethered ruthenium chloride complex. Its spectroscopic characterization revealed solvent-dependent epimerization at the ruthenium center. The major diastereomer is crystallographically characterized. Chloride abstraction with tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBArF4) yields the corresponding coordinatively unsaturated ruthenium complex with the Ru-S bond exposed. Si-H bond activation at this Ru-S bond proceeds in syn fashion but with moderate facial selectivity (d.r. = 70:30), generating diastereomeric chiral-at-ruthenium hydrosilane adducts. Their application to catalytic imine hydrosilylation led to promising enantioinduction (40% ee), thereby providing proof of concept for asymmetric catalysis involving cooperative Si-H bond activation.

  15. GaInAsP/silicon-on-insulator hybrid laser with ring-resonator-type reflector fabricated by N2 plasma-activated bonding

    NASA Astrophysics Data System (ADS)

    Hayashi, Yusuke; Suzuki, Junichi; Inoue, Satoshi; Tanvir Hasan, Shovon Muhammad; Kuno, Yuki; Itoh, Kazuto; Amemiya, Tomohiro; Nishiyama, Nobuhiko; Arai, Shigehisa

    2016-08-01

    III-V/Si hybrid integration with direct bonding is an attractive method of realizing an electrophotonic convergence router with a small size and a low power consumption. Plasma-activated bonding (PAB) is an effective approach for reducing thermal stress during the bonding process because PAB achieves a high bonding strength with low-temperature annealing. This time, the fabrication of a GaInAsP/silicon-on-insulator (SOI) hybrid laser with Si ring-resonator-type reflectors was demonstrated by N2 PAB. By measuring the lasing spectra, we confirmed the reflective characteristics resulting from the cascaded Si ring resonators. We also investigated kink characteristics, which occur around the threshold current, of the current-light output (I-L) characteristics, and successfully approximated the kink characteristics by considering saturable absorption occurring at the III-V/Si taper tip. The taper structure was investigated in terms of a passive device as well as an active device, and a structure for eliminating saturable absorption was proposed.

  16. Hydrodesulfurization on Transition Metal Catalysts: Elementary Steps of C-S Bond Activation and Consequences of Bifunctional Synergies

    NASA Astrophysics Data System (ADS)

    Yik, Edwin Shyn-Lo

    convergence to a single phase is expected and predictable from thermodynamics at a given temperature and sulfur chemical potential, metastability of two phases can exist. We demonstrate, through extensive characterization and kinetic evidence, such behaviors exist in Re, where structural disparities between its phases lead to kinetic hurdles that prevent interconversions between layered ReSx nanostructures and sulfur-covered Re metal clusters. Such features allowed, for the first time, direct comparisons of reaction rates at identical conditions on two disparate phases of the same transition metal identity. Rigorous assessments of kinetic and selectivity data indicated that more universal mechanistic features persist across all catalysts studied, suggesting that differences in their catalytic activity were the result of different densities of HDS sites, which appeared to correlate with their respective metal-sulfur bond energies. Kinetic responses and product distributions indicated that the consumption of thiophene proceeds by the formation of a partially-hydrogenated surface intermediate, which subsequently produces tetrahydrothiophene (THT) and butene/butane (C4) via primary routes on similar types of sites. These sites are formed from desorption of weakly-bound sulfur adatoms on sulfur-covered metal surfaces, which can occur when the heat of sulfur adsorption is sufficiently low at high sulfur coverage as a result of increased sulfur-sulfur repulsive interactions. Relative stabilities and differences in the molecularity of the respective transition states that form THT and C4 dictate product distributions. THT desulfurization to form C4 occurs via readsorption and subsequent dehydrogenation, evidenced by secondary rates that exhibited negative H2 dependences. These behaviors suggest that C-S bond activation occurs on a partially (un)saturated intermediate, analogous to behaviors observed in C-C bond scission reactions of linear and cycloalkanes on hydrogen-covered metal

  17. Facile synthesis of hierarchical double-shell WO3 microspheres with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wang, Zhenfeng; Chu, Deqing; Wang, Limin; Wang, Lipeng; Hu, Wenhui; Chen, Xiangyu; Yang, Huifang; Sun, Jingjing

    2017-02-01

    Hierarchical double-shell WO3 microspheres (HDS-WO3) have been successfully obtained through the thermal decomposition of WO3·H2O formed by metal salts as the templates. The products were characterized by X-ray diffraction (XRD), and the morphology was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, the HDS-WO3 microspheres were analyzed by the Thermogravimetric (TG) and Brunauer-Emmett-Teller (BET) analysis. The synthetic mechanism of the products with hierarchical structures was proposed. The obtained HDS-WO3 exhibits excellent photocatalytic efficiency (84.9%), which is much higher than other WO3 sample under visible light illumination.

