Science.gov

Sample records for activated double bond

  1. Synthesis of aza-fused polycyclic quinolines via double C-H bond activation.

    PubMed

    Huang, Ji-Rong; Dong, Lin; Han, Bo; Peng, Cheng; Chen, Ying-Chun

    2012-07-16

    Simple but efficient: Aza-fused polycyclic quinolines were efficiently assembled through rhodium(III)-based direct double C-H activation of N-aryl azoles followed by cyclization with alkynes without heteroatom-assisted chelation. Copper(II) acetate, aside from acting as an oxidant, could also play an important role in the C-H activation process. PMID:22715023

  2. C-H activation and C=C double bond formation reactions in iridium ortho-methyl arylphosphane complexes.

    PubMed

    Baratta, Walter; Ballico, Maurizio; Del Zotto, Alessandro; Zangrando, Ennio; Rigo, Pierluigi

    2007-01-01

    The Vaska-type iridium(I) complex [IrCl(CO){PPh(2)(2-MeC(6)H(4))}(2)] (1), characterized by an X-ray diffraction study, was obtained from iridium(III) chloride hydrate and PPh(2)(2,6-MeRC(6)H(3)) with R=H in DMF, whereas for R=Me, activation of two ortho-methyl groups resulted in the biscyclometalated iridium(III) compound [IrCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)] (2). Conversely, for R=Me the iridium(I) compound [IrCl(CO){PPh(2)(2,6-Me(2)C(6)H(3))}(2)] (3) can be obtained by treatment of [IrCl(COE)(2)](2) (COE=cyclooctene) with carbon monoxide and the phosphane in acetonitrile. Compound 3 in CH(2)Cl(2) undergoes intramolecular C-H oxidative addition, affording the cyclometalated hydride iridium(III) species [IrHCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}] (4). Treatment of 2 with Na[BAr(f) (4)] (Ar(f)=3,5-C(6)H(3)(CF(3))(2)) gives the fluxional cationic 16-electron complex [Ir(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)][BAr(f) (4)] (5), which reversibly reacts with dihydrogen to afford the delta-agostic complex [IrH(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}][BAr(f)(4)] (6), through cleavage of an Ir-C bond. This species can also be formed by treatment of 4 with Na[BAr(f)(4)] or of 2 with Na[BAr(f)(4)] through C-H oxidative addition of one ortho-methyl group, via a transient 14-electron iridium(I) complex. Heating of the coordinatively unsaturated biscyclometalated species 5 in toluene gives the trans-dihydride iridium(III) complex [IrH(2)(CO){PPh(2)(2,6-MeC(6)H(3)CH=CHC(6)H(3)Me-2,6)PPh(2)}][BAr(f) (4)] (7), containing a trans-stilbene-type terdentate ligand, as result of a dehydrogenative carbon-carbon double bond coupling reaction, possibly through an iridium carbene species. PMID:17535000

  3. The Reductive Activation of CO2 Across a Ti=Ti Double Bond: Synthetic, Structural, and Mechanistic Studies

    PubMed Central

    2015-01-01

    The reactivity of the bis(pentalene)dititanium double-sandwich compound Ti2Pn†2 (1) (Pn† = 1,4-{SiiPr3}2C8H4) with CO2 is investigated in detail using spectroscopic, X-ray crystallographic, and computational studies. When the CO2 reaction is performed at −78 °C, the 1:1 adduct 4 is formed, and low-temperature spectroscopic measurements are consistent with a CO2 molecule bound symmetrically to the two Ti centers in a μ:η2,η2 binding mode, a structure also indicated by theory. Upon warming to room temperature the coordinated CO2 is quantitatively reduced over a period of minutes to give the bis(oxo)-bridged dimer 2 and the dicarbonyl complex 3. In situ NMR studies indicated that this decomposition proceeds in a stepwise process via monooxo (5) and monocarbonyl (7) double-sandwich complexes, which have been independently synthesized and structurally characterized. 5 is thermally unstable with respect to a μ-O dimer in which the Ti–Ti bond has been cleaved and one pentalene ligand binds in an η8 fashion to each of the formally TiIII centers. The molecular structure of 7 shows a “side-on” bound carbonyl ligand. Bonding of the double-sandwich species Ti2Pn2 (Pn = C8H6) to other fragments has been investigated by density functional theory calculations and fragment analysis, providing insight into the CO2 reaction pathway consistent with the experimentally observed intermediates. A key step in the proposed mechanism is disproportionation of a mono(oxo) di-TiIII species to yield di-TiII and di-TiIV products. 1 forms a structurally characterized, thermally stable CS2 adduct 8 that shows symmetrical binding to the Ti2 unit and supports the formulation of 4. The reaction of 1 with COS forms a thermally unstable complex 9 that undergoes scission to give mono(μ-S) mono(CO) species 10. Ph3PS is an effective sulfur transfer agent for 1, enabling the synthesis of mono(μ-S) complex 11 with a double-sandwich structure and bis(μ-S) dimer 12 in which the Ti

  4. Understanding Rotation about a C=C Double Bond

    ERIC Educational Resources Information Center

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-01-01

    The study focuses on the process and energetic cost of twisting around a C=C double bond and provides instructors with a simple vehicle for rectifying the common misrepresentation of C=C double bonds as rigid and inflexible. Discussions of cis and trans isomers of cycloalkenes are a good entry point for introducing students to the idea of a…

  5. Low-valent niobium-mediated double activation of C-F/C-H bonds: fluorene synthesis from o-arylated alpha,alpha,alpha-trifluorotoluene derivatives.

    PubMed

    Fuchibe, Kohei; Akiyama, Takahiko

    2006-02-01

    By the treatment of 0.3 molar amount of NbCl5 and LiAlH4, o-arylated alpha,alpha,alpha-trifluorotoluenes afforded fluorene derivatives in good yields. C-F bonds of the CF3 group and the neighboring ortho C-H bond were doubly activated to give the coupling products. PMID:16448098

  6. Silicon carbide wafer bonding by modified surface activated bonding method

    NASA Astrophysics Data System (ADS)

    Suga, Tadatomo; Mu, Fengwen; Fujino, Masahisa; Takahashi, Yoshikazu; Nakazawa, Haruo; Iguchi, Kenichi

    2015-03-01

    4H-SiC wafer bonding has been achieved by the modified surface activated bonding (SAB) method without any chemical-clean treatment and high temperature annealing. Strong bonding between the SiC wafers with tensile strength greater than 32 MPa was demonstrated at room temperature under 5 kN force for 300 s. Almost the entire wafer has been bonded very well except a small peripheral region and few voids. The interface structure was analyzed to verify the bonding mechanism. It was found an amorphous layer existed as an intermediate layer at the interface. After annealing at 1273 K in vacuum for 1 h, the bonding tensile strength was still higher than 32 MPa. The interface changes after annealing were also studied. The results show that the thickness of the amorphous layer was reduced to half after annealing.

  7. Stress analysis of adhesive bonded stiffener plates and double joints

    NASA Technical Reports Server (NTRS)

    Yuceoglu, U.; Updike, D. P.

    1975-01-01

    The general problem of adhesive bonded stiffener plates and double joints of dissimilar orthotropic adherends with transverse shear deformations are analyzed. Adhesive layers are assumed to be of an isotropic, elastic and relatively flexible material. It is shown that the stress distributions in the adhesive layers are very much dependent on the bending deformations in adherends. Also, it is found that, in the adhesive layer, maximum transverse normal stress is, in many cases, larger than the longitudinal shear stress and that both occur at the edge of the joint. The general method of solution developed is applied to several practical examples.

  8. Carbon [bond] hydrogen bond activation by titanium imido complexes. Computational evidence for the role of alkane adducts in selective C [bond] H activation.

    PubMed

    Cundari, Thomas R; Klinckman, Thomas R; Wolczanski, Peter T

    2002-02-20

    This paper reports calculations that probe the role of R (hydrocarbon) and R' (ligand substituent) effects on the reaction coordinate for C [bond] H activation: Ti(OR')(2)(=NR') + RH --> adduct --> transition state --> (OR')(2)Ti(N(H)R')(R). Compounds with R = H, Me, Et, Vy, cPr, Ph, Cy, Bz, and cubyl are studied using quantum (R' = H, SiH(3), SiMe(3)) and classical (R' = Si(t)Bu(3)) techniques. Calculated geometries are in excellent agreement with data for experimental models. There is little variability in the calculated molecular structure of the reactants, products, and most interestingly, transition states as R and R' are changed. Structural flexibility is greatest in the adducts Ti(OR')(2)(=NR')...HR. Despite the small structural changes observed for Ti(OR')(2)(double bond] NR') with different R', significant changes are manifested in calculated electronic properties (the Mulliken charge on Ti becomes more positive and the Ti [double bond] N bond order decreases with larger R'), changes that should facilitate C [bond] H activation. Substantial steric modification of the alkane complex is expected from R [bond] R' interactions, given the magnitude of Delta G(add) and the conformational flexibility of the adduct. Molecular mechanics simulations of Ti(OSi(t)Bu(3))(2)([double bond] NSi(t)Bu(3))...isopentane adducts yield an energy ordering as a function of the rank of the C [bond] H bond coordinated to Ti that is consistent with experimental selectivity patterns. Calculated elimination barriers compare very favorably with experiment; larger SiH(3) and TMS ligand substituents generally yield better agreement with experiment, evidence that the modeling of the major contributions to the elimination barrier (N [bond] H and C [bond] H bond making) is ostensibly correct. Calculations indicate that weakening the C [bond] H bond of the hydrocarbon yields a more strongly bound adduct. Combining the different conclusions, the present computational research points to the

  9. A Simple Visualization of Double Bond Properties: Chemical Reactivity and UV Fluorescence

    ERIC Educational Resources Information Center

    Grayson, Scott M.

    2012-01-01

    A simple, easily visualized thin-layer chromatography (TLC) staining experiment is presented that highlights the difference in reactivity between aromatic double bonds and nonaromatic double bonds. Although the stability of aromatic systems is a major theme in organic chemistry, the concept is rarely reinforced "visually" in the undergraduate…

  10. The sEDA(=) and pEDA(=) descriptors of the double bonded substituent effect.

    PubMed

    Mazurek, Andrzej; Dobrowolski, Jan Cz

    2013-05-14

    New descriptors of the double bonded substituent effect, sEDA(=) and pEDA(=), were constructed based on quantum chemical calculations and NBO methodology. They show to what extent the σ and π electrons are donated to or withdrawn from the substituted system by a double bonded substituent. The new descriptors differ from descriptors of the classical substituent effect for which the pz orbital of the ipso carbon atom is engaged in the π-electron system of the two neighboring atoms in the ring. For double bonded substituents, the pz orbital participates in double bond formation with only one external atom. Moreover, the external double bond forces localization of the double bond system of the ring, significantly changing the core molecule. We demonstrated good agreement between our descriptors and the Weinhold and Landis' "natural σ and π-electronegativities": so far only descriptors allowing for evaluation of the substitution effect by a double bonded atom. The equivalency between descriptors constructed for 5- and 6-membered model structures as well as linear dependence/independence of the constructed parameters was discussed. Some interrelations between sEDA(=) and pEDA(=) and the other descriptors of (hetero)cyclic systems such as aromaticity and electron density in the ring and bond critical points were also examined. PMID:23532500

  11. Double pancake bonds: pushing the limits of strong π-π stacking interactions.

    PubMed

    Cui, Zhong-hua; Lischka, Hans; Beneberu, Habtamu Z; Kertesz, Miklos

    2014-09-17

    The concept of a double-bonded pancake bonding mechanism is introduced to explain the extremely short π-π stacking contacts in dimers of dithiatriazines. While ordinary single pancake bonds occur between radicals and already display significantly shorter interatomic distances in comparison to van der Waals (vdW) contacts, the double-bonded pancake dimer is based on diradicaloid or antiaromatic molecules and exhibits even shorter and stronger intermolecular bonds that breach into the range of extremely stretched single bonds in terms of bond distances and binding energies. These properties give rise to promising possibilities in the design of new materials with high electrical conductivity and for the field of spintronics. The analysis of the double pancake bond is based on cutting edge electron correlation theory combining multireference (nondynamical) effects and dispersion (dynamical) contributions in a balanced way providing accurate interaction energies and distributions of unpaired spins. It is also shown that the present examples do not stand isolated but that similar mechanisms operate in several analogous nonradical molecular systems to form double-bonded π-stacking pancake dimers. We report on the amazing properties of a new type of stacking interaction mechanism between π conjugated molecules in the form of a "double pancake bond" which breaks the record for short intermolecular distances and provides formidable strength for some π-π stacking interactions. PMID:25203200

  12. Theoretical study of the OH addition to the endocyclic and exocyclic double bonds of the d-limonene

    NASA Astrophysics Data System (ADS)

    Ramírez-Ramírez, Víctor M.; Nebot-Gil, Ignacio

    2005-06-01

    The initial step of the d-limonene + OH gas-phase reaction mechanism was investigated by means of ab initio calculations. We have considered eight different possibilities for the OH addition, corresponding to the two C-C double bonds, the two C atoms of each double bond, and the syn or anti orientation, with respect to the isopropenyl group (endocyclic attack) or the ring cycle (exocyclic attack). Activation energies calculated at the QCISD(T)/6-31G(d)//UMP2/6-31G(d) level, show that there are preferred orientations for the OH addition under atmospheric conditions of temperature and pressure.

  13. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOEpatents

    Hartwig, John F.; Kawatsura, Motoi; Loeber, Oliver

    2002-01-01

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  14. A model of phase transitions in double-well Morse potential: Application to hydrogen bond

    NASA Astrophysics Data System (ADS)

    Goryainov, S. V.

    2012-11-01

    A model of phase transitions in double-well Morse potential is developed. Application of this model to the hydrogen bond is based on ab initio electron density calculations, which proved that the predominant contribution to the hydrogen bond energy originates from the interaction of proton with the electron shells of hydrogen-bonded atoms. This model uses a double-well Morse potential for proton. Analytical expressions for the hydrogen bond energy and the frequency of O-H stretching vibrations were obtained. Experimental data on the dependence of O-H vibration frequency on the bond length were successfully fitted with model-predicted dependences in classical and quantum mechanics approaches. Unlike empirical exponential function often used previously for dependence of O-H vibration frequency on the hydrogen bond length (Libowitzky, Mon. Chem., 1999, vol.130, 1047), the dependence reported here is theoretically substantiated.

  15. Cavity partition and functionalization of a [2+3] organic molecular cage by inserting polar P[double bond, length as m-dash]O bonds.

    PubMed

    Feng, Genfeng; Liu, Wei; Peng, Yuxin; Zhao, Bo; Huang, Wei; Dai, Yafei

    2016-07-28

    The cavity of a [2+3] organic molecular cage was partitioned and functionalized by inserting inner-directed P[double bond, length as m-dash]O bonds, which shows CO2 capture and CH4 exclusion due to the size-matching and polarity effects. Computational results demonstrate that the successful segmentation via polar P[double bond, length as m-dash]O bonds facilitates the CO2 molecules to reside selectively inside the cavity. PMID:27356151

  16. 76 FR 12364 - Agency Information Collection Activities: Bonded Warehouse Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Bonded Warehouse... Bonded Warehouse Regulations. This request for comment is being made pursuant to the Paperwork Reduction... concerning the following information collection: Title: Bonded Warehouse Regulations. OMB Number:...

  17. Bioactivation of clopidogrel and prasugrel: factors determining the stereochemistry of the thiol metabolite double bond.

    PubMed

    Dansette, Patrick M; Levent, Dan; Hessani, Assia; Mansuy, Daniel

    2015-06-15

    The antithrombotics of the tetrahydrothienopyridine series, clopidogrel and prasugrel, are prodrugs that must be metabolized in two steps to become pharmacologically active. The first step is the formation of a thiolactone metabolite. The second step is a further oxidation with the formation of a thiolactone sulfoxide whose hydrolytic opening leads to a sulfenic acid that is eventually reduced into the corresponding active cis thiol. Very few data were available on the formation of the isomer of the active cis thiol having a trans configuration of the double bond, the most striking result in that regard being that both cis and trans thiols were formed upon the metabolism of clopidogrel by human liver microsomes in the presence of glutathione (GSH), whereas only the cis thiol was detected in the sera of patients treated with this drug. This article shows that trans thiols are also formed upon the microsomal metabolism of prasugrel or its thiolactone metabolite in the presence of GSH and that metabolites having the trans configuration of the double bond are only formed when microsomal incubations are done in the presence of thiols, such as GSH, N-acetyl-cysteine, and mercaptoethanol. Intermediate formation of thioesters resulting from the reaction of GSH with the thiolactone sulfoxide metabolite appears to be responsible for trans thiol formation. Addition of human liver cytosol to the microsomal incubations led to a dramatic decrease of the formation of the trans thiol metabolites. These data suggest that cytosolic esterases would accelerate the hydrolytic opening of thiolactone sulfoxide intermediates and disfavor the formation of thioesters resulting from the reaction of these intermediates with GSH that is responsible for trans isomer formation. This would explain why trans thiols have not been detected in the sera of patients treated with clopidogrel. PMID:25970225

  18. Preparation of tert-butyl-capped polyenes containing up to 15 double bonds

    SciTech Connect

    Knoll, K.; Schrock, R.R. )

    1989-11-27

    7,8-Bis(trifluoromethyl)tricyclo(4.2.2.0{sup 2.5})deca-3,7,9-triene (TCDT) can be ring-opened in a controlled manner by W(CH-t-Bu)(NAr)(O-t-Bu){sub 2} (Ar = 2,6-C{sub 6}H{sub 3}-i-Pr{sub 2}) to give living oligomers from which the metal can be removed in a Wittig-like reaction with pivaldehyde or 4,4-dimethyl-trans-2-pentenal. Mixtures of odd and even polyenes have been analyzed by reversed-phase HPLC methods, and those having as many as 13 double bonds have been isolated by column chromatography on silica gel under dinitrogen at {minus}40{degree}C and characterized by {sup 1}H and {sup 13}C NMR and UV-vis studies. The 17-ene has been observed by HPLC. Polyenes containing more than 17 double bonds are relatively unstable under the reaction and subsequent isolation conditions; those containing between 11 and 15 double bonds decompose thermally progressively more readily. UV-vis and {sup 13}C and {sup 1}H NMR data have been collected and analyzed in detail for the trans(cis,trans){sub x} isomers for x = 1-5 (up to 11 double bonds) and for the odd and even all-trans forms containing up to nine double bonds.

  19. Rhodium-catalyzed annulative coupling of 3-phenylthiophenes with alkynes involving double C-H bond cleavages.

    PubMed

    Iitsuka, Tomonori; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2014-01-01

    Double CH bond activation took place efficiently upon treatment of 3-phenylthiophenes with alkynes in the presence of a rhodium catalyst and a copper salt oxidant to form the corresponding naphthothiophene derivatives. Dehydrogenative coupling with alkenes was also found to occur on the phenyl moiety rather than the thiophene ring. These reactions provide straightforward synthetic methods for π-conjugated molecules involving a thiophene unit from readily available, simple building blocks. PMID:24288235

  20. Kinetics and Mechanism of the Reaction of Ozone with Double Bonds

    NASA Astrophysics Data System (ADS)

    Razumovskii, S. D.; Zaikov, Gennadii E.

    1980-12-01

    Analysis of the results of recent studies has shown that the reaction of ozone with the double bonds of organic compounds apparently takes place not by a synchronous addition mechanism but through a reversible stage involving the formation of an intermediate complex of ozone with the double bond. The subsequent stages of the reaction involve the formation of a primary ozonide, its decomposition into two fragments, their combination, and a number of other transformations. The properties of the intermediate products, the relationship between the structure of the original alkenes and their reactivity towards ozone, the influence of the nature of the solvent on the direction and rate of the reaction, and the practical application of the reaction of ozone with double bonds in research and chemical technology have been examined. The bibliography contains 205 references.

  1. THP-1 macrophage lipid accumulation unaffected by fatty acid double bond geometric or positional configuration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary fatty acid type alters atherosclerotic lesion progression and macrophage lipid accumulation. Incompletely elucidated are the mechanisms by which fatty acids differing in double-bond geometric or positional configuration alter arterial lipid accumulation. The objective of this study was to ev...

  2. Directionality of Double-Bond Photoisomerization Dynamics Induced by a Single Stereogenic Center.

    PubMed

    Marchand, Gabriel; Eng, Julien; Schapiro, Igor; Valentini, Alessio; Frutos, Luis Manuel; Pieri, Elisa; Olivucci, Massimo; Léonard, Jérémie; Gindensperger, Etienne

    2015-02-19

    In light-driven single-molecule rotary motors, the photoisomerization of a double bond converts light energy into the rotation of a moiety (the rotor) with respect to another (the stator). However, at the level of a molecular population, an effective rotary motion can only be achieved if a large majority of the rotors rotate in the same, specific direction. Here we present a quantitative investigation of the directionality (clockwise vs counterclockwise) induced by a single stereogenic center placed in allylic position with respect to the reactive double bond of a model of the biomimetic indanylidene-pyrrolinium framework. By computing ensembles of nonadiabatic trajectories at 300 K, we predict that the photoisomerization is >70% unidirectional for the Z → E and E → Z conversions. Most importantly, we show that such directionality, resulting from the asymmetry of the excited state force field, can still be observed in the presence of a small (ca. 2°) pretwist or helicity of the reactive double bond. This questions the validity of the conjecture that a significant double-bond pretwist (e.g., >10°) in the ground state equilibrium structure of synthetic or natural rotary motors would be required for unidirectional motion. PMID:26262473

  3. Flow in out-of-plane double S-bonds

    NASA Technical Reports Server (NTRS)

    Schmidt, M. C.; Whitelaw, J. H.; Yianneskis, M.

    1986-01-01

    Developing flows in two out-of-plane double S-bend configurations have been measured by laser-Doppler anemometry. The first duct had a rectangular cross-section 40mmx40mm at the inlet and consisted of a uniform area 22.5 deg. - 22.5 deg. S-duct upstream with a 22.5 deg.- 22.5 deg. S- diffuser downstream. The second duct had a circular cross-section and consisted of a 45 deg. - 45 deg. uniform area S-duct upstream with a 22.5 deg. -22.5 deg. S-diffuser downstream. In both configurations the ratio of the mean radius of curvature to the inlet hydraulic diameter was 7.0, the exit-to-inlet area ratio of the diffusers was 1.5 and the ducts were connected so that the centerline of the S-duct lay in a plane normal to that of the S-diffuser. Streamwise and cross-stream velocity components were measured in laminar flow for the rectangular duct and in turbulent flow for both configurations; measurements of the turbulence levels, cross-correlations and wall static pressures were also made in the turbulent flow cases. Secondary flows of the first kind are present in the first S-duct and they are complemented or counteracted by the secondary flows generated by the area expansion and by the curvature of the S-diffusers downstream. Cross-stream velocities with magnitudes up to 0.19 and 0.11 of the bulk velocity were measured in the laminar and turbulent flows respectively in the rectangular duct and six cross-flow vortices were evident at the exit of the duct in both flow cases. The turbulent flow in the circular duct was qualitatively similar to that in the rectangular configuration, but the cross-stream velocities measured at the exit plane were smaller in the circular geometry. The results are presented in sufficient detail and accuracy for the assessment of numerical calculation methods and are listed in tabular form for this purpose.

  4. Catalytic diamination of olefins via N-N bond activation.

    PubMed

    Zhu, Yingguang; Cornwall, Richard G; Du, Haifeng; Zhao, Baoguo; Shi, Yian

    2014-12-16

    CONSPECTUS: Vicinal diamines are important structural motifs present in various biologically and chemically significant molecules. Direct diamination of olefins provides an effective approach to this class of compounds. Unlike well-established oxidation processes such as epoxidation, dihydroxylation, and aminohydroxylation, direct diamination of olefins had remained a long-standing challenge and had been less well developed. In this Account, we summarize our recent studies on Pd(0)- and Cu(I)-catalyzed diaminations of olefins using di-tert-butyldiaziridinone and its related analogues as nitrogen sources via N-N bond activation. A wide variety of imidazolidinones, cyclic sulfamides, indolines, imidazolinones, and cyclic guanidines can be obtained from conjugated dienes and terminal olefins. For conjugated dienes, the diamination proceeds regioselectively at the internal double bond with the Pd(0) catalyst. Mechanistic studies show that the diamination likely involves a four-membered Pd(II) species resulting from the insertion of Pd(0) into the N-N bond of di-tert-butyldiaziridinone. Interestingly, the Cu(I)-catalyzed process occurs regioselectively at either the terminal or internal double bond depending on the reaction conditions via two mechanistically distinct pathways. The Cu(I) catalyst cleaves the N-N bond of di-tert-butyldiaziridinone to form a Cu(II) nitrogen radical and a four-membered Cu(III) species, which are likely in rapid equilibrium. The Cu(II) nitrogen radical and the four-membered Cu(III) species lead to the terminal and internal diamination, respectively. Terminal olefins are effectively C-H diaminated at the allylic and homoallylic carbons with Pd(0) as catalyst and di-tert-butyldiaziridinone as nitrogen source, likely involving a diene intermediate generated in situ from the terminal olefin via formation of a π-allyl Pd complex and subsequent β-hydride elimination. When di-tert-butylthiadiaziridine 1,1-dioxide is used as nitrogen source

  5. Catalytic Diamination of Olefins via N–N Bond Activation

    PubMed Central

    2015-01-01

    Conspectus Vicinal diamines are important structural motifs present in various biologically and chemically significant molecules. Direct diamination of olefins provides an effective approach to this class of compounds. Unlike well-established oxidation processes such as epoxidation, dihydroxylation, and aminohydroxylation, direct diamination of olefins had remained a long-standing challenge and had been less well developed. In this Account, we summarize our recent studies on Pd(0)- and Cu(I)-catalyzed diaminations of olefins using di-tert-butyldiaziridinone and its related analogues as nitrogen sources via N–N bond activation. A wide variety of imidazolidinones, cyclic sulfamides, indolines, imidazolinones, and cyclic guanidines can be obtained from conjugated dienes and terminal olefins. For conjugated dienes, the diamination proceeds regioselectively at the internal double bond with the Pd(0) catalyst. Mechanistic studies show that the diamination likely involves a four-membered Pd(II) species resulting from the insertion of Pd(0) into the N–N bond of di-tert-butyldiaziridinone. Interestingly, the Cu(I)-catalyzed process occurs regioselectively at either the terminal or internal double bond depending on the reaction conditions via two mechanistically distinct pathways. The Cu(I) catalyst cleaves the N–N bond of di-tert-butyldiaziridinone to form a Cu(II) nitrogen radical and a four-membered Cu(III) species, which are likely in rapid equilibrium. The Cu(II) nitrogen radical and the four-membered Cu(III) species lead to the terminal and internal diamination, respectively. Terminal olefins are effectively C–H diaminated at the allylic and homoallylic carbons with Pd(0) as catalyst and di-tert-butyldiaziridinone as nitrogen source, likely involving a diene intermediate generated in situ from the terminal olefin via formation of a π-allyl Pd complex and subsequent β-hydride elimination. When di-tert-butylthiadiaziridine 1,1-dioxide is used as nitrogen source

  6. Novel dehydrogenase catalyzes oxidative hydrolysis of carbon-nitrogen double bonds for hydrazone degradation.

    PubMed

    Itoh, Hideomi; Suzuta, Tetsuya; Hoshino, Takayuki; Takaya, Naoki

    2008-02-29

    Hydrazines and their derivatives are versatile artificial and natural compounds that are metabolized by elusive biological systems. Here we identified microorganisms that assimilate hydrazones and isolated the yeast, Candida palmioleophila MK883. When cultured with adipic acid bis(ethylidene hydrazide) as the sole source of carbon, C. palmioleophila MK883 degraded hydrazones and accumulated adipic acid dihydrazide. Cytosolic NAD+- or NADP+-dependent hydrazone dehydrogenase (Hdh) activity was detectable under these conditions. The production of Hdh was inducible by adipic acid bis(ethylidene hydrazide) and the hydrazone, varelic acid ethylidene hydrazide, under the control of carbon catabolite repression. Purified Hdh oxidized and hydrated the C=N double bond of acetaldehyde hydrazones by reducing NAD+ or NADP+ to produce relevant hydrazides and acetate, the latter of which the yeast assimilated. The deduced amino acid sequence revealed that Hdh belongs to the aldehyde dehydrogenase (Aldh) superfamily. Kinetic and mutagenesis studies showed that Hdh formed a ternary complex with the substrates and that conserved Cys is essential for the activity. The mechanism of Hdh is similar to that of Aldh, except that it catalyzed oxidative hydrolysis of hydrazones that requires adding a water molecule to the reaction catalyzed by conventional Aldh. Surprisingly, both Hdh and Aldh from baker's yeast (Ald4p) catalyzed the Hdh reaction as well as aldehyde oxidation. Our findings are unique in that we discovered a biological mechanism for hydrazone utilization and a novel function of proteins in the Aldh family that act on C=N compounds. PMID:18096698

  7. 26 CFR 1.141-2 - Private activity bond tests.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Private activity bond tests. 1.141-2 Section 1.141-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Tax Exemption Requirements for State and Local Bonds § 1.141-2 Private activity bond tests. (a) Overview....

  8. 26 CFR 1.141-2 - Private activity bond tests.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Private activity bond tests. 1.141-2 Section 1.141-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Tax Exemption Requirements for State and Local Bonds § 1.141-2 Private activity bond tests. (a) Overview....

  9. Determination of double bond position in conjugated dienes by chemical ionization mass spectrometry with isobutane

    SciTech Connect

    Doolittle, R.E.; Tumlinson, J.H.; Proveaux, A.

    1985-07-01

    The chemical ionization (CI) mass spectra of a series of functionalized conjugated dienes, including aldehydes, alcohols, formates, acetates, and hydrocarbons were investigated to determine whether fragmentations occur that are characteristic of the position of the conjugated system within the hydrocarbon chain. CI with isobutane as ionizing gas produces structure-specific fragment ions with m/z ratios that can be used to locate the positions of the double bonds in most of the cases studied. When the conjugated system is proximal to the functional group or conjugated with the functional group, other fragmentation processes take precedence. These patterns of fragmentations constitute a very useful analytical tool for the location of conjugated double bonds in a variety of natural products. 34 references, 3 tables, 3 figures.

  10. A diabatic state model for double proton transfer in hydrogen bonded complexes

    SciTech Connect

    McKenzie, Ross H.

    2014-09-14

    Four diabatic states are used to construct a simple model for double proton transfer in hydrogen bonded complexes. Key parameters in the model are the proton donor-acceptor separation R and the ratio, D{sub 1}/D{sub 2}, between the proton affinity of a donor with one and two protons. Depending on the values of these two parameters the model describes four qualitatively different ground state potential energy surfaces, having zero, one, two, or four saddle points. Only for the latter are there four stable tautomers. In the limit D{sub 2} = D{sub 1} the model reduces to two decoupled hydrogen bonds. As R decreases a transition can occur from a synchronous concerted to an asynchronous concerted to a sequential mechanism for double proton transfer.

  11. A Bonded Double-Doped Graphene Nanoribbon Framework for Advanced Electrocatalysis.

    PubMed

    Chen, Liang; Xiao, Jingjing; Liu, Baohong; Yi, Tao

    2016-07-01

    The preparation of a low-cost, high-efficient, and stable electrocatalyst as an alternative to platinum for the oxygen reduction reaction (ORR) is especially important to various energy storage components, such as fuel cells and metal-air batteries. Here, we report a new type of bonded double-doped graphene nanoribbon-based nonprecious metal catalysts in which Fe3C nanoparticles embedded in Fe-N-doped graphene nanoribbon (GNRs) frameworks through a simple pyrolysis. The as-obtained catalyst possesses several desirable merits for the ORR, such as diverse high-efficiency catalytic sites, a high specific surface area, an ideal hierarchical cellular structure, and a highly conductive N-doped GNR network. Accordingly, the prepared catalyst shows a superior ORR activity (an onset potential of 0.02 V and a half-wave potential of -0.148 V versus an Ag/AgCl electrode) in alkaline media, close to the commercial Pt/C catalyst. Moreover, it also displays good ORR behavior in an acidic solution. PMID:27300690

  12. Double proton transfer behavior and one-electron oxidation effect in double H-bonded glycinamide-formic acid complex.

    PubMed

    Li, Ping; Bu, Yuxiang

    2004-11-22

    The behavior of double proton transfer occurring in a representative glycinamide-formic acid complex has been investigated at the B3LYP/6-311 + + G( * *) level of theory. Thermodynamic and, especially, kinetic parameters, such as tautomeric energy, equilibrium constant, and barrier heights have been discussed, respectively. The relevant quantities involved in the double proton transfer process, such as geometrical changes, interaction energies, and intrinsic reaction coordinate calculations have also been studied. Computational results show that the participation of a formic acid molecule favors the proceeding of the proton transfer for glycinamide compared with that without mediate-assisted case. The double proton transfer process proceeds with a concerted mechanism rather than a stepwise one since no ion-pair complexes have been located during the proton transfer process. The calculated barrier heights are 11.48 and 0.85 kcal/mol for the forward and reverse directions, respectively. However, both of them have been reduced by 2.95 and 2.61 kcal/mol to 8.53 and -1.76 kcal/mol if further inclusion of zero-point vibrational energy corrections, where the negative barrier height implies that the reverse reaction should proceed with barrierless spontaneously, analogous to that occurring between glycinamide and formamide. Furthermore, solvent effects on the thermodynamic and kinetic processes have also been predicted qualitatively employing the isodensity surface polarized continuum model within the framework of the self-consistent reaction field theory. Additionally, the oxidation process for the double H-bonded glycinamide-formic acid complex has also been investigated. Contrary to that neutral form possessing a pair of two parallel intermolecular H bonds, only a single H bond with a comparable strength has been found in its ionized form. The vertical and adiabatic ionization potentials for the neutral complex have been determined to be about 9.40 and 8.69 e

  13. Adhesive-bonded double-lap joints. [analytical solutions for static load carrying capacity

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Explicit analytical solutions are derived for the static load carrying capacity of double-lap adhesive-bonded joints. The analyses extend the elastic solution Volkersen and cover adhesive plasticity, adherend stiffness imbalance and thermal mismatch between the adherends. Both elastic-plastic and bi-elastic adhesive representations lead to the explicit result that the influence of the adhesive on the maximum potential bond strength is defined uniquely by the strain energy in shear per unit area of bond. Failures induced by peel stresses at the ends of the joint are examined. This failure mode is particularly important for composite adherends. The explicit solutions are sufficiently simple to be used for design purposes

  14. A double bond-conjugated dimethylnitrobenzene-type photolabile nitric oxide donor with improved two-photon cross section.

    PubMed

    Ieda, Naoya; Hishikawa, Kazuhiro; Eto, Kei; Kitamura, Kai; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Fukuhara, Kiyoshi; Miyata, Naoki; Furuta, Toshiaki; Nabekura, Junichi; Nakagawa, Hidehiko

    2015-08-15

    Photocontrollable NO donors enable precise spatiotemporal release of NO under physiological conditions. We designed and synthesized a novel dimethylnitrobenzene-type NO donor, Flu-DNB-DB, which contains a carbon-carbon double bond in place of the amide bond of previously reported Flu-DNB. Flu-DNB-DB releases NO in response to one-photon activation in the blue wavelength region, and shows a greatly increased two-photon cross-section (δu) at 720 nm (Flu-DNB: 0.12 GM, Flu-DNB-DB: 0.98 GM). We show that Flu-DNB-DB enables precisely controlled intracellular release of NO in response to 950 nm pulse laser irradiation for as little as 1s. This near-infrared-light-controllable NO source should be a valuable tool for studies on the biological roles of NO. PMID:26073004

  15. Rhodium-catalyzed C-C coupling reactions via double C-H activation.

    PubMed

    Li, Shuai-Shuai; Qin, Liu; Dong, Lin

    2016-05-18

    Various rhodium-catalyzed double C-H activations are reviewed. These powerful strategies have been developed to construct C-C bonds, which might be widely embedded in complex aza-fused heterocycles, polycyclic skeletons and heterocyclic scaffolds. In particular, rhodium(iii) catalysis shows good selectivity and reactivity to functionalize the C-H bond, generating reactive organometallic intermediates in most of the coupling reactions. Generally, intermolecular, intramolecular and multi-component coupling reactions via double C-H activations with or without heteroatom-assisted chelation are discussed in this review. PMID:27099126

  16. Single-step in situ synthesis of double bond-grafted yttrium-hydroxide nanotube core-shell structures.

    PubMed

    Li, Weijia; Wang, Xun; Li, Yadong

    2004-01-21

    Novel MMA-Y(OH)(3) nanotube core-shell structures have been successfully prepared with double bonds successfully grafted on the surface through a single-step in-situ hydrothermal method. PMID:14737530

  17. Double-decker bis(tetradiazepinoporphyrazinato) rare earth complexes: crucial role of intramolecular hydrogen bonding.

    PubMed

    Tarakanova, Ekaterina N; Trashin, Stanislav A; Simakov, Anton O; Furuyama, Taniyuki; Dzuban, Alexander V; Inasaridze, Liana N; Tarakanov, Pavel A; Troshin, Pavel A; Pushkarev, Victor E; Kobayashi, Nagao; Tomilova, Larisa G

    2016-07-26

    A series of homoleptic bis{tetrakis(5,7-bis(4-tert-butylphenyl)-6H-1,4-diazepino)[2,3-b,g,l,q]porphyrazinato}lanthanide sandwich complexes [(tBuPh)DzPz]2Ln (Ln = Lu, Er, Dy, Eu, Nd, Ce, La) were prepared and their physicochemical properties were studied to gain insight into the nature of specific interactions in diazepinoporphyrazines. The effect of annulated diazepine moieties and the Ln ionic radius on the properties of the complexes was investigated in comparison with double-decker phthalocyanines. A combination of experimental and theoretical studies revealed the presence of two types of hydrogen bonding interactions in the metal-free porphyrazine and the corresponding sandwich complexes, namely, interligand C-H(ax)N(meso) hydrogen bonding and O-HN(Dz) ligand-water interaction. The interligand hydrogen bonding imparts high stability of the ligand dimer and the double-decker compounds in a reduced state. This work is the first comprehensive investigation into the fundamental understanding of the unusual properties of diazepine-containing macroheterocycles. PMID:27396712

  18. Predicting Promoter-Induced Bond Activation on Solid Catalysts Using Elementary Bond Orders.

    PubMed

    Tsai, Charlie; Latimer, Allegra A; Yoo, Jong Suk; Studt, Felix; Abild-Pedersen, Frank

    2015-09-17

    In this Letter, we examine bond activation induced by nonmetal surface promoters in the context of dehydrogenation reactions. We use C-H bond activation in methane dehydrogenation on transition metals as an example to understand the origin of the promoting or poisoning effect of nonmetals. The electronic structure of the surface and the bond order of the promoter are found to establish all trends in bond activation. On the basis of these results, we develop a predictive model that successfully describes the energetics of C-H, O-H, and N-H bond activation across a range of reactions. For a given reaction step, a single data point determines whether a nonmetal will promote bond activation or poison the surface and by how much. We show how our model leads to general insights that can be directly used to predict bond activation energetics on transition metal sulfides and oxides, which can be perceived as promoted surfaces. These results can then be directly used in studies on full catalytic pathways. PMID:26722740

  19. Theoretical Analysis of the Effect of C═C Double Bonds on the Low-Temperature Reactivity of Alkenylperoxy Radicals.

    PubMed

    You, Xiaoqing; Chi, Yawei; He, Tanjin

    2016-08-01

    Biodiesel contains a large proportion of unsaturated fatty acid methyl esters. Its combustion characteristics, especially its ignition behavior at low temperatures, have been greatly affected by these C═C double bonds. In this work, we performed a theoretical analysis of the effect of C═C double bonds on the low-temperature reactivity of alkenylperoxy radicals, the key intermediates from the low-temperature combustion of biodiesel. To understand how double bonds affect the fate of peroxy radicals, we selected three representative peroxy radicals from heptane, heptene, and heptadiene having zero, one, and two double C═C bonds, respectively, for study. The potential energy surfaces were explored at the CBS-QB3 level, and the reaction rate constants were computed using canonical/variational transition state theories. We have found that the double bond is responsible for the very different bond dissociation energies of the various types of C-H bonds, which in turn affect significantly the reaction kinetics of alkenylperoxy radicals. PMID:27404895

  20. Quantum dynamics study of fulvene double bond photoisomerization: The role of intramolecular vibrational energy redistribution and excitation energy

    SciTech Connect

    Blancafort, Lluis; Gatti, Fabien; Meyer, Hans-Dieter

    2011-10-07

    The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.

  1. Recent Advances in Transition-Metal-Free Oxygenation of Alkene C=C Double Bonds for Carbonyl Generation.

    PubMed

    Wan, Jie-Ping; Gao, Yong; Wei, Li

    2016-08-01

    Carbonyl-forming reactions are a class of fundamental transformations in organic chemistry. Guided by the current importance of environmentally benign metal-free catalysis and synthesis, herein we review recent advances in carbonyl-generation reactions based on alkene C=C double oxygenation as well as related cascade reactions in the synthesis of diverse organic products. The content of this focus review consists of two important but different reaction models: oxygenation based on full C=C double-bond cleavage and oxygenation based on partial C=C double-bond cleavage. PMID:27237866

  2. Combined surface-activated bonding technique for low-temperature hydrophilic direct wafer bonding

    NASA Astrophysics Data System (ADS)

    He, Ran; Fujino, Masahisa; Yamauchi, Akira; Suga, Tadatomo

    2016-04-01

    A combined surface-activated bonding technique is studied for surface activation and water management to improve the hydrophilic SiO2-SiO2 bonding quality. Prebonding treatment involving a Si-containing Ar beam bombardment and prebonding attach-detach is employed prior to wafer bonding in vacuum. The results of bonding strength measurement, Monte Carlo simulation, and surface analysis by Fourier transform infrared spectroscopy are reported. A mechanism is proposed to better understand the nature of the hydrophilic bonding at low temperatures of no more than 200 °C. We suggest that the Si-containing Ar beam modifies the SiO2 surfaces by Si enrichment to make them more reactive for OH adsorption, while the prebonding attach and detach facilitate a further increase in the number of OH and the removal of excess trapped H2O prior to bonding, respectively. As a consequence, SiO2-SiO2 bonding strength close to the Si bulk fracture energy can be achieved after low-temperature annealing.

  3. 76 FR 28801 - Agency Information Collection Activities: Bonded Warehouse Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... Federal Register (76 FR 11254) on March 1, 2011, allowing for a 60-day comment period. This notice allows... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Bonded Warehouse... approval in accordance with the Paperwork Reduction Act: Bonded Warehouse Regulations. This is a...

  4. Electrochemical activation of a tetrathiafulvalene halogen bond donor in solution.

    PubMed

    Oliveira, R; Groni, S; Fave, C; Branca, M; Mavré, F; Lorcy, D; Fourmigué, M; Schöllhorn, B

    2016-06-21

    The halogen bond donor properties of iodo-tetrathiafulvalene (I-TTF) can be electrochemically switched and controlled via reversible oxidation in the solution phase. Interestingly the activation of only one single halogen bond yielded already a strong and selective interaction, quantified by cyclic voltammetry. The standard potentials of the redox couples I-TTF(0/1+) and I-TTF(1+/2+) were observed to shift upon the addition of halides. These anions selectively stabilize the cationic I-TTF species through halogen bonding in polar liquid electrolytes. The thermodynamic affinity constants for chloride and bromide binding to the oxidized species have been determined. Competition in halide binding between I-TTF(1+) and other halogen bond donors allowed for comparing the relative donor strength of the respective electrophilic species. Furthermore it has been shown that halogen bonding can prevail over hydrogen bonding in the investigated system. PMID:27231819

  5. Hydrogen bonds and antiviral activity of benzaldehyde derivatives

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Belkov, M. V.; Shadyro, O. I.; Brinkevich, S. D.; Samovich, S. N.

    2012-09-01

    We have obtained the Fourier transform IR spectra of solutions of benzaldehyde derivatives having different antiviral activities against a herpes virus. We observe a correlation between the presence of hydrogen bonds in the benzaldehyde molecules and the appearance of antiviral properties in the compounds. For compounds having antiviral activity, we have obtained spectral data suggesting the existence of hydrogen bonds of the type C=OṡṡṡH-O and O-HṡṡṡO in the molecules. When the hydrogen atom in the hydroxyl groups are replaced by a methyl group, no intramolecular hydrogen bonds are formed and the compounds lose their antiviral activity.

  6. On the bonding nature of electron states for the Fe-Mo double perovskite

    SciTech Connect

    Carvajal, E.; Cruz-Irisson, M.; Oviedo-Roa, R.; Navarro, O.

    2014-05-15

    The electronic transport as well as the effect of an external magnetic field has been investigated on manganese-based materials, spinels and perovskites. Potential applications of double perovskites go from magnetic sensors to electrodes in solid-oxide fuel cells; besides the practical interests, it is known that small changes in composition modify radically the physical properties of double perovskites. We have studied the Sr{sub 2}FeMoO{sub 6} double perovskite compound (SFMO) using first-principles density functional theory. The calculations were done within the generalized gradient approximation (GGA) scheme with the Perdew-Burke-Ernzerhof (PBE) functional. We have made a detailed analysis of each electronic state and the charge density maps around the Fermi level. For the electronic properties of SFMO it was used a primitive cell, for which we found the characteristic half-metallic behavior density of states composed by e{sub g} and t{sub 2g} electrons from Fe and Mo atoms. Those peaks were tagged as bonding or antibonding around the Fermi level at both, valence and conduction bands.

  7. A search for thermal isomerization of olefins to carbenes: Thermal generations of the silicon-nitrogen double bond

    SciTech Connect

    Zhang, Xianping.

    1990-09-21

    The first part of this thesis will search for the thermal isomerization of olefins to carbenes which is predicted to be a high energy process by calculations and has only been observed in a few strained olefins. The possibility of thermal isomerization of simple olefins to carbenes will be explored. Substitution of a silyl group on the double bond of an olefin allows a potential intermediate which has a {beta}-radical to the silyl group during the cis-trans isomerization. The effects of a trimethylsilyl group on this isomerization are the subject of this study. The second part of this thesis will include the generation and chemistry of intermediates containing a silicon-nitrogen double bond. The isomerization of parent silanimine to the aminosilylene was calculated to be a high energy process. New approaches to the silicon-nitrogen double bond will also be presented. 92 refs., 12 figs., 11 tabs.

  8. Flexible double betaines: molecular structures and hydrogen bonding in their crystalline hydrates

    NASA Astrophysics Data System (ADS)

    Wu, De-Dong; Mak, Thomas C. W.

    1994-09-01

    Crystalline hydrates of three flexible double betaines, -OOCCH 2N +Me 2-(CH 2) n-N +Me 2CH 2COO - ( 1n = 2; 2n = 3; 3n = 4) have been isolated and characterized by single-crystal X-ray analysis. 1·2H 2O crystallizes in the monoclinic space group C2/ c with Z = 4; 2·3H 2O and 3·2H 2O are both triclinic, space group Poverline1, with Z = 2 and 1, respectively. The site symmetries of 1, 2 and 3 are C2, C1 and Ci, respectively. The formation of hydrogen bonds generated by water molecules bridging neighboring carboxy oxygen atoms in different modes leads to polymeric zigzag chains in the dihydrates of 1 and 3, and a layer structure in the trihydrate of 2.

  9. Diffusion ordered spectroscopy for resolution of double bonded cis, trans-isomers

    NASA Astrophysics Data System (ADS)

    Chaudhari, Sachin Rama; Suryaprakash, N.

    2012-06-01

    NMR spectroscopic separation of double bonded cis- and trans-isomers, that have different molecular shapes but identical mass have been carried out using Diffusion Ordered Spectroscopy (DOSY). The mixtures of fumaric acid and maleic acid, that have similar hydrodynamic radii, have resolved been 'on the basis of their diffusion coefficients arising due to their different tendencies to associate with micelles or reverse micelles. Sodium dodecyl sulfate (SDS) and Dioctyl sulfosuccinate sodium salt (AOT) have been used as the media to mimic the chromatographic conditions, modify the average mobility and to achieve differential diffusion rates. The best separation of the components has been achieved by Dioctyl sulfosuccinate sodium salt (AOT) in D2O solution.

  10. Ethenolysis: A Green Catalytic Tool to Cleave Carbon-Carbon Double Bonds.

    PubMed

    Bidange, Johan; Fischmeister, Cédric; Bruneau, Christian

    2016-08-22

    Remarkable innovations have been made in the field of olefin metathesis due to the design and preparation of new catalysts. Ethenolysis, which is cross-metathesis with ethylene, represents one catalytic transformation that has been used with the purpose of cleaving internal carbon-carbon double bonds. The objectives were either the ring opening of cyclic olefins to produce dienes or the shortening of unsaturated hydrocarbon chains to degrade polymers or generate valuable shorter terminal olefins in a controlled manner. This Review summarizes several aspects of this reaction: the catalysts, their degradation in the presence of ethylene, some parameters driving their productivity, the side reactions, and the applications of ethenolysis in organic synthesis and in potential industrial applications. PMID:27359344

  11. Pancake π–π Bonding Goes Double: Unexpected 4e/All-Sites Bonding in Boron- and Nitrogen-Doped Phenalenyls

    SciTech Connect

    Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu; Huang, Jingsong

    2015-06-03

    Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap is distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.

  12. Pancake π–π Bonding Goes Double: Unexpected 4e/All-Sites Bonding in Boron- and Nitrogen-Doped Phenalenyls

    DOE PAGESBeta

    Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu; Huang, Jingsong

    2015-06-03

    Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap ismore » distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.« less

  13. Accurate characterization of wafer bond toughness with the double cantilever specimen

    NASA Astrophysics Data System (ADS)

    Turner, Kevin T.; Spearing, S. Mark

    2008-01-01

    The displacement loaded double cantilever test, also referred to as the "Maszara test" and the "crack opening method" by the wafer bonding community, is a common technique used to evaluate the interface toughness or surface energy of direct wafer bonds. While the specimen is widely used, there has been a persistent question as to the accuracy of the method since the actual specimen geometry differs from the ideal beam geometry assumed in the expression used for data reduction. The effect of conducting the test on whole wafer pairs, in which the arms of cantilevers are wide plates rather than slender beams, is examined in this work using finite element analysis. A model is developed to predict the equilibrium shape of the crack front and to develop a corrected expression for calculating interface toughness from crack length measurements obtained in tests conducted on whole wafer pairs. The finite element model, which is validated through comparison to experiments, demonstrates that using the traditional beam theory-based expressions for data reduction can lead to errors of up to 25%.

  14. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.

    PubMed

    Ganguly, Abir; Manahan, Craig C; Top, Deniz; Yee, Estella F; Lin, Changfan; Young, Michael W; Thiel, Walter; Crane, Brian R

    2016-09-01

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions. PMID:27551082

  15. Three-Component Azidation of Styrene-Type Double Bonds: Light-Switchable Behavior of a Copper Photoredox Catalyst**

    PubMed Central

    Fumagalli, Gabriele; Rabet, Pauline T G; Boyd, Scott; Greaney, Michael F

    2015-01-01

    [Cu(dap)2]Cl effectively catalyzes azide addition from the Zhdankin reagent to styrene-type double bonds, and subsequent addition of a third component to the benzylic position. In the presence of light, a photoredox cycle is implicated with polar components such as methanol or bromide adding to a benzylic cation. In the absence of light, by contrast, double azidation takes place to give diazides. Therefore, regioselective double functionalization can be achieved in good to excellent yields, with a switch between light and dark controlling the degree of azidation. PMID:26119004

  16. Methandiide as a non-innocent ligand in carbene complexes: from the electronic structure to bond activation reactions and cooperative catalysis.

    PubMed

    Becker, Julia; Modl, Tanja; Gessner, Viktoria H

    2014-09-01

    The synthesis of a ruthenium carbene complex based on a sulfonyl-substituted methandiide and its application in bond activation reactions and cooperative catalysis is reported. In the complex, the metal-carbon interaction can be tuned between a Ru-C single bond with additional electrostatic interactions and a Ru=C double bond, thus allowing the control of the stability and reactivity of the complex. Hence, activation of polar and non-polar bonds (O-H, H-H) as well as dehydrogenation reactions become possible. In these reactions the carbene acts as a non-innocent ligand supporting the bond activation as nucleophilic center in the 1,2-addition across the metal-carbon double bond. This metal-ligand cooperativity can be applied in the catalytic transfer hydrogenation for the reduction of ketones. This concept opens new ways for the application of carbene complexes in catalysis. PMID:25047390

  17. Activation of the C-H bond by metal complexes

    NASA Astrophysics Data System (ADS)

    Shilov, Aleksandr E.; Shul'pin, Georgiy B.

    1990-09-01

    Reactions involving the cleavage of C-H bonds by metal complexes in saturated and aromatic hydrocarbons and also in other compounds are examined. Some of these processes occur with formation of a carbon-metal bond, whilst in others the interaction of the complexes with the hydrocarbon takes place without direct contact between the metal atom and the C-H bonds. Metal compounds are widely used as initiators of the liquid-phase oxidation of hydrocarbons at relatively low temperatures. There is a prospect of creating new technologies for the chemical processing of petroleum and gas hydrocarbons, whereby they can be converted into valuable products, for example, into alcohols, ketones, and carboxylic acids, on the basis of processes involving metal complexes. The study of the metal complex activation of the C-H bond also makes it possible to understand and model the metalloenzyme-catalysed hydrocarbon oxidation reactions in the living cell. The bibliography includes 340 references.

  18. Bent Bonds and Multiple Bonds.

    ERIC Educational Resources Information Center

    Robinson, Edward A.; Gillespie, Ronald J.

    1980-01-01

    Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)

  19. Reduction of N-allylamides by LiAlH4: unexpected attack of the double bond with mechanistic studies of product and byproduct formation.

    PubMed

    Thiedemann, Birk; Schmitz, Christin M L; Staubitz, Anne

    2014-11-01

    The reduction of secondary allyl amides with LiAlH4 can lead to a concomitant reduction of the double bond. Previously, an excess of LiAlH4 in hazardous solvents was used for the reduction. This work discusses optimized reaction conditions in tBuOMe as a safe solvent, with only a 1.5-fold excess of LiAlH4, without reduction of the double bond in most cases. (1)H and (2)D NMR spectroscopic studies give evidence for the mechanism of the reduction of the amide as well as the double bond: Amide reduction generally precedes double bond reduction. Sterically hindered allylamides are an exception. They are reduced considerably more slowly at higher temperatures, and double bond reduction is observed before amide reduction has gone to completion. PMID:25347383

  20. A fluorescent sensor for Zn(2+) and NO2(-) based on the rational control of C[double bond, length as m-dash]N isomerization.

    PubMed

    Liu, Zheng; Peng, Cuina; Wang, Ying; Pei, Meishan; Zhang, Guangyou

    2016-05-01

    A new strategy for the ultrasensitive sensing of cations and anions based on the control of C[double bond, length as m-dash]N isomerization has been developed. Imine-derived ligand is non-fluorescent due to the C[double bond, length as m-dash]N isomerization process, whereas its ternary complex with ZnCl2 is moderately fluorescent because of the partial inhibition of C[double bond, length as m-dash]N isomerization. Such a ternary complex can give a remarkable fluorescence increase when it interacts with nitrite because of the much more efficient suppression of C[double bond, length as m-dash]N isomerization. This modulation process of C[double bond, length as m-dash]N isomerization can thus be used for the highly selective detection of Zn(2+) and NO2(-) in an aqueous solution. PMID:27075971

  1. Formation of the Δ18,19 Double Bond and Bis(spiroacetal) in Salinomycin Is Atypically Catalyzed by SlnM, a Methyltransferase‐like Enzyme†

    PubMed Central

    Jiang, Chunyan; Qi, Zhen; Kang, Qianjin; Liu, Jing; Jiang, Ming

    2015-01-01

    Abstract Salinomycin is a widely used polyether coccidiostat and was recently found to have antitumor activities. However, the mechanism of its biosynthesis remained largely speculative until now. Reported herein is the identification of an unprecedented function of SlnM, homologous to O‐methyltransferases, by correlating its activity with the formation of the Δ18,19 double bond and bis(spiroacetal). Detailed in vivo and in vitro investigations revealed that SlnM, using positively charged S‐adenosylmethionine (SAM) or sinefungin as the cofactor, catalyzed the spirocyclization‐coupled dehydration of C19 in a highly atypical fashion to yield salinomycin. PMID:26096919

  2. Hydrogen bonds of anti-HIV active aminophenols

    NASA Astrophysics Data System (ADS)

    Belkov, M. V.; Ksendzova, G. A.; Skornyakov, I. V.; Sorokin, V. L.; Tolstorozhev, G. B.; Shadyro, O. I.

    2011-05-01

    Analysis of IR-Fourier spectra from solutions and crystals of antiviral sulfo-containing aminophenols has shown that various types of intramolecular and intermolecular interactions can occur in molecules of these compounds. Three types of intramolecular hydrogen bonds (O-HṡṡṡN, O-HṡṡṡO=S=O, and N-HṡṡṡO=S=O) are formed in CCl4 solutions of the sulfo-containing aminophenols. The formation of intermolecular H-bonds involving the NH- and OH-groups and the preservation of the intramolecular O-HṡṡṡO=S=O H-bond are characteristic of the anti-HIV active aminophenol crystals. Spectral attributes are determined in order to distinguish between the anti-HIV active and inactive sulfo-containing aminophenols.

  3. Double Pancake Versus Long Chalcogen-Chalcogen Bonds in Six-Membered C,N,S-Heterocycles.

    PubMed

    Haberhauer, Gebhard; Gleiter, Rolf

    2016-06-13

    The double "pancake" bonding in the dimers of the six-membered heterocycles 1,3-dithia-2,4,6-triazine (4) and 1,3-dithia-2,4-diazine (16) were investigated by means of high-level quantum chemical calculations (B3LYP and CCSD(T)). It was found that the S-S dimers, 20 a and 27, are not the most stable isomers, but the dimers showing short S-N (21 a) and S-C (25, 28) bonds. An investigation of the 5-phenyl-1,3-dithia-2,4,6-triazine (4 b) yields that the syn dimer with two S-S bonds (2.57 Å) is the most stable one. In this dimer, the phenyl groups are placed on top of each other. The additional dispersion energy of the phenyl rings causes a stabilization of the syn-S-S (C2v -like) isomer. As a result, two weak albeit relevant single S-S bonds (2.57 Å) are predicted. These findings contradict the recently published concept of double "pancake" bonding in the dimer 4 b2 . PMID:27172139

  4. 26 CFR 1.141-2 - Private activity bond tests.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... test and private security or payment test of section 141(b) or the private loan financing test of section 141(c). The private business use and private security or payment tests are described in §§ 1.141-3... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Private activity bond tests. 1.141-2 Section...

  5. 26 CFR 1.141-2 - Private activity bond tests.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... test and private security or payment test of section 141(b) or the private loan financing test of section 141(c). The private business use and private security or payment tests are described in §§ 1.141-3... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Private activity bond tests. 1.141-2 Section...

  6. Selenium bond decreases ON resistance of light-activated switch

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Vitrified amorphous selenium bond decreases the ON resistance of a gallium arsenide-silicon light-activated, low-level switch. The switch is used under a pulse condition to prolong switch life and minimize errors due to heating, devitrification, and overdrawing.

  7. 77 FR 6814 - Agency Information Collection Activities: Bonded Warehouse Proprietor's Submission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Bonded Warehouse... the Bonded Warehouse Proprietor's Submission (CBP Form 300). This request for comment is being made... CBP is soliciting comments concerning the following information collection: Title: Bonded...

  8. C-H bond activation by f-block complexes.

    PubMed

    Arnold, Polly L; McMullon, Max W; Rieb, Julia; Kühn, Fritz E

    2015-01-01

    Most homogeneous catalysis relies on the design of metal complexes to trap and convert substrates or small molecules to value-added products. Organometallic lanthanide compounds first gave a tantalizing glimpse of their potential for catalytic C-H bond transformations with the selective cleavage of one C-H bond in methane by bis(permethylcyclopentadienyl)lanthanide methyl [(η(5) -C5 Me5 )2 Ln(CH3 )] complexes some 25 years ago. Since then, numerous metal complexes from across the periodic table have been shown to selectively activate hydrocarbon C-H bonds, but the challenges of closing catalytic cycles still remain; many f-block complexes show great potential in this important area of chemistry. PMID:25384554

  9. Transition Metals Catalyzed Element-Cyano Bonds Activations

    PubMed Central

    Wang, Rui; Falck, John R.

    2014-01-01

    Cyano group as a versatile functionalized intermediate has been explored for several decades, as it readily transfers to many useful functionalization groups such as amine, amide, acid, etc., which make it possess high popularization and use value in organic synthesis. Reactions involved with element-cyano bond cleavage can provide not only a new cyano group but also a freshly functionalized skeleton in one-pot, consequently making it of high importance. The highlights reviewed herein include H-CN, Si-CN, C-CN, B-CN, Sn-CN, Ge-CN, S-CN, Halo-CN, N-CN, and O-CN bonds cleavages and will summarize progress in such an important research area. This review article will focus on transition metal catalyzed reactions involving element-cyano bond activation. PMID:25558119

  10. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds.

    PubMed

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-01-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen. PMID:25902034

  11. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds

    PubMed Central

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-01-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold–gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon–hydrogen bonds with molecular oxygen. PMID:25902034

  12. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-04-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen.

  13. Competitive Low Pressure Oxygen Plasma Interactions with Different= Carbon-Carbon Double Bonds

    NASA Astrophysics Data System (ADS)

    Patiño, P.; Sifontes, A.; Gambús, G.

    1999-10-01

    Recently we have shown advances from reactions of O(^3P) with both, l ong-chain hydrocarbons and refinery residuum. The oxidation products of t he process, a mixture of alcohols, epoxides and carbonyl compounds, might have potential properties as additives in formulating fuels. This work s hows the results of the interactions of an oxygen plasma with double bond s, both olefin and aromatic, in the same compound. The reactions have bee n carried out by making the plasma, created by a high voltage glow discha rge, reach the low vapor pressure surface of liquid 4-phenyl-1-butene. Th is (3 mL) was cooled down to -45 ^oC in a glass reactor, applied power was 24 W, at an oxygen pressure of 20 Pa. Products were analyzed by IR, N MR and mass spectroscopies. Conversions were studied as a function of the reaction time, this ranging from 5 to 120 minutes. At short times the O( ^3P) atoms produced in the discharge only reacted with the alkene fra ction of the hydrocarbon, 4-phenyl-1,2-epoxibutane (52%) and 4-phenyl-bu tanal (48%) being the products. Reactions on the benzene ring were obser ved from about 30 minutes on, the corresponding phenols having being prod uced at ratios ortho:para:meta :: 4:1:0.7. At 120 minutes, the ol efin have been completely oxidized and a low fraction of the non-equivale nt two methylene groups have reacted to produce alcohols and ketones.

  14. Rhodium- and iridium-catalyzed dehydrogenative cyclization through double C-H bond cleavages to produce fluorene derivatives.

    PubMed

    Itoh, Masaki; Hirano, Koji; Satoh, Tetsuya; Shibata, Yu; Tanaka, Ken; Miura, Masahiro

    2013-02-15

    The rhodium-catalyzed cyclization of a series of 2,2-diarylalkanoic acids in the presence of copper acetate as an oxidant smoothly proceeded through double C-H bond cleavages and subsequent decarboxylation to produce the corresponding fluorene derivatives. The direct cyclization of triarylmethanols also took place efficiently by using an iridium catalyst in place of the rhodium, while the hydroxy function was still intact. PMID:23360206

  15. Functionalization of the benzobicyclo[3.2.1] octadiene skeleton possessing one isolated double bond via photocatalytic oxygenation

    NASA Astrophysics Data System (ADS)

    Vuk, Dragana; Horváth, Ottó; Marinić, Željko; Škorić, Irena

    2016-03-01

    Photocatalytic oxygenation of three phenyl derivatives of a bicyclic skeleton with a free double bond 1a, 1b and 1c were carried out by utilizing a cationic and an anionic manganese(III) porphyrin irradiated in the visible range. While photocatalysis of 1a and 1b led to the formation of the corresponding hydroperoxy derivatives 2 and 3, respectively, (besides unidentified high-molecular-weight products) in the presence of the anionic Mn(III) porphyrin, the cationic photocatalyst proved to be less efficient and less selective with 1a. In the case of 1b, also with the cationic porphyrin, the corresponding hydroperoxy derivative (3) was the main product at a shorter reaction time (2 h), whereas a longer irradiation (4 h) led to the significant formation of a keto derivative (5) with a hydroperoxy substituent and a free double bond at positions deviating from those in the previous products (2 and 3). A dramatic change in the reactivity was observed for the methoxy derivative (1c). It gave only traces of identifiable products by using the anionic photocatalyst, while application of the cationic Mn(III) porphyrin resulted in a relatively efficient formation of an epoxy derivative (6) due to the reaction of the isolated double bond.

  16. Fracture Analysis of Double-Side Adhesively Bonded Composite Repairs to Cracked Aluminium Plate Using Line Spring Model

    NASA Astrophysics Data System (ADS)

    Niu, Yong; Su, Weiguo

    2016-06-01

    A line spring model is developed for analyzing the fracture problem of cracked metallic plate repaired with the double-sided adhesively bonded composite patch. The restraining action of the bonded patch is modeled as continuous distributed linear springs bridging the crack faces provided that the cracked plate is subjected to extensional load. The effective spring constant is determined from 1-D bonded joint theory. The hyper-singular integral equation (HSIE), which can be solved using the second kind Chebyshev polynomial expansion method, is applied to determine the crack opening displacements (COD) and the crack tip stress intensity factors (SIF) of the repaired cracked plate. The numerical result of SIF for the crack-tip correlates very well with the finite element (FE) computations based on the virtual crack closure technique (VCCT). The present analysis approaches and mathematical techniques are critical to the successful design, analysis and implementation of crack patching.

  17. Double-bridge bonding of aluminium and hydrogen in the crystal structure of gamma-AlH3.

    PubMed

    Yartys, Volodymyr A; Denys, Roman V; Maehlen, Jan Petter; Frommen, Christoph; Fichtner, Maximilian; Bulychev, Boris M; Emerich, Hermann

    2007-02-19

    Aluminum trihydride (alane) is one of the most promising among the prospective solid hydrogen-storage materials, with a high gravimetric and volumetric density of hydrogen. In the present work, the alane, crystallizing in the gamma-AlH3 polymorphic modification, was synthesized and then structurally characterized by means of synchrotron X-ray powder diffraction. This study revealed that gamma-AlH3 crystallizes with an orthorhombic unit cell (space group Pnnm, a = 5.3806(1) A, b = 7.3555(2) A, c = 5.77509(5) A). The crystal structure of gamma-AlH3 contains two types of AlH6 octahedra as the building blocks. The Al-H bond distances in the structure vary in the range of 1.66-1.79 A. A prominent feature of the crystal structure is the formation of the bifurcated double-bridge bonds, Al-2H-Al, in addition to the normal bridge bonds, Al-H-Al. This former feature has not been previously reported for Al-containing hydrides so far. The geometry of the double-bridge bond shows formation of short Al-Al (2.606 A) and Al-H (1.68-1.70 A) bonds compared to the Al-Al distances in Al metal (2.86 A) and Al-H distances for Al atoms involved in the formation of normal bridge bonds (1.769-1.784 A). The crystal structure of gamma-AlH3 contains large cavities between the AlH6 octahedra. As a consequence, the density is 11% less than for alpha-AlH3. PMID:17291106

  18. C-H bond activation with actinides: The first example of intramolecular ring bite of a pentamethylcyclopentadienyl methyl group

    SciTech Connect

    Peters, R.G.; Warner, B.P.; Scott, B.L.; Burns, C.J.

    1999-07-05

    Thermolysis of (C{sub 5}Me{sub 5}){sub 2}U({double_bond}NAd){sub 2}, 1 (Ad = 1-adamantyl), in benzene or hexane results in the intramolecular C-H bond activation of a methyl group on a pentamethylcyclopentadienyl ligand across the two imido functional groups. The product of this reaction has been spectroscopically and structurally characterized. The activation product is a reduced U(IV) metallocene bis(amide) complex with an N-bound methylene unit derived from the methyl group attached to one amide group. The activation parameters for this process have been determined; the results are consistent with a simple unimolecular process. This is the first example of intramolecular activation of a (C{sub 5}Me{sub 5}) methyl C-H bond in an actinide complex.

  19. Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry.

    PubMed

    Háková, Eva; Vrkoslav, Vladimír; Míková, Radka; Schwarzová-Pecková, Karolina; Bosáková, Zuzana; Cvačka, Josef

    2015-07-01

    A method for localizing double bonds in triacylglycerols using high-performance liquid chromatography-tandem mass spectrometry with atmospheric pressure chemical ionization (APCI) was developed. The technique was based on collision-induced dissociation or pulsed Q collision-induced dissociation of the C3H5N(+•) adducts ([M + 55](+•)) formed in the presence of acetonitrile in the APCI source. The spectra were investigated using a large series of standards obtained from commercial sources and prepared by randomization. The fragmentation spectra made it possible to determine (i) the total number of carbons and double bonds in the molecule, (ii) the number of carbons and double bonds in acyls, (iii) the acyl in the sn-2 position on the glycerol backbone, and (iv) the double-bond positions in acyls. The double-bond positions were determined based on two types of fragments (alpha and omega ions) formed by cleavages of C-C bonds vinylic to the original double bond. The composition of the acyls and their positions on glycerol were established from the masses and intensities of the ions formed by the elimination of fatty acids from the [M + 55](+•) precursor. The method was applied for the analysis of triacylglycerols in olive oil and vernix caseosa. PMID:25701424

  20. Effect of the Hydrogen Bond in Photoinduced Water Dissociation: A Double-Edged Sword.

    PubMed

    Yang, Wenshao; Wei, Dong; Jin, Xianchi; Xu, Chenbiao; Geng, Zhenhua; Guo, Qing; Ma, Zhibo; Dai, Dongxu; Fan, Hongjun; Yang, Xueming

    2016-02-18

    Photoinduced water dissociation on rutile-TiO2 was investigated using various methods. Experimental results reveal that the water dissociation occurs via transferring an H atom to a bridge bonded oxygen site and ejecting an OH radical to the gas phase during irradiation. The reaction is strongly suppressed as the water coverage increases. Further scanning tunneling microscopy study demonstrates that hydrogen bonds between water molecules have a dramatic effect on the reaction. Interestingly, a single hydrogen bond in water dimer enhances the water dissociation reaction, while one-dimensional hydrogen bonds in water chains inhibit the reaction. Density functional theory calculations indicate that the effect of hydrogen bonds on the OH dissociation energy is likely the origin of this remarkable behavior. The results suggest that avoiding a strong hydrogen bond network between water molecules is crucial for water splitting. PMID:26810945

  1. Reliable vibrational wavenumbers for C[double bond, length as m-dash]O and N-H stretchings of isolated and hydrogen-bonded nucleic acid bases.

    PubMed

    Fornaro, Teresa; Biczysko, Malgorzata; Bloino, Julien; Barone, Vincenzo

    2016-03-16

    The accurate prediction of vibrational wavenumbers for functional groups involved in hydrogen-bonded bridges remains an important challenge for computational spectroscopy. For the specific case of the C[double bond, length as m-dash]O and N-H stretching modes of nucleobases and their oligomers, the paucity of experimental reference values needs to be compensated by reliable computational data, which require the use of approaches going beyond the standard harmonic oscillator model. Test computations performed for model systems (formamide, acetamide and their cyclic homodimers) in the framework of the second order vibrational perturbation theory (VPT2) confirmed that anharmonic corrections can be safely computed by global hybrid (GHF) or double hybrid (DHF) functionals, whereas the harmonic part is particularly challenging. As a matter of fact, GHFs perform quite poorly and even DHFs, while fully satisfactory for C[double bond, length as m-dash]O stretchings, face unexpected difficulties when dealing with N-H stretchings. On these grounds, a linear regression for N-H stretchings has been obtained and validated for the heterodimers formed by 4-aminopyrimidine with 6-methyl-4-pyrimidinone (4APM-M4PMN) and by uracil with water. In view of the good performance of this computational model, we have built a training set of B2PLYP-D3/maug-cc-pVTZ harmonic wavenumbers (including linear regression scaling for N-H) for six-different uracil dimers and a validation set including 4APM-M4PMN, one of the most stable hydrogen-bonded adenine homodimers, as well as the adenine-uracil, adenine-thymine, guanine-cytosine and adenine-4-thiouracil heterodimers. Because of the unfavourable scaling of DHF harmonic wavenumbers with the dimensions of the investigated systems, we have optimized a linear regression of B3LYP-D3/N07D harmonic wavenumbers for the training set, which has been next checked against the validation set. This relatively cheap model, which shows very good agreement with

  2. Carbon-nitrogen bond construction and carbon-oxygen double bond cleavage on a molecular titanium oxonitride: a combined experimental and computational study.

    PubMed

    Carbó, Jorge J; García-López, Diego; González-Del Moral, Octavio; Martín, Avelino; Mena, Miguel; Santamaría, Cristina

    2015-10-01

    New carbon-nitrogen bonds were formed on addition of isocyanide and ketone reagents to the oxonitride species [{Ti(η(5)-C5Me5)(μ-O)}3(μ3-N)] (1). Reaction of 1 with XylNC (Xyl = 2,6-Me2C6H3) in a 1:3 molar ratio at room temperature leads to compound [{Ti(η(5)-C5Me5)(μ-O)}3(μ-XylNCCNXyl)(NCNXyl)] (2), after the addition of the nitrido group to one coordinated isocyanide and the carbon-carbon coupling of the other two isocyanide molecules have taken place. Thermolysis of 2 gives [{Ti(η(5)-C5Me5)(μ-O)}3(XylNCNXyl)(CN)] (3) where the heterocumulene [XylNCCNXyl] moiety and the carbodiimido [NCNXyl] fragment in 2 have undergone net transformations. Similarly, tert-butyl isocyanide (tBuNC) reacts with the starting material 1 under mild conditions to give the paramagnetic derivative [{Ti3(η(5)-C5Me5)3(μ-O)3(NCNtBu)}2(μ-CN)2] (4). However, compound 1 provides the oxo ketimide derivatives [{Ti3(η(5)-C5Me5)3(μ-O)4}(NCRPh)] [R = Ph (5), p-Me(C6H4) (6), o-Me(C6H4) (7)] upon reaction with benzophenone, p-methylbenzophenone, and o-methylbenzophenone, respectively. In these reactions, the carbon-oxygen double bond is completely ruptured, leading to the formation of a carbon-nitrogen and two metal-oxygen bonds. The molecular structures of complexes 2-4, 6, and 7 were determined by single-crystal X-ray diffraction analyses. Density functional theory calculations were performed on the incorporation of isocyanides and ketones to the model complex [{Ti(η(5)-C5H5)(μ-O)}3(μ3-N)] (1H). The mechanism involves the coordination of the substrates to one of the titanium metal centers, followed by an isomerization to place those substrates cis with respect to the apical nitrogen of 1H, where carbon-nitrogen bond formation occurs with a low-energy barrier. In the case of aryl isocyanides, the resulting complex incorporates additional isocyanide molecules leading to a carbon-carbon coupling. With ketones, the high oxophilicity of titanium promotes the unusual total cleavage of the

  3. Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles

    PubMed Central

    Chen, Chen; Weir, Michael D.; Cheng, Lei; Lin, Nancy; Lin-Gibson, Sheng; Chow, Laurence C.; Zhou, Xuedong; Xu, Hockin H. K.

    2015-01-01

    Objectives Recurrent caries at the margins is a primary reason for restoration failure. The objectives of this study were to develop bonding agent with the double benefits of antibacterial and remineralizing capabilities, to investigate the effects of NACP filler level and solution pH on Ca and P ion release from adhesive, and to examine the antibacterial and dentin bond properties. Methods Nanoparticles of amorphous calcium phosphate (NACP) and a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) were synthesized. Scotchbond Multi-Purpose (SBMP) primer and adhesive served as control. DMADDM was incorporated into primer and adhesive at 5% by mass. NACP was incorporated into adhesive at filler mass fractions of 10%, 20%, 30% and 40%. A dental plaque microcosm biofilm model was used to test the antibacterial bonding agents. Calcium (Ca) and phosphate (P) ion releases from the cured adhesive samples were measured vs. filler level and solution pH of 7, 5.5 and 4. Results Adding 5% DMADDM and 10–40% NACP into bonding agent, and water-aging for 28 days, did not affect dentin bond strength, compared to SBMP control at 1 day (p > 0.1). Adding DMADDM into bonding agent substantially decreased the biofilm metabolic activity and lactic acid production. Total microorganisms, total streptococci, and mutans streptococci were greatly reduced for bonding agents containing DMADDM. Increasing NACP filler level from 10% to 40% in adhesive increased the Ca and P ion release by an order of magnitude. Decreasing solution pH from 7 to 4 increased the ion release from adhesive by 6–10 folds. Significance Bonding agents containing antibacterial DMADDM and remineralizer NACP were formulated to have Ca and P ion release, which increased with NACP filler level from 10% to 40% in adhesive. NACP adhesive was “smart” and dramatically increased the ion release at cariogenic pH 4, when these ions would be most-needed to inhibit caries. Therefore, bonding agent

  4. Activation of C-H and B-H bonds through agostic bonding: an ELF/QTAIM insight.

    PubMed

    Zins, Emilie-Laure; Silvi, Bernard; Alikhani, M Esmaïl

    2015-04-14

    Agostic bonding is of paramount importance in C-H bond activation processes. The reactivity of the σ C-H bond thus activated will depend on the nature of the metallic center, the nature of the ligand involved in the interaction and co-ligands, as well as on geometric parameters. Because of their importance in organometallic chemistry, a qualitative classification of agostic bonding could be very much helpful. Herein we propose descriptors of the agostic character of bonding based on the electron localization function (ELF) and Quantum Theory of Atoms in Molecules (QTAIM) topological analysis. A set of 31 metallic complexes taken, or derived, from the literature was chosen to illustrate our methodology. First, some criteria should prove that an interaction between a metallic center and a σ X-H bond can indeed be described as "agostic" bonding. Then, the contribution of the metallic center in the protonated agostic basin, in the ELF topological description, may be used to evaluate the agostic character of bonding. A σ X-H bond is in agostic interaction with a metal center when the protonated X-H basin is a trisynaptic basin with a metal contribution strictly larger than the numerical uncertainty, i.e. 0.01 e. In addition, it was shown that the weakening of the electron density at the X-Hagostic bond critical point with respect to that of X-Hfree well correlates with the lengthening of the agostic X-H bond distance as well as with the shift of the vibrational frequency associated with the νX-H stretching mode. Furthermore, the use of a normalized parameter that takes into account the total population of the protonated basin, allows the comparison of the agostic character of bonding involved in different complexes. PMID:25760795

  5. Role of the Proximal Cysteine Hydrogen Bonding Interaction in Cytochrome P450 2B4 Studied by Cryoreduction, Electron Paramagnetic Resonance, and Electron-Nuclear Double Resonance Spectroscopy.

    PubMed

    Davydov, Roman; Im, Sangchoul; Shanmugam, Muralidharan; Gunderson, William A; Pearl, Naw May; Hoffman, Brian M; Waskell, Lucy

    2016-02-16

    Crystallographic studies have shown that the F429H mutation of cytochrome P450 2B4 introduces an H-bond between His429 and the proximal thiolate ligand, Cys436, without altering the protein fold but sharply decreases the enzymatic activity and stabilizes the oxyferrous P450 2B4 complex. To characterize the influence of this hydrogen bond on the states of the catalytic cycle, we have used radiolytic cryoreduction combined with electron paramagnetic resonance (EPR) and (electron-nuclear double resonance (ENDOR) spectroscopy to study and compare their characteristics for wild-type (WT) P450 2B4 and the F429H mutant. (i) The addition of an H-bond to the axial Cys436 thiolate significantly changes the EPR signals of both low-spin and high-spin heme-iron(III) and the hyperfine couplings of the heme-pyrrole (14)N but has relatively little effect on the (1)H ENDOR spectra of the water ligand in the six-coordinate low-spin ferriheme state. These changes indicate that the H-bond introduced between His and the proximal cysteine decreases the extent of S → Fe electron donation and weakens the Fe(III)-S bond. (ii) The added H-bond changes the primary product of cryoreduction of the Fe(II) enzyme, which is trapped in the conformation of the parent Fe(II) state. In the wild-type enzyme, the added electron localizes on the porphyrin, generating an S = (3)/2 state with the anion radical exchange-coupled to the Fe(II). In the mutant, it localizes on the iron, generating an S = (1)/2 Fe(I) state. (iii) The additional H-bond has little effect on g values and (1)H-(14)N hyperfine couplings of the cryogenerated, ferric hydroperoxo intermediate but noticeably slows its decay during cryoannealing. (iv) In both the WT and the mutant enzyme, this decay shows a significant solvent kinetic isotope effect, indicating that the decay reflects a proton-assisted conversion to Compound I (Cpd I). (v) We confirm that Cpd I formed during the annealing of the cryogenerated hydroperoxy intermediate

  6. Transition metal activation and functionalization of carbon-hydrogen bonds

    SciTech Connect

    Jones, W.D.

    1992-06-01

    We are investigating the fundamental thermodynamic and kinetic factors that influence carbon-hydrogen bond activation at homogeneous transition metal centers and the conversion of hydrocarbons into functionalized products of potential use to the chemical industry. Advances have been made in both understanding the interactions of hydrocarbons with metals and in the functionalization of hydrocarbons. We have found that RhCl(PR{sub 3}){sub 2}(CNR) complexes can catalyze the insertion of isonitriles into the C-H bonds or arenes upon photolysis. The mechanism of these reactions was found to proceed by way of initial phosphine dissociation, followed by C-H activation and isonitrile insertion. We have also examined reactions of a series of arenes with (C{sub 5}Me{sub 5})Rh(PMe{sub 3})PhH and begun to map out the kinetic and thermodynamic preferences for arene coordination. The effects of resonance, specifically the differences in the Hueckel energies of the bound vs free ligand, are now believed to fully control the C-H activation/{eta}{sup 2}-coordination equilibria. We have begun to examine the reactions of rhodium isonitrile pyrazolylborates for alkane and arene C-H bond activation. A new, labile, carbodiimide precursor has been developed for these studies. We have completed studies of the reactions of (C{sub 5}Me{sub 5})Rh(PMe{sub 3})H{sub 2} with D{sub 2} and PMe{sub 3} that indicate that both {eta}{sup 5} {yields} {eta}{sup 3} ring slippage and metal to ring hydride migration occur more facilely than thermal reductive elimination of H{sub 2}. We have examined the reactions of heterocycles with (C{sub 5}Me{sub 5})Rh(PMe{sub 3})PhH and found that pyrrole and furan undergo C-H or N-H activation. Thiophene, however, undergoes C-S bond oxidative addition, and the mechanism of activation has been shown to proceed through sulfur coordination prior to C-S insertion.

  7. Dependence of bonding interactions in Layered Double Hydroxides on metal cation chemistry

    NASA Astrophysics Data System (ADS)

    Shamim, Mostofa; Dana, Kausik

    2016-12-01

    The evolution of various Infrared bands of Layered Double Hydroxides (LDH) with variable Zn:Al ratio was analyzed to correlate it with the changes in octahedral metal cation chemistry, interlayer carbonate anion and hydroxyl content of LDH. The synthesized phase-pure LDHs were crystallized as hexagonal 2H polytype with a Manasseite structure. The broad and asymmetric hydroxyl stretching region (2400-4000 cm-1) can be deconvoluted into four different bands. With increase in Zn2+:Al3+ metal ratio, the peak position of stretching frequencies of Al3+sbnd OH and carbonate-bridged hydroxyl (water) decrease almost linearly. Individual band's peak position and area under the curve have been successfully correlated with the carbonate and hydroxyl content of LDH. Due to lowering of symmetry of the carbonate anion, the IR-inactive peak νCsbnd O, symm at 1064 cm-1 becomes IR active. The peak position of metal-oxygen bands and carbonate bending modes are practically unaffected by the Zn2+:Al3+ ratio but the area under the individual M-O bands shows a direct correlation.

  8. Endohedral fullerene with μ3-carbido ligand and titanium-carbon double bond stabilized inside a carbon cage.

    PubMed

    Svitova, A L; Ghiassi, K B; Schlesier, C; Junghans, K; Zhang, Y; Olmstead, M M; Balch, A L; Dunsch, L; Popov, A A

    2014-01-01

    In all metallofullerenes known before this work, metal atoms form single highly polar bonds with non-metal atoms in endohedral cluster. This is rather surprising for titanium taking into account the diversity of organotitanium compounds. Here we show that the arc-discharge synthesis of mixed titanium-lutetium metallofullerenes in the presence of ammonia, melamine or methane unexpectedly results in the formation of TiLu2C@I(h)-C80 with an icosahedral Ih(7) carbon cage. Single-crystal X-ray diffraction and spectroscopic studies of the compound reveal an unprecedented endohedral cluster with a μ3-carbido ligand and Ti-C double bond. The Ti(IV) in TiLu2C@I(h)-C80 can be reversibly reduced to the Ti(III) state. The Ti = C bonding and Ti-localized lowest unoccupied molecular orbital in TiLu2C@Ih-C80 bear a certain resemblance to titanium alkylidenes. TiLu2C@I(h)-C80 is the first metallofullerene with a multiple bond between a metal and the central, non-metal atom of the endohedral cluster. PMID:24699547

  9. Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions

    PubMed Central

    Chen, Jianzhong; Green, Kari B; Nichols, Kelly K

    2015-01-01

    A series of different types of wax esters (represented by RCOOR′) were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS3 (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2]+, [RCO]+ and [RCO – H2O]+ that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: 1) [RCOOH2]+ for saturated wax esters, 2) [RCOOH2]+, [RCO]+ and [RCO – H2O]+ for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and 3) [RCOOH2]+ and [RCO]+ for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R′]+ and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2]+ ions for all types of wax esters and [R′ – 2H]+ ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions. PMID:26178197

  10. Asymmetric Synthesis of Overcrowded Alkenes by Transfer of Axial Single Bond Chirality to Axial Double Bond Chirality.

    PubMed

    Geertsema; Meetsma; Feringa

    1999-09-01

    Optically active overcrowded alkenes were synthesized by employing bis-beta-naphthol as a chiral template during an intramolecular coupling reaction. The major isomer 2 has a unique helical structure with twisted and folded structural moieties. Removal of the chiral template afforded overcrowded thioxanthylidene 3 with 96 % ee, which indicates that no racemization or isomerization of the enantiomers took place. PMID:10508366

  11. Low-lying singlet states of carotenoids having 8-13 conjugated double bonds as determined by electronic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Nakamura, Ryosuke; Kanematsu, Yasuo; Koyama, Yasushi; Nagae, Hiroyoshi; Nishio, Tomohiro; Hashimoto, Hideki; Zhang, Jian-Ping

    2005-07-01

    Electronic absorption spectra were recorded at room temperature in solutions of carotenoids having different numbers of conjugated double bonds, n = 8-13, including a spheroidene derivatives, neurosporene, spheroidene, lycopene, anhydrorhodovibrin and spirilloxanthin. The vibronic states of 1Bu+(v=0-4), 2Ag-(v=0-3), 3Ag- (0) and 1Bu- (0) were clearly identified. The arrangement of the four electronic states determined by electronic absorption spectroscopy was identical to that determined by measurement of resonance Raman excitation profiles [K. Furuichi et al., Chem. Phys. Lett. 356 (2002) 547] for carotenoids in crystals.

  12. An ab initio study of relationships between bond lengths and the harmonic and anharmonic cross-coupling constants involving the double bonds in hetero-atom substituted conjugated dienes

    NASA Astrophysics Data System (ADS)

    Bock, Charles W.; Trachtman, Mendel; George, Philip

    1982-12-01

    The lengths of the terminal double bonds and the central CC single bond, and the cross-coupling constant involving the double bonds, calculated ab initio using the unscaled 4-31G basis set, are reported for 15 planar conformers of conjugated dienes containing the OCC'C″ grouping, 9 planar conformers containing the OCC'N grouping, and 6 planar conformers containing the OCC'O'grouping. The larger values for the CC bond length tend to be associated with the smaller values for the double-bond lengths, and vice versa. A linear relationship holds fairly well between rcc and the sum of the double-bond lengths. The sign of the cross-coupling constant is the same for each type of conjugated diene, negative for foc.c'c″ and foc.c'N' but positive for foc.c'o'. The values of foc.c'c″ and f oc.c'N are larger the smaller rcc' in accord with a linear relationship. For all three types of diene the values for pairs of cis and trans conformers do not differ very much, the ratio fcis/ ftrans being a little greater than 1 in ten cases and a little less than 1 in six cases. This lack of any marked difference between cis and trans conformers suggests that the coupling between the double bonds occurs in the main via the bonded framework of the molecule, and that "through-space" interactions, which would be a special feature of cis conformers, are of relatively little importance.

  13. Role of the protein cavity in phytochrome chromoprotein assembly and double-bond isomerization: a comparison with model compounds.

    PubMed

    Rohmer, Thierry; Lang, Christina; Gärtner, Wolfgang; Hughes, Jon; Matysik, Jörg

    2010-01-01

    Difference patterns of (13)C NMR chemicals shifts for the protonation of a free model compound in organic solution, as reported in the literature (M. Stanek, K. Grubmayr [1998] Chem. Eur. J.4, 1653-1659), were compared with changes in the protonation state occurring during holophytochrome assembly from phycocyanobilin (PCB) and the apoprotein. Both processes induce identical changes in the NMR signals, indicating that the assembly process is linked to protonation of the chromophore, yielding a cationic cofactor in a heterogeneous, quasi-liquid protein environment. The identity of both difference patterns implies that the protonation of a model compound in solution causes a partial stretching of the geometry of the macrocycle as found in the protein. In fact, the similarity of the difference pattern within the bilin family for identical chemical transformations represents a basis for future theoretical analysis. On the other hand, the change of the (13)C NMR chemical shift pattern upon the Pr --> Pfr photoisomerization is very different to that of the free model compound upon ZZZ --> ZZE photoisomerization. Hence, the character of the double-bond isomerization in phytochrome is essentially different from that of a classical photoinduced double-bond isomerization, emphasizing the role of the protein environment in the modulation of this light-induced process. PMID:20492561

  14. Chemical bonding and dynamic fluxionality of a B15(+) cluster: a nanoscale double-axle tank tread.

    PubMed

    Wang, Ying-Jin; You, Xue-Rui; Chen, Qiang; Feng, Lin-Yan; Wang, Kang; Ou, Ting; Zhao, Xiao-Yun; Zhai, Hua-Jin; Li, Si-Dian

    2016-06-21

    A planar, elongated B15(+) cationic cluster is shown to be structurally fluxional and functions as a nanoscale tank tread on the basis of electronic structure calculations, bonding analyses, and molecular dynamics simulations. The outer B11 peripheral ring behaves like a flexible chain gliding around an inner B4 rhombus core, almost freely at the temperature of 500 K. The rotational energy barrier is only 1.37 kcal mol(-1) (0.06 eV) at the PBE0/6-311+G* level, further refined to 1.66 kcal mol(-1) (0.07 eV) at the single-point CCSD(T)/6-311G*//CCSD/6-311G* level. Two soft vibrational modes of 166.3 and 258.3 cm(-1) are associated with the rotation, serving as double engines for the system. Bonding analysis suggests that the "island" electron clouds, both σ and π, between the peripheral ring and inner core flow and shift continuously during the intramolecular rotation, facilitating the dynamic fluxionality of the system with a small rotational barrier. The B15(+) cluster, roughly 0.6 nm in dimension, is the first double-axle nanoscale tank tread equipped with two engines, which expands the concepts of molecular wheels, Wankel motors, and molecular tanks. PMID:27229290

  15. 26 CFR 1.145-2 - Application of private activity bond regulations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... of the private business use test and the private security or payment test mean “5 percent” and “net... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Application of private activity bond regulations... Bonds § 1.145-2 Application of private activity bond regulations. (a) In general. Except as provided...

  16. 26 CFR 1.145-2 - Application of private activity bond regulations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of the private business use test and the private security or payment test mean “5 percent” and “net... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Application of private activity bond regulations... Bonds § 1.145-2 Application of private activity bond regulations. (a) In general. Except as provided...

  17. 26 CFR 1.145-2 - Application of private activity bond regulations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of the private business use test and the private security or payment test mean “5 percent” and “net... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Application of private activity bond regulations... Bonds § 1.145-2 Application of private activity bond regulations. (a) In general. Except as provided...

  18. 26 CFR 1.145-2 - Application of private activity bond regulations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of the private business use test and the private security or payment test mean “5 percent” and “net... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Application of private activity bond regulations... Bonds § 1.145-2 Application of private activity bond regulations. (a) In general. Except as provided...

  19. 26 CFR 1.145-2 - Application of private activity bond regulations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of the private business use test and the private security or payment test mean “5 percent” and “net... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Application of private activity bond regulations... Bonds § 1.145-2 Application of private activity bond regulations. (a) In general. Except as provided...

  20. A theoretical view on CrO2+-mediated C-H bond activation in ethane

    NASA Astrophysics Data System (ADS)

    Tong, YongChun; Zhang, XiaoYong; Wang, QingYun; Xu, XinJian; Wang, YongCheng

    2015-06-01

    The gas-phase reaction of C-H bond activation in ethane by CrO2+ has been investigated using density functional theory (DFT) at the UB3LYP/6-311G(2d,p) level. Our results reveal that the activation process is actually a spin-forbidden reaction. The involved crossing point between the doublet and quartet potential energy surfaces (PES) has been discussed by two well-known methods, i.e., intrinsic reaction coordinate (IRC) approach for crossing point (CP) and Harvey's algorithm for minimum energy crossing point (MECP). The obtained single ( P1ISC = 2.48 × 10-3) and double ( P1ISC = 4.95 × 10-3) passes estimated at MECP show that the intersystem crossing (ISC) occurs with a little probability. The C-H bond activation processes should proceed to be endothermic by 73.16 kJ/mol on the doublet surface without any spin change.

  1. Chemically Non-Innocent Cyclic (Alkyl)(Amino)Carbenes: Ligand Rearrangement, C-H and C-F Bond Activation.

    PubMed

    Turner, Zoë R

    2016-08-01

    A cyclic (alkyl)(amino)carbene (CAAC) was found to undergo unprecedented rearrangements and transformations of its core structure in the presence of Group 1 and 2 metals. Although the carbene was also found to be prone to intramolecular C-H activation, it was competent for intermolecular activation of a variety of sp-, sp(2) -, and sp(3) -hybridized C-H bonds. Double C-F activation of hexafluorobenzene was also observed in this work. These processes all hold relevance to the role of these carbenes in catalysis, as well as to their use in the synthesis of new and unusual main group or transition metal complexes. PMID:27363588

  2. Theoretical in-Solution Conformational/Tautomeric Analyses for Chain Systems with Conjugated Double Bonds Involving Nitrogen(s)

    PubMed Central

    Nagy, Peter I.

    2015-01-01

    Conformational/tautomeric transformations for X=CH–CH=Y structures (X = CH2, O, NH and Y = NH) have been studied in the gas phase, in dichloromethane and in aqueous solutions. The paper is a continuation of a former study where s-cis/s-trans conformational equilibria were predicted for analogues. The s-trans conformation is preferred for the present molecules in the gas phase on the basis of its lowest internal free energy as calculated at the B97D/aug-cc-pvqz and CCSD(T)CBS (coupled-cluster singles and doubles with non-iterative triples extrapolated to the complete basis set) levels. Transition state barriers are of 29–36 kJ/mol for rotations about the central C–C bonds. In solution, an s-trans form is still favored on the basis of its considerably lower internal free energy compared with the s-cis forms as calculated by IEF-PCM (integral-equation formalism of the polarizable continuum dielectric solvent model) at the theoretical levels indicated. A tetrahydrate model in the supermolecule/continuum approach helped explore the 2solute-solvent hydrogen bond pattern. The calculated transition state barrier for rotation about the C–C bond decreased to 27 kJ/mol for the tetrahydrate. Considering explicit solvent models, relative solvation free energies were calculated by means of the free energy perturbation method through Monte Carlo simulations. These calculated values differ remarkably from those by the PCM approach in aqueous solution, nonetheless the same prevalent conformation was predicted by the two methods. Aqueous solution structure-characteristics were determined by Monte Carlo. Equilibration of conformers/tautomers through water-assisted double proton-relay is discussed. This mechanism is not viable, however, in non-protic solvents where the calculated potential of mean force curve does not predict remarkable solute dimerization and subsequent favorable orientation. PMID:25984602

  3. Accurate Bond Energies of Hydrocarbons from Complete Basis Set Extrapolated Multi-Reference Singles and Doubles Configuration Interaction

    SciTech Connect

    Oyeyemi, Victor B.; Pavone, Michele; Carter, Emily A.

    2011-11-03

    Quantum chemistry has become one of the most reliable tools for characterizing the thermochemical underpinnings of reactions, such as bond dissociation energies (BDEs). The accurate prediction of these particular properties (BDEs) are challenging for ab initio methods based on perturbative corrections or coupled cluster expansions of the single-determinant Hartree-Fock wave function: the processes of bond breaking and forming are inherently multi-configurational and require an accurate description of non-dynamical electron correlation. To this end, we present a systematic ab initio approach for computing BDEs that is based on three components: (1) multi-reference single and double excitation configuration interaction (MRSDCI) for the electronic energies; (2) a two-parameter scheme for extrapolating MRSDCI energies to the complete basis set limit; and (3) DFT-B3LYP calculations of minimumenergy structures and vibrational frequencies to account for zero point energy and thermal corrections. We validated our methodology against a set of reliable experimental BDE values of C*C and C*H bonds of hydrocarbons. The goal of chemical accuracy is achieved, on average, without applying any empirical corrections to the MRSDCI electronic energies. We then use this composite scheme to make predictions of BDEs in a large number of hydrocarbon molecules for which there are no experimental data, so as to provide needed thermochemical estimates for fuel molecules.

  4. Controlling pore assembly of staphylococcal gamma-haemolysin by low temperature and by disulphide bond formation in double-cysteine LukF mutants.

    PubMed

    Nguyen, Vananh T; Higuchi, Hideo; Kamio, Yoshiyuki

    2002-09-01

    Staphylococcal LukF and Hlg2 are water-soluble monomers of gamma-haemolysin that assemble into oligomeric pores on the erythrocyte membranes. Here, we have created double-cysteine LukF mutants, in which single disulphide bonds connect either the prestem domain and the cap domain (V12C-T136C, Cap-Stem), or two beta-strands within the prestem domain (T117C-T136C, Stem-Stem) to control pore assembly of gamma-haemolysin at intermediate stages. The disulphide-trapped mutants were inactive in erythrocyte lysis, but gained full haemolytic activity if the disulphide bonds were reduced. The disulphide bonds blocked neither the membrane binding ability nor the intermediate prepore oligomerization, but efficiently inhibited the transition from prepores to pores. The prepores of Cap-Stem were dissociated into monomers in 1% SDS. In contrast, the prepores of Stem-Stem were stable in SDS and had ring-shaped structures similar to those of wild-type LukF, as observed by transmission electron microscopy. The transition of both mutants from prepores to pores could even be achieved by reducing disulphide bonds at low temperature (2 degrees C), whereas prepore oligomerization was effectively inhibited by low temperature. Finally, real-time transition of Stem-Stem from prepores to pores on ghost cells, visualized using a Ca2+-sensitive fluorescent indicator (Rhod2), was shown by the sequential appearance of fluorescence spots, indicating pore-opening events. Taken together, these data indicate that the prepores are legitimate intermediates during gamma-haemolysin pore assembly, and that conformational changes around residues 117 and 136 of the prestem domain are essential for pore formation, but not for membrane binding or prepore oligomerization. We propose a mechanism for gamma-haemolysin pore assembly based on the demonstrated intermediates. PMID:12354220

  5. Active sound attenuation across a double wall structure

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Shepherd, Kevin P.

    1991-01-01

    The possibility of achieving significant local and global sound attenuation across a flat double wall is demonstrated. It is also shown that sound can be prevented from entering the interior of a cabinlike environment. The approach used is unlike established active noise control techniques.

  6. Intramolecular hydrogen bond in biologically active o-carbonyl hydroquinones.

    PubMed

    Martínez-Cifuentes, Maximiliano; Weiss-López, Boris E; Santos, Leonardo S; Araya-Maturana, Ramiro

    2014-01-01

    Intramolecular hydrogen bonds (IHBs) play a central role in the molecular structure, chemical reactivity and interactions of biologically active molecules. Here, we study the IHBs of seven related o-carbonyl hydroquinones and one structurally-related aromatic lactone, some of which have shown anticancer and antioxidant activity. Experimental NMR data were correlated with theoretical calculations at the DFT and ab initio levels. Natural bond orbital (NBO) and molecular electrostatic potential (MEP) calculations were used to study the electronic characteristics of these IHB. As expected, our results show that NBO calculations are better than MEP to describe the strength of the IHBs. NBO energies (∆Eij(2)) show that the main contributions to energy stabilization correspond to LP-->σ* interactions for IHBs, O1…O2-H2 and the delocalization LP-->π* for O2-C2=Cα(β). For the O1…O2-H2 interaction, the values of ∆Eij(2) can be attributed to the difference in the overlap ability between orbitals i and j (Fij), instead of the energy difference between them. The large energy for the LP O2-->π* C2=Cα(β) interaction in the compounds 9-Hydroxy-5-oxo-4,8, 8-trimethyl-l,9(8H)-anthracenecarbolactone (VIII) and 9,10-dihydroxy-4,4-dimethylanthracen-1(4H)-one (VII) (55.49 and 60.70 kcal/mol, respectively) when compared with the remaining molecules (all less than 50 kcal/mol), suggests that the IHBs in VIII and VII are strongly resonance assisted. PMID:24995921

  7. Formation of disulfide bonds in insect prophenoloxidase enhances immunity through improving enzyme activity and stability.

    PubMed

    Lu, Anrui; Peng, Qin; Ling, Erjun

    2014-06-01

    Type 3 copper proteins, including insect prophenoloxidase (PPO), contain two copper atoms in the active site pocket and can oxidize phenols. Insect PPO plays an important role in immunity. Insects and other invertebrates show limited recovery from pathogen invasion and wounds if phenoloxidase (PO) activity is low. In most insect PPOs, two disulfide bonds are present near the C-terminus. However, in Pimpla hypochondriaca (a parasitoid wasp), each PPO contains one disulfide bond. We thus questioned whether the formation of two sulfide bonds in insect PPOs improved protein stability and/or increased insect innate immunity over time. Using Drosophila melanogaster PPO1 as a model, one or two disulfide bonds were deleted to evaluate the importance of disulfide bonds in insect immunity. rPPO1 and mutants lacking disulfide bonds could be expressed and showed PO activity. However, the PO activities of mutants lacking one or two disulfide bonds significantly decreased. Deletion of disulfide bonds also reduced PPO thermostability. Furthermore, antibacterial activities against Escherichia coli and Bacillus subtilis significantly decreased when disulfide bonds were deleted. Therefore, the formation of two disulfide bond(s) in insect PPO enhances antibacterial activity by increasing PO activity and stability. PMID:24480295

  8. Construction of hybrid material with double chemical bond from functional bridge ligand: Molecular modification, lotus root-like micromorphology and strong luminescence

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Sui, Yu-Long

    2006-07-01

    Modifying benzoic acid with a cross-linking molecule (3-aminopropyl)triethoxysilane (abbreviated as APES), a fictional molecular bridge with double reactivity was achieved by the amidation reaction between them. Then the modified functional molecule, which behaving as a bridge, both coordinate with terbium ion through amide's oxygen atom and form the Si-O chemical bond in an in situ sol-gel process with matrix precursor (tetraethoxysilane, TEOS). As a result, a novel molecular hybrid material (Tb-BA-APES) with double chemical bond (Tb-O coordination bond and Si-O covalent bond) was constructed. The strong luminescence of Tb 3+ substantiates optimum energy couple and effective intramolecular energy transfer between the triplet state energy of modified ligand bridge and emissive energy level of Tb 3+. Especially SEM of the molecular hybrid material exhibits unexpected microlotus root-like pore morphology.

  9. The stereochemical outcome of electrophilic addition reactions on the 5,6-double bond in the spinosyns.

    PubMed

    De Amicis, C V; Graupner, P R; Erickson, J A; Paschal, J W; Kirst, H A; Creemer, L C; Fanwick, P E

    2001-12-14

    The electrophilic addition of reagents to the 5,6-double bond in spinosyn A and spinosyn D systems occurred with high pi-diastereofacial selectivity. Addition occurred preferentially from the beta face of the molecule with selectivities ranging from 5:1 to better than 30:1. Various NMR properties were investigated in order to distinguish the beta and alpha isomers with the help of theoretical models of the products. These NMR properties include a (13)C gamma effect to C-11 and vicinal coupling between H-4 and H-5. To help rationalize the selectivity, computational studies on the transition states for epoxidation were calculated using density functional theory. The results indicate that beta epoxidation is favored and that the geometries of the transition structures are consistent with torsional steering being the source of the selectivity. PMID:11735521

  10. Double proton transfer and one-electron oxidation behavior in double H-bonded glycinamide-glycine complex in the gas phase.

    PubMed

    Li, Ping; Bu, Yuxiang

    2005-04-30

    The behaviors of double proton transfer (DPT) occurring in a representative glycinamide-glycine complex have been investigated employing the B3LYP/6-311++G** level of theory. Thermodynamic and especially kinetic parameters, such as tautomerization energy, equilibrium constant, and barrier heights have been discussed, respectively. The relevant quantities involved in the DPT process including geometrical changes, interaction energies, and deformation energies have also been studied. Analogous to that of tautomeric process assisted with a formic acid molecule, the participation of a glycine molecule favors the proceeding of the proton transfer (PT) for glycinamide compared with that without mediator-assisted case. The DPT process proceeds with a concerted mechanism rather than a stepwise one because no zwitterionic complexes have been located during the DPT process. The barrier heights are 12.14 and 0.83 kcal/mol for the forward and reverse directions, respectively. However, both of them have been reduced by 3.10 and 2.66 kcal/mol to 9.04 and -1.83 kcal/mol with further inclusion of zero-point vibrational energy (ZPVE) corrections, where the disappearance of the reverse barrier height implies that the reverse reaction should proceed with barrierless spontaneously, analogous to those of DPTs occurring between glycinamide and formic acid (or formamide). Additionally, the oxidation process for the double H-bonded glycinamide-glycine complex has also been investigated. The oxidated product is characterized by a distonic radical cation due to the fact that one-electron oxidation takes place on glycine fragment and a proton has been transferred from glycine to glycinamide fragment spontaneously. As a result, the vertical and adiabatic ionization potentials for the neutral complex have been determined to be about 8.71 and 7.85 eV, respectively, where both of them have been reduced by about 0.54 (1.11) and 0.75 (1.13) eV relative to those of isolated glycinamide (glycine

  11. A monotopic aluminum telluride with an Al=Te double bond stabilized by N-heterocyclic carbenes

    PubMed Central

    Franz, Daniel; Szilvási, Tibor; Irran, Elisabeth; Inoue, Shigeyoshi

    2015-01-01

    Aluminum chalcogenides are mostly encountered in the form of bulk aluminum oxides that are structurally diverse but typically consist of networks with high lattice energy in which the chalcogen atoms bridge the metal centres. This makes their molecular congeners difficult to synthesize because of a pronounced tendency for oligomerization. Here we describe the isolation of the monotopic aluminum chalcogenide (LDipN)AlTe(LEt)2 (LDip=1,3-(2,6-diisopropylphenyl)-imidazolin-2-imine, LEt=1,3-diethyl-4,5-dimethyl-imidazolin-2-ylidene). Unique features of (LDipN)AlTe(LEt)2 are the terminal position of the tellurium atom, the shortest aluminum–tellurium distance hitherto reported for a molecular complex and the highest bond order reported for an interaction between these elements, to the best of our knowledge. At elevated temperature (LDipN)AlTe(LEt)2 equilibrates with dimeric {(LDipN)AlTe(LEt)}2 in which the chalcogen atoms assume their common role as bridges between the metal centres. These findings demonstrate that (LDipN)AlTe(LEt)2 comprises the elusive Al=Te double bond in the form of an N-heterocyclic carbene-stabilized species. PMID:26612781

  12. Energy and structure of bonds in the interaction of organic anions with layered double hydroxide nanosheets: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Tsukanov, A. A.; Psakhie, S. G.

    2016-01-01

    The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered.

  13. Energy and structure of bonds in the interaction of organic anions with layered double hydroxide nanosheets: A molecular dynamics study

    PubMed Central

    Tsukanov, A.A.; Psakhie, S.G.

    2016-01-01

    The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered. PMID:26817816

  14. Energy and structure of bonds in the interaction of organic anions with layered double hydroxide nanosheets: A molecular dynamics study.

    PubMed

    Tsukanov, A A; Psakhie, S G

    2016-01-01

    The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered. PMID:26817816

  15. Carbon–carbon bond activation of cyclobutenones enabled by the addition of chiral organocatalyst to ketone

    PubMed Central

    Li, Bao-Sheng; Wang, Yuhuang; Jin, Zhichao; Zheng, Pengcheng; Ganguly, Rakesh; Chi, Yonggui Robin

    2015-01-01

    The activation of carbon–carbon (C–C) bonds is an effective strategy in building functional molecules. The C–C bond activation is typically accomplished via metal catalysis, with which high levels of enantioselectivity are difficult to achieve due to high reactivity of metal catalysts and the metal-bound intermediates. It remains largely unexplored to use organocatalysis for C–C bond activation. Here we describe an organocatalytic activation of C–C bonds through the addition of an NHC to a ketone moiety that initiates a C–C single bond cleavage as a key step to generate an NHC-bound intermediate for chemo- and stereo-selective reactions. This reaction constitutes an asymmetric functionalization of cyclobutenones using organocatalysts via a C–C bond activation process. Structurally diverse and multicyclic compounds could be obtained with high optical purities via an atom and redox economic process. PMID:25652912

  16. 75 FR 50772 - Agency Information Collection Activities: Importation Bond Structure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... Structure AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ] ACTION: 60-Day... concerning the: Importation Bond Structure. This request for comment is being made pursuant to the Paperwork...: Title: Importation Bond Structure. OMB Number: 1651-0050. Form Numbers: 301 and 5297. Abstract:...

  17. 78 FR 75576 - Agency Information Collection Activities: Importation Bond Structure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... Structure AGENCY: U.S. Customs and Border Protection (CBP), Department of Homeland Security. ACTION: 60-day... Importation Bond Structure. This request for comment is being made pursuant to the Paperwork Reduction Act of... Structure. OMB Number: 1651-0050. Form Number: CBP Forms 301 and 5297. Abstract: Bonds are used to...

  18. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    SciTech Connect

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has

  19. Cholesterol induces surface localization of polyphenols in model membranes thus enhancing vesicle stability against lysozyme, but reduces protection of distant double bonds from reactive-oxygen species.

    PubMed

    de Athayde Moncorvo Collado, Alejandro; Dupuy, Fernando G; Morero, Roberto D; Minahk, Carlos

    2016-07-01

    The main scope of the present study was to analyze the membrane interaction of members of different classes of polyphenols, i.e. resveratrol, naringenin, epigallocatechin gallate and enterodiol, in model systems of different compositions and phase states. In addition, the possible association between membrane affinity and membrane protection against both lipid oxidation and bilayer-disruptive compounds was studied. Gibbs monolayer experiments indicated that even though polyphenols showed poor surface activity, it readily interacted with lipid films. Actually, a preferential interaction with expanded monolayers was observed, while condensed and cholesterol-containing monolayers decreased the affinity of these phenolic compounds. On the other hand, fluorescence anisotropy studies showed that polyphenols were able to modulate membrane order degree, but again this effect was dependent on the cholesterol concentration and membrane phase state. In fact, cholesterol induced a surface rather than deep into the hydrophobic core localization of phenolic compounds in the membranes. In general, the polyphenolic molecules tested had a better antioxidant activity when they were allowed to get inserted into the bilayers, i.e. in cholesterol-free membranes. On the other hand, a membrane-protective effect against bilayer permeabilizing activity of lysozyme, particularly in the presence of cholesterol, could be assessed. It can be hypothesized that phenolic compounds may protect membrane integrity by loosely covering the surface of lipid vesicles, once cholesterol push them off from the membrane hydrophobic core. However, this cholesterol-driven distribution may lead to a reduced antioxidant activity of linoleic acid double bonds. PMID:27063609

  20. Simple but Stronger UO, Double but Weaker UNMe Bonds: The Tale Told by Cp2UO and Cp2UNR

    SciTech Connect

    LPCNO, CNRS-UPS-INSA, INSA Toulouse; Institut Charles Gerhardt, CNRS, Universite Montpellier; Laboratoire de Chimie et Physique Quantiques, CNRS, IRSAMC, Universite Paul Sabatier; Andersen, Richard; Barros, Noemi; Maynau, Daniel; Maron, Laurent; Eisenstein, Odile; Zi, Guofu; Andersen, Richard

    2007-06-27

    The free energies of reaction and the activation energies are calculated, with DFT (B3PW91) and small RECP (relativistic core potential) for uranium, for the reaction of Cp2UNMe and Cp2UO with MeCCMe and H3Si-Cl that yields the corresponding addition products. CAS(2,7) and DFT calculations on Cp2UO and Cp2UNMe give similar results, which validates the use of DFT calculations in these cases. The calculated results mirror the experimental reaction of [1,2,4-(CMe3)3C5H2]2UNMe with dimethylacetylene and [1,2,4-(CMe3)3C5H2]2UO with Me3SiCl. The net reactions are controlled by the change in free energy between the products and reactants, not by the activation energies, and therefore by the nature of the UO and UNMe bonds in the initial and final states. A NBO analysis indicates that the U-O interaction in Cp2UO is composed of a single U-O bond with three lone pairs of electrons localized on oxygen, leading to a polarized U-O fragment. In contrast, the U-NMe interaction in Cp2UNMe is composed of a and component and a lone pairof electrons localized on the nitrogen, resulting in a less polarized UNMe fragment, in accord with the lower electronegativity of NMe relative to O. The strongly polarized U(+)-O(-) bond is calculated to be about 70 kcal mol-1 stronger than the less polarized U=NMe bond.

  1. Design and synthesis of novel derivatives of all-trans retinoic acid demonstrate the combined importance of acid moiety and conjugated double bonds in its binding to PML–RAR-α oncogene in acute promyelocytic leukemia

    PubMed Central

    Schinke, Carolina; Goel, Swati; Bhagat, Tushar D.; Zhou, Li; Mo, Yongkai; Gallagher, Robert; Kabalka, George W.; Platanias, Leonidas C.; Verma, Amit; Das, Bhaskar

    2014-01-01

    The binding of all-trans retinoic acid (ATRA) to retinoid receptor-α (RAR-α) relieves transcriptional repression induced by the promyelocytic leukemia–retinoic acid receptor (PML–RAR) oncoprotein. The ATRA molecule contains a cyclohexenyl ring, a polyene chain containing conjugated double alkene bonds, and a terminal carboxyl group. To determine the contributions of these structural components of ATRA to its clinical efficacy, we synthesized three novel retinoids. These consisted of either a modified conjugated alkene backbone with an intact acid moiety (13a) or a modified conjugated alkene backbone and conversion of the acid group to either an ester (13b) or an aromatic amide (13c). Reporter assays demonstrated that compound 13a successfully relieved transcriptional repression by RAR-α, while 13b and 13c could not, demonstrating the critical role of the acid moiety in this binding. However, only ATRA was able to significantly inhibit the proliferation of APL cells while 13a, 13b, or 13c was not. Furthermore, only 13a led to partial non-significant differentiation of NB4 cells, demonstrating the importance of C9–C10 double bonds in differentiation induced CD11 expression. Our results demonstrate that both the acid moiety and conjugated double bonds present in the ATRA molecule are important for its biological activity in APL and have important implications for the design of future novel retinoids. PMID:20536349

  2. The Stereoselective Formation of Bicyclic Enamines with Bridgehead Unsaturation via Tandem C-H Bond Activation/Alkenylation/Electrocyclization

    SciTech Connect

    Ellman, Jonathan A.; Yotphan, Sirilata; Bergman, Robert

    2007-12-10

    Rhodium-catalyzed intermolecular C-H activation of {alpha}, {beta}-unsaturated imines in the presence of alkynes leads to a tandem process in which coupling to the alkyne occurs at the {beta}-C-H bond of the imine, followed by electrocyclization of the resulting azatriene intermediates to give dihydropyridines (eq 1). Consideration of the intramolecular version of this overall transformation (Scheme 1) raises interesting regiochemical issues. For example in a compound such as 1, where the nitrogen and alkyne are connected by a 4-carbon tether, the presumed first-formed hydrido(vinyl)rhodium function can add to the triple bond in a 1,2-fashion, producing complex 2 with a new endocyclic double bond. Alternatively, addition might occur in a 2,1-fashion, leading to product 4 with an exocyclic double bond. We now wish to report that this intramolecular cyclization occurs smoothly at 100 C, and the exocyclic double bond route is exclusively followed. Remarkably, products such as 4 do not resist further cyclization. Even though both the transition state for this process and the resulting product are presumably strained, the overall transformation leads to good yields of unusual bridgehead doubly-bonded enamines such as 5. The unique chemistry of conjugated enamine 5 is consistent with the increased strain of this molecule as well as with inhibited conjugation between the nitrogen lone pair and the adjacent double bond (vida infra). We began our investigation into the C-H activation/cyclization of alkyne-tethered imine 1 by extensive screening of transition metal catalysts for this process. Rhodium-based catalysts were found to be the most efficient (Table 1), leading exclusively to the bridgehead dienamine; none of the catalysts that were employed in the screening led to quinolizidine 3 or to the product of intramolecular Diels-Alder reaction. The optimized reaction conditions employ the electron-rich monophosphine ligand (p-NMe{sub 2})PhPEt{sub 2} in 1:1 ratio relative

  3. Radical formation in the FMN-photosensitized reactions of unsaturated fatty acids bearing double bonds at different positions.

    PubMed

    Nishihama, Nao; Iwahashi, Hideo

    2016-08-15

    Although the reaction mechanisms through which flavin mononucleotide works as an endogenous photosensitizer have been investigated (Baier et al., 2006; Edwards and Silva, 2001; Pajares et al., 2001; Criado et al., 2003; Massad et al., 2008) [23-27], few studies have been performed for the reactions of flavin mononucleotide with unsaturated fatty acids. To examine the reactions of flavin mononucleotide with unsaturated fatty acids bearing a double bond at different positions, an electron spin resonance, a high performance liquid chromatography-electron spin resonance and a high performance liquid chromatography-electron spin resonance-mass spectrometry were employed. The control reaction mixtures contained 25μmolL(-1) of flavin mononucleotide, 1.0mmolL(-1) of FeSO4(NH4)2SO4, 10mmolL(-1) of cholic acid, 30mmolL(-1) of phosphate buffer (pH 7.4) and 0.1molL(-1) of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone in deuterium oxide. In addition, it also contained 4.3mmolL(-1) of one of the following: (z)-11-octadecenoic acid, (z)-6-octadecenoic acid, (z)-9-octadecenoic acid or (z, z)-9, 12-octadecadienoic acid. The control reaction mixtures without FeSO4(NH4)2SO4 and α-(4-pyridyl-1-oxide)-N-tert-butylnitrone were exposed to the visible light at 436nm (7.8Jcm(-2)). After the irradiation, α-(4-pyridyl-1-oxide)-N-tert-butylnitrone was added. The reactions started from adding FeSO4(NH4)2SO4 and performed at 25°C for 1min. Electron spin resonance measurements of the control reaction mixtures showed prominent signals (α(N)=1.58mT and α(Hβ)=0.26mT). High performance liquid chromatography-electron spin resonance analyses of the control reaction mixtures showed prominent peaks at the retention times of 31.1min {(z)-6-octadecenoic acid}, 39.6min {(z)-9-octadecenoic acid}, 44.9min {(z)-11-octadecenoic acid} and 40.2min {(z, z)-9, 12-octadecadienoic acid}. High performance liquid chromatography-electron spin resonance-mass analyses of the control reaction mixtures showed that 4

  4. 26 CFR 1.103(n)-3T - Private activity bond limit (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Private activity bond limit (temporary). 1.103(n)-3T Section 1.103(n)-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY....103(n)-3T Private activity bond limit (temporary). Q-1: What is the “State ceiling”? A-1: In...

  5. 26 CFR 1.103(n)-3T - Private activity bond limit (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Private activity bond limit (temporary). 1.103(n)-3T Section 1.103(n)-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY....103(n)-3T Private activity bond limit (temporary). Q-1: What is the “State ceiling”? A-1: In...

  6. 26 CFR 1.103(n)-3T - Private activity bond limit (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Private activity bond limit (temporary). 1.103(n)-3T Section 1.103(n)-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY....103(n)-3T Private activity bond limit (temporary). Q-1: What is the “State ceiling”? A-1: In...

  7. 26 CFR 1.103(n)-3T - Private activity bond limit (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Private activity bond limit (temporary). 1.103(n)-3T Section 1.103(n)-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY....103(n)-3T Private activity bond limit (temporary). Q-1: What is the “State ceiling”? A-1: In...

  8. 26 CFR 1.103(n)-3T - Private activity bond limit (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Private activity bond limit (temporary). 1.103(n)-3T Section 1.103(n)-3T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY....103(n)-3T Private activity bond limit (temporary). Q-1: What is the “State ceiling”? A-1: In...

  9. A method of coupling the Paternò-Büchi reaction with direct infusion ESI-MS/MS for locating the C[double bond, length as m-dash]C bond in glycerophospholipids.

    PubMed

    Stinson, Craig A; Xia, Yu

    2016-06-21

    Tandem mass spectrometry (MS/MS) coupled with soft ionization is established as an essential platform for lipid analysis; however, determining high order structural information, such as the carbon-carbon double bond (C[double bond, length as m-dash]C) location, remains challenging. Recently, our group demonstrated a method for sensitive and confident lipid C[double bond, length as m-dash]C location determination by coupling online the Paternò-Büchi (PB) reaction with nanoelectrospray ionization (nanoESI) and MS/MS. Herein, we aimed to expand the scope of the PB reaction for lipid analysis by enabling the reaction with infusion ESI-MS/MS at much higher flow rates than demonstrated in the nanoESI setup (∼20 nL min(-1)). In the new design, the PB reaction was effected in a fused silica capillary solution transfer line, which also served as a microflow UV reactor, prior to ESI. This setup allowed PB reaction optimization and kinetics studies. Under optimized conditions, a maximum of 50% PB reaction yield could be achieved for a standard glycerophosphocholine (PC) within 6 s of UV exposure over a wide flow rate range (0.1-10 μL min(-1)). A solvent composition of 7 : 3 acetone : H2O (with 1% acid or base modifier) allowed the highest PB yields and good lipid ionization, while lower yields were obtained with an addition of a variety of organic solvents. Radical induced lipid peroxidation was identified to induce undesirable side reactions, which could be effectively suppressed by eliminating trace oxygen in the solution via N2 purge. Finally, the utility of coupling the PB reaction with infusion ESI-MS/MS was demonstrated by analyzing a yeast polar lipid extract where C[double bond, length as m-dash]C bond locations were revealed for 35 glycerophospholipids (GPs). PMID:26892746

  10. Calculation of activation energies for hydrogen-atom abstractions by radicals containing carbon triple bonds

    NASA Technical Reports Server (NTRS)

    Brown, R. L.; Laufer, A. H.

    1981-01-01

    Activation energies are calculated by the bond-energy-bond-order (BEBO) and the bond-strength-bond-length (BSBL) methods for the reactions of C2H radicals with H2, CH4, and C2H6 and for the reactions of CN radicals with H2 and CH4. The BSBL technique accurately predicts the activation energies for these reactions while the BEBO method yields energies averaging 9 kcal higher than those observed. A possible reason for the disagreement is considered.

  11. Human Defensin 5 Disulfide Array Mutants: Disulfide Bond Deletion Attenuates Antibacterial Activity Against Staphylococcus aureus

    PubMed Central

    Wanniarachchi, Yoshitha A.; Kaczmarek, Piotr; Wan, Andrea; Nolan, Elizabeth M.

    2011-01-01

    Human α-defensin 5 (HD5, HD5ox to specify the oxidized and disulfide linked form) is a 32-residue cysteine-rich host-defense peptide, expressed and released by small intestinal Paneth cells, that exhibits antibacterial activity against a number of Gram-negative and –positive bacterial strains. To ascertain the contributions of its disulfide array to structure, antimicrobial activity, and proteolytic stability, a series of HD5 double mutant peptides where pairs of cysteine residues corresponding to native disulfide linkages (Cys3—Cys31, Cys5—Cys20, Cys10—Cys30) were mutated to Ser or Ala residues were overexpressed in E. coli, purified and characterized. A hexa mutant peptide, HD5[Serhexa], where all six native Cys residues are replaced by Ser residues was also evaluated. Removal of a single native S—S linkage influences oxidative folding and regioisomerization, antibacterial activity, Gram-negative bacterial membrane permeabilization, and proteolytic stability. Whereas the majority of the HD5 mutant peptides show low-micromolar activity against Gram-negative E. coli ATCC 25922 in colony counting assays, the wild-type disulfide array is essential for low-micromolar activity against Gram-positive S. aureus ATCC 25923. Removal of a single disulfide bond attenuates the activity observed for HD5ox against this Gram-positive bacterial strain. This observation supports the notion that the HD5ox mechanism of antibacterial action differs for Gram-negative and Gram-positive species (Wei, G.; de Leeuw, E., Pazgier, M., Yuan, W., Zou, G., Wang, J., Ericksen, B., Lu, W.-Y.; Lehrer, R. I.; Lu, W. (2009) J. Biol. Chem. 284, 29180-29192), and that the native disulfide array is a requirement for its activity against S. aureus. PMID:21861459

  12. Surface-Controlled Mono/Diselective ortho C-H Bond Activation.

    PubMed

    Li, Qing; Yang, Biao; Lin, Haiping; Aghdassi, Nabi; Miao, Kangjian; Zhang, Junjie; Zhang, Haiming; Li, Youyong; Duhm, Steffen; Fan, Jian; Chi, Lifeng

    2016-03-01

    One of the most charming and challenging topics in organic chemistry is the selective C-H bond activation. The difficulty arises not only from the relatively large bond-dissociation enthalpy, but also from the poor reaction selectivity. In this work, Au(111) and Ag(111) surfaces were used to address ortho C-H functionalization and ortho-ortho couplings of phenol derivatives. More importantly, the competition between dehydrogenation and deoxygenation drove the diversity of reaction pathways of phenols on surfaces, that is, diselective ortho C-H bond activation on Au(111) surfaces and monoselective ortho C-H bond activation on Ag(111) surfaces. The mechanism of this unprecedented phenomenon was extensively explored by scanning tunneling microscopy, density function theory, and X-ray photoelectron spectroscopy. Our findings provide new pathways for surface-assisted organic synthesis via the mono/diselective C-H bond activation. PMID:26853936

  13. Cholesterol interactions with tetracosenoic acid phospholipids in model cell membranes: role of the double-bond position.

    PubMed

    Ayanoglu, E; Chiche, B H; Beatty, M; Djerassi, C; Düzgüneş, N

    1990-04-10

    The synthesis and thermotropic properties of 1,2-di-(9Z)-9-tetracosenoylphosphatidylcholine [delta 9-PC(24:1,24:1), 1], 1,2-di-(5Z)-5-tetracosenoylphosphatidylcholine [delta 5-PC(24:1,24:1), 2], and 1,2-di-(15Z)-15- tetracosenoylphosphatidylcholine [delta 15-PC(24:1,24:1), 3] are reported. Liposomes prepared from these phospholipids differ from those of the natural sponge phospholipids, 1,2-di-(5Z,9Z)-5,9-hexacosadienoylphosphatidylcholine (4a) and the corresponding ethanolamine (4b), both of which virtually exclude cholesterol from their bilayers. The behavior of 1 and 2 is similar to that of 1,2-di-(6Z,9Z)-6,9-hexacosadienoylphosphatidylcholine (5), which exhibits a partial molecular interaction with cholesterol. In the case of 3, cholesterol appears to interact with the saturated acyl chain regions of this phospholipid in a manner similar to that of its interaction with DPPC acyl chains. This study delineates the effect of the double-bond location in long fatty acyl chains of phospholipids on their interactions with cholesterol. PMID:2354147

  14. Influence of preheating the bonding agent of a conventional three-step adhesive system and the light activated resin cement on dentin bond strength

    PubMed Central

    Holanda, Daniel Brandão Vilela; França, Fabiana Mantovani Gomes; do Amaral, Flávia Lucisano Botelho; Flório, Flávia Martão; Basting, Roberta Tarkany

    2013-01-01

    Aims: to evaluate the influence of preheating the bonding agent (Scotchbond Multipurpose Adhesive/3M ESPE) and the light-activated resin cement (RelyX Venner/3M ESPE) on dentin microtensile bond strength. Materials and Methods: The exposed flat dentin surface of 40 human third molars were randomly distributed into four groups for cementation (SR Adoro/Ivoclar Vivadent) (n = 10): G1-bond and resin cement, both at room temperature (22°C), G2-bond preheated to 58°C and cement at room temperature (22°C), G3-bond at room temperature (22°C) and the cement preheated to 58°C, G4-bond preheated to 58°C and cement preheated to 58°C. Sticks of dentin/block set measuring approximately 1 mm2 were obtained and used for the microtensile bond strength test. All sticks had their failure mode classified. Statistical analysis used: Factorial analysis of variance was applied, 2 × 2 (bond × cement) (P < 0.05). Results: Preheating the bonding agent (P = 0.8411) or the cement (P = 0.7155), yielded no significant difference. The interaction bond × cement was not significant (P = 0.9389). Conclusions: Preheating the bond and/or the light-activated resin cement did not influence dentin bond strength or fracture failure mode. PMID:24347889

  15. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    PubMed Central

    Ilg, Andrea; Bruno, Mark; Beyer, Peter; Al-Babili, Salim

    2014-01-01

    The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. PMID:25057464

  16. 75 FR 68809 - Agency Information Collection Activities: Importation Bond Structure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... information collection was previously published in the Federal Register (75 FR 50772) on August 17, 2010... Structure AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ACTION: 30-day notice... review and approval in accordance with the Paperwork Reduction Act: Importation Bond Structure. This is...

  17. Repeatable mechanochemical activation of dynamic covalent bonds in thermoplastic elastomers.

    PubMed

    Imato, Keiichi; Kanehara, Takeshi; Nojima, Shiki; Ohishi, Tomoyuki; Higaki, Yuji; Takahara, Atsushi; Otsuka, Hideyuki

    2016-08-18

    Repeated mechanical scission and recombination of dynamic covalent bonds incorporated in segmented polyurethane elastomers are demonstrated by utilizing a diarylbibenzofuranone-based mechanophore and by the design of the segmented polymer structures. The repeated mechanochemical reactions can accompany clear colouration and simultaneous fading. PMID:27424868

  18. Rhodium mediated bond activation: from synthesis to catalysis

    SciTech Connect

    Ho, Hung-An

    2012-01-01

    Recently, our lab has developed monoanionic tridentate ligand, ToR, showing the corresponding coordination chemistry and catalyst reactivity of magnesium, zirconium, zinc and iridium complexes. This thesis details synthetic chemistry, structural study and catalytic reactivity of the ToR-supported rhodium compounds. Tl[ToR] has been proved to be a superior ligand transfer agent for synthesizing rhodium complexes. The salt metathesis route of Tl[ToM] with [Rh(μ-Cl)(CO)]2 and [Rh(μ- Cl)(COE)]2 gives ToMRh(CO)2 (2.2) and ToMRhH(β3-C8H13) (3.1) respectively while Tl[ToM] with [Rh(μ-Cl)(CO)]2 affords ToPRh(CO)2 (2.3). 2.2 reacts with both strong and weak electrophiles, resulting in the oxazoline N-attacked and the metal center-attacked compounds correspondingly. Using one of the metal center-attacked electrophiles, 2.3 was demonstrated to give high diastereoselectivity. Parallel to COE allylic C-H activation complex 3.1, the propene and allylbenzene allylic C-H activation products have also been synthesized. The subsequent functionalization attempts have been examined by treating with Brønsted acids, Lewis acids, electrophiles, nucleophiles, 1,3-dipolar reagents and reagents containing multiple bonds able to be inserted. Various related complexes have been obtained under these conditions, in which one of the azide insertion compounds reductively eliminates to give an allylic functionalization product stoichiometrically. 3.1 reacts with various primary alcohols to give the decarbonylation dihydride complex ToMRh(H)2CO (4.1). 4.1 shows catalytic reactivity for primary alcohol decarbonylation under a photolytic condition. Meanwhile, 2.2 has been found to be more reactive than 4.1 for catalytic alcohol decarbonylation under the same condition. Various complexes and primary

  19. Boron- and Nitrogen-Doped Phenalenyls: Unexpected 2e/ and 4e/all-sites pi-pi Covalency and Genuine Pancake Double Bonding

    DOE PAGESBeta

    Tian, Yong-Hui; Huang, Jingsong; Sumpter, Bobby G

    2015-01-01

    Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. The covalent pi-pi bonding overlap is distributedmore » on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.« less

  20. Palladium-Catalyzed Deaminative Phenanthridinone Synthesis from Aniline via C-H Bond Activation.

    PubMed

    Yedage, Subhash L; Bhanage, Bhalchandra M

    2016-05-20

    This work reports palladium-catalyzed phenanthridinone synthesis using the coupling of aniline and amide by formation of C-C and C-N bonds in a one-pot fashion via dual C-H bond activation. It involves simultaneous cleavage of four bonds and the formation of two new bonds. The present protocol is ligand-free, takes place under mild reaction conditions, and is environmentally benign as nitrogen gas and water are the only side products. This transformation demonstrates a broad range of aniline and amide substrates with different functional groups and has been scaled up to gram level. PMID:27088815

  1. Merging photoredox catalysis with Lewis acid catalysis: activation of carbon-carbon triple bonds.

    PubMed

    Jin, Ruiwen; Chen, Yiyong; Liu, Wangsheng; Xu, Dawen; Li, Yawei; Ding, Aishun; Guo, Hao

    2016-08-01

    Here, we demonstrate that merging photoredox catalysis with Lewis acid catalysis provides a fundamentally new activation mode of C-C triple bonds, to achieve the bond-forming reaction of alkynes with weak nucleophiles. Using a synergistic merger of Eosin Y and Cu(OTf)2, a highly efficient cyclization reaction of arene-ynes was developed. PMID:27432542

  2. 43 CFR 3214.12 - What activities must my bond cover?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What activities must my bond cover? 3214.12 Section 3214.12 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Personal and Surety Bonds § 3214.12 What...

  3. 77 FR 26024 - Agency Information Collection Activities: Bonded Warehouse Proprietor's Submission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... previously published in the Federal Register (77 FR 6814) on February 9, 2012, allowing for a 60-day comment... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Bonded Warehouse... approval in accordance with the Paperwork Reduction Act: Bonded Warehouse Proprietor's Submission (CBP...

  4. 26 CFR 1.103(n)-2T - Private activity bond defined (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Private activity bond defined (temporary). 1.103....103(n)-2T Private activity bond defined (temporary). Q-1: What is the definition of the term “private activity bond”? A-1: In general, for purposes of §§ 1.103(n)-1T through 1.103(n)-6T, the term...

  5. 26 CFR 1.103(n)-2T - Private activity bond defined (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Private activity bond defined (temporary). 1.103....103(n)-2T Private activity bond defined (temporary). Q-1: What is the definition of the term “private activity bond”? A-1: In general, for purposes of §§ 1.103(n)-1T through 1.103(n)-6T, the term...

  6. Thermally-Activated Metal-to-Glass Bonding

    NASA Technical Reports Server (NTRS)

    Gallagher, B. D.

    1986-01-01

    Hermetic seals formed easily by use of metallo-organic film. Metallo-organic film thermally bonded to glass and soldered or welded to form hermetic seal. Film applied as ink consisting of silver neodecanoate in xylene. Relative amounts of ingredients selected to obtain desired viscosity. Material applied by printing or even by scribing with pen. Sealing technique useful in making solar-cell modules, microelectronic packages, and other hermetic silicon devices.

  7. Quantification of primary versus secondary C-H bond cleavage in alkane activation: Propane on Pt

    SciTech Connect

    Weinberg, W.H.; Sun, Yongkui )

    1991-08-02

    The trapping-mediated dissociative chemisorption of three isotopes of propane (C{sub 3}H{sub 8}, CH{sub 3}, CD{sub 2}CH{sub 3}, and C{sub 3}D{sub 8}) has been investigated on the Pt(110)-(1 {times} 2) surface, and both the apparent activation energies and the preexponential factors of the surface reaction rate coefficients have been measured. In addition, the probabilities of primary and secondary C-H bond cleavage for alkane activation on a surface were evaluated. The activation energy for primary C-H bond cleavage was 425 calories per mole greater than that of secondary C-H bond cleavage, and the two true activation energies that embody the single measured activation energy were determined for each of the three isotopes. Secondary C-H bond cleavage is also preferred on entropic grounds, and the magnitude of the effect was quantified.

  8. Phosphate-intercalated Ca-Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate

    SciTech Connect

    Woo, Myong A.; Woo Kim, Tae; Paek, Mi-Jeong; Ha, Hyung-Wook; Choy, Jin-Ho; Hwang, Seong-Ju

    2011-01-15

    The nitrate-form of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) was synthesized via co-precipitation method, and its phosphate-intercalates were prepared by ion-exchange reaction. According to X-ray diffraction analysis, the Ca-Fe-LDH-NO{sub 3}{sup -} compound and its H{sub 2}PO{sub 4}{sup -}-intercalate showed hexagonal layered structures, whereas the ion-exchange reaction with HPO{sub 4}{sup 2-} caused a frustration of the layer ordering of LDH. Fe K-edge X-ray absorption spectroscopy clearly demonstrated that the Ca-Fe-LDH lattice with trivalent iron ions was well-maintained after the ion-exchange with HPO{sub 4}{sup 2-} and H{sub 2}PO{sub 4}{sup -}. Under acidic conditions, phosphate ions were slowly released from the Ca-Fe-LDH lattice and the simultaneous release of hydroxide caused the neutralization of acidic media. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. This study strongly suggested that Ca-Fe-LDH is applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil. -- Graphical abstract: We synthesized phosphate-intercalated Ca-Fe-LDH materials that can act as bifunctional inorganic vectors for the slow release of phosphate fertilizer and also the neutralization of acid soil. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. Display Omitted Research Highlights: {yields} The phosphate forms of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) were synthesized via co-precipitation method. The crystal structure, bonding character, and release kinetics of phosphate of the phosphate-intercalates were investigated. These Ca-Fe-LDH materials are applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil.

  9. Development of a three-steps derivatization assay for the localization of double bond in monounsaturated monomers of poly-beta-hydroxyalkanoates by GC-MS.

    PubMed

    Simon-Colin, Christelle; Gouin, Christelle; Lemechko, Pierre; Kervarec, Nelly; Guezennec, Jean

    2012-07-01

    A new gas chromatography-mass spectrometry (GC-MS) method for the localization of double bond in monounsaturated 3-hydroxyalkenoic acids monomers has been developed. A three steps derivation assay was used including a methanolysis, then acetylation and dimethyldisulfide (DMDS) addition to alkene groups. Electron impact GC-MS analysis of such derivatives offers characteristic fragments allowing the unambiguous determination of double bond position in side chain. This novel method is well-suited for the routine analysis of poly-beta-hydroxyalkanoates (PHAs), and was used to characterize monounsaturated monomers in both 3-hydroxyalkenoic acids standards as well as in mcl-PHAs and poly(3-hydroxyoctanoate-co-3-hydroxyundecenoate) (PHOU) produced by bacterial strain Pseudomonas guezennei from glucose or a mixture of sodium octanoate plus 10-undecenoic acid, respectively. PMID:22717557

  10. Synthesis of -C[double bond, length as m-dash]N- linked covalent organic frameworks via the direct condensation of acetals and amines.

    PubMed

    Li, Zhi-Jun; Ding, San-Yuan; Xue, Hua-Dong; Cao, Wei; Wang, Wei

    2016-06-01

    We demonstrate herein a facile approach for constructing -C[double bond, length as m-dash]N- linked COFs from acetals. Three new COFs (imine-linked LZU-20, hydrazone-linked LZU-21, and azine-linked LZU-22) were synthesized by the direct condensation of dimethyl acetals and amines. All the synthesized COFs are highly crystalline and exhibit good thermal stability. PMID:27090755

  11. Origin of the 900 cm{sup −1} broad double-hump OH vibrational feature of strongly hydrogen-bonded carboxylic acids

    SciTech Connect

    Van Hoozen, Brian L.; Petersen, Poul B.

    2015-03-14

    Medium and strong hydrogen bonds are common in biological systems. Here, they provide structural support and can act as proton transfer relays to drive electron and/or energy transfer. Infrared spectroscopy is a sensitive probe of molecular structure and hydrogen bond strength but strongly hydrogen-bonded structures often exhibit very broad and complex vibrational bands. As an example, strong hydrogen bonds between carboxylic acids and nitrogen-containing aromatic bases commonly display a 900 cm{sup −1} broad feature with a remarkable double-hump structure. Although previous studies have assigned this feature to the OH, the exact origin of the shape and width of this unusual feature is not well understood. In this study, we present ab initio calculations of the contributions of the OH stretch and bend vibrational modes to the vibrational spectrum of strongly hydrogen-bonded heterodimers of carboxylic acids and nitrogen-containing aromatic bases, taking the 7-azaindole—acetic acid and pyridine—acetic acid dimers as examples. Our calculations take into account coupling between the OH stretch and bend modes as well as how both of these modes are affected by lower frequency dimer stretch modes, which modulate the distance between the monomers. Our calculations reproduce the broadness and the double-hump structure of the OH vibrational feature. Where the spectral broadness is primarily caused by the dimer stretch modes strongly modulating the frequency of the OH stretch mode, the double-hump structure results from a Fermi resonance between the out of the plane OH bend and the OH stretch modes.

  12. Iridium-Catalyzed Branch-Selective Hydroarylation of Vinyl Ethers via C-H Bond Activation.

    PubMed

    Ebe, Yusuke; Nishimura, Takahiro

    2015-05-13

    Iridium-catalyzed hydroarylation of vinyl ethers via a directed C-H bond activation of aromatic compounds gave high yields of the corresponding addition products with high branch selectivity. PMID:25928127

  13. Analysis of diacylglycerols by ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry: Double bond location and isomers separation.

    PubMed

    Deng, Pan; Zhong, Dafang; Wang, Xi; Dai, Yulu; Zhou, Lei; Leng, Ying; Chen, Xiaoyan

    2016-06-21

    Diacylglycerols (DAGs) are important lipid intermediates and have been implicated in human diseases. Isomerism complicates their mass spectrometric analysis; in particular, it is difficult to identify fatty acid substituents and locate the double bond positions in unsaturated DAGs. We have developed an analytical strategy using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) in conjunction with dimethyl disulfide (DMDS) derivatization and collision cross-section (CCS) measurement to characterize DAGs in biological samples. The method employs non-aqueous reversed-phase chromatographic separation and profile collision energy (CE) mode for MS(E) and MS/MS analyses. Three types of fragment ions were produced simultaneously. Hydrocarbon ions (m/z 50-200) obtained at high CE helped to distinguish unsaturated and saturated DAGs rapidly. Neutral loss ions and acylium ions (m/z 300-400) produced at low CE were used to identify fatty acid substituents. Informative methyl thioalkane fragment ions were used to locate the double bonds of unsaturated DAGs. Mono-methylthio derivatives were formed mainly by the reaction of DAGs with DMDS, where methyl thiol underwent addition to the first double bond farthest from the ester terminus of unsaturated fatty acid chains. The addition of CCS values maximized the separation of isomeric DAG species and improved the confidence of DAG identification. Fourteen DAGs were identified in mouse myotube cells based on accurate masses, characteristic fragment ions, DMDS derivatization, and CCS values. PMID:27188314

  14. Mechanistic and structural studies of apoform, binary, and ternary complexes of the Arabidopsis alkenal double bond reductase At5g16970.

    PubMed

    Youn, Buhyun; Kim, Sung-Jin; Moinuddin, Syed G A; Lee, Choonseok; Bedgar, Diana L; Harper, Athena R; Davin, Laurence B; Lewis, Norman G; Kang, Chulhee

    2006-12-29

    In this study, we determined the crystal structures of the apoform, binary, and ternary complexes of the Arabidopsis alkenal double bond reductase encoded by At5g16970. This protein, one of 11 homologues in Arabidopsis thaliana, is most closely related to the Pinus taeda phenylpropenal double bond reductase, involved in, for example, heartwood formation. Both enzymes also have essential roles in plant defense, and can function by catalyzing the reduction of the 7-8-double bond of phenylpropanal substrates, such as p-coumaryl and coniferyl aldehydes in vitro. At5g16970 is also capable of reducing toxic substrates with the same alkenal functionality, such as 4-hydroxy-(2E)-nonenal. The overall fold of At5g16970 is similar to that of the zinc-independent medium chain dehydrogenase/reductase superfamily, the members of which have two domains and are dimeric in nature, i.e. in contrast to their original classification as being zinc-containing oxidoreductases. As provisionally anticipated from the kinetic data, the shape of the binding pocket can readily accommodate p-coumaryl aldehyde, coniferyl aldehyde, 4-hydroxy-(2E)-nonenal, and 2-alkenals. However, the enzyme kinetic data among these potential substrates differ, favoring p-coumaryl aldehyde. Tyr-260 is provisionally proposed to function as a general acid/base for hydride transfer. A catalytic mechanism for this reduction, and its applicability to related important detoxification mammalian proteins, is also proposed. PMID:17028190

  15. A comparison study: Direct wafer bonding of SiC–SiC by standard surface-activated bonding and modified surface-activated bonding with Si-containing Ar ion beam

    NASA Astrophysics Data System (ADS)

    Mu, Fengwen; Iguchi, Kenichi; Nakazawa, Haruo; Takahashi, Yoshikazu; Fujino, Masahisa; He, Ran; Suga, Tadatomo

    2016-08-01

    In this study, the results of direct wafer bonding of SiC–SiC at room temperature by standard surface-activated bonding (SAB) and modified SAB with a Si-containing Ar ion beam were compared, in terms of bonding energy, interface structure and composition, and the effects of rapid thermal annealing (RTA) at 1273 K in Ar gas. Compared with that obtained by the standard SAB, the bonding interface obtained by the modified SAB with a Si-containing Ar ion beam is ∼30% stronger and almost completely recrystallized without oxidation during RTA, which should be due to the in situ Si compensation during surface activation by the Si-containing Ar ion beam.

  16. Comparison of the kinetics and thermodynamics for methyl radical addition to C=C, C=O, and C=S double bonds.

    PubMed

    Henry, David J; Coote, Michelle L; Gómez-Balderas, Rodolfo; Radom, Leo

    2004-02-18

    The barriers, enthalpies, and rate constants for the addition of methyl radical to the double bonds of a selection of alkene, carbonyl, and thiocarbonyl species (CH(2)=Z, CH(3)CH=Z, and (CH(3))(2)C=Z, where Z = CH(2), O, or S) and for the reverse beta-scission reactions have been investigated using high-level ab inito calculations. The results are rationalized with the aid of the curve-crossing model. The addition reactions proceed via early transition structures in all cases. The barriers for addition of methyl radical to C=C bonds are largely determined by the reaction exothermicities. Addition to the unsubstituted carbon center of C=C double bonds is favored over addition to the substituted carbon center, both kinetically (lower barriers) and thermodynamically (greater exothermicities). The barriers for addition to C=O bonds are influenced by both the reaction exothermicity and the singlet-triplet gap of the substrate. Addition to the carbon center is favored over addition to the oxygen, also both thermodynamically and kinetically. For the thiocarbonyl systems, addition to the carbon center is thermodynamically favored over addition to sulfur. However, in this case, the reaction is contrathermodynamic, addition to the sulfur center having a lower barrier due to spin density considerations. Entropic differences among corresponding addition and beta-scission reactions are relatively minor, and the differences in reaction rates are thus dominated by differences in the respective reaction barriers. PMID:14871104

  17. Surface-Bonded Antimicrobial Activity of an Organosilicon Quaternary Ammonium Chloride

    PubMed Central

    Isquith, A. J.; Abbott, E. A.; Walters, P. A.

    1972-01-01

    The hydrolysis product of 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride exhibited antimicrobial activity against a broad range of microorganisms while chemically bonded to a variety of surfaces. The chemical was not removed from surfaces by repeated washing with water, and its antimicrobial activity could not be attributed to a slow release of the chemical, but rather to the surface-bonded chemical. Images PMID:4650597

  18. Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site

    PubMed Central

    Wang, Lu; Fried, Stephen D.; Boxer, Steven G.; Markland, Thomas E.

    2014-01-01

    Enzymes use protein architectures to create highly specialized structural motifs that can greatly enhance the rates of complex chemical transformations. Here, we use experiments, combined with ab initio simulations that exactly include nuclear quantum effects, to show that a triad of strongly hydrogen-bonded tyrosine residues within the active site of the enzyme ketosteroid isomerase (KSI) facilitates quantum proton delocalization. This delocalization dramatically stabilizes the deprotonation of an active-site tyrosine residue, resulting in a very large isotope effect on its acidity. When an intermediate analog is docked, it is incorporated into the hydrogen-bond network, giving rise to extended quantum proton delocalization in the active site. These results shed light on the role of nuclear quantum effects in the hydrogen-bond network that stabilizes the reactive intermediate of KSI, and the behavior of protons in biological systems containing strong hydrogen bonds. PMID:25503367

  19. Novel biohybrids of layered double hydroxide and lactate dehydrogenase enzyme: Synthesis, characterization and catalytic activity studies

    NASA Astrophysics Data System (ADS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Hidouri, Slah; Namour, Philippe; Jaffrezic-Renault, Nicole; Ben Haj Amara, Abdesslem

    2016-02-01

    The present work introduces new biohybrid materials involving layered double hydroxides (LDH) and biomolecule such as enzyme to produce bioinorganic system. Lactate dehydrogenase (Lac Deh) has been chosen as a model enzyme, being immobilized onto MgAl and ZnAl LDH materials via direct ion-exchange (adsorption) and co-precipitation methods. The immobilization efficiency was largely dependent upon the immobilization methods. A comparative study shows that the co-precipitation method favors the immobilization of great and tunable amount of enzyme. The structural behavior, chemical bonding composition and morphology of the resulting biohybrids were determined by X-ray diffraction (XRD) study, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM), respectively. The free and immobilized enzyme activity and kinetic parameters were also reported using UV-Visible spectroscopy. However, the modified LDH materials showed a decrease in crystallinity as compared to the unmodified LDH. The change in activity of the immobilized lactate dehydrogenase was considered to be due, to the reduced accessibility of substrate molecules to the active sites of the enzyme and the partial conformational change of the Lac Deh molecules as a result of the immobilization way. Finally, it was proven that there is a correlation between structure/microstructure and enzyme activity dependent on the immobilization process.

  20. Quantification of Electrophilic Activation by Hydrogen-Bonding Organocatalysts

    PubMed Central

    2015-01-01

    A spectrophotometric sensor is described that provides a useful assessment of the LUMO-lowering provided by catalysts in Diels–Alder and Friedel–Crafts reactions. A broad range of 33 hydrogen-bonding catalysts was assessed with the sensor, and the relative rates in the above reactions spanned 5 orders of magnitude as determined via 1H- and 2H NMR spectroscopic measurements, respectively. The differences between the maximum wavelength shift of the sensor with and without catalyst (Δλmax–1) were found to correlate linearly with ln(krel) values for both reactions, even though the substrate feature that interacts with the catalyst differs significantly (ketone vs nitro). The sensor provides an assessment of both the inherent reactivity of a catalyst architecture as well as the sensitivity of the reaction to changes within an architecture. In contrast, catalyst pKa values are a poor measure of reactivity, although correlations have been identified within catalyst classes. PMID:25325850

  1. Time resolved studies of bond activation by organometallic complexes

    SciTech Connect

    Wilkens, M J

    1998-05-01

    In 1971, Jetz and Graham discovered that the silicon-hydrogen bond in silanes could be broken under mild photochemical conditions in the presence of certain transition metal carbonyls. Such reactions fall within the class of oxidative addition. A decade later, similar reactivity was discovered in alkanes. In these cases a C-H bond in non-functionalized alkanes was broken through the oxidative addition of Cp*Ir(H){sub 2}L (Cp* = (CH{sub 3}){sub 5}C{sub 5}, L = PPh{sub 3}, Ph = C{sub 6}H{sub 5}) to form Cp*ML(R)(H) or of Cp*Ir(CO){sub 2} to form Cp*Ir(CO)(R)(H). These discoveries opened an entirely new field of research, one which naturally included mechanistic studies aimed at elucidating the various paths involved in these and related reactions. Much was learned from these experiments but they shared the disadvantage of studying under highly non-standard conditions a system which is of interest largely because of its characteristics under standard conditions. Ultrafast time-resolved IR spectroscopy provides an ideal solution to this problem; because it allows the resolution of chemical events taking place on the femto-through picosecond time scale, it is possible to study this important class of reactions under the ambient conditions which are most of interest to the practicing synthetic chemist. Certain of the molecules in question are particularly well-suited to study using the ultrafast IR spectrophotometer described in the experimental section because they contain one or more carbonyl ligands.

  2. (BB)-Carboryne Complex of Ruthenium: Synthesis by Double B–H Activation at a Single Metal Center

    PubMed Central

    2016-01-01

    The first example of a transition metal (BB)-carboryne complex containing two boron atoms of the icosahedral cage connected to a single exohedral metal center (POBBOP)Ru(CO)2 (POBBOP = 1,7-OP(i-Pr)2-2,6-dehydro-m-carborane) was synthesized by double B–H activation within the strained m-carboranyl pincer framework. Theoretical calculations revealed that the unique three-membered (BB)>Ru metalacycle is formed by two bent B–Ru σ-bonds with the concomitant increase of the bond order between the two metalated boron atoms. The reactivity of the highly strained electron-rich (BB)-carboryne fragment with small molecules was probed by reactions with electrophiles. The carboryne–carboranyl transformations reported herein represent a new mode of cooperative metal–ligand reactivity of boron-based complexes. PMID:27526855

  3. (BB)-Carboryne Complex of Ruthenium: Synthesis by Double B-H Activation at a Single Metal Center.

    PubMed

    Eleazer, Bennett J; Smith, Mark D; Popov, Alexey A; Peryshkov, Dmitry V

    2016-08-24

    The first example of a transition metal (BB)-carboryne complex containing two boron atoms of the icosahedral cage connected to a single exohedral metal center (POBBOP)Ru(CO)2 (POBBOP = 1,7-OP(i-Pr)2-2,6-dehydro-m-carborane) was synthesized by double B-H activation within the strained m-carboranyl pincer framework. Theoretical calculations revealed that the unique three-membered (BB)>Ru metalacycle is formed by two bent B-Ru σ-bonds with the concomitant increase of the bond order between the two metalated boron atoms. The reactivity of the highly strained electron-rich (BB)-carboryne fragment with small molecules was probed by reactions with electrophiles. The carboryne-carboranyl transformations reported herein represent a new mode of cooperative metal-ligand reactivity of boron-based complexes. PMID:27526855

  4. 26 CFR 1.103(n)-4T - Elective carryforward of unused private activity bond limit (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... unused private activity bond limit in order to provide a sports facility described in section 103(b)(4)(B... carry forward its unused private activity bond limit in order to issue an exempt small issue of... bond limit (temporary). 1.103(n)-4T Section 1.103(n)-4T Internal Revenue INTERNAL REVENUE...

  5. 26 CFR 1.103(n)-4T - Elective carryforward of unused private activity bond limit (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... unused private activity bond limit in order to provide a sports facility described in section 103(b)(4)(B... carry forward its unused private activity bond limit in order to issue an exempt small issue of... bond limit (temporary). 1.103(n)-4T Section 1.103(n)-4T Internal Revenue INTERNAL REVENUE...

  6. 26 CFR 1.103(n)-4T - Elective carryforward of unused private activity bond limit (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... unused private activity bond limit in order to provide a sports facility described in section 103(b)(4)(B... carry forward its unused private activity bond limit in order to issue an exempt small issue of... bond limit (temporary). 1.103(n)-4T Section 1.103(n)-4T Internal Revenue INTERNAL REVENUE...

  7. Production of the Ramoplanin Activity Analogue by Double Gene Inactivation

    PubMed Central

    Han, Jungang; Chen, Junsheng; Shao, Lei; Zhang, Junliang; Dong, Xiaojing; Liu, Pengyu; Chen, Daijie

    2016-01-01

    Glycopeptides such as vancomycin and telavancin are essential for treating infections caused by Gram-positive bacteria. But the dwindling availability of new antibiotics and the emergence of resistant bacteria are making effective antibiotic treatment increasingly difficult. Ramoplanin, an inhibitor of bacterial cell wall biosynthesis, is a highly effective antibiotic against a wide range of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus, vancomycin-intermediate resistant Clostridium difficile and vancomycin-resistant Enterococcus sp. Here, two tailoring enzyme genes in the biosynthesis of ramoplanin were deleted by double in-frame gene knockouts to produce new ramoplanin derivatives. The deschlororamoplanin A2 aglycone was purified and its structure was identified with LC-MS/MS. Deschlororamoplanin A2 aglycone and ramoplanin aglycone showed similar activity to ramoplanin A2. The results showed that α-1,2-dimannosyl disaccharide at Hpg11 and chlorination at Chp17 in the ramoplanin structure are not essential for its antimicrobial activity. This work provides new precursor compounds for the semisynthetic modification of ramoplanin. PMID:27149627

  8. Low-cost bump bonding activities at CERN

    NASA Astrophysics Data System (ADS)

    Vähänen, S.; Tick, T.; Campbell, M.

    2010-11-01

    Conventional bumping processes used in the fabrication of hybrid pixel detectors for High Energy Physics (HEP) experiments use electroplating for Under Bump Metallization (UBM) and solder bump deposition. This process is laborious, involves time consuming photolithography and can only be performed using whole wafers. Electroplating has been found to be expensive when used for the low volumes which are typical of HEP experiments. In the low-cost bump bonding development work, electroless deposition technology of UBM is studied as an alternative to the electroplating process in the bump size / pitch window beginning from 20 μm / 50 μm. Electroless UBM deposition used in combination with solder transfer techniques has the potential to significantly lower the cost of wafer bumping without requiring increased wafer volumes. A test vehicle design of sensor and readout chip, having daisy chains and Kelvin bump structures, was created to characterize the flip chip process with electroless UBM. Two batches of test vehicle wafers were manufactured with different bump pad metallization. Batch #1 had AlSi(1%) metallization, which is similar to the one used on sensor wafers, and Batch #2 had AlSi(2%)Cu(1%) metallization, which is very similar to the one used on readout wafers. Electroless UBMs were deposited on both wafer batches. In addition, electroplated Ni UBM and SnPb solder bumps were grown on the test sensor wafers. Test assemblies were made by flip chip bonding the solder-bumped test sensors against the test readout chips with electroless UBMs. Electrical yields and individual joint resistances were measured from assemblies, and the results were compared to a well known reference technique based on electroplated solder bumps structures on both chips. The electroless UBMs deposited on AlSi(2%)Cu(1%) metallization showed excellent electrical yields and small tolerances in individual joint resistance. The results from the UBMs deposited on AlSi(1%) metallization were non

  9. An intramolecular disulfide bond designed in myoglobin fine-tunes both protein structure and peroxidase activity.

    PubMed

    Wu, Lei-Bin; Yuan, Hong; Zhou, Hu; Gao, Shu-Qin; Nie, Chang-Ming; Tan, Xiangshi; Wen, Ge-Bo; Lin, Ying-Wu

    2016-06-15

    Disulfide bond plays crucial roles in stabilization of protein structure and in fine-tuning protein functions. To explore an approach for rational heme protein design, we herein rationally introduced a pair of cysteines (F46C/M55C) into the scaffold of myoglobin (Mb), mimicking those in native neuroglobin. Molecular modeling suggested that it is possible for Cys46 and Cys55 to form an intramolecular disulfide bond, which was confirmed experimentally by ESI-MS analysis, DTNB reaction and CD spectrum. Moreover, it was shown that the spontaneously formed disulfide bond of Cys46-Cys55 fine-tunes not only the heme active site structure, but also the protein functions. The substitution of Phe46 with Ser46 in F46S Mb destabilizes the protein while facilitates H2O2 activation. Remarkably, the formation of an intramolecular disulfide bond of Cys46-Cys55 in F46C/M55C Mb improves the protein stability and regulates the heme site to be more favorable for substrate binding, resulting in enhanced peroxidase activity. This study provides valuable information of structure-function relationship for heme proteins regulated by an intramolecular disulfide bond, and also suggests that construction of such a covalent bond is useful for design of functional heme proteins. PMID:27117233

  10. Room temperature bonding of SiO2 and SiO2 by surface activated bonding method using Si ultrathin films

    NASA Astrophysics Data System (ADS)

    Utsumi, Jun; Ide, Kensuke; Ichiyanagi, Yuko

    2016-02-01

    The bonding of metal electrodes and insulator hybrid interfaces is one of the key techniques in three-dimensional integration technology. Metal materials such as Cu or Al are easily directly bonded by surface activated bonding at room temperature, but insulator materials such as SiO2 or SiN are not. Using only Si ultrathin films, we propose a new bonding technique for SiO2/SiO2 bonding at room temperature. Two SiO2 surfaces, on which Si thin films were deposited, were contacted in vacuum. We confirmed that the thickness of the layer was about 7 nm by transmission electron microscopy observation and that the layer was non crystalline by electron energy loss spectroscopy analysis. No metal material was found in the bonding interface by energy-dispersive X-ray spectroscopy analysis. The surface energy was about 1 J/m2, and the bonding strength was more than 25 MPa. This bonding technique was successfully realized to enable SiO2/SiO2 bonding without a metal adhesion layer.

  11. Effect of water-ageing on dentine bond strength and anti-biofilm activity of bonding agent containing new monomer dimethylaminododecyl methacrylate

    PubMed Central

    Zhang, Ke; Cheng, Lei; Wu, Eric J.; Weir, Michael D.; Bai, Yuxing; Xu, Hockin H. K.

    2013-01-01

    Objectives The objectives of this study were to develop bonding agent containing a new antibacterial monomer dimethylaminododecyl methacrylate (DMADDM) as well as nanoparticles of silver (NAg) and nanoparticles of amorphous calcium phosphate (NACP), and to investigate the effects of water-ageing for 6 months on dentine bond strength and anti-biofilm properties for the first time. Methods Four bonding agents were tested: Scotchbond Multi-Purpose (SBMP) Primer and Adhesive control; SBMP + 5% DMADDM; SBMP + 5% DMADDM + 0.1% NAg; and SBMP + 5% DMADDM + 0.1% NAg with 20% NACP in adhesive. Specimens were water-aged for 1 d and 6 months at 37 °C. Then the dentine shear bond strengths were measured. A dental plaque microcosm biofilm model was used to inoculate bacteria on water-aged specimens and to measure metabolic activity, colony-forming units (CFUs), and lactic acid production. Results Dentine bond strength showed a 35% loss in 6 months of water-ageing for SBMP control (mean ± sd; n = 10); in contrast, the new antibacterial bonding agents showed no strength loss. The DMADDM–NAg–NACP containing bonding agent imparted a strong antibacterial effect by greatly reducing biofilm viability, metabolic activity and acid production. The biofilm CFU was reduced by more than two orders of magnitude, compared to SBMP control. Furthermore, the DMADDM–NAg–NACP bonding agent exhibited a long-term antibacterial performance, with no significant difference between 1 d and 6 months (p > 0.1). Conclusions Incorporating DMADDM–NAg–NACP in bonding agent yielded potent and long-lasting antibacterial properties, and much stronger bond strength after 6 months of water-ageing than a commercial control. The new antibacterial bonding agent is promising to inhibit biofilms and caries at the margins. The method of DMADDM–NAg–NACP incorporation may have a wide applicability to other adhesives, cements and composites. PMID:23583528

  12. Activation of C-H bonds and functionalization of hydrocarbons of the adamantane series. Review

    SciTech Connect

    Bagrii, Ye.I.; Karaulova, Ye.N.

    1993-12-31

    The highly symmetrical compact structure of an adamantane molecule gives its derivatives unusual properties. This governs the use of compounds with an adamantane fragment both for scientific research and in industry, and in particular in medicine. Importants ways of producing functional derivatives of adamantane without changing its carbon skeleton are processes occurring via the activation of the C-H bond. Detailed information concerning these reactions was given in an earlier monograph, which dealt with research published mainly before 1986. In the present review an examination is made of later investigations of C-H bond activation in adamantane, including research using biological and biomimetic methods of activation.

  13. Hormonal changes and couple bonding in consensual sadomasochistic activity.

    PubMed

    Sagarin, Brad J; Cutler, Bert; Cutler, Nadine; Lawler-Sagarin, Kimberly A; Matuszewich, Leslie

    2009-04-01

    In two studies, 58 sadomasochistic (SM) practitioners provided physiological measures of salivary cortisol and testosterone (hormones associated with stress and dominance, respectively) and psychological measures of relationship closeness before and after participating in SM activities. Observed activities included bondage, sensory deprivation, a variety of painful and pleasurable stimulation, verbal and non-verbal communication, and expressions of caring and affection. During the scenes, cortisol rose significantly for participants who were bound, receiving stimulation, and following orders, but not for participants who were providing stimulation, orders, or structure. Female participants who were bound, receiving stimulation, and following orders also showed increases in testosterone during the scenes. Thereafter, participants who reported that their SM activities went well showed reductions in physiological stress (cortisol) and increases in relationship closeness. Among participants who reported that their SM activities went poorly, some showed decreases in relationship closeness whereas others showed increases. The increases in relationship closeness combined with the displays of caring and affection observed as part of the SM activities offer support for the modern view that SM, when performed consensually, has the potential to increase intimacy between participants. PMID:18563549

  14. Localization of Fatty Acyl and Double Bond Positions in Phosphatidylcholines Using a Dual Stage CID Fragmentation Coupled with Ion Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Castro-Perez, Jose; Roddy, Thomas P.; Nibbering, Nico M. M.; Shah, Vinit; McLaren, David G.; Previs, Stephen; Attygalle, Athula B.; Herath, Kithsiri; Chen, Zhu; Wang, Sheng-Ping; Mitnaul, Lyndon; Hubbard, Brian K.; Vreeken, Rob J.; Johns, Douglas G.; Hankemeier, Thomas

    2011-09-01

    A high content molecular fragmentation for the analysis of phosphatidylcholines (PC) was achieved utilizing a two-stage [trap (first generation fragmentation) and transfer (second generation fragmentation)] collision-induced dissociation (CID) in combination with travelling-wave ion mobility spectrometry (TWIMS). The novel aspects of this work reside in the fact that a TWIMS arrangement was used to obtain a high level structural information including location of fatty acyl substituents and double bonds for PCs in plasma, and the presence of alkali metal adduct ions such as [M + Li]+ was not required to obtain double bond positions. Elemental compositions for fragment ions were confirmed by accurate mass measurements. A very specific first generation fragment ion m/z 577 (M-phosphoryl choline) from the PC [16:0/18:1 (9Z)] was produced, which by further CID generated acylium ions containing either the fatty acyl 16:0 (C15H31CO+, m/z 239) or 18:1 (9Z) (C17H33CO+, m/z 265) substituent. Subsequent water loss from these acylium ions was key in producing hydrocarbon fragment ions mainly from the α-proximal position of the carbonyl group such as the hydrocarbon ion m/z 67 (+H2C-HC = CH-CH = CH2). Formation of these ions was of important significance for determining double bonds in the fatty acyl chains. In addition to this, and with the aid of 13C labeled lyso-phosphatidylcholine (LPC) 18:1 (9Z) in the ω-position (methyl) TAP fragmentation produced the ion at m/z 57. And was proven to be derived from the α-proximal (carboxylate) or distant ω-position (methyl) in the LPC.

  15. Collision-Induced Dissociation of Fatty Acid [M - 2H + Na]- Ions: Charge-Directed Fragmentation and Assignment of Double Bond Position

    NASA Astrophysics Data System (ADS)

    Thomas, Michael C.; Altvater, Jens; Gallagher, Thomas J.; Nette, Geoffrey W.

    2014-08-01

    The collision-induced dissociation (CID) of cationic fatty acid-metal ion complexes has been extensively studied and, in general, provides rich structural information. In particular, charge-remote fragmentation processes are commonly observed allowing the assignment of double bond position. In a previous manuscript, we presented two methods to doubly deprotonate polyunsaturated fatty acids to form anionic fatty acid-sodium ion complexes, referred to as [M - 2H + Na] - ions. In the current manuscript, the CID behavior of these [M - 2H + Na] - ions is investigated for the first time. Significantly, we also present a deuterium-labeling experiment, which excludes the possibility that deprotonation occurs predominately at the α-carbon in the formation of fatty acid [M - H + NaF]- ions. This supports our original proposal where deprotonation occurs at the bis-allylic positions of polyunsaturated fatty acids. CID spectra of polyunsaturated fatty acid [M - 2H + Na]- ions display abundant product ions arising from acyl chain cleavages. Through the examination of fatty acid isomers, it is demonstrated that double bond position may be unequivocally determined for methylene-interrupted polyunsaturated fatty acids with three or more carbon-carbon double bonds. In addition, CID of [M - 2H + Na]- ions was applied to 18:3 isomers of Nannochloropsis oculata and three isomers were tentatively identified: ∆9,12,1518:3, ∆6,9,1218:3, and ∆5,8,1118:3. We propose that structurally-informative product ions are formed via charge-driven fragmentation processes at the site of the resonance-stabilized carbanion as opposed to charge-remote fragmentation processes, which could be inferred if deprotonation occurred predominately at the α-carbon.

  16. C-ON Bond Homolysis of Alkoxyamines, Part 11: Activation of the Nitroxyl Fragment.

    PubMed

    Audran, Gérard; Brémond, Paul; Marque, Sylvain R A; Yamasaki, Toshihide

    2016-03-01

    A few years ago, Bagryanskaya and colleagues (J. Org. Chem. 2011) showed that protonation of the nitroxyl fragment deactivated the alkoxyamine C-ON bond. Conversely, our group showed that protonation (Chem. Commun. 2011), as well as other chemical reactions such as oxidation or amine quaternization (Org. Lett. 2012), of the pyridyl moiety carried by the alkyl fragment was suitable to activate the homolysis of the C-ON bond. To pursue our goal of applying alkoxyamines as theranostic agents (Org. Biomol. Chem. 2014 and Mol. Pharmaceutics 2014) by activation of the C-ON bond homolysis, we turned our interest to the chemical activation of the nitroxyl fragment by oxidation/reduction of selected functions. Conversion of a hydroxyl group located close to the nitroxyl moiety successively into aldehyde, then acid, and eventually into ester, led to a successive decrease in kd. PMID:26878593

  17. Reactions of organoaluminum compounds with acetylene as a method for the synthesis of aliphatic derivatives with a z-disubstituted double bond

    SciTech Connect

    Andreeva, N.I.; Kuchin, A.V.; Tolstikov, G.A.

    1985-11-01

    This paper develops a method for the synthesis of aliphatic compounds with a Z-disubstituted double bond, which are important synthons for the preparation of such natural products as insect pheromones, aromatic principles, etc. In the carbalumination reaction of acetylene Z-alkenyldialkylaluminums are formed selectively. A-Alkenyldialkylaluminums are highly reactive and can readily be converted into Z-allyl alcohols and their ethers, and into Z-iodovinyl derivatives. By the reactions of vinyl organoaluminum compounds with the complex CH/sub 3/COClhaAlCl/sub 3/ E-conjugated ketones were obtained.

  18. Infrared spectroscopic studies on 4-amino-6-oxopyrimidine in a low-temperature Xe matrix and crystalline polymorphs composed of double hydrogen-bonded ribbons

    NASA Astrophysics Data System (ADS)

    Ohyama, Kazuko; Goto, Kenta; Shinmyozu, Teruo; Yamamoto, Norifumi; Iizumi, Shota; Miyagawa, Masaya; Nakata, Munetaka; Sekiya, Hiroshi

    2014-03-01

    Infrared (IR) spectra of the enol and keto forms of 4-amino-6-oxopyrimidine (AOP) isolated in a low-temperature Xe matrix were recorded, where the change from the keto to the enol form was found to be induced by UV irradiation (λ > 270 nm). On the other hand, the hydrated crystal of AOP exhibited a similar IR spectrum to the anhydrous crystal by dehydration, suggesting that the dehydrated and anhydrous crystals are polymorphs. It has been found from the IR spectral analyses that the AOP crystal is dominated by infinite double H-bonded ribbons, which has been supported by quantum chemical calculations.

  19. A Facile Method to Prepare Double-Layer Isoporous Hollow Fiber Membrane by In Situ Hydrogen Bond Formation in the Spinning Line.

    PubMed

    Noor, Nazia; Koll, Joachim; Radjabian, Maryam; Abetz, Clarissa; Abetz, Volker

    2016-03-01

    A double-layer hollow fiber is fabricated where an isoporous surface of polystyrene-block-poly(4-vinylpyridine) is fixed on a support layer by co-extrusion. Due to the sulfonation of the support layer material, delamination of the two layers is suppressed without increasing the number of subsequent processing steps for isoporous composite membrane formation. Electron microscope-energy-dispersive X-ray spectroscopy images unveil the existence of a high sulfur concentration in the interfacial region by which in-process H-bond formation between the layers is evidenced. For the very first time, our study reports a facile method to fabricate a sturdy isoporous double-layer hollow fiber. PMID:26685710

  20. Shear bond strength to enamel after power bleaching activated by different sources.

    PubMed

    Can-Karabulut, Deniz C; Karabulut, Baris

    2010-01-01

    The purpose of the present study was to evaluate enamel bond strength of a composite resin material after hydrogen peroxide bleaching, activated by a diode laser (LaserSmile), an ozone device (HealOzone), a light-emitting diode (BT Cool whitening system), and a quartz-Plus. Fifty extracted caries-free permanent incisors were used in this study. Thirty-eight percent hydrogen peroxidegel was applied to sound, flattened labial enamel surfaces and activated by different sources. Enamel surfaces that had received no treatment were used as control samples. Bonding agent was applied according to the manufacturer's instructions and the adhesion test was performed according to ISO/TS 11405. Statistical analysis showed significant influence of the different activation technique of hydrogen peroxide on shear bond strength to enamel (ANOVA, LSD, P < 0.05). The data in this vitro explorative study suggest the activation of hydrogen peroxide by different sources may further affect the shear bond strength of subsequent composite resin restoration to enamel. Within the limitations of this in vitro study, further studies examining the structural changes of activated hydrogen peroxide-treated enamel are needed. Due to the different activation methods; duration of light irradiation effects, longer time periods may be needed before application of adhesive restorations to enamel, compared with non-activated bleaching. PMID:21069109

  1. Covalent Bond between Ligand and Receptor Required for Efficient Activation in Rhodopsin*

    PubMed Central

    Matsuyama, Take; Yamashita, Takahiro; Imai, Hiroo; Shichida, Yoshinori

    2010-01-01

    Rhodopsin is an extensively studied member of the G protein-coupled receptors (GPCRs). Although rhodopsin shares many features with the other GPCRs, it exhibits unique features as a photoreceptor molecule. A hallmark in the molecular structure of rhodopsin is the covalently bound chromophore that regulates the activity of the receptor acting as an agonist or inverse agonist. Here we show the pivotal role of the covalent bond between the retinal chromophore and the lysine residue at position 296 in the activation pathway of bovine rhodopsin, by use of a rhodopsin mutant K296G reconstituted with retinylidene Schiff bases. Our results show that photoreceptive functions of rhodopsin, such as regiospecific photoisomerization of the ligand, and its quantum yield were not affected by the absence of the covalent bond, whereas the activation mechanism triggered by photoisomerization of the retinal was severely affected. Furthermore, our results show that an active state similar to the Meta-II intermediate of wild-type rhodopsin did not form in the bleaching process of this mutant, although it exhibited relatively weak G protein activity after light irradiation because of an increased basal activity of the receptor. We propose that the covalent bond is required for transmitting structural changes from the photoisomerized agonist to the receptor and that the covalent bond forcibly keeps the low affinity agonist in the receptor, resulting in a more efficient G protein activation. PMID:20042594

  2. 29 CFR 2580.412-8 - The nature of the duties or activities to which the bonding requirement relates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 9 2011-07-01 2011-07-01 false The nature of the duties or activities to which the bonding requirement relates. 2580.412-8 Section 2580.412-8 Labor Regulations Relating to Labor (Continued) EMPLOYEE... INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES Scope and Form of the Bond § 2580.412-8 The nature...

  3. 29 CFR 2580.412-8 - The nature of the duties or activities to which the bonding requirement relates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 9 2014-07-01 2014-07-01 false The nature of the duties or activities to which the bonding requirement relates. 2580.412-8 Section 2580.412-8 Labor Regulations Relating to Labor (Continued) EMPLOYEE... INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES Scope and Form of the Bond § 2580.412-8 The nature...

  4. 29 CFR 2580.412-8 - The nature of the duties or activities to which the bonding requirement relates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 9 2012-07-01 2012-07-01 false The nature of the duties or activities to which the bonding requirement relates. 2580.412-8 Section 2580.412-8 Labor Regulations Relating to Labor (Continued) EMPLOYEE... INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES Scope and Form of the Bond § 2580.412-8 The nature...

  5. 29 CFR 2580.412-8 - The nature of the duties or activities to which the bonding requirement relates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false The nature of the duties or activities to which the bonding requirement relates. 2580.412-8 Section 2580.412-8 Labor Regulations Relating to Labor (Continued) EMPLOYEE... INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES Scope and Form of the Bond § 2580.412-8 The nature...

  6. 29 CFR 2580.412-8 - The nature of the duties or activities to which the bonding requirement relates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 9 2013-07-01 2013-07-01 false The nature of the duties or activities to which the bonding requirement relates. 2580.412-8 Section 2580.412-8 Labor Regulations Relating to Labor (Continued) EMPLOYEE... INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES Scope and Form of the Bond § 2580.412-8 The nature...

  7. Nickel-Catalyzed Decarbonylative Borylation of Amides: Evidence for Acyl C-N Bond Activation.

    PubMed

    Hu, Jiefeng; Zhao, Yue; Liu, Jingjing; Zhang, Yemin; Shi, Zhuangzhi

    2016-07-18

    A nickel/N-heterocyclic carbene catalytic system has been established for decarbonylative borylation of amides with B2 nep2 by C-N bond activation. This transformation shows good functional-group compatibility and can serve as a powerful synthetic tool for late-stage borylation of amide groups in complex compounds. More importantly, as a key intermediate, the structure of an acyl nickel complex was first confirmed by X-ray analysis. Furthermore, the decarbonylative process was also observed. These findings confirm the key mechanistic features of the acyl C-N bond activation process. PMID:27258597

  8. Active-Metal Template Synthesis of a Halogen-Bonding Rotaxane for Anion Recognition.

    PubMed

    Langton, Matthew J; Xiong, Yaoyao; Beer, Paul D

    2015-12-21

    The synthesis of an all-halogen-bonding rotaxane for anion recognition is achieved by using active-metal templation. A flexible bis-iodotriazole-containing macrocycle is exploited for the metal-directed rotaxane synthesis. Endotopic binding of a Cu(I) template facilitates an active-metal CuAAC iodotriazole axle formation reaction that captures the interlocked rotaxane product. Following copper-template removal, exotopic coordination of a more sterically demanding rhenium(I) complex induces an inversion in the conformation of the macrocycle component, directing the iodotriazole halogen-bond donors into the rotaxane's interlocked binding cavity to facilitate anion recognition. PMID:26500150

  9. [Hydrogen induced C-C, C-N, and C-S bond activities on Pi and Ni surfaces]: Summary

    SciTech Connect

    Gland, J.L.

    1994-12-31

    This document summarizes research applied to chemical bond activation studies. Topics summarized include: Carbon nitrogen bonds experimentation with aniline on Ni(111), Mi(100), and Pt(111) surfaces; carbon sulfur bonds experimentation with methanethiol, phenylthiol, and dimethyl disulfide on Pt(111) and Ni(111) surfaces; carbon-carbon bonds experimentation on Ni(100), Ni(111) and Pt(111) surfaces; and in-situ fluorescence yield near edge spectroscopy.

  10. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    SciTech Connect

    Lichtenberger, D.L.

    1992-01-01

    Purpose of this research program is to obtain experimental information on the different fundamental ways metals bond and activate organic molecules. Our approach has been to directly probe the electronic interactions between metals and molecules through a wide variety of ionization spectroscopies and other techniques, and to investigate the relationships with bonding modes, structures, and chemical behavior. During this period, we have (1) characterized the electronic features of diphosphines and monophosphines in their coordination to metals, (2) carried out theoretical and experimental investigations of the bonding capabilities of C[sub 60] to transition metals, (3) developed techniques for the imaging of single molecules on gold substrates that emphasizes the electronic backbonding from the metal to the molecule, (4) obtained the high resolution photoelectron spectrum of pure C[sub 70] in the gas phase, (5) compared the bonding of [eta][sup 3]- acetylide ligands to the bonding of other small organic molecules with metals, and (6) reported the photoelectron spectra and bonding of [eta][sup 3]-cyclopropenyl groups to metals.

  11. N-benzylideneaniline and N-benzylaniline are potent inhibitors of lignostilbene-alpha,beta-dioxygenase, a key enzyme in oxidative cleavage of the central double bond of lignostilbene.

    PubMed

    Han, Sun-Young; Inoue, Hiroki; Terada, Tamami; Kamoda, Shigehiro; Saburi, Yoshimasa; Sekimata, Katsuhiko; Saito, Tamio; Kobayashi, Masatomo; Shinozaki, Kazuo; Yoshida, Shigeo; Asami, Tadao

    2003-06-01

    Lignostilbene-alpha,beta-dioxygenase (LSD, EC 1.13.11.43) is involved in oxidative cleavage of the central double bond of lignostilbene to form the corresponding aldehydes by a mechanism similar to those of 9-cis-epoxycarotenoid dioxygenase and beta-carotene 15,15'-dioxygenase, key enzymes in abscisic acid biosynthesis and vitamin A biosynthesis, respectively. In this study, several N-benzylideneanilines and amine were synthesized and examined for their efficacy as inhibitors of LSD. N-(4-Hydroxybenzylidene)-3-methoxyaniline was found to be a potent inhibitor with IC50 = 0.3 microM and N-(4-hydroxybenzyl)-3-methoxyaniline was also active with IC50 = 10 microM. The information obtained from the structure-activity relationships study here can aid in discovering inhibitors of both abscisic acid and vitamin A biosynthesis. PMID:14506920

  12. Effect of bonding on the performance of a piezoactuator-based active control system

    NASA Technical Reports Server (NTRS)

    Baz, A.; Poh, S.

    1987-01-01

    The utilization of piezoelectric actuators in controlling the structural vibrations of flexible beams is studied. A Modified Independent Modal Space Control (MIMSC) method is devised to select the optimal location, control gains and excitation voltage of the piezoelectric actuators in a way that would minimize the amplitudes of vibrations of beams to which these actuators are bonded, as well as the input control energy necessary to suppress these vibrations. The presented method accounts for the effects that the piezoelectric actuators and the bonding layers have on changing the elastic and inertial properties of the flexible beams. Numerical examples are presented to illustrate the application of the MIMSC method and to demonstrate the effect of the physical and geometrical properties of the bonding layer on the dynamic performance of the actively controlled beams. The obtained results emphasize the importance of the devised method in designing more realistic active control systems for flexible beams, in particular, and large flexible structures in general.

  13. Effect of different irrigant activation protocols on push-out bond strength.

    PubMed

    Akyuz Ekim, Sefika Nur; Erdemir, Ali

    2015-11-01

    The study aimed to evaluate the effect of various final irrigant activation protocols on push-out bond strength of fiber post. Thirty-two single-rooted human maxillar central teeth were sectioned below the cementoenamel junction, instrumented and obturated. Post-space preparation was performed, and roots were randomly divided into eight groups (n = 4) according to the final irrigant activation protocols; distilled water was used as an irrigant in group 1. The other groups were treated with 2.5% NaOCl and 17% EDTA. Conventional syringe irrigation (CSI, no activation) was used in group 2. Irrigation solutions were activated using passive ultrasonic irrigation (PUI, group 3), EndoVac apical negative pressure (ANP, group 4), diode laser (group 5), neodymium:yttrium-aluminum-garnet (Nd:YAG) laser (group 6), erbium:yttrium-aluminum-garnet (Er:YAG) laser (group 7), and Er:YAG laser using with photon-induced photoacoustic streaming (PIPS™) technique (group 8). In all groups, fiber posts (White Post DC, FGM) were luted using Panavia F 2.0 (Kuraray, Osaka, Japan). The specimens were transversally sectioned, and all slices from coronal and apical regions were subjected to push-out tests. The data were calculated as megapascals and analyzed by using two-way analysis of variance followed by post hoc Tukey honestly significant difference (HSD) tests. Removing the smear layer increased the bond strength to dentine when compared with the control group (p < 0.05). The highest bond strength was obtained in the PIPS laser-activated irrigation group (p < 0.05). Coronal root region presented significantly higher bond strength than the apical region (p < 0.05). PIPS laser-activated irrigation showed higher efficiency as a final irrigant activation protocol on push-out bond strength of fiber post. PMID:26022731

  14. Diffusion Bonding Beryllium to Reduced Activation Ferritic Martensitic Steel: Development of Processes and Techniques

    NASA Astrophysics Data System (ADS)

    Hunt, Ryan Matthew

    Only a few materials are suitable to act as armor layers against the thermal and particle loads produced by magnetically confined fusion. These candidates include beryllium, tungsten, and carbon fiber composites. The armor layers must be joined to the plasma facing components with high strength bonds that can withstand the thermal stresses resulting from differential thermal expansion. While specific joints have been developed for use in ITER (an experimental reactor in France), including beryllium to CuCrZr as well as tungsten to stainless steel interfaces, joints specific to commercially relevant fusion reactors are not as well established. Commercial first wall components will likely be constructed front Reduced Activation Ferritic Martensitic (RAFM) steel, which will need to be coating with one of the three candidate materials. Of the candidates, beryllium is particularly difficult to bond, because it reacts during bonding with most elements to form brittle intermetallic compounds. This brittleness is unacceptable, as it can lead to interface crack propagation and delamination of the armor layer. I have attempted to overcome the brittle behavior of beryllium bonds by developing a diffusion bonding process of beryllium to RAFM steel that achieves a higher degree of ductility. This process utilized two bonding aids to achieve a robust bond: a. copper interlayer to add ductility to the joint, and a titanium interlayer to prevent beryllium from forming unwanted Be-Cu intermetallics. In addition, I conducted a series of numerical simulations to predict the effect of these bonding aids on the residual stress in the interface. Lastly, I fabricated and characterized beryllium to ferritic steel diffusion bonds using various bonding parameters and bonding aids. Through the above research, I developed a process to diffusion bond beryllium to ferritic steel with a 150 M Pa tensile strength and 168 M Pa shear strength. This strength was achieved using a Hot Isostatic

  15. Double group transfer reactions: role of activation strain and aromaticity in reaction barriers.

    PubMed

    Fernández, Israel; Bickelhaupt, F Matthias; Cossío, Fernando P

    2009-12-01

    Double group transfer (DGT) reactions, such as the bimolecular automerization of ethane plus ethene, are known to have high reaction barriers despite the fact that their cyclic transition states have a pronounced in-plane aromatic character, as indicated by NMR spectroscopic parameters. To arrive at a way of understanding this somewhat paradoxical and incompletely understood phenomenon of high-energy aromatic transition states, we have explored six archetypal DGT reactions using density functional theory (DFT) at the OLYP/TZ2P level. The main trends in reactivity are rationalized using the activation strain model of chemical reactivity. In this model, the shape of the reaction profile DeltaE(zeta) and the height of the overall reaction barrier DeltaE( not equal)=DeltaE(zeta=zeta(TS)) is interpreted in terms of the strain energy DeltaE(strain)(zeta) associated with deforming the reactants along the reaction coordinate zeta plus the interaction energy DeltaE(int)(zeta) between these deformed reactants: DeltaE(zeta)=DeltaE(strain)(zeta)+DeltaE(int)(zeta). We also use an alternative fragmentation and a valence bond model for analyzing the character of the transition states. PMID:19852009

  16. Determination of the bond-angle distribution in vitreous B{sub 2}O{sub 3} by {sup 11}B double rotation (DOR) NMR spectroscopy

    SciTech Connect

    Hung, I.; Howes, A.P.; Parkinson, B.G.; Anupold, T.; Samoson, A.; Brown, S.P.; Harrison, P.F.; Holland, D.; Dupree, R.

    2009-09-15

    The B-O-B bond angle distributions for both ring and non-ring boron sites in vitreous B{sub 2}O{sub 3} have been determined by {sup 11}B double rotation (DOR) NMR and multiple-quantum (MQ) DOR NMR. The [B{sub 3}O{sub 6}] boroxol rings are observed to have a mean internal B-O-B angle of 120.0+-0.7 deg. with a small standard deviation, sigma{sub R}=3.2+-0.4 deg., indicating that the rings are near-perfect planar, hexagonal structures. The rings are linked predominantly by non-ring [BO{sub 3}] units, which share oxygens with the boroxol ring, with a mean B{sub ring}-O-B{sub non-ring} angle of 135.1+-0.6 deg. and sigma{sub NR}=6.7+-0.4 deg. In addition, the fraction of boron atoms, f, which reside in the boroxol rings has been measured for this sample as f=0.73+-0.01. - Graphical abstract: Connectivities and B-O-B bond angle distributions of ring and non-ring boron atoms in v-B{sub 2}O{sub 3} have been determined by {sup 11}B double rotation (DOR) NMR, multiple-quantum (MQ) DOR NMR and spin-diffusion DOR. Near-perfect planar, hexagonal [B{sub 3}O{sub 6}] boroxol rings are shown to be present. Display Omitted

  17. Peroxide bond strength of antimalarial drugs containing an endoperoxide cycle. Relation with biological activity.

    PubMed

    Fernández, Israel; Robert, Anne

    2011-06-01

    Several endoperoxide compounds are very efficient antimalarial analogues of the natural drug artemisinin. Quantum chemical calculations have been used to correlate the computed free energies of the O-O bond with respect to the total number of oxygen atoms contained in the cycle, and with the size/strain of the cycle (5- or 6-membered cycles). The gas-phase homolysis of the O-O bond has been studied for five- and six-membered oxygenated cycles which are models of the "real" drugs. Our results indicate that, in 6-membered cycles, the stability order is the following: 1,2-dioxane > 1,2,4-trioxane > 1,2,4,5-tetraoxane. In cycles containing 3 oxygen atoms, the 5-membered cycle 1,2,4-trioxolane was found much less stable than its 6-membered counterpart 1,2,4-trioxane. This feature indicates the possible role of the cycle strain for the O-O bond stability, and may also explain the high antimalarial activity of some trioxolane derivatives. Similar trends in the O-O bond strength have been found for the real antimalarial drugs. However, the O-O bond stability is not in itself a decisive argument to anticipate the antimalarial activity of drugs. PMID:21487624

  18. 26 CFR 1.103(n)-1T - Limitation on aggregrate amount of private activity bonds (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... section 103(n) since the aggregate amount of private activity bonds issued by City M in 1986 exceeded its... activity bonds (temporary). 1.103(n)-1T Section 1.103(n)-1T Internal Revenue INTERNAL REVENUE SERVICE... Excluded from Gross Income § 1.103(n)-1T Limitation on aggregrate amount of private activity...

  19. 26 CFR 1.103(n)-1T - Limitation on aggregrate amount of private activity bonds (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... section 103(n) since the aggregate amount of private activity bonds issued by City M in 1986 exceeded its... activity bonds (temporary). 1.103(n)-1T Section 1.103(n)-1T Internal Revenue INTERNAL REVENUE SERVICE... Excluded from Gross Income § 1.103(n)-1T Limitation on aggregrate amount of private activity...

  20. Direct 2-acetoxylation of quinoline N-oxides via copper catalyzed C-H bond activation.

    PubMed

    Chen, Xuan; Zhu, Chongwei; Cui, Xiuling; Wu, Yangjie

    2013-08-01

    An efficient and direct 2-acetoxylation of quinoline N-oxides via copper(I) catalyzed C-H bond activation has been developed. This transformation was achieved using TBHP as an oxidant in the cross-dehydrogenative coupling (CDC) reaction of quinoline N-oxides with aldehydes, and provided a practical pathway to 2-acyloxyl quinolines. PMID:23793162

  1. Effects of metal ions and disulfide bonds on the activity of phosphodiesterase from Trimeresurus stejnegeri venom.

    PubMed

    Peng, Lili; Xu, Xiaolong; Guo, Mingchun; Yan, Xincheng; Wang, Shasha; Gao, Shang; Zhu, Shanshan

    2013-06-01

    Obviously different from the other known phosphodiesterases, the phosphodiesterase from Trimeresurus stejnegeri venom (TS-PDE) consists of two different chains linked with disulfide bonds and contains both endogenous Cu(2+) and Zn(2+). Cu(2+) and Zn(2+) are important for its phosphodiesterase activity. In this study, the effects of metal ions and small-molecule reductants on its structure and activity have been investigated by polyacrylamide gel electrophoresis, high performance liquid chromatography, fluorescence and electron paramagnetic resonance spectroscopy. The results show that TS-PDE has one class of Zn(2+) binding site and two classes of Cu(2+) binding site, including the high affinity activator sites and the low affinity sites. Cu(2+) ions function as a switch for its phosphodiesterase activity. The catalytic activity of TS-PDE does not have an absolute requirement for Cu(2+) and Zn(2+). Mg(2+), Mn(2+), Ni(2+), Co(2+) and Ca(2+) are all effective for its phosphodiesterase activity. TS-PDE has seven disulfide bonds and ten free cysteine residues. l-Ascorbate inhibits the phosphodiesterase activity of TS-PDE through reduction of the Cu(2+), while dithiothreitol, glutathione and tris(2-carboxyethyl)phosphine inhibit the phosphodiesterase activity of TS-PDE by reducing both the Cu(2+) and disulfide bonds. The catalytic activity of TS-PDE relies on its disulfide bonds and bimetallic cluster. In addition, biologically-relevant reductants, glutathione and l-ascorbate, have been found to be endogenous inhibitors to the phosphodiesterase activity of TS-PDE. PMID:23775423

  2. Double-Knudsen-Cell Apparatus Measures Alloy-Component Activities

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Moore, Warren A.

    1995-01-01

    Double-Knudsen-cell apparatus provides molecular beam from selected one of two Knudsen cells. Both cells maintained at same temperature. Molecular beam directed into mass spectrometer for measurement of vapor pressure of selected material component. Designed to minimize undesired thermal gradients, provides appropriate translation to place selected cell in position for sampling, and minimizes mixing of molecular beams from cells.

  3. Titanium-Thiolate-Aluminum-Carbide Complexes by Multiple C-H Bond Activation.

    PubMed

    Guérin; Stephan

    1999-12-16

    All three C-H bonds of a methyl group are activated in the reaction of [Cp(iPr(3)PN)Ti(SR)(2)] with AlMe(3) [Eq. (1)]. The Ti-Al-carbide clusters formed contain a severely distorted tetrahedral carbide carbon atom with a relatively short bond to Ti, which is attributed to a relative increase in the Lewis acidity of the Ti center as a result of the interaction of the S and N donors with Al. PMID:10649329

  4. Bond activation with an apparently benign ethynyl dithiocarbamate Ar-C≡C-S-C(S)NR2.

    PubMed

    Ung, Gaël; Frey, Guido D; Schoeller, Wolfgang W; Bertrand, Guy

    2011-10-10

    The hedgehog molecule: A simple ethynyl dithiocarbamate [Ar-C≡C-S-C(S)NR(2)] is able to cleave a broad range of enthalpically strong σ bonds and to activate carbon dioxide and elemental sulfur. Depending on the substrate, the bond activation process involves either the existence of an equilibrium with the nonobservable mesoionic carbene isomer or the cooperation of the nucleophilic carbon-carbon triple bond and the electrophilic CS carbon atom. PMID:23210141

  5. Bond slip detection of concrete-encased composite structure using shear wave based active sensing approach

    NASA Astrophysics Data System (ADS)

    Zeng, Lei; Parvasi, Seyed Mohammad; Kong, Qingzhao; Huo, Linsheng; Lim, Ing; Li, Mo; Song, Gangbing

    2015-12-01

    Concrete-encased composite structure exhibits improved strength, ductility and fire resistance compared to traditional reinforced concrete, by incorporating the advantages of both steel and concrete materials. A major drawback of this type of structure is the bond slip introduced between steel and concrete, which directly reduces the load capacity of the structure. In this paper, an active sensing approach using shear waves to provide monitoring and early warning of the development of bond slip in the concrete-encased composite structure is proposed. A specimen of concrete-encased composite structure was investigated. In this active sensing approach, shear mode smart aggregates (SAs) embedded in the concrete act as actuators and generate desired shear stress waves. Distributed piezoceramic transducers installed in the cavities of steel plates act as sensors and detect the wave response from shear mode SAs. Bond slip acts as a form of stress relief and attenuates the wave propagation energy. Experimental results from the time domain analysis clearly indicate that the amplitudes of received signal by lead zirconate titanate sensors decreased when bond slip occurred. In addition, a wavelet packet-based analysis was developed to compute the received signal energy values, which can be used to determine the initiation and development of bond slip in concrete-encased composite structure. In order to establish the validity of the proposed method, a 3D finite element analysis of the concrete-steel bond model is further performed with the aid of the commercial finite element package, Abaqus, and the numerical results are compared with the results obtained in experimental study.

  6. Silver(I) NHC mediated C-C bond activation of alkyl nitriles and catalytic efficiency in oxazoline synthesis.

    PubMed

    Heath, Rachael; Müller-Bunz, Helge; Albrecht, Martin

    2015-05-21

    Preparation of silver triazolylidene (trz) species from triazolium salts and Ag2O in refluxing MeCN leads to a selective C-C bond cleavage and the formation of complexes of general formula [(trz)Ag(CN)] from Calkyl-CN bond activation. Moreover, these silver carbene complexes are precursors of highly active catalysts for oxazoline formation via aldol condensation. PMID:25913007

  7. Highly dispersed buckybowls as model carbocatalysts for C–H bond activation

    DOE PAGESBeta

    Soykal, I. Ilgaz; Wang, Hui; Park, Jewook; Li, An-Ping; Liang, Chengdu; Schwartz, Viviane

    2015-03-19

    Buckybowl fractions dispersed on mesoporous silica constitute an ideal model for studying the catalysis of graphitic forms of carbon since the dispersed carbon nanostructures contain a high ratio of edge defects and curvature induced by non-six-membered rings. Dispersion of the active centers on an easily accessible high surface area material allowed for high density of surface active sites associated with oxygenated structures. This report illustrates a facile method of creating model polycyclic aromatic nano-structures that are not only active for alkane C-H bond activation and oxidative dehydrogenation but also can be practical catalysts to be eventually used in industry.

  8. The active site of hen egg-white lysozyme: flexibility and chemical bonding

    SciTech Connect

    Held, Jeanette Smaalen, Sander van

    2014-04-01

    Chemical bonding at the active site of lysozyme is analyzed on the basis of a multipole model employing transferable multipole parameters from a database. Large B factors at low temperatures reflect frozen-in disorder, but therefore prevent a meaningful free refinement of multipole parameters. Chemical bonding at the active site of hen egg-white lysozyme (HEWL) is analyzed on the basis of Bader’s quantum theory of atoms in molecules [QTAIM; Bader (1994 ▶), Atoms in Molecules: A Quantum Theory. Oxford University Press] applied to electron-density maps derived from a multipole model. The observation is made that the atomic displacement parameters (ADPs) of HEWL at a temperature of 100 K are larger than ADPs in crystals of small biological molecules at 298 K. This feature shows that the ADPs in the cold crystals of HEWL reflect frozen-in disorder rather than thermal vibrations of the atoms. Directly generalizing the results of multipole studies on small-molecule crystals, the important consequence for electron-density analysis of protein crystals is that multipole parameters cannot be independently varied in a meaningful way in structure refinements. Instead, a multipole model for HEWL has been developed by refinement of atomic coordinates and ADPs against the X-ray diffraction data of Wang and coworkers [Wang et al. (2007), Acta Cryst. D63, 1254–1268], while multipole parameters were fixed to the values for transferable multipole parameters from the ELMAM2 database [Domagala et al. (2012), Acta Cryst. A68, 337–351] . Static and dynamic electron densities based on this multipole model are presented. Analysis of their topological properties according to the QTAIM shows that the covalent bonds possess similar properties to the covalent bonds of small molecules. Hydrogen bonds of intermediate strength are identified for the Glu35 and Asp52 residues, which are considered to be essential parts of the active site of HEWL. Furthermore, a series of weak C

  9. Chromoselective Photocatalysis: Controlled Bond Activation through Light-Color Regulation of Redox Potentials.

    PubMed

    Ghosh, Indrajit; König, Burkhard

    2016-06-27

    Catalysts that can be regulated in terms of activity and selectivity by external stimuli may allow the efficient multistep synthesis of complex molecules and pharmaceuticals. Herein, we report the light-color regulation of the redox potential of a photocatalyst to control the activation of chemical bonds. Light-color control of the redox power of a photocatalyst introduces a new selectivity parameter to photoredox catalysis: Instead of changing the catalyst or ligand, alteration of the color of the visible-light irradiation adjusts the selectivity in catalytic transformations. By using this principle, the selective activation of aryl-halide bonds for C-H arylation and the sequential conversion of functional groups with different reduction potentials is possible by simply applying different colors of light for excitation of the photocatalyst. PMID:27198967

  10. Activation of carbon dioxide by a terminal uranium-nitrogen bond in the gas-phase: a demonstration of the principle of microscopic reversibility.

    PubMed

    Dau, Phuong D; Armentrout, P B; Michelini, Maria C; Gibson, John K

    2016-03-14

    Activation of CO2 is demonstrated by its spontaneous dissociative reaction with the gas-phase anion complex NUOCl2(-), which can be considered as NUO(+) coordinated by two chloride anion ligands. This reaction was previously predicted by density functional theory to occur exothermically, without barriers above the reactant energy. The present results demonstrate the validity of the prediction of microscopic reversibility, and provide a rare case of spontaneous dissociative addition of CO2 to a gas-phase complex. The activation of CO2 by NUOCl2(-) proceeds by conversion of a U[triple bond, length as m-dash]N bond to a U[double bond, length as m-dash]O bond and creation of an isocyanate ligand to yield the complex UO2(NCO)Cl2(-), in which uranyl, UO2(2+), is coordinated by one isocyanate and two chloride anion ligands. This activation of CO2 by a uranium(vi) nitride complex is distinctive from previous reports of oxidative insertion of CO2 into lower oxidation state U(iii) or U(iv) solid complexes, during which both C-O bonds remain intact. This unusual observation of spontaneous addition and activation of CO2 by NUOCl2(-) is a result of the high oxophilicity of uranium. If the computed Gibbs free energy of the reaction pathway, rather than the energy, is considered, there are barriers above the reactant asymptotes such that the observed reaction should not proceed under thermal conditions. This result provides a demonstration that energy rather than Gibbs free energy determines reactivity under low-pressure bimolecular conditions. PMID:26898535

  11. Quantitative dissection of hydrogen bond-mediated proton transfer in the ketosteroid isomerase active site

    PubMed Central

    Sigala, Paul A.; Fafarman, Aaron T.; Schwans, Jason P.; Fried, Stephen D.; Fenn, Timothy D.; Caaveiro, Jose M. M.; Pybus, Brandon; Ringe, Dagmar; Petsko, Gregory A.; Boxer, Steven G.; Herschlag, Daniel

    2013-01-01

    Hydrogen bond networks are key elements of protein structure and function but have been challenging to study within the complex protein environment. We have carried out in-depth interrogations of the proton transfer equilibrium within a hydrogen bond network formed to bound phenols in the active site of ketosteroid isomerase. We systematically varied the proton affinity of the phenol using differing electron-withdrawing substituents and incorporated site-specific NMR and IR probes to quantitatively map the proton and charge rearrangements within the network that accompany incremental increases in phenol proton affinity. The observed ionization changes were accurately described by a simple equilibrium proton transfer model that strongly suggests the intrinsic proton affinity of one of the Tyr residues in the network, Tyr16, does not remain constant but rather systematically increases due to weakening of the phenol–Tyr16 anion hydrogen bond with increasing phenol proton affinity. Using vibrational Stark spectroscopy, we quantified the electrostatic field changes within the surrounding active site that accompany these rearrangements within the network. We were able to model these changes accurately using continuum electrostatic calculations, suggesting a high degree of conformational restriction within the protein matrix. Our study affords direct insight into the physical and energetic properties of a hydrogen bond network within a protein interior and provides an example of a highly controlled system with minimal conformational rearrangements in which the observed physical changes can be accurately modeled by theoretical calculations. PMID:23798390

  12. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    NASA Astrophysics Data System (ADS)

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  13. Room temperature GaN-GaAs direct bonding by argon-beam surface activation

    NASA Astrophysics Data System (ADS)

    Higurashi, Eiji; Tokuda, Yuichiro; Akaike, Masatake; Suga, Tadatomo

    2007-10-01

    A room temperature direct bonding using surface activation by argon (Ar)-beam sputtering was applied to the bonding between gallium nitride (GaN) and gallium arsenide (GaAs). The silicon doped n-type GaN films used in this experiment were grown by metal organic chemical vapor deposition on (0001) sapphire substrates. The GaN film thickness is 3 μm with a surface roughness of approximately 0.22 nm (R a) as measured by atomic force microscopy. The silicon doped n-type GaAs (100) wafers with a surface roughness of approximately 0.34 nm (R a) were used as GaAs substrates. The GaN and GaAs samples were cleaned by sputtering with a 1.5 keV Ar-fast atom beam with 15 mA in the vacuum chamber (background pressure: 1.3×10 -5~4.0×10 -4 Pa). Then, the samples were brought into contact as quickly as possible with a load of 735 N at room temperature. After this process, GaN films were successfully bonded to GaAs substrates without any heat treatment. Cross-sectional scanning electron microscopy showed that most of the interface area was well bonded. The bonding strength was evaluated by die-shear tests. Although all samples were visibly separated from the interface rather than in the bulk region after die-shear tests, the estimated die-shear strength of GaN/GaAs structures was 1.5 -7 MPa. The advantage of our process is free from the various problems caused by the large thermal expansion mismatch during heat treatment in the conventional fusion bonding.

  14. Non-coordinating-Anion-Directed Reversal of Activation Site: Selective C-H Bond Activation of N-Aryl Rings.

    PubMed

    Wang, Dawei; Yu, Xiaoli; Xu, Xiang; Ge, Bingyang; Wang, Xiaoli; Zhang, Yaxuan

    2016-06-13

    An Rh-catalyzed selective C-H bond activation of diaryl-substituted anilides is described. In an attempt to achieve C-H activation of C-aryl rings, we unexpectedly obtained an N-aryl ring product under non-coordinating anion conditions, whereas the C-aryl ring product was obtained in the absence of a non-coordinating anion. This methodology has proved to be an excellent means of tuning and adjusting selective C-H bond activation of C-aryl and N-aryl rings. The approach has been rationalized by mechanistic studies and theoretical calculations. In addition, it has been found and verified that the catalytic activity of the rhodium catalyst is obviously improved by non-coordinating anions, which provides an efficient strategy for obtaining a highly chemoselective catalyst. Mechanistic experiments also unequivocally ruled out the possibility of a so-called "silver effect" in this transformation involving silver. PMID:27159169

  15. Pd/Norbornene: A Winning Combination for Selective Aromatic Functionalization via C-H Bond Activation.

    PubMed

    Della Ca', Nicola; Fontana, Marco; Motti, Elena; Catellani, Marta

    2016-07-19

    Direct C-H bond activation is an important reaction in synthetic organic chemistry. This methodology has the potential to simplify reactions by avoiding the use of prefunctionalized reagents. However, selectivity, especially site selectivity, remains challenging. Sequential reactions, in which different molecules or groups are combined in an ordered sequence, represent a powerful tool for the construction of complex molecules in a single operation. We have discovered and developed a synthetic methodology that combines selective C-H bond activation with sequential reactions. This procedure, which is now known as the "Catellani reaction", enables the selective functionalization of both the ortho and ipso positions of aryl halides. The desired molecules are obtained with high selectivity from a pool of simple precursors. These molecules are assembled under the control of a palladacycle, which is formed through the joint action of a metal (Pd) and an olefin such as norbornene. These two species act cooperatively with an aryl halide to construct the palladacycle, which is formed through ortho-C-H activation of the original aryl halide. The resulting complex acts as a scaffold to direct the reaction (via Pd(IV)) of other species, such as alkyl or aryl halides and amination or acylation agents, toward the sp(2) C-Pd bond. At the end of this process, because of steric hindrance, the scaffold is dismantled by norbornene extrusion. Pd(0) is cleaved from the organic product through C-C, C-H, C-N, C-O, or C-B coupling, in agreement with the well-known reactivity of aryl-Pd complexes. The cycle involves Pd(0), Pd(II), and Pd(IV) species. In particular, our discovery relates to alkylation and arylation reactions. Recently, remarkable progress has been made in the following areas: (a) the installation of an amino or an acyl group at the ortho position of aryl halides, (b) the formation of a C-B bond at the ipso position, (c) the achievement of meta-C-H bond activation of aryl

  16. "Conformational lock"via unusual intramolecular C-FO[double bond, length as m-dash]C and C-HCl-C parallel dipoles observed in in situ cryocrystallized liquids.

    PubMed

    Dey, Dhananjay; Bhandary, Subhrajyoti; Sirohiwal, Abhishek; Hathwar, Venkatesha R; Chopra, Deepak

    2016-06-01

    We report an unusual intramolecular C-FO[double bond, length as m-dash]C and C-HCl-C parallel dipole-dipole alignment which "locks" the molecular conformation of cryocrystallized liquids towards planarity where the diatropic ring current establishes the existence of aromaticity in the five-membered ring associated with FO contact. Topological analysis establishes the bonding interaction between [F, O] and [H, Cl]. PMID:27149236

  17. Aromatic C-H bond activation revealed by infrared multiphoton dissociation spectroscopy.

    PubMed

    Jašíková, Lucie; Hanikýřová, Eva; Schröder, Detlef; Roithová, Jana

    2012-04-01

    Metal-oxide cations are models of catalyst mediating the C-H bond activation of organic substrates. One of the most powerful reagents suggested in the gas phase is based on CuO(+) . Here, we describe the activation of the aromatic C-H bonds of phenanthroline in its complex with CuO(+) . The reaction sequence starts with a hydrogen atom abstraction by the oxygen atom from the 2-position of the phenanthroline ring, followed by OH migration to the ring. Using infrared multiphoton spectroscopy, it is shown that the reaction can be energetically facilitated by additional coordination of a water ligand to the copper ion. As the reaction is intramolecular, a spectroscopic characterization of the product is mandatory in order to unambiguously address the reaction mechanism. PMID:22689621

  18. Carbon-carbon bond cleavage in activation of the prodrug nabumetone.

    PubMed

    Varfaj, Fatbardha; Zulkifli, Siti N A; Park, Hyoung-Goo; Challinor, Victoria L; De Voss, James J; Ortiz de Montellano, Paul R

    2014-05-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs. PMID:24584631

  19. Carbon-Carbon Bond Cleavage in Activation of the Prodrug Nabumetone

    PubMed Central

    Varfaj, Fatbardha; Zulkifli, Siti N. A.; Park, Hyoung-Goo; Challinor, Victoria L.; De Voss, James J.

    2014-01-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs. PMID:24584631

  20. Nickel-catalyzed Csp2-Csp3 bond formation by carbon-fluorine activation.

    PubMed

    Sun, Alex D; Leung, Kaylyn; Restivo, Anita D; LaBerge, Nicole A; Takasaki, Harumi; Love, Jennifer A

    2014-03-10

    We report herein a general catalytic method for Csp(2)-Csp(3) bond formation through C-F activation. The process uses an inexpensive nickel complex with either diorganozinc or alkylzinc halide reagents, including those with β-hydrogen atoms. A variety of fluorine substitution patterns and functional groups can be readily incorporated. Sequential reactions involving different precatalysts and coupling partners permit the synthesis of densely functionalized fluorinated building blocks. PMID:24522982

  1. Asymmetric Intramolecular Alkylation of Chiral Aromatic Imines via Catalytic C-H Bond Activation

    SciTech Connect

    Watzke, Anja; Wilson, Rebecca; O'Malley, Steven; Bergman, Robert; Ellman, Jonathan

    2007-04-16

    The asymmetric intramolecular alkylation of chiral aromatic aldimines, in which differentially substituted alkenes are tethered meta to the imine, was investigated. High enantioselectivities were obtained for imines prepared from aminoindane derivatives, which function as directing groups for the rhodium-catalyzed C-H bond activation. Initial demonstration of catalytic asymmetric intramolecular alkylation also was achieved by employing a sterically hindered achiral imine substrate and catalytic amounts of a chiral amine.

  2. Intermonomer disulfide bonds impair the fusion activity of influenza virus hemagglutinin.

    PubMed Central

    Kemble, G W; Bodian, D L; Rosé, J; Wilson, I A; White, J M

    1992-01-01

    At a low pH, the influenza virus hemagglutinin (HA) undergoes conformational changes that promote membrane fusion. While the critical role of fusion peptide release from the trimer interface has been demonstrated previously, the role of globular head dissociation in the overall fusion mechanism remains unclear. To investigate this question, we have analyzed in detail the fusion activity and low pH-induced conformational changes of a mutant, Cys-HA, in which the globular head domains are locked together by engineered intermonomer disulfide bonds (L. Godley, J. Pfeifer, D. Steinhauer, B. Ely, G. Shaw, R. Kaufmann, E. Suchanek, C. Pabo, J. J. Skehel, D. C. Wiley, and S. Wharton, Cell 68:635-645, 1992). In this paper, we show that Cys-HA expressed on the cell surface is predominantly a disulfide-bonded trimer. Cell surface Cys-HA is impaired in its membrane fusion activity, as demonstrated by both content-mixing and lipid-mixing fusion assays. It is also impaired in its ability to change conformation at a low pH, as assessed by proteinase K sensitivity. The fusion activity and low pH-induced conformational changes of cell surface Cys-HA are, however, restored to nearly wild-type levels upon reduction of the intermonomer disulfide bonds. By using a set of conformation-specific monoclonal and anti-peptide antibodies, we found that purified Cys-HA trimers are impaired in changes that occur in the globular head domain interface. In addition, changes that occur at a great distance from the engineered intermonomer disulfide bonds, notably release of the fusion peptides, are also impaired. Our results are discussed with respect to current views of the fusion-active conformation of the HA trimer. Images PMID:1629960

  3. Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light.

    PubMed

    Zhu, Haiyong; Duan, Yanmin; Zhang, Ge; Huang, Chenghui; Wei, Yong; Shen, Hongyuan; Zheng, Yiqun; Huang, Lingxiong; Chen, Zhenqiang

    2009-11-23

    A high power and efficient 588 nm yellow light is demonstrated through intracavity frequency doubling of an acousto-optic Q-switched self-frequency Raman laser. A 30-mm-length double-end diffusion-bonded Nd:YVO(4) crystal was utilized for efficient self-Raman laser operation by reducing the thermal effects and increasing the interaction length for the stimulated Raman scattering. A 15-mm-length LBO with non-critical phase matching (theta = 90 degrees, phi = 0 degrees) cut was adopted for efficient second-harmonic generation. The focus position of incident pump light and both the repetition rate and the duty cycle of the Q-switch have been optimized. At a repetition rate of 110 kHz and a duty cycle of 5%, the average power of 588 nm light is up to 7.93 W while the incident pump power is 26.5 W, corresponding to an overall diode-yellow conversion efficiency of 30% and a slope efficiency of 43%. PMID:19997395

  4. NUCLEOPHILIC ADDITION TO ACTIVATED DOUBLE BONDS: PREDICTION OF REACTIVITY FROM THE LAPLACIAN OF CHARGE DENSITY

    EPA Science Inventory

    The reactivities of a series of molecules in a Michael addition reaction are analyzed on the basis of properties expressed in the Laplacian of the charge density distribution. he charge densities of structurally optimized acrylic acid (AA), methacrylic acid (MAA), acrylonitrile (...

  5. Silylations of Arenes with Hydrosilanes: From Transition-Metal-Catalyzed C¢X Bond Cleavage to Environmentally Benign Transition-Metal-Free C¢H Bond Activation.

    PubMed

    Xu, Zheng; Xu, Li-Wen

    2015-07-01

    The construction of carbon-silicon bonds is highlighted as an exciting achievement in the field of organosilicon chemistry and green chemistry. Recent developments in this area will enable the sustainable chemical conversion of silicon resources into synthetically useful compounds. Especially, the catalytic silylation through C¢H bond activation without directing groups and hydrogen acceptors is one of the most challenging topics in organic chemistry and green chemistry. These remarkable findings on catalytic silylation can pave the way to a more environmentally benign utilization of earth-abundant silicon-based resources in synthetic chemistry. PMID:26073645

  6. Time resolved infrared studies of C-H bond activation by organometallics

    SciTech Connect

    Asplund, M.C. |

    1998-06-01

    This work describes how step-scan Fourier Transform Infrared spectroscopy and visible and near infrared ultrafast lasers have been applied to the study of the photochemical activation of C-H bonds in organometallic systems, which allow for the selective breaking of C-H bonds in alkanes. The author has established the photochemical mechanism of C-H activation by Tp{sup *}Rh(CO){sub 2}(Tp{sup *} = HB-Pz{sup *}{sub 3}, Pz = 3,5-dimethylpyrazolyl) in alkane solution. The initially formed monocarbonyl forms a weak solvent complex, which undergoes a change in Tp{sup *} ligand connectivity. The final C-H bond breaking step occurs at different time scales depending on the structure of the alkane. In linear solvents, the time scale is <50 ns and cyclic alkanes is {approximately}200 ps. The reactivity of the Tp{sup *}Rh(CO){sub 2} system has also been studied in aromatic solvents. Here the reaction proceeds through two different pathways, with very different time scales. The first proceeds in a manner analogous to alkanes and takes <50 ns. The second proceeds through a Rh-C-C complex, and takes place on a time scale of 1.8 {micro}s.

  7. Key amino acids of arabidopsis VKOR in the activity of phylloquinone reduction and disulfide bond formation.

    PubMed

    Yang, Xiao-Jian; Cui, Hao-Ran; Yu, Zhi-Bo; Du, Jia-Jia; Xu, Jia-Ning; Wang, Xiao-Yun

    2015-01-01

    Many proteins in chloroplast are regulated through the disulfide bond/thiol transformation to realize their activities. A homologue of VKOR (Vitamin K epoxide reductase) in Arabidopsis chloroplast is found to catalyze the disulfide bond formation in vivo and to mediate the specific phylloquinone reduction in vitro. It is also called LTO1 (Lumen Thiol Oxidoreductase 1). Investigations about functions and essential amino acid residues of AtVKOR have important theoretical significance to clarify the chloroplast redox regulation mechanism. In this study, several amino acids in the VKOR domain of AtVKOR were identified to be involved in binding of phylloquinone. Site-directed mutagenesis was used to study the function of these positions. The results suggested that residues Ser77, Leu87, Phe137 and Leu141 were quite important in the binding and catalyzing the reduction of phylloquinone. These residues were also involved in the electron transferring and disulfide bond formation of substrate proteins by motility assays in vivo, suggesting that the binding of phylloquinone not only affected the delivery of electrons to phylloquinone but also affected the whole electron transfer process. The conserved cysteines in the AtVKOR domain also played critical roles in phylloquinone reduction. When each of the four conserved cysteines was mutated to alanine, the mutants lost reduction activity entirely, suggesting that the four conserved cysteines played crucial roles in the electron transfer process. PMID:25267254

  8. Binuclear Aromatic C-H Bond Activation at a Dirhenium Site.

    PubMed

    Adams, Richard D; Rassolov, Vitaly; Wong, Yuen Onn

    2016-01-22

    The electronically unsaturated dirhenium complex [Re2(CO)8(μ-H)(μ-Ph)] (1) has been found to exhibit aromatic C-H activation upon reaction with N,N-diethylaniline, naphthalene, and even [D6]benzene to yield the compounds [Re2(CO)8(μ-H)(μ-η(1)-NEt2C6H4)] (2), [Re2(CO)8(μ-H)(μ-η(2)-1,2-C10H7)] (3), and [D6]-1, respectively, in good yields. The mechanism has been elucidated by using DFT computational analyses, and involves a binuclear C-H bond-activation process. PMID:26643854

  9. Thermally activated delayed fluorescence evidence in non-bonding transition electron donor-acceptor molecules

    NASA Astrophysics Data System (ADS)

    Marghad, Ikbal; Clochard, M. C.; Ollier, N.; Wade, Travis L.; Aymes-Chodur, C.; Renaud, C.; Zissis, G.

    2015-09-01

    The exhibition of thermally activated delayed fluorescence on triazine derivative by the introduction of a nonbonding part is demonstrated. Two molecules containing triazine core as acceptor and carbazole part as donor has been synthesized and characterized. One of these molecules bears an additional nonbonding part by the means of a phenoxy group. The results indicated that the molecule bearing the nonbonding molecular part (phenoxy) exhibit thermally activated delayed fluorescence while not on molecule free of non-bonding group. The results are supported by, photoluminescence, spectral analysis time-resolved fluorescence and time-dependent density functional estimation

  10. Sphalerite is a geochemical catalyst for carbon−hydrogen bond activation

    PubMed Central

    Shipp, Jessie A.; Gould, Ian R.; Shock, Everett L.; Williams, Lynda B.; Hartnett, Hilairy E.

    2014-01-01

    Reactions among minerals and organic compounds in hydrothermal systems are critical components of the Earth’s deep carbon cycle, provide energy for the deep biosphere, and may have implications for the origins of life. However, there is limited information as to how specific minerals influence the reactivity of organic compounds. Here we demonstrate mineral catalysis of the most fundamental component of an organic reaction: the breaking and making of a covalent bond. In the absence of mineral, hydrothermal reaction of cis- and trans-1,2-dimethylcyclohexane is extremely slow and generates many products. In the presence of sphalerite (ZnS), however, the reaction rate increases dramatically and one major product is formed: the corresponding stereoisomer. Isotope studies show that the sphalerite acts as a highly specific heterogeneous catalyst for activation of a single carbon−hydrogen bond in the dimethylcyclohexanes. PMID:25071186

  11. Mercury Detoxification by Bacteria: Simulations of Transcription Activation and Mercury-Carbon Bond Cleavage

    SciTech Connect

    Guo, Hao-Bo; Parks, Jerry M; Johs, Alexander; Smith, Jeremy C

    2011-01-01

    In this chapter, we summarize recent work from our laboratory and provide new perspective on two important aspects of bacterial mercury resistance: the molecular mechanism of transcriptional regulation by MerR, and the enzymatic cleavage of the Hg-C bond in methylmercury by the organomercurial lyase, MerB. Molecular dynamics (MD) simulations of MerR reveal an opening-and-closing dynamics, which may be involved in initiating transcription of mercury resistance genes upon Hg(II) binding. Density functional theory (DFT) calculations on an active-site model of the enzyme reveal how MerB catalyzes the Hg-C bond cleavage using cysteine coordination and acid-base chemistry. These studies provide insight into the detailed mechanisms of microbial gene regulation and defense against mercury toxicity.

  12. Regulation of the activity of Escherichia coli quinolinate synthase by reversible disulfide-bond formation.

    PubMed

    Saunders, Allison H; Booker, Squire J

    2008-08-19

    Quinolinate synthase (NadA) catalyzes a unique condensation reaction between dihydroxyacetone phosphate and iminoaspartate, yielding inorganic phosphate, 2 mol of water, and quinolinic acid, a central intermediate in the biosynthesis of nicotinamide adenine dinucleotide and its derivatives. The enzyme from Escherichia coli contains a C (291)XXC (294)XXC (297) motif in its primary structure. Bioinformatics analysis indicates that only Cys297 serves as a ligand to a [4Fe-4S] cluster that is required for turnover. In this report, we show that the two remaining cysteines, Cys291 and Cys294, undergo reversible disulfide-bond formation, which regulates the activity of the enzyme. This mode of redox regulation of NadA appears physiologically relevant, since disulfide-bond formation and reduction are effected by oxidized and reduced forms of E. coli thioredoxin. A midpoint potential of -264 +/- 1.77 mV is approximated for the redox couple. PMID:18651751

  13. BORON CATALYSIS. Metal-free catalytic C-H bond activation and borylation of heteroarenes.

    PubMed

    Légaré, Marc-André; Courtemanche, Marc-André; Rochette, Étienne; Fontaine, Frédéric-Georges

    2015-07-31

    Transition metal complexes are efficient catalysts for the C-H bond functionalization of heteroarenes to generate useful products for the pharmaceutical and agricultural industries. However, the costly need to remove potentially toxic trace metals from the end products has prompted great interest in developing metal-free catalysts that can mimic metallic systems. We demonstrated that the borane (1-TMP-2-BH2-C6H4)2 (TMP, 2,2,6,6-tetramethylpiperidine) can activate the C-H bonds of heteroarenes and catalyze the borylation of furans, pyrroles, and electron-rich thiophenes. The selectivities complement those observed with most transition metal catalysts reported for this transformation. PMID:26228143

  14. Hydrogen induced C-C, C-N, and C-S bond activation on Pt and Ni surfaces

    SciTech Connect

    Gland, J.L.

    1992-01-01

    The work has focussed on hydrogen induced bond activation in adsorbed organic molecules and intermediates containin C-S and C-N and C-C bonds on Ni(100), Ni(111), and Pt(111) surfaces. Fluorescence Yield Near Edge Spectroscopy (FYNES) above the carbon K edge was used for adsorbed organic reactants and in-situ kinetic studies of bond activation. Results indicate that the activation is enhanced on Ni relative to Pt. Methylthiolate and methylamine adsorbed on Pt(111) were studied.

  15. Hydrogen induced C-C, C-N, and C-S bond activation on Pt and Ni surfaces

    SciTech Connect

    Gland, J.L.

    1992-12-01

    The work has focussed on hydrogen induced bond activation in adsorbed organic molecules and intermediates containin C-S and C-N and C-C bonds on Ni(100), Ni(111), and Pt(111) surfaces. Fluorescence Yield Near Edge Spectroscopy (FYNES) above the carbon K edge was used for adsorbed organic reactants and in-situ kinetic studies of bond activation. Results indicate that the activation is enhanced on Ni relative to Pt. Methylthiolate and methylamine adsorbed on Pt(111) were studied.

  16. Surface Oxidation under Ambient Air—Not Only a Fast and Economical Method to Identify Double Bond Positions in Unsaturated Lipids But Also a Reminder of Proper Lipid Processing

    PubMed Central

    2015-01-01

    A simple, fast approach elucidated carbon–carbon double bond positions in unsaturated lipids. Lipids were deposited onto various surfaces and the products from their oxidation in ambient air were observed by electrospray ionization (ESI) mass spectrometry (MS). The most common oxidative products, aldehydes, were detected as transformations at the cleaved double bond positions. Ozonides and carboxylic acids were generated in certain lipids. Investigations of the conditions controlling the appearance of these products indicated that the surface oxidation depends on light and ambient air. Since the lipid oxidation was slower in a high concentration of ozone, singlet oxygen appeared to be a parallel oxidant for unsaturated lipids. The 3-hydroxyl group in the sphingoid base of sulfatides offered some protection from oxidation for the Δ4,5-double bond, slowing its oxidation rate relative to that of the isolated double bond in the N-linked fatty acyl chain. Direct sampling by thin-layer chromatography (TLC)-ESI-MS provides a powerful approach to elucidate detailed structural information on biological samples. Co-localization of the starting lipids and their oxidation products after TLC separation allowed assignment of the native unsaturation sites. Phosphatidylserine and N,N-dimethyl phosphatidylethanolamine isomers in a bovine brain total lipid extract were distinguished on the basis of their oxidation products. Meanwhile, the findings reported herein reveal a potential pitfall in the assignment of structures to lipids extracted from TLC plates because of artifactual oxidation after the plate development. PMID:24832382

  17. Phosphate-intercalated Ca-Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate

    NASA Astrophysics Data System (ADS)

    Woo, Myong A.; Woo Kim, Tae; Paek, Mi-Jeong; Ha, Hyung-Wook; Choy, Jin-Ho; Hwang, Seong-Ju

    2011-01-01

    The nitrate-form of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) was synthesized via co-precipitation method, and its phosphate-intercalates were prepared by ion-exchange reaction. According to X-ray diffraction analysis, the Ca-Fe-LDH-NO 3- compound and its H 2PO 4--intercalate showed hexagonal layered structures, whereas the ion-exchange reaction with HPO 42- caused a frustration of the layer ordering of LDH. Fe K-edge X-ray absorption spectroscopy clearly demonstrated that the Ca-Fe-LDH lattice with trivalent iron ions was well-maintained after the ion-exchange with HPO 42- and H 2PO 4-. Under acidic conditions, phosphate ions were slowly released from the Ca-Fe-LDH lattice and the simultaneous release of hydroxide caused the neutralization of acidic media. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. This study strongly suggested that Ca-Fe-LDH is applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil.

  18. Bile salt–induced intermolecular disulfide bond formation activates Vibrio cholerae virulence

    PubMed Central

    Yang, Menghua; Liu, Zhi; Hughes, Chambers; Stern, Andrew M.; Wang, Hui; Zhong, Zengtao; Kan, Biao; Fenical, William; Zhu, Jun

    2013-01-01

    To be successful pathogens, bacteria must often restrict the expression of virulence genes to host environments. This requires a physical or chemical marker of the host environment as well as a cognate bacterial system for sensing the presence of a host to appropriately time the activation of virulence. However, there have been remarkably few such signal–sensor pairs identified, and the molecular mechanisms for host-sensing are virtually unknown. By directly applying a reporter strain of Vibrio cholerae, the causative agent of cholera, to a thin layer chromatography (TLC) plate containing mouse intestinal extracts, we found two host signals that activate virulence gene transcription. One of these was revealed to be the bile salt taurocholate. We then show that a set of bile salts cause dimerization of the transmembrane transcription factor TcpP by inducing intermolecular disulfide bonds between cysteine (C)-207 residues in its periplasmic domain. Various genetic and biochemical analyses led us to propose a model in which the other cysteine in the periplasmic domain, C218, forms an inhibitory intramolecular disulfide bond with C207 that must be isomerized to form the active C207–C207 intermolecular bond. We then found bile salt–dependent effects of these cysteine mutations on survival in vivo, correlating to our in vitro model. Our results are a demonstration of a mechanism for direct activation of the V. cholerae virulence cascade by a host signal molecule. They further provide a paradigm for recognition of the host environment in pathogenic bacteria through periplasmic cysteine oxidation. PMID:23341592

  19. Ultrafast studies of organometallic photochemistry: The mechanism of carbon-hydrogen bond activation in solution

    SciTech Connect

    Bromberg, S.E.

    1998-05-01

    When certain organometallic compounds are photoexcited in room temperature alkane solution, they are able to break or activate the C-H bonds of the solvent. Understanding this potentially practical reaction requires a detailed knowledge of the entire reaction mechanism. Because of the dynamic nature of chemical reactions, time-resolved spectroscopy is commonly employed to follow the important events that take place as reactants are converted to products. For the organometallic reactions examined here, the electronic/structural characteristics of the chemical systems along with the time scales for the key steps in the reaction make ultrafast UV/Vis and IR spectroscopy along with nanosecond Step-Scan FTIR spectroscopy the ideal techniques to use for this study. An initial study of the photophysics of (non-activating) model metal carbonyls centering on the photodissociation of M(CO){sub 6} (M = Cr, W, Mo) was carried out in alkane solutions using ultrafast IR spectroscopy. Next, picosecond UV/vis studies of the C-H bond activation reaction of Cp{sup *}M(CO){sub 2} (M = Rh, Ir), conducted in room temperature alkane solution, are described in an effort to investigate the origin of the low quantum yield for bond cleavage ({approximately}1%). To monitor the chemistry that takes place in the reaction after CO is lost, a system with higher quantum yield is required. The reaction of Tp{sup *}Rh(CO){sub 2} (Tp{sup *} = HB-Pz{sub 3}{sup *}, Pz{sup *} = 3,5-dimethylpyrazolyl) in alkanes has a quantum yield of {approximately}30%, making time resolved spectroscopic measurements possible. From ultrafast IR experiments, two subsequently formed intermediates were observed. The nature of these intermediates are discussed and the first comprehensive reaction mechanism for a photochemical C-H activating organometallic complex is presented.

  20. Water-containing hydrogen-bonding network in the active center of channelrhodopsin.

    PubMed

    Ito, Shota; Kato, Hideaki E; Taniguchi, Reiya; Iwata, Tatsuya; Nureki, Osamu; Kandori, Hideki

    2014-03-01

    Channelrhodopsin (ChR) functions as a light-gated ion channel in Chlamydomonas reinhardtii. Passive transport of cations by ChR is fundamentally different from the active transport by light-driven ion pumps such as archaerhodopsin, bacteriorhodopsin, and halorhodopsin. These microbial rhodopsins are important tools for optogenetics, where ChR is used to activate neurons by light, while the ion pumps are used for neural silencing. Ion-transport functions by these rhodopsins strongly depend on the specific hydrogen-bonding networks containing water near the retinal chromophore. In this work, we measured protein-bound water molecules in a chimeric ChR protein of ChR1 (helices A to E) and ChR2 (helices F and G) of Chlamydomonas reinhardtii using low-temperature FTIR spectroscopy at 77 K. We found that the active center of ChR possesses more water molecules (9 water vibrations) than those of other microbial (2-6 water vibrations) and animal (6-8 water vibrations) rhodopsins. We conclude that the protonated retinal Schiff base interacts with the counterion (Glu162) directly, without the intervening water molecule found in proton-pumping microbial rhodopsins. The present FTIR results and the recent X-ray structure of ChR reveal a unique hydrogen-bonding network around the active center of this light-gated ion channel. PMID:24512107

  1. C-H Bond Activation by Early Transition Metal Carbide Cluster Anion MoC3 (-).

    PubMed

    Li, Zi-Yu; Hu, Lianrui; Liu, Qing-Yu; Ning, Chuan-Gang; Chen, Hui; He, Sheng-Gui; Yao, Jiannian

    2015-12-01

    Although early transition metal (ETM) carbides can activate CH bonds in condensed-phase systems, the electronic-level mechanism is unclear. Atomic clusters are ideal model systems for understanding the mechanisms of bond activation. For the first time, CH activation of a simple alkane (ethane) by an ETM carbide cluster anion (MoC3 (-) ) under thermal-collision conditions has been identified by using high-resolution mass spectrometry, photoelectron imaging spectroscopy, and high-level quantum chemical calculations. Dehydrogenation and ethene elimination were observed in the reaction of MoC3 (-) with C2 H6 . The CH activation follows a mechanism of oxidative addition that is much more favorable in the carbon-stabilized low-spin ground electronic state than in the high-spin excited state. The reaction efficiency between the MoC3 (-) anion and C2 H6 is low (0.23±0.05) %. A comparison between the anionic and a highly efficient cationic reaction system (Pt(+) +C2 H6 ) was made. It turned out that the potential-energy surfaces for the entrance channels of the anionic and cationic reaction systems can be very different. PMID:26490554

  2. Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.

    PubMed

    Ruscic, Branko

    2015-07-16

    Active Thermochemical Tables (ATcT) thermochemistry for the sequential bond dissociations of methane, ethane, and methanol systems were obtained by analyzing and solving a very large thermochemical network (TN). Values for all possible C-H, C-C, C-O, and O-H bond dissociation enthalpies at 298.15 K (BDE298) and bond dissociation energies at 0 K (D0) are presented. The corresponding ATcT standard gas-phase enthalpies of formation of the resulting CHn, n = 4-0 species (methane, methyl, methylene, methylidyne, and carbon atom), C2Hn, n = 6-0 species (ethane, ethyl, ethylene, ethylidene, vinyl, ethylidyne, acetylene, vinylidene, ethynyl, and ethynylene), and COHn, n = 4-0 species (methanol, hydroxymethyl, methoxy, formaldehyde, hydroxymethylene, formyl, isoformyl, and carbon monoxide) are also presented. The ATcT thermochemistry of carbon dioxide, water, hydroxyl, and carbon, oxygen, and hydrogen atoms is also included, together with the sequential BDEs of CO2 and H2O. The provenances of the ATcT enthalpies of formation, which are quite distributed and involve a large number of relevant determinations, are analyzed by variance decomposition and discussed in terms of principal contributions. The underlying reasons for periodic appearances of remarkably low and/or unusually high BDEs, alternating along the dissociation sequences, are analyzed and quantitatively rationalized. The present ATcT results are the most accurate thermochemical values currently available for these species. PMID:25760799

  3. Enantioselective Rh-Catalyzed Carboacylation of C═N Bonds via C-C Activation of Benzocyclobutenones.

    PubMed

    Deng, Lin; Xu, Tao; Li, Hongbo; Dong, Guangbin

    2016-01-13

    Herein we describe the first enantioselective Rh-catalyzed carboacylation of oximes (imines) via C-C activation. In this transformation, the benzocyclobutenone C1-C2 bond is selectively activated by a low valent rhodium catalyst and subsequently the resulting two Rh-C bonds add across a C═N bond, which provides a unique approach to access chiral lactams. A range of polycyclic nitrogen-containing scaffolds were obtained in good yields with excellent enantioselectivity. Further derivatization of the lactam products led to a rapid entry to various novel fused heterocycles. PMID:26674855

  4. Annulation of Aromatic Imines via Directed C-H BondActivation

    SciTech Connect

    Thalji, Reema K.; Ahrendt, Kateri A.; Bergman, Robert G.; Ellman,Jonathan A.

    2005-04-14

    A directed C-H bond activation approach to the synthesis of indans, tetralins, dihydrofurans, dihydroindoles, and other polycyclic aromatic compounds is presented. Cyclization of aromatic ketimines and aldimines containing alkenyl groups tethered at the meta position relative to the imine directing group has been achieved using (PPh{sub 3}){sub 3}RhCl (Wilkinson's catalyst). The cyclization of a range of aromatic ketimines and aldimines provides bi- and tricyclic ring systems with good regioselectivity. Different ring sizes and substitution patterns can be accessed through the coupling of monosubstituted, 1,1- or 1,2-disubstituted, and trisubstituted alkenes bearing both electron-rich and electron-deficient functionality.

  5. Annulation of aromatic imines via directed C-H bond activation.

    PubMed

    Thalji, Reema K; Ahrendt, Kateri A; Bergman, Robert G; Ellman, Jonathan A

    2005-08-19

    A directed C-H bond activation approach to the synthesis of indans, tetralins, dihydrofurans, dihydroindoles, and other polycyclic aromatic compounds is presented. Cyclization of aromatic ketimines and aldimines containing alkenyl groups tethered at the meta position relative to the imine directing group has been achieved using (PPh3)3RhCl (Wilkinson's catalyst). The cyclization of a range of aromatic ketimines and aldimines provides bi- and tricyclic ring systems with good regioselectivity. Different ring sizes and substitution patterns can be accessed through the coupling of monosubstituted, 1,1- or 1,2-disubstituted, and trisubstituted alkenes bearing both electron-rich and electron-deficient functionality. PMID:16095296

  6. Selective molecular recognition, C-H bond activation, and catalysis in nanoscale reaction vessels

    SciTech Connect

    Fiedler, Dorothea; Leung, Dennis H.; Raymond, Kenneth N.; Bergman, Robert G.

    2004-11-27

    Supramolecular chemistry represents a way to mimic enzyme reactivity by using specially designed container molecules. We have shown that a chiral self-assembled M{sub 4}L{sub 6} supramolecular tetrahedron can encapsulate a variety of cationic guests, with varying degrees of stereoselectivity. Reactive iridium guests can be encapsulated and the C-H bond activation of aldehydes occurs, with the host cavity controlling the ability of substrates to interact with the metal center based upon size and shape. In addition, the host container can act as a catalyst by itself. By restricting reaction space and preorganizing the substrates into reactive conformations, it accelerates the sigmatropic rearrangement of enammonium cations.

  7. Role of the delta 8 double bond of agroclavine in lysergic acid amide biosynthesis by Claviceps purpurea.

    PubMed

    Willingale, J; Manzarpour, A; Mantle, P G

    1985-08-15

    Agroclavine, given to actively-growing sclerotial tissue of a strain of Claviceps purpurea which can not normally elaborate ergot alkaloids, was transformed by this tissue into lysergic acid amide with overall efficiency of approximately 40%. By contrast, festuclavine (8,9-dihydro-agroclavine) was not transformed, indicating specificity in the mechanism of lysergyl biosynthesis. PMID:4018228

  8. Analysis of ground reaction force and electromyographic activity of the gastrocnemius muscle during double support.

    PubMed

    Sousa, Andreia S P; Santos, Rubim; Oliveira, Francisco P M; Carvalho, Paulo; Tavares, João Manuel R S

    2012-05-01

    Mechanisms associated with energy expenditure during gait have been extensively researched and studied. According to the double-inverted pendulum model energy expenditure is higher during double support, as lower limbs need to work to redirect the centre of mass velocity. This study looks into how the ground reaction force of one limb affects the muscle activity required by the medial gastrocnemius of the contralateral limb during step-to-step transition. Thirty-five subjects were monitored as to the medial gastrocnemius electromyographic activity of one limb and the ground reaction force of the contralateral limb during double support. After determination of the Pearson correlation coefficient (r), a moderate correlation was observed between the medial gastrocnemius electromyographic activity of the dominant leg and the vertical (Fz) and anteroposterior (Fy) components of ground reaction force of the non-dominant leg (r = 0.797, p < 0.000 1; r = -0.807, p < 0.000 1). A weak and moderate correlation was observed between the medial gastrocnemius electromyographic activity of the non-dominant leg and the Fz and Fy of the dominant leg, respectively (r = 0.442, p = 0.018; r = -0.684 p < 0.000 1). The results obtained suggest that during double support, ground reaction force is associated with the electromyographic activity of the contralateral medial gastrocnemius and that there is an increased dependence between the ground reaction force of the non-dominant leg and the electromyographic activity of the dominant medial gastrocnemius. PMID:22720393

  9. Numerical Comparison of Active Acoustic and Structural Noise Control in a Stiffened Double Wall Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1996-01-01

    The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.

  10. Low-temperature hermetic packaging for microsystems using Au-Au surface-activated bonding at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shin-ichi; Higurashi, Eiji; Suga, Tadatomo; Sawada, Renshi

    2012-05-01

    Low-temperature hermetic bonding based on surface activation is useful for optical microsystem packaging because high bonding temperatures may degrade microsystem performance and sensitivity. However, surface-activated bonding (SAB) is usually performed under ultra-high-vacuum conditions, and the bonding environment cannot be chosen freely. In this study, thin Au sealing rings (300-500 nm thick, and 100 μm wide) were used as bonding layers for SAB at atmospheric pressure. A sufficiently high die-shear strength was achieved via surface activation using an argon radio-frequency plasma treatment. On examination of the fracture surfaces of the broken seal after the die-shear test, we observed that the fractures typically occurred at the deposited interface or partially inside the bulk substrates. Hermeticity was evaluated by measuring the resonance characteristics of photothermally excited microcantilevers inside the cavities. The samples bonded at the low temperature of 150 °C under the application of a bonding pressure of 313 MPa for 30 s showed leakage rates of less than 5.0 × 10-9 Pa·m3 s-1, which is the rejection limit defined by the MIL-STD-883G specification.

  11. Activation of carbon-hydrogen bonds in alkanes and other organic molecules using organotransition metal complexes

    SciTech Connect

    Bergman, R.G.

    1991-10-01

    We have recently begun to investigate the interaction of C-H activating iridium and rhodium complexes with functionalized organic molecules, to determine the effect of functional groups on the process, as well as to investigate the propensity of Ir and Rh to insert into C-H versus other types of X-H bonds. Recent experiments have demonstrated that xenon liquefied at -70{degrees}C and 10 atm pressure serves as an inert solvent for the C-H oxidative addition reaction. We have been able to prepare and isolate, for the first time, C-H oxidative addition products formed from high-melting solid substrates such as naphthalene, adamantane, and even cubane; the latter case represents the first observation of C-H oxidative addition at a tertiary C-H bond. Liquid xenon has also allowed us to carry out more conveniently the C-H oxidative addition reactions of low-boiling gases that are difficult to liquefy, such as methane. Recently we have also been able to carry out analogous studies in the gas phase. Under these conditions, ``naked`` rather than solvated Cp*Rh(CO) is formed, and this species reacts with cyclohexane at nearly gas-kinetic rates. Under the conditions, collision between Cp*Rh(CO) and cyclohexane is the slowest step in the overall C-H activation process. In contrast, in solution association of solvent with free Cp*Rh(CO) is so rapid that the step involving C-H bond cleavage in the coordinated alkane complex becomes rate-determining. 3 refs., 5 figs.

  12. Activation of carbon-hydrogen bonds in alkanes and other organic molecules using organotransition metal complexes

    SciTech Connect

    Bergman, R.G.

    1991-10-01

    We have recently begun to investigate the interaction of C-H activating iridium and rhodium complexes with functionalized organic molecules, to determine the effect of functional groups on the process, as well as to investigate the propensity of Ir and Rh to insert into C-H versus other types of X-H bonds. Recent experiments have demonstrated that xenon liquefied at -70{degrees}C and 10 atm pressure serves as an inert solvent for the C-H oxidative addition reaction. We have been able to prepare and isolate, for the first time, C-H oxidative addition products formed from high-melting solid substrates such as naphthalene, adamantane, and even cubane; the latter case represents the first observation of C-H oxidative addition at a tertiary C-H bond. Liquid xenon has also allowed us to carry out more conveniently the C-H oxidative addition reactions of low-boiling gases that are difficult to liquefy, such as methane. Recently we have also been able to carry out analogous studies in the gas phase. Under these conditions, naked'' rather than solvated Cp*Rh(CO) is formed, and this species reacts with cyclohexane at nearly gas-kinetic rates. Under the conditions, collision between Cp*Rh(CO) and cyclohexane is the slowest step in the overall C-H activation process. In contrast, in solution association of solvent with free Cp*Rh(CO) is so rapid that the step involving C-H bond cleavage in the coordinated alkane complex becomes rate-determining. 3 refs., 5 figs.

  13. Stabilization of gamma-irradiated poly(vinyl chloride) by epoxy compounds. III. Conjugated double bonds and degree of unsaturation in gamma-irradiated PVC-stabilizer mixtures

    SciTech Connect

    Lerke, G.; Lerke, I.; Szymanski, W.

    1983-01-01

    The concentration of conjugated polyene sequences was studied in ..gamma..-irradiated PVC with 4% admixture of four epoxy stabilizers: diglycidyl ether of 2,2-bis(4-hydroxy-3-methylphenyl)propane (I), styrene oxide (1,2-epoxy ethyl benzene) (IV), epoxidized ricinus oil (VI), and epoxidized soybean oil (Drapex 6.8) (VII). As in the former investigations (Papers I and II), the process of the formation of the polyenes occurs in two stages. The concentration of polyene sequences with n double bonds, H/sub n/ the total amount of polyene sequences, ..sigma..H/sub n/, the average length of the polyene sequence, n, and the extents of reaction x and p, were computed. The stabilizing effect of all compounds used agrees with the increasing content of epoxy groups. The addition of stabilizers diminishes the value of n. The decrease of the fraction of long sequences and the increase of short ones occurs. Apart from the binding of evolved HCl, the protective effect towards the macromolecules of PVC consists mainly in the inhibition of growth of chain dehydrochlorination by the epoxy groups.

  14. CH Bond Activation of Methane by a Transient η(2)-Cyclopropene/Metallabicyclobutane Complex of Niobium.

    PubMed

    Li, Chen; Dinoi, Chiara; Coppel, Yannick; Etienne, Michel

    2015-10-01

    This study challenges the problem of the activation of a CH bond of methane by soluble transition metal complexes. High pressure solution NMR, isotopic labeling studies, and kinetic analyses of the degenerate exchange of methane in the methyl complex [Tp(Me2)NbCH3(c-C3H5)(MeCCMe)] (1) are reported. Stoichiometric methane activation by the mesitylene complex [Tp(Me2)Nb(CH2-3,5-C6H3Me2)(c-C3H5) (MeCCMe)] (2) giving 1 is also realized. Evidence is provided that these reactions proceed via an intramolecular abstraction of a β-H of the cyclopropyl group to form either methane or mesitylene from 1 or 2, respectively, yielding the transient unsaturated η(2)-cyclopropene/metallabicyclobutane intermediate [Tp(Me2)Nb(η(2)-c-C3H4) (MeCCMe)] A. This is followed by its mechanistic reverse 1,3-CH bond addition of methane yielding the product. PMID:26374390

  15. Metal-Oxygen Bond Ionicity as an Efficient Descriptor for Doped NiOOH Photocatalytic Activity.

    PubMed

    Zaffran, Jeremie; Toroker, Maytal Caspary

    2016-06-01

    The computational design of solid catalysts has become a very "hot" field during the last decades, especially with the recent increase in computational tool performance. However, theoretical techniques are still very time demanding because they require the consideration of many adsorption configurations of the reaction intermediates on the surface. Herein, we propose to use the metal-oxygen (M-O) bond ionicity as a descriptor for the photocatalytic activity of one of the best catalysts for the oxygen evolution reaction (OER). Ionicity is a bulk property and thus carries the advantage of being easily obtainable from a simple Bader charge analysis by using density functional theory (DFT). We will show that this criterion can be used successfully to design efficient dopants for NiOOH material. This catalyst is known to exhibit interesting photoelectrochemical properties for OER if it is doped with specific transition metals. Finally, we demonstrate that other electronic properties that relate to bulk calculation, such as oxidation states and density of states, are not alone sufficient to explain the photocatalytic activity of the material. Thus, M-O bond ionicity attracts significant interest compared with other bulk observables obtained by using DFT computations. PMID:26945687

  16. Electrical properties of Si/Si interfaces by using surface-activated bonding

    SciTech Connect

    Liang, J.; Miyazaki, T.; Morimoto, M.; Nishida, S.; Shigekawa, N.

    2013-11-14

    Electrical properties of n-Si/n-Si, p-Si/n-Si, and p{sup −}-Si/n{sup +}-Si junctions fabricated by using surface-activated-bonding are investigated. The transmission electron microscopy/energy dispersive X-ray spectroscopy of the n-Si/n-Si interfaces reveals no evidence of oxide layers at the interfaces. From the current-voltage (I-V) and the capacitance-voltage (C-V) characteristics of the p-Si/n-Si and p{sup −}-Si/n{sup +}-Si junctions, it is found that the interface states, likely to have formed due to the surface activation process using Ar plasma, have a more marked impact on the electrical properties of the p-Si/n-Si junctions. An analysis of the temperature dependence of the I-V characteristics indicates that the properties of carrier transport across the bonding interfaces for reverse-bias voltages in the p-Si/n-Si and p{sup −}-Si/n{sup +}-Si junctions can be explained using the trap-assisted-tunneling and Frenkel-Poole models, respectively.

  17. Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide.

    PubMed

    Khan, A I; Lei, L; Norquist, A J; O'Hare, D

    2001-11-21

    A series of pharmaceutically active compounds including diclofenac, gemfibrozil, ibuprofen, naproxen, 2-propylpentanoic acid, 4-biphenylacetic acid and tolfenamic acid can be reversibly intercalated into a layered double hydroxide, initial studies suggest that these materials may have application as the basis of a novel tuneable drug delivery system. PMID:12240066

  18. Photochromism of halorhodopsin. cis/trans isomerization of the retinal around the 13-14 double bond.

    PubMed

    Lanyi, J K

    1986-10-25

    The isomeric composition of retinal in membrane-bound and in purified but detergent-free, dark-adapted halorhodopsin was found to be about 70% 13-cis and 30% all-trans. Any illumination increased the all-trans content relative to the dark-adapted state, but blue illumination shifted the isomeric composition more toward all-trans while red illumination of blue-adapted samples shifted it more toward 13-cis. In the presence of chloride this photoisomerization caused the kind of photochromic behavior reported earlier in Smith, S. O., Marvin, M. J., Bogomolni, R. A., and Mathies, R. A. (1984) J. Biol. Chem. 259, 12326-12329, i.e. blue light caused the absorption maximum to move toward longer wavelengths and red light reversed the shift. Only the all-trans chromophore exhibited the complete photocycle described earlier in detergent-solubilized halorhodopsin, and this was the form that could be associated with light-driven chloride transport activity in cell envelope vesicles. In the absence of chloride the spectroscopic changes caused by illumination were much smaller. Reconstitution of bleached preparations with 13-cis- and all-trans-retinal, in the presence and absence of chloride, confirmed that the difference between the absorption maxima of the two isomeric forms of the chromophore is affected by chloride: 13-cis-halorhodopsin absorbs at about 567-568 nm with and without chloride, and the all-trans pigment absorbs near 568 nm in the absence of chloride, but at 578 nm in its presence. The simplest explanation of this finding is that most of the red-shift which accompanies the 13-cis----all-trans transition originates from electrostatic interaction of the retinal with chloride bound in its vicinity. PMID:3771521

  19. Aromatic Cyanoalkylation through Double C-H Activation Mediated by Ni(III).

    PubMed

    Zhou, Wen; Zheng, Shuai; Schultz, Jason W; Rath, Nigam P; Mirica, Liviu M

    2016-05-11

    Herein we report an atom- and step-economic aromatic cyanoalkylation reaction that employs nitriles as building blocks and proceeds through Csp(2)-H and Csp(3)-H bond activation steps mediated by Ni(III). In addition to cyanomethylation with MeCN, regioselective α-cyanoalkylation was observed with various nitrile substrates to generate secondary and tertiary nitriles. Importantly, to the best of our knowledge these are the first examples of C-H bond activation reactions occurring at a Ni(III) center, which may exhibit different reactivity and selectivity profiles than those corresponding to analogous Ni(II) centers. These studies provide guiding principles to design catalytic C-H activation and functionalization reactions involving high-valent Ni species. PMID:27120207

  20. Junk-Bond Colleges.

    ERIC Educational Resources Information Center

    Van Der Werf, Martin

    2003-01-01

    Describes how a long-predicted decline in the fortunes of small private colleges is beginning to show up in the bond market, as the number of colleges now rated in the junk category has nearly doubled. (EV)

  1. Properties of Ce-activated alkali-lutetium double phosphate scintillators

    SciTech Connect

    Wiśniewski, D.; Wojtowicz, A. J.; Boatner, Lynn A

    2010-01-01

    The scintillation properties of Ce-activated alkali-lutetium double phosphate single crystals that vary with the alkali ion type and activation level are summarized and compared. The materials investigated here have been identified as fast and efficient scintillators for the detection of x-ray and radiation, and in case of Li3Lu(PO4)2:Ce, for thermal neutron detection as well.

  2. Peel resistance characterization of localized polymer film bonding via thin film adhesive thermally activated by scanned CO2 laser

    NASA Astrophysics Data System (ADS)

    Dowding, Colin; Dowding, Robert; Griffiths, Jonathan; Lawrence, Jonathan

    2013-06-01

    Thermal laser polymer bonding is a non-contact process for the joining of polymer laminates using thermally activated adhesives. Conventional, contact based bonding techniques suffer from mechanical wear, geometric inflexibility and poor energy efficiency. The application of lasers offers the potential for highly localized delivery of energy and increased process flexibility whilst achieving controlled and repeatable bonding of polymer laminates in a contact free process. Unlike previously reported techniques, here it is reported that laser based non-contact bonding is both viable and highly desirable due to the increased levels of control it affords the user. In this work, laser polymer bonding of 75 μm thick linear low density polyethylene (LLDPE) film backed with a thermally activated adhesive to a 640 μm thick polypropylene (PP) substrate was conducted using continuous wave 10.6 μm laser radiation and scanning galvanometric optics. The effect of laser power and scanning traverse speed on the peel resistance properties of the bonded polymer laminates is presented, with a threshold specific energy density for successful adhesive activation determined.

  3. The road to the first, fully active and more stable human insulin variant with an additional disulfide bond.

    PubMed

    Vinther, Tine N; Kjeldsen, Thomas B; Jensen, Knud J; Hubálek, František

    2015-11-01

    Insulin, a small peptide hormone, is crucial in maintaining blood glucose homeostasis. The stability and activity of the protein is directed by an intricate system involving disulfide bonds to stabilize the active monomeric species and by their non-covalent oligomerization. All known insulin variants in vertebrates consist of two peptide chains and have six cysteine residues, which form three disulfide bonds, two of them link the two chains and a third is an intra-chain bond in the A-chain. This classical insulin fold appears to have been conserved over half a billion years of evolution. We addressed the question whether a human insulin variant with four disulfide bonds could exist and be fully functional. In this review, we give an overview of the road to engineering four-disulfide bonded insulin analogs. During our journey, we discovered several active four disulfide bonded insulin analogs with markedly improved stability and gained insights into the instability of analogs with seven cysteine residues, importance of dimerization for stability, insulin fibril formation process, and the conformation of insulin binding to its receptor. Our results also open the way for new strategies in the development of insulin biopharmaceuticals. PMID:26382042

  4. Physical mechanisms of active control of sound transmission through rib stiffened double-panel structure

    NASA Astrophysics Data System (ADS)

    Ma, Xiyue; Chen, Kean; Ding, Shaohu; Yu, Haoxin

    2016-06-01

    This paper presents an analytical investigation on physical mechanisms of actively controlling sound transmission through a rib stiffened double-panel structure using point source in the cavity. The combined modal expansion and vibro-acoustic coupling methods are applied to establish the theoretical model of such active structure. Under the condition of minimizing radiated power of the radiating ribbed plate, the physical mechanisms are interpreted in detail from the point of view of modal couplings similar as that used in existed literatures. Results obtained demonstrate that the rule of sound energy transmission and the physical mechanisms for the rib stiffened double-panel structure are all changed, and affected by the coupling effects of the rib when compared with the analytical results obtained for unribbed double-panel case. By taking the coupling effects of the rib into considerations, the cavity modal suppression and rearrangement mechanisms obtained in existed investigations are modified and supplemented for the ribbed plate case, which gives a clear interpretation for the physical nature involved in the active rib stiffened double-panel structure.

  5. 75 FR 47608 - Agency Information Collection Activities: Application for Exportation of Articles under Special Bond

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... Exportation of Articles under Special Bond AGENCY: U.S. Customs and Border Protection, Department of Homeland... requirement concerning the: Application for Exportation of Articles under Special Bond. This request for...: Title: Application for Exportation of Articles under Special Bond. OMB Number: 1651-0004. Form...

  6. 75 FR 61162 - Agency Information Collection Activities: Application for Exportation of Articles Under Special Bond

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... Exportation of Articles Under Special Bond AGENCY: U.S. Customs and Border Protection, Department of Homeland... Exportation of Articles under Special Bond (CBP Form 3495). This is a proposed extension of an information... Exportation of Articles under Special Bond. OMB Number: 1651-0004. Form Number: Form 3495. Abstract:...

  7. 78 FR 49761 - Agency Information Collection Activities: Application for Exportation of Articles Under Special Bond

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... Exportation of Articles Under Special Bond AGENCY: U.S. Customs and Border Protection, Department of Homeland... information collection requirement concerning the Application for Exportation of Articles under Special Bond... Articles Under Special Bond. OMB Number: 1651-0004. Form Number: CBP Form 3495. Abstract: CBP Form...

  8. 78 FR 66038 - Agency Information Collection Activities: Application for Exportation of Articles Under Special Bond

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... Exportation of Articles Under Special Bond AGENCY: U.S. Customs and Border Protection, Department of Homeland... Exportation of Articles under Special Bond (CBP Form 3495). This is a proposed extension of an information.... Title: Application for Exportation of Articles under Special Bond. OMB Number: 1651-0004. Form...

  9. Disulfide Bond Oxidoreductase DsbA2 of Legionella pneumophila Exhibits Protein Disulfide Isomerase Activity

    PubMed Central

    Kpadeh, Zegbeh Z.; Jameson-Lee, Max; Yeh, Anthony J.; Chertihin, Olga; Shumilin, Igor A.; Dey, Rafik; Day, Shandra R.

    2013-01-01

    The extracytoplasmic assembly of the Dot/Icm type IVb secretion system (T4SS) of Legionella pneumophila is dependent on correct disulfide bond (DSB) formation catalyzed by a novel and essential disulfide bond oxidoreductase DsbA2 and not by DsbA1, a second nonessential DSB oxidoreductase. DsbA2, which is widely distributed in the microbial world, is phylogenetically distinct from the canonical DsbA oxidase and the DsbC protein disulfide isomerase (PDI)/reductase of Escherichia coli. Here we show that the extended N-terminal amino acid sequence of DsbA2 (relative to DsbA proteins) contains a highly conserved 27-amino-acid dimerization domain enabling the protein to form a homodimer. Complementation tests with E. coli mutants established that L. pneumophila dsbA1, but not the dsbA2 strain, restored motility to a dsbA mutant. In a protein-folding PDI detector assay, the dsbA2 strain, but not the dsbA1 strain, complemented a dsbC mutant of E. coli. Deletion of the dimerization domain sequences from DsbA2 produced the monomer (DsbA2N), which no longer exhibited PDI activity but complemented the E. coli dsbA mutant. PDI activity was demonstrated in vitro for DsbA2 but not DsbA1 in a nitrocefin-based mutant TEM β-lactamase folding assay. In an insulin reduction assay, DsbA2N activity was intermediate between those of DsbA2 and DsbA1. In L. pneumophila, DsbA2 was maintained as a mixture of thiol and disulfide forms, while in E. coli, DsbA2 was present as the reduced thiol. Our studies suggest that DsbA2 is a naturally occurring bifunctional disulfide bond oxidoreductase that may be uniquely suited to the majority of intracellular bacterial pathogens expressing T4SSs as well as in many slow-growing soil and aquatic bacteria. PMID:23435972

  10. Activation of CO and CO2 on homonuclear boron bonds of fullerene-like BN cages: first principles study

    NASA Astrophysics Data System (ADS)

    Sinthika, S.; Kumar, E. Mathan; Surya, V. J.; Kawazoe, Y.; Park, Noejung; Iyakutti, K.; Thapa, Ranjit

    2015-12-01

    Using density functional theory we investigate the electronic and atomic structure of fullerene-like boron nitride cage structures. The pentagonal ring leads to the formation of homonuclear bonds. The homonuclear bonds are also found in other BN structures having pentagon line defect. The calculated thermodynamics and vibrational spectra indicated that, among various stable configurations of BN-60 cages, the higher number of homonuclear N-N bonds and lower B:N ratio can result in the more stable structure. The homonuclear bonds bestow the system with salient catalytic properties that can be tuned by modifying the B atom bonding environment. We show that homonuclear B-B (B2) bonds can anchor both oxygen and CO molecules making the cage to be potential candidates as catalyst for CO oxidation via Langmuir-Hinshelwood (LH) mechanism. Moreover, the B-B-B (B3) bonds are reactive enough to capture, activate and hydrogenate CO2 molecules to formic acid. The observed trend in reactivity, viz B3 > B2 > B1 is explained in terms of the position of the boron defect state relative to the Fermi level.

  11. Activation of CO and CO2 on homonuclear boron bonds of fullerene-like BN cages: first principles study

    PubMed Central

    Sinthika, S.; Kumar, E. Mathan; Surya, V. J.; Kawazoe, Y.; Park, Noejung; Iyakutti, K.; Thapa, Ranjit

    2015-01-01

    Using density functional theory we investigate the electronic and atomic structure of fullerene-like boron nitride cage structures. The pentagonal ring leads to the formation of homonuclear bonds. The homonuclear bonds are also found in other BN structures having pentagon line defect. The calculated thermodynamics and vibrational spectra indicated that, among various stable configurations of BN-60 cages, the higher number of homonuclear N-N bonds and lower B:N ratio can result in the more stable structure. The homonuclear bonds bestow the system with salient catalytic properties that can be tuned by modifying the B atom bonding environment. We show that homonuclear B-B (B2) bonds can anchor both oxygen and CO molecules making the cage to be potential candidates as catalyst for CO oxidation via Langmuir–Hinshelwood (LH) mechanism. Moreover, the B-B-B (B3) bonds are reactive enough to capture, activate and hydrogenate CO2 molecules to formic acid. The observed trend in reactivity, viz B3 > B2 > B1 is explained in terms of the position of the boron defect state relative to the Fermi level. PMID:26626147

  12. Activation of CO and CO2 on homonuclear boron bonds of fullerene-like BN cages: first principles study.

    PubMed

    Sinthika, S; Kumar, E Mathan; Surya, V J; Kawazoe, Y; Park, Noejung; Iyakutti, K; Thapa, Ranjit

    2015-01-01

    Using density functional theory we investigate the electronic and atomic structure of fullerene-like boron nitride cage structures. The pentagonal ring leads to the formation of homonuclear bonds. The homonuclear bonds are also found in other BN structures having pentagon line defect. The calculated thermodynamics and vibrational spectra indicated that, among various stable configurations of BN-60 cages, the higher number of homonuclear N-N bonds and lower B:N ratio can result in the more stable structure. The homonuclear bonds bestow the system with salient catalytic properties that can be tuned by modifying the B atom bonding environment. We show that homonuclear B-B (B2) bonds can anchor both oxygen and CO molecules making the cage to be potential candidates as catalyst for CO oxidation via Langmuir-Hinshelwood (LH) mechanism. Moreover, the B-B-B (B3) bonds are reactive enough to capture, activate and hydrogenate CO2 molecules to formic acid. The observed trend in reactivity, viz B3 > B2 > B1 is explained in terms of the position of the boron defect state relative to the Fermi level. PMID:26626147

  13. Oxygen activation and intramolecular C-H bond activation by an amidate-bridged diiron(II) complex.

    PubMed

    Jones, Matthew B; Hardcastle, Kenneth I; Hagen, Karl S; MacBeth, Cora E

    2011-07-18

    A diiron(II) complex containing two μ-1,3-(κN:κO)-amidate linkages has been synthesized using the 2,2',2''-tris(isobutyrylamido)triphenylamine (H(3)L(iPr)) ligand. The resulting diiron complex, 1, reacts with dioxygen (or iodosylbenzene) to effect intramolecular C-H bond activation at the methine position of the ligand isopropyl group. The ligand-activated product, 2, has been isolated and characterized by a variety of methods including X-ray crystallography. Electrospray ionization mass spectroscopy of 2 prepared from(18)O(2) was used to confirm that the oxygen atom incorporated into the ligand framework is derived from molecular oxygen. PMID:21667986

  14. Carbon–Hydrogen Bond Activation, C–N Bond Coupling, and Cycloaddition Reactivity of a Three-Coordinate Nickel Complex Featuring a Terminal Imido Ligand

    PubMed Central

    2015-01-01

    The three-coordinate imidos (dtbpe)Ni=NR (dtbpe = tBu2PCH2CH2PtBu2, R = 2,6-iPr2C6H3, 2,4,6-Me3C6H2 (Mes), and 1-adamantyl (Ad)), which contain a legitimate Ni–N double bond as well as basic imido nitrogen based on theoretical analysis, readily deprotonate HC≡CPh to form the amide acetylide species (dtbpe)Ni{NH(Ar)}(C≡CPh). In the case of R = 2,6-iPr2C6H3, reductive carbonylation results in formation of the (dtbpe)Ni(CO)2 along with the N–C coupled product keteneimine PhCH=C=N(2,6- iPr2C6H3). Given the ability of the Ni=N bond to have biradical character as suggested by theoretical analysis, H atom abstraction can also occur in (dtbpe)Ni=N{2,6-iPr2C6H3} when this species is treated with HSn(nBu)3. Likewise, the microscopic reverse reaction—conversion of the Ni(I) anilide (dtbpe)Ni{NH(2,6-iPr2C6H3)} to the imido (dtbpe)Ni=N{2,6-iPr2C6H3}—is promoted when using the radical Mes*O• (Mes* = 2,4,6-tBu3C6H2). Reactivity studies involving the imido complexes, in particular (dtbpe)Ni=N{2,6-iPr2C6H3}, are also reported with small, unsaturated molecules such as diphenylketene, benzylisocyanate, benzaldehyde, and carbon dioxide, including the formation of C–N and N–N bonds by coupling reactions. In addition to NMR spectroscopic data and combustion analysis, we also report structural studies for all the cycloaddition reactions involving the imido (dtbpe)Ni=N{2,6-iPr2C6H3}. PMID:25437507

  15. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    DOE PAGESBeta

    Welz, Oliver; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. Thesemore » results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce low-temperature reactivity during autoignition.« less

  16. Polyhydrides of Platinum Group Metals: Nonclassical Interactions and σ-Bond Activation Reactions.

    PubMed

    Esteruelas, Miguel A; López, Ana M; Oliván, Montserrat

    2016-08-10

    The preparation, structure, dynamic behavior in solution, and reactivity of polyhydride complexes of platinum group metals, described during the last three decades, are contextualized from both organometallic and coordination chemistry points of view. These compounds, which contain dihydrogen, elongated dihydrogen, compressed dihydride, and classical dihydride ligands promote the activation of B-H, C-H, Si-H, N-H, O-H, C-C, C-N, and C-F, among other σ-bonds. In this review, it is shown that, unlike other more mature areas, the chemistry of polyhydrides offers new exciting conceptual challenges and at the same time the possibility of interacting with other fields including the conversion and storage of regenerative energy, organic synthetic chemistry, drug design, and material science. This wide range of possible interactions foresees promising advances in the near future. PMID:27268136

  17. Annealing effects on recombinative activity of nickel at direct silicon bonded interface

    SciTech Connect

    Kojima, Takuto Ohshita, Yoshio; Yamaguchi, Masafumi

    2015-09-15

    By performing capacitance transient analyses, the recombination activity at a (110)/(100) direct silicon bonded (DSB) interface contaminated with nickel diffused at different temperatures, as a model of grain boundaries in multicrystalline silicon, was studied. The trap level depth from the valence band, trap density of states, and hole capture cross section peaked at an annealing temperature of 300 °C. At temperatures ⩾400 °C, the hole capture cross section increased with temperature, but the density of states remained unchanged. Further, synchrotron-based X-ray analyses, microprobe X-ray fluorescence (μ-XRF), and X-ray absorption near edge structure (XANES) analyses were performed. The analysis results indicated that the chemical phase after the sample was annealed at 200 °C was a mixture of NiO and NiSi{sub 2}.

  18. Metal Nanoparticles Catalyzed Selective Carbon-Carbon Bond Activation in the Liquid Phase.

    PubMed

    Ye, Rong; Yuan, Bing; Zhao, Jie; Ralston, Walter T; Wu, Chung-Yeh; Unel Barin, Ebru; Toste, F Dean; Somorjai, Gabor A

    2016-07-13

    Understanding the C-C bond activation mechanism is essential for developing the selective production of hydrocarbons in the petroleum industry and for selective polymer decomposition. In this work, ring-opening reactions of cyclopropane derivatives under hydrogen catalyzed by metal nanoparticles (NPs) in the liquid phase were studied. 40-atom rhodium (Rh) NPs, encapsulated by dendrimer molecules and supported in mesoporous silica, catalyzed the ring opening of cyclopropylbenzene at room temperature under hydrogen in benzene, and the turnover frequency (TOF) was higher than other metals or the Rh homogeneous catalyst counterparts. Comparison of reactants with various substitution groups showed that electron donation on the three-membered ring boosted the TOF of ring opening. The linear products formed with 100% selectivity for ring opening of all reactants catalyzed by the Rh NP. Surface Rh(0) acted as the active site in the NP. The capping agent played an important role in the ring-opening reaction kinetics. Larger particle size tended to show higher TOF and smaller reaction activation energy for Rh NPs encapsulated in either dendrimer or poly(vinylpyrrolidone). The generation/size of dendrimer and surface group also affected the reaction rate and activation energy. PMID:27322570

  19. A single mutation Gln142Lys doubles the catalytic activity of VPR, a cold adapted subtilisin-like serine proteinase.

    PubMed

    Óskarsson, Kristinn R; Nygaard, Mads; Ellertsson, Brynjar Ö; Thorbjarnardottir, Sigríður H; Papaleo, Elena; Kristjánsson, Magnús M

    2016-10-01

    Structural comparisons of the cold adapted subtilase VPR and its thermophilic homologue, aqualysin I (AQUI) indicated the presence of additional salt bridges in the latter. Few of those appear to contribute significantly to thermal stability of AQUI. This includes a putative salt bridge between residues Lys142 and Glu172 as its deletion did not have any significant effect on its stability or activity (Jónsdóttir et al. (2014)). Insertion of this putative salt bridge into the structure of VPR, in a double mutant (VPRΔC_Q142K/S172E), however was detrimental to the stability of the enzyme. Incorporation of either the Q142K or S172E mutations into VPR, were found to significantly affect the catalytic properties of the enzyme. The single mutation Q142K was highly effective, as it increased the kcat and kcat/Km more than twofold. When the Q142K mutation was inserted into a thermostabilized, but a low activity mutant of VPR (VPRΔC_N3P/I5P), the activity increased about tenfold in terms of kcat and kcat/Km, while retaining the stability of the mutant. Molecular dynamics simulations of the single mutants were carried out to provide structural rationale for these experimental observations. Based on root mean square fluctuation (RMSF) profiles, the two mutants were more flexible in certain regions of the structure and the Q142K mutant had the highest overall flexibility of the three enzymes. The results suggest that weakening of specific H-bonds resulting from the mutations may be propagated over some distance giving rise to higher flexibility in the active site regions of the enzyme, causing higher catalytic activity in the mutants. PMID:27456266

  20. The role of group 14 element hydrides in the activation of C-H bonds in cyclic olefins.

    PubMed

    Summerscales, Owen T; Caputo, Christine A; Knapp, Caroline E; Fettinger, James C; Power, Philip P

    2012-09-01

    Formally, triple-bonded dimetallynes ArEEAr [E = Ge (1), Sn (2); Ar = C(6)H(3)-2,6-(C(6)H(3)-2,6-(i)Pr(2))(2)] have been previously shown to activate aliphatic, allylic C-H bonds in cyclic olefins, cyclopentadiene (CpH), cyclopentene (c-C(5)H(8)) and 1,4-cyclohexadiene, with intriguing selectivity. In the case of the five-membered carbocycles, cyclopentadienyl species ArECp [E = Ge (3), Sn (4)] are formed. In this study, we examine the mechanisms for activation of CpH and c-C(5)H(8) using experimental methods and describe a new product found from the reaction between 1 and c-C(5)H(8), an asymmetrically substituted digermene ArGe(H)Ge(c-C(5)H(9))Ar (5), crystallized in 46% yield. This compound contains a hydrogenated cyclopentyl moiety and is found to be produced in a 3:2 ratio with 3, explaining the fate of the liberated H atoms following triple C-H activation. We show that when these C-H activation reactions are carried out in the presence of tert-butyl ethylene (excess), compounds {ArE(CH(2)CH(2)tBu)}(2) [E = Ge(8), Sn(9)] are obtained in addition to ArECp; in the case of CpH, the neohexyl complexes replace the production of H(2) gas, and for c-C(5)H(8) they displace cyclopentyl product 5 and account for all the hydrogen removed in the dehydroaromatization reactions. To confirm the source of 8 and 9, it was demonstrated that these molecules are formed cleanly between the reaction of (ArEH)(2) [E = Ge(6), Sn(7)] and tert-butyl ethylene, new examples of noncatalyzed hydro-germylation and -stannylation. Therefore, the presence of transient hydrides of the type 6 and 7 can be surmised to be reactive intermediates in the production of 3 and 4, along with H(2), from 1 and 2 and CpH (respectively), or the formation of 3 and 5 from 1. The reaction of 6 or 7 with CpH gave 3 or 4, respectively, with concomitant H(2) evolution, demonstrating the basic nature of these low-valent group 14 element hydrides and their key role in the 'cascade' of C-H activation steps

  1. Cross-Couplings Using Aryl Ethers via C-O Bond Activation Enabled by Nickel Catalysts.

    PubMed

    Tobisu, Mamoru; Chatani, Naoto

    2015-06-16

    Arene synthesis has been revolutionized by the invention of catalytic cross-coupling reactions, wherein aryl halides can be coupled with organometallic and organic nucleophiles. Although the replacement of aryl halides with phenol derivatives would lead to more economical and ecological methods, success has been primarily limited to activated phenol derivatives such as triflates. Aryl ethers arguably represent one of the most ideal substrates in terms of availability, cost, safety, and atom efficiency. However, the robust nature of the C(aryl)-O bonds of aryl ethers renders it extremely difficult to use them in catalytic reactions among the phenol derivatives. In 1979, Wenkert reported a seminal work on the nickel-catalyzed cross-coupling of aryl ethers with Grignard reagents. However, it was not until 2004 that the unique ability of a low-valent nickel species to activate otherwise unreactive C(aryl)-O bonds was appreciated with Dankwardt's identification of the Ni(0)/PCy3 system, which significantly expanded the efficiency of the Wenkert reaction. Application of the nickel catalyst to cross-couplings with other nucleophiles was first accomplished in 2008 by our group using organoboron reagents. Later on, several other nucleophiles, including organozinc reagents, amines, hydrosilane, and hydrogen were shown to be coupled with aryl ethers under nickel catalysis. Despite these advances, progress in this field is relatively slow because of the low reactivity of benzene derivatives (e.g., anisole) compared with polyaromatic substrates (e.g., methoxynaphthalene), particularly when less reactive and synthetically useful nucleophiles are used. The "naphthalene problem" has been overcome by the use of N-heterocyclic carbene (NHC) ligands bearing bulky N-alkyl substituents, which enables a wide range of aryl ethers to be coupled with organoboron nucleophiles. Moreover, the use of N-alkyl-substituted NHC ligands allows the use of alkynylmagnesium reagents, thereby realizing

  2. Antimicrobial activities of amphiphilic peptides covalently bonded to a water-insoluble resin.

    PubMed Central

    Haynie, S L; Crum, G A; Doele, B A

    1995-01-01

    A series of polymer-bound antimicrobial peptides was prepared, and the peptides were tested for their antimicrobial activities. The immobilized peptides were prepared by a strategy that used solid-phase peptide synthesis that linked the carboxy-terminal amino acid with an ethylenediamine-modified polyamide resin (PepsynK). The acid-stable, permanent amide bond between the support and the nascent peptide renders the peptide resistant to cleavage from the support during the final acid-catalyzed deprotection step in the synthesis. Select immobilized peptides containing amino acid sequences that ranged from the naturally occurring magainin to simpler synthetic sequences with idealized secondary structures were excellent antimicrobial agents against several organisms. The immobilized peptides typically reduced the number of viable cells by > or = 5 log units. We show that the reduction in cell numbers cannot be explained by the action of a soluble component. We observed no leached or hydrolyzed peptide from the resin, nor did we observe any antimicrobial activity in soluble extracts from the immobilized peptide. The immobilized peptides were washed and reused for repeated microbial contact and killing. These results suggest that the surface actions by magainins and structurally related antimicrobial peptides are sufficient for their lethal activities. PMID:7726486

  3. C-H Bond activation and C-C bond formation in the reaction of 2,5-dimethylthiophene with TpMe2Ir compounds.

    PubMed

    Paneque, Margarita; Poveda, Manuel L; Carmona, Ernesto; Salazar, Verónica

    2005-04-21

    The bulky 2,5-dimethylthiophene (2,5-Me2T) reacts at 60 degrees C with TpMe2Ir(C2H4)2 to give a mixture of two TpMe2Ir(III) hydride products, 3 and 4, that contain in addition a thienyl (3) or a thienyl-derived ligand (4). For the generation of 3 only sp2 C-H activation is needed, but the formation of 4 requires also the activation of an sp3 C-H bond and the formation of a new C-C bond (between vinyl and thienyl fragments). In the presence of 2,5-Me2T, compound 4 reacts further to produce a complex thiophenic structure (5, characterized by X-ray methods) that derives formally from two molecules of 2,5-Me2T and a vinyl fragment. Compounds 3-5 can be readily protonated by [H(OEt2)2][BAr'4](Ar'= 3,5-C6H3(CF3)2), with initial generation of carbene ligands (in the case of 3 and 5) as a consequence of H+ attack at the beta-carbon of the Ir-thienyl unit. Free, substituted thiophenes, derived from the original 2,5-Me2T, may be isolated in this way. PMID:15824780

  4. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

    PubMed Central

    Lewis, Jared C.; Bergman, Robert G.; Ellman, Jonathan A.

    2008-01-01

    Conspectus Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct functionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes our work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. We initially discovered an intramolecular Rh-catalyzed C-2-alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. We then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, we discovered that a novel substrate-derived Rh-N-heterocyclic carbene (NHC) complex was involved as an intermediate. We then synthesized analogous Rh–NHC complexes directly by treating precursors to the intermediate [RhCl(PCy3)2] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazoline, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy3)2 fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid co-catalysts accelerate the alkylation, we developed conditions that efficiently and intermolecularly alkylate a variety of heterocycles, including

  5. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

    SciTech Connect

    Lewis, Jared; Bergman, Robert; Ellman, Jonathan

    2008-02-04

    Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct funtionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes their work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. They initially discovered an intramolecular Rh-catalyzed C-2-alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. They then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, they discovered that a novel substrate-derived Rh-N-heterocyclic carbene (NHC) complex was involved as an intermediate. They then synthesized analogous Rh-NHC complexes directly by treating precursors to the intermediate [RhCl(PCy{sub 3}){sub 2}] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazolein, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy{sub 3}){sub 2} fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid co-catalysts accelerate the alkylation, they developed conditions that efficiently and intermolecularly alkylate a variety of

  6. On the Relationship between the Enthalpy of Formation of Carbenes upon Cleavage of the Double Bond in Fluoroolefins and the Electron Density on the pi Bond: An Ab Initio Study

    SciTech Connect

    Borisov, Yurii A.; Garrett, Bruce C.; Kobanovskii, Y. A.; Bilera, I. V.; Buravtsev, N. N.

    2003-08-07

    In this study, we established a correlation between the enthalpy of cleavage of the C=C bond in fluorine-substituted olefins giving rise to two carbenes in the electronic ground state and the distribution of the electron density on this bond.

  7. Possible interstellar formation of glycine through a concerted mechanism: a computational study on the reaction of CH2[double bond, length as m-dash]NH, CO2 and H2.

    PubMed

    Nhlabatsi, Zanele P; Bhasi, Priya; Sitha, Sanyasi

    2016-07-27

    Glycine being the simplest amino acid and also having significant astrobiological implications, has meant that intensive investigations have been carried out in the past, starting from its detection in the interstellar medium (ISM) to analysis of meteorites and cometary samples and laboratory synthesis, as well as computational studies on the possible reaction paths. In this present work quantum chemical calculations have been performed to investigate the possible interstellar formation of glycine via two different paths; (1) in a two-step process via a dihydroxy carbene intermediate and (2) through a one-step concerted mechanism, starting from reactants like CH2[double bond, length as m-dash]NH, CO, CO2, H2O and H2. For the two reactions representing the carbene route, it was observed that the formation of dihydroxy carbene from either CO + H2O or CO2 + H2 is highly endothermic with large barrier heights, whereas the subsequent step of interaction of this carbene with CH2[double bond, length as m-dash]NH to give glycine is exothermic and the barrier is below the reactants. Based on this observation it is suggested that the formation of glycine via the carbene route is a least favourable or even unfavourable path. On the other hand, the two reactions CH2[double bond, length as m-dash]NH + CO + H2O and CH2[double bond, length as m-dash]NH + CO2 + H2 representing the concerted paths were found to be favourable in leading to the formation of glycine. After an extensive study on the first concerted reaction in our previous work (Phys. Chem. Chem. Phys., 2016, 18, 375-381), in this work a detailed investigation has been carried out for the second concerted reaction, CH2[double bond, length as m-dash]NH + CO2 + H2, which can possibly lead to the interstellar formation of glycine. It was observed that this reaction proceeds through a large barrier and at the same time the transition state shows prominent hydrogen dynamics, indicating a tunnelling possibility for this

  8. Active Metal Brazing and Adhesive Bonding of Titanium to C/C Composites for Heat Rejection System

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, Tarah; Cerny, Jennifer

    2006-01-01

    Robust assembly and integration technologies are critically needed for the manufacturing of heat rejection system (HRS) components for current and future space exploration missions. Active metal brazing and adhesive bonding technologies are being assessed for the bonding of titanium to high conductivity Carbon-Carbon composite sub components in various shapes and sizes. Currently a number of different silver and copper based active metal brazes and adhesive compositions are being evaluated. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). Several mechanical tests have been employed to ascertain the effectiveness of different brazing and adhesive approaches in tension and in shear that are both simple and representative of the actual system and relatively straightforward in analysis. The results of these mechanical tests along with the fractographic analysis will be discussed. In addition, advantages, technical issues and concerns in using different bonding approaches will also be presented.

  9. The effect of methyl-donated hydrogen bonding on active site conformations of hyaluronate lyase

    NASA Astrophysics Data System (ADS)

    Migues, Angela N.; Vergenz, Robert A.; Moore, Kevin B.

    2010-03-01

    Geometric evidence shows a val-A252 methyl-donated (MD) hydrogen bond (HB) in hyaluronate lyase (Streptococcus pneumoniae) interacts with nearby NH--O and OH--O HBs, distorting active-site helical structure. Results for model fragment A248-254 are based on experimental heavy atom positions with ab initio hydrogen atoms. The MDHB, with (H-O distance, donor-H-O angle) = (2.3å; 174^o), exhibits more favorable geometry than thr-A253 OH--O HB (1.8å; 170^o) to the same ala-249 C=O. Consequently, thr-253 N-H--O interaction is forced closer to lys-250 C=O than ala-249 C=O(2.6 versus 2.7å). A novel method has been developed to quantify the effects of atomic diplacements on motions of neighboring helices. A coordinate system was established to track the movement of specific residues and to ascertain the effect of such motions on active site conformations.

  10. The role of short-range Cys171-Cys178 disulfide bond in maintaining cutinase active site integrity: A molecular dynamics simulation

    SciTech Connect

    Matak, Mehdi Youssefi; Moghaddam, Majid Erfani

    2009-12-11

    Understanding structural determinants in enzyme active site integrity can provide a good knowledge to design efficient novel catalytic machineries. Fusarium solani pisi cutinase with classic triad Ser-His-Asp is a promising enzyme to scrutinize these structural determinants. We performed two MD simulations: one, with the native structure, and the other with the broken Cys171-Cys178 disulfide bond. This disulfide bond stabilizes a turn in active site on which catalytic Asp175 is located. Functionally important H-bonds and atomic fluctuations in catalytic pocket have been changed. We proposed that this disulfide bond within active site can be considered as an important determinant of cutinase active site structural integrity.

  11. Trunk muscle activation during stabilization exercises with single and double leg support.

    PubMed

    García-Vaquero, María Pilar; Moreside, Janice M; Brontons-Gil, Evaristo; Peco-González, Noelia; Vera-Garcia, Francisco J

    2012-06-01

    The aim of this study was to analyze trunk muscle activity during bridge style stabilization exercises, when combined with single and double leg support strategies. Twenty-nine healthy volunteers performed bridge exercises in 3 different positions (back, front and side bridges), with and without an elevated leg, and a quadruped exercise with contralateral arm and leg raise ("bird-dog"). Surface EMG was bilaterally recorded from rectus abdominis (RA), external and internal oblique (EO, IO), and erector spinae (ES). Back, front and side bridges primarily activated the ES (approximately 17% MVC), RA (approximately 30% MVC) and muscles required to support the lateral moment (mostly obliques), respectively. Compared with conventional bridge exercises, single leg support produced higher levels of trunk activation, predominantly in the oblique muscles. The bird-dog exercise produced greatest activity in IO on the side of the elevated arm and in the contralateral ES. In conclusion, during a common bridge with double leg support, the antigravity muscles were the most active. When performed with an elevated leg, however, rotation torques increased the activation of the trunk rotators, especially IO. This information may be useful for clinicians and rehabilitation specialists in determining appropriate exercise progression for the trunk stabilizers. PMID:22436839

  12. The study of a light-activated albumin protein solder to bond layers of porcine small intestinal submucosa.

    PubMed

    Ware, Mark H; Buckley, Christine A

    2003-01-01

    This study investigated the feasibility of bonding layers of porcine small intestinal submucosa (SIS, Cook Biotech, Inc.) with a light-activated protein solder. SIS is an acellular, collagen-based extracellular matrix material that is approximately 100 microns thick. The solder consists of bovine serum albumin and indocyanine green dye (ICG) in deionized water. The solder is activated by an 808 nm diode laser, which denatures the albumin, causing the albumin to bond with the collagen of the tissue. The predictable absorption and thermal energy diffusion rates of ICG increase the chances of reproducible results. To determine the optimal condition for laser soldering SIS, the following parameters were varied: albumin concentration (from 30-45% (w/v) in increments of 5%), the concentration of ICG (from 0.5-2.0 mg/ml H2O) and the irradiance of the laser (10-64 W/cm2). While many of the solder compositions and laser irradiance combinations resulted in no bonding, a solder composition of 45% albumin, ICG concentration of 0.5 mg/ml H2O, and a laser irradiance of 21 W/cm2 did produce a bond between two pieces of SIS. The average shear strength of this bond was 29.5 +/- 17.1 kPa (n = 14). This compares favorably to our previous work using fibrin glue as an adhesive, in which the average shear strength was 27 +/- 15.8 kPa (n = 40). PMID:12724859

  13. Approach to In- Situ Producing Reinforcing Phase Within an Active-Transient Liquid Phase Bond Seam for Aluminum Matrix Composite

    NASA Astrophysics Data System (ADS)

    Zhang, Guifeng; Liao, Xianjin; Chen, Bo; Zhang, Linjie; Zhang, Jianxun

    2015-06-01

    To optimize the braze composition design route for aluminum matrix composite, the feasibility of in situ producing reinforcing phase within the transient liquid phase bond seam matrix, by adding active melting point increaser (MPI, e.g., Ti) together with general melting point depressant (MPD, e.g., Cu) into the interlayer, was demonstrated. For SiC p /A356 composite, by comparing the wettability, joint microstructure, joint shear strength, and fracture path for the developed Al-19Cu-1Ti, Al-19Cu, Al-33Cu-1Ti, Al-33Cu (wt pct), and commercial Cu foils as interlayer, the feasibility of in situ producing reinforcing phase within the bond seam by adding Ti was demonstrated. Especially for Al-19Cu-1Ti active braze, small and dispersed ternary aluminide of Al-Si-Ti phase was obtained within the bond seam as in situ reinforcement, leading to a favorable fracture path within SiC p /A356, not along the initial interface or within the bond seam. For the formation mechanism of the in situ reinforcing phase of MPI-containing intermetallic compound within the bond seam, a model of repeating concentration-precipitation-termination-engulfment during isothermal solidification is proposed.

  14. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    SciTech Connect

    Welz, Oliver; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. These results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce

  15. Influence of spacer moiety and length of end chain for the phase stability in complementary, double hydrogen bonded liquid crystals, MA:nOBAs

    NASA Astrophysics Data System (ADS)

    Ashok Kumar, A. V. N.; Chalapathi, P. V.; Srinivasulu, M.; Muniprasad, M.; Potukuchi, D. M.

    2015-01-01

    Supra molecular liquid crystals formed by the Hydrogen Bonding interaction between a non-mesogenic aliphatic dicarboxylic acid viz., COOHsbnd CH2sbnd COOH (Malonic Acid, MA); and mesogenic aromatic, N-(p-n-alkoxy benzoic)Acids, (i.e., nOBAs) for n = 3, 4, 5, 7, 8, 9, 10, 11 and 12, labeled as nOBA:COOHsbnd [CH2]msbnd COOH:nOBAs, abbreviated as MA:nOBAs are reported. 1H NMR and 13C NMR studies confirm the formation of HBLC complexes. Infrared (IR) studies confirm the complementary, double, alternative type of HB. Polarized Optical Microscopy (POM) and Differential Scanning Calorimetry (DSC) studies infer N, SmC, SmX, SmCRE, SmF, SmG LC phase variance. SmX phase exhibiting finger print texture grows in MA:nOBAs for n = 10, 11 and 12 by the interruption of SmC phase with decreasing temperature. Re-Entrant SmC (SmCRE) grows by the cooling of SmX. I-N, N-C, X-CRE, C-G, CRE-F, F-G and G-Solid transitions exhibit first order nature. C-X is found to be second order nature in n = 10 and 11. C-X in n = 12 and X-CRE and CRE-F transitions are found to be weak first order nature. Influence of lengths of end chain (n) and spacer (m) for the overall LC phase [ΔT]LC; tilted phase [ΔT]Tilt; SmC phase [ΔT]C and SmX phase [ΔT]X stabilities is discussed in the wake of data on other HBLCs with similar molecular structure. Prevalence of SmX phase in MA:nOBAs with m = 1 infers repulsive interaction between the π-electronic cloud of aromatic boards of nOBAs. Model molecule predicts a twisted configuration of π-cloud around the molecular long axis. Finger print texture of SmX validates the model.

  16. 77 FR 6136 - Agency Information Collection Activities: Application for Extension of Bond for Temporary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... Extension of Bond for Temporary Importation AGENCY: U.S. Customs and Border Protection (CBP), Department of... requirement concerning the Application for Extension of Bond for Temporary Importation (CBP Form 3173). This...: Direct all written comments to U.S. Customs and Border Protection, Attn: Tracey Denning, Regulations...

  17. 77 FR 21578 - Agency Information Collection Activities: Application for Extension of Bond for Temporary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... information collection was previously published in the Federal Register (77 FR 6136) on February 7, 2012... Extension of Bond for Temporary Importation AGENCY: U.S. Customs and Border Protection, Department of... review and approval in accordance with the Paperwork Reduction Act: Application for Extension of Bond...

  18. Double ester prodrugs of FR900098 display enhanced in-vitro antimalarial activity.

    PubMed

    Wiesner, Jochen; Ortmann, Regina; Jomaa, Hassan; Schlitzer, Martin

    2007-12-01

    Fosmidomycin and FR900098 are inhibitors of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR; IspC), a key enzyme of the mevalonate-independent isoprenoid biosynthesis pathway. We have determined the in-vitro antimalarial activity of two double ester prodrugs 2, 3 in direct comparison with the unmodified FR900098 1 against intraerythrocytic forms of Plasmodium falciparum. Temporarily masking the polar properties of the phosphonate moiety of the DXR inhibitor FR900098 1 enhanced not only its oral bioavailability but also the intrinsic activity of this series against the parasites. PMID:17994601

  19. Exocyclic push-pull conjugated compounds. Part 3. An experimental NMR and theoretical MO ab initio study of the structure, the electronic properties and barriers to rotation about the exocyclic partial double bond in 2- exo-methylene- and 2-cyanoimino-quinazolines and -benzodiazepines

    NASA Astrophysics Data System (ADS)

    Benassi, R.; Bertarini, C.; Hilfert, L.; Kempter, G.; Kleinpeter, E.; Spindler, J.; Taddei, F.; Thomas, S.

    2000-03-01

    The structure of a number of 2- exo-methylene substituted quinazolines and benzodiazepines, respectively, 1, 3a, b, 4( X=-CN, -COOEt ) and their 2-cyanoimino substituted analogues 2, 3c, d( X=-CN, -SO 2C 6H 4-Me (p) was completely assigned by the whole arsenal of 1D and 2D NMR spectroscopic methods. The E/ Z isomerism at the exo-cyclic double bond was determined by both NMR spectroscopy and confirmed by ab initio quantum chemical calculations; the Z isomer is the preferred one, its amount proved dependent on steric hindrance. Due to the push-pull effect in this part of the molecules the restricted rotation about the partial C 2,C 11 and C 2,N 11 double bonds, could also be studied and the barrier to rotation measured by dynamic NMR spectroscopy. The free energies of activation of this dynamic process proved very similar along the compounds studied but being dependent on the polarity of the solvent. Quantum chemical calculations at the ab initio level were employed to prove the stereochemistry at the exo-cyclic partial double bonds of 1- 4, to calculate the barriers to rotation but also to discuss in detail both the ground and the transition state of the latter dynamic process in order to better understand electronic, inter- and intramolecular effects on the barrier to rotation which could be determined experimentally. In the cyanoimino substituted compounds 2, 3c, d, the MO ab initio calculations evidence the isomer interconversion to be better described by the internal rotation process than by the lateral shift mechanism.

  20. Inhibition of APOBEC3G activity impedes double-stranded DNA repair.

    PubMed

    Prabhu, Ponnandy; Shandilya, Shivender M D; Britan-Rosich, Elena; Nagler, Adi; Schiffer, Celia A; Kotler, Moshe

    2016-01-01

    The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor, acting by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in double-stranded DNA damage, such as ionizing radiation and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases the sensitivity of lymphoma cells to ionizing radiation. In the current study, we show that additional peptides derived from Vif, A3G, and APOBEC3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, whereas replacing a single residue in the LYYF motif completely abrogates inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break repair after irradiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit double-strand break repair halts their propagation. These results suggest that A3G may be a potential therapeutic target that is amenable to peptide and peptidomimetic inhibition. PMID:26460502

  1. Palladium-Catalyzed Synthesis of Phenanthridine/Benzoxazine-Fused Quinazolinones by Intramolecular C-H Bond Activation.

    PubMed

    Gupta, Puneet K; Yadav, Nisha; Jaiswal, Subodh; Asad, Mohd; Kant, Ruchir; Hajela, Kanchan

    2015-09-14

    A highly efficient synthesis of phenanthridine/benzoxazine-fused quinazolinones by ligand-free palladium-catalyzed intramolecular C-H bond activation under mild conditions has been developed. The C-C coupling provides the corresponding N-fused polycyclic heterocycles in good to excellent yields and with wide functional group tolerance. PMID:26230355

  2. Palladium-catalyzed oxidative arylalkylation of activated alkenes: dual C-H bond cleavage of an arene and acetonitrile.

    PubMed

    Wu, Tao; Mu, Xin; Liu, Guosheng

    2011-12-23

    Not one but two: The title reaction proceeds through the dual C-H bond cleavage of both aniline and acetonitrile. The reaction affords a variety of cyano-bearing indolinones in excellent yield. Mechanistic studies demonstrate that this reaction involves a fast arylation of the olefin and a rate-determining C-H activation of the acetonitrile. PMID:22076660

  3. 26 CFR 1.103(n)-1T - Limitation on aggregrate amount of private activity bonds (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Limitation on aggregrate amount of private activity bonds (temporary). 1.103(n)-1T Section 1.103(n)-1T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Items Specifically Excluded from Gross Income §...

  4. 26 CFR 1.103(n)-1T - Limitation on aggregrate amount of private activity bonds (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... authority has elected to carry forward to a future year, does not exceed the issuing authority's private... 1986 is $200 million. City M, within the State, and State Z itself are authorized to issue private activity bonds. Under the allocation formula provided by the Governor of State Z, City M has a...

  5. 26 CFR 1.103(n)-1T - Limitation on aggregrate amount of private activity bonds (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... authority has elected to carry forward to a future year, does not exceed the issuing authority's private... 1986 is $200 million. City M, within the State, and State Z itself are authorized to issue private activity bonds. Under the allocation formula provided by the Governor of State Z, City M has a...

  6. Reactions of 4-nitro-1,2,3-triazole with alkylating agents and compounds with activated multiple bonds

    SciTech Connect

    Vereshchagin, L.I.; Kuznetsova, N.I.; Kirillova, L.P.; Shcherbakov, V.V.; Sukhanov, G.T.; Gareev, G.A.

    1987-01-01

    When 4-nitro-1,2,3-triazole is alkylated, a mixture of N1- and N2-isomers is formed, with the latter usually predominating. The same behavior is also observed in addition reactions of 4-nitrotriazole to activated multiple bonds.

  7. DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. II. THE CASE OF EQUAL PEAKS

    SciTech Connect

    Smith, K. L.; Shields, G. A.; Salviander, S.; Stevens, A. C.; Rosario, D. J. E-mail: shields@astro.as.utexas.edu E-mail: acs0196@mail.utexas.edu

    2012-06-10

    Active galactic nuclei (AGNs) with double-peaked narrow lines (DPAGNs) may be caused by kiloparsec-scale binary AGNs, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGNs in which the two narrow-line components have closely similar intensity as being especially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGNs from Smith et al., the 'equal-peaked' objects (EPAGNs) have [Ne V]/[O III]ratios lower than for a control sample of non-double-peaked AGNs. This is unexpected for a pair of normal AGNs in a galactic merger, but may be consistent with [O III] emission from a rotating ring with relatively little gas at small radii. Also, [O III]/H{beta} ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.

  8. Origin of the catalytic activity of bovine seminal ribonuclease against double-stranded RNA

    NASA Technical Reports Server (NTRS)

    Opitz, J. G.; Ciglic, M. I.; Haugg, M.; Trautwein-Fritz, K.; Raillard, S. A.; Jermann, T. M.; Benner, S. A.

    1998-01-01

    Bovine seminal ribonuclease (RNase) binds, melts, and (in the case of RNA) catalyzes the hydrolysis of double-stranded nucleic acid 30-fold better under physiological conditions than its pancreatic homologue, the well-known RNase A. Reported here are site-directed mutagenesis experiments that identify the sequence determinants of this enhanced catalytic activity. These experiments have been guided in part by experimental reconstructions of ancestral RNases from extinct organisms that were intermediates in the evolution of the RNase superfamily. It is shown that the enhanced interactions between bovine seminal RNase and double-stranded nucleic acid do not arise from the increased number of basic residues carried by the seminal enzyme. Rather, a combination of a dimeric structure and the introduction of two glycine residues at positions 38 and 111 on the periphery of the active site confers the full catalytic activity of bovine seminal RNase against duplex RNA. A structural model is presented to explain these data, the use of evolutionary reconstructions to guide protein engineering experiments is discussed, and a new variant of RNase A, A(Q28L K31C S32C D38G E111G), which contains all of the elements identified in these experiments as being important for duplex activity, is prepared. This is the most powerful catalyst within this subfamily yet observed, some 46-fold more active against duplex RNA than RNase A.

  9. Consequences of Metal–Oxide Interconversion for C–H Bond Activation during CH₄ Reactions on Pd Catalysts

    SciTech Connect

    Chin, Ya-Huei; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2013-10-01

    Mechanistic assessments based on kinetic and isotopic methods combined with density functional theory are used to probe the diverse pathways by which C-H bonds in CH₄ react on bare Pd clusters, Pd cluster surfaces saturated with chemisorbed oxygen (O*), and PdO clusters. C-H activation routes change from oxidative addition to Habstraction and then to σ-bond metathesis with increasing O-content, as active sites evolve from metal atom pairs (*-*) to oxygen atom (O*-O*) pairs and ultimately to Pd cationlattice oxygen pairs (Pd2+-O2-) in PdO. The charges in the CH₃ and H moieties along the reaction coordinate depend on the accessibility and chemical state of the Pd and O centers involved. Homolytic C-H dissociation prevails on bare (*-*) and O*- covered surfaces (O*-O*), while C-H bonds cleave heterolytically on Pd2+-O2- pairs at PdO surfaces. On bare surfaces, C-H bonds cleave via oxidative addition, involving Pd atom insertion into the C-H bond with electron backdonation from Pd to C-H antibonding states and the formation of tight three-center (H₃C···Pd···H)‡ transition states. On O*-saturated Pd surfaces, C-H bonds cleave homolytically on O*-O* pairs to form radical-like CH3 species and nearly formed O-H bonds at a transition state (O*···CH3 •···*OH)‡ that is looser and higher in enthalpy than on bare Pd surfaces. On PdO surfaces, site pairs consisting of exposed Pd2+ and vicinal O2-, Pdox-Oox, cleave C-H bonds heterolytically via σ-bond metathesis, with Pd2+ adding to the C-H bond, while O2- abstracts the H-atom to form a four-center (H3Cδ-···Pdox···Hδ+···Oox) transition state without detectable Pdox reduction. The latter is much more stable than transition states on *-* and O*-O* pairs and give rise to a large increase in CH₄ oxidation turnover rates at oxygen chemical

  10. CHEMICAL ACTIVATION OF MOLECULES BY METALS: EXPERIMENTAL STUDIES OF ELECTRON DISTRIBUTIONS AND BONDING

    SciTech Connect

    LICHTENBERGER, DENNIS L.

    2002-03-26

    This research program is directed at obtaining detailed experimental information on the electronic interactions between metals and organic molecules. These interactions provide low energy pathways for many important chemical and catalytic processes. A major feature of the program is the continued development and application of our special high-resolution valence photoelectron spectroscopy (UPS), and high-precision X-ray core photoelectron spectroscopy (XPS) instrumentation for study of organometallic molecules in the gas phase. The study involves a systematic approach towards understanding the interactions and activation of bound carbonyls, C-H bonds, methylenes, vinylidenes, acetylides, alkenes, alkynes, carbenes, carbynes, alkylidenes, alkylidynes, and others with various monometal, dimetal, and cluster metal species. Supporting ligands include -aryls, alkoxides, oxides, and phosphines. We are expanding our studies of both early and late transition metal species and electron-rich and electron-poor environments in order to more completely understand the electronic factors that serve to stabilize particular organic fragments and intermediates on metals. Additional new directions for this program are being taken in ultra-high vacuum surface UPS, XPS, scanning tunneling microscopy (STM) and atomic force microscopy (AFM) experiments on both physisorbed and chemisorbed organometallic thin films. The combination of these methods provides additional electronic structure information on surface-molecule and molecule-molecule interactions. A very important general result emerging from this program is the identification of a close relationship between the ionization energies of the species and the thermodynamics of the chemical and catalytic reactions of these systems.

  11. Coordination and activation of Al-H and Ga-H bonds.

    PubMed

    Abdalla, Joseph A B; Riddlestone, Ian M; Turner, Joshua; Kaufman, Paul A; Tirfoin, Remi; Phillips, Nicholas; Aldridge, Simon

    2014-12-22

    The modes of interaction of donor-stabilized Group 13 hydrides (E=Al, Ga) were investigated towards 14- and 16-electron transition-metal fragments. More electron-rich N-heterocyclic carbene-stabilized alanes/gallanes of the type NHC⋅EH3 (E=Al or Ga) exclusively generate κ(2) complexes of the type [M(CO)4 (κ(2)-H3 E⋅NHC)] with [M(CO)4 (COD)] (M=Cr, Mo), including the first κ(2) σ-gallane complexes. β-Diketiminato ('nacnac')-stabilized systems, {HC(MeCNDipp)2 }EH2 , show more diverse reactivity towards Group 6 carbonyl reagents. For {HC(MeCNDipp)2 }AlH2, both κ(1) and κ(2) complexes were isolated, while [Cr(CO)4 (κ(2)-H2 Ga{(NDippCMe)2 CH})] is the only simple κ(2) adduct of the nacnac-stabilized gallane which can be trapped, albeit as a co-crystallite with the (dehydrogenated) gallylene system [Cr(CO)5 (Ga{(NDippCMe)2 CH})]. Reaction of [Co2 (CO)8] with {HC(MeCDippN)2 }AlH2 generates [(OC)3 Co(μ-H)2 Al{(NdippCme)2 CH}][Co(CO)4] (12), which while retaining direct AlH interactions, features a hitherto unprecedented degree of bond activation in a σ-alane complex. PMID:25358970

  12. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    NASA Astrophysics Data System (ADS)

    Lichtenberger, D. L.

    1991-10-01

    The formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies has been developed into a single equation which unifies the treatment of covalent bonds, ionic bonds, and partially ionic bonds. This relationship has been used to clarify the fundamental thermodynamic information relating to metal-hydrogen, metal-alkyl, and metal-metal bond energies. We have been able to obtain a direct observation and measurement of the stabilization energy provided by the agostic interaction of the C-H bond with the metal. The ionization energies have also been used to correlate the rates of carbonyl substitution reactions of (eta sup 5-C5H4)Rh(CO)2 complexes, and to reveal the electronic factors that control the stability of the transition state. The extent that the electronic features of these bonding interactions transfer to other chemical systems is being investigated in terms of the principle of additivity of ligand electronic effects. Specific examples under study include metal- phosphines, metal-halides, and metallocenes. Especially interesting has been the recent application of these techniques to the characterization of the soccer-ball shaped C60 molecule, buckminsterfullerene, and its interaction with a metal surface. The high resolution valence ionizations in the gas phase reveal the high symmetry of the molecule, and studies of thin films of C60 reveal weak intermolecular interactions. Scanning tunneling and atomic force microscopy reveal the arrangement of spherical molecules on gold substrates, with significant delocalization of charge from the metal surface.

  13. Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity.

    PubMed

    Chen, Xiong; Addicoat, Matthew; Jin, Enquan; Zhai, Lipeng; Xu, Hong; Huang, Ning; Guo, Zhaoqi; Liu, Lili; Irle, Stephan; Jiang, Donglin

    2015-03-11

    A series of two-dimensional covalent organic frameworks (2D COFs) locked with intralayer hydrogen-bonding (H-bonding) interactions were synthesized. The H-bonding interaction sites were located on the edge units of the imine-linked tetragonal porphyrin COFs, and the contents of the H-bonding sites in the COFs were synthetically tuned using a three-component condensation system. The intralayer H-bonding interactions suppress the torsion of the edge units and lock the tetragonal sheets in a planar conformation. This planarization enhances the interlayer interactions and triggers extended π-cloud delocalization over the 2D sheets. Upon AA stacking, the resulting COFs with layered 2D sheets amplify these effects and strongly affect the physical properties of the material, including improving their crystallinity, enhancing their porosity, increasing their light-harvesting capability, reducing their band gap, and enhancing their photocatalytic activity toward the generation of singlet oxygen. These remarkable effects on the structure and properties of the material were observed for both freebase and metalloporphyin COFs. These results imply that exploration of supramolecular ensembles would open a new approach to the structural and functional design of COFs. PMID:25706112

  14. Mannan binding lectin attenuates double-stranded RNA-mediated TLR3 activation and innate immunity.

    PubMed

    Liu, Hongzhi; Zhou, Jia; Ma, Di; Lu, Xiao; Ming, Siqi; Shan, Guiqiu; Zhang, Xiaoyong; Hou, Jinlin; Chen, Zhengliang; Zuo, Daming

    2014-03-18

    Mannan binding lectin (MBL) functions as a pattern recognition molecule (PRM) which is able to initiate complement activation. Here, we characterize a previously unrecognized attribute of MBL as a double-stranded RNA (dsRNA) binding protein capable of modifying Toll like receptor 3 (TLR3) activation. MBL interacts with poly(I:C) and suppresses poly(I:C)-induced activation of TLR3 pathways and subsequent cytokine production. In addition, MBL binds to TLR3 directly. Surprisingly, disrupting the interaction between MBL and complement receptor 1 (CR1) or restraining the traffic of MBL to phagosome reversed the MBL limited TLR3 activation. We demonstrate the importance of MBL guided ligands intracellular localization, emphasizing the significance of understanding the dynamics of TLR agonists complexed with MBL or other PRMs inside the cell in immune defense. PMID:24530528

  15. Safety basis For activities in double-shell tanks with flammable gas concerns

    SciTech Connect

    Schlosser, R.L.

    1996-02-05

    This is full revision to Revision 0 of this report. The purpose of this report is to provide a summary of analyses done to support activities performed for double shell tanks. These activities are encompassed by the flammable gas Unreviewed Safety Question (USQ). The basic controls required to perform these activities involve the identification, elimination and/or control of ignition sources and monitoring for flammable gases. Controls are implemented through the Interim Safety Basis (ISB), IOSRs, and OSDs. Since this report only provides a historical compendium of issues and activities, it is not to be used as a basis to perform USQ screenings and evaluations. Furthermore, these analyses and others in process will be used as the basis for developing the Flammable Gas Topical Report for the ISB Upgrade.

  16. [Study on performance of double mineral base liner using modified bentonite as active material].

    PubMed

    Qu, Zhi-Hui; Zhao, Yong-Sheng; Wang, Tie-Jun; Ren, He-Jun; Zhou, Rui; Hua, Fei; Wang, Bing; Hou, Yin-Ting; Dai, Yun

    2009-06-15

    The absorbing capacity of clay,roasting bentonites by 450 degrees C and dual-cation organobentonites of the pollutions in landfill leachate was compared through static experiment, and investigations were conducted into availability of controlling the permeating of landfill leachate and feasibility of removing the main pollutants in leachate on the double mineral base liners of clay/roasting bentonites by 450 degrees C and clay/dual-cation organobentonites by using nice landfill leachate as the filter fluid. Experiment indicated that the adsorption equilibrium time of landfill leachate in clay, roasting bentonites by 450 degrees C and dual-cation organobentonites was 24 h; the absorbing capacity of roasting bentonites by 450 degrees C and dual-cation organobentonites was larger than that of clay. Simultaneous the penetration coefficients of the two liners were respective 1.31 x 10(-8) cm x s(-1) and 2.80 x 10(-8) cm x s(-1); Double mineral base liners of clay/roasting bentonites by 450 degrees C owned larger absorbing capacity of NH4+, however, double mineral base liners of clay/dual-cation organobentonites had strong absorbing capacity of organic pollutants and the attenuation rate of COD was 33.82% higher than the other. Conclusion was drawn that different types of modified bentonite should be chosen as "the active layer" according to different styles of landfill pollutants. PMID:19662882

  17. Bond Activation by Metal-Carbene Complexes in the Gas Phase.

    PubMed

    Zhou, Shaodong; Li, Jilai; Schlangen, Maria; Schwarz, Helmut

    2016-03-15

    "Bare" metal-carbene complexes, when generated in the gas phase and exposed to thermal reactions under (near) single-collision conditions, exhibit rather unique reactivities in addition to the well-known metathesis and cyclopropanation processes. For example, at room temperature the unligated [AuCH2](+) complex brings about efficient C-C coupling with methane to produce C2Hx (x = 4, 6), and the couple [TaCH2](+)/CO2 gives rise to the generation of the acetic acid equivalent CH2═C═O. Entirely unprecedented is the thermal extrusion of a carbon atom from halobenzenes (X = F, Cl, Br, I) by [MCH2](+) (M = La, Hf, Ta, W, Re, Os) and its coupling with the methylene ligand to deliver C2H2 and [M(X)(C5H5)](+). Among the many noteworthy C-N bond-forming processes, the formation of CH3NH2 from [RhCH2](+)/NH3, the generation of CH2═NH2(+) from [MCH2](+)/NH3 (M = Pt, Au), and the production of [PtCH═NH2](+) from [PtCH2](+)/NH3 are of particular interest. The latter species are likely to be involved as intermediates in the platinum-mediated large-scale production of HCN from CH4/NH3 (the DEGUSSA process). In this context, a few examples are presented that point to the operation of co-operative effects even at a molecular level. For instance, in the coupling of CH4 with NH3 by the heteronuclear clusters [MPt](+) (M = coinage metal), platinum is crucial for the activation of methane, while the coinage metal M controls the branching ratio between the C-N bond-forming step and unwanted soot formation. For most of the gas-phase reactions described in this Account, detailed mechanistic insight has been derived from extensive computational work in conjunction with time-honored labeling and advanced mass-spectrometry-based experiments, and often a coherent description of the experimental findings has been achieved. As for some transition metals, in particular those from the third row, the metal-carbene complexes can be formed directly from methane, coupling of the so

  18. Double-blind study of the actively transported levodopa prodrug XP21279 in Parkinson's disease.

    PubMed

    LeWitt, Peter A; Huff, F Jacob; Hauser, Robert A; Chen, Dan; Lissin, Dmitri; Zomorodi, Katie; Cundy, Kenneth C

    2014-01-01

    The objective of this study was to assess the efficacy, safety, and pharmacokinetics of XP21279-carbidopa in patients with Parkinson's disease who experience motor fluctuations compared with immediate-release carbidopa-levodopa tablets. XP21279 is a levodopa prodrug that is actively absorbed by high-capacity nutrient transporters expressed throughout the gastrointestinal tract and then rapidly converted to levodopa by carboxylesterases. XP21279-carbidopa sustained-release bilayer tablets were developed to overcome pharmacokinetic limitations of levodopa by providing more continuous exposure. Patients with motor fluctuations who required carbidopa-levodopa four or five times daily were optimized for 2 weeks each on carbidopa-levodopa four or five times daily and XP21279-carbidopa three times daily in a randomized sequence. Next, they received each optimized treatment for 2 weeks in a double-blind/double-dummy, randomized sequence. The primary outcome measure was change from baseline in daily off time at the end of each double-blind treatment period. All patients at 2 sites underwent pharmacokinetic analyses. Twenty-eight of 35 enrolled patients completed both double-blind treatments. The mean total daily off time was reduced from baseline by a mean (± standard error) of 2.7 hours (± 0.48 hours) for immediate-release carbidopa-levodopa and 3.0 hours (± 0.57 hours) for XP21279-carbidopa (P = 0.49). Among 11 patients who completed pharmacokinetic sampling on each optimized treatment, the percentage deviation from the mean levodopa concentration was lower (P < 0.05) for XP21279-carbidopa than carbidopa-levodopa. Both treatments had a similar incidence of new or worsening dyskinesias. XP21279-carbidopa administered three times daily produced a reduction in off time similar to that of carbidopa-levodopa administered four or five times daily, and the difference was not statistically significant. XP21279-carbidopa significantly reduced variability in levodopa

  19. A double addition of Ln-H to a carbon-carbon triple bond and competitive oxidation of ytterbium(II) and hydrido centers.

    PubMed

    Basalov, Ivan V; Lyubov, Dmitry M; Fukin, Georgy K; Shavyrin, Andrei S; Trifonov, Alexander A

    2012-04-01

    Addition of two Ln-H bonds of an Yb(II) hydrido complex supported by bulky amidinate ligand to a C≡C bond lead to the formation of 1,2-dianionic bibenzyl fragment. Both Yb(II) and hydrido centers are oxidized under the reaction conditions. The resulting Yb(II)-η(6) -arene interaction is surprisingly robust: the arene cannot be replaced from the metal coordination sphere when treated with Lewis bases. PMID:22374856

  20. Linear, planar, and tubular molecular structures constructed by double planar tetracoordinate carbon D2hC2(BeH)4 species via hydrogen-bridged -BeH2Be- bonds.

    PubMed

    Zhao, Xue-Feng; Li, Haixia; Yuan, Cai-Xia; Li, Yan-Qin; Wu, Yan-Bo; Wang, Zhi-Xiang

    2016-01-15

    This computational study identifies the rhombic D2hC2 (BeH)4 (2a) to be a species featuring double planar tetracoordinate carbons (ptCs). Aromaticity and the peripheral BeBeBeBe bonding around CC core contribute to the stabilization of the ptC structure. Although the ptC structure is not a global minimum, its high kinetic stability and its distinct feature of having a bonded C2 core from having two separated carbon atoms in the global minimum and other low-lying minima could make the ptC structure to be preferred if the carbon source is dominated by C2 species. The electron deficiency of the BeH group allows the ptC species to serve as building blocks to construct large/nanostructures, such as linear chains, planar sheets, and tubes, via intermolecular hydrogen-bridged bonds (HBBs). Formation of one HBB bond releases more than 30.0 kcal/mol of energy, implying the highly exothermic formation processes and the possibility to synthesize these nano-size structures. PMID:26202851

  1. Study on the d state of platinum in Pt/SiO sub 2 and Na/Pt/SiO sub 2 catalysts under C double bond C hydrogenation conditions by X-ray absorption near-edge structure spectroscopy

    SciTech Connect

    Yoshitake, Hideaki; Iwasawa, Yasuhiro )

    1991-09-19

    The change in the d-electron density of platinum during D{sub 2} + CH{sub 2}{double bond}CHX reactions on Pt/SiO{sub 2} and Na/Pt/SiO{sub 2} catalysts and its influence on the catalysis were studied by X-ray absorption near-edge structure (XANES) spectroscopy, kinetics and FT-IR. It was demonstrated from the change of the white lines in XANES spectra at Pt L{sub 2} and L{sub 3} edges that CH{sub 2}{double bond}CHX (X = H, CH{sub 3}, COCH{sub 3}, CF{sub 3}, and CN) is adsorbed on the Pt surface and extracts the electrons of the d state. Hence, the deuterogenation rate is reduced as the value of Hammett's {sigma}{sub P} increases. The linear free energy relationship between the reaction rate and {sigma}{sub P} was observed for the deuterogenation of CH{sub 2}{double bond}CHX. The rate of ethene deuterogenation was promoted by Na{sub 2}O addition. The electron density of unoccupied d states of pt under vacuum decreased by Na{sub 2}O addition, indicating the electron donation from Na{sub 2}O addition. The electron density of unoccupied d states of Pt under vacuum decreased by Na{sub 2}O addition, indicating the electron donation from Na{sub 2}O addition. However, most of these additional electrons were observed to move to ethene under reaction conditions. The acceptor of the electrons was suggested by di-{sigma}-ethene by the shift of {upsilon}(C-H). The kinetic parameters are discussed in relation to the change in the d state of Pt as a function of {sigma}{sub P} and Na quantity.

  2. Activation-induced cytidine deaminase acts on double-strand breaks in vitro.

    PubMed

    Shen, Hong Ming

    2007-02-01

    Activation-induced cytidine deaminase (AID) is likely responsible for DNA cytidine deamination, although it may also act as an RNA deaminase. It functions on single-stranded DNA, the non-template strand in double-stranded DNA during transcription, or both strands in supercoiled DNA. To ask whether AID is able to deaminate cytidine at DNA breaks, plasmids, containing a SnaBI site (TAC downward arrowGTA) that forms blunt ends after digestion with SnaBI, were generated. If AID deaminates cytidine at the upstream blunt end, the ATG start codon in either of two drug resistance genes will be regenerated after ligation and replication in UDG-null E. coli cells. This study shows that AID targets cytidine at the break. The extent of deamination activity beyond the break is correlated with the base composition in the break region. If the break region is A, T-rich, C > T transitions are extensive. However, when the break region is not A, T-rich, mutations are mainly restricted to the break, similar to findings in vivo. The results indicate that AID has activity on double strand breaks (DSBs). Based on previous and current findings, a somatic hypermutation (SHM) model is proposed, in which collision between the transcription apparatus and the replication fork generates DSBs. After AID acts on break ends, the error-prone DNA repair machinery fixes and creates mutations. PMID:16697045

  3. The Nature of Activated Non-classical Hydrogen Bonds: A Case Study on Acetylcholinesterase-Ligand Complexes.

    PubMed

    Berg, Lotta; Mishra, Brijesh Kumar; Andersson, C David; Ekström, Fredrik; Linusson, Anna

    2016-02-18

    Molecular recognition events in biological systems are driven by non-covalent interactions between interacting species. Here, we have studied hydrogen bonds of the CH⋅⋅⋅Y type involving electron-deficient CH donors using dispersion-corrected density functional theory (DFT) calculations applied to acetylcholinesterase-ligand complexes. The strengths of CH⋅⋅⋅Y interactions activated by a proximal cation were considerably strong; comparable to or greater than those of classical hydrogen bonds. Significant differences in the energetic components compared to classical hydrogen bonds and non-activated CH⋅⋅⋅Y interactions were observed. Comparison between DFT and molecular mechanics calculations showed that common force fields could not reproduce the interaction energy values of the studied hydrogen bonds. The presented results highlight the importance of considering CH⋅⋅⋅Y interactions when analysing protein-ligand complexes, call for a review of current force fields, and opens up possibilities for the development of improved design tools for drug discovery. PMID:26751405

  4. Polymer photovoltaic cells with a graded active region achieved using double stamp transfer printing

    NASA Astrophysics Data System (ADS)

    Joo Cho, Yong; Yeob Lee, Jun; Forrest, Stephen R.

    2013-11-01

    We demonstrate that double stamp transfer printing of the poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61-butyric acid methyl ester (PCBM) active layer on MoO3 of an organic photovoltaic (OPV) cell enhances the charge collection efficiency at the anode and cathode contacts by creating a concentration gradient of the P3HT and PCBM across the bulk heterojunction active layer. This gradient increases the short circuit current and the power conversion efficiency of stamp-transferred P3HT:PCBM polymer OPVs by 23% compared with that of similarly structured spin-coated polymer OPVs due to the graded active layer composition, resulting in a power conversion efficiency of 3.7 ± 0.2% for an as-cast device. The stamp-transfer printing process provides a route to low cost fabrication of OPVs over large flexible substrate areas.

  5. Transition metal activation and functionalization of C-H bonds: Progress report, December 1, 1987-November 30, 1988

    SciTech Connect

    Jones, W.D.

    1988-08-01

    This project is directed towards the continued investigation of the fundamental thermodynamic and kinetic factors that influence carbon-hydrogen bond activation at homogeneous transition metal centers. The project is also directed towards the conversion of hydrocarbons into functionalized products of potential use to chemical industry. Goals will be 1) to identify new transition metal complexes capable of activating arene and alkane C-H bonds, 2) to quantitatively evaluate the kinetic and thermodynamic stability of these complexes, and 3) to examine routes for functionalization of the activated hydrocarbons. Specific complexes involved are derivatives of the formulation (C/sub 5/Me/sub 5/)Rh(PR/sub 3/)(R)H, Fe(PMe/sub 3/)/sub 2/(CNR)/sub 3/, Ru(PR/sub 3/)/sub 4/(R)H, and Rh(CNR)/sub 3/H. Functionalization will focus upon isocyanide and acetylene insertion reactions. New compounds that activate hydrocarbon C-H bonds include HRe(PR/sub 3/)/sub 5/, HRe(PR/sub 3/)/sub 2/(CNR)/sub 3/, CpRe(PR/sub 3/)H/sub 4/, CpRe(PR/sub 3/)/sub 2/H/sub 2/, (/eta//sup 6/-C/sub 6/H/sub 6/)Re(PPh/sub 3/)/sub 2/H, and MnH/sub 3/(dmpe)/sub 2/. The latter complex is found to be an /eta//sup 2/-dihydrogen complex. The new complexes RhCl(P(i-Pr)/sub 3/)/sub 2/(CNCH/sub 2/CMe/sub 3/) and (trispyrazolylborate)Rh(CNR)/sub 2/ are shown to be active for the activation and functionalization of aromatic C-H bonds. 10 figs., 1 tab.

  6. Endonucleolytic activity directed towards 8-(2-hydroxy-2-propyl) purines in double-stranded DNA.

    PubMed Central

    Livneh, Z; Elad, D; Sperling, J

    1979-01-01

    Photoalkylation of circular covalently closed DNA from phage PM2 with isopropyl alcohol by using a free radical photoinitiator and UV light of lambda greater than 305 nm led to the specific 8-substitution of purine moieties in the DNA, yielding 8-(2-hydroxy-2-propyl)adenine and 8-(2-hydroxy-2-propyl)guanine as the only detectable damage in the DNA. Using this specifically photoalkylated DNA as a substrate, we discovered in extracts of Micrococcus luteus an endonucleolytic activity that is directed towards 8-(2-hydroxy-2-propyl) purines in DNA. The activity is not a combination of a DNA-glycosylase and an apurinic site endonuclease. It is not inhibited by single-stranded DNA, by UV- or gamma-irradiated single-stranded DNA, or by normal or depurinated double-stranded DNA. however, gamma- or UV-(254 nm) irradiated double-stranded DNAs to inhibit the activity, hinting at the possibility of a common type of lesion in these damaged DNAs. Divalent cations are not required for the incising activity, and it is fully active in 1 mM EDTA, whereas caffeine and ATP cause inhibition. Extracts of mutant M. luteus lacking pyrimidine-dimer-directed endonucleases were found to contain the endonucleolytic activity in levels comparable to those present in the wild type. After the incision, we could demonstrate the specific excision of the 8-alkylated purines from the damaged DNA. The special conformational consequences of the 8-alkylation of purines, at the nucleotide level, namely their nonregular syn conformation, suggest that it is the distortion in the DNA that is recognized by the endonuclease. PMID:293658

  7. Endonucleolytic activity directed towards 8-(2-hydroxy-2-propyl) purines in double-stranded DNA.

    PubMed

    Livneh, Z; Elad, D; Sperling, J

    1979-11-01

    Photoalkylation of circular covalently closed DNA from phage PM2 with isopropyl alcohol by using a free radical photoinitiator and UV light of lambda greater than 305 nm led to the specific 8-substitution of purine moieties in the DNA, yielding 8-(2-hydroxy-2-propyl)adenine and 8-(2-hydroxy-2-propyl)guanine as the only detectable damage in the DNA. Using this specifically photoalkylated DNA as a substrate, we discovered in extracts of Micrococcus luteus an endonucleolytic activity that is directed towards 8-(2-hydroxy-2-propyl) purines in DNA. The activity is not a combination of a DNA-glycosylase and an apurinic site endonuclease. It is not inhibited by single-stranded DNA, by UV- or gamma-irradiated single-stranded DNA, or by normal or depurinated double-stranded DNA. however, gamma- or UV-(254 nm) irradiated double-stranded DNAs to inhibit the activity, hinting at the possibility of a common type of lesion in these damaged DNAs. Divalent cations are not required for the incising activity, and it is fully active in 1 mM EDTA, whereas caffeine and ATP cause inhibition. Extracts of mutant M. luteus lacking pyrimidine-dimer-directed endonucleases were found to contain the endonucleolytic activity in levels comparable to those present in the wild type. After the incision, we could demonstrate the specific excision of the 8-alkylated purines from the damaged DNA. The special conformational consequences of the 8-alkylation of purines, at the nucleotide level, namely their nonregular syn conformation, suggest that it is the distortion in the DNA that is recognized by the endonuclease. PMID:293658

  8. C-O and O-H Bond Activation of Methanole by Lanthanum

    NASA Astrophysics Data System (ADS)

    Silva, Ruchira; Hewage, Dilrukshi; Yang, Dong-Sheng

    2012-06-01

    The interaction between methanol (CH_3OH) molecules and laser-vaporized La atoms resulted in the cleavage of C-O and O-H bonds and the formation of three major products, LaH_2O_2, LaCH_4O_2 and LaC_2H_6O_2, in a supersonic molecular beam. These products were identified by time-of-flight mass spectrometry, and their electronic spectra were obtained using mass-analyzed threshold ionization (MATI) spectroscopy. From the MATI spectra, adiabatic ionization energies of the three complexes were measured to be 40136 (5), 39366 (5) and 38685 (5) cm-1 for LaH_2O_2, LaCH_4O_2 and LaC_2H_6O_2, respectively. The ionization energies of these complexes decrease as the size of the coordinated organic fragments increases. The most active vibrational transitions of all three complexes were observed to be the M-O stretches in the ionic state. A metal-ligand bending mode with a frequency of 127 cm-1 was also observed for [LaH_2O_2]^+. However, the spectra of the other two complexes were less resolved, due to the existence of a large number of low frequency modes, which could be thermally excited even in the supersonic molecular beams, and of multiple rotational isomers formed by the free rotation of the methyl group in these systems. The electronic transitions responsible for the observed spectra were identified as ^1A_1 (C2v) ← ^2A_1 (C2v) for LaH_2O_2 and ^1A (C_1) ← ^2A (C_1) for LaCH_4O_2 and LaC_2H_6O_2.

  9. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    SciTech Connect

    Lichtenberger, D.L.

    1991-10-01

    The formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies has been developed into a single equation which unifies the treatment of covalent bonds, ionic bonds, and partially ionic bonds. This relationship has been used to clarify the fundamental thermodynamic information relating to metal-hydrogen, metal-alkyl, and metal-metal bond energies. We have been able to obtain a direct observation and measurement of the stabilization energy provided by the agostic interaction of the C-H bond with the metal. The ionization energies have also been used to correlate the rates of carbonyl substitution reactions of ({eta}{sup 5}-C{sub 5}H{sub 4}X)Rh(CO){sub 2} complexes, and to reveal the electronic factors that control the stability of the transition state. The extent that the electronic features of these bonding interactions transfer to other chemical systems is being investigated in terms of the principle of additivity of ligand electronic effects. Specific examples under study include metal- phosphines, metal-halides, and metallocenes. Especially interesting has been the recent application of these techniques to the characterization of the soccer-ball shaped C{sub 60} molecule, buckminsterfullerene, and its interaction with a metal surface. The high-resolution valence ionizations in the gas phase reveal the high symmetry of the molecule, and studies of thin films of C{sub 60} reveal weak intermolecular interactions. Scanning tunneling and atomic force microscopy reveal the arrangement of spherical molecules on gold substrates, with significant delocalization of charge from the metal surface. 21 refs.

  10. H-bonding networks of the distal residues and water molecules in the active site of Thermobifida fusca hemoglobin.

    PubMed

    Nicoletti, Francesco P; Droghetti, Enrica; Howes, Barry D; Bustamante, Juan P; Bonamore, Alessandra; Sciamanna, Natascia; Estrin, Darío A; Feis, Alessandro; Boffi, Alberto; Smulevich, Giulietta

    2013-09-01

    The ferric form of truncated hemoglobin II from Thermobifida fusca (Tf-trHb) and its triple mutant WG8F-YB10F-YCD1F at neutral and alkaline pH, and in the presence of CN(-) have been characterized by resonance Raman spectroscopy, electron paramagnetic resonance spectroscopy, and molecular dynamics simulations. Tf-trHb contains three polar residues in the distal site, namely TrpG8, TyrCD1 and TyrB10. Whereas TrpG8 can act as a potential hydrogen-bond donor, the tyrosines can act as donors or acceptors. Ligand binding in heme-containing proteins is determined by a number of factors, including the nature and conformation of the distal residues and their capability to stabilize the heme-bound ligand via hydrogen-bonding and electrostatic interactions. Since both the RR Fe-OH(-) and Fe-CN(-) frequencies are very sensitive to the distal environment, detailed information on structural variations has been obtained. The hydroxyl ligand binds only the WT protein giving rise to two different conformers. In form 1 the anion is stabilized by H-bonds with TrpG8, TyrCD1 and a water molecule, in turn H-bonded to TyrB10. In form 2, H-bonding with TyrCD1 is mediated by a water molecule. Unlike the OH(-) ligand, CN(-) binds both WT and the triple mutant giving rise to two forms with similar spectroscopic characteristics. The overall results clearly indicate that H-bonding interactions both with distal residues and water molecules are important structural determinants in the active site of Tf-trHb. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins. PMID:23467007

  11. Electrophilic, Ambiphilic, and Nucleophilic C-H bond Activation. Understanding the electronic continuum of C-H bond activation through transition-state and reaction pathway interaction energy decompositions

    SciTech Connect

    Ess, Daniel H.; Goddard, William A.; Periana, Roy A.

    2010-10-29

    The potential energy and interaction energy profiles for metal- and metal-ligand-mediated alkane C-H bond activation were explored using B3LYP density functional theory (DFT) and the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA). The set of complexes explored range from late transition metal group 10 (Pt and Pd) and group 11 (Au) metal centers to group 7-9 (Ir, Rh, Ru, and W) metal centers as well as a group 3 Sc complex. The coordination geometries, electron metal count (d8, d6, d4, and d0), and ligands (N-heterocycles, O-donor, phosphine, and Cp*) are also diverse. Quantitative analysis using ALMO-EDA of both directions of charge-transfer stabilization (occupied to unoccupied orbital stabilization) energies between the metal-ligand fragment and the coordinated C-H bond in the transition state for cleavage of the C-H bond allows classification of C-H activation reactions as electrophilic, ambiphilic, or nucleophilic on the basis of the net direction of charge-transfer energy stabilization. This bonding pattern transcends any specific mechanistic or bonding paradigm, such as oxidative addition, σ-bond metathesis, or substitution. Late transition metals such as Au(III), Pt(II), Pd(II), and Rh(III) metal centers with N-heterocycle, halide, or O-donor ligands show electrophilically dominated reaction profiles with forward charge-transfer from the C-H bond to the metal, leading to more stabilization than reverse charge transfer from the metal to the C-H bond. Transition states and reaction profiles for d6 Ru(II) and Ir(III) metals with Tp and acac ligands were found to have nearly equal forward and reverse charge-transfer energy stabilization. This ambiphilic region also includes the classically labeled electrophilic cationic species Cp*(PMe3)Ir(Me). Nucleophilic character, where the metal to C-H bond charge-transfer interaction is most stabilizing, was found in

  12. Access to novel fluorovinylidene ligands via exploitation of outer-sphere electrophilic fluorination: new insights into C-F bond formation and activation.

    PubMed

    Milner, Lucy M; Hall, Lewis M; Pridmore, Natalie E; Skeats, Matthew K; Whitwood, Adrian C; Lynam, Jason M; Slattery, John M

    2016-01-28

    Metal vinylidene complexes are widely encountered, or postulated, as intermediates in a range of important metal-mediated transformations of alkynes. However, fluorovinylidene complexes have rarely been described and their reactivity is largely unexplored. By making use of the novel outer-sphere electrophilic fluorination (OSEF) strategy we have developed a rapid, robust and convenient method for the preparation of fluorovinylidene and trifluoromethylvinylidene ruthenium complexes from non-fluorinated alkynes. Spectroscopic investigations (NMR and UV/Vis), coupled with TD-DFT studies, show that fluorine incorporation results in significant changes to the electronic structure of the vinylidene ligand. The reactivity of fluorovinylidene complexes shows many similarities to non-fluorinated analogues, but also some interesting differences, including a propensity to undergo unexpected C-F bond cleavage reactions. Heating fluorovinylidene complex [Ru(η(5)-C5H5)(PPh3)2(C[double bond, length as m-dash]C{F}R)][BF4] led to C-H activation of a PPh3 ligand to form an orthometallated fluorovinylphosphonium ligand. Reaction with pyridine led to nucleophilic attack at the metal-bound carbon atom of the vinylidene to form a vinyl pyridinium species, which undergoes both C-H and C-F activation to give a novel pyridylidene complex. Addition of water, in the presence of chloride, leads to anti-Markovnikov hydration of a fluorovinylidene complex to form an α-fluoroaldehyde, which slowly rearranges to its acyl fluoride isomer. Therefore, fluorovinylidenes ligands may be viewed as synthetic equivalents of 1-fluoroalkynes providing access to reactivity not possible by other routes. PMID:26701305

  13. Quantitative evaluation on activated property-tunable bulk liquid water with reduced hydrogen bonds using deconvoluted Raman spectroscopy.

    PubMed

    Chen, Hsiao-Chien; Mai, Fu-Der; Yang, Kuang-Hsuan; Chen, Liang-Yih; Yang, Chih-Ping; Liu, Yu-Chuan

    2015-01-01

    Interesting properties of water with distinguishable hydrogen-bonding structure on interfacial phase or in confined environment have drawn wide attentions. However, these unique properties of water are only found within the interfacial phase and confined environment, thus, their applications are limited. In addition, quantitative evaluation on these unique properties associating with the enhancement of water's physical and chemical activities represents a notable challenge. Here we report a practicable production of free-standing liquid water at room temperature with weak hydrogen-bonded structure naming Au nanoparticles (NPs)-treated (AuNT) water via treating by plasmon-induced hot electron transfer occurred on resonantly illuminated gold NPs (AuNPs). Compared to well-known untreated bulk water (deionized water), the prepared AuNT water exhibits many distinct activities in generally physical and chemical reactions, such as high solubilities to NaCl and O2. Also, reducing interaction energy within water molecules provides lower overpotential and higher efficiency in electrolytic hydrogen production. In addition, these enhanced catalytic activities of AuNT water are tunable by mixing with deionized water. Also, most of these tunable activities are linearly proportional to its degree of nonhydrogen-bonded structure (DNHBS), which is derived from the O-H stretching in deconvoluted Raman spectrum. PMID:25471522

  14. Visualizing repetitive diffusion activity of double-strand RNA binding proteins by single molecule fluorescence assays.

    PubMed

    Koh, Hye Ran; Wang, Xinlei; Myong, Sua

    2016-08-01

    TRBP, one of double strand RNA binding proteins (dsRBPs), is an essential cofactor of Dicer in the RNA interference pathway. Previously we reported that TRBP exhibits repetitive diffusion activity on double strand (ds)RNA in an ATP independent manner. In the TRBP-Dicer complex, the diffusion mobility of TRBP facilitates Dicer-mediated RNA cleavage. Such repetitive diffusion of dsRBPs on a nucleic acid at the nanometer scale can be appropriately captured by several single molecule detection techniques. Here, we provide a step-by-step guide to four different single molecule fluorescence assays by which the diffusion activity of dsRBPs on dsRNA can be detected. One color assay, termed protein induced fluorescence enhancement enables detection of unlabeled protein binding and diffusion on a singly labeled RNA. Two-color Fluorescence Resonance Energy Transfer (FRET) in which labeled dsRBPs is applied to labeled RNA, allows for probing the motion of protein along the RNA axis. Three color FRET reports on the diffusion movement of dsRBPs from one to the other end of RNA. The single molecule pull down assay provides an opportunity to collect dsRBPs from mammalian cells and examine the protein-RNA interaction at single molecule platform. PMID:27012177

  15. First insight into catalytic activity of anionic iron porphyrins immobilized on exfoliated layered double hydroxides.

    PubMed

    Nakagaki, Shirley; Halma, Matilte; Bail, Alesandro; Arízaga, Gregório Guadalupe Carbajal; Wypych, Fernando

    2005-01-15

    Mg-Al layered double hydroxide (LDH) intercalated with glycinate anions was synthesized through co-precipitation and exfoliated in formamide and the single-layer suspension was reacted with aqueous iron porphyrin solutions (Fe(TDFSPP) and Fe(TCFSPP)). The obtained materials were characterized by X-ray powder diffraction, UV-vis, and electron paramagnetic resonance and investigated in the oxidation reaction of cyclooctene and cyclohexane using iodosylbenzene as oxidant. The iron porphyrin seems to be immobilized at the surface of the glycinate intercalated LDH. The catalytic activities obtained in heterogeneous media for iron porphyrin, Fe(TDFSPP), was superior to the results obtained under homogeneous conditions, but the opposite effect was observed on the Fe(TCFSPP), indicating that, instead of the structural similarity of both iron porphyrins (second-generation porphyrins), the immobilization of each one produced different catalysts. The best catalytic activity of the Fe(TDFSPP)/Gly-LDH, compared to Fe(TCFSPP)/Gly-LDH, can be explained by the easy access of the oxidant and the substrate to the catalytic sites in the former, probably located at the surface of the layered double hydroxide pillared with glycinate anions. A model for the immobilization and a mechanism for the oxidation reaction will be discussed. PMID:15571697

  16. Tautomerization lowers the activation barriers for N-glycosidic bond cleavage of protonated uridine and 2'-deoxyuridine.

    PubMed

    Wu, R R; Rodgers, M T

    2016-09-21

    The gas-phase conformations of protonated uridine, [Urd+H](+), and its 2'-deoxy form, protonated 2'-deoxyuridine, [dUrd+H](+), have been examined in detail previously by infrared multiple photon dissociation action spectroscopy techniques. Both 2,4-dihydroxy tautomers and O4 protonated conformers of [Urd+H](+) and [dUrd+H](+) were found to coexist in the experiments with the 2,4-dihydroxy tautomers dominating the population. In the present study, the kinetic energy dependence of the collision-induced dissociation behavior of [Urd+H](+) and [dUrd+H](+) are examined using a guided ion beam tandem mass spectrometer to probe the mechanisms and energetics for activated dissociation of these protonated nucleosides. The primary dissociation pathways observed involve N-glycosidic bond cleavage leading to competitive elimination of protonated or neutral uracil. The potential energy surfaces (PESs) for these N-glycosidic bond cleavage pathways are mapped out via electronic structure calculations for the mixture of 2,4-dihydroxy tautomers and O4 protonated conformers of [Urd+H](+) and [dUrd+H](+) populated in the experiments. The calculated activation energies (AEs) and heats of reaction (ΔHrxns) for N-glycosidic bond cleavage at both the B3LYP and MP2(full) levels of theory are compared to the measured values. The agreement between experiment and theory indicates that B3LYP provides better estimates of the energetics of the species along the PESs for N-glycosidic bond cleavage than MP2, and that the 2,4-dihydroxy tautomers, which are stabilized by strong hydrogen-bonding interactions, predominantly influence the observed threshold dissociation behavior of [Urd+H](+) and [dUrd+H](+). PMID:27536972

  17. Insulin analog with additional disulfide bond has increased stability and preserved activity.

    PubMed

    Vinther, Tine N; Norrman, Mathias; Ribel, Ulla; Huus, Kasper; Schlein, Morten; Steensgaard, Dorte B; Pedersen, Thomas Å; Pettersson, Ingrid; Ludvigsen, Svend; Kjeldsen, Thomas; Jensen, Knud J; Hubálek, František

    2013-03-01

    Insulin is a key hormone controlling glucose homeostasis. All known vertebrate insulin analogs have a classical structure with three 100% conserved disulfide bonds that are essential for structural stability and thus the function of insulin. It might be hypothesized that an additional disulfide bond may enhance insulin structural stability which would be highly desirable in a pharmaceutical use. To address this hypothesis, we designed insulin with an additional interchain disulfide bond in positions A10/B4 based on Cα-Cα distances, solvent exposure, and side-chain orientation in human insulin (HI) structure. This insulin analog had increased affinity for the insulin receptor and apparently augmented glucodynamic potency in a normal rat model compared with HI. Addition of the disulfide bond also resulted in a 34.6°C increase in melting temperature and prevented insulin fibril formation under high physical stress even though the C-terminus of the B-chain thought to be directly involved in fibril formation was not modified. Importantly, this analog was capable of forming hexamer upon Zn addition as typical for wild-type insulin and its crystal structure showed only minor deviations from the classical insulin structure. Furthermore, the additional disulfide bond prevented this insulin analog from adopting the R-state conformation and thus showing that the R-state conformation is not a prerequisite for binding to insulin receptor as previously suggested. In summary, this is the first example of an insulin analog featuring a fourth disulfide bond with increased structural stability and retained function. PMID:23281053

  18. Rhodium-catalysed C(sp(2))-C(sp(2)) bond formation via C-H/C-F activation.

    PubMed

    Tian, Panpan; Feng, Chao; Loh, Teck-Peng

    2015-01-01

    Fluoroalkenes represent a class of privileged structural motifs, which found widespread use in medicinal chemistry. However, the synthetic access to fluoroalkenes was much underdeveloped with previous reported methods suffering from either low step economy or harsh reaction conditions. Here we present a Rh(III)-catalysed tandem C-H/C-F activation for the synthesis of (hetero)arylated monofluoroalkenes. The use of readily available gem-difluoroalkenes as electrophiles provides a highly efficient and operationally simple method for the introduction of α-fluoroalkenyl motifs onto (hetero)arenes under oxidant-free conditions. Furthermore, the employment of alcoholic solvent and the in-situ generated hydrogen fluoride are found to be beneficial in this transformation, indicating the possibility of the involvement of hydrogen bond activation mode with regards to the C-F bond cleavage step. PMID:26081837

  19. Conversion of amides to esters by the nickel-catalysed activation of amide C-N bonds

    NASA Astrophysics Data System (ADS)

    Hie, Liana; Fine Nathel, Noah F.; Shah, Tejas K.; Baker, Emma L.; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K. N.; Garg, Neil K.

    2015-08-01

    Amides are common functional groups that have been studied for more than a century. They are the key building blocks of proteins and are present in a broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to the resonance stability of the amide bond. Although amides can readily be cleaved by enzymes such as proteases, it is difficult to selectively break the carbon-nitrogen bond of an amide using synthetic chemistry. Here we demonstrate that amide carbon-nitrogen bonds can be activated and cleaved using nickel catalysts. We use this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory calculations provide insight into the thermodynamics and catalytic cycle of the amide-to-ester transformation. Our results provide a way to harness amide functional groups as synthetic building blocks and are expected to lead to the further use of amides in the construction of carbon-heteroatom or carbon-carbon bonds using non-precious-metal catalysis.

  20. High heat flux test of a HIP-bonded first wall panel of reduced activation ferritic steel F-82H

    NASA Astrophysics Data System (ADS)

    Hatano, T.; Suzuki, S.; Yokoyama, K.; Kuroda, T.; Enoeda, M.

    2000-12-01

    Reduced activation ferritic steel F-82H is a primary candidate structural material of DEMO fusion reactors. In fabrication technology, development of the DEMO blanket in JAERI, a hot isostatic pressing (HIP) bonding method, especially for the first wall structure with built-in cooling tubes has been proposed. A HIP-bonded F-82H first wall panel was successfully fabricated with selected manufacturing parameters. A high heat flux test of the HIP-bonded F-82H first wall panel has been performed to examine the thermo-mechanical performance of the panel including the integrity of the HIP-bonded interfaces and the fatigue behavior. A maximum heat flux of 2.7 MW/m2 was applied to accelerate the fatigue test up to 5000 cycles in test blanket inserted ITER. The maximum temperature of the panel was ∼450°C under this heat flux. Through this test campaign, no damage such as cracks was observed on the surface of the panel, and no degradation in heat removal performance was observed either from the temperature responses. The thermal fatigue lifetime of the panel was found to be longer than the fatigue data obtained by mechanical testing.

  1. Conversion of Amides to Esters by the Nickel-Catalyzed Activation of Amide C–N Bonds

    PubMed Central

    Hie, Liana; Fine Nathel, Noah F.; Shah, Tejas K.; Baker, Emma L.; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K. N.; Garg, Neil K.

    2015-01-01

    Amides are common functional groups that have been well studied for more than a century.1 They serve as the key building blocks of proteins and are present in an broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to resonance stability of the amide bond.1,2 Whereas Nature can easily cleave amides through the action of enzymes, such as proteases,3 the ability to selectively break the C–N bond of an amide using synthetic chemistry is quite difficult. In this manuscript, we demonstrate that amide C–N bonds can be activated and cleaved using nickel catalysts. We have used this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory (DFT) calculations provide insight into the thermodynamics and catalytic cycle of this unusual transformation. Our results provide a new strategy to harness amide functional groups as synthons and are expected fuel the further use of amides for the construction of carbon–heteroatom or carbon–carbon bonds using non-precious metal catalysis. PMID:26200342

  2. Chromospherically active stars. 13: HD 30957: A double lined K dwarf binary

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Dadonas, Virgilijus; Sperauskas, Julius; Vaccaro, Todd R.; Patterson, L. Ronald

    1994-01-01

    HD 30957 is a double-lined spectroscopic binary with a period of 44.395 days and a modest eccentricity of 0.09. The spectral types of the components are K2-3 V and K5 V. The measured v sin i for both components is less than or equal to 3 km/s and the orbital inclination is estimated to be 69 deg. The system is relatively nearby with a parallax of 0.025 sec or a distance of 40 pc. Space motions of the system indicate that it does not belong to any of the known moving groups. Absolute surface fluxes of the Ca II H and K lines have been recomputed and indicate only modest chromospheric activity. If the stars are rotating pseudosynchronously, the lack of light variability is consistent with the value of the critical Rossby number for starspot activity.

  3. Double Strain-Promoted Macrocyclization for the Rapid Selection of Cell-Active Stapled Peptides.

    PubMed

    Lau, Yu Heng; Wu, Yuteng; Rossmann, Maxim; Tan, Ban Xiong; de Andrade, Peterson; Tan, Yaw Sing; Verma, Chandra; McKenzie, Grahame J; Venkitaraman, Ashok R; Hyvönen, Marko; Spring, David R

    2015-12-14

    Peptide stapling is a method for designing macrocyclic alpha-helical inhibitors of protein-protein interactions. However, obtaining a cell-active inhibitor can require significant optimization. We report a novel stapling technique based on a double strain-promoted azide-alkyne reaction, and exploit its biocompatibility to accelerate the discovery of cell-active stapled peptides. As a proof of concept, MDM2-binding peptides were stapled in parallel, directly in cell culture medium in 96-well plates, and simultaneously evaluated in a p53 reporter assay. This in situ stapling/screening process gave an optimal candidate that showed improved proteolytic stability and nanomolar binding to MDM2 in subsequent biophysical assays. α-Helicity was confirmed by a crystal structure of the MDM2-peptide complex. This work introduces in situ stapling as a versatile biocompatible technique with many other potential high-throughput biological applications. PMID:26768531

  4. [p53 activation by PI-3K family kinases after DNA double-strand breaks].

    PubMed

    Pernin, D; Uhrhammer, N; Verrelle, P; Bignon, Y J; Bay, J O

    2000-09-01

    p53 plays a central role in the cellular response to DNA double-strand breaks (DSBs), and to DNA damage in general. The protein kinases ATM, ATR and DNA-PK detect DSBs and transmit this information to p53 by phosphorylation. This phosphorylation dissociates p53 from its negative regulator, mdm2. p53 then undergoes further modification and activates transcription of the genes responsible for cell cycle arrest. In certain circumstances, p53 also activates transcription of the genes responsible for apoptosis. The dysfunction of this cascade of events is oncogenic, with P53 itself being the most commonly mutated gene in malignant cells, although mutations in both the DNA damage sensors and cell cycle checkpoint and apoptosis effectors are frequent. A more complete understanding of p53 and the proteins it interacts with may allow the development of new cancer treatments. PMID:11038413

  5. Enantioselective Aminomethylamination of Conjugated Dienes with Aminals Enabled by Chiral Palladium Complex-Catalyzed C-N Bond Activation.

    PubMed

    Liu, Yang; Xie, Yinjun; Wang, Hongli; Huang, Hanmin

    2016-04-01

    A novel highly enantioselective aminomethylamination of conjugated dienes with aminals catalyzed by a chiral palladium complex ligated with BINOL-derived chiral diphosphinite has been successfully developed. This reaction proceeds via a Pd-catalyzed cascade C-N bond activation, aminomethylation, and asymmetric allylic amination reaction under mild reaction conditions, providing a unique and efficient strategy for the synthesis of enantiomerically pure allylic 1,3-diamines. PMID:26998813

  6. A High Fraction of Double-peaked Narrow Emission Lines in Powerful Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lyu, Yang; Liu, Xin

    2016-08-01

    One percent of redshift z ˜ 0.1 Active Galactic Nuclei (AGNs) show velocity splitting of a few hundred km s-1 in the narrow emission lines in spatially integrated spectra. Such line profiles have been found to arise from the bulk motion of ionized gas clouds associated with galactic-scale outflows, merging pairs of galaxies each harboring a supermassive black hole (SMBH), and/or galactic-scale disk rotation. It remains unclear, however, how the frequency of narrow-line velocity splitting may depend on AGN luminosity. Here we study the correlation between the fraction of Type 2 AGNs with double-peaked narrow emission lines and AGN luminosity as indicated by [O III]λ5007 emission-line luminosity L[O III]. We combine the sample of Liu et al. (2010a) at z ˜ 0.1 with a new sample of 178 Type 2 AGNs with double-peaked [O III] emission lines at z ˜ 0.5. We select the new sample from a parent sample of 2089 Type 2 AGNs from the SDSS-III/Baryon Oscillation Spectroscopic Survey. We find a statistically significant (˜4.2σ) correlation between L[O III] and the fraction of objects that exhibit double-peaked narrow emission lines among all Type 2 AGNs, corrected for selection bias and incompleteness due to [O III] line width, equivalent width, splitting velocity, and/or equivalent width ratio between the two velocity components. Our result suggests that galactic-scale outflows and/or merging pairs of SMBHs are more prevalent in more powerful AGNs, although spatially resolved follow up observations are needed to resolve the origin(s) for the narrow-line velocity splitting for individual AGNs.

  7. 77 FR 15378 - Agency Information Collection Activities: Application for Withdrawal of Bonded Stores for Fishing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ...U.S. Customs and Border Protection (CBP) of the Department of Homeland Security will be submitting the following information collection request to the Office of Management and Budget (OMB) for review and approval in accordance with the Paperwork Reduction Act: Application for Withdrawal of Bonded Stores for Fishing Vessels and Certificate of Use (CBP Form 5125). This is a proposed extension of......

  8. Diffusion bonding aeroengine components

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. A.; Broughton, T.

    1988-10-01

    The use of diffusion bonding processes at Rolls-Royce for the manufacture of titanium-alloy aircraft engine components and structures is described. A liquid-phase diffusion bonding process called activated diffusion bonding has been developed for the manufacture of the hollow titanium wide chord fan blade. In addition, solid-state diffusion bonding is being used in the manufacture of hollow vane/blade airfoil constructions mainly in conjunction with superplastic forming and hot forming techniques.

  9. Nonnative Disulfide Bond Formation Activates the σ32-Dependent Heat Shock Response in Escherichia coli

    PubMed Central

    Müller, Alexandra; Hoffmann, Jörg H.; Meyer, Helmut E.; Narberhaus, Franz; Jakob, Ursula

    2013-01-01

    Formation of nonnative disulfide bonds in the cytoplasm, so-called disulfide stress, is an integral component of oxidative stress. Quantification of the extent of disulfide bond formation in the cytoplasm of Escherichia coli revealed that disulfide stress is associated with oxidative stress caused by hydrogen peroxide, paraquat, and cadmium. To separate the impact of disulfide bond formation from unrelated effects of these oxidative stressors in subsequent experiments, we worked with two complementary approaches. We triggered disulfide stress either chemically by diamide treatment of cells or genetically in a mutant strain lacking the major disulfide-reducing systems TrxB and Gor. Studying the proteomic response of E. coli exposed to disulfide stress, we found that intracellular disulfide bond formation is a particularly strong inducer of the heat shock response. Real-time quantitative PCR experiments showed that disulfide stress induces the heat shock response in E. coli σ32 dependently. However, unlike heat shock treatment, which induces these genes transiently, transcripts of σ32-dependent genes accumulated over time in disulfide stress-treated cells. Analyzing the stability of σ32, we found that this constant induction can be attributed to an increase of the half-life of σ32 upon disulfide stress. This is concomitant with aggregation of E. coli proteins treated with diamide. We conclude that oxidative stress triggers the heat shock response in E. coli σ32 dependently. The component of oxidative stress responsible for the induction of heat shock genes is disulfide stress. Nonnative disulfide bond formation in the cytoplasm causes protein unfolding. This stabilizes σ32 by preventing its DnaK- and FtsH-dependent degradation. PMID:23585533

  10. Catalytic carbon-carbon bond activation and functionalization by nickel complexes

    SciTech Connect

    Edelback, B.L.; Lachicotte, R.J.; Jones, W.D.

    1999-09-27

    The nickel alkyne complexes (dippe)Ni(PhC{triple{underscore}bond}CPh), 2, (dippe) Ni(MeO{sub 2}CC{triple{underscore}bond}CCO{sub 2}Me), 3, (dippe)Ni(CH{sub 3}OCH{sub 2}C{triple{underscore}bond}CCH{sub 2}OCH{sub 3}), 4, and (dippe)Ni(CF{sub 3}C{triple{underscore}bond}CCF{sub 3}), 5, were synthesized (dippe = bis(diisopropylphosphino)ethane) and characterized by {sup 1}H, {sup 31}P, and {sup 13}C{l{underscore}brace}{sup 1}H{r{underscore}brace} NMR spectroscopy. Complexes 1, 2, and 3 were characterized by X-ray crystallography. The thermolysis of complex 1 or 2 (120 C) in the presence of excess biphenylene and excess alkyne results in very slow catalytic formation of the corresponding 9,10-disubstituted phenanthrene. However, addition of {approximately}6 mol % O{sub 2} (based on the metal complex) to the reaction mixture results in an acceleration in catalysis at lower temperatures ({approximately}70--80 C). The thermolysis of complexes 3 or 4 with excess biphenylene and excess alkyne leads to the alkyne cyclotrimerization product as the major organic species formed in the reaction. Fluorenone was catalytically produced by heating (dippe)Ni(CO){sub 2}, biphenylene, and CO. Catalytic insertion of 2,6-xylylisocyanide into the strained C-C bond of biphenylene was also achieved by heating (dippe)Ni(2,6-xylylisocyanide){sub 2}, excess biphenylene, and 2,6-xylylisocyanide. Mechanistic schemes are proposed for these reactions.

  11. A PCR-free fluorescence strategy for detecting telomerase activity via double amplification strategy.

    PubMed

    Zhang, Xiafei; Cheng, Rui; Shi, Zhilu; Jin, Yan

    2016-01-15

    As a universal tumor biomarker, research on the activity and inhibition of telomerase is of great importance for cancer diagnosis and therapy. Although the telomeric repeat amplification protocol (TRAP) has served as a powerful assay for detecting telomerase activity, its application has been significantly limited by amplification related errors and time-consuming procedure. To address the limitations of PCR-based protocol, a dual amplification fluorescence assay was developed for PCR-free detecting telomerase activity. Briefly, we designed an arch-structure DNA probe to specifically control strand displacement reaction and subsequent enzyme-aided amplification. Telomerase substrate (TS) primer was extended by telomerase to form long elongation products which contain several TTAGGG repeat units. So, one elongation product can release more than one trigger DNA (t-DNA) via strand displacement reaction to realize first amplification. Subsequently, t-DNA specifically opened molecular beacon (MB) to restore the fluorescence of MB. Meanwhile, t-DNA was recycled by the aid of nicking endonuclease to continuously open more and more MBs, leading to a second amplification. Owing to the double amplification strategy, the proposed method allowed the measurement of telomerase activity in crude cell extracts equivalent to 5 HeLa cells and 10 CCRF-CEM cells without PCR amplification. Besides, the influence of telomere-binding ligands on the telomerase activity demonstrated that the proposed method holds the potential to evaluate the inhibition efficiency of telomerase inhibitors. PMID:26299822

  12. Comparison of ankle plantar flexor activity between double-leg heel raise and walking.

    PubMed

    Fujisawa, Hiroyuki; Suzuki, Hiroto; Nishiyama, Toru; Suzuki, Makoto

    2015-05-01

    [Purpose] We aimed to evaluate the difference in the muscle activity between the double-leg heel raise (DHR) and treadmill walking. [Subjects] Thirty healthy males aged 21.5 ± 1.6 years (body mass 63.6 ± 9.3 kg, height 171.0 ± 4.5 cm) participated in the study. [Methods] Electromyograms were simultaneously recorded from both heads of the gastrocnemius and the soleus of the right side during the DHR and treadmill walking. The DHR conditions were maximum plantar flexion (MPF), 3/4 MPF, 2/4 MPF, and 1/4 MPF, and the walking speeds were 20, 40, 60, 80, and 100 m/min. [Results] The muscle activity during the DHR and walking significantly increased with increments in the height of the heel raise and walking speed, respectively. Comparison of the muscle activity at MPF with that at each walking speed revealed that the muscle activity in the soleus and gastrocnemius medial head during walking exceeded that during the DHR in less than 3.3% of cases. [Conclusion] The DHR test is useful for evaluating the ankle plantar flexor activity necessary for walking. PMID:26157255

  13. Bond strength of Epiphany™ Sealer combined with different adhesive systems photo-activated with LED and QTH

    NASA Astrophysics Data System (ADS)

    Minto, A. M. P.; Bandéca, M. C.; Borges, A. H.; Nadalin, M. R.; Thomé, L. H. C.

    2009-08-01

    The Epiphany™ Sealer is a new dual-curing resin-based sealer and has been introduced as an alternative to gutta-percha and traditional root canal sealers. The canal filling is claimed to create a seal with the dentinal tubules within the root canal system producing a ‘monoblock’ effect between the sealer and dentinal tubules. Therefore, considering the possibility to incorporate the others adhesive systems, it is important to study the bond strength of the resulting cement. Forty-eight root mandibular canines were sectioned 8-mm below CEJ. The dentine discs were prepared using a tapered diamond bur and irrigated with 1% NaOCl and 17% EDTA. Previous the application Epiphany™ Sealer, the Epiphany™ Primer, AdheSE, and One Up Bond F were applied to the root canal walls. The LED and QTH (Quartz Tungsten Halogen) were used to photo-activation during 45 s with power density of 400 and 720 mW/cm2, respectively. The specimens were performed on a universal testing machine at a cross-head speed of 1 mm/min until bond failure occurred. The force was recorded and the debonding values were used to calculate Push-out bond strength. The analysis of variance (ANOVA) and Tukey’s post-hoc tests showed significant statistical differences ( P < 0.05) to Epiphany™ Sealer/Epiphany™ Primer/QTH and EpiphanyTM Sealer/AdheSE/QTH, which had the highest mean values of bond strength. The efficiency of resin-based filling materials are dependent the type of light curing unit used including the power density, the polymerization characteristics of these resin-based filling materials, depending on the primer/adhesive used.

  14. Double point modified analogs of vitamin d as potent activators of vitamin D receptor.

    PubMed

    Nadkarni, Sharmin; Chodynski, Michal; Corcoran, Aoife; Marcinkowska, Ewa; Brown, Geoffrey; Kutner, Andrzej

    2015-01-01

    Rational design, chemical synthesis, structural analysis, molecular modeling and biological evaluation are reviewed for all the double point modified vitamin D analogs that have been developed as potential therapeutics over the last several years. The idea of double modifications was based on the 3D structure of the ligand binding domain of the model of the vitamin D receptor. It was recently proved that structural modifications in the two remote parts of the vitamin D molecule might have additive biological effects resulting in an increased functional activity and lowered calcemic side effect. Recent in vivo experiments clearly demonstrated the potential use of these analogs in new therapeutic areas such as autoimmune and hyper-proliferative diseases, including cancer and the systemic treatment of psoriasis. Although some of these analogs are already approaching clinical trials, the molecular mechanism of action and their improved efficiency still remain to be fully understood. In this review the key steps of the convergent synthetic strategies that combine the modified A-ring and the CD-ring fragment carrying the altered side-chain are presented. The advantages of using the natural alicyclic and acyclic precursors are demonstrated as well as all the modern synthetic methodologies used for combining structural fragments. The results of molecular mechanics modeling are critically examined as well as the advantages and limitations of the use of the models of vitamin D proteins for the docking experiments and the design of new analogs. The potential use of advanced structural approaches, including high resolution X-ray crystallography, is discussed as to the prospect of providing a better understanding of the observed activity of modified analogs. Biological profiles in vitro and in vivo for groups of analogs are presented in a new tabular form to illustrate structure activity relationships. PMID:25483861

  15. Design, synthesis, and mode of action studies of a mitomycin tetramer inducing double activations with a single probe.

    PubMed

    Kim, Hyoung Rae; Park, Yeon Kyeong; Lee, Sang Hyup

    2016-09-15

    We report design, synthesis, and mechanistic studies of a new mitomycin tetramer 9 along with a new mitomycin dimer 10. Mitomycin 9 is a tetramer connected by the disulfide linker 11, and easily undergoes disulfide cleavage to provide two dimeric structures 9r that each contains a single thiol probe for activations. So, tetramer 9 as a precursor of 9r was specifically targeted to undergo double activations with a single probe. A tetramer 9 was synthesized using 1 and key intermediate 11, and a dimer 10 was synthesized from 1 and diamine 12. Activation studies revealed that 9 underwent effective double activations with a single probe by nucleophiles while the reference 10 did not. Evaluations of DNA ISC formations showed that 9 generated substantial levels of DNA ISC by nucleophilic activation while the references 10 and 2 did not. The effectiveness of 9 in activation and formation of DNA ISC per probe was verified by comparing with dimers 5-8 of double activations with two probes. These findings highlighted the role of a single thiol in 9r and demonstrated the intended double activations with a single probe, which marks the first case in mitomycin studies. PMID:27377862

  16. Foster Mother-Infant Bonding: Associations Between Foster Mothers’ Oxytocin Production, Electrophysiological Brain Activity, Feelings of Commitment, and Caregiving Quality

    PubMed Central

    Bick, Johanna; Dozier, Mary; Bernard, Kristin; Simons, Robert; Grasso, Damion

    2012-01-01

    This study examined the biological processes associated with foster mother-infant bonding. In an examination of foster mother-infant dyads (N = 41, mean infant age = 8.5 months), foster mothers’ oxytocin production was associated with their expressions of behavioral delight toward their foster infant and their average P3 response to images of all infant faces in the first two months of the relationship. Three months later, foster mothers’ oxytocin production was still associated with delight toward their foster infant and was also specifically associated with their P3 response to an image of their foster infant. Similar to biologically-related mothers and infants, oxytocin appears to be associated with foster mothers’ brain activity and caregiving behavior, with patterns suggestive of bond formation. PMID:23163703

  17. E-H (E = B, Si, Ge) bond activation of pinacolborane, silanes, and germanes by nucleophilic palladium carbene complexes.

    PubMed

    Comanescu, Cezar C; Iluc, Vlad M

    2016-07-12

    The reactivity of two nucleophilic palladium carbenes, [PC(sp(2))P]Pd(PMe3) and [PC(sp(2))P]Pd(PPh3), where [PC(sp(2))P] = bis[2-(di-iso-propylphosphino)phenyl]methylene, toward the E-H bond activation of Ph4-nEHn (E = Si, Ge; n = 1-3) and pinacolborane (HBpin) is discussed. Unlike previous reports, both types of isomer species, hydride [PC(EHn-1Ph4-n)P]PdH or [PC(Bpin)P]PdH and silyl/germyl [PC(H)P]Pd(EHn-1Ph4-n), were observed depending on the substrate and the phosphine ligand, showing that the polarity of the Pd-C bond can be tuned by the phosphine substituents. PMID:26830660

  18. Aniline hydrogenolysis on the Pt(111) single crystal surface: Mechanisms for C-N bond activation

    SciTech Connect

    Huang, S.X.; Gland, J.L.; Fischer, D.A. |

    1993-12-31

    Hydrogenolysis of C-N bond on transition metals is a crucial step in hydrodenitrogenation (HDN) reactions. Despite the overall complexity of HDN processes, the details of important surface reactions can be characterized using model reactions of organonitrogen compounds on single crystal model catalysts. The structure and reactivity of well characterized aniline monolayers on the Pt(111) surface both in vacuum and in the presence of hydrogen is discussed here. Adsorption and reactions of aniline were studied by Gland and Somorjai on the Pt(111) and Pt(100) surfaces, and more recently by Benziger`s group on the Ni(111) and Ni(100) surfaces. On both Pt and Ni surfaces, aniline {pi} bonds through the aromatic ring with its ring parallel to the substrate surface.

  19. Voice Activity Detection in Noisy Environments Based on Double-Combined Fourier Transform and Line Fitting

    PubMed Central

    Park, Jinsoo; Kim, Wooil; Han, David K.; Ko, Hanseok

    2014-01-01

    A new voice activity detector for noisy environments is proposed. In conventional algorithms, the endpoint of speech is found by applying an edge detection filter that finds the abrupt changing point in a feature domain. However, since the frame energy feature is unstable in noisy environments, it is difficult to accurately find the endpoint of speech. Therefore, a novel feature extraction algorithm based on the double-combined Fourier transform and envelope line fitting is proposed. It is combined with an edge detection filter for effective detection of endpoints. Effectiveness of the proposed algorithm is evaluated and compared to other VAD algorithms using two different databases, which are AURORA 2.0 database and SITEC database. Experimental results show that the proposed algorithm performs well under a variety of noisy conditions. PMID:25170520

  20. Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry.

    PubMed

    Tokudome, Yasuaki; Morimoto, Tsuyoshi; Tarutani, Naoki; Vaz, Pedro D; Nunes, Carla D; Prevot, Vanessa; Stenning, Gavin B G; Takahashi, Masahide

    2016-05-24

    Increasing attention has been dedicated to the development of nanomaterials rendering green and sustainable processes, which occur in benign aqueous reaction media. Herein, we demonstrate the synthesis of another family of green nanomaterials, layered double hydroxide (LDH) nanoclusters, which are concentrated (98.7 g/L in aqueous solvent), stably dispersed (transparent sol for >2 weeks), and catalytically active colloids of nano LDHs (isotropic shape with the size of 7.8 nm as determined by small-angle X-ray scattering). LDH nanoclusters are available as colloidal building blocks to give access to meso- and macroporous LDH materials. Proof-of-concept applications revealed that the LDH nanocluster works as a solid basic catalyst and is separable from solvents of catalytic reactions, confirming the nature of nanocatalysts. The present work closely investigates the unique physical and chemical features of this colloid, the formation mechanism, and the ability to act as basic nanocatalysts in benign aqueous reaction systems. PMID:27124717

  1. Preferential Repair of DNA Double-strand Break at the Active Gene in Vivo*

    PubMed Central

    Chaurasia, Priyasri; Sen, Rwik; Pandita, Tej K.; Bhaumik, Sukesh R.

    2012-01-01

    Previous studies have demonstrated transcription-coupled nucleotide/base excision repair. We report here for the first time that DNA double-strand break (DSB) repair is also coupled to transcription. We generated a yeast strain by introducing a homing (Ho) endonuclease cut site followed by a nucleotide sequence for multiple Myc epitopes at the 3′ end of the coding sequence of a highly active gene, ADH1. This yeast strain also contains the Ho cut site at the nearly silent or poorly active mating type α (MATα) locus and expresses Ho endonuclease under the galactose-inducible GAL1 promoter. Using this strain, DSBs were generated at the ADH1 and MATα loci in galactose-containing growth medium that induced HO expression. Subsequently, yeast cells were transferred to dextrose-containing growth medium to stop HO expression, and the DSB repair was monitored at the ADH1 and MATα loci by PCR, using the primer pairs flanking the Ho cut sites. Our results revealed a faster DSB repair at the highly active ADH1 than that at the nearly silent MATα locus, hence implicating a transcription-coupled DSB repair at the active gene in vivo. Subsequently, we extended this study to another gene, PHO5 (carrying the Ho cut site at its coding sequence), under transcriptionally active and inactive growth conditions. We found a fast DSB repair at the active PHO5 gene in comparison to its inactive state. Collectively, our results demonstrate a preferential DSB repair at the active gene, thus supporting transcription-coupled DSB repair in living cells. PMID:22910905

  2. Halogen-Bonding-Assisted Iodosylbenzene Activation by a Homogenous Iron Catalyst.

    PubMed

    de Sousa, David P; Wegeberg, Christina; Vad, Mads Sørensen; Mørup, Steen; Frandsen, Cathrine; Donald, William A; McKenzie, Christine J

    2016-03-01

    The iron(III) complex of hexadentate N,N,N'-tris(2-pyridylmethyl)ethylendiamine-N'-acetate (tpena(-) ) is a more effective homogenous catalyst for selective sulfoxidation and epoxidation with insoluble iodosylbenzene, [PhIO]n , compared with soluble methyl-morpholine-N-oxide (NMO). We propose that two molecules of [Fe(tpena)](2+) cooperate to solubilize PhIO, extracting two equivalents to form the halogen-bonded dimeric {[Fe(tpena)OIPh]2 }(4+) . The closest intradimeric I⋅⋅⋅O distance, 2.56 Å, is nearly 1 Å less than the sum of the van de Waals radii of these atoms. A correlation of the rates of the reaction of {[Fe(tpena)OIPh]2 }(4+) with para-substituted thioanisoles indicate that this species is a direct metal-based oxidant rather than a derived ferryl or perferryl complex. A study of gas-phase reactions indicate that an ion at m/z=231.06100 originates from solution-state {[Fe(tpena)OIPh]2 }(4+) and is ascribed to [Fe(III) (tpenaO)](2+) , derived from an intramolecular O atom insertion into an Fe-tpena donor bond. Proposed ion pairs, {[Fe(tpena)OIPh]Cl}(+) and {[Fe(tpena)OIPh]ClO4 }(+) , are more stable than native [Fe(tpena)OIPh](2+) ions, suggesting that halogen-bonding, as for the solution and solid states, operates also in the gas phase. PMID:26598789

  3. A unique quinolineboronic acid-based supramolecular structure that relies on double intermolecular B-N bonds for self-assembly in solid state and in solution.

    PubMed

    Zhang, Yanling; Li, Minyong; Chandrasekaran, Sekar; Gao, Xingming; Fang, Xikui; Lee, Hsiau-Wei; Hardcastle, Kenneth; Yang, Jenny; Wang, Binghe

    2007-04-16

    The boronic acid functional group plays very important roles in sugar recognition, catalysis, organic synthesis, and supramolecular assembly. Therefore, understanding the unique properties of this functional group is very important. 8-Quinolineboronic acid (8-QBA) is found to be capable of self-assembling in solid state through a unique intermolecular B-N bond mechanism reinforced by intermolecular boronic anhydride formation, π-π stacking, and hydrogen bond formation. NMR NOE and diffusion studies indicate that intermolecular B-N interaction also exists in solution with 8-QBA. In contrast, a positional isomer of 8-QBA, 5-quinolineboronic acid (5-QBA) showed very different behaviors in crystal packing and in solution and therefore different supramolecular network. Understanding the structural features of this unique 8-QBA assembly could be very helpful for the future design of new sugar sensors, molecular catalysts, and supramolecular assemblies. PMID:18414645

  4. A unique quinolineboronic acid-based supramolecular structure that relies on double intermolecular B-N bonds for self-assembly in solid state and in solution

    PubMed Central

    Zhang, Yanling; Li, Minyong; Chandrasekaran, Sekar; Gao, Xingming; Fang, Xikui; Lee, Hsiau-Wei; Hardcastle, Kenneth; Yang, Jenny; Wang, Binghe

    2007-01-01

    The boronic acid functional group plays very important roles in sugar recognition, catalysis, organic synthesis, and supramolecular assembly. Therefore, understanding the unique properties of this functional group is very important. 8-Quinolineboronic acid (8-QBA) is found to be capable of self-assembling in solid state through a unique intermolecular B-N bond mechanism reinforced by intermolecular boronic anhydride formation, π-π stacking, and hydrogen bond formation. NMR NOE and diffusion studies indicate that intermolecular B-N interaction also exists in solution with 8-QBA. In contrast, a positional isomer of 8-QBA, 5-quinolineboronic acid (5-QBA) showed very different behaviors in crystal packing and in solution and therefore different supramolecular network. Understanding the structural features of this unique 8-QBA assembly could be very helpful for the future design of new sugar sensors, molecular catalysts, and supramolecular assemblies. PMID:18414645

  5. Transition metal activation and functionalization of carbon-hydrogen bonds. Progress report, December 1, 1989--November 30, 1992

    SciTech Connect

    Jones, W.D.

    1992-06-01

    We are investigating the fundamental thermodynamic and kinetic factors that influence carbon-hydrogen bond activation at homogeneous transition metal centers and the conversion of hydrocarbons into functionalized products of potential use to the chemical industry. Advances have been made in both understanding the interactions of hydrocarbons with metals and in the functionalization of hydrocarbons. We have found that RhCl(PR{sub 3}){sub 2}(CNR) complexes can catalyze the insertion of isonitriles into the C-H bonds or arenes upon photolysis. The mechanism of these reactions was found to proceed by way of initial phosphine dissociation, followed by C-H activation and isonitrile insertion. We have also examined reactions of a series of arenes with (C{sub 5}Me{sub 5})Rh(PMe{sub 3})PhH and begun to map out the kinetic and thermodynamic preferences for arene coordination. The effects of resonance, specifically the differences in the Hueckel energies of the bound vs free ligand, are now believed to fully control the C-H activation/{eta}{sup 2}-coordination equilibria. We have begun to examine the reactions of rhodium isonitrile pyrazolylborates for alkane and arene C-H bond activation. A new, labile, carbodiimide precursor has been developed for these studies. We have completed studies of the reactions of (C{sub 5}Me{sub 5})Rh(PMe{sub 3})H{sub 2} with D{sub 2} and PMe{sub 3} that indicate that both {eta}{sup 5} {yields} {eta}{sup 3} ring slippage and metal to ring hydride migration occur more facilely than thermal reductive elimination of H{sub 2}. We have examined the reactions of heterocycles with (C{sub 5}Me{sub 5})Rh(PMe{sub 3})PhH and found that pyrrole and furan undergo C-H or N-H activation. Thiophene, however, undergoes C-S bond oxidative addition, and the mechanism of activation has been shown to proceed through sulfur coordination prior to C-S insertion.

  6. Chemistry of zerumbone. 2. Regulation of ring bond cleavage and unique antibacterial activities of zerumbone derivatives.

    PubMed

    Kitayama, T; Yamamoto, K; Utsumi, R; Takatani, M; Hill, R K; Kawai, Y; Sawada, S; Okamoto, T

    2001-10-01

    Further investigation of the chemistry of the eleven-membered cyclic sesquiterpene, zerumbone, the major component of the wild ginger, Zingiber zerumbet Smith, has revealed a new selective epoxidation process, a further example of a novel Favorskii-initiated double ring contraction, and a regiospecific fragmentation of zerumbone dibromide derivatives. Several zerumbone derivatives were found to be selective inhibitors of the growth of gram-positive bacteria. PMID:11758909

  7. C-H bond activation enables the rapid construction and late-stage diversification of functional molecules

    NASA Astrophysics Data System (ADS)

    Wencel-Delord, Joanna; Glorius, Frank

    2013-05-01

    The beginning of the twenty-first century has witnessed significant advances in the field of C-H bond activation, and this transformation is now an established piece in the synthetic chemists' toolbox. This methodology has the potential to be used in many different areas of chemistry, for example it provides a perfect opportunity for the late-stage diversification of various kinds of organic scaffolds, ranging from relatively small molecules like drug candidates, to complex polydisperse organic compounds such as polymers. In this way, C-H activation approaches enable relatively straightforward access to a plethora of analogues or can help to streamline the lead-optimization phase. Furthermore, synthetic pathways for the construction of complex organic materials can now be designed that are more atom- and step-economical than previous methods and, in some cases, can be based on synthetic disconnections that are just not possible without C-H activation. This Perspective highlights the potential of metal-catalysed C-H bond activation reactions, which now extend beyond the field of traditional synthetic organic chemistry.

  8. Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle

    PubMed Central

    Lee, Daeun; Choi, Hyemin; Kim, Ha Hyung; Kim, Ho; Hwang, Jae Sam; Lee, Dong Gun; Kim, Jae Il

    2014-01-01

    Defensins, which are small cationic molecules produced by organisms as part of their innate immune response, share a common structural scaffold that is stabilized by three disulfide bridges. Coprisin is a 43-amino acid defensin-like peptide from Copris tripartitus. Here, we report the intramolecular disulfide connectivity of cysteine-rich coprisin, and show that it is the same as in other insect defensins. The disulfide bond pairings of coprisin were determined by combining the enzymatic cleavage and mass analysis. We found that the loss of any single disulfide bond in coprisin eliminated all antibacterial, but not antifungal, activity. Circular dichroism (CD) analysis showed that two disulfide bonds, Cys20-Cys39 and Cys24-Cys41, stabilize coprisin’s α-helical region. Moreover, a BLAST search against UniProtKB database revealed that coprisin’s α-helical region is highly homologous to those of other insect defensins. [BMB Reports 2014; 47(11): 625-630] PMID:24393527

  9. Transition metal activation and functionalization of carbon-hydrogen bonds: Progress report, December 1, 1988--November 30, 1989

    SciTech Connect

    Jones, W.D.

    1989-06-01

    This project is directed toward the continued investigation of the fundamental thermodynamic and kinetic factors that influence carbon-hydrogen bond activation at homogeneous transition metal centers. The project is also directed toward the conversion of hydrocarbons into functionalized products of potential use to chemical industry. Our goals during the grant period will be (1) to identify new transition metal complexes capable of activating arene and alkane C-H bonds, (2) to quantitatively evaluate the kinetic and thermodynamic stability of these complexes, and (3) to examine routes for functionalization of the activated hydrocarbons. These studies will also contribute toward the formulation of a unified theory of C-H bond activation that applies to other transition metal complexes. The specific complexes involved in these studies are derivatives of the formulation (C/sub 5/Me/sub 5/)Rh(PR/sub 3/)(R)H, Fe(PMe/sub 3/)/sub 2/(CNR)/sub 3/, Ru(PR/sub 3/)/sub 4/(R)H, and Rh(CNR)/sub 3/H. Functionalization will focus upon isocyanide and acetylene insertion reactions. New compounds that activate hydrocarbon C-H bonds include HRe(PR/sub 3/)/sub 5/, HRe(PR/sub 3/)/sub 2/(CNR)/sub 3/, CpRe(PR/sub 3/)H/sub 4/, CpRe(PR/sub 3/)/sub 2/H/sub 2/, (/eta//sup 6/-C/sub 6/H/sub 6/)Re(PPh/sub 3/)/sub 2/H, and MnH/sub 3/(dmpe)/sub 2/. In the third year of this project, significant advances have been made in the observation of /eta//sup 2/-arene complexes of ((C/sub 5/Me/sub 5/)Rh(PMe/sub 3/)). The complex (C/sub 5/Me/sub 5/)Rh(PMe/sub 3/)(/eta//sup 2/-phenanthrene) has been structurally characterized. Several other /eta//sup 2/-complexes have also been prepared. 17 refs., 4 tabs.

  10. Bonding thermoplastic polymers

    DOEpatents

    Wallow, Thomas I.; Hunter, Marion C.; Krafcik, Karen Lee; Morales, Alfredo M.; Simmons, Blake A.; Domeier, Linda A.

    2008-06-24

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  11. A Highly Reactive Mononuclear Non-Heme Manganese(IV)-Oxo Complex That Can Activate the Strong C-H Bonds of Alkanes

    SciTech Connect

    Wu, Xiujuan; Seo, Mi Sook; Davis, Katherine M; Lee, Yong-Min; Chen, Junying; Cho, Kyung-Bin; Pushkar, Yulia N; Nam, Wonwoo

    2012-03-15

    A mononuclear non-heme manganese(IV)-oxo complex has been synthesized and characterized using various spectroscopic methods. The Mn(IV)-oxo complex shows high reactivity in oxidation reactions, such as C-H bond activation, oxidations of olefins, alcohols, sulfides, and aromatic compounds, and N-dealkylation. In C-H bond activation, the Mn(IV)-oxo complex can activate C-H bonds as strong as those in cyclohexane. It is proposed that C-H bond activation by the non-heme Mn(IV)-oxo complex does not occur via an oxygen-rebound mechanism. The electrophilic character of the non-heme Mn(IV)-oxo complex is demonstrated by a large negative ρ value of ~4.4 in the oxidation of para-substituted thioanisoles.

  12. Computational study on the mechanism and selectivity of C-H bond activation and dehydrogenative functionalization in the synthesis of rhazinilam.

    PubMed

    Ellis, Corey S; Ess, Daniel H

    2011-09-01

    The key platinum mediated C-H bond activation and functionalization steps in the synthesis of (-)-rhazinilam (Johnson, J. A.; Li, N.; Sames, D. J. Am. Chem. Soc. 2002, 124, 6900) were investigated using the M06 and B3LYP density functional approximation methods. This computational study reveals that ethyl group dehydrogenation begins with activation of a primary C-H bond in preference to a secondary C-H bond in an insertion/methane elimination pathway. The C-H activation step is found to be reversible while the methane elimination (reductive elimination) transition state controls rate and diastereoselectivity. The chiral oxazolinyl ligand induces ethyl group selectivity through stabilizing weak interactions between its phenyl group (or cyclohexyl group) and the carboxylate group. After C-H activation and methane elimination steps, Pt-C bond functionalization occurs through β-hydride elimination to give the alkene platinum hydride complex. PMID:21812492

  13. MDA-5 activation by cytoplasmic double-stranded RNA impairs endothelial function and aggravates atherosclerosis.

    PubMed

    Asdonk, Tobias; Steinmetz, Martin; Krogmann, Alexander; Ströcker, Christine; Lahrmann, Catharina; Motz, Inga; Paul-Krahe, Kathrin; Flender, Anna; Schmitz, Theresa; Barchet, Winfried; Hartmann, Gunther; Nickenig, Georg; Zimmer, Sebastian

    2016-09-01

    Recent studies have highlighted the relevance of viral nucleic acid immunorecognition by pattern recognition receptors in atherogenesis. Melanoma differentiation associated gene 5 (MDA-5) belongs to the intracellular retinoic acid inducible gene-I like receptors and its activation promotes pro-inflammatory mechanisms. Here, we studied the effect of MDA-5 stimulation in vascular biology. To gain insights into MDA-5 dependent effects on endothelial function, cultured human coronary artery endothelial cells (HCAEC) were transfected with the synthetic MDA-5 agonist polyIC (long double-stranded RNA). Human coronary endothelial cell expressed MDA-5 and reacted with receptor up-regulation upon stimulation. Reactive oxygen species formation, apoptosis and the release of pro-inflammatory cytokines was enhanced, whereas migration was significantly reduced in response to MDA-5 stimulation. To test these effects in vivo, wild-type mice were transfected with 32.5 μg polyIC/JetPEI or polyA/JetPEI as control every other day for 7 days. In polyIC-treated wild-type mice, endothelium-dependent vasodilation and re-endothelialization was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticles and circulating endothelial progenitor cells significantly elevated compared to controls. Importantly, these effects could be abrogated by MDA-5 deficiency in vivo. Finally, chronic MDA-5 stimulation in Apolipoprotein E/toll-like receptor 3 (TLR3) double(-) deficient (ApoE(-/-) /TLR3(-/-) ) mice-enhanced atherosclerotic plaque formation. This study demonstrates that MDA-5 stimulation leads to endothelial dysfunction, and has the potential to aggravate atherosclerotic plaque burden in murine atherosclerosis. Thus, the spectrum of relevant innate immune receptors in vascular diseases and atherogenesis might not be restricted to TLRs but also encompasses the group of RLRs including MDA-5. PMID:27130701

  14. Activation of Si-Si Bonds for Copper(I)-Catalyzed Conjugate Silylation.

    PubMed

    Iannazzo, Laura; Molander, Gary A

    2012-09-01

    Several alkyl- and vinylsilanes were prepared through the copper(I)-catalyzed conjugate silylation of α,β-unsaturated compounds. Optimal reaction conditions were first investigated to realize the conjugate addition of a nucleophilic silicon species to poorly electrophilic acceptors such as phenylvinyl sulfone by cleavage of the Si-Si bond of a disilane reagent. The scope of this reaction was extended to various electrophiles bearing different electron-withdrawing groups and afforded the desired substituted alkyl- and vinylsilanes. Among the wide range of commercially available disilanes, the reactivities of alkyl-, aryl-, and ethoxydisilane were also examined. PMID:23204924

  15. Activation of Si–Si Bonds for Copper(I)-Catalyzed Conjugate Silylation

    PubMed Central

    Iannazzo, Laura; Molander, Gary A.

    2012-01-01

    Several alkyl- and vinylsilanes were prepared through the copper(I)-catalyzed conjugate silylation of α,β-unsaturated compounds. Optimal reaction conditions were first investigated to realize the conjugate addition of a nucleophilic silicon species to poorly electrophilic acceptors such as phenylvinyl sulfone by cleavage of the Si–Si bond of a disilane reagent. The scope of this reaction was extended to various electrophiles bearing different electron-withdrawing groups and afforded the desired substituted alkyl- and vinylsilanes. Among the wide range of commercially available disilanes, the reactivities of alkyl-, aryl-, and ethoxydisilane were also examined. PMID:23204924

  16. Double plasmonic profile of tryptophan-silver nano-crystals—Temperature sensing and laser induced antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Roy, Sarita; Basak, Soumen; Ray, Pulak; Dasgupta, Anjan Kr.

    2012-10-01

    Surface plasmon resonance (SPR) for spherical shaped silver nanoparticles showing double maxima at ∼390 nm and ∼520 nm respectively is reported. Self assembly of silver nanoparticles grown on tryptophan template leads to emergence of equal intensity double plasmon resonance (EIDPR). While for rod shaped nano-forms such double plasmon is explainable but for spherical shaped forms, such double plasmon can be explained on the basis of bidirectional formation of silver cluster in which attachment of silver at two nitrogen atom locations of tryptophan molecule seems to be obligatory. The absence of double resonance in case of silver nanoclusters formed with other amino acids or N-acetyl L-tryptophanamide (NATA), where bidirectional sbnd NH2 attachment is not possible, validates the proposed EIDPR mechanism. Electron micrograph of EIDPR particle indicates a bi-periodic fringe pattern indicating unusual crystalline property. Apart from sensing tryptophan, the double plasmon peaks are sensitive to temperature. Furthermore, the particle can be used as a smart killing agent showing bactericidal activity only upon exposure to low power laser.

  17. General and facile method for exo-methlyene synthesis via regioselective C-C double-bond formation using a copper-amine catalyst system.

    PubMed

    Nishikata, Takashi; Nakamura, Kimiaki; Itonaga, Kohei; Ishikawa, Shingo

    2014-11-01

    In this study, for distal-selective β-hydride elimination to produce exomethylene compounds with a newly formed Csp(3)-Csp(3) bond between tertiary alkyl halides and α-alkylated styrenes, a combination of a Cu(I) salt and a pyridine-based amine ligand (TPMA) is found to be a very efficient catalyst system. The yields and regioselectivities were high, and the regioselectivity was found to be dependent on the structure of the alkyl halide, with bulky alkyl halides showing the highest distal selectivities. PMID:25315319

  18. Recent Progress in Visible-Light Photoredox-Catalyzed Intermolecular 1,2-Difunctionalization of Double Bonds via an ATRA-Type Mechanism.

    PubMed

    Courant, Thibaut; Masson, Géraldine

    2016-08-19

    Radical difunctionalizations of alkenes constitute an efficient method for the construction of complex organic molecules. This synopsis focuses on visible-light catalysis, a recent and very promising technological refinement of this class of transformations. Examples taken from the literature illustrate the use of a variety of (metallic or nonmetallic) systems, which allow us to leverage the energy of readily available visible-light radiation to efficiently create some of the most commonly looked for types of bonds (C-X, C-O, C-N, and C-C) under mild conditions and starting from unsaturated substrates. PMID:27323289

  19. Dehydrogenative Coupling Reactions with Oxidized Guanidino-Functionalized Aromatic Compounds: Novel Options for σ-Bond Activation.

    PubMed

    Wild, Ute; Federle, Stefanie; Wagner, Arne; Kaifer, Elisabeth; Himmel, Hans-Jörg

    2016-08-16

    We present a new option for metal-free σ-bond activation, making use of oxidized, guanidino-functionalized aromatic compounds (GFAs). We demonstrate this new option by the homocoupling reactions of thiols and phosphines. The kinetics and the reaction pathway were studied by a number of experiments (including heterocoupling of thiols and phosphines), supported by quantum-chemical computations. Reaction of the oxidized GFA with p-dihydrobenzoquinone to give p-benzoquinone shows that typical proton-coupled electron-transfer reactions are also possible. PMID:27430589

  20. A SEARCH FOR BINARY ACTIVE GALACTIC NUCLEI: DOUBLE-PEAKED [O III] AGNs IN THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Smith, K. L.; Shields, G. A.; McMullen, C. C.; Salviander, S.; Bonning, E. W.; Rosario, D. J. E-mail: shields@astro.as.utexas.ed E-mail: erin.bonning@yale.ed

    2010-06-10

    We present active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS) having double-peaked profiles of [O III]{lambda}{lambda}5007, 4959 and other narrow emission lines, motivated by the prospect of finding candidate binary AGNs. These objects were identified by means of a visual examination of 21,592 quasars at z < 0.7 in SDSS Data Release 7 (DR7). Of the spectra with adequate signal-to-noise, 148 spectra exhibit a double-peaked [O III] profile. Of these, 86 are Type 1 AGNs and 62 are Type 2 AGNs. Only two give the appearance of possibly being optically resolved double AGNs in the SDSS images, but many show close companions or signs of recent interaction. Radio-detected quasars are three times more likely to exhibit a double-peaked [O III] profile than quasars with no detected radio flux, suggesting a role for jet interactions in producing the double-peaked profiles. Of the 66 broad-line (Type 1) AGNs that are undetected in the FIRST survey, 0.9% show double-peaked [O III] profiles. We discuss statistical tests of the nature of the double-peaked objects. Further study is needed to determine which of them are binary AGNs rather than disturbed narrow line regions, and how many additional binaries may remain undetected because of insufficient line-of-sight velocity splitting. Previous studies indicate that 0.1% of SDSS quasars are spatially resolved binaries, with typical spacings of {approx}10-100 kpc. If a substantial fraction of the double-peaked objects are indeed binaries, then our results imply that binaries occur more frequently at smaller separations (<10 kpc). This suggests that simultaneous fueling of both black holes is more common as the binary orbit decays through these spacings.

  1. The significance of disulfide bonding in biological activity of HB-EGF, a mutagenesis approach

    SciTech Connect

    Hoskins, J.T.; Zhou, Z.; Harding, P.A.

    2008-10-31

    A site-directed mutagenesis approach was taken to disrupt each of 3 disulfide bonds within human HB-EGF by substituting serine for both cysteine residues that contribute to disulfide bonding. Each HB-EGF disulfide analogue (HB-EGF-Cys/Ser{sub 108/121}, HB-EGF-Cys/Ser{sub 116/132}, and HB-EGF-Cys/Ser{sub 134/143}) was cloned under the regulation of the mouse metallothionein (MT) promoter and stably expressed in mouse fibroblasts. HB-EGF immunoreactive proteins with M{sub r} of 6.5, 21 and 24 kDa were observed from lysates of HB-EGF and each HB-EGF disulfide analogue. HB-EGF immunohistochemical analyses of each HB-EGF stable cell line demonstrated ubiquitous protein expression except HB-EGF-Cys/Ser{sub 108/121} and HB-EGF-Cys/Ser{sub 116/132} stable cell lines which exhibited accumulated expression immediately outside the nucleus. rHB-EGF, HB-EGF, and HB-EGF{sub 134/143} proteins competed with {sup 125}I-EGF in an A431 competitive binding assay, whereas HB-EGF-Cys/Ser{sub 108/121} and HB-EGF-Cys/Ser{sub 116/132} failed to compete. Each HB-EGF disulfide analogue lacked the ability to stimulate tyrosine phosphorylation of the 170 kDa EGFR. These results suggest that HB-EGF-Cys/Ser{sub 134/143} antagonizes EGFRs.

  2. Analysis and Simple Circuit Design of Double Differential EMG Active Electrode.

    PubMed

    Guerrero, Federico Nicolás; Spinelli, Enrique Mario; Haberman, Marcelo Alejandro

    2016-06-01

    In this paper we present an analysis of the voltage amplifier needed for double differential (DD) sEMG measurements and a novel, very simple circuit for implementing DD active electrodes. The three-input amplifier that standalone DD active electrodes require is inherently different from a differential amplifier, and general knowledge about its design is scarce in the literature. First, the figures of merit of the amplifier are defined through a decomposition of its input signal into three orthogonal modes. This analysis reveals a mode containing EMG crosstalk components that the DD electrode should reject. Then, the effect of finite input impedance is analyzed. Because there are three terminals, minimum bounds for interference rejection ratios due to electrode and input impedance unbalances with two degrees of freedom are obtained. Finally, a novel circuit design is presented, including only a quadruple operational amplifier and a few passive components. This design is nearly as simple as the branched electrode and much simpler than the three instrumentation amplifier design, while providing robust EMG crosstalk rejection and better input impedance using unity gain buffers for each electrode input. The interference rejection limits of this input stage are analyzed. An easily replicable implementation of the proposed circuit is described, together with a parameter design guideline to adjust it to specific needs. The electrode is compared with the established alternatives, and sample sEMG signals are obtained, acquired on different body locations with dry contacts, successfully rejecting interference sources. PMID:26841414

  3. CpG oligodeoxynucleotides with double stem-loops show strong immunostimulatory activity.

    PubMed

    Yang, Liang; Wu, Xiuli; Wan, Min; Yu, Yue; Yu, Yongli; Wang, Liying

    2013-01-01

    Based on the current understanding of TLR9 recognition of CpG ODN, we have tried to design a series of CpG ODNs that display double stem-loops when being analyzed for their secondary structures using 'mfold web server'. Proliferation of human PBMC and bioassay for IFN production were used as technical platforms in primary screening. Interestingly, two of them, designated as DSL01 and D-SL03, belonging to B class CpG ODN and C class CpG ODN respectively, showed vigorous immunostimulatory activity and were chosen for further tests. Flow cytometry analysis showed that both of them could activate human B cells, NK cells, mononuclear cells and T cells and up-regulate expression of CD80, CD86 and HLA-DR on the surface of subsets in human PBMCs. Furthermore, we demonstrated that those two ODNs potently stimulated proliferation of PBMC/splenocytes obtained from diverse vertebrate species. Noticeably, both of them displayed anti-breast cancer effect in mice when administered by peritumoral injection. PMID:23142503

  4. An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder

    SciTech Connect

    Osaka, Tetsuya, Liu, X.; Nojima, Masashi; Momma, Toshiyuki

    1999-05-01

    An electric double layer capacitor (EDLC) was prepared with an activated carbon powder electrode with poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based gel electrolyte. Ethylene carbonate (EC) and propylene carbonate (PC) were used as plasticizer and tetraethylammonium tetrafluoroborate (TEABF{sub 4}) was used as the supporting electrolyte. An optimized gel electrolyte of PVdF-HFP/PC/EC/TEABF{sub 4} - 23/31/35/11 mass ratio exhibited high ionic conductivity of 5 {times} 10{sup {minus}3} S/cm, high electrode capacitance, and good mechanical strength. An electrode consisting of activated carbon (AC) with the gel electrolyte as the binder (AC/PVdF-HFP based gel, 7/3 mass ratio) showed a higher specific capacitance and a lower ion diffusion resistance within the electrode than a carbon electrode, prepared with PVdF-HFP binder without plasticizer. This suggests that an electrode mixed with the gel electrolyte has a lower ion diffusion resistance inside the electrode. The highest specific capacitance of 123 F/g was achieved with an electrode containing AC with a specific surface area of 2500 m{sup 2}/g. A coin-type EDLC cell with optimized components showed excellent cycleability exceeding 10{sup 4} cycles with ca. 100% coulombic efficiency achieved when charging and discharging was repeated between 1.0 and 2.5 V at 1.66 mA/cm{sup 2}.

  5. The MRE11 GAR motif regulates DNA double-strand break processing and ATR activation

    PubMed Central

    Yu, Zhenbao; Vogel, Gillian; Coulombe, Yan; Dubeau, Danielle; Spehalski, Elizabeth; Hébert, Josée; Ferguson, David O; Masson, Jean Yves; Richard, Stéphane

    2012-01-01

    The MRE11/RAD50/NBS1 complex is the primary sensor rapidly recruited to DNA double-strand breaks (DSBs). MRE11 is known to be arginine methylated by PRMT1 within its glycine-arginine-rich (GAR) motif. In this study, we report a mouse knock-in allele of Mre11 that substitutes the arginines with lysines in the GAR motif and generates the MRE11RK protein devoid of methylated arginines. The Mre11RK/RK mice were hypersensitive to γ-irradiation (IR) and the cells from these mice displayed cell cycle checkpoint defects and chromosome instability. Moreover, the Mre11RK/RK MEFs exhibited ATR/CHK1 signaling defects and impairment in the recruitment of RPA and RAD51 to the damaged sites. The MRKRN complex formed and localized to the sites of DNA damage and normally activated the ATM pathway in response to IR. The MRKRN complex exhibited exonuclease and DNA-binding defects in vitro responsible for the impaired DNA end resection and ATR activation observed in vivo in response to IR. Our findings provide genetic evidence for the critical role of the MRE11 GAR motif in DSB repair, and demonstrate a mechanistic link between post-translational modifications at the MRE11 GAR motif and DSB processing, as well as the ATR/CHK1 checkpoint signaling. PMID:21826105

  6. Simple Bond Cleavage

    SciTech Connect

    Gary S. Groenewold

    2005-08-01

    Simple bond cleavage is a class of fragmentation reactions in which a single bond is broken, without formation of new bonds between previously unconnected atoms. Because no bond making is involved, simple bond cleavages are endothermic, and activation energies are generally higher than for rearrangement eliminations. The rate of simple bond cleavage reactions is a strong function of the internal energy of the molecular ion, which reflects a loose transition state that resembles reaction products, and has a high density of accessible states. For this reason, simple bond cleavages tend to dominate fragmentation reactions for highly energized molecular ions. Simple bond cleavages have negligible reverse activation energy, and hence they are used as valuable probes of ion thermochemistry, since the energy dependence of the reactions can be related to the bond energy. In organic mass spectrometry, simple bond cleavages of odd electron ions can be either homolytic or heterolytic, depending on whether the fragmentation is driven by the radical site or the charge site. Simple bond cleavages of even electron ions tend to be heterolytic, producing even electron product ions and neutrals.

  7. Rationale of the effects from dopants on C-H bond activation for sp2 hybridized nanostructured carbon catalysts

    NASA Astrophysics Data System (ADS)

    Mao, Shanjun; Sun, Xiaoying; Li, Bo; Su, Dang Sheng

    2015-10-01

    Doping has become an effective way to tune the catalytic properties of nanostructured carbon catalysts. Taking C-H activation as an example, first-principles calculations propose that the relative energy level and the BEP rule might be applicable to explain the observed doping effects. Moreover, boron doping is proposed as an effective way to enhance the catalytic performance.Doping has become an effective way to tune the catalytic properties of nanostructured carbon catalysts. Taking C-H activation as an example, first-principles calculations propose that the relative energy level and the BEP rule might be applicable to explain the observed doping effects. Moreover, boron doping is proposed as an effective way to enhance the catalytic performance. Electronic supplementary information (ESI) available: The computational setup, the doping positions for B, N and S doping, the definition of the binding energy and dissociation energy for C2H5 and C2H6 respectively, the transition state and dissociation state structures for the C-H bond activation of C2H6 in the undoped case, and the lengths of the C-H bond of C2H6 at the transition states for both the undoped and doped cases. See DOI: 10.1039/c5nr05759k

  8. Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: 4β-S-aromatic heterocyclic podophyllum derivatives display antitumor activity

    PubMed Central

    Li, Jian-Long; Zhao, Wei; Zhou, Chen; Zhang, Ya-Xuan; Li, Hong-Mei; Tang, Ya-Ling; Liang, Xin-Hua; Chen, Tao; Tang, Ya-Jie

    2015-01-01

    Herein is a first effort to systematically study the significance of carbon-sulfur (C-S) and carbon-amine (C-NH) bonds on the antitumor proliferation activity of podophyllum derivatives and their precise mechanism of apoptosis. Compared with the derivative modified by a C-NH bond, the derivative modified by a C-S bond exhibited superior antitumor activity, the inhibition activity of target proteins tubulin or Topo II, cell cycle arrest, and apoptosis induction. Antitumor mechanistic studies showed that the death receptor and the mitochondrial apoptotic pathways were simultaneously activated by the C-S bond modified aromatic heterocyclic podophyllum derivatives with a higher cellular uptake percentage of 60–90% and induction of a higher level of reactive oxygen species (ROS). Only the mitochondrial apoptotic pathway was activated by the C-NH bond modified aromatic heterocyclic podophyllum derivatives, with a lower cellular uptake percentage of 40–50%. This study provided insight into effects of the C-S and C-NH bond modification on the improvement of the antitumor activity of Podophyllum derivatives. PMID:26443888

  9. Effect of active hydroxyl groups on the interfacial bond strength of titanium with segmented polyurethane through gamma-mercapto propyl trimethoxysilane.

    PubMed

    Sakamoto, Harumi; Hirohashi, Yohei; Saito, Haruka; Doi, Hisashi; Tsutsumi, Yusuke; Suzuki, Yoshiaki; Noda, Kazuhiko; Hanawa, Takao

    2008-01-01

    The objective of this study was to investigate the effect of active hydroxyl groups on a titanium (Ti) surface on the bond strength between Ti and segmented polyurethane (SPU) composite through gamma-mercapto propyl trimethoxysilane (gamma-MPS). Active hydroxyl groups on Ti surface oxide were controlled by immersion in hydrogen peroxide (H2O2) with different lengths of immersion time, and the resulting concentrations of active hydroxyl groups were evaluated using a zinc-complex substitution technique. For the H2O2-treated Ti, it was characterized using X-ray photoelectron spectroscopy and scanning electron spectroscopy. For the bond strength of Ti/ gamma-MPS/SPU interface, it was determined using a shear bond test. Results showed that the bond strength increased with increase in the concentration of active hydroxyl groups. In terms of durability after immersion in water at 310 K for 30 days, it was found that bond strength was improved with increase in active hydroxyl groups. Based on the results obtained, active hydroxyl groups on the surface oxide film were clearly one of the causes governing the interfacial bond strength. PMID:18309616

  10. Switching Bonds in a DNA Gel: An All-DNA Vitrimer

    NASA Astrophysics Data System (ADS)

    Romano, Flavio; Sciortino, Francesco

    2015-02-01

    We design an all-DNA system that behaves like vitrimers, innovative plastics with self-healing and stress-releasing properties. The DNA sequences are engineered to self-assemble first into tetra- and bifunctional units which, upon further cooling, bind to each other forming a fully bonded network gel. An innovative design of the binding regions of the DNA sequences, exploiting a double toehold-mediated strand displacement, generates a network gel which is able to reshuffle its bonds, retaining at all times full bonding. As in vitrimers, the rate of bond switching can be controlled via a thermally activated catalyst, which in the present design is very short DNA strands.

  11. Colochiroside E, an Unusual Non-holostane Triterpene Sulfated Trioside from the Sea Cucumber Colochirus robustus and Evidence of the Impossibility of a 7(8)-Double Bond Migration in Lanostane Derivatives having an 18(16)-Lactone.

    PubMed

    Silchenko, Alexandra S; Kalinovsky, Anatoly I; Avilov, Sergey A; Andryjaschenko, Pelageya V; Dmitrenok, Pavel S; Yurchenko, Ekaterina A; Dolmatov, Igor Yu; Dautov, Salim Sh; Stonik, Valentin A; Kalinin, Vladimir I

    2016-06-01

    The unusual non-holostane triterpene glycoside, colochiroside E (1) was isolated from the sea cucumber Colochirus robustus (Cucumariidae, Dendrochirotida). The structure of 1 was established by analysis of 1D, 2D NMR and HRESI MS data. Colochiroside E (1) belongs to a rare group of glycosylated 9β-H-lanosta-18(16)-lactones and has an unprecedented sulfated trisaccharide carbohydrate chain consisting of two glucose and one xylose units. In contrast with (9β-H)-7(8)-unsaturated holostane glycosides, the 7(8)-double bond in the having (9β-H)-configuration aglycone of colochiroside E is not capable of migration into the 8(9)- and then into the 9(11)-position on treatment with HCl. The formation of a chlorine derivative of 1 was observed under these conditions. PMID:27534106

  12. Biomass Oxidation: Formyl C-H Bond Activation by the Surface Lattice Oxygen of Regenerative CuO Nanoleaves.

    PubMed

    Amaniampong, Prince N; Trinh, Quang Thang; Wang, Bo; Borgna, Armando; Yang, Yanhui; Mushrif, Samir H

    2015-07-27

    An integrated experimental and computational investigation reveals that surface lattice oxygen of copper oxide (CuO) nanoleaves activates the formyl C-H bond in glucose and incorporates itself into the glucose molecule to oxidize it to gluconic acid. The reduced CuO catalyst regains its structure, morphology, and activity upon reoxidation. The activity of lattice oxygen is shown to be superior to that of the chemisorbed oxygen on the metal surface and the hydrogen abstraction ability of the catalyst is correlated with the adsorption energy. Based on the present investigation, it is suggested that surface lattice oxygen is critical for the oxidation of glucose to gluconic acid, without further breaking down the glucose molecule into smaller fragments, because of C-C cleavage. Using CuO nanoleaves as catalyst, an excellent yield of gluconic acid is also obtained for the direct oxidation of cellobiose and polymeric cellulose, as biomass substrates. PMID:26119659

  13. Metal-ligand cooperation by aromatization-dearomatization: a new paradigm in bond activation and "green" catalysis.

    PubMed

    Gunanathan, Chidambaram; Milstein, David

    2011-08-16

    In view of global concerns regarding the environment and sustainable energy resources, there is a strong need for the discovery of new, green catalytic reactions. For this purpose, fresh approaches to catalytic design are desirable. In recent years, complexes based on "cooperating" ligands have exhibited remarkable catalytic activity. These ligands cooperate with the metal center by undergoing reversible structural changes in the processes of substrate activation and product formation. We have discovered a new mode of metal-ligand cooperation, involving aromatization-dearomatization of ligands. Pincer-type ligands based on pyridine or acridine exhibit such cooperation, leading to unusual bond activation processes and to novel, environmentally benign catalysis. Bond activation takes place with no formal change in the metal oxidation state, and so far the activation of H-H, C-H (sp(2) and sp(3)), O-H, and N-H bonds has been demonstrated. Using this approach, we have demonstrated a unique water splitting process, which involves consecutive thermal liberation of H(2) and light-induced liberation of O(2), using no sacrificial reagents, promoted by a pyridine-based pincer ruthenium complex. An acridine pincer complex displays unique "long-range" metal-ligand cooperation in the activation of H(2) and in reaction with ammonia. In this Account, we begin by providing an overview of the metal-ligand cooperation based on aromatization-dearomatization processes. We then describe a range of novel catalytic reactions that we developed guided by these new modes of metal-ligand cooperation. These reactions include the following: (1) acceptorless dehydrogenation of secondary alcohols to ketones, (2) acceptorless dehydrogenative coupling of alcohols to esters, (3) acylation of secondary alcohols by esters with dihydrogen liberation, (4) direct coupling of alcohols and amines to form amides and polyamides with liberation of dihydrogen, (5) coupling of esters and amines to form amides

  14. Activating mutations in the extracellular domain of the fibroblast growth factor receptor 2 function by disruption of the disulfide bond in the third immunoglobulin-like domain.

    PubMed

    Robertson, S C; Meyer, A N; Hart, K C; Galvin, B D; Webster, M K; Donoghue, D J

    1998-04-14

    Multiple human skeletal and craniosynostosis disorders, including Crouzon, Pfeiffer, Jackson-Weiss, and Apert syndromes, result from numerous point mutations in the extracellular region of fibroblast growth factor receptor 2 (FGFR2). Many of these mutations create a free cysteine residue that potentially leads to abnormal disulfide bond formation and receptor activation; however, for noncysteine mutations, the mechanism of receptor activation remains unclear. We examined the effect of two of these mutations, W290G and T341P, on receptor dimerization and activation. These mutations resulted in cellular transformation when expressed as FGFR2/Neu chimeric receptors. Additionally, in full-length FGFR2, the mutations induced receptor dimerization and elevated levels of tyrosine kinase activity. Interestingly, transformation by the chimeric receptors, dimerization, and enhanced kinase activity were all abolished if either the W290G or the T341P mutation was expressed in conjunction with mutations that eliminate the disulfide bond in the third immunoglobulin-like domain (Ig-3). These results demonstrate a requirement for the Ig-3 cysteine residues in the activation of FGFR2 by noncysteine mutations. Molecular modeling also reveals that noncysteine mutations may activate FGFR2 by altering the conformation of the Ig-3 domain near the disulfide bond, preventing the formation of an intramolecular bond. This allows the unbonded cysteine residues to participate in intermolecular disulfide bonding, resulting in constitutive activation of the receptor. PMID:9539778

  15. An activated triple bond linker enables ‘click’ attachment of peptides to oligonucleotides on solid support

    PubMed Central

    Wenska, Malgorzata; Alvira, Margarita; Steunenberg, Peter; Stenberg, Åsa; Murtola, Merita; Strömberg, Roger

    2011-01-01

    A general procedure, based on a new activated alkyne linker, for the preparation of peptide–oligonucleotide conjugates (POCs) on solid support has been developed. With this linker, conjugation is effective at room temperature (RT) in millimolar concentration and submicromolar amounts. This is made possible since the use of a readily attachable activated triple bond linker enhances the Cu(I) catalyzed 1,3-dipolar cycloaddition (‘click’ reaction). The preferred scheme for conjugate preparation involves sequential conjugation to oligonucleotides on solid support of (i) an H-phosphonate-based aminolinker; (ii) the triple bond donor p-(N-propynoylamino)toluic acid (PATA); and (iii) azido-functionalized peptides. The method gives conversion of oligonucleotide to the POC on solid support, and only involves a single purification step after complete assembly. The synthesis is flexible and can be carried out without the need for specific automated synthesizers since it has been designed to utilize commercially available oligonucleotide and peptide derivatives on solid support or in solution. Methodology for the ready conversion of peptides into ‘clickable’ azidopeptides with the possibility of selecting either N-terminus or C-terminus connection also adds to the flexibility and usability of the method. Examples of synthesis of POCs include conjugates of oligonucleotides with peptides known to be membrane penetrating and nuclear localization signals. PMID:21795380

  16. The role of π-bonding on the high temperature structure of the double perovskites Ba2CaUO6 and BaSrCaUO6.

    PubMed

    Reynolds, Emily; Thorogood, Gordon J; Avdeev, Maxim; Brand, Helen E A; Gu, Qinfen; Kennedy, Brendan J

    2015-09-28

    The high temperature structural behaviour of the uranium perovskites Ba2CaUO6 and BaSrCaUO6 has been investigated using a combination of synchrotron X-ray and neutron powder diffraction. Ba2CaUO6 undergoes a complex sequence of structures associated with the progressive loss of cooperative octahedral tilting: P21/n → I2/m → I2/m → I4/m → Fm3[combining macron]m. The observation of the intermediate tetragonal structure, I4/m, in this, contrasts with the previously reported rhombohedral R3[combining macron] intermediate formed by the Ba2SrUO6 oxide. The importance of π-bonding in determining the structural sequence is discussed. PMID:26286063

  17. Bonding aerogels with polyurethanes

    SciTech Connect

    Matthews, F.M.; Hoffman, D.M.

    1989-11-01

    Aerogels, porous silica glasses with ultra-fine cell size (30nm), are made by a solution gelation (sol-gel) process. The resulting gel is critical point dried to densities from 0.15--0.60 g/cc. This material is machinable, homogeneous, transparent, coatable and bondable. To bond aerogel an adhesive should have long cure time, no attack on the aerogel structure, and high strength. Several epoxies and urethanes were examined to determine if they satisfied these conditions. Bond strengths above 13 psi were found with double bubble and DP-110 epoxies and XI-208/ODA-1000 and Castall U-2630 urethanes. Hardman Kalex Tough Stuff'' A-85 hardness urethane gave 18 psi bond strength. Hardman A-85, Tuff-Stuff'' was selected for further evaluation because it produced bond strengths comparable to the adherend cohesive strength. 5 refs., 2 figs.

  18. Once daily versus three times daily mesalazine granules in active ulcerative colitis: a double-blind, double-dummy, randomised, non-inferiority trial

    PubMed Central

    Kruis, W; Kiudelis, G; Rácz, I; Gorelov, I A; Pokrotnieks, J; Horynski, M; Batovsky, M; Kykal, J; Boehm, S; Greinwald, R; Mueller, R

    2009-01-01

    Objectives: To determine the therapeutic equivalence and safety of once daily (OD) versus three times daily (TID) dosing of a total daily dose of 3 g Salofalk (mesalazine) granules in patients with active ulcerative colitis. Design: A randomised, double-blind, double-dummy, parallel group, multicentre, international, phase III non-inferiority study. Setting: 54 centres in 13 countries. Patients: 380 patients with confirmed diagnosis of established or first attack of ulcerative colitis (clinical activity index (CAI)>4 and endoscopic index ⩾4 at baseline) were randomised and treated. Interventions: 8-week treatment with either 3 g OD or 1 g TID mesalazine granules. Main outcome measures: Clinical remission (CAI⩽4) at study end. Results: 380 patients were evaluable for efficacy and safety by intention-to-treat (ITT); 345 for per protocol (PP) analysis. In the ITT population, 79.1% in the OD group (n = 191) and 75.7% in the TID group (n = 189) achieved clinical remission (p<0.0001 for non-inferiority). Significantly more patients with proctosigmoiditis achieved clinical remission in the OD group (86%; n = 97) versus the TID group (73%; n = 100; p = 0.0298). About 70% of patients in both treatment groups achieved endoscopic remission, and 35% in the OD group and 41% in the TID group achieved histological remission. About 80% of all patients preferred OD dosing. Similar numbers of adverse events occurred in 55 patients (28.8%) in the OD group and in 61 patients (32.3%) in the TID group, indicating that the two dosing regimens were equally safe and well tolerated. Conclusions: OD 3 g mesalazine granules are as effective and safe as a TID 1 g schedule. With respect to the best possible adherence of patients to the treatment, OD dosing of mesalazine should be the preferred application mode in active ulcerative colitis. ClinicalTrials.gov Identifier: NCT00449722 PMID:18832520

  19. Noise-enhanced stability and double stochastic resonance of active Brownian motion

    NASA Astrophysics Data System (ADS)

    Zeng, Chunhua; Zhang, Chun; Zeng, Jiakui; Liu, Ruifen; Wang, Hua

    2015-08-01

    In this paper, we study the transient and resonant properties of active Brownian particles (ABPs) in the Rayleigh-Helmholtz (RH) and Schweitzer-Ebeling-Tilch (SET) models, which is driven by the simultaneous action of multiplicative and additive noise and periodic forcing. It is shown that the cross-correlation between two noises (λ) can break the symmetry of the potential to generate motion of the ABPs. In case of no correlation between two noises, the mean first passage time (MFPT) is a monotonic decrease depending on the multiplicative noise, however in case of correlation between two noises, the MFPT exhibits a maximum, depending on the multiplicative noise for both models, this maximum for MFPT identifies the noise-enhanced stability (NES) effect of the ABPs. By comparing with case of no correlation (λ =0.0 ), we find two maxima in the signal-to-noise ratio (SNR) depending on the cross-correlation intensity, i.e. the double stochastic resonance is shown in both models. For the RH model, the SNR exhibits two maxima depending on the multiplicative noise for small cross-correlation intensity, while in the SET model, it exhibits only a maximum depending on the multiplicative noise. Whether λ =0.0 or not, the MFPT is a monotonic decrease, and the SNR exhibits a maximum, depending on the additive noise in both models.

  20. Numerical investigation of sound transmission through double wall cylinders with respect to active noise control

    NASA Astrophysics Data System (ADS)

    Coats, T. J.; Silcox, R. J.; Lester, H. C.

    Market pressure for more fuel efficient air travel has led to increased use of turboprop and higher bypass turbofan engines. The low frequency components of propeller, jet and boundary layer noise are difficult to attenuate with conventional passive techniques. Weight and geometric restrictions for sound absorbing meterials limit the amount and type of treatment that may be applied. An active noise control (ANC) method is providing to be an attractive alternative. The approach taken in this paper uses a numerical finite/boundary element method (FEM/BEM) that may be easilty adapted to arbitrary geometries. A double walled cylinder is modeled using commercially available software. The outer shell is modeled as an aluminum cylinder, similar to that of aircraft skins. The inner shell is modeled as a composite material representative of a lightweight, stiff trim panel. Two different inner shell materials are used. The first is representative of current trim structure, the second a much stiffer composite. The primary source is generated by an exterior acoustic monopole. Control fields are generated using normal force inputs to the inner cylindrical shell. A linear least mean square (LMS) algorithm is used to determine amplitudes of control forces that minimize the interior acoustic field. Coupling of acoustic and structural modes and noise reductions are discussed for each of the inner shell materials.

  1. The Role of Activated Nitrogen Species on Double-folded Screen Nitriding Process

    NASA Astrophysics Data System (ADS)

    Kim, Sanggweon; Lee, Jaehoon; Saito, Nagahiro; Takai, Osamu

    2013-03-01

    As clean and energy saving surface hardening technology, plasma nitriding techniques have been evolved with object of higher performance in the last decades. Even though the diffusion of nitrogen inward to steel is occurred at the final step, solid diffusion from surface, energy transition from gas molecule of nitrogen to atomic or an activated state have many different steps depending on the plasma conditions, parameters and the design of each equipment. And this study made comparative on nitrogen sources transfer with conventional DC plasma nitriding and novel nitriding process using plasma diagnosis and metallurgical observation. With different vacuum pressure, gas ratio and new designed electrode (double-folded screen cathode electrode), it showed a different behavior of DC plasma nitriding including the nano-sized nitride on the outer surface of specimen due to nitrogen source of determining plasma species. In this study, plasma species was able to identify with optical emission spectroscopy (OES) studies. From these observations, we could understand better role of ions or neutral nitrogen species, like neutral nitrogen (N), N2+ and NHx radicals in plasma nitriding process with different parameters. And cutting layers of nitride specimen were showed the results due to a different species gas flow ratio or plasma conditions.

  2. Flue gas CO2 mineralization using thermally activated serpentine: from single- to double-step carbonation.

    PubMed

    Werner, Mischa; Hariharan, Subrahmaniam; Mazzotti, Marco

    2014-12-01

    Carbon dioxide capture and utilization by mineralization seeks to combine greenhouse gas emission control with the production of value-added materials in the form of solid carbonates. This experimental work demonstrates that the world's most abundant mineralization precursor, the magnesium (Mg) silicate serpentine, in its thermally activated, partially dehydroxylated form can be carbonated without the use of chemical additives at process temperatures (T) below 90 °C and CO2 partial pressures (pCO2) below 1 bar. A first series of single-step batch experiments was performed varying the temperature and slurry density to systematically assess the precipitation regime of the relevant Mg-carbonates and the fate of silicon (Si) species in solution. The results suggested that the reaction progress was hindered by a passivating layer of re-precipitated silica or quartz, as well as by equilibrium limitations. Concurrent grinding proved effective in tackling the former problem. A double-step strategy proved successful in addressing the latter problem by controlling the pH of the solution. This is achieved by continuously removing the Mg from the dissolution reactor and letting it precipitate at a higher T and a lower pCO2 in a separate reactor, thus yielding a combined T-pCO2-swing-the working principle of a new flue gas mineralization route is presented herein. Simulations and experiments of the different individual steps of the process are reported, in order to make an assessment of its feasibility. PMID:25327589

  3. Numerical investigation of sound transmission through double wall cylinders with respect to active noise control

    NASA Technical Reports Server (NTRS)

    Coats, T. J.; Silcox, R. J.; Lester, H. C.

    1993-01-01

    Market pressure for more fuel efficient air travel has led to increased use of turboprop and higher bypass turbofan engines. The low frequency components of propeller, jet and boundary layer noise are difficult to attenuate with conventional passive techniques. Weight and geometric restrictions for sound absorbing meterials limit the amount and type of treatment that may be applied. An active noise control (ANC) method is providing to be an attractive alternative. The approach taken in this paper uses a numerical finite/boundary element method (FEM/BEM) that may be easilty adapted to arbitrary geometries. A double walled cylinder is modeled using commercially available software. The outer shell is modeled as an aluminum cylinder, similar to that of aircraft skins. The inner shell is modeled as a composite material representative of a lightweight, stiff trim panel. Two different inner shell materials are used. The first is representative of current trim structure, the second a much stiffer composite. The primary source is generated by an exterior acoustic monopole. Control fields are generated using normal force inputs to the inner cylindrical shell. A linear least mean square (LMS) algorithm is used to determine amplitudes of control forces that minimize the interior acoustic field. Coupling of acoustic and structural modes and noise reductions are discussed for each of the inner shell materials.

  4. Palladium-Catalyzed Carbonylative Cyclization of Arenes by C-H Bond Activation with DMF as the Carbonyl Source.

    PubMed

    Chen, Jianbin; Feng, Jian-Bo; Natte, Kishore; Wu, Xiao-Feng

    2015-11-01

    A novel palladium-catalyzed CO-gas- and autoclave-free protocol for the synthesis of 11H-pyrido[2,1-b]quinazolin-11-ones has been developed. Quinazolinones, which are omnipresent motif in many pharmaceuticals and agrochemicals, were prepared in good yields by C-H bond activation and annulation using DMF as the CO surrogate. A (13) CO-labelled DMF control experiment demonstrated that CO gas was released from the carbonyl of DMF with acid as the promotor. The kinetic isotope effect (KIE) value indicated that the C-H activation step may not be involved in the rate-determining step. This methodology is operationally simple and showed a broad substrate scope with good to excellent yields. PMID:26406903

  5. The Comparative Studies of Binding Activity of Curcumin and Didemethylated Curcumin with Selenite: Hydrogen Bonding vs Acid-Base Interactions.

    PubMed

    Liao, Jiahn-Haur; Wu, Tzu-Hua; Chen, Ming-Yi; Chen, Wei-Ting; Lu, Shou-Yun; Wang, Yi-Hsuan; Wang, Shao-Pin; Hsu, Yen-Min; Huang, Yi-Shiang; Huang, Zih-You; Lin, Yu-Ching; Chang, Ching-Ming; Huang, Fu-Yung; Wu, Shih-Hsiung

    2015-01-01

    In this report, the in vitro relative capabilities of curcumin (CCM) and didemethylated curcumin (DCCM) in preventing the selenite-induced crystallin aggregation were investigated by turbidity tests and isothermal titration calorimetry (ITC). DCCM showed better activity than CCM. The conformers of CCM/SeO3(2-) and DCCM/SeO3(2-) complexes were optimized by molecular orbital calculations. Results reveal that the selenite anion surrounded by CCM through the H-bonding between CCM and selenite, which is also observed via IR and NMR studied. For DCCM, the primary driving force is the formation of an acid-base adduct with selenite showing that the phenolic OH group of DCCM was responsible for forming major conformer of DCCM. The formation mechanisms of selenite complexes with CCM or DCCM explain why DCCM has greater activity than CCM in extenuating the toxicity of selenite as to prevent selenite-induced lens protein aggregation. PMID:26635113

  6. The Comparative Studies of Binding Activity of Curcumin and Didemethylated Curcumin with Selenite: Hydrogen Bonding vs Acid-Base Interactions

    NASA Astrophysics Data System (ADS)

    Liao, Jiahn-Haur; Wu, Tzu-Hua; Chen, Ming-Yi; Chen, Wei-Ting; Lu, Shou-Yun; Wang, Yi-Hsuan; Wang, Shao-Pin; Hsu, Yen-Min; Huang, Yi-Shiang; Huang, Zih-You; Lin, Yu-Ching; Chang, Ching-Ming; Huang, Fu-Yung; Wu, Shih-Hsiung

    2015-12-01

    In this report, the in vitro relative capabilities of curcumin (CCM) and didemethylated curcumin (DCCM) in preventing the selenite-induced crystallin aggregation were investigated by turbidity tests and isothermal titration calorimetry (ITC). DCCM showed better activity than CCM. The conformers of CCM/SeO32- and DCCM/SeO32- complexes were optimized by molecular orbital calculations. Results reveal that the selenite anion surrounded by CCM through the H-bonding between CCM and selenite, which is also observed via IR and NMR studied. For DCCM, the primary driving force is the formation of an acid-base adduct with selenite showing that the phenolic OH group of DCCM was responsible for forming major conformer of DCCM. The formation mechanisms of selenite complexes with CCM or DCCM explain why DCCM has greater activity than CCM in extenuating the toxicity of selenite as to prevent selenite-induced lens protein aggregation.

  7. The Comparative Studies of Binding Activity of Curcumin and Didemethylated Curcumin with Selenite: Hydrogen Bonding vs Acid-Base Interactions

    PubMed Central

    Liao, Jiahn-Haur; Wu, Tzu-Hua; Chen, Ming-Yi; Chen, Wei-Ting; Lu, Shou-Yun; Wang, Yi-Hsuan; Wang, Shao-Pin; Hsu, Yen-Min; Huang, Yi-Shiang; Huang, Zih-You; Lin, Yu-Ching; Chang, Ching-Ming; Huang, Fu-Yung; Wu, Shih-Hsiung

    2015-01-01

    In this report, the in vitro relative capabilities of curcumin (CCM) and didemethylated curcumin (DCCM) in preventing the selenite-induced crystallin aggregation were investigated by turbidity tests and isothermal titration calorimetry (ITC). DCCM showed better activity than CCM. The conformers of CCM/SeO32− and DCCM/SeO32− complexes were optimized by molecular orbital calculations. Results reveal that the selenite anion surrounded by CCM through the H-bonding between CCM and selenite, which is also observed via IR and NMR studied. For DCCM, the primary driving force is the formation of an acid-base adduct with selenite showing that the phenolic OH group of DCCM was responsible for forming major conformer of DCCM. The formation mechanisms of selenite complexes with CCM or DCCM explain why DCCM has greater activity than CCM in extenuating the toxicity of selenite as to prevent selenite-induced lens protein aggregation. PMID:26635113

  8. A double-blind atropine trial for active learning of autonomic function.

    PubMed

    Fry, Jeffrey R; Burr, Steven A

    2011-12-01

    Here, we describe a human physiology laboratory class measuring changes in autonomic function over time in response to atropine. Students use themselves as subjects, generating ownership and self-interest in the learning as well as directly experiencing the active link between physiology and pharmacology in people. The class is designed to concomitantly convey the importance of bias in experimentation by adopting a double-blind placebo-controlled approach. We have used this class effectively in various forms with ∼600 students receiving atropine over the last 16 yr. This class has received favorable feedback from staff and students of medicine, pharmacy, and neuroscience, and we recommend it for such undergraduates. The learning objectives that students are expected to achieve are to be able to 1) know the ethical, safety, and hygiene requirements for using human volunteers as subjects; 2) implement and explain a double-blind placebo-controlled trial; 3) design, agree, and execute a protocol for making (and accurately recording) precise reproducible measurements of pulse rate, pupil diameter, and salivary flow; 4) evaluate the importance of predose periods and measurement consistency to detect effects (including any reversibility) after an intervention; 5) experience direct cause-and-effect relationships integrating physiology with pharmacology in people; 6) calculate appropriate summary statistics to describe the data and determine the data's statistical significance; 7) recognize normal variability both within and between subjects in baseline physiological parameters and also recognize normal variability in response to pharmacological treatment; 8) infer the distribution and role of muscarinic receptors in the autonomic nervous system with respect to the heart, eye, and mouth; 9) identify and explain the clinical significance of differences in effect due to the route and formulation of atropine; 10) produce and deliver a concise oral presentation of

  9. Electron density, exchange-correlation density, and bond characterization from the perspective of the valence-bond theory. II. Numerical results

    NASA Astrophysics Data System (ADS)

    Rincón, Luis; Alvarellos, J. E.; Almeida, Rafael

    2005-06-01

    In this work we have analyzed the bond character of a series of representative diatomic molecules, using valence bond and the atoms in molecules points of view. This is done using generalized valence-bond calculations. We have also employed more exigent levels, as configuration interaction with single and double excitations and complete active space self-consistent field calculations, in order to validate the generalized valence-bond results. We have explored the possibility that the known delocalization index, and a parameter that measures the excess or defect population within a given atomic basin, can be considered as indicators of the character of bond interaction. We conclude that for a proper description of the bond character, the global behavior of both the charge and two-electron densities should be considered.

  10. Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520

    SciTech Connect

    Cheng, X.; Ding, M. D.; Zhang, J.; Guo, Y.; Sun, X. D.; Wang, Y. M.; Kliem, B.; Deng, Y. Y.

    2014-07-10

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s{sup –1}. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.

  11. Formation of a Double-decker Magnetic Flux Rope in the Sigmoidal Solar Active Region 11520

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Ding, M. D.; Zhang, J.; Sun, X. D.; Guo, Y.; Wang, Y. M.; Kliem, B.; Deng, Y. Y.

    2014-07-01

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s-1. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.

  12. A mechanism for weak double layers and coherent low-frequency electrostatic wave activity in the solar wind

    NASA Astrophysics Data System (ADS)

    Singh Lakhina, Gurbax; Singh, Satyavir

    2016-07-01

    A mechanism for the weak double layers and coherent low-frequency electrostatic wave activity observed by Wind spacecraft in the solar wind at 1 AU is proposed in terms of ion-acoustic solitons and double layers. The solar wind plasma is modelled by a three component plasma consisting of fluid hot protons, hot alpha particles streaming with respect to protons, and suprathermal electrons having κ- distribution. This system supports two types of, slow and fast, ion-acoustic solitary waves. The fast ion-acoustic mode is similar to the ion-acoustic mode of proton-electron plasma, and can support only positive potential solitons. The slow ion-acoustic mode is a new mode that occurs due to the presence of alpha particles. This mode can support both positive and negative solitons and double layers. An increase of the κ- index leads to an increase in the critical Mach number, maximum Mach number and the maximum amplitude of both slow and fast ion-acoustic solitons. The slow ion-acoustic double layer can explain the amplitudes and widths, but not shapes, of the weak double layers (WDLs) observed in the solar wind at 1 AU by Wind spacecraft. The Fourier transform of the slow ion-acoustic solitons/double layers would produce broadband low-frequency electrostatic waves having main peaks between 0.35 kHz to 1.6 kHz, with electric field in the range of E = (0.01 - 0.7 ) mV/m, in excellent agreement with the observed low-frequency electrostatic wave activity in the solar wind at 1 AU.

  13. Enhancement of laccase activity through the construction and breakdown of a hydrogen bond at the type I copper center in Escherichia coli CueO and the deletion mutant Δα5-7 CueO.

    PubMed

    Kataoka, Kunishige; Hirota, Shun; Maeda, Yasuo; Kogi, Hiroki; Shinohara, Naoya; Sekimoto, Madoka; Sakurai, Takeshi

    2011-02-01

    CueO is a multicopper oxidase involved in a copper efflux system of Escherichia coli and has high cuprous oxidase activity but little or no oxidizing activity toward various organic substances. However, its activity toward oxidization of organic substrates was found to be considerably increased by the removal of the methionine-rich helical segment that covers the substrate-binding site (Δα5-7 CueO) [Kataoka, K., et al. (2007) J. Mol. Biol. 373, 141]. In the study presented here, mutations at Pro444 to construct a second NH-S hydrogen bond between the backbone amide and coordinating Cys500 thiolate of the type I copper are shown to result in positive shifts in the redox potential of this copper center and enhanced oxidase activity in CueO. Analogous enhancement of the activity of Δα5-7 CueO has been identified only in the Pro444Gly mutant because Pro444 mutants limit the incorporation of copper ions into the trinuclear copper center. The activities of both CueO and Δα5-7 CueO were also enhanced by mutations to break down the hydrogen bond between the imidazole group of His443 that is coordinated to the type I copper and the β-carboxy group of Asp439 that is located in the outer sphere of the type I copper center. A synergetic effect of the positive shift in the redox potential of the type I copper center and the increase in enzyme activity has been achieved by the double mutation of Pro444 and Asp439 of CueO. Absorption, circular dichroism, and resonance Raman spectra indicate that the characteristics of the Cu(II)-S(Cys) bond were only minimally perturbed by mutations involving formation or disruption of a hydrogen bond from the coordinating groups to the type I copper. This study provides widely applicable strategies for tuning the activities of multicopper oxidases. PMID:21142169

  14. Defluorination of perfluoroolefins by divalent lanthanoid reagents: Activating C-F bonds

    SciTech Connect

    Watson, P.L.; Tulip, T.H.; Williams, I. )

    1990-07-01

    Divalent lanthanoid complexes MCp*{sub 2} {times} L (M = Yb, Eu, Sm; L = diethyl ether or THF; Cp* = {eta}{sup 5}-pentamethylcyclopetadienyl) and YbCp{prime}{sub 2} {times} L (Cp{prime} = {eta}{sup 5}-methylcyclopentadienyl; L = tetrahydrofuran) rapidly abstract fluorine atoms from a variety of perfluoroolefins including perfluoro-2,4-dimethyl-3-ethylpent-2-ene, perfluoro-2,3-dimethylpent-2-ene, and perfluorocyclohexene. Qualitative observation shows that the relative fluorine abstraction reactivity of the four lanthanoid complexes increases with increasingly negative reduction potential for reasonably unhindered fluoroolefin substrates. The Yb(III)/Yb(II) reduction potential of YbCp{prime}{sub 2} solvated in acetonitrile is determined here to be {minus}1.65 V (relative to ferrocene) by cyclic voltammetry. The fully characterized organometallic products from the fluorine atom abstraction reactions are solvated trivalent lanthanoid fluorides MCp*{sub 2}F {times} L (M = Yb, Eu, Sm; L = diethyl ether or THF) and YbCp{prime}{sub 2}F {times} THF. The molecular structures of YbCp*{sub 2}F {times} OEt{sub 2} and YbCp*{sub 2}F {times} THF determined by X-ray crystallography reveal the first terminal lanthanoid-fluoride bonds.

  15. Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates.

    PubMed

    Colangelo, Francesco; Messina, Francesco; Cioffi, Raffaele

    2015-12-15

    In this work, an extensive study on the recycling of municipal solid waste incinerator fly ash by means of cold bonding pelletization is presented. The ash comes from an incineration plant equipped with rotary and stoker furnaces, in which municipal, hospital and industrial wastes are treated. Fly ash from waste incineration is classified as hazardous and cannot be utilized or even landfilled without prior treatment. The pelletization process uses cement, lime and coal fly ash as components of the binding systems. This process has been applied to several mixes in which the ash content has been varied from 50% (wt.%) up to a maximum of 70%. An innovative additional pelletization step with only cementitious binder has been performed in order to achieve satisfactory immobilization levels. The obtained lightweight porous aggregates are mostly suitable for recovery in the field of building materials with enhanced sustainability properties. Density, water absorption and crushing strength ranged from 1000 to 1600 kg/m(3), 7 to 16% and 1.3 to 6.2 MPa, respectively, and the second pelletization step increased stabilization efficiency. The feasibility of the process has been analyzed by testing also concrete specimens containing the artificial aggregates, resulting in lightweight concrete of average performance. PMID:26124064

  16. Electronic and hydrogen bonding effects on the chain-breaking activity of sulfur-containing phenolic antioxidants.

    PubMed

    Amorati, Riccardo; Fumo, Maria Grazia; Menichetti, Stefano; Mugnaini, Veronica; Pedulli, Gian Franco

    2006-08-18

    A kinetic and thermodynamic investigation of phenols para-substituted with thiyl (SR), sulfinyl (SOR), and sulfonyl (SO(2)R) groups and ortho-substituted with thiyl groups is reported. The effect of the sulfur substituents on the O-H bond dissociation enthalpy values, BDE(O-H), was measured by means of the EPR radical equilibration technique and the reactivity toward peroxyl radicals, k(inh), of these phenolic antioxidants was determined by inhibited autoxidation studies. An inverse correlation between these two parameters was found. A p-SMe substituent decreased the BDE(O-H) value to a lesser extent than a p-OMe group (-3.6 vs -4.4 kcal/mol), whereas the effect of the same groups in an ortho position showed an opposite trend (-0.85 vs -0.2 kcal/mol). The latter result is explained in terms of the different strength of the intramolecular hydrogen bond between the OH proton and the sulfur or oxygen substituents in ortho derivatives. ESI-MS analysis of the products formed by reacting the sulfides with peroxyl radicals from the azoinitiator AIBN revealed the formation of a complex mixture of products, which may play an important role in determining the overall antioxidant activity of the parent compounds. PMID:16901112

  17. Carbon-hydrogen and carbon-carbon bond activation of cyclopropane by a hydridotris(pyrazolyl)borate rhodium complex

    SciTech Connect

    Wick, D.D.; Northcutt, T.O.; Lachicotte, R.J.; Jones, W.D.

    1998-09-28

    Generation of the 16-electron fragment {l_brace}[HB(3,5-dimethylpyrazolyl){sub 3}]Rh(CNCH{sub 2}CMe{sub 3}){r_brace} (Tp{prime}RhL) in the presence of cyclopropane results in C-H activation of the hydrocarbon. The cyclopropyl hydride complex rearranges in benzene solvent to the metallacyclobutane complex Tp{prime}Rh(CNCH{sub 2}CMe{sub 3})(CH{sub 2}CH{sub 2}CH{sub 2}). Thermolysis of the rhodacyclobutane complex produces an {eta}{sup 2}-propylene complex. The related complex Tp{prime}Rh(CN-2,6-xylyl)(C{sub 2}H{sub 4}) has been structurally characterized and displays {eta}{sup 3}-Tp{prime} coordination, both in the solid state and in solution. Thermolysis of the rhodacyclobutane complex in the presence of neopentyl isocyanide leads to insertion of isocyanide into both Rh-C bonds of the metallacycle. Cyclobutane undergoes C-H but not C-C bond cleavage.

  18. Cooperativity between Al Sites Promotes Hydrogen Transfer and Carbon–Carbon Bond Formation upon Dimethyl Ether Activation on Alumina

    PubMed Central

    2015-01-01

    The methanol-to-olefin (MTO) process allows the conversion of methanol/dimethyl ether into olefins on acidic zeolites via the so-called hydrocarbon pool mechanism. However, the site and mechanism of formation of the first carbon–carbon bond are still a matter of debate. Here, we show that the Lewis acidic Al sites on the 110 facet of γ-Al2O3 can readily activate dimethyl ether to yield CH4, alkenes, and surface formate species according to spectroscopic studies combined with a computational approach. The carbon–carbon forming step as well as the formation of methane and surface formate involves a transient oxonium ion intermediate, generated by a hydrogen transfer between surface methoxy species and coordinated methanol on adjacent Al sites. These results indicate that extra framework Al centers in acidic zeolites, which are associated with alumina, can play a key role in the formation of the first carbon–carbon bond, the initiation step of the industrial MTO process. PMID:27162986

  19. Cooperativity between Al Sites Promotes Hydrogen Transfer and Carbon-Carbon Bond Formation upon Dimethyl Ether Activation on Alumina.

    PubMed

    Comas-Vives, Aleix; Valla, Maxence; Copéret, Christophe; Sautet, Philippe

    2015-09-23

    The methanol-to-olefin (MTO) process allows the conversion of methanol/dimethyl ether into olefins on acidic zeolites via the so-called hydrocarbon pool mechanism. However, the site and mechanism of formation of the first carbon-carbon bond are still a matter of debate. Here, we show that the Lewis acidic Al sites on the 110 facet of γ-Al2O3 can readily activate dimethyl ether to yield CH4, alkenes, and surface formate species according to spectroscopic studies combined with a computational approach. The carbon-carbon forming step as well as the formation of methane and surface formate involves a transient oxonium ion intermediate, generated by a hydrogen transfer between surface methoxy species and coordinated methanol on adjacent Al sites. These results indicate that extra framework Al centers in acidic zeolites, which are associated with alumina, can play a key role in the formation of the first carbon-carbon bond, the initiation step of the industrial MTO process. PMID:27162986

  20. High performance flexible double-sided micro-supercapacitors with an organic gel electrolyte containing a redox-active additive.

    PubMed

    Kim, Doyeon; Lee, Geumbee; Kim, Daeil; Yun, Junyeong; Lee, Sang-Soo; Ha, Jeong Sook

    2016-08-25

    In this study, we report the fabrication of a high performance flexible micro-supercapacitor (MSC) with an organic gel electrolyte containing a redox-active additive, referred to as poly(methyl methacrylate)-propylene carbonate-lithium perchlorate-hydroquinone (PMMA-PC-LiClO4-HQ). Hexagonal MSCs fabricated on thin polyethylene terephthalate (PET) films had interdigitated electrodes made of spray-coated multi-walled carbon nanotubes (MWNTs) on Au. The addition of HQ as a redox-active additive enhanced not only the specific capacitance but also the energy density of the MSCs dramatically, which is approximately 35 times higher than that of MSCs without the HQ additive. In addition, both areal capacitance and areal energy density could be doubled by fabrication of double-sided MSCs, where two MSCs are connected in parallel. The double-sided MSCs exhibited stable electrochemical performance during repeated deformation by bending. By dry-transferring the double-sided MSCs based on PMMA-PC-LiClO4-HQ on a deformable polymer substrate, we fabricated a stretchable MSC array, which also retained its electrochemical performance during a uniaxial strain of 40%. Furthermore, a wearable energy storage bracelet made of such an MSC array could operate a μ-LED on the wrist. PMID:27511060

  1. Bond Issues.

    ERIC Educational Resources Information Center

    Pollack, Rachel H.

    2000-01-01

    Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of…

  2. Architecture engineering toward highly active palladium integrated titanium dioxide yolk-double-shell nanoreactor for catalytic applications

    NASA Astrophysics Data System (ADS)

    Liu, Baocang; Wang, Qin; Yu, Shengli; Jing, Peng; Liu, Lixia; Xu, Guangran; Zhang, Jun

    2014-09-01

    Rational design of the hierarchical architecture of a material with well controlled functionality is crucially important for improving its properties. In this paper, we present the general strategies for rationally designing and constructing three types of hierarchical Pd integrated TiO2 double-shell architectures, i.e. yolk-double-shell TiO2 architecture (Pd@TiO2/Pd@TiO2) with yolk-type Pd nanoparticles residing inside the central cavity of the hollow TiO2 structure; ultrafine Pd nanoparticles homogenously dispersed on both the external and internal surfaces of the inner TiO2 shell; and double-shell TiO2 architecture (@TiO2/Pd@TiO2) with Pd nanoparticles solely loaded on the external surface of the inner TiO2 shell, and double-shell TiO2 architecture (@TiO2@Pd@TiO2) with Pd nanoparticles dispersed in the interlayer space of double TiO2 shells, via newly developed Pd2+ ion-diffusion and Pd sol impregnation methodologies. These architectures are well controlled in structure, size, morphology, and configuration with Pd nanoparticles existing in various locations. Owing to the variable synergistic effects arising from the location discrepancies of Pd nanoparticle in the architectures, they exhibit remarkable variations in catalytic activity. In particular, different from previously reported yolk-shell structures, the obtained yolk-double-shell Pd@TiO2/Pd@TiO2 architecture, which is revealed for the first time, possesses a uniform hierarchical structure, narrow size distribution, and good monodispersibility, and it creates two Pd-TiO2 interfaces on the external and internal surfaces of the inner TiO2 shell, leading to the strongest synergistic effect of Pd nanoparticles with TiO2 shell. Furthermore, the interlayer chamber between the double TiO2 shells connecting with the central cavity of the hollow TiO2 structure through the mesoporous TiO2 wall forms a nanoreactor for enriching the reactants and preventing the deletion of Pd nanoparticles during the reaction, thus

  3. Multiple bonds between transition metals and main-group elements. 73. Synthetic routes to rhenium(V) alkyl and rhenium(VII) alkylidyne complexes. X-ray crystal structures of (. eta. sup 5 -C sub 5 Me sub 5 )Re( double bond O)(CH sub 3 )(CH sub 2 C(CH sub 3 ) sub 3 ) and (. eta. sup 5 -C sub 5 Me sub 5 )(Br) sub 3 Re triple bond CC(CH sub 3 ) sub 3

    SciTech Connect

    Herrmann, W.A.; Felixberger, J.K.; Anwander, R.; Herdtweck, E.; Kiprof, P.; Riede, J. )

    1990-05-01

    Dialkyloxo({eta}{sup 5}pentamethylcyclopentadienyl)rhenium(V) complexes ({eta}{sup 5}-C{sub 5}Me{sub 5})Re({double bond}O)(CH{sub 3})R{prime}(R{prime} = C{sub 2}H{sub 5}, CH{sub 2}Si(CH{sub 3}){sub 3}, CH{sub 2}C(CH{sub 3}){sub 3}), 1c-e, have become accessible through alkylation of ({eta}{sup 5}-C{sub 5}Me{sub 5})Re({double bond}O)(Cl)(CH{sub 3}) (7) with R{prime}MgCl. 1c-e are the first rhenium complexes containing different alkyl ligands. The neopentyl derivative 1e (R{prime} = CH{sub 2}C(CH{sub 3}){sub 3}) crystallizes in the orthorhombic space group Pbca with a = 960.7 (2), b = 2.844.5 (4), c = 1,260.7 (2) pm, and Z = 8. The X-ray crystal structure was refined to R{sub W} = 3.9%. The chiral molecule shows a distorted tetrahedral geometry around the rhenium center. The tribromide 3b has been structurally characterized. Brown crystals of 3b belong to space group P2{sub 1}/c with unit cell dimensions a = 1,311.5 (2), b = 723.0 (1), c = 1,901.6 (2) pm, {beta} = 92.68 (1){degree}, and Z = 4. The structure exhibits a four-legged piano stool geometry with no trans influence of the neopentylidyne ligand to the bromine atom.

  4. Effects of annealing on the electrical characteristics of GaAs/GaAs junctions by surface-activated bonding

    NASA Astrophysics Data System (ADS)

    Chai, Li; Liang, Jianbo; Shigekawa, Naoteru

    2016-06-01

    The electrical properties of GaAs/GaAs junctions fabricated by surface-activated bonding (SAB) and annealing were examined on the basis of the charge neutral level model. The potential barrier height, the density of interface states, and the charge neutral level at GaAs/GaAs interfaces were estimated from the measured dependences of the electrical conductance of n-GaAs/n-GaAs and p-GaAs/p-GaAs junctions on ambient temperature. The barrier height and the density of interface states were lowered by increasing the annealing temperature to 400 °C, which suggested that the damage introduced during the SAB process was partly reduced.

  5. Efficient Amide Bond Formation through a Rapid and Strong Activation of Carboxylic Acids in a Microflow Reactor**

    PubMed Central

    Fuse, Shinichiro; Mifune, Yuto; Takahashi, Takashi

    2014-01-01

    The development of highly efficient amide bond forming methods which are devoid of side reactions, including epimerization, is important, and such a method is described herein and is based on the concept of rapid and strong activation of carboxylic acids. Various carboxylic acids are rapidly (0.5 s) converted into highly active species, derived from the inexpensive and less-toxic solid triphosgene, and then rapidly (4.3 s) reacted with various amines to afford the desired peptides in high yields (74 %–quant.) without significant epimerization (≤3 %). Our process can be carried out at ambient temperature, and only CO2 and HCl salts of diisopropylethyl amine are generated. In the long history of peptide synthesis, a significant number of active coupling reagents have been abandoned because the highly active electrophilic species generated are usually susceptible to side reactions such as epimerization. The concept presented herein should renew interest in the use of these reagents. PMID:24402801

  6. Modifications on the hydrogen bond network by mutations of Escherichia coli copper efflux oxidase affect the process of proton transfer to dioxygen leading to alterations of enzymatic activities

    SciTech Connect

    Kajikawa, Takao; Kataoka, Kunishige; Sakurai, Takeshi

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Proton transfer pathway to dioxygen in CueO was identified. Black-Right-Pointing-Pointer Glu506 is the key amino acid to transport proton. Black-Right-Pointing-Pointer The Ala mutation at Glu506 formed a compensatory proton transfer pathway. Black-Right-Pointing-Pointer The Ile mutation at Glu506 shut down the hydrogen bond network. -- Abstract: CueO has a branched hydrogen bond network leading from the exterior of the protein molecule to the trinuclear copper center. This network transports protons in the four-electron reduction of dioxygen. We replaced the acidic Glu506 and Asp507 residues with the charged and uncharged amino acid residues. Peculiar changes in the enzyme activity of the mutants relative to the native enzyme indicate that an acidic amino acid residue at position 506 is essential for effective proton transport. The Ala mutation resulted in the formation of a compensatory hydrogen bond network with one or two extra water molecules. On the other hand, the Ile mutation resulted in the complete shutdown of the hydrogen bond network leading to loss of enzymatic activities of CueO. In contrast, the hydrogen bond network without the proton transport function was constructed by the Gln mutation. These results exerted on the hydrogen bond network in CueO are discussed in comparison with proton transfers in cytochrome oxidase.

  7. Athermal fracture of covalent bonds

    SciTech Connect

    Gilman, J.J.

    1999-08-01

    Most fracture is athermal. Either because it occurs at low temperatures or because it occurs too fast for thermal activation to be effective. Thus it must be directly activated by applied stresses. This can occur via quantum tunneling when the chemical bonding of a solid resides in localized (covalent) bonds. Then applied stresses can cause the bonding electrons to become delocalized (anti-bonded) through quantum tunneling. That is, the bonds become broken. The process is related to the Zener tunneling process that is thought to be responsible for dielectric breakdown in semiconductors. Under a driving force, bonding electrons tunnel at constant energy from their bonding states into anti-bonding states through the forbidden gap in the bonding energy spectrum.

  8. Bonding, Bridging, and Boundary Breaking: The Civic Lessons of High School Student Activities

    ERIC Educational Resources Information Center

    Shelly, Bryan

    2011-01-01

    This article presents evidence designed to expand scholarly knowledge of how high school co-curricular activities generate the positive effects previous scholarship has found. Studies of empowerment across various fields identify a sense of autonomy, self-belief, self-expression, the ability to work together with diverse others, and a critical…

  9. Constitutive Activation of the N-Methyl-d-aspartate Receptor via Cleft-spanning Disulfide Bonds*

    PubMed Central

    Blanke, Marie L.; VanDongen, Antonius M. J.

    2008-01-01

    Although the N-methyl-d-aspartate (NMDA) receptor plays a critical role in the central nervous system, many questions remain regarding the relationship between its structure and functional properties. In particular, the involvement of ligand-binding domain closure in determining agonist efficacy, which has been reported in other glutamate receptor subtypes, remains unresolved. To address this question, we designed dual cysteine point mutations spanning the NR1 and NR2 ligand-binding clefts, aiming to stabilize these domains in closed cleft conformations. Two mutants, E522C/I691C in NR1 (EI) and K487C/N687C in NR2 (KN) were found to exhibit significant glycine- and glutamate-independent activation, respectively, and co-expression of the two subunits produced a constitutively active channel. However, both individual mutants could be activated above constitutive levels in a concentration-dependent manner, indicating that cleft closure does not completely prevent agonist association. Interestingly, whereas the NR2 KN disulfide was found to potentiate channel gating and M3 accessibility, NR1 EI exhibited the opposite phenotype, suggesting that the EI disulfide may trap the NR1 ligand-binding domain in a lower efficacy conformation. Furthermore, both mutants affected agonist sensitivity at the opposing subunit, suggesting that closed cleft stabilization may contribute to coupling between the subunits. These results support a correlation between cleft stability and receptor activation, providing compelling evidence for the Venus flytrap mechanism of glutamate receptor domain closure. PMID:18450751

  10. Conformational effects, molecular orbitals, and reaction activities of bis(phthalocyaninato) lanthanum double-deckers: density functional theory calculations.

    PubMed

    Qi, Dongdong; Zhang, Lijuan; Wan, Liang; Zhang, Yuexing; Bian, Yongzhong; Jiang, Jianzhuang

    2011-08-01

    The conformational effects on the frontier molecular orbital energy and stability for reduced, neutral, and oxidized bis(phthalocyaninato) lanthanum double-deckers have been revealed on the basis of density functional theory calculations. Calculation results indicate that the frontier orbital coupling degree changes along with the molecular conformation of the double-decker compound, first decreasing along with the increase of rotation angle β from 0 to 20° and then increasing along with the increase of rotation angle β from 20 to 45°. In addition, the stability for the three forms of double-decker changes in the same order, but first increasing and then decreasing along with the change of the rotation angle β in the range of 0 to 45° with a rotation energy barrier of (31.3 ± 3.1) kJ mol(-1) at 20°. This reveals that the rotation of the two phthalocyanine rings for the reduced, neutral, and oxidized bis(phthalocyaninato) lanthanum double-deckers are able to occur at room temperature. Nevertheless, the superior coordination reaction activity of the neutral bis(phthalocyaninato) lanthanum double-decker complex over their reduced form in forming sandwich-type tris(phthalocyaninato) lanthanum triple-decker compounds has also been clearly clarified on the basis of comparative calculations on the Fukui function of [La(Pc)(2)] and [La(Pc)(2)](-) using the DFT method. Fukui function analysis reveals the reaction center of the 18-electron-π-conjugated core in the bis(phthalocyaninato) lanthanum double-decker molecule against both electrophilic and radical attack. Nevertheless, the larger global chemical softness (S) for the neutral [La(Pc)(2)] than the reduced form [La(Pc)(2)](-) indicates the higher reaction activity of the former form over the latter one. This explains well the experimental findings that only the neutral instead of the reduced form of bis(tetrapyrrole) rare earth double-decker complexes, containing at least one phthalocyanine ligand, could be

  11. A highly efficient ADH-coupled NADH-recycling system for the asymmetric bioreduction of carbon-carbon double bonds using enoate reductases.

    PubMed

    Tauber, Katharina; Hall, Melanie; Kroutil, Wolfgang; Fabian, Walter M F; Faber, Kurt; Glueck, Silvia M

    2011-06-01

    The asymmetric bioreduction of activated alkenes catalyzed by flavin-dependent enoate reductases from the OYE-family represents a powerful method for the production of optically active compounds. For its preparative-scale application, efficient and economic NADH-recycling is crucial. A novel enzyme-coupled NADH-recycling system is proposed based on the concurrent oxidation of a sacrificial sec-alcohol catalyzed by an alcohol dehydrogenase (ADH-A). Due to the highly favorable position of the equilibrium of ene-reduction versus alcohol-oxidation, the cosubstrate is only required in slight excess. PMID:21328323

  12. Computational evaluations of charge coupling and hydrogen bonding in the active site of a family 7 cellobiohydrolase.

    PubMed

    Granum, David M; Vyas, Shubham; Sambasivarao, Somisetti V; Maupin, C Mark

    2014-01-16

    Solution pH and the pKa values of ionizable residues are critical factors known to influence enzyme catalysis, structural stability, and dynamical fluctuations. Presented here is an exhaustive computational study utilizing long time constant pH molecular dynamics, pH replica exchange simulations, and kinetic modeling to evaluate pH-dependent conformations, charge dynamics, residue pKa values, and the catalytic activity-pH profile for cellobiohydrolase Cel7B from Melanocarpus albomyces . The predicted pKa values support the role of Glu212 as the catalytic nucleophile and Glu217 as the acid-base residue. The presence of a charge-correlated active site and an extensive hydrogen bonding network is found to be critical in enabling favorable residue orientations for catalysis and shuttling excess protons around the active site. Clusters of amino acids are identified that act in concert to effectively modulate the optimal pH for catalysis while elevating the overall catalytic rate with respect to a noncoupled system. The work presented here demonstrates the complex and critical role of coupled ionizable residues to the proper functioning of cellobiohydrolase Cel7B, functionally related glycosyl hydrolases, and enzymes in general. The simulations also support the use of the CpHMD for the accurate prediction of residue pKa values and to evaluate the impact of pH on protein structure and charge dynamics. PMID:24359013

  13. 26 CFR 1.103(n)-2T - Private activity bond defined (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... in section 103(b)(4) (C) or (D) apply? A-4: Section 103(n)(7)(C) provides that the term “private... activity bond”? A-1: In general, for purposes of §§ 1.103(n)-1T through 1.103(n)-6T, the term “private... from tax under section 103(a) (without application of section 103(n)). See § 1.103-7(b) for...

  14. Organo- and Organometallic-Catalytic Intramolecular [1,5]-Hydride Transfer/Cyclization Process through C(sp(3) )-H Bond Activation.

    PubMed

    Kwon, Su Jin; Kim, Dae Young

    2016-06-01

    The direct functionalization of C(sp(3) )-H bonds is one of the most synthetically powerful research areas in current organic synthesis. Organocatalytic C(sp(3) )-H bond activation reactions have recently been developed in addition to the traditional metal-catalyzed C(sp(3) )-H activation reactions. In this review, we aim to give a brief overview of organo- and organometallic internal redox cascade reactions with respect to the mechanism, the reactivity of hydrogen donors and acceptors, and the migration modes of hydrogen. PMID:27062480

  15. Catalysis of hydrolysis and nucleophilic substitution at the P-N bond of phosphoimidazolide-activated nucleotides in phosphate buffers

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Rosenbach, M. T.

    1991-01-01

    Phosphoimidazolide-activated derivatives of guanosine and cytidine 5'-monophosphates, henceforth called ImpN's, exhibit enhanced rates of degradation in the presence of aqueous inorganic phosphate in the range 4.0 < or = pH < or = 8.6. This degradation is been attributed to (i) nucleophilic substitution of the imidazolide and (ii) catalysis of the P-N bond hydrolysis by phosphate. The first reaction results in the formation of nucleoside 5'-diphosphate and the second in nucleoside 5'-monophosphate. Analysis of the observed rates as well as the product ratios as a function of pH and phosphate concentration allow distinction between various mechanistic possibilities. The results show that both H2PO4- and HPO4(2-) participate in both hydrolysis and nucleophilic substitution. Statistically corrected biomolecular rate constants indicate that the dianion is 4 times more effective as a general base than the monoanion, and 8 times more effective as nucleophile. The low Bronsted value beta = 0.15 calculated for these phosphate species, presumed to act as general bases in facilitating water attack, is consistent with the fact that catalysis of the hydrolysis of the P-N bond in ImpN's has not been detected before. The beta nuc = 0.35 calculated for water, H2PO4-, HPO4(2-), and hydroxide acting as nucleophiles indicates a more associative transition state for nucleotidyl (O2POR- with R = nucleoside) transfers than that observed for phosphoryl (PO3(2-)) transfers (beta nuc = 0.25). With respect to the stability/reactivity of ImpN's under prebiotic conditions, our study shows that these materials would not suffer additional degradation due to inorganic phosphate, assuming the concentrations of phosphate, Pi, on prebiotic Earth were similar to those in the present oceans ([Pi] approximately 2.25 micromoles).

  16. Synthesis of a Benzodiazepine-derived Rhodium NHC Complex by C-H Bond Activation

    SciTech Connect

    Bergman, Roberg G.; Gribble, Jr., Michael W.; Ellman, Jonathan A.

    2008-01-30

    The synthesis and characterization of a Rh(I)-NHC complex generated by C-H activation of 1,4-benzodiazepine heterocycle are reported. This complex constitutes a rare example of a carbene tautomer of a 1,4-benzodiazepine aldimine stabilized by transition metal coordination and demonstrates the ability of the catalytically relevant RhCl(PCy{sub 3}){sub 2} fragment to induce NHC-forming tautomerization of heterocycles possessing a single carbene-stabilizing heteroatom. Implications for the synthesis of benzodiazepines and related pharmacophores via C-H functionalization are discussed.

  17. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding. Progress report, March 1, 1992--September 30, 1992

    SciTech Connect

    Lichtenberger, D.L.

    1992-11-01

    Purpose of this research program is to obtain experimental information on the different fundamental ways metals bond and activate organic molecules. Our approach has been to directly probe the electronic interactions between metals and molecules through a wide variety of ionization spectroscopies and other techniques, and to investigate the relationships with bonding modes, structures, and chemical behavior. During this period, we have (1) characterized the electronic features of diphosphines and monophosphines in their coordination to metals, (2) carried out theoretical and experimental investigations of the bonding capabilities of C{sub 60} to transition metals, (3) developed techniques for the imaging of single molecules on gold substrates that emphasizes the electronic backbonding from the metal to the molecule, (4) obtained the high resolution photoelectron spectrum of pure C{sub 70} in the gas phase, (5) compared the bonding of {eta}{sup 3}- acetylide ligands to the bonding of other small organic molecules with metals, and (6) reported the photoelectron spectra and bonding of {eta}{sup 3}-cyclopropenyl groups to metals.

  18. A Systematic Study of Structure and E-H Bond Activation Chemistry by Sterically Encumbered Germylene Complexes.

    PubMed

    Usher, Matthew; Protchenko, Andrey V; Rit, Arnab; Campos, Jesús; Kolychev, Eugene L; Tirfoin, Rémi; Aldridge, Simon

    2016-08-01

    A series of new germylene compounds has been synthesized offering systematic variation in the σ- and π-capabilities of the α-substituent and differing levels of reactivity towards E-H bond activation (E=H, B, C, N, Si, Ge). Chloride metathesis utilizing [(terphenyl)GeCl] proves to be an effective synthetic route to complexes of the type [(terphenyl)Ge(ERn )] (1-6: ERn =NHDipp, CH(SiMe3 )2 , P(SiMe3 )2 , Si(SiMe3 )3 or B(NDippCH)2 ; terphenyl=C6 H3 Mes2 -2,6=Ar(Mes) or C6 H3 Dipp2 -2,6=Ar(Dipp) ; Dipp=C6 H3 iPr2 -2,6, Mes=C6 H2 Me3 -2,4,6), while the related complex [{(Me3 Si)2 N}Ge{B(NDippCH)2 }] (8) can be accessed by an amide/boryl exchange route. Metrical parameters have been probed by X-ray crystallography, and are consistent with widening angles at the metal centre as more bulky and/or more electropositive substituents are employed. Thus, the widest germylene units (θ>110°) are found to be associated with strongly σ-donating boryl or silyl ancillary donors. HOMO-LUMO gaps for the new germylene complexes have been appraised by DFT calculations. The aryl(boryl)-germylene system [Ar(Mes) Ge{B(NDippCH)2 }] (6-Mes), which features a wide C-Ge-B angle (110.4(1)°) and (albeit relatively weak) ancillary π-acceptor capabilities, has the smallest HOMO-LUMO gap (119 kJ mol(-1) ). These features result in 6-Mes being remarkably reactive, undergoing facile intramolecular C-H activation involving one of the mesityl ortho-methyl groups. The related aryl(silyl)-germylene system, [Ar(Mes) Ge{Si(SiMe3 )3 }] (5-Mes) has a marginally wider HOMO-LUMO gap (134 kJ mol(-1) ), rendering it less labile towards decomposition, yet reactive enough to oxidatively cleave H2 and NH3 to give the corresponding dihydride and (amido)hydride. Mixed aryl/alkyl, aryl/amido and aryl/phosphido complexes are unreactive, but amido/boryl complex 8 is competent for the activation of E-H bonds (E=H, B, Si) to give hydrido, boryl and silyl products. The results of these reactivity studies

  19. Effects of 4-chlorotestosterone acetate on the phagocytic activity of human monocytes: results of double-blind trial

    PubMed Central

    Magliulo, E.; Giraldi, M.; Cattaneo, E.; Marchioni, E.

    1972-01-01

    A comparative trial on 4-chlorotestosterone acetate and placebo was conducted in humans by the double-blind technique. The effects of the drug were tested by measuring the phagocytic activity of blood monocytes in vitro for colloidal carbon. Monocytes from patients treated with 4-chlorotestosterone acetate displayed a phagocytic power significantly higher than that of monocytes from patients treated with the placebo. Such an increased phagocytic activity is discussed in relation to cell mechanisms and their role in anti-infective defence. ImagesFig. 1 PMID:4556011

  20. 26 CFR 1.142-1 - Exempt facility bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... bonds. (a) Overview. Interest on a private activity bond is not excludable from gross income under section 103(a) unless the bond is a qualified bond. Under section 141(e)(1)(A), an exempt facility bond issued under section 142 may be a qualified bond. Under section 142(a), an exempt facility bond is...

  1. 26 CFR 1.142-1 - Exempt facility bonds.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... bonds. (a) Overview. Interest on a private activity bond is not excludable from gross income under section 103(a) unless the bond is a qualified bond. Under section 141(e)(1)(A), an exempt facility bond issued under section 142 may be a qualified bond. Under section 142(a), an exempt facility bond is...

  2. One-Pot Amide Bond Formation from Aldehydes and Amines via a Photoorganocatalytic Activation of Aldehydes.

    PubMed

    Papadopoulos, Giorgos N; Kokotos, Christoforos G

    2016-08-19

    A mild, one-pot, and environmentally friendly synthesis of amides from aldehydes and amines is described. Initially, a photoorganocatalytic reaction of aldehydes with di-isopropyl azodicarboxylate leads to an intermediate carbonyl imide, which can react with a variety of amines to afford the desired amides. The initial visible light-mediated activation of a variety of monosubstituted or disubstituted aldehydes is usually fast, occurring in a few hours. Following the photocatalytic reaction, addition of the primary amine at room temperature or the secondary amine at elevated temperatures leads to the corresponding amide from moderate to excellent yields without epimerization. This methodology was applied in the synthesis of Moclobemide, a drug against depression and social anxiety. PMID:27227271

  3. Asymmetric Desymmetrization via Metal-Free C-F Bond Activation: Synthesis of 3,5-Diaryl-5-fluoromethyloxazolidin-2-ones with Quaternary Carbon Centers.

    PubMed

    Tanaka, Junki; Suzuki, Satoru; Tokunaga, Etsuko; Haufe, Günter; Shibata, Norio

    2016-08-01

    We disclose the first asymmetric activation of a non-activated aliphatic C-F bond in which a conceptually new desymmetrization of 1,3-difluorides by silicon-induced selective C-F bond scission is a key step. The combination of a cinchona alkaloid based chiral ammonium bifluoride catalyst and N,O-bis(trimethylsilyl)acetoamide (BSA) as the silicon reagent enabled the efficient catalytic cycle of asymmetric Csp3 -F bond cleavage under mild conditions with high enantioselectivities. The ortho effect of the aryl group at the prostereogenic center is remarkable. This concept was applied for the asymmetric synthesis of promising agrochemical compounds, 3,5-diaryl-5-fluoromethyloxazolidin-2-ones bearing a quaternary carbon center. PMID:27332650

  4. Synthesis of hybrid cellulose nanocomposite bonded with dopamine SiO2/TiO2 and its antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ramesh, Sivalingam; Kim, Gwang-Hoon; Kim, Jaehwan; Kim, Joo-Hyung

    2015-04-01

    Organic-inorganic hybrid material based cellulose was synthesized by the sol-gel approach. The explosion of activity in this area in the past decade has made tremendous progress in industry or academic both fundamental understanding of sol-gel process and applications of new functionalized hybrid materials. In this present research work, we focused on cellulose-dopamine functionalized SiO2/TiO2 hybrid nanocomposite by sol-gel process. The cellulose-dopamine hybrid nanocomposite was synthesized via γ-aminopropyltriethoxysilane (γ-APTES) coupling agent by in-situ sol-gel process. The chemical structure of cellulose-amine functionalized dopamine bonding to cellulose structure with covalent cross linking hybrids was confirmed by FTIR spectral analysis. The morphological analysis of cellulose-dopamine nanoSiO2/TiO2 hybrid nanocomposite materials was characterized by XRD, SEM and TEM. From this different analysis results indicate that the optical transparency, thermal stability, control morphology of cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite. Furthermore cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite was tested against pathogenic bacteria for antimicrobial activity.

  5. Active vibration reduction of a flexible structure bonded with optimised piezoelectric pairs using half and quarter chromosomes in genetic algorithms

    NASA Astrophysics Data System (ADS)

    Daraji, A. H.; Hale, J. M.

    2012-08-01

    The optimal placement of sensors and actuators in active vibration control is limited by the number of candidates in the search space. The search space of a small structure discretized to one hundred elements for optimising the location of ten actuators gives 1.73 × 1013 possible solutions, one of which is the global optimum. In this work, a new quarter and half chromosome technique based on symmetry is developed, by which the search space for optimisation of sensor/actuator locations in active vibration control of flexible structures may be greatly reduced. The technique is applied to the optimisation for eight and ten actuators located on a 500×500mm square plate, in which the search space is reduced by up to 99.99%. This technique helps for updating genetic algorithm program by updating natural frequencies and mode shapes in each generation to find the global optimal solution in a greatly reduced number of generations. An isotropic plate with piezoelectric sensor/actuator pairs bonded to its surface was investigated using the finite element method and Hamilton's principle based on first order shear deformation theory. The placement and feedback gain of ten and eight sensor/actuator pairs was optimised for a cantilever and clamped-clamped plate to attenuate the first six modes of vibration, using minimization of linear quadratic index as an objective function.

  6. Polymerization of ethylene by silica-supported dinuclear Cr(III) sites through an initiation step involving C-H bond activation.

    PubMed

    Conley, Matthew P; Delley, Murielle F; Siddiqi, Georges; Lapadula, Giuseppe; Norsic, Sébastien; Monteil, Vincent; Safonova, Olga V; Copéret, Christophe

    2014-02-10

    The insertion of an olefin into a preformed metal-carbon bond is a common mechanism for transition-metal-catalyzed olefin polymerization. However, in one important industrial catalyst, the Phillips catalyst, a metal-carbon bond is not present in the precatalyst. The Phillips catalyst, CrO3 dispersed on silica, polymerizes ethylene without an activator. Despite 60 years of intensive research, the active sites and the way the first CrC bond is formed remain unknown. We synthesized well-defined dinuclear Cr(II) and Cr(III) sites on silica. Whereas the Cr(II) material was a poor polymerization catalyst, the Cr(III) material was active. Poisoning studies showed that about 65 % of the Cr(III) sites were active, a far higher proportion than typically observed for the Phillips catalyst. Examination of the spent catalyst and isotope labeling experiments showed the formation of a Si-(μ-OH)-Cr(III) species, consistent with an initiation mechanism involving the heterolytic activation of ethylene at Cr(III) O bonds. PMID:24505006

  7. Cerium-activated rare-earth orthophosphate and double-phosphate scintillators for x-and gamma-ray detection

    SciTech Connect

    Boatner, Lynn A; Keefer, Lara A; Farmer, James Matthew; Wisniewski, D.; Wojtowicz, A. J.

    2004-01-01

    When activated with an appropriate rare-earth ion (e.g., Ce or Nd), rare-earth orthophosphates of the form REPO4 (where RE = a rare-earth cation) and alkali rare-earth double phosphates of the form A{sub 3}RE(PO{sub 4}){sub 2} (where A = K, Rb, or Cs) are characterized by light yields and decay times that make these materials of interest for radiation-detection applications. Crystals of the compound Rb{sub 3}Lu(PO{sub 4}){sub 2} when activated with {approx}0.1 mol % Ce exhibit a light yield that is {approx}250% that of BGO with a decay time on the order of {approx}40 nsec. The cerium-activated rare-earth orthophosphate LuPO{sub 4}:Ce is also characterized by a high light yield and a relatively fast decay time of {approx}25 nsec. Additionally, the rare-earth orthophosphates are extremely chemically, physically, and thermally durable hosts that recover easily from radiation damage effects. The properties of the rare-earth orthophosphates and double phosphates that pertain to their use as X- and gamma-ray detectors are reviewed. This review includes information related to the use of Nd-doped LuPO{sub 4} as a scintillator with a sufficiently energetic, short-wavelength output ({lambda} = 90 nm) so that it can be used in conjunction with appropriately activated proportional counters. Information is presented on the details of the synthesis, structure, and luminescence properties of lanthanide double phosphates that, when activated with cerium, are efficient scintillators with output wavelengths that are sufficiently long to be well matched to the response of silicon photodiode detectors.

  8. Active-site amino acid residues in γ-glutamyltransferase and the nature of the γ-glutamyl-enzyme bond

    PubMed Central

    Elce, John S.

    1980-01-01

    Active-site residues in rat kidney γ-glutamyltransferase (EC 2.3.2.2) were investigated by means of chemical modification. 1. In the presence of maleate, the activity was inhibited by phenylmethanesulphonyl fluoride, and the inhibition was not reversed by β-mercaptoethanol, suggesting that a serine residue is close to the active site, but is shielded except in the presence of maleate. 2. Treatment of the enzyme with N-acetylimidazole modified an amino group, exposed a previously inaccessible cysteine residue and inhibited hydrolysis of the γ-glutamyl-enzyme intermediate, but not its formation. 3. After reaction of the enzyme successively with N-acetylimidazole and with non-radioactive iodoacetamide/serine/borate, two active-site residues reacted with iodo[14C]acetamide. One of these possessed a carboxy group, which formed a [14C]glycollamide ester, and the other was cysteine, shown by isolation of S-[14C]carboxymethylcysteine after acid hydrolysis. When N-acetylimidazole treatment was omitted, only the carboxy group reacted with iodo[14C]acetamide. 4. Isolation of the γ-[14C]glutamyl-enzyme intermediate was made easier by prior treatment of the enzyme with N-acetylimidazole. The γ-glutamyl-enzyme bond was stable to performic acid, and to hydroxylamine/urea at pH10, but was hydrolysed slowly at pH12, indicating attachment of the γ-[14C]glutamyl group in amide linkage to an amino group on the enzyme. Proteolysis of the γ-[14C]glutamyl-enzyme after performic acid oxidation gave rise to a small acidic radioactive peptide that was resistant to further proteolysis and was not identical with γ-glutamyl-ε-lysine. 5. A scheme for the catalytic mechanism is proposed. PMID:6104953

  9. C-H Bond Activation by Pd-substituted CeO2: Substituted Ions versus Reduced Species

    SciTech Connect

    Misch, Lauren M; Kurzman, Joshua A; Derk, Alan R; Kim, Young-Il; Seshadri, Ram; Metiu, Horia; McFarland, Eric W; Stucky, Galen D

    2012-02-07

    Substituted metal oxides containing ionic species have been attracting a great deal of attention because of their potential ability to reduce the usage of precious metals in heterogeneous catalysts. We investigate Pd-substituted CeO2 for C-H bond activation reactions including the partial oxidation and dry reforming of CH4. This catalyst has been previously studied for CO oxidation, NOx reduction, and the water-gas shift reaction. Pd-substituted CeO2, Ce1-xPdxO2-δ, was prepared as a powder with high surface area and a hollow sphere morphology using ultrasonic spray pyrolysis. The catalysts were extensively characterized using synchrotron X-ray diffraction and other techniques, confirming phase pure samples up to 10 mol % Pd substitution. Ce0.95Pd0.05O2-δ was found to be active for partial oxidation of CH4 around 500 °C and higher. Our studies, including postcatalytic synchrotron diffraction, suggest that the single-phase Ce1-xPdxO2-δ material is not the active species and that catalysis occurs instead over the reduced two-phase Pd0/CeO2. This observation has been further confirmed by verifying the activity of the reduced Pd0/CeO2 catalysts for ethylene hydrogenation, a reaction that is known to require Pd0.

  10. Activity of neutral endopeptidase and aminopeptidase N in mouse thymic stromal cells which bind double-positive thymocytes.

    PubMed

    Small, M; Kaiser, M; Tse, W; Heimfeld, S; Blumberg, S

    1996-04-01

    The activity of two peptidases was determined in immortalized lines of thymic stromal cells. A line of total stromal cells (T-TG-St) was grown from transgenic mouse expressing temperature-sensitive SV40 T antigen under the control of the regulatory elements of the mouse major histocompatibility complex class I gene. From these cells we isolated a subset (DP-TG-St) that binds thymocytes which are mainly CD4+8+. We also assayed a clone of fetal thymic epithelial cells (BA/10) that binds CD4+8+ thymocytes. Both lines of double -positive cell-binding stroma exhibited strong activity of two peptidases, neutral endopeptidase (NEP; EC 3.4.24.11) and aminopeptidase N (APN; EC 3.4.11.2). In contrast, the activity of both enzymes was very low in the total thymic stromal line. Use of the specific inhibitors confirmed that these two enzymes were responsible for the activity observed but also suggested the presence of additional unidentified aminopeptidase(s) in the same stromal cells. The high activity of the two peptidases on stromal cells that bind thymocytes at the double-positive stage raises the possibility that they might contribute to the microenvironment of the developing thymocytes. PMID:8625997

  11. Hydrodesulfurization on Transition Metal Catalysts: Elementary Steps of C-S Bond Activation and Consequences of Bifunctional Synergies

    NASA Astrophysics Data System (ADS)

    Yik, Edwin Shyn-Lo

    convergence to a single phase is expected and predictable from thermodynamics at a given temperature and sulfur chemical potential, metastability of two phases can exist. We demonstrate, through extensive characterization and kinetic evidence, such behaviors exist in Re, where structural disparities between its phases lead to kinetic hurdles that prevent interconversions between layered ReSx nanostructures and sulfur-covered Re metal clusters. Such features allowed, for the first time, direct comparisons of reaction rates at identical conditions on two disparate phases of the same transition metal identity. Rigorous assessments of kinetic and selectivity data indicated that more universal mechanistic features persist across all catalysts studied, suggesting that differences in their catalytic activity were the result of different densities of HDS sites, which appeared to correlate with their respective metal-sulfur bond energies. Kinetic responses and product distributions indicated that the consumption of thiophene proceeds by the formation of a partially-hydrogenated surface intermediate, which subsequently produces tetrahydrothiophene (THT) and butene/butane (C4) via primary routes on similar types of sites. These sites are formed from desorption of weakly-bound sulfur adatoms on sulfur-covered metal surfaces, which can occur when the heat of sulfur adsorption is sufficiently low at high sulfur coverage as a result of increased sulfur-sulfur repulsive interactions. Relative stabilities and differences in the molecularity of the respective transition states that form THT and C4 dictate product distributions. THT desulfurization to form C4 occurs via readsorption and subsequent dehydrogenation, evidenced by secondary rates that exhibited negative H2 dependences. These behaviors suggest that C-S bond activation occurs on a partially (un)saturated intermediate, analogous to behaviors observed in C-C bond scission reactions of linear and cycloalkanes on hydrogen-covered metal

  12. Palladium-catalyzed Suzuki-Miyaura coupling of amides by carbon-nitrogen cleavage: general strategy for amide N-C bond activation.

    PubMed

    Meng, Guangrong; Szostak, Michal

    2016-06-15

    The first palladium-catalyzed Suzuki-Miyaura cross-coupling of amides with boronic acids for the synthesis of ketones by sterically-controlled N-C bond activation is reported. The transformation is characterized by operational simplicity using bench-stable, commercial reagents and catalysts, and a broad substrate scope, including substrates with electron-donating and withdrawing groups on both coupling partners, steric-hindrance, heterocycles, halides, esters and ketones. The scope and limitations are presented in the synthesis of >60 functionalized ketones. Mechanistic studies provide insight into the catalytic cycle of the cross-coupling, including the first experimental evidence for Pd insertion into the amide N-C bond. The synthetic utility is showcased by a gram-scale cross-coupling and cross-coupling at room temperature. Most importantly, this process provides a blueprint for the development of a plethora of metal catalyzed reactions of typically inert amide bonds via acyl-metal intermediates. A unified strategy for amide bond activation to enable metal insertion into N-C amide bond is outlined (). PMID:26864384

  13. Propane σ-Complexes on PdO(101): Spectroscopic Evidence of the Selective Coordination and Activation of Primary C-H Bonds.

    PubMed

    Zhang, Feng; Pan, Li; Choi, Juhee; Mehar, Vikram; Diulus, John T; Asthagiri, Aravind; Weaver, Jason F

    2015-11-16

    Achieving selective C-H bond cleavage is critical for developing catalytic processes that transform small alkanes to value-added products. The present study clarifies the molecular-level origin for an exceptionally strong preference for propane to dissociate on the crystalline PdO(101) surface via primary C-H bond cleavage. Using reflection absorption infrared spectroscopy (RAIRS) and density functional theory (DFT) calculations, we show that adsorbed propane σ-complexes preferentially adopt geometries on PdO(101) in which only primary C-H bonds datively interact with the surface Pd atoms at low propane coverages and are thus activated under typical catalytic reaction conditions. We show that a propane molecule achieves maximum stability on PdO(101) by adopting a bidentate geometry in which a H-Pd dative bond forms at each CH3 group. These results demonstrate that structural registry between the molecule and surface can strongly influence the selectivity of a metal oxide surface in activating alkane C-H bonds. PMID:26420576

  14. TECHNICAL NOTE: A real-time active smart patch system for monitoring the integrity of bonded repair on an aircraft structure

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Beard, Shawn J.; Kumar, Amrita; Hannum, Robert

    2006-06-01

    There currently exists a need to develop a cost-effective, in-service structural health monitoring (SHM) system for determining the initial quality of a bonded repair and assessing the long-term durability of the bonded repair on an aircraft structure. In this paper, a real-time active smart patch system (SPS) based on SMART layer technology is introduced for monitoring the integrity of bonded repairs. First, an overview of the SPS is given for typical metal and composite repairs. To illustrate the capability of the SPS, three applications are presented: (1) monitoring of the cure progress of the bonded repair adhesive, (2) detection of the initial artificial disbond between the composite patch and the metal structure, and (3) monitoring of damage in and around a bonded repair during fatigue cycling. The results show that, through the use of a real-time active SPS approach of using sensors placed in, on or around the repair, the initial quality and long-term durability of the repair can be evaluated and monitored.

  15. Effect of addition of chitosan to self-etching primer: antibacterial activity and push-out bond strength to radicular dentin

    PubMed Central

    Elsaka, Shaymaa; Elnaghy, Amr

    2012-01-01

    The purpose of this study was to evaluate the antibacterial activity of a modified self-etching primer incorporating chitosan and whether this modification affected the bond strength to radicular dentin. A modified self-etching primer was prepared by adding chitosan solutions at 0.03%, 0.06%, 0.12% and 0.25% (W/W) to RealSeal selfe-tching primer. RealSeal primer without chitosan was used as the control. The antibacterial activity of the modified self-etching primer was evaluated using the direct contact test against Enterococcus faecalis. The bonding ability of the RealSeal system to radicular dentin was evaluated using the push-out bond strength test. The modes of failure were examined under a stereomicroscope. Data were analyzed using analysis of variance (ANOVA) and Tukey's test, with a P-value < 0.05 indicating statistical significance. The results showed that the antibacterial properties of the freshly prepared and aged modified self-etching primer incorporating chitosan exhibited potent antibacterial effect against Enterococcus faecalis compared with the unmodified primer. The RealSeal system with the aged modified self-etching primer incorporating chitosan showed no significant differences in the bond strength as compared with the control (P = 0.99). The findings suggest that modified self-etching primer incorporating chitosan is a promising antibacterial primer which does not adversely affect the bond strength of the RealSeal system to radicular dentin. PMID:23554762

  16. Structure, bonding, and catalytic activity of monodisperse, transition-metal-substituted CeO2 nanoparticles.

    PubMed

    Elias, Joseph S; Risch, Marcel; Giordano, Livia; Mansour, Azzam N; Shao-Horn, Yang

    2014-12-10

    We present a simple and generalizable synthetic route toward phase-pure, monodisperse transition-metal-substituted ceria nanoparticles (M0.1Ce0.9O2-x, M = Mn, Fe, Co, Ni, Cu). The solution-based pyrolysis of a series of heterobimetallic Schiff base complexes ensures a rigorous control of the size, morphology and composition of 3 nm M0.1Ce0.9O2-x crystallites for CO oxidation catalysis and other applications. X-ray absorption spectroscopy confirms the dispersion of aliovalent (M(3+) and M(2+)) transition metal ions into the ceria matrix without the formation of any bulk transition metal oxide phases, while steady-state CO oxidation catalysis reveals an order of magnitude increase in catalytic activity with copper substitution. Density functional calculations of model slabs of these compounds confirm the stabilization of M(3+) and M(2+) in the lattice of CeO2. These results highlight the role of the host CeO2 lattice in stabilizing high oxidation states of aliovalent transition metal dopants that ordinarily would be intractable, such as Cu(3+), as well as demonstrating a rational approach to catalyst design. The current work demonstrates, for the first time, a generalizable approach for the preparation of transition-metal-substituted CeO2 for a broad range of transition metals with unparalleled synthetic control and illustrates that Cu(3+) is implicated in the mechanism for CO oxidation on CuO-CeO2 catalysts. PMID:25406101

  17. Ultrasonically bonded value assembly

    NASA Technical Reports Server (NTRS)

    Salvinski, R. J. (Inventor)

    1975-01-01

    A valve apparatus capable of maintaining a fluid-tight seal over a relatively long period of time by releasably bonding a valve member to its seat is described. The valve member is bonded or welded to the seat and then released by the application of the same energy to the bond joint. The valve member is held in place during the bonding by a clamping device. An appropriate force device can activate the opening and closing of the valve member. Various combinations of material for the valve member and valve seat can be utilized to provide an adequate sealing bond. Aluminum oxide, stainless steel, inconel, tungsten carbide as hard materials and copper, aluminum, titanium, silver, and gold as soft materials are suggested.

  18. Institutional Bonding.

    ERIC Educational Resources Information Center

    Allard, M. June

    Institutional bonding was examined at a public, urban commuter college with exceptionally high attrition and visibly low morale. Changes in bonding and attrition were measured 6 years after a 2-year effort to develop school identity and student feelings of membership. It was found that a simple index of campus morale is provided by level of…

  19. Contributions of a disulfide bond and a reduced cysteine side chain to the intrinsic activity of the high-density lipoprotein receptor SR-BI.

    PubMed

    Yu, Miao; Lau, Thomas Y; Carr, Steven A; Krieger, Monty

    2012-12-18

    The high-density lipoprotein (HDL) receptor scavenger receptor class B, type I (SR-BI), binds HDL and mediates selective cholesteryl ester uptake. SR-BI's structure and mechanism are poorly understood. We used mass spectrometry to assign the two disulfide bonds in SR-BI that connect cysteines within the conserved Cys(321)-Pro(322)-Cys(323) (CPC) motif and connect Cys(280) to Cys(334). We used site-specific mutagenesis to evaluate the contributions of the CPC motif and the side chain of extracellular Cys(384) to HDL binding and lipid uptake. The effects of CPC mutations on activity were context-dependent. Full wild-type (WT) activity required Pro(322) and Cys(323) only when Cys(321) was present. Reduced intrinsic activities were observed for CXC and CPX, but not XXC, XPX, or XXX mutants (X ≠ WT residue). Apparently, a free thiol side chain at position 321 that cannot form an intra-CPC disulfide bond with Cys(323) is deleterious, perhaps because of aberrant disulfide bond formation. Pro(322) may stabilize an otherwise strained CPC disulfide bond, thus supporting WT activity, but this disulfide bond is not absolutely required for normal activity. C(384)X (X = S, T, L, Y, G, or A) mutants exhibited altered activities that varied with the side chain's size: larger side chains phenocopied WT SR-BI treated with its thiosemicarbazone inhibitor BLT-1 (enhanced binding, weakened uptake); smaller side chains produced almost inverse effects (increased uptake:binding ratio). C(384)X mutants were BLT-1-resistant, supporting the proposal that Cys(384)'s thiol interacts with BLT-1. We discuss the implications of our findings on the functions of the extracellular loop cysteines in SR-BI and compare our results to those presented by other laboratories. PMID:23205738

  20. Contributions of a disulfide bond and a reduced cysteine side chain to the intrinsic activity of the HDL receptor SR-BI

    PubMed Central

    Yu, Miao; Lau, Thomas Y.; Carr, Steven A.; Krieger, Monty

    2013-01-01

    The high density lipoprotein (HDL) receptor, scavenger receptor class B, type I (SR-BI), binds HDL and mediates selective cholesteryl ester uptake. SR-BI's structure and mechanism are poorly understood. We used mass spectrometry to assign the two disulfide bonds in SR-BI that connect cysteines within the conserved Cys321-Pro322-Cys323 (CPC) motif and connect Cys280 to Cys334. We used site-specific mutagenesis to evaluate the contributions of the CPC motif and the side chain of extracellular Cys384 to HDL binding and lipid uptake. The effects of CPC mutations on activity were context dependent. Full wild-type (WT) activity required Pro322 and Cys323 only when Cys321 was present. Reduced intrinsic activities were observed for CXC and CPX, but not XXC, XPX or XXX mutants (X≠WT residue). Apparently, a free thiol side chain at position 321 that cannot form an intra-CPC disulfide bond with Cys323 is deleterious, perhaps because of aberrant disulfide bond formation. Pro322 may stabilize an otherwise strained CPC disulfide bond, thus supporting WT activity, but this disulfide bond is not absolutely required for activity. C384X (X=S,T,L,Y,G,A) mutants exhibited altered activities that varied with the side chain's size: larger side chains phenocopied WT SR-BI treated with its thiosemicarbazone inhibitor BLT-1 (increased binding, decreased uptake); smaller side chains produced almost inverse effects (increased uptake:binding ratio). C384X mutants were BLT-1 resistant, supporting the proposal that Cys384's thiol interacts with BLT-1. We discuss the implications of our findings on the functions of the extracellular loop cysteines in SR-BI and compare our results to those presented by other laboratories. PMID:23205738

  1. Implementation and Evaluation of Web-Based Learning Activities on Bonding and the Structure of Matter for 10-th Grade Chemistry

    NASA Astrophysics Data System (ADS)

    Frailich, Marcel

    This study deals with the development, implementation, and evaluation of web-based activities associated with the topic of chemical bonding , as taught in 10th grade chemistry. A website was developed entitled: "Chemistry and the Chemical Industry in the Service of Mankind", its URL is: http://stwww.weizmann.ac.il/g-chem/learnchem (Kesner, Frailich, & Hofstein, 2003). The main goal of this study was to assess the educational effectiveness of website activities dealing with the chemical bonding concept. These activities include visualization tools, as well as topics relevant to daily life and industrial applications. The study investigated the effectiveness of a web-based learning environment regarding the understanding of chemical bonding concepts, students' perceptions of the classroom learning environment, their attitudes regarding the relevance of learning chemistry to everyday life, and their interest in chemistry studies. As mentioned before, in the present study we focused on activities (from the website), all of which deal with chemical bonding concept. The following are the reasons for the decision to focus on this topic: (1) Chemical bonding is a key concept that is taught in 10th grade chemistry in high school. It provides the basis for many other chemistry topics that are taught later, and (2) Chemical bonding is a difficult for students using existing tools (e. g., static models in books, ball-and- stick models), which are insufficient to demonstrate the abstract nature phenomena associated with this topic. The four activities developed for this study are (1) models of the atomic structure, (2) metals -- structure and properties, (3) ionic substances in everyday life and in industry, and (4) molecular substances -- structure, properties, and uses. The study analyzed both quantitative and qualitative research. The quantitative tools of the study included: A Semantic Differential questionnaire and a Chemistry Classroom Web-Based Learning Environment

  2. Spectroscopic and Crystallographic Evidence for the Role of a Water-Containing H-Bond Network in Oxidase Activity of an Engineered Myoglobin.

    PubMed

    Petrik, Igor D; Davydov, Roman; Ross, Matthew; Zhao, Xuan; Hoffman, Brian; Lu, Yi

    2016-02-01

    Heme-copper oxidases (HCOs) catalyze efficient reduction of oxygen to water in biological respiration. Despite progress in studying native enzymes and their models, the roles of non-covalent interactions in promoting this activity are still not well understood. Here we report EPR spectroscopic studies of cryoreduced oxy-F33Y-CuBMb, a functional model of HCOs engineered in myoglobin (Mb). We find that cryoreduction at 77 K of the O2-bound form, trapped in the conformation of the parent oxyferrous form, displays a ferric-hydroperoxo EPR signal, in contrast to the cryoreduced oxy-wild-type (WT) Mb, which is unable to deliver a proton and shows a signal from the peroxo-ferric state. Crystallography of oxy-F33Y-CuBMb reveals an extensive H-bond network involving H2O molecules, which is absent from oxy-WTMb. This H-bonding proton-delivery network is the key structural feature that transforms the reversible oxygen-binding protein, WTMb, into F33Y-CuBMb, an oxygen-activating enzyme that reduces O2 to H2O. These results provide direct evidence of the importance of H-bond networks involving H2O in conferring enzymatic activity to a designed protein. Incorporating such extended H-bond networks in designing other metalloenzymes may allow us to confer and fine-tune their enzymatic activities. PMID:26716352

  3. Mechanistic insight into conjugated N-N bond cleavage by Rh(III)-catalyzed redox-neutral C-H activation of pyrazolones.

    PubMed

    Wu, Weirong; Liu, Yuxia; Bi, Siwei

    2015-08-14

    Density functional theory (DFT) calculations have been performed to investigate the detailed mechanism of Rh(III)-catalyzed redox-neutral C-H activation of pyrazolones with PhC≡CPh. It is found that (1) the methylene C-H activation is prior to the phenyl C-H activation, (2) the N-N bond cleavage is realized via Rh(III) → Rh(I) → Rh(III) rather than via Rh(III) → Rh(V) → Rh(III). The zwitterionic Rh(I) complex is identified to be a key intermediate in promoting the N-N bond cleavage. (3) Different from the Rh(III)-catalyzed hydrazine-directed C-H activation for indole synthesis, the rate-determining step of the reaction studied in this work is the Rh(III) → Rh(I) → Rh(III) process resulting in the N-N bond cleavage rather than the alkyne insertion step. The present theoretical study provides new insight into the mechanism of the conjugated N-N bond cleavage. PMID:26138233

  4. A Selective Rh(I) -Catalyzed Substrate-Controlled C-C Bond Activation of Benzyl Sulfonamide/Alcohol-Tethered Alkylidenecyclopropanes.

    PubMed

    Chen, Kai; Liu, Jia-Xin; Tang, Xiang-Ying; Shi, Min

    2016-08-01

    Benzyl sulfonamide/alcohol-tethered alkylidenecyclopropanes undergo a rhodium-catalyzed and substrate-controlled selective C-C bond activation, producing three types of common organic structural units: benzo[c]azepine/oxepines, dihydronaphthalen-1-amines, and conjugated dienes. Epoxidation and aromatization of these products to construct two useful compounds have also been achieved. PMID:27305281

  5. Discovery of molluscicidal and cercaricidal activities of 3-substituted quinazolinone derivatives by a scaffold hopping approach using a pseudo-ring based on the intramolecular hydrogen bond formation.

    PubMed

    Guo, Wei; Zheng, Lv-Yin; Li, Yong-Dong; Wu, Ren-Miao; Chen, Qiang; Yang, Ding-Qiao; Fan, Xiao-Lin

    2016-06-10

    Discovery of novel topological agents against Oncomelania hupensis snails and cercariae remains a significant challenge in current Schistosomiasis control. A pseudo-ring formed from salicylanilide by an intramolecular hydrogen bond led to the discovery of 3-substituted quinazolinone derivatives which showed a potent molluscicidal and cercaricidal activities. PMID:27017555

  6. Iridium-mediated Bond Activation and Water Oxidation as an Exemplary Case of CARISMA, A European Network for the Development of Catalytic Routines for Small Molecule Activation.

    PubMed

    Licini, Giulia; Albrecht, Martin

    2015-01-01

    CARISMA is a currently running COST Action that pools leading European experts in computational and experimental chemistry to foster synergies for developing new catalytic processes for the transformation of abundant small molecules such as water, carbon dioxide, or ammonia into high-value chemicals and energy-relevant products. CARISMA promotes new collaborations, exchange of knowledge and skills, frontier training to young as well as established researchers, and a platform for the advancement of theoretical and experimental research in an iterative process, comprised of expertise in various connate domains including synthesis, catalysis, spectroscopy, kinetics, and computational chemistry. These interactions stimulate the discovery of new and efficient catalytic processes, illustrated in the second part of this contribution with the collaborative development of powerful iridium-based complexes for bond activation and water oxidation catalysis. PMID:26507475

  7. Accelerated Bonding of Magnesium and Aluminum with a CuNi/Ag/CuNi Sandwich Interlayer by Plasma-Activated Sintering

    NASA Astrophysics Data System (ADS)

    Wang, Yiyu; Rao, Mei; Li, Leijun; Luo, Guoqiang; Shen, Qiang; Zhang, Lianmeng

    2016-02-01

    Plasma-activated sintering (PAS) has been applied, for the first time, to join magnesium and aluminum using a CuNi/Ag/CuNi sandwich structural interlayer. A cleaning effect and high efficient plasma heating mode in PAS have contributed to forming a strong interfacial diffusion bond under low temperature 673 K (400 °C) and short dwell time (0.6 ks). The designed interlayer provides a diffusion barrier effect and an enhanced physical contact between the interfaces. Strong bonding has been achieved without forming the brittle Mg-Al intermetallics.

  8. The Effect of Artificial Aging on The Bond Strength of Heat-activated Acrylic Resin to Surface-treated Nickel-chromium-beryllium Alloy

    PubMed Central

    Al Jabbari, Youssef S.; Zinelis, Spiros; Al Taweel, Sara M.; Nagy, William W.

    2016-01-01

    Purpose The debonding load of heat-activated polymethylmethacrylate (PMMA) denture base resin material to a nickel-chromium-beryllium (Ni-Cr-Be) alloy conditioned by three different surface treatments and utilizing two different commercial bonding systems was investigated. Materials and Methods Denture resin (Lucitone-199) was bonded to Ni-Cr-Be alloy specimens treated with Metal Primer II, the Rocatec system with opaquer and the Rocatec system without opaquer. Denture base resin specimens bonded to non-treated sandblasted Ni-Cr-Be alloy were used as controls. Twenty samples for each treatment condition (80 specimens) were tested. The 80 specimens were divided into two categories, thermocycled and non-thermocycled, containing four groups of ten specimens each. The non-thermocycled specimens were tested after 48 hours’ storage in room temperature water. The thermocycled specimens were tested after 2,000 cycles in 4°C and 55°C water baths. The debonding load was calculated in Newtons (N), and collected data were subjected by non parametric test Kruskal-Wallis One Way Analysis of Variance on Ranks and Dunn’s post hoc test at the α = 0.05. Results The Metal Primer II and Rocatec system without opaquer groups produced significantly higher bond strengths (119.9 and 67.6 N), respectively, than did the sandblasted and Rocatec system with opaquer groups, where the bond strengths were 2.6 N and 0 N, respectively. The Metal Primer II was significantly different from all other groups (P<0.05). The bond strengths of all groups were significantly decreased (P<0.05) after thermocycling. Conclusions Although thermocycling had a detrimental effect on the debonding load of all surface treatments tested, the Metal Primer II system provided higher values among all bonding systems tested, before and after thermocycling. PMID:27335613

  9. Supramolecular hydrogen-bonding patterns of co-crystals containing the active pharmaceutical ingredient (API) phloroglucinol and N-heterocycles.

    PubMed

    Cvetkovski, Aleksandar; Bertolasi, Valerio; Ferretti, Valeria

    2016-06-01

    The active pharmaceutical ingredient phloroglucinol (PHL) has been taken as an illustrative molecule to explore the intermolecular interactions which can be established with other molecular entities to build PHL pharmaceutical co-crystals. The crystal structures of five newly synthesized co-crystals are reported, where PHL is crystallized with N-heterocycles, namely 2-hydroxy-6-methylpyridine (1), 2,4-dimethyl-6-hydroxypyrimidine (2), 4-phenylpyridine (3), 2-hydroxypyridine (4) and 2,3,5,6-tetramethylpyrazine (5). The structural characteristics of these co-crystals, as far as the hydrogen-bonding networks and the crystalline architectures are concerned, are strongly dependent on the chemical features of the coformer molecules, as well as on their size and shape. A detailed analysis of the intermolecular interactions established in all the PHL co-crystals of known structures has allowed the recognition of some regularities in the packing modes that can be useful in the design of new supramolecular adducts forming predictable structural motifs. PMID:27240764

  10. Oxidative Addition of Carbon–Carbon Bonds with a Redox-Active Bis(imino)pyridine Iron Complex

    PubMed Central

    Darmon, Jonathan M.; Stieber, S. Chantal E.; Sylvester, Kevin T.; Fernández, Ignacio; Lobkovsky, Emil; Semproni, Scott P.; Bill, Eckhard; Wieghardt, Karl; DeBeer, Serena; Chirik, Paul J.

    2013-01-01

    Addition of biphenylene to the bis(imino)pyridine iron dinitrogen complexes, (iPrPDI)Fe(N2)2 and [(MePDI)Fe(N2)]2(μ2-N2) (RPDI = 2,6-(2,6-R2—C6H3— N=CMe)2C5H3N; R = Me, iPr), resulted in oxidative addition of a C—C bond at ambient temperature to yield the corresponding iron biphenyl compounds, (RPDI)Fe-(biphenyl). The molecular structures of the resulting bis-(imino)pyridine iron metallacycles were established by X-ray diffraction and revealed idealized square pyramidal geometries. The electronic structures of the compounds were studied by Mössbauer spectroscopy, NMR spectroscopy, magnetochemistry, and X-ray absorption and X-ray emission spectroscopies. The experimental data, in combination with broken-symmetry density functional theory calculations, established spin crossover (low to intermediate spin) ferric compounds antiferromagnetically coupled to bis(imino)pyridine radical anions. Thus, the overall oxidation reaction involves cooperative electron loss from both the iron center and the redox-active bis(imino)pyridine ligand. PMID:23043331

  11. Geometric and Electronic Structure of [{Cu(MeAN)}2(μ-η2:η2(O22−))]2+ with an Unusually Long O–O Bond: O–O Bond Weakening vs Activation for Reductive Cleavage

    PubMed Central

    Park, Ga Young; Qayyum, Munzarin F.; Woertink, Julia; Hodgson, Keith O.; Hedman, Britt; Narducci Sarjeant, Amy A.; Solomon, Edward I.; Karlin, Kenneth D.

    2012-01-01

    Certain side-on peroxo dicopper(II) species with particularly low υO–O (710–730 cm−1) have been found in equilibrium with their bis-μ-oxo dicopper(III) isomer. An issue is whether such side-on peroxo bridges are further activated for O–O cleavage. In a previous study (Liang, H.-C., et al., J. Am. Chem. Soc. 2002, 124, 4170–4171), we showed that oxygenation of the three-coordinate complex [CuI(MeAN)]+ (MeAN=N-methyl-N,N-bis[3-(dimethylamino)propyl]amine) leads to a low-temperature stable [{CuII(MeAN)}2(μ-η2:η2-O22−)]2+ peroxo species with low υO–O (721 cm−1), as characterized by UV-Vis absorption and resonance Raman (rR) spectroscopies. Here, this complex has been crystallized as its SbF6− salt and an X-ray structure indicates the presence of an unusually long O–O bond (1.540(5) Å) consistent with the low υO–O. EXAFS and rR spectroscopic and reactivity studies indicate the exclusive formation of [{CuII(MeAN)}2(μ-η2:η2-O22−)]2+ without any bis-μ-oxo-dicopper(III) isomer present. This is the first structure of a side-on peroxo dicopper(II) species with a significantly long and weak O–O bond. DFT calculations show that the weak O–O bond results from strong σ donation from the MeAN ligand to Cu that is compensated by a decrease in the extent of peroxo to Cu charge transfer. Importantly, the weak O–O bond does not reflect an increase in backbonding into the σ* orbital of the peroxide. Thus, although the O–O bond is unusually weak, this structure is not further activated for reductive cleavage to form a reactive bis-μ-oxo-dicopper(III) species. These results highlight the necessity of understanding electronic structure changes associated with spectral changes for correlations to reactivity. PMID:22571744

  12. Iron-Carbonyl-Catalyzed Redox-Neutral [4+2] Annulation of N-H Imines and Internal Alkynes by C-H Bond Activation.

    PubMed

    Jia, Teng; Zhao, Chongyang; He, Ruoyu; Chen, Hui; Wang, Congyang

    2016-04-18

    Stoichiometric C-H bond activation of arenes mediated by iron carbonyls was reported by Pauson as early as in 1965, yet the catalytic C-H transformations have not been developed. Herein, an iron-catalyzed annulation of N-H imines and internal alkynes to furnish cis-3,4-dihydroisoquinolines is described, and represents the first iron-carbonyl-catalyzed C-H activation reaction of arenes. Remarkablely, this is also the first redox-neutral [4+2] annulation of imines and alkynes proceeding by C-H activation. The reaction also features only cis stereoselectivity and excellent atom economy as neither base, nor external ligand, nor additive is required. Experimental and theoretical studies reveal an oxidative addition mechanism for C-H bond activation to afford a dinuclear ferracycle and a synergetic diiron-promoted H-transfer to the alkyne as the turnover-determining step. PMID:27002210

  13. Density function theoretical study on the complex involved in Th atom-activated C–C bond in C2H6

    NASA Astrophysics Data System (ADS)

    Qing-Qing, Wang; Peng, Li; Tao, Gao; Hong-Yan, Wang; Bing-Yun, Ao

    2016-06-01

    Density functional theory (DFT) calculations are performed to investigate the reactivity of Th atom toward ethane C–C bond activation. A comprehensive description of the reaction mechanisms leading to two different reaction products is presented. We report a complete exploration of the potential energy surfaces by taking into consideration different spin states. In addition, the intermediate and transition states along the reaction paths are characterized. Total, partial, and overlap population density of state diagrams and analyses are also presented. Furthermore, the natures of the chemical bonding of intermediate and transition states are studied by using topological method combined with electron localization function (ELF) and Mayer bond order. Infrared spectrum (IR) is obtained and further discussed based on the optimized geometries. Project supported by the National Natural Science Foundation of China (Grant Nos. 21371160, 21401173, and 11364023).

  14. Black Hole Masses of Active Galaxies with Double-peaked Balmer Emission Lines

    NASA Astrophysics Data System (ADS)

    Lewis, Karen T.; Eracleous, Michael

    2006-05-01

    We have obtained near-IR spectra of five AGNs that exhibit double-peaked Balmer emission lines (NGC 1097, Pictor A, PKS 0921-213, 1E 0450.30-1817, and IRAS 0236.6-3101). The stellar velocity dispersions of the host galaxies were measured from the Ca II λλ8494, 8542, 8662 absorption lines and were found to range from 140 to 200 km s-1. Using the well-known correlation between the black hole mass and the stellar velocity dispersion, the black hole masses in these galaxies were estimated to range from 4×107 to 1.2×108 Msolar. We supplement the observations presented here with estimates of the black holes masses for five additional double-peaked emitters (Arp 102B, 3C 390.3, NGC 4579, NGC 4203, and M81) obtained by other authors using similar methods. Using these black hole masses, we infer the ratio of the bolometric luminosity to the Eddington luminosity, (Lbol/LEdd). We find that two objects (Pictor A and PKS 0921-213) have Lbol/LEdd~0.2, whereas the other objects have Lbol/LEdd<~10-2 (nearby, low-luminosity double-peaked emitters are the most extreme, with Lbol/LEdd<~10-4). The physical timescales in the outer regions of the accretion disks (at r~103GM/c2) in these objects were also estimated and range from a few months for the dynamical timescale to several decades for the sound crossing timescale. The profile variability in these objects is typically an order of magnitude longer than the dynamical time, but we note that variability occurring on the dynamical timescale has not been ruled out by the observations. Based on observations carried out at Cerro Tololo Inter-American Observatory, which is operated by AURA, Inc., under a cooperative agreement with the National Science Foundation.

  15. UNUSUAL CENTRAL ENGINE ACTIVITY IN THE DOUBLE BURST GRB 110709B

    SciTech Connect

    Zhang Binbin; Burrows, David N.; Meszaros, Peter; Falcone, Abraham D.; Zhang Bing; Wang Xiangyu; Stratta, Giulia; D'Elia, Valerio; Frederiks, Dmitry; Golenetskii, Sergey; Cummings, Jay R.; Barthelmy, Scott D.; Gehrels, Neil; Norris, Jay P.

    2012-04-01

    The double burst, GRB 110709B, triggered the Swift/Burst Alert Telescope (BAT) twice at 21:32:39 UT and 21:43:45 UT, respectively, on 2011 July 9. This is the first time we observed a gamma-ray burst (GRB) with two BAT triggers. In this paper, we present simultaneous Swift and Konus-WIND observations of this unusual GRB and its afterglow. If the two events originated from the same physical progenitor, their different time-dependent spectral evolution suggests they must belong to different episodes of the central engine, which may be a magnetar-to-BH accretion system.

  16. Unusual Central Engine Activity in the Double Burst GRB 110709B

    NASA Technical Reports Server (NTRS)

    Zhang, Bin-Bin; Burrows, David N.; Zhang, Bing; Meszaros, Peter; Stratta, Giulia; D'Elia, Valerio; Frederiks, Dmitry; Golenetskii, S.; Cummings, Jay R.; Wang, Xiang-Yu; Falcone, Abraham D.; Barthelmy, Scott D.; Gehrels, Neil

    2011-01-01

    The double burst, GRB 110709B, triggered Swift/BAT twice at 21:32:39 UT and 21:43:45 UT, respectively, on 9 July 2011. This is the first time we observed a GRB with two BAT triggers. In this paper, we present simultaneous Swift and Konus-WIND observations of this unusual GRB and its afterglow. If the two events are from the same physical origin, their different time-dependent spectral evolution suggest they must belong to different episodes of the central engine, which may be a magnetar-to-BH accretion system.

  17. Synthesis, DNA-binding and biological activity of a double intercalating analog of ethidium bromide.

    PubMed Central

    Kuhlmann, K F; Charbeneau, N J; Mosher, C W

    1978-01-01

    A bis-phenanthridinium salt has been synthesized and its DNA-binding studied. Evidence provided by UV and CD spectra, by thermal denaturation profiles and by equilibrium dialysis of the drug-DNA complex lead to the conclusion that both phenanthridine moieties intercalate in the helix. The double intercalator appears to be less potent than ethidium chloride as an inhibitor of nucleic acid synthesis in cultured L1210 cells, though it is more potent than a monomeric analog. The low potency may be due to a low cell influx rate. PMID:673863

  18. An Active Radiation Screen Design Based on Superconducting Double-Helix Solenoids

    NASA Astrophysics Data System (ADS)

    Battiston, R.; Burger, W. J.; Calvelli, V.; Musenich, R.; Choutko, V.; Datskov, V. I.; Della Torre, A.; Venditti, F.; Gargiulo, C.; Hovland, S.; Laurenti, G.; Lucidi, S.; Meinke, R.

    2012-01-01

    The ionizing radiation of galactic cosmic rays and solar energetic protons represents currently a practical limitation for the duration of manned space missions. A mag- netic shield for an interplanetary manned mission composed of superconducting double-helix solenoids is presented. The performance of the magnetic shield has been studied using a physics simulation based on the GEANT3 program developed at CERN. Annual equivalent doses of solenoid and toroid magnet configurations are compared to the simulation results for free space and non-shielded spacecraft doses.

  19. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach.

    PubMed

    Aijaz, Arshad; Karkamkar, Abhi; Choi, Young Joon; Tsumori, Nobuko; Rönnebro, Ewa; Autrey, Tom; Shioyama, Hiroshi; Xu, Qiang

    2012-08-29

    Ultrafine Pt nanoparticles were successfully immobilized inside the pores of a metal-organic framework, MIL-101, without aggregation of Pt nanoparticles on the external surfaces of framework by using a "double solvents" method. TEM and electron tomographic measurements clearly demonstrated the uniform three-dimensional distribution of the ultrafine Pt NPs throughout the interior cavities of MIL-101. The resulting Pt@MIL-101 composites represent the first highly active MOF-immobilized metal nanocatalysts for catalytic reactions in all three phases: liquid-phase ammonia borane hydrolysis, solid-phase ammonia borane thermal dehydrogenation, and gas-phase CO oxidation. PMID:22888976

  20. Broadband control of plate radiation using a piezoelectric, double-amplifier active-skin and structural acoustic sensing

    PubMed

    Johnson; Fuller

    2000-02-01

    The potential of a piezoelectric, double-amplifier active-skin with structural acoustic sensing (SAS) is demonstrated for the reduction of broadband acoustic radiation from a clamped, aluminum plate. The active-skin is a continuous covering of the vibrating portions of the plate with active, independently controllable piezoelectric, double-amplifier elements and is designed to affect control by altering the continuous structural radiation impedance rather than structural vibration. In simulation, acoustic models are sought for the primary and secondary sources that incorporate finite element methods. Simulation indicates that a total radiated power attenuation in excess of 10 dB may be achieved between 250 and 750 Hz with microphone error sensing, while under SAS the radiated power is reduced by nearly 8 dB in the same frequency range. In experiment, the adaptive feed forward filtered-x LMS (least mean square) algorithm, implemented on a Texas Instruments C40 DSP, was used in conjunction with the 6I6O control system. With microphone error sensing, 11.8-dB attenuation was achieved in the overall radiated power between 175 and 600 Hz, while inclusion of SAS resulted in a 7.3-dB overall power reduction in this frequency band. PMID:10687697

  1. Interferon, double-stranded RNA, and RNA degradation: activation of an endonuclease by (2'-5')An.

    PubMed Central

    Slattery, E; Ghosh, N; Samanta, H; Lengyel, P

    1979-01-01

    Among the mediators of interferon action are one enzyme that is activated by double-stranded RNA to convert ATP to (2'-5')An and a second enzyme, an endonuclease, that is activated by (2'-5')An to cleave single-stranded RNA. The binding of (2'-5')An to the endonuclease (partially purified from mouse Ehrlich ascites tumor cells) is revealed by its retention on nitrocellulose filters. This can serve as the basis for an assay of the enzyme. Activation of the enzyme is reversible and is lost upon removal of (2'-5')An:gel filtration of activated endonuclease on Sephacryl S-200 results in an inactive enzyme. The enzyme can be activated again, however, by addition of (2'-5')An. The elution volume of the nonactivated endonuclease from Sephadex G-200 indicates that its molecular weight is 185,000, unusually large for a nuclease. The elution volume of the maximally activated endonuclease from Sephadex G-200 equilibrated with (2'-5')An is not detectably different from that of enzyme that had not been previously activated that was passed through Sephadex G-200 not equilibrated with (2'-5')An. This indicates that the activation does not result in a large change in the size or conformation of the enzyme. Images PMID:291897

  2. Organic chemistry: No double bond left behind

    NASA Astrophysics Data System (ADS)

    Sarlah, David

    2016-03-01

    Alkenyl halides are some of the most useful building blocks for synthesizing small organic molecules. A catalyst has now allowed their direct preparation from widely available alkenes using the cross-metathesis reaction. See Article p.459

  3. Active-Transient Liquid Phase (A-TLP) Bonding of Pure Aluminum Matrix Composite Reinforced with Short Alumina Fiber Using Al-12Si-xTi Foils as Active Interlayer

    NASA Astrophysics Data System (ADS)

    Zhang, Guifeng; Su, Wei; Suzumura, Akio

    2016-02-01

    To optimize both the interlayer composition design route and pressure for joining aluminum matrix composite reinforced with short alumina fiber (as-cast 30 vol pct Al2O3sf/Al), traditional transient liquid phase (TLP) bonding using Al-12Si and Cu interlayer and active-TLP (A-TLP) bonding using an active Ti-containing interlayer (Al-12Si-xTi, x = 0.1, 0.5, and 1 wt pct) under the same condition [883 K (610 °C) × 30 minutes × 1 or 0.015 MPa in flowing argon] were compared in terms of interfacial wettability, bond seam microstructure, shear strength, and fracture path. It was found that not only the Ti content but also the pressure are critical factors affecting interfacial wettability and bond seam microstructure. The improvement in wettability by adding Ti as an active element were confirmed by reduction of expulsion of liquid interlayer, elimination of interfacial gap, higher shear strength and favorable fracture path (partially through bond seam and the composite). Because of the incubation period for wetting, reducing the pressure after melting of the interlayer could further increase joint shear strength by thickening the remaining bond seam of solid-solution matrix and decreasing fraction of the in situ newly formed Al-Si-Ti IMC phase (short bar shape) within the bond seam. The maximum shear strength of 88.6 MPa (99 pct of the as-cast composite) was obtained by adding trace Ti content (0.5 Ti wt pct) addition and using low pressure (0.015 MPa). The results showed that suitable combination of Ti content and pressure pattern is required for improving both wettability and bond seam microstructure.

  4. Active-Transient Liquid Phase (A-TLP) Bonding of Pure Aluminum Matrix Composite Reinforced with Short Alumina Fiber Using Al-12Si- xTi Foils as Active Interlayer

    NASA Astrophysics Data System (ADS)

    Zhang, Guifeng; Su, Wei; Suzumura, Akio

    2016-06-01

    To optimize both the interlayer composition design route and pressure for joining aluminum matrix composite reinforced with short alumina fiber (as-cast 30 vol pct Al2O3sf/Al), traditional transient liquid phase (TLP) bonding using Al-12Si and Cu interlayer and active-TLP (A-TLP) bonding using an active Ti-containing interlayer (Al-12Si- xTi, x = 0.1, 0.5, and 1 wt pct) under the same condition [883 K (610 °C) × 30 minutes × 1 or 0.015 MPa in flowing argon] were compared in terms of interfacial wettability, bond seam microstructure, shear strength, and fracture path. It was found that not only the Ti content but also the pressure are critical factors affecting interfacial wettability and bond seam microstructure. The improvement in wettability by adding Ti as an active element were confirmed by reduction of expulsion of liquid interlayer, elimination of interfacial gap, higher shear strength and favorable fracture path (partially through bond seam and the composite). Because of the incubation period for wetting, reducing the pressure after melting of the interlayer could further increase joint shear strength by thickening the remaining bond seam of solid-solution matrix and decreasing fraction of the in situ newly formed Al-Si-Ti IMC phase (short bar shape) within the bond seam. The maximum shear strength of 88.6 MPa (99 pct of the as-cast composite) was obtained by adding trace Ti content (0.5 Ti wt pct) addition and using low pressure (0.015 MPa). The results showed that suitable combination of Ti content and pressure pattern is required for improving both wettability and bond seam microstructure.

  5. Modulation of activity and substrate binding modes by mutation of single and double subsites +1/+2 and -5/-6 of barley alpha-amylase 1.

    PubMed

    Mori, H; Bak-Jensen, K S; Gottschalk, T E; Motawia, M S; Damager, I; Møller, B L; Svensson, B

    2001-12-01

    Enzymatic properties of barley alpha-amylase 1 (AMY1) are altered as a result of amino acid substitutions at subsites -5/-6 (Cys95-->Ala/Thr) and +1/+2 (Met298-->Ala/Asn/Ser) as well as in the double mutants, Cys95-->Ala/Met298-->Ala/Asn/Ser. Cys95-->Ala shows 176% activity towards insoluble Blue Starch compared to wild-type AMY1, kcat of 142 and 211% towards amylose DP17 and 2-chloro-4-nitrophenyl beta-d-maltoheptaoside (Cl-PNPG7), respectively, but fivefold to 20-fold higher Km. The Cys95-->Thr-AMY1 AMY2 isozyme mimic exhibits the intermediary behaviour of Cys95-->Ala and wild-type. Met298-->Ala/Asn/Ser have slightly higher to slightly lower activity for starch and amylose, whereas kcat and kcat/Km for Cl-PNPG7 are < or = 30% and < or = 10% of wild-type, respectively. The activity of Cys95-->Ala/Met298-->Ala/Asn/Ser is 100-180% towards starch, and the kcat/Km is 15-30%, and 0.4-1.1% towards amylose and Cl-PNPG7, respectively, emphasizing the strong impact of the Cys95-->Ala mutation on activity. The mutants therefore prefer the longer substrates and the specificity ratios of starch/Cl-PNPG7 and amylose/Cl-PNPG7 are 2.8- to 270-fold and 1.2- to 60-fold larger, respectively, than of wild-type. Bond cleavage analyses show that Cys95 and Met298 mutations weaken malto-oligosaccharide binding near subsites -5 and +2, respectively. In the crystal structure Met298 CE and SD (i.e., the side chain methyl group and sulfur atom) are near C(6) and O(6) of the rings of the inhibitor acarbose at subsites +1 and +2, respectively, and Met298 mutants prefer amylose for glycogen, which is hydrolysed with a slightly lower activity than by wild-type. Met298 AMY1 mutants and wild-type release glucose from the nonreducing end of the main-chain of 6"'-maltotriosyl-maltohexaose thus covering subsites -1 to +5, while productive binding of unbranched substrate involves subsites -3 to +3. PMID:11737209

  6. Hydrodesulfurization on Transition Metal Catalysts: Elementary Steps of C-S Bond Activation and Consequences of Bifunctional Synergies

    NASA Astrophysics Data System (ADS)

    Yik, Edwin Shyn-Lo

    convergence to a single phase is expected and predictable from thermodynamics at a given temperature and sulfur chemical potential, metastability of two phases can exist. We demonstrate, through extensive characterization and kinetic evidence, such behaviors exist in Re, where structural disparities between its phases lead to kinetic hurdles that prevent interconversions between layered ReSx nanostructures and sulfur-covered Re metal clusters. Such features allowed, for the first time, direct comparisons of reaction rates at identical conditions on two disparate phases of the same transition metal identity. Rigorous assessments of kinetic and selectivity data indicated that more universal mechanistic features persist across all catalysts studied, suggesting that differences in their catalytic activity were the result of different densities of HDS sites, which appeared to correlate with their respective metal-sulfur bond energies. Kinetic responses and product distributions indicated that the consumption of thiophene proceeds by the formation of a partially-hydrogenated surface intermediate, which subsequently produces tetrahydrothiophene (THT) and butene/butane (C4) via primary routes on similar types of sites. These sites are formed from desorption of weakly-bound sulfur adatoms on sulfur-covered metal surfaces, which can occur when the heat of sulfur adsorption is sufficiently low at high sulfur coverage as a result of increased sulfur-sulfur repulsive interactions. Relative stabilities and differences in the molecularity of the respective transition states that form THT and C4 dictate product distributions. THT desulfurization to form C4 occurs via readsorption and subsequent dehydrogenation, evidenced by secondary rates that exhibited negative H2 dependences. These behaviors suggest that C-S bond activation occurs on a partially (un)saturated intermediate, analogous to behaviors observed in C-C bond scission reactions of linear and cycloalkanes on hydrogen-covered metal

  7. 15N NMR spectroscopy of hydrogen-bonding interactions in the active site of serine proteases: evidence for a moving histidine mechanism.

    PubMed

    Bachovchin, W W

    1986-11-18

    Nitrogen-15 NMR spectroscopy has been used to study the hydrogen-bonding interactions involving the histidyl residue in the catalytic triad of alpha-lytic protease in the resting enzyme and in the transition-state or tetrahedral intermediate analogue complexes formed with phenylmethanesulfonyl fluoride and diisopropyl fluorophosphate. The 15N shifts indicate that a strong hydrogen bond links the active site histidine and serine residues in the resting enzyme in solution. This result is at odds with interpretations of the X-ray diffraction data of alpha-lytic protease and of other serine proteases, which indicate that the serine and histidine residues are too far apart and not properly aligned for the formation of a hydrogen bond. In addition, the nitrogen-15 shifts demonstrate that protonation of the histidine imidazole ring at low pH in the transition-state or tetrahedral intermediate analogue complexes formed with phenylmethanesulfonyl fluoride and diisopropyl fluorophosphate triggers the disruption of the aspartate-histidine hydrogen bond. These results suggest a catalytic mechanism involving directed movement of the imidazole ring of the active site histidyl residue. PMID:3542033

  8. GaInAsP/silicon-on-insulator hybrid laser with ring-resonator-type reflector fabricated by N2 plasma-activated bonding

    NASA Astrophysics Data System (ADS)

    Hayashi, Yusuke; Suzuki, Junichi; Inoue, Satoshi; Tanvir Hasan, Shovon Muhammad; Kuno, Yuki; Itoh, Kazuto; Amemiya, Tomohiro; Nishiyama, Nobuhiko; Arai, Shigehisa

    2016-08-01

    III–V/Si hybrid integration with direct bonding is an attractive method of realizing an electrophotonic convergence router with a small size and a low power consumption. Plasma-activated bonding (PAB) is an effective approach for reducing thermal stress during the bonding process because PAB achieves a high bonding strength with low-temperature annealing. This time, the fabrication of a GaInAsP/silicon-on-insulator (SOI) hybrid laser with Si ring-resonator-type reflectors was demonstrated by N2 PAB. By measuring the lasing spectra, we confirmed the reflective characteristics resulting from the cascaded Si ring resonators. We also investigated kink characteristics, which occur around the threshold current, of the current–light output (I–L) characteristics, and successfully approximated the kink characteristics by considering saturable absorption occurring at the III–V/Si taper tip. The taper structure was investigated in terms of a passive device as well as an active device, and a structure for eliminating saturable absorption was proposed.

  9. A Double WAP Domain-Containing Protein Es-DWD1 from Eriocheir sinensis Exhibits Antimicrobial and Proteinase Inhibitory Activities

    PubMed Central

    Guo, Xiao-Nv; Yu, Ai-Qing; Wu, Min-Hao; Tan, Shang-Jian; Zhu, You-Ting; Li, Wei-Wei; Wang, Qun

    2013-01-01

    Whey acidic proteins (WAP) belong to a large gene family of antibacterial peptides, which are critical in the host immune response against microbial invasion. The common feature of these proteins is a single WAP domain maintained by at least one four-disulfide core (4-DSC) structure rich in cysteine residues. In this study, a double WAP domain (DWD)-containing protein, Es-DWD1, was first cloned from the Chinese mitten crab (Eriocheirsinensis). The full-length Es-DWD1cDNA was 1193 bp, including a 411 bp open reading frame (ORF) encoding 136 amino acids with a signal peptide of 22 amino acids in the N-terminus. A comparison with other reported invertebrate and vertebrate sequences revealed the presence of WAP domains characteristic of WAP superfamilies. As determined by quantitative real-time RT-PCR, Es-DWD1 transcripts were ubiquitously expressed in all tissues, but it was up-regulated in hemocytes post-challenge with pathogen-associated molecular patterns (PAMPs). The mature recombinant Es-DWD1 (rEs-DWD1) protein exhibited different binding activities to bacteria and fungus. Moreover, rEs-DWD1 could exert agglutination activities against Bacillus subtilis and Pichiapastoris and demonstrated inhibitory activities against the growth of Staphylococcus aureus, Aeromonas hydrophila and P. pastoris. Furthermore, rEs-DWD1 showed a specific protease inhibitory activity in B. subtilis. Coating of rEs-DWD1 onto agarose beads enhanced encapsulation of the beads by crab hemocytes. Collectively, the results suggest that Es-DWD1 is a double WAP domain containing protein with antimicrobial and proteinase inhibitory activities, which play significant roles in the immunity of crustaceans. PMID:23967346

  10. Isolating the effect of pore size distribution on electrochemical double-layer capacitance using activated fluid coke

    NASA Astrophysics Data System (ADS)

    Zuliani, Jocelyn E.; Tong, Shitang; Kirk, Donald W.; Jia, Charles Q.

    2015-12-01

    Electrochemical double-layer capacitors (EDLCs) use physical ion adsorption in the capacitive electrical double layer of high specific surface area (SSA) materials to store electrical energy. Previous work shows that the SSA-normalized capacitance increases when pore diameters are less than 1 nm. However, there still remains uncertainty about the charge storage mechanism since the enhanced SSA-normalized capacitance is not observed in all microporous materials. In previous studies, the total specific surface area and the chemical composition of the electrode materials were not controlled. The current work is the first reported study that systematically compares the performance of activated carbon prepared from the same raw material, with similar chemical composition and specific surface area, but different pore size distributions. Preparing samples with similar SSAs, but different pores sizes is not straightforward since increasing pore diameters results in decreasing the SSA. This study observes that the microporous activated carbon has a higher SSA-normalized capacitance, 14.1 μF cm-2, compared to the mesoporous material, 12.4 μF cm-2. However, this enhanced SSA-normalized capacitance is only observed above a threshold operating voltage. Therefore, it can be concluded that a minimum applied voltage is required to induce ion adsorption in these sub-nanometer micropores, which increases the capacitance.

  11. Conjugation-Driven "Reverse Mars-van Krevelen"-Type Radical Mechanism for Low-Temperature C-O Bond Activation.

    PubMed

    Mironenko, Alexander V; Vlachos, Dionisios G

    2016-07-01

    C-O bond activation on monofunctional catalysts (metals, carbides, and oxides) is challenging due to activity constraints imposed by energy scaling relationships. Yet, contrary to predictions, recently discovered multifunctional metal/metal oxide catalysts (e.g., Rh/ReOx, Rh/MoOx, Ir/VOx) demonstrate unusually high C-O scission activity at moderate temperatures. Herein, we use extensive density functional theory calculations, first-principles microkinetic modeling, and electronic structure analysis to elucidate the metal/metal oxide synergy in the Ru/RuO2 catalyst, which enables up to 76% yield of the C-O scission product (2-methyl furan) in catalytic transfer hydrogenolysis of furfural at low temperatures. Our key mechanistic finding is a facile radical-mediated C-O bond activation on RuO2 oxygen vacancies, which directly leads to a weakly bound final product. This is the first time the radical reduction mechanism is reported in heterogeneous catalysis at temperatures <200 °C. We attribute the unique catalytic properties to the formation of a conjugation-stabilized furfuryl radical upon C-O bond scission, the strong hydroxyl affinity of oxygen vacancies due to the metallic character of RuO2, and the acid-base heterogeneity of the oxide surface. The conjugation-driven radical-assisted C-O bond scission applies to any catalytic surface that preserves the π-electron system of the reactant and leads to C-O selectivity enhancement, with notable examples including Cu, H-covered Pd, self-assembled monolayers on Pd, and oxygen-covered Mo2C. Furthermore, we reveal the cooperativity of active sites in multifunctional catalysts. The mechanism is fully consistent with kinetic studies and isotopic labeling experiments, and the insights gained might prove useful more broadly in overcoming activity constraints induced by energy scaling relationships. PMID:27281043

  12. A Substrate-Assisted Mechanism of Nucleophile Activation in a Ser-His-Asp Containing C-C Bond Hydrolase

    SciTech Connect

    Ruzzini, Antonio C.; Bhowmik, Shiva; Ghosh, Subhangi; Yam, Katherine C.; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2013-11-12

    The meta-cleavage product (MCP) hydrolases utilize a Ser–His–Asp triad to hydrolyze a carbon–carbon bond. Hydrolysis of the MCP substrate has been proposed to proceed via an enol-to-keto tautomerization followed by a nucleophilic mechanism of catalysis. Ketonization involves an intermediate, ESred, which possesses a remarkable bathochromically shifted absorption spectrum. We investigated the catalytic mechanism of the MCP hydrolases using DxnB2 from Sphingomonas wittichii RW1. Pre-steady-state kinetic and LC ESI/MS evaluation of the DxnB2-mediated hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid to 2-hydroxy-2,4-pentadienoic acid and benzoate support a nucleophilic mechanism catalysis. In DxnB2, the rate of ESred decay and product formation showed a solvent kinetic isotope effect of 2.5, indicating that a proton transfer reaction, assigned here to substrate ketonization, limits the rate of acylation. For a series of substituted MCPs, this rate was linearly dependent on MCP pKa2nuc ~ 1). Structural characterization of DxnB2 S105A:MCP complexes revealed that the catalytic histidine is displaced upon substrate-binding. The results provide evidence for enzyme-catalyzed ketonization in which the catalytic His–Asp pair does not play an essential role. The data further suggest that ESred represents a dianionic intermediate that acts as a general base to activate the serine nucleophile. This substrate-assisted mechanism of nucleophilic catalysis distinguishes MCP hydrolases from other serine hydrolases.

  13. A 6-week, multicentre, randomised, double-blind, double-dummy, active-controlled, clinical safety study of lumiracoxib and rofecoxib in osteoarthritis patients

    PubMed Central

    Stricker, Kirstin; Yu, Sue; Krammer, Gerhard

    2008-01-01

    Background Lumiracoxib is a selective cyclooxygenase-2 inhibitor effective in the treatment of osteoarthritis (OA) with a superior gastrointestinal (GI) safety profile as compared to traditional non-steroidal anti-inflammatory drugs (NSAIDs, ibuprofen and naproxen). This safety study compared the GI tolerability, the blood pressure (BP) profile and the incidence of oedema with lumiracoxib and rofecoxib in the treatment of OA. Rofecoxib was withdrawn worldwide due to an associated increased risk of CV events and lumiracoxib has been withdrawn from Australia, Canada, Europe and a few other countries following reports of suspected adverse liver reactions. Methods This randomised, double-blind study enrolled 309 patients (aged greater than or equal to 50 years) with primary OA across 51 centres in Europe. Patients were randomly allocated to receive either lumiracoxib 400 mg od (four times the recommended dose in OA) (n = 154) or rofecoxib 25 mg od (n = 155). The study was conducted for 6 weeks and assessments were performed at Weeks 3 and 6. The primary safety measures were the incidence of predefined GI adverse events (AEs) and peripheral oedema. The secondary safety measures included effect of treatment on the mean sitting systolic and diastolic blood pressure (msSBP and msDBP). Tolerability of lumiracoxib 400 mg was assessed by the incidence of AEs. Results Lumiracoxib and rofecoxib displayed similar GI safety profiles with no statistically significant difference in predefined GI AEs between the two groups (43.5% vs. 37.4%, respectively). The incidence and severity of individual predefined GI AEs was comparable between the two groups. The incidence of peripheral oedema was low and identical in both the groups (n = 9, 5.8%). Only one patient in the lumiracoxib group and three patients in the rofecoxib group had a moderate or severe event. At Week 6 there was a significantly lower msSBP and msDBP in the lumiracoxib group compared to the rofecoxib group (p < 0.05). A

  14. Determining water content in activated carbon for double-layer capacitor electrodes

    NASA Astrophysics Data System (ADS)

    Egashira, Minato; Izumi, Takuma; Yoshimoto, Nobuko; Morita, Masayuki

    2016-09-01

    Karl-Fisher titration is used to estimate water contents in activated carbon and the distribution of impurity-level water in an activated carbon-solvent system. Normalization of the water content of activated carbon is attempted using vacuum drying after immersion in water was controlled. Although vacuum drying at 473 K and 24 h can remove large amounts of water, a substantial amount of water remains in the activated carbon. The water release to propylene carbonate is less than that to acetonitrile. The degradation of capacitor cell capacitance for activated carbon with some amount of water differs according to the electrolyte solvent type: acetonitrile promotes greater degradation than propylene carbonate does.

  15. Functional coupling of Cys-226 and Cys-296 in the glucagon-like peptide-1 (GLP-1) receptor indicates a disulfide bond that is close to the activation pocket.

    PubMed

    Mann, Rosalind J; Al-Sabah, Suleiman; de Maturana, Rakel López; Sinfield, John K; Donnelly, Dan

    2010-12-01

    G protein-coupled receptors (GPCRs) are seven transmembrane α-helical (7TM) integral membrane proteins that play a central role in both cell signaling and in the action of many pharmaceuticals. The crystal structures of several Family A GPCRs have shown the presence of a disulfide bond linking transmembrane helix 3 (TM3) to the second extracellular loop (ECL2), enabling ECL2 to stabilize and contribute to the ligand binding pocket. Family B GPCRs share no significant sequence identity with those in Family A but nevertheless share two conserved cysteines in topologically equivalent positions. Since there are no available crystal structures for the 7TM domain of any Family B GPCR, we used mutagenesis alongside pharmacological analysis to investigate the role of ECL2 and the conserved cysteine residues. We mutated Cys-226, at the extracellular end of TM3 of the glucagon-like peptide-1 (GLP-1) receptor, to alanine and observed a 38-fold reduction in GLP-1 potency. Interestingly, this potency loss was restored by the additional substitution of Cys-296 in ECL2 to alanine. Alongside the complete conservation of these cysteine residues in Family B GPCRs, this functional coupling suggested the presence of a disulfide bond. Further mutagenesis demonstrated that the low potency observed at the C226A mutant, compared with the C226A-C296A double mutant, was the result of the bulky nature of the released Cys-296 side chain. Since this suggested that ECL2 was in close proximity to the agonist activation pocket, an alanine scan of ECL2 was carried out which confirmed the important role of this loop in agonist-induced receptor activation. PMID:20869417

  16. Double-well dynamics of noise-driven control activation in human intermittent control: the case of stick balancing.

    PubMed

    Zgonnikov, Arkady; Lubashevsky, Ihor

    2015-11-01

    When facing a task of balancing a dynamic system near an unstable equilibrium, humans often adopt intermittent control strategy: Instead of continuously controlling the system, they repeatedly switch the control on and off. Paradigmatic example of such a task is stick balancing. Despite the simplicity of the task itself, the complexity of human intermittent control dynamics in stick balancing still puzzles researchers in motor control. Here we attempt to model one of the key mechanisms of human intermittent control, control activation, using as an example the task of overdamped stick balancing. In doing so, we focus on the concept of noise-driven activation, a more general alternative to the conventional threshold-driven activation. We describe control activation as a random walk in an energy potential, which changes in response to the state of the controlled system. By way of numerical simulations, we show that the developed model captures the core properties of human control activation observed previously in the experiments on overdamped stick balancing. Our results demonstrate that the double-well potential model provides tractable mathematical description of human control activation at least in the considered task and suggest that the adopted approach can potentially aid in understanding human intermittent control in more complex processes. PMID:25925132

  17. Non-actively controlled double-inverted-pendulum-like dynamics can minimize center of mass acceleration during human quiet standing.

    PubMed

    Suzuki, Yasuyuki; Morimoto, Hiroki; Kiyono, Ken; Morasso, Pietro; Nomura, Taishin

    2015-08-01

    Multiple joint movements during human quiet standing exhibit characteristic inter-joint coordination, shortly referred to as reciprocal relationship, in which angular acceleration of the hip joint is linearly and negatively correlated with that of the ankle joint (antiphase coordination) and, moreover, acceleration of the center of mass (CoM) of the double-inverted-pendulum (DIP) model of the human body is close to zero constantly. A question considered in this study is whether the reciprocal relationship is established by active neural control of the posture, or rather it is a biomechanical consequence of non-actively controlled body dynamics. To answer this question, we consider a DIP model of quiet standing, and show that the reciprocal relationship always holds by Newton's second law applied to the DIP model with human anthropometric dimensions, regardless of passive and active joint torque patterns acting on the ankle and hip joints. We then show that characteristic frequencies included in experimental sway trajectories with the reciprocal relationship match with harmonics of the eigenfrequency of the stable antiphase eigenmode of the non-actively controlled DIP-like unstable body dynamics. The results suggest that non-actively controlled DIP-like mechanical dynamics is a major cause of the minimization of the CoM acceleration during quiet standing, which is consistent with a type of control strategy that allows switching off active neural control intermittently for suitable periods of time during quiet standing. PMID:26736538

  18. Transition metal activation and functionalization of C-H (carbon-hydrogen) bonds: Progress report for period June 1, 1986-November 30, 1987

    SciTech Connect

    Jones, W.D.

    1987-08-01

    The fundamental thermodynamic and kinetic factors that influence carbon-hydrogen bond activation at homogeneous transition metal centers were investigated. The project was also directed towards the conversion of hydrocarbons into functionalized products of potential use to chemical industry. Goals during the grant period were (1) to identify new transition metal complexes capable of activating arene and alkane C-H bonds, (2) to quantitatively evaluate the kinetic and thermodynamic stability of these complexes, and (3) to examine routes for functionalization of the activated hydrocarbons. The specific complexes involved in these studies were derivatives of the formulation (C/sub 2/Me/sub 5/)Rh(PR/sub 3/)(R)H, Fe(PMe/sub 3/)/sub 2/(CNR)/sub 3/, Ru(PR/sub 3/)/sub 4/(R)H, and Rh(CNR)/sub 3/H. Functionalization focused upon isocyanide and acetylene insertion reactions. New compounds that activated hydrocarbon C-H bonds include HRe(PR/sub 3/)/sub 5/, HRe(PR/sub 3/)/sub 2/(CNR)/sub 3/, CpRe(Pr/sub 3/)H/sub 4/, CpRe(PR/sub 3/)/sub 2/H/sub 2/, and (eta/sup 6/-C/sub 6/H/sub 6/)Re(PPh/sub 3/)/sub 2/H. 7 figs., 1 tab.

  19. Distinguishing Bonds.

    PubMed

    Rahm, Martin; Hoffmann, Roald

    2016-03-23

    The energy change per electron in a chemical or physical transformation, ΔE/n, may be expressed as Δχ̅ + Δ(VNN + ω)/n, where Δχ̅ is the average electron binding energy, a generalized electronegativity, ΔVNN is the change in nuclear repulsions, and Δω is the change in multielectron interactions in the process considered. The last term can be obtained by the difference from experimental or theoretical estimates of the first terms. Previously obtained consequences of this energy partitioning are extended here to a different analysis of bonding in a great variety of diatomics, including more or less polar ones. Arguments are presented for associating the average change in electron binding energy with covalence, and the change in multielectron interactions with electron transfer, either to, out, or within a molecule. A new descriptor Q, essentially the scaled difference between the Δχ̅ and Δ(VNN + ω)/n terms, when plotted versus the bond energy, separates nicely a wide variety of bonding types, covalent, covalent but more correlated, polar and increasingly ionic, metallogenic, electrostatic, charge-shift bonds, and dispersion interactions. Also, Q itself shows a set of interesting relations with the correlation energy of a bond. PMID:26910496

  20. Strained Si-O-Si bonds in amorphous SiO2 materials: A family member of active centers in radio, photo, and chemical responses

    NASA Astrophysics Data System (ADS)

    Awazu, Koichi; Kawazoe, Hiroshi

    2003-11-01

    Amorphous SiO2 (a-SiO2), such as bulk silica glasses and thin films has been one of the key materials in modern optoelectronic industries. These materials are currently used in communication technologies as optical fibers, thin films for electrical insulation in dynamic random access memories (DRAM), and optical lenses for excimer laser lithography, for example. The property essential for these applications is the wide band gap amounting to ˜9 eV. However, bulk silica glasses commercially available and silica thin films show photoresponses to subband gap lights in the vicinity of 5 eV and unexpected trapping of charges, and the behavior has a strong dependency on the preparation history. A number of studies were carried out to clarify the relationship between the properties and structural imperfections in the materials and the formation mechanisms of the defects. There are two categories of the imperfections: one is dopant- or impurity-related imperfections and the other is nonstoichiometry related defects. These defects constitute gap states in a-SiO2. The structural identification was usually performed by absorption and emission spectroscopy in the visible-ultraviolet (UV) region and electron spin resonance (ESR). The experimentally proposed models were compared with the predictions by theoretical calculations of energy levels. Recent development of the excimer laser lithography technique led us to recognize that a latent member, which has been unnoticed because of no response to the optical absorption or emission in the visible-UV range and ESR absorption, exists in the family of active centers in a-SiO2, that is a strained Si-O-Si bond originating from the planar three membered ring. In contrast, the puckered four membered ring is unstrained. Although it has been pointed out that there was a wide distribution in Si-O-Si bond angle from 90° to 180° by x-ray analysis or 29Si solid state nuclear magnetic resonance, the physical, and chemical responses of the Si