  18. Antihirsutism activity of Fennel (fruits of Foeniculum vulgare) extract. A double-blind placebo controlled study.

    PubMed

    Javidnia, K; Dastgheib, L; Mohammadi Samani, S; Nasiri, A

    2003-01-01

    Idiopathic hirsutism is defined as the occurrence of excessive male pattern hair growth in women who have a normal ovulatory menstrual cycle and normal levels of serum androgens. It may be a disorder of peripheral androgen metabolism. In this study we evaluated the clinical response of idiopathic hirsutism to topical Fennel extract. Fennel, Foeniculum vulgare, is a plant, which has been used as an estrogenic agent. The ethanolic extract of Fennel was obtained by using a soxhlete apparatus. In a double blind study, 38 patients were treated with creams containing 1%, 2% of Fennel extract and placebo. Hair diameter was measured and rate of growth was considered. The efficacy of treatment with the cream containing 2% Fennel is better than the cream containing 1% Fennel and these two were more potent than placebo. The mean values of hair diameter reduction was 7.8%, 18.3% and -0.5% for patients receiving the creams containing 1%, 2% and 0% (placebo) respectively.

  19. Isolating the effect of pore size distribution on electrochemical double-layer capacitance using activated fluid coke

    NASA Astrophysics Data System (ADS)

    Zuliani, Jocelyn E.; Tong, Shitang; Kirk, Donald W.; Jia, Charles Q.

    2015-12-01

    Electrochemical double-layer capacitors (EDLCs) use physical ion adsorption in the capacitive electrical double layer of high specific surface area (SSA) materials to store electrical energy. Previous work shows that the SSA-normalized capacitance increases when pore diameters are less than 1 nm. However, there still remains uncertainty about the charge storage mechanism since the enhanced SSA-normalized capacitance is not observed in all microporous materials. In previous studies, the total specific surface area and the chemical composition of the electrode materials were not controlled. The current work is the first reported study that systematically compares the performance of activated carbon prepared from the same raw material, with similar chemical composition and specific surface area, but different pore size distributions. Preparing samples with similar SSAs, but different pores sizes is not straightforward since increasing pore diameters results in decreasing the SSA. This study observes that the microporous activated carbon has a higher SSA-normalized capacitance, 14.1 μF cm-2, compared to the mesoporous material, 12.4 μF cm-2. However, this enhanced SSA-normalized capacitance is only observed above a threshold operating voltage. Therefore, it can be concluded that a minimum applied voltage is required to induce ion adsorption in these sub-nanometer micropores, which increases the capacitance.

  20. Electric double-layer capacitor composed of activated carbon fiber cloth electrodes and solid polymer electrolytes containing alkylammonium salts

    SciTech Connect

    Ishikawa, Masashi; Morita, Masayuki; Ihara, Mitsuo; Matsuda, Yoshiharu . Dept. of Applied Chemistry and Chemical Engineering)

    1994-07-01

    Solid polymer electrolytes consisting of complexes of poly(ethylene oxide)-grafted poly(methyl)-methacrylate (PEO-PMMA) and tetraalkylammonium salts [tetrabutylammonium perchlorate, tetraethylammonium perchlorate, and tetraethylammonium tetrafluoroborate (TEABF[sub 4])] have been investigated for electric double-layer capacitors with activated carbon fiber cloth electrodes. The PEO-PMMA and tetraalkylammonium composites obtained showed high ionic conductivity (>10[sup [minus]4] S cm[sup [minus]1] at 298 K). The ionic conductivity depended on both the concentration and the size of each ion. The composites had good stability over a wide potential range (ca. 5.0 V). When the PEO-PMMA and TEABF[sub 4] composites were used in solid-state electric double-layer capacitors with activated carbon fiber cloths as polarizable electrodes, the capacitors showed charge/discharge behavior with large values of capacitance and high coulombic efficiency. The long voltage retention was observed in the self-discharge test of the capacitor with TEABF[sub 4